repo_id
stringlengths
15
132
file_path
stringlengths
34
176
content
stringlengths
2
3.52M
__index_level_0__
int64
0
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/recordings/test_run_operations_TestFlowRun_test_tools_json_ignored.yaml
interactions: - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 promptflow/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000 response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000", "name": "00000", "type": "Microsoft.MachineLearningServices/workspaces", "location": "eastus", "tags": {}, "etag": null, "kind": "Default", "sku": {"name": "Basic", "tier": "Basic"}, "properties": {"discoveryUrl": "https://eastus.api.azureml.ms/discovery"}}' headers: cache-control: - no-cache content-length: - '3630' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains vary: - Accept-Encoding x-cache: - CONFIG_NOCACHE x-content-type-options: - nosniff x-request-time: - '0.017' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 promptflow/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores?count=30&isDefault=true&orderByAsc=false response: body: string: '{"value": [{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}]}' headers: cache-control: - no-cache content-length: - '1372' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains vary: - Accept-Encoding x-cache: - CONFIG_NOCACHE x-content-type-options: - nosniff x-request-time: - '0.180' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 promptflow/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains vary: - Accept-Encoding x-cache: - CONFIG_NOCACHE x-content-type-options: - nosniff x-request-time: - '0.081' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 promptflow/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains x-cache: - CONFIG_NOCACHE x-content-type-options: - nosniff x-request-time: - '0.120' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Wed, 29 Nov 2023 09:03:57 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/webClassification3.jsonl response: body: string: '' headers: accept-ranges: - bytes content-length: - '379' content-md5: - lI/pz9jzTQ7Td3RHPL7y7w== content-type: - application/octet-stream last-modified: - Mon, 06 Nov 2023 08:30:18 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Mon, 06 Nov 2023 08:30:18 GMT x-ms-meta-name: - 94331215-cf7f-452a-9f1a-1d276bc9b0e4 x-ms-meta-upload_status: - completed x-ms-meta-version: - 3f163752-edb0-4afc-a6f5-b0a670bd7c24 x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Wed, 29 Nov 2023 09:03:58 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/webClassification3.jsonl response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 promptflow/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains vary: - Accept-Encoding x-cache: - CONFIG_NOCACHE x-content-type-options: - nosniff x-request-time: - '0.123' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 promptflow/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains x-cache: - CONFIG_NOCACHE x-content-type-options: - nosniff x-request-time: - '0.124' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Wed, 29 Nov 2023 09:04:02 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/flow_with_dict_input/flow.dag.yaml response: body: string: '' headers: accept-ranges: - bytes content-length: - '390' content-md5: - rvNrgMFl6rXC96Bo0HAgiQ== content-type: - application/octet-stream last-modified: - Wed, 29 Nov 2023 09:02:57 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Wed, 29 Nov 2023 09:02:56 GMT x-ms-meta-name: - fea20834-dda6-4ae9-a2bf-b8c08cd7e883 x-ms-meta-upload_status: - completed x-ms-meta-version: - '1' x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Wed, 29 Nov 2023 09:04:03 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/flow_with_dict_input/flow.dag.yaml response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. version: 1
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/recordings/test_run_operations_TestFlowRun_test_request_id_when_making_http_requests.yaml
interactions: - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 promptflow/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000 response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000", "name": "00000", "type": "Microsoft.MachineLearningServices/workspaces", "location": "eastus", "tags": {}, "etag": null, "kind": "Default", "sku": {"name": "Basic", "tier": "Basic"}, "properties": {"discoveryUrl": "https://eastus.api.azureml.ms/discovery"}}' headers: cache-control: - no-cache content-length: - '3630' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains vary: - Accept-Encoding x-cache: - CONFIG_NOCACHE x-content-type-options: - nosniff x-request-time: - '0.017' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 promptflow/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores?count=30&isDefault=true&orderByAsc=false response: body: string: '{"value": [{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}]}' headers: cache-control: - no-cache content-length: - '1372' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains vary: - Accept-Encoding x-cache: - CONFIG_NOCACHE x-content-type-options: - nosniff x-request-time: - '0.716' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 promptflow/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains vary: - Accept-Encoding x-cache: - CONFIG_NOCACHE x-content-type-options: - nosniff x-request-time: - '0.105' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 promptflow/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains x-cache: - CONFIG_NOCACHE x-content-type-options: - nosniff x-request-time: - '0.140' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Thu, 30 Nov 2023 08:11:19 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/env_var_names.jsonl response: body: string: '' headers: accept-ranges: - bytes content-length: - '49' content-md5: - quXiEreYvPinSj0HsaNa/g== content-type: - application/octet-stream last-modified: - Wed, 08 Nov 2023 04:26:09 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Wed, 08 Nov 2023 04:26:09 GMT x-ms-meta-name: - c4092674-5e53-4c17-b78d-75353ae0edb6 x-ms-meta-upload_status: - completed x-ms-meta-version: - 579021dc-8ac8-4c73-8110-4642bd00c69b x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Thu, 30 Nov 2023 08:11:21 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/env_var_names.jsonl response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 promptflow/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains vary: - Accept-Encoding x-cache: - CONFIG_NOCACHE x-content-type-options: - nosniff x-request-time: - '0.103' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 promptflow/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains x-cache: - CONFIG_NOCACHE x-content-type-options: - nosniff x-request-time: - '0.107' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Thu, 30 Nov 2023 08:11:25 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/print_env_var/flow.dag.yaml response: body: string: '' headers: accept-ranges: - bytes content-length: - '245' content-md5: - F+JA0a3CxcLYZ0ANRdlZbA== content-type: - application/octet-stream last-modified: - Wed, 29 Nov 2023 02:51:35 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Thu, 17 Aug 2023 10:30:09 GMT x-ms-meta-name: - 56efdd28-6297-4baa-aad3-be46f4b768a2 x-ms-meta-upload_status: - completed x-ms-meta-version: - '1' x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Thu, 30 Nov 2023 08:11:26 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/print_env_var/flow.dag.yaml response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 promptflow/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains vary: - Accept-Encoding x-cache: - CONFIG_NOCACHE x-content-type-options: - nosniff x-request-time: - '0.070' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 promptflow/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains x-cache: - CONFIG_NOCACHE x-content-type-options: - nosniff x-request-time: - '0.104' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Thu, 30 Nov 2023 08:11:35 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/env_var_names.jsonl response: body: string: '' headers: accept-ranges: - bytes content-length: - '49' content-md5: - quXiEreYvPinSj0HsaNa/g== content-type: - application/octet-stream last-modified: - Wed, 08 Nov 2023 04:26:09 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Wed, 08 Nov 2023 04:26:09 GMT x-ms-meta-name: - c4092674-5e53-4c17-b78d-75353ae0edb6 x-ms-meta-upload_status: - completed x-ms-meta-version: - 579021dc-8ac8-4c73-8110-4642bd00c69b x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Thu, 30 Nov 2023 08:11:36 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/env_var_names.jsonl response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 promptflow/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains vary: - Accept-Encoding x-cache: - CONFIG_NOCACHE x-content-type-options: - nosniff x-request-time: - '0.073' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 promptflow/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains x-cache: - CONFIG_NOCACHE x-content-type-options: - nosniff x-request-time: - '0.092' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Thu, 30 Nov 2023 08:11:40 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/print_env_var/flow.dag.yaml response: body: string: '' headers: accept-ranges: - bytes content-length: - '245' content-md5: - F+JA0a3CxcLYZ0ANRdlZbA== content-type: - application/octet-stream last-modified: - Wed, 29 Nov 2023 02:51:35 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Thu, 17 Aug 2023 10:30:09 GMT x-ms-meta-name: - 56efdd28-6297-4baa-aad3-be46f4b768a2 x-ms-meta-upload_status: - completed x-ms-meta-version: - '1' x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Thu, 30 Nov 2023 08:11:42 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/print_env_var/flow.dag.yaml response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. version: 1
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/recordings/test_run_operations_TestFlowRun_test_eager_flow_download.yaml
interactions: - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000 response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000", "name": "00000", "type": "Microsoft.MachineLearningServices/workspaces", "location": "eastus", "tags": {}, "etag": null, "kind": "Default", "sku": {"name": "Basic", "tier": "Basic"}, "properties": {"discoveryUrl": "https://eastus.api.azureml.ms/discovery"}}' headers: cache-control: - no-cache content-length: - '3630' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.031' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores?count=30&isDefault=true&orderByAsc=false response: body: string: '{"value": [{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}]}' headers: cache-control: - no-cache content-length: - '1372' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.066' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.075' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.125' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Thu, 25 Jan 2024 09:16:18 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/simple_eager_flow_data.jsonl response: body: string: '' headers: accept-ranges: - bytes content-length: - '25' content-md5: - zt1zN1V/HR5p7N0Sh5396w== content-type: - application/octet-stream last-modified: - Tue, 23 Jan 2024 06:27:00 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Tue, 23 Jan 2024 06:26:59 GMT x-ms-meta-name: - 1e376ce4-7c3b-4683-82ad-412f5cd23626 x-ms-meta-upload_status: - completed x-ms-meta-version: - 7e65351c-7e4b-4a4d-90f8-304eacdc36bc x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Thu, 25 Jan 2024 09:16:21 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/simple_eager_flow_data.jsonl response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.108' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.088' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Thu, 25 Jan 2024 09:16:25 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/simple_with_req/entry.py response: body: string: '' headers: accept-ranges: - bytes content-length: - '331' content-md5: - bf0G3F/eNgZO8UPfGebSUQ== content-type: - application/octet-stream last-modified: - Thu, 25 Jan 2024 08:57:55 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Thu, 25 Jan 2024 08:57:54 GMT x-ms-meta-name: - c42d946f-2978-4455-8a89-b768c66a9277 x-ms-meta-upload_status: - completed x-ms-meta-version: - '1' x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Thu, 25 Jan 2024 09:16:28 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/simple_with_req/entry.py response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: '{"flowDefinitionDataStoreName": "workspaceblobstore", "flowDefinitionBlobPath": "LocalUpload/000000000000000000000000000000000000/simple_with_req/flow.dag.yaml", "runId": "name", "runDisplayName": "name", "runExperimentName": "", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/000000000000000000000000000000000000/simple_eager_flow_data.jsonl"}, "inputsMapping": {}, "connections": {}, "environmentVariables": {}, "runtimeName": "fake-runtime-name", "sessionId": "000000000000000000000000000000000000000000000000", "sessionSetupMode": "SystemWait", "flowLineageId": "0000000000000000000000000000000000000000000000000000000000000000", "runDisplayNameGenerationType": "UserProvidedMacro"}' headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '791' Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.11.5 (Windows-10-10.0.22621-SP0) method: POST uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/submit response: body: string: '"name"' headers: connection: - keep-alive content-length: - '38' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload x-content-type-options: - nosniff x-request-time: - '6.330' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/name response: body: string: '{"flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/name/flowRuns/name", "flowRunId": "name", "flowRunDisplayName": "name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/e62bc4d5a164939b21d42dd420469da7/simple_eager_flow_data.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "automatic", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "1ac134f8-0696-4ce1-ba89-cd4d9748e886", "studioPortalEndpoint": "https://ml.azure.com/runs/name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '1028' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.273' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/name response: body: string: '{"flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/name/flowRuns/name", "flowRunId": "name", "flowRunDisplayName": "name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/e62bc4d5a164939b21d42dd420469da7/simple_eager_flow_data.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "automatic", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "1ac134f8-0696-4ce1-ba89-cd4d9748e886", "studioPortalEndpoint": "https://ml.azure.com/runs/name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '1028' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.372' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/name response: body: string: '{"flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/name/flowRuns/name", "flowRunId": "name", "flowRunDisplayName": "name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/e62bc4d5a164939b21d42dd420469da7/simple_eager_flow_data.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "automatic", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "1ac134f8-0696-4ce1-ba89-cd4d9748e886", "studioPortalEndpoint": "https://ml.azure.com/runs/name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '1028' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.420' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/name response: body: string: '{"flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/name/flowRuns/name", "flowRunId": "name", "flowRunDisplayName": "name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/e62bc4d5a164939b21d42dd420469da7/simple_eager_flow_data.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "automatic", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "1ac134f8-0696-4ce1-ba89-cd4d9748e886", "studioPortalEndpoint": "https://ml.azure.com/runs/name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '1028' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.469' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/name response: body: string: '{"flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/name/flowRuns/name", "flowRunId": "name", "flowRunDisplayName": "name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/e62bc4d5a164939b21d42dd420469da7/simple_eager_flow_data.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "automatic", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "1ac134f8-0696-4ce1-ba89-cd4d9748e886", "studioPortalEndpoint": "https://ml.azure.com/runs/name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '1028' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.173' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/name response: body: string: '{"flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/name/flowRuns/name", "flowRunId": "name", "flowRunDisplayName": "name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/e62bc4d5a164939b21d42dd420469da7/simple_eager_flow_data.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "automatic", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "1ac134f8-0696-4ce1-ba89-cd4d9748e886", "studioPortalEndpoint": "https://ml.azure.com/runs/name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '1028' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.214' status: code: 200 message: OK - request: body: '{}' headers: Accept: - '*/*' Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '2' Content-Type: - application/json User-Agent: - python-requests/2.31.0 method: POST uri: https://eastus.api.azureml.ms/metric/v2.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/runs/name/lastvalues response: body: string: '{"value": [{"dataContainerId": "dcid.name", "name": "__pf__.lines.completed", "columns": {"__pf__.lines.completed": "Double"}, "properties": {"uxMetricType": "azureml.v1.scalar", "dataLocation": null}, "namespace": null, "standardSchemaId": null, "value": [{"metricId": "acecc185-aa1e-4e95-b342-d391d260bc46", "createdUtc": "2024-01-25T09:17:00.198+00:00", "step": 0, "data": {"__pf__.lines.completed": 1.0}}]}, {"dataContainerId": "dcid.name", "name": "__pf__.lines.failed", "columns": {"__pf__.lines.failed": "Double"}, "properties": {"uxMetricType": "azureml.v1.scalar", "dataLocation": null}, "namespace": null, "standardSchemaId": null, "value": [{"metricId": "aeeb8ed5-aca3-475d-a76d-a58ecc12ad99", "createdUtc": "2024-01-25T09:17:00.563+00:00", "step": 0, "data": {"__pf__.lines.failed": 0.0}}]}]}' headers: connection: - keep-alive content-length: - '1240' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.066' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/name response: body: string: '{"flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/name/flowRuns/name", "flowRunId": "name", "flowRunDisplayName": "name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/e62bc4d5a164939b21d42dd420469da7/simple_eager_flow_data.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "automatic", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "1ac134f8-0696-4ce1-ba89-cd4d9748e886", "studioPortalEndpoint": "https://ml.azure.com/runs/name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '1028' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.292' status: code: 200 message: OK - request: body: '{"value": "azureml://locations/eastus/workspaces/00000/data/azureml_name_output_data_debug_info/versions/1"}' headers: accept: - '*/*' accept-encoding: - gzip, deflate connection: - keep-alive content-length: - '171' content-type: - application/json host: - eastus.api.azureml.ms user-agent: - python-httpx/0.26.0 method: POST uri: https://eastus.api.azureml.ms/data/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/dataversion/getByAssetId response: content: '{"dataVersion": {"assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_name_output_data_debug_info/versions/1", "dataContainerName": "azureml_name_output_data_debug_info", "dataType": "UriFolder", "dataUri": "azureml://subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/workspaces/00000/datastores/workspaceblobstore/paths/promptflow/PromptFlowArtifacts/name/", "versionId": "1", "mutableProps": {"dataExpiryTime": null, "description": null, "tags": null, "isArchived": false, "stage": "Logged", "autoDeleteSetting": null}, "referencedDataUris": null, "properties": null, "initialAssetId": "azureml://locations/eastus/workspaces/00000/data/azureml_name_output_data_debug_info/versions/1", "isRegistered": false, "runId": "name", "originAssetId": null}, "entityMetadata": {"etag": "\"87008635-0000-0100-0000-65b2270d0000\"", "createdTime": "2024-01-25T09:17:01.3632335+00:00", "modifiedTime": "2024-01-25T09:17:01.3970754+00:00", "createdBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": "100320005227D154", "userIdp": null, "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "Han Wang", "upn": "[email protected]"}, "modifiedBy": null}, "legacyDatasetId": "c78cba45-2c03-4f27-8f6d-7a0f7fcaa3fc", "isV2": true, "legacyDatasetType": null, "legacyDataflowType": null, "legacyDataflow": null, "legacySavedDatasetId": null, "putAssetLROResponseDto": null}' headers: connection: - keep-alive content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.064' http_version: HTTP/1.1 status_code: 200 - request: body: '{"snapshotOrAssetId": "1ac134f8-0696-4ce1-ba89-cd4d9748e886"}' headers: accept: - '*/*' accept-encoding: - gzip, deflate connection: - keep-alive content-length: - '61' content-type: - application/json host: - eastus.api.azureml.ms user-agent: - python-httpx/0.26.0 method: POST uri: https://eastus.api.azureml.ms/content/v2.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/snapshots/sas response: content: '{"name": "", "hash": null, "type": "Directory", "timestamp": "0001-01-01T00:00:00+00:00", "sasUrl": null, "absoluteUrl": null, "sizeBytes": 0, "sizeSet": false, "children": {"entry.py": {"name": "entry.py", "hash": "6DFD06DC5FDE36064EF143DF19E6D251", "type": "File", "timestamp": "0001-01-01T00:00:00+00:00", "sasUrl": "https://promptfloweast4063704120.blob.core.windows.net/azureml-blobstore-3e123da1-f9a5-4c91-9234-8d9ffbb39ff5/runs/name/entry.py?sv=2019-07-07&sr=b&sig=uNX4%2F%2BOW1NSRGOeyt5nunbdGqVOmeV84SX9FrinPAaU%3D&st=2024-01-25T09%3A08%3A38Z&se=2024-01-25T17%3A18%3A38Z&sp=r&rscd=filename%3Dentry.py", "absoluteUrl": "https://promptfloweast4063704120.blob.core.windows.net/azureml-blobstore-3e123da1-f9a5-4c91-9234-8d9ffbb39ff5/runs/name/entry.py", "sizeBytes": 331, "sizeSet": true, "children": {}}, "flow.dag.yaml": {"name": "flow.dag.yaml", "hash": "E9583EF05B4434346632808F5714E8B0", "type": "File", "timestamp": "0001-01-01T00:00:00+00:00", "sasUrl": "https://promptfloweast4063704120.blob.core.windows.net/azureml-blobstore-3e123da1-f9a5-4c91-9234-8d9ffbb39ff5/runs/name/flow.dag.yaml?sv=2019-07-07&sr=b&sig=3plGLhXfe%2Fudi%2Fm0Z7%2FSz7Cte1sDfk8cDwBsYGfvMrQ%3D&st=2024-01-25T09%3A08%3A38Z&se=2024-01-25T17%3A18%3A38Z&sp=r&rscd=filename%3Dflow.dag.yaml", "absoluteUrl": "https://promptfloweast4063704120.blob.core.windows.net/azureml-blobstore-3e123da1-f9a5-4c91-9234-8d9ffbb39ff5/runs/name/flow.dag.yaml", "sizeBytes": 93, "sizeSet": true, "children": {}}, "requirements.txt": {"name": "requirements.txt", "hash": "93AEF5DCE3D6FE02C4425D72C0E1DABD", "type": "File", "timestamp": "0001-01-01T00:00:00+00:00", "sasUrl": "https://promptfloweast4063704120.blob.core.windows.net/azureml-blobstore-3e123da1-f9a5-4c91-9234-8d9ffbb39ff5/runs/name/requirements.txt?sv=2019-07-07&sr=b&sig=KJrkxjj4vFvaXoSEzbexwXAJIkisbxTIgI8M1l0%2FWlY%3D&st=2024-01-25T09%3A08%3A38Z&se=2024-01-25T17%3A18%3A38Z&sp=r&rscd=filename%3Drequirements.txt", "absoluteUrl": "https://promptfloweast4063704120.blob.core.windows.net/azureml-blobstore-3e123da1-f9a5-4c91-9234-8d9ffbb39ff5/runs/name/requirements.txt", "sizeBytes": 109, "sizeSet": true, "children": {}}}}' headers: connection: - keep-alive content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.142' http_version: HTTP/1.1 status_code: 200 - request: body: null headers: Accept: - application/xml User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Thu, 25 Jan 2024 09:18:43 GMT x-ms-range: - bytes=0-33554431 x-ms-version: - '2023-11-03' method: GET uri: https://fake_account_name.blob.core.windows.net/fake-container-name/runs/name/requirements.txt response: body: string: "--extra-index-url https://azuremlsdktestpypi.azureedge.net/test-promptflow/\r\npromptflow[azure]==0.0.116642424" headers: accept-ranges: - bytes content-length: - '109' content-range: - bytes 0-108/109 content-type: - application/octet-stream last-modified: - Thu, 25 Jan 2024 09:16:44 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-content-md5: - k6713OPW/gLEQl1ywOHavQ== x-ms-blob-type: - BlockBlob x-ms-copy-completion-time: - Thu, 25 Jan 2024 09:16:44 GMT x-ms-copy-id: - bcd3c079-6acb-4b8d-9af6-b23b87ffca84 x-ms-copy-progress: - 109/109 x-ms-copy-source: - https://promptfloweast4063704120.blob.core.windows.net/azureml-blobstore-3e123da1-f9a5-4c91-9234-8d9ffbb39ff5/LocalUpload/79819672296a1785a95c65c8c0e75b0d/simple_with_req/requirements.txt x-ms-copy-status: - success x-ms-creation-time: - Thu, 25 Jan 2024 09:16:44 GMT x-ms-version: - '2023-11-03' status: code: 206 message: Partial Content - request: body: null headers: Accept: - application/xml User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Thu, 25 Jan 2024 09:18:42 GMT x-ms-range: - bytes=0-33554431 x-ms-version: - '2023-11-03' method: GET uri: https://fake_account_name.blob.core.windows.net/fake-container-name/runs/name/entry.py response: body: string: "# ---------------------------------------------------------\r\n# Copyright (c) Microsoft Corporation. All rights reserved.\r\n# ---------------------------------------------------------\r\n\r\ndef my_flow(input_val) -> str:\r\n \"\"\"Simple flow with yaml.\"\"\"\r\n print(f\"Hello world! {input_val}\")\r\n return f\"Hello world! {input_val}\"\r\n" headers: accept-ranges: - bytes content-length: - '331' content-range: - bytes 0-330/331 content-type: - application/octet-stream last-modified: - Thu, 25 Jan 2024 09:16:44 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-content-md5: - bf0G3F/eNgZO8UPfGebSUQ== x-ms-blob-type: - BlockBlob x-ms-copy-completion-time: - Thu, 25 Jan 2024 09:16:44 GMT x-ms-copy-id: - 5b6fc216-f239-42fa-a163-c92db62cb949 x-ms-copy-progress: - 331/331 x-ms-copy-source: - https://promptfloweast4063704120.blob.core.windows.net/azureml-blobstore-3e123da1-f9a5-4c91-9234-8d9ffbb39ff5/LocalUpload/79819672296a1785a95c65c8c0e75b0d/simple_with_req/entry.py x-ms-copy-status: - success x-ms-creation-time: - Thu, 25 Jan 2024 09:16:44 GMT x-ms-meta-name: - c42d946f-2978-4455-8a89-b768c66a9277 x-ms-meta-upload_status: - completed x-ms-meta-version: - '1' x-ms-version: - '2023-11-03' status: code: 206 message: Partial Content - request: body: null headers: Accept: - application/xml User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Thu, 25 Jan 2024 09:18:38 GMT x-ms-version: - '2023-11-03' method: GET uri: https://fake_account_name.blob.core.windows.net/fake-container-name?comp=list&prefix=promptflow%2FPromptFlowArtifacts%2Fname%2F&restype=container response: body: string: "\uFEFF<?xml version=\"1.0\" encoding=\"utf-8\"?><EnumerationResults ServiceEndpoint=\"https://promptfloweast4063704120.blob.core.windows.net/\" ContainerName=\"azureml-blobstore-3e123da1-f9a5-4c91-9234-8d9ffbb39ff5\"><Prefix>promptflow/PromptFlowArtifacts/name/</Prefix><Blobs><Blob><Name>promptflow/PromptFlowArtifacts/name/flow_artifacts/000000000_000000024.jsonl</Name><Properties><Creation-Time>Thu, 25 Jan 2024 09:16:58 GMT</Creation-Time><Last-Modified>Thu, 25 Jan 2024 09:16:58 GMT</Last-Modified><Etag>0x8DC1D8661A992B8</Etag><Content-Length>1132</Content-Length><Content-Type>application/octet-stream</Content-Type><Content-Encoding /><Content-Language /><Content-CRC64 /><Content-MD5 /><Cache-Control /><Content-Disposition /><BlobType>AppendBlob</BlobType><LeaseStatus>unlocked</LeaseStatus><LeaseState>available</LeaseState><ServerEncrypted>true</ServerEncrypted></Properties><OrMetadata /></Blob><Blob><Name>promptflow/PromptFlowArtifacts/name/flow_outputs/output.jsonl</Name><Properties><Creation-Time>Thu, 25 Jan 2024 09:17:01 GMT</Creation-Time><Last-Modified>Thu, 25 Jan 2024 09:17:01 GMT</Last-Modified><Etag>0x8DC1D8663B60064</Etag><Content-Length>52</Content-Length><Content-Type>application/octet-stream</Content-Type><Content-Encoding /><Content-Language /><Content-CRC64 /><Content-MD5>e7CC/hOg8uoJ3TK2HaKeZA==</Content-MD5><Cache-Control /><Content-Disposition /><BlobType>BlockBlob</BlobType><AccessTier>Hot</AccessTier><AccessTierInferred>true</AccessTierInferred><LeaseStatus>unlocked</LeaseStatus><LeaseState>available</LeaseState><ServerEncrypted>true</ServerEncrypted></Properties><OrMetadata /></Blob><Blob><Name>promptflow/PromptFlowArtifacts/name/instance_results.jsonl</Name><Properties><Creation-Time>Thu, 25 Jan 2024 09:16:58 GMT</Creation-Time><Last-Modified>Thu, 25 Jan 2024 09:16:58 GMT</Last-Modified><Etag>0x8DC1D8661AE6F40</Etag><Content-Length>105</Content-Length><Content-Type>application/octet-stream</Content-Type><Content-Encoding /><Content-Language /><Content-CRC64 /><Content-MD5 /><Cache-Control /><Content-Disposition /><BlobType>AppendBlob</BlobType><LeaseStatus>unlocked</LeaseStatus><LeaseState>available</LeaseState><ServerEncrypted>true</ServerEncrypted></Properties><OrMetadata /></Blob><Blob><Name>promptflow/PromptFlowArtifacts/name/meta.json</Name><Properties><Creation-Time>Thu, 25 Jan 2024 09:16:52 GMT</Creation-Time><Last-Modified>Thu, 25 Jan 2024 09:16:52 GMT</Last-Modified><Etag>0x8DC1D865E80BFF2</Etag><Content-Length>18</Content-Length><Content-Type>application/octet-stream</Content-Type><Content-Encoding /><Content-Language /><Content-CRC64 /><Content-MD5>/u1NXUpgXMFDmZEw835qnw==</Content-MD5><Cache-Control /><Content-Disposition /><BlobType>BlockBlob</BlobType><AccessTier>Hot</AccessTier><AccessTierInferred>true</AccessTierInferred><LeaseStatus>unlocked</LeaseStatus><LeaseState>available</LeaseState><ServerEncrypted>true</ServerEncrypted></Properties><OrMetadata /></Blob></Blobs><NextMarker /></EnumerationResults>" headers: content-type: - application/xml server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Thu, 25 Jan 2024 09:18:44 GMT x-ms-range: - bytes=0-33554431 x-ms-version: - '2023-11-03' method: GET uri: https://fake_account_name.blob.core.windows.net/fake-container-name/promptflow/PromptFlowArtifacts/name/flow_artifacts/000000000_000000024.jsonl response: body: string: '{"line_number": 0, "run_info": {"run_id": "name_0", "status": "Completed", "error": null, "inputs": {"input_val": "input1"}, "output": {"output": "Hello world! input1"}, "metrics": null, "request": null, "parent_run_id": "name", "root_run_id": "name", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-25T09:16:58.053129Z", "end_time": "2024-01-25T09:16:58.055292Z", "index": 0, "api_calls": [{"name": "my_flow", "type": "Function", "inputs": {"input_val": "input1"}, "output": "Hello world! input1", "start_time": 1706174218.053984, "end_time": 1706174218.054859, "error": null, "children": [], "node_name": null, "parent_id": "", "id": "27b021bc-89d3-43f8-b3ac-a9eed2a84949"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.002163}, "result": {"output": "Hello world! input1"}, "upload_metrics": false}, "start_time": "2024-01-25T09:16:58.053129", "end_time": "2024-01-25T09:16:58.055292", "name": "", "description": "", "status": "Completed", "tags": null} ' headers: accept-ranges: - bytes content-length: - '1132' content-range: - bytes 0-1131/1132 content-type: - application/octet-stream last-modified: - Thu, 25 Jan 2024 09:16:58 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-committed-block-count: - '1' x-ms-blob-type: - AppendBlob x-ms-creation-time: - Thu, 25 Jan 2024 09:16:58 GMT x-ms-version: - '2023-11-03' status: code: 206 message: Partial Content - request: body: null headers: Accept: - application/xml User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Thu, 25 Jan 2024 09:18:44 GMT x-ms-range: - bytes=0-33554431 x-ms-version: - '2023-11-03' method: GET uri: https://fake_account_name.blob.core.windows.net/fake-container-name/promptflow/PromptFlowArtifacts/name/flow_outputs/output.jsonl response: body: string: '{"line_number": 0, "output": "Hello world! input1"} ' headers: accept-ranges: - bytes content-length: - '52' content-range: - bytes 0-51/52 content-type: - application/octet-stream last-modified: - Thu, 25 Jan 2024 09:17:01 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-content-md5: - e7CC/hOg8uoJ3TK2HaKeZA== x-ms-blob-type: - BlockBlob x-ms-creation-time: - Thu, 25 Jan 2024 09:17:01 GMT x-ms-version: - '2023-11-03' status: code: 206 message: Partial Content - request: body: null headers: Accept: - application/xml User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Thu, 25 Jan 2024 09:18:44 GMT x-ms-range: - bytes=0-33554431 x-ms-version: - '2023-11-03' method: GET uri: https://fake_account_name.blob.core.windows.net/fake-container-name/promptflow/PromptFlowArtifacts/name/instance_results.jsonl response: body: string: '{"line_number": 0, "status": "Completed", "inputs.input_val": "input1", "output": "Hello world! input1"} ' headers: accept-ranges: - bytes content-length: - '105' content-range: - bytes 0-104/105 content-type: - application/octet-stream last-modified: - Thu, 25 Jan 2024 09:16:58 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-committed-block-count: - '1' x-ms-blob-type: - AppendBlob x-ms-creation-time: - Thu, 25 Jan 2024 09:16:58 GMT x-ms-version: - '2023-11-03' status: code: 206 message: Partial Content - request: body: null headers: Accept: - application/xml User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Thu, 25 Jan 2024 09:18:42 GMT x-ms-range: - bytes=0-33554431 x-ms-version: - '2023-11-03' method: GET uri: https://fake_account_name.blob.core.windows.net/fake-container-name/runs/name/flow.dag.yaml response: body: string: "path: ./entry.py\r\nentry: my_flow\r\nenvironment:\r\n python_requirements_txt: requirements.txt" headers: accept-ranges: - bytes content-length: - '93' content-range: - bytes 0-92/93 content-type: - application/octet-stream last-modified: - Thu, 25 Jan 2024 09:16:44 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-content-md5: - 6Vg+8FtENDRmMoCPVxTosA== x-ms-blob-type: - BlockBlob x-ms-copy-completion-time: - Thu, 25 Jan 2024 09:16:44 GMT x-ms-copy-id: - f4653407-3dac-4827-a65f-e1cf4b99a458 x-ms-copy-progress: - 93/93 x-ms-copy-source: - https://promptfloweast4063704120.blob.core.windows.net/azureml-blobstore-3e123da1-f9a5-4c91-9234-8d9ffbb39ff5/LocalUpload/79819672296a1785a95c65c8c0e75b0d/simple_with_req/flow.dag.yaml x-ms-copy-status: - success x-ms-creation-time: - Thu, 25 Jan 2024 09:16:44 GMT x-ms-version: - '2023-11-03' status: code: 206 message: Partial Content - request: body: null headers: Accept: - application/xml User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Thu, 25 Jan 2024 09:18:44 GMT x-ms-range: - bytes=0-33554431 x-ms-version: - '2023-11-03' method: GET uri: https://fake_account_name.blob.core.windows.net/fake-container-name/promptflow/PromptFlowArtifacts/name/meta.json response: body: string: '{"batch_size": 25}' headers: accept-ranges: - bytes content-length: - '18' content-range: - bytes 0-17/18 content-type: - application/octet-stream last-modified: - Thu, 25 Jan 2024 09:16:52 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-content-md5: - /u1NXUpgXMFDmZEw835qnw== x-ms-blob-type: - BlockBlob x-ms-creation-time: - Thu, 25 Jan 2024 09:16:52 GMT x-ms-version: - '2023-11-03' status: code: 206 message: Partial Content - request: body: '{"runId": "name", "selectRunMetadata": true, "selectRunDefinition": true, "selectJobSpecification": true}' headers: accept: - '*/*' accept-encoding: - gzip, deflate connection: - keep-alive content-length: - '137' content-type: - application/json host: - eastus.api.azureml.ms user-agent: - python-httpx/0.26.0 method: POST uri: https://eastus.api.azureml.ms/history/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/rundata response: content: '{"runMetadata": {"runNumber": 1706174203, "rootRunId": "name", "createdUtc": "2024-01-25T09:16:43.8144219+00:00", "createdBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": "100320005227D154", "userIdp": null, "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "Han Wang", "upn": null}, "userId": "00000000-0000-0000-0000-000000000000", "token": null, "tokenExpiryTimeUtc": null, "error": null, "warnings": null, "revision": 6, "statusRevision": 3, "runUuid": "7da6a191-0945-4e9f-bfc6-a1fc7c72b72c", "parentRunUuid": null, "rootRunUuid": "7da6a191-0945-4e9f-bfc6-a1fc7c72b72c", "lastStartTimeUtc": null, "currentComputeTime": null, "computeDuration": "00:00:08.3698759", "effectiveStartTimeUtc": null, "lastModifiedBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": "100320005227D154", "userIdp": null, "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "Han Wang", "upn": "[email protected]"}, "lastModifiedUtc": "2024-01-25T09:17:00.9260346+00:00", "duration": "00:00:08.3698759", "cancelationReason": null, "currentAttemptId": 1, "runId": "name", "parentRunId": null, "experimentId": "64465848-e4a8-42a2-a617-d7f0fcda6f32", "status": "Completed", "startTimeUtc": "2024-01-25T09:16:53.6662445+00:00", "endTimeUtc": "2024-01-25T09:17:02.0361204+00:00", "scheduleId": null, "displayName": "name", "name": null, "dataContainerId": "dcid.name", "description": null, "hidden": false, "runType": "azureml.promptflow.FlowRun", "runTypeV2": {"orchestrator": null, "traits": [], "attribution": "PromptFlow", "computeType": null}, "properties": {"azureml.promptflow.runtime_name": "automatic", "azureml.promptflow.runtime_version": "20240116.v1", "azureml.promptflow.definition_file_name": "flow.dag.yaml", "azureml.promptflow.flow_lineage_id": "63d67b0b61e34b0527b5f3c46dfc953854138b2ffebc68175580285dc2d95663", "azureml.promptflow.flow_definition_datastore_name": "workspaceblobstore", "azureml.promptflow.flow_definition_blob_path": "LocalUpload/79819672296a1785a95c65c8c0e75b0d/simple_with_req/flow.dag.yaml", "azureml.promptflow.input_data": "azureml://datastores/workspaceblobstore/paths/LocalUpload/e62bc4d5a164939b21d42dd420469da7/simple_eager_flow_data.jsonl", "_azureml.evaluation_run": "promptflow.BatchRun", "azureml.promptflow.session_id": "b905697d9d04e1b8c87c12d30eb37326380d5cfeb7d0500e", "azureml.promptflow.snapshot_id": "1ac134f8-0696-4ce1-ba89-cd4d9748e886", "azureml.promptflow.run_mode": "Eager", "azureml.promptflow.total_tokens": "0", "_azureml.evaluate_artifacts": "[{\"path\": \"instance_results.jsonl\", \"type\": \"table\"}]"}, "parameters": {}, "actionUris": {}, "scriptName": null, "target": null, "uniqueChildRunComputeTargets": [], "tags": {}, "settings": {}, "services": {}, "inputDatasets": [], "outputDatasets": [], "runDefinition": null, "jobSpecification": null, "primaryMetricName": null, "createdFrom": null, "cancelUri": null, "completeUri": null, "diagnosticsUri": null, "computeRequest": null, "compute": null, "retainForLifetimeOfWorkspace": false, "queueingInfo": null, "inputs": null, "outputs": {"debug_info": {"assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_name_output_data_debug_info/versions/1", "type": "UriFolder"}, "flow_outputs": {"assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_name_output_data_flow_outputs/versions/1", "type": "UriFolder"}}}, "runDefinition": null, "jobSpecification": null, "systemSettings": null}' headers: connection: - keep-alive content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.050' http_version: HTTP/1.1 status_code: 200 - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/name/logContent response: body: string: '"2024-01-25 09:16:46 +0000 50 promptflow-runtime INFO [name] Receiving v2 bulk run request d3077030-8829-4e75-84e2-23ffb7fe5647: {\"flow_id\": \"name\", \"flow_run_id\": \"name\", \"flow_source\": {\"flow_source_type\": 1, \"flow_source_info\": {\"snapshot_id\": \"1ac134f8-0696-4ce1-ba89-cd4d9748e886\"}, \"flow_dag_file\": \"flow.dag.yaml\"}, \"log_path\": \"https://promptfloweast4063704120.blob.core.windows.net/azureml/ExperimentRun/dcid.name/logs/azureml/executionlogs.txt?sv=2019-07-07&sr=b&sig=**data_scrubbed**&skoid=55b92eba-d7c7-4afd-ab76-7bb1cd345283&sktid=00000000-0000-0000-0000-000000000000&skt=2024-01-25T08%3A48%3A12Z&ske=2024-01-26T16%3A58%3A12Z&sks=b&skv=2019-07-07&st=2024-01-25T09%3A06%3A45Z&se=2024-01-25T17%3A16%3A45Z&sp=rcw\", \"app_insights_instrumentation_key\": \"InstrumentationKey=**data_scrubbed**;IngestionEndpoint=https://eastus-6.in.applicationinsights.azure.com/;LiveEndpoint=https://eastus.livediagnostics.monitor.azure.com/\", \"data_inputs\": {\"data\": \"azureml://datastores/workspaceblobstore/paths/LocalUpload/e62bc4d5a164939b21d42dd420469da7/simple_eager_flow_data.jsonl\"}, \"azure_storage_setting\": {\"azure_storage_mode\": 1, \"storage_account_name\": \"promptfloweast4063704120\", \"blob_container_name\": \"azureml-blobstore-3e123da1-f9a5-4c91-9234-8d9ffbb39ff5\", \"flow_artifacts_root_path\": \"promptflow/PromptFlowArtifacts/name\", \"blob_container_sas_token\": \"?sv=2019-07-07&sr=c&sig=**data_scrubbed**&skoid=55b92eba-d7c7-4afd-ab76-7bb1cd345283&sktid=00000000-0000-0000-0000-000000000000&skt=2024-01-25T09%3A16%3A45Z&ske=2024-02-01T09%3A16%3A45Z&sks=b&skv=2019-07-07&se=2024-02-01T09%3A16%3A45Z&sp=racwl\", \"output_datastore_name\": \"workspaceblobstore\"}}\n2024-01-25 09:16:46 +0000 50 promptflow-runtime INFO Runtime version: 20240116.v1. PromptFlow version: 1.4.0rc3\n2024-01-25 09:16:46 +0000 50 promptflow-runtime INFO Updating name to Status.Preparing...\n2024-01-25 09:16:47 +0000 50 promptflow-runtime INFO Downloading snapshot to /mnt/host/service/app/37305/requests/name\n2024-01-25 09:16:47 +0000 50 promptflow-runtime INFO Get snapshot sas url for 1ac134f8-0696-4ce1-ba89-cd4d9748e886.\n2024-01-25 09:16:47 +0000 50 promptflow-runtime INFO Snapshot 1ac134f8-0696-4ce1-ba89-cd4d9748e886 contains 3 files.\n2024-01-25 09:16:47 +0000 50 promptflow-runtime INFO Download snapshot 1ac134f8-0696-4ce1-ba89-cd4d9748e886 completed.\n2024-01-25 09:16:47 +0000 50 promptflow-runtime INFO Successfully download snapshot to /mnt/host/service/app/37305/requests/name\n2024-01-25 09:16:47 +0000 50 promptflow-runtime INFO About to execute a python flow.\n2024-01-25 09:16:47 +0000 50 promptflow-runtime INFO Use spawn method to start child process.\n2024-01-25 09:16:47 +0000 50 promptflow-runtime INFO Starting to check process 526 status for run name\n2024-01-25 09:16:47 +0000 50 promptflow-runtime INFO Start checking run status for run name\n2024-01-25 09:16:51 +0000 526 promptflow-runtime INFO [50--526] Start processing flowV2......\n2024-01-25 09:16:51 +0000 526 promptflow-runtime INFO Runtime version: 20240116.v1. PromptFlow version: 0.0.116642424\n2024-01-25 09:16:51 +0000 526 promptflow-runtime INFO Setting mlflow tracking uri...\n2024-01-25 09:16:51 +0000 526 promptflow-runtime INFO Validating ''AzureML Data Scientist'' user authentication...\n2024-01-25 09:16:52 +0000 526 promptflow-runtime INFO Successfully validated ''AzureML Data Scientist'' user authentication.\n2024-01-25 09:16:52 +0000 526 promptflow-runtime INFO Using AzureMLRunStorageV2\n2024-01-25 09:16:52 +0000 526 promptflow-runtime INFO Setting mlflow tracking uri to ''azureml://eastus.api.azureml.ms/mlflow/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/promptflow-eastus''\n2024-01-25 09:16:52 +0000 526 promptflow-runtime INFO Initialized blob service client for AzureMLRunTracker.\n2024-01-25 09:16:52 +0000 526 promptflow-runtime INFO Setting mlflow tracking uri to ''azureml://eastus.api.azureml.ms/mlflow/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/promptflow-eastus''\n2024-01-25 09:16:53 +0000 526 promptflow-runtime INFO Resolve data from url finished in 0.5306580369999665 seconds\n2024-01-25 09:16:53 +0000 526 promptflow-runtime INFO Starting the aml run ''name''...\n2024-01-25 09:16:53 +0000 526 execution WARNING Starting run without column mapping may lead to unexpected results. Please consult the following documentation for more information: https://aka.ms/pf/column-mapping\n2024-01-25 09:16:53 +0000 526 execution.bulk INFO Set process count to 1 by taking the minimum value among the factors of {''default_worker_count'': 4, ''row_count'': 1}.\n2024-01-25 09:16:57 +0000 526 execution.bulk INFO Process name(ForkProcess-2:2:1)-Process id(596)-Line number(0) start execution.\n2024-01-25 09:16:58 +0000 526 execution.bulk INFO Process name(ForkProcess-2:2:1)-Process id(596)-Line number(0) completed.\n2024-01-25 09:16:58 +0000 526 execution.bulk INFO Finished 1 / 1 lines.\n2024-01-25 09:16:58 +0000 526 execution.bulk INFO Average execution time for completed lines: 5.0 seconds. Estimated time for incomplete lines: 0.0 seconds.\n2024-01-25 09:17:00 +0000 526 promptflow-runtime INFO Post processing batch result...\n2024-01-25 09:17:00 +0000 526 execution.bulk INFO Upload status summary metrics for run name finished in 0.6790808640000705 seconds\n2024-01-25 09:17:00 +0000 526 promptflow-runtime INFO Successfully write run properties {\"azureml.promptflow.total_tokens\": 0, \"_azureml.evaluate_artifacts\": \"[{\\\"path\\\": \\\"instance_results.jsonl\\\", \\\"type\\\": \\\"table\\\"}]\"} with run id ''name''\n2024-01-25 09:17:00 +0000 526 execution.bulk INFO Upload RH properties for run name finished in 0.06737575900001502 seconds\n2024-01-25 09:17:00 +0000 526 promptflow-runtime INFO Creating unregistered output Asset for Run name...\n2024-01-25 09:17:01 +0000 526 promptflow-runtime INFO Created debug_info Asset: azureml://locations/eastus/workspaces/00000/data/azureml_name_output_data_debug_info/versions/1\n2024-01-25 09:17:01 +0000 526 promptflow-runtime INFO Creating unregistered output Asset for Run name...\n2024-01-25 09:17:01 +0000 526 promptflow-runtime INFO Created flow_outputs output Asset: azureml://locations/eastus/workspaces/00000/data/azureml_name_output_data_flow_outputs/versions/1\n2024-01-25 09:17:01 +0000 526 promptflow-runtime INFO Creating Artifact for Run name...\n2024-01-25 09:17:01 +0000 526 promptflow-runtime INFO Created instance_results.jsonl Artifact.\n2024-01-25 09:17:01 +0000 526 promptflow-runtime INFO Patching name...\n2024-01-25 09:17:01 +0000 526 promptflow-runtime INFO Ending the aml run ''name'' with status ''Completed''...\n2024-01-25 09:17:53 +0000 50 promptflow-runtime INFO Process 526 finished\n2024-01-25 09:17:53 +0000 50 promptflow-runtime INFO [50] Child process finished!\n2024-01-25 09:17:54 +0000 50 promptflow-runtime INFO [name] End processing bulk run\n2024-01-25 09:17:54 +0000 50 promptflow-runtime INFO Cleanup working dir /mnt/host/service/app/37305/requests/name for bulk run\n"' headers: connection: - keep-alive content-length: - '8401' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '1.347' status: code: 200 message: OK version: 1
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/recordings/test_run_operations_TestFlowRun_test_run_with_connection_overwrite.yaml
interactions: - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000 response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000", "name": "00000", "type": "Microsoft.MachineLearningServices/workspaces", "location": "eastus", "tags": {}, "etag": null, "kind": "Default", "sku": {"name": "Basic", "tier": "Basic"}, "properties": {"discoveryUrl": "https://eastus.api.azureml.ms/discovery"}}' headers: cache-control: - no-cache content-length: - '3630' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.019' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores?count=30&isDefault=true&orderByAsc=false response: body: string: '{"value": [{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}]}' headers: cache-control: - no-cache content-length: - '1372' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.099' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.087' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.136' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:22:35 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/webClassification1.jsonl response: body: string: '' headers: accept-ranges: - bytes content-length: - '127' content-md5: - i/8q1x5YKzHv3Fd/R8lYUQ== content-type: - application/octet-stream last-modified: - Fri, 28 Jul 2023 12:34:52 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Fri, 28 Jul 2023 12:34:52 GMT x-ms-meta-name: - 13fa99dd-c98e-4f2a-a704-4295d4ed6f68 x-ms-meta-upload_status: - completed x-ms-meta-version: - 0367c5c6-9f53-4a75-8623-7e53699f0d0b x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:22:36 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/webClassification1.jsonl response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.083' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.107' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:22:40 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/web_classification/classify_with_llm.jinja2 response: body: string: '' headers: accept-ranges: - bytes content-length: - '853' content-md5: - ylTeNqjvuOvtzEZJ/X5n3A== content-type: - application/octet-stream last-modified: - Fri, 12 Jan 2024 08:13:57 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Fri, 12 Jan 2024 08:13:56 GMT x-ms-meta-name: - 950201e8-c52c-4b15-ada1-5e58de9b2f4d x-ms-meta-upload_status: - completed x-ms-meta-version: - '1' x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:22:41 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/web_classification/classify_with_llm.jinja2 response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: '{"flowDefinitionDataStoreName": "workspaceblobstore", "flowDefinitionBlobPath": "LocalUpload/000000000000000000000000000000000000/web_classification/flow.dag.yaml", "runId": "name", "runDisplayName": "name", "runExperimentName": "", "nodeVariant": "${summarize_text_content.variant_0}", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/000000000000000000000000000000000000/webClassification1.jsonl"}, "inputsMapping": {"url": "${data.url}"}, "connections": {"classify_with_llm": {"connection": "azure_open_ai", "model": "gpt-3.5-turbo"}}, "environmentVariables": {}, "runtimeName": "fake-runtime-name", "sessionId": "000000000000000000000000000000000000000000000000", "sessionSetupMode": "SystemWait", "flowLineageId": "0000000000000000000000000000000000000000000000000000000000000000", "runDisplayNameGenerationType": "UserProvidedMacro"}' headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '951' Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/submit response: body: string: '"name"' headers: connection: - keep-alive content-length: - '38' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload x-content-type-options: - nosniff x-request-time: - '6.277' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/name response: body: string: '{"flowGraph": {"nodes": [{"name": "fetch_text_content_from_url", "type": "python", "source": {"type": "code", "path": "fetch_text_content_from_url.py"}, "inputs": {"fetch_url": "${inputs.url}"}, "tool": "fetch_text_content_from_url.py", "reduce": false}, {"name": "prepare_examples", "type": "python", "source": {"type": "code", "path": "prepare_examples.py"}, "inputs": {}, "tool": "prepare_examples.py", "reduce": false}, {"name": "classify_with_llm", "type": "llm", "source": {"type": "code", "path": "classify_with_llm.jinja2"}, "inputs": {"deployment_name": "gpt-35-turbo", "suffix": "", "max_tokens": "128", "temperature": "0.1", "top_p": "1.0", "logprobs": "", "echo": "False", "stop": "", "presence_penalty": "0", "frequency_penalty": "0", "best_of": "1", "logit_bias": "", "url": "${inputs.url}", "examples": "${prepare_examples.output}", "text_content": "${summarize_text_content.output}", "model": "gpt-3.5-turbo"}, "tool": "classify_with_llm.jinja2", "reduce": false, "api": "chat", "provider": "AzureOpenAI", "connection": "azure_open_ai", "module": "promptflow.tools.aoai"}, {"name": "convert_to_dict", "type": "python", "source": {"type": "code", "path": "convert_to_dict.py"}, "inputs": {"input_str": "${classify_with_llm.output}"}, "tool": "convert_to_dict.py", "reduce": false}, {"name": "summarize_text_content", "type": "llm", "source": {"type": "code", "path": "summarize_text_content.jinja2"}, "inputs": {"deployment_name": "gpt-35-turbo", "suffix": "", "max_tokens": "128", "temperature": "0.2", "top_p": "1.0", "logprobs": "", "echo": "False", "stop": "", "presence_penalty": "0", "frequency_penalty": "0", "best_of": "1", "logit_bias": "", "text": "${fetch_text_content_from_url.output}"}, "tool": "summarize_text_content.jinja2", "reduce": false, "api": "chat", "provider": "AzureOpenAI", "connection": "azure_open_ai_connection", "module": "promptflow.tools.aoai"}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "classify_with_llm.jinja2", "type": "prompt", "inputs": {"examples": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_content": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "url": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "classify_with_llm.jinja2", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "convert_to_dict.py", "type": "python", "inputs": {"input_str": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "convert_to_dict.py", "function": "convert_to_dict", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "fetch_text_content_from_url.py", "type": "python", "inputs": {"fetch_url": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "fetch_text_content_from_url.py", "function": "fetch_text_content_from_url", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "prepare_examples.py", "type": "python", "source": "prepare_examples.py", "function": "prepare_examples", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "summarize_text_content.jinja2", "type": "prompt", "inputs": {"text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "summarize_text_content.jinja2", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "summarize_text_content__variant_1.jinja2", "type": "prompt", "inputs": {"text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "summarize_text_content__variant_1.jinja2", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"url": {"type": "string", "default": "https://www.microsoft.com/en-us/d/xbox-wireless-controller-stellar-shift-special-edition/94fbjc7h0h6h", "is_chat_input": false}}, "outputs": {"category": {"type": "string", "reference": "${convert_to_dict.output.category}", "evaluation_only": false, "is_chat_output": false}, "evidence": {"type": "string", "reference": "${convert_to_dict.output.evidence}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/name/flowRuns/name", "flowRunId": "name", "flowRunDisplayName": "name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/107bd3498e44deb2dccc53d2208d32b2/webClassification1.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"url": "${data.url}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "a356b061-8870-40da-9061-3920ac5171cf", "studioPortalEndpoint": "https://ml.azure.com/runs/name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '16252' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.355' status: code: 200 message: OK - request: body: '{"runId": "name", "selectRunMetadata": true, "selectRunDefinition": true, "selectJobSpecification": true}' headers: Accept: - '*/*' Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '137' Content-Type: - application/json User-Agent: - python-requests/2.31.0 method: POST uri: https://eastus.api.azureml.ms/history/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/rundata response: body: string: '{"runMetadata": {"runNumber": 1705047766, "rootRunId": "name", "createdUtc": "2024-01-12T08:22:46.9110681+00:00", "createdBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587", "upn": null}, "userId": "00000000-0000-0000-0000-000000000000", "token": null, "tokenExpiryTimeUtc": null, "error": null, "warnings": null, "revision": 3, "statusRevision": 1, "runUuid": "6d870fe2-b2a7-4273-97c9-1f054cd88ab3", "parentRunUuid": null, "rootRunUuid": "6d870fe2-b2a7-4273-97c9-1f054cd88ab3", "lastStartTimeUtc": null, "currentComputeTime": "00:00:00", "computeDuration": null, "effectiveStartTimeUtc": null, "lastModifiedBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587", "upn": null}, "lastModifiedUtc": "2024-01-12T08:22:50.8542458+00:00", "duration": null, "cancelationReason": null, "currentAttemptId": 1, "runId": "name", "parentRunId": null, "experimentId": "d30efbeb-f81d-4cfa-b5cc-a0570a049009", "status": "Preparing", "startTimeUtc": null, "endTimeUtc": null, "scheduleId": null, "displayName": "name", "name": null, "dataContainerId": "dcid.name", "description": null, "hidden": false, "runType": "azureml.promptflow.FlowRun", "runTypeV2": {"orchestrator": null, "traits": [], "attribution": "PromptFlow", "computeType": "AmlcDsi"}, "properties": {"azureml.promptflow.runtime_name": "test-runtime-ci", "azureml.promptflow.runtime_version": "20231204.v4", "azureml.promptflow.definition_file_name": "flow.dag.yaml", "azureml.promptflow.session_id": "4dd8f4d5f44dfeb817d3438cf84bd739215d87afd9458597", "azureml.promptflow.flow_lineage_id": "af1a6951de9be2ce13d3b58b23dbd8b6a0cd8fd4918ad9cb22b28fb8395fbcb0", "azureml.promptflow.node_variant": "${summarize_text_content.variant_0}", "azureml.promptflow.flow_definition_datastore_name": "workspaceblobstore", "azureml.promptflow.flow_definition_blob_path": "LocalUpload/a1fa6ef1ead7ff3ce76b36250f6f5461/web_classification/flow.dag.yaml", "azureml.promptflow.input_data": "azureml://datastores/workspaceblobstore/paths/LocalUpload/107bd3498e44deb2dccc53d2208d32b2/webClassification1.jsonl", "azureml.promptflow.inputs_mapping": "{\"url\":\"${data.url}\"}", "_azureml.evaluation_run": "promptflow.BatchRun", "azureml.promptflow.snapshot_id": "a356b061-8870-40da-9061-3920ac5171cf"}, "parameters": {}, "actionUris": {}, "scriptName": null, "target": null, "uniqueChildRunComputeTargets": [], "tags": {}, "settings": {}, "services": {}, "inputDatasets": [], "outputDatasets": [], "runDefinition": null, "jobSpecification": null, "primaryMetricName": null, "createdFrom": null, "cancelUri": null, "completeUri": null, "diagnosticsUri": null, "computeRequest": null, "compute": null, "retainForLifetimeOfWorkspace": false, "queueingInfo": null, "inputs": null, "outputs": null}, "runDefinition": null, "jobSpecification": null, "systemSettings": null}' headers: connection: - keep-alive content-length: - '4011' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.056' status: code: 200 message: OK version: 1
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/recordings/test_azure_cli_perf_TestAzureCliPerf_test_pfazure_run_update.yaml
interactions: - request: body: '{"displayName": "test_run", "description": "test_description", "tags": {"key1": "value1"}}' headers: Accept: - '*/*' Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '90' Content-Type: - application/json User-Agent: - python-requests/2.31.0 method: PATCH uri: https://eastus.api.azureml.ms/history/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/runs/test_run/modify response: body: string: '{"runNumber": 1705290707, "rootRunId": "test_run", "createdUtc": "2024-01-15T03:51:47.7832069+00:00", "createdBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": "10032001A114F500", "userIdp": null, "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "Chenyang Zhang", "upn": null}, "userId": "00000000-0000-0000-0000-000000000000", "token": null, "tokenExpiryTimeUtc": null, "error": null, "warnings": null, "revision": 7, "statusRevision": 3, "runUuid": "115295b6-152f-44b3-a79f-2188901c76fd", "parentRunUuid": null, "rootRunUuid": "115295b6-152f-44b3-a79f-2188901c76fd", "lastStartTimeUtc": null, "currentComputeTime": null, "computeDuration": "00:00:03.3854385", "effectiveStartTimeUtc": null, "lastModifiedBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": "10032001A114F500", "userIdp": null, "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "Chenyang Zhang", "upn": "[email protected]"}, "lastModifiedUtc": "2024-01-15T04:04:54.041594+00:00", "duration": "00:00:03.3854385", "cancelationReason": null, "currentAttemptId": 1, "runId": "test_run", "parentRunId": null, "experimentId": "00000000-0000-0000-0000-000000000000", "status": "Completed", "startTimeUtc": "2024-01-15T03:51:57.3800585+00:00", "endTimeUtc": "2024-01-15T03:52:00.765497+00:00", "scheduleId": null, "displayName": "test_run", "name": null, "dataContainerId": "dcid.test_run", "description": "test_description", "hidden": false, "runType": "azureml.promptflow.FlowRun", "runTypeV2": {"orchestrator": null, "traits": [], "attribution": "PromptFlow", "computeType": null}, "properties": {"azureml.promptflow.runtime_name": "automatic", "azureml.promptflow.runtime_version": "20240111.v2", "azureml.promptflow.definition_file_name": "flow.dag.yaml", "azureml.promptflow.session_id": "96c35660d759b526cb14cf69bbb56fcaa90c05a778b147b4", "azureml.promptflow.flow_lineage_id": "fcb01d4faf8f2137f9d142cc1f3f22ecdf3d485e1435c4c971ff0ee09077f1b5", "azureml.promptflow.flow_definition_datastore_name": "workspaceblobstore", "azureml.promptflow.flow_definition_blob_path": "LocalUpload/52675845d616ad8b41db77e9ba9e9d4a/print_input_flow/flow.dag.yaml", "azureml.promptflow.input_data": "azureml://datastores/workspaceblobstore/paths/LocalUpload/80d5ca5a93c8c6ea7c2fcdf1cd4b9d07/print_input_flow.jsonl", "_azureml.evaluation_run": "promptflow.BatchRun", "azureml.promptflow.snapshot_id": "a18c2edd-59e6-4b07-a264-b0a97a213218", "azureml.promptflow.total_tokens": "0", "_azureml.evaluate_artifacts": "[{\"path\": \"instance_results.jsonl\", \"type\": \"table\"}]"}, "parameters": {}, "actionUris": {}, "scriptName": null, "target": null, "uniqueChildRunComputeTargets": [], "tags": {"key1": "value1"}, "settings": {}, "services": {}, "inputDatasets": [], "outputDatasets": [], "runDefinition": null, "jobSpecification": null, "primaryMetricName": null, "createdFrom": null, "cancelUri": null, "completeUri": null, "diagnosticsUri": null, "computeRequest": null, "compute": null, "retainForLifetimeOfWorkspace": false, "queueingInfo": null, "inputs": null, "outputs": null}' headers: connection: - keep-alive content-length: - '3592' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.142' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.9.17 (Windows-10-10.0.22621-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/test_run response: body: string: '{"flowGraph": {"nodes": [{"name": "print_input", "type": "python", "source": {"type": "code", "path": "print_input.py"}, "inputs": {"text": "${inputs.text}"}, "tool": "print_input.py", "reduce": false}], "tools": [{"name": "Azure OpenAI GPT-4 Turbo with Vision", "type": "custom_llm", "inputs": {"connection": {"type": ["AzureOpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": 512, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure OpenAI GPT-4 Turbo with Vision to leverage AOAI vision ability.", "module": "promptflow.tools.aoai_gpt4v", "class_name": "AzureOpenAI", "function": "chat", "icon": {"dark": "", "light": ""}, "is_builtin": true, "package": "promptflow-tools", "package_version": "1.0.3", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "preview"}, {"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "1.0.3", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "1.0.3", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Model LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "default": "", "dynamic_list": {"func_path": "promptflow.tools.open_model_llm.list_deployment_names", "func_kwargs": [{"name": "endpoint", "optional": true, "reference": "${inputs.endpoint}", "type": ["string"]}]}, "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "dynamic_list": {"func_path": "promptflow.tools.open_model_llm.list_endpoint_names"}, "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an open model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_model_llm", "class_name": "OpenModelLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "1.0.3", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": 512, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "icon": {"dark": "", "light": ""}, "is_builtin": true, "package": "promptflow-tools", "package_version": "1.0.3", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "preview"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "1.0.3", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Index Lookup", "type": "python", "inputs": {"acs_content_field": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_acs_index_fields", "func_kwargs": [{"name": "acs_connection", "optional": false, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}, {"name": "acs_index_name", "optional": false, "reference": "${inputs.acs_index_name}", "type": ["string"]}, {"default": "Edm.String", "name": "field_data_type", "optional": false, "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "acs_embedding_field": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_acs_index_fields", "func_kwargs": [{"name": "acs_connection", "optional": false, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}, {"name": "acs_index_name", "optional": false, "reference": "${inputs.acs_index_name}", "type": ["string"]}, {"default": "Collection(Edm.Single)", "name": "field_data_type", "optional": false, "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "acs_index_connection": {"type": ["CognitiveSearchConnection"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "acs_index_name": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_acs_indices", "func_kwargs": [{"name": "acs_connection", "optional": false, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "acs_metadata_field": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_acs_index_fields", "func_kwargs": [{"name": "acs_connection", "optional": false, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}, {"name": "acs_index_name", "optional": false, "reference": "${inputs.acs_index_name}", "type": ["string"]}, {"default": "Edm.String", "name": "field_data_type", "optional": false, "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "aoai_embedding_connection": {"type": ["AzureOpenAIConnection"], "enabled_by": "embedding_type", "enabled_by_value": ["Azure OpenAI"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "embedding_deployment": {"type": ["string"], "enabled_by": "embedding_type", "enabled_by_value": ["Azure OpenAI"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_aoai_embedding_deployments", "func_kwargs": [{"name": "aoai_connection", "optional": false, "reference": "${inputs.aoai_embedding_connection}", "type": ["AzurOpenAIConnection"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "embedding_model": {"type": ["string"], "enabled_by": "embedding_type", "enabled_by_value": ["OpenAI", "Hugging Face"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_embedding_models", "func_kwargs": [{"name": "embedding_type", "optional": false, "reference": "${inputs.embedding_type}", "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "embedding_type": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search", "FAISS", "Pinecone"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_available_embedding_types", "func_kwargs": [{"name": "index_type", "optional": false, "reference": "${inputs.index_type}", "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "faiss_index_path": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["FAISS"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "index_type": {"type": ["string"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_available_index_types"}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "mlindex_asset_id": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Registered Index"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_registered_mlindices"}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "mlindex_content": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "generated_by": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.forward_mapping", "func_kwargs": [{"name": "index_type", "reference": "${inputs.index_type}", "type": ["string"]}, {"name": "mlindex_asset_id", "optional": true, "reference": "${inputs.mlindex_asset_id}", "type": ["string"]}, {"name": "mlindex_path", "optional": true, "reference": "${inputs.mlindex_path}", "type": ["string"]}, {"name": "acs_index_connection", "optional": true, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}, {"name": "acs_index_name", "optional": true, "reference": "${inputs.acs_index_name}", "type": ["string"]}, {"name": "acs_content_field", "optional": true, "reference": "${inputs.acs_content_field}", "type": ["string"]}, {"name": "acs_embedding_field", "optional": true, "reference": "${inputs.acs_embedding_field}", "type": ["string"]}, {"name": "acs_metadata_field", "optional": true, "reference": "${inputs.acs_metadata_field}", "type": ["string"]}, {"name": "semantic_configuration", "optional": true, "reference": "${inputs.semantic_configuration}", "type": ["string"]}, {"name": "faiss_index_path", "optional": true, "reference": "${inputs.faiss_index_path}", "type": ["string"]}, {"name": "pinecone_index_connection", "optional": true, "reference": "${inputs.pinecone_index_connection}", "type": ["string"]}, {"name": "pinecone_index_name", "optional": true, "reference": "${inputs.pinecone_index_name}", "type": ["string"]}, {"name": "pinecone_content_field", "optional": true, "reference": "${inputs.pinecone_content_field}", "type": ["string"]}, {"name": "pinecone_metadata_field", "optional": true, "reference": "${inputs.pinecone_metadata_field}", "type": ["string"]}, {"name": "embedding_type", "optional": true, "reference": "${inputs.embedding_type}", "type": ["string"]}, {"name": "aoai_embedding_connection", "optional": true, "reference": "${inputs.aoai_embedding_connection}", "type": ["AzureOpenAIConnection"]}, {"name": "oai_embedding_connection", "optional": true, "reference": "${inputs.oai_embedding_connection}", "type": ["string"]}, {"name": "embedding_model", "optional": true, "reference": "${inputs.embedding_model}", "type": ["string"]}, {"name": "embedding_deployment", "optional": true, "reference": "${inputs.embedding_deployment}", "type": ["string"]}], "reverse_func_path": "promptflow_vectordb.tool.common_index_lookup_utils.reverse_mapping"}, "input_type": "default"}, "mlindex_path": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["MLIndex file from path"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "oai_embedding_connection": {"type": ["OpenAIConnection"], "enabled_by": "embedding_type", "enabled_by_value": ["OpenAI"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "pinecone_content_field": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Pinecone"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "pinecone_index_connection": {"type": ["PineconeConnection"], "enabled_by": "index_type", "enabled_by_value": ["Pinecone"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_pinecone_connections"}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "pinecone_index_name": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Pinecone"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_pinecone_indices", "func_kwargs": [{"name": "pinecone_connection_name", "optional": false, "reference": "${inputs.pinecone_index_connection}", "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "pinecone_metadata_field": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Pinecone"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "queries": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query_type": {"type": ["string"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_available_query_types", "func_kwargs": [{"name": "mlindex_content", "optional": false, "reference": "${inputs.mlindex_content}", "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "semantic_configuration": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_acs_index_semantic_configurations", "func_kwargs": [{"name": "acs_connection", "optional": false, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}, {"name": "acs_index_name", "optional": false, "reference": "${inputs.acs_index_name}", "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "top_k": {"type": ["int"], "default": 3, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search an AzureML Vector Index for relevant results using one or more text queries.", "module": "promptflow_vectordb.tool.common_index_lookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "preview"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "print_input.py", "type": "python", "inputs": {"text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "print_input.py", "function": "print_inputs", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"text": {"type": "string", "is_chat_input": false}}, "outputs": {"output_text": {"type": "string", "reference": "${print_input.output}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus2euap/workspaces/00000/flows/test_run/flowRuns/test_run", "flowRunId": "test_run", "flowRunDisplayName": "test_run", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/80d5ca5a93c8c6ea7c2fcdf1cd4b9d07/print_input_flow.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "automatic", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/test_run/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "a18c2edd-59e6-4b07-a264-b0a97a213218", "studioPortalEndpoint": "https://ml.azure.com/runs/test_run?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '25970' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.331' status: code: 200 message: OK - request: body: '{"runId": "test_run", "selectRunMetadata": true, "selectRunDefinition": true, "selectJobSpecification": true}' headers: Accept: - '*/*' Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '109' Content-Type: - application/json User-Agent: - python-requests/2.31.0 method: POST uri: https://eastus.api.azureml.ms/history/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/rundata response: body: string: '{"runMetadata": {"runNumber": 1705290707, "rootRunId": "test_run", "createdUtc": "2024-01-15T03:51:47.7832069+00:00", "createdBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": "10032001A114F500", "userIdp": null, "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "Chenyang Zhang", "upn": null}, "userId": "00000000-0000-0000-0000-000000000000", "token": null, "tokenExpiryTimeUtc": null, "error": null, "warnings": null, "revision": 7, "statusRevision": 3, "runUuid": "115295b6-152f-44b3-a79f-2188901c76fd", "parentRunUuid": null, "rootRunUuid": "115295b6-152f-44b3-a79f-2188901c76fd", "lastStartTimeUtc": null, "currentComputeTime": null, "computeDuration": "00:00:03.3854385", "effectiveStartTimeUtc": null, "lastModifiedBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": "10032001A114F500", "userIdp": null, "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "Chenyang Zhang", "upn": "[email protected]"}, "lastModifiedUtc": "2024-01-15T04:04:54.041594+00:00", "duration": "00:00:03.3854385", "cancelationReason": null, "currentAttemptId": 1, "runId": "test_run", "parentRunId": null, "experimentId": "4d67b7d7-dc1c-4699-a53e-318ca24f1f72", "status": "Completed", "startTimeUtc": "2024-01-15T03:51:57.3800585+00:00", "endTimeUtc": "2024-01-15T03:52:00.765497+00:00", "scheduleId": null, "displayName": "test_run", "name": null, "dataContainerId": "dcid.test_run", "description": "test_description", "hidden": false, "runType": "azureml.promptflow.FlowRun", "runTypeV2": {"orchestrator": null, "traits": [], "attribution": "PromptFlow", "computeType": null}, "properties": {"azureml.promptflow.runtime_name": "automatic", "azureml.promptflow.runtime_version": "20240111.v2", "azureml.promptflow.definition_file_name": "flow.dag.yaml", "azureml.promptflow.session_id": "96c35660d759b526cb14cf69bbb56fcaa90c05a778b147b4", "azureml.promptflow.flow_lineage_id": "fcb01d4faf8f2137f9d142cc1f3f22ecdf3d485e1435c4c971ff0ee09077f1b5", "azureml.promptflow.flow_definition_datastore_name": "workspaceblobstore", "azureml.promptflow.flow_definition_blob_path": "LocalUpload/52675845d616ad8b41db77e9ba9e9d4a/print_input_flow/flow.dag.yaml", "azureml.promptflow.input_data": "azureml://datastores/workspaceblobstore/paths/LocalUpload/80d5ca5a93c8c6ea7c2fcdf1cd4b9d07/print_input_flow.jsonl", "_azureml.evaluation_run": "promptflow.BatchRun", "azureml.promptflow.snapshot_id": "a18c2edd-59e6-4b07-a264-b0a97a213218", "azureml.promptflow.total_tokens": "0", "_azureml.evaluate_artifacts": "[{\"path\": \"instance_results.jsonl\", \"type\": \"table\"}]"}, "parameters": {}, "actionUris": {}, "scriptName": null, "target": null, "uniqueChildRunComputeTargets": [], "tags": {"key1": "value1"}, "settings": {}, "services": {}, "inputDatasets": [], "outputDatasets": [], "runDefinition": null, "jobSpecification": null, "primaryMetricName": null, "createdFrom": null, "cancelUri": null, "completeUri": null, "diagnosticsUri": null, "computeRequest": null, "compute": null, "retainForLifetimeOfWorkspace": false, "queueingInfo": null, "inputs": null, "outputs": {"debug_info": {"assetId": "azureml://locations/eastus2euap/workspaces/00000/data/azureml_test_run_output_data_debug_info/versions/1", "type": "UriFolder"}, "flow_outputs": {"assetId": "azureml://locations/eastus2euap/workspaces/00000/data/azureml_test_run_output_data_flow_outputs/versions/1", "type": "UriFolder"}}}, "runDefinition": null, "jobSpecification": null, "systemSettings": null}' headers: connection: - keep-alive content-length: - '4332' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.033' status: code: 200 message: OK version: 1
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/recordings/test_run_operations_TestFlowRun_test_run_without_dump.yaml
interactions: - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000 response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000", "name": "00000", "type": "Microsoft.MachineLearningServices/workspaces", "location": "eastus", "tags": {}, "etag": null, "kind": "Default", "sku": {"name": "Basic", "tier": "Basic"}, "properties": {"discoveryUrl": "https://eastus.api.azureml.ms/discovery"}}' headers: cache-control: - no-cache content-length: - '3630' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.018' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores?count=30&isDefault=true&orderByAsc=false response: body: string: '{"value": [{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}]}' headers: cache-control: - no-cache content-length: - '1372' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.098' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.081' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.164' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:47:34 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/webClassification1.jsonl response: body: string: '' headers: accept-ranges: - bytes content-length: - '127' content-md5: - i/8q1x5YKzHv3Fd/R8lYUQ== content-type: - application/octet-stream last-modified: - Fri, 28 Jul 2023 12:34:52 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Fri, 28 Jul 2023 12:34:52 GMT x-ms-meta-name: - 13fa99dd-c98e-4f2a-a704-4295d4ed6f68 x-ms-meta-upload_status: - completed x-ms-meta-version: - 0367c5c6-9f53-4a75-8623-7e53699f0d0b x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:47:35 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/webClassification1.jsonl response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.075' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.080' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:47:37 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/web_classification/classify_with_llm.jinja2 response: body: string: '' headers: accept-ranges: - bytes content-length: - '853' content-md5: - ylTeNqjvuOvtzEZJ/X5n3A== content-type: - application/octet-stream last-modified: - Fri, 12 Jan 2024 08:13:57 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Fri, 12 Jan 2024 08:13:56 GMT x-ms-meta-name: - 950201e8-c52c-4b15-ada1-5e58de9b2f4d x-ms-meta-upload_status: - completed x-ms-meta-version: - '1' x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:47:38 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/web_classification/classify_with_llm.jinja2 response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: '{"flowDefinitionDataStoreName": "workspaceblobstore", "flowDefinitionBlobPath": "LocalUpload/000000000000000000000000000000000000/web_classification/flow.dag.yaml", "runId": "name", "runDisplayName": "name", "runExperimentName": "", "nodeVariant": "${summarize_text_content.variant_0}", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/000000000000000000000000000000000000/webClassification1.jsonl"}, "inputsMapping": {"url": "${data.url}"}, "connections": {}, "environmentVariables": {}, "runtimeName": "fake-runtime-name", "sessionId": "000000000000000000000000000000000000000000000000", "sessionSetupMode": "SystemWait", "flowLineageId": "0000000000000000000000000000000000000000000000000000000000000000", "runDisplayNameGenerationType": "UserProvidedMacro"}' headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '873' Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/submit response: body: string: '"name"' headers: connection: - keep-alive content-length: - '38' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload x-content-type-options: - nosniff x-request-time: - '12.752' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/name response: body: string: '{"flowGraph": {"nodes": [{"name": "fetch_text_content_from_url", "type": "python", "source": {"type": "code", "path": "fetch_text_content_from_url.py"}, "inputs": {"fetch_url": "${inputs.url}"}, "tool": "fetch_text_content_from_url.py", "reduce": false}, {"name": "prepare_examples", "type": "python", "source": {"type": "code", "path": "prepare_examples.py"}, "inputs": {}, "tool": "prepare_examples.py", "reduce": false}, {"name": "classify_with_llm", "type": "llm", "source": {"type": "code", "path": "classify_with_llm.jinja2"}, "inputs": {"deployment_name": "gpt-35-turbo", "suffix": "", "max_tokens": "128", "temperature": "0.1", "top_p": "1.0", "logprobs": "", "echo": "False", "stop": "", "presence_penalty": "0", "frequency_penalty": "0", "best_of": "1", "logit_bias": "", "url": "${inputs.url}", "examples": "${prepare_examples.output}", "text_content": "${summarize_text_content.output}"}, "tool": "classify_with_llm.jinja2", "reduce": false, "api": "chat", "provider": "AzureOpenAI", "connection": "azure_open_ai_connection", "module": "promptflow.tools.aoai"}, {"name": "convert_to_dict", "type": "python", "source": {"type": "code", "path": "convert_to_dict.py"}, "inputs": {"input_str": "${classify_with_llm.output}"}, "tool": "convert_to_dict.py", "reduce": false}, {"name": "summarize_text_content", "type": "llm", "source": {"type": "code", "path": "summarize_text_content.jinja2"}, "inputs": {"deployment_name": "gpt-35-turbo", "suffix": "", "max_tokens": "128", "temperature": "0.2", "top_p": "1.0", "logprobs": "", "echo": "False", "stop": "", "presence_penalty": "0", "frequency_penalty": "0", "best_of": "1", "logit_bias": "", "text": "${fetch_text_content_from_url.output}"}, "tool": "summarize_text_content.jinja2", "reduce": false, "api": "chat", "provider": "AzureOpenAI", "connection": "azure_open_ai_connection", "module": "promptflow.tools.aoai"}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "classify_with_llm.jinja2", "type": "prompt", "inputs": {"examples": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_content": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "url": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "classify_with_llm.jinja2", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "convert_to_dict.py", "type": "python", "inputs": {"input_str": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "convert_to_dict.py", "function": "convert_to_dict", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "fetch_text_content_from_url.py", "type": "python", "inputs": {"fetch_url": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "fetch_text_content_from_url.py", "function": "fetch_text_content_from_url", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "prepare_examples.py", "type": "python", "source": "prepare_examples.py", "function": "prepare_examples", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "summarize_text_content.jinja2", "type": "prompt", "inputs": {"text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "summarize_text_content.jinja2", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "summarize_text_content__variant_1.jinja2", "type": "prompt", "inputs": {"text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "summarize_text_content__variant_1.jinja2", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"url": {"type": "string", "default": "https://www.microsoft.com/en-us/d/xbox-wireless-controller-stellar-shift-special-edition/94fbjc7h0h6h", "is_chat_input": false}}, "outputs": {"category": {"type": "string", "reference": "${convert_to_dict.output.category}", "evaluation_only": false, "is_chat_output": false}, "evidence": {"type": "string", "reference": "${convert_to_dict.output.evidence}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/name/flowRuns/name", "flowRunId": "name", "flowRunDisplayName": "name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/107bd3498e44deb2dccc53d2208d32b2/webClassification1.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"url": "${data.url}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "b235c474-d764-454f-a8da-63b47303ce80", "studioPortalEndpoint": "https://ml.azure.com/runs/name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '16239' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.498' status: code: 200 message: OK - request: body: '{"runId": "name", "selectRunMetadata": true, "selectRunDefinition": true, "selectJobSpecification": true}' headers: Accept: - '*/*' Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '137' Content-Type: - application/json User-Agent: - python-requests/2.31.0 method: POST uri: https://eastus.api.azureml.ms/history/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/rundata response: body: string: '{"runMetadata": {"runNumber": 1705049270, "rootRunId": "name", "createdUtc": "2024-01-12T08:47:50.4752183+00:00", "createdBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587", "upn": null}, "userId": "00000000-0000-0000-0000-000000000000", "token": null, "tokenExpiryTimeUtc": null, "error": null, "warnings": null, "revision": 3, "statusRevision": 1, "runUuid": "54649bc5-afa2-485d-8a4b-1a2296754d78", "parentRunUuid": null, "rootRunUuid": "54649bc5-afa2-485d-8a4b-1a2296754d78", "lastStartTimeUtc": null, "currentComputeTime": "00:00:00", "computeDuration": null, "effectiveStartTimeUtc": null, "lastModifiedBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587", "upn": null}, "lastModifiedUtc": "2024-01-12T08:47:55.0106055+00:00", "duration": null, "cancelationReason": null, "currentAttemptId": 1, "runId": "name", "parentRunId": null, "experimentId": "d30efbeb-f81d-4cfa-b5cc-a0570a049009", "status": "Preparing", "startTimeUtc": null, "endTimeUtc": null, "scheduleId": null, "displayName": "name", "name": null, "dataContainerId": "dcid.name", "description": null, "hidden": false, "runType": "azureml.promptflow.FlowRun", "runTypeV2": {"orchestrator": null, "traits": [], "attribution": "PromptFlow", "computeType": "AmlcDsi"}, "properties": {"azureml.promptflow.runtime_name": "test-runtime-ci", "azureml.promptflow.runtime_version": "20231204.v4", "azureml.promptflow.definition_file_name": "flow.dag.yaml", "azureml.promptflow.session_id": "4dd8f4d5f44dfeb817d3438cf84bd739215d87afd9458597", "azureml.promptflow.flow_lineage_id": "af1a6951de9be2ce13d3b58b23dbd8b6a0cd8fd4918ad9cb22b28fb8395fbcb0", "azureml.promptflow.node_variant": "${summarize_text_content.variant_0}", "azureml.promptflow.flow_definition_datastore_name": "workspaceblobstore", "azureml.promptflow.flow_definition_blob_path": "LocalUpload/a1fa6ef1ead7ff3ce76b36250f6f5461/web_classification/flow.dag.yaml", "azureml.promptflow.input_data": "azureml://datastores/workspaceblobstore/paths/LocalUpload/107bd3498e44deb2dccc53d2208d32b2/webClassification1.jsonl", "azureml.promptflow.inputs_mapping": "{\"url\":\"${data.url}\"}", "_azureml.evaluation_run": "promptflow.BatchRun", "azureml.promptflow.snapshot_id": "b235c474-d764-454f-a8da-63b47303ce80"}, "parameters": {}, "actionUris": {}, "scriptName": null, "target": null, "uniqueChildRunComputeTargets": [], "tags": {}, "settings": {}, "services": {}, "inputDatasets": [], "outputDatasets": [], "runDefinition": null, "jobSpecification": null, "primaryMetricName": null, "createdFrom": null, "cancelUri": null, "completeUri": null, "diagnosticsUri": null, "computeRequest": null, "compute": null, "retainForLifetimeOfWorkspace": false, "queueingInfo": null, "inputs": null, "outputs": null}, "runDefinition": null, "jobSpecification": null, "systemSettings": null}' headers: connection: - keep-alive content-length: - '4011' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.051' status: code: 200 message: OK version: 1
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/recordings/test_connection_operations_TestConnectionOperations_test_get_connection.yaml
interactions: - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 promptflow/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/api-version=2023-08-01-preview response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000", "name": "00000", "type": "Microsoft.MachineLearningServices/workspaces", "location": "eastus", "tags": {}, "etag": null, "kind": "Default", "sku": {"name": "Basic", "tier": "Basic"}, "properties": {"discoveryUrl": "https://eastus.api.azureml.ms/discovery"}}' headers: cache-control: - no-cache content-length: - '3630' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains vary: - Accept-Encoding x-cache: - CONFIG_NOCACHE x-content-type-options: - nosniff x-request-time: - '0.023' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 promptflow/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores?api-version=2023-04-01-preview&count=30&isDefault=true&orderByAsc=false response: body: string: '{"value": [{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}]}' headers: cache-control: - no-cache content-length: - '1372' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains vary: - Accept-Encoding x-cache: - CONFIG_NOCACHE x-content-type-options: - nosniff x-request-time: - '0.058' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 promptflow/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/Connections/azure_open_ai_connection response: body: string: '{"connectionName": "azure_open_ai_connection", "connectionType": "AzureOpenAI", "configs": {"api_base": "https://fake.openai.azure.com", "api_key": null, "api_type": "azure", "api_version": "2023-07-01-preview", "resource_id": null}, "owner": {"userName": "[email protected]"}, "createdDate": "2023-08-22T10:15:34.5762053Z", "lastModifiedDate": "2023-08-22T10:15:34.5762053Z"}' headers: connection: - keep-alive content-length: - '366' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.382' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 promptflow/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/Connections/custom_connection response: body: string: '{"connectionName": "custom_connection", "connectionType": "Custom", "owner": {"userName": "[email protected]"}, "createdDate": "2023-06-19T20:56:12.0353964Z", "lastModifiedDate": "2023-06-19T20:56:12.0353964Z"}' headers: connection: - keep-alive content-length: - '204' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload x-content-type-options: - nosniff x-request-time: - '0.367' status: code: 200 message: OK version: 1
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/recordings/test_arm_connection_operations_TestArmConnectionOperations_test_get_connection.yaml
interactions: - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 promptflow/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/api-version=2023-08-01-preview response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000", "name": "00000", "type": "Microsoft.MachineLearningServices/workspaces", "location": "eastus", "tags": {}, "etag": null, "kind": "Default", "sku": {"name": "Basic", "tier": "Basic"}, "properties": {"discoveryUrl": "https://eastus.api.azureml.ms/discovery"}}' headers: cache-control: - no-cache content-length: - '3630' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains vary: - Accept-Encoding x-cache: - CONFIG_NOCACHE x-content-type-options: - nosniff x-request-time: - '0.017' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 promptflow/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores?api-version=2023-04-01-preview&count=30&isDefault=true&orderByAsc=false response: body: string: '{"value": [{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}]}' headers: cache-control: - no-cache content-length: - '1372' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains vary: - Accept-Encoding x-cache: - CONFIG_NOCACHE x-content-type-options: - nosniff x-request-time: - '0.070' status: code: 200 message: OK - request: body: null headers: Accept: - '*/*' Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - python-requests/2.31.0 method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/connections/azure_open_ai_connection/listsecrets?api-version=2023-04-01-preview response: body: string: '{"tags": null, "location": null, "id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/connections/azure_open_ai_connection", "name": "azure_open_ai_connection", "type": "Microsoft.MachineLearningServices/workspaces/connections", "properties": {"authType": "ApiKey", "credentials": {"key": "_"}, "group": "AzureAI", "category": "AzureOpenAI", "expiryTime": null, "target": "_", "createdByWorkspaceArmId": null, "isSharedToAll": false, "sharedUserList": [], "metadata": {"azureml.flow.connection_type": "AzureOpenAI", "azureml.flow.module": "promptflow.connections", "ApiType": "azure", "ApiVersion": "2023-07-01-preview", "ResourceId": null, "DeploymentApiVersion": "2023-10-01-preview"}}, "systemData": {"createdAt": "2023-08-22T10:15:34.5762053Z", "createdBy": "[email protected]", "createdByType": "User", "lastModifiedAt": "2023-08-22T10:15:34.5762053Z", "lastModifiedBy": "[email protected]", "lastModifiedByType": "User"}}' headers: cache-control: - no-cache content-length: - '1246' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains vary: - Accept-Encoding x-cache: - CONFIG_NOCACHE x-content-type-options: - nosniff x-request-time: - '0.072' status: code: 200 message: OK - request: body: null headers: Accept: - '*/*' Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - python-requests/2.31.0 method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/connections/custom_connection/listsecrets?api-version=2023-04-01-preview response: body: string: '{"tags": null, "location": null, "id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/connections/custom_connection", "name": "custom_connection", "type": "Microsoft.MachineLearningServices/workspaces/connections", "properties": {"authType": "CustomKeys", "credentials": {"keys": {}}, "group": "AzureAI", "category": "CustomKeys", "expiryTime": null, "target": "_", "createdByWorkspaceArmId": null, "isSharedToAll": false, "sharedUserList": [], "metadata": {"azureml.flow.connection_type": "Custom", "azureml.flow.module": "promptflow.connections"}}, "systemData": {"createdAt": "2023-06-19T20:56:12.0353964Z", "createdBy": "[email protected]", "createdByType": "User", "lastModifiedAt": "2023-06-19T20:56:12.0353964Z", "lastModifiedBy": "[email protected]", "lastModifiedByType": "User"}}' headers: cache-control: - no-cache content-length: - '1275' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains vary: - Accept-Encoding x-cache: - CONFIG_NOCACHE x-content-type-options: - nosniff x-request-time: - '0.075' status: code: 200 message: OK version: 1
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/recordings/test_run_operations_TestFlowRun_test_run_bulk.yaml
interactions: - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000 response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000", "name": "00000", "type": "Microsoft.MachineLearningServices/workspaces", "location": "eastus", "tags": {}, "etag": null, "kind": "Default", "sku": {"name": "Basic", "tier": "Basic"}, "properties": {"discoveryUrl": "https://eastus.api.azureml.ms/discovery"}}' headers: cache-control: - no-cache content-length: - '3630' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.027' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores?count=30&isDefault=true&orderByAsc=false response: body: string: '{"value": [{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}]}' headers: cache-control: - no-cache content-length: - '1372' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.214' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.066' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.192' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:39:26 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/webClassification1.jsonl response: body: string: '' headers: accept-ranges: - bytes content-length: - '127' content-md5: - i/8q1x5YKzHv3Fd/R8lYUQ== content-type: - application/octet-stream last-modified: - Fri, 28 Jul 2023 12:34:52 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Fri, 28 Jul 2023 12:34:52 GMT x-ms-meta-name: - 13fa99dd-c98e-4f2a-a704-4295d4ed6f68 x-ms-meta-upload_status: - completed x-ms-meta-version: - 0367c5c6-9f53-4a75-8623-7e53699f0d0b x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:39:27 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/webClassification1.jsonl response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.093' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.081' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:39:31 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/web_classification/classify_with_llm.jinja2 response: body: string: '' headers: accept-ranges: - bytes content-length: - '853' content-md5: - ylTeNqjvuOvtzEZJ/X5n3A== content-type: - application/octet-stream last-modified: - Fri, 12 Jan 2024 08:13:57 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Fri, 12 Jan 2024 08:13:56 GMT x-ms-meta-name: - 950201e8-c52c-4b15-ada1-5e58de9b2f4d x-ms-meta-upload_status: - completed x-ms-meta-version: - '1' x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:39:32 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/web_classification/classify_with_llm.jinja2 response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: '{"flowDefinitionDataStoreName": "workspaceblobstore", "flowDefinitionBlobPath": "LocalUpload/000000000000000000000000000000000000/web_classification/flow.dag.yaml", "runId": "name", "runDisplayName": "name", "runExperimentName": "", "nodeVariant": "${summarize_text_content.variant_0}", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/000000000000000000000000000000000000/webClassification1.jsonl"}, "inputsMapping": {"url": "${data.url}"}, "connections": {}, "environmentVariables": {}, "runtimeName": "fake-runtime-name", "sessionId": "000000000000000000000000000000000000000000000000", "sessionSetupMode": "SystemWait", "flowLineageId": "0000000000000000000000000000000000000000000000000000000000000000", "runDisplayNameGenerationType": "UserProvidedMacro"}' headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '873' Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/submit response: body: string: '"name"' headers: connection: - keep-alive content-length: - '38' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload x-content-type-options: - nosniff x-request-time: - '6.880' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/name response: body: string: '{"flowGraph": {"nodes": [{"name": "fetch_text_content_from_url", "type": "python", "source": {"type": "code", "path": "fetch_text_content_from_url.py"}, "inputs": {"fetch_url": "${inputs.url}"}, "tool": "fetch_text_content_from_url.py", "reduce": false}, {"name": "prepare_examples", "type": "python", "source": {"type": "code", "path": "prepare_examples.py"}, "inputs": {}, "tool": "prepare_examples.py", "reduce": false}, {"name": "classify_with_llm", "type": "llm", "source": {"type": "code", "path": "classify_with_llm.jinja2"}, "inputs": {"deployment_name": "gpt-35-turbo", "suffix": "", "max_tokens": "128", "temperature": "0.1", "top_p": "1.0", "logprobs": "", "echo": "False", "stop": "", "presence_penalty": "0", "frequency_penalty": "0", "best_of": "1", "logit_bias": "", "url": "${inputs.url}", "examples": "${prepare_examples.output}", "text_content": "${summarize_text_content.output}"}, "tool": "classify_with_llm.jinja2", "reduce": false, "api": "chat", "provider": "AzureOpenAI", "connection": "azure_open_ai_connection", "module": "promptflow.tools.aoai"}, {"name": "convert_to_dict", "type": "python", "source": {"type": "code", "path": "convert_to_dict.py"}, "inputs": {"input_str": "${classify_with_llm.output}"}, "tool": "convert_to_dict.py", "reduce": false}, {"name": "summarize_text_content", "type": "llm", "source": {"type": "code", "path": "summarize_text_content.jinja2"}, "inputs": {"deployment_name": "gpt-35-turbo", "suffix": "", "max_tokens": "128", "temperature": "0.2", "top_p": "1.0", "logprobs": "", "echo": "False", "stop": "", "presence_penalty": "0", "frequency_penalty": "0", "best_of": "1", "logit_bias": "", "text": "${fetch_text_content_from_url.output}"}, "tool": "summarize_text_content.jinja2", "reduce": false, "api": "chat", "provider": "AzureOpenAI", "connection": "azure_open_ai_connection", "module": "promptflow.tools.aoai"}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "classify_with_llm.jinja2", "type": "prompt", "inputs": {"examples": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_content": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "url": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "classify_with_llm.jinja2", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "convert_to_dict.py", "type": "python", "inputs": {"input_str": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "convert_to_dict.py", "function": "convert_to_dict", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "fetch_text_content_from_url.py", "type": "python", "inputs": {"fetch_url": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "fetch_text_content_from_url.py", "function": "fetch_text_content_from_url", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "prepare_examples.py", "type": "python", "source": "prepare_examples.py", "function": "prepare_examples", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "summarize_text_content.jinja2", "type": "prompt", "inputs": {"text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "summarize_text_content.jinja2", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "summarize_text_content__variant_1.jinja2", "type": "prompt", "inputs": {"text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "summarize_text_content__variant_1.jinja2", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"url": {"type": "string", "default": "https://www.microsoft.com/en-us/d/xbox-wireless-controller-stellar-shift-special-edition/94fbjc7h0h6h", "is_chat_input": false}}, "outputs": {"category": {"type": "string", "reference": "${convert_to_dict.output.category}", "evaluation_only": false, "is_chat_output": false}, "evidence": {"type": "string", "reference": "${convert_to_dict.output.evidence}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/name/flowRuns/name", "flowRunId": "name", "flowRunDisplayName": "name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/107bd3498e44deb2dccc53d2208d32b2/webClassification1.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"url": "${data.url}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "f8f59233-47fa-48df-a9e1-fc6866b7597e", "studioPortalEndpoint": "https://ml.azure.com/runs/name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '16239' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.210' status: code: 200 message: OK - request: body: '{"runId": "name", "selectRunMetadata": true, "selectRunDefinition": true, "selectJobSpecification": true}' headers: Accept: - '*/*' Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '137' Content-Type: - application/json User-Agent: - python-requests/2.31.0 method: POST uri: https://eastus.api.azureml.ms/history/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/rundata response: body: string: '{"runMetadata": {"runNumber": 1705048778, "rootRunId": "name", "createdUtc": "2024-01-12T08:39:38.859607+00:00", "createdBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587", "upn": null}, "userId": "00000000-0000-0000-0000-000000000000", "token": null, "tokenExpiryTimeUtc": null, "error": null, "warnings": null, "revision": 3, "statusRevision": 1, "runUuid": "ead544d1-f5d3-4eb1-b931-ab04cd0e1b39", "parentRunUuid": null, "rootRunUuid": "ead544d1-f5d3-4eb1-b931-ab04cd0e1b39", "lastStartTimeUtc": null, "currentComputeTime": "00:00:00", "computeDuration": null, "effectiveStartTimeUtc": null, "lastModifiedBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587", "upn": null}, "lastModifiedUtc": "2024-01-12T08:39:43.2026482+00:00", "duration": null, "cancelationReason": null, "currentAttemptId": 1, "runId": "name", "parentRunId": null, "experimentId": "d30efbeb-f81d-4cfa-b5cc-a0570a049009", "status": "Preparing", "startTimeUtc": null, "endTimeUtc": null, "scheduleId": null, "displayName": "name", "name": null, "dataContainerId": "dcid.name", "description": null, "hidden": false, "runType": "azureml.promptflow.FlowRun", "runTypeV2": {"orchestrator": null, "traits": [], "attribution": "PromptFlow", "computeType": "AmlcDsi"}, "properties": {"azureml.promptflow.runtime_name": "test-runtime-ci", "azureml.promptflow.runtime_version": "20231204.v4", "azureml.promptflow.definition_file_name": "flow.dag.yaml", "azureml.promptflow.session_id": "4dd8f4d5f44dfeb817d3438cf84bd739215d87afd9458597", "azureml.promptflow.flow_lineage_id": "af1a6951de9be2ce13d3b58b23dbd8b6a0cd8fd4918ad9cb22b28fb8395fbcb0", "azureml.promptflow.node_variant": "${summarize_text_content.variant_0}", "azureml.promptflow.flow_definition_datastore_name": "workspaceblobstore", "azureml.promptflow.flow_definition_blob_path": "LocalUpload/a1fa6ef1ead7ff3ce76b36250f6f5461/web_classification/flow.dag.yaml", "azureml.promptflow.input_data": "azureml://datastores/workspaceblobstore/paths/LocalUpload/107bd3498e44deb2dccc53d2208d32b2/webClassification1.jsonl", "azureml.promptflow.inputs_mapping": "{\"url\":\"${data.url}\"}", "_azureml.evaluation_run": "promptflow.BatchRun", "azureml.promptflow.snapshot_id": "f8f59233-47fa-48df-a9e1-fc6866b7597e"}, "parameters": {}, "actionUris": {}, "scriptName": null, "target": null, "uniqueChildRunComputeTargets": [], "tags": {}, "settings": {}, "services": {}, "inputDatasets": [], "outputDatasets": [], "runDefinition": null, "jobSpecification": null, "primaryMetricName": null, "createdFrom": null, "cancelUri": null, "completeUri": null, "diagnosticsUri": null, "computeRequest": null, "compute": null, "retainForLifetimeOfWorkspace": false, "queueingInfo": null, "inputs": null, "outputs": null}, "runDefinition": null, "jobSpecification": null, "systemSettings": null}' headers: connection: - keep-alive content-length: - '4010' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.037' status: code: 200 message: OK version: 1
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/recordings/test_run_operations_TestFlowRun_test_run_display_name_with_macro.yaml
interactions: - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000 response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000", "name": "00000", "type": "Microsoft.MachineLearningServices/workspaces", "location": "eastus", "tags": {}, "etag": null, "kind": "Default", "sku": {"name": "Basic", "tier": "Basic"}, "properties": {"discoveryUrl": "https://eastus.api.azureml.ms/discovery"}}' headers: cache-control: - no-cache content-length: - '3630' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.020' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores?count=30&isDefault=true&orderByAsc=false response: body: string: '{"value": [{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}]}' headers: cache-control: - no-cache content-length: - '1372' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.088' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.108' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.101' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:25:13 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/env_var_names.jsonl response: body: string: '' headers: accept-ranges: - bytes content-length: - '49' content-md5: - quXiEreYvPinSj0HsaNa/g== content-type: - application/octet-stream last-modified: - Wed, 08 Nov 2023 04:26:09 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Wed, 08 Nov 2023 04:26:09 GMT x-ms-meta-name: - c4092674-5e53-4c17-b78d-75353ae0edb6 x-ms-meta-upload_status: - completed x-ms-meta-version: - 579021dc-8ac8-4c73-8110-4642bd00c69b x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:25:14 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/env_var_names.jsonl response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.121' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.101' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:25:18 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/print_env_var/flow.dag.yaml response: body: string: '' headers: accept-ranges: - bytes content-length: - '245' content-md5: - F+JA0a3CxcLYZ0ANRdlZbA== content-type: - application/octet-stream last-modified: - Wed, 29 Nov 2023 02:51:35 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Thu, 17 Aug 2023 10:30:09 GMT x-ms-meta-name: - 56efdd28-6297-4baa-aad3-be46f4b768a2 x-ms-meta-upload_status: - completed x-ms-meta-version: - '1' x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:25:19 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/print_env_var/flow.dag.yaml response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: '{"flowDefinitionDataStoreName": "workspaceblobstore", "flowDefinitionBlobPath": "LocalUpload/000000000000000000000000000000000000/print_env_var/flow.dag.yaml", "runId": "name", "runDisplayName": "my_display_name_${variant_id}_${timestamp}", "runExperimentName": "", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/000000000000000000000000000000000000/env_var_names.jsonl"}, "inputsMapping": {}, "connections": {}, "environmentVariables": {"API_BASE": "${azure_open_ai_connection.api_base}"}, "runtimeName": "fake-runtime-name", "sessionId": "000000000000000000000000000000000000000000000000", "sessionSetupMode": "SystemWait", "flowLineageId": "0000000000000000000000000000000000000000000000000000000000000000", "runDisplayNameGenerationType": "UserProvidedMacro"}' headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '840' Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/submit response: body: string: '"name"' headers: connection: - keep-alive content-length: - '38' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload x-content-type-options: - nosniff x-request-time: - '7.626' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/name response: body: string: '{"flowGraph": {"nodes": [{"name": "print_env", "type": "python", "source": {"type": "code", "path": "print_env.py"}, "inputs": {"key": "${inputs.key}"}, "tool": "print_env.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "print_env.py", "type": "python", "inputs": {"key": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "print_env.py", "function": "get_env_var", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"key": {"type": "string", "is_chat_input": false}}, "outputs": {"output": {"type": "string", "reference": "${print_env.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/name/flowRuns/name", "flowRunId": "name", "flowRunDisplayName": "my_display_name_variant_0_202401120825", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/c32a61842e439cecc022ebcff5dc0da4/env_var_names.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "7c640c9a-e7b9-4746-b306-8b2711e9d569", "studioPortalEndpoint": "https://ml.azure.com/runs/name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12857' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.400' status: code: 200 message: OK - request: body: '{"runId": "name", "selectRunMetadata": true, "selectRunDefinition": true, "selectJobSpecification": true}' headers: Accept: - '*/*' Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '137' Content-Type: - application/json User-Agent: - python-requests/2.31.0 method: POST uri: https://eastus.api.azureml.ms/history/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/rundata response: body: string: '{"runMetadata": {"runNumber": 1705047926, "rootRunId": "name", "createdUtc": "2024-01-12T08:25:26.2141242+00:00", "createdBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587", "upn": null}, "userId": "00000000-0000-0000-0000-000000000000", "token": null, "tokenExpiryTimeUtc": null, "error": null, "warnings": null, "revision": 3, "statusRevision": 1, "runUuid": "98d3a750-0801-45c0-9002-d6c5f419a252", "parentRunUuid": null, "rootRunUuid": "98d3a750-0801-45c0-9002-d6c5f419a252", "lastStartTimeUtc": null, "currentComputeTime": "00:00:00", "computeDuration": null, "effectiveStartTimeUtc": null, "lastModifiedBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587", "upn": null}, "lastModifiedUtc": "2024-01-12T08:25:30.0060955+00:00", "duration": null, "cancelationReason": null, "currentAttemptId": 1, "runId": "name", "parentRunId": null, "experimentId": "6a87c3ae-5a75-4c5d-9eb9-5203b0062282", "status": "Preparing", "startTimeUtc": null, "endTimeUtc": null, "scheduleId": null, "displayName": "my_display_name_variant_0_202401120825", "name": null, "dataContainerId": "dcid.name", "description": null, "hidden": false, "runType": "azureml.promptflow.FlowRun", "runTypeV2": {"orchestrator": null, "traits": [], "attribution": "PromptFlow", "computeType": "AmlcDsi"}, "properties": {"azureml.promptflow.runtime_name": "test-runtime-ci", "azureml.promptflow.runtime_version": "20231204.v4", "azureml.promptflow.definition_file_name": "flow.dag.yaml", "azureml.promptflow.session_id": "62adccc385dd5d078797bdd0d2e1c55e120f3d5216885b81", "azureml.promptflow.flow_lineage_id": "f1efdb93dcf9b3c17e246e7bcf0e2c7398d7bc289f8dd2c3d8f808eacc63c31f", "azureml.promptflow.flow_definition_datastore_name": "workspaceblobstore", "azureml.promptflow.flow_definition_blob_path": "LocalUpload/3360ae705933fb90bcd290241ca0ece9/print_env_var/flow.dag.yaml", "azureml.promptflow.input_data": "azureml://datastores/workspaceblobstore/paths/LocalUpload/c32a61842e439cecc022ebcff5dc0da4/env_var_names.jsonl", "_azureml.evaluation_run": "promptflow.BatchRun", "azureml.promptflow.snapshot_id": "7c640c9a-e7b9-4746-b306-8b2711e9d569"}, "parameters": {}, "actionUris": {}, "scriptName": null, "target": null, "uniqueChildRunComputeTargets": [], "tags": {}, "settings": {}, "services": {}, "inputDatasets": [], "outputDatasets": [], "runDefinition": null, "jobSpecification": null, "primaryMetricName": null, "createdFrom": null, "cancelUri": null, "completeUri": null, "diagnosticsUri": null, "computeRequest": null, "compute": null, "retainForLifetimeOfWorkspace": false, "queueingInfo": null, "inputs": null, "outputs": null}, "runDefinition": null, "jobSpecification": null, "systemSettings": null}' headers: connection: - keep-alive content-length: - '3851' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.044' status: code: 200 message: OK version: 1
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/recordings/test_cli_with_azure_TestCliWithAzure_test_cli_telemetry.yaml
interactions: - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.073' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.089' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:30:17 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/env_var_names.jsonl response: body: string: '' headers: accept-ranges: - bytes content-length: - '49' content-md5: - quXiEreYvPinSj0HsaNa/g== content-type: - application/octet-stream last-modified: - Wed, 08 Nov 2023 04:26:09 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Wed, 08 Nov 2023 04:26:09 GMT x-ms-meta-name: - c4092674-5e53-4c17-b78d-75353ae0edb6 x-ms-meta-upload_status: - completed x-ms-meta-version: - 579021dc-8ac8-4c73-8110-4642bd00c69b x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:30:19 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/env_var_names.jsonl response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.069' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.088' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:30:21 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/print_env_var/flow.dag.yaml response: body: string: '' headers: accept-ranges: - bytes content-length: - '245' content-md5: - F+JA0a3CxcLYZ0ANRdlZbA== content-type: - application/octet-stream last-modified: - Wed, 29 Nov 2023 02:51:35 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Thu, 17 Aug 2023 10:30:09 GMT x-ms-meta-name: - 56efdd28-6297-4baa-aad3-be46f4b768a2 x-ms-meta-upload_status: - completed x-ms-meta-version: - '1' x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:30:22 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/print_env_var/flow.dag.yaml response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: '[{"iKey": "8b52b368-4c91-4226-b7f7-be52822f0509", "tags": {"ai.cloud.role": "pfazure", "ai.device.locale": "en_US", "ai.device.osVersion": "10.0.22631", "ai.device.type": "Other", "ai.internal.sdkVersion": "py3.10.13:oc0.11.2:ext1.1.9", "ai.operation.id": "00000000000000000000000000000000", "ai.operation.parentId": "|00000000000000000000000000000000.0000000000000000."}, "time": "2024-01-12T08:30:14.771082Z", "name": "Microsoft.ApplicationInsights.Event", "data": {"baseData": {"name": "pfazure.run.create.start", "properties": {"request_id": "79d30574-8153-43d8-bdec-2d1f3c9e436b", "first_call": true, "activity_name": "pfazure.run.create", "activity_type": "PublicApi", "user_agent": "promptflow-sdk/0.0.1 promptflow-cli/0.0.1", "subscription_id": "96aede12-2f73-41cb-b983-6d11a904839b", "resource_group_name": "promptflow", "workspace_name": "promptflow-eastus", "level": "INFO", "from_ci": false, "python_version": "3.10.13", "installation_id": "9d18c597-0a5c-4e8c-8ef5-d7e9c4aa82a3"}, "measurements": {}, "ver": 2}, "baseType": "EventData"}}]' headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '1050' Content-Type: - application/json; charset=utf-8 User-Agent: - python-requests/2.31.0 method: POST uri: https://dc.services.visualstudio.com/v2.1/track response: body: string: '{"itemsReceived": 1, "itemsAccepted": 0, "errors": [{"index": 0, "statusCode": 307, "message": "Ingestion is allowed only from stamp specific endpoint - Location: https://eastus-8.in.applicationinsights.azure.com/v2.1/track"}]}' headers: cache-control: - max-age=604800 content-length: - '217' content-type: - application/json; charset=utf-8 location: - https://eastus-8.in.applicationinsights.azure.com/v2.1/track server: - Microsoft-HTTPAPI/2.0 strict-transport-security: - max-age=31536000 x-content-type-options: - nosniff status: code: 307 message: Temporary Redirect - request: body: '[{"iKey": "8b52b368-4c91-4226-b7f7-be52822f0509", "tags": {"ai.cloud.role": "pfazure", "ai.device.locale": "en_US", "ai.device.osVersion": "10.0.22631", "ai.device.type": "Other", "ai.internal.sdkVersion": "py3.10.13:oc0.11.2:ext1.1.9", "ai.operation.id": "00000000000000000000000000000000", "ai.operation.parentId": "|00000000000000000000000000000000.0000000000000000."}, "time": "2024-01-12T08:30:14.771082Z", "name": "Microsoft.ApplicationInsights.Event", "data": {"baseData": {"name": "pfazure.run.create.start", "properties": {"request_id": "79d30574-8153-43d8-bdec-2d1f3c9e436b", "first_call": true, "activity_name": "pfazure.run.create", "activity_type": "PublicApi", "user_agent": "promptflow-sdk/0.0.1 promptflow-cli/0.0.1", "subscription_id": "96aede12-2f73-41cb-b983-6d11a904839b", "resource_group_name": "promptflow", "workspace_name": "promptflow-eastus", "level": "INFO", "from_ci": false, "python_version": "3.10.13", "installation_id": "9d18c597-0a5c-4e8c-8ef5-d7e9c4aa82a3"}, "measurements": {}, "ver": 2}, "baseType": "EventData"}}]' headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '1050' Content-Type: - application/json; charset=utf-8 User-Agent: - python-requests/2.31.0 method: POST uri: https://eastus-8.in.applicationinsights.azure.com/v2.1/track response: body: string: '{"itemsReceived": 1, "itemsAccepted": 1, "errors": []}' headers: content-length: - '49' content-type: - application/json; charset=utf-8 server: - Microsoft-HTTPAPI/2.0 strict-transport-security: - max-age=31536000 x-content-type-options: - nosniff status: code: 200 message: OK - request: body: '{"flowDefinitionDataStoreName": "workspaceblobstore", "flowDefinitionBlobPath": "LocalUpload/000000000000000000000000000000000000/print_env_var/flow.dag.yaml", "runId": "name", "runDisplayName": "name", "runExperimentName": "", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/000000000000000000000000000000000000/env_var_names.jsonl"}, "inputsMapping": {}, "connections": {}, "environmentVariables": {"API_BASE": "${azure_open_ai_connection.api_base}"}, "runtimeName": "fake-runtime-name", "sessionId": "000000000000000000000000000000000000000000000000", "sessionSetupMode": "SystemWait", "flowLineageId": "0000000000000000000000000000000000000000000000000000000000000000", "runDisplayNameGenerationType": "UserProvidedMacro"}' headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '834' Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/submit response: body: string: '"name"' headers: connection: - keep-alive content-length: - '38' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload x-content-type-options: - nosniff x-request-time: - '6.733' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/name response: body: string: '{"flowGraph": {"nodes": [{"name": "print_env", "type": "python", "source": {"type": "code", "path": "print_env.py"}, "inputs": {"key": "${inputs.key}"}, "tool": "print_env.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "print_env.py", "type": "python", "inputs": {"key": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "print_env.py", "function": "get_env_var", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"key": {"type": "string", "is_chat_input": false}}, "outputs": {"output": {"type": "string", "reference": "${print_env.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/name/flowRuns/name", "flowRunId": "name", "flowRunDisplayName": "name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/c32a61842e439cecc022ebcff5dc0da4/env_var_names.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "457d8581-14b3-4b7c-8e9d-b545a00f572d", "studioPortalEndpoint": "https://ml.azure.com/runs/name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12855' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.417' status: code: 200 message: OK - request: body: '{"runId": "name", "selectRunMetadata": true, "selectRunDefinition": true, "selectJobSpecification": true}' headers: Accept: - '*/*' Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '137' Content-Type: - application/json User-Agent: - python-requests/2.31.0 method: POST uri: https://eastus.api.azureml.ms/history/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/rundata response: body: string: '{"runMetadata": {"runNumber": 1705048228, "rootRunId": "name", "createdUtc": "2024-01-12T08:30:28.5299765+00:00", "createdBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587", "upn": null}, "userId": "00000000-0000-0000-0000-000000000000", "token": null, "tokenExpiryTimeUtc": null, "error": null, "warnings": null, "revision": 3, "statusRevision": 1, "runUuid": "e233a8cf-f6f9-413a-abb3-57f45e9163ea", "parentRunUuid": null, "rootRunUuid": "e233a8cf-f6f9-413a-abb3-57f45e9163ea", "lastStartTimeUtc": null, "currentComputeTime": "00:00:00", "computeDuration": null, "effectiveStartTimeUtc": null, "lastModifiedBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587", "upn": null}, "lastModifiedUtc": "2024-01-12T08:30:33.0648112+00:00", "duration": null, "cancelationReason": null, "currentAttemptId": 1, "runId": "name", "parentRunId": null, "experimentId": "6a87c3ae-5a75-4c5d-9eb9-5203b0062282", "status": "Preparing", "startTimeUtc": null, "endTimeUtc": null, "scheduleId": null, "displayName": "name", "name": null, "dataContainerId": "dcid.name", "description": null, "hidden": false, "runType": "azureml.promptflow.FlowRun", "runTypeV2": {"orchestrator": null, "traits": [], "attribution": "PromptFlow", "computeType": "AmlcDsi"}, "properties": {"azureml.promptflow.runtime_name": "test-runtime-ci", "azureml.promptflow.runtime_version": "20231204.v4", "azureml.promptflow.definition_file_name": "flow.dag.yaml", "azureml.promptflow.session_id": "62adccc385dd5d078797bdd0d2e1c55e120f3d5216885b81", "azureml.promptflow.flow_lineage_id": "f1efdb93dcf9b3c17e246e7bcf0e2c7398d7bc289f8dd2c3d8f808eacc63c31f", "azureml.promptflow.flow_definition_datastore_name": "workspaceblobstore", "azureml.promptflow.flow_definition_blob_path": "LocalUpload/3360ae705933fb90bcd290241ca0ece9/print_env_var/flow.dag.yaml", "azureml.promptflow.input_data": "azureml://datastores/workspaceblobstore/paths/LocalUpload/c32a61842e439cecc022ebcff5dc0da4/env_var_names.jsonl", "_azureml.evaluation_run": "promptflow.BatchRun", "azureml.promptflow.snapshot_id": "457d8581-14b3-4b7c-8e9d-b545a00f572d"}, "parameters": {}, "actionUris": {}, "scriptName": null, "target": null, "uniqueChildRunComputeTargets": [], "tags": {}, "settings": {}, "services": {}, "inputDatasets": [], "outputDatasets": [], "runDefinition": null, "jobSpecification": null, "primaryMetricName": null, "createdFrom": null, "cancelUri": null, "completeUri": null, "diagnosticsUri": null, "computeRequest": null, "compute": null, "retainForLifetimeOfWorkspace": false, "queueingInfo": null, "inputs": null, "outputs": null}, "runDefinition": null, "jobSpecification": null, "systemSettings": null}' headers: connection: - keep-alive content-length: - '3849' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.051' status: code: 200 message: OK version: 1
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/recordings/test_flow_operations_TestFlow_test_list_flows_invalid_cases.yaml
interactions: - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.10.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000 response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000", "name": "00000", "type": "Microsoft.MachineLearningServices/workspaces", "location": "eastus", "tags": {}, "etag": null, "kind": "Default", "sku": {"name": "Basic", "tier": "Basic"}, "properties": {"discoveryUrl": "https://eastus.api.azureml.ms/discovery"}}' headers: cache-control: - no-cache content-length: - '3548' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.027' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.10.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores?count=30&isDefault=true&orderByAsc=false response: body: string: '{"value": [{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}]}' headers: cache-control: - no-cache content-length: - '1372' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.093' status: code: 200 message: OK version: 1
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/recordings/test_run_operations_TestFlowRun_test_failed_run_to_dict_exclude.yaml
interactions: - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000 response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000", "name": "00000", "type": "Microsoft.MachineLearningServices/workspaces", "location": "eastus", "tags": {}, "etag": null, "kind": "Default", "sku": {"name": "Basic", "tier": "Basic"}, "properties": {"discoveryUrl": "https://eastus.api.azureml.ms/discovery"}}' headers: cache-control: - no-cache content-length: - '3630' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.020' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores?count=30&isDefault=true&orderByAsc=false response: body: string: '{"value": [{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}]}' headers: cache-control: - no-cache content-length: - '1372' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.189' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.092' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.104' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:02:51 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/webClassification3.jsonl response: body: string: '' headers: accept-ranges: - bytes content-length: - '379' content-md5: - lI/pz9jzTQ7Td3RHPL7y7w== content-type: - application/octet-stream last-modified: - Mon, 06 Nov 2023 08:30:18 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Mon, 06 Nov 2023 08:30:18 GMT x-ms-meta-name: - 94331215-cf7f-452a-9f1a-1d276bc9b0e4 x-ms-meta-upload_status: - completed x-ms-meta-version: - 3f163752-edb0-4afc-a6f5-b0a670bd7c24 x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:02:53 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/webClassification3.jsonl response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.091' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.078' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:02:56 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/partial_fail/data.jsonl response: body: string: '' headers: accept-ranges: - bytes content-length: - '52' content-md5: - kHimciLnA7d3/I2LBUeLNA== content-type: - application/octet-stream last-modified: - Fri, 22 Sep 2023 09:37:31 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Fri, 22 Sep 2023 09:37:30 GMT x-ms-meta-name: - aa1844d8-4898-4daa-8100-6140558fc7c9 x-ms-meta-upload_status: - completed x-ms-meta-version: - '1' x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:02:57 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/partial_fail/data.jsonl response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: '{"flowDefinitionDataStoreName": "workspaceblobstore", "flowDefinitionBlobPath": "LocalUpload/000000000000000000000000000000000000/partial_fail/flow.dag.yaml", "runId": "failed_run_name", "runDisplayName": "sdk-cli-test-fixture-failed-run", "runExperimentName": "", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/000000000000000000000000000000000000/webClassification3.jsonl"}, "inputsMapping": {}, "connections": {}, "environmentVariables": {}, "runtimeName": "fake-runtime-name", "sessionId": "000000000000000000000000000000000000000000000000", "sessionSetupMode": "SystemWait", "flowLineageId": "0000000000000000000000000000000000000000000000000000000000000000", "runDisplayNameGenerationType": "UserProvidedMacro"}' headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '782' Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/submit response: body: string: '"failed_run_name"' headers: connection: - keep-alive content-length: - '38' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload x-content-type-options: - nosniff x-request-time: - '8.331' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/failed_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "print_env", "type": "python", "source": {"type": "code", "path": "print_env.py"}, "inputs": {"key": "${inputs.key}"}, "tool": "print_env.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "print_env.py", "type": "python", "inputs": {"key": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "print_env.py", "function": "get_env_var", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"key": {"type": "string", "is_chat_input": false}}, "outputs": {"output": {"type": "string", "reference": "${print_env.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/failed_run_name/flowRuns/failed_run_name", "flowRunId": "failed_run_name", "flowRunDisplayName": "sdk-cli-test-fixture-failed-run", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/failed_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "5132ecba-405b-4fa2-85de-01c959708f2e", "studioPortalEndpoint": "https://ml.azure.com/runs/failed_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12855' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.229' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/failed_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "print_env", "type": "python", "source": {"type": "code", "path": "print_env.py"}, "inputs": {"key": "${inputs.key}"}, "tool": "print_env.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "print_env.py", "type": "python", "inputs": {"key": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "print_env.py", "function": "get_env_var", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"key": {"type": "string", "is_chat_input": false}}, "outputs": {"output": {"type": "string", "reference": "${print_env.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/failed_run_name/flowRuns/failed_run_name", "flowRunId": "failed_run_name", "flowRunDisplayName": "sdk-cli-test-fixture-failed-run", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/failed_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "5132ecba-405b-4fa2-85de-01c959708f2e", "studioPortalEndpoint": "https://ml.azure.com/runs/failed_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12855' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.428' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/failed_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "print_env", "type": "python", "source": {"type": "code", "path": "print_env.py"}, "inputs": {"key": "${inputs.key}"}, "tool": "print_env.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "print_env.py", "type": "python", "inputs": {"key": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "print_env.py", "function": "get_env_var", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"key": {"type": "string", "is_chat_input": false}}, "outputs": {"output": {"type": "string", "reference": "${print_env.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/failed_run_name/flowRuns/failed_run_name", "flowRunId": "failed_run_name", "flowRunDisplayName": "sdk-cli-test-fixture-failed-run", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/failed_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "5132ecba-405b-4fa2-85de-01c959708f2e", "studioPortalEndpoint": "https://ml.azure.com/runs/failed_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12855' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.381' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/failed_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "print_env", "type": "python", "source": {"type": "code", "path": "print_env.py"}, "inputs": {"key": "${inputs.key}"}, "tool": "print_env.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "print_env.py", "type": "python", "inputs": {"key": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "print_env.py", "function": "get_env_var", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"key": {"type": "string", "is_chat_input": false}}, "outputs": {"output": {"type": "string", "reference": "${print_env.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/failed_run_name/flowRuns/failed_run_name", "flowRunId": "failed_run_name", "flowRunDisplayName": "sdk-cli-test-fixture-failed-run", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/failed_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "5132ecba-405b-4fa2-85de-01c959708f2e", "studioPortalEndpoint": "https://ml.azure.com/runs/failed_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12855' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.405' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/failed_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "print_env", "type": "python", "source": {"type": "code", "path": "print_env.py"}, "inputs": {"key": "${inputs.key}"}, "tool": "print_env.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "print_env.py", "type": "python", "inputs": {"key": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "print_env.py", "function": "get_env_var", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"key": {"type": "string", "is_chat_input": false}}, "outputs": {"output": {"type": "string", "reference": "${print_env.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/failed_run_name/flowRuns/failed_run_name", "flowRunId": "failed_run_name", "flowRunDisplayName": "sdk-cli-test-fixture-failed-run", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/failed_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "5132ecba-405b-4fa2-85de-01c959708f2e", "studioPortalEndpoint": "https://ml.azure.com/runs/failed_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12855' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.248' status: code: 200 message: OK - request: body: '{"runId": "failed_run_name", "selectRunMetadata": true, "selectRunDefinition": true, "selectJobSpecification": true}' headers: Accept: - '*/*' Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '137' Content-Type: - application/json User-Agent: - python-requests/2.31.0 method: POST uri: https://eastus.api.azureml.ms/history/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/rundata response: body: string: '{"runMetadata": {"runNumber": 1705046584, "rootRunId": "failed_run_name", "createdUtc": "2024-01-12T08:03:04.1182041+00:00", "createdBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587", "upn": null}, "userId": "00000000-0000-0000-0000-000000000000", "token": null, "tokenExpiryTimeUtc": null, "error": {"error": {"code": "UserError", "severity": null, "message": "The input for batch run is incorrect. Couldn''t find these mapping relations: ${data.key}. Please make sure your input mapping keys and values match your YAML input section and input data. For more information, refer to the following documentation: https://aka.ms/pf/column-mapping", "messageFormat": "The input for batch run is incorrect. Couldn''t find these mapping relations: {invalid_relations}. Please make sure your input mapping keys and values match your YAML input section and input data. For more information, refer to the following documentation: https://aka.ms/pf/column-mapping", "messageParameters": {"invalid_relations": "${data.key}"}, "referenceCode": "Executor", "detailsUri": null, "target": null, "details": [], "innerError": {"code": "ValidationError", "innerError": {"code": "InputMappingError", "innerError": null}}, "debugInfo": {"type": "InputMappingError", "message": "The input for batch run is incorrect. Couldn''t find these mapping relations: ${data.key}. Please make sure your input mapping keys and values match your YAML input section and input data. For more information, refer to the following documentation: https://aka.ms/pf/column-mapping", "stackTrace": "Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/runtime/runtime.py\", line 671, in execute_bulk_run_request\n batch_engine.run(\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_engine.py\", line 147, in run\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_engine.py\", line 132, in run\n batch_inputs = batch_input_processor.process_batch_inputs(input_dirs, inputs_mapping)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\", line 41, in process_batch_inputs\n return self._validate_and_apply_inputs_mapping(input_dicts, inputs_mapping)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\", line 91, in _validate_and_apply_inputs_mapping\n resolved_inputs = self._apply_inputs_mapping_for_all_lines(inputs, inputs_mapping)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\", line 163, in _apply_inputs_mapping_for_all_lines\n result = [apply_inputs_mapping(item, inputs_mapping) for item in merged_list]\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\", line 163, in <listcomp>\n result = [apply_inputs_mapping(item, inputs_mapping) for item in merged_list]\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\", line 292, in apply_inputs_mapping\n raise InputMappingError(\n", "innerException": null, "data": null, "errorResponse": null}, "additionalInfo": null}, "correlation": null, "environment": null, "location": null, "time": "2024-01-12T08:03:23.917435+00:00", "componentName": "promptflow-runtime/20231204.v4 Designer/1.0 promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) promptflow/1.2.0rc1"}, "warnings": null, "revision": 7, "statusRevision": 3, "runUuid": "d70fd62f-58da-4194-9181-8f598c163252", "parentRunUuid": null, "rootRunUuid": "d70fd62f-58da-4194-9181-8f598c163252", "lastStartTimeUtc": null, "currentComputeTime": null, "computeDuration": "00:00:01.9157474", "effectiveStartTimeUtc": null, "lastModifiedBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "18a66f5f-dbdf-4c17-9dd7-1634712a9cbe", "upn": null}, "lastModifiedUtc": "2024-01-12T08:03:23.3386801+00:00", "duration": "00:00:01.9157474", "cancelationReason": null, "currentAttemptId": 1, "runId": "failed_run_name", "parentRunId": null, "experimentId": "1848033e-509f-4c52-92ee-f0a0121fe99e", "status": "Failed", "startTimeUtc": "2024-01-12T08:03:22.2208565+00:00", "endTimeUtc": "2024-01-12T08:03:24.1366039+00:00", "scheduleId": null, "displayName": "sdk-cli-test-fixture-failed-run", "name": null, "dataContainerId": "dcid.failed_run_name", "description": null, "hidden": false, "runType": "azureml.promptflow.FlowRun", "runTypeV2": {"orchestrator": null, "traits": [], "attribution": "PromptFlow", "computeType": "AmlcDsi"}, "properties": {"azureml.promptflow.runtime_name": "test-runtime-ci", "azureml.promptflow.runtime_version": "20231204.v4", "azureml.promptflow.definition_file_name": "flow.dag.yaml", "azureml.promptflow.session_id": "31858a8dfc61a642bb0ab6df4fc3ac7b3807de4ffead00d1", "azureml.promptflow.flow_lineage_id": "de293df4f50622090c0225852d59cd663b6b629e38728f7444fa0f12255a0647", "azureml.promptflow.flow_definition_datastore_name": "workspaceblobstore", "azureml.promptflow.flow_definition_blob_path": "LocalUpload/bc20fa079592a8072922533f187e3184/partial_fail/flow.dag.yaml", "azureml.promptflow.input_data": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl", "_azureml.evaluation_run": "promptflow.BatchRun", "azureml.promptflow.snapshot_id": "5132ecba-405b-4fa2-85de-01c959708f2e", "azureml.promptflow.total_tokens": "0", "_azureml.evaluate_artifacts": "[{\"path\": \"instance_results.jsonl\", \"type\": \"table\"}]"}, "parameters": {}, "actionUris": {}, "scriptName": null, "target": null, "uniqueChildRunComputeTargets": [], "tags": {}, "settings": {}, "services": {}, "inputDatasets": [], "outputDatasets": [], "runDefinition": null, "jobSpecification": null, "primaryMetricName": null, "createdFrom": null, "cancelUri": null, "completeUri": null, "diagnosticsUri": null, "computeRequest": null, "compute": null, "retainForLifetimeOfWorkspace": false, "queueingInfo": null, "inputs": null, "outputs": {"debug_info": {"assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_failed_run_name_output_data_debug_info/versions/1", "type": "UriFolder"}}}, "runDefinition": null, "jobSpecification": null, "systemSettings": null}' headers: connection: - keep-alive content-length: - '7988' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.061' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/failed_run_name/logContent response: body: string: '"2024-01-12 08:03:09 +0000 49 promptflow-runtime INFO [failed_run_name] Receiving v2 bulk run request 4babbe77-fec5-48ec-9949-b3bb23717de0: {\"flow_id\": \"failed_run_name\", \"flow_run_id\": \"failed_run_name\", \"flow_source\": {\"flow_source_type\": 1, \"flow_source_info\": {\"snapshot_id\": \"5132ecba-405b-4fa2-85de-01c959708f2e\"}, \"flow_dag_file\": \"flow.dag.yaml\"}, \"log_path\": \"https://promptfloweast4063704120.blob.core.windows.net/azureml/ExperimentRun/dcid.failed_run_name/logs/azureml/executionlogs.txt?sv=2019-07-07&sr=b&sig=**data_scrubbed**&skoid=55b92eba-d7c7-4afd-ab76-7bb1cd345283&sktid=00000000-0000-0000-0000-000000000000&skt=2024-01-12T07%3A53%3A03Z&ske=2024-01-13T16%3A03%3A03Z&sks=b&skv=2019-07-07&st=2024-01-12T07%3A53%3A08Z&se=2024-01-12T16%3A03%3A08Z&sp=rcw\", \"app_insights_instrumentation_key\": \"InstrumentationKey=**data_scrubbed**;IngestionEndpoint=https://eastus-6.in.applicationinsights.azure.com/;LiveEndpoint=https://eastus.livediagnostics.monitor.azure.com/\", \"data_inputs\": {\"data\": \"azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl\"}, \"azure_storage_setting\": {\"azure_storage_mode\": 1, \"storage_account_name\": \"promptfloweast4063704120\", \"blob_container_name\": \"azureml-blobstore-3e123da1-f9a5-4c91-9234-8d9ffbb39ff5\", \"flow_artifacts_root_path\": \"promptflow/PromptFlowArtifacts/failed_run_name\", \"blob_container_sas_token\": \"?sv=2019-07-07&sr=c&sig=**data_scrubbed**&skoid=55b92eba-d7c7-4afd-ab76-7bb1cd345283&sktid=00000000-0000-0000-0000-000000000000&skt=2024-01-12T08%3A03%3A09Z&ske=2024-01-19T08%3A03%3A08Z&sks=b&skv=2019-07-07&se=2024-01-19T08%3A03%3A08Z&sp=racwl\", \"output_datastore_name\": \"workspaceblobstore\"}}\n2024-01-12 08:03:09 +0000 49 promptflow-runtime INFO Runtime version: 20231204.v4. PromptFlow version: 1.2.0rc1\n2024-01-12 08:03:09 +0000 49 promptflow-runtime INFO Updating failed_run_name to Status.Preparing...\n2024-01-12 08:03:09 +0000 49 promptflow-runtime INFO Downloading snapshot to /mnt/host/service/app/39649/requests/failed_run_name\n2024-01-12 08:03:09 +0000 49 promptflow-runtime INFO Get snapshot sas url for 5132ecba-405b-4fa2-85de-01c959708f2e...\n2024-01-12 08:03:16 +0000 49 promptflow-runtime INFO Downloading snapshot 5132ecba-405b-4fa2-85de-01c959708f2e from uri https://promptfloweast4063704120.blob.core.windows.net/snapshotzips/promptflow-eastus:3e123da1-f9a5-4c91-9234-8d9ffbb39ff5:snapshotzip/5132ecba-405b-4fa2-85de-01c959708f2e.zip...\n2024-01-12 08:03:16 +0000 49 promptflow-runtime INFO Downloaded file /mnt/host/service/app/39649/requests/failed_run_name/5132ecba-405b-4fa2-85de-01c959708f2e.zip with size 701 for snapshot 5132ecba-405b-4fa2-85de-01c959708f2e.\n2024-01-12 08:03:16 +0000 49 promptflow-runtime INFO Download snapshot 5132ecba-405b-4fa2-85de-01c959708f2e completed.\n2024-01-12 08:03:16 +0000 49 promptflow-runtime INFO Successfully download snapshot to /mnt/host/service/app/39649/requests/failed_run_name\n2024-01-12 08:03:16 +0000 49 promptflow-runtime INFO About to execute a python flow.\n2024-01-12 08:03:16 +0000 49 promptflow-runtime INFO Use spawn method to start child process.\n2024-01-12 08:03:16 +0000 49 promptflow-runtime INFO Starting to check process 3482 status for run failed_run_name\n2024-01-12 08:03:16 +0000 49 promptflow-runtime INFO Start checking run status for run failed_run_name\n2024-01-12 08:03:20 +0000 3482 promptflow-runtime INFO [49--3482] Start processing flowV2......\n2024-01-12 08:03:20 +0000 3482 promptflow-runtime INFO Runtime version: 20231204.v4. PromptFlow version: 1.2.0rc1\n2024-01-12 08:03:20 +0000 3482 promptflow-runtime INFO Setting mlflow tracking uri...\n2024-01-12 08:03:20 +0000 3482 promptflow-runtime INFO Validating ''AzureML Data Scientist'' user authentication...\n2024-01-12 08:03:21 +0000 3482 promptflow-runtime INFO Successfully validated ''AzureML Data Scientist'' user authentication.\n2024-01-12 08:03:21 +0000 3482 promptflow-runtime INFO Using AzureMLRunStorageV2\n2024-01-12 08:03:21 +0000 3482 promptflow-runtime INFO Setting mlflow tracking uri to ''azureml://eastus.api.azureml.ms/mlflow/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/promptflow-eastus''\n2024-01-12 08:03:21 +0000 3482 promptflow-runtime INFO Initialized blob service client for AzureMLRunTracker.\n2024-01-12 08:03:21 +0000 3482 promptflow-runtime INFO Setting mlflow tracking uri to ''azureml://eastus.api.azureml.ms/mlflow/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/promptflow-eastus''\n2024-01-12 08:03:21 +0000 3482 promptflow-runtime INFO Resolve data from url finished in 0.5524158906191587 seconds\n2024-01-12 08:03:21 +0000 3482 promptflow-runtime INFO Starting the aml run ''failed_run_name''...\n2024-01-12 08:03:22 +0000 3482 execution WARNING Starting run without column mapping may lead to unexpected results. Please consult the following documentation for more information: https://aka.ms/pf/column-mapping\n2024-01-12 08:03:22 +0000 3482 execution.bulk ERROR Error occurred while executing batch run. Exception: The input for batch run is incorrect. Couldn''t find these mapping relations: ${data.key}. Please make sure your input mapping keys and values match your YAML input section and input data. For more information, refer to the following documentation: https://aka.ms/pf/column-mapping\n2024-01-12 08:03:22 +0000 3482 promptflow-runtime ERROR Run failed_run_name failed. Exception: {\n \"message\": \"The input for batch run is incorrect. Couldn''t find these mapping relations: ${data.key}. Please make sure your input mapping keys and values match your YAML input section and input data. For more information, refer to the following documentation: https://aka.ms/pf/column-mapping\",\n \"messageFormat\": \"The input for batch run is incorrect. Couldn''t find these mapping relations: {invalid_relations}. Please make sure your input mapping keys and values match your YAML input section and input data. For more information, refer to the following documentation: https://aka.ms/pf/column-mapping\",\n \"messageParameters\": {\n \"invalid_relations\": \"${data.key}\"\n },\n \"referenceCode\": \"Executor\",\n \"code\": \"UserError\",\n \"innerError\": {\n \"code\": \"ValidationError\",\n \"innerError\": {\n \"code\": \"InputMappingError\",\n \"innerError\": null\n }\n },\n \"debugInfo\": {\n \"type\": \"InputMappingError\",\n \"message\": \"The input for batch run is incorrect. Couldn''t find these mapping relations: ${data.key}. Please make sure your input mapping keys and values match your YAML input section and input data. For more information, refer to the following documentation: https://aka.ms/pf/column-mapping\",\n \"stackTrace\": \"Traceback (most recent call last):\\n File \\\"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/runtime/runtime.py\\\", line 671, in execute_bulk_run_request\\n batch_engine.run(\\n File \\\"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_engine.py\\\", line 147, in run\\n raise e\\n File \\\"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_engine.py\\\", line 132, in run\\n batch_inputs = batch_input_processor.process_batch_inputs(input_dirs, inputs_mapping)\\n File \\\"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\\\", line 41, in process_batch_inputs\\n return self._validate_and_apply_inputs_mapping(input_dicts, inputs_mapping)\\n File \\\"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\\\", line 91, in _validate_and_apply_inputs_mapping\\n resolved_inputs = self._apply_inputs_mapping_for_all_lines(inputs, inputs_mapping)\\n File \\\"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\\\", line 163, in _apply_inputs_mapping_for_all_lines\\n result = [apply_inputs_mapping(item, inputs_mapping) for item in merged_list]\\n File \\\"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\\\", line 163, in <listcomp>\\n result = [apply_inputs_mapping(item, inputs_mapping) for item in merged_list]\\n File \\\"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\\\", line 292, in apply_inputs_mapping\\n raise InputMappingError(\\n\",\n \"innerException\": null\n }\n}\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/runtime/runtime.py\", line 671, in execute_bulk_run_request\n batch_engine.run(\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_engine.py\", line 147, in run\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_engine.py\", line 132, in run\n batch_inputs = batch_input_processor.process_batch_inputs(input_dirs, inputs_mapping)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\", line 41, in process_batch_inputs\n return self._validate_and_apply_inputs_mapping(input_dicts, inputs_mapping)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\", line 91, in _validate_and_apply_inputs_mapping\n resolved_inputs = self._apply_inputs_mapping_for_all_lines(inputs, inputs_mapping)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\", line 163, in _apply_inputs_mapping_for_all_lines\n result = [apply_inputs_mapping(item, inputs_mapping) for item in merged_list]\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\", line 163, in <listcomp>\n result = [apply_inputs_mapping(item, inputs_mapping) for item in merged_list]\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\", line 292, in apply_inputs_mapping\n raise InputMappingError(\npromptflow.batch._errors.InputMappingError: The input for batch run is incorrect. Couldn''t find these mapping relations: ${data.key}. Please make sure your input mapping keys and values match your YAML input section and input data. For more information, refer to the following documentation: https://aka.ms/pf/column-mapping\n2024-01-12 08:03:23 +0000 3482 execution.bulk INFO Upload status summary metrics for run failed_run_name finished in 0.7668862864375114 seconds\n2024-01-12 08:03:23 +0000 3482 promptflow-runtime INFO Successfully write run properties {\"azureml.promptflow.total_tokens\": 0, \"_azureml.evaluate_artifacts\": \"[{\\\"path\\\": \\\"instance_results.jsonl\\\", \\\"type\\\": \\\"table\\\"}]\"} with run id ''failed_run_name''\n2024-01-12 08:03:23 +0000 3482 execution.bulk INFO Upload RH properties for run failed_run_name finished in 0.07698679156601429 seconds\n2024-01-12 08:03:23 +0000 3482 promptflow-runtime INFO Creating unregistered output Asset for Run failed_run_name...\n2024-01-12 08:03:23 +0000 3482 promptflow-runtime INFO Created debug_info Asset: azureml://locations/eastus/workspaces/00000/data/azureml_failed_run_name_output_data_debug_info/versions/1\n2024-01-12 08:03:23 +0000 3482 promptflow-runtime INFO Patching failed_run_name...\n2024-01-12 08:03:23 +0000 3482 promptflow-runtime WARNING [failed_run_name] Run failed. Execution stackTrace: Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/runtime/runtime.py\", line 671, in execute_bulk_run_request\n batch_engine.run(\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_engine.py\", line 147, in run\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_engine.py\", line 132, in run\n batch_inputs = batch_input_processor.process_batch_inputs(input_dirs, inputs_mapping)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\", line 41, in process_batch_inputs\n return self._validate_and_apply_inputs_mapping(input_dicts, inputs_mapping)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\", line 91, in _validate_and_apply_inputs_mapping\n resolved_inputs = self._apply_inputs_mapping_for_all_lines(inputs, inputs_mapping)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\", line 163, in _apply_inputs_mapping_for_all_lines\n result = [apply_inputs_mapping(item, inputs_mapping) for item in merged_list]\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\", line 163, in <listcomp>\n result = [apply_inputs_mapping(item, inputs_mapping) for item in merged_list]\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\", line 292, in apply_inputs_mapping\n raise InputMappingError(\n\n2024-01-12 08:03:24 +0000 3482 promptflow-runtime INFO Ending the aml run ''failed_run_name'' with status ''Failed''...\n2024-01-12 08:03:25 +0000 49 promptflow-runtime INFO Process 3482 finished\n2024-01-12 08:03:25 +0000 49 promptflow-runtime INFO [49] Child process finished!\n2024-01-12 08:03:25 +0000 49 promptflow-runtime INFO [failed_run_name] End processing bulk run\n2024-01-12 08:03:25 +0000 49 promptflow-runtime ERROR Submit flow request failed Code: 400 InnerException type: InputMappingError Exception type hierarchy: UserError/ValidationError/InputMappingError\n2024-01-12 08:03:25 +0000 49 promptflow-runtime INFO Cleanup working dir /mnt/host/service/app/39649/requests/failed_run_name for bulk run\n"' headers: connection: - keep-alive content-length: - '15117' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.616' status: code: 200 message: OK version: 1
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/recordings/test_run_operations_TestFlowRun_test_get_invalid_run_cases.yaml
interactions: - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 promptflow/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000 response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000", "name": "00000", "type": "Microsoft.MachineLearningServices/workspaces", "location": "eastus", "tags": {}, "etag": null, "kind": "Default", "sku": {"name": "Basic", "tier": "Basic"}, "properties": {"discoveryUrl": "https://eastus.api.azureml.ms/discovery"}}' headers: cache-control: - no-cache content-length: - '3630' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains vary: - Accept-Encoding x-cache: - CONFIG_NOCACHE x-content-type-options: - nosniff x-request-time: - '0.020' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 promptflow/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores?count=30&isDefault=true&orderByAsc=false response: body: string: '{"value": [{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}]}' headers: cache-control: - no-cache content-length: - '1372' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains vary: - Accept-Encoding x-cache: - CONFIG_NOCACHE x-content-type-options: - nosniff x-request-time: - '0.079' status: code: 200 message: OK - request: body: '{"runId": "non_exist_run", "selectRunMetadata": true, "selectRunDefinition": true, "selectJobSpecification": true}' headers: Accept: - '*/*' Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '137' Content-Type: - application/json User-Agent: - python-requests/2.31.0 method: POST uri: https://eastus.api.azureml.ms/history/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/rundata response: body: string: '{"error": {"code": "UserError", "severity": null, "message": "Run runId=non_exist_run was not found", "messageFormat": "Run {runId} was not found", "messageParameters": {"runId": "runId=non_exist_run"}, "referenceCode": null, "detailsUri": null, "target": null, "details": [], "innerError": {"code": "NotFoundError", "innerError": null}, "debugInfo": null, "additionalInfo": null}, "correlation": {"operation": "4524d4f22ddaa62600fff8c00e9256f6", "request": "6ed7f8ac3ca2136c"}, "environment": "eastus", "location": "eastus", "time": "2023-11-29T09:03:44.6763704+00:00", "componentName": "run-history", "statusCode": 404}' headers: connection: - keep-alive content-length: - '777' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.044' status: code: 404 message: Run runId=32263d2c-f56a-4298-9fe3-f90ab65f59c6 was not found version: 1
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/recordings/test_run_operations_TestFlowRun_test_get_details_against_partial_completed_run.yaml
interactions: - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000 response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000", "name": "00000", "type": "Microsoft.MachineLearningServices/workspaces", "location": "eastus", "tags": {}, "etag": null, "kind": "Default", "sku": {"name": "Basic", "tier": "Basic"}, "properties": {"discoveryUrl": "https://eastus.api.azureml.ms/discovery"}}' headers: cache-control: - no-cache content-length: - '3630' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.029' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores?count=30&isDefault=true&orderByAsc=false response: body: string: '{"value": [{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}]}' headers: cache-control: - no-cache content-length: - '1372' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.059' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.099' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.125' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:53:29 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/numbers.jsonl response: body: string: '' headers: accept-ranges: - bytes content-length: - '290' content-md5: - O6LvdPMlN/PM6b7fPh75Jw== content-type: - application/octet-stream last-modified: - Tue, 26 Dec 2023 09:52:29 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Tue, 26 Dec 2023 09:52:29 GMT x-ms-meta-name: - 229ce463-c199-4588-a9c4-c30e7a4bd25c x-ms-meta-upload_status: - completed x-ms-meta-version: - 4cda6a90-97ca-4ad5-b420-5e347369f614 x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:53:30 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/numbers.jsonl response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.082' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.097' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:53:34 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/two/flow.dag.yaml response: body: string: '' headers: accept-ranges: - bytes content-length: - '242' content-md5: - ySItjr6//pwsGdjLZfgq0A== content-type: - application/octet-stream last-modified: - Tue, 26 Dec 2023 09:53:17 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Tue, 26 Dec 2023 09:52:31 GMT x-ms-meta-name: - 5b163be8-ab29-4f62-bef0-cd64d56ab269 x-ms-meta-upload_status: - completed x-ms-meta-version: - '1' x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:53:35 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/two/flow.dag.yaml response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: '{"flowDefinitionDataStoreName": "workspaceblobstore", "flowDefinitionBlobPath": "LocalUpload/000000000000000000000000000000000000/two/flow.dag.yaml", "runId": "run1", "runDisplayName": "run1", "runExperimentName": "", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/000000000000000000000000000000000000/numbers.jsonl"}, "inputsMapping": {"number": "${data.value}"}, "connections": {}, "environmentVariables": {}, "runtimeName": "fake-runtime-name", "sessionId": "000000000000000000000000000000000000000000000000", "sessionSetupMode": "SystemWait", "flowLineageId": "0000000000000000000000000000000000000000000000000000000000000000", "runDisplayNameGenerationType": "UserProvidedMacro"}' headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '783' Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/submit response: body: string: '"run1"' headers: connection: - keep-alive content-length: - '38' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload x-content-type-options: - nosniff x-request-time: - '6.387' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/run1 response: body: string: '{"flowGraph": {"nodes": [{"name": "mod_two", "type": "python", "source": {"type": "code", "path": "mod_two.py"}, "inputs": {"number": "${inputs.number}"}, "tool": "mod_two.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "mod_two.py", "type": "python", "inputs": {"number": {"type": ["int"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "mod_two.py", "function": "mod_two", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"number": {"type": "int", "is_chat_input": false}}, "outputs": {"output": {"type": "int", "reference": "${mod_two.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/run1/flowRuns/run1", "flowRunId": "run1", "flowRunDisplayName": "run1", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/7e5ac781513436b66626132fefb20d1f/numbers.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"number": "${data.value}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/run1/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "d15d3732-36a4-45ac-b53b-e1fe695b2e77", "studioPortalEndpoint": "https://ml.azure.com/runs/run1?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12860' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.458' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/run1 response: body: string: '{"flowGraph": {"nodes": [{"name": "mod_two", "type": "python", "source": {"type": "code", "path": "mod_two.py"}, "inputs": {"number": "${inputs.number}"}, "tool": "mod_two.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "mod_two.py", "type": "python", "inputs": {"number": {"type": ["int"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "mod_two.py", "function": "mod_two", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"number": {"type": "int", "is_chat_input": false}}, "outputs": {"output": {"type": "int", "reference": "${mod_two.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/run1/flowRuns/run1", "flowRunId": "run1", "flowRunDisplayName": "run1", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/7e5ac781513436b66626132fefb20d1f/numbers.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"number": "${data.value}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/run1/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "d15d3732-36a4-45ac-b53b-e1fe695b2e77", "studioPortalEndpoint": "https://ml.azure.com/runs/run1?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12860' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.472' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/run1 response: body: string: '{"flowGraph": {"nodes": [{"name": "mod_two", "type": "python", "source": {"type": "code", "path": "mod_two.py"}, "inputs": {"number": "${inputs.number}"}, "tool": "mod_two.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "mod_two.py", "type": "python", "inputs": {"number": {"type": ["int"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "mod_two.py", "function": "mod_two", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"number": {"type": "int", "is_chat_input": false}}, "outputs": {"output": {"type": "int", "reference": "${mod_two.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/run1/flowRuns/run1", "flowRunId": "run1", "flowRunDisplayName": "run1", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/7e5ac781513436b66626132fefb20d1f/numbers.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"number": "${data.value}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/run1/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "d15d3732-36a4-45ac-b53b-e1fe695b2e77", "studioPortalEndpoint": "https://ml.azure.com/runs/run1?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12860' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.262' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/run1 response: body: string: '{"flowGraph": {"nodes": [{"name": "mod_two", "type": "python", "source": {"type": "code", "path": "mod_two.py"}, "inputs": {"number": "${inputs.number}"}, "tool": "mod_two.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "mod_two.py", "type": "python", "inputs": {"number": {"type": ["int"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "mod_two.py", "function": "mod_two", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"number": {"type": "int", "is_chat_input": false}}, "outputs": {"output": {"type": "int", "reference": "${mod_two.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/run1/flowRuns/run1", "flowRunId": "run1", "flowRunDisplayName": "run1", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/7e5ac781513436b66626132fefb20d1f/numbers.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"number": "${data.value}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/run1/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "d15d3732-36a4-45ac-b53b-e1fe695b2e77", "studioPortalEndpoint": "https://ml.azure.com/runs/run1?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12860' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.273' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/run1 response: body: string: '{"flowGraph": {"nodes": [{"name": "mod_two", "type": "python", "source": {"type": "code", "path": "mod_two.py"}, "inputs": {"number": "${inputs.number}"}, "tool": "mod_two.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "mod_two.py", "type": "python", "inputs": {"number": {"type": ["int"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "mod_two.py", "function": "mod_two", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"number": {"type": "int", "is_chat_input": false}}, "outputs": {"output": {"type": "int", "reference": "${mod_two.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/run1/flowRuns/run1", "flowRunId": "run1", "flowRunDisplayName": "run1", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/7e5ac781513436b66626132fefb20d1f/numbers.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"number": "${data.value}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/run1/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "d15d3732-36a4-45ac-b53b-e1fe695b2e77", "studioPortalEndpoint": "https://ml.azure.com/runs/run1?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12860' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.576' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/run1 response: body: string: '{"flowGraph": {"nodes": [{"name": "mod_two", "type": "python", "source": {"type": "code", "path": "mod_two.py"}, "inputs": {"number": "${inputs.number}"}, "tool": "mod_two.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "mod_two.py", "type": "python", "inputs": {"number": {"type": ["int"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "mod_two.py", "function": "mod_two", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"number": {"type": "int", "is_chat_input": false}}, "outputs": {"output": {"type": "int", "reference": "${mod_two.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/run1/flowRuns/run1", "flowRunId": "run1", "flowRunDisplayName": "run1", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/7e5ac781513436b66626132fefb20d1f/numbers.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"number": "${data.value}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/run1/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "d15d3732-36a4-45ac-b53b-e1fe695b2e77", "studioPortalEndpoint": "https://ml.azure.com/runs/run1?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12860' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.422' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/run1 response: body: string: '{"flowGraph": {"nodes": [{"name": "mod_two", "type": "python", "source": {"type": "code", "path": "mod_two.py"}, "inputs": {"number": "${inputs.number}"}, "tool": "mod_two.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "mod_two.py", "type": "python", "inputs": {"number": {"type": ["int"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "mod_two.py", "function": "mod_two", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"number": {"type": "int", "is_chat_input": false}}, "outputs": {"output": {"type": "int", "reference": "${mod_two.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/run1/flowRuns/run1", "flowRunId": "run1", "flowRunDisplayName": "run1", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/7e5ac781513436b66626132fefb20d1f/numbers.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"number": "${data.value}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/run1/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "d15d3732-36a4-45ac-b53b-e1fe695b2e77", "studioPortalEndpoint": "https://ml.azure.com/runs/run1?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12860' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.279' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/run1/childRuns?endIndex=24&startIndex=0 response: body: string: '[{"run_id": "run1_2", "status": "Completed", "error": null, "inputs": {"number": 2, "line_number": 2}, "output": {"output": 2}, "metrics": null, "request": null, "parent_run_id": "run1", "root_run_id": "run1", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:53:58.36557Z", "end_time": "2024-01-12T08:53:58.379665Z", "index": 2, "api_calls": [{"name": "mod_two", "type": "Tool", "inputs": {"number": 2}, "output": {"value": 2}, "start_time": 1705049638.376116, "end_time": 1705049638.377043, "error": null, "children": null, "node_name": "mod_two"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.014095, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"output": 2}, "upload_metrics": false}, {"run_id": "run1_1", "status": "Failed", "error": {"message": "Execution failure in ''mod_two'': (Exception) cannot mod 2!", "messageFormat": "Execution failure in ''{node_name}'': {error_type_and_message}", "messageParameters": {"node_name": "mod_two", "error_type_and_message": "(Exception) cannot mod 2!"}, "referenceCode": "Tool/__pf_main__", "code": "UserError", "innerError": {"code": "ToolExecutionError", "innerError": null}, "additionalInfo": [{"type": "ToolExecutionErrorDetails", "info": {"type": "Exception", "message": "cannot mod 2!", "traceback": "Traceback (most recent call last):\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\nException: cannot mod 2!\n", "filename": "/mnt/host/service/app/39649/requests/run1/mod_two.py", "lineno": 7, "name": "mod_two"}}], "debugInfo": {"type": "ToolExecutionError", "message": "Execution failure in ''mod_two'': (Exception) cannot mod 2!", "stackTrace": "\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 804, in _exec\n output, nodes_outputs = self._traverse_nodes(inputs, context)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 890, in _traverse_nodes\n nodes_outputs, bypassed_nodes = self._submit_to_scheduler(context, inputs, batch_nodes)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 910, in _submit_to_scheduler\n return FlowNodesScheduler(self._tools_manager, inputs, nodes, self._node_concurrency, context).execute()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 69, in execute\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 58, in execute\n self._dag_manager.complete_nodes(self._collect_outputs(completed_futures))\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 90, in _collect_outputs\n each_node_result = each_future.result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 451, in result\n return self.__get_result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 403, in __get_result\n raise self._exception\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/thread.py\", line 58, in run\n result = self.fn(*self.args, **self.kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 111, in _exec_single_node_in_thread\n result = context.invoke_tool(node, f, kwargs=kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\n", "innerException": {"type": "Exception", "message": "cannot mod 2!", "stackTrace": "Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\n", "innerException": null}}}, "inputs": {"number": 1, "line_number": 1}, "output": null, "metrics": null, "request": null, "parent_run_id": "run1", "root_run_id": "run1", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:53:58.382319Z", "end_time": "2024-01-12T08:53:58.499971Z", "index": 1, "api_calls": [{"name": "mod_two", "type": "Tool", "inputs": {"number": 1}, "output": null, "start_time": 1705049638.40109, "end_time": 1705049638.401905, "error": {"message": "cannot mod 2!", "type": "Exception"}, "children": null, "node_name": "mod_two"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.117652, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": null, "upload_metrics": false}, {"run_id": "run1_0", "status": "Completed", "error": null, "inputs": {"number": 0, "line_number": 0}, "output": {"output": 0}, "metrics": null, "request": null, "parent_run_id": "run1", "root_run_id": "run1", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:53:58.298983Z", "end_time": "2024-01-12T08:53:58.326471Z", "index": 0, "api_calls": [{"name": "mod_two", "type": "Tool", "inputs": {"number": 0}, "output": {"value": 0}, "start_time": 1705049638.316181, "end_time": 1705049638.316979, "error": null, "children": null, "node_name": "mod_two"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.027488, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"output": 0}, "upload_metrics": false}, {"run_id": "run1_4", "status": "Completed", "error": null, "inputs": {"number": 4, "line_number": 4}, "output": {"output": 4}, "metrics": null, "request": null, "parent_run_id": "run1", "root_run_id": "run1", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:53:58.445979Z", "end_time": "2024-01-12T08:53:58.472475Z", "index": 4, "api_calls": [{"name": "mod_two", "type": "Tool", "inputs": {"number": 4}, "output": {"value": 4}, "start_time": 1705049638.469504, "end_time": 1705049638.470396, "error": null, "children": null, "node_name": "mod_two"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.026496, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"output": 4}, "upload_metrics": false}, {"run_id": "run1_3", "status": "Failed", "error": {"message": "Execution failure in ''mod_two'': (Exception) cannot mod 2!", "messageFormat": "Execution failure in ''{node_name}'': {error_type_and_message}", "messageParameters": {"node_name": "mod_two", "error_type_and_message": "(Exception) cannot mod 2!"}, "referenceCode": "Tool/__pf_main__", "code": "UserError", "innerError": {"code": "ToolExecutionError", "innerError": null}, "additionalInfo": [{"type": "ToolExecutionErrorDetails", "info": {"type": "Exception", "message": "cannot mod 2!", "traceback": "Traceback (most recent call last):\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\nException: cannot mod 2!\n", "filename": "/mnt/host/service/app/39649/requests/run1/mod_two.py", "lineno": 7, "name": "mod_two"}}], "debugInfo": {"type": "ToolExecutionError", "message": "Execution failure in ''mod_two'': (Exception) cannot mod 2!", "stackTrace": "\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 804, in _exec\n output, nodes_outputs = self._traverse_nodes(inputs, context)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 890, in _traverse_nodes\n nodes_outputs, bypassed_nodes = self._submit_to_scheduler(context, inputs, batch_nodes)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 910, in _submit_to_scheduler\n return FlowNodesScheduler(self._tools_manager, inputs, nodes, self._node_concurrency, context).execute()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 69, in execute\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 58, in execute\n self._dag_manager.complete_nodes(self._collect_outputs(completed_futures))\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 90, in _collect_outputs\n each_node_result = each_future.result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 451, in result\n return self.__get_result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 403, in __get_result\n raise self._exception\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/thread.py\", line 58, in run\n result = self.fn(*self.args, **self.kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 111, in _exec_single_node_in_thread\n result = context.invoke_tool(node, f, kwargs=kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\n", "innerException": {"type": "Exception", "message": "cannot mod 2!", "stackTrace": "Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\n", "innerException": null}}}, "inputs": {"number": 3, "line_number": 3}, "output": null, "metrics": null, "request": null, "parent_run_id": "run1", "root_run_id": "run1", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:53:58.440354Z", "end_time": "2024-01-12T08:53:58.453661Z", "index": 3, "api_calls": [{"name": "mod_two", "type": "Tool", "inputs": {"number": 3}, "output": null, "start_time": 1705049638.445455, "end_time": 1705049638.448284, "error": {"message": "cannot mod 2!", "type": "Exception"}, "children": null, "node_name": "mod_two"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.013307, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": null, "upload_metrics": false}, {"run_id": "run1_7", "status": "Failed", "error": {"message": "Execution failure in ''mod_two'': (Exception) cannot mod 2!", "messageFormat": "Execution failure in ''{node_name}'': {error_type_and_message}", "messageParameters": {"node_name": "mod_two", "error_type_and_message": "(Exception) cannot mod 2!"}, "referenceCode": "Tool/__pf_main__", "code": "UserError", "innerError": {"code": "ToolExecutionError", "innerError": null}, "additionalInfo": [{"type": "ToolExecutionErrorDetails", "info": {"type": "Exception", "message": "cannot mod 2!", "traceback": "Traceback (most recent call last):\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\nException: cannot mod 2!\n", "filename": "/mnt/host/service/app/39649/requests/run1/mod_two.py", "lineno": 7, "name": "mod_two"}}], "debugInfo": {"type": "ToolExecutionError", "message": "Execution failure in ''mod_two'': (Exception) cannot mod 2!", "stackTrace": "\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 804, in _exec\n output, nodes_outputs = self._traverse_nodes(inputs, context)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 890, in _traverse_nodes\n nodes_outputs, bypassed_nodes = self._submit_to_scheduler(context, inputs, batch_nodes)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 910, in _submit_to_scheduler\n return FlowNodesScheduler(self._tools_manager, inputs, nodes, self._node_concurrency, context).execute()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 69, in execute\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 58, in execute\n self._dag_manager.complete_nodes(self._collect_outputs(completed_futures))\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 90, in _collect_outputs\n each_node_result = each_future.result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 451, in result\n return self.__get_result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 403, in __get_result\n raise self._exception\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/thread.py\", line 58, in run\n result = self.fn(*self.args, **self.kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 111, in _exec_single_node_in_thread\n result = context.invoke_tool(node, f, kwargs=kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\n", "innerException": {"type": "Exception", "message": "cannot mod 2!", "stackTrace": "Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\n", "innerException": null}}}, "inputs": {"number": 7, "line_number": 7}, "output": null, "metrics": null, "request": null, "parent_run_id": "run1", "root_run_id": "run1", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:53:58.508983Z", "end_time": "2024-01-12T08:53:58.621053Z", "index": 7, "api_calls": [{"name": "mod_two", "type": "Tool", "inputs": {"number": 7}, "output": null, "start_time": 1705049638.512829, "end_time": 1705049638.513634, "error": {"message": "cannot mod 2!", "type": "Exception"}, "children": null, "node_name": "mod_two"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.11207, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": null, "upload_metrics": false}, {"run_id": "run1_8", "status": "Completed", "error": null, "inputs": {"number": 8, "line_number": 8}, "output": {"output": 8}, "metrics": null, "request": null, "parent_run_id": "run1", "root_run_id": "run1", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:53:58.529121Z", "end_time": "2024-01-12T08:53:58.538356Z", "index": 8, "api_calls": [{"name": "mod_two", "type": "Tool", "inputs": {"number": 8}, "output": {"value": 8}, "start_time": 1705049638.535074, "end_time": 1705049638.535882, "error": null, "children": null, "node_name": "mod_two"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.009235, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"output": 8}, "upload_metrics": false}, {"run_id": "run1_6", "status": "Completed", "error": null, "inputs": {"number": 6, "line_number": 6}, "output": {"output": 6}, "metrics": null, "request": null, "parent_run_id": "run1", "root_run_id": "run1", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:53:58.481907Z", "end_time": "2024-01-12T08:53:58.489299Z", "index": 6, "api_calls": [{"name": "mod_two", "type": "Tool", "inputs": {"number": 6}, "output": {"value": 6}, "start_time": 1705049638.486027, "end_time": 1705049638.487006, "error": null, "children": null, "node_name": "mod_two"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.007392, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"output": 6}, "upload_metrics": false}, {"run_id": "run1_9", "status": "Failed", "error": {"message": "Execution failure in ''mod_two'': (Exception) cannot mod 2!", "messageFormat": "Execution failure in ''{node_name}'': {error_type_and_message}", "messageParameters": {"node_name": "mod_two", "error_type_and_message": "(Exception) cannot mod 2!"}, "referenceCode": "Tool/__pf_main__", "code": "UserError", "innerError": {"code": "ToolExecutionError", "innerError": null}, "additionalInfo": [{"type": "ToolExecutionErrorDetails", "info": {"type": "Exception", "message": "cannot mod 2!", "traceback": "Traceback (most recent call last):\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\nException: cannot mod 2!\n", "filename": "/mnt/host/service/app/39649/requests/run1/mod_two.py", "lineno": 7, "name": "mod_two"}}], "debugInfo": {"type": "ToolExecutionError", "message": "Execution failure in ''mod_two'': (Exception) cannot mod 2!", "stackTrace": "\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 804, in _exec\n output, nodes_outputs = self._traverse_nodes(inputs, context)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 890, in _traverse_nodes\n nodes_outputs, bypassed_nodes = self._submit_to_scheduler(context, inputs, batch_nodes)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 910, in _submit_to_scheduler\n return FlowNodesScheduler(self._tools_manager, inputs, nodes, self._node_concurrency, context).execute()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 69, in execute\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 58, in execute\n self._dag_manager.complete_nodes(self._collect_outputs(completed_futures))\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 90, in _collect_outputs\n each_node_result = each_future.result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 451, in result\n return self.__get_result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 403, in __get_result\n raise self._exception\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/thread.py\", line 58, in run\n result = self.fn(*self.args, **self.kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 111, in _exec_single_node_in_thread\n result = context.invoke_tool(node, f, kwargs=kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\n", "innerException": {"type": "Exception", "message": "cannot mod 2!", "stackTrace": "Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\n", "innerException": null}}}, "inputs": {"number": 9, "line_number": 9}, "output": null, "metrics": null, "request": null, "parent_run_id": "run1", "root_run_id": "run1", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:53:58.529591Z", "end_time": "2024-01-12T08:53:58.643284Z", "index": 9, "api_calls": [{"name": "mod_two", "type": "Tool", "inputs": {"number": 9}, "output": null, "start_time": 1705049638.534116, "end_time": 1705049638.535141, "error": {"message": "cannot mod 2!", "type": "Exception"}, "children": null, "node_name": "mod_two"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.113693, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": null, "upload_metrics": false}, {"run_id": "run1_10", "status": "Completed", "error": null, "inputs": {"number": 10, "line_number": 10}, "output": {"output": 10}, "metrics": null, "request": null, "parent_run_id": "run1", "root_run_id": "run1", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:53:58.567671Z", "end_time": "2024-01-12T08:53:58.573553Z", "index": 10, "api_calls": [{"name": "mod_two", "type": "Tool", "inputs": {"number": 10}, "output": {"value": 10}, "start_time": 1705049638.570297, "end_time": 1705049638.571094, "error": null, "children": null, "node_name": "mod_two"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.005882, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"output": 10}, "upload_metrics": false}, {"run_id": "run1_11", "status": "Failed", "error": {"message": "Execution failure in ''mod_two'': (Exception) cannot mod 2!", "messageFormat": "Execution failure in ''{node_name}'': {error_type_and_message}", "messageParameters": {"node_name": "mod_two", "error_type_and_message": "(Exception) cannot mod 2!"}, "referenceCode": "Tool/__pf_main__", "code": "UserError", "innerError": {"code": "ToolExecutionError", "innerError": null}, "additionalInfo": [{"type": "ToolExecutionErrorDetails", "info": {"type": "Exception", "message": "cannot mod 2!", "traceback": "Traceback (most recent call last):\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\nException: cannot mod 2!\n", "filename": "/mnt/host/service/app/39649/requests/run1/mod_two.py", "lineno": 7, "name": "mod_two"}}], "debugInfo": {"type": "ToolExecutionError", "message": "Execution failure in ''mod_two'': (Exception) cannot mod 2!", "stackTrace": "\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 804, in _exec\n output, nodes_outputs = self._traverse_nodes(inputs, context)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 890, in _traverse_nodes\n nodes_outputs, bypassed_nodes = self._submit_to_scheduler(context, inputs, batch_nodes)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 910, in _submit_to_scheduler\n return FlowNodesScheduler(self._tools_manager, inputs, nodes, self._node_concurrency, context).execute()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 69, in execute\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 58, in execute\n self._dag_manager.complete_nodes(self._collect_outputs(completed_futures))\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 90, in _collect_outputs\n each_node_result = each_future.result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 451, in result\n return self.__get_result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 403, in __get_result\n raise self._exception\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/thread.py\", line 58, in run\n result = self.fn(*self.args, **self.kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 111, in _exec_single_node_in_thread\n result = context.invoke_tool(node, f, kwargs=kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\n", "innerException": {"type": "Exception", "message": "cannot mod 2!", "stackTrace": "Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\n", "innerException": null}}}, "inputs": {"number": 11, "line_number": 11}, "output": null, "metrics": null, "request": null, "parent_run_id": "run1", "root_run_id": "run1", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:53:58.623786Z", "end_time": "2024-01-12T08:53:58.634409Z", "index": 11, "api_calls": [{"name": "mod_two", "type": "Tool", "inputs": {"number": 11}, "output": null, "start_time": 1705049638.627165, "end_time": 1705049638.629035, "error": {"message": "cannot mod 2!", "type": "Exception"}, "children": null, "node_name": "mod_two"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.010623, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": null, "upload_metrics": false}, {"run_id": "run1_5", "status": "Failed", "error": {"message": "Execution failure in ''mod_two'': (Exception) cannot mod 2!", "messageFormat": "Execution failure in ''{node_name}'': {error_type_and_message}", "messageParameters": {"node_name": "mod_two", "error_type_and_message": "(Exception) cannot mod 2!"}, "referenceCode": "Tool/__pf_main__", "code": "UserError", "innerError": {"code": "ToolExecutionError", "innerError": null}, "additionalInfo": [{"type": "ToolExecutionErrorDetails", "info": {"type": "Exception", "message": "cannot mod 2!", "traceback": "Traceback (most recent call last):\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\nException: cannot mod 2!\n", "filename": "/mnt/host/service/app/39649/requests/run1/mod_two.py", "lineno": 7, "name": "mod_two"}}], "debugInfo": {"type": "ToolExecutionError", "message": "Execution failure in ''mod_two'': (Exception) cannot mod 2!", "stackTrace": "\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 804, in _exec\n output, nodes_outputs = self._traverse_nodes(inputs, context)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 890, in _traverse_nodes\n nodes_outputs, bypassed_nodes = self._submit_to_scheduler(context, inputs, batch_nodes)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 910, in _submit_to_scheduler\n return FlowNodesScheduler(self._tools_manager, inputs, nodes, self._node_concurrency, context).execute()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 69, in execute\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 58, in execute\n self._dag_manager.complete_nodes(self._collect_outputs(completed_futures))\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 90, in _collect_outputs\n each_node_result = each_future.result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 451, in result\n return self.__get_result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 403, in __get_result\n raise self._exception\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/thread.py\", line 58, in run\n result = self.fn(*self.args, **self.kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 111, in _exec_single_node_in_thread\n result = context.invoke_tool(node, f, kwargs=kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\n", "innerException": {"type": "Exception", "message": "cannot mod 2!", "stackTrace": "Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\n", "innerException": null}}}, "inputs": {"number": 5, "line_number": 5}, "output": null, "metrics": null, "request": null, "parent_run_id": "run1", "root_run_id": "run1", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:53:58.478106Z", "end_time": "2024-01-12T08:53:58.485903Z", "index": 5, "api_calls": [{"name": "mod_two", "type": "Tool", "inputs": {"number": 5}, "output": null, "start_time": 1705049638.480935, "end_time": 1705049638.481815, "error": {"message": "cannot mod 2!", "type": "Exception"}, "children": null, "node_name": "mod_two"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.007797, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": null, "upload_metrics": false}, {"run_id": "run1_12", "status": "Completed", "error": null, "inputs": {"number": 12, "line_number": 12}, "output": {"output": 12}, "metrics": null, "request": null, "parent_run_id": "run1", "root_run_id": "run1", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:53:58.857735Z", "end_time": "2024-01-12T08:53:58.8594Z", "index": 12, "api_calls": [{"name": "mod_two", "type": "Tool", "inputs": {"number": 12}, "output": {"value": 12}, "start_time": 1705049638.85876, "end_time": 1705049638.858846, "error": null, "children": null, "node_name": "mod_two"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.001665, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"output": 12}, "upload_metrics": false}, {"run_id": "run1_13", "status": "Failed", "error": {"message": "Execution failure in ''mod_two'': (Exception) cannot mod 2!", "messageFormat": "Execution failure in ''{node_name}'': {error_type_and_message}", "messageParameters": {"node_name": "mod_two", "error_type_and_message": "(Exception) cannot mod 2!"}, "referenceCode": "Tool/__pf_main__", "code": "UserError", "innerError": {"code": "ToolExecutionError", "innerError": null}, "additionalInfo": [{"type": "ToolExecutionErrorDetails", "info": {"type": "Exception", "message": "cannot mod 2!", "traceback": "Traceback (most recent call last):\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\nException: cannot mod 2!\n", "filename": "/mnt/host/service/app/39649/requests/run1/mod_two.py", "lineno": 7, "name": "mod_two"}}], "debugInfo": {"type": "ToolExecutionError", "message": "Execution failure in ''mod_two'': (Exception) cannot mod 2!", "stackTrace": "\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 804, in _exec\n output, nodes_outputs = self._traverse_nodes(inputs, context)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 890, in _traverse_nodes\n nodes_outputs, bypassed_nodes = self._submit_to_scheduler(context, inputs, batch_nodes)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 910, in _submit_to_scheduler\n return FlowNodesScheduler(self._tools_manager, inputs, nodes, self._node_concurrency, context).execute()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 69, in execute\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 58, in execute\n self._dag_manager.complete_nodes(self._collect_outputs(completed_futures))\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 90, in _collect_outputs\n each_node_result = each_future.result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 451, in result\n return self.__get_result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 403, in __get_result\n raise self._exception\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/thread.py\", line 58, in run\n result = self.fn(*self.args, **self.kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 111, in _exec_single_node_in_thread\n result = context.invoke_tool(node, f, kwargs=kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\n", "innerException": {"type": "Exception", "message": "cannot mod 2!", "stackTrace": "Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\n", "innerException": null}}}, "inputs": {"number": 13, "line_number": 13}, "output": null, "metrics": null, "request": null, "parent_run_id": "run1", "root_run_id": "run1", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:53:59.081618Z", "end_time": "2024-01-12T08:53:59.084304Z", "index": 13, "api_calls": [{"name": "mod_two", "type": "Tool", "inputs": {"number": 13}, "output": null, "start_time": 1705049639.082711, "end_time": 1705049639.082963, "error": {"message": "cannot mod 2!", "type": "Exception"}, "children": null, "node_name": "mod_two"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.002686, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": null, "upload_metrics": false}, {"run_id": "run1_14", "status": "Completed", "error": null, "inputs": {"number": 14, "line_number": 14}, "output": {"output": 14}, "metrics": null, "request": null, "parent_run_id": "run1", "root_run_id": "run1", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:53:59.095533Z", "end_time": "2024-01-12T08:53:59.097688Z", "index": 14, "api_calls": [{"name": "mod_two", "type": "Tool", "inputs": {"number": 14}, "output": {"value": 14}, "start_time": 1705049639.096824, "end_time": 1705049639.096905, "error": null, "children": null, "node_name": "mod_two"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.002155, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"output": 14}, "upload_metrics": false}, {"run_id": "run1_15", "status": "Failed", "error": {"message": "Execution failure in ''mod_two'': (Exception) cannot mod 2!", "messageFormat": "Execution failure in ''{node_name}'': {error_type_and_message}", "messageParameters": {"node_name": "mod_two", "error_type_and_message": "(Exception) cannot mod 2!"}, "referenceCode": "Tool/__pf_main__", "code": "UserError", "innerError": {"code": "ToolExecutionError", "innerError": null}, "additionalInfo": [{"type": "ToolExecutionErrorDetails", "info": {"type": "Exception", "message": "cannot mod 2!", "traceback": "Traceback (most recent call last):\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\nException: cannot mod 2!\n", "filename": "/mnt/host/service/app/39649/requests/run1/mod_two.py", "lineno": 7, "name": "mod_two"}}], "debugInfo": {"type": "ToolExecutionError", "message": "Execution failure in ''mod_two'': (Exception) cannot mod 2!", "stackTrace": "\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 804, in _exec\n output, nodes_outputs = self._traverse_nodes(inputs, context)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 890, in _traverse_nodes\n nodes_outputs, bypassed_nodes = self._submit_to_scheduler(context, inputs, batch_nodes)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 910, in _submit_to_scheduler\n return FlowNodesScheduler(self._tools_manager, inputs, nodes, self._node_concurrency, context).execute()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 69, in execute\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 58, in execute\n self._dag_manager.complete_nodes(self._collect_outputs(completed_futures))\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 90, in _collect_outputs\n each_node_result = each_future.result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 451, in result\n return self.__get_result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 403, in __get_result\n raise self._exception\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/thread.py\", line 58, in run\n result = self.fn(*self.args, **self.kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 111, in _exec_single_node_in_thread\n result = context.invoke_tool(node, f, kwargs=kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\n", "innerException": {"type": "Exception", "message": "cannot mod 2!", "stackTrace": "Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\n", "innerException": null}}}, "inputs": {"number": 15, "line_number": 15}, "output": null, "metrics": null, "request": null, "parent_run_id": "run1", "root_run_id": "run1", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:53:59.11042Z", "end_time": "2024-01-12T08:53:59.112899Z", "index": 15, "api_calls": [{"name": "mod_two", "type": "Tool", "inputs": {"number": 15}, "output": null, "start_time": 1705049639.111395, "end_time": 1705049639.111456, "error": {"message": "cannot mod 2!", "type": "Exception"}, "children": null, "node_name": "mod_two"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.002479, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": null, "upload_metrics": false}, {"run_id": "run1_16", "status": "Completed", "error": null, "inputs": {"number": 16, "line_number": 16}, "output": {"output": 16}, "metrics": null, "request": null, "parent_run_id": "run1", "root_run_id": "run1", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:53:59.122603Z", "end_time": "2024-01-12T08:53:59.125415Z", "index": 16, "api_calls": [{"name": "mod_two", "type": "Tool", "inputs": {"number": 16}, "output": {"value": 16}, "start_time": 1705049639.123932, "end_time": 1705049639.124128, "error": null, "children": null, "node_name": "mod_two"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.002812, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"output": 16}, "upload_metrics": false}, {"run_id": "run1_17", "status": "Failed", "error": {"message": "Execution failure in ''mod_two'': (Exception) cannot mod 2!", "messageFormat": "Execution failure in ''{node_name}'': {error_type_and_message}", "messageParameters": {"node_name": "mod_two", "error_type_and_message": "(Exception) cannot mod 2!"}, "referenceCode": "Tool/__pf_main__", "code": "UserError", "innerError": {"code": "ToolExecutionError", "innerError": null}, "additionalInfo": [{"type": "ToolExecutionErrorDetails", "info": {"type": "Exception", "message": "cannot mod 2!", "traceback": "Traceback (most recent call last):\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\nException: cannot mod 2!\n", "filename": "/mnt/host/service/app/39649/requests/run1/mod_two.py", "lineno": 7, "name": "mod_two"}}], "debugInfo": {"type": "ToolExecutionError", "message": "Execution failure in ''mod_two'': (Exception) cannot mod 2!", "stackTrace": "\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 804, in _exec\n output, nodes_outputs = self._traverse_nodes(inputs, context)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 890, in _traverse_nodes\n nodes_outputs, bypassed_nodes = self._submit_to_scheduler(context, inputs, batch_nodes)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 910, in _submit_to_scheduler\n return FlowNodesScheduler(self._tools_manager, inputs, nodes, self._node_concurrency, context).execute()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 69, in execute\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 58, in execute\n self._dag_manager.complete_nodes(self._collect_outputs(completed_futures))\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 90, in _collect_outputs\n each_node_result = each_future.result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 451, in result\n return self.__get_result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 403, in __get_result\n raise self._exception\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/thread.py\", line 58, in run\n result = self.fn(*self.args, **self.kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 111, in _exec_single_node_in_thread\n result = context.invoke_tool(node, f, kwargs=kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\n", "innerException": {"type": "Exception", "message": "cannot mod 2!", "stackTrace": "Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\n", "innerException": null}}}, "inputs": {"number": 17, "line_number": 17}, "output": null, "metrics": null, "request": null, "parent_run_id": "run1", "root_run_id": "run1", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:53:59.201596Z", "end_time": "2024-01-12T08:53:59.204779Z", "index": 17, "api_calls": [{"name": "mod_two", "type": "Tool", "inputs": {"number": 17}, "output": null, "start_time": 1705049639.202943, "end_time": 1705049639.203028, "error": {"message": "cannot mod 2!", "type": "Exception"}, "children": null, "node_name": "mod_two"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.003183, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": null, "upload_metrics": false}, {"run_id": "run1_18", "status": "Completed", "error": null, "inputs": {"number": 18, "line_number": 18}, "output": {"output": 18}, "metrics": null, "request": null, "parent_run_id": "run1", "root_run_id": "run1", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:53:59.216109Z", "end_time": "2024-01-12T08:53:59.21858Z", "index": 18, "api_calls": [{"name": "mod_two", "type": "Tool", "inputs": {"number": 18}, "output": {"value": 18}, "start_time": 1705049639.217608, "end_time": 1705049639.217688, "error": null, "children": null, "node_name": "mod_two"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.002471, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"output": 18}, "upload_metrics": false}, {"run_id": "run1_19", "status": "Failed", "error": {"message": "Execution failure in ''mod_two'': (Exception) cannot mod 2!", "messageFormat": "Execution failure in ''{node_name}'': {error_type_and_message}", "messageParameters": {"node_name": "mod_two", "error_type_and_message": "(Exception) cannot mod 2!"}, "referenceCode": "Tool/__pf_main__", "code": "UserError", "innerError": {"code": "ToolExecutionError", "innerError": null}, "additionalInfo": [{"type": "ToolExecutionErrorDetails", "info": {"type": "Exception", "message": "cannot mod 2!", "traceback": "Traceback (most recent call last):\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\nException: cannot mod 2!\n", "filename": "/mnt/host/service/app/39649/requests/run1/mod_two.py", "lineno": 7, "name": "mod_two"}}], "debugInfo": {"type": "ToolExecutionError", "message": "Execution failure in ''mod_two'': (Exception) cannot mod 2!", "stackTrace": "\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 804, in _exec\n output, nodes_outputs = self._traverse_nodes(inputs, context)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 890, in _traverse_nodes\n nodes_outputs, bypassed_nodes = self._submit_to_scheduler(context, inputs, batch_nodes)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 910, in _submit_to_scheduler\n return FlowNodesScheduler(self._tools_manager, inputs, nodes, self._node_concurrency, context).execute()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 69, in execute\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 58, in execute\n self._dag_manager.complete_nodes(self._collect_outputs(completed_futures))\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 90, in _collect_outputs\n each_node_result = each_future.result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 451, in result\n return self.__get_result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 403, in __get_result\n raise self._exception\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/thread.py\", line 58, in run\n result = self.fn(*self.args, **self.kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 111, in _exec_single_node_in_thread\n result = context.invoke_tool(node, f, kwargs=kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\n", "innerException": {"type": "Exception", "message": "cannot mod 2!", "stackTrace": "Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\n", "innerException": null}}}, "inputs": {"number": 19, "line_number": 19}, "output": null, "metrics": null, "request": null, "parent_run_id": "run1", "root_run_id": "run1", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:53:59.231917Z", "end_time": "2024-01-12T08:53:59.267557Z", "index": 19, "api_calls": [{"name": "mod_two", "type": "Tool", "inputs": {"number": 19}, "output": null, "start_time": 1705049639.233619, "end_time": 1705049639.233699, "error": {"message": "cannot mod 2!", "type": "Exception"}, "children": null, "node_name": "mod_two"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.03564, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": null, "upload_metrics": false}]' headers: connection: - keep-alive content-length: - '57297' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.805' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/run1/childRuns?endIndex=49&startIndex=25 response: body: string: '[]' headers: connection: - keep-alive content-length: - '2' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload x-content-type-options: - nosniff x-request-time: - '0.746' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.077' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.118' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:55:07 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/three/flow.dag.yaml response: body: string: '' headers: accept-ranges: - bytes content-length: - '248' content-md5: - B3pfhMEmUOazTzjlKaw6Sw== content-type: - application/octet-stream last-modified: - Tue, 26 Dec 2023 10:04:33 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Tue, 26 Dec 2023 09:54:37 GMT x-ms-meta-name: - 613ead8f-69ca-4c47-9cba-01f0dd473279 x-ms-meta-upload_status: - completed x-ms-meta-version: - '1' x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:55:08 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/three/flow.dag.yaml response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: '{"flowDefinitionDataStoreName": "workspaceblobstore", "flowDefinitionBlobPath": "LocalUpload/000000000000000000000000000000000000/three/flow.dag.yaml", "runId": "run2", "runDisplayName": "run2", "runExperimentName": "", "variantRunId": "run1", "batchDataInput": {}, "inputsMapping": {"number": "${run.outputs.output}"}, "connections": {}, "environmentVariables": {}, "runtimeName": "fake-runtime-name", "sessionId": "000000000000000000000000000000000000000000000000", "sessionSetupMode": "SystemWait", "flowLineageId": "0000000000000000000000000000000000000000000000000000000000000000", "runDisplayNameGenerationType": "UserProvidedMacro"}' headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '734' Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/submit response: body: string: '"run2"' headers: connection: - keep-alive content-length: - '38' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload x-content-type-options: - nosniff x-request-time: - '6.653' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/run2 response: body: string: '{"flowGraph": {"nodes": [{"name": "mod_three", "type": "python", "source": {"type": "code", "path": "mod_three.py"}, "inputs": {"number": "${inputs.number}"}, "tool": "mod_three.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "mod_three.py", "type": "python", "inputs": {"number": {"type": ["int"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "mod_three.py", "function": "mod_three", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"number": {"type": "int", "is_chat_input": false}}, "outputs": {"output": {"type": "int", "reference": "${mod_three.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/run2/flowRuns/run2", "flowRunId": "run2", "flowRunDisplayName": "run2", "batchDataInput": {}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"number": "${run.outputs.output}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/run2/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "a25bab13-d2d7-4c36-83bf-96979de95507", "studioPortalEndpoint": "https://ml.azure.com/runs/run2?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12766' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.225' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/run2 response: body: string: '{"flowGraph": {"nodes": [{"name": "mod_three", "type": "python", "source": {"type": "code", "path": "mod_three.py"}, "inputs": {"number": "${inputs.number}"}, "tool": "mod_three.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "mod_three.py", "type": "python", "inputs": {"number": {"type": ["int"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "mod_three.py", "function": "mod_three", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"number": {"type": "int", "is_chat_input": false}}, "outputs": {"output": {"type": "int", "reference": "${mod_three.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/run2/flowRuns/run2", "flowRunId": "run2", "flowRunDisplayName": "run2", "batchDataInput": {}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"number": "${run.outputs.output}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/run2/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "a25bab13-d2d7-4c36-83bf-96979de95507", "studioPortalEndpoint": "https://ml.azure.com/runs/run2?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12766' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.496' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/run2 response: body: string: '{"flowGraph": {"nodes": [{"name": "mod_three", "type": "python", "source": {"type": "code", "path": "mod_three.py"}, "inputs": {"number": "${inputs.number}"}, "tool": "mod_three.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "mod_three.py", "type": "python", "inputs": {"number": {"type": ["int"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "mod_three.py", "function": "mod_three", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"number": {"type": "int", "is_chat_input": false}}, "outputs": {"output": {"type": "int", "reference": "${mod_three.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/run2/flowRuns/run2", "flowRunId": "run2", "flowRunDisplayName": "run2", "batchDataInput": {}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"number": "${run.outputs.output}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/run2/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "a25bab13-d2d7-4c36-83bf-96979de95507", "studioPortalEndpoint": "https://ml.azure.com/runs/run2?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12766' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.245' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/run2 response: body: string: '{"flowGraph": {"nodes": [{"name": "mod_three", "type": "python", "source": {"type": "code", "path": "mod_three.py"}, "inputs": {"number": "${inputs.number}"}, "tool": "mod_three.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "mod_three.py", "type": "python", "inputs": {"number": {"type": ["int"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "mod_three.py", "function": "mod_three", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"number": {"type": "int", "is_chat_input": false}}, "outputs": {"output": {"type": "int", "reference": "${mod_three.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/run2/flowRuns/run2", "flowRunId": "run2", "flowRunDisplayName": "run2", "batchDataInput": {}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"number": "${run.outputs.output}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/run2/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "a25bab13-d2d7-4c36-83bf-96979de95507", "studioPortalEndpoint": "https://ml.azure.com/runs/run2?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12766' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.381' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/run2 response: body: string: '{"flowGraph": {"nodes": [{"name": "mod_three", "type": "python", "source": {"type": "code", "path": "mod_three.py"}, "inputs": {"number": "${inputs.number}"}, "tool": "mod_three.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "mod_three.py", "type": "python", "inputs": {"number": {"type": ["int"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "mod_three.py", "function": "mod_three", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"number": {"type": "int", "is_chat_input": false}}, "outputs": {"output": {"type": "int", "reference": "${mod_three.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/run2/flowRuns/run2", "flowRunId": "run2", "flowRunDisplayName": "run2", "batchDataInput": {}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"number": "${run.outputs.output}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/run2/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "a25bab13-d2d7-4c36-83bf-96979de95507", "studioPortalEndpoint": "https://ml.azure.com/runs/run2?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12766' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.410' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/run2 response: body: string: '{"flowGraph": {"nodes": [{"name": "mod_three", "type": "python", "source": {"type": "code", "path": "mod_three.py"}, "inputs": {"number": "${inputs.number}"}, "tool": "mod_three.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "mod_three.py", "type": "python", "inputs": {"number": {"type": ["int"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "mod_three.py", "function": "mod_three", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"number": {"type": "int", "is_chat_input": false}}, "outputs": {"output": {"type": "int", "reference": "${mod_three.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/run2/flowRuns/run2", "flowRunId": "run2", "flowRunDisplayName": "run2", "batchDataInput": {}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"number": "${run.outputs.output}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/run2/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "a25bab13-d2d7-4c36-83bf-96979de95507", "studioPortalEndpoint": "https://ml.azure.com/runs/run2?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12766' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.408' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/run2 response: body: string: '{"flowGraph": {"nodes": [{"name": "mod_three", "type": "python", "source": {"type": "code", "path": "mod_three.py"}, "inputs": {"number": "${inputs.number}"}, "tool": "mod_three.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "mod_three.py", "type": "python", "inputs": {"number": {"type": ["int"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "mod_three.py", "function": "mod_three", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"number": {"type": "int", "is_chat_input": false}}, "outputs": {"output": {"type": "int", "reference": "${mod_three.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/run2/flowRuns/run2", "flowRunId": "run2", "flowRunDisplayName": "run2", "batchDataInput": {}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"number": "${run.outputs.output}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/run2/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "a25bab13-d2d7-4c36-83bf-96979de95507", "studioPortalEndpoint": "https://ml.azure.com/runs/run2?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12766' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.451' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/run2/childRuns?endIndex=24&startIndex=0 response: body: string: '[{"run_id": "run2_0", "status": "Completed", "error": null, "inputs": {"number": 0, "line_number": 0}, "output": {"output": 0}, "metrics": null, "request": null, "parent_run_id": "run2", "root_run_id": "run2", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:55:31.465237Z", "end_time": "2024-01-12T08:55:31.475743Z", "index": 0, "api_calls": [{"name": "mod_three", "type": "Tool", "inputs": {"number": 0}, "output": {"value": 0}, "start_time": 1705049731.472262, "end_time": 1705049731.473128, "error": null, "children": null, "node_name": "mod_three"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.010506, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"output": 0}, "upload_metrics": false}, {"run_id": "run2_12", "status": "Completed", "error": null, "inputs": {"number": 12, "line_number": 12}, "output": {"output": 12}, "metrics": null, "request": null, "parent_run_id": "run2", "root_run_id": "run2", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:55:31.656075Z", "end_time": "2024-01-12T08:55:31.661754Z", "index": 12, "api_calls": [{"name": "mod_three", "type": "Tool", "inputs": {"number": 12}, "output": {"value": 12}, "start_time": 1705049731.658932, "end_time": 1705049731.659931, "error": null, "children": null, "node_name": "mod_three"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.005679, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"output": 12}, "upload_metrics": false}, {"run_id": "run2_2", "status": "Failed", "error": {"message": "Execution failure in ''mod_three'': (Exception) cannot mod 3!", "messageFormat": "Execution failure in ''{node_name}'': {error_type_and_message}", "messageParameters": {"node_name": "mod_three", "error_type_and_message": "(Exception) cannot mod 3!"}, "referenceCode": "Tool/__pf_main__", "code": "UserError", "innerError": {"code": "ToolExecutionError", "innerError": null}, "additionalInfo": [{"type": "ToolExecutionErrorDetails", "info": {"type": "Exception", "message": "cannot mod 3!", "traceback": "Traceback (most recent call last):\n File \"/mnt/host/service/app/39649/requests/run2/mod_three.py\", line 7, in mod_three\n raise Exception(\"cannot mod 3!\")\nException: cannot mod 3!\n", "filename": "/mnt/host/service/app/39649/requests/run2/mod_three.py", "lineno": 7, "name": "mod_three"}}], "debugInfo": {"type": "ToolExecutionError", "message": "Execution failure in ''mod_three'': (Exception) cannot mod 3!", "stackTrace": "\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 804, in _exec\n output, nodes_outputs = self._traverse_nodes(inputs, context)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 890, in _traverse_nodes\n nodes_outputs, bypassed_nodes = self._submit_to_scheduler(context, inputs, batch_nodes)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 910, in _submit_to_scheduler\n return FlowNodesScheduler(self._tools_manager, inputs, nodes, self._node_concurrency, context).execute()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 69, in execute\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 58, in execute\n self._dag_manager.complete_nodes(self._collect_outputs(completed_futures))\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 90, in _collect_outputs\n each_node_result = each_future.result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 451, in result\n return self.__get_result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 403, in __get_result\n raise self._exception\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/thread.py\", line 58, in run\n result = self.fn(*self.args, **self.kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 111, in _exec_single_node_in_thread\n result = context.invoke_tool(node, f, kwargs=kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\n", "innerException": {"type": "Exception", "message": "cannot mod 3!", "stackTrace": "Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run2/mod_three.py\", line 7, in mod_three\n raise Exception(\"cannot mod 3!\")\n", "innerException": null}}}, "inputs": {"number": 2, "line_number": 2}, "output": null, "metrics": null, "request": null, "parent_run_id": "run2", "root_run_id": "run2", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:55:31.490355Z", "end_time": "2024-01-12T08:55:31.575384Z", "index": 2, "api_calls": [{"name": "mod_three", "type": "Tool", "inputs": {"number": 2}, "output": null, "start_time": 1705049731.497823, "end_time": 1705049731.498797, "error": {"message": "cannot mod 3!", "type": "Exception"}, "children": null, "node_name": "mod_three"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.085029, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": null, "upload_metrics": false}, {"run_id": "run2_4", "status": "Failed", "error": {"message": "Execution failure in ''mod_three'': (Exception) cannot mod 3!", "messageFormat": "Execution failure in ''{node_name}'': {error_type_and_message}", "messageParameters": {"node_name": "mod_three", "error_type_and_message": "(Exception) cannot mod 3!"}, "referenceCode": "Tool/__pf_main__", "code": "UserError", "innerError": {"code": "ToolExecutionError", "innerError": null}, "additionalInfo": [{"type": "ToolExecutionErrorDetails", "info": {"type": "Exception", "message": "cannot mod 3!", "traceback": "Traceback (most recent call last):\n File \"/mnt/host/service/app/39649/requests/run2/mod_three.py\", line 7, in mod_three\n raise Exception(\"cannot mod 3!\")\nException: cannot mod 3!\n", "filename": "/mnt/host/service/app/39649/requests/run2/mod_three.py", "lineno": 7, "name": "mod_three"}}], "debugInfo": {"type": "ToolExecutionError", "message": "Execution failure in ''mod_three'': (Exception) cannot mod 3!", "stackTrace": "\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 804, in _exec\n output, nodes_outputs = self._traverse_nodes(inputs, context)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 890, in _traverse_nodes\n nodes_outputs, bypassed_nodes = self._submit_to_scheduler(context, inputs, batch_nodes)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 910, in _submit_to_scheduler\n return FlowNodesScheduler(self._tools_manager, inputs, nodes, self._node_concurrency, context).execute()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 69, in execute\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 58, in execute\n self._dag_manager.complete_nodes(self._collect_outputs(completed_futures))\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 90, in _collect_outputs\n each_node_result = each_future.result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 451, in result\n return self.__get_result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 403, in __get_result\n raise self._exception\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/thread.py\", line 58, in run\n result = self.fn(*self.args, **self.kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 111, in _exec_single_node_in_thread\n result = context.invoke_tool(node, f, kwargs=kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\n", "innerException": {"type": "Exception", "message": "cannot mod 3!", "stackTrace": "Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run2/mod_three.py\", line 7, in mod_three\n raise Exception(\"cannot mod 3!\")\n", "innerException": null}}}, "inputs": {"number": 4, "line_number": 4}, "output": null, "metrics": null, "request": null, "parent_run_id": "run2", "root_run_id": "run2", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:55:31.535972Z", "end_time": "2024-01-12T08:55:31.773764Z", "index": 4, "api_calls": [{"name": "mod_three", "type": "Tool", "inputs": {"number": 4}, "output": null, "start_time": 1705049731.548995, "end_time": 1705049731.550238, "error": {"message": "cannot mod 3!", "type": "Exception"}, "children": null, "node_name": "mod_three"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.237792, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": null, "upload_metrics": false}, {"run_id": "run2_8", "status": "Failed", "error": {"message": "Execution failure in ''mod_three'': (Exception) cannot mod 3!", "messageFormat": "Execution failure in ''{node_name}'': {error_type_and_message}", "messageParameters": {"node_name": "mod_three", "error_type_and_message": "(Exception) cannot mod 3!"}, "referenceCode": "Tool/__pf_main__", "code": "UserError", "innerError": {"code": "ToolExecutionError", "innerError": null}, "additionalInfo": [{"type": "ToolExecutionErrorDetails", "info": {"type": "Exception", "message": "cannot mod 3!", "traceback": "Traceback (most recent call last):\n File \"/mnt/host/service/app/39649/requests/run2/mod_three.py\", line 7, in mod_three\n raise Exception(\"cannot mod 3!\")\nException: cannot mod 3!\n", "filename": "/mnt/host/service/app/39649/requests/run2/mod_three.py", "lineno": 7, "name": "mod_three"}}], "debugInfo": {"type": "ToolExecutionError", "message": "Execution failure in ''mod_three'': (Exception) cannot mod 3!", "stackTrace": "\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 804, in _exec\n output, nodes_outputs = self._traverse_nodes(inputs, context)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 890, in _traverse_nodes\n nodes_outputs, bypassed_nodes = self._submit_to_scheduler(context, inputs, batch_nodes)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 910, in _submit_to_scheduler\n return FlowNodesScheduler(self._tools_manager, inputs, nodes, self._node_concurrency, context).execute()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 69, in execute\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 58, in execute\n self._dag_manager.complete_nodes(self._collect_outputs(completed_futures))\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 90, in _collect_outputs\n each_node_result = each_future.result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 451, in result\n return self.__get_result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 403, in __get_result\n raise self._exception\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/thread.py\", line 58, in run\n result = self.fn(*self.args, **self.kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 111, in _exec_single_node_in_thread\n result = context.invoke_tool(node, f, kwargs=kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\n", "innerException": {"type": "Exception", "message": "cannot mod 3!", "stackTrace": "Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run2/mod_three.py\", line 7, in mod_three\n raise Exception(\"cannot mod 3!\")\n", "innerException": null}}}, "inputs": {"number": 8, "line_number": 8}, "output": null, "metrics": null, "request": null, "parent_run_id": "run2", "root_run_id": "run2", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:55:31.559578Z", "end_time": "2024-01-12T08:55:31.789137Z", "index": 8, "api_calls": [{"name": "mod_three", "type": "Tool", "inputs": {"number": 8}, "output": null, "start_time": 1705049731.584465, "end_time": 1705049731.585312, "error": {"message": "cannot mod 3!", "type": "Exception"}, "children": null, "node_name": "mod_three"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.229559, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": null, "upload_metrics": false}, {"run_id": "run2_6", "status": "Completed", "error": null, "inputs": {"number": 6, "line_number": 6}, "output": {"output": 6}, "metrics": null, "request": null, "parent_run_id": "run2", "root_run_id": "run2", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:55:31.555822Z", "end_time": "2024-01-12T08:55:31.564102Z", "index": 6, "api_calls": [{"name": "mod_three", "type": "Tool", "inputs": {"number": 6}, "output": {"value": 6}, "start_time": 1705049731.561458, "end_time": 1705049731.562356, "error": null, "children": null, "node_name": "mod_three"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.00828, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"output": 6}, "upload_metrics": false}, {"run_id": "run2_16", "status": "Failed", "error": {"message": "Execution failure in ''mod_three'': (Exception) cannot mod 3!", "messageFormat": "Execution failure in ''{node_name}'': {error_type_and_message}", "messageParameters": {"node_name": "mod_three", "error_type_and_message": "(Exception) cannot mod 3!"}, "referenceCode": "Tool/__pf_main__", "code": "UserError", "innerError": {"code": "ToolExecutionError", "innerError": null}, "additionalInfo": [{"type": "ToolExecutionErrorDetails", "info": {"type": "Exception", "message": "cannot mod 3!", "traceback": "Traceback (most recent call last):\n File \"/mnt/host/service/app/39649/requests/run2/mod_three.py\", line 7, in mod_three\n raise Exception(\"cannot mod 3!\")\nException: cannot mod 3!\n", "filename": "/mnt/host/service/app/39649/requests/run2/mod_three.py", "lineno": 7, "name": "mod_three"}}], "debugInfo": {"type": "ToolExecutionError", "message": "Execution failure in ''mod_three'': (Exception) cannot mod 3!", "stackTrace": "\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 804, in _exec\n output, nodes_outputs = self._traverse_nodes(inputs, context)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 890, in _traverse_nodes\n nodes_outputs, bypassed_nodes = self._submit_to_scheduler(context, inputs, batch_nodes)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 910, in _submit_to_scheduler\n return FlowNodesScheduler(self._tools_manager, inputs, nodes, self._node_concurrency, context).execute()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 69, in execute\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 58, in execute\n self._dag_manager.complete_nodes(self._collect_outputs(completed_futures))\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 90, in _collect_outputs\n each_node_result = each_future.result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 451, in result\n return self.__get_result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 403, in __get_result\n raise self._exception\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/thread.py\", line 58, in run\n result = self.fn(*self.args, **self.kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 111, in _exec_single_node_in_thread\n result = context.invoke_tool(node, f, kwargs=kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\n", "innerException": {"type": "Exception", "message": "cannot mod 3!", "stackTrace": "Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run2/mod_three.py\", line 7, in mod_three\n raise Exception(\"cannot mod 3!\")\n", "innerException": null}}}, "inputs": {"number": 16, "line_number": 16}, "output": null, "metrics": null, "request": null, "parent_run_id": "run2", "root_run_id": "run2", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:55:31.744907Z", "end_time": "2024-01-12T08:55:31.817842Z", "index": 16, "api_calls": [{"name": "mod_three", "type": "Tool", "inputs": {"number": 16}, "output": null, "start_time": 1705049731.747285, "end_time": 1705049731.747465, "error": {"message": "cannot mod 3!", "type": "Exception"}, "children": null, "node_name": "mod_three"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.072935, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": null, "upload_metrics": false}, {"run_id": "run2_10", "status": "Failed", "error": {"message": "Execution failure in ''mod_three'': (Exception) cannot mod 3!", "messageFormat": "Execution failure in ''{node_name}'': {error_type_and_message}", "messageParameters": {"node_name": "mod_three", "error_type_and_message": "(Exception) cannot mod 3!"}, "referenceCode": "Tool/__pf_main__", "code": "UserError", "innerError": {"code": "ToolExecutionError", "innerError": null}, "additionalInfo": [{"type": "ToolExecutionErrorDetails", "info": {"type": "Exception", "message": "cannot mod 3!", "traceback": "Traceback (most recent call last):\n File \"/mnt/host/service/app/39649/requests/run2/mod_three.py\", line 7, in mod_three\n raise Exception(\"cannot mod 3!\")\nException: cannot mod 3!\n", "filename": "/mnt/host/service/app/39649/requests/run2/mod_three.py", "lineno": 7, "name": "mod_three"}}], "debugInfo": {"type": "ToolExecutionError", "message": "Execution failure in ''mod_three'': (Exception) cannot mod 3!", "stackTrace": "\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 804, in _exec\n output, nodes_outputs = self._traverse_nodes(inputs, context)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 890, in _traverse_nodes\n nodes_outputs, bypassed_nodes = self._submit_to_scheduler(context, inputs, batch_nodes)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 910, in _submit_to_scheduler\n return FlowNodesScheduler(self._tools_manager, inputs, nodes, self._node_concurrency, context).execute()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 69, in execute\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 58, in execute\n self._dag_manager.complete_nodes(self._collect_outputs(completed_futures))\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 90, in _collect_outputs\n each_node_result = each_future.result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 451, in result\n return self.__get_result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 403, in __get_result\n raise self._exception\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/thread.py\", line 58, in run\n result = self.fn(*self.args, **self.kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 111, in _exec_single_node_in_thread\n result = context.invoke_tool(node, f, kwargs=kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\n", "innerException": {"type": "Exception", "message": "cannot mod 3!", "stackTrace": "Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run2/mod_three.py\", line 7, in mod_three\n raise Exception(\"cannot mod 3!\")\n", "innerException": null}}}, "inputs": {"number": 10, "line_number": 10}, "output": null, "metrics": null, "request": null, "parent_run_id": "run2", "root_run_id": "run2", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:55:31.59072Z", "end_time": "2024-01-12T08:55:31.604864Z", "index": 10, "api_calls": [{"name": "mod_three", "type": "Tool", "inputs": {"number": 10}, "output": null, "start_time": 1705049731.59849, "end_time": 1705049731.600113, "error": {"message": "cannot mod 3!", "type": "Exception"}, "children": null, "node_name": "mod_three"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.014144, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": null, "upload_metrics": false}, {"run_id": "run2_14", "status": "Failed", "error": {"message": "Execution failure in ''mod_three'': (Exception) cannot mod 3!", "messageFormat": "Execution failure in ''{node_name}'': {error_type_and_message}", "messageParameters": {"node_name": "mod_three", "error_type_and_message": "(Exception) cannot mod 3!"}, "referenceCode": "Tool/__pf_main__", "code": "UserError", "innerError": {"code": "ToolExecutionError", "innerError": null}, "additionalInfo": [{"type": "ToolExecutionErrorDetails", "info": {"type": "Exception", "message": "cannot mod 3!", "traceback": "Traceback (most recent call last):\n File \"/mnt/host/service/app/39649/requests/run2/mod_three.py\", line 7, in mod_three\n raise Exception(\"cannot mod 3!\")\nException: cannot mod 3!\n", "filename": "/mnt/host/service/app/39649/requests/run2/mod_three.py", "lineno": 7, "name": "mod_three"}}], "debugInfo": {"type": "ToolExecutionError", "message": "Execution failure in ''mod_three'': (Exception) cannot mod 3!", "stackTrace": "\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 804, in _exec\n output, nodes_outputs = self._traverse_nodes(inputs, context)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 890, in _traverse_nodes\n nodes_outputs, bypassed_nodes = self._submit_to_scheduler(context, inputs, batch_nodes)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 910, in _submit_to_scheduler\n return FlowNodesScheduler(self._tools_manager, inputs, nodes, self._node_concurrency, context).execute()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 69, in execute\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 58, in execute\n self._dag_manager.complete_nodes(self._collect_outputs(completed_futures))\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 90, in _collect_outputs\n each_node_result = each_future.result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 451, in result\n return self.__get_result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 403, in __get_result\n raise self._exception\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/thread.py\", line 58, in run\n result = self.fn(*self.args, **self.kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 111, in _exec_single_node_in_thread\n result = context.invoke_tool(node, f, kwargs=kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\n", "innerException": {"type": "Exception", "message": "cannot mod 3!", "stackTrace": "Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run2/mod_three.py\", line 7, in mod_three\n raise Exception(\"cannot mod 3!\")\n", "innerException": null}}}, "inputs": {"number": 14, "line_number": 14}, "output": null, "metrics": null, "request": null, "parent_run_id": "run2", "root_run_id": "run2", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:55:31.736285Z", "end_time": "2024-01-12T08:55:31.745117Z", "index": 14, "api_calls": [{"name": "mod_three", "type": "Tool", "inputs": {"number": 14}, "output": null, "start_time": 1705049731.739545, "end_time": 1705049731.740525, "error": {"message": "cannot mod 3!", "type": "Exception"}, "children": null, "node_name": "mod_three"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.008832, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": null, "upload_metrics": false}, {"run_id": "run2_18", "status": "Completed", "error": null, "inputs": {"number": 18, "line_number": 18}, "output": {"output": 18}, "metrics": null, "request": null, "parent_run_id": "run2", "root_run_id": "run2", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:55:31.890045Z", "end_time": "2024-01-12T08:55:31.891993Z", "index": 18, "api_calls": [{"name": "mod_three", "type": "Tool", "inputs": {"number": 18}, "output": {"value": 18}, "start_time": 1705049731.891255, "end_time": 1705049731.891333, "error": null, "children": null, "node_name": "mod_three"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.001948, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"output": 18}, "upload_metrics": false}]' headers: connection: - keep-alive content-length: - '32873' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.930' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/run2/childRuns?endIndex=49&startIndex=25 response: body: string: '[]' headers: connection: - keep-alive content-length: - '2' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload x-content-type-options: - nosniff x-request-time: - '0.727' status: code: 200 message: OK - request: body: '{"runId": "run1", "selectRunMetadata": true, "selectRunDefinition": true, "selectJobSpecification": true}' headers: Accept: - '*/*' Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '137' Content-Type: - application/json User-Agent: - python-requests/2.31.0 method: POST uri: https://eastus.api.azureml.ms/history/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/rundata response: body: string: '{"runMetadata": {"runNumber": 1705049621, "rootRunId": "run1", "createdUtc": "2024-01-12T08:53:41.7311265+00:00", "createdBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587", "upn": null}, "userId": "00000000-0000-0000-0000-000000000000", "token": null, "tokenExpiryTimeUtc": null, "error": {"error": {"code": "UserError", "severity": null, "message": "Execution failure in ''mod_two'': (Exception) cannot mod 2!", "messageFormat": "{\"totalChildRuns\": 20, \"userErrorChildRuns\": 10, \"systemErrorChildRuns\": 0, \"errorDetails\": [{\"code\": \"UserError/ToolExecutionError\", \"messageFormat\": \"Execution failure in ''{node_name}'': {error_type_and_message}\", \"count\": 10}]}", "messageParameters": {"node_name": "mod_two", "error_type_and_message": "(Exception) cannot mod 2!"}, "referenceCode": "Tool/__pf_main__", "detailsUri": null, "target": null, "details": [], "innerError": {"code": "ToolExecutionError", "innerError": null}, "debugInfo": {"type": "ToolExecutionError", "message": "Execution failure in ''mod_two'': (Exception) cannot mod 2!", "stackTrace": "\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 804, in _exec\n output, nodes_outputs = self._traverse_nodes(inputs, context)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 890, in _traverse_nodes\n nodes_outputs, bypassed_nodes = self._submit_to_scheduler(context, inputs, batch_nodes)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 910, in _submit_to_scheduler\n return FlowNodesScheduler(self._tools_manager, inputs, nodes, self._node_concurrency, context).execute()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 69, in execute\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 58, in execute\n self._dag_manager.complete_nodes(self._collect_outputs(completed_futures))\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 90, in _collect_outputs\n each_node_result = each_future.result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 451, in result\n return self.__get_result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 403, in __get_result\n raise self._exception\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/thread.py\", line 58, in run\n result = self.fn(*self.args, **self.kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 111, in _exec_single_node_in_thread\n result = context.invoke_tool(node, f, kwargs=kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\n", "innerException": {"type": "Exception", "message": "cannot mod 2!", "stackTrace": "Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\n", "innerException": null, "data": null, "errorResponse": null}, "data": null, "errorResponse": null}, "additionalInfo": [{"type": "ToolExecutionErrorDetails", "info": {"type": "Exception", "message": "cannot mod 2!", "traceback": "Traceback (most recent call last):\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\nException: cannot mod 2!\n", "filename": "/mnt/host/service/app/39649/requests/run1/mod_two.py", "lineno": 7, "name": "mod_two"}}]}, "correlation": null, "environment": null, "location": null, "time": "2024-01-12T08:54:32.157997+00:00", "componentName": "promptflow-runtime/20231204.v4 Designer/1.0 promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) promptflow/1.2.0rc1"}, "warnings": null, "revision": 7, "statusRevision": 3, "runUuid": "08457cff-a0cf-4b93-8b58-24b47e6e2f06", "parentRunUuid": null, "rootRunUuid": "08457cff-a0cf-4b93-8b58-24b47e6e2f06", "lastStartTimeUtc": null, "currentComputeTime": null, "computeDuration": "00:00:34.5206194", "effectiveStartTimeUtc": null, "lastModifiedBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "18a66f5f-dbdf-4c17-9dd7-1634712a9cbe", "upn": null}, "lastModifiedUtc": "2024-01-12T08:54:31.4291957+00:00", "duration": "00:00:34.5206194", "cancelationReason": null, "currentAttemptId": 1, "runId": "run1", "parentRunId": null, "experimentId": "f65cb39a-0d28-4b06-9ef9-b962ed9df8d0", "status": "Completed", "startTimeUtc": "2024-01-12T08:53:57.8643652+00:00", "endTimeUtc": "2024-01-12T08:54:32.3849846+00:00", "scheduleId": null, "displayName": "run1", "name": null, "dataContainerId": "dcid.run1", "description": null, "hidden": false, "runType": "azureml.promptflow.FlowRun", "runTypeV2": {"orchestrator": null, "traits": [], "attribution": "PromptFlow", "computeType": "AmlcDsi"}, "properties": {"azureml.promptflow.runtime_name": "test-runtime-ci", "azureml.promptflow.runtime_version": "20231204.v4", "azureml.promptflow.definition_file_name": "flow.dag.yaml", "azureml.promptflow.session_id": "357876c0a66919ba9791ba9723d3eb045181f10b65c806ea", "azureml.promptflow.flow_lineage_id": "3df9ed48cf83e1a38799b0a91f06e0825173b507d07391d1d91ec0253c1cda5c", "azureml.promptflow.flow_definition_datastore_name": "workspaceblobstore", "azureml.promptflow.flow_definition_blob_path": "LocalUpload/ceb856845f8689bdee2da5a26bd95bab/two/flow.dag.yaml", "azureml.promptflow.input_data": "azureml://datastores/workspaceblobstore/paths/LocalUpload/7e5ac781513436b66626132fefb20d1f/numbers.jsonl", "azureml.promptflow.inputs_mapping": "{\"number\":\"${data.value}\"}", "_azureml.evaluation_run": "promptflow.BatchRun", "azureml.promptflow.snapshot_id": "d15d3732-36a4-45ac-b53b-e1fe695b2e77", "azureml.promptflow.total_tokens": "0", "_azureml.evaluate_artifacts": "[{\"path\": \"instance_results.jsonl\", \"type\": \"table\"}]"}, "parameters": {}, "actionUris": {}, "scriptName": null, "target": null, "uniqueChildRunComputeTargets": [], "tags": {}, "settings": {}, "services": {}, "inputDatasets": [], "outputDatasets": [], "runDefinition": null, "jobSpecification": null, "primaryMetricName": null, "createdFrom": null, "cancelUri": null, "completeUri": null, "diagnosticsUri": null, "computeRequest": null, "compute": null, "retainForLifetimeOfWorkspace": false, "queueingInfo": null, "inputs": null, "outputs": {"debug_info": {"assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_run1_output_data_debug_info/versions/1", "type": "UriFolder"}, "flow_outputs": {"assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_run1_output_data_flow_outputs/versions/1", "type": "UriFolder"}}}, "runDefinition": null, "jobSpecification": null, "systemSettings": null}' headers: connection: - keep-alive content-length: - '9907' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.053' status: code: 200 message: OK - request: body: '{"runId": "run2", "selectRunMetadata": true, "selectRunDefinition": true, "selectJobSpecification": true}' headers: Accept: - '*/*' Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '137' Content-Type: - application/json User-Agent: - python-requests/2.31.0 method: POST uri: https://eastus.api.azureml.ms/history/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/rundata response: body: string: '{"runMetadata": {"runNumber": 1705049714, "rootRunId": "run2", "createdUtc": "2024-01-12T08:55:14.362818+00:00", "createdBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587", "upn": null}, "userId": "00000000-0000-0000-0000-000000000000", "token": null, "tokenExpiryTimeUtc": null, "error": {"error": {"code": "UserError", "severity": null, "message": "Execution failure in ''mod_three'': (Exception) cannot mod 3!", "messageFormat": "{\"totalChildRuns\": 10, \"userErrorChildRuns\": 6, \"systemErrorChildRuns\": 0, \"errorDetails\": [{\"code\": \"UserError/ToolExecutionError\", \"messageFormat\": \"Execution failure in ''{node_name}'': {error_type_and_message}\", \"count\": 6}]}", "messageParameters": {"node_name": "mod_three", "error_type_and_message": "(Exception) cannot mod 3!"}, "referenceCode": "Tool/__pf_main__", "detailsUri": null, "target": null, "details": [], "innerError": {"code": "ToolExecutionError", "innerError": null}, "debugInfo": {"type": "ToolExecutionError", "message": "Execution failure in ''mod_three'': (Exception) cannot mod 3!", "stackTrace": "\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 804, in _exec\n output, nodes_outputs = self._traverse_nodes(inputs, context)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 890, in _traverse_nodes\n nodes_outputs, bypassed_nodes = self._submit_to_scheduler(context, inputs, batch_nodes)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 910, in _submit_to_scheduler\n return FlowNodesScheduler(self._tools_manager, inputs, nodes, self._node_concurrency, context).execute()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 69, in execute\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 58, in execute\n self._dag_manager.complete_nodes(self._collect_outputs(completed_futures))\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 90, in _collect_outputs\n each_node_result = each_future.result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 451, in result\n return self.__get_result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 403, in __get_result\n raise self._exception\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/thread.py\", line 58, in run\n result = self.fn(*self.args, **self.kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 111, in _exec_single_node_in_thread\n result = context.invoke_tool(node, f, kwargs=kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\n", "innerException": {"type": "Exception", "message": "cannot mod 3!", "stackTrace": "Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run2/mod_three.py\", line 7, in mod_three\n raise Exception(\"cannot mod 3!\")\n", "innerException": null, "data": null, "errorResponse": null}, "data": null, "errorResponse": null}, "additionalInfo": [{"type": "ToolExecutionErrorDetails", "info": {"type": "Exception", "message": "cannot mod 3!", "traceback": "Traceback (most recent call last):\n File \"/mnt/host/service/app/39649/requests/run2/mod_three.py\", line 7, in mod_three\n raise Exception(\"cannot mod 3!\")\nException: cannot mod 3!\n", "filename": "/mnt/host/service/app/39649/requests/run2/mod_three.py", "lineno": 7, "name": "mod_three"}}]}, "correlation": null, "environment": null, "location": null, "time": "2024-01-12T08:56:05.377066+00:00", "componentName": "promptflow-runtime/20231204.v4 Designer/1.0 promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) promptflow/1.2.0rc1"}, "warnings": null, "revision": 7, "statusRevision": 3, "runUuid": "b80a9962-ed21-4dfb-85b0-2548b1649f39", "parentRunUuid": null, "rootRunUuid": "b80a9962-ed21-4dfb-85b0-2548b1649f39", "lastStartTimeUtc": null, "currentComputeTime": null, "computeDuration": "00:00:34.5231338", "effectiveStartTimeUtc": null, "lastModifiedBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "18a66f5f-dbdf-4c17-9dd7-1634712a9cbe", "upn": null}, "lastModifiedUtc": "2024-01-12T08:56:04.2209326+00:00", "duration": "00:00:34.5231338", "cancelationReason": null, "currentAttemptId": 1, "runId": "run2", "parentRunId": null, "experimentId": "3a00e270-37b9-49be-a74e-ac675487979e", "status": "Completed", "startTimeUtc": "2024-01-12T08:55:31.0651672+00:00", "endTimeUtc": "2024-01-12T08:56:05.588301+00:00", "scheduleId": null, "displayName": "run2", "name": null, "dataContainerId": "dcid.run2", "description": null, "hidden": false, "runType": "azureml.promptflow.FlowRun", "runTypeV2": {"orchestrator": null, "traits": [], "attribution": "PromptFlow", "computeType": "AmlcDsi"}, "properties": {"azureml.promptflow.runtime_name": "test-runtime-ci", "azureml.promptflow.runtime_version": "20231204.v4", "azureml.promptflow.definition_file_name": "flow.dag.yaml", "azureml.promptflow.session_id": "c9399af7028d644e85f3624a0b026432068432621519ab8f", "azureml.promptflow.flow_lineage_id": "77a36a2606b22ee30674046884962374e57e822acdeccac7750905d98e944580", "azureml.promptflow.flow_definition_datastore_name": "workspaceblobstore", "azureml.promptflow.flow_definition_blob_path": "LocalUpload/f0722e3fb27e86b101670dbb5e85554c/three/flow.dag.yaml", "azureml.promptflow.input_run_id": "run1", "azureml.promptflow.inputs_mapping": "{\"number\":\"${run.outputs.output}\"}", "_azureml.evaluation_run": "promptflow.BatchRun", "azureml.promptflow.snapshot_id": "a25bab13-d2d7-4c36-83bf-96979de95507", "azureml.promptflow.total_tokens": "0", "_azureml.evaluate_artifacts": "[{\"path\": \"instance_results.jsonl\", \"type\": \"table\"}]"}, "parameters": {}, "actionUris": {}, "scriptName": null, "target": null, "uniqueChildRunComputeTargets": [], "tags": {}, "settings": {}, "services": {}, "inputDatasets": [], "outputDatasets": [], "runDefinition": null, "jobSpecification": null, "primaryMetricName": null, "createdFrom": null, "cancelUri": null, "completeUri": null, "diagnosticsUri": null, "computeRequest": null, "compute": null, "retainForLifetimeOfWorkspace": false, "queueingInfo": null, "inputs": null, "outputs": {"debug_info": {"assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_run2_output_data_debug_info/versions/1", "type": "UriFolder"}, "flow_outputs": {"assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_run2_output_data_flow_outputs/versions/1", "type": "UriFolder"}}}, "runDefinition": null, "jobSpecification": null, "systemSettings": null}' headers: connection: - keep-alive content-length: - '9865' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.037' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/run1/logContent response: body: string: '"2024-01-12 08:53:45 +0000 49 promptflow-runtime INFO [run1] Receiving v2 bulk run request e51d6436-3ed9-4576-b848-1967710c148c: {\"flow_id\": \"run1\", \"flow_run_id\": \"run1\", \"flow_source\": {\"flow_source_type\": 1, \"flow_source_info\": {\"snapshot_id\": \"d15d3732-36a4-45ac-b53b-e1fe695b2e77\"}, \"flow_dag_file\": \"flow.dag.yaml\"}, \"log_path\": \"https://promptfloweast4063704120.blob.core.windows.net/azureml/ExperimentRun/dcid.run1/logs/azureml/executionlogs.txt?sv=2019-07-07&sr=b&sig=**data_scrubbed**&skoid=55b92eba-d7c7-4afd-ab76-7bb1cd345283&sktid=00000000-0000-0000-0000-000000000000&skt=2024-01-12T08%3A43%3A40Z&ske=2024-01-13T16%3A53%3A40Z&sks=b&skv=2019-07-07&st=2024-01-12T08%3A43%3A44Z&se=2024-01-12T16%3A53%3A44Z&sp=rcw\", \"app_insights_instrumentation_key\": \"InstrumentationKey=**data_scrubbed**;IngestionEndpoint=https://eastus-6.in.applicationinsights.azure.com/;LiveEndpoint=https://eastus.livediagnostics.monitor.azure.com/\", \"data_inputs\": {\"data\": \"azureml://datastores/workspaceblobstore/paths/LocalUpload/7e5ac781513436b66626132fefb20d1f/numbers.jsonl\"}, \"inputs_mapping\": {\"number\": \"${data.value}\"}, \"azure_storage_setting\": {\"azure_storage_mode\": 1, \"storage_account_name\": \"promptfloweast4063704120\", \"blob_container_name\": \"azureml-blobstore-3e123da1-f9a5-4c91-9234-8d9ffbb39ff5\", \"flow_artifacts_root_path\": \"promptflow/PromptFlowArtifacts/run1\", \"blob_container_sas_token\": \"?sv=2019-07-07&sr=c&sig=**data_scrubbed**&skoid=55b92eba-d7c7-4afd-ab76-7bb1cd345283&sktid=00000000-0000-0000-0000-000000000000&skt=2024-01-12T08%3A53%3A45Z&ske=2024-01-19T08%3A53%3A45Z&sks=b&skv=2019-07-07&se=2024-01-19T08%3A53%3A45Z&sp=racwl\", \"output_datastore_name\": \"workspaceblobstore\"}}\n2024-01-12 08:53:45 +0000 49 promptflow-runtime INFO Runtime version: 20231204.v4. PromptFlow version: 1.2.0rc1\n2024-01-12 08:53:45 +0000 49 promptflow-runtime INFO Updating run1 to Status.Preparing...\n2024-01-12 08:53:45 +0000 49 promptflow-runtime INFO Downloading snapshot to /mnt/host/service/app/39649/requests/run1\n2024-01-12 08:53:45 +0000 49 promptflow-runtime INFO Get snapshot sas url for d15d3732-36a4-45ac-b53b-e1fe695b2e77...\n2024-01-12 08:53:52 +0000 49 promptflow-runtime INFO Downloading snapshot d15d3732-36a4-45ac-b53b-e1fe695b2e77 from uri https://promptfloweast4063704120.blob.core.windows.net/snapshotzips/promptflow-eastus:3e123da1-f9a5-4c91-9234-8d9ffbb39ff5:snapshotzip/d15d3732-36a4-45ac-b53b-e1fe695b2e77.zip...\n2024-01-12 08:53:52 +0000 49 promptflow-runtime INFO Downloaded file /mnt/host/service/app/39649/requests/run1/d15d3732-36a4-45ac-b53b-e1fe695b2e77.zip with size 509 for snapshot d15d3732-36a4-45ac-b53b-e1fe695b2e77.\n2024-01-12 08:53:52 +0000 49 promptflow-runtime INFO Download snapshot d15d3732-36a4-45ac-b53b-e1fe695b2e77 completed.\n2024-01-12 08:53:52 +0000 49 promptflow-runtime INFO Successfully download snapshot to /mnt/host/service/app/39649/requests/run1\n2024-01-12 08:53:52 +0000 49 promptflow-runtime INFO About to execute a python flow.\n2024-01-12 08:53:52 +0000 49 promptflow-runtime INFO Use spawn method to start child process.\n2024-01-12 08:53:52 +0000 49 promptflow-runtime INFO Starting to check process 6280 status for run run1\n2024-01-12 08:53:52 +0000 49 promptflow-runtime INFO Start checking run status for run run1\n2024-01-12 08:53:56 +0000 6280 promptflow-runtime INFO [49--6280] Start processing flowV2......\n2024-01-12 08:53:56 +0000 6280 promptflow-runtime INFO Runtime version: 20231204.v4. PromptFlow version: 1.2.0rc1\n2024-01-12 08:53:56 +0000 6280 promptflow-runtime INFO Setting mlflow tracking uri...\n2024-01-12 08:53:56 +0000 6280 promptflow-runtime INFO Validating ''AzureML Data Scientist'' user authentication...\n2024-01-12 08:53:56 +0000 6280 promptflow-runtime INFO Successfully validated ''AzureML Data Scientist'' user authentication.\n2024-01-12 08:53:56 +0000 6280 promptflow-runtime INFO Using AzureMLRunStorageV2\n2024-01-12 08:53:56 +0000 6280 promptflow-runtime INFO Setting mlflow tracking uri to ''azureml://eastus.api.azureml.ms/mlflow/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/promptflow-eastus''\n2024-01-12 08:53:56 +0000 6280 promptflow-runtime INFO Initialized blob service client for AzureMLRunTracker.\n2024-01-12 08:53:56 +0000 6280 promptflow-runtime INFO Setting mlflow tracking uri to ''azureml://eastus.api.azureml.ms/mlflow/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/promptflow-eastus''\n2024-01-12 08:53:57 +0000 6280 promptflow-runtime INFO Resolve data from url finished in 0.6618335284292698 seconds\n2024-01-12 08:53:57 +0000 6280 promptflow-runtime INFO Starting the aml run ''run1''...\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Using fork, process count: 16\n2024-01-12 08:53:58 +0000 6335 execution.bulk INFO Process 6335 started.\n2024-01-12 08:53:58 +0000 6351 execution.bulk INFO Process 6351 started.\n2024-01-12 08:53:58 +0000 6345 execution.bulk INFO Process 6345 started.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:2, Process id: 6335, Line number: 0 start execution.\n2024-01-12 08:53:58 +0000 6379 execution.bulk INFO Process 6379 started.\n2024-01-12 08:53:58 +0000 6382 execution.bulk INFO Process 6382 started.\n2024-01-12 08:53:58 +0000 6387 execution.bulk INFO Process 6387 started.\n2024-01-12 08:53:58 +0000 6351 execution ERROR Node mod_two in line 1 failed. Exception: Execution failure in ''mod_two'': (Exception) cannot mod 2!.\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\nException: cannot mod 2!\n\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\npromptflow._core._errors.ToolExecutionError: Execution failure in ''mod_two'': (Exception) cannot mod 2!\n2024-01-12 08:53:58 +0000 6362 execution.bulk INFO Process 6362 started.\n2024-01-12 08:53:58 +0000 6369 execution.bulk INFO Process 6369 started.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:6, Process id: 6351, Line number: 1 start execution.\n2024-01-12 08:53:58 +0000 6351 execution ERROR Execution of one node has failed. Cancelling all running nodes: mod_two.\n2024-01-12 08:53:58 +0000 6367 execution.bulk INFO Process 6367 started.\n2024-01-12 08:53:58 +0000 6398 execution.bulk INFO Process 6398 started.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:3, Process id: 6345, Line number: 2 start execution.\n2024-01-12 08:53:58 +0000 6422 execution.bulk INFO Process 6422 started.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:8, Process id: 6379, Line number: 3 start execution.\n2024-01-12 08:53:58 +0000 6369 execution ERROR Node mod_two in line 7 failed. Exception: Execution failure in ''mod_two'': (Exception) cannot mod 2!.\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\nException: cannot mod 2!\n\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\npromptflow._core._errors.ToolExecutionError: Execution failure in ''mod_two'': (Exception) cannot mod 2!\n2024-01-12 08:53:58 +0000 6391 execution.bulk INFO Process 6391 started.\n2024-01-12 08:53:58 +0000 6367 execution ERROR Node mod_two in line 9 failed. Exception: Execution failure in ''mod_two'': (Exception) cannot mod 2!.\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\nException: cannot mod 2!\n\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\npromptflow._core._errors.ToolExecutionError: Execution failure in ''mod_two'': (Exception) cannot mod 2!\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:9, Process id: 6382, Line number: 4 start execution.\n2024-01-12 08:53:58 +0000 6369 execution ERROR Execution of one node has failed. Cancelling all running nodes: mod_two.\n2024-01-12 08:53:58 +0000 6439 execution.bulk INFO Process 6439 started.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:10, Process id: 6387, Line number: 5 start execution.\n2024-01-12 08:53:58 +0000 6367 execution ERROR Execution of one node has failed. Cancelling all running nodes: mod_two.\n2024-01-12 08:53:58 +0000 6403 execution.bulk INFO Process 6403 started.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:7, Process id: 6362, Line number: 6 start execution.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:4, Process id: 6369, Line number: 7 start execution.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:11, Process id: 6398, Line number: 8 start execution.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:5, Process id: 6367, Line number: 9 start execution.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:14, Process id: 6422, Line number: 10 start execution.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:12, Process id: 6391, Line number: 11 start execution.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:3, Process id: 6345, Line number: 2 completed.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:6, Process id: 6351, Line number: 1 completed.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:9, Process id: 6382, Line number: 4 completed.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:8, Process id: 6379, Line number: 3 completed.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:2, Process id: 6335, Line number: 0 completed.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:4, Process id: 6369, Line number: 7 completed.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Finished 6 / 20 lines.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Finished 6 / 20 lines.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:7, Process id: 6362, Line number: 6 completed.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:11, Process id: 6398, Line number: 8 completed.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:5, Process id: 6367, Line number: 9 completed.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:9, Process id: 6382, Line number: 12 start execution.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:14, Process id: 6422, Line number: 10 completed.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Finished 10 / 20 lines.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Finished 10 / 20 lines.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Finished 10 / 20 lines.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:12, Process id: 6391, Line number: 11 completed.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Average execution time for completed lines: 0.11 seconds. Estimated time for incomplete lines: 1.54 seconds.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:10, Process id: 6387, Line number: 5 completed.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Average execution time for completed lines: 0.11 seconds. Estimated time for incomplete lines: 1.54 seconds.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Finished 12 / 20 lines.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Finished 12 / 20 lines.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Finished 12 / 20 lines.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Finished 12 / 20 lines.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Average execution time for completed lines: 0.07 seconds. Estimated time for incomplete lines: 0.7 seconds.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Average execution time for completed lines: 0.07 seconds. Estimated time for incomplete lines: 0.7 seconds.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Average execution time for completed lines: 0.07 seconds. Estimated time for incomplete lines: 0.7 seconds.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:9, Process id: 6382, Line number: 12 completed.\n2024-01-12 08:53:59 +0000 6369 execution ERROR Node mod_two in line 19 failed. Exception: Execution failure in ''mod_two'': (Exception) cannot mod 2!.\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\nException: cannot mod 2!\n\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\npromptflow._core._errors.ToolExecutionError: Execution failure in ''mod_two'': (Exception) cannot mod 2!\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:12, Process id: 6391, Line number: 13 start execution.\n2024-01-12 08:53:59 +0000 6369 execution ERROR Execution of one node has failed. Cancelling all running nodes: mod_two.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:3, Process id: 6345, Line number: 14 start execution.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:10, Process id: 6387, Line number: 15 start execution.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:6, Process id: 6351, Line number: 16 start execution.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Average execution time for completed lines: 0.07 seconds. Estimated time for incomplete lines: 0.56 seconds.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Average execution time for completed lines: 0.07 seconds. Estimated time for incomplete lines: 0.56 seconds.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Average execution time for completed lines: 0.07 seconds. Estimated time for incomplete lines: 0.56 seconds.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Average execution time for completed lines: 0.07 seconds. Estimated time for incomplete lines: 0.56 seconds.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:8, Process id: 6379, Line number: 17 start execution.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:2, Process id: 6335, Line number: 18 start execution.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:4, Process id: 6369, Line number: 19 start execution.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:12, Process id: 6391, Line number: 13 completed.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:3, Process id: 6345, Line number: 14 completed.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:10, Process id: 6387, Line number: 15 completed.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:6, Process id: 6351, Line number: 16 completed.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:8, Process id: 6379, Line number: 17 completed.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Finished 18 / 20 lines.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:2, Process id: 6335, Line number: 18 completed.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:4, Process id: 6369, Line number: 19 completed.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Finished 20 / 20 lines.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Finished 20 / 20 lines.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Finished 20 / 20 lines.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Average execution time for completed lines: 0.07 seconds. Estimated time for incomplete lines: 0.14 seconds.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Finished 20 / 20 lines.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Finished 20 / 20 lines.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Average execution time for completed lines: 0.07 seconds. Estimated time for incomplete lines: 0.0 seconds.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Average execution time for completed lines: 0.07 seconds. Estimated time for incomplete lines: 0.0 seconds.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Average execution time for completed lines: 0.07 seconds. Estimated time for incomplete lines: 0.0 seconds.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Average execution time for completed lines: 0.07 seconds. Estimated time for incomplete lines: 0.0 seconds.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Average execution time for completed lines: 0.07 seconds. Estimated time for incomplete lines: 0.0 seconds.\n2024-01-12 08:54:29 +0000 6280 execution ERROR 10/20 flow run failed, indexes: [1,3,5,7,9,11,13,15,17,19], exception of index 1: Execution failure in ''mod_two'': (Exception) cannot mod 2!\n2024-01-12 08:54:31 +0000 6280 execution.bulk INFO Upload status summary metrics for run run1 finished in 1.6117610009387136 seconds\n2024-01-12 08:54:31 +0000 6280 promptflow-runtime INFO Successfully write run properties {\"azureml.promptflow.total_tokens\": 0, \"_azureml.evaluate_artifacts\": \"[{\\\"path\\\": \\\"instance_results.jsonl\\\", \\\"type\\\": \\\"table\\\"}]\"} with run id ''run1''\n2024-01-12 08:54:31 +0000 6280 execution.bulk INFO Upload RH properties for run run1 finished in 0.08309784904122353 seconds\n2024-01-12 08:54:31 +0000 6280 promptflow-runtime INFO Creating unregistered output Asset for Run run1...\n2024-01-12 08:54:31 +0000 6280 promptflow-runtime INFO Created debug_info Asset: azureml://locations/eastus/workspaces/00000/data/azureml_run1_output_data_debug_info/versions/1\n2024-01-12 08:54:31 +0000 6280 promptflow-runtime INFO Creating unregistered output Asset for Run run1...\n2024-01-12 08:54:31 +0000 6280 promptflow-runtime INFO Created flow_outputs output Asset: azureml://locations/eastus/workspaces/00000/data/azureml_run1_output_data_flow_outputs/versions/1\n2024-01-12 08:54:31 +0000 6280 promptflow-runtime INFO Creating Artifact for Run run1...\n2024-01-12 08:54:32 +0000 6280 promptflow-runtime INFO Created instance_results.jsonl Artifact.\n2024-01-12 08:54:32 +0000 6280 promptflow-runtime INFO Patching run1...\n2024-01-12 08:54:32 +0000 6280 promptflow-runtime WARNING [run1] Run failed. Execution stackTrace: Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n [REDACTED: External StackTrace]\n\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 804, in _exec\n output, nodes_outputs = self._traverse_nodes(inputs, context)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 890, in _traverse_nodes\n nodes_outputs, bypassed_nodes = self._submit_to_scheduler(context, inputs, batch_nodes)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 910, in _submit_to_scheduler\n return FlowNodesScheduler(self._tools_manager, inputs, nodes, self._node_concurrency, context).execute()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 69, in execute\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 58, in execute\n self._dag_manager.complete_nodes(self._collect_outputs(completed_futures))\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 90, in _collect_outputs\n each_node_result = each_future.result()\n [REDACTED: External StackTrace]\n\n2024-01-12 08:54:32 +0000 6280 promptflow-runtime INFO Ending the aml run ''run1'' with status ''Completed''...\n2024-01-12 08:54:33 +0000 49 promptflow-runtime INFO Process 6280 finished\n2024-01-12 08:54:33 +0000 49 promptflow-runtime INFO [49] Child process finished!\n2024-01-12 08:54:33 +0000 49 promptflow-runtime INFO [run1] End processing bulk run\n2024-01-12 08:54:33 +0000 49 promptflow-runtime INFO Cleanup working dir /mnt/host/service/app/39649/requests/run1 for bulk run\n"' headers: connection: - keep-alive content-length: - '26914' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '1.063' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/run2/logContent response: body: string: '"2024-01-12 08:55:18 +0000 49 promptflow-runtime INFO [run2] Receiving v2 bulk run request fb3450a2-5971-497b-9704-9f15f2716d12: {\"flow_id\": \"run2\", \"flow_run_id\": \"run2\", \"flow_source\": {\"flow_source_type\": 1, \"flow_source_info\": {\"snapshot_id\": \"a25bab13-d2d7-4c36-83bf-96979de95507\"}, \"flow_dag_file\": \"flow.dag.yaml\"}, \"log_path\": \"https://promptfloweast4063704120.blob.core.windows.net/azureml/ExperimentRun/dcid.run2/logs/azureml/executionlogs.txt?sv=2019-07-07&sr=b&sig=**data_scrubbed**&skoid=55b92eba-d7c7-4afd-ab76-7bb1cd345283&sktid=00000000-0000-0000-0000-000000000000&skt=2024-01-12T07%3A44%3A44Z&ske=2024-01-13T15%3A54%3A44Z&sks=b&skv=2019-07-07&st=2024-01-12T08%3A45%3A18Z&se=2024-01-12T16%3A55%3A18Z&sp=rcw\", \"app_insights_instrumentation_key\": \"InstrumentationKey=**data_scrubbed**;IngestionEndpoint=https://eastus-6.in.applicationinsights.azure.com/;LiveEndpoint=https://eastus.livediagnostics.monitor.azure.com/\", \"data_inputs\": {\"run.outputs\": \"azureml:/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/data/azureml_run1_output_data_flow_outputs/versions/1\"}, \"inputs_mapping\": {\"number\": \"${run.outputs.output}\"}, \"azure_storage_setting\": {\"azure_storage_mode\": 1, \"storage_account_name\": \"promptfloweast4063704120\", \"blob_container_name\": \"azureml-blobstore-3e123da1-f9a5-4c91-9234-8d9ffbb39ff5\", \"flow_artifacts_root_path\": \"promptflow/PromptFlowArtifacts/run2\", \"blob_container_sas_token\": \"?sv=2019-07-07&sr=c&sig=**data_scrubbed**&skoid=55b92eba-d7c7-4afd-ab76-7bb1cd345283&sktid=00000000-0000-0000-0000-000000000000&skt=2024-01-12T08%3A55%3A18Z&ske=2024-01-19T08%3A55%3A18Z&sks=b&skv=2019-07-07&se=2024-01-19T08%3A55%3A18Z&sp=racwl\", \"output_datastore_name\": \"workspaceblobstore\"}}\n2024-01-12 08:55:18 +0000 49 promptflow-runtime INFO Runtime version: 20231204.v4. PromptFlow version: 1.2.0rc1\n2024-01-12 08:55:18 +0000 49 promptflow-runtime INFO Updating run2 to Status.Preparing...\n2024-01-12 08:55:19 +0000 49 promptflow-runtime INFO Downloading snapshot to /mnt/host/service/app/39649/requests/run2\n2024-01-12 08:55:19 +0000 49 promptflow-runtime INFO Get snapshot sas url for a25bab13-d2d7-4c36-83bf-96979de95507...\n2024-01-12 08:55:25 +0000 49 promptflow-runtime INFO Downloading snapshot a25bab13-d2d7-4c36-83bf-96979de95507 from uri https://promptfloweast4063704120.blob.core.windows.net/snapshotzips/promptflow-eastus:3e123da1-f9a5-4c91-9234-8d9ffbb39ff5:snapshotzip/a25bab13-d2d7-4c36-83bf-96979de95507.zip...\n2024-01-12 08:55:25 +0000 49 promptflow-runtime INFO Downloaded file /mnt/host/service/app/39649/requests/run2/a25bab13-d2d7-4c36-83bf-96979de95507.zip with size 515 for snapshot a25bab13-d2d7-4c36-83bf-96979de95507.\n2024-01-12 08:55:25 +0000 49 promptflow-runtime INFO Download snapshot a25bab13-d2d7-4c36-83bf-96979de95507 completed.\n2024-01-12 08:55:25 +0000 49 promptflow-runtime INFO Successfully download snapshot to /mnt/host/service/app/39649/requests/run2\n2024-01-12 08:55:25 +0000 49 promptflow-runtime INFO About to execute a python flow.\n2024-01-12 08:55:25 +0000 49 promptflow-runtime INFO Use spawn method to start child process.\n2024-01-12 08:55:25 +0000 49 promptflow-runtime INFO Starting to check process 6515 status for run run2\n2024-01-12 08:55:25 +0000 49 promptflow-runtime INFO Start checking run status for run run2\n2024-01-12 08:55:29 +0000 6515 promptflow-runtime INFO [49--6515] Start processing flowV2......\n2024-01-12 08:55:29 +0000 6515 promptflow-runtime INFO Runtime version: 20231204.v4. PromptFlow version: 1.2.0rc1\n2024-01-12 08:55:29 +0000 6515 promptflow-runtime INFO Setting mlflow tracking uri...\n2024-01-12 08:55:29 +0000 6515 promptflow-runtime INFO Validating ''AzureML Data Scientist'' user authentication...\n2024-01-12 08:55:29 +0000 6515 promptflow-runtime INFO Successfully validated ''AzureML Data Scientist'' user authentication.\n2024-01-12 08:55:30 +0000 6515 promptflow-runtime INFO Using AzureMLRunStorageV2\n2024-01-12 08:55:30 +0000 6515 promptflow-runtime INFO Setting mlflow tracking uri to ''azureml://eastus.api.azureml.ms/mlflow/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/promptflow-eastus''\n2024-01-12 08:55:30 +0000 6515 promptflow-runtime INFO Initialized blob service client for AzureMLRunTracker.\n2024-01-12 08:55:30 +0000 6515 promptflow-runtime INFO Setting mlflow tracking uri to ''azureml://eastus.api.azureml.ms/mlflow/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/promptflow-eastus''\n2024-01-12 08:55:30 +0000 6515 promptflow-runtime INFO Resolve data from url finished in 0.5992864752188325 seconds\n2024-01-12 08:55:30 +0000 6515 promptflow-runtime INFO Starting the aml run ''run2''...\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Using fork, process count: 10\n2024-01-12 08:55:31 +0000 6565 execution.bulk INFO Process 6565 started.\n2024-01-12 08:55:31 +0000 6570 execution.bulk INFO Process 6570 started.\n2024-01-12 08:55:31 +0000 6579 execution.bulk INFO Process 6579 started.\n2024-01-12 08:55:31 +0000 6585 execution.bulk INFO Process 6585 started.\n2024-01-12 08:55:31 +0000 6592 execution.bulk INFO Process 6592 started.\n2024-01-12 08:55:31 +0000 6570 execution ERROR Node mod_three in line 2 failed. Exception: Execution failure in ''mod_three'': (Exception) cannot mod 3!.\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run2/mod_three.py\", line 7, in mod_three\n raise Exception(\"cannot mod 3!\")\nException: cannot mod 3!\n\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\npromptflow._core._errors.ToolExecutionError: Execution failure in ''mod_three'': (Exception) cannot mod 3!\n2024-01-12 08:55:31 +0000 6570 execution ERROR Execution of one node has failed. Cancelling all running nodes: mod_three.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Process name: ForkProcess-64:2, Process id: 6565, Line number: 0 start execution.\n2024-01-12 08:55:31 +0000 6605 execution.bulk INFO Process 6605 started.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Process name: ForkProcess-64:4, Process id: 6570, Line number: 2 start execution.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Process name: ForkProcess-64:3, Process id: 6579, Line number: 4 start execution.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Process name: ForkProcess-64:5, Process id: 6585, Line number: 6 start execution.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Process name: ForkProcess-64:6, Process id: 6592, Line number: 8 start execution.\n2024-01-12 08:55:31 +0000 6622 execution.bulk INFO Process 6622 started.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Process name: ForkProcess-64:9, Process id: 6605, Line number: 10 start execution.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Process name: ForkProcess-64:10, Process id: 6622, Line number: 12 start execution.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Process name: ForkProcess-64:2, Process id: 6565, Line number: 0 completed.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Finished 1 / 10 lines.\n2024-01-12 08:55:31 +0000 6614 execution.bulk INFO Process 6614 started.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Average execution time for completed lines: 0.36 seconds. Estimated time for incomplete lines: 3.24 seconds.\n2024-01-12 08:55:31 +0000 6579 execution ERROR Node mod_three in line 4 failed. Exception: Execution failure in ''mod_three'': (Exception) cannot mod 3!.\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run2/mod_three.py\", line 7, in mod_three\n raise Exception(\"cannot mod 3!\")\nException: cannot mod 3!\n\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\npromptflow._core._errors.ToolExecutionError: Execution failure in ''mod_three'': (Exception) cannot mod 3!\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Process name: ForkProcess-64:11, Process id: 6614, Line number: 14 start execution.\n2024-01-12 08:55:31 +0000 6592 execution ERROR Node mod_three in line 8 failed. Exception: Execution failure in ''mod_three'': (Exception) cannot mod 3!.\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run2/mod_three.py\", line 7, in mod_three\n raise Exception(\"cannot mod 3!\")\nException: cannot mod 3!\n\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\npromptflow._core._errors.ToolExecutionError: Execution failure in ''mod_three'': (Exception) cannot mod 3!\n2024-01-12 08:55:31 +0000 6579 execution ERROR Execution of one node has failed. Cancelling all running nodes: mod_three.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Process name: ForkProcess-64:2, Process id: 6565, Line number: 16 start execution.\n2024-01-12 08:55:31 +0000 6592 execution ERROR Execution of one node has failed. Cancelling all running nodes: mod_three.\n2024-01-12 08:55:31 +0000 6565 execution ERROR Node mod_three in line 16 failed. Exception: Execution failure in ''mod_three'': (Exception) cannot mod 3!.\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run2/mod_three.py\", line 7, in mod_three\n raise Exception(\"cannot mod 3!\")\nException: cannot mod 3!\n\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\npromptflow._core._errors.ToolExecutionError: Execution failure in ''mod_three'': (Exception) cannot mod 3!\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Process name: ForkProcess-64:10, Process id: 6622, Line number: 12 completed.\n2024-01-12 08:55:31 +0000 6565 execution ERROR Execution of one node has failed. Cancelling all running nodes: mod_three.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Process name: ForkProcess-64:4, Process id: 6570, Line number: 2 completed.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Finished 3 / 10 lines.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Finished 3 / 10 lines.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Average execution time for completed lines: 0.15 seconds. Estimated time for incomplete lines: 1.05 seconds.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Process name: ForkProcess-64:6, Process id: 6592, Line number: 8 completed.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Process name: ForkProcess-64:3, Process id: 6579, Line number: 4 completed.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Average execution time for completed lines: 0.16 seconds. Estimated time for incomplete lines: 1.12 seconds.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Process name: ForkProcess-64:5, Process id: 6585, Line number: 6 completed.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Process name: ForkProcess-64:10, Process id: 6622, Line number: 18 start execution.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Finished 6 / 10 lines.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Finished 6 / 10 lines.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Process name: ForkProcess-64:9, Process id: 6605, Line number: 10 completed.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Process name: ForkProcess-64:2, Process id: 6565, Line number: 16 completed.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Finished 8 / 10 lines.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Average execution time for completed lines: 0.09 seconds. Estimated time for incomplete lines: 0.36 seconds.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Average execution time for completed lines: 0.1 seconds. Estimated time for incomplete lines: 0.4 seconds.\n2024-01-12 08:55:32 +0000 6515 execution.bulk INFO Finished 8 / 10 lines.\n2024-01-12 08:55:32 +0000 6515 execution.bulk INFO Finished 8 / 10 lines.\n2024-01-12 08:55:32 +0000 6515 execution.bulk INFO Average execution time for completed lines: 0.08 seconds. Estimated time for incomplete lines: 0.16 seconds.\n2024-01-12 08:55:32 +0000 6515 execution.bulk INFO Process name: ForkProcess-64:11, Process id: 6614, Line number: 14 completed.\n2024-01-12 08:55:32 +0000 6515 execution.bulk INFO Process name: ForkProcess-64:10, Process id: 6622, Line number: 18 completed.\n2024-01-12 08:55:32 +0000 6515 execution.bulk INFO Average execution time for completed lines: 0.08 seconds. Estimated time for incomplete lines: 0.16 seconds.\n2024-01-12 08:55:32 +0000 6515 execution.bulk INFO Average execution time for completed lines: 0.09 seconds. Estimated time for incomplete lines: 0.18 seconds.\n2024-01-12 08:55:32 +0000 6515 execution.bulk INFO Finished 10 / 10 lines.\n2024-01-12 08:55:32 +0000 6515 execution.bulk INFO Finished 10 / 10 lines.\n2024-01-12 08:55:32 +0000 6515 execution.bulk INFO Average execution time for completed lines: 0.08 seconds. Estimated time for incomplete lines: 0.0 seconds.\n2024-01-12 08:55:32 +0000 6515 execution.bulk INFO Average execution time for completed lines: 0.08 seconds. Estimated time for incomplete lines: 0.0 seconds.\n2024-01-12 08:56:02 +0000 6515 execution ERROR 6/10 flow run failed, indexes: [1,2,4,5,7,8], exception of index 1: Execution failure in ''mod_three'': (Exception) cannot mod 3!\n2024-01-12 08:56:04 +0000 6515 execution.bulk INFO Upload status summary metrics for run run2 finished in 1.3678363300859928 seconds\n2024-01-12 08:56:04 +0000 6515 promptflow-runtime INFO Successfully write run properties {\"azureml.promptflow.total_tokens\": 0, \"_azureml.evaluate_artifacts\": \"[{\\\"path\\\": \\\"instance_results.jsonl\\\", \\\"type\\\": \\\"table\\\"}]\"} with run id ''run2''\n2024-01-12 08:56:04 +0000 6515 execution.bulk INFO Upload RH properties for run run2 finished in 0.07642840500921011 seconds\n2024-01-12 08:56:04 +0000 6515 promptflow-runtime INFO Creating unregistered output Asset for Run run2...\n2024-01-12 08:56:04 +0000 6515 promptflow-runtime INFO Created debug_info Asset: azureml://locations/eastus/workspaces/00000/data/azureml_run2_output_data_debug_info/versions/1\n2024-01-12 08:56:04 +0000 6515 promptflow-runtime INFO Creating unregistered output Asset for Run run2...\n2024-01-12 08:56:05 +0000 6515 promptflow-runtime INFO Created flow_outputs output Asset: azureml://locations/eastus/workspaces/00000/data/azureml_run2_output_data_flow_outputs/versions/1\n2024-01-12 08:56:05 +0000 6515 promptflow-runtime INFO Creating Artifact for Run run2...\n2024-01-12 08:56:05 +0000 6515 promptflow-runtime INFO Created instance_results.jsonl Artifact.\n2024-01-12 08:56:05 +0000 6515 promptflow-runtime INFO Patching run2...\n2024-01-12 08:56:05 +0000 6515 promptflow-runtime WARNING [run2] Run failed. Execution stackTrace: Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n [REDACTED: External StackTrace]\n\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 804, in _exec\n output, nodes_outputs = self._traverse_nodes(inputs, context)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 890, in _traverse_nodes\n nodes_outputs, bypassed_nodes = self._submit_to_scheduler(context, inputs, batch_nodes)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 910, in _submit_to_scheduler\n return FlowNodesScheduler(self._tools_manager, inputs, nodes, self._node_concurrency, context).execute()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 69, in execute\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 58, in execute\n self._dag_manager.complete_nodes(self._collect_outputs(completed_futures))\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 90, in _collect_outputs\n each_node_result = each_future.result()\n [REDACTED: External StackTrace]\n\n2024-01-12 08:56:05 +0000 6515 promptflow-runtime INFO Ending the aml run ''run2'' with status ''Completed''...\n2024-01-12 08:56:06 +0000 49 promptflow-runtime INFO Process 6515 finished\n2024-01-12 08:56:06 +0000 49 promptflow-runtime INFO [49] Child process finished!\n2024-01-12 08:56:06 +0000 49 promptflow-runtime INFO [run2] End processing bulk run\n2024-01-12 08:56:06 +0000 49 promptflow-runtime INFO Cleanup working dir /mnt/host/service/app/39649/requests/run2 for bulk run\n"' headers: connection: - keep-alive content-length: - '22442' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.427' status: code: 200 message: OK version: 1
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/recordings/test_flow_operations_TestFlow_test_get_flow.yaml
interactions: - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000 response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000", "name": "00000", "type": "Microsoft.MachineLearningServices/workspaces", "location": "eastus", "tags": {}, "etag": null, "kind": "Default", "sku": {"name": "Basic", "tier": "Basic"}, "properties": {"discoveryUrl": "https://eastus.api.azureml.ms/discovery"}}' headers: cache-control: - no-cache content-length: - '3630' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.024' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores?count=30&isDefault=true&orderByAsc=false response: body: string: '{"value": [{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}]}' headers: cache-control: - no-cache content-length: - '1372' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.146' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceworkingdirectory response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceworkingdirectory", "name": "workspaceworkingdirectory", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": false, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureFile", "accountName": "fake_account_name", "fileShareName": "fake-file-share-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "None"}, "systemData": {"createdAt": "2023-04-08T02:53:06.6001169+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.2885525+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1161' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.088' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceworkingdirectory/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.145' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - azsdk-python-storage-file-share/12.14.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 03:10:07 GMT x-ms-file-attributes: - none x-ms-file-creation-time: - now x-ms-file-last-write-time: - now x-ms-file-permission: - inherit x-ms-version: - '2023-08-03' method: PUT uri: https://fake_account_name.file.core.windows.net/fake-file-share-name/LocalUpload?restype=directory response: body: string: "\uFEFF<?xml version=\"1.0\" encoding=\"utf-8\"?><Error><Code>ResourceAlreadyExists</Code><Message>The specified resource already exists.\nRequestId:494627b8-e01a-00db-2b04-45cbb1000000\nTime:2024-01-12T03:10:08.5872550Z</Message></Error>" headers: content-length: - '228' content-type: - application/xml server: - Windows-Azure-File/1.0 Microsoft-HTTPAPI/2.0 x-ms-error-code: - ResourceAlreadyExists x-ms-version: - '2023-08-03' status: code: 409 message: The specified resource already exists. - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - azsdk-python-storage-file-share/12.14.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 03:10:09 GMT x-ms-file-attributes: - none x-ms-file-creation-time: - now x-ms-file-last-write-time: - now x-ms-file-permission: - inherit x-ms-version: - '2023-08-03' method: PUT uri: https://fake_account_name.file.core.windows.net/fake-file-share-name/Users?restype=directory response: body: string: "\uFEFF<?xml version=\"1.0\" encoding=\"utf-8\"?><Error><Code>ResourceAlreadyExists</Code><Message>The specified resource already exists.\nRequestId:2015fefb-201a-0099-7a04-457231000000\nTime:2024-01-12T03:10:10.8558247Z</Message></Error>" headers: content-length: - '228' content-type: - application/xml server: - Windows-Azure-File/1.0 Microsoft-HTTPAPI/2.0 x-ms-error-code: - ResourceAlreadyExists x-ms-version: - '2023-08-03' status: code: 409 message: The specified resource already exists. - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - azsdk-python-storage-file-share/12.14.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 03:10:10 GMT x-ms-file-attributes: - none x-ms-file-creation-time: - now x-ms-file-last-write-time: - now x-ms-file-permission: - inherit x-ms-version: - '2023-08-03' method: PUT uri: https://fake_account_name.file.core.windows.net/fake-file-share-name/Users%2Funknown_user?restype=directory response: body: string: "\uFEFF<?xml version=\"1.0\" encoding=\"utf-8\"?><Error><Code>ResourceAlreadyExists</Code><Message>The specified resource already exists.\nRequestId:e91ceca5-f01a-007e-3004-459dcb000000\nTime:2024-01-12T03:10:11.9389239Z</Message></Error>" headers: content-length: - '228' content-type: - application/xml server: - Windows-Azure-File/1.0 Microsoft-HTTPAPI/2.0 x-ms-error-code: - ResourceAlreadyExists x-ms-version: - '2023-08-03' status: code: 409 message: The specified resource already exists. - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - azsdk-python-storage-file-share/12.14.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 03:10:12 GMT x-ms-file-attributes: - none x-ms-file-creation-time: - now x-ms-file-last-write-time: - now x-ms-file-permission: - inherit x-ms-version: - '2023-08-03' method: PUT uri: https://fake_account_name.file.core.windows.net/fake-file-share-name/Users%2Funknown_user%2Fpromptflow?restype=directory response: body: string: "\uFEFF<?xml version=\"1.0\" encoding=\"utf-8\"?><Error><Code>ResourceAlreadyExists</Code><Message>The specified resource already exists.\nRequestId:dc666209-a01a-0073-2104-45551f000000\nTime:2024-01-12T03:10:12.9765801Z</Message></Error>" headers: content-length: - '228' content-type: - application/xml server: - Windows-Azure-File/1.0 Microsoft-HTTPAPI/2.0 x-ms-error-code: - ResourceAlreadyExists x-ms-version: - '2023-08-03' status: code: 409 message: The specified resource already exists. - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-file-share/12.14.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 03:10:13 GMT x-ms-version: - '2023-08-03' method: GET uri: https://fake_account_name.file.core.windows.net/fake-file-share-name/Users%2Funknown_user%2Fpromptflow%2Fflow_name?restype=directory response: body: string: "\uFEFF<?xml version=\"1.0\" encoding=\"utf-8\"?><Error><Code>ResourceNotFound</Code><Message>The specified resource does not exist.\nRequestId:37a5a67c-001a-00ec-2304-45191d000000\nTime:2024-01-12T03:10:14.0112840Z</Message></Error>" headers: content-length: - '223' content-type: - application/xml server: - Windows-Azure-File/1.0 Microsoft-HTTPAPI/2.0 x-ms-error-code: - ResourceNotFound x-ms-version: - '2023-08-03' status: code: 404 message: The specified resource does not exist. - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - azsdk-python-storage-file-share/12.14.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 03:10:14 GMT x-ms-file-attributes: - none x-ms-file-creation-time: - now x-ms-file-last-write-time: - now x-ms-file-permission: - inherit x-ms-version: - '2023-08-03' method: PUT uri: https://fake_account_name.file.core.windows.net/fake-file-share-name/Users%2Funknown_user%2Fpromptflow%2Fflow_name?restype=directory response: body: string: '' headers: content-length: - '0' last-modified: - Fri, 12 Jan 2024 03:10:15 GMT server: - Windows-Azure-File/1.0 Microsoft-HTTPAPI/2.0 x-ms-file-attributes: - Directory x-ms-file-change-time: - '2024-01-12T03:10:15.0262208Z' x-ms-file-creation-time: - '2024-01-12T03:10:15.0262208Z' x-ms-file-id: - '13835129046796599296' x-ms-file-last-write-time: - '2024-01-12T03:10:15.0262208Z' x-ms-file-parent-id: - '10088082484072808448' x-ms-request-server-encrypted: - 'true' x-ms-version: - '2023-08-03' status: code: 201 message: Created - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - azsdk-python-storage-file-share/12.14.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 03:10:15 GMT x-ms-file-attributes: - none x-ms-file-creation-time: - now x-ms-file-last-write-time: - now x-ms-file-permission: - inherit x-ms-version: - '2023-08-03' method: PUT uri: https://fake_account_name.file.core.windows.net/fake-file-share-name/Users%2Funknown_user%2Fpromptflow%2Fflow_name%2F__pycache__?restype=directory response: body: string: '' headers: content-length: - '0' last-modified: - Fri, 12 Jan 2024 03:10:16 GMT server: - Windows-Azure-File/1.0 Microsoft-HTTPAPI/2.0 x-ms-file-attributes: - Directory x-ms-file-change-time: - '2024-01-12T03:10:16.0895486Z' x-ms-file-creation-time: - '2024-01-12T03:10:16.0895486Z' x-ms-file-id: - '13835093862424510464' x-ms-file-last-write-time: - '2024-01-12T03:10:16.0895486Z' x-ms-file-parent-id: - '13835129046796599296' x-ms-request-server-encrypted: - 'true' x-ms-version: - '2023-08-03' status: code: 201 message: Created - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - azsdk-python-storage-file-share/12.14.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-content-length: - '14' x-ms-date: - Fri, 12 Jan 2024 03:10:16 GMT x-ms-file-attributes: - none x-ms-file-creation-time: - now x-ms-file-last-write-time: - now x-ms-file-permission: - Inherit x-ms-type: - file x-ms-version: - '2023-08-03' method: PUT uri: https://fake_account_name.file.core.windows.net/fake-file-share-name/Users/unknown_user/promptflow/flow_name/.gitattributes response: body: string: '' headers: content-length: - '0' last-modified: - Fri, 12 Jan 2024 03:10:17 GMT server: - Windows-Azure-File/1.0 Microsoft-HTTPAPI/2.0 x-ms-file-attributes: - Archive x-ms-file-change-time: - '2024-01-12T03:10:17.0911484Z' x-ms-file-creation-time: - '2024-01-12T03:10:17.0911484Z' x-ms-file-id: - '13835164231168688128' x-ms-file-last-write-time: - '2024-01-12T03:10:17.0911484Z' x-ms-file-parent-id: - '13835129046796599296' x-ms-request-server-encrypted: - 'true' x-ms-version: - '2023-08-03' status: code: 201 message: Created - request: body: '* text eol=lf ' headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '14' Content-MD5: - nYmkCopuDuFj82431amzZw== Content-Type: - application/octet-stream User-Agent: - azsdk-python-storage-file-share/12.14.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 03:10:17 GMT x-ms-range: - bytes=0-13 x-ms-version: - '2023-08-03' x-ms-write: - update method: PUT uri: https://fake_account_name.file.core.windows.net/fake-file-share-name/Users/unknown_user/promptflow/flow_name/.gitattributes?comp=range response: body: string: '' headers: content-length: - '0' content-md5: - nYmkCopuDuFj82431amzZw== last-modified: - Fri, 12 Jan 2024 03:10:18 GMT server: - Windows-Azure-File/1.0 Microsoft-HTTPAPI/2.0 x-ms-file-last-write-time: - '2024-01-12T03:10:18.1285902Z' x-ms-request-server-encrypted: - 'true' x-ms-version: - '2023-08-03' status: code: 201 message: Created - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - azsdk-python-storage-file-share/12.14.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-content-length: - '250' x-ms-date: - Fri, 12 Jan 2024 03:10:18 GMT x-ms-file-attributes: - none x-ms-file-creation-time: - now x-ms-file-last-write-time: - now x-ms-file-permission: - Inherit x-ms-type: - file x-ms-version: - '2023-08-03' method: PUT uri: https://fake_account_name.file.core.windows.net/fake-file-share-name/Users/unknown_user/promptflow/flow_name/flow.dag.yaml response: body: string: '' headers: content-length: - '0' last-modified: - Fri, 12 Jan 2024 03:10:19 GMT server: - Windows-Azure-File/1.0 Microsoft-HTTPAPI/2.0 x-ms-file-attributes: - Archive x-ms-file-change-time: - '2024-01-12T03:10:19.1789755Z' x-ms-file-creation-time: - '2024-01-12T03:10:19.1789755Z' x-ms-file-id: - '13835076270238466048' x-ms-file-last-write-time: - '2024-01-12T03:10:19.1789755Z' x-ms-file-parent-id: - '13835129046796599296' x-ms-request-server-encrypted: - 'true' x-ms-version: - '2023-08-03' status: code: 201 message: Created - request: body: "inputs:\n name:\n type: string\n default: hod\noutputs:\n result:\n \ type: string\n reference: ${hello_world.output}\nnodes:\n- name: hello_world\n \ type: python\n source:\n type: code\n path: hello_world.py\n inputs:\n \ name: ${inputs.name}\n" headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '250' Content-MD5: - CT1FTZp5JScB8fq+HjnINw== Content-Type: - application/octet-stream User-Agent: - azsdk-python-storage-file-share/12.14.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 03:10:19 GMT x-ms-range: - bytes=0-249 x-ms-version: - '2023-08-03' x-ms-write: - update method: PUT uri: https://fake_account_name.file.core.windows.net/fake-file-share-name/Users/unknown_user/promptflow/flow_name/flow.dag.yaml?comp=range response: body: string: '' headers: content-length: - '0' content-md5: - CT1FTZp5JScB8fq+HjnINw== last-modified: - Fri, 12 Jan 2024 03:10:20 GMT server: - Windows-Azure-File/1.0 Microsoft-HTTPAPI/2.0 x-ms-file-last-write-time: - '2024-01-12T03:10:20.2164176Z' x-ms-request-server-encrypted: - 'true' x-ms-version: - '2023-08-03' status: code: 201 message: Created - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - azsdk-python-storage-file-share/12.14.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-content-length: - '105' x-ms-date: - Fri, 12 Jan 2024 03:10:20 GMT x-ms-file-attributes: - none x-ms-file-creation-time: - now x-ms-file-last-write-time: - now x-ms-file-permission: - Inherit x-ms-type: - file x-ms-version: - '2023-08-03' method: PUT uri: https://fake_account_name.file.core.windows.net/fake-file-share-name/Users/unknown_user/promptflow/flow_name/hello_world.py response: body: string: '' headers: content-length: - '0' last-modified: - Fri, 12 Jan 2024 03:10:21 GMT server: - Windows-Azure-File/1.0 Microsoft-HTTPAPI/2.0 x-ms-file-attributes: - Archive x-ms-file-change-time: - '2024-01-12T03:10:21.2658070Z' x-ms-file-creation-time: - '2024-01-12T03:10:21.2658070Z' x-ms-file-id: - '13835146638982643712' x-ms-file-last-write-time: - '2024-01-12T03:10:21.2658070Z' x-ms-file-parent-id: - '13835129046796599296' x-ms-request-server-encrypted: - 'true' x-ms-version: - '2023-08-03' status: code: 201 message: Created - request: body: "from promptflow import tool\n\n\n@tool\ndef hello_world(name: str) -> str:\n \ return f\"Hello World {name}!\"\n" headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '105' Content-MD5: - fGMkkiZAjGs8PW/AMiYppA== Content-Type: - application/octet-stream User-Agent: - azsdk-python-storage-file-share/12.14.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 03:10:21 GMT x-ms-range: - bytes=0-104 x-ms-version: - '2023-08-03' x-ms-write: - update method: PUT uri: https://fake_account_name.file.core.windows.net/fake-file-share-name/Users/unknown_user/promptflow/flow_name/hello_world.py?comp=range response: body: string: '' headers: content-length: - '0' content-md5: - fGMkkiZAjGs8PW/AMiYppA== last-modified: - Fri, 12 Jan 2024 03:10:22 GMT server: - Windows-Azure-File/1.0 Microsoft-HTTPAPI/2.0 x-ms-file-last-write-time: - '2024-01-12T03:10:22.2823416Z' x-ms-request-server-encrypted: - 'true' x-ms-version: - '2023-08-03' status: code: 201 message: Created - request: body: '{"flowName": "flow_display_name", "description": "test flow description", "tags": {"owner": "sdk-test"}, "flowDefinitionFilePath": "Users/unknown_user/promptflow/flow_name/flow.dag.yaml", "flowType": "default"}' headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '282' Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/Flows response: body: string: '{"eTag": {}, "studioPortalEndpoint": "https://ml.azure.com/prompts/flow/3e123da1-f9a5-4c91-9234-8d9ffbb39ff5/b7731056-ea64-481e-ad53-c45f2363c29a/details?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000", "flowId": "b7731056-ea64-481e-ad53-c45f2363c29a", "flowName": "flow_display_name", "description": "test flow description", "tags": {"owner": "sdk-test"}, "flowType": "Default", "experimentId": "00000000-0000-0000-0000-000000000000", "createdDate": "2024-01-12T03:10:24.9118275Z", "lastModifiedDate": "2024-01-12T03:10:24.9118275Z", "owner": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587"}, "flowResourceId": "azureml://locations/eastus/workspaces/00000/flows/b7731056-ea64-481e-ad53-c45f2363c29a", "isArchived": false, "flowDefinitionFilePath": "Users/unknown_user/promptflow/flow_name/flow.dag.yaml"}' headers: connection: - keep-alive content-length: - '1100' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.569' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-file-share/12.14.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 03:10:25 GMT x-ms-version: - '2023-08-03' method: HEAD uri: https://fake_account_name.file.core.windows.net/fake-file-share-name/Users/unknown_user/promptflow/flow_name/flow.dag.yaml response: body: string: '' headers: content-length: - '250' content-type: - application/octet-stream last-modified: - Fri, 12 Jan 2024 03:10:20 GMT server: - Windows-Azure-File/1.0 Microsoft-HTTPAPI/2.0 x-ms-file-attributes: - Archive x-ms-file-change-time: - '2024-01-12T03:10:20.2164176Z' x-ms-file-creation-time: - '2024-01-12T03:10:19.1789755Z' x-ms-file-id: - '13835076270238466048' x-ms-file-last-write-time: - '2024-01-12T03:10:20.2164176Z' x-ms-file-parent-id: - '13835129046796599296' x-ms-type: - File x-ms-version: - '2023-08-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/Flows/b7731056-ea64-481e-ad53-c45f2363c29a?experimentId=00000000-0000-0000-0000-000000000000 response: body: string: '{"timestamp": "2024-01-12T03:10:24.9429158+00:00", "eTag": {}, "studioPortalEndpoint": "https://ml.azure.com/prompts/flow/3e123da1-f9a5-4c91-9234-8d9ffbb39ff5/b7731056-ea64-481e-ad53-c45f2363c29a/details?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000", "flowId": "b7731056-ea64-481e-ad53-c45f2363c29a", "flowName": "flow_display_name", "description": "test flow description", "tags": {"owner": "sdk-test"}, "flowType": "Default", "experimentId": "00000000-0000-0000-0000-000000000000", "createdDate": "2024-01-12T03:10:24.9118275Z", "lastModifiedDate": "2024-01-12T03:10:24.9118275Z", "owner": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587"}, "flowResourceId": "azureml://locations/eastus/workspaces/00000/flows/b7731056-ea64-481e-ad53-c45f2363c29a", "isArchived": false, "flowDefinitionFilePath": "Users/unknown_user/promptflow/flow_name/flow.dag.yaml"}' headers: connection: - keep-alive content-length: - '1148' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.541' status: code: 200 message: OK version: 1
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/recordings/test_run_operations_TestFlowRun_test_show_run_details.yaml
interactions: - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000 response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000", "name": "00000", "type": "Microsoft.MachineLearningServices/workspaces", "location": "eastus", "tags": {}, "etag": null, "kind": "Default", "sku": {"name": "Basic", "tier": "Basic"}, "properties": {"discoveryUrl": "https://eastus.api.azureml.ms/discovery"}}' headers: cache-control: - no-cache content-length: - '3630' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.023' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores?count=30&isDefault=true&orderByAsc=false response: body: string: '{"value": [{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}]}' headers: cache-control: - no-cache content-length: - '1372' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.077' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.110' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.150' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 07:54:16 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/webClassification3.jsonl response: body: string: '' headers: accept-ranges: - bytes content-length: - '379' content-md5: - lI/pz9jzTQ7Td3RHPL7y7w== content-type: - application/octet-stream last-modified: - Mon, 06 Nov 2023 08:30:18 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Mon, 06 Nov 2023 08:30:18 GMT x-ms-meta-name: - 94331215-cf7f-452a-9f1a-1d276bc9b0e4 x-ms-meta-upload_status: - completed x-ms-meta-version: - 3f163752-edb0-4afc-a6f5-b0a670bd7c24 x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 07:54:17 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/webClassification3.jsonl response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.079' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.122' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 07:54:19 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/hello-world/flow.dag.yaml response: body: string: '' headers: accept-ranges: - bytes content-length: - '266' content-md5: - UZm3TyOoKWjSR23+Up6qUA== content-type: - application/octet-stream last-modified: - Tue, 19 Dec 2023 06:05:25 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Tue, 19 Dec 2023 06:05:25 GMT x-ms-meta-name: - 7b68bf5e-6ef4-4eb3-9f49-28f9a5baad87 x-ms-meta-upload_status: - completed x-ms-meta-version: - '1' x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 07:54:21 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/hello-world/flow.dag.yaml response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: '{"flowDefinitionDataStoreName": "workspaceblobstore", "flowDefinitionBlobPath": "LocalUpload/000000000000000000000000000000000000/hello-world/flow.dag.yaml", "runId": "batch_run_name", "runDisplayName": "sdk-cli-test-fixture-batch-run-without-llm", "runExperimentName": "", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/000000000000000000000000000000000000/webClassification3.jsonl"}, "inputsMapping": {"name": "${data.url}"}, "connections": {}, "environmentVariables": {}, "runtimeName": "fake-runtime-name", "sessionId": "000000000000000000000000000000000000000000000000", "sessionSetupMode": "SystemWait", "flowLineageId": "0000000000000000000000000000000000000000000000000000000000000000", "runDisplayNameGenerationType": "UserProvidedMacro"}' headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '812' Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/submit response: body: string: '"batch_run_name"' headers: connection: - keep-alive content-length: - '38' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload x-content-type-options: - nosniff x-request-time: - '6.861' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "hello_world", "type": "python", "source": {"type": "code", "path": "hello_world.py"}, "inputs": {"name": "${inputs.name}"}, "tool": "hello_world.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "hello_world.py", "type": "python", "inputs": {"name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "hello_world.py", "function": "hello_world", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"name": {"type": "string", "default": "hod", "is_chat_input": false}}, "outputs": {"result": {"type": "string", "reference": "${hello_world.output}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/batch_run_name/flowRuns/batch_run_name", "flowRunId": "batch_run_name", "flowRunDisplayName": "sdk-cli-test-fixture-batch-run-without-llm", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"name": "${data.url}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/batch_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "85a4b96f-edcb-4164-acea-98bd08d40e22", "studioPortalEndpoint": "https://ml.azure.com/runs/batch_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12912' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.509' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "hello_world", "type": "python", "source": {"type": "code", "path": "hello_world.py"}, "inputs": {"name": "${inputs.name}"}, "tool": "hello_world.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "hello_world.py", "type": "python", "inputs": {"name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "hello_world.py", "function": "hello_world", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"name": {"type": "string", "default": "hod", "is_chat_input": false}}, "outputs": {"result": {"type": "string", "reference": "${hello_world.output}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/batch_run_name/flowRuns/batch_run_name", "flowRunId": "batch_run_name", "flowRunDisplayName": "sdk-cli-test-fixture-batch-run-without-llm", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"name": "${data.url}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/batch_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "85a4b96f-edcb-4164-acea-98bd08d40e22", "studioPortalEndpoint": "https://ml.azure.com/runs/batch_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12912' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.406' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "hello_world", "type": "python", "source": {"type": "code", "path": "hello_world.py"}, "inputs": {"name": "${inputs.name}"}, "tool": "hello_world.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "hello_world.py", "type": "python", "inputs": {"name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "hello_world.py", "function": "hello_world", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"name": {"type": "string", "default": "hod", "is_chat_input": false}}, "outputs": {"result": {"type": "string", "reference": "${hello_world.output}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/batch_run_name/flowRuns/batch_run_name", "flowRunId": "batch_run_name", "flowRunDisplayName": "sdk-cli-test-fixture-batch-run-without-llm", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"name": "${data.url}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/batch_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "85a4b96f-edcb-4164-acea-98bd08d40e22", "studioPortalEndpoint": "https://ml.azure.com/runs/batch_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12912' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.537' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "hello_world", "type": "python", "source": {"type": "code", "path": "hello_world.py"}, "inputs": {"name": "${inputs.name}"}, "tool": "hello_world.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "hello_world.py", "type": "python", "inputs": {"name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "hello_world.py", "function": "hello_world", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"name": {"type": "string", "default": "hod", "is_chat_input": false}}, "outputs": {"result": {"type": "string", "reference": "${hello_world.output}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/batch_run_name/flowRuns/batch_run_name", "flowRunId": "batch_run_name", "flowRunDisplayName": "sdk-cli-test-fixture-batch-run-without-llm", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"name": "${data.url}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/batch_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "85a4b96f-edcb-4164-acea-98bd08d40e22", "studioPortalEndpoint": "https://ml.azure.com/runs/batch_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12912' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.221' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "hello_world", "type": "python", "source": {"type": "code", "path": "hello_world.py"}, "inputs": {"name": "${inputs.name}"}, "tool": "hello_world.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "hello_world.py", "type": "python", "inputs": {"name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "hello_world.py", "function": "hello_world", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"name": {"type": "string", "default": "hod", "is_chat_input": false}}, "outputs": {"result": {"type": "string", "reference": "${hello_world.output}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/batch_run_name/flowRuns/batch_run_name", "flowRunId": "batch_run_name", "flowRunDisplayName": "sdk-cli-test-fixture-batch-run-without-llm", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"name": "${data.url}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/batch_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "85a4b96f-edcb-4164-acea-98bd08d40e22", "studioPortalEndpoint": "https://ml.azure.com/runs/batch_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12912' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.192' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name/childRuns?endIndex=24&startIndex=0 response: body: string: '[{"run_id": "batch_run_name_0", "status": "Completed", "error": null, "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g", "line_number": 0}, "output": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "metrics": null, "request": null, "parent_run_id": "batch_run_name", "root_run_id": "batch_run_name", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T07:54:44.493902Z", "end_time": "2024-01-12T07:54:44.50176Z", "index": 0, "api_calls": [{"name": "hello_world", "type": "Tool", "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g"}, "output": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!", "start_time": 1705046084.496958, "end_time": 1705046084.497766, "error": null, "children": null, "node_name": "hello_world"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.007858, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "upload_metrics": false}, {"run_id": "batch_run_name_1", "status": "Completed", "error": null, "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g", "line_number": 1}, "output": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "metrics": null, "request": null, "parent_run_id": "batch_run_name", "root_run_id": "batch_run_name", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T07:54:44.50188Z", "end_time": "2024-01-12T07:54:44.507707Z", "index": 1, "api_calls": [{"name": "hello_world", "type": "Tool", "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g"}, "output": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!", "start_time": 1705046084.504962, "end_time": 1705046084.505848, "error": null, "children": null, "node_name": "hello_world"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.005827, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "upload_metrics": false}, {"run_id": "batch_run_name_2", "status": "Completed", "error": null, "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g", "line_number": 2}, "output": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "metrics": null, "request": null, "parent_run_id": "batch_run_name", "root_run_id": "batch_run_name", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T07:54:44.620862Z", "end_time": "2024-01-12T07:54:44.62622Z", "index": 2, "api_calls": [{"name": "hello_world", "type": "Tool", "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g"}, "output": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!", "start_time": 1705046084.623683, "end_time": 1705046084.624476, "error": null, "children": null, "node_name": "hello_world"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.005358, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "upload_metrics": false}]' headers: connection: - keep-alive content-length: - '3229' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.825' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "hello_world", "type": "python", "source": {"type": "code", "path": "hello_world.py"}, "inputs": {"name": "${inputs.name}"}, "tool": "hello_world.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "hello_world.py", "type": "python", "inputs": {"name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "hello_world.py", "function": "hello_world", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"name": {"type": "string", "default": "hod", "is_chat_input": false}}, "outputs": {"result": {"type": "string", "reference": "${hello_world.output}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/batch_run_name/flowRuns/batch_run_name", "flowRunId": "batch_run_name", "flowRunDisplayName": "sdk-cli-test-fixture-batch-run-without-llm", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"name": "${data.url}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/batch_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "85a4b96f-edcb-4164-acea-98bd08d40e22", "studioPortalEndpoint": "https://ml.azure.com/runs/batch_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12912' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.266' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name/childRuns?endIndex=24&startIndex=0 response: body: string: '[{"run_id": "batch_run_name_0", "status": "Completed", "error": null, "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g", "line_number": 0}, "output": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "metrics": null, "request": null, "parent_run_id": "batch_run_name", "root_run_id": "batch_run_name", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T07:54:44.493902Z", "end_time": "2024-01-12T07:54:44.50176Z", "index": 0, "api_calls": [{"name": "hello_world", "type": "Tool", "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g"}, "output": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!", "start_time": 1705046084.496958, "end_time": 1705046084.497766, "error": null, "children": null, "node_name": "hello_world"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.007858, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "upload_metrics": false}, {"run_id": "batch_run_name_1", "status": "Completed", "error": null, "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g", "line_number": 1}, "output": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "metrics": null, "request": null, "parent_run_id": "batch_run_name", "root_run_id": "batch_run_name", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T07:54:44.50188Z", "end_time": "2024-01-12T07:54:44.507707Z", "index": 1, "api_calls": [{"name": "hello_world", "type": "Tool", "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g"}, "output": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!", "start_time": 1705046084.504962, "end_time": 1705046084.505848, "error": null, "children": null, "node_name": "hello_world"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.005827, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "upload_metrics": false}, {"run_id": "batch_run_name_2", "status": "Completed", "error": null, "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g", "line_number": 2}, "output": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "metrics": null, "request": null, "parent_run_id": "batch_run_name", "root_run_id": "batch_run_name", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T07:54:44.620862Z", "end_time": "2024-01-12T07:54:44.62622Z", "index": 2, "api_calls": [{"name": "hello_world", "type": "Tool", "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g"}, "output": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!", "start_time": 1705046084.623683, "end_time": 1705046084.624476, "error": null, "children": null, "node_name": "hello_world"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.005358, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "upload_metrics": false}]' headers: connection: - keep-alive content-length: - '3229' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.920' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "hello_world", "type": "python", "source": {"type": "code", "path": "hello_world.py"}, "inputs": {"name": "${inputs.name}"}, "tool": "hello_world.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "hello_world.py", "type": "python", "inputs": {"name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "hello_world.py", "function": "hello_world", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"name": {"type": "string", "default": "hod", "is_chat_input": false}}, "outputs": {"result": {"type": "string", "reference": "${hello_world.output}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/batch_run_name/flowRuns/batch_run_name", "flowRunId": "batch_run_name", "flowRunDisplayName": "sdk-cli-test-fixture-batch-run-without-llm", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"name": "${data.url}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/batch_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "85a4b96f-edcb-4164-acea-98bd08d40e22", "studioPortalEndpoint": "https://ml.azure.com/runs/batch_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12912' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.210' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name/childRuns?endIndex=24&startIndex=0 response: body: string: '[{"run_id": "batch_run_name_0", "status": "Completed", "error": null, "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g", "line_number": 0}, "output": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "metrics": null, "request": null, "parent_run_id": "batch_run_name", "root_run_id": "batch_run_name", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T07:54:44.493902Z", "end_time": "2024-01-12T07:54:44.50176Z", "index": 0, "api_calls": [{"name": "hello_world", "type": "Tool", "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g"}, "output": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!", "start_time": 1705046084.496958, "end_time": 1705046084.497766, "error": null, "children": null, "node_name": "hello_world"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.007858, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "upload_metrics": false}, {"run_id": "batch_run_name_1", "status": "Completed", "error": null, "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g", "line_number": 1}, "output": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "metrics": null, "request": null, "parent_run_id": "batch_run_name", "root_run_id": "batch_run_name", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T07:54:44.50188Z", "end_time": "2024-01-12T07:54:44.507707Z", "index": 1, "api_calls": [{"name": "hello_world", "type": "Tool", "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g"}, "output": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!", "start_time": 1705046084.504962, "end_time": 1705046084.505848, "error": null, "children": null, "node_name": "hello_world"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.005827, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "upload_metrics": false}, {"run_id": "batch_run_name_2", "status": "Completed", "error": null, "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g", "line_number": 2}, "output": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "metrics": null, "request": null, "parent_run_id": "batch_run_name", "root_run_id": "batch_run_name", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T07:54:44.620862Z", "end_time": "2024-01-12T07:54:44.62622Z", "index": 2, "api_calls": [{"name": "hello_world", "type": "Tool", "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g"}, "output": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!", "start_time": 1705046084.623683, "end_time": 1705046084.624476, "error": null, "children": null, "node_name": "hello_world"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.005358, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "upload_metrics": false}]' headers: connection: - keep-alive content-length: - '3229' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '1.005' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name/childRuns?endIndex=49&startIndex=25 response: body: string: '[]' headers: connection: - keep-alive content-length: - '2' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload x-content-type-options: - nosniff x-request-time: - '0.708' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "hello_world", "type": "python", "source": {"type": "code", "path": "hello_world.py"}, "inputs": {"name": "${inputs.name}"}, "tool": "hello_world.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "hello_world.py", "type": "python", "inputs": {"name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "hello_world.py", "function": "hello_world", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"name": {"type": "string", "default": "hod", "is_chat_input": false}}, "outputs": {"result": {"type": "string", "reference": "${hello_world.output}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/batch_run_name/flowRuns/batch_run_name", "flowRunId": "batch_run_name", "flowRunDisplayName": "sdk-cli-test-fixture-batch-run-without-llm", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"name": "${data.url}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/batch_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "85a4b96f-edcb-4164-acea-98bd08d40e22", "studioPortalEndpoint": "https://ml.azure.com/runs/batch_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12912' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.214' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name/childRuns?endIndex=24&startIndex=0 response: body: string: '[{"run_id": "batch_run_name_0", "status": "Completed", "error": null, "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g", "line_number": 0}, "output": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "metrics": null, "request": null, "parent_run_id": "batch_run_name", "root_run_id": "batch_run_name", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T07:54:44.493902Z", "end_time": "2024-01-12T07:54:44.50176Z", "index": 0, "api_calls": [{"name": "hello_world", "type": "Tool", "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g"}, "output": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!", "start_time": 1705046084.496958, "end_time": 1705046084.497766, "error": null, "children": null, "node_name": "hello_world"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.007858, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "upload_metrics": false}, {"run_id": "batch_run_name_1", "status": "Completed", "error": null, "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g", "line_number": 1}, "output": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "metrics": null, "request": null, "parent_run_id": "batch_run_name", "root_run_id": "batch_run_name", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T07:54:44.50188Z", "end_time": "2024-01-12T07:54:44.507707Z", "index": 1, "api_calls": [{"name": "hello_world", "type": "Tool", "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g"}, "output": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!", "start_time": 1705046084.504962, "end_time": 1705046084.505848, "error": null, "children": null, "node_name": "hello_world"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.005827, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "upload_metrics": false}, {"run_id": "batch_run_name_2", "status": "Completed", "error": null, "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g", "line_number": 2}, "output": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "metrics": null, "request": null, "parent_run_id": "batch_run_name", "root_run_id": "batch_run_name", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T07:54:44.620862Z", "end_time": "2024-01-12T07:54:44.62622Z", "index": 2, "api_calls": [{"name": "hello_world", "type": "Tool", "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g"}, "output": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!", "start_time": 1705046084.623683, "end_time": 1705046084.624476, "error": null, "children": null, "node_name": "hello_world"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.005358, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "upload_metrics": false}]' headers: connection: - keep-alive content-length: - '3229' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.993' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name/childRuns?endIndex=49&startIndex=25 response: body: string: '[]' headers: connection: - keep-alive content-length: - '2' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload x-content-type-options: - nosniff x-request-time: - '0.748' status: code: 200 message: OK - request: body: '{"runId": "batch_run_name", "selectRunMetadata": true, "selectRunDefinition": true, "selectJobSpecification": true}' headers: Accept: - '*/*' Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '137' Content-Type: - application/json User-Agent: - python-requests/2.31.0 method: POST uri: https://eastus.api.azureml.ms/history/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/rundata response: body: string: '{"runMetadata": {"runNumber": 1705046067, "rootRunId": "batch_run_name", "createdUtc": "2024-01-12T07:54:27.159305+00:00", "createdBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587", "upn": null}, "userId": "00000000-0000-0000-0000-000000000000", "token": null, "tokenExpiryTimeUtc": null, "error": null, "warnings": null, "revision": 6, "statusRevision": 3, "runUuid": "605728ab-d8cb-4ce5-a40c-67625a2b9471", "parentRunUuid": null, "rootRunUuid": "605728ab-d8cb-4ce5-a40c-67625a2b9471", "lastStartTimeUtc": null, "currentComputeTime": null, "computeDuration": "00:00:03.6893368", "effectiveStartTimeUtc": null, "lastModifiedBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "18a66f5f-dbdf-4c17-9dd7-1634712a9cbe", "upn": null}, "lastModifiedUtc": "2024-01-12T07:54:46.9642623+00:00", "duration": "00:00:03.6893368", "cancelationReason": null, "currentAttemptId": 1, "runId": "batch_run_name", "parentRunId": null, "experimentId": "b1e733a1-2a5f-4c17-bc34-4d66d2858228", "status": "Completed", "startTimeUtc": "2024-01-12T07:54:44.1317315+00:00", "endTimeUtc": "2024-01-12T07:54:47.8210683+00:00", "scheduleId": null, "displayName": "sdk-cli-test-fixture-batch-run-without-llm", "name": null, "dataContainerId": "dcid.batch_run_name", "description": null, "hidden": false, "runType": "azureml.promptflow.FlowRun", "runTypeV2": {"orchestrator": null, "traits": [], "attribution": "PromptFlow", "computeType": "AmlcDsi"}, "properties": {"azureml.promptflow.runtime_name": "test-runtime-ci", "azureml.promptflow.runtime_version": "20231204.v4", "azureml.promptflow.definition_file_name": "flow.dag.yaml", "azureml.promptflow.session_id": "bee356189f7e7f18671a79369c78df4cfb1bbd0c99069074", "azureml.promptflow.flow_lineage_id": "f7ee724d91e4f4a7501bdc0b66995bc8b57f86b3a526fa2a81c34ebcccbbd912", "azureml.promptflow.flow_definition_datastore_name": "workspaceblobstore", "azureml.promptflow.flow_definition_blob_path": "LocalUpload/36774154bc3ecde4aa21054b3052221f/hello-world/flow.dag.yaml", "azureml.promptflow.input_data": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl", "azureml.promptflow.inputs_mapping": "{\"name\":\"${data.url}\"}", "_azureml.evaluation_run": "promptflow.BatchRun", "azureml.promptflow.snapshot_id": "85a4b96f-edcb-4164-acea-98bd08d40e22", "azureml.promptflow.total_tokens": "0", "_azureml.evaluate_artifacts": "[{\"path\": \"instance_results.jsonl\", \"type\": \"table\"}]"}, "parameters": {}, "actionUris": {}, "scriptName": null, "target": null, "uniqueChildRunComputeTargets": [], "tags": {}, "settings": {}, "services": {}, "inputDatasets": [], "outputDatasets": [], "runDefinition": null, "jobSpecification": null, "primaryMetricName": null, "createdFrom": null, "cancelUri": null, "completeUri": null, "diagnosticsUri": null, "computeRequest": null, "compute": null, "retainForLifetimeOfWorkspace": false, "queueingInfo": null, "inputs": null, "outputs": {"debug_info": {"assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_batch_run_name_output_data_debug_info/versions/1", "type": "UriFolder"}, "flow_outputs": {"assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_batch_run_name_output_data_flow_outputs/versions/1", "type": "UriFolder"}}}, "runDefinition": null, "jobSpecification": null, "systemSettings": null}' headers: connection: - keep-alive content-length: - '4648' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.041' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name/logContent response: body: string: '"2024-01-12 07:54:31 +0000 49 promptflow-runtime INFO [batch_run_name] Receiving v2 bulk run request a234ccdf-0cdb-4a6d-b615-45a49ec26dcc: {\"flow_id\": \"batch_run_name\", \"flow_run_id\": \"batch_run_name\", \"flow_source\": {\"flow_source_type\": 1, \"flow_source_info\": {\"snapshot_id\": \"85a4b96f-edcb-4164-acea-98bd08d40e22\"}, \"flow_dag_file\": \"flow.dag.yaml\"}, \"log_path\": \"https://promptfloweast4063704120.blob.core.windows.net/azureml/ExperimentRun/dcid.batch_run_name/logs/azureml/executionlogs.txt?sv=2019-07-07&sr=b&sig=**data_scrubbed**&skoid=55b92eba-d7c7-4afd-ab76-7bb1cd345283&sktid=00000000-0000-0000-0000-000000000000&skt=2024-01-12T07%3A43%3A15Z&ske=2024-01-13T15%3A53%3A15Z&sks=b&skv=2019-07-07&st=2024-01-12T07%3A44%3A30Z&se=2024-01-12T15%3A54%3A30Z&sp=rcw\", \"app_insights_instrumentation_key\": \"InstrumentationKey=**data_scrubbed**;IngestionEndpoint=https://eastus-6.in.applicationinsights.azure.com/;LiveEndpoint=https://eastus.livediagnostics.monitor.azure.com/\", \"data_inputs\": {\"data\": \"azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl\"}, \"inputs_mapping\": {\"name\": \"${data.url}\"}, \"azure_storage_setting\": {\"azure_storage_mode\": 1, \"storage_account_name\": \"promptfloweast4063704120\", \"blob_container_name\": \"azureml-blobstore-3e123da1-f9a5-4c91-9234-8d9ffbb39ff5\", \"flow_artifacts_root_path\": \"promptflow/PromptFlowArtifacts/batch_run_name\", \"blob_container_sas_token\": \"?sv=2019-07-07&sr=c&sig=**data_scrubbed**&skoid=55b92eba-d7c7-4afd-ab76-7bb1cd345283&sktid=00000000-0000-0000-0000-000000000000&skt=2024-01-12T07%3A54%3A31Z&ske=2024-01-19T07%3A54%3A31Z&sks=b&skv=2019-07-07&se=2024-01-19T07%3A54%3A31Z&sp=racwl\", \"output_datastore_name\": \"workspaceblobstore\"}}\n2024-01-12 07:54:31 +0000 49 promptflow-runtime INFO Runtime version: 20231204.v4. PromptFlow version: 1.2.0rc1\n2024-01-12 07:54:31 +0000 49 promptflow-runtime INFO Updating batch_run_name to Status.Preparing...\n2024-01-12 07:54:31 +0000 49 promptflow-runtime INFO Downloading snapshot to /mnt/host/service/app/39649/requests/batch_run_name\n2024-01-12 07:54:32 +0000 49 promptflow-runtime INFO Get snapshot sas url for 85a4b96f-edcb-4164-acea-98bd08d40e22...\n2024-01-12 07:54:38 +0000 49 promptflow-runtime INFO Downloading snapshot 85a4b96f-edcb-4164-acea-98bd08d40e22 from uri https://promptfloweast4063704120.blob.core.windows.net/snapshotzips/promptflow-eastus:3e123da1-f9a5-4c91-9234-8d9ffbb39ff5:snapshotzip/85a4b96f-edcb-4164-acea-98bd08d40e22.zip...\n2024-01-12 07:54:38 +0000 49 promptflow-runtime INFO Downloaded file /mnt/host/service/app/39649/requests/batch_run_name/85a4b96f-edcb-4164-acea-98bd08d40e22.zip with size 495 for snapshot 85a4b96f-edcb-4164-acea-98bd08d40e22.\n2024-01-12 07:54:38 +0000 49 promptflow-runtime INFO Download snapshot 85a4b96f-edcb-4164-acea-98bd08d40e22 completed.\n2024-01-12 07:54:38 +0000 49 promptflow-runtime INFO Successfully download snapshot to /mnt/host/service/app/39649/requests/batch_run_name\n2024-01-12 07:54:38 +0000 49 promptflow-runtime INFO About to execute a python flow.\n2024-01-12 07:54:38 +0000 49 promptflow-runtime INFO Use spawn method to start child process.\n2024-01-12 07:54:38 +0000 49 promptflow-runtime INFO Starting to check process 3015 status for run batch_run_name\n2024-01-12 07:54:38 +0000 49 promptflow-runtime INFO Start checking run status for run batch_run_name\n2024-01-12 07:54:42 +0000 3015 promptflow-runtime INFO [49--3015] Start processing flowV2......\n2024-01-12 07:54:42 +0000 3015 promptflow-runtime INFO Runtime version: 20231204.v4. PromptFlow version: 1.2.0rc1\n2024-01-12 07:54:42 +0000 3015 promptflow-runtime INFO Setting mlflow tracking uri...\n2024-01-12 07:54:42 +0000 3015 promptflow-runtime INFO Validating ''AzureML Data Scientist'' user authentication...\n2024-01-12 07:54:43 +0000 3015 promptflow-runtime INFO Successfully validated ''AzureML Data Scientist'' user authentication.\n2024-01-12 07:54:43 +0000 3015 promptflow-runtime INFO Using AzureMLRunStorageV2\n2024-01-12 07:54:43 +0000 3015 promptflow-runtime INFO Setting mlflow tracking uri to ''azureml://eastus.api.azureml.ms/mlflow/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/promptflow-eastus''\n2024-01-12 07:54:43 +0000 3015 promptflow-runtime INFO Initialized blob service client for AzureMLRunTracker.\n2024-01-12 07:54:43 +0000 3015 promptflow-runtime INFO Setting mlflow tracking uri to ''azureml://eastus.api.azureml.ms/mlflow/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/promptflow-eastus''\n2024-01-12 07:54:43 +0000 3015 promptflow-runtime INFO Resolve data from url finished in 0.5407421309500933 seconds\n2024-01-12 07:54:43 +0000 3015 promptflow-runtime INFO Starting the aml run ''batch_run_name''...\n2024-01-12 07:54:44 +0000 3015 execution.bulk INFO Using fork, process count: 3\n2024-01-12 07:54:44 +0000 3062 execution.bulk INFO Process 3062 started.\n2024-01-12 07:54:44 +0000 3056 execution.bulk INFO Process 3056 started.\n2024-01-12 07:54:44 +0000 3015 execution.bulk INFO Process name: ForkProcess-36:3, Process id: 3062, Line number: 0 start execution.\n2024-01-12 07:54:44 +0000 3015 execution.bulk INFO Process name: ForkProcess-36:2, Process id: 3056, Line number: 1 start execution.\n2024-01-12 07:54:44 +0000 3015 execution.bulk INFO Process name: ForkProcess-36:3, Process id: 3062, Line number: 0 completed.\n2024-01-12 07:54:44 +0000 3067 execution.bulk INFO Process 3067 started.\n2024-01-12 07:54:44 +0000 3015 execution.bulk INFO Finished 1 / 3 lines.\n2024-01-12 07:54:44 +0000 3015 execution.bulk INFO Process name: ForkProcess-36:4, Process id: 3067, Line number: 2 start execution.\n2024-01-12 07:54:44 +0000 3015 execution.bulk INFO Average execution time for completed lines: 0.22 seconds. Estimated time for incomplete lines: 0.44 seconds.\n2024-01-12 07:54:44 +0000 3015 execution.bulk INFO Process name: ForkProcess-36:2, Process id: 3056, Line number: 1 completed.\n2024-01-12 07:54:44 +0000 3015 execution.bulk INFO Finished 2 / 3 lines.\n2024-01-12 07:54:44 +0000 3015 execution.bulk INFO Average execution time for completed lines: 0.14 seconds. Estimated time for incomplete lines: 0.14 seconds.\n2024-01-12 07:54:44 +0000 3015 execution.bulk INFO Process name: ForkProcess-36:4, Process id: 3067, Line number: 2 completed.\n2024-01-12 07:54:44 +0000 3015 execution.bulk INFO Finished 3 / 3 lines.\n2024-01-12 07:54:44 +0000 3015 execution.bulk INFO Average execution time for completed lines: 0.12 seconds. Estimated time for incomplete lines: 0.0 seconds.\n2024-01-12 07:54:46 +0000 3015 execution.bulk INFO Upload status summary metrics for run batch_run_name finished in 1.1236545331776142 seconds\n2024-01-12 07:54:46 +0000 3015 promptflow-runtime INFO Successfully write run properties {\"azureml.promptflow.total_tokens\": 0, \"_azureml.evaluate_artifacts\": \"[{\\\"path\\\": \\\"instance_results.jsonl\\\", \\\"type\\\": \\\"table\\\"}]\"} with run id ''batch_run_name''\n2024-01-12 07:54:46 +0000 3015 execution.bulk INFO Upload RH properties for run batch_run_name finished in 0.07583864592015743 seconds\n2024-01-12 07:54:47 +0000 3015 promptflow-runtime INFO Creating unregistered output Asset for Run batch_run_name...\n2024-01-12 07:54:47 +0000 3015 promptflow-runtime INFO Created debug_info Asset: azureml://locations/eastus/workspaces/00000/data/azureml_batch_run_name_output_data_debug_info/versions/1\n2024-01-12 07:54:47 +0000 3015 promptflow-runtime INFO Creating unregistered output Asset for Run batch_run_name...\n2024-01-12 07:54:47 +0000 3015 promptflow-runtime INFO Created flow_outputs output Asset: azureml://locations/eastus/workspaces/00000/data/azureml_batch_run_name_output_data_flow_outputs/versions/1\n2024-01-12 07:54:47 +0000 3015 promptflow-runtime INFO Creating Artifact for Run batch_run_name...\n2024-01-12 07:54:47 +0000 3015 promptflow-runtime INFO Created instance_results.jsonl Artifact.\n2024-01-12 07:54:47 +0000 3015 promptflow-runtime INFO Patching batch_run_name...\n2024-01-12 07:54:47 +0000 3015 promptflow-runtime INFO Ending the aml run ''batch_run_name'' with status ''Completed''...\n2024-01-12 07:54:48 +0000 49 promptflow-runtime INFO Process 3015 finished\n2024-01-12 07:54:49 +0000 49 promptflow-runtime INFO [49] Child process finished!\n2024-01-12 07:54:49 +0000 49 promptflow-runtime INFO [batch_run_name] End processing bulk run\n2024-01-12 07:54:49 +0000 49 promptflow-runtime INFO Cleanup working dir /mnt/host/service/app/39649/requests/batch_run_name for bulk run\n"' headers: connection: - keep-alive content-length: - '9817' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.661' status: code: 200 message: OK version: 1
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/recordings/test_run_operations_TestFlowRun_test_get_detail_against_partial_fail_run.yaml
interactions: - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000 response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000", "name": "00000", "type": "Microsoft.MachineLearningServices/workspaces", "location": "eastus", "tags": {}, "etag": null, "kind": "Default", "sku": {"name": "Basic", "tier": "Basic"}, "properties": {"discoveryUrl": "https://eastus.api.azureml.ms/discovery"}}' headers: cache-control: - no-cache content-length: - '3630' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.023' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores?count=30&isDefault=true&orderByAsc=false response: body: string: '{"value": [{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}]}' headers: cache-control: - no-cache content-length: - '1372' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.108' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.084' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.145' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:49:52 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/data.jsonl response: body: string: '' headers: accept-ranges: - bytes content-length: - '52' content-md5: - kHimciLnA7d3/I2LBUeLNA== content-type: - application/octet-stream last-modified: - Fri, 22 Sep 2023 09:37:22 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Fri, 22 Sep 2023 09:37:22 GMT x-ms-meta-name: - db87715d-65de-40cc-a281-09c0115699f3 x-ms-meta-upload_status: - completed x-ms-meta-version: - 6666ca9c-d7c3-4d85-b18c-12643adb9046 x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:49:53 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/data.jsonl response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.094' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.128' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:49:56 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/partial_fail/data.jsonl response: body: string: '' headers: accept-ranges: - bytes content-length: - '52' content-md5: - kHimciLnA7d3/I2LBUeLNA== content-type: - application/octet-stream last-modified: - Fri, 22 Sep 2023 09:37:31 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Fri, 22 Sep 2023 09:37:30 GMT x-ms-meta-name: - aa1844d8-4898-4daa-8100-6140558fc7c9 x-ms-meta-upload_status: - completed x-ms-meta-version: - '1' x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:49:57 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/partial_fail/data.jsonl response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: '{"flowDefinitionDataStoreName": "workspaceblobstore", "flowDefinitionBlobPath": "LocalUpload/000000000000000000000000000000000000/partial_fail/flow.dag.yaml", "runId": "name", "runDisplayName": "name", "runExperimentName": "", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/000000000000000000000000000000000000/data.jsonl"}, "inputsMapping": {}, "connections": {}, "environmentVariables": {}, "runtimeName": "fake-runtime-name", "sessionId": "000000000000000000000000000000000000000000000000", "sessionSetupMode": "SystemWait", "flowLineageId": "0000000000000000000000000000000000000000000000000000000000000000", "runDisplayNameGenerationType": "UserProvidedMacro"}' headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '773' Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/submit response: body: string: '"name"' headers: connection: - keep-alive content-length: - '38' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload x-content-type-options: - nosniff x-request-time: - '9.976' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/name response: body: string: '{"flowGraph": {"nodes": [{"name": "print_env", "type": "python", "source": {"type": "code", "path": "print_env.py"}, "inputs": {"key": "${inputs.key}"}, "tool": "print_env.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "print_env.py", "type": "python", "inputs": {"key": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "print_env.py", "function": "get_env_var", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"key": {"type": "string", "is_chat_input": false}}, "outputs": {"output": {"type": "string", "reference": "${print_env.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/name/flowRuns/name", "flowRunId": "name", "flowRunDisplayName": "name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/bbbb2b4cfb3d236b4f9b6110fd82264c/data.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "f36c2e06-b2b3-4ee5-9ed4-127ae490ffa8", "studioPortalEndpoint": "https://ml.azure.com/runs/name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12846' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.208' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/name response: body: string: '{"flowGraph": {"nodes": [{"name": "print_env", "type": "python", "source": {"type": "code", "path": "print_env.py"}, "inputs": {"key": "${inputs.key}"}, "tool": "print_env.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "print_env.py", "type": "python", "inputs": {"key": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "print_env.py", "function": "get_env_var", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"key": {"type": "string", "is_chat_input": false}}, "outputs": {"output": {"type": "string", "reference": "${print_env.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/name/flowRuns/name", "flowRunId": "name", "flowRunDisplayName": "name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/bbbb2b4cfb3d236b4f9b6110fd82264c/data.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "f36c2e06-b2b3-4ee5-9ed4-127ae490ffa8", "studioPortalEndpoint": "https://ml.azure.com/runs/name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12846' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.222' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/name response: body: string: '{"flowGraph": {"nodes": [{"name": "print_env", "type": "python", "source": {"type": "code", "path": "print_env.py"}, "inputs": {"key": "${inputs.key}"}, "tool": "print_env.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "print_env.py", "type": "python", "inputs": {"key": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "print_env.py", "function": "get_env_var", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"key": {"type": "string", "is_chat_input": false}}, "outputs": {"output": {"type": "string", "reference": "${print_env.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/name/flowRuns/name", "flowRunId": "name", "flowRunDisplayName": "name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/bbbb2b4cfb3d236b4f9b6110fd82264c/data.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "f36c2e06-b2b3-4ee5-9ed4-127ae490ffa8", "studioPortalEndpoint": "https://ml.azure.com/runs/name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12846' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.226' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/name response: body: string: '{"flowGraph": {"nodes": [{"name": "print_env", "type": "python", "source": {"type": "code", "path": "print_env.py"}, "inputs": {"key": "${inputs.key}"}, "tool": "print_env.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "print_env.py", "type": "python", "inputs": {"key": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "print_env.py", "function": "get_env_var", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"key": {"type": "string", "is_chat_input": false}}, "outputs": {"output": {"type": "string", "reference": "${print_env.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/name/flowRuns/name", "flowRunId": "name", "flowRunDisplayName": "name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/bbbb2b4cfb3d236b4f9b6110fd82264c/data.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "f36c2e06-b2b3-4ee5-9ed4-127ae490ffa8", "studioPortalEndpoint": "https://ml.azure.com/runs/name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12846' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.208' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/name response: body: string: '{"flowGraph": {"nodes": [{"name": "print_env", "type": "python", "source": {"type": "code", "path": "print_env.py"}, "inputs": {"key": "${inputs.key}"}, "tool": "print_env.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "print_env.py", "type": "python", "inputs": {"key": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "print_env.py", "function": "get_env_var", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"key": {"type": "string", "is_chat_input": false}}, "outputs": {"output": {"type": "string", "reference": "${print_env.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/name/flowRuns/name", "flowRunId": "name", "flowRunDisplayName": "name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/bbbb2b4cfb3d236b4f9b6110fd82264c/data.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "f36c2e06-b2b3-4ee5-9ed4-127ae490ffa8", "studioPortalEndpoint": "https://ml.azure.com/runs/name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12846' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.665' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/name/childRuns?endIndex=24&startIndex=0 response: body: string: '[{"run_id": "name_0", "status": "Completed", "error": null, "inputs": {"key": "no", "line_number": 0}, "output": {"output": null}, "metrics": null, "request": null, "parent_run_id": "name", "root_run_id": "name", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:50:26.771369Z", "end_time": "2024-01-12T08:50:26.777759Z", "index": 0, "api_calls": [{"name": "get_env_var", "type": "Tool", "inputs": {"key": "no"}, "output": {"value": null}, "start_time": 1705049426.774557, "end_time": 1705049426.775613, "error": null, "children": null, "node_name": "print_env"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.00639, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"output": null}, "upload_metrics": false}, {"run_id": "name_2", "status": "Completed", "error": null, "inputs": {"key": "matter", "line_number": 2}, "output": {"output": null}, "metrics": null, "request": null, "parent_run_id": "name", "root_run_id": "name", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:50:26.88379Z", "end_time": "2024-01-12T08:50:26.889697Z", "index": 2, "api_calls": [{"name": "get_env_var", "type": "Tool", "inputs": {"key": "matter"}, "output": {"value": null}, "start_time": 1705049426.887009, "end_time": 1705049426.888023, "error": null, "children": null, "node_name": "print_env"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.005907, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"output": null}, "upload_metrics": false}, {"run_id": "name_1", "status": "Failed", "error": {"message": "Execution failure in ''print_env'': (Exception) expected raise!", "messageFormat": "Execution failure in ''{node_name}'': {error_type_and_message}", "messageParameters": {"node_name": "print_env", "error_type_and_message": "(Exception) expected raise!"}, "referenceCode": "Tool/__pf_main__", "code": "UserError", "innerError": {"code": "ToolExecutionError", "innerError": null}, "additionalInfo": [{"type": "ToolExecutionErrorDetails", "info": {"type": "Exception", "message": "expected raise!", "traceback": "Traceback (most recent call last):\n File \"/mnt/host/service/app/39415/requests/name/print_env.py\", line 9, in get_env_var\n raise Exception(\"expected raise!\")\nException: expected raise!\n", "filename": "/mnt/host/service/app/39415/requests/name/print_env.py", "lineno": 9, "name": "get_env_var"}}], "debugInfo": {"type": "ToolExecutionError", "message": "Execution failure in ''print_env'': (Exception) expected raise!", "stackTrace": "\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 804, in _exec\n output, nodes_outputs = self._traverse_nodes(inputs, context)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 890, in _traverse_nodes\n nodes_outputs, bypassed_nodes = self._submit_to_scheduler(context, inputs, batch_nodes)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 910, in _submit_to_scheduler\n return FlowNodesScheduler(self._tools_manager, inputs, nodes, self._node_concurrency, context).execute()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 69, in execute\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 58, in execute\n self._dag_manager.complete_nodes(self._collect_outputs(completed_futures))\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 90, in _collect_outputs\n each_node_result = each_future.result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 451, in result\n return self.__get_result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 403, in __get_result\n raise self._exception\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/thread.py\", line 58, in run\n result = self.fn(*self.args, **self.kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 111, in _exec_single_node_in_thread\n result = context.invoke_tool(node, f, kwargs=kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\n", "innerException": {"type": "Exception", "message": "expected raise!", "stackTrace": "Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39415/requests/name/print_env.py\", line 9, in get_env_var\n raise Exception(\"expected raise!\")\n", "innerException": null}}}, "inputs": {"key": "raise", "line_number": 1}, "output": null, "metrics": null, "request": null, "parent_run_id": "name", "root_run_id": "name", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:50:26.77979Z", "end_time": "2024-01-12T08:50:26.953981Z", "index": 1, "api_calls": [{"name": "get_env_var", "type": "Tool", "inputs": {"key": "raise"}, "output": null, "start_time": 1705049426.782672, "end_time": 1705049426.783439, "error": {"message": "expected raise!", "type": "Exception"}, "children": null, "node_name": "print_env"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.174191, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": null, "upload_metrics": false}]' headers: connection: - keep-alive content-length: - '6638' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.729' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/name/childRuns?endIndex=49&startIndex=25 response: body: string: '[]' headers: connection: - keep-alive content-length: - '2' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload x-content-type-options: - nosniff x-request-time: - '1.083' status: code: 200 message: OK - request: body: '{"runId": "name", "selectRunMetadata": true, "selectRunDefinition": true, "selectJobSpecification": true}' headers: Accept: - '*/*' Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '137' Content-Type: - application/json User-Agent: - python-requests/2.31.0 method: POST uri: https://eastus.api.azureml.ms/history/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/rundata response: body: string: '{"runMetadata": {"runNumber": 1705049404, "rootRunId": "name", "createdUtc": "2024-01-12T08:50:04.3467507+00:00", "createdBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587", "upn": null}, "userId": "00000000-0000-0000-0000-000000000000", "token": null, "tokenExpiryTimeUtc": null, "error": {"error": {"code": "UserError", "severity": null, "message": "Execution failure in ''print_env'': (Exception) expected raise!", "messageFormat": "{\"totalChildRuns\": 3, \"userErrorChildRuns\": 1, \"systemErrorChildRuns\": 0, \"errorDetails\": [{\"code\": \"UserError/ToolExecutionError\", \"messageFormat\": \"Execution failure in ''{node_name}'': {error_type_and_message}\", \"count\": 1}]}", "messageParameters": {"node_name": "print_env", "error_type_and_message": "(Exception) expected raise!"}, "referenceCode": "Tool/__pf_main__", "detailsUri": null, "target": null, "details": [], "innerError": {"code": "ToolExecutionError", "innerError": null}, "debugInfo": {"type": "ToolExecutionError", "message": "Execution failure in ''print_env'': (Exception) expected raise!", "stackTrace": "\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 804, in _exec\n output, nodes_outputs = self._traverse_nodes(inputs, context)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 890, in _traverse_nodes\n nodes_outputs, bypassed_nodes = self._submit_to_scheduler(context, inputs, batch_nodes)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 910, in _submit_to_scheduler\n return FlowNodesScheduler(self._tools_manager, inputs, nodes, self._node_concurrency, context).execute()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 69, in execute\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 58, in execute\n self._dag_manager.complete_nodes(self._collect_outputs(completed_futures))\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 90, in _collect_outputs\n each_node_result = each_future.result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 451, in result\n return self.__get_result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 403, in __get_result\n raise self._exception\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/thread.py\", line 58, in run\n result = self.fn(*self.args, **self.kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 111, in _exec_single_node_in_thread\n result = context.invoke_tool(node, f, kwargs=kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\n", "innerException": {"type": "Exception", "message": "expected raise!", "stackTrace": "Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39415/requests/name/print_env.py\", line 9, in get_env_var\n raise Exception(\"expected raise!\")\n", "innerException": null, "data": null, "errorResponse": null}, "data": null, "errorResponse": null}, "additionalInfo": [{"type": "ToolExecutionErrorDetails", "info": {"type": "Exception", "message": "expected raise!", "traceback": "Traceback (most recent call last):\n File \"/mnt/host/service/app/39415/requests/name/print_env.py\", line 9, in get_env_var\n raise Exception(\"expected raise!\")\nException: expected raise!\n", "filename": "/mnt/host/service/app/39415/requests/name/print_env.py", "lineno": 9, "name": "get_env_var"}}]}, "correlation": null, "environment": null, "location": null, "time": "2024-01-12T08:50:30.744399+00:00", "componentName": "promptflow-runtime/20231204.v4 Designer/1.0 promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) promptflow/1.2.0rc1"}, "warnings": null, "revision": 7, "statusRevision": 3, "runUuid": "d689f844-6eae-4a78-a210-4779ec098e1e", "parentRunUuid": null, "rootRunUuid": "d689f844-6eae-4a78-a210-4779ec098e1e", "lastStartTimeUtc": null, "currentComputeTime": null, "computeDuration": "00:00:04.8547843", "effectiveStartTimeUtc": null, "lastModifiedBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "18a66f5f-dbdf-4c17-9dd7-1634712a9cbe", "upn": null}, "lastModifiedUtc": "2024-01-12T08:50:30.0347672+00:00", "duration": "00:00:04.8547843", "cancelationReason": null, "currentAttemptId": 1, "runId": "name", "parentRunId": null, "experimentId": "1848033e-509f-4c52-92ee-f0a0121fe99e", "status": "Completed", "startTimeUtc": "2024-01-12T08:50:26.1204745+00:00", "endTimeUtc": "2024-01-12T08:50:30.9752588+00:00", "scheduleId": null, "displayName": "name", "name": null, "dataContainerId": "dcid.name", "description": null, "hidden": false, "runType": "azureml.promptflow.FlowRun", "runTypeV2": {"orchestrator": null, "traits": [], "attribution": "PromptFlow", "computeType": "AmlcDsi"}, "properties": {"azureml.promptflow.runtime_name": "test-runtime-ci", "azureml.promptflow.runtime_version": "20231204.v4", "azureml.promptflow.definition_file_name": "flow.dag.yaml", "azureml.promptflow.session_id": "31858a8dfc61a642bb0ab6df4fc3ac7b3807de4ffead00d1", "azureml.promptflow.flow_lineage_id": "de293df4f50622090c0225852d59cd663b6b629e38728f7444fa0f12255a0647", "azureml.promptflow.flow_definition_datastore_name": "workspaceblobstore", "azureml.promptflow.flow_definition_blob_path": "LocalUpload/bc20fa079592a8072922533f187e3184/partial_fail/flow.dag.yaml", "azureml.promptflow.input_data": "azureml://datastores/workspaceblobstore/paths/LocalUpload/bbbb2b4cfb3d236b4f9b6110fd82264c/data.jsonl", "_azureml.evaluation_run": "promptflow.BatchRun", "azureml.promptflow.snapshot_id": "f36c2e06-b2b3-4ee5-9ed4-127ae490ffa8", "azureml.promptflow.total_tokens": "0", "_azureml.evaluate_artifacts": "[{\"path\": \"instance_results.jsonl\", \"type\": \"table\"}]"}, "parameters": {}, "actionUris": {}, "scriptName": null, "target": null, "uniqueChildRunComputeTargets": [], "tags": {}, "settings": {}, "services": {}, "inputDatasets": [], "outputDatasets": [], "runDefinition": null, "jobSpecification": null, "primaryMetricName": null, "createdFrom": null, "cancelUri": null, "completeUri": null, "diagnosticsUri": null, "computeRequest": null, "compute": null, "retainForLifetimeOfWorkspace": false, "queueingInfo": null, "inputs": null, "outputs": {"debug_info": {"assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_name_output_data_debug_info/versions/1", "type": "UriFolder"}, "flow_outputs": {"assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_name_output_data_flow_outputs/versions/1", "type": "UriFolder"}}}, "runDefinition": null, "jobSpecification": null, "systemSettings": null}' headers: connection: - keep-alive content-length: - '9873' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.037' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/name/logContent response: body: string: '"2024-01-12 08:50:11 +0000 78 promptflow-runtime INFO [name] Receiving v2 bulk run request afd6522c-26b0-4e2e-966c-43176d74cb1f: {\"flow_id\": \"name\", \"flow_run_id\": \"name\", \"flow_source\": {\"flow_source_type\": 1, \"flow_source_info\": {\"snapshot_id\": \"f36c2e06-b2b3-4ee5-9ed4-127ae490ffa8\"}, \"flow_dag_file\": \"flow.dag.yaml\"}, \"log_path\": \"https://promptfloweast4063704120.blob.core.windows.net/azureml/ExperimentRun/dcid.name/logs/azureml/executionlogs.txt?sv=2019-07-07&sr=b&sig=**data_scrubbed**&skoid=55b92eba-d7c7-4afd-ab76-7bb1cd345283&sktid=00000000-0000-0000-0000-000000000000&skt=2024-01-12T07%3A46%3A24Z&ske=2024-01-13T15%3A56%3A24Z&sks=b&skv=2019-07-07&st=2024-01-12T08%3A40%3A10Z&se=2024-01-12T16%3A50%3A10Z&sp=rcw\", \"app_insights_instrumentation_key\": \"InstrumentationKey=**data_scrubbed**;IngestionEndpoint=https://eastus-6.in.applicationinsights.azure.com/;LiveEndpoint=https://eastus.livediagnostics.monitor.azure.com/\", \"data_inputs\": {\"data\": \"azureml://datastores/workspaceblobstore/paths/LocalUpload/bbbb2b4cfb3d236b4f9b6110fd82264c/data.jsonl\"}, \"azure_storage_setting\": {\"azure_storage_mode\": 1, \"storage_account_name\": \"promptfloweast4063704120\", \"blob_container_name\": \"azureml-blobstore-3e123da1-f9a5-4c91-9234-8d9ffbb39ff5\", \"flow_artifacts_root_path\": \"promptflow/PromptFlowArtifacts/name\", \"blob_container_sas_token\": \"?sv=2019-07-07&sr=c&sig=**data_scrubbed**&skoid=55b92eba-d7c7-4afd-ab76-7bb1cd345283&sktid=00000000-0000-0000-0000-000000000000&skt=2024-01-12T08%3A50%3A11Z&ske=2024-01-19T08%3A50%3A11Z&sks=b&skv=2019-07-07&se=2024-01-19T08%3A50%3A11Z&sp=racwl\", \"output_datastore_name\": \"workspaceblobstore\"}}\n2024-01-12 08:50:11 +0000 78 promptflow-runtime INFO Runtime version: 20231204.v4. PromptFlow version: 1.2.0rc1\n2024-01-12 08:50:11 +0000 78 promptflow-runtime INFO Updating name to Status.Preparing...\n2024-01-12 08:50:11 +0000 78 promptflow-runtime INFO Downloading snapshot to /mnt/host/service/app/39415/requests/name\n2024-01-12 08:50:11 +0000 78 promptflow-runtime INFO Get snapshot sas url for f36c2e06-b2b3-4ee5-9ed4-127ae490ffa8...\n2024-01-12 08:50:18 +0000 78 promptflow-runtime INFO Downloading snapshot f36c2e06-b2b3-4ee5-9ed4-127ae490ffa8 from uri https://promptfloweast4063704120.blob.core.windows.net/snapshotzips/promptflow-eastus:3e123da1-f9a5-4c91-9234-8d9ffbb39ff5:snapshotzip/f36c2e06-b2b3-4ee5-9ed4-127ae490ffa8.zip...\n2024-01-12 08:50:18 +0000 78 promptflow-runtime INFO Downloaded file /mnt/host/service/app/39415/requests/name/f36c2e06-b2b3-4ee5-9ed4-127ae490ffa8.zip with size 701 for snapshot f36c2e06-b2b3-4ee5-9ed4-127ae490ffa8.\n2024-01-12 08:50:18 +0000 78 promptflow-runtime INFO Download snapshot f36c2e06-b2b3-4ee5-9ed4-127ae490ffa8 completed.\n2024-01-12 08:50:18 +0000 78 promptflow-runtime INFO Successfully download snapshot to /mnt/host/service/app/39415/requests/name\n2024-01-12 08:50:18 +0000 78 promptflow-runtime INFO About to execute a python flow.\n2024-01-12 08:50:18 +0000 78 promptflow-runtime INFO Use spawn method to start child process.\n2024-01-12 08:50:18 +0000 78 promptflow-runtime INFO Starting to check process 5940 status for run name\n2024-01-12 08:50:18 +0000 78 promptflow-runtime INFO Start checking run status for run name\n2024-01-12 08:50:22 +0000 5940 promptflow-runtime INFO [78--5940] Start processing flowV2......\n2024-01-12 08:50:22 +0000 5940 promptflow-runtime INFO Runtime version: 20231204.v4. PromptFlow version: 1.2.0rc1\n2024-01-12 08:50:22 +0000 5940 promptflow-runtime INFO Setting mlflow tracking uri...\n2024-01-12 08:50:23 +0000 5940 promptflow-runtime INFO Validating ''AzureML Data Scientist'' user authentication...\n2024-01-12 08:50:25 +0000 5940 promptflow-runtime INFO Successfully validated ''AzureML Data Scientist'' user authentication.\n2024-01-12 08:50:25 +0000 5940 promptflow-runtime INFO Using AzureMLRunStorageV2\n2024-01-12 08:50:25 +0000 5940 promptflow-runtime INFO Setting mlflow tracking uri to ''azureml://eastus.api.azureml.ms/mlflow/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/promptflow-eastus''\n2024-01-12 08:50:25 +0000 5940 promptflow-runtime INFO Initialized blob service client for AzureMLRunTracker.\n2024-01-12 08:50:25 +0000 5940 promptflow-runtime INFO Setting mlflow tracking uri to ''azureml://eastus.api.azureml.ms/mlflow/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/promptflow-eastus''\n2024-01-12 08:50:25 +0000 5940 promptflow-runtime INFO Resolve data from url finished in 0.47867807000875473 seconds\n2024-01-12 08:50:25 +0000 5940 promptflow-runtime INFO Starting the aml run ''name''...\n2024-01-12 08:50:26 +0000 5940 execution WARNING Starting run without column mapping may lead to unexpected results. Please consult the following documentation for more information: https://aka.ms/pf/column-mapping\n2024-01-12 08:50:26 +0000 5940 execution.bulk INFO Using fork, process count: 3\n2024-01-12 08:50:26 +0000 5987 execution.bulk INFO Process 5987 started.\n2024-01-12 08:50:26 +0000 5992 execution.bulk INFO Process 5992 started.\n2024-01-12 08:50:26 +0000 5940 execution.bulk INFO Process name: ForkProcess-74:3, Process id: 5987, Line number: 0 start execution.\n2024-01-12 08:50:26 +0000 5940 execution.bulk INFO Process name: ForkProcess-74:4, Process id: 5992, Line number: 1 start execution.\n2024-01-12 08:50:26 +0000 5981 execution.bulk INFO Process 5981 started.\n2024-01-12 08:50:26 +0000 5940 execution.bulk INFO Process name: ForkProcess-74:2, Process id: 5981, Line number: 2 start execution.\n2024-01-12 08:50:26 +0000 5940 execution.bulk INFO Process name: ForkProcess-74:3, Process id: 5987, Line number: 0 completed.\n2024-01-12 08:50:26 +0000 5940 execution.bulk INFO Finished 1 / 3 lines.\n2024-01-12 08:50:26 +0000 5992 execution ERROR Node print_env in line 1 failed. Exception: Execution failure in ''print_env'': (Exception) expected raise!.\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39415/requests/name/print_env.py\", line 9, in get_env_var\n raise Exception(\"expected raise!\")\nException: expected raise!\n\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\npromptflow._core._errors.ToolExecutionError: Execution failure in ''print_env'': (Exception) expected raise!\n2024-01-12 08:50:26 +0000 5940 execution.bulk INFO Average execution time for completed lines: 0.24 seconds. Estimated time for incomplete lines: 0.48 seconds.\n2024-01-12 08:50:26 +0000 5992 execution ERROR Execution of one node has failed. Cancelling all running nodes: print_env.\n2024-01-12 08:50:26 +0000 5940 execution.bulk INFO Process name: ForkProcess-74:2, Process id: 5981, Line number: 2 completed.\n2024-01-12 08:50:26 +0000 5940 execution.bulk INFO Finished 2 / 3 lines.\n2024-01-12 08:50:27 +0000 5940 execution.bulk INFO Average execution time for completed lines: 0.16 seconds. Estimated time for incomplete lines: 0.16 seconds.\n2024-01-12 08:50:27 +0000 5940 execution.bulk INFO Process name: ForkProcess-74:4, Process id: 5992, Line number: 1 completed.\n2024-01-12 08:50:27 +0000 5940 execution.bulk INFO Finished 3 / 3 lines.\n2024-01-12 08:50:27 +0000 5940 execution.bulk INFO Average execution time for completed lines: 0.18 seconds. Estimated time for incomplete lines: 0.0 seconds.\n2024-01-12 08:50:28 +0000 5940 execution ERROR 1/3 flow run failed, indexes: [1], exception of index 1: Execution failure in ''print_env'': (Exception) expected raise!\n2024-01-12 08:50:29 +0000 5940 execution.bulk INFO Upload status summary metrics for run name finished in 1.7115172129124403 seconds\n2024-01-12 08:50:30 +0000 5940 promptflow-runtime INFO Successfully write run properties {\"azureml.promptflow.total_tokens\": 0, \"_azureml.evaluate_artifacts\": \"[{\\\"path\\\": \\\"instance_results.jsonl\\\", \\\"type\\\": \\\"table\\\"}]\"} with run id ''name''\n2024-01-12 08:50:30 +0000 5940 execution.bulk INFO Upload RH properties for run name finished in 0.08352885954082012 seconds\n2024-01-12 08:50:30 +0000 5940 promptflow-runtime INFO Creating unregistered output Asset for Run name...\n2024-01-12 08:50:30 +0000 5940 promptflow-runtime INFO Created debug_info Asset: azureml://locations/eastus/workspaces/00000/data/azureml_name_output_data_debug_info/versions/1\n2024-01-12 08:50:30 +0000 5940 promptflow-runtime INFO Creating unregistered output Asset for Run name...\n2024-01-12 08:50:30 +0000 5940 promptflow-runtime INFO Created flow_outputs output Asset: azureml://locations/eastus/workspaces/00000/data/azureml_name_output_data_flow_outputs/versions/1\n2024-01-12 08:50:30 +0000 5940 promptflow-runtime INFO Creating Artifact for Run name...\n2024-01-12 08:50:30 +0000 5940 promptflow-runtime INFO Created instance_results.jsonl Artifact.\n2024-01-12 08:50:30 +0000 5940 promptflow-runtime INFO Patching name...\n2024-01-12 08:50:30 +0000 5940 promptflow-runtime WARNING [name] Run failed. Execution stackTrace: Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n [REDACTED: External StackTrace]\n\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 804, in _exec\n output, nodes_outputs = self._traverse_nodes(inputs, context)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 890, in _traverse_nodes\n nodes_outputs, bypassed_nodes = self._submit_to_scheduler(context, inputs, batch_nodes)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 910, in _submit_to_scheduler\n return FlowNodesScheduler(self._tools_manager, inputs, nodes, self._node_concurrency, context).execute()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 69, in execute\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 58, in execute\n self._dag_manager.complete_nodes(self._collect_outputs(completed_futures))\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 90, in _collect_outputs\n each_node_result = each_future.result()\n [REDACTED: External StackTrace]\n\n2024-01-12 08:50:30 +0000 5940 promptflow-runtime INFO Ending the aml run ''name'' with status ''Completed''...\n2024-01-12 08:50:32 +0000 78 promptflow-runtime INFO Process 5940 finished\n2024-01-12 08:50:32 +0000 78 promptflow-runtime INFO [78] Child process finished!\n2024-01-12 08:50:32 +0000 78 promptflow-runtime INFO [name] End processing bulk run\n2024-01-12 08:50:32 +0000 78 promptflow-runtime INFO Cleanup working dir /mnt/host/service/app/39415/requests/name for bulk run\n"' headers: connection: - keep-alive content-length: - '13657' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.694' status: code: 200 message: OK version: 1
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/recordings/test_run_operations_TestFlowRun_test_stream_failed_run_logs.yaml
interactions: - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000 response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000", "name": "00000", "type": "Microsoft.MachineLearningServices/workspaces", "location": "eastus", "tags": {}, "etag": null, "kind": "Default", "sku": {"name": "Basic", "tier": "Basic"}, "properties": {"discoveryUrl": "https://eastus.api.azureml.ms/discovery"}}' headers: cache-control: - no-cache content-length: - '3630' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.024' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores?count=30&isDefault=true&orderByAsc=false response: body: string: '{"value": [{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}]}' headers: cache-control: - no-cache content-length: - '1372' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.095' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.097' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.163' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:01:09 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/webClassification3.jsonl response: body: string: '' headers: accept-ranges: - bytes content-length: - '379' content-md5: - lI/pz9jzTQ7Td3RHPL7y7w== content-type: - application/octet-stream last-modified: - Mon, 06 Nov 2023 08:30:18 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Mon, 06 Nov 2023 08:30:18 GMT x-ms-meta-name: - 94331215-cf7f-452a-9f1a-1d276bc9b0e4 x-ms-meta-upload_status: - completed x-ms-meta-version: - 3f163752-edb0-4afc-a6f5-b0a670bd7c24 x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:01:10 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/webClassification3.jsonl response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.075' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.082' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:01:14 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/partial_fail/data.jsonl response: body: string: '' headers: accept-ranges: - bytes content-length: - '52' content-md5: - kHimciLnA7d3/I2LBUeLNA== content-type: - application/octet-stream last-modified: - Fri, 22 Sep 2023 09:37:31 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Fri, 22 Sep 2023 09:37:30 GMT x-ms-meta-name: - aa1844d8-4898-4daa-8100-6140558fc7c9 x-ms-meta-upload_status: - completed x-ms-meta-version: - '1' x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:01:15 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/partial_fail/data.jsonl response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: '{"flowDefinitionDataStoreName": "workspaceblobstore", "flowDefinitionBlobPath": "LocalUpload/000000000000000000000000000000000000/partial_fail/flow.dag.yaml", "runId": "failed_run_name", "runDisplayName": "sdk-cli-test-fixture-failed-run", "runExperimentName": "", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/000000000000000000000000000000000000/webClassification3.jsonl"}, "inputsMapping": {}, "connections": {}, "environmentVariables": {}, "runtimeName": "fake-runtime-name", "sessionId": "000000000000000000000000000000000000000000000000", "sessionSetupMode": "SystemWait", "flowLineageId": "0000000000000000000000000000000000000000000000000000000000000000", "runDisplayNameGenerationType": "UserProvidedMacro"}' headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '782' Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/submit response: body: string: '"failed_run_name"' headers: connection: - keep-alive content-length: - '38' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload x-content-type-options: - nosniff x-request-time: - '6.976' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/failed_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "print_env", "type": "python", "source": {"type": "code", "path": "print_env.py"}, "inputs": {"key": "${inputs.key}"}, "tool": "print_env.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "print_env.py", "type": "python", "inputs": {"key": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "print_env.py", "function": "get_env_var", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"key": {"type": "string", "is_chat_input": false}}, "outputs": {"output": {"type": "string", "reference": "${print_env.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/failed_run_name/flowRuns/failed_run_name", "flowRunId": "failed_run_name", "flowRunDisplayName": "sdk-cli-test-fixture-failed-run", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/failed_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "27175d15-f6d8-4792-9072-e2b684753205", "studioPortalEndpoint": "https://ml.azure.com/runs/failed_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12855' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.388' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/failed_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "print_env", "type": "python", "source": {"type": "code", "path": "print_env.py"}, "inputs": {"key": "${inputs.key}"}, "tool": "print_env.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "print_env.py", "type": "python", "inputs": {"key": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "print_env.py", "function": "get_env_var", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"key": {"type": "string", "is_chat_input": false}}, "outputs": {"output": {"type": "string", "reference": "${print_env.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/failed_run_name/flowRuns/failed_run_name", "flowRunId": "failed_run_name", "flowRunDisplayName": "sdk-cli-test-fixture-failed-run", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/failed_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "27175d15-f6d8-4792-9072-e2b684753205", "studioPortalEndpoint": "https://ml.azure.com/runs/failed_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12855' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.261' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/failed_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "print_env", "type": "python", "source": {"type": "code", "path": "print_env.py"}, "inputs": {"key": "${inputs.key}"}, "tool": "print_env.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "print_env.py", "type": "python", "inputs": {"key": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "print_env.py", "function": "get_env_var", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"key": {"type": "string", "is_chat_input": false}}, "outputs": {"output": {"type": "string", "reference": "${print_env.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/failed_run_name/flowRuns/failed_run_name", "flowRunId": "failed_run_name", "flowRunDisplayName": "sdk-cli-test-fixture-failed-run", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/failed_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "27175d15-f6d8-4792-9072-e2b684753205", "studioPortalEndpoint": "https://ml.azure.com/runs/failed_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12855' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.411' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/failed_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "print_env", "type": "python", "source": {"type": "code", "path": "print_env.py"}, "inputs": {"key": "${inputs.key}"}, "tool": "print_env.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "print_env.py", "type": "python", "inputs": {"key": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "print_env.py", "function": "get_env_var", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"key": {"type": "string", "is_chat_input": false}}, "outputs": {"output": {"type": "string", "reference": "${print_env.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/failed_run_name/flowRuns/failed_run_name", "flowRunId": "failed_run_name", "flowRunDisplayName": "sdk-cli-test-fixture-failed-run", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/failed_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "27175d15-f6d8-4792-9072-e2b684753205", "studioPortalEndpoint": "https://ml.azure.com/runs/failed_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12855' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.328' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/failed_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "print_env", "type": "python", "source": {"type": "code", "path": "print_env.py"}, "inputs": {"key": "${inputs.key}"}, "tool": "print_env.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "print_env.py", "type": "python", "inputs": {"key": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "print_env.py", "function": "get_env_var", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"key": {"type": "string", "is_chat_input": false}}, "outputs": {"output": {"type": "string", "reference": "${print_env.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/failed_run_name/flowRuns/failed_run_name", "flowRunId": "failed_run_name", "flowRunDisplayName": "sdk-cli-test-fixture-failed-run", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/failed_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "27175d15-f6d8-4792-9072-e2b684753205", "studioPortalEndpoint": "https://ml.azure.com/runs/failed_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12855' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.367' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/failed_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "print_env", "type": "python", "source": {"type": "code", "path": "print_env.py"}, "inputs": {"key": "${inputs.key}"}, "tool": "print_env.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "print_env.py", "type": "python", "inputs": {"key": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "print_env.py", "function": "get_env_var", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"key": {"type": "string", "is_chat_input": false}}, "outputs": {"output": {"type": "string", "reference": "${print_env.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/failed_run_name/flowRuns/failed_run_name", "flowRunId": "failed_run_name", "flowRunDisplayName": "sdk-cli-test-fixture-failed-run", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/failed_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "27175d15-f6d8-4792-9072-e2b684753205", "studioPortalEndpoint": "https://ml.azure.com/runs/failed_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12855' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.252' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/failed_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "print_env", "type": "python", "source": {"type": "code", "path": "print_env.py"}, "inputs": {"key": "${inputs.key}"}, "tool": "print_env.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "print_env.py", "type": "python", "inputs": {"key": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "print_env.py", "function": "get_env_var", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"key": {"type": "string", "is_chat_input": false}}, "outputs": {"output": {"type": "string", "reference": "${print_env.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/failed_run_name/flowRuns/failed_run_name", "flowRunId": "failed_run_name", "flowRunDisplayName": "sdk-cli-test-fixture-failed-run", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/failed_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "27175d15-f6d8-4792-9072-e2b684753205", "studioPortalEndpoint": "https://ml.azure.com/runs/failed_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12855' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.289' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/failed_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "print_env", "type": "python", "source": {"type": "code", "path": "print_env.py"}, "inputs": {"key": "${inputs.key}"}, "tool": "print_env.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "print_env.py", "type": "python", "inputs": {"key": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "print_env.py", "function": "get_env_var", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"key": {"type": "string", "is_chat_input": false}}, "outputs": {"output": {"type": "string", "reference": "${print_env.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/failed_run_name/flowRuns/failed_run_name", "flowRunId": "failed_run_name", "flowRunDisplayName": "sdk-cli-test-fixture-failed-run", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/failed_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "27175d15-f6d8-4792-9072-e2b684753205", "studioPortalEndpoint": "https://ml.azure.com/runs/failed_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12855' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.461' status: code: 200 message: OK - request: body: '{"runId": "failed_run_name", "selectRunMetadata": true, "selectRunDefinition": true, "selectJobSpecification": true}' headers: Accept: - '*/*' Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '137' Content-Type: - application/json User-Agent: - python-requests/2.31.0 method: POST uri: https://eastus.api.azureml.ms/history/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/rundata response: body: string: '{"runMetadata": {"runNumber": 1705046481, "rootRunId": "failed_run_name", "createdUtc": "2024-01-12T08:01:21.0459935+00:00", "createdBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587", "upn": null}, "userId": "00000000-0000-0000-0000-000000000000", "token": null, "tokenExpiryTimeUtc": null, "error": {"error": {"code": "UserError", "severity": null, "message": "The input for batch run is incorrect. Couldn''t find these mapping relations: ${data.key}. Please make sure your input mapping keys and values match your YAML input section and input data. For more information, refer to the following documentation: https://aka.ms/pf/column-mapping", "messageFormat": "The input for batch run is incorrect. Couldn''t find these mapping relations: {invalid_relations}. Please make sure your input mapping keys and values match your YAML input section and input data. For more information, refer to the following documentation: https://aka.ms/pf/column-mapping", "messageParameters": {"invalid_relations": "${data.key}"}, "referenceCode": "Executor", "detailsUri": null, "target": null, "details": [], "innerError": {"code": "ValidationError", "innerError": {"code": "InputMappingError", "innerError": null}}, "debugInfo": {"type": "InputMappingError", "message": "The input for batch run is incorrect. Couldn''t find these mapping relations: ${data.key}. Please make sure your input mapping keys and values match your YAML input section and input data. For more information, refer to the following documentation: https://aka.ms/pf/column-mapping", "stackTrace": "Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/runtime/runtime.py\", line 671, in execute_bulk_run_request\n batch_engine.run(\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_engine.py\", line 147, in run\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_engine.py\", line 132, in run\n batch_inputs = batch_input_processor.process_batch_inputs(input_dirs, inputs_mapping)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\", line 41, in process_batch_inputs\n return self._validate_and_apply_inputs_mapping(input_dicts, inputs_mapping)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\", line 91, in _validate_and_apply_inputs_mapping\n resolved_inputs = self._apply_inputs_mapping_for_all_lines(inputs, inputs_mapping)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\", line 163, in _apply_inputs_mapping_for_all_lines\n result = [apply_inputs_mapping(item, inputs_mapping) for item in merged_list]\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\", line 163, in <listcomp>\n result = [apply_inputs_mapping(item, inputs_mapping) for item in merged_list]\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\", line 292, in apply_inputs_mapping\n raise InputMappingError(\n", "innerException": null, "data": null, "errorResponse": null}, "additionalInfo": null}, "correlation": null, "environment": null, "location": null, "time": "2024-01-12T08:01:41.930978+00:00", "componentName": "promptflow-runtime/20231204.v4 Designer/1.0 promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) promptflow/1.2.0rc1"}, "warnings": null, "revision": 7, "statusRevision": 3, "runUuid": "ebad9732-07a7-434c-b7fb-637162729eb8", "parentRunUuid": null, "rootRunUuid": "ebad9732-07a7-434c-b7fb-637162729eb8", "lastStartTimeUtc": null, "currentComputeTime": null, "computeDuration": "00:00:01.7835699", "effectiveStartTimeUtc": null, "lastModifiedBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "18a66f5f-dbdf-4c17-9dd7-1634712a9cbe", "upn": null}, "lastModifiedUtc": "2024-01-12T08:01:41.5560578+00:00", "duration": "00:00:01.7835699", "cancelationReason": null, "currentAttemptId": 1, "runId": "failed_run_name", "parentRunId": null, "experimentId": "1848033e-509f-4c52-92ee-f0a0121fe99e", "status": "Failed", "startTimeUtc": "2024-01-12T08:01:40.3861186+00:00", "endTimeUtc": "2024-01-12T08:01:42.1696885+00:00", "scheduleId": null, "displayName": "sdk-cli-test-fixture-failed-run", "name": null, "dataContainerId": "dcid.failed_run_name", "description": null, "hidden": false, "runType": "azureml.promptflow.FlowRun", "runTypeV2": {"orchestrator": null, "traits": [], "attribution": "PromptFlow", "computeType": "AmlcDsi"}, "properties": {"azureml.promptflow.runtime_name": "test-runtime-ci", "azureml.promptflow.runtime_version": "20231204.v4", "azureml.promptflow.definition_file_name": "flow.dag.yaml", "azureml.promptflow.session_id": "31858a8dfc61a642bb0ab6df4fc3ac7b3807de4ffead00d1", "azureml.promptflow.flow_lineage_id": "de293df4f50622090c0225852d59cd663b6b629e38728f7444fa0f12255a0647", "azureml.promptflow.flow_definition_datastore_name": "workspaceblobstore", "azureml.promptflow.flow_definition_blob_path": "LocalUpload/bc20fa079592a8072922533f187e3184/partial_fail/flow.dag.yaml", "azureml.promptflow.input_data": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl", "_azureml.evaluation_run": "promptflow.BatchRun", "azureml.promptflow.snapshot_id": "27175d15-f6d8-4792-9072-e2b684753205", "azureml.promptflow.total_tokens": "0", "_azureml.evaluate_artifacts": "[{\"path\": \"instance_results.jsonl\", \"type\": \"table\"}]"}, "parameters": {}, "actionUris": {}, "scriptName": null, "target": null, "uniqueChildRunComputeTargets": [], "tags": {}, "settings": {}, "services": {}, "inputDatasets": [], "outputDatasets": [], "runDefinition": null, "jobSpecification": null, "primaryMetricName": null, "createdFrom": null, "cancelUri": null, "completeUri": null, "diagnosticsUri": null, "computeRequest": null, "compute": null, "retainForLifetimeOfWorkspace": false, "queueingInfo": null, "inputs": null, "outputs": {"debug_info": {"assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_failed_run_name_output_data_debug_info/versions/1", "type": "UriFolder"}}}, "runDefinition": null, "jobSpecification": null, "systemSettings": null}' headers: connection: - keep-alive content-length: - '7988' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.048' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/failed_run_name/logContent response: body: string: '"2024-01-12 08:01:25 +0000 49 promptflow-runtime INFO [failed_run_name] Receiving v2 bulk run request 74219027-a510-47c5-b30f-f9a2e05d3f12: {\"flow_id\": \"failed_run_name\", \"flow_run_id\": \"failed_run_name\", \"flow_source\": {\"flow_source_type\": 1, \"flow_source_info\": {\"snapshot_id\": \"27175d15-f6d8-4792-9072-e2b684753205\"}, \"flow_dag_file\": \"flow.dag.yaml\"}, \"log_path\": \"https://promptfloweast4063704120.blob.core.windows.net/azureml/ExperimentRun/dcid.failed_run_name/logs/azureml/executionlogs.txt?sv=2019-07-07&sr=b&sig=**data_scrubbed**&skoid=55b92eba-d7c7-4afd-ab76-7bb1cd345283&sktid=00000000-0000-0000-0000-000000000000&skt=2024-01-12T07%3A42%3A25Z&ske=2024-01-13T15%3A52%3A25Z&sks=b&skv=2019-07-07&st=2024-01-12T07%3A51%3A24Z&se=2024-01-12T16%3A01%3A24Z&sp=rcw\", \"app_insights_instrumentation_key\": \"InstrumentationKey=**data_scrubbed**;IngestionEndpoint=https://eastus-6.in.applicationinsights.azure.com/;LiveEndpoint=https://eastus.livediagnostics.monitor.azure.com/\", \"data_inputs\": {\"data\": \"azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl\"}, \"azure_storage_setting\": {\"azure_storage_mode\": 1, \"storage_account_name\": \"promptfloweast4063704120\", \"blob_container_name\": \"azureml-blobstore-3e123da1-f9a5-4c91-9234-8d9ffbb39ff5\", \"flow_artifacts_root_path\": \"promptflow/PromptFlowArtifacts/failed_run_name\", \"blob_container_sas_token\": \"?sv=2019-07-07&sr=c&sig=**data_scrubbed**&skoid=55b92eba-d7c7-4afd-ab76-7bb1cd345283&sktid=00000000-0000-0000-0000-000000000000&skt=2024-01-12T08%3A01%3A25Z&ske=2024-01-19T08%3A01%3A25Z&sks=b&skv=2019-07-07&se=2024-01-19T08%3A01%3A25Z&sp=racwl\", \"output_datastore_name\": \"workspaceblobstore\"}}\n2024-01-12 08:01:25 +0000 49 promptflow-runtime INFO Runtime version: 20231204.v4. PromptFlow version: 1.2.0rc1\n2024-01-12 08:01:25 +0000 49 promptflow-runtime INFO Updating failed_run_name to Status.Preparing...\n2024-01-12 08:01:25 +0000 49 promptflow-runtime INFO Downloading snapshot to /mnt/host/service/app/39649/requests/failed_run_name\n2024-01-12 08:01:25 +0000 49 promptflow-runtime INFO Get snapshot sas url for 27175d15-f6d8-4792-9072-e2b684753205...\n2024-01-12 08:01:32 +0000 49 promptflow-runtime INFO Downloading snapshot 27175d15-f6d8-4792-9072-e2b684753205 from uri https://promptfloweast4063704120.blob.core.windows.net/snapshotzips/promptflow-eastus:3e123da1-f9a5-4c91-9234-8d9ffbb39ff5:snapshotzip/27175d15-f6d8-4792-9072-e2b684753205.zip...\n2024-01-12 08:01:32 +0000 49 promptflow-runtime INFO Downloaded file /mnt/host/service/app/39649/requests/failed_run_name/27175d15-f6d8-4792-9072-e2b684753205.zip with size 701 for snapshot 27175d15-f6d8-4792-9072-e2b684753205.\n2024-01-12 08:01:32 +0000 49 promptflow-runtime INFO Download snapshot 27175d15-f6d8-4792-9072-e2b684753205 completed.\n2024-01-12 08:01:32 +0000 49 promptflow-runtime INFO Successfully download snapshot to /mnt/host/service/app/39649/requests/failed_run_name\n2024-01-12 08:01:32 +0000 49 promptflow-runtime INFO About to execute a python flow.\n2024-01-12 08:01:32 +0000 49 promptflow-runtime INFO Use spawn method to start child process.\n2024-01-12 08:01:32 +0000 49 promptflow-runtime INFO Starting to check process 3429 status for run failed_run_name\n2024-01-12 08:01:32 +0000 49 promptflow-runtime INFO Start checking run status for run failed_run_name\n2024-01-12 08:01:36 +0000 3429 promptflow-runtime INFO [49--3429] Start processing flowV2......\n2024-01-12 08:01:36 +0000 3429 promptflow-runtime INFO Runtime version: 20231204.v4. PromptFlow version: 1.2.0rc1\n2024-01-12 08:01:36 +0000 3429 promptflow-runtime INFO Setting mlflow tracking uri...\n2024-01-12 08:01:36 +0000 3429 promptflow-runtime INFO Validating ''AzureML Data Scientist'' user authentication...\n2024-01-12 08:01:36 +0000 3429 promptflow-runtime INFO Successfully validated ''AzureML Data Scientist'' user authentication.\n2024-01-12 08:01:36 +0000 3429 promptflow-runtime INFO Using AzureMLRunStorageV2\n2024-01-12 08:01:36 +0000 3429 promptflow-runtime INFO Setting mlflow tracking uri to ''azureml://eastus.api.azureml.ms/mlflow/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/promptflow-eastus''\n2024-01-12 08:01:37 +0000 3429 promptflow-runtime INFO Initialized blob service client for AzureMLRunTracker.\n2024-01-12 08:01:37 +0000 3429 promptflow-runtime INFO Setting mlflow tracking uri to ''azureml://eastus.api.azureml.ms/mlflow/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/promptflow-eastus''\n2024-01-12 08:01:40 +0000 3429 promptflow-runtime INFO Resolve data from url finished in 2.9352363562211394 seconds\n2024-01-12 08:01:40 +0000 3429 promptflow-runtime INFO Starting the aml run ''failed_run_name''...\n2024-01-12 08:01:40 +0000 3429 execution WARNING Starting run without column mapping may lead to unexpected results. Please consult the following documentation for more information: https://aka.ms/pf/column-mapping\n2024-01-12 08:01:40 +0000 3429 execution.bulk ERROR Error occurred while executing batch run. Exception: The input for batch run is incorrect. Couldn''t find these mapping relations: ${data.key}. Please make sure your input mapping keys and values match your YAML input section and input data. For more information, refer to the following documentation: https://aka.ms/pf/column-mapping\n2024-01-12 08:01:40 +0000 3429 promptflow-runtime ERROR Run failed_run_name failed. Exception: {\n \"message\": \"The input for batch run is incorrect. Couldn''t find these mapping relations: ${data.key}. Please make sure your input mapping keys and values match your YAML input section and input data. For more information, refer to the following documentation: https://aka.ms/pf/column-mapping\",\n \"messageFormat\": \"The input for batch run is incorrect. Couldn''t find these mapping relations: {invalid_relations}. Please make sure your input mapping keys and values match your YAML input section and input data. For more information, refer to the following documentation: https://aka.ms/pf/column-mapping\",\n \"messageParameters\": {\n \"invalid_relations\": \"${data.key}\"\n },\n \"referenceCode\": \"Executor\",\n \"code\": \"UserError\",\n \"innerError\": {\n \"code\": \"ValidationError\",\n \"innerError\": {\n \"code\": \"InputMappingError\",\n \"innerError\": null\n }\n },\n \"debugInfo\": {\n \"type\": \"InputMappingError\",\n \"message\": \"The input for batch run is incorrect. Couldn''t find these mapping relations: ${data.key}. Please make sure your input mapping keys and values match your YAML input section and input data. For more information, refer to the following documentation: https://aka.ms/pf/column-mapping\",\n \"stackTrace\": \"Traceback (most recent call last):\\n File \\\"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/runtime/runtime.py\\\", line 671, in execute_bulk_run_request\\n batch_engine.run(\\n File \\\"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_engine.py\\\", line 147, in run\\n raise e\\n File \\\"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_engine.py\\\", line 132, in run\\n batch_inputs = batch_input_processor.process_batch_inputs(input_dirs, inputs_mapping)\\n File \\\"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\\\", line 41, in process_batch_inputs\\n return self._validate_and_apply_inputs_mapping(input_dicts, inputs_mapping)\\n File \\\"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\\\", line 91, in _validate_and_apply_inputs_mapping\\n resolved_inputs = self._apply_inputs_mapping_for_all_lines(inputs, inputs_mapping)\\n File \\\"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\\\", line 163, in _apply_inputs_mapping_for_all_lines\\n result = [apply_inputs_mapping(item, inputs_mapping) for item in merged_list]\\n File \\\"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\\\", line 163, in <listcomp>\\n result = [apply_inputs_mapping(item, inputs_mapping) for item in merged_list]\\n File \\\"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\\\", line 292, in apply_inputs_mapping\\n raise InputMappingError(\\n\",\n \"innerException\": null\n }\n}\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/runtime/runtime.py\", line 671, in execute_bulk_run_request\n batch_engine.run(\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_engine.py\", line 147, in run\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_engine.py\", line 132, in run\n batch_inputs = batch_input_processor.process_batch_inputs(input_dirs, inputs_mapping)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\", line 41, in process_batch_inputs\n return self._validate_and_apply_inputs_mapping(input_dicts, inputs_mapping)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\", line 91, in _validate_and_apply_inputs_mapping\n resolved_inputs = self._apply_inputs_mapping_for_all_lines(inputs, inputs_mapping)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\", line 163, in _apply_inputs_mapping_for_all_lines\n result = [apply_inputs_mapping(item, inputs_mapping) for item in merged_list]\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\", line 163, in <listcomp>\n result = [apply_inputs_mapping(item, inputs_mapping) for item in merged_list]\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\", line 292, in apply_inputs_mapping\n raise InputMappingError(\npromptflow.batch._errors.InputMappingError: The input for batch run is incorrect. Couldn''t find these mapping relations: ${data.key}. Please make sure your input mapping keys and values match your YAML input section and input data. For more information, refer to the following documentation: https://aka.ms/pf/column-mapping\n2024-01-12 08:01:41 +0000 3429 execution.bulk INFO Upload status summary metrics for run failed_run_name finished in 0.7801888957619667 seconds\n2024-01-12 08:01:41 +0000 3429 promptflow-runtime INFO Successfully write run properties {\"azureml.promptflow.total_tokens\": 0, \"_azureml.evaluate_artifacts\": \"[{\\\"path\\\": \\\"instance_results.jsonl\\\", \\\"type\\\": \\\"table\\\"}]\"} with run id ''failed_run_name''\n2024-01-12 08:01:41 +0000 3429 execution.bulk INFO Upload RH properties for run failed_run_name finished in 0.08418271783739328 seconds\n2024-01-12 08:01:41 +0000 3429 promptflow-runtime INFO Creating unregistered output Asset for Run failed_run_name...\n2024-01-12 08:01:41 +0000 3429 promptflow-runtime INFO Created debug_info Asset: azureml://locations/eastus/workspaces/00000/data/azureml_failed_run_name_output_data_debug_info/versions/1\n2024-01-12 08:01:41 +0000 3429 promptflow-runtime INFO Patching failed_run_name...\n2024-01-12 08:01:41 +0000 3429 promptflow-runtime WARNING [failed_run_name] Run failed. Execution stackTrace: Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/runtime/runtime.py\", line 671, in execute_bulk_run_request\n batch_engine.run(\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_engine.py\", line 147, in run\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_engine.py\", line 132, in run\n batch_inputs = batch_input_processor.process_batch_inputs(input_dirs, inputs_mapping)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\", line 41, in process_batch_inputs\n return self._validate_and_apply_inputs_mapping(input_dicts, inputs_mapping)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\", line 91, in _validate_and_apply_inputs_mapping\n resolved_inputs = self._apply_inputs_mapping_for_all_lines(inputs, inputs_mapping)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\", line 163, in _apply_inputs_mapping_for_all_lines\n result = [apply_inputs_mapping(item, inputs_mapping) for item in merged_list]\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\", line 163, in <listcomp>\n result = [apply_inputs_mapping(item, inputs_mapping) for item in merged_list]\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/batch/_batch_inputs_processor.py\", line 292, in apply_inputs_mapping\n raise InputMappingError(\n\n2024-01-12 08:01:42 +0000 3429 promptflow-runtime INFO Ending the aml run ''failed_run_name'' with status ''Failed''...\n2024-01-12 08:01:43 +0000 49 promptflow-runtime INFO Process 3429 finished\n2024-01-12 08:01:43 +0000 49 promptflow-runtime INFO [49] Child process finished!\n2024-01-12 08:01:43 +0000 49 promptflow-runtime INFO [failed_run_name] End processing bulk run\n2024-01-12 08:01:43 +0000 49 promptflow-runtime ERROR Submit flow request failed Code: 400 InnerException type: InputMappingError Exception type hierarchy: UserError/ValidationError/InputMappingError\n2024-01-12 08:01:43 +0000 49 promptflow-runtime INFO Cleanup working dir /mnt/host/service/app/39649/requests/failed_run_name for bulk run\n"' headers: connection: - keep-alive content-length: - '15117' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.766' status: code: 200 message: OK version: 1
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/recordings/test_run_operations_TestFlowRun_test_default_run_display_name.yaml
interactions: - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000 response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000", "name": "00000", "type": "Microsoft.MachineLearningServices/workspaces", "location": "eastus", "tags": {}, "etag": null, "kind": "Default", "sku": {"name": "Basic", "tier": "Basic"}, "properties": {"discoveryUrl": "https://eastus.api.azureml.ms/discovery"}}' headers: cache-control: - no-cache content-length: - '3630' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.024' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores?count=30&isDefault=true&orderByAsc=false response: body: string: '{"value": [{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}]}' headers: cache-control: - no-cache content-length: - '1372' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.064' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.064' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.118' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:26:03 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/env_var_names.jsonl response: body: string: '' headers: accept-ranges: - bytes content-length: - '49' content-md5: - quXiEreYvPinSj0HsaNa/g== content-type: - application/octet-stream last-modified: - Wed, 08 Nov 2023 04:26:09 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Wed, 08 Nov 2023 04:26:09 GMT x-ms-meta-name: - c4092674-5e53-4c17-b78d-75353ae0edb6 x-ms-meta-upload_status: - completed x-ms-meta-version: - 579021dc-8ac8-4c73-8110-4642bd00c69b x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:26:04 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/env_var_names.jsonl response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.072' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.089' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:26:08 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/print_env_var/flow.dag.yaml response: body: string: '' headers: accept-ranges: - bytes content-length: - '245' content-md5: - F+JA0a3CxcLYZ0ANRdlZbA== content-type: - application/octet-stream last-modified: - Wed, 29 Nov 2023 02:51:35 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Thu, 17 Aug 2023 10:30:09 GMT x-ms-meta-name: - 56efdd28-6297-4baa-aad3-be46f4b768a2 x-ms-meta-upload_status: - completed x-ms-meta-version: - '1' x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:26:09 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/print_env_var/flow.dag.yaml response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: '{"flowDefinitionDataStoreName": "workspaceblobstore", "flowDefinitionBlobPath": "LocalUpload/000000000000000000000000000000000000/print_env_var/flow.dag.yaml", "runId": "name", "runDisplayName": "name", "runExperimentName": "", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/000000000000000000000000000000000000/env_var_names.jsonl"}, "inputsMapping": {}, "connections": {}, "environmentVariables": {"API_BASE": "${azure_open_ai_connection.api_base}"}, "runtimeName": "fake-runtime-name", "sessionId": "000000000000000000000000000000000000000000000000", "sessionSetupMode": "SystemWait", "flowLineageId": "0000000000000000000000000000000000000000000000000000000000000000", "runDisplayNameGenerationType": "UserProvidedMacro"}' headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '834' Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/submit response: body: string: '"name"' headers: connection: - keep-alive content-length: - '38' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload x-content-type-options: - nosniff x-request-time: - '7.150' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/name response: body: string: '{"flowGraph": {"nodes": [{"name": "print_env", "type": "python", "source": {"type": "code", "path": "print_env.py"}, "inputs": {"key": "${inputs.key}"}, "tool": "print_env.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "print_env.py", "type": "python", "inputs": {"key": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "print_env.py", "function": "get_env_var", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"key": {"type": "string", "is_chat_input": false}}, "outputs": {"output": {"type": "string", "reference": "${print_env.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/name/flowRuns/name", "flowRunId": "name", "flowRunDisplayName": "name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/c32a61842e439cecc022ebcff5dc0da4/env_var_names.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "9edd066b-dcf6-4639-933d-6ffb8be07a2c", "studioPortalEndpoint": "https://ml.azure.com/runs/name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12855' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.409' status: code: 200 message: OK - request: body: '{"runId": "name", "selectRunMetadata": true, "selectRunDefinition": true, "selectJobSpecification": true}' headers: Accept: - '*/*' Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '137' Content-Type: - application/json User-Agent: - python-requests/2.31.0 method: POST uri: https://eastus.api.azureml.ms/history/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/rundata response: body: string: '{"runMetadata": {"runNumber": 1705047976, "rootRunId": "name", "createdUtc": "2024-01-12T08:26:15.9964375+00:00", "createdBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587", "upn": null}, "userId": "00000000-0000-0000-0000-000000000000", "token": null, "tokenExpiryTimeUtc": null, "error": null, "warnings": null, "revision": 3, "statusRevision": 1, "runUuid": "bb6b107f-d6e6-4948-8460-9be91342a76c", "parentRunUuid": null, "rootRunUuid": "bb6b107f-d6e6-4948-8460-9be91342a76c", "lastStartTimeUtc": null, "currentComputeTime": "00:00:00", "computeDuration": null, "effectiveStartTimeUtc": null, "lastModifiedBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587", "upn": null}, "lastModifiedUtc": "2024-01-12T08:26:20.3894992+00:00", "duration": null, "cancelationReason": null, "currentAttemptId": 1, "runId": "name", "parentRunId": null, "experimentId": "6a87c3ae-5a75-4c5d-9eb9-5203b0062282", "status": "Preparing", "startTimeUtc": null, "endTimeUtc": null, "scheduleId": null, "displayName": "name", "name": null, "dataContainerId": "dcid.name", "description": null, "hidden": false, "runType": "azureml.promptflow.FlowRun", "runTypeV2": {"orchestrator": null, "traits": [], "attribution": "PromptFlow", "computeType": "AmlcDsi"}, "properties": {"azureml.promptflow.runtime_name": "test-runtime-ci", "azureml.promptflow.runtime_version": "20231204.v4", "azureml.promptflow.definition_file_name": "flow.dag.yaml", "azureml.promptflow.session_id": "62adccc385dd5d078797bdd0d2e1c55e120f3d5216885b81", "azureml.promptflow.flow_lineage_id": "f1efdb93dcf9b3c17e246e7bcf0e2c7398d7bc289f8dd2c3d8f808eacc63c31f", "azureml.promptflow.flow_definition_datastore_name": "workspaceblobstore", "azureml.promptflow.flow_definition_blob_path": "LocalUpload/3360ae705933fb90bcd290241ca0ece9/print_env_var/flow.dag.yaml", "azureml.promptflow.input_data": "azureml://datastores/workspaceblobstore/paths/LocalUpload/c32a61842e439cecc022ebcff5dc0da4/env_var_names.jsonl", "_azureml.evaluation_run": "promptflow.BatchRun", "azureml.promptflow.snapshot_id": "9edd066b-dcf6-4639-933d-6ffb8be07a2c"}, "parameters": {}, "actionUris": {}, "scriptName": null, "target": null, "uniqueChildRunComputeTargets": [], "tags": {}, "settings": {}, "services": {}, "inputDatasets": [], "outputDatasets": [], "runDefinition": null, "jobSpecification": null, "primaryMetricName": null, "createdFrom": null, "cancelUri": null, "completeUri": null, "diagnosticsUri": null, "computeRequest": null, "compute": null, "retainForLifetimeOfWorkspace": false, "queueingInfo": null, "inputs": null, "outputs": null}, "runDefinition": null, "jobSpecification": null, "systemSettings": null}' headers: connection: - keep-alive content-length: - '3849' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.066' status: code: 200 message: OK version: 1
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/recordings/test_run_operations_TestFlowRun_test_basic_evaluation.yaml
interactions: - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000 response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000", "name": "00000", "type": "Microsoft.MachineLearningServices/workspaces", "location": "eastus", "tags": {}, "etag": null, "kind": "Default", "sku": {"name": "Basic", "tier": "Basic"}, "properties": {"discoveryUrl": "https://eastus.api.azureml.ms/discovery"}}' headers: cache-control: - no-cache content-length: - '3630' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.029' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores?count=30&isDefault=true&orderByAsc=false response: body: string: '{"value": [{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}]}' headers: cache-control: - no-cache content-length: - '1372' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.098' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.077' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.099' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:15:32 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/webClassification3.jsonl response: body: string: '' headers: accept-ranges: - bytes content-length: - '379' content-md5: - lI/pz9jzTQ7Td3RHPL7y7w== content-type: - application/octet-stream last-modified: - Mon, 06 Nov 2023 08:30:18 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Mon, 06 Nov 2023 08:30:18 GMT x-ms-meta-name: - 94331215-cf7f-452a-9f1a-1d276bc9b0e4 x-ms-meta-upload_status: - completed x-ms-meta-version: - 3f163752-edb0-4afc-a6f5-b0a670bd7c24 x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:15:33 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/webClassification3.jsonl response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.082' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.082' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:15:36 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/web_classification/classify_with_llm.jinja2 response: body: string: '' headers: accept-ranges: - bytes content-length: - '853' content-md5: - ylTeNqjvuOvtzEZJ/X5n3A== content-type: - application/octet-stream last-modified: - Fri, 12 Jan 2024 08:13:57 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Fri, 12 Jan 2024 08:13:56 GMT x-ms-meta-name: - 950201e8-c52c-4b15-ada1-5e58de9b2f4d x-ms-meta-upload_status: - completed x-ms-meta-version: - '1' x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:15:38 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/web_classification/classify_with_llm.jinja2 response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: '{"flowDefinitionDataStoreName": "workspaceblobstore", "flowDefinitionBlobPath": "LocalUpload/000000000000000000000000000000000000/web_classification/flow.dag.yaml", "runId": "batch_run_name", "runDisplayName": "batch_run_name", "runExperimentName": "", "nodeVariant": "${summarize_text_content.variant_0}", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/000000000000000000000000000000000000/webClassification3.jsonl"}, "inputsMapping": {"url": "${data.url}"}, "connections": {}, "environmentVariables": {}, "runtimeName": "fake-runtime-name", "sessionId": "000000000000000000000000000000000000000000000000", "sessionSetupMode": "SystemWait", "flowLineageId": "0000000000000000000000000000000000000000000000000000000000000000", "runDisplayNameGenerationType": "UserProvidedMacro"}' headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '873' Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/submit response: body: string: '"batch_run_name"' headers: connection: - keep-alive content-length: - '38' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload x-content-type-options: - nosniff x-request-time: - '6.627' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "fetch_text_content_from_url", "type": "python", "source": {"type": "code", "path": "fetch_text_content_from_url.py"}, "inputs": {"fetch_url": "${inputs.url}"}, "tool": "fetch_text_content_from_url.py", "reduce": false}, {"name": "prepare_examples", "type": "python", "source": {"type": "code", "path": "prepare_examples.py"}, "inputs": {}, "tool": "prepare_examples.py", "reduce": false}, {"name": "classify_with_llm", "type": "llm", "source": {"type": "code", "path": "classify_with_llm.jinja2"}, "inputs": {"deployment_name": "gpt-35-turbo", "suffix": "", "max_tokens": "128", "temperature": "0.1", "top_p": "1.0", "logprobs": "", "echo": "False", "stop": "", "presence_penalty": "0", "frequency_penalty": "0", "best_of": "1", "logit_bias": "", "url": "${inputs.url}", "examples": "${prepare_examples.output}", "text_content": "${summarize_text_content.output}"}, "tool": "classify_with_llm.jinja2", "reduce": false, "api": "chat", "provider": "AzureOpenAI", "connection": "azure_open_ai_connection", "module": "promptflow.tools.aoai"}, {"name": "convert_to_dict", "type": "python", "source": {"type": "code", "path": "convert_to_dict.py"}, "inputs": {"input_str": "${classify_with_llm.output}"}, "tool": "convert_to_dict.py", "reduce": false}, {"name": "summarize_text_content", "type": "llm", "source": {"type": "code", "path": "summarize_text_content.jinja2"}, "inputs": {"deployment_name": "gpt-35-turbo", "suffix": "", "max_tokens": "128", "temperature": "0.2", "top_p": "1.0", "logprobs": "", "echo": "False", "stop": "", "presence_penalty": "0", "frequency_penalty": "0", "best_of": "1", "logit_bias": "", "text": "${fetch_text_content_from_url.output}"}, "tool": "summarize_text_content.jinja2", "reduce": false, "api": "chat", "provider": "AzureOpenAI", "connection": "azure_open_ai_connection", "module": "promptflow.tools.aoai"}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "classify_with_llm.jinja2", "type": "prompt", "inputs": {"examples": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_content": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "url": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "classify_with_llm.jinja2", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "convert_to_dict.py", "type": "python", "inputs": {"input_str": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "convert_to_dict.py", "function": "convert_to_dict", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "fetch_text_content_from_url.py", "type": "python", "inputs": {"fetch_url": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "fetch_text_content_from_url.py", "function": "fetch_text_content_from_url", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "prepare_examples.py", "type": "python", "source": "prepare_examples.py", "function": "prepare_examples", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "summarize_text_content.jinja2", "type": "prompt", "inputs": {"text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "summarize_text_content.jinja2", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "summarize_text_content__variant_1.jinja2", "type": "prompt", "inputs": {"text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "summarize_text_content__variant_1.jinja2", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"url": {"type": "string", "default": "https://www.microsoft.com/en-us/d/xbox-wireless-controller-stellar-shift-special-edition/94fbjc7h0h6h", "is_chat_input": false}}, "outputs": {"category": {"type": "string", "reference": "${convert_to_dict.output.category}", "evaluation_only": false, "is_chat_output": false}, "evidence": {"type": "string", "reference": "${convert_to_dict.output.evidence}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/batch_run_name/flowRuns/batch_run_name", "flowRunId": "batch_run_name", "flowRunDisplayName": "batch_run_name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"url": "${data.url}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/batch_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "83cbe8e6-2d19-46c6-8fba-7875fdb033e1", "studioPortalEndpoint": "https://ml.azure.com/runs/batch_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '16239' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.263' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "fetch_text_content_from_url", "type": "python", "source": {"type": "code", "path": "fetch_text_content_from_url.py"}, "inputs": {"fetch_url": "${inputs.url}"}, "tool": "fetch_text_content_from_url.py", "reduce": false}, {"name": "prepare_examples", "type": "python", "source": {"type": "code", "path": "prepare_examples.py"}, "inputs": {}, "tool": "prepare_examples.py", "reduce": false}, {"name": "classify_with_llm", "type": "llm", "source": {"type": "code", "path": "classify_with_llm.jinja2"}, "inputs": {"deployment_name": "gpt-35-turbo", "suffix": "", "max_tokens": "128", "temperature": "0.1", "top_p": "1.0", "logprobs": "", "echo": "False", "stop": "", "presence_penalty": "0", "frequency_penalty": "0", "best_of": "1", "logit_bias": "", "url": "${inputs.url}", "examples": "${prepare_examples.output}", "text_content": "${summarize_text_content.output}"}, "tool": "classify_with_llm.jinja2", "reduce": false, "api": "chat", "provider": "AzureOpenAI", "connection": "azure_open_ai_connection", "module": "promptflow.tools.aoai"}, {"name": "convert_to_dict", "type": "python", "source": {"type": "code", "path": "convert_to_dict.py"}, "inputs": {"input_str": "${classify_with_llm.output}"}, "tool": "convert_to_dict.py", "reduce": false}, {"name": "summarize_text_content", "type": "llm", "source": {"type": "code", "path": "summarize_text_content.jinja2"}, "inputs": {"deployment_name": "gpt-35-turbo", "suffix": "", "max_tokens": "128", "temperature": "0.2", "top_p": "1.0", "logprobs": "", "echo": "False", "stop": "", "presence_penalty": "0", "frequency_penalty": "0", "best_of": "1", "logit_bias": "", "text": "${fetch_text_content_from_url.output}"}, "tool": "summarize_text_content.jinja2", "reduce": false, "api": "chat", "provider": "AzureOpenAI", "connection": "azure_open_ai_connection", "module": "promptflow.tools.aoai"}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "classify_with_llm.jinja2", "type": "prompt", "inputs": {"examples": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_content": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "url": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "classify_with_llm.jinja2", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "convert_to_dict.py", "type": "python", "inputs": {"input_str": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "convert_to_dict.py", "function": "convert_to_dict", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "fetch_text_content_from_url.py", "type": "python", "inputs": {"fetch_url": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "fetch_text_content_from_url.py", "function": "fetch_text_content_from_url", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "prepare_examples.py", "type": "python", "source": "prepare_examples.py", "function": "prepare_examples", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "summarize_text_content.jinja2", "type": "prompt", "inputs": {"text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "summarize_text_content.jinja2", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "summarize_text_content__variant_1.jinja2", "type": "prompt", "inputs": {"text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "summarize_text_content__variant_1.jinja2", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"url": {"type": "string", "default": "https://www.microsoft.com/en-us/d/xbox-wireless-controller-stellar-shift-special-edition/94fbjc7h0h6h", "is_chat_input": false}}, "outputs": {"category": {"type": "string", "reference": "${convert_to_dict.output.category}", "evaluation_only": false, "is_chat_output": false}, "evidence": {"type": "string", "reference": "${convert_to_dict.output.evidence}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/batch_run_name/flowRuns/batch_run_name", "flowRunId": "batch_run_name", "flowRunDisplayName": "batch_run_name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"url": "${data.url}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/batch_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "83cbe8e6-2d19-46c6-8fba-7875fdb033e1", "studioPortalEndpoint": "https://ml.azure.com/runs/batch_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '16239' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.488' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "fetch_text_content_from_url", "type": "python", "source": {"type": "code", "path": "fetch_text_content_from_url.py"}, "inputs": {"fetch_url": "${inputs.url}"}, "tool": "fetch_text_content_from_url.py", "reduce": false}, {"name": "prepare_examples", "type": "python", "source": {"type": "code", "path": "prepare_examples.py"}, "inputs": {}, "tool": "prepare_examples.py", "reduce": false}, {"name": "classify_with_llm", "type": "llm", "source": {"type": "code", "path": "classify_with_llm.jinja2"}, "inputs": {"deployment_name": "gpt-35-turbo", "suffix": "", "max_tokens": "128", "temperature": "0.1", "top_p": "1.0", "logprobs": "", "echo": "False", "stop": "", "presence_penalty": "0", "frequency_penalty": "0", "best_of": "1", "logit_bias": "", "url": "${inputs.url}", "examples": "${prepare_examples.output}", "text_content": "${summarize_text_content.output}"}, "tool": "classify_with_llm.jinja2", "reduce": false, "api": "chat", "provider": "AzureOpenAI", "connection": "azure_open_ai_connection", "module": "promptflow.tools.aoai"}, {"name": "convert_to_dict", "type": "python", "source": {"type": "code", "path": "convert_to_dict.py"}, "inputs": {"input_str": "${classify_with_llm.output}"}, "tool": "convert_to_dict.py", "reduce": false}, {"name": "summarize_text_content", "type": "llm", "source": {"type": "code", "path": "summarize_text_content.jinja2"}, "inputs": {"deployment_name": "gpt-35-turbo", "suffix": "", "max_tokens": "128", "temperature": "0.2", "top_p": "1.0", "logprobs": "", "echo": "False", "stop": "", "presence_penalty": "0", "frequency_penalty": "0", "best_of": "1", "logit_bias": "", "text": "${fetch_text_content_from_url.output}"}, "tool": "summarize_text_content.jinja2", "reduce": false, "api": "chat", "provider": "AzureOpenAI", "connection": "azure_open_ai_connection", "module": "promptflow.tools.aoai"}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "classify_with_llm.jinja2", "type": "prompt", "inputs": {"examples": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_content": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "url": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "classify_with_llm.jinja2", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "convert_to_dict.py", "type": "python", "inputs": {"input_str": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "convert_to_dict.py", "function": "convert_to_dict", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "fetch_text_content_from_url.py", "type": "python", "inputs": {"fetch_url": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "fetch_text_content_from_url.py", "function": "fetch_text_content_from_url", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "prepare_examples.py", "type": "python", "source": "prepare_examples.py", "function": "prepare_examples", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "summarize_text_content.jinja2", "type": "prompt", "inputs": {"text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "summarize_text_content.jinja2", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "summarize_text_content__variant_1.jinja2", "type": "prompt", "inputs": {"text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "summarize_text_content__variant_1.jinja2", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"url": {"type": "string", "default": "https://www.microsoft.com/en-us/d/xbox-wireless-controller-stellar-shift-special-edition/94fbjc7h0h6h", "is_chat_input": false}}, "outputs": {"category": {"type": "string", "reference": "${convert_to_dict.output.category}", "evaluation_only": false, "is_chat_output": false}, "evidence": {"type": "string", "reference": "${convert_to_dict.output.evidence}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/batch_run_name/flowRuns/batch_run_name", "flowRunId": "batch_run_name", "flowRunDisplayName": "batch_run_name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"url": "${data.url}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/batch_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "83cbe8e6-2d19-46c6-8fba-7875fdb033e1", "studioPortalEndpoint": "https://ml.azure.com/runs/batch_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '16239' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.469' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "fetch_text_content_from_url", "type": "python", "source": {"type": "code", "path": "fetch_text_content_from_url.py"}, "inputs": {"fetch_url": "${inputs.url}"}, "tool": "fetch_text_content_from_url.py", "reduce": false}, {"name": "prepare_examples", "type": "python", "source": {"type": "code", "path": "prepare_examples.py"}, "inputs": {}, "tool": "prepare_examples.py", "reduce": false}, {"name": "classify_with_llm", "type": "llm", "source": {"type": "code", "path": "classify_with_llm.jinja2"}, "inputs": {"deployment_name": "gpt-35-turbo", "suffix": "", "max_tokens": "128", "temperature": "0.1", "top_p": "1.0", "logprobs": "", "echo": "False", "stop": "", "presence_penalty": "0", "frequency_penalty": "0", "best_of": "1", "logit_bias": "", "url": "${inputs.url}", "examples": "${prepare_examples.output}", "text_content": "${summarize_text_content.output}"}, "tool": "classify_with_llm.jinja2", "reduce": false, "api": "chat", "provider": "AzureOpenAI", "connection": "azure_open_ai_connection", "module": "promptflow.tools.aoai"}, {"name": "convert_to_dict", "type": "python", "source": {"type": "code", "path": "convert_to_dict.py"}, "inputs": {"input_str": "${classify_with_llm.output}"}, "tool": "convert_to_dict.py", "reduce": false}, {"name": "summarize_text_content", "type": "llm", "source": {"type": "code", "path": "summarize_text_content.jinja2"}, "inputs": {"deployment_name": "gpt-35-turbo", "suffix": "", "max_tokens": "128", "temperature": "0.2", "top_p": "1.0", "logprobs": "", "echo": "False", "stop": "", "presence_penalty": "0", "frequency_penalty": "0", "best_of": "1", "logit_bias": "", "text": "${fetch_text_content_from_url.output}"}, "tool": "summarize_text_content.jinja2", "reduce": false, "api": "chat", "provider": "AzureOpenAI", "connection": "azure_open_ai_connection", "module": "promptflow.tools.aoai"}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "classify_with_llm.jinja2", "type": "prompt", "inputs": {"examples": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_content": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "url": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "classify_with_llm.jinja2", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "convert_to_dict.py", "type": "python", "inputs": {"input_str": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "convert_to_dict.py", "function": "convert_to_dict", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "fetch_text_content_from_url.py", "type": "python", "inputs": {"fetch_url": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "fetch_text_content_from_url.py", "function": "fetch_text_content_from_url", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "prepare_examples.py", "type": "python", "source": "prepare_examples.py", "function": "prepare_examples", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "summarize_text_content.jinja2", "type": "prompt", "inputs": {"text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "summarize_text_content.jinja2", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "summarize_text_content__variant_1.jinja2", "type": "prompt", "inputs": {"text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "summarize_text_content__variant_1.jinja2", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"url": {"type": "string", "default": "https://www.microsoft.com/en-us/d/xbox-wireless-controller-stellar-shift-special-edition/94fbjc7h0h6h", "is_chat_input": false}}, "outputs": {"category": {"type": "string", "reference": "${convert_to_dict.output.category}", "evaluation_only": false, "is_chat_output": false}, "evidence": {"type": "string", "reference": "${convert_to_dict.output.evidence}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/batch_run_name/flowRuns/batch_run_name", "flowRunId": "batch_run_name", "flowRunDisplayName": "batch_run_name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"url": "${data.url}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/batch_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "83cbe8e6-2d19-46c6-8fba-7875fdb033e1", "studioPortalEndpoint": "https://ml.azure.com/runs/batch_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '16239' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.256' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.080' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.129' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:16:24 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/webClassification3.jsonl response: body: string: '' headers: accept-ranges: - bytes content-length: - '379' content-md5: - lI/pz9jzTQ7Td3RHPL7y7w== content-type: - application/octet-stream last-modified: - Mon, 06 Nov 2023 08:30:18 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Mon, 06 Nov 2023 08:30:18 GMT x-ms-meta-name: - 94331215-cf7f-452a-9f1a-1d276bc9b0e4 x-ms-meta-upload_status: - completed x-ms-meta-version: - 3f163752-edb0-4afc-a6f5-b0a670bd7c24 x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:16:25 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/webClassification3.jsonl response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.135' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.089' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:16:29 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/eval-classification-accuracy/calculate_accuracy.py response: body: string: '' headers: accept-ranges: - bytes content-length: - '409' content-md5: - OyENtlqGVUTrY5zKuzo8XA== content-type: - application/octet-stream last-modified: - Tue, 21 Nov 2023 08:03:40 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Tue, 21 Nov 2023 08:03:39 GMT x-ms-meta-name: - fd932777-4f3a-4c1d-9c3a-24d45835d7e1 x-ms-meta-upload_status: - completed x-ms-meta-version: - '1' x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:16:30 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/eval-classification-accuracy/calculate_accuracy.py response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: '{"flowDefinitionDataStoreName": "workspaceblobstore", "flowDefinitionBlobPath": "LocalUpload/000000000000000000000000000000000000/eval-classification-accuracy/flow.dag.yaml", "runId": "eval_run_name", "runDisplayName": "eval_run_name", "runExperimentName": "", "variantRunId": "batch_run_name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/000000000000000000000000000000000000/webClassification3.jsonl"}, "inputsMapping": {"groundtruth": "${data.answer}", "prediction": "${run.outputs.category}"}, "connections": {}, "environmentVariables": {}, "runtimeName": "fake-runtime-name", "sessionId": "000000000000000000000000000000000000000000000000", "sessionSetupMode": "SystemWait", "flowLineageId": "0000000000000000000000000000000000000000000000000000000000000000", "runDisplayNameGenerationType": "UserProvidedMacro"}' headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '947' Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/submit response: body: string: '"eval_run_name"' headers: connection: - keep-alive content-length: - '38' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload x-content-type-options: - nosniff x-request-time: - '6.931' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/eval_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "grade", "type": "python", "source": {"type": "code", "path": "grade.py"}, "inputs": {"groundtruth": "${inputs.groundtruth}", "prediction": "${inputs.prediction}"}, "tool": "grade.py", "reduce": false}, {"name": "calculate_accuracy", "type": "python", "source": {"type": "code", "path": "calculate_accuracy.py"}, "inputs": {"grades": "${grade.output}"}, "tool": "calculate_accuracy.py", "reduce": true}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "calculate_accuracy.py", "type": "python", "inputs": {"grades": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "calculate_accuracy.py", "function": "calculate_accuracy", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "grade.py", "type": "python", "inputs": {"groundtruth": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "prediction": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "grade.py", "function": "grade", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"groundtruth": {"type": "string", "default": "APP", "description": "Please specify the groundtruth column, which contains the true label to the outputs that your flow produces.", "is_chat_input": false}, "prediction": {"type": "string", "default": "APP", "description": "Please specify the prediction column, which contains the predicted outputs that your flow produces.", "is_chat_input": false}}, "outputs": {"grade": {"type": "string", "reference": "${grade.output}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/eval_run_name/flowRuns/eval_run_name", "flowRunId": "eval_run_name", "flowRunDisplayName": "eval_run_name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"groundtruth": "${data.answer}", "prediction": "${run.outputs.category}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/eval_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "73d0c061-880c-466c-8fb0-b29e9ae7ab66", "studioPortalEndpoint": "https://ml.azure.com/runs/eval_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '13869' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.388' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/eval_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "grade", "type": "python", "source": {"type": "code", "path": "grade.py"}, "inputs": {"groundtruth": "${inputs.groundtruth}", "prediction": "${inputs.prediction}"}, "tool": "grade.py", "reduce": false}, {"name": "calculate_accuracy", "type": "python", "source": {"type": "code", "path": "calculate_accuracy.py"}, "inputs": {"grades": "${grade.output}"}, "tool": "calculate_accuracy.py", "reduce": true}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "calculate_accuracy.py", "type": "python", "inputs": {"grades": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "calculate_accuracy.py", "function": "calculate_accuracy", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "grade.py", "type": "python", "inputs": {"groundtruth": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "prediction": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "grade.py", "function": "grade", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"groundtruth": {"type": "string", "default": "APP", "description": "Please specify the groundtruth column, which contains the true label to the outputs that your flow produces.", "is_chat_input": false}, "prediction": {"type": "string", "default": "APP", "description": "Please specify the prediction column, which contains the predicted outputs that your flow produces.", "is_chat_input": false}}, "outputs": {"grade": {"type": "string", "reference": "${grade.output}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/eval_run_name/flowRuns/eval_run_name", "flowRunId": "eval_run_name", "flowRunDisplayName": "eval_run_name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"groundtruth": "${data.answer}", "prediction": "${run.outputs.category}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/eval_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "73d0c061-880c-466c-8fb0-b29e9ae7ab66", "studioPortalEndpoint": "https://ml.azure.com/runs/eval_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '13869' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.270' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/eval_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "grade", "type": "python", "source": {"type": "code", "path": "grade.py"}, "inputs": {"groundtruth": "${inputs.groundtruth}", "prediction": "${inputs.prediction}"}, "tool": "grade.py", "reduce": false}, {"name": "calculate_accuracy", "type": "python", "source": {"type": "code", "path": "calculate_accuracy.py"}, "inputs": {"grades": "${grade.output}"}, "tool": "calculate_accuracy.py", "reduce": true}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "calculate_accuracy.py", "type": "python", "inputs": {"grades": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "calculate_accuracy.py", "function": "calculate_accuracy", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "grade.py", "type": "python", "inputs": {"groundtruth": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "prediction": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "grade.py", "function": "grade", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"groundtruth": {"type": "string", "default": "APP", "description": "Please specify the groundtruth column, which contains the true label to the outputs that your flow produces.", "is_chat_input": false}, "prediction": {"type": "string", "default": "APP", "description": "Please specify the prediction column, which contains the predicted outputs that your flow produces.", "is_chat_input": false}}, "outputs": {"grade": {"type": "string", "reference": "${grade.output}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/eval_run_name/flowRuns/eval_run_name", "flowRunId": "eval_run_name", "flowRunDisplayName": "eval_run_name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"groundtruth": "${data.answer}", "prediction": "${run.outputs.category}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/eval_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "73d0c061-880c-466c-8fb0-b29e9ae7ab66", "studioPortalEndpoint": "https://ml.azure.com/runs/eval_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '13869' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.336' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/eval_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "grade", "type": "python", "source": {"type": "code", "path": "grade.py"}, "inputs": {"groundtruth": "${inputs.groundtruth}", "prediction": "${inputs.prediction}"}, "tool": "grade.py", "reduce": false}, {"name": "calculate_accuracy", "type": "python", "source": {"type": "code", "path": "calculate_accuracy.py"}, "inputs": {"grades": "${grade.output}"}, "tool": "calculate_accuracy.py", "reduce": true}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "calculate_accuracy.py", "type": "python", "inputs": {"grades": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "calculate_accuracy.py", "function": "calculate_accuracy", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "grade.py", "type": "python", "inputs": {"groundtruth": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "prediction": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "grade.py", "function": "grade", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"groundtruth": {"type": "string", "default": "APP", "description": "Please specify the groundtruth column, which contains the true label to the outputs that your flow produces.", "is_chat_input": false}, "prediction": {"type": "string", "default": "APP", "description": "Please specify the prediction column, which contains the predicted outputs that your flow produces.", "is_chat_input": false}}, "outputs": {"grade": {"type": "string", "reference": "${grade.output}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/eval_run_name/flowRuns/eval_run_name", "flowRunId": "eval_run_name", "flowRunDisplayName": "eval_run_name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"groundtruth": "${data.answer}", "prediction": "${run.outputs.category}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/eval_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "73d0c061-880c-466c-8fb0-b29e9ae7ab66", "studioPortalEndpoint": "https://ml.azure.com/runs/eval_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '13869' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.366' status: code: 200 message: OK - request: body: '{"runId": "batch_run_name", "selectRunMetadata": true, "selectRunDefinition": true, "selectJobSpecification": true}' headers: Accept: - '*/*' Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '137' Content-Type: - application/json User-Agent: - python-requests/2.31.0 method: POST uri: https://eastus.api.azureml.ms/history/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/rundata response: body: string: '{"runMetadata": {"runNumber": 1705047344, "rootRunId": "batch_run_name", "createdUtc": "2024-01-12T08:15:44.0948865+00:00", "createdBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587", "upn": null}, "userId": "00000000-0000-0000-0000-000000000000", "token": null, "tokenExpiryTimeUtc": null, "error": null, "warnings": null, "revision": 6, "statusRevision": 3, "runUuid": "e52bd2e7-d460-459a-a3ab-07d848ea525d", "parentRunUuid": null, "rootRunUuid": "e52bd2e7-d460-459a-a3ab-07d848ea525d", "lastStartTimeUtc": null, "currentComputeTime": null, "computeDuration": "00:00:06.7505192", "effectiveStartTimeUtc": null, "lastModifiedBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "18a66f5f-dbdf-4c17-9dd7-1634712a9cbe", "upn": null}, "lastModifiedUtc": "2024-01-12T08:16:06.9067508+00:00", "duration": "00:00:06.7505192", "cancelationReason": null, "currentAttemptId": 1, "runId": "batch_run_name", "parentRunId": null, "experimentId": "d30efbeb-f81d-4cfa-b5cc-a0570a049009", "status": "Completed", "startTimeUtc": "2024-01-12T08:16:01.0613927+00:00", "endTimeUtc": "2024-01-12T08:16:07.8119119+00:00", "scheduleId": null, "displayName": "batch_run_name", "name": null, "dataContainerId": "dcid.batch_run_name", "description": null, "hidden": false, "runType": "azureml.promptflow.FlowRun", "runTypeV2": {"orchestrator": null, "traits": [], "attribution": "PromptFlow", "computeType": "AmlcDsi"}, "properties": {"azureml.promptflow.runtime_name": "test-runtime-ci", "azureml.promptflow.runtime_version": "20231204.v4", "azureml.promptflow.definition_file_name": "flow.dag.yaml", "azureml.promptflow.session_id": "4dd8f4d5f44dfeb817d3438cf84bd739215d87afd9458597", "azureml.promptflow.flow_lineage_id": "af1a6951de9be2ce13d3b58b23dbd8b6a0cd8fd4918ad9cb22b28fb8395fbcb0", "azureml.promptflow.node_variant": "${summarize_text_content.variant_0}", "azureml.promptflow.flow_definition_datastore_name": "workspaceblobstore", "azureml.promptflow.flow_definition_blob_path": "LocalUpload/a1fa6ef1ead7ff3ce76b36250f6f5461/web_classification/flow.dag.yaml", "azureml.promptflow.input_data": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl", "azureml.promptflow.inputs_mapping": "{\"url\":\"${data.url}\"}", "_azureml.evaluation_run": "promptflow.BatchRun", "azureml.promptflow.snapshot_id": "83cbe8e6-2d19-46c6-8fba-7875fdb033e1", "azureml.promptflow.total_tokens": "2448", "_azureml.evaluate_artifacts": "[{\"path\": \"instance_results.jsonl\", \"type\": \"table\"}]"}, "parameters": {}, "actionUris": {}, "scriptName": null, "target": null, "uniqueChildRunComputeTargets": [], "tags": {}, "settings": {}, "services": {}, "inputDatasets": [], "outputDatasets": [], "runDefinition": null, "jobSpecification": null, "primaryMetricName": null, "createdFrom": null, "cancelUri": null, "completeUri": null, "diagnosticsUri": null, "computeRequest": null, "compute": null, "retainForLifetimeOfWorkspace": false, "queueingInfo": null, "inputs": null, "outputs": {"debug_info": {"assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_batch_run_name_output_data_debug_info/versions/1", "type": "UriFolder"}, "flow_outputs": {"assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_batch_run_name_output_data_flow_outputs/versions/1", "type": "UriFolder"}}}, "runDefinition": null, "jobSpecification": null, "systemSettings": null}' headers: connection: - keep-alive content-length: - '4732' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.049' status: code: 200 message: OK - request: body: '{"runId": "eval_run_name", "selectRunMetadata": true, "selectRunDefinition": true, "selectJobSpecification": true}' headers: Accept: - '*/*' Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '137' Content-Type: - application/json User-Agent: - python-requests/2.31.0 method: POST uri: https://eastus.api.azureml.ms/history/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/rundata response: body: string: '{"runMetadata": {"runNumber": 1705047396, "rootRunId": "eval_run_name", "createdUtc": "2024-01-12T08:16:36.0629362+00:00", "createdBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587", "upn": null}, "userId": "00000000-0000-0000-0000-000000000000", "token": null, "tokenExpiryTimeUtc": null, "error": null, "warnings": null, "revision": 6, "statusRevision": 3, "runUuid": "a3978660-b3ed-4116-b125-6a52e8c8e4cb", "parentRunUuid": null, "rootRunUuid": "a3978660-b3ed-4116-b125-6a52e8c8e4cb", "lastStartTimeUtc": null, "currentComputeTime": null, "computeDuration": "00:00:04.8368673", "effectiveStartTimeUtc": null, "lastModifiedBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "18a66f5f-dbdf-4c17-9dd7-1634712a9cbe", "upn": null}, "lastModifiedUtc": "2024-01-12T08:16:57.9353592+00:00", "duration": "00:00:04.8368673", "cancelationReason": null, "currentAttemptId": 1, "runId": "eval_run_name", "parentRunId": null, "experimentId": "7bdec279-f99c-4ed3-b0b8-dd75698b8fd0", "status": "Completed", "startTimeUtc": "2024-01-12T08:16:54.0128269+00:00", "endTimeUtc": "2024-01-12T08:16:58.8496942+00:00", "scheduleId": null, "displayName": "eval_run_name", "name": null, "dataContainerId": "dcid.eval_run_name", "description": null, "hidden": false, "runType": "azureml.promptflow.FlowRun", "runTypeV2": {"orchestrator": null, "traits": [], "attribution": "PromptFlow", "computeType": "AmlcDsi"}, "properties": {"azureml.promptflow.runtime_name": "test-runtime-ci", "azureml.promptflow.runtime_version": "20231204.v4", "azureml.promptflow.definition_file_name": "flow.dag.yaml", "azureml.promptflow.session_id": "f8e4236a4e78e7f7125bbd811ec7976cb330412723a530f8", "azureml.promptflow.flow_lineage_id": "26c575d863a85371ef937096728441d8c68c3e737b5a1bfeae5ac8f3b9ccb048", "azureml.promptflow.flow_definition_datastore_name": "workspaceblobstore", "azureml.promptflow.flow_definition_blob_path": "LocalUpload/1aa3064d06f6170abbc488cc35c713b9/eval-classification-accuracy/flow.dag.yaml", "azureml.promptflow.input_data": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl", "azureml.promptflow.input_run_id": "batch_run_name", "azureml.promptflow.inputs_mapping": "{\"groundtruth\":\"${data.answer}\",\"prediction\":\"${run.outputs.category}\"}", "_azureml.evaluation_run": "promptflow.BatchRun", "azureml.promptflow.snapshot_id": "73d0c061-880c-466c-8fb0-b29e9ae7ab66", "azureml.promptflow.total_tokens": "0", "_azureml.evaluate_artifacts": "[{\"path\": \"instance_results.jsonl\", \"type\": \"table\"}]"}, "parameters": {}, "actionUris": {}, "scriptName": null, "target": null, "uniqueChildRunComputeTargets": [], "tags": {}, "settings": {}, "services": {}, "inputDatasets": [], "outputDatasets": [], "runDefinition": null, "jobSpecification": null, "primaryMetricName": null, "createdFrom": null, "cancelUri": null, "completeUri": null, "diagnosticsUri": null, "computeRequest": null, "compute": null, "retainForLifetimeOfWorkspace": false, "queueingInfo": null, "inputs": null, "outputs": {"debug_info": {"assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_eval_run_name_output_data_debug_info/versions/1", "type": "UriFolder"}, "flow_outputs": {"assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_eval_run_name_output_data_flow_outputs/versions/1", "type": "UriFolder"}}}, "runDefinition": null, "jobSpecification": null, "systemSettings": null}' headers: connection: - keep-alive content-length: - '4794' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.066' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name/logContent response: body: string: '"2024-01-12 08:15:48 +0000 106 promptflow-runtime INFO [batch_run_name] Receiving v2 bulk run request 3fe0e3e1-2e3a-44a7-94c9-4a64bc9388a5: {\"flow_id\": \"batch_run_name\", \"flow_run_id\": \"batch_run_name\", \"flow_source\": {\"flow_source_type\": 1, \"flow_source_info\": {\"snapshot_id\": \"83cbe8e6-2d19-46c6-8fba-7875fdb033e1\"}, \"flow_dag_file\": \"flow.dag.yaml\"}, \"connections\": \"**data_scrubbed**\", \"log_path\": \"https://promptfloweast4063704120.blob.core.windows.net/azureml/ExperimentRun/dcid.batch_run_name/logs/azureml/executionlogs.txt?sv=2019-07-07&sr=b&sig=**data_scrubbed**&skoid=55b92eba-d7c7-4afd-ab76-7bb1cd345283&sktid=00000000-0000-0000-0000-000000000000&skt=2024-01-12T08%3A05%3A43Z&ske=2024-01-13T16%3A15%3A43Z&sks=b&skv=2019-07-07&st=2024-01-12T08%3A05%3A47Z&se=2024-01-12T16%3A15%3A47Z&sp=rcw\", \"app_insights_instrumentation_key\": \"InstrumentationKey=**data_scrubbed**;IngestionEndpoint=https://eastus-6.in.applicationinsights.azure.com/;LiveEndpoint=https://eastus.livediagnostics.monitor.azure.com/\", \"data_inputs\": {\"data\": \"azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl\"}, \"inputs_mapping\": {\"url\": \"${data.url}\"}, \"azure_storage_setting\": {\"azure_storage_mode\": 1, \"storage_account_name\": \"promptfloweast4063704120\", \"blob_container_name\": \"azureml-blobstore-3e123da1-f9a5-4c91-9234-8d9ffbb39ff5\", \"flow_artifacts_root_path\": \"promptflow/PromptFlowArtifacts/batch_run_name\", \"blob_container_sas_token\": \"?sv=2019-07-07&sr=c&sig=**data_scrubbed**&skoid=55b92eba-d7c7-4afd-ab76-7bb1cd345283&sktid=00000000-0000-0000-0000-000000000000&skt=2024-01-12T08%3A15%3A48Z&ske=2024-01-19T08%3A15%3A48Z&sks=b&skv=2019-07-07&se=2024-01-19T08%3A15%3A48Z&sp=racwl\", \"output_datastore_name\": \"workspaceblobstore\"}}\n2024-01-12 08:15:48 +0000 106 promptflow-runtime INFO Runtime version: 20231204.v4. PromptFlow version: 1.2.0rc1\n2024-01-12 08:15:48 +0000 106 promptflow-runtime INFO Updating batch_run_name to Status.Preparing...\n2024-01-12 08:15:48 +0000 106 promptflow-runtime INFO Downloading snapshot to /mnt/host/service/app/34817/requests/batch_run_name\n2024-01-12 08:15:48 +0000 106 promptflow-runtime INFO Get snapshot sas url for 83cbe8e6-2d19-46c6-8fba-7875fdb033e1...\n2024-01-12 08:15:55 +0000 106 promptflow-runtime INFO Downloading snapshot 83cbe8e6-2d19-46c6-8fba-7875fdb033e1 from uri https://promptfloweast4063704120.blob.core.windows.net/snapshotzips/promptflow-eastus:3e123da1-f9a5-4c91-9234-8d9ffbb39ff5:snapshotzip/83cbe8e6-2d19-46c6-8fba-7875fdb033e1.zip...\n2024-01-12 08:15:55 +0000 106 promptflow-runtime INFO Downloaded file /mnt/host/service/app/34817/requests/batch_run_name/83cbe8e6-2d19-46c6-8fba-7875fdb033e1.zip with size 5027 for snapshot 83cbe8e6-2d19-46c6-8fba-7875fdb033e1.\n2024-01-12 08:15:55 +0000 106 promptflow-runtime INFO Download snapshot 83cbe8e6-2d19-46c6-8fba-7875fdb033e1 completed.\n2024-01-12 08:15:55 +0000 106 promptflow-runtime INFO Successfully download snapshot to /mnt/host/service/app/34817/requests/batch_run_name\n2024-01-12 08:15:55 +0000 106 promptflow-runtime INFO About to execute a python flow.\n2024-01-12 08:15:55 +0000 106 promptflow-runtime INFO Use spawn method to start child process.\n2024-01-12 08:15:55 +0000 106 promptflow-runtime INFO Starting to check process 3917 status for run batch_run_name\n2024-01-12 08:15:55 +0000 106 promptflow-runtime INFO Start checking run status for run batch_run_name\n2024-01-12 08:15:59 +0000 3917 promptflow-runtime INFO [106--3917] Start processing flowV2......\n2024-01-12 08:15:59 +0000 3917 promptflow-runtime INFO Runtime version: 20231204.v4. PromptFlow version: 1.2.0rc1\n2024-01-12 08:15:59 +0000 3917 promptflow-runtime INFO Setting mlflow tracking uri...\n2024-01-12 08:15:59 +0000 3917 promptflow-runtime INFO Validating ''AzureML Data Scientist'' user authentication...\n2024-01-12 08:15:59 +0000 3917 promptflow-runtime INFO Successfully validated ''AzureML Data Scientist'' user authentication.\n2024-01-12 08:15:59 +0000 3917 promptflow-runtime INFO Using AzureMLRunStorageV2\n2024-01-12 08:15:59 +0000 3917 promptflow-runtime INFO Setting mlflow tracking uri to ''azureml://eastus.api.azureml.ms/mlflow/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/promptflow-eastus''\n2024-01-12 08:15:59 +0000 3917 promptflow-runtime INFO Initialized blob service client for AzureMLRunTracker.\n2024-01-12 08:15:59 +0000 3917 promptflow-runtime INFO Setting mlflow tracking uri to ''azureml://eastus.api.azureml.ms/mlflow/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/promptflow-eastus''\n2024-01-12 08:16:00 +0000 3917 promptflow-runtime INFO Resolve data from url finished in 0.7087652487680316 seconds\n2024-01-12 08:16:00 +0000 3917 promptflow-runtime INFO Starting the aml run ''batch_run_name''...\n2024-01-12 08:16:01 +0000 3917 execution.bulk INFO Using fork, process count: 3\n2024-01-12 08:16:01 +0000 3959 execution.bulk INFO Process 3959 started.\n2024-01-12 08:16:01 +0000 3964 execution.bulk INFO Process 3964 started.\n2024-01-12 08:16:01 +0000 3917 execution.bulk INFO Process name: ForkProcess-30:2, Process id: 3959, Line number: 0 start execution.\n2024-01-12 08:16:01 +0000 3969 execution.bulk INFO Process 3969 started.\n2024-01-12 08:16:01 +0000 3917 execution.bulk INFO Process name: ForkProcess-30:3, Process id: 3964, Line number: 1 start execution.\n2024-01-12 08:16:01 +0000 3917 execution.bulk INFO Process name: ForkProcess-30:4, Process id: 3969, Line number: 2 start execution.\n2024-01-12 08:16:02 +0000 3917 execution.bulk INFO Process name: ForkProcess-30:4, Process id: 3969, Line number: 2 completed.\n2024-01-12 08:16:02 +0000 3917 execution.bulk INFO Finished 1 / 3 lines.\n2024-01-12 08:16:02 +0000 3917 execution.bulk INFO Process name: ForkProcess-30:3, Process id: 3964, Line number: 1 completed.\n2024-01-12 08:16:02 +0000 3917 execution.bulk INFO Average execution time for completed lines: 1.52 seconds. Estimated time for incomplete lines: 3.04 seconds.\n2024-01-12 08:16:02 +0000 3917 execution.bulk INFO Finished 2 / 3 lines.\n2024-01-12 08:16:02 +0000 3917 execution.bulk INFO Average execution time for completed lines: 0.78 seconds. Estimated time for incomplete lines: 0.78 seconds.\n2024-01-12 08:16:03 +0000 3917 execution.bulk INFO Process name: ForkProcess-30:2, Process id: 3959, Line number: 0 completed.\n2024-01-12 08:16:03 +0000 3917 execution.bulk INFO Finished 3 / 3 lines.\n2024-01-12 08:16:03 +0000 3917 execution.bulk INFO Average execution time for completed lines: 0.61 seconds. Estimated time for incomplete lines: 0.0 seconds.\n2024-01-12 08:16:06 +0000 3917 execution.bulk INFO Upload status summary metrics for run batch_run_name finished in 2.639357965439558 seconds\n2024-01-12 08:16:06 +0000 3917 promptflow-runtime INFO Successfully write run properties {\"azureml.promptflow.total_tokens\": 2448, \"_azureml.evaluate_artifacts\": \"[{\\\"path\\\": \\\"instance_results.jsonl\\\", \\\"type\\\": \\\"table\\\"}]\"} with run id ''batch_run_name''\n2024-01-12 08:16:06 +0000 3917 execution.bulk INFO Upload RH properties for run batch_run_name finished in 0.07268641889095306 seconds\n2024-01-12 08:16:06 +0000 3917 promptflow-runtime INFO Creating unregistered output Asset for Run batch_run_name...\n2024-01-12 08:16:07 +0000 3917 promptflow-runtime INFO Created debug_info Asset: azureml://locations/eastus/workspaces/00000/data/azureml_batch_run_name_output_data_debug_info/versions/1\n2024-01-12 08:16:07 +0000 3917 promptflow-runtime INFO Creating unregistered output Asset for Run batch_run_name...\n2024-01-12 08:16:07 +0000 3917 promptflow-runtime INFO Created flow_outputs output Asset: azureml://locations/eastus/workspaces/00000/data/azureml_batch_run_name_output_data_flow_outputs/versions/1\n2024-01-12 08:16:07 +0000 3917 promptflow-runtime INFO Creating Artifact for Run batch_run_name...\n2024-01-12 08:16:07 +0000 3917 promptflow-runtime INFO Created instance_results.jsonl Artifact.\n2024-01-12 08:16:07 +0000 3917 promptflow-runtime INFO Patching batch_run_name...\n2024-01-12 08:16:07 +0000 3917 promptflow-runtime INFO Ending the aml run ''batch_run_name'' with status ''Completed''...\n2024-01-12 08:16:09 +0000 106 promptflow-runtime INFO Process 3917 finished\n2024-01-12 08:16:09 +0000 106 promptflow-runtime INFO [106] Child process finished!\n2024-01-12 08:16:09 +0000 106 promptflow-runtime INFO [batch_run_name] End processing bulk run\n2024-01-12 08:16:09 +0000 106 promptflow-runtime INFO Cleanup working dir /mnt/host/service/app/34817/requests/batch_run_name for bulk run\n"' headers: connection: - keep-alive content-length: - '9861' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.454' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/eval_run_name/logContent response: body: string: '"2024-01-12 08:16:40 +0000 134 promptflow-runtime INFO [eval_run_name] Receiving v2 bulk run request abc15e77-e71f-4626-8037-8f58ccd9b423: {\"flow_id\": \"eval_run_name\", \"flow_run_id\": \"eval_run_name\", \"flow_source\": {\"flow_source_type\": 1, \"flow_source_info\": {\"snapshot_id\": \"73d0c061-880c-466c-8fb0-b29e9ae7ab66\"}, \"flow_dag_file\": \"flow.dag.yaml\"}, \"log_path\": \"https://promptfloweast4063704120.blob.core.windows.net/azureml/ExperimentRun/dcid.eval_run_name/logs/azureml/executionlogs.txt?sv=2019-07-07&sr=b&sig=**data_scrubbed**&skoid=55b92eba-d7c7-4afd-ab76-7bb1cd345283&sktid=00000000-0000-0000-0000-000000000000&skt=2024-01-12T07%3A46%3A24Z&ske=2024-01-13T15%3A56%3A24Z&sks=b&skv=2019-07-07&st=2024-01-12T08%3A06%3A39Z&se=2024-01-12T16%3A16%3A39Z&sp=rcw\", \"app_insights_instrumentation_key\": \"InstrumentationKey=**data_scrubbed**;IngestionEndpoint=https://eastus-6.in.applicationinsights.azure.com/;LiveEndpoint=https://eastus.livediagnostics.monitor.azure.com/\", \"data_inputs\": {\"data\": \"azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl\", \"run.outputs\": \"azureml:/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/data/azureml_batch_run_name_output_data_flow_outputs/versions/1\"}, \"inputs_mapping\": {\"groundtruth\": \"${data.answer}\", \"prediction\": \"${run.outputs.category}\"}, \"azure_storage_setting\": {\"azure_storage_mode\": 1, \"storage_account_name\": \"promptfloweast4063704120\", \"blob_container_name\": \"azureml-blobstore-3e123da1-f9a5-4c91-9234-8d9ffbb39ff5\", \"flow_artifacts_root_path\": \"promptflow/PromptFlowArtifacts/eval_run_name\", \"blob_container_sas_token\": \"?sv=2019-07-07&sr=c&sig=**data_scrubbed**&skoid=55b92eba-d7c7-4afd-ab76-7bb1cd345283&sktid=00000000-0000-0000-0000-000000000000&skt=2024-01-12T08%3A16%3A40Z&ske=2024-01-19T08%3A16%3A40Z&sks=b&skv=2019-07-07&se=2024-01-19T08%3A16%3A40Z&sp=racwl\", \"output_datastore_name\": \"workspaceblobstore\"}}\n2024-01-12 08:16:40 +0000 134 promptflow-runtime INFO Runtime version: 20231204.v4. PromptFlow version: 1.2.0rc1\n2024-01-12 08:16:40 +0000 134 promptflow-runtime INFO Updating eval_run_name to Status.Preparing...\n2024-01-12 08:16:41 +0000 134 promptflow-runtime INFO Downloading snapshot to /mnt/host/service/app/38343/requests/eval_run_name\n2024-01-12 08:16:41 +0000 134 promptflow-runtime INFO Get snapshot sas url for 73d0c061-880c-466c-8fb0-b29e9ae7ab66...\n2024-01-12 08:16:47 +0000 134 promptflow-runtime INFO Downloading snapshot 73d0c061-880c-466c-8fb0-b29e9ae7ab66 from uri https://promptfloweast4063704120.blob.core.windows.net/snapshotzips/promptflow-eastus:3e123da1-f9a5-4c91-9234-8d9ffbb39ff5:snapshotzip/73d0c061-880c-466c-8fb0-b29e9ae7ab66.zip...\n2024-01-12 08:16:47 +0000 134 promptflow-runtime INFO Downloaded file /mnt/host/service/app/38343/requests/eval_run_name/73d0c061-880c-466c-8fb0-b29e9ae7ab66.zip with size 1243 for snapshot 73d0c061-880c-466c-8fb0-b29e9ae7ab66.\n2024-01-12 08:16:47 +0000 134 promptflow-runtime INFO Download snapshot 73d0c061-880c-466c-8fb0-b29e9ae7ab66 completed.\n2024-01-12 08:16:47 +0000 134 promptflow-runtime INFO Successfully download snapshot to /mnt/host/service/app/38343/requests/eval_run_name\n2024-01-12 08:16:47 +0000 134 promptflow-runtime INFO About to execute a python flow.\n2024-01-12 08:16:47 +0000 134 promptflow-runtime INFO Use spawn method to start child process.\n2024-01-12 08:16:47 +0000 134 promptflow-runtime INFO Starting to check process 4041 status for run eval_run_name\n2024-01-12 08:16:47 +0000 134 promptflow-runtime INFO Start checking run status for run eval_run_name\n2024-01-12 08:16:51 +0000 4041 promptflow-runtime INFO [134--4041] Start processing flowV2......\n2024-01-12 08:16:51 +0000 4041 promptflow-runtime INFO Runtime version: 20231204.v4. PromptFlow version: 1.2.0rc1\n2024-01-12 08:16:51 +0000 4041 promptflow-runtime INFO Setting mlflow tracking uri...\n2024-01-12 08:16:52 +0000 4041 promptflow-runtime INFO Validating ''AzureML Data Scientist'' user authentication...\n2024-01-12 08:16:52 +0000 4041 promptflow-runtime INFO Successfully validated ''AzureML Data Scientist'' user authentication.\n2024-01-12 08:16:52 +0000 4041 promptflow-runtime INFO Using AzureMLRunStorageV2\n2024-01-12 08:16:52 +0000 4041 promptflow-runtime INFO Setting mlflow tracking uri to ''azureml://eastus.api.azureml.ms/mlflow/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/promptflow-eastus''\n2024-01-12 08:16:52 +0000 4041 promptflow-runtime INFO Initialized blob service client for AzureMLRunTracker.\n2024-01-12 08:16:52 +0000 4041 promptflow-runtime INFO Setting mlflow tracking uri to ''azureml://eastus.api.azureml.ms/mlflow/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/promptflow-eastus''\n2024-01-12 08:16:52 +0000 4041 promptflow-runtime INFO Resolve data from url finished in 0.45952979754656553 seconds\n2024-01-12 08:16:53 +0000 4041 promptflow-runtime INFO Resolve data from url finished in 0.7092651706188917 seconds\n2024-01-12 08:16:53 +0000 4041 promptflow-runtime INFO Starting the aml run ''eval_run_name''...\n2024-01-12 08:16:54 +0000 4041 execution.bulk INFO Using fork, process count: 3\n2024-01-12 08:16:54 +0000 4083 execution.bulk INFO Process 4083 started.\n2024-01-12 08:16:54 +0000 4093 execution.bulk INFO Process 4093 started.\n2024-01-12 08:16:54 +0000 4041 execution.bulk INFO Process name: ForkProcess-38:2, Process id: 4083, Line number: 0 start execution.\n2024-01-12 08:16:54 +0000 4041 execution.bulk INFO Process name: ForkProcess-38:4, Process id: 4093, Line number: 1 start execution.\n2024-01-12 08:16:54 +0000 4041 execution.bulk INFO Process name: ForkProcess-38:2, Process id: 4083, Line number: 0 completed.\n2024-01-12 08:16:54 +0000 4088 execution.bulk INFO Process 4088 started.\n2024-01-12 08:16:54 +0000 4041 execution.bulk INFO Finished 1 / 3 lines.\n2024-01-12 08:16:54 +0000 4041 execution.bulk INFO Process name: ForkProcess-38:4, Process id: 4093, Line number: 1 completed.\n2024-01-12 08:16:54 +0000 4041 execution.bulk INFO Process name: ForkProcess-38:3, Process id: 4088, Line number: 2 start execution.\n2024-01-12 08:16:54 +0000 4041 execution.bulk INFO Average execution time for completed lines: 0.23 seconds. Estimated time for incomplete lines: 0.46 seconds.\n2024-01-12 08:16:54 +0000 4041 execution.bulk INFO Finished 2 / 3 lines.\n2024-01-12 08:16:54 +0000 4041 execution.bulk INFO Average execution time for completed lines: 0.13 seconds. Estimated time for incomplete lines: 0.13 seconds.\n2024-01-12 08:16:54 +0000 4041 execution.bulk INFO Process name: ForkProcess-38:3, Process id: 4088, Line number: 2 completed.\n2024-01-12 08:16:54 +0000 4041 execution.bulk INFO Finished 3 / 3 lines.\n2024-01-12 08:16:54 +0000 4041 execution.bulk INFO Average execution time for completed lines: 0.13 seconds. Estimated time for incomplete lines: 0.0 seconds.\n2024-01-12 08:16:55 +0000 4041 execution.bulk INFO Executing aggregation nodes...\n2024-01-12 08:16:55 +0000 4041 execution.bulk INFO Finish executing aggregation nodes.\n2024-01-12 08:16:57 +0000 4041 execution.bulk INFO Upload status summary metrics for run eval_run_name finished in 1.7071036528795958 seconds\n2024-01-12 08:16:57 +0000 4041 execution.bulk INFO Upload metrics for run eval_run_name finished in 0.39980557933449745 seconds\n2024-01-12 08:16:57 +0000 4041 promptflow-runtime INFO Successfully write run properties {\"azureml.promptflow.total_tokens\": 0, \"_azureml.evaluate_artifacts\": \"[{\\\"path\\\": \\\"instance_results.jsonl\\\", \\\"type\\\": \\\"table\\\"}]\"} with run id ''eval_run_name''\n2024-01-12 08:16:57 +0000 4041 execution.bulk INFO Upload RH properties for run eval_run_name finished in 0.11383599042892456 seconds\n2024-01-12 08:16:58 +0000 4041 promptflow-runtime INFO Creating unregistered output Asset for Run eval_run_name...\n2024-01-12 08:16:58 +0000 4041 promptflow-runtime INFO Created debug_info Asset: azureml://locations/eastus/workspaces/00000/data/azureml_eval_run_name_output_data_debug_info/versions/1\n2024-01-12 08:16:58 +0000 4041 promptflow-runtime INFO Creating unregistered output Asset for Run eval_run_name...\n2024-01-12 08:16:58 +0000 4041 promptflow-runtime INFO Created flow_outputs output Asset: azureml://locations/eastus/workspaces/00000/data/azureml_eval_run_name_output_data_flow_outputs/versions/1\n2024-01-12 08:16:58 +0000 4041 promptflow-runtime INFO Creating Artifact for Run eval_run_name...\n2024-01-12 08:16:58 +0000 4041 promptflow-runtime INFO Created instance_results.jsonl Artifact.\n2024-01-12 08:16:58 +0000 4041 promptflow-runtime INFO Patching eval_run_name...\n2024-01-12 08:16:58 +0000 4041 promptflow-runtime INFO Ending the aml run ''eval_run_name'' with status ''Completed''...\n2024-01-12 08:17:00 +0000 134 promptflow-runtime INFO Process 4041 finished\n2024-01-12 08:17:00 +0000 134 promptflow-runtime INFO [134] Child process finished!\n2024-01-12 08:17:00 +0000 134 promptflow-runtime INFO [eval_run_name] End processing bulk run\n2024-01-12 08:17:00 +0000 134 promptflow-runtime INFO Cleanup working dir /mnt/host/service/app/38343/requests/eval_run_name for bulk run\n"' headers: connection: - keep-alive content-length: - '10623' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.650' status: code: 200 message: OK version: 1
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/recordings/test_azure_cli_perf_TestAzureCliPerf_test_pfazure_run_create.yaml
interactions: - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.9.17 (Windows-10-10.0.22621-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-09-22T05:26:30.7527337+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2024-01-10T09:29:14.5412854+00:00", "lastModifiedBy": "Philip Gao", "lastModifiedByType": "User"}}' headers: cache-control: - no-cache content-length: - '1200' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.078' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.9.17 (Windows-10-10.0.22621-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.160' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.13.0 Python/3.9.17 (Windows-10-10.0.22621-SP0) x-ms-date: - Mon, 15 Jan 2024 06:06:51 GMT x-ms-version: - '2021-08-06' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/print_input_flow.jsonl response: body: string: '' headers: accept-ranges: - bytes content-length: - '56' content-md5: - I/k2vLbQ+WkABQncQUd5Rg== content-type: - application/octet-stream last-modified: - Tue, 26 Dec 2023 03:34:26 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Tue, 26 Dec 2023 03:34:26 GMT x-ms-meta-name: - 489008dc-84bd-4bee-82db-0bb80f7ad272 x-ms-meta-upload_status: - completed x-ms-meta-version: - b7185e71-1e33-43b7-b8be-43bdd40e6731 x-ms-version: - '2021-08-06' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.13.0 Python/3.9.17 (Windows-10-10.0.22621-SP0) x-ms-date: - Mon, 15 Jan 2024 06:06:52 GMT x-ms-version: - '2021-08-06' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/print_input_flow.jsonl response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2021-08-06' status: code: 404 message: The specified blob does not exist. - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.9.17 (Windows-10-10.0.22621-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-09-22T05:26:30.7527337+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2024-01-10T09:29:14.5412854+00:00", "lastModifiedBy": "Philip Gao", "lastModifiedByType": "User"}}' headers: cache-control: - no-cache content-length: - '1200' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.085' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.9.17 (Windows-10-10.0.22621-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.066' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.13.0 Python/3.9.17 (Windows-10-10.0.22621-SP0) x-ms-date: - Mon, 15 Jan 2024 06:06:53 GMT x-ms-version: - '2021-08-06' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/print_input_flow/flow.dag.yaml response: body: string: '' headers: accept-ranges: - bytes content-length: - '238' content-md5: - g6eojZlNZcUGTvvyK1WJEg== content-type: - application/octet-stream last-modified: - Tue, 26 Dec 2023 03:34:26 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Tue, 26 Dec 2023 03:34:25 GMT x-ms-meta-name: - ab2797da-2f87-47a2-9c7a-1cdd447fa102 x-ms-meta-upload_status: - completed x-ms-meta-version: - '1' x-ms-version: - '2021-08-06' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.13.0 Python/3.9.17 (Windows-10-10.0.22621-SP0) x-ms-date: - Mon, 15 Jan 2024 06:06:55 GMT x-ms-version: - '2021-08-06' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/print_input_flow/flow.dag.yaml response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2021-08-06' status: code: 404 message: The specified blob does not exist. - request: body: '[{"iKey": "8b52b368-4c91-4226-b7f7-be52822f0509", "tags": {"ai.cloud.role": "pfazure", "ai.device.locale": "zh_CN", "ai.device.osVersion": "10.0.22621", "ai.device.type": "Other", "ai.internal.sdkVersion": "py3.9.17:oc0.11.2:ext1.1.9", "ai.operation.id": "00000000000000000000000000000000", "ai.operation.parentId": "|00000000000000000000000000000000.0000000000000000."}, "time": "2024-01-15T06:06:48.727100Z", "name": "Microsoft.ApplicationInsights.Event", "data": {"baseData": {"name": "pfazure.run.create.start", "properties": {"request_id": "ab23fd05-6e99-4553-bf58-eea847cd7cb2", "first_call": true, "activity_name": "pfazure.run.create", "activity_type": "PublicApi", "user_agent": "promptflow-cli/0.0.1 perf_monitor/1.0", "subscription_id": "96aede12-2f73-41cb-b983-6d11a904839b", "resource_group_name": "promptflow", "workspace_name": "promptflow-eastus2euap", "custom_message": "github run: https://github.com/microsoft/promptflow/actions/runs/None", "level": "INFO", "from_ci": false, "python_version": "3.9.17", "installation_id": "920feacd-3514-4287-a262-783d110775e1"}, "measurements": {}, "ver": 2}, "baseType": "EventData"}}]' headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '1140' Content-Type: - application/json; charset=utf-8 User-Agent: - python-requests/2.31.0 method: POST uri: https://dc.services.visualstudio.com/v2.1/track response: body: string: '{"itemsReceived": 1, "itemsAccepted": 0, "errors": [{"index": 0, "statusCode": 307, "message": "Ingestion is allowed only from stamp specific endpoint - Location: https://eastus-8.in.applicationinsights.azure.com/v2.1/track"}]}' headers: cache-control: - max-age=604800 content-length: - '217' content-type: - application/json; charset=utf-8 location: - https://eastus-8.in.applicationinsights.azure.com/v2.1/track server: - Microsoft-HTTPAPI/2.0 strict-transport-security: - max-age=31536000 x-content-type-options: - nosniff status: code: 307 message: Temporary Redirect - request: body: '[{"iKey": "8b52b368-4c91-4226-b7f7-be52822f0509", "tags": {"ai.cloud.role": "pfazure", "ai.device.locale": "zh_CN", "ai.device.osVersion": "10.0.22621", "ai.device.type": "Other", "ai.internal.sdkVersion": "py3.9.17:oc0.11.2:ext1.1.9", "ai.operation.id": "00000000000000000000000000000000", "ai.operation.parentId": "|00000000000000000000000000000000.0000000000000000."}, "time": "2024-01-15T06:06:48.727100Z", "name": "Microsoft.ApplicationInsights.Event", "data": {"baseData": {"name": "pfazure.run.create.start", "properties": {"request_id": "ab23fd05-6e99-4553-bf58-eea847cd7cb2", "first_call": true, "activity_name": "pfazure.run.create", "activity_type": "PublicApi", "user_agent": "promptflow-cli/0.0.1 perf_monitor/1.0", "subscription_id": "96aede12-2f73-41cb-b983-6d11a904839b", "resource_group_name": "promptflow", "workspace_name": "promptflow-eastus2euap", "custom_message": "github run: https://github.com/microsoft/promptflow/actions/runs/None", "level": "INFO", "from_ci": false, "python_version": "3.9.17", "installation_id": "920feacd-3514-4287-a262-783d110775e1"}, "measurements": {}, "ver": 2}, "baseType": "EventData"}}]' headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '1140' Content-Type: - application/json; charset=utf-8 User-Agent: - python-requests/2.31.0 method: POST uri: https://eastus-8.in.applicationinsights.azure.com/v2.1/track response: body: string: '{"itemsReceived": 1, "itemsAccepted": 1, "errors": []}' headers: content-length: - '49' content-type: - application/json; charset=utf-8 server: - Microsoft-HTTPAPI/2.0 strict-transport-security: - max-age=31536000 x-content-type-options: - nosniff status: code: 200 message: OK - request: body: '{"flowDefinitionDataStoreName": "workspaceblobstore", "flowDefinitionBlobPath": "LocalUpload/000000000000000000000000000000000000/print_input_flow/flow.dag.yaml", "runId": "name", "runDisplayName": "name", "runExperimentName": "", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/000000000000000000000000000000000000/print_input_flow.jsonl"}, "inputsMapping": {}, "connections": {}, "environmentVariables": {}, "runtimeName": "fake-runtime-name", "sessionId": "000000000000000000000000000000000000000000000000", "sessionSetupMode": "SystemWait", "flowLineageId": "0000000000000000000000000000000000000000000000000000000000000000", "runDisplayNameGenerationType": "UserProvidedMacro"}' headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '787' Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.9.17 (Windows-10-10.0.22621-SP0) method: POST uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/submit response: body: string: '"name"' headers: connection: - keep-alive content-length: - '38' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload x-content-type-options: - nosniff x-request-time: - '8.634' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.9.17 (Windows-10-10.0.22621-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/name response: body: string: '{"flowGraph": {"nodes": [{"name": "print_input", "type": "python", "source": {"type": "code", "path": "print_input.py"}, "inputs": {"text": "${inputs.text}"}, "tool": "print_input.py", "reduce": false}], "tools": [{"name": "Azure OpenAI GPT-4 Turbo with Vision", "type": "custom_llm", "inputs": {"connection": {"type": ["AzureOpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": 512, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure OpenAI GPT-4 Turbo with Vision to leverage AOAI vision ability.", "module": "promptflow.tools.aoai_gpt4v", "class_name": "AzureOpenAI", "function": "chat", "icon": {"dark": "", "light": ""}, "is_builtin": true, "package": "promptflow-tools", "package_version": "1.0.3", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "preview"}, {"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "1.0.3", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "1.0.3", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Model LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "default": "", "dynamic_list": {"func_path": "promptflow.tools.open_model_llm.list_deployment_names", "func_kwargs": [{"name": "endpoint", "optional": true, "reference": "${inputs.endpoint}", "type": ["string"]}]}, "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "dynamic_list": {"func_path": "promptflow.tools.open_model_llm.list_endpoint_names"}, "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an open model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_model_llm", "class_name": "OpenModelLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "1.0.3", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": 512, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "icon": {"dark": "", "light": ""}, "is_builtin": true, "package": "promptflow-tools", "package_version": "1.0.3", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "preview"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "1.0.3", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Index Lookup", "type": "python", "inputs": {"acs_content_field": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_acs_index_fields", "func_kwargs": [{"name": "acs_connection", "optional": false, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}, {"name": "acs_index_name", "optional": false, "reference": "${inputs.acs_index_name}", "type": ["string"]}, {"default": "Edm.String", "name": "field_data_type", "optional": false, "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "acs_embedding_field": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_acs_index_fields", "func_kwargs": [{"name": "acs_connection", "optional": false, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}, {"name": "acs_index_name", "optional": false, "reference": "${inputs.acs_index_name}", "type": ["string"]}, {"default": "Collection(Edm.Single)", "name": "field_data_type", "optional": false, "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "acs_index_connection": {"type": ["CognitiveSearchConnection"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "acs_index_name": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_acs_indices", "func_kwargs": [{"name": "acs_connection", "optional": false, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "acs_metadata_field": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_acs_index_fields", "func_kwargs": [{"name": "acs_connection", "optional": false, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}, {"name": "acs_index_name", "optional": false, "reference": "${inputs.acs_index_name}", "type": ["string"]}, {"default": "Edm.String", "name": "field_data_type", "optional": false, "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "aoai_embedding_connection": {"type": ["AzureOpenAIConnection"], "enabled_by": "embedding_type", "enabled_by_value": ["Azure OpenAI"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "embedding_deployment": {"type": ["string"], "enabled_by": "embedding_type", "enabled_by_value": ["Azure OpenAI"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_aoai_embedding_deployments", "func_kwargs": [{"name": "aoai_connection", "optional": false, "reference": "${inputs.aoai_embedding_connection}", "type": ["AzurOpenAIConnection"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "embedding_model": {"type": ["string"], "enabled_by": "embedding_type", "enabled_by_value": ["OpenAI", "Hugging Face"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_embedding_models", "func_kwargs": [{"name": "embedding_type", "optional": false, "reference": "${inputs.embedding_type}", "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "embedding_type": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search", "FAISS", "Pinecone"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_available_embedding_types", "func_kwargs": [{"name": "index_type", "optional": false, "reference": "${inputs.index_type}", "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "faiss_index_path": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["FAISS"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "index_type": {"type": ["string"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_available_index_types"}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "mlindex_asset_id": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Registered Index"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_registered_mlindices"}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "mlindex_content": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "generated_by": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.forward_mapping", "func_kwargs": [{"name": "index_type", "reference": "${inputs.index_type}", "type": ["string"]}, {"name": "mlindex_asset_id", "optional": true, "reference": "${inputs.mlindex_asset_id}", "type": ["string"]}, {"name": "mlindex_path", "optional": true, "reference": "${inputs.mlindex_path}", "type": ["string"]}, {"name": "acs_index_connection", "optional": true, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}, {"name": "acs_index_name", "optional": true, "reference": "${inputs.acs_index_name}", "type": ["string"]}, {"name": "acs_content_field", "optional": true, "reference": "${inputs.acs_content_field}", "type": ["string"]}, {"name": "acs_embedding_field", "optional": true, "reference": "${inputs.acs_embedding_field}", "type": ["string"]}, {"name": "acs_metadata_field", "optional": true, "reference": "${inputs.acs_metadata_field}", "type": ["string"]}, {"name": "semantic_configuration", "optional": true, "reference": "${inputs.semantic_configuration}", "type": ["string"]}, {"name": "faiss_index_path", "optional": true, "reference": "${inputs.faiss_index_path}", "type": ["string"]}, {"name": "pinecone_index_connection", "optional": true, "reference": "${inputs.pinecone_index_connection}", "type": ["string"]}, {"name": "pinecone_index_name", "optional": true, "reference": "${inputs.pinecone_index_name}", "type": ["string"]}, {"name": "pinecone_content_field", "optional": true, "reference": "${inputs.pinecone_content_field}", "type": ["string"]}, {"name": "pinecone_metadata_field", "optional": true, "reference": "${inputs.pinecone_metadata_field}", "type": ["string"]}, {"name": "embedding_type", "optional": true, "reference": "${inputs.embedding_type}", "type": ["string"]}, {"name": "aoai_embedding_connection", "optional": true, "reference": "${inputs.aoai_embedding_connection}", "type": ["AzureOpenAIConnection"]}, {"name": "oai_embedding_connection", "optional": true, "reference": "${inputs.oai_embedding_connection}", "type": ["string"]}, {"name": "embedding_model", "optional": true, "reference": "${inputs.embedding_model}", "type": ["string"]}, {"name": "embedding_deployment", "optional": true, "reference": "${inputs.embedding_deployment}", "type": ["string"]}], "reverse_func_path": "promptflow_vectordb.tool.common_index_lookup_utils.reverse_mapping"}, "input_type": "default"}, "mlindex_path": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["MLIndex file from path"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "oai_embedding_connection": {"type": ["OpenAIConnection"], "enabled_by": "embedding_type", "enabled_by_value": ["OpenAI"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "pinecone_content_field": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Pinecone"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "pinecone_index_connection": {"type": ["PineconeConnection"], "enabled_by": "index_type", "enabled_by_value": ["Pinecone"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_pinecone_connections"}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "pinecone_index_name": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Pinecone"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_pinecone_indices", "func_kwargs": [{"name": "pinecone_connection_name", "optional": false, "reference": "${inputs.pinecone_index_connection}", "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "pinecone_metadata_field": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Pinecone"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "queries": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query_type": {"type": ["string"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_available_query_types", "func_kwargs": [{"name": "mlindex_content", "optional": false, "reference": "${inputs.mlindex_content}", "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "semantic_configuration": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_acs_index_semantic_configurations", "func_kwargs": [{"name": "acs_connection", "optional": false, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}, {"name": "acs_index_name", "optional": false, "reference": "${inputs.acs_index_name}", "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "top_k": {"type": ["int"], "default": 3, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search an AzureML Vector Index for relevant results using one or more text queries.", "module": "promptflow_vectordb.tool.common_index_lookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "preview"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "print_input.py", "type": "python", "inputs": {"text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "print_input.py", "function": "print_inputs", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"text": {"type": "string", "is_chat_input": false}}, "outputs": {"output_text": {"type": "string", "reference": "${print_input.output}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus2euap/workspaces/00000/flows/name/flowRuns/name", "flowRunId": "name", "flowRunDisplayName": "name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/80d5ca5a93c8c6ea7c2fcdf1cd4b9d07/print_input_flow.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "automatic", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "541bf448-5153-4b0a-a34e-c4e39763e775", "studioPortalEndpoint": "https://ml.azure.com/runs/name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '26138' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.292' status: code: 200 message: OK - request: body: '{"runId": "name", "selectRunMetadata": true, "selectRunDefinition": true, "selectJobSpecification": true}' headers: Accept: - '*/*' Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '137' Content-Type: - application/json User-Agent: - python-requests/2.31.0 method: POST uri: https://eastus.api.azureml.ms/history/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/rundata response: body: string: '{"runMetadata": {"runNumber": 1705298823, "rootRunId": "name", "createdUtc": "2024-01-15T06:07:03.006454+00:00", "createdBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": "10032001A114F500", "userIdp": null, "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "Chenyang Zhang", "upn": null}, "userId": "00000000-0000-0000-0000-000000000000", "token": null, "tokenExpiryTimeUtc": null, "error": null, "warnings": null, "revision": 3, "statusRevision": 1, "runUuid": "63400a6e-7d8b-4302-a031-c08f99d265df", "parentRunUuid": null, "rootRunUuid": "63400a6e-7d8b-4302-a031-c08f99d265df", "lastStartTimeUtc": null, "currentComputeTime": "00:00:00", "computeDuration": null, "effectiveStartTimeUtc": null, "lastModifiedBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": "10032001A114F500", "userIdp": null, "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "Chenyang Zhang", "upn": null}, "lastModifiedUtc": "2024-01-15T06:07:08.4229129+00:00", "duration": null, "cancelationReason": null, "currentAttemptId": 1, "runId": "name", "parentRunId": null, "experimentId": "4d67b7d7-dc1c-4699-a53e-318ca24f1f72", "status": "Preparing", "startTimeUtc": null, "endTimeUtc": null, "scheduleId": null, "displayName": "name", "name": null, "dataContainerId": "dcid.name", "description": null, "hidden": false, "runType": "azureml.promptflow.FlowRun", "runTypeV2": {"orchestrator": null, "traits": [], "attribution": "PromptFlow", "computeType": null}, "properties": {"azureml.promptflow.runtime_name": "automatic", "azureml.promptflow.runtime_version": "20240111.v2", "azureml.promptflow.definition_file_name": "flow.dag.yaml", "azureml.promptflow.session_id": "96c35660d759b526cb14cf69bbb56fcaa90c05a778b147b4", "azureml.promptflow.flow_lineage_id": "fcb01d4faf8f2137f9d142cc1f3f22ecdf3d485e1435c4c971ff0ee09077f1b5", "azureml.promptflow.flow_definition_datastore_name": "workspaceblobstore", "azureml.promptflow.flow_definition_blob_path": "LocalUpload/52675845d616ad8b41db77e9ba9e9d4a/print_input_flow/flow.dag.yaml", "azureml.promptflow.input_data": "azureml://datastores/workspaceblobstore/paths/LocalUpload/80d5ca5a93c8c6ea7c2fcdf1cd4b9d07/print_input_flow.jsonl", "_azureml.evaluation_run": "promptflow.BatchRun", "azureml.promptflow.snapshot_id": "541bf448-5153-4b0a-a34e-c4e39763e775"}, "parameters": {}, "actionUris": {}, "scriptName": null, "target": null, "uniqueChildRunComputeTargets": [], "tags": {}, "settings": {}, "services": {}, "inputDatasets": [], "outputDatasets": [], "runDefinition": null, "jobSpecification": null, "primaryMetricName": null, "createdFrom": null, "cancelUri": null, "completeUri": null, "diagnosticsUri": null, "computeRequest": null, "compute": null, "retainForLifetimeOfWorkspace": false, "queueingInfo": null, "inputs": null, "outputs": null}, "runDefinition": null, "jobSpecification": null, "systemSettings": null}' headers: connection: - keep-alive content-length: - '3709' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.018' status: code: 200 message: OK version: 1
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/recordings/test_run_operations_TestFlowRun_test_stream_invalid_run_logs.yaml
interactions: - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000 response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000", "name": "00000", "type": "Microsoft.MachineLearningServices/workspaces", "location": "eastus", "tags": {}, "etag": null, "kind": "Default", "sku": {"name": "Basic", "tier": "Basic"}, "properties": {"discoveryUrl": "https://eastus.api.azureml.ms/discovery"}}' headers: cache-control: - no-cache content-length: - '3630' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.027' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores?count=30&isDefault=true&orderByAsc=false response: body: string: '{"value": [{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}]}' headers: cache-control: - no-cache content-length: - '1372' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.088' status: code: 200 message: OK - request: body: '{"runId": "non_exist_run", "selectRunMetadata": true, "selectRunDefinition": true, "selectJobSpecification": true}' headers: Accept: - '*/*' Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '137' Content-Type: - application/json User-Agent: - python-requests/2.31.0 method: POST uri: https://eastus.api.azureml.ms/history/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/rundata response: body: string: '{"error": {"code": "UserError", "severity": null, "message": "Run runId=non_exist_run was not found", "messageFormat": "Run {runId} was not found", "messageParameters": {"runId": "runId=non_exist_run"}, "referenceCode": null, "detailsUri": null, "target": null, "details": [], "innerError": {"code": "NotFoundError", "innerError": null}, "debugInfo": null, "additionalInfo": null}, "correlation": {"operation": "8ae7e1bb4942865bf920115c263c0e78", "request": "7f0871b4a154f85d"}, "environment": "eastus", "location": "eastus", "time": "2024-01-12T07:58:30.4482197+00:00", "componentName": "run-history", "statusCode": 404}' headers: connection: - keep-alive content-length: - '777' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.046' status: code: 404 message: Run runId=f1356823-7551-4ab3-93ba-6d60270b9dc6 was not found version: 1
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/recordings/test_telemetry_TestTelemetry_test_custom_event.yaml
interactions: - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 promptflow/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/api-version=2023-08-01-preview response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000", "name": "00000", "type": "Microsoft.MachineLearningServices/workspaces", "location": "eastus", "tags": {}, "etag": null, "kind": "Default", "sku": {"name": "Basic", "tier": "Basic"}, "properties": {"discoveryUrl": "https://eastus.api.azureml.ms/discovery"}}' headers: cache-control: - no-cache content-length: - '3630' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains vary: - Accept-Encoding x-cache: - CONFIG_NOCACHE x-content-type-options: - nosniff x-request-time: - '0.038' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 promptflow/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores?api-version=2023-04-01-preview&count=30&isDefault=true&orderByAsc=false response: body: string: '{"value": [{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}]}' headers: cache-control: - no-cache content-length: - '1372' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains vary: - Accept-Encoding x-cache: - CONFIG_NOCACHE x-content-type-options: - nosniff x-request-time: - '1.132' status: code: 200 message: OK - request: body: '{"runId": "not_exist", "selectRunMetadata": true, "selectRunDefinition": true, "selectJobSpecification": true}' headers: Accept: - '*/*' Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '110' Content-Type: - application/json User-Agent: - python-requests/2.31.0 method: POST uri: https://eastus.api.azureml.ms/history/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/rundata response: body: string: '{"error": {"code": "UserError", "severity": null, "message": "Run runId=not_exist was not found", "messageFormat": "Run {runId} was not found", "messageParameters": {"runId": "runId=not_exist"}, "referenceCode": null, "detailsUri": null, "target": null, "details": [], "innerError": {"code": "NotFoundError", "innerError": null}, "debugInfo": null, "additionalInfo": null}, "correlation": {"operation": "ea26eac5dbeb3bdc99dc95beeb40ac6f", "request": "010bd843f7775527"}, "environment": "eastus", "location": "eastus", "time": "2023-11-23T04:54:12.8199101+00:00", "componentName": "run-history", "statusCode": 404}' headers: connection: - keep-alive content-length: - '723' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.112' status: code: 404 message: Run runId=not_exist was not found version: 1
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/recordings/test_telemetry_TestTelemetry_test_inner_function_call.yaml
interactions: - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000 response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000", "name": "00000", "type": "Microsoft.MachineLearningServices/workspaces", "location": "eastus", "tags": {}, "etag": null, "kind": "Default", "sku": {"name": "Basic", "tier": "Basic"}, "properties": {"discoveryUrl": "https://eastus.api.azureml.ms/discovery"}}' headers: cache-control: - no-cache content-length: - '3630' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.025' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores?count=30&isDefault=true&orderByAsc=false response: body: string: '{"value": [{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}]}' headers: cache-control: - no-cache content-length: - '1372' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.070' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.089' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '2.544' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:17:41 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/env_var_names.jsonl response: body: string: '' headers: accept-ranges: - bytes content-length: - '49' content-md5: - quXiEreYvPinSj0HsaNa/g== content-type: - application/octet-stream last-modified: - Wed, 08 Nov 2023 04:26:09 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Wed, 08 Nov 2023 04:26:09 GMT x-ms-meta-name: - c4092674-5e53-4c17-b78d-75353ae0edb6 x-ms-meta-upload_status: - completed x-ms-meta-version: - 579021dc-8ac8-4c73-8110-4642bd00c69b x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:17:42 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/env_var_names.jsonl response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.083' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.097' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:17:45 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/print_env_var/flow.dag.yaml response: body: string: '' headers: accept-ranges: - bytes content-length: - '245' content-md5: - F+JA0a3CxcLYZ0ANRdlZbA== content-type: - application/octet-stream last-modified: - Wed, 29 Nov 2023 02:51:35 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Thu, 17 Aug 2023 10:30:09 GMT x-ms-meta-name: - 56efdd28-6297-4baa-aad3-be46f4b768a2 x-ms-meta-upload_status: - completed x-ms-meta-version: - '1' x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:17:46 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/print_env_var/flow.dag.yaml response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: '{"flowDefinitionDataStoreName": "workspaceblobstore", "flowDefinitionBlobPath": "LocalUpload/000000000000000000000000000000000000/print_env_var/flow.dag.yaml", "runId": "name", "runDisplayName": "name", "runExperimentName": "", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/000000000000000000000000000000000000/env_var_names.jsonl"}, "inputsMapping": {}, "connections": {}, "environmentVariables": {"API_BASE": "${azure_open_ai_connection.api_base}"}, "runtimeName": "fake-runtime-name", "sessionId": "000000000000000000000000000000000000000000000000", "sessionSetupMode": "SystemWait", "flowLineageId": "0000000000000000000000000000000000000000000000000000000000000000", "runDisplayNameGenerationType": "UserProvidedMacro"}' headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '834' Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/submit response: body: string: '"name"' headers: connection: - keep-alive content-length: - '38' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload x-content-type-options: - nosniff x-request-time: - '6.825' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/name response: body: string: '{"flowGraph": {"nodes": [{"name": "print_env", "type": "python", "source": {"type": "code", "path": "print_env.py"}, "inputs": {"key": "${inputs.key}"}, "tool": "print_env.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "print_env.py", "type": "python", "inputs": {"key": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "print_env.py", "function": "get_env_var", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"key": {"type": "string", "is_chat_input": false}}, "outputs": {"output": {"type": "string", "reference": "${print_env.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/name/flowRuns/name", "flowRunId": "name", "flowRunDisplayName": "name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/c32a61842e439cecc022ebcff5dc0da4/env_var_names.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "30e9e690-d4ea-47fa-b21e-f2d2e3477afb", "studioPortalEndpoint": "https://ml.azure.com/runs/name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12855' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.389' status: code: 200 message: OK - request: body: '{"runId": "name", "selectRunMetadata": true, "selectRunDefinition": true, "selectJobSpecification": true}' headers: Accept: - '*/*' Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '137' Content-Type: - application/json User-Agent: - python-requests/2.31.0 method: POST uri: https://eastus.api.azureml.ms/history/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/rundata response: body: string: '{"runMetadata": {"runNumber": 1705047472, "rootRunId": "name", "createdUtc": "2024-01-12T08:17:52.7672482+00:00", "createdBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587", "upn": null}, "userId": "00000000-0000-0000-0000-000000000000", "token": null, "tokenExpiryTimeUtc": null, "error": null, "warnings": null, "revision": 3, "statusRevision": 1, "runUuid": "8d919d93-e46a-485d-a698-02f4c9fdc799", "parentRunUuid": null, "rootRunUuid": "8d919d93-e46a-485d-a698-02f4c9fdc799", "lastStartTimeUtc": null, "currentComputeTime": "00:00:00", "computeDuration": null, "effectiveStartTimeUtc": null, "lastModifiedBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587", "upn": null}, "lastModifiedUtc": "2024-01-12T08:17:56.9173918+00:00", "duration": null, "cancelationReason": null, "currentAttemptId": 1, "runId": "name", "parentRunId": null, "experimentId": "6a87c3ae-5a75-4c5d-9eb9-5203b0062282", "status": "Preparing", "startTimeUtc": null, "endTimeUtc": null, "scheduleId": null, "displayName": "name", "name": null, "dataContainerId": "dcid.name", "description": null, "hidden": false, "runType": "azureml.promptflow.FlowRun", "runTypeV2": {"orchestrator": null, "traits": [], "attribution": "PromptFlow", "computeType": "AmlcDsi"}, "properties": {"azureml.promptflow.runtime_name": "test-runtime-ci", "azureml.promptflow.runtime_version": "20231204.v4", "azureml.promptflow.definition_file_name": "flow.dag.yaml", "azureml.promptflow.session_id": "62adccc385dd5d078797bdd0d2e1c55e120f3d5216885b81", "azureml.promptflow.flow_lineage_id": "f1efdb93dcf9b3c17e246e7bcf0e2c7398d7bc289f8dd2c3d8f808eacc63c31f", "azureml.promptflow.flow_definition_datastore_name": "workspaceblobstore", "azureml.promptflow.flow_definition_blob_path": "LocalUpload/3360ae705933fb90bcd290241ca0ece9/print_env_var/flow.dag.yaml", "azureml.promptflow.input_data": "azureml://datastores/workspaceblobstore/paths/LocalUpload/c32a61842e439cecc022ebcff5dc0da4/env_var_names.jsonl", "_azureml.evaluation_run": "promptflow.BatchRun", "azureml.promptflow.snapshot_id": "30e9e690-d4ea-47fa-b21e-f2d2e3477afb"}, "parameters": {}, "actionUris": {}, "scriptName": null, "target": null, "uniqueChildRunComputeTargets": [], "tags": {}, "settings": {}, "services": {}, "inputDatasets": [], "outputDatasets": [], "runDefinition": null, "jobSpecification": null, "primaryMetricName": null, "createdFrom": null, "cancelUri": null, "completeUri": null, "diagnosticsUri": null, "computeRequest": null, "compute": null, "retainForLifetimeOfWorkspace": false, "queueingInfo": null, "inputs": null, "outputs": null}, "runDefinition": null, "jobSpecification": null, "systemSettings": null}' headers: connection: - keep-alive content-length: - '3849' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.042' status: code: 200 message: OK version: 1
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/recordings/test_run_operations_TestFlowRun_test_automatic_runtime_with_resources.yaml
interactions: - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000 response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000", "name": "00000", "type": "Microsoft.MachineLearningServices/workspaces", "location": "eastus", "tags": {}, "etag": null, "kind": "Default", "sku": {"name": "Basic", "tier": "Basic"}, "properties": {"discoveryUrl": "https://eastus.api.azureml.ms/discovery"}}' headers: cache-control: - no-cache content-length: - '3630' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.026' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores?count=30&isDefault=true&orderByAsc=false response: body: string: '{"value": [{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}]}' headers: cache-control: - no-cache content-length: - '1372' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.053' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.076' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.150' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:46:41 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/webClassification1.jsonl response: body: string: '' headers: accept-ranges: - bytes content-length: - '127' content-md5: - i/8q1x5YKzHv3Fd/R8lYUQ== content-type: - application/octet-stream last-modified: - Fri, 28 Jul 2023 12:34:52 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Fri, 28 Jul 2023 12:34:52 GMT x-ms-meta-name: - 13fa99dd-c98e-4f2a-a704-4295d4ed6f68 x-ms-meta-upload_status: - completed x-ms-meta-version: - 0367c5c6-9f53-4a75-8623-7e53699f0d0b x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:46:42 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/webClassification1.jsonl response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.075' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.082' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:46:45 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/web_classification/classify_with_llm.jinja2 response: body: string: '' headers: accept-ranges: - bytes content-length: - '853' content-md5: - ylTeNqjvuOvtzEZJ/X5n3A== content-type: - application/octet-stream last-modified: - Fri, 12 Jan 2024 08:13:57 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Fri, 12 Jan 2024 08:13:56 GMT x-ms-meta-name: - 950201e8-c52c-4b15-ada1-5e58de9b2f4d x-ms-meta-upload_status: - completed x-ms-meta-version: - '1' x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:46:46 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/web_classification/classify_with_llm.jinja2 response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: '{"flowDefinitionDataStoreName": "workspaceblobstore", "flowDefinitionBlobPath": "LocalUpload/000000000000000000000000000000000000/web_classification/flow.dag.yaml", "runId": "run_id", "runDisplayName": "run_id", "runExperimentName": "", "nodeVariant": "${summarize_text_content.variant_0}", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/000000000000000000000000000000000000/webClassification1.jsonl"}, "inputsMapping": {"url": "${data.url}"}, "connections": {}, "environmentVariables": {}, "runtimeName": "fake-runtime-name", "sessionId": "000000000000000000000000000000000000000000000000", "vmSize": "Standard_D2", "maxIdleTimeSeconds": 3600, "sessionSetupMode": "SystemWait", "flowLineageId": "0000000000000000000000000000000000000000000000000000000000000000", "runDisplayNameGenerationType": "UserProvidedMacro"}' headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '920' Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/submit response: body: string: '"run_id"' headers: connection: - keep-alive content-length: - '38' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload x-content-type-options: - nosniff x-request-time: - '3.485' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/run_id response: body: string: '{"flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/run_id/flowRuns/run_id", "flowRunId": "run_id", "flowRunDisplayName": "run_id", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/107bd3498e44deb2dccc53d2208d32b2/webClassification1.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "automatic", "inputsMapping": {"url": "${data.url}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/run_id/flow_artifacts", "studioPortalEndpoint": "https://ml.azure.com/runs/run_id?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '945' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.273' status: code: 200 message: OK - request: body: '{"runId": "run_id", "selectRunMetadata": true, "selectRunDefinition": true, "selectJobSpecification": true}' headers: Accept: - '*/*' Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '137' Content-Type: - application/json User-Agent: - python-requests/2.31.0 method: POST uri: https://eastus.api.azureml.ms/history/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/rundata response: body: string: '{"runMetadata": {"runNumber": 1705049212, "rootRunId": "run_id", "createdUtc": "2024-01-12T08:46:52.5382691+00:00", "createdBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587", "upn": null}, "userId": "00000000-0000-0000-0000-000000000000", "token": null, "tokenExpiryTimeUtc": null, "error": null, "warnings": null, "revision": 1, "statusRevision": 0, "runUuid": "2fb0f4b1-9d4b-4dd7-9394-c35727026f45", "parentRunUuid": null, "rootRunUuid": "2fb0f4b1-9d4b-4dd7-9394-c35727026f45", "lastStartTimeUtc": null, "currentComputeTime": "00:00:00", "computeDuration": null, "effectiveStartTimeUtc": null, "lastModifiedBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587", "upn": null}, "lastModifiedUtc": "2024-01-12T08:46:52.5382691+00:00", "duration": null, "cancelationReason": null, "currentAttemptId": 1, "runId": "run_id", "parentRunId": null, "experimentId": "d30efbeb-f81d-4cfa-b5cc-a0570a049009", "status": "NotStarted", "startTimeUtc": null, "endTimeUtc": null, "scheduleId": null, "displayName": "run_id", "name": null, "dataContainerId": "dcid.run_id", "description": null, "hidden": false, "runType": "azureml.promptflow.FlowRun", "runTypeV2": {"orchestrator": null, "traits": [], "attribution": "PromptFlow", "computeType": null}, "properties": {"azureml.promptflow.runtime_name": "automatic", "azureml.promptflow.runtime_version": "20231218.v2", "azureml.promptflow.definition_file_name": "flow.dag.yaml", "azureml.promptflow.session_id": "4dd8f4d5f44dfeb817d3438cf84bd739215d87afd9458597", "azureml.promptflow.flow_lineage_id": "af1a6951de9be2ce13d3b58b23dbd8b6a0cd8fd4918ad9cb22b28fb8395fbcb0", "azureml.promptflow.node_variant": "${summarize_text_content.variant_0}", "azureml.promptflow.flow_definition_datastore_name": "workspaceblobstore", "azureml.promptflow.flow_definition_blob_path": "LocalUpload/a1fa6ef1ead7ff3ce76b36250f6f5461/web_classification/flow.dag.yaml", "azureml.promptflow.input_data": "azureml://datastores/workspaceblobstore/paths/LocalUpload/107bd3498e44deb2dccc53d2208d32b2/webClassification1.jsonl", "azureml.promptflow.inputs_mapping": "{\"url\":\"${data.url}\"}", "_azureml.evaluation_run": "promptflow.BatchRun"}, "parameters": {}, "actionUris": {}, "scriptName": null, "target": null, "uniqueChildRunComputeTargets": [], "tags": {}, "settings": {}, "services": {}, "inputDatasets": [], "outputDatasets": [], "runDefinition": null, "jobSpecification": null, "primaryMetricName": null, "createdFrom": null, "cancelUri": null, "completeUri": null, "diagnosticsUri": null, "computeRequest": null, "compute": null, "retainForLifetimeOfWorkspace": false, "queueingInfo": null, "inputs": null, "outputs": null}, "runDefinition": null, "jobSpecification": null, "systemSettings": null}' headers: connection: - keep-alive content-length: - '3921' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.081' status: code: 200 message: OK version: 1
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/recordings/test_run_operations_TestFlowRun_test_run_bulk_with_remote_flow.yaml
interactions: - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000 response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000", "name": "00000", "type": "Microsoft.MachineLearningServices/workspaces", "location": "eastus", "tags": {}, "etag": null, "kind": "Default", "sku": {"name": "Basic", "tier": "Basic"}, "properties": {"discoveryUrl": "https://eastus.api.azureml.ms/discovery"}}' headers: cache-control: - no-cache content-length: - '3630' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.034' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores?count=30&isDefault=true&orderByAsc=false response: body: string: '{"value": [{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}]}' headers: cache-control: - no-cache content-length: - '1372' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.127' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceworkingdirectory response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceworkingdirectory", "name": "workspaceworkingdirectory", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": false, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureFile", "accountName": "fake_account_name", "fileShareName": "fake-file-share-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "None"}, "systemData": {"createdAt": "2023-04-08T02:53:06.6001169+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.2885525+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1161' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.088' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceworkingdirectory/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.178' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - azsdk-python-storage-file-share/12.14.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:20:46 GMT x-ms-file-attributes: - none x-ms-file-creation-time: - now x-ms-file-last-write-time: - now x-ms-file-permission: - inherit x-ms-version: - '2023-08-03' method: PUT uri: https://fake_account_name.file.core.windows.net/fake-file-share-name/LocalUpload?restype=directory response: body: string: "\uFEFF<?xml version=\"1.0\" encoding=\"utf-8\"?><Error><Code>ResourceAlreadyExists</Code><Message>The specified resource already exists.\nRequestId:6129333d-f01a-008a-1530-45563d000000\nTime:2024-01-12T08:20:47.2521286Z</Message></Error>" headers: content-length: - '228' content-type: - application/xml server: - Windows-Azure-File/1.0 Microsoft-HTTPAPI/2.0 x-ms-error-code: - ResourceAlreadyExists x-ms-version: - '2023-08-03' status: code: 409 message: The specified resource already exists. - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - azsdk-python-storage-file-share/12.14.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:20:48 GMT x-ms-file-attributes: - none x-ms-file-creation-time: - now x-ms-file-last-write-time: - now x-ms-file-permission: - inherit x-ms-version: - '2023-08-03' method: PUT uri: https://fake_account_name.file.core.windows.net/fake-file-share-name/Users?restype=directory response: body: string: "\uFEFF<?xml version=\"1.0\" encoding=\"utf-8\"?><Error><Code>ResourceAlreadyExists</Code><Message>The specified resource already exists.\nRequestId:86b8d942-f01a-0103-4330-4512e5000000\nTime:2024-01-12T08:20:49.4233757Z</Message></Error>" headers: content-length: - '228' content-type: - application/xml server: - Windows-Azure-File/1.0 Microsoft-HTTPAPI/2.0 x-ms-error-code: - ResourceAlreadyExists x-ms-version: - '2023-08-03' status: code: 409 message: The specified resource already exists. - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - azsdk-python-storage-file-share/12.14.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:20:49 GMT x-ms-file-attributes: - none x-ms-file-creation-time: - now x-ms-file-last-write-time: - now x-ms-file-permission: - inherit x-ms-version: - '2023-08-03' method: PUT uri: https://fake_account_name.file.core.windows.net/fake-file-share-name/Users%2Funknown_user?restype=directory response: body: string: "\uFEFF<?xml version=\"1.0\" encoding=\"utf-8\"?><Error><Code>ResourceAlreadyExists</Code><Message>The specified resource already exists.\nRequestId:ecf357ab-601a-000e-3630-45243c000000\nTime:2024-01-12T08:20:50.4359042Z</Message></Error>" headers: content-length: - '228' content-type: - application/xml server: - Windows-Azure-File/1.0 Microsoft-HTTPAPI/2.0 x-ms-error-code: - ResourceAlreadyExists x-ms-version: - '2023-08-03' status: code: 409 message: The specified resource already exists. - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - azsdk-python-storage-file-share/12.14.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:20:50 GMT x-ms-file-attributes: - none x-ms-file-creation-time: - now x-ms-file-last-write-time: - now x-ms-file-permission: - inherit x-ms-version: - '2023-08-03' method: PUT uri: https://fake_account_name.file.core.windows.net/fake-file-share-name/Users%2Funknown_user%2Fpromptflow?restype=directory response: body: string: "\uFEFF<?xml version=\"1.0\" encoding=\"utf-8\"?><Error><Code>ResourceAlreadyExists</Code><Message>The specified resource already exists.\nRequestId:c3caa163-701a-004f-3930-457cd8000000\nTime:2024-01-12T08:20:51.5247623Z</Message></Error>" headers: content-length: - '228' content-type: - application/xml server: - Windows-Azure-File/1.0 Microsoft-HTTPAPI/2.0 x-ms-error-code: - ResourceAlreadyExists x-ms-version: - '2023-08-03' status: code: 409 message: The specified resource already exists. - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-file-share/12.14.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:20:51 GMT x-ms-version: - '2023-08-03' method: GET uri: https://fake_account_name.file.core.windows.net/fake-file-share-name/Users%2Funknown_user%2Fpromptflow%2Fflow_name?restype=directory response: body: string: "\uFEFF<?xml version=\"1.0\" encoding=\"utf-8\"?><Error><Code>ResourceNotFound</Code><Message>The specified resource does not exist.\nRequestId:2e1ebc56-901a-00a3-7730-456849000000\nTime:2024-01-12T08:20:52.5499479Z</Message></Error>" headers: content-length: - '223' content-type: - application/xml server: - Windows-Azure-File/1.0 Microsoft-HTTPAPI/2.0 x-ms-error-code: - ResourceNotFound x-ms-version: - '2023-08-03' status: code: 404 message: The specified resource does not exist. - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - azsdk-python-storage-file-share/12.14.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:20:52 GMT x-ms-file-attributes: - none x-ms-file-creation-time: - now x-ms-file-last-write-time: - now x-ms-file-permission: - inherit x-ms-version: - '2023-08-03' method: PUT uri: https://fake_account_name.file.core.windows.net/fake-file-share-name/Users%2Funknown_user%2Fpromptflow%2Fflow_name?restype=directory response: body: string: '' headers: content-length: - '0' last-modified: - Fri, 12 Jan 2024 08:20:53 GMT server: - Windows-Azure-File/1.0 Microsoft-HTTPAPI/2.0 x-ms-file-attributes: - Directory x-ms-file-change-time: - '2024-01-12T08:20:53.5910056Z' x-ms-file-creation-time: - '2024-01-12T08:20:53.5910056Z' x-ms-file-id: - '13835071872191954944' x-ms-file-last-write-time: - '2024-01-12T08:20:53.5910056Z' x-ms-file-parent-id: - '10088082484072808448' x-ms-request-server-encrypted: - 'true' x-ms-version: - '2023-08-03' status: code: 201 message: Created - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - azsdk-python-storage-file-share/12.14.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:20:53 GMT x-ms-file-attributes: - none x-ms-file-creation-time: - now x-ms-file-last-write-time: - now x-ms-file-permission: - inherit x-ms-version: - '2023-08-03' method: PUT uri: https://fake_account_name.file.core.windows.net/fake-file-share-name/Users%2Funknown_user%2Fpromptflow%2Fflow_name%2F__pycache__?restype=directory response: body: string: '' headers: content-length: - '0' last-modified: - Fri, 12 Jan 2024 08:20:54 GMT server: - Windows-Azure-File/1.0 Microsoft-HTTPAPI/2.0 x-ms-file-attributes: - Directory x-ms-file-change-time: - '2024-01-12T08:20:54.6393991Z' x-ms-file-creation-time: - '2024-01-12T08:20:54.6393991Z' x-ms-file-id: - '13835142240936132608' x-ms-file-last-write-time: - '2024-01-12T08:20:54.6393991Z' x-ms-file-parent-id: - '13835071872191954944' x-ms-request-server-encrypted: - 'true' x-ms-version: - '2023-08-03' status: code: 201 message: Created - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - azsdk-python-storage-file-share/12.14.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-content-length: - '14' x-ms-date: - Fri, 12 Jan 2024 08:20:54 GMT x-ms-file-attributes: - none x-ms-file-creation-time: - now x-ms-file-last-write-time: - now x-ms-file-permission: - Inherit x-ms-type: - file x-ms-version: - '2023-08-03' method: PUT uri: https://fake_account_name.file.core.windows.net/fake-file-share-name/Users/unknown_user/promptflow/flow_name/.gitattributes response: body: string: '' headers: content-length: - '0' last-modified: - Fri, 12 Jan 2024 08:20:55 GMT server: - Windows-Azure-File/1.0 Microsoft-HTTPAPI/2.0 x-ms-file-attributes: - Archive x-ms-file-change-time: - '2024-01-12T08:20:55.6877941Z' x-ms-file-creation-time: - '2024-01-12T08:20:55.6877941Z' x-ms-file-id: - '13835107056564043776' x-ms-file-last-write-time: - '2024-01-12T08:20:55.6877941Z' x-ms-file-parent-id: - '13835071872191954944' x-ms-request-server-encrypted: - 'true' x-ms-version: - '2023-08-03' status: code: 201 message: Created - request: body: '* text eol=lf ' headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '14' Content-MD5: - nYmkCopuDuFj82431amzZw== Content-Type: - application/octet-stream User-Agent: - azsdk-python-storage-file-share/12.14.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:20:55 GMT x-ms-range: - bytes=0-13 x-ms-version: - '2023-08-03' x-ms-write: - update method: PUT uri: https://fake_account_name.file.core.windows.net/fake-file-share-name/Users/unknown_user/promptflow/flow_name/.gitattributes?comp=range response: body: string: '' headers: content-length: - '0' content-md5: - nYmkCopuDuFj82431amzZw== last-modified: - Fri, 12 Jan 2024 08:20:56 GMT server: - Windows-Azure-File/1.0 Microsoft-HTTPAPI/2.0 x-ms-file-last-write-time: - '2024-01-12T08:20:56.7202574Z' x-ms-request-server-encrypted: - 'true' x-ms-version: - '2023-08-03' status: code: 201 message: Created - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - azsdk-python-storage-file-share/12.14.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-content-length: - '250' x-ms-date: - Fri, 12 Jan 2024 08:20:56 GMT x-ms-file-attributes: - none x-ms-file-creation-time: - now x-ms-file-last-write-time: - now x-ms-file-permission: - Inherit x-ms-type: - file x-ms-version: - '2023-08-03' method: PUT uri: https://fake_account_name.file.core.windows.net/fake-file-share-name/Users/unknown_user/promptflow/flow_name/flow.dag.yaml response: body: string: '' headers: content-length: - '0' last-modified: - Fri, 12 Jan 2024 08:20:57 GMT server: - Windows-Azure-File/1.0 Microsoft-HTTPAPI/2.0 x-ms-file-attributes: - Archive x-ms-file-change-time: - '2024-01-12T08:20:57.7935437Z' x-ms-file-creation-time: - '2024-01-12T08:20:57.7935437Z' x-ms-file-id: - '13835177425308221440' x-ms-file-last-write-time: - '2024-01-12T08:20:57.7935437Z' x-ms-file-parent-id: - '13835071872191954944' x-ms-request-server-encrypted: - 'true' x-ms-version: - '2023-08-03' status: code: 201 message: Created - request: body: "inputs:\n name:\n type: string\n default: hod\noutputs:\n result:\n \ type: string\n reference: ${hello_world.output}\nnodes:\n- name: hello_world\n \ type: python\n source:\n type: code\n path: hello_world.py\n inputs:\n \ name: ${inputs.name}\n" headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '250' Content-MD5: - CT1FTZp5JScB8fq+HjnINw== Content-Type: - application/octet-stream User-Agent: - azsdk-python-storage-file-share/12.14.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:20:57 GMT x-ms-range: - bytes=0-249 x-ms-version: - '2023-08-03' x-ms-write: - update method: PUT uri: https://fake_account_name.file.core.windows.net/fake-file-share-name/Users/unknown_user/promptflow/flow_name/flow.dag.yaml?comp=range response: body: string: '' headers: content-length: - '0' content-md5: - CT1FTZp5JScB8fq+HjnINw== last-modified: - Fri, 12 Jan 2024 08:20:58 GMT server: - Windows-Azure-File/1.0 Microsoft-HTTPAPI/2.0 x-ms-file-last-write-time: - '2024-01-12T08:20:58.8299884Z' x-ms-request-server-encrypted: - 'true' x-ms-version: - '2023-08-03' status: code: 201 message: Created - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - azsdk-python-storage-file-share/12.14.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-content-length: - '105' x-ms-date: - Fri, 12 Jan 2024 08:20:58 GMT x-ms-file-attributes: - none x-ms-file-creation-time: - now x-ms-file-last-write-time: - now x-ms-file-permission: - Inherit x-ms-type: - file x-ms-version: - '2023-08-03' method: PUT uri: https://fake_account_name.file.core.windows.net/fake-file-share-name/Users/unknown_user/promptflow/flow_name/hello_world.py response: body: string: '' headers: content-length: - '0' last-modified: - Fri, 12 Jan 2024 08:20:59 GMT server: - Windows-Azure-File/1.0 Microsoft-HTTPAPI/2.0 x-ms-file-attributes: - Archive x-ms-file-change-time: - '2024-01-12T08:20:59.8445310Z' x-ms-file-creation-time: - '2024-01-12T08:20:59.8445310Z' x-ms-file-id: - '13835089464377999360' x-ms-file-last-write-time: - '2024-01-12T08:20:59.8445310Z' x-ms-file-parent-id: - '13835071872191954944' x-ms-request-server-encrypted: - 'true' x-ms-version: - '2023-08-03' status: code: 201 message: Created - request: body: "from promptflow import tool\n\n\n@tool\ndef hello_world(name: str) -> str:\n \ return f\"Hello World {name}!\"\n" headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '105' Content-MD5: - fGMkkiZAjGs8PW/AMiYppA== Content-Type: - application/octet-stream User-Agent: - azsdk-python-storage-file-share/12.14.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:20:59 GMT x-ms-range: - bytes=0-104 x-ms-version: - '2023-08-03' x-ms-write: - update method: PUT uri: https://fake_account_name.file.core.windows.net/fake-file-share-name/Users/unknown_user/promptflow/flow_name/hello_world.py?comp=range response: body: string: '' headers: content-length: - '0' content-md5: - fGMkkiZAjGs8PW/AMiYppA== last-modified: - Fri, 12 Jan 2024 08:21:00 GMT server: - Windows-Azure-File/1.0 Microsoft-HTTPAPI/2.0 x-ms-file-last-write-time: - '2024-01-12T08:21:00.8660433Z' x-ms-request-server-encrypted: - 'true' x-ms-version: - '2023-08-03' status: code: 201 message: Created - request: body: '{"flowName": "flow_display_name", "description": "test flow description", "tags": {"owner": "sdk-test"}, "flowDefinitionFilePath": "Users/unknown_user/promptflow/flow_name/flow.dag.yaml", "flowType": "default"}' headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '282' Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/Flows response: body: string: '{"eTag": {}, "studioPortalEndpoint": "https://ml.azure.com/prompts/flow/3e123da1-f9a5-4c91-9234-8d9ffbb39ff5/f3886259-e2d7-4acc-880a-69cd2ed547cc/details?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000", "flowId": "f3886259-e2d7-4acc-880a-69cd2ed547cc", "flowName": "flow_display_name", "description": "test flow description", "tags": {"owner": "sdk-test"}, "flowType": "Default", "experimentId": "00000000-0000-0000-0000-000000000000", "createdDate": "2024-01-12T08:21:03.4561663Z", "lastModifiedDate": "2024-01-12T08:21:03.456185Z", "owner": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587"}, "flowResourceId": "azureml://locations/eastus/workspaces/00000/flows/f3886259-e2d7-4acc-880a-69cd2ed547cc", "isArchived": false, "flowDefinitionFilePath": "Users/unknown_user/promptflow/flow_name/flow.dag.yaml"}' headers: connection: - keep-alive content-length: - '1099' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.560' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-file-share/12.14.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:21:03 GMT x-ms-version: - '2023-08-03' method: HEAD uri: https://fake_account_name.file.core.windows.net/fake-file-share-name/Users/unknown_user/promptflow/flow_name/flow.dag.yaml response: body: string: '' headers: content-length: - '250' content-type: - application/octet-stream last-modified: - Fri, 12 Jan 2024 08:20:58 GMT server: - Windows-Azure-File/1.0 Microsoft-HTTPAPI/2.0 x-ms-file-attributes: - Archive x-ms-file-change-time: - '2024-01-12T08:20:58.8299884Z' x-ms-file-creation-time: - '2024-01-12T08:20:57.7935437Z' x-ms-file-id: - '13835177425308221440' x-ms-file-last-write-time: - '2024-01-12T08:20:58.8299884Z' x-ms-file-parent-id: - '13835071872191954944' x-ms-type: - File x-ms-version: - '2023-08-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.144' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.206' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:21:07 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/simple_hello_world.jsonl response: body: string: '' headers: accept-ranges: - bytes content-length: - '22' content-md5: - SaVvJK8fXJzgPgQkmSaCGA== content-type: - application/octet-stream last-modified: - Thu, 23 Nov 2023 12:11:21 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Thu, 23 Nov 2023 12:11:20 GMT x-ms-meta-name: - 74c8f1fa-9e14-4249-8fec-279efedeb400 x-ms-meta-upload_status: - completed x-ms-meta-version: - 2266d840-3ecd-4a91-9e63-8d57e7b0a62e x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:21:08 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/simple_hello_world.jsonl response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: '{"flowDefinitionResourceId": "azureml://locations/fake-region/workspaces/00000/flows/00000000-0000-0000-0000-000000000000/", "runId": "name", "runDisplayName": "name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/000000000000000000000000000000000000/simple_hello_world.jsonl"}, "inputsMapping": {"name": "${data.name}"}, "connections": {}, "environmentVariables": {}, "runtimeName": "fake-runtime-name", "sessionId": "000000000000000000000000000000000000000000000000", "sessionSetupMode": "SystemWait", "flowLineageId": "0000000000000000000000000000000000000000000000000000000000000000", "runDisplayNameGenerationType": "UserProvidedMacro"}' headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '727' Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/submit response: body: string: '"name"' headers: connection: - keep-alive content-length: - '38' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload x-content-type-options: - nosniff x-request-time: - '7.332' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/name response: body: string: '{"flowGraph": {"nodes": [{"name": "hello_world", "type": "python", "source": {"type": "code", "path": "hello_world.py"}, "inputs": {"name": "${inputs.name}"}, "tool": "hello_world.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "hello_world.py", "type": "python", "inputs": {"name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "hello_world.py", "function": "hello_world", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"name": {"type": "string", "default": "hod", "is_chat_input": false}}, "outputs": {"result": {"type": "string", "reference": "${hello_world.output}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/f3886259-e2d7-4acc-880a-69cd2ed547cc/flowRuns/name", "flowRunId": "name", "flowRunDisplayName": "name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/79f088fae0e502653c43146c9682f425/simple_hello_world.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"name": "${data.name}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/f3886259-e2d7-4acc-880a-69cd2ed547cc/name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "5003f634-d7a8-42ec-a7a9-519755b1c1fa", "studioPortalEndpoint": "https://ml.azure.com/runs/name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12944' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.319' status: code: 200 message: OK - request: body: '{"runId": "name", "selectRunMetadata": true, "selectRunDefinition": true, "selectJobSpecification": true}' headers: Accept: - '*/*' Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '137' Content-Type: - application/json User-Agent: - python-requests/2.31.0 method: POST uri: https://eastus.api.azureml.ms/history/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/rundata response: body: string: '{"runMetadata": {"runNumber": 1705047673, "rootRunId": "name", "createdUtc": "2024-01-12T08:21:13.4108336+00:00", "createdBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587", "upn": null}, "userId": "00000000-0000-0000-0000-000000000000", "token": null, "tokenExpiryTimeUtc": null, "error": null, "warnings": null, "revision": 3, "statusRevision": 1, "runUuid": "726be460-9edf-49d2-a74f-066dc85d64ba", "parentRunUuid": null, "rootRunUuid": "726be460-9edf-49d2-a74f-066dc85d64ba", "lastStartTimeUtc": null, "currentComputeTime": "00:00:00", "computeDuration": null, "effectiveStartTimeUtc": null, "lastModifiedBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587", "upn": null}, "lastModifiedUtc": "2024-01-12T08:21:17.8855829+00:00", "duration": null, "cancelationReason": null, "currentAttemptId": 1, "runId": "name", "parentRunId": null, "experimentId": "ea890465-3022-4c1a-b6d8-894897cbe16d", "status": "Preparing", "startTimeUtc": null, "endTimeUtc": null, "scheduleId": null, "displayName": "name", "name": null, "dataContainerId": "dcid.name", "description": null, "hidden": false, "runType": "azureml.promptflow.FlowRun", "runTypeV2": {"orchestrator": null, "traits": [], "attribution": "PromptFlow", "computeType": "AmlcDsi"}, "properties": {"azureml.promptflow.runtime_name": "test-runtime-ci", "azureml.promptflow.runtime_version": "20231204.v4", "azureml.promptflow.definition_file_name": "flow.dag.yaml", "azureml.promptflow.session_id": "f3886259-e2d7-4acc-880a-69cd2ed547cc", "azureml.promptflow.flow_lineage_id": "f3886259-e2d7-4acc-880a-69cd2ed547cc", "azureml.promptflow.flow_definition_resource_id": "azureml://locations/eastus/workspaces/00000/flows/f3886259-e2d7-4acc-880a-69cd2ed547cc", "azureml.promptflow.flow_id": "f3886259-e2d7-4acc-880a-69cd2ed547cc", "azureml.promptflow.input_data": "azureml://datastores/workspaceblobstore/paths/LocalUpload/79f088fae0e502653c43146c9682f425/simple_hello_world.jsonl", "azureml.promptflow.inputs_mapping": "{\"name\":\"${data.name}\"}", "_azureml.evaluation_run": "promptflow.BatchRun", "azureml.promptflow.snapshot_id": "5003f634-d7a8-42ec-a7a9-519755b1c1fa"}, "parameters": {}, "actionUris": {}, "scriptName": null, "target": null, "uniqueChildRunComputeTargets": [], "tags": {}, "settings": {}, "services": {}, "inputDatasets": [], "outputDatasets": [], "runDefinition": null, "jobSpecification": null, "primaryMetricName": null, "createdFrom": null, "cancelUri": null, "completeUri": null, "diagnosticsUri": null, "computeRequest": null, "compute": null, "retainForLifetimeOfWorkspace": false, "queueingInfo": null, "inputs": null, "outputs": null}, "runDefinition": null, "jobSpecification": null, "systemSettings": null}' headers: connection: - keep-alive content-length: - '3930' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.045' status: code: 200 message: OK version: 1
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/recordings/test_run_operations_TestFlowRun_test_run_bulk_without_retry.yaml
interactions: - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 promptflow/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000 response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000", "name": "00000", "type": "Microsoft.MachineLearningServices/workspaces", "location": "eastus", "tags": {}, "etag": null, "kind": "Default", "sku": {"name": "Basic", "tier": "Basic"}, "properties": {"discoveryUrl": "https://eastus.api.azureml.ms/discovery"}}' headers: cache-control: - no-cache content-length: - '3630' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains vary: - Accept-Encoding x-cache: - CONFIG_NOCACHE x-content-type-options: - nosniff x-request-time: - '0.024' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 promptflow/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores?count=30&isDefault=true&orderByAsc=false response: body: string: '{"value": [{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}]}' headers: cache-control: - no-cache content-length: - '1372' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains vary: - Accept-Encoding x-cache: - CONFIG_NOCACHE x-content-type-options: - nosniff x-request-time: - '0.074' status: code: 200 message: OK version: 1
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/recordings/test_run_operations_TestFlowRun_test_run_bulk_not_exist.yaml
interactions: - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 promptflow/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000 response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000", "name": "00000", "type": "Microsoft.MachineLearningServices/workspaces", "location": "eastus", "tags": {}, "etag": null, "kind": "Default", "sku": {"name": "Basic", "tier": "Basic"}, "properties": {"discoveryUrl": "https://eastus.api.azureml.ms/discovery"}}' headers: cache-control: - no-cache content-length: - '3630' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains vary: - Accept-Encoding x-cache: - CONFIG_NOCACHE x-content-type-options: - nosniff x-request-time: - '0.032' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 promptflow/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores?count=30&isDefault=true&orderByAsc=false response: body: string: '{"value": [{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}]}' headers: cache-control: - no-cache content-length: - '1372' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains vary: - Accept-Encoding x-cache: - CONFIG_NOCACHE x-content-type-options: - nosniff x-request-time: - '0.104' status: code: 200 message: OK version: 1
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/recordings/test_run_operations_TestFlowRun_test_automatic_runtime.yaml
interactions: - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000 response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000", "name": "00000", "type": "Microsoft.MachineLearningServices/workspaces", "location": "eastus2euap", "tags": {}, "etag": null, "kind": "Default", "sku": {"name": "Basic", "tier": "Basic"}, "properties": {"discoveryUrl": "https://eastus.api.azureml.ms/discovery"}}' headers: cache-control: - no-cache content-length: - '3601' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.019' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores?count=30&isDefault=true&orderByAsc=false response: body: string: '{"value": [{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-09-22T05:26:30.7527337+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-09-22T05:26:31.3199607+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}]}' headers: cache-control: - no-cache content-length: - '1378' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.628' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-09-22T05:26:30.7527337+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-09-22T05:26:31.3199607+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1233' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.069' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.114' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Fri, 05 Jan 2024 08:28:55 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/env_var_names.jsonl response: body: string: '' headers: accept-ranges: - bytes content-length: - '49' content-md5: - quXiEreYvPinSj0HsaNa/g== content-type: - application/octet-stream last-modified: - Tue, 26 Dec 2023 02:27:07 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Tue, 26 Dec 2023 02:27:07 GMT x-ms-meta-name: - bcc45cd4-c343-4bd0-8bdd-cecfafea742d x-ms-meta-upload_status: - completed x-ms-meta-version: - be87bd84-d39b-442b-af5a-e8c209d6d10c x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Fri, 05 Jan 2024 08:28:56 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/env_var_names.jsonl response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-09-22T05:26:30.7527337+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-09-22T05:26:31.3199607+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1233' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.068' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.106' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Fri, 05 Jan 2024 08:29:00 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/print_env_var/flow.dag.yaml response: body: string: '' headers: accept-ranges: - bytes content-length: - '245' content-md5: - F+JA0a3CxcLYZ0ANRdlZbA== content-type: - application/octet-stream last-modified: - Tue, 26 Dec 2023 02:27:07 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Tue, 26 Dec 2023 02:27:07 GMT x-ms-meta-name: - 5541d425-c3dc-4f2e-b818-956634d8a470 x-ms-meta-upload_status: - completed x-ms-meta-version: - '1' x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Fri, 05 Jan 2024 08:29:01 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/print_env_var/flow.dag.yaml response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-09-22T05:26:30.7527337+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-09-22T05:26:31.3199607+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1233' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.058' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.085' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Fri, 05 Jan 2024 08:29:09 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/env_var_names.jsonl response: body: string: '' headers: accept-ranges: - bytes content-length: - '49' content-md5: - quXiEreYvPinSj0HsaNa/g== content-type: - application/octet-stream last-modified: - Tue, 26 Dec 2023 02:27:07 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Tue, 26 Dec 2023 02:27:07 GMT x-ms-meta-name: - bcc45cd4-c343-4bd0-8bdd-cecfafea742d x-ms-meta-upload_status: - completed x-ms-meta-version: - be87bd84-d39b-442b-af5a-e8c209d6d10c x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Fri, 05 Jan 2024 08:29:10 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/env_var_names.jsonl response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-09-22T05:26:30.7527337+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-09-22T05:26:31.3199607+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1233' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.097' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.083' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Fri, 05 Jan 2024 08:29:13 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/print_env_var/flow.dag.yaml response: body: string: '' headers: accept-ranges: - bytes content-length: - '245' content-md5: - F+JA0a3CxcLYZ0ANRdlZbA== content-type: - application/octet-stream last-modified: - Tue, 26 Dec 2023 02:27:07 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Tue, 26 Dec 2023 02:27:07 GMT x-ms-meta-name: - 5541d425-c3dc-4f2e-b818-956634d8a470 x-ms-meta-upload_status: - completed x-ms-meta-version: - '1' x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Fri, 05 Jan 2024 08:29:14 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/print_env_var/flow.dag.yaml response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. version: 1
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/sample_bulk_run_cloud.yaml
name: flow_run_20230629_101205 flow: ../flows/web_classification data: ../datas/webClassification1.jsonl column_mapping: url: "${data.url}" variant: ${summarize_text_content.variant_0} # run config: env related environment_variables: env_file
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/sample_eval_run.yaml
flow: ../flows/classification_accuracy_evaluation data: ../datas/webClassification1.jsonl column_mapping: groundtruth: "${data.answer}" prediction: "${run.outputs.category}" variant_id: "${data.variant_id}" run: flow_run_20230629_101205 # ./sample_bulk_run.yaml # run config: env related environment_variables: env_file
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/bulk_run_invalid_remote_flow_str.yaml
name: flow_run_20230629_101205 description: sample bulk run # invalid remote flow format should not be supported. flow: invalid_remote_flow data: ../datas/webClassification1.jsonl column_mapping: url: "${data.url}" variant: ${summarize_text_content.variant_0} # run config: env related environment_variables: env_file
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/bulk_run_invalid_flow_path.yaml
name: flow_run_20230629_101205 description: sample bulk run # flow relative to current working directory should not be supported. flow: tests/test_configs/flows/web_classification data: ../datas/webClassification1.jsonl column_mapping: url: "${data.url}" variant: ${summarize_text_content.variant_0} # run config: env related environment_variables: env_file
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/sample_bulk_run_with_resources.yaml
name: flow_run_20230629_101205 flow: ../flows/web_classification data: ../datas/webClassification1.jsonl column_mapping: url: "${data.url}" variant: ${summarize_text_content.variant_0} resources: instance_type: Standard_D2 # optional, server default value idle_time_before_shutdown_minutes: 60 #optional, server default value
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/run_with_connections_model.yaml
flow: ../flows/web_classification data: ../datas/webClassification1.jsonl column_mapping: url: "${data.url}" variant: ${summarize_text_content.variant_0} # run config: env related environment_variables: env_file connections: classify_with_llm: connection: new_ai_connection # model is also supported for openai connection model: test_model
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/run_with_env.yaml
flow: ../flows/print_env_var data: ../datas/env_var_names.jsonl # run config: env related environment_variables: API_BASE: ${azure_open_ai_connection.api_base}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/run_with_connections.yaml
flow: ../flows/web_classification data: ../datas/webClassification1.jsonl column_mapping: url: "${data.url}" variant: ${summarize_text_content.variant_0} # run config: env related environment_variables: env_file connections: classify_with_llm: connection: new_ai_connection
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/sample_bulk_run.yaml
name: flow_run_20230629_101205 description: sample bulk run flow: ../flows/web_classification data: ../datas/webClassification1.jsonl column_mapping: url: "${data.url}" variant: ${summarize_text_content.variant_0} # run config: env related environment_variables: env_file
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/env_file
FOO=BAR
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/extra_field.yaml
name: flow_run_20230629_101205 description: sample bulk run flow: ../flows/web_classification data: ../datas/webClassification1.jsonl column_mapping: url: "${data.url}" variant: ${summarize_text_content.variant_0} extra_key: extra_value # run config: env related environment_variables: env_file
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/input_with_dict_val.yaml
flow: ../flows/flow_with_dict_input data: ../datas/webClassification1.jsonl column_mapping: key: val1: 1 val2: 2 url: ${data.url}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/meta.json
{"batch_size": 1}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/instance_results.jsonl
{"line_number": 0, "status": "Completed", "inputs.url": "https://www.youtube.com/watch?v=kYqRtjDBci8", "inputs.line_number": 0, "category": "None", "evidence": "None"} {"line_number": 1, "status": "Completed", "inputs.url": "https://arxiv.org/abs/2307.04767", "inputs.line_number": 1, "category": "Academic", "evidence": "Both"} {"line_number": 2, "status": "Completed", "inputs.url": "https://play.google.com/store/apps/details?id=com.twitter.android", "inputs.line_number": 2, "category": "App", "evidence": "Both"}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/logs.txt
2023-12-05 04:03:11 +0000 119 promptflow-runtime INFO [web_classification_variant_0_20231205_120253_104100] Receiving v2 bulk run request 679b46cd-3931-4ade-985f-4d74de5e9536: {"flow_id": "web_classification_variant_0_20231205_120253_104100", "flow_run_id": "web_classification_variant_0_20231205_120253_104100", "flow_source": {"flow_source_type": 1, "flow_source_info": {"snapshot_id": "20444e8d-41a6-42c9-a3df-4970aff771df"}, "flow_dag_file": "flow.dag.yaml"}, "connections": "**data_scrubbed**", "log_path": "https://promptfloweast4063704120.blob.core.windows.net/azureml/ExperimentRun/dcid.web_classification_variant_0_20231205_120253_104100/logs/azureml/executionlogs.txt?sv=2019-07-07&sr=b&sig=**data_scrubbed**&skoid=55b92eba-d7c7-4afd-ab76-7bb1cd345283&sktid=72f988bf-86f1-41af-91ab-2d7cd011db47&skt=2023-12-04T20%3A28%3A14Z&ske=2023-12-06T04%3A38%3A14Z&sks=b&skv=2019-07-07&st=2023-12-05T03%3A53%3A10Z&se=2023-12-05T12%3A03%3A10Z&sp=rcw", "app_insights_instrumentation_key": "InstrumentationKey=**data_scrubbed**;IngestionEndpoint=https://eastus-6.in.applicationinsights.azure.com/;LiveEndpoint=https://eastus.livediagnostics.monitor.azure.com/", "data_inputs": {"data": "azureml://datastores/workspaceblobstore/paths/LocalUpload/70c38e61b28e21cb9ddcd67dbe209f05/data.jsonl"}, "inputs_mapping": {"url": "${data.url}"}, "azure_storage_setting": {"azure_storage_mode": 1, "storage_account_name": "promptfloweast4063704120", "blob_container_name": "azureml-blobstore-3e123da1-f9a5-4c91-9234-8d9ffbb39ff5", "flow_artifacts_root_path": "promptflow/PromptFlowArtifacts/web_classification_variant_0_20231205_120253_104100", "blob_container_sas_token": "?sv=2019-07-07&sr=c&sig=**data_scrubbed**&skoid=55b92eba-d7c7-4afd-ab76-7bb1cd345283&sktid=72f988bf-86f1-41af-91ab-2d7cd011db47&skt=2023-12-05T04%3A03%3A10Z&ske=2023-12-12T04%3A03%3A10Z&sks=b&skv=2019-07-07&se=2023-12-12T04%3A03%3A10Z&sp=racwl", "output_datastore_name": "workspaceblobstore"}} 2023-12-05 04:03:11 +0000 119 promptflow-runtime INFO Runtime version: 20231114.v2. PromptFlow version: 1.0.002.dev3 2023-12-05 04:03:11 +0000 119 promptflow-runtime INFO Updating web_classification_variant_0_20231205_120253_104100 to Status.Preparing... 2023-12-05 04:03:11 +0000 119 promptflow-runtime INFO Use spawn method to start child process. 2023-12-05 04:03:11 +0000 119 promptflow-runtime INFO Starting to check process 2795 status for run web_classification_variant_0_20231205_120253_104100 2023-12-05 04:03:11 +0000 119 promptflow-runtime INFO Start checking run status for run web_classification_variant_0_20231205_120253_104100 2023-12-05 04:03:16 +0000 2795 promptflow-runtime INFO [119--2795] Start processing flowV2...... 2023-12-05 04:03:16 +0000 2795 promptflow-runtime INFO Runtime version: 20231114.v2. PromptFlow version: 1.0.002.dev3 2023-12-05 04:03:16 +0000 2795 promptflow-runtime INFO Setting mlflow tracking uri... 2023-12-05 04:03:16 +0000 2795 promptflow-runtime INFO Validating 'AzureML Data Scientist' user authentication... 2023-12-05 04:03:17 +0000 2795 promptflow-runtime INFO Successfully validated 'AzureML Data Scientist' user authentication. 2023-12-05 04:03:17 +0000 2795 promptflow-runtime INFO Using AzureMLRunStorageV2 2023-12-05 04:03:17 +0000 2795 promptflow-runtime INFO Setting mlflow tracking uri to 'azureml://eastus.api.azureml.ms/mlflow/v1.0/subscriptions/96aede12-2f73-41cb-b983-6d11a904839b/resourceGroups/promptflow/providers/Microsoft.MachineLearningServices/workspaces/promptflow-eastus' 2023-12-05 04:03:17 +0000 2795 promptflow-runtime INFO Initialized blob service client for AzureMLRunTracker. 2023-12-05 04:03:17 +0000 2795 promptflow-runtime INFO Setting mlflow tracking uri to 'azureml://eastus.api.azureml.ms/mlflow/v1.0/subscriptions/96aede12-2f73-41cb-b983-6d11a904839b/resourceGroups/promptflow/providers/Microsoft.MachineLearningServices/workspaces/promptflow-eastus' 2023-12-05 04:03:17 +0000 2795 promptflow-runtime INFO Get snapshot sas url for 20444e8d-41a6-42c9-a3df-4970aff771df... 2023-12-05 04:03:23 +0000 2795 promptflow-runtime INFO Downloading snapshot 20444e8d-41a6-42c9-a3df-4970aff771df from uri https://promptfloweast4063704120.blob.core.windows.net/snapshotzips/promptflow-eastus:3e123da1-f9a5-4c91-9234-8d9ffbb39ff5:snapshotzip/20444e8d-41a6-42c9-a3df-4970aff771df.zip... 2023-12-05 04:03:24 +0000 2795 promptflow-runtime INFO Downloaded file /service/app/44783/requests/web_classification_variant_0_20231205_120253_104100/20444e8d-41a6-42c9-a3df-4970aff771df.zip with size 15337 for snapshot 20444e8d-41a6-42c9-a3df-4970aff771df. 2023-12-05 04:03:24 +0000 2795 promptflow-runtime INFO Download snapshot 20444e8d-41a6-42c9-a3df-4970aff771df completed. 2023-12-05 04:03:24 +0000 2795 promptflow-runtime INFO Resolve data from url finished in 0.6008251919411123 seconds 2023-12-05 04:03:24 +0000 2795 promptflow-runtime INFO Starting the aml run 'web_classification_variant_0_20231205_120253_104100'... 2023-12-05 04:03:25 +0000 2795 execution.bulk INFO Using fork, process count: 3 2023-12-05 04:03:25 +0000 2839 execution INFO Process 2839 started. 2023-12-05 04:03:25 +0000 2848 execution INFO Process 2848 started. 2023-12-05 04:03:25 +0000 2795 execution INFO Process name: ForkProcess-20:3, Process id: 2839, Line number: 0 start execution. 2023-12-05 04:03:25 +0000 2795 execution INFO Process name: ForkProcess-20:2, Process id: 2848, Line number: 1 start execution. 2023-12-05 04:03:25 +0000 2843 execution INFO Process 2843 started. 2023-12-05 04:03:25 +0000 2795 execution INFO Process name: ForkProcess-20:4, Process id: 2843, Line number: 2 start execution. 2023-12-05 04:03:27 +0000 2795 execution INFO Process name: ForkProcess-20:3, Process id: 2839, Line number: 0 completed. 2023-12-05 04:03:27 +0000 2795 execution.bulk INFO Finished 1 / 3 lines. 2023-12-05 04:03:27 +0000 2795 execution.bulk INFO Average execution time for completed lines: 2.03 seconds. Estimated time for incomplete lines: 4.06 seconds. 2023-12-05 04:03:28 +0000 2795 execution INFO Process name: ForkProcess-20:2, Process id: 2848, Line number: 1 completed. 2023-12-05 04:03:28 +0000 2795 execution.bulk INFO Finished 2 / 3 lines. 2023-12-05 04:03:28 +0000 2795 execution.bulk INFO Average execution time for completed lines: 1.33 seconds. Estimated time for incomplete lines: 1.33 seconds. 2023-12-05 04:03:28 +0000 2795 execution INFO Process name: ForkProcess-20:4, Process id: 2843, Line number: 2 completed. 2023-12-05 04:03:28 +0000 2795 execution.bulk INFO Finished 3 / 3 lines. 2023-12-05 04:03:28 +0000 2795 execution.bulk INFO Average execution time for completed lines: 1.05 seconds. Estimated time for incomplete lines: 0.0 seconds. 2023-12-05 04:03:32 +0000 2795 execution.bulk INFO Upload status summary metrics for run web_classification_variant_0_20231205_120253_104100 finished in 2.705599319888279 seconds 2023-12-05 04:03:32 +0000 2795 promptflow-runtime INFO Successfully write run properties {"azureml.promptflow.total_tokens": 3316, "_azureml.evaluate_artifacts": "[{\"path\": \"instance_results.jsonl\", \"type\": \"table\"}]"} with run id 'web_classification_variant_0_20231205_120253_104100' 2023-12-05 04:03:32 +0000 2795 execution.bulk INFO Upload RH properties for run web_classification_variant_0_20231205_120253_104100 finished in 0.07165036699734628 seconds 2023-12-05 04:03:32 +0000 2795 promptflow-runtime INFO Creating unregistered output Asset for Run web_classification_variant_0_20231205_120253_104100... 2023-12-05 04:03:32 +0000 2795 promptflow-runtime INFO Created debug_info Asset: azureml://locations/eastus/workspaces/3e123da1-f9a5-4c91-9234-8d9ffbb39ff5/data/azureml_web_classification_variant_0_20231205_120253_104100_output_data_debug_info/versions/1 2023-12-05 04:03:32 +0000 2795 promptflow-runtime INFO Creating unregistered output Asset for Run web_classification_variant_0_20231205_120253_104100... 2023-12-05 04:03:32 +0000 2795 promptflow-runtime INFO Created flow_outputs output Asset: azureml://locations/eastus/workspaces/3e123da1-f9a5-4c91-9234-8d9ffbb39ff5/data/azureml_web_classification_variant_0_20231205_120253_104100_output_data_flow_outputs/versions/1 2023-12-05 04:03:32 +0000 2795 promptflow-runtime INFO Creating Artifact for Run web_classification_variant_0_20231205_120253_104100... 2023-12-05 04:03:33 +0000 2795 promptflow-runtime INFO Created instance_results.jsonl Artifact. 2023-12-05 04:03:33 +0000 2795 promptflow-runtime INFO Patching web_classification_variant_0_20231205_120253_104100... 2023-12-05 04:03:33 +0000 2795 promptflow-runtime INFO Ending the aml run 'web_classification_variant_0_20231205_120253_104100' with status 'Completed'... 2023-12-05 04:03:34 +0000 119 promptflow-runtime INFO Process 2795 finished 2023-12-05 04:03:34 +0000 119 promptflow-runtime INFO [119] Child process finished! 2023-12-05 04:03:34 +0000 119 promptflow-runtime INFO [web_classification_variant_0_20231205_120253_104100] End processing bulk run
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/run_metadata.json
{"name": "web_classification_variant_0_20231205_120253_104100", "created_on": "2023-12-05T04:03:05.951095+00:00", "status": "Completed", "display_name": "web_classification_variant_0_20231205_120253_104100", "description": null, "tags": {}, "properties": {"azureml.promptflow.runtime_name": "hod-ci", "azureml.promptflow.runtime_version": "20231114.v2", "azureml.promptflow.definition_file_name": "flow.dag.yaml", "azureml.promptflow.session_id": "e993078a71de767aeffa1e7f34403abafb105076b5822acf", "azureml.promptflow.flow_lineage_id": "a2759552d623c603e771307d04bf932caf85ea6202ad811e3500d6002aaf9d01", "azureml.promptflow.flow_definition_datastore_name": "workspaceblobstore", "azureml.promptflow.flow_definition_blob_path": "LocalUpload/20c734740ecfef7c7dd12c2024a95c3e/web-classification/flow.dag.yaml", "azureml.promptflow.inputs_mapping": "{\"url\":\"${data.url}\"}", "_azureml.evaluation_run": "promptflow.BatchRun", "azureml.promptflow.snapshot_id": "20444e8d-41a6-42c9-a3df-4970aff771df", "azureml.promptflow.total_tokens": "3316", "_azureml.evaluate_artifacts": "[{\"path\": \"instance_results.jsonl\", \"type\": \"table\"}]"}, "creation_context": {"userObjectId": "c05e0746-e125-4cb3-9213-a8b535eacd79", "userPuId": "10032000324F7449", "userIdp": null, "userAltSecId": null, "userIss": "https://sts.windows.net/72f988bf-86f1-41af-91ab-2d7cd011db47/", "userTenantId": "72f988bf-86f1-41af-91ab-2d7cd011db47", "userName": "Honglin Du", "upn": null}, "start_time": "2023-12-05T04:03:25.057138+00:00", "end_time": "2023-12-05T04:03:33.260979+00:00", "duration": "00:00:08.2038409", "portal_url": "https://ml.azure.com/prompts/flow/bulkrun/run/web_classification_variant_0_20231205_120253_104100/details?wsid=/subscriptions/96aede12-2f73-41cb-b983-6d11a904839b/resourceGroups/promptflow/providers/Microsoft.MachineLearningServices/workspaces/promptflow-eastus", "data": "azureml://datastores/workspaceblobstore/paths/LocalUpload/70c38e61b28e21cb9ddcd67dbe209f05/data.jsonl", "data_portal_url": "https://ml.azure.com/data/datastore/workspaceblobstore/edit?wsid=/subscriptions/96aede12-2f73-41cb-b983-6d11a904839b/resourceGroups/promptflow/providers/Microsoft.MachineLearningServices/workspaces/promptflow-eastus&activeFilePath=LocalUpload/70c38e61b28e21cb9ddcd67dbe209f05/data.jsonl#browseTab", "output": "azureml://locations/eastus/workspaces/3e123da1-f9a5-4c91-9234-8d9ffbb39ff5/data/azureml_web_classification_variant_0_20231205_120253_104100_output_data_flow_outputs/versions/1", "output_portal_url": "https://ml.azure.com/data/azureml_web_classification_variant_0_20231205_120253_104100_output_data_flow_outputs/1/details?wsid=/subscriptions/96aede12-2f73-41cb-b983-6d11a904839b/resourceGroups/promptflow/providers/Microsoft.MachineLearningServices/workspaces/promptflow-eastus"}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/metrics.json
{}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/snapshot/classify_with_llm.jinja2
system: Your task is to classify a given url into one of the following categories: Movie, App, Academic, Channel, Profile, PDF or None based on the text content information. The classification will be based on the url, the webpage text content summary, or both. user: The selection range of the value of "category" must be within "Movie", "App", "Academic", "Channel", "Profile", "PDF" and "None". The selection range of the value of "evidence" must be within "Url", "Text content", and "Both". Here are a few examples: {% for ex in examples %} URL: {{ex.url}} Text content: {{ex.text_content}} OUTPUT: {"category": "{{ex.category}}", "evidence": "{{ex.evidence}}"} {% endfor %} For a given URL and text content, classify the url to complete the category and indicate evidence: URL: {{url}} Text content: {{text_content}}. OUTPUT:
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/snapshot/fetch_text_content_from_url.py
import bs4 import requests from promptflow import tool @tool def fetch_text_content_from_url(url: str): # Send a request to the URL try: headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) " "Chrome/113.0.0.0 Safari/537.36 Edg/113.0.1774.35" } response = requests.get(url, headers=headers) if response.status_code == 200: # Parse the HTML content using BeautifulSoup soup = bs4.BeautifulSoup(response.text, "html.parser") soup.prettify() return soup.get_text()[:2000] else: msg = ( f"Get url failed with status code {response.status_code}.\nURL: {url}\nResponse: " f"{response.text[:100]}" ) print(msg) return "No available content" except Exception as e: print("Get url failed with error: {}".format(e)) return "No available content"
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/snapshot/convert_to_dict.py
import json from promptflow import tool @tool def convert_to_dict(input_str: str): try: return json.loads(input_str) except Exception as e: print("The input is not valid, error: {}".format(e)) return {"category": "None", "evidence": "None"}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/snapshot/data.jsonl
{"url": "https://www.youtube.com/watch?v=kYqRtjDBci8", "answer": "Channel", "evidence": "Both"} {"url": "https://arxiv.org/abs/2307.04767", "answer": "Academic", "evidence": "Both"} {"url": "https://play.google.com/store/apps/details?id=com.twitter.android", "answer": "App", "evidence": "Both"}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/snapshot/summarize_text_content__variant_1.jinja2
system: Please summarize some keywords of this paragraph and have some details of each keywords. Do not add any information that is not in the text. user: Text: {{text}} Summary:
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/snapshot/requirements.txt
promptflow[azure] promptflow-tools bs4
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/snapshot/run.yml
$schema: https://azuremlschemas.azureedge.net/promptflow/latest/Run.schema.json flow: . data: data.jsonl variant: ${summarize_text_content.variant_1} column_mapping: url: ${data.url}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/snapshot/summarize_text_content.jinja2
system: Please summarize the following text in one paragraph. 100 words. Do not add any information that is not in the text. user: Text: {{text}} Summary:
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/snapshot/README.md
# Web Classification This is a flow demonstrating multi-class classification with LLM. Given an url, it will classify the url into one web category with just a few shots, simple summarization and classification prompts. ## Tools used in this flow - LLM Tool - Python Tool ## What you will learn In this flow, you will learn - how to compose a classification flow with LLM. - how to feed few shots to LLM classifier. ## Prerequisites Install promptflow sdk and other dependencies: ```bash pip install -r requirements.txt ``` ## Getting Started ### 1. Setup connection If you are using Azure Open AI, prepare your resource follow this [instruction](https://learn.microsoft.com/en-us/azure/cognitive-services/openai/how-to/create-resource?pivots=web-portal) and get your `api_key` if you don't have one. ```bash # Override keys with --set to avoid yaml file changes pf connection create --file ../../../connections/azure_openai.yml --set api_key=<your_api_key> api_base=<your_api_base> --name open_ai_connection ``` If you using OpenAI, sign up account [OpenAI website](https://openai.com/), login and [find personal API key](https://platform.openai.com/account/api-keys). ```shell pf connection create --file ../../../connections/openai.yml --set api_key=<your_api_key> ``` ### 2. Configure the flow with your connection `flow.dag.yaml` is already configured with connection named `open_ai_connection`. ### 3. Test flow with single line data ```bash # test with default input value in flow.dag.yaml pf flow test --flow . # test with user specified inputs pf flow test --flow . --inputs url='https://www.youtube.com/watch?v=kYqRtjDBci8' ``` ### 4. Run with multi-line data ```bash # create run using command line args pf run create --flow . --data ./data.jsonl --column-mapping url='${data.url}' --stream # (Optional) create a random run name run_name="web_classification_"$(openssl rand -hex 12) # create run using yaml file, run_name will be used in following contents, --name is optional pf run create --file run.yml --stream --name $run_name ``` You can also skip providing `column-mapping` if provided data has same column name as the flow. Reference [here](https://aka.ms/pf/column-mapping) for default behavior when `column-mapping` not provided in CLI. ```bash # list run pf run list # show run pf run show --name $run_name # show run outputs pf run show-details --name $run_name ``` ### 5. Run with classification evaluation flow create `evaluation` run: ```bash # (Optional) save previous run name into variable, and create a new random run name for further use prev_run_name=$run_name run_name="classification_accuracy_"$(openssl rand -hex 12) # create run using command line args pf run create --flow ../../evaluation/eval-classification-accuracy --data ./data.jsonl --column-mapping groundtruth='${data.answer}' prediction='${run.outputs.category}' --run $prev_run_name --stream # create run using yaml file, --name is optional pf run create --file run_evaluation.yml --run $prev_run_name --stream --name $run_name ``` ```bash pf run show-details --name $run_name pf run show-metrics --name $run_name pf run visualize --name $run_name ``` ### 6. Submit run to cloud ```bash # set default workspace az account set -s <your_subscription_id> az configure --defaults group=<your_resource_group_name> workspace=<your_workspace_name> # create run pfazure run create --flow . --data ./data.jsonl --column-mapping url='${data.url}' --stream --runtime example-runtime-ci # pfazure run create --flow . --data ./data.jsonl --column-mapping url='${data.url}' --stream # automatic runtime # (Optional) create a new random run name for further use run_name="web_classification_"$(openssl rand -hex 12) # create run using yaml file, --name is optional pfazure run create --file run.yml --runtime example-runtime-ci --name $run_name # pfazure run create --file run.yml --stream --name $run_name # automatic runtime pfazure run stream --name $run_name pfazure run show-details --name $run_name pfazure run show-metrics --name $run_name # (Optional) save previous run name into variable, and create a new random run name for further use prev_run_name=$run_name run_name="classification_accuracy_"$(openssl rand -hex 12) # create evaluation run, --name is optional pfazure run create --flow ../../evaluation/eval-classification-accuracy --data ./data.jsonl --column-mapping groundtruth='${data.answer}' prediction='${run.outputs.category}' --run $prev_run_name --runtime example-runtime-ci pfazure run create --file run_evaluation.yml --run $prev_run_name --stream --name $run_name --runtime example-runtime-ci pfazure run stream --name $run_name pfazure run show --name $run_name pfazure run show-details --name $run_name pfazure run show-metrics --name $run_name pfazure run visualize --name $run_name ```
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/snapshot/flow.dag.yaml
inputs: url: type: string default: https://play.google.com/store/apps/details?id=com.twitter.android is_chat_input: false outputs: category: type: string reference: ${convert_to_dict.output.category} evaluation_only: false is_chat_output: false evidence: type: string reference: ${convert_to_dict.output.evidence} evaluation_only: false is_chat_output: false nodes: - name: fetch_text_content_from_url type: python source: type: code path: fetch_text_content_from_url.py inputs: url: "${inputs.url}" aggregation: false - name: prepare_examples type: python source: type: code path: prepare_examples.py inputs: {} aggregation: false - name: classify_with_llm type: llm source: type: code path: classify_with_llm.jinja2 inputs: deployment_name: "gpt-35-turbo" model: "gpt-3.5-turbo" max_tokens: 128 temperature: 0.2 url: "${inputs.url}" text_content: "${summarize_text_content.output}" examples: "${prepare_examples.output}" api: chat connection: open_ai_connection aggregation: false - name: convert_to_dict type: python source: type: code path: convert_to_dict.py inputs: input_str: "${classify_with_llm.output}" aggregation: false - name: summarize_text_content type: llm source: type: code path: summarize_text_content.jinja2 inputs: deployment_name: "gpt-35-turbo" model: "gpt-3.5-turbo" max_tokens: 128 temperature: 0.2 text: "${fetch_text_content_from_url.output}" api: chat connection: open_ai_connection aggregation: false environment: python_requirements_txt: requirements.txt
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/snapshot/run_evaluation.yml
$schema: https://azuremlschemas.azureedge.net/promptflow/latest/Run.schema.json flow: ../../evaluation/eval-classification-accuracy data: data.jsonl run: web_classification_variant_1_20230724_173442_973403 # replace with your run name column_mapping: groundtruth: ${data.answer} prediction: ${run.outputs.category}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/snapshot/prepare_examples.py
from promptflow import tool @tool def prepare_examples(): return [ { "url": "https://play.google.com/store/apps/details?id=com.spotify.music", "text_content": "Spotify is a free music and podcast streaming app with millions of songs, albums, and " "original podcasts. It also offers audiobooks, so users can enjoy thousands of stories. " "It has a variety of features such as creating and sharing music playlists, discovering " "new music, and listening to popular and exclusive podcasts. It also has a Premium " "subscription option which allows users to download and listen offline, and access " "ad-free music. It is available on all devices and has a variety of genres and artists " "to choose from.", "category": "App", "evidence": "Both", }, { "url": "https://www.youtube.com/channel/UC_x5XG1OV2P6uZZ5FSM9Ttw", "text_content": "NFL Sunday Ticket is a service offered by Google LLC that allows users to watch NFL " "games on YouTube. It is available in 2023 and is subject to the terms and privacy policy " "of Google LLC. It is also subject to YouTube's terms of use and any applicable laws.", "category": "Channel", "evidence": "URL", }, { "url": "https://arxiv.org/abs/2303.04671", "text_content": "Visual ChatGPT is a system that enables users to interact with ChatGPT by sending and " "receiving not only languages but also images, providing complex visual questions or " "visual editing instructions, and providing feedback and asking for corrected results. " "It incorporates different Visual Foundation Models and is publicly available. Experiments " "show that Visual ChatGPT opens the door to investigating the visual roles of ChatGPT with " "the help of Visual Foundation Models.", "category": "Academic", "evidence": "Text content", }, { "url": "https://ab.politiaromana.ro/", "text_content": "There is no content available for this text.", "category": "None", "evidence": "None", }, ]
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/flow_artifacts/000000000_000000024.jsonl
{"line_number": 0, "run_info": {"run_id": "web_classification_variant_0_20231205_120253_104100_0", "status": "Completed", "error": null, "inputs": {"url": "https://www.youtube.com/watch?v=kYqRtjDBci8", "line_number": 0}, "output": {"category": "None", "evidence": "None"}, "metrics": null, "request": null, "parent_run_id": "web_classification_variant_0_20231205_120253_104100", "root_run_id": "web_classification_variant_0_20231205_120253_104100", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2023-12-05T04:03:25.562559Z", "end_time": "2023-12-05T04:03:27.343463Z", "index": 0, "api_calls": [{"name": "fetch_text_content_from_url", "type": "Tool", "inputs": {"url": "https://www.youtube.com/watch?v=kYqRtjDBci8"}, "output": "Amazing! The prompt flow in Azure AI speeds up the building of my LLM application. - YouTubeAboutPressCopyrightContact usCreatorsAdvertiseDevelopersTermsPrivacyPolicy & SafetyHow YouTube worksTest new featuresNFL Sunday Ticket\u00a9 2023 Google LLC", "start_time": 1701749005.566919, "end_time": 1701749006.619194, "error": null, "children": null, "node_name": "fetch_text_content_from_url"}, {"name": "prepare_examples", "type": "Tool", "inputs": {}, "output": [{"url": "https://play.google.com/store/apps/details?id=com.spotify.music", "text_content": "Spotify is a free music and podcast streaming app with millions of songs, albums, and original podcasts. It also offers audiobooks, so users can enjoy thousands of stories. It has a variety of features such as creating and sharing music playlists, discovering new music, and listening to popular and exclusive podcasts. It also has a Premium subscription option which allows users to download and listen offline, and access ad-free music. It is available on all devices and has a variety of genres and artists to choose from.", "category": "App", "evidence": "Both"}, {"url": "https://www.youtube.com/channel/UC_x5XG1OV2P6uZZ5FSM9Ttw", "text_content": "NFL Sunday Ticket is a service offered by Google LLC that allows users to watch NFL games on YouTube. It is available in 2023 and is subject to the terms and privacy policy of Google LLC. It is also subject to YouTube's terms of use and any applicable laws.", "category": "Channel", "evidence": "URL"}, {"url": "https://arxiv.org/abs/2303.04671", "text_content": "Visual ChatGPT is a system that enables users to interact with ChatGPT by sending and receiving not only languages but also images, providing complex visual questions or visual editing instructions, and providing feedback and asking for corrected results. It incorporates different Visual Foundation Models and is publicly available. Experiments show that Visual ChatGPT opens the door to investigating the visual roles of ChatGPT with the help of Visual Foundation Models.", "category": "Academic", "evidence": "Text content"}, {"url": "https://ab.politiaromana.ro/", "text_content": "There is no content available for this text.", "category": "None", "evidence": "None"}], "start_time": 1701749005.568033, "end_time": 1701749005.572487, "error": null, "children": null, "node_name": "prepare_examples"}, {"name": "AzureOpenAI.chat", "type": "Tool", "inputs": {"prompt": "system:\nPlease summarize the following text in one paragraph. 100 words.\nDo not add any information that is not in the text.\n\nuser:\nText: {{text}}\nSummary: ", "deployment_name": "gpt-35-turbo", "model": "gpt-3.5-turbo", "max_tokens": 128, "temperature": 0.2, "text": "Amazing! The prompt flow in Azure AI speeds up the building of my LLM application. - YouTubeAboutPressCopyrightContact usCreatorsAdvertiseDevelopersTermsPrivacyPolicy & SafetyHow YouTube worksTest new featuresNFL Sunday Ticket\u00a9 2023 Google LLC"}, "output": "The author expresses their excitement about the prompt flow feature in Azure AI, which has helped them accelerate the development of their LLM application.", "start_time": 1701749006.622094, "end_time": 1701749006.993613, "error": null, "children": [{"name": "openai.api_resources.chat_completion.ChatCompletion.create", "type": "LLM", "inputs": {"api_base": "https://gpt-test-eus.openai.azure.com/", "api_type": "azure", "api_version": "2023-07-01-preview", "engine": "gpt-35-turbo", "messages": [{"role": "system", "content": "Please summarize the following text in one paragraph. 100 words.\nDo not add any information that is not in the text."}, {"role": "user", "content": "Text: Amazing! The prompt flow in Azure AI speeds up the building of my LLM application. - YouTubeAboutPressCopyrightContact usCreatorsAdvertiseDevelopersTermsPrivacyPolicy & SafetyHow YouTube worksTest new featuresNFL Sunday Ticket\u00a9 2023 Google LLC\nSummary: "}], "temperature": 0.2, "top_p": 1.0, "n": 1, "stream": false, "stop": null, "max_tokens": 128, "presence_penalty": 0.0, "frequency_penalty": 0.0, "logit_bias": {}, "user": ""}, "output": {"id": "chatcmpl-8SGwYh2QixabybRzI9vKPfKwl9deg", "object": "chat.completion", "created": 1701749006, "model": "gpt-35-turbo", "prompt_filter_results": [{"prompt_index": 0, "content_filter_results": {"hate": {"filtered": false, "severity": "safe"}, "self_harm": {"filtered": false, "severity": "safe"}, "sexual": {"filtered": false, "severity": "safe"}, "violence": {"filtered": false, "severity": "safe"}}}], "choices": [{"index": 0, "finish_reason": "stop", "message": {"role": "assistant", "content": "The author expresses their excitement about the prompt flow feature in Azure AI, which has helped them accelerate the development of their LLM application."}, "content_filter_results": {"hate": {"filtered": false, "severity": "safe"}, "self_harm": {"filtered": false, "severity": "safe"}, "sexual": {"filtered": false, "severity": "safe"}, "violence": {"filtered": false, "severity": "safe"}}}], "usage": {"prompt_tokens": 92, "completion_tokens": 27, "total_tokens": 119}}, "start_time": 1701749006.627222, "end_time": 1701749006.993502, "error": null, "children": null, "node_name": null}], "node_name": "summarize_text_content"}, {"name": "AzureOpenAI.chat", "type": "Tool", "inputs": {"prompt": "system:\nYour task is to classify a given url into one of the following categories:\nMovie, App, Academic, Channel, Profile, PDF or None based on the text content information.\nThe classification will be based on the url, the webpage text content summary, or both.\n\nuser:\nThe selection range of the value of \"category\" must be within \"Movie\", \"App\", \"Academic\", \"Channel\", \"Profile\", \"PDF\" and \"None\".\nThe selection range of the value of \"evidence\" must be within \"Url\", \"Text content\", and \"Both\".\nHere are a few examples:\n{% for ex in examples %}\nURL: {{ex.url}}\nText content: {{ex.text_content}}\nOUTPUT:\n{\"category\": \"{{ex.category}}\", \"evidence\": \"{{ex.evidence}}\"}\n\n{% endfor %}\n\nFor a given URL and text content, classify the url to complete the category and indicate evidence:\nURL: {{url}}\nText content: {{text_content}}.\nOUTPUT:", "deployment_name": "gpt-35-turbo", "model": "gpt-3.5-turbo", "max_tokens": 128, "temperature": 0.2, "url": "https://www.youtube.com/watch?v=kYqRtjDBci8", "text_content": "The author expresses their excitement about the prompt flow feature in Azure AI, which has helped them accelerate the development of their LLM application.", "examples": [{"url": "https://play.google.com/store/apps/details?id=com.spotify.music", "text_content": "Spotify is a free music and podcast streaming app with millions of songs, albums, and original podcasts. It also offers audiobooks, so users can enjoy thousands of stories. It has a variety of features such as creating and sharing music playlists, discovering new music, and listening to popular and exclusive podcasts. It also has a Premium subscription option which allows users to download and listen offline, and access ad-free music. It is available on all devices and has a variety of genres and artists to choose from.", "category": "App", "evidence": "Both"}, {"url": "https://www.youtube.com/channel/UC_x5XG1OV2P6uZZ5FSM9Ttw", "text_content": "NFL Sunday Ticket is a service offered by Google LLC that allows users to watch NFL games on YouTube. It is available in 2023 and is subject to the terms and privacy policy of Google LLC. It is also subject to YouTube's terms of use and any applicable laws.", "category": "Channel", "evidence": "URL"}, {"url": "https://arxiv.org/abs/2303.04671", "text_content": "Visual ChatGPT is a system that enables users to interact with ChatGPT by sending and receiving not only languages but also images, providing complex visual questions or visual editing instructions, and providing feedback and asking for corrected results. It incorporates different Visual Foundation Models and is publicly available. Experiments show that Visual ChatGPT opens the door to investigating the visual roles of ChatGPT with the help of Visual Foundation Models.", "category": "Academic", "evidence": "Text content"}, {"url": "https://ab.politiaromana.ro/", "text_content": "There is no content available for this text.", "category": "None", "evidence": "None"}]}, "output": "{\"category\": \"None\", \"evidence\": \"None\"}", "start_time": 1701749006.996314, "end_time": 1701749007.334935, "error": null, "children": [{"name": "openai.api_resources.chat_completion.ChatCompletion.create", "type": "LLM", "inputs": {"api_base": "https://gpt-test-eus.openai.azure.com/", "api_type": "azure", "api_version": "2023-07-01-preview", "engine": "gpt-35-turbo", "messages": [{"role": "system", "content": "Your task is to classify a given url into one of the following categories:\nMovie, App, Academic, Channel, Profile, PDF or None based on the text content information.\nThe classification will be based on the url, the webpage text content summary, or both."}, {"role": "user", "content": "The selection range of the value of \"category\" must be within \"Movie\", \"App\", \"Academic\", \"Channel\", \"Profile\", \"PDF\" and \"None\".\nThe selection range of the value of \"evidence\" must be within \"Url\", \"Text content\", and \"Both\".\nHere are a few examples:\nURL: https://play.google.com/store/apps/details?id=com.spotify.music\nText content: Spotify is a free music and podcast streaming app with millions of songs, albums, and original podcasts. It also offers audiobooks, so users can enjoy thousands of stories. It has a variety of features such as creating and sharing music playlists, discovering new music, and listening to popular and exclusive podcasts. It also has a Premium subscription option which allows users to download and listen offline, and access ad-free music. It is available on all devices and has a variety of genres and artists to choose from.\nOUTPUT:\n{\"category\": \"App\", \"evidence\": \"Both\"}\n\nURL: https://www.youtube.com/channel/UC_x5XG1OV2P6uZZ5FSM9Ttw\nText content: NFL Sunday Ticket is a service offered by Google LLC that allows users to watch NFL games on YouTube. It is available in 2023 and is subject to the terms and privacy policy of Google LLC. It is also subject to YouTube's terms of use and any applicable laws.\nOUTPUT:\n{\"category\": \"Channel\", \"evidence\": \"URL\"}\n\nURL: https://arxiv.org/abs/2303.04671\nText content: Visual ChatGPT is a system that enables users to interact with ChatGPT by sending and receiving not only languages but also images, providing complex visual questions or visual editing instructions, and providing feedback and asking for corrected results. It incorporates different Visual Foundation Models and is publicly available. Experiments show that Visual ChatGPT opens the door to investigating the visual roles of ChatGPT with the help of Visual Foundation Models.\nOUTPUT:\n{\"category\": \"Academic\", \"evidence\": \"Text content\"}\n\nURL: https://ab.politiaromana.ro/\nText content: There is no content available for this text.\nOUTPUT:\n{\"category\": \"None\", \"evidence\": \"None\"}\n\n\nFor a given URL and text content, classify the url to complete the category and indicate evidence:\nURL: https://www.youtube.com/watch?v=kYqRtjDBci8\nText content: The author expresses their excitement about the prompt flow feature in Azure AI, which has helped them accelerate the development of their LLM application..\nOUTPUT:"}], "temperature": 0.2, "top_p": 1.0, "n": 1, "stream": false, "stop": null, "max_tokens": 128, "presence_penalty": 0.0, "frequency_penalty": 0.0, "logit_bias": {}, "user": ""}, "output": {"id": "chatcmpl-8SGwZ2wUSr8u0pse8KUjbPgz08Cvt", "object": "chat.completion", "created": 1701749007, "model": "gpt-35-turbo", "prompt_filter_results": [{"prompt_index": 0, "content_filter_results": {"hate": {"filtered": false, "severity": "safe"}, "self_harm": {"filtered": false, "severity": "safe"}, "sexual": {"filtered": false, "severity": "safe"}, "violence": {"filtered": false, "severity": "safe"}}}], "choices": [{"index": 0, "finish_reason": "stop", "message": {"role": "assistant", "content": "{\"category\": \"None\", \"evidence\": \"None\"}"}, "content_filter_results": {"hate": {"filtered": false, "severity": "safe"}, "self_harm": {"filtered": false, "severity": "safe"}, "sexual": {"filtered": false, "severity": "safe"}, "violence": {"filtered": false, "severity": "safe"}}}], "usage": {"prompt_tokens": 596, "completion_tokens": 13, "total_tokens": 609}}, "start_time": 1701749006.99988, "end_time": 1701749007.33482, "error": null, "children": null, "node_name": null}], "node_name": "classify_with_llm"}, {"name": "convert_to_dict", "type": "Tool", "inputs": {"input_str": "{\"category\": \"None\", \"evidence\": \"None\"}"}, "output": {"category": "None", "evidence": "None"}, "start_time": 1701749007.337123, "end_time": 1701749007.3376, "error": null, "children": null, "node_name": "convert_to_dict"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 1.780904, "total_tokens": 728}, "result": {"category": "None", "evidence": "None"}, "upload_metrics": false}, "start_time": "2023-12-05T04:03:25.562559", "end_time": "2023-12-05T04:03:27.343463", "name": "", "description": "", "status": "Completed", "tags": null} {"line_number": 1, "run_info": {"run_id": "web_classification_variant_0_20231205_120253_104100_1", "status": "Completed", "error": null, "inputs": {"url": "https://arxiv.org/abs/2307.04767", "line_number": 1}, "output": {"category": "Academic", "evidence": "Both"}, "metrics": null, "request": null, "parent_run_id": "web_classification_variant_0_20231205_120253_104100", "root_run_id": "web_classification_variant_0_20231205_120253_104100", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2023-12-05T04:03:25.604746Z", "end_time": "2023-12-05T04:03:27.963985Z", "index": 1, "api_calls": [{"name": "fetch_text_content_from_url", "type": "Tool", "inputs": {"url": "https://arxiv.org/abs/2307.04767"}, "output": "\n\n\n [2307.04767] Semantic-SAM: Segment and Recognize Anything at Any Granularity\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n \n\n\n\n\n\n\n\n\nSkip to main content\n\n\n\n\n\nWe gratefully acknowledge support from the Simons Foundation, member institutions, and all contributors. Donate\n\n\n\n\n\n > cs > arXiv:2307.04767\n \n\n\n\n\n\nHelp | Advanced Search\n\n\n\n\nAll fields\nTitle\nAuthor\nAbstract\nComments\nJournal reference\nACM classification\nMSC classification\nReport number\narXiv identifier\nDOI\nORCID\narXiv author ID\nHelp pages\nFull text\n\n\n\n\nSearch\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nopen search\n\n\n\n\n\n\nGO\n\n\n\nopen navigation menu\n\n\nquick links\n\nLogin\nHelp Pages\nAbout\n\n\n\n\n\n\n\n\n\n\n\n\nComputer Science > Computer Vision and Pattern Recognition\n\n\narXiv:2307.04767 (cs)\n \n\n\n\n\n [Submitted on 10 Jul 2023]\nTitle:Semantic-SAM: Segment and Recognize Anything at Any Granularity\nAuthors:Feng Li, Hao Zhang, Peize Sun, Xueyan Zou, Shilong Liu, Jianwei Yang, Chunyuan Li, Lei Zhang, Jianfeng Gao Download a PDF of the paper titled Semantic-SAM: Segment and Recognize Anything at Any Granularity, by Feng Li and 8 other authors\nDownload PDF\n\nAbstract:In this paper, we introduce Semantic-SAM, a universal image segmentation model to enable segment and recognize anything at any desired granularity. Our model offers two key advantages: semantic-awareness and granularity-abundance. To achieve semantic-awareness, we consolidate multiple datasets across three granularities and introduce decoupled classification for objects and parts. This allows our model to capture rich semantic information. For the multi-granularity capability, we propose a multi-choice learning scheme during training, enabling each click to generate masks at multiple levels that correspond to multiple ground-truth masks. Notably, this work represents the first attempt to jointly train a model on SA-1B, generic, and part segmentation datasets. Experimental results and visualizations demonstrate that our model successfully achieves semantic-awareness and granularity-abundance. Furthermore, co", "start_time": 1701749005.608924, "end_time": 1701749006.032803, "error": null, "children": null, "node_name": "fetch_text_content_from_url"}, {"name": "prepare_examples", "type": "Tool", "inputs": {}, "output": [{"url": "https://play.google.com/store/apps/details?id=com.spotify.music", "text_content": "Spotify is a free music and podcast streaming app with millions of songs, albums, and original podcasts. It also offers audiobooks, so users can enjoy thousands of stories. It has a variety of features such as creating and sharing music playlists, discovering new music, and listening to popular and exclusive podcasts. It also has a Premium subscription option which allows users to download and listen offline, and access ad-free music. It is available on all devices and has a variety of genres and artists to choose from.", "category": "App", "evidence": "Both"}, {"url": "https://www.youtube.com/channel/UC_x5XG1OV2P6uZZ5FSM9Ttw", "text_content": "NFL Sunday Ticket is a service offered by Google LLC that allows users to watch NFL games on YouTube. It is available in 2023 and is subject to the terms and privacy policy of Google LLC. It is also subject to YouTube's terms of use and any applicable laws.", "category": "Channel", "evidence": "URL"}, {"url": "https://arxiv.org/abs/2303.04671", "text_content": "Visual ChatGPT is a system that enables users to interact with ChatGPT by sending and receiving not only languages but also images, providing complex visual questions or visual editing instructions, and providing feedback and asking for corrected results. It incorporates different Visual Foundation Models and is publicly available. Experiments show that Visual ChatGPT opens the door to investigating the visual roles of ChatGPT with the help of Visual Foundation Models.", "category": "Academic", "evidence": "Text content"}, {"url": "https://ab.politiaromana.ro/", "text_content": "There is no content available for this text.", "category": "None", "evidence": "None"}], "start_time": 1701749005.610052, "end_time": 1701749005.617312, "error": null, "children": null, "node_name": "prepare_examples"}, {"name": "AzureOpenAI.chat", "type": "Tool", "inputs": {"prompt": "system:\nPlease summarize the following text in one paragraph. 100 words.\nDo not add any information that is not in the text.\n\nuser:\nText: {{text}}\nSummary: ", "deployment_name": "gpt-35-turbo", "model": "gpt-3.5-turbo", "max_tokens": 128, "temperature": 0.2, "text": "\n\n\n [2307.04767] Semantic-SAM: Segment and Recognize Anything at Any Granularity\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n \n\n\n\n\n\n\n\n\nSkip to main content\n\n\n\n\n\nWe gratefully acknowledge support from the Simons Foundation, member institutions, and all contributors. Donate\n\n\n\n\n\n > cs > arXiv:2307.04767\n \n\n\n\n\n\nHelp | Advanced Search\n\n\n\n\nAll fields\nTitle\nAuthor\nAbstract\nComments\nJournal reference\nACM classification\nMSC classification\nReport number\narXiv identifier\nDOI\nORCID\narXiv author ID\nHelp pages\nFull text\n\n\n\n\nSearch\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nopen search\n\n\n\n\n\n\nGO\n\n\n\nopen navigation menu\n\n\nquick links\n\nLogin\nHelp Pages\nAbout\n\n\n\n\n\n\n\n\n\n\n\n\nComputer Science > Computer Vision and Pattern Recognition\n\n\narXiv:2307.04767 (cs)\n \n\n\n\n\n [Submitted on 10 Jul 2023]\nTitle:Semantic-SAM: Segment and Recognize Anything at Any Granularity\nAuthors:Feng Li, Hao Zhang, Peize Sun, Xueyan Zou, Shilong Liu, Jianwei Yang, Chunyuan Li, Lei Zhang, Jianfeng Gao Download a PDF of the paper titled Semantic-SAM: Segment and Recognize Anything at Any Granularity, by Feng Li and 8 other authors\nDownload PDF\n\nAbstract:In this paper, we introduce Semantic-SAM, a universal image segmentation model to enable segment and recognize anything at any desired granularity. Our model offers two key advantages: semantic-awareness and granularity-abundance. To achieve semantic-awareness, we consolidate multiple datasets across three granularities and introduce decoupled classification for objects and parts. This allows our model to capture rich semantic information. For the multi-granularity capability, we propose a multi-choice learning scheme during training, enabling each click to generate masks at multiple levels that correspond to multiple ground-truth masks. Notably, this work represents the first attempt to jointly train a model on SA-1B, generic, and part segmentation datasets. Experimental results and visualizations demonstrate that our model successfully achieves semantic-awareness and granularity-abundance. Furthermore, co"}, "output": "The paper introduces Semantic-SAM, a universal image segmentation model that can segment and recognize objects at any desired granularity. The model has two key advantages: semantic-awareness and granularity-abundance. To achieve semantic-awareness, the model consolidates multiple datasets and introduces decoupled classification for objects and parts. This allows the model to capture rich semantic information. For multi-granularity capability, a multi-choice learning scheme is proposed during training, generating masks at multiple levels. The model is trained on SA-1B, generic, and part segmentation datasets. Experimental results and visualizations demonstrate the success of the model in achieving semantic-awareness and", "start_time": 1701749006.035773, "end_time": 1701749007.668153, "error": null, "children": [{"name": "openai.api_resources.chat_completion.ChatCompletion.create", "type": "LLM", "inputs": {"api_base": "https://gpt-test-eus.openai.azure.com/", "api_type": "azure", "api_version": "2023-07-01-preview", "engine": "gpt-35-turbo", "messages": [{"role": "system", "content": "Please summarize the following text in one paragraph. 100 words.\nDo not add any information that is not in the text."}, {"role": "user", "content": "Text: \n\n\n [2307.04767] Semantic-SAM: Segment and Recognize Anything at Any Granularity\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n \n\n\n\n\n\n\n\n\nSkip to main content\n\n\n\n\n\nWe gratefully acknowledge support from the Simons Foundation, member institutions, and all contributors. Donate\n\n\n\n\n\n > cs > arXiv:2307.04767\n \n\n\n\n\n\nHelp | Advanced Search\n\n\n\n\nAll fields\nTitle\nAuthor\nAbstract\nComments\nJournal reference\nACM classification\nMSC classification\nReport number\narXiv identifier\nDOI\nORCID\narXiv author ID\nHelp pages\nFull text\n\n\n\n\nSearch\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nopen search\n\n\n\n\n\n\nGO\n\n\n\nopen navigation menu\n\n\nquick links\n\nLogin\nHelp Pages\nAbout\n\n\n\n\n\n\n\n\n\n\n\n\nComputer Science > Computer Vision and Pattern Recognition\n\n\narXiv:2307.04767 (cs)\n \n\n\n\n\n [Submitted on 10 Jul 2023]\nTitle:Semantic-SAM: Segment and Recognize Anything at Any Granularity\nAuthors:Feng Li, Hao Zhang, Peize Sun, Xueyan Zou, Shilong Liu, Jianwei Yang, Chunyuan Li, Lei Zhang, Jianfeng Gao Download a PDF of the paper titled Semantic-SAM: Segment and Recognize Anything at Any Granularity, by Feng Li and 8 other authors\nDownload PDF\n\nAbstract:In this paper, we introduce Semantic-SAM, a universal image segmentation model to enable segment and recognize anything at any desired granularity. Our model offers two key advantages: semantic-awareness and granularity-abundance. To achieve semantic-awareness, we consolidate multiple datasets across three granularities and introduce decoupled classification for objects and parts. This allows our model to capture rich semantic information. For the multi-granularity capability, we propose a multi-choice learning scheme during training, enabling each click to generate masks at multiple levels that correspond to multiple ground-truth masks. Notably, this work represents the first attempt to jointly train a model on SA-1B, generic, and part segmentation datasets. Experimental results and visualizations demonstrate that our model successfully achieves semantic-awareness and granularity-abundance. Furthermore, co\nSummary: "}], "temperature": 0.2, "top_p": 1.0, "n": 1, "stream": false, "stop": null, "max_tokens": 128, "presence_penalty": 0.0, "frequency_penalty": 0.0, "logit_bias": {}, "user": ""}, "output": {"id": "chatcmpl-8SGwY6eyhMgFtmIhNkFmO6e2awkvq", "object": "chat.completion", "created": 1701749006, "model": "gpt-35-turbo", "prompt_filter_results": [{"prompt_index": 0, "content_filter_results": {"hate": {"filtered": false, "severity": "safe"}, "self_harm": {"filtered": false, "severity": "safe"}, "sexual": {"filtered": false, "severity": "safe"}, "violence": {"filtered": false, "severity": "safe"}}}], "choices": [{"index": 0, "finish_reason": "length", "message": {"role": "assistant", "content": "The paper introduces Semantic-SAM, a universal image segmentation model that can segment and recognize objects at any desired granularity. The model has two key advantages: semantic-awareness and granularity-abundance. To achieve semantic-awareness, the model consolidates multiple datasets and introduces decoupled classification for objects and parts. This allows the model to capture rich semantic information. For multi-granularity capability, a multi-choice learning scheme is proposed during training, generating masks at multiple levels. The model is trained on SA-1B, generic, and part segmentation datasets. Experimental results and visualizations demonstrate the success of the model in achieving semantic-awareness and"}, "content_filter_results": {"hate": {"filtered": false, "severity": "safe"}, "self_harm": {"filtered": false, "severity": "safe"}, "sexual": {"filtered": false, "severity": "safe"}, "violence": {"filtered": false, "severity": "safe"}}}], "usage": {"prompt_tokens": 468, "completion_tokens": 128, "total_tokens": 596}}, "start_time": 1701749006.052093, "end_time": 1701749007.668043, "error": null, "children": null, "node_name": null}], "node_name": "summarize_text_content"}, {"name": "AzureOpenAI.chat", "type": "Tool", "inputs": {"prompt": "system:\nYour task is to classify a given url into one of the following categories:\nMovie, App, Academic, Channel, Profile, PDF or None based on the text content information.\nThe classification will be based on the url, the webpage text content summary, or both.\n\nuser:\nThe selection range of the value of \"category\" must be within \"Movie\", \"App\", \"Academic\", \"Channel\", \"Profile\", \"PDF\" and \"None\".\nThe selection range of the value of \"evidence\" must be within \"Url\", \"Text content\", and \"Both\".\nHere are a few examples:\n{% for ex in examples %}\nURL: {{ex.url}}\nText content: {{ex.text_content}}\nOUTPUT:\n{\"category\": \"{{ex.category}}\", \"evidence\": \"{{ex.evidence}}\"}\n\n{% endfor %}\n\nFor a given URL and text content, classify the url to complete the category and indicate evidence:\nURL: {{url}}\nText content: {{text_content}}.\nOUTPUT:", "deployment_name": "gpt-35-turbo", "model": "gpt-3.5-turbo", "max_tokens": 128, "temperature": 0.2, "url": "https://arxiv.org/abs/2307.04767", "text_content": "The paper introduces Semantic-SAM, a universal image segmentation model that can segment and recognize objects at any desired granularity. The model has two key advantages: semantic-awareness and granularity-abundance. To achieve semantic-awareness, the model consolidates multiple datasets and introduces decoupled classification for objects and parts. This allows the model to capture rich semantic information. For multi-granularity capability, a multi-choice learning scheme is proposed during training, generating masks at multiple levels. The model is trained on SA-1B, generic, and part segmentation datasets. Experimental results and visualizations demonstrate the success of the model in achieving semantic-awareness and", "examples": [{"url": "https://play.google.com/store/apps/details?id=com.spotify.music", "text_content": "Spotify is a free music and podcast streaming app with millions of songs, albums, and original podcasts. It also offers audiobooks, so users can enjoy thousands of stories. It has a variety of features such as creating and sharing music playlists, discovering new music, and listening to popular and exclusive podcasts. It also has a Premium subscription option which allows users to download and listen offline, and access ad-free music. It is available on all devices and has a variety of genres and artists to choose from.", "category": "App", "evidence": "Both"}, {"url": "https://www.youtube.com/channel/UC_x5XG1OV2P6uZZ5FSM9Ttw", "text_content": "NFL Sunday Ticket is a service offered by Google LLC that allows users to watch NFL games on YouTube. It is available in 2023 and is subject to the terms and privacy policy of Google LLC. It is also subject to YouTube's terms of use and any applicable laws.", "category": "Channel", "evidence": "URL"}, {"url": "https://arxiv.org/abs/2303.04671", "text_content": "Visual ChatGPT is a system that enables users to interact with ChatGPT by sending and receiving not only languages but also images, providing complex visual questions or visual editing instructions, and providing feedback and asking for corrected results. It incorporates different Visual Foundation Models and is publicly available. Experiments show that Visual ChatGPT opens the door to investigating the visual roles of ChatGPT with the help of Visual Foundation Models.", "category": "Academic", "evidence": "Text content"}, {"url": "https://ab.politiaromana.ro/", "text_content": "There is no content available for this text.", "category": "None", "evidence": "None"}]}, "output": "{\"category\": \"Academic\", \"evidence\": \"Both\"}", "start_time": 1701749007.670509, "end_time": 1701749007.956738, "error": null, "children": [{"name": "openai.api_resources.chat_completion.ChatCompletion.create", "type": "LLM", "inputs": {"api_base": "https://gpt-test-eus.openai.azure.com/", "api_type": "azure", "api_version": "2023-07-01-preview", "engine": "gpt-35-turbo", "messages": [{"role": "system", "content": "Your task is to classify a given url into one of the following categories:\nMovie, App, Academic, Channel, Profile, PDF or None based on the text content information.\nThe classification will be based on the url, the webpage text content summary, or both."}, {"role": "user", "content": "The selection range of the value of \"category\" must be within \"Movie\", \"App\", \"Academic\", \"Channel\", \"Profile\", \"PDF\" and \"None\".\nThe selection range of the value of \"evidence\" must be within \"Url\", \"Text content\", and \"Both\".\nHere are a few examples:\nURL: https://play.google.com/store/apps/details?id=com.spotify.music\nText content: Spotify is a free music and podcast streaming app with millions of songs, albums, and original podcasts. It also offers audiobooks, so users can enjoy thousands of stories. It has a variety of features such as creating and sharing music playlists, discovering new music, and listening to popular and exclusive podcasts. It also has a Premium subscription option which allows users to download and listen offline, and access ad-free music. It is available on all devices and has a variety of genres and artists to choose from.\nOUTPUT:\n{\"category\": \"App\", \"evidence\": \"Both\"}\n\nURL: https://www.youtube.com/channel/UC_x5XG1OV2P6uZZ5FSM9Ttw\nText content: NFL Sunday Ticket is a service offered by Google LLC that allows users to watch NFL games on YouTube. It is available in 2023 and is subject to the terms and privacy policy of Google LLC. It is also subject to YouTube's terms of use and any applicable laws.\nOUTPUT:\n{\"category\": \"Channel\", \"evidence\": \"URL\"}\n\nURL: https://arxiv.org/abs/2303.04671\nText content: Visual ChatGPT is a system that enables users to interact with ChatGPT by sending and receiving not only languages but also images, providing complex visual questions or visual editing instructions, and providing feedback and asking for corrected results. It incorporates different Visual Foundation Models and is publicly available. Experiments show that Visual ChatGPT opens the door to investigating the visual roles of ChatGPT with the help of Visual Foundation Models.\nOUTPUT:\n{\"category\": \"Academic\", \"evidence\": \"Text content\"}\n\nURL: https://ab.politiaromana.ro/\nText content: There is no content available for this text.\nOUTPUT:\n{\"category\": \"None\", \"evidence\": \"None\"}\n\n\nFor a given URL and text content, classify the url to complete the category and indicate evidence:\nURL: https://arxiv.org/abs/2307.04767\nText content: The paper introduces Semantic-SAM, a universal image segmentation model that can segment and recognize objects at any desired granularity. The model has two key advantages: semantic-awareness and granularity-abundance. To achieve semantic-awareness, the model consolidates multiple datasets and introduces decoupled classification for objects and parts. This allows the model to capture rich semantic information. For multi-granularity capability, a multi-choice learning scheme is proposed during training, generating masks at multiple levels. The model is trained on SA-1B, generic, and part segmentation datasets. Experimental results and visualizations demonstrate the success of the model in achieving semantic-awareness and.\nOUTPUT:"}], "temperature": 0.2, "top_p": 1.0, "n": 1, "stream": false, "stop": null, "max_tokens": 128, "presence_penalty": 0.0, "frequency_penalty": 0.0, "logit_bias": {}, "user": ""}, "output": {"id": "chatcmpl-8SGwZ8CajHzJc3UkbXeyX6MzNdFcD", "object": "chat.completion", "created": 1701749007, "model": "gpt-35-turbo", "prompt_filter_results": [{"prompt_index": 0, "content_filter_results": {"hate": {"filtered": false, "severity": "safe"}, "self_harm": {"filtered": false, "severity": "safe"}, "sexual": {"filtered": false, "severity": "safe"}, "violence": {"filtered": false, "severity": "safe"}}}], "choices": [{"index": 0, "finish_reason": "stop", "message": {"role": "assistant", "content": "{\"category\": \"Academic\", \"evidence\": \"Both\"}"}, "content_filter_results": {"hate": {"filtered": false, "severity": "safe"}, "self_harm": {"filtered": false, "severity": "safe"}, "sexual": {"filtered": false, "severity": "safe"}, "violence": {"filtered": false, "severity": "safe"}}}], "usage": {"prompt_tokens": 695, "completion_tokens": 14, "total_tokens": 709}}, "start_time": 1701749007.675928, "end_time": 1701749007.956625, "error": null, "children": null, "node_name": null}], "node_name": "classify_with_llm"}, {"name": "convert_to_dict", "type": "Tool", "inputs": {"input_str": "{\"category\": \"Academic\", \"evidence\": \"Both\"}"}, "output": {"category": "Academic", "evidence": "Both"}, "start_time": 1701749007.959116, "end_time": 1701749007.959648, "error": null, "children": null, "node_name": "convert_to_dict"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 2.359239, "total_tokens": 1305}, "result": {"category": "Academic", "evidence": "Both"}, "upload_metrics": false}, "start_time": "2023-12-05T04:03:25.604746", "end_time": "2023-12-05T04:03:27.963985", "name": "", "description": "", "status": "Completed", "tags": null} {"line_number": 2, "run_info": {"run_id": "web_classification_variant_0_20231205_120253_104100_2", "status": "Completed", "error": null, "inputs": {"url": "https://play.google.com/store/apps/details?id=com.twitter.android", "line_number": 2}, "output": {"category": "App", "evidence": "Both"}, "metrics": null, "request": null, "parent_run_id": "web_classification_variant_0_20231205_120253_104100", "root_run_id": "web_classification_variant_0_20231205_120253_104100", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2023-12-05T04:03:25.734275Z", "end_time": "2023-12-05T04:03:28.477166Z", "index": 2, "api_calls": [{"name": "fetch_text_content_from_url", "type": "Tool", "inputs": {"url": "https://play.google.com/store/apps/details?id=com.twitter.android"}, "output": "X - Apps on Google Playgoogle_logo PlayGamesAppsMovies & TVBooksKidsnonesearchhelp_outline Sign in with Googleplay_appsLibrary & devicespaymentPayments & subscriptionsreviewsMy Play activityredeemOffersPlay PasssettingsSettingsPrivacy Policy \u2022 Terms of ServiceGamesAppsMovies & TVBooksKidsXX Corp.Contains adsIn-app purchases3.8star21.5M reviews1B+DownloadsMature 17+infoInstallShareAdd to wishlistAbout this apparrow_forwardThe X app is the trusted global digital town square for everyone.With X, you can:- Post content for the world to see and join public conversations- Stay up to date on breaking news and follow your interests- Stay better informed with extra context from Community Notes- Go live with Spaces for audio or stream live video- Communicate privately with Direct Messages- Subscribe to X Premium to expand your reach, get a blue checkmark, and more- Earn a living creating exclusive content for your paid subscribers and share in the ad revenue generated in replies to your posts- Create and join Communities around topics and interests, from sports to music to technology- Upload and watch videos up to 3 hours in length- Write and read long form posts like essays and blogs- Connect directly with your customers to help your business growUpdated onDec 4, 2023#6 top grossing socialSocialData safetyarrow_forwardSafety starts with understanding how developers collect and share your data. Data privacy and security practices may vary based on your use, region, and age. The developer provided this information and may update it over time.No data shared with third partiesLearn more about how developers declare sharingThis app may collect these data typesLocation, Personal info and 9 othersData is encrypted in transitYou can request that data be deletedSee detailsRatings and reviewsRatings and reviews are verifiedinfo_outlinearrow_forwardRatings and reviews are verifiedinfo_outlinephone_androidPhonetablet_androidTabletwatchWatchlaptopChromebooktvTV3.820.8M reviews54321Alex S", "start_time": 1701749005.738373, "end_time": 1701749006.384366, "error": null, "children": null, "node_name": "fetch_text_content_from_url"}, {"name": "prepare_examples", "type": "Tool", "inputs": {}, "output": [{"url": "https://play.google.com/store/apps/details?id=com.spotify.music", "text_content": "Spotify is a free music and podcast streaming app with millions of songs, albums, and original podcasts. It also offers audiobooks, so users can enjoy thousands of stories. It has a variety of features such as creating and sharing music playlists, discovering new music, and listening to popular and exclusive podcasts. It also has a Premium subscription option which allows users to download and listen offline, and access ad-free music. It is available on all devices and has a variety of genres and artists to choose from.", "category": "App", "evidence": "Both"}, {"url": "https://www.youtube.com/channel/UC_x5XG1OV2P6uZZ5FSM9Ttw", "text_content": "NFL Sunday Ticket is a service offered by Google LLC that allows users to watch NFL games on YouTube. It is available in 2023 and is subject to the terms and privacy policy of Google LLC. It is also subject to YouTube's terms of use and any applicable laws.", "category": "Channel", "evidence": "URL"}, {"url": "https://arxiv.org/abs/2303.04671", "text_content": "Visual ChatGPT is a system that enables users to interact with ChatGPT by sending and receiving not only languages but also images, providing complex visual questions or visual editing instructions, and providing feedback and asking for corrected results. It incorporates different Visual Foundation Models and is publicly available. Experiments show that Visual ChatGPT opens the door to investigating the visual roles of ChatGPT with the help of Visual Foundation Models.", "category": "Academic", "evidence": "Text content"}, {"url": "https://ab.politiaromana.ro/", "text_content": "There is no content available for this text.", "category": "None", "evidence": "None"}], "start_time": 1701749005.739604, "end_time": 1701749005.74123, "error": null, "children": null, "node_name": "prepare_examples"}, {"name": "AzureOpenAI.chat", "type": "Tool", "inputs": {"prompt": "system:\nPlease summarize the following text in one paragraph. 100 words.\nDo not add any information that is not in the text.\n\nuser:\nText: {{text}}\nSummary: ", "deployment_name": "gpt-35-turbo", "model": "gpt-3.5-turbo", "max_tokens": 128, "temperature": 0.2, "text": "X - Apps on Google Playgoogle_logo PlayGamesAppsMovies & TVBooksKidsnonesearchhelp_outline Sign in with Googleplay_appsLibrary & devicespaymentPayments & subscriptionsreviewsMy Play activityredeemOffersPlay PasssettingsSettingsPrivacy Policy \u2022 Terms of ServiceGamesAppsMovies & TVBooksKidsXX Corp.Contains adsIn-app purchases3.8star21.5M reviews1B+DownloadsMature 17+infoInstallShareAdd to wishlistAbout this apparrow_forwardThe X app is the trusted global digital town square for everyone.With X, you can:- Post content for the world to see and join public conversations- Stay up to date on breaking news and follow your interests- Stay better informed with extra context from Community Notes- Go live with Spaces for audio or stream live video- Communicate privately with Direct Messages- Subscribe to X Premium to expand your reach, get a blue checkmark, and more- Earn a living creating exclusive content for your paid subscribers and share in the ad revenue generated in replies to your posts- Create and join Communities around topics and interests, from sports to music to technology- Upload and watch videos up to 3 hours in length- Write and read long form posts like essays and blogs- Connect directly with your customers to help your business growUpdated onDec 4, 2023#6 top grossing socialSocialData safetyarrow_forwardSafety starts with understanding how developers collect and share your data. Data privacy and security practices may vary based on your use, region, and age. The developer provided this information and may update it over time.No data shared with third partiesLearn more about how developers declare sharingThis app may collect these data typesLocation, Personal info and 9 othersData is encrypted in transitYou can request that data be deletedSee detailsRatings and reviewsRatings and reviews are verifiedinfo_outlinearrow_forwardRatings and reviews are verifiedinfo_outlinephone_androidPhonetablet_androidTabletwatchWatchlaptopChromebooktvTV3.820.8M reviews54321Alex S"}, "output": "The X app is a global digital platform where users can post content, join public conversations, stay updated on breaking news, and follow their interests. It offers features such as Community Notes for extra context, Spaces for live audio or video streaming, Direct Messages for private communication, and the option to subscribe to X Premium for expanded reach and exclusive content creation. Users can also create and join Communities, upload and watch videos, and write and read long-form posts. The app prioritizes data safety and allows users to request data deletion. It has a rating of 3.8 stars based on 21.5 million reviews and has been downloaded over", "start_time": 1701749006.386894, "end_time": 1701749008.123235, "error": null, "children": [{"name": "openai.api_resources.chat_completion.ChatCompletion.create", "type": "LLM", "inputs": {"api_base": "https://gpt-test-eus.openai.azure.com/", "api_type": "azure", "api_version": "2023-07-01-preview", "engine": "gpt-35-turbo", "messages": [{"role": "system", "content": "Please summarize the following text in one paragraph. 100 words.\nDo not add any information that is not in the text."}, {"role": "user", "content": "Text: X - Apps on Google Playgoogle_logo PlayGamesAppsMovies & TVBooksKidsnonesearchhelp_outline Sign in with Googleplay_appsLibrary & devicespaymentPayments & subscriptionsreviewsMy Play activityredeemOffersPlay PasssettingsSettingsPrivacy Policy \u2022 Terms of ServiceGamesAppsMovies & TVBooksKidsXX Corp.Contains adsIn-app purchases3.8star21.5M reviews1B+DownloadsMature 17+infoInstallShareAdd to wishlistAbout this apparrow_forwardThe X app is the trusted global digital town square for everyone.With X, you can:- Post content for the world to see and join public conversations- Stay up to date on breaking news and follow your interests- Stay better informed with extra context from Community Notes- Go live with Spaces for audio or stream live video- Communicate privately with Direct Messages- Subscribe to X Premium to expand your reach, get a blue checkmark, and more- Earn a living creating exclusive content for your paid subscribers and share in the ad revenue generated in replies to your posts- Create and join Communities around topics and interests, from sports to music to technology- Upload and watch videos up to 3 hours in length- Write and read long form posts like essays and blogs- Connect directly with your customers to help your business growUpdated onDec 4, 2023#6 top grossing socialSocialData safetyarrow_forwardSafety starts with understanding how developers collect and share your data. Data privacy and security practices may vary based on your use, region, and age. The developer provided this information and may update it over time.No data shared with third partiesLearn more about how developers declare sharingThis app may collect these data typesLocation, Personal info and 9 othersData is encrypted in transitYou can request that data be deletedSee detailsRatings and reviewsRatings and reviews are verifiedinfo_outlinearrow_forwardRatings and reviews are verifiedinfo_outlinephone_androidPhonetablet_androidTabletwatchWatchlaptopChromebooktvTV3.820.8M reviews54321Alex S\nSummary: "}], "temperature": 0.2, "top_p": 1.0, "n": 1, "stream": false, "stop": null, "max_tokens": 128, "presence_penalty": 0.0, "frequency_penalty": 0.0, "logit_bias": {}, "user": ""}, "output": {"id": "chatcmpl-8SGwYyQcqIQLNvDERxnNkJ8Tv4wIf", "object": "chat.completion", "created": 1701749006, "model": "gpt-35-turbo", "prompt_filter_results": [{"prompt_index": 0, "content_filter_results": {"hate": {"filtered": false, "severity": "safe"}, "self_harm": {"filtered": false, "severity": "safe"}, "sexual": {"filtered": false, "severity": "safe"}, "violence": {"filtered": false, "severity": "safe"}}}], "choices": [{"index": 0, "finish_reason": "length", "message": {"role": "assistant", "content": "The X app is a global digital platform where users can post content, join public conversations, stay updated on breaking news, and follow their interests. It offers features such as Community Notes for extra context, Spaces for live audio or video streaming, Direct Messages for private communication, and the option to subscribe to X Premium for expanded reach and exclusive content creation. Users can also create and join Communities, upload and watch videos, and write and read long-form posts. The app prioritizes data safety and allows users to request data deletion. It has a rating of 3.8 stars based on 21.5 million reviews and has been downloaded over"}, "content_filter_results": {"hate": {"filtered": false, "severity": "safe"}, "self_harm": {"filtered": false, "severity": "safe"}, "sexual": {"filtered": false, "severity": "safe"}, "violence": {"filtered": false, "severity": "safe"}}}], "usage": {"prompt_tokens": 448, "completion_tokens": 128, "total_tokens": 576}}, "start_time": 1701749006.391002, "end_time": 1701749008.123107, "error": null, "children": null, "node_name": null}], "node_name": "summarize_text_content"}, {"name": "AzureOpenAI.chat", "type": "Tool", "inputs": {"prompt": "system:\nYour task is to classify a given url into one of the following categories:\nMovie, App, Academic, Channel, Profile, PDF or None based on the text content information.\nThe classification will be based on the url, the webpage text content summary, or both.\n\nuser:\nThe selection range of the value of \"category\" must be within \"Movie\", \"App\", \"Academic\", \"Channel\", \"Profile\", \"PDF\" and \"None\".\nThe selection range of the value of \"evidence\" must be within \"Url\", \"Text content\", and \"Both\".\nHere are a few examples:\n{% for ex in examples %}\nURL: {{ex.url}}\nText content: {{ex.text_content}}\nOUTPUT:\n{\"category\": \"{{ex.category}}\", \"evidence\": \"{{ex.evidence}}\"}\n\n{% endfor %}\n\nFor a given URL and text content, classify the url to complete the category and indicate evidence:\nURL: {{url}}\nText content: {{text_content}}.\nOUTPUT:", "deployment_name": "gpt-35-turbo", "model": "gpt-3.5-turbo", "max_tokens": 128, "temperature": 0.2, "url": "https://play.google.com/store/apps/details?id=com.twitter.android", "text_content": "The X app is a global digital platform where users can post content, join public conversations, stay updated on breaking news, and follow their interests. It offers features such as Community Notes for extra context, Spaces for live audio or video streaming, Direct Messages for private communication, and the option to subscribe to X Premium for expanded reach and exclusive content creation. Users can also create and join Communities, upload and watch videos, and write and read long-form posts. The app prioritizes data safety and allows users to request data deletion. It has a rating of 3.8 stars based on 21.5 million reviews and has been downloaded over", "examples": [{"url": "https://play.google.com/store/apps/details?id=com.spotify.music", "text_content": "Spotify is a free music and podcast streaming app with millions of songs, albums, and original podcasts. It also offers audiobooks, so users can enjoy thousands of stories. It has a variety of features such as creating and sharing music playlists, discovering new music, and listening to popular and exclusive podcasts. It also has a Premium subscription option which allows users to download and listen offline, and access ad-free music. It is available on all devices and has a variety of genres and artists to choose from.", "category": "App", "evidence": "Both"}, {"url": "https://www.youtube.com/channel/UC_x5XG1OV2P6uZZ5FSM9Ttw", "text_content": "NFL Sunday Ticket is a service offered by Google LLC that allows users to watch NFL games on YouTube. It is available in 2023 and is subject to the terms and privacy policy of Google LLC. It is also subject to YouTube's terms of use and any applicable laws.", "category": "Channel", "evidence": "URL"}, {"url": "https://arxiv.org/abs/2303.04671", "text_content": "Visual ChatGPT is a system that enables users to interact with ChatGPT by sending and receiving not only languages but also images, providing complex visual questions or visual editing instructions, and providing feedback and asking for corrected results. It incorporates different Visual Foundation Models and is publicly available. Experiments show that Visual ChatGPT opens the door to investigating the visual roles of ChatGPT with the help of Visual Foundation Models.", "category": "Academic", "evidence": "Text content"}, {"url": "https://ab.politiaromana.ro/", "text_content": "There is no content available for this text.", "category": "None", "evidence": "None"}]}, "output": "{\"category\": \"App\", \"evidence\": \"Both\"}", "start_time": 1701749008.126513, "end_time": 1701749008.469702, "error": null, "children": [{"name": "openai.api_resources.chat_completion.ChatCompletion.create", "type": "LLM", "inputs": {"api_base": "https://gpt-test-eus.openai.azure.com/", "api_type": "azure", "api_version": "2023-07-01-preview", "engine": "gpt-35-turbo", "messages": [{"role": "system", "content": "Your task is to classify a given url into one of the following categories:\nMovie, App, Academic, Channel, Profile, PDF or None based on the text content information.\nThe classification will be based on the url, the webpage text content summary, or both."}, {"role": "user", "content": "The selection range of the value of \"category\" must be within \"Movie\", \"App\", \"Academic\", \"Channel\", \"Profile\", \"PDF\" and \"None\".\nThe selection range of the value of \"evidence\" must be within \"Url\", \"Text content\", and \"Both\".\nHere are a few examples:\nURL: https://play.google.com/store/apps/details?id=com.spotify.music\nText content: Spotify is a free music and podcast streaming app with millions of songs, albums, and original podcasts. It also offers audiobooks, so users can enjoy thousands of stories. It has a variety of features such as creating and sharing music playlists, discovering new music, and listening to popular and exclusive podcasts. It also has a Premium subscription option which allows users to download and listen offline, and access ad-free music. It is available on all devices and has a variety of genres and artists to choose from.\nOUTPUT:\n{\"category\": \"App\", \"evidence\": \"Both\"}\n\nURL: https://www.youtube.com/channel/UC_x5XG1OV2P6uZZ5FSM9Ttw\nText content: NFL Sunday Ticket is a service offered by Google LLC that allows users to watch NFL games on YouTube. It is available in 2023 and is subject to the terms and privacy policy of Google LLC. It is also subject to YouTube's terms of use and any applicable laws.\nOUTPUT:\n{\"category\": \"Channel\", \"evidence\": \"URL\"}\n\nURL: https://arxiv.org/abs/2303.04671\nText content: Visual ChatGPT is a system that enables users to interact with ChatGPT by sending and receiving not only languages but also images, providing complex visual questions or visual editing instructions, and providing feedback and asking for corrected results. It incorporates different Visual Foundation Models and is publicly available. Experiments show that Visual ChatGPT opens the door to investigating the visual roles of ChatGPT with the help of Visual Foundation Models.\nOUTPUT:\n{\"category\": \"Academic\", \"evidence\": \"Text content\"}\n\nURL: https://ab.politiaromana.ro/\nText content: There is no content available for this text.\nOUTPUT:\n{\"category\": \"None\", \"evidence\": \"None\"}\n\n\nFor a given URL and text content, classify the url to complete the category and indicate evidence:\nURL: https://play.google.com/store/apps/details?id=com.twitter.android\nText content: The X app is a global digital platform where users can post content, join public conversations, stay updated on breaking news, and follow their interests. It offers features such as Community Notes for extra context, Spaces for live audio or video streaming, Direct Messages for private communication, and the option to subscribe to X Premium for expanded reach and exclusive content creation. Users can also create and join Communities, upload and watch videos, and write and read long-form posts. The app prioritizes data safety and allows users to request data deletion. It has a rating of 3.8 stars based on 21.5 million reviews and has been downloaded over.\nOUTPUT:"}], "temperature": 0.2, "top_p": 1.0, "n": 1, "stream": false, "stop": null, "max_tokens": 128, "presence_penalty": 0.0, "frequency_penalty": 0.0, "logit_bias": {}, "user": ""}, "output": {"id": "chatcmpl-8SGwaHVVKGYxKtoLEQKFdvAmblBBc", "object": "chat.completion", "created": 1701749008, "model": "gpt-35-turbo", "prompt_filter_results": [{"prompt_index": 0, "content_filter_results": {"hate": {"filtered": false, "severity": "safe"}, "self_harm": {"filtered": false, "severity": "safe"}, "sexual": {"filtered": false, "severity": "safe"}, "violence": {"filtered": false, "severity": "safe"}}}], "choices": [{"index": 0, "finish_reason": "stop", "message": {"role": "assistant", "content": "{\"category\": \"App\", \"evidence\": \"Both\"}"}, "content_filter_results": {"hate": {"filtered": false, "severity": "safe"}, "self_harm": {"filtered": false, "severity": "safe"}, "sexual": {"filtered": false, "severity": "safe"}, "violence": {"filtered": false, "severity": "safe"}}}], "usage": {"prompt_tokens": 694, "completion_tokens": 13, "total_tokens": 707}}, "start_time": 1701749008.130586, "end_time": 1701749008.469585, "error": null, "children": null, "node_name": null}], "node_name": "classify_with_llm"}, {"name": "convert_to_dict", "type": "Tool", "inputs": {"input_str": "{\"category\": \"App\", \"evidence\": \"Both\"}"}, "output": {"category": "App", "evidence": "Both"}, "start_time": 1701749008.472326, "end_time": 1701749008.472859, "error": null, "children": null, "node_name": "convert_to_dict"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 2.742891, "total_tokens": 1283}, "result": {"category": "App", "evidence": "Both"}, "upload_metrics": false}, "start_time": "2023-12-05T04:03:25.734275", "end_time": "2023-12-05T04:03:28.477166", "name": "", "description": "", "status": "Completed", "tags": null}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/flow_outputs/output.jsonl
{"line_number": 0, "category": "None", "evidence": "None"} {"line_number": 1, "category": "Academic", "evidence": "Both"} {"line_number": 2, "category": "App", "evidence": "Both"}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/node_artifacts
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/node_artifacts/fetch_text_content_from_url/000000001.jsonl
{"node_name": "fetch_text_content_from_url", "line_number": 1, "run_info": {"node": "fetch_text_content_from_url", "flow_run_id": "web_classification_variant_0_20231205_120253_104100", "run_id": "web_classification_variant_0_20231205_120253_104100_fetch_text_content_from_url_1", "status": "Completed", "inputs": {"url": "https://arxiv.org/abs/2307.04767"}, "output": "\n\n\n [2307.04767] Semantic-SAM: Segment and Recognize Anything at Any Granularity\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n \n\n\n\n\n\n\n\n\nSkip to main content\n\n\n\n\n\nWe gratefully acknowledge support from the Simons Foundation, member institutions, and all contributors. Donate\n\n\n\n\n\n > cs > arXiv:2307.04767\n \n\n\n\n\n\nHelp | Advanced Search\n\n\n\n\nAll fields\nTitle\nAuthor\nAbstract\nComments\nJournal reference\nACM classification\nMSC classification\nReport number\narXiv identifier\nDOI\nORCID\narXiv author ID\nHelp pages\nFull text\n\n\n\n\nSearch\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nopen search\n\n\n\n\n\n\nGO\n\n\n\nopen navigation menu\n\n\nquick links\n\nLogin\nHelp Pages\nAbout\n\n\n\n\n\n\n\n\n\n\n\n\nComputer Science > Computer Vision and Pattern Recognition\n\n\narXiv:2307.04767 (cs)\n \n\n\n\n\n [Submitted on 10 Jul 2023]\nTitle:Semantic-SAM: Segment and Recognize Anything at Any Granularity\nAuthors:Feng Li, Hao Zhang, Peize Sun, Xueyan Zou, Shilong Liu, Jianwei Yang, Chunyuan Li, Lei Zhang, Jianfeng Gao Download a PDF of the paper titled Semantic-SAM: Segment and Recognize Anything at Any Granularity, by Feng Li and 8 other authors\nDownload PDF\n\nAbstract:In this paper, we introduce Semantic-SAM, a universal image segmentation model to enable segment and recognize anything at any desired granularity. Our model offers two key advantages: semantic-awareness and granularity-abundance. To achieve semantic-awareness, we consolidate multiple datasets across three granularities and introduce decoupled classification for objects and parts. This allows our model to capture rich semantic information. For the multi-granularity capability, we propose a multi-choice learning scheme during training, enabling each click to generate masks at multiple levels that correspond to multiple ground-truth masks. Notably, this work represents the first attempt to jointly train a model on SA-1B, generic, and part segmentation datasets. Experimental results and visualizations demonstrate that our model successfully achieves semantic-awareness and granularity-abundance. Furthermore, co", "metrics": null, "error": null, "parent_run_id": "web_classification_variant_0_20231205_120253_104100_1", "start_time": "2023-12-05T04:03:25.608387Z", "end_time": "2023-12-05T04:03:26.033037Z", "index": 1, "api_calls": [{"name": "fetch_text_content_from_url", "type": "Tool", "inputs": {"url": "https://arxiv.org/abs/2307.04767"}, "output": "\n\n\n [2307.04767] Semantic-SAM: Segment and Recognize Anything at Any Granularity\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n \n\n\n\n\n\n\n\n\nSkip to main content\n\n\n\n\n\nWe gratefully acknowledge support from the Simons Foundation, member institutions, and all contributors. Donate\n\n\n\n\n\n > cs > arXiv:2307.04767\n \n\n\n\n\n\nHelp | Advanced Search\n\n\n\n\nAll fields\nTitle\nAuthor\nAbstract\nComments\nJournal reference\nACM classification\nMSC classification\nReport number\narXiv identifier\nDOI\nORCID\narXiv author ID\nHelp pages\nFull text\n\n\n\n\nSearch\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nopen search\n\n\n\n\n\n\nGO\n\n\n\nopen navigation menu\n\n\nquick links\n\nLogin\nHelp Pages\nAbout\n\n\n\n\n\n\n\n\n\n\n\n\nComputer Science > Computer Vision and Pattern Recognition\n\n\narXiv:2307.04767 (cs)\n \n\n\n\n\n [Submitted on 10 Jul 2023]\nTitle:Semantic-SAM: Segment and Recognize Anything at Any Granularity\nAuthors:Feng Li, Hao Zhang, Peize Sun, Xueyan Zou, Shilong Liu, Jianwei Yang, Chunyuan Li, Lei Zhang, Jianfeng Gao Download a PDF of the paper titled Semantic-SAM: Segment and Recognize Anything at Any Granularity, by Feng Li and 8 other authors\nDownload PDF\n\nAbstract:In this paper, we introduce Semantic-SAM, a universal image segmentation model to enable segment and recognize anything at any desired granularity. Our model offers two key advantages: semantic-awareness and granularity-abundance. To achieve semantic-awareness, we consolidate multiple datasets across three granularities and introduce decoupled classification for objects and parts. This allows our model to capture rich semantic information. For the multi-granularity capability, we propose a multi-choice learning scheme during training, enabling each click to generate masks at multiple levels that correspond to multiple ground-truth masks. Notably, this work represents the first attempt to jointly train a model on SA-1B, generic, and part segmentation datasets. Experimental results and visualizations demonstrate that our model successfully achieves semantic-awareness and granularity-abundance. Furthermore, co", "start_time": 1701749005.608924, "end_time": 1701749006.032803, "error": null, "children": null, "node_name": "fetch_text_content_from_url"}], "variant_id": "", "cached_run_id": null, "cached_flow_run_id": null, "logs": {"stdout": "", "stderr": ""}, "system_metrics": {"duration": 0.42465}, "result": "\n\n\n [2307.04767] Semantic-SAM: Segment and Recognize Anything at Any Granularity\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n \n\n\n\n\n\n\n\n\nSkip to main content\n\n\n\n\n\nWe gratefully acknowledge support from the Simons Foundation, member institutions, and all contributors. Donate\n\n\n\n\n\n > cs > arXiv:2307.04767\n \n\n\n\n\n\nHelp | Advanced Search\n\n\n\n\nAll fields\nTitle\nAuthor\nAbstract\nComments\nJournal reference\nACM classification\nMSC classification\nReport number\narXiv identifier\nDOI\nORCID\narXiv author ID\nHelp pages\nFull text\n\n\n\n\nSearch\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nopen search\n\n\n\n\n\n\nGO\n\n\n\nopen navigation menu\n\n\nquick links\n\nLogin\nHelp Pages\nAbout\n\n\n\n\n\n\n\n\n\n\n\n\nComputer Science > Computer Vision and Pattern Recognition\n\n\narXiv:2307.04767 (cs)\n \n\n\n\n\n [Submitted on 10 Jul 2023]\nTitle:Semantic-SAM: Segment and Recognize Anything at Any Granularity\nAuthors:Feng Li, Hao Zhang, Peize Sun, Xueyan Zou, Shilong Liu, Jianwei Yang, Chunyuan Li, Lei Zhang, Jianfeng Gao Download a PDF of the paper titled Semantic-SAM: Segment and Recognize Anything at Any Granularity, by Feng Li and 8 other authors\nDownload PDF\n\nAbstract:In this paper, we introduce Semantic-SAM, a universal image segmentation model to enable segment and recognize anything at any desired granularity. Our model offers two key advantages: semantic-awareness and granularity-abundance. To achieve semantic-awareness, we consolidate multiple datasets across three granularities and introduce decoupled classification for objects and parts. This allows our model to capture rich semantic information. For the multi-granularity capability, we propose a multi-choice learning scheme during training, enabling each click to generate masks at multiple levels that correspond to multiple ground-truth masks. Notably, this work represents the first attempt to jointly train a model on SA-1B, generic, and part segmentation datasets. Experimental results and visualizations demonstrate that our model successfully achieves semantic-awareness and granularity-abundance. Furthermore, co"}, "start_time": "2023-12-05T04:03:25.608387", "end_time": "2023-12-05T04:03:26.033037", "status": "Completed"}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/node_artifacts
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/node_artifacts/fetch_text_content_from_url/000000000.jsonl
{"node_name": "fetch_text_content_from_url", "line_number": 0, "run_info": {"node": "fetch_text_content_from_url", "flow_run_id": "web_classification_variant_0_20231205_120253_104100", "run_id": "web_classification_variant_0_20231205_120253_104100_fetch_text_content_from_url_0", "status": "Completed", "inputs": {"url": "https://www.youtube.com/watch?v=kYqRtjDBci8"}, "output": "Amazing! The prompt flow in Azure AI speeds up the building of my LLM application. - YouTubeAboutPressCopyrightContact usCreatorsAdvertiseDevelopersTermsPrivacyPolicy & SafetyHow YouTube worksTest new featuresNFL Sunday Ticket\u00a9 2023 Google LLC", "metrics": null, "error": null, "parent_run_id": "web_classification_variant_0_20231205_120253_104100_0", "start_time": "2023-12-05T04:03:25.566290Z", "end_time": "2023-12-05T04:03:26.619414Z", "index": 0, "api_calls": [{"name": "fetch_text_content_from_url", "type": "Tool", "inputs": {"url": "https://www.youtube.com/watch?v=kYqRtjDBci8"}, "output": "Amazing! The prompt flow in Azure AI speeds up the building of my LLM application. - YouTubeAboutPressCopyrightContact usCreatorsAdvertiseDevelopersTermsPrivacyPolicy & SafetyHow YouTube worksTest new featuresNFL Sunday Ticket\u00a9 2023 Google LLC", "start_time": 1701749005.566919, "end_time": 1701749006.619194, "error": null, "children": null, "node_name": "fetch_text_content_from_url"}], "variant_id": "", "cached_run_id": null, "cached_flow_run_id": null, "logs": {"stdout": "", "stderr": ""}, "system_metrics": {"duration": 1.053124}, "result": "Amazing! The prompt flow in Azure AI speeds up the building of my LLM application. - YouTubeAboutPressCopyrightContact usCreatorsAdvertiseDevelopersTermsPrivacyPolicy & SafetyHow YouTube worksTest new featuresNFL Sunday Ticket\u00a9 2023 Google LLC"}, "start_time": "2023-12-05T04:03:25.566290", "end_time": "2023-12-05T04:03:26.619414", "status": "Completed"}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/node_artifacts
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/node_artifacts/fetch_text_content_from_url/000000002.jsonl
{"node_name": "fetch_text_content_from_url", "line_number": 2, "run_info": {"node": "fetch_text_content_from_url", "flow_run_id": "web_classification_variant_0_20231205_120253_104100", "run_id": "web_classification_variant_0_20231205_120253_104100_fetch_text_content_from_url_2", "status": "Completed", "inputs": {"url": "https://play.google.com/store/apps/details?id=com.twitter.android"}, "output": "X - Apps on Google Playgoogle_logo PlayGamesAppsMovies & TVBooksKidsnonesearchhelp_outline Sign in with Googleplay_appsLibrary & devicespaymentPayments & subscriptionsreviewsMy Play activityredeemOffersPlay PasssettingsSettingsPrivacy Policy \u2022 Terms of ServiceGamesAppsMovies & TVBooksKidsXX Corp.Contains adsIn-app purchases3.8star21.5M reviews1B+DownloadsMature 17+infoInstallShareAdd to wishlistAbout this apparrow_forwardThe X app is the trusted global digital town square for everyone.With X, you can:- Post content for the world to see and join public conversations- Stay up to date on breaking news and follow your interests- Stay better informed with extra context from Community Notes- Go live with Spaces for audio or stream live video- Communicate privately with Direct Messages- Subscribe to X Premium to expand your reach, get a blue checkmark, and more- Earn a living creating exclusive content for your paid subscribers and share in the ad revenue generated in replies to your posts- Create and join Communities around topics and interests, from sports to music to technology- Upload and watch videos up to 3 hours in length- Write and read long form posts like essays and blogs- Connect directly with your customers to help your business growUpdated onDec 4, 2023#6 top grossing socialSocialData safetyarrow_forwardSafety starts with understanding how developers collect and share your data. Data privacy and security practices may vary based on your use, region, and age. The developer provided this information and may update it over time.No data shared with third partiesLearn more about how developers declare sharingThis app may collect these data typesLocation, Personal info and 9 othersData is encrypted in transitYou can request that data be deletedSee detailsRatings and reviewsRatings and reviews are verifiedinfo_outlinearrow_forwardRatings and reviews are verifiedinfo_outlinephone_androidPhonetablet_androidTabletwatchWatchlaptopChromebooktvTV3.820.8M reviews54321Alex S", "metrics": null, "error": null, "parent_run_id": "web_classification_variant_0_20231205_120253_104100_2", "start_time": "2023-12-05T04:03:25.737699Z", "end_time": "2023-12-05T04:03:26.384654Z", "index": 2, "api_calls": [{"name": "fetch_text_content_from_url", "type": "Tool", "inputs": {"url": "https://play.google.com/store/apps/details?id=com.twitter.android"}, "output": "X - Apps on Google Playgoogle_logo PlayGamesAppsMovies & TVBooksKidsnonesearchhelp_outline Sign in with Googleplay_appsLibrary & devicespaymentPayments & subscriptionsreviewsMy Play activityredeemOffersPlay PasssettingsSettingsPrivacy Policy \u2022 Terms of ServiceGamesAppsMovies & TVBooksKidsXX Corp.Contains adsIn-app purchases3.8star21.5M reviews1B+DownloadsMature 17+infoInstallShareAdd to wishlistAbout this apparrow_forwardThe X app is the trusted global digital town square for everyone.With X, you can:- Post content for the world to see and join public conversations- Stay up to date on breaking news and follow your interests- Stay better informed with extra context from Community Notes- Go live with Spaces for audio or stream live video- Communicate privately with Direct Messages- Subscribe to X Premium to expand your reach, get a blue checkmark, and more- Earn a living creating exclusive content for your paid subscribers and share in the ad revenue generated in replies to your posts- Create and join Communities around topics and interests, from sports to music to technology- Upload and watch videos up to 3 hours in length- Write and read long form posts like essays and blogs- Connect directly with your customers to help your business growUpdated onDec 4, 2023#6 top grossing socialSocialData safetyarrow_forwardSafety starts with understanding how developers collect and share your data. Data privacy and security practices may vary based on your use, region, and age. The developer provided this information and may update it over time.No data shared with third partiesLearn more about how developers declare sharingThis app may collect these data typesLocation, Personal info and 9 othersData is encrypted in transitYou can request that data be deletedSee detailsRatings and reviewsRatings and reviews are verifiedinfo_outlinearrow_forwardRatings and reviews are verifiedinfo_outlinephone_androidPhonetablet_androidTabletwatchWatchlaptopChromebooktvTV3.820.8M reviews54321Alex S", "start_time": 1701749005.738373, "end_time": 1701749006.384366, "error": null, "children": null, "node_name": "fetch_text_content_from_url"}], "variant_id": "", "cached_run_id": null, "cached_flow_run_id": null, "logs": {"stdout": "", "stderr": ""}, "system_metrics": {"duration": 0.646955}, "result": "X - Apps on Google Playgoogle_logo PlayGamesAppsMovies & TVBooksKidsnonesearchhelp_outline Sign in with Googleplay_appsLibrary & devicespaymentPayments & subscriptionsreviewsMy Play activityredeemOffersPlay PasssettingsSettingsPrivacy Policy \u2022 Terms of ServiceGamesAppsMovies & TVBooksKidsXX Corp.Contains adsIn-app purchases3.8star21.5M reviews1B+DownloadsMature 17+infoInstallShareAdd to wishlistAbout this apparrow_forwardThe X app is the trusted global digital town square for everyone.With X, you can:- Post content for the world to see and join public conversations- Stay up to date on breaking news and follow your interests- Stay better informed with extra context from Community Notes- Go live with Spaces for audio or stream live video- Communicate privately with Direct Messages- Subscribe to X Premium to expand your reach, get a blue checkmark, and more- Earn a living creating exclusive content for your paid subscribers and share in the ad revenue generated in replies to your posts- Create and join Communities around topics and interests, from sports to music to technology- Upload and watch videos up to 3 hours in length- Write and read long form posts like essays and blogs- Connect directly with your customers to help your business growUpdated onDec 4, 2023#6 top grossing socialSocialData safetyarrow_forwardSafety starts with understanding how developers collect and share your data. Data privacy and security practices may vary based on your use, region, and age. The developer provided this information and may update it over time.No data shared with third partiesLearn more about how developers declare sharingThis app may collect these data typesLocation, Personal info and 9 othersData is encrypted in transitYou can request that data be deletedSee detailsRatings and reviewsRatings and reviews are verifiedinfo_outlinearrow_forwardRatings and reviews are verifiedinfo_outlinephone_androidPhonetablet_androidTabletwatchWatchlaptopChromebooktvTV3.820.8M reviews54321Alex S"}, "start_time": "2023-12-05T04:03:25.737699", "end_time": "2023-12-05T04:03:26.384654", "status": "Completed"}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/node_artifacts
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/node_artifacts/classify_with_llm/000000001.jsonl
{"node_name": "classify_with_llm", "line_number": 1, "run_info": {"node": "classify_with_llm", "flow_run_id": "web_classification_variant_0_20231205_120253_104100", "run_id": "web_classification_variant_0_20231205_120253_104100_classify_with_llm_1", "status": "Completed", "inputs": {"prompt": "system:\nYour task is to classify a given url into one of the following categories:\nMovie, App, Academic, Channel, Profile, PDF or None based on the text content information.\nThe classification will be based on the url, the webpage text content summary, or both.\n\nuser:\nThe selection range of the value of \"category\" must be within \"Movie\", \"App\", \"Academic\", \"Channel\", \"Profile\", \"PDF\" and \"None\".\nThe selection range of the value of \"evidence\" must be within \"Url\", \"Text content\", and \"Both\".\nHere are a few examples:\n{% for ex in examples %}\nURL: {{ex.url}}\nText content: {{ex.text_content}}\nOUTPUT:\n{\"category\": \"{{ex.category}}\", \"evidence\": \"{{ex.evidence}}\"}\n\n{% endfor %}\n\nFor a given URL and text content, classify the url to complete the category and indicate evidence:\nURL: {{url}}\nText content: {{text_content}}.\nOUTPUT:", "deployment_name": "gpt-35-turbo", "model": "gpt-3.5-turbo", "max_tokens": 128, "temperature": 0.2, "url": "https://arxiv.org/abs/2307.04767", "text_content": "The paper introduces Semantic-SAM, a universal image segmentation model that can segment and recognize objects at any desired granularity. The model has two key advantages: semantic-awareness and granularity-abundance. To achieve semantic-awareness, the model consolidates multiple datasets and introduces decoupled classification for objects and parts. This allows the model to capture rich semantic information. For multi-granularity capability, a multi-choice learning scheme is proposed during training, generating masks at multiple levels. The model is trained on SA-1B, generic, and part segmentation datasets. Experimental results and visualizations demonstrate the success of the model in achieving semantic-awareness and", "examples": [{"url": "https://play.google.com/store/apps/details?id=com.spotify.music", "text_content": "Spotify is a free music and podcast streaming app with millions of songs, albums, and original podcasts. It also offers audiobooks, so users can enjoy thousands of stories. It has a variety of features such as creating and sharing music playlists, discovering new music, and listening to popular and exclusive podcasts. It also has a Premium subscription option which allows users to download and listen offline, and access ad-free music. It is available on all devices and has a variety of genres and artists to choose from.", "category": "App", "evidence": "Both"}, {"url": "https://www.youtube.com/channel/UC_x5XG1OV2P6uZZ5FSM9Ttw", "text_content": "NFL Sunday Ticket is a service offered by Google LLC that allows users to watch NFL games on YouTube. It is available in 2023 and is subject to the terms and privacy policy of Google LLC. It is also subject to YouTube's terms of use and any applicable laws.", "category": "Channel", "evidence": "URL"}, {"url": "https://arxiv.org/abs/2303.04671", "text_content": "Visual ChatGPT is a system that enables users to interact with ChatGPT by sending and receiving not only languages but also images, providing complex visual questions or visual editing instructions, and providing feedback and asking for corrected results. It incorporates different Visual Foundation Models and is publicly available. Experiments show that Visual ChatGPT opens the door to investigating the visual roles of ChatGPT with the help of Visual Foundation Models.", "category": "Academic", "evidence": "Text content"}, {"url": "https://ab.politiaromana.ro/", "text_content": "There is no content available for this text.", "category": "None", "evidence": "None"}]}, "output": "{\"category\": \"Academic\", \"evidence\": \"Both\"}", "metrics": null, "error": null, "parent_run_id": "web_classification_variant_0_20231205_120253_104100_1", "start_time": "2023-12-05T04:03:27.670281Z", "end_time": "2023-12-05T04:03:27.957477Z", "index": 1, "api_calls": [{"name": "AzureOpenAI.chat", "type": "Tool", "inputs": {"prompt": "system:\nYour task is to classify a given url into one of the following categories:\nMovie, App, Academic, Channel, Profile, PDF or None based on the text content information.\nThe classification will be based on the url, the webpage text content summary, or both.\n\nuser:\nThe selection range of the value of \"category\" must be within \"Movie\", \"App\", \"Academic\", \"Channel\", \"Profile\", \"PDF\" and \"None\".\nThe selection range of the value of \"evidence\" must be within \"Url\", \"Text content\", and \"Both\".\nHere are a few examples:\n{% for ex in examples %}\nURL: {{ex.url}}\nText content: {{ex.text_content}}\nOUTPUT:\n{\"category\": \"{{ex.category}}\", \"evidence\": \"{{ex.evidence}}\"}\n\n{% endfor %}\n\nFor a given URL and text content, classify the url to complete the category and indicate evidence:\nURL: {{url}}\nText content: {{text_content}}.\nOUTPUT:", "deployment_name": "gpt-35-turbo", "model": "gpt-3.5-turbo", "max_tokens": 128, "temperature": 0.2, "url": "https://arxiv.org/abs/2307.04767", "text_content": "The paper introduces Semantic-SAM, a universal image segmentation model that can segment and recognize objects at any desired granularity. The model has two key advantages: semantic-awareness and granularity-abundance. To achieve semantic-awareness, the model consolidates multiple datasets and introduces decoupled classification for objects and parts. This allows the model to capture rich semantic information. For multi-granularity capability, a multi-choice learning scheme is proposed during training, generating masks at multiple levels. The model is trained on SA-1B, generic, and part segmentation datasets. Experimental results and visualizations demonstrate the success of the model in achieving semantic-awareness and", "examples": [{"url": "https://play.google.com/store/apps/details?id=com.spotify.music", "text_content": "Spotify is a free music and podcast streaming app with millions of songs, albums, and original podcasts. It also offers audiobooks, so users can enjoy thousands of stories. It has a variety of features such as creating and sharing music playlists, discovering new music, and listening to popular and exclusive podcasts. It also has a Premium subscription option which allows users to download and listen offline, and access ad-free music. It is available on all devices and has a variety of genres and artists to choose from.", "category": "App", "evidence": "Both"}, {"url": "https://www.youtube.com/channel/UC_x5XG1OV2P6uZZ5FSM9Ttw", "text_content": "NFL Sunday Ticket is a service offered by Google LLC that allows users to watch NFL games on YouTube. It is available in 2023 and is subject to the terms and privacy policy of Google LLC. It is also subject to YouTube's terms of use and any applicable laws.", "category": "Channel", "evidence": "URL"}, {"url": "https://arxiv.org/abs/2303.04671", "text_content": "Visual ChatGPT is a system that enables users to interact with ChatGPT by sending and receiving not only languages but also images, providing complex visual questions or visual editing instructions, and providing feedback and asking for corrected results. It incorporates different Visual Foundation Models and is publicly available. Experiments show that Visual ChatGPT opens the door to investigating the visual roles of ChatGPT with the help of Visual Foundation Models.", "category": "Academic", "evidence": "Text content"}, {"url": "https://ab.politiaromana.ro/", "text_content": "There is no content available for this text.", "category": "None", "evidence": "None"}]}, "output": "{\"category\": \"Academic\", \"evidence\": \"Both\"}", "start_time": 1701749007.670509, "end_time": 1701749007.956738, "error": null, "children": [{"name": "openai.api_resources.chat_completion.ChatCompletion.create", "type": "LLM", "inputs": {"api_base": "https://gpt-test-eus.openai.azure.com/", "api_type": "azure", "api_version": "2023-07-01-preview", "engine": "gpt-35-turbo", "messages": [{"role": "system", "content": "Your task is to classify a given url into one of the following categories:\nMovie, App, Academic, Channel, Profile, PDF or None based on the text content information.\nThe classification will be based on the url, the webpage text content summary, or both."}, {"role": "user", "content": "The selection range of the value of \"category\" must be within \"Movie\", \"App\", \"Academic\", \"Channel\", \"Profile\", \"PDF\" and \"None\".\nThe selection range of the value of \"evidence\" must be within \"Url\", \"Text content\", and \"Both\".\nHere are a few examples:\nURL: https://play.google.com/store/apps/details?id=com.spotify.music\nText content: Spotify is a free music and podcast streaming app with millions of songs, albums, and original podcasts. It also offers audiobooks, so users can enjoy thousands of stories. It has a variety of features such as creating and sharing music playlists, discovering new music, and listening to popular and exclusive podcasts. It also has a Premium subscription option which allows users to download and listen offline, and access ad-free music. It is available on all devices and has a variety of genres and artists to choose from.\nOUTPUT:\n{\"category\": \"App\", \"evidence\": \"Both\"}\n\nURL: https://www.youtube.com/channel/UC_x5XG1OV2P6uZZ5FSM9Ttw\nText content: NFL Sunday Ticket is a service offered by Google LLC that allows users to watch NFL games on YouTube. It is available in 2023 and is subject to the terms and privacy policy of Google LLC. It is also subject to YouTube's terms of use and any applicable laws.\nOUTPUT:\n{\"category\": \"Channel\", \"evidence\": \"URL\"}\n\nURL: https://arxiv.org/abs/2303.04671\nText content: Visual ChatGPT is a system that enables users to interact with ChatGPT by sending and receiving not only languages but also images, providing complex visual questions or visual editing instructions, and providing feedback and asking for corrected results. It incorporates different Visual Foundation Models and is publicly available. Experiments show that Visual ChatGPT opens the door to investigating the visual roles of ChatGPT with the help of Visual Foundation Models.\nOUTPUT:\n{\"category\": \"Academic\", \"evidence\": \"Text content\"}\n\nURL: https://ab.politiaromana.ro/\nText content: There is no content available for this text.\nOUTPUT:\n{\"category\": \"None\", \"evidence\": \"None\"}\n\n\nFor a given URL and text content, classify the url to complete the category and indicate evidence:\nURL: https://arxiv.org/abs/2307.04767\nText content: The paper introduces Semantic-SAM, a universal image segmentation model that can segment and recognize objects at any desired granularity. The model has two key advantages: semantic-awareness and granularity-abundance. To achieve semantic-awareness, the model consolidates multiple datasets and introduces decoupled classification for objects and parts. This allows the model to capture rich semantic information. For multi-granularity capability, a multi-choice learning scheme is proposed during training, generating masks at multiple levels. The model is trained on SA-1B, generic, and part segmentation datasets. Experimental results and visualizations demonstrate the success of the model in achieving semantic-awareness and.\nOUTPUT:"}], "temperature": 0.2, "top_p": 1.0, "n": 1, "stream": false, "stop": null, "max_tokens": 128, "presence_penalty": 0.0, "frequency_penalty": 0.0, "logit_bias": {}, "user": ""}, "output": {"id": "chatcmpl-8SGwZ8CajHzJc3UkbXeyX6MzNdFcD", "object": "chat.completion", "created": 1701749007, "model": "gpt-35-turbo", "prompt_filter_results": [{"prompt_index": 0, "content_filter_results": {"hate": {"filtered": false, "severity": "safe"}, "self_harm": {"filtered": false, "severity": "safe"}, "sexual": {"filtered": false, "severity": "safe"}, "violence": {"filtered": false, "severity": "safe"}}}], "choices": [{"index": 0, "finish_reason": "stop", "message": {"role": "assistant", "content": "{\"category\": \"Academic\", \"evidence\": \"Both\"}"}, "content_filter_results": {"hate": {"filtered": false, "severity": "safe"}, "self_harm": {"filtered": false, "severity": "safe"}, "sexual": {"filtered": false, "severity": "safe"}, "violence": {"filtered": false, "severity": "safe"}}}], "usage": {"prompt_tokens": 695, "completion_tokens": 14, "total_tokens": 709}}, "start_time": 1701749007.675928, "end_time": 1701749007.956625, "error": null, "children": null, "node_name": null}], "node_name": "classify_with_llm"}], "variant_id": "", "cached_run_id": null, "cached_flow_run_id": null, "logs": {"stdout": "", "stderr": ""}, "system_metrics": {"prompt_tokens": 695, "completion_tokens": 14, "total_tokens": 709, "duration": 0.287196}, "result": "{\"category\": \"Academic\", \"evidence\": \"Both\"}"}, "start_time": "2023-12-05T04:03:27.670281", "end_time": "2023-12-05T04:03:27.957477", "status": "Completed"}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/node_artifacts
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/node_artifacts/classify_with_llm/000000000.jsonl
{"node_name": "classify_with_llm", "line_number": 0, "run_info": {"node": "classify_with_llm", "flow_run_id": "web_classification_variant_0_20231205_120253_104100", "run_id": "web_classification_variant_0_20231205_120253_104100_classify_with_llm_0", "status": "Completed", "inputs": {"prompt": "system:\nYour task is to classify a given url into one of the following categories:\nMovie, App, Academic, Channel, Profile, PDF or None based on the text content information.\nThe classification will be based on the url, the webpage text content summary, or both.\n\nuser:\nThe selection range of the value of \"category\" must be within \"Movie\", \"App\", \"Academic\", \"Channel\", \"Profile\", \"PDF\" and \"None\".\nThe selection range of the value of \"evidence\" must be within \"Url\", \"Text content\", and \"Both\".\nHere are a few examples:\n{% for ex in examples %}\nURL: {{ex.url}}\nText content: {{ex.text_content}}\nOUTPUT:\n{\"category\": \"{{ex.category}}\", \"evidence\": \"{{ex.evidence}}\"}\n\n{% endfor %}\n\nFor a given URL and text content, classify the url to complete the category and indicate evidence:\nURL: {{url}}\nText content: {{text_content}}.\nOUTPUT:", "deployment_name": "gpt-35-turbo", "model": "gpt-3.5-turbo", "max_tokens": 128, "temperature": 0.2, "url": "https://www.youtube.com/watch?v=kYqRtjDBci8", "text_content": "The author expresses their excitement about the prompt flow feature in Azure AI, which has helped them accelerate the development of their LLM application.", "examples": [{"url": "https://play.google.com/store/apps/details?id=com.spotify.music", "text_content": "Spotify is a free music and podcast streaming app with millions of songs, albums, and original podcasts. It also offers audiobooks, so users can enjoy thousands of stories. It has a variety of features such as creating and sharing music playlists, discovering new music, and listening to popular and exclusive podcasts. It also has a Premium subscription option which allows users to download and listen offline, and access ad-free music. It is available on all devices and has a variety of genres and artists to choose from.", "category": "App", "evidence": "Both"}, {"url": "https://www.youtube.com/channel/UC_x5XG1OV2P6uZZ5FSM9Ttw", "text_content": "NFL Sunday Ticket is a service offered by Google LLC that allows users to watch NFL games on YouTube. It is available in 2023 and is subject to the terms and privacy policy of Google LLC. It is also subject to YouTube's terms of use and any applicable laws.", "category": "Channel", "evidence": "URL"}, {"url": "https://arxiv.org/abs/2303.04671", "text_content": "Visual ChatGPT is a system that enables users to interact with ChatGPT by sending and receiving not only languages but also images, providing complex visual questions or visual editing instructions, and providing feedback and asking for corrected results. It incorporates different Visual Foundation Models and is publicly available. Experiments show that Visual ChatGPT opens the door to investigating the visual roles of ChatGPT with the help of Visual Foundation Models.", "category": "Academic", "evidence": "Text content"}, {"url": "https://ab.politiaromana.ro/", "text_content": "There is no content available for this text.", "category": "None", "evidence": "None"}]}, "output": "{\"category\": \"None\", \"evidence\": \"None\"}", "metrics": null, "error": null, "parent_run_id": "web_classification_variant_0_20231205_120253_104100_0", "start_time": "2023-12-05T04:03:26.996107Z", "end_time": "2023-12-05T04:03:27.335701Z", "index": 0, "api_calls": [{"name": "AzureOpenAI.chat", "type": "Tool", "inputs": {"prompt": "system:\nYour task is to classify a given url into one of the following categories:\nMovie, App, Academic, Channel, Profile, PDF or None based on the text content information.\nThe classification will be based on the url, the webpage text content summary, or both.\n\nuser:\nThe selection range of the value of \"category\" must be within \"Movie\", \"App\", \"Academic\", \"Channel\", \"Profile\", \"PDF\" and \"None\".\nThe selection range of the value of \"evidence\" must be within \"Url\", \"Text content\", and \"Both\".\nHere are a few examples:\n{% for ex in examples %}\nURL: {{ex.url}}\nText content: {{ex.text_content}}\nOUTPUT:\n{\"category\": \"{{ex.category}}\", \"evidence\": \"{{ex.evidence}}\"}\n\n{% endfor %}\n\nFor a given URL and text content, classify the url to complete the category and indicate evidence:\nURL: {{url}}\nText content: {{text_content}}.\nOUTPUT:", "deployment_name": "gpt-35-turbo", "model": "gpt-3.5-turbo", "max_tokens": 128, "temperature": 0.2, "url": "https://www.youtube.com/watch?v=kYqRtjDBci8", "text_content": "The author expresses their excitement about the prompt flow feature in Azure AI, which has helped them accelerate the development of their LLM application.", "examples": [{"url": "https://play.google.com/store/apps/details?id=com.spotify.music", "text_content": "Spotify is a free music and podcast streaming app with millions of songs, albums, and original podcasts. It also offers audiobooks, so users can enjoy thousands of stories. It has a variety of features such as creating and sharing music playlists, discovering new music, and listening to popular and exclusive podcasts. It also has a Premium subscription option which allows users to download and listen offline, and access ad-free music. It is available on all devices and has a variety of genres and artists to choose from.", "category": "App", "evidence": "Both"}, {"url": "https://www.youtube.com/channel/UC_x5XG1OV2P6uZZ5FSM9Ttw", "text_content": "NFL Sunday Ticket is a service offered by Google LLC that allows users to watch NFL games on YouTube. It is available in 2023 and is subject to the terms and privacy policy of Google LLC. It is also subject to YouTube's terms of use and any applicable laws.", "category": "Channel", "evidence": "URL"}, {"url": "https://arxiv.org/abs/2303.04671", "text_content": "Visual ChatGPT is a system that enables users to interact with ChatGPT by sending and receiving not only languages but also images, providing complex visual questions or visual editing instructions, and providing feedback and asking for corrected results. It incorporates different Visual Foundation Models and is publicly available. Experiments show that Visual ChatGPT opens the door to investigating the visual roles of ChatGPT with the help of Visual Foundation Models.", "category": "Academic", "evidence": "Text content"}, {"url": "https://ab.politiaromana.ro/", "text_content": "There is no content available for this text.", "category": "None", "evidence": "None"}]}, "output": "{\"category\": \"None\", \"evidence\": \"None\"}", "start_time": 1701749006.996314, "end_time": 1701749007.334935, "error": null, "children": [{"name": "openai.api_resources.chat_completion.ChatCompletion.create", "type": "LLM", "inputs": {"api_base": "https://gpt-test-eus.openai.azure.com/", "api_type": "azure", "api_version": "2023-07-01-preview", "engine": "gpt-35-turbo", "messages": [{"role": "system", "content": "Your task is to classify a given url into one of the following categories:\nMovie, App, Academic, Channel, Profile, PDF or None based on the text content information.\nThe classification will be based on the url, the webpage text content summary, or both."}, {"role": "user", "content": "The selection range of the value of \"category\" must be within \"Movie\", \"App\", \"Academic\", \"Channel\", \"Profile\", \"PDF\" and \"None\".\nThe selection range of the value of \"evidence\" must be within \"Url\", \"Text content\", and \"Both\".\nHere are a few examples:\nURL: https://play.google.com/store/apps/details?id=com.spotify.music\nText content: Spotify is a free music and podcast streaming app with millions of songs, albums, and original podcasts. It also offers audiobooks, so users can enjoy thousands of stories. It has a variety of features such as creating and sharing music playlists, discovering new music, and listening to popular and exclusive podcasts. It also has a Premium subscription option which allows users to download and listen offline, and access ad-free music. It is available on all devices and has a variety of genres and artists to choose from.\nOUTPUT:\n{\"category\": \"App\", \"evidence\": \"Both\"}\n\nURL: https://www.youtube.com/channel/UC_x5XG1OV2P6uZZ5FSM9Ttw\nText content: NFL Sunday Ticket is a service offered by Google LLC that allows users to watch NFL games on YouTube. It is available in 2023 and is subject to the terms and privacy policy of Google LLC. It is also subject to YouTube's terms of use and any applicable laws.\nOUTPUT:\n{\"category\": \"Channel\", \"evidence\": \"URL\"}\n\nURL: https://arxiv.org/abs/2303.04671\nText content: Visual ChatGPT is a system that enables users to interact with ChatGPT by sending and receiving not only languages but also images, providing complex visual questions or visual editing instructions, and providing feedback and asking for corrected results. It incorporates different Visual Foundation Models and is publicly available. Experiments show that Visual ChatGPT opens the door to investigating the visual roles of ChatGPT with the help of Visual Foundation Models.\nOUTPUT:\n{\"category\": \"Academic\", \"evidence\": \"Text content\"}\n\nURL: https://ab.politiaromana.ro/\nText content: There is no content available for this text.\nOUTPUT:\n{\"category\": \"None\", \"evidence\": \"None\"}\n\n\nFor a given URL and text content, classify the url to complete the category and indicate evidence:\nURL: https://www.youtube.com/watch?v=kYqRtjDBci8\nText content: The author expresses their excitement about the prompt flow feature in Azure AI, which has helped them accelerate the development of their LLM application..\nOUTPUT:"}], "temperature": 0.2, "top_p": 1.0, "n": 1, "stream": false, "stop": null, "max_tokens": 128, "presence_penalty": 0.0, "frequency_penalty": 0.0, "logit_bias": {}, "user": ""}, "output": {"id": "chatcmpl-8SGwZ2wUSr8u0pse8KUjbPgz08Cvt", "object": "chat.completion", "created": 1701749007, "model": "gpt-35-turbo", "prompt_filter_results": [{"prompt_index": 0, "content_filter_results": {"hate": {"filtered": false, "severity": "safe"}, "self_harm": {"filtered": false, "severity": "safe"}, "sexual": {"filtered": false, "severity": "safe"}, "violence": {"filtered": false, "severity": "safe"}}}], "choices": [{"index": 0, "finish_reason": "stop", "message": {"role": "assistant", "content": "{\"category\": \"None\", \"evidence\": \"None\"}"}, "content_filter_results": {"hate": {"filtered": false, "severity": "safe"}, "self_harm": {"filtered": false, "severity": "safe"}, "sexual": {"filtered": false, "severity": "safe"}, "violence": {"filtered": false, "severity": "safe"}}}], "usage": {"prompt_tokens": 596, "completion_tokens": 13, "total_tokens": 609}}, "start_time": 1701749006.99988, "end_time": 1701749007.33482, "error": null, "children": null, "node_name": null}], "node_name": "classify_with_llm"}], "variant_id": "", "cached_run_id": null, "cached_flow_run_id": null, "logs": {"stdout": "", "stderr": ""}, "system_metrics": {"prompt_tokens": 596, "completion_tokens": 13, "total_tokens": 609, "duration": 0.339594}, "result": "{\"category\": \"None\", \"evidence\": \"None\"}"}, "start_time": "2023-12-05T04:03:26.996107", "end_time": "2023-12-05T04:03:27.335701", "status": "Completed"}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/node_artifacts
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/node_artifacts/classify_with_llm/000000002.jsonl
{"node_name": "classify_with_llm", "line_number": 2, "run_info": {"node": "classify_with_llm", "flow_run_id": "web_classification_variant_0_20231205_120253_104100", "run_id": "web_classification_variant_0_20231205_120253_104100_classify_with_llm_2", "status": "Completed", "inputs": {"prompt": "system:\nYour task is to classify a given url into one of the following categories:\nMovie, App, Academic, Channel, Profile, PDF or None based on the text content information.\nThe classification will be based on the url, the webpage text content summary, or both.\n\nuser:\nThe selection range of the value of \"category\" must be within \"Movie\", \"App\", \"Academic\", \"Channel\", \"Profile\", \"PDF\" and \"None\".\nThe selection range of the value of \"evidence\" must be within \"Url\", \"Text content\", and \"Both\".\nHere are a few examples:\n{% for ex in examples %}\nURL: {{ex.url}}\nText content: {{ex.text_content}}\nOUTPUT:\n{\"category\": \"{{ex.category}}\", \"evidence\": \"{{ex.evidence}}\"}\n\n{% endfor %}\n\nFor a given URL and text content, classify the url to complete the category and indicate evidence:\nURL: {{url}}\nText content: {{text_content}}.\nOUTPUT:", "deployment_name": "gpt-35-turbo", "model": "gpt-3.5-turbo", "max_tokens": 128, "temperature": 0.2, "url": "https://play.google.com/store/apps/details?id=com.twitter.android", "text_content": "The X app is a global digital platform where users can post content, join public conversations, stay updated on breaking news, and follow their interests. It offers features such as Community Notes for extra context, Spaces for live audio or video streaming, Direct Messages for private communication, and the option to subscribe to X Premium for expanded reach and exclusive content creation. Users can also create and join Communities, upload and watch videos, and write and read long-form posts. The app prioritizes data safety and allows users to request data deletion. It has a rating of 3.8 stars based on 21.5 million reviews and has been downloaded over", "examples": [{"url": "https://play.google.com/store/apps/details?id=com.spotify.music", "text_content": "Spotify is a free music and podcast streaming app with millions of songs, albums, and original podcasts. It also offers audiobooks, so users can enjoy thousands of stories. It has a variety of features such as creating and sharing music playlists, discovering new music, and listening to popular and exclusive podcasts. It also has a Premium subscription option which allows users to download and listen offline, and access ad-free music. It is available on all devices and has a variety of genres and artists to choose from.", "category": "App", "evidence": "Both"}, {"url": "https://www.youtube.com/channel/UC_x5XG1OV2P6uZZ5FSM9Ttw", "text_content": "NFL Sunday Ticket is a service offered by Google LLC that allows users to watch NFL games on YouTube. It is available in 2023 and is subject to the terms and privacy policy of Google LLC. It is also subject to YouTube's terms of use and any applicable laws.", "category": "Channel", "evidence": "URL"}, {"url": "https://arxiv.org/abs/2303.04671", "text_content": "Visual ChatGPT is a system that enables users to interact with ChatGPT by sending and receiving not only languages but also images, providing complex visual questions or visual editing instructions, and providing feedback and asking for corrected results. It incorporates different Visual Foundation Models and is publicly available. Experiments show that Visual ChatGPT opens the door to investigating the visual roles of ChatGPT with the help of Visual Foundation Models.", "category": "Academic", "evidence": "Text content"}, {"url": "https://ab.politiaromana.ro/", "text_content": "There is no content available for this text.", "category": "None", "evidence": "None"}]}, "output": "{\"category\": \"App\", \"evidence\": \"Both\"}", "metrics": null, "error": null, "parent_run_id": "web_classification_variant_0_20231205_120253_104100_2", "start_time": "2023-12-05T04:03:28.126270Z", "end_time": "2023-12-05T04:03:28.470558Z", "index": 2, "api_calls": [{"name": "AzureOpenAI.chat", "type": "Tool", "inputs": {"prompt": "system:\nYour task is to classify a given url into one of the following categories:\nMovie, App, Academic, Channel, Profile, PDF or None based on the text content information.\nThe classification will be based on the url, the webpage text content summary, or both.\n\nuser:\nThe selection range of the value of \"category\" must be within \"Movie\", \"App\", \"Academic\", \"Channel\", \"Profile\", \"PDF\" and \"None\".\nThe selection range of the value of \"evidence\" must be within \"Url\", \"Text content\", and \"Both\".\nHere are a few examples:\n{% for ex in examples %}\nURL: {{ex.url}}\nText content: {{ex.text_content}}\nOUTPUT:\n{\"category\": \"{{ex.category}}\", \"evidence\": \"{{ex.evidence}}\"}\n\n{% endfor %}\n\nFor a given URL and text content, classify the url to complete the category and indicate evidence:\nURL: {{url}}\nText content: {{text_content}}.\nOUTPUT:", "deployment_name": "gpt-35-turbo", "model": "gpt-3.5-turbo", "max_tokens": 128, "temperature": 0.2, "url": "https://play.google.com/store/apps/details?id=com.twitter.android", "text_content": "The X app is a global digital platform where users can post content, join public conversations, stay updated on breaking news, and follow their interests. It offers features such as Community Notes for extra context, Spaces for live audio or video streaming, Direct Messages for private communication, and the option to subscribe to X Premium for expanded reach and exclusive content creation. Users can also create and join Communities, upload and watch videos, and write and read long-form posts. The app prioritizes data safety and allows users to request data deletion. It has a rating of 3.8 stars based on 21.5 million reviews and has been downloaded over", "examples": [{"url": "https://play.google.com/store/apps/details?id=com.spotify.music", "text_content": "Spotify is a free music and podcast streaming app with millions of songs, albums, and original podcasts. It also offers audiobooks, so users can enjoy thousands of stories. It has a variety of features such as creating and sharing music playlists, discovering new music, and listening to popular and exclusive podcasts. It also has a Premium subscription option which allows users to download and listen offline, and access ad-free music. It is available on all devices and has a variety of genres and artists to choose from.", "category": "App", "evidence": "Both"}, {"url": "https://www.youtube.com/channel/UC_x5XG1OV2P6uZZ5FSM9Ttw", "text_content": "NFL Sunday Ticket is a service offered by Google LLC that allows users to watch NFL games on YouTube. It is available in 2023 and is subject to the terms and privacy policy of Google LLC. It is also subject to YouTube's terms of use and any applicable laws.", "category": "Channel", "evidence": "URL"}, {"url": "https://arxiv.org/abs/2303.04671", "text_content": "Visual ChatGPT is a system that enables users to interact with ChatGPT by sending and receiving not only languages but also images, providing complex visual questions or visual editing instructions, and providing feedback and asking for corrected results. It incorporates different Visual Foundation Models and is publicly available. Experiments show that Visual ChatGPT opens the door to investigating the visual roles of ChatGPT with the help of Visual Foundation Models.", "category": "Academic", "evidence": "Text content"}, {"url": "https://ab.politiaromana.ro/", "text_content": "There is no content available for this text.", "category": "None", "evidence": "None"}]}, "output": "{\"category\": \"App\", \"evidence\": \"Both\"}", "start_time": 1701749008.126513, "end_time": 1701749008.469702, "error": null, "children": [{"name": "openai.api_resources.chat_completion.ChatCompletion.create", "type": "LLM", "inputs": {"api_base": "https://gpt-test-eus.openai.azure.com/", "api_type": "azure", "api_version": "2023-07-01-preview", "engine": "gpt-35-turbo", "messages": [{"role": "system", "content": "Your task is to classify a given url into one of the following categories:\nMovie, App, Academic, Channel, Profile, PDF or None based on the text content information.\nThe classification will be based on the url, the webpage text content summary, or both."}, {"role": "user", "content": "The selection range of the value of \"category\" must be within \"Movie\", \"App\", \"Academic\", \"Channel\", \"Profile\", \"PDF\" and \"None\".\nThe selection range of the value of \"evidence\" must be within \"Url\", \"Text content\", and \"Both\".\nHere are a few examples:\nURL: https://play.google.com/store/apps/details?id=com.spotify.music\nText content: Spotify is a free music and podcast streaming app with millions of songs, albums, and original podcasts. It also offers audiobooks, so users can enjoy thousands of stories. It has a variety of features such as creating and sharing music playlists, discovering new music, and listening to popular and exclusive podcasts. It also has a Premium subscription option which allows users to download and listen offline, and access ad-free music. It is available on all devices and has a variety of genres and artists to choose from.\nOUTPUT:\n{\"category\": \"App\", \"evidence\": \"Both\"}\n\nURL: https://www.youtube.com/channel/UC_x5XG1OV2P6uZZ5FSM9Ttw\nText content: NFL Sunday Ticket is a service offered by Google LLC that allows users to watch NFL games on YouTube. It is available in 2023 and is subject to the terms and privacy policy of Google LLC. It is also subject to YouTube's terms of use and any applicable laws.\nOUTPUT:\n{\"category\": \"Channel\", \"evidence\": \"URL\"}\n\nURL: https://arxiv.org/abs/2303.04671\nText content: Visual ChatGPT is a system that enables users to interact with ChatGPT by sending and receiving not only languages but also images, providing complex visual questions or visual editing instructions, and providing feedback and asking for corrected results. It incorporates different Visual Foundation Models and is publicly available. Experiments show that Visual ChatGPT opens the door to investigating the visual roles of ChatGPT with the help of Visual Foundation Models.\nOUTPUT:\n{\"category\": \"Academic\", \"evidence\": \"Text content\"}\n\nURL: https://ab.politiaromana.ro/\nText content: There is no content available for this text.\nOUTPUT:\n{\"category\": \"None\", \"evidence\": \"None\"}\n\n\nFor a given URL and text content, classify the url to complete the category and indicate evidence:\nURL: https://play.google.com/store/apps/details?id=com.twitter.android\nText content: The X app is a global digital platform where users can post content, join public conversations, stay updated on breaking news, and follow their interests. It offers features such as Community Notes for extra context, Spaces for live audio or video streaming, Direct Messages for private communication, and the option to subscribe to X Premium for expanded reach and exclusive content creation. Users can also create and join Communities, upload and watch videos, and write and read long-form posts. The app prioritizes data safety and allows users to request data deletion. It has a rating of 3.8 stars based on 21.5 million reviews and has been downloaded over.\nOUTPUT:"}], "temperature": 0.2, "top_p": 1.0, "n": 1, "stream": false, "stop": null, "max_tokens": 128, "presence_penalty": 0.0, "frequency_penalty": 0.0, "logit_bias": {}, "user": ""}, "output": {"id": "chatcmpl-8SGwaHVVKGYxKtoLEQKFdvAmblBBc", "object": "chat.completion", "created": 1701749008, "model": "gpt-35-turbo", "prompt_filter_results": [{"prompt_index": 0, "content_filter_results": {"hate": {"filtered": false, "severity": "safe"}, "self_harm": {"filtered": false, "severity": "safe"}, "sexual": {"filtered": false, "severity": "safe"}, "violence": {"filtered": false, "severity": "safe"}}}], "choices": [{"index": 0, "finish_reason": "stop", "message": {"role": "assistant", "content": "{\"category\": \"App\", \"evidence\": \"Both\"}"}, "content_filter_results": {"hate": {"filtered": false, "severity": "safe"}, "self_harm": {"filtered": false, "severity": "safe"}, "sexual": {"filtered": false, "severity": "safe"}, "violence": {"filtered": false, "severity": "safe"}}}], "usage": {"prompt_tokens": 694, "completion_tokens": 13, "total_tokens": 707}}, "start_time": 1701749008.130586, "end_time": 1701749008.469585, "error": null, "children": null, "node_name": null}], "node_name": "classify_with_llm"}], "variant_id": "", "cached_run_id": null, "cached_flow_run_id": null, "logs": {"stdout": "", "stderr": ""}, "system_metrics": {"prompt_tokens": 694, "completion_tokens": 13, "total_tokens": 707, "duration": 0.344288}, "result": "{\"category\": \"App\", \"evidence\": \"Both\"}"}, "start_time": "2023-12-05T04:03:28.126270", "end_time": "2023-12-05T04:03:28.470558", "status": "Completed"}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/node_artifacts
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/node_artifacts/convert_to_dict/000000001.jsonl
{"node_name": "convert_to_dict", "line_number": 1, "run_info": {"node": "convert_to_dict", "flow_run_id": "web_classification_variant_0_20231205_120253_104100", "run_id": "web_classification_variant_0_20231205_120253_104100_convert_to_dict_1", "status": "Completed", "inputs": {"input_str": "{\"category\": \"Academic\", \"evidence\": \"Both\"}"}, "output": {"category": "Academic", "evidence": "Both"}, "metrics": null, "error": null, "parent_run_id": "web_classification_variant_0_20231205_120253_104100_1", "start_time": "2023-12-05T04:03:27.958980Z", "end_time": "2023-12-05T04:03:27.959839Z", "index": 1, "api_calls": [{"name": "convert_to_dict", "type": "Tool", "inputs": {"input_str": "{\"category\": \"Academic\", \"evidence\": \"Both\"}"}, "output": {"category": "Academic", "evidence": "Both"}, "start_time": 1701749007.959116, "end_time": 1701749007.959648, "error": null, "children": null, "node_name": "convert_to_dict"}], "variant_id": "", "cached_run_id": null, "cached_flow_run_id": null, "logs": {"stdout": "", "stderr": ""}, "system_metrics": {"duration": 0.000859}, "result": {"category": "Academic", "evidence": "Both"}}, "start_time": "2023-12-05T04:03:27.958980", "end_time": "2023-12-05T04:03:27.959839", "status": "Completed"}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/node_artifacts
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/node_artifacts/convert_to_dict/000000000.jsonl
{"node_name": "convert_to_dict", "line_number": 0, "run_info": {"node": "convert_to_dict", "flow_run_id": "web_classification_variant_0_20231205_120253_104100", "run_id": "web_classification_variant_0_20231205_120253_104100_convert_to_dict_0", "status": "Completed", "inputs": {"input_str": "{\"category\": \"None\", \"evidence\": \"None\"}"}, "output": {"category": "None", "evidence": "None"}, "metrics": null, "error": null, "parent_run_id": "web_classification_variant_0_20231205_120253_104100_0", "start_time": "2023-12-05T04:03:27.337007Z", "end_time": "2023-12-05T04:03:27.337744Z", "index": 0, "api_calls": [{"name": "convert_to_dict", "type": "Tool", "inputs": {"input_str": "{\"category\": \"None\", \"evidence\": \"None\"}"}, "output": {"category": "None", "evidence": "None"}, "start_time": 1701749007.337123, "end_time": 1701749007.3376, "error": null, "children": null, "node_name": "convert_to_dict"}], "variant_id": "", "cached_run_id": null, "cached_flow_run_id": null, "logs": {"stdout": "", "stderr": ""}, "system_metrics": {"duration": 0.000737}, "result": {"category": "None", "evidence": "None"}}, "start_time": "2023-12-05T04:03:27.337007", "end_time": "2023-12-05T04:03:27.337744", "status": "Completed"}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/node_artifacts
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/node_artifacts/convert_to_dict/000000002.jsonl
{"node_name": "convert_to_dict", "line_number": 2, "run_info": {"node": "convert_to_dict", "flow_run_id": "web_classification_variant_0_20231205_120253_104100", "run_id": "web_classification_variant_0_20231205_120253_104100_convert_to_dict_2", "status": "Completed", "inputs": {"input_str": "{\"category\": \"App\", \"evidence\": \"Both\"}"}, "output": {"category": "App", "evidence": "Both"}, "metrics": null, "error": null, "parent_run_id": "web_classification_variant_0_20231205_120253_104100_2", "start_time": "2023-12-05T04:03:28.472153Z", "end_time": "2023-12-05T04:03:28.473016Z", "index": 2, "api_calls": [{"name": "convert_to_dict", "type": "Tool", "inputs": {"input_str": "{\"category\": \"App\", \"evidence\": \"Both\"}"}, "output": {"category": "App", "evidence": "Both"}, "start_time": 1701749008.472326, "end_time": 1701749008.472859, "error": null, "children": null, "node_name": "convert_to_dict"}], "variant_id": "", "cached_run_id": null, "cached_flow_run_id": null, "logs": {"stdout": "", "stderr": ""}, "system_metrics": {"duration": 0.000863}, "result": {"category": "App", "evidence": "Both"}}, "start_time": "2023-12-05T04:03:28.472153", "end_time": "2023-12-05T04:03:28.473016", "status": "Completed"}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/node_artifacts
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/node_artifacts/prepare_examples/000000001.jsonl
{"node_name": "prepare_examples", "line_number": 1, "run_info": {"node": "prepare_examples", "flow_run_id": "web_classification_variant_0_20231205_120253_104100", "run_id": "web_classification_variant_0_20231205_120253_104100_prepare_examples_1", "status": "Completed", "inputs": {}, "output": [{"url": "https://play.google.com/store/apps/details?id=com.spotify.music", "text_content": "Spotify is a free music and podcast streaming app with millions of songs, albums, and original podcasts. It also offers audiobooks, so users can enjoy thousands of stories. It has a variety of features such as creating and sharing music playlists, discovering new music, and listening to popular and exclusive podcasts. It also has a Premium subscription option which allows users to download and listen offline, and access ad-free music. It is available on all devices and has a variety of genres and artists to choose from.", "category": "App", "evidence": "Both"}, {"url": "https://www.youtube.com/channel/UC_x5XG1OV2P6uZZ5FSM9Ttw", "text_content": "NFL Sunday Ticket is a service offered by Google LLC that allows users to watch NFL games on YouTube. It is available in 2023 and is subject to the terms and privacy policy of Google LLC. It is also subject to YouTube's terms of use and any applicable laws.", "category": "Channel", "evidence": "URL"}, {"url": "https://arxiv.org/abs/2303.04671", "text_content": "Visual ChatGPT is a system that enables users to interact with ChatGPT by sending and receiving not only languages but also images, providing complex visual questions or visual editing instructions, and providing feedback and asking for corrected results. It incorporates different Visual Foundation Models and is publicly available. Experiments show that Visual ChatGPT opens the door to investigating the visual roles of ChatGPT with the help of Visual Foundation Models.", "category": "Academic", "evidence": "Text content"}, {"url": "https://ab.politiaromana.ro/", "text_content": "There is no content available for this text.", "category": "None", "evidence": "None"}], "metrics": null, "error": null, "parent_run_id": "web_classification_variant_0_20231205_120253_104100_1", "start_time": "2023-12-05T04:03:25.609989Z", "end_time": "2023-12-05T04:03:25.617871Z", "index": 1, "api_calls": [{"name": "prepare_examples", "type": "Tool", "inputs": {}, "output": [{"url": "https://play.google.com/store/apps/details?id=com.spotify.music", "text_content": "Spotify is a free music and podcast streaming app with millions of songs, albums, and original podcasts. It also offers audiobooks, so users can enjoy thousands of stories. It has a variety of features such as creating and sharing music playlists, discovering new music, and listening to popular and exclusive podcasts. It also has a Premium subscription option which allows users to download and listen offline, and access ad-free music. It is available on all devices and has a variety of genres and artists to choose from.", "category": "App", "evidence": "Both"}, {"url": "https://www.youtube.com/channel/UC_x5XG1OV2P6uZZ5FSM9Ttw", "text_content": "NFL Sunday Ticket is a service offered by Google LLC that allows users to watch NFL games on YouTube. It is available in 2023 and is subject to the terms and privacy policy of Google LLC. It is also subject to YouTube's terms of use and any applicable laws.", "category": "Channel", "evidence": "URL"}, {"url": "https://arxiv.org/abs/2303.04671", "text_content": "Visual ChatGPT is a system that enables users to interact with ChatGPT by sending and receiving not only languages but also images, providing complex visual questions or visual editing instructions, and providing feedback and asking for corrected results. It incorporates different Visual Foundation Models and is publicly available. Experiments show that Visual ChatGPT opens the door to investigating the visual roles of ChatGPT with the help of Visual Foundation Models.", "category": "Academic", "evidence": "Text content"}, {"url": "https://ab.politiaromana.ro/", "text_content": "There is no content available for this text.", "category": "None", "evidence": "None"}], "start_time": 1701749005.610052, "end_time": 1701749005.617312, "error": null, "children": null, "node_name": "prepare_examples"}], "variant_id": "", "cached_run_id": null, "cached_flow_run_id": null, "logs": {"stdout": "", "stderr": ""}, "system_metrics": {"duration": 0.007882}, "result": [{"url": "https://play.google.com/store/apps/details?id=com.spotify.music", "text_content": "Spotify is a free music and podcast streaming app with millions of songs, albums, and original podcasts. It also offers audiobooks, so users can enjoy thousands of stories. It has a variety of features such as creating and sharing music playlists, discovering new music, and listening to popular and exclusive podcasts. It also has a Premium subscription option which allows users to download and listen offline, and access ad-free music. It is available on all devices and has a variety of genres and artists to choose from.", "category": "App", "evidence": "Both"}, {"url": "https://www.youtube.com/channel/UC_x5XG1OV2P6uZZ5FSM9Ttw", "text_content": "NFL Sunday Ticket is a service offered by Google LLC that allows users to watch NFL games on YouTube. It is available in 2023 and is subject to the terms and privacy policy of Google LLC. It is also subject to YouTube's terms of use and any applicable laws.", "category": "Channel", "evidence": "URL"}, {"url": "https://arxiv.org/abs/2303.04671", "text_content": "Visual ChatGPT is a system that enables users to interact with ChatGPT by sending and receiving not only languages but also images, providing complex visual questions or visual editing instructions, and providing feedback and asking for corrected results. It incorporates different Visual Foundation Models and is publicly available. Experiments show that Visual ChatGPT opens the door to investigating the visual roles of ChatGPT with the help of Visual Foundation Models.", "category": "Academic", "evidence": "Text content"}, {"url": "https://ab.politiaromana.ro/", "text_content": "There is no content available for this text.", "category": "None", "evidence": "None"}]}, "start_time": "2023-12-05T04:03:25.609989", "end_time": "2023-12-05T04:03:25.617871", "status": "Completed"}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/node_artifacts
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/node_artifacts/prepare_examples/000000000.jsonl
{"node_name": "prepare_examples", "line_number": 0, "run_info": {"node": "prepare_examples", "flow_run_id": "web_classification_variant_0_20231205_120253_104100", "run_id": "web_classification_variant_0_20231205_120253_104100_prepare_examples_0", "status": "Completed", "inputs": {}, "output": [{"url": "https://play.google.com/store/apps/details?id=com.spotify.music", "text_content": "Spotify is a free music and podcast streaming app with millions of songs, albums, and original podcasts. It also offers audiobooks, so users can enjoy thousands of stories. It has a variety of features such as creating and sharing music playlists, discovering new music, and listening to popular and exclusive podcasts. It also has a Premium subscription option which allows users to download and listen offline, and access ad-free music. It is available on all devices and has a variety of genres and artists to choose from.", "category": "App", "evidence": "Both"}, {"url": "https://www.youtube.com/channel/UC_x5XG1OV2P6uZZ5FSM9Ttw", "text_content": "NFL Sunday Ticket is a service offered by Google LLC that allows users to watch NFL games on YouTube. It is available in 2023 and is subject to the terms and privacy policy of Google LLC. It is also subject to YouTube's terms of use and any applicable laws.", "category": "Channel", "evidence": "URL"}, {"url": "https://arxiv.org/abs/2303.04671", "text_content": "Visual ChatGPT is a system that enables users to interact with ChatGPT by sending and receiving not only languages but also images, providing complex visual questions or visual editing instructions, and providing feedback and asking for corrected results. It incorporates different Visual Foundation Models and is publicly available. Experiments show that Visual ChatGPT opens the door to investigating the visual roles of ChatGPT with the help of Visual Foundation Models.", "category": "Academic", "evidence": "Text content"}, {"url": "https://ab.politiaromana.ro/", "text_content": "There is no content available for this text.", "category": "None", "evidence": "None"}], "metrics": null, "error": null, "parent_run_id": "web_classification_variant_0_20231205_120253_104100_0", "start_time": "2023-12-05T04:03:25.567930Z", "end_time": "2023-12-05T04:03:25.573342Z", "index": 0, "api_calls": [{"name": "prepare_examples", "type": "Tool", "inputs": {}, "output": [{"url": "https://play.google.com/store/apps/details?id=com.spotify.music", "text_content": "Spotify is a free music and podcast streaming app with millions of songs, albums, and original podcasts. It also offers audiobooks, so users can enjoy thousands of stories. It has a variety of features such as creating and sharing music playlists, discovering new music, and listening to popular and exclusive podcasts. It also has a Premium subscription option which allows users to download and listen offline, and access ad-free music. It is available on all devices and has a variety of genres and artists to choose from.", "category": "App", "evidence": "Both"}, {"url": "https://www.youtube.com/channel/UC_x5XG1OV2P6uZZ5FSM9Ttw", "text_content": "NFL Sunday Ticket is a service offered by Google LLC that allows users to watch NFL games on YouTube. It is available in 2023 and is subject to the terms and privacy policy of Google LLC. It is also subject to YouTube's terms of use and any applicable laws.", "category": "Channel", "evidence": "URL"}, {"url": "https://arxiv.org/abs/2303.04671", "text_content": "Visual ChatGPT is a system that enables users to interact with ChatGPT by sending and receiving not only languages but also images, providing complex visual questions or visual editing instructions, and providing feedback and asking for corrected results. It incorporates different Visual Foundation Models and is publicly available. Experiments show that Visual ChatGPT opens the door to investigating the visual roles of ChatGPT with the help of Visual Foundation Models.", "category": "Academic", "evidence": "Text content"}, {"url": "https://ab.politiaromana.ro/", "text_content": "There is no content available for this text.", "category": "None", "evidence": "None"}], "start_time": 1701749005.568033, "end_time": 1701749005.572487, "error": null, "children": null, "node_name": "prepare_examples"}], "variant_id": "", "cached_run_id": null, "cached_flow_run_id": null, "logs": {"stdout": "", "stderr": ""}, "system_metrics": {"duration": 0.005412}, "result": [{"url": "https://play.google.com/store/apps/details?id=com.spotify.music", "text_content": "Spotify is a free music and podcast streaming app with millions of songs, albums, and original podcasts. It also offers audiobooks, so users can enjoy thousands of stories. It has a variety of features such as creating and sharing music playlists, discovering new music, and listening to popular and exclusive podcasts. It also has a Premium subscription option which allows users to download and listen offline, and access ad-free music. It is available on all devices and has a variety of genres and artists to choose from.", "category": "App", "evidence": "Both"}, {"url": "https://www.youtube.com/channel/UC_x5XG1OV2P6uZZ5FSM9Ttw", "text_content": "NFL Sunday Ticket is a service offered by Google LLC that allows users to watch NFL games on YouTube. It is available in 2023 and is subject to the terms and privacy policy of Google LLC. It is also subject to YouTube's terms of use and any applicable laws.", "category": "Channel", "evidence": "URL"}, {"url": "https://arxiv.org/abs/2303.04671", "text_content": "Visual ChatGPT is a system that enables users to interact with ChatGPT by sending and receiving not only languages but also images, providing complex visual questions or visual editing instructions, and providing feedback and asking for corrected results. It incorporates different Visual Foundation Models and is publicly available. Experiments show that Visual ChatGPT opens the door to investigating the visual roles of ChatGPT with the help of Visual Foundation Models.", "category": "Academic", "evidence": "Text content"}, {"url": "https://ab.politiaromana.ro/", "text_content": "There is no content available for this text.", "category": "None", "evidence": "None"}]}, "start_time": "2023-12-05T04:03:25.567930", "end_time": "2023-12-05T04:03:25.573342", "status": "Completed"}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/node_artifacts
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/node_artifacts/prepare_examples/000000002.jsonl
{"node_name": "prepare_examples", "line_number": 2, "run_info": {"node": "prepare_examples", "flow_run_id": "web_classification_variant_0_20231205_120253_104100", "run_id": "web_classification_variant_0_20231205_120253_104100_prepare_examples_2", "status": "Completed", "inputs": {}, "output": [{"url": "https://play.google.com/store/apps/details?id=com.spotify.music", "text_content": "Spotify is a free music and podcast streaming app with millions of songs, albums, and original podcasts. It also offers audiobooks, so users can enjoy thousands of stories. It has a variety of features such as creating and sharing music playlists, discovering new music, and listening to popular and exclusive podcasts. It also has a Premium subscription option which allows users to download and listen offline, and access ad-free music. It is available on all devices and has a variety of genres and artists to choose from.", "category": "App", "evidence": "Both"}, {"url": "https://www.youtube.com/channel/UC_x5XG1OV2P6uZZ5FSM9Ttw", "text_content": "NFL Sunday Ticket is a service offered by Google LLC that allows users to watch NFL games on YouTube. It is available in 2023 and is subject to the terms and privacy policy of Google LLC. It is also subject to YouTube's terms of use and any applicable laws.", "category": "Channel", "evidence": "URL"}, {"url": "https://arxiv.org/abs/2303.04671", "text_content": "Visual ChatGPT is a system that enables users to interact with ChatGPT by sending and receiving not only languages but also images, providing complex visual questions or visual editing instructions, and providing feedback and asking for corrected results. It incorporates different Visual Foundation Models and is publicly available. Experiments show that Visual ChatGPT opens the door to investigating the visual roles of ChatGPT with the help of Visual Foundation Models.", "category": "Academic", "evidence": "Text content"}, {"url": "https://ab.politiaromana.ro/", "text_content": "There is no content available for this text.", "category": "None", "evidence": "None"}], "metrics": null, "error": null, "parent_run_id": "web_classification_variant_0_20231205_120253_104100_2", "start_time": "2023-12-05T04:03:25.739510Z", "end_time": "2023-12-05T04:03:25.741692Z", "index": 2, "api_calls": [{"name": "prepare_examples", "type": "Tool", "inputs": {}, "output": [{"url": "https://play.google.com/store/apps/details?id=com.spotify.music", "text_content": "Spotify is a free music and podcast streaming app with millions of songs, albums, and original podcasts. It also offers audiobooks, so users can enjoy thousands of stories. It has a variety of features such as creating and sharing music playlists, discovering new music, and listening to popular and exclusive podcasts. It also has a Premium subscription option which allows users to download and listen offline, and access ad-free music. It is available on all devices and has a variety of genres and artists to choose from.", "category": "App", "evidence": "Both"}, {"url": "https://www.youtube.com/channel/UC_x5XG1OV2P6uZZ5FSM9Ttw", "text_content": "NFL Sunday Ticket is a service offered by Google LLC that allows users to watch NFL games on YouTube. It is available in 2023 and is subject to the terms and privacy policy of Google LLC. It is also subject to YouTube's terms of use and any applicable laws.", "category": "Channel", "evidence": "URL"}, {"url": "https://arxiv.org/abs/2303.04671", "text_content": "Visual ChatGPT is a system that enables users to interact with ChatGPT by sending and receiving not only languages but also images, providing complex visual questions or visual editing instructions, and providing feedback and asking for corrected results. It incorporates different Visual Foundation Models and is publicly available. Experiments show that Visual ChatGPT opens the door to investigating the visual roles of ChatGPT with the help of Visual Foundation Models.", "category": "Academic", "evidence": "Text content"}, {"url": "https://ab.politiaromana.ro/", "text_content": "There is no content available for this text.", "category": "None", "evidence": "None"}], "start_time": 1701749005.739604, "end_time": 1701749005.74123, "error": null, "children": null, "node_name": "prepare_examples"}], "variant_id": "", "cached_run_id": null, "cached_flow_run_id": null, "logs": {"stdout": "", "stderr": ""}, "system_metrics": {"duration": 0.002182}, "result": [{"url": "https://play.google.com/store/apps/details?id=com.spotify.music", "text_content": "Spotify is a free music and podcast streaming app with millions of songs, albums, and original podcasts. It also offers audiobooks, so users can enjoy thousands of stories. It has a variety of features such as creating and sharing music playlists, discovering new music, and listening to popular and exclusive podcasts. It also has a Premium subscription option which allows users to download and listen offline, and access ad-free music. It is available on all devices and has a variety of genres and artists to choose from.", "category": "App", "evidence": "Both"}, {"url": "https://www.youtube.com/channel/UC_x5XG1OV2P6uZZ5FSM9Ttw", "text_content": "NFL Sunday Ticket is a service offered by Google LLC that allows users to watch NFL games on YouTube. It is available in 2023 and is subject to the terms and privacy policy of Google LLC. It is also subject to YouTube's terms of use and any applicable laws.", "category": "Channel", "evidence": "URL"}, {"url": "https://arxiv.org/abs/2303.04671", "text_content": "Visual ChatGPT is a system that enables users to interact with ChatGPT by sending and receiving not only languages but also images, providing complex visual questions or visual editing instructions, and providing feedback and asking for corrected results. It incorporates different Visual Foundation Models and is publicly available. Experiments show that Visual ChatGPT opens the door to investigating the visual roles of ChatGPT with the help of Visual Foundation Models.", "category": "Academic", "evidence": "Text content"}, {"url": "https://ab.politiaromana.ro/", "text_content": "There is no content available for this text.", "category": "None", "evidence": "None"}]}, "start_time": "2023-12-05T04:03:25.739510", "end_time": "2023-12-05T04:03:25.741692", "status": "Completed"}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/node_artifacts
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/node_artifacts/summarize_text_content/000000001.jsonl
{"node_name": "summarize_text_content", "line_number": 1, "run_info": {"node": "summarize_text_content", "flow_run_id": "web_classification_variant_0_20231205_120253_104100", "run_id": "web_classification_variant_0_20231205_120253_104100_summarize_text_content_1", "status": "Completed", "inputs": {"prompt": "system:\nPlease summarize the following text in one paragraph. 100 words.\nDo not add any information that is not in the text.\n\nuser:\nText: {{text}}\nSummary: ", "deployment_name": "gpt-35-turbo", "model": "gpt-3.5-turbo", "max_tokens": 128, "temperature": 0.2, "text": "\n\n\n [2307.04767] Semantic-SAM: Segment and Recognize Anything at Any Granularity\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n \n\n\n\n\n\n\n\n\nSkip to main content\n\n\n\n\n\nWe gratefully acknowledge support from the Simons Foundation, member institutions, and all contributors. Donate\n\n\n\n\n\n > cs > arXiv:2307.04767\n \n\n\n\n\n\nHelp | Advanced Search\n\n\n\n\nAll fields\nTitle\nAuthor\nAbstract\nComments\nJournal reference\nACM classification\nMSC classification\nReport number\narXiv identifier\nDOI\nORCID\narXiv author ID\nHelp pages\nFull text\n\n\n\n\nSearch\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nopen search\n\n\n\n\n\n\nGO\n\n\n\nopen navigation menu\n\n\nquick links\n\nLogin\nHelp Pages\nAbout\n\n\n\n\n\n\n\n\n\n\n\n\nComputer Science > Computer Vision and Pattern Recognition\n\n\narXiv:2307.04767 (cs)\n \n\n\n\n\n [Submitted on 10 Jul 2023]\nTitle:Semantic-SAM: Segment and Recognize Anything at Any Granularity\nAuthors:Feng Li, Hao Zhang, Peize Sun, Xueyan Zou, Shilong Liu, Jianwei Yang, Chunyuan Li, Lei Zhang, Jianfeng Gao Download a PDF of the paper titled Semantic-SAM: Segment and Recognize Anything at Any Granularity, by Feng Li and 8 other authors\nDownload PDF\n\nAbstract:In this paper, we introduce Semantic-SAM, a universal image segmentation model to enable segment and recognize anything at any desired granularity. Our model offers two key advantages: semantic-awareness and granularity-abundance. To achieve semantic-awareness, we consolidate multiple datasets across three granularities and introduce decoupled classification for objects and parts. This allows our model to capture rich semantic information. For the multi-granularity capability, we propose a multi-choice learning scheme during training, enabling each click to generate masks at multiple levels that correspond to multiple ground-truth masks. Notably, this work represents the first attempt to jointly train a model on SA-1B, generic, and part segmentation datasets. Experimental results and visualizations demonstrate that our model successfully achieves semantic-awareness and granularity-abundance. Furthermore, co"}, "output": "The paper introduces Semantic-SAM, a universal image segmentation model that can segment and recognize objects at any desired granularity. The model has two key advantages: semantic-awareness and granularity-abundance. To achieve semantic-awareness, the model consolidates multiple datasets and introduces decoupled classification for objects and parts. This allows the model to capture rich semantic information. For multi-granularity capability, a multi-choice learning scheme is proposed during training, generating masks at multiple levels. The model is trained on SA-1B, generic, and part segmentation datasets. Experimental results and visualizations demonstrate the success of the model in achieving semantic-awareness and", "metrics": null, "error": null, "parent_run_id": "web_classification_variant_0_20231205_120253_104100_1", "start_time": "2023-12-05T04:03:26.035429Z", "end_time": "2023-12-05T04:03:27.668794Z", "index": 1, "api_calls": [{"name": "AzureOpenAI.chat", "type": "Tool", "inputs": {"prompt": "system:\nPlease summarize the following text in one paragraph. 100 words.\nDo not add any information that is not in the text.\n\nuser:\nText: {{text}}\nSummary: ", "deployment_name": "gpt-35-turbo", "model": "gpt-3.5-turbo", "max_tokens": 128, "temperature": 0.2, "text": "\n\n\n [2307.04767] Semantic-SAM: Segment and Recognize Anything at Any Granularity\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n \n\n\n\n\n\n\n\n\nSkip to main content\n\n\n\n\n\nWe gratefully acknowledge support from the Simons Foundation, member institutions, and all contributors. Donate\n\n\n\n\n\n > cs > arXiv:2307.04767\n \n\n\n\n\n\nHelp | Advanced Search\n\n\n\n\nAll fields\nTitle\nAuthor\nAbstract\nComments\nJournal reference\nACM classification\nMSC classification\nReport number\narXiv identifier\nDOI\nORCID\narXiv author ID\nHelp pages\nFull text\n\n\n\n\nSearch\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nopen search\n\n\n\n\n\n\nGO\n\n\n\nopen navigation menu\n\n\nquick links\n\nLogin\nHelp Pages\nAbout\n\n\n\n\n\n\n\n\n\n\n\n\nComputer Science > Computer Vision and Pattern Recognition\n\n\narXiv:2307.04767 (cs)\n \n\n\n\n\n [Submitted on 10 Jul 2023]\nTitle:Semantic-SAM: Segment and Recognize Anything at Any Granularity\nAuthors:Feng Li, Hao Zhang, Peize Sun, Xueyan Zou, Shilong Liu, Jianwei Yang, Chunyuan Li, Lei Zhang, Jianfeng Gao Download a PDF of the paper titled Semantic-SAM: Segment and Recognize Anything at Any Granularity, by Feng Li and 8 other authors\nDownload PDF\n\nAbstract:In this paper, we introduce Semantic-SAM, a universal image segmentation model to enable segment and recognize anything at any desired granularity. Our model offers two key advantages: semantic-awareness and granularity-abundance. To achieve semantic-awareness, we consolidate multiple datasets across three granularities and introduce decoupled classification for objects and parts. This allows our model to capture rich semantic information. For the multi-granularity capability, we propose a multi-choice learning scheme during training, enabling each click to generate masks at multiple levels that correspond to multiple ground-truth masks. Notably, this work represents the first attempt to jointly train a model on SA-1B, generic, and part segmentation datasets. Experimental results and visualizations demonstrate that our model successfully achieves semantic-awareness and granularity-abundance. Furthermore, co"}, "output": "The paper introduces Semantic-SAM, a universal image segmentation model that can segment and recognize objects at any desired granularity. The model has two key advantages: semantic-awareness and granularity-abundance. To achieve semantic-awareness, the model consolidates multiple datasets and introduces decoupled classification for objects and parts. This allows the model to capture rich semantic information. For multi-granularity capability, a multi-choice learning scheme is proposed during training, generating masks at multiple levels. The model is trained on SA-1B, generic, and part segmentation datasets. Experimental results and visualizations demonstrate the success of the model in achieving semantic-awareness and", "start_time": 1701749006.035773, "end_time": 1701749007.668153, "error": null, "children": [{"name": "openai.api_resources.chat_completion.ChatCompletion.create", "type": "LLM", "inputs": {"api_base": "https://gpt-test-eus.openai.azure.com/", "api_type": "azure", "api_version": "2023-07-01-preview", "engine": "gpt-35-turbo", "messages": [{"role": "system", "content": "Please summarize the following text in one paragraph. 100 words.\nDo not add any information that is not in the text."}, {"role": "user", "content": "Text: \n\n\n [2307.04767] Semantic-SAM: Segment and Recognize Anything at Any Granularity\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n \n\n\n\n\n\n\n\n\nSkip to main content\n\n\n\n\n\nWe gratefully acknowledge support from the Simons Foundation, member institutions, and all contributors. Donate\n\n\n\n\n\n > cs > arXiv:2307.04767\n \n\n\n\n\n\nHelp | Advanced Search\n\n\n\n\nAll fields\nTitle\nAuthor\nAbstract\nComments\nJournal reference\nACM classification\nMSC classification\nReport number\narXiv identifier\nDOI\nORCID\narXiv author ID\nHelp pages\nFull text\n\n\n\n\nSearch\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nopen search\n\n\n\n\n\n\nGO\n\n\n\nopen navigation menu\n\n\nquick links\n\nLogin\nHelp Pages\nAbout\n\n\n\n\n\n\n\n\n\n\n\n\nComputer Science > Computer Vision and Pattern Recognition\n\n\narXiv:2307.04767 (cs)\n \n\n\n\n\n [Submitted on 10 Jul 2023]\nTitle:Semantic-SAM: Segment and Recognize Anything at Any Granularity\nAuthors:Feng Li, Hao Zhang, Peize Sun, Xueyan Zou, Shilong Liu, Jianwei Yang, Chunyuan Li, Lei Zhang, Jianfeng Gao Download a PDF of the paper titled Semantic-SAM: Segment and Recognize Anything at Any Granularity, by Feng Li and 8 other authors\nDownload PDF\n\nAbstract:In this paper, we introduce Semantic-SAM, a universal image segmentation model to enable segment and recognize anything at any desired granularity. Our model offers two key advantages: semantic-awareness and granularity-abundance. To achieve semantic-awareness, we consolidate multiple datasets across three granularities and introduce decoupled classification for objects and parts. This allows our model to capture rich semantic information. For the multi-granularity capability, we propose a multi-choice learning scheme during training, enabling each click to generate masks at multiple levels that correspond to multiple ground-truth masks. Notably, this work represents the first attempt to jointly train a model on SA-1B, generic, and part segmentation datasets. Experimental results and visualizations demonstrate that our model successfully achieves semantic-awareness and granularity-abundance. Furthermore, co\nSummary: "}], "temperature": 0.2, "top_p": 1.0, "n": 1, "stream": false, "stop": null, "max_tokens": 128, "presence_penalty": 0.0, "frequency_penalty": 0.0, "logit_bias": {}, "user": ""}, "output": {"id": "chatcmpl-8SGwY6eyhMgFtmIhNkFmO6e2awkvq", "object": "chat.completion", "created": 1701749006, "model": "gpt-35-turbo", "prompt_filter_results": [{"prompt_index": 0, "content_filter_results": {"hate": {"filtered": false, "severity": "safe"}, "self_harm": {"filtered": false, "severity": "safe"}, "sexual": {"filtered": false, "severity": "safe"}, "violence": {"filtered": false, "severity": "safe"}}}], "choices": [{"index": 0, "finish_reason": "length", "message": {"role": "assistant", "content": "The paper introduces Semantic-SAM, a universal image segmentation model that can segment and recognize objects at any desired granularity. The model has two key advantages: semantic-awareness and granularity-abundance. To achieve semantic-awareness, the model consolidates multiple datasets and introduces decoupled classification for objects and parts. This allows the model to capture rich semantic information. For multi-granularity capability, a multi-choice learning scheme is proposed during training, generating masks at multiple levels. The model is trained on SA-1B, generic, and part segmentation datasets. Experimental results and visualizations demonstrate the success of the model in achieving semantic-awareness and"}, "content_filter_results": {"hate": {"filtered": false, "severity": "safe"}, "self_harm": {"filtered": false, "severity": "safe"}, "sexual": {"filtered": false, "severity": "safe"}, "violence": {"filtered": false, "severity": "safe"}}}], "usage": {"prompt_tokens": 468, "completion_tokens": 128, "total_tokens": 596}}, "start_time": 1701749006.052093, "end_time": 1701749007.668043, "error": null, "children": null, "node_name": null}], "node_name": "summarize_text_content"}], "variant_id": "", "cached_run_id": null, "cached_flow_run_id": null, "logs": {"stdout": "", "stderr": ""}, "system_metrics": {"prompt_tokens": 468, "completion_tokens": 128, "total_tokens": 596, "duration": 1.633365}, "result": "The paper introduces Semantic-SAM, a universal image segmentation model that can segment and recognize objects at any desired granularity. The model has two key advantages: semantic-awareness and granularity-abundance. To achieve semantic-awareness, the model consolidates multiple datasets and introduces decoupled classification for objects and parts. This allows the model to capture rich semantic information. For multi-granularity capability, a multi-choice learning scheme is proposed during training, generating masks at multiple levels. The model is trained on SA-1B, generic, and part segmentation datasets. Experimental results and visualizations demonstrate the success of the model in achieving semantic-awareness and"}, "start_time": "2023-12-05T04:03:26.035429", "end_time": "2023-12-05T04:03:27.668794", "status": "Completed"}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/node_artifacts
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/node_artifacts/summarize_text_content/000000000.jsonl
{"node_name": "summarize_text_content", "line_number": 0, "run_info": {"node": "summarize_text_content", "flow_run_id": "web_classification_variant_0_20231205_120253_104100", "run_id": "web_classification_variant_0_20231205_120253_104100_summarize_text_content_0", "status": "Completed", "inputs": {"prompt": "system:\nPlease summarize the following text in one paragraph. 100 words.\nDo not add any information that is not in the text.\n\nuser:\nText: {{text}}\nSummary: ", "deployment_name": "gpt-35-turbo", "model": "gpt-3.5-turbo", "max_tokens": 128, "temperature": 0.2, "text": "Amazing! The prompt flow in Azure AI speeds up the building of my LLM application. - YouTubeAboutPressCopyrightContact usCreatorsAdvertiseDevelopersTermsPrivacyPolicy & SafetyHow YouTube worksTest new featuresNFL Sunday Ticket\u00a9 2023 Google LLC"}, "output": "The author expresses their excitement about the prompt flow feature in Azure AI, which has helped them accelerate the development of their LLM application.", "metrics": null, "error": null, "parent_run_id": "web_classification_variant_0_20231205_120253_104100_0", "start_time": "2023-12-05T04:03:26.621822Z", "end_time": "2023-12-05T04:03:26.994395Z", "index": 0, "api_calls": [{"name": "AzureOpenAI.chat", "type": "Tool", "inputs": {"prompt": "system:\nPlease summarize the following text in one paragraph. 100 words.\nDo not add any information that is not in the text.\n\nuser:\nText: {{text}}\nSummary: ", "deployment_name": "gpt-35-turbo", "model": "gpt-3.5-turbo", "max_tokens": 128, "temperature": 0.2, "text": "Amazing! The prompt flow in Azure AI speeds up the building of my LLM application. - YouTubeAboutPressCopyrightContact usCreatorsAdvertiseDevelopersTermsPrivacyPolicy & SafetyHow YouTube worksTest new featuresNFL Sunday Ticket\u00a9 2023 Google LLC"}, "output": "The author expresses their excitement about the prompt flow feature in Azure AI, which has helped them accelerate the development of their LLM application.", "start_time": 1701749006.622094, "end_time": 1701749006.993613, "error": null, "children": [{"name": "openai.api_resources.chat_completion.ChatCompletion.create", "type": "LLM", "inputs": {"api_base": "https://gpt-test-eus.openai.azure.com/", "api_type": "azure", "api_version": "2023-07-01-preview", "engine": "gpt-35-turbo", "messages": [{"role": "system", "content": "Please summarize the following text in one paragraph. 100 words.\nDo not add any information that is not in the text."}, {"role": "user", "content": "Text: Amazing! The prompt flow in Azure AI speeds up the building of my LLM application. - YouTubeAboutPressCopyrightContact usCreatorsAdvertiseDevelopersTermsPrivacyPolicy & SafetyHow YouTube worksTest new featuresNFL Sunday Ticket\u00a9 2023 Google LLC\nSummary: "}], "temperature": 0.2, "top_p": 1.0, "n": 1, "stream": false, "stop": null, "max_tokens": 128, "presence_penalty": 0.0, "frequency_penalty": 0.0, "logit_bias": {}, "user": ""}, "output": {"id": "chatcmpl-8SGwYh2QixabybRzI9vKPfKwl9deg", "object": "chat.completion", "created": 1701749006, "model": "gpt-35-turbo", "prompt_filter_results": [{"prompt_index": 0, "content_filter_results": {"hate": {"filtered": false, "severity": "safe"}, "self_harm": {"filtered": false, "severity": "safe"}, "sexual": {"filtered": false, "severity": "safe"}, "violence": {"filtered": false, "severity": "safe"}}}], "choices": [{"index": 0, "finish_reason": "stop", "message": {"role": "assistant", "content": "The author expresses their excitement about the prompt flow feature in Azure AI, which has helped them accelerate the development of their LLM application."}, "content_filter_results": {"hate": {"filtered": false, "severity": "safe"}, "self_harm": {"filtered": false, "severity": "safe"}, "sexual": {"filtered": false, "severity": "safe"}, "violence": {"filtered": false, "severity": "safe"}}}], "usage": {"prompt_tokens": 92, "completion_tokens": 27, "total_tokens": 119}}, "start_time": 1701749006.627222, "end_time": 1701749006.993502, "error": null, "children": null, "node_name": null}], "node_name": "summarize_text_content"}], "variant_id": "", "cached_run_id": null, "cached_flow_run_id": null, "logs": {"stdout": "", "stderr": ""}, "system_metrics": {"prompt_tokens": 92, "completion_tokens": 27, "total_tokens": 119, "duration": 0.372573}, "result": "The author expresses their excitement about the prompt flow feature in Azure AI, which has helped them accelerate the development of their LLM application."}, "start_time": "2023-12-05T04:03:26.621822", "end_time": "2023-12-05T04:03:26.994395", "status": "Completed"}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/node_artifacts
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/node_artifacts/summarize_text_content/000000002.jsonl
{"node_name": "summarize_text_content", "line_number": 2, "run_info": {"node": "summarize_text_content", "flow_run_id": "web_classification_variant_0_20231205_120253_104100", "run_id": "web_classification_variant_0_20231205_120253_104100_summarize_text_content_2", "status": "Completed", "inputs": {"prompt": "system:\nPlease summarize the following text in one paragraph. 100 words.\nDo not add any information that is not in the text.\n\nuser:\nText: {{text}}\nSummary: ", "deployment_name": "gpt-35-turbo", "model": "gpt-3.5-turbo", "max_tokens": 128, "temperature": 0.2, "text": "X - Apps on Google Playgoogle_logo PlayGamesAppsMovies & TVBooksKidsnonesearchhelp_outline Sign in with Googleplay_appsLibrary & devicespaymentPayments & subscriptionsreviewsMy Play activityredeemOffersPlay PasssettingsSettingsPrivacy Policy \u2022 Terms of ServiceGamesAppsMovies & TVBooksKidsXX Corp.Contains adsIn-app purchases3.8star21.5M reviews1B+DownloadsMature 17+infoInstallShareAdd to wishlistAbout this apparrow_forwardThe X app is the trusted global digital town square for everyone.With X, you can:- Post content for the world to see and join public conversations- Stay up to date on breaking news and follow your interests- Stay better informed with extra context from Community Notes- Go live with Spaces for audio or stream live video- Communicate privately with Direct Messages- Subscribe to X Premium to expand your reach, get a blue checkmark, and more- Earn a living creating exclusive content for your paid subscribers and share in the ad revenue generated in replies to your posts- Create and join Communities around topics and interests, from sports to music to technology- Upload and watch videos up to 3 hours in length- Write and read long form posts like essays and blogs- Connect directly with your customers to help your business growUpdated onDec 4, 2023#6 top grossing socialSocialData safetyarrow_forwardSafety starts with understanding how developers collect and share your data. Data privacy and security practices may vary based on your use, region, and age. The developer provided this information and may update it over time.No data shared with third partiesLearn more about how developers declare sharingThis app may collect these data typesLocation, Personal info and 9 othersData is encrypted in transitYou can request that data be deletedSee detailsRatings and reviewsRatings and reviews are verifiedinfo_outlinearrow_forwardRatings and reviews are verifiedinfo_outlinephone_androidPhonetablet_androidTabletwatchWatchlaptopChromebooktvTV3.820.8M reviews54321Alex S"}, "output": "The X app is a global digital platform where users can post content, join public conversations, stay updated on breaking news, and follow their interests. It offers features such as Community Notes for extra context, Spaces for live audio or video streaming, Direct Messages for private communication, and the option to subscribe to X Premium for expanded reach and exclusive content creation. Users can also create and join Communities, upload and watch videos, and write and read long-form posts. The app prioritizes data safety and allows users to request data deletion. It has a rating of 3.8 stars based on 21.5 million reviews and has been downloaded over", "metrics": null, "error": null, "parent_run_id": "web_classification_variant_0_20231205_120253_104100_2", "start_time": "2023-12-05T04:03:26.386617Z", "end_time": "2023-12-05T04:03:28.124504Z", "index": 2, "api_calls": [{"name": "AzureOpenAI.chat", "type": "Tool", "inputs": {"prompt": "system:\nPlease summarize the following text in one paragraph. 100 words.\nDo not add any information that is not in the text.\n\nuser:\nText: {{text}}\nSummary: ", "deployment_name": "gpt-35-turbo", "model": "gpt-3.5-turbo", "max_tokens": 128, "temperature": 0.2, "text": "X - Apps on Google Playgoogle_logo PlayGamesAppsMovies & TVBooksKidsnonesearchhelp_outline Sign in with Googleplay_appsLibrary & devicespaymentPayments & subscriptionsreviewsMy Play activityredeemOffersPlay PasssettingsSettingsPrivacy Policy \u2022 Terms of ServiceGamesAppsMovies & TVBooksKidsXX Corp.Contains adsIn-app purchases3.8star21.5M reviews1B+DownloadsMature 17+infoInstallShareAdd to wishlistAbout this apparrow_forwardThe X app is the trusted global digital town square for everyone.With X, you can:- Post content for the world to see and join public conversations- Stay up to date on breaking news and follow your interests- Stay better informed with extra context from Community Notes- Go live with Spaces for audio or stream live video- Communicate privately with Direct Messages- Subscribe to X Premium to expand your reach, get a blue checkmark, and more- Earn a living creating exclusive content for your paid subscribers and share in the ad revenue generated in replies to your posts- Create and join Communities around topics and interests, from sports to music to technology- Upload and watch videos up to 3 hours in length- Write and read long form posts like essays and blogs- Connect directly with your customers to help your business growUpdated onDec 4, 2023#6 top grossing socialSocialData safetyarrow_forwardSafety starts with understanding how developers collect and share your data. Data privacy and security practices may vary based on your use, region, and age. The developer provided this information and may update it over time.No data shared with third partiesLearn more about how developers declare sharingThis app may collect these data typesLocation, Personal info and 9 othersData is encrypted in transitYou can request that data be deletedSee detailsRatings and reviewsRatings and reviews are verifiedinfo_outlinearrow_forwardRatings and reviews are verifiedinfo_outlinephone_androidPhonetablet_androidTabletwatchWatchlaptopChromebooktvTV3.820.8M reviews54321Alex S"}, "output": "The X app is a global digital platform where users can post content, join public conversations, stay updated on breaking news, and follow their interests. It offers features such as Community Notes for extra context, Spaces for live audio or video streaming, Direct Messages for private communication, and the option to subscribe to X Premium for expanded reach and exclusive content creation. Users can also create and join Communities, upload and watch videos, and write and read long-form posts. The app prioritizes data safety and allows users to request data deletion. It has a rating of 3.8 stars based on 21.5 million reviews and has been downloaded over", "start_time": 1701749006.386894, "end_time": 1701749008.123235, "error": null, "children": [{"name": "openai.api_resources.chat_completion.ChatCompletion.create", "type": "LLM", "inputs": {"api_base": "https://gpt-test-eus.openai.azure.com/", "api_type": "azure", "api_version": "2023-07-01-preview", "engine": "gpt-35-turbo", "messages": [{"role": "system", "content": "Please summarize the following text in one paragraph. 100 words.\nDo not add any information that is not in the text."}, {"role": "user", "content": "Text: X - Apps on Google Playgoogle_logo PlayGamesAppsMovies & TVBooksKidsnonesearchhelp_outline Sign in with Googleplay_appsLibrary & devicespaymentPayments & subscriptionsreviewsMy Play activityredeemOffersPlay PasssettingsSettingsPrivacy Policy \u2022 Terms of ServiceGamesAppsMovies & TVBooksKidsXX Corp.Contains adsIn-app purchases3.8star21.5M reviews1B+DownloadsMature 17+infoInstallShareAdd to wishlistAbout this apparrow_forwardThe X app is the trusted global digital town square for everyone.With X, you can:- Post content for the world to see and join public conversations- Stay up to date on breaking news and follow your interests- Stay better informed with extra context from Community Notes- Go live with Spaces for audio or stream live video- Communicate privately with Direct Messages- Subscribe to X Premium to expand your reach, get a blue checkmark, and more- Earn a living creating exclusive content for your paid subscribers and share in the ad revenue generated in replies to your posts- Create and join Communities around topics and interests, from sports to music to technology- Upload and watch videos up to 3 hours in length- Write and read long form posts like essays and blogs- Connect directly with your customers to help your business growUpdated onDec 4, 2023#6 top grossing socialSocialData safetyarrow_forwardSafety starts with understanding how developers collect and share your data. Data privacy and security practices may vary based on your use, region, and age. The developer provided this information and may update it over time.No data shared with third partiesLearn more about how developers declare sharingThis app may collect these data typesLocation, Personal info and 9 othersData is encrypted in transitYou can request that data be deletedSee detailsRatings and reviewsRatings and reviews are verifiedinfo_outlinearrow_forwardRatings and reviews are verifiedinfo_outlinephone_androidPhonetablet_androidTabletwatchWatchlaptopChromebooktvTV3.820.8M reviews54321Alex S\nSummary: "}], "temperature": 0.2, "top_p": 1.0, "n": 1, "stream": false, "stop": null, "max_tokens": 128, "presence_penalty": 0.0, "frequency_penalty": 0.0, "logit_bias": {}, "user": ""}, "output": {"id": "chatcmpl-8SGwYyQcqIQLNvDERxnNkJ8Tv4wIf", "object": "chat.completion", "created": 1701749006, "model": "gpt-35-turbo", "prompt_filter_results": [{"prompt_index": 0, "content_filter_results": {"hate": {"filtered": false, "severity": "safe"}, "self_harm": {"filtered": false, "severity": "safe"}, "sexual": {"filtered": false, "severity": "safe"}, "violence": {"filtered": false, "severity": "safe"}}}], "choices": [{"index": 0, "finish_reason": "length", "message": {"role": "assistant", "content": "The X app is a global digital platform where users can post content, join public conversations, stay updated on breaking news, and follow their interests. It offers features such as Community Notes for extra context, Spaces for live audio or video streaming, Direct Messages for private communication, and the option to subscribe to X Premium for expanded reach and exclusive content creation. Users can also create and join Communities, upload and watch videos, and write and read long-form posts. The app prioritizes data safety and allows users to request data deletion. It has a rating of 3.8 stars based on 21.5 million reviews and has been downloaded over"}, "content_filter_results": {"hate": {"filtered": false, "severity": "safe"}, "self_harm": {"filtered": false, "severity": "safe"}, "sexual": {"filtered": false, "severity": "safe"}, "violence": {"filtered": false, "severity": "safe"}}}], "usage": {"prompt_tokens": 448, "completion_tokens": 128, "total_tokens": 576}}, "start_time": 1701749006.391002, "end_time": 1701749008.123107, "error": null, "children": null, "node_name": null}], "node_name": "summarize_text_content"}], "variant_id": "", "cached_run_id": null, "cached_flow_run_id": null, "logs": {"stdout": "", "stderr": ""}, "system_metrics": {"prompt_tokens": 448, "completion_tokens": 128, "total_tokens": 576, "duration": 1.737887}, "result": "The X app is a global digital platform where users can post content, join public conversations, stay updated on breaking news, and follow their interests. It offers features such as Community Notes for extra context, Spaces for live audio or video streaming, Direct Messages for private communication, and the option to subscribe to X Premium for expanded reach and exclusive content creation. Users can also create and join Communities, upload and watch videos, and write and read long-form posts. The app prioritizes data safety and allows users to request data deletion. It has a rating of 3.8 stars based on 21.5 million reviews and has been downloaded over"}, "start_time": "2023-12-05T04:03:26.386617", "end_time": "2023-12-05T04:03:28.124504", "status": "Completed"}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/illegal/missing_data.yaml
flow: ../flows/classification_accuracy_evaluation column_mapping: groundtruth: "${data.answer}" prediction: "${run.outputs.category}" run: flow_run_20230629_101205 # ./sample_bulk_run.yaml # run config: env related environment_variables: .env # optional connections: node_1: connection: test_llm_connection deployment_name: gpt-35-turbo
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs
promptflow_repo/promptflow/src/promptflow/tests/test_configs/runs/illegal/non_exist_data.yaml
flow: ../flows/classification_accuracy_evaluation data: not_exist column_mapping: groundtruth: "${data.answer}" prediction: "${run.outputs.category}" run: flow_run_20230629_101205 # ./sample_bulk_run.yaml # run config: env related environment_variables: .env # optional connections: node_1: connection: test_llm_connection deployment_name: gpt-35-turbo
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/eager_flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/eager_flows/flow_with_environment/entry.py
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- def my_flow(): """Simple flow without yaml.""" print("Hello world!")
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/eager_flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/eager_flows/flow_with_environment/flow.dag.yaml
path: ./entry.py entry: my_flow environment: python_requirements_txt: requirements.txt
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/eager_flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/eager_flows/long_running/entry.py
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import time def my_flow(input_val) -> str: """Simple flow with yaml.""" time.sleep(100) print(f"Hello world! {input_val}") return f"Hello world! {input_val}"
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/eager_flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/eager_flows/long_running/flow.dag.yaml
path: ./entry.py entry: my_flow environment: python_requirements_txt: requirements.txt
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/eager_flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/eager_flows/dummy_flow_with_trace/entry.py
import asyncio from promptflow import trace @trace async def wait(n: int): await asyncio.sleep(n) @trace async def dummy_llm(prompt: str, model: str, wait_seconds: int): await wait(wait_seconds) return prompt async def my_flow(text: str, models: list = []): tasks = [] for i, model in enumerate(models): tasks.append(asyncio.create_task(dummy_llm(text, model, i + 1))) await asyncio.wait(tasks) return "dummy_output"
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/eager_flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/eager_flows/dummy_flow_with_trace/flow.dag.yaml
path: ./entry.py entry: my_flow
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/eager_flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/eager_flows/dummy_flow_with_trace/inputs.jsonl
{"text": "text", "models": ["model"]} {"text": "text", "models": ["model", "model_2", "model_3"]}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/eager_flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/eager_flows/primitive_output/entry.py
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- def my_flow(input_val: str = "gpt"): """Simple flow without yaml.""" # print(f"Hello world! {input_val}") return f"Hello world! {input_val}"
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/eager_flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/eager_flows/primitive_output/flow.dag.yaml
path: ./entry.py entry: my_flow
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/eager_flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/eager_flows/invalid_extra_fields_nodes/entry.py
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- def my_flow(): """Simple flow without yaml.""" print("Hello world!")
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/eager_flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/eager_flows/invalid_extra_fields_nodes/flow.dag.yaml
entry: my_func path: ./entry.py nodes: []
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/eager_flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/eager_flows/simple_without_yaml/entry.py
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- def my_flow(input_val: str): """Simple flow without yaml.""" print(f"Hello world! {input_val}")
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/eager_flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/eager_flows/simple_with_yaml/entry.py
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- def my_flow(input_val: str = "gpt") -> str: """Simple flow without yaml.""" return f"Hello world! {input_val}"
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/eager_flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/eager_flows/simple_with_yaml/flow.dag.yaml
path: ./entry.py entry: my_flow
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/eager_flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/eager_flows/invalid_no_path/entry.py
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- def my_flow(): """Simple flow without yaml.""" print("Hello world!")
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/eager_flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/eager_flows/invalid_no_path/flow.dag.yaml
entry: my_func
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/eager_flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/eager_flows/multiple_entries/entry1.py
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- def my_flow1(): """Simple flow without yaml.""" print("Hello world!") def my_flow2(): """Simple flow without yaml.""" print("Hello world!")
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/eager_flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/eager_flows/multiple_entries/entry2.py
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- def my_flow1(): """Simple flow without yaml.""" print("Hello world!") def my_flow2(): """Simple flow without yaml.""" print("Hello world!")
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/eager_flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/eager_flows/simple_with_req/entry.py
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- def my_flow(input_val) -> str: """Simple flow with yaml.""" print(f"Hello world! {input_val}") return f"Hello world! {input_val}"
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/eager_flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/eager_flows/simple_with_req/flow.dag.yaml
path: ./entry.py entry: my_flow environment: python_requirements_txt: requirements.txt
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/eager_flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/eager_flows/flow_with_dataclass_output/entry.py
from dataclasses import dataclass @dataclass class Data: text: str models: list def my_flow(text: str = "default_text", models: list = ["default_model"]): return Data(text=text, models=models)
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/eager_flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/eager_flows/flow_with_dataclass_output/flow.dag.yaml
path: ./entry.py entry: my_flow
0