repo_id
stringlengths
15
132
file_path
stringlengths
34
176
content
stringlengths
2
3.52M
__index_level_0__
int64
0
0
promptflow_repo/promptflow/src/promptflow/tests/executor
promptflow_repo/promptflow/src/promptflow/tests/executor/e2etests/test_concurent_execution.py
import re from pathlib import Path from tempfile import mkdtemp import pytest from promptflow._utils.exception_utils import ErrorResponse from promptflow._utils.logger_utils import LogContext from promptflow.contracts.run_info import Status from promptflow.contracts.run_mode import RunMode from promptflow.executor._flow_nodes_scheduler import RUN_FLOW_NODES_LINEARLY from promptflow.executor._result import LineResult from promptflow.executor.flow_executor import FlowExecutor from ..utils import get_flow_inputs, get_yaml_file, load_content TEST_ROOT = Path(__file__).parent.parent.parent FLOWS_ROOT = TEST_ROOT / "test_configs/flows" FLOW_FOLDER = "concurrent_execution_flow" @pytest.mark.e2etest class TestConcurrentExecution: def test_concurrent_run(self): logs_directory = Path(mkdtemp()) executor = FlowExecutor.create(get_yaml_file(FLOW_FOLDER), {}) flow_run_log_path = str(logs_directory / "test_flow_run.log") # flow run: test exec_line with LogContext(flow_run_log_path, run_mode=RunMode.Test): results = executor.exec_line(get_flow_inputs(FLOW_FOLDER)) log_content = load_content(flow_run_log_path) pattern = r"\[wait_(\d+) in line None.*Thread (\d+)" matches = re.findall(pattern, log_content) wait_thread_mapping = {} for wait, thread in matches: if wait in wait_thread_mapping: if wait_thread_mapping[wait] != thread: raise Exception(f"wait_{wait} corresponds to more than one thread number") else: wait_thread_mapping[wait] = thread self.assert_run_result(results) assert ( results.run_info.system_metrics["duration"] < 10 ), "run nodes concurrently should decrease the total run time." def test_concurrent_run_with_exception(self): executor = FlowExecutor.create(get_yaml_file(FLOW_FOLDER), {}, raise_ex=False) flow_result = executor.exec_line({"input1": "True", "input2": "False", "input3": "False", "input4": "False"}) assert 2 < flow_result.run_info.system_metrics["duration"] < 4, "Should at least finish the running job." error_response = ErrorResponse.from_error_dict(flow_result.run_info.error) assert error_response.error_code_hierarchy == "UserError/ToolExecutionError" def test_linear_run(self): executor = FlowExecutor.create(get_yaml_file(FLOW_FOLDER), {}) # flow run: test exec_line run linearly results = executor.exec_line(get_flow_inputs(FLOW_FOLDER), node_concurrency=RUN_FLOW_NODES_LINEARLY) self.assert_run_result(results) assert 15 > results.run_info.system_metrics["duration"] > 10, "run nodes linearly will consume more time." def assert_run_result(self, result: LineResult): # Validate the flow status assert result.run_info.status == Status.Completed # Validate the flow output assert isinstance(result.output, dict) # Validate the flow node run infos assert len(result.node_run_infos) == 5
0
promptflow_repo/promptflow/src/promptflow/tests/executor
promptflow_repo/promptflow/src/promptflow/tests/executor/e2etests/test_package_tool.py
import sys from pathlib import Path from unittest.mock import patch import pytest from promptflow._core._errors import PackageToolNotFoundError, ToolLoadError from promptflow.contracts.run_info import Status from promptflow.executor import FlowExecutor from promptflow.executor._errors import NodeInputValidationError, ResolveToolError from promptflow.executor._result import LineResult from ..utils import WRONG_FLOW_ROOT, get_flow_package_tool_definition, get_flow_sample_inputs, get_yaml_file PACKAGE_TOOL_BASE = Path(__file__).parent.parent / "package_tools" PACKAGE_TOOL_ENTRY = "promptflow._core.tools_manager.collect_package_tools" sys.path.insert(0, str(PACKAGE_TOOL_BASE.resolve())) @pytest.mark.e2etest class TestPackageTool: def get_line_inputs(self, flow_folder=""): if flow_folder: inputs = self.get_bulk_inputs(flow_folder) return inputs[0] return { "url": "https://www.microsoft.com/en-us/windows/", "text": "some_text", } def get_bulk_inputs(self, nlinee=4, flow_folder=""): if flow_folder: inputs = get_flow_sample_inputs(flow_folder) if isinstance(inputs, list) and len(inputs) > 0: return inputs elif isinstance(inputs, dict): return [inputs] else: raise Exception(f"Invalid type of bulk input: {inputs}") return [self.get_line_inputs() for _ in range(nlinee)] def test_executor_package_tool_with_conn(self, mocker): flow_folder = PACKAGE_TOOL_BASE / "tool_with_connection" package_tool_definition = get_flow_package_tool_definition(flow_folder) mocker.patch( "promptflow.tools.list.list_package_tools", return_value=package_tool_definition, ) name, secret = "dummy_name", "dummy_secret" connections = { "test_conn": { "type": "TestConnection", "value": {"name": name, "secret": secret}, } } executor = FlowExecutor.create(get_yaml_file(flow_folder), connections, raise_ex=True) flow_result = executor.exec_line({}) assert flow_result.run_info.status == Status.Completed assert len(flow_result.node_run_infos) == 1 for _, v in flow_result.node_run_infos.items(): assert v.status == Status.Completed assert v.output == name + secret @pytest.mark.skipif(sys.platform == "darwin", reason="Skip on Mac") def test_executor_package_with_prompt_tool(self, dev_connections, mocker): flow_folder = PACKAGE_TOOL_BASE / "custom_llm_tool" package_tool_definition = get_flow_package_tool_definition(flow_folder) with mocker.patch(PACKAGE_TOOL_ENTRY, return_value=package_tool_definition): executor = FlowExecutor.create(get_yaml_file(flow_folder), dev_connections, raise_ex=True) bulk_inputs = self.get_bulk_inputs(flow_folder=flow_folder) for i in bulk_inputs: line_result = executor.exec_line(i) assert isinstance(line_result, LineResult) msg = f"Got {line_result.run_info.status} for input {i}" assert line_result.run_info.status == Status.Completed, msg def test_custom_llm_tool_with_duplicated_inputs(self, dev_connections, mocker): flow_folder = PACKAGE_TOOL_BASE / "custom_llm_tool_with_duplicated_inputs" package_tool_definition = get_flow_package_tool_definition(flow_folder) with mocker.patch(PACKAGE_TOOL_ENTRY, return_value=package_tool_definition): msg = ( "Invalid inputs {'api'} in prompt template of node custom_llm_tool_with_duplicated_inputs. " "These inputs are duplicated with the inputs of custom llm tool." ) with pytest.raises(ResolveToolError, match=msg) as e: FlowExecutor.create(get_yaml_file(flow_folder), dev_connections) assert isinstance(e.value.inner_exception, NodeInputValidationError) @pytest.mark.parametrize( "flow_folder, error_class, inner_class, error_message", [ ( "wrong_tool_in_package_tools", ResolveToolError, PackageToolNotFoundError, "Tool load failed in 'search_by_text': (PackageToolNotFoundError) " "Package tool 'promptflow.tools.serpapi.SerpAPI.search_11' is not found in the current environment. " "All available package tools are: " "['promptflow.tools.azure_content_safety.AzureContentSafety.analyze_text', " "'promptflow.tools.azure_detect.AzureDetect.get_language'].", ), ( "wrong_package_in_package_tools", ResolveToolError, PackageToolNotFoundError, "Tool load failed in 'search_by_text': (PackageToolNotFoundError) " "Package tool 'promptflow.tools.serpapi11.SerpAPI.search' is not found in the current environment. " "All available package tools are: " "['promptflow.tools.azure_content_safety.AzureContentSafety.analyze_text', " "'promptflow.tools.azure_detect.AzureDetect.get_language'].", ), ], ) def test_package_tool_execution(self, flow_folder, error_class, inner_class, error_message, dev_connections): def mock_collect_package_tools(keys=None): return { "promptflow.tools.azure_content_safety.AzureContentSafety.analyze_text": None, "promptflow.tools.azure_detect.AzureDetect.get_language": None, } with patch(PACKAGE_TOOL_ENTRY, side_effect=mock_collect_package_tools): with pytest.raises(error_class) as exce_info: FlowExecutor.create(get_yaml_file(flow_folder, WRONG_FLOW_ROOT), dev_connections) if isinstance(exce_info.value, ResolveToolError): assert isinstance(exce_info.value.inner_exception, inner_class) assert error_message == exce_info.value.message @pytest.mark.parametrize( "flow_folder, error_message", [ ( "tool_with_init_error", "Tool load failed in 'tool_with_init_error': " "(ToolLoadError) Failed to load package tool 'Tool with init error': (Exception) Tool load error.", ) ], ) def test_package_tool_load_error(self, flow_folder, error_message, dev_connections, mocker): flow_folder = PACKAGE_TOOL_BASE / flow_folder package_tool_definition = get_flow_package_tool_definition(flow_folder) with mocker.patch(PACKAGE_TOOL_ENTRY, return_value=package_tool_definition): with pytest.raises(ResolveToolError) as exce_info: FlowExecutor.create(get_yaml_file(flow_folder), dev_connections) assert isinstance(exce_info.value.inner_exception, ToolLoadError) assert exce_info.value.message == error_message
0
promptflow_repo/promptflow/src/promptflow/tests/executor
promptflow_repo/promptflow/src/promptflow/tests/executor/e2etests/test_batch_engine.py
import asyncio import multiprocessing import os import uuid from pathlib import Path from tempfile import mkdtemp import pytest from promptflow._utils.utils import dump_list_to_jsonl from promptflow.batch._batch_engine import OUTPUT_FILE_NAME, BatchEngine from promptflow.batch._errors import EmptyInputsData from promptflow.batch._result import BatchResult from promptflow.contracts.run_info import Status from promptflow.executor._errors import InputNotFound from ..utils import ( MemoryRunStorage, get_flow_expected_metrics, get_flow_expected_status_summary, get_flow_folder, get_flow_inputs_file, get_flow_sample_inputs, get_yaml_file, load_jsonl, ) SAMPLE_FLOW = "web_classification_no_variants" SAMPLE_EVAL_FLOW = "classification_accuracy_evaluation" SAMPLE_FLOW_WITH_PARTIAL_FAILURE = "python_tool_partial_failure" async def async_submit_batch_run(flow_folder, inputs_mapping, connections): batch_result = submit_batch_run(flow_folder, inputs_mapping, connections=connections) await asyncio.sleep(1) return batch_result def run_batch_with_start_method(multiprocessing_start_method, flow_folder, inputs_mapping, dev_connections): os.environ["PF_BATCH_METHOD"] = multiprocessing_start_method batch_result, output_dir = submit_batch_run( flow_folder, inputs_mapping, connections=dev_connections, return_output_dir=True ) assert isinstance(batch_result, BatchResult) nlines = get_batch_inputs_line(flow_folder) assert batch_result.total_lines == nlines assert batch_result.completed_lines == nlines assert batch_result.start_time < batch_result.end_time assert batch_result.system_metrics.duration > 0 outputs = load_jsonl(output_dir / OUTPUT_FILE_NAME) assert len(outputs) == nlines for i, output in enumerate(outputs): assert isinstance(output, dict) assert "line_number" in output, f"line_number is not in {i}th output {output}" assert output["line_number"] == i, f"line_number is not correct in {i}th output {output}" def submit_batch_run( flow_folder, inputs_mapping, *, input_dirs={}, input_file_name="samples.json", run_id=None, connections={}, storage=None, return_output_dir=False, ): batch_engine = BatchEngine( get_yaml_file(flow_folder), get_flow_folder(flow_folder), connections=connections, storage=storage ) if not input_dirs and inputs_mapping: input_dirs = {"data": get_flow_inputs_file(flow_folder, file_name=input_file_name)} output_dir = Path(mkdtemp()) if return_output_dir: return batch_engine.run(input_dirs, inputs_mapping, output_dir, run_id=run_id), output_dir return batch_engine.run(input_dirs, inputs_mapping, output_dir, run_id=run_id) def get_batch_inputs_line(flow_folder, sample_inputs_file="samples.json"): inputs = get_flow_sample_inputs(flow_folder, sample_inputs_file=sample_inputs_file) return len(inputs) @pytest.mark.usefixtures("use_secrets_config_file", "dev_connections") @pytest.mark.e2etest class TestBatch: def test_batch_storage(self, dev_connections): mem_run_storage = MemoryRunStorage() run_id = str(uuid.uuid4()) inputs_mapping = {"url": "${data.url}"} batch_result = submit_batch_run( SAMPLE_FLOW, inputs_mapping, run_id=run_id, connections=dev_connections, storage=mem_run_storage ) nlines = get_batch_inputs_line(SAMPLE_FLOW) assert batch_result.total_lines == nlines assert batch_result.completed_lines == nlines assert len(mem_run_storage._flow_runs) == nlines assert all(flow_run_info.status == Status.Completed for flow_run_info in mem_run_storage._flow_runs.values()) assert all(node_run_info.status == Status.Completed for node_run_info in mem_run_storage._node_runs.values()) @pytest.mark.parametrize( "flow_folder, inputs_mapping", [ ( SAMPLE_FLOW, {"url": "${data.url}"}, ), ( "prompt_tools", {"text": "${data.text}"}, ), ( "script_with___file__", {"text": "${data.text}"}, ), ( "sample_flow_with_functions", {"question": "${data.question}"}, ), ], ) def test_batch_run(self, flow_folder, inputs_mapping, dev_connections): batch_result, output_dir = submit_batch_run( flow_folder, inputs_mapping, connections=dev_connections, return_output_dir=True ) assert isinstance(batch_result, BatchResult) nlines = get_batch_inputs_line(flow_folder) assert batch_result.total_lines == nlines assert batch_result.completed_lines == nlines assert batch_result.start_time < batch_result.end_time assert batch_result.system_metrics.duration > 0 outputs = load_jsonl(output_dir / OUTPUT_FILE_NAME) assert len(outputs) == nlines for i, output in enumerate(outputs): assert isinstance(output, dict) assert "line_number" in output, f"line_number is not in {i}th output {output}" assert output["line_number"] == i, f"line_number is not correct in {i}th output {output}" @pytest.mark.parametrize( "flow_folder, inputs_mapping", [ ( SAMPLE_FLOW, {"url": "${data.url}"}, ), ( "prompt_tools", {"text": "${data.text}"}, ), ( "script_with___file__", {"text": "${data.text}"}, ), ( "sample_flow_with_functions", {"question": "${data.question}"}, ), ], ) def test_spawn_mode_batch_run(self, flow_folder, inputs_mapping, dev_connections): if "spawn" not in multiprocessing.get_all_start_methods(): pytest.skip("Unsupported start method: spawn") p = multiprocessing.Process( target=run_batch_with_start_method, args=("spawn", flow_folder, inputs_mapping, dev_connections) ) p.start() p.join() assert p.exitcode == 0 @pytest.mark.parametrize( "flow_folder, inputs_mapping", [ ( SAMPLE_FLOW, {"url": "${data.url}"}, ), ( "prompt_tools", {"text": "${data.text}"}, ), ( "script_with___file__", {"text": "${data.text}"}, ), ( "sample_flow_with_functions", {"question": "${data.question}"}, ), ], ) def test_forkserver_mode_batch_run(self, flow_folder, inputs_mapping, dev_connections): if "forkserver" not in multiprocessing.get_all_start_methods(): pytest.skip("Unsupported start method: forkserver") p = multiprocessing.Process( target=run_batch_with_start_method, args=("forkserver", flow_folder, inputs_mapping, dev_connections) ) p.start() p.join() assert p.exitcode == 0 def test_batch_run_then_eval(self, dev_connections): batch_resutls, output_dir = submit_batch_run( SAMPLE_FLOW, {"url": "${data.url}"}, connections=dev_connections, return_output_dir=True ) nlines = get_batch_inputs_line(SAMPLE_FLOW) assert batch_resutls.completed_lines == nlines input_dirs = {"data": get_flow_inputs_file(SAMPLE_FLOW, file_name="samples.json"), "run.outputs": output_dir} inputs_mapping = { "variant_id": "baseline", "groundtruth": "${data.url}", "prediction": "${run.outputs.category}", } eval_result = submit_batch_run(SAMPLE_EVAL_FLOW, inputs_mapping, input_dirs=input_dirs) assert eval_result.completed_lines == nlines, f"Only returned {eval_result.completed_lines}/{nlines} outputs." assert len(eval_result.metrics) > 0, "No metrics are returned." assert eval_result.metrics["accuracy"] == 0, f"Accuracy should be 0, got {eval_result.metrics}." def test_batch_with_metrics(self, dev_connections): flow_folder = SAMPLE_EVAL_FLOW inputs_mapping = { "variant_id": "${data.variant_id}", "groundtruth": "${data.groundtruth}", "prediction": "${data.prediction}", } batch_results = submit_batch_run(flow_folder, inputs_mapping, connections=dev_connections) assert isinstance(batch_results, BatchResult) assert isinstance(batch_results.metrics, dict) assert batch_results.metrics == get_flow_expected_metrics(flow_folder) assert batch_results.total_lines == batch_results.completed_lines assert batch_results.node_status == get_flow_expected_status_summary(flow_folder) def test_batch_with_partial_failure(self, dev_connections): flow_folder = SAMPLE_FLOW_WITH_PARTIAL_FAILURE inputs_mapping = {"idx": "${data.idx}", "mod": "${data.mod}", "mod_2": "${data.mod_2}"} batch_results = submit_batch_run(flow_folder, inputs_mapping, connections=dev_connections) assert isinstance(batch_results, BatchResult) assert batch_results.total_lines == 10 assert batch_results.completed_lines == 5 assert batch_results.failed_lines == 5 assert batch_results.node_status == get_flow_expected_status_summary(flow_folder) def test_batch_with_line_number(self, dev_connections): flow_folder = SAMPLE_FLOW_WITH_PARTIAL_FAILURE input_dirs = {"data": "inputs/data.jsonl", "output": "inputs/output.jsonl"} inputs_mapping = {"idx": "${output.idx}", "mod": "${data.mod}", "mod_2": "${data.mod_2}"} batch_results, output_dir = submit_batch_run( flow_folder, inputs_mapping, input_dirs=input_dirs, connections=dev_connections, return_output_dir=True ) assert isinstance(batch_results, BatchResult) outputs = load_jsonl(output_dir / OUTPUT_FILE_NAME) assert len(outputs) == 2 assert outputs == [ {"line_number": 0, "output": 1}, {"line_number": 6, "output": 7}, ] def test_batch_with_openai_metrics(self, dev_connections): inputs_mapping = {"url": "${data.url}"} batch_result, output_dir = submit_batch_run( SAMPLE_FLOW, inputs_mapping, connections=dev_connections, return_output_dir=True ) nlines = get_batch_inputs_line(SAMPLE_FLOW) outputs = load_jsonl(output_dir / OUTPUT_FILE_NAME) assert len(outputs) == nlines assert batch_result.system_metrics.total_tokens > 0 assert batch_result.system_metrics.prompt_tokens > 0 assert batch_result.system_metrics.completion_tokens > 0 def test_batch_with_default_input(self): mem_run_storage = MemoryRunStorage() default_input_value = "input value from default" inputs_mapping = {"text": "${data.text}"} batch_result, output_dir = submit_batch_run( "default_input", inputs_mapping, storage=mem_run_storage, return_output_dir=True ) assert batch_result.total_lines == batch_result.completed_lines outputs = load_jsonl(output_dir / OUTPUT_FILE_NAME) assert len(outputs) == 1 assert outputs[0]["output"] == default_input_value assert all( node_run_info.status == Status.Completed and node_run_info.output == [default_input_value] for node_run_info in mem_run_storage._node_runs.values() if node_run_info.node == "aggregate_node" ) @pytest.mark.parametrize( "flow_folder, batch_input, expected_type", [ ("simple_aggregation", [{"text": 4}], str), ("simple_aggregation", [{"text": 4.5}], str), ("simple_aggregation", [{"text": "3.0"}], str), ], ) def test_batch_run_line_result(self, flow_folder, batch_input, expected_type): mem_run_storage = MemoryRunStorage() input_file = Path(mkdtemp()) / "inputs.jsonl" dump_list_to_jsonl(input_file, batch_input) input_dirs = {"data": input_file} inputs_mapping = {"text": "${data.text}"} batch_results = submit_batch_run(flow_folder, inputs_mapping, input_dirs=input_dirs, storage=mem_run_storage) assert isinstance(batch_results, BatchResult) assert all( type(flow_run_info.inputs["text"]) is expected_type for flow_run_info in mem_run_storage._flow_runs.values() ) @pytest.mark.parametrize( "flow_folder, input_mapping, error_class, error_message", [ ( "connection_as_input", {}, InputNotFound, "The input for flow cannot be empty in batch mode. Please review your flow and provide valid inputs.", ), ( "script_with___file__", {"text": "${data.text}"}, EmptyInputsData, "Couldn't find any inputs data at the given input paths. Please review the provided path " "and consider resubmitting.", ), ], ) def test_batch_run_failure(self, flow_folder, input_mapping, error_class, error_message): with pytest.raises(error_class) as e: submit_batch_run(flow_folder, input_mapping, input_file_name="empty_inputs.jsonl") assert error_message in e.value.message def test_batch_run_in_existing_loop(self, dev_connections): flow_folder = "prompt_tools" inputs_mapping = {"text": "${data.text}"} batch_result = asyncio.run(async_submit_batch_run(flow_folder, inputs_mapping, dev_connections)) assert isinstance(batch_result, BatchResult) assert batch_result.total_lines == batch_result.completed_lines def test_batch_run_with_aggregation_failure(self, dev_connections): flow_folder = "aggregation_node_failed" inputs_mapping = {"groundtruth": "${data.groundtruth}", "prediction": "${data.prediction}"} batch_result = submit_batch_run(flow_folder, inputs_mapping, connections=dev_connections) assert isinstance(batch_result, BatchResult) assert batch_result.total_lines == batch_result.completed_lines assert batch_result.node_status == get_flow_expected_status_summary(flow_folder) # assert aggregation node error summary assert batch_result.failed_lines == 0 aggre_node_error = batch_result.error_summary.aggr_error_dict["aggregate"] assert aggre_node_error["message"] == "Execution failure in 'aggregate': (ZeroDivisionError) division by zero" assert aggre_node_error["code"] == "UserError" assert aggre_node_error["innerError"] == {"code": "ToolExecutionError", "innerError": None}
0
promptflow_repo/promptflow/src/promptflow/tests/executor
promptflow_repo/promptflow/src/promptflow/tests/executor/e2etests/test_traces.py
from types import GeneratorType import pytest from promptflow._utils.dataclass_serializer import serialize from promptflow.contracts.run_info import Status from promptflow.executor import FlowExecutor from ..utils import get_yaml_file @pytest.mark.usefixtures("dev_connections") @pytest.mark.e2etest class TestExecutorTraces: def validate_openai_apicall(self, apicall: dict): """Validates an apicall dict. Ensure that the trace output of openai api is a list of dicts. Args: apicall (dict): A dictionary representing apicall. Raises: AssertionError: If the API call is invalid. """ get_trace = False if apicall.get("name", "") in ( "openai.api_resources.chat_completion.ChatCompletion.create", "openai.api_resources.completion.Completion.create", "openai.api_resources.embedding.Embedding.create", "openai.resources.completions.Completions.create", # openai>=1.0.0 "openai.resources.chat.completions.Completions.create", # openai>=1.0.0 ): get_trace = True output = apicall.get("output") assert not isinstance(output, str) assert isinstance(output, (list, dict)) if isinstance(output, list): assert all(isinstance(item, dict) for item in output) children = apicall.get("children", []) if children is not None: for child in children: get_trace = get_trace or self.validate_openai_apicall(child) return get_trace def get_chat_input(stream): return { "question": "What is the capital of the United States of America?", "chat_history": [], "stream": stream, } def get_comletion_input(stream): return {"prompt": "What is the capital of the United States of America?", "stream": stream} @pytest.mark.parametrize( "flow_folder, inputs", [ ("openai_chat_api_flow", get_chat_input(False)), ("openai_chat_api_flow", get_chat_input(True)), ("openai_completion_api_flow", get_comletion_input(False)), ("openai_completion_api_flow", get_comletion_input(True)), ("llm_tool", {"topic": "Hello", "stream": False}), ("llm_tool", {"topic": "Hello", "stream": True}), ], ) def test_executor_openai_api_flow(self, flow_folder, inputs, dev_connections): executor = FlowExecutor.create(get_yaml_file(flow_folder), dev_connections) flow_result = executor.exec_line(inputs) assert isinstance(flow_result.output, dict) assert flow_result.run_info.status == Status.Completed assert flow_result.run_info.api_calls is not None assert "total_tokens" in flow_result.run_info.system_metrics assert flow_result.run_info.system_metrics["total_tokens"] > 0 get_traced = False for api_call in flow_result.run_info.api_calls: get_traced = get_traced or self.validate_openai_apicall(serialize(api_call)) assert get_traced is True def test_executor_generator_tools(self, dev_connections): executor = FlowExecutor.create(get_yaml_file("generator_tools"), dev_connections) inputs = {"text": "This is a test"} flow_result = executor.exec_line(inputs) assert isinstance(flow_result.output, dict) assert flow_result.run_info.status == Status.Completed assert flow_result.run_info.api_calls is not None tool_trace = flow_result.run_info.api_calls[0]["children"][0] generator_trace = tool_trace.get("children")[0] assert generator_trace is not None output = generator_trace.get("output") assert isinstance(output, list) @pytest.mark.parametrize("allow_generator_output", [False, True]) def test_trace_behavior_with_generator_node(self, dev_connections, allow_generator_output): """Test to verify the trace output list behavior for a flow with a generator node. This test checks the trace output list in two scenarios based on the 'allow_generator_output' flag: - When 'allow_generator_output' is True, the output list should initially be empty until the generator is consumed. - When 'allow_generator_output' is False, the output list should contain items produced by the generator node. The test ensures that the trace accurately reflects the generator's consumption status and helps in monitoring and debugging flow execution. """ # Set up executor with a flow that contains a generator node executor = FlowExecutor.create(get_yaml_file("generator_nodes"), dev_connections) inputs = {"text": "This is a test"} # Execute the flow with the given inputs and 'allow_generator_output' setting flow_result = executor.exec_line(inputs, allow_generator_output=allow_generator_output) # Verify that the flow execution result is a dictionary and the flow has completed successfully assert isinstance(flow_result.output, dict) assert flow_result.run_info.status == Status.Completed assert flow_result.run_info.api_calls is not None # Extract the trace for the generator node tool_trace = flow_result.run_info.api_calls[0]["children"][0] generator_output_trace = tool_trace.get("output") # Verify that the trace output is a list assert isinstance(generator_output_trace, list) if allow_generator_output: # If generator output is allowed, the trace list should be empty before consumption assert not generator_output_trace # Obtain the generator from the flow result answer_gen = flow_result.output.get("answer") assert isinstance(answer_gen, GeneratorType) # Consume the generator and check that it yields text try: generated_text = next(answer_gen) assert isinstance(generated_text, str) # Verify the trace list contains the most recently generated item assert generator_output_trace[-1] == generated_text except StopIteration: assert False, "Generator did not generate any text" else: # If generator output is not allowed, the trace list should contain generated items assert generator_output_trace assert all(isinstance(item, str) for item in generator_output_trace) @pytest.mark.parametrize("flow_file", ["flow_with_trace", "flow_with_trace_async"]) def test_flow_with_trace(self, flow_file, dev_connections): """Tests to verify the flows that contains @trace marks. They should generate traces with "Function" type and nested in the "Tool" traces. This test case is to verify a flow like following structure, both sync and async mode: .. code-block:: flow (Flow, 1.5s) greetings (Tool, 1.5s) get_user_name (Function, 1.0s) is_valid_name (Function, 0.5s) format_greeting (Function, 0.5s) """ executor = FlowExecutor.create(get_yaml_file(flow_file), dev_connections) inputs = {"user_id": 1} flow_result = executor.exec_line(inputs) # Assert the run status is completed assert flow_result.output == {"output": "Hello, User 1!"} assert flow_result.run_info.status == Status.Completed assert flow_result.run_info.api_calls is not None # Verify the traces are as expected api_calls = flow_result.run_info.api_calls assert len(api_calls) == 1 # Assert the "flow" root level trace flow_trace = api_calls[0] assert flow_trace["name"] == "flow" assert flow_trace["type"] == "Flow" assert flow_trace["end_time"] - flow_trace["start_time"] == pytest.approx(1.5, abs=0.3) assert len(flow_trace["children"]) == 1 assert flow_trace["system_metrics"]["duration"] == pytest.approx(1.5, abs=0.3) assert flow_trace["system_metrics"]["prompt_tokens"] == 0 assert flow_trace["system_metrics"]["completion_tokens"] == 0 assert flow_trace["system_metrics"]["total_tokens"] == 0 # TODO: These assertions should be fixed after added these fields to the top level trace assert "inputs" not in flow_trace assert "output" not in flow_trace assert "error" not in flow_trace # Assert the "greetings" tool greetings_trace = flow_trace["children"][0] assert greetings_trace["name"] == "greetings" assert greetings_trace["type"] == "Tool" assert greetings_trace["inputs"] == inputs assert greetings_trace["output"] == {"greeting": "Hello, User 1!"} assert greetings_trace["error"] is None assert greetings_trace["children"] is not None assert greetings_trace["end_time"] - greetings_trace["start_time"] == pytest.approx(1.5, abs=0.3) assert len(greetings_trace["children"]) == 2 # TODO: to verfiy the system metrics. This might need to be fixed. assert greetings_trace["system_metrics"] == {} # Assert the "get_user_name" function get_user_name_trace = greetings_trace["children"][0] assert get_user_name_trace["name"] == "get_user_name" assert get_user_name_trace["type"] == "Function" assert get_user_name_trace["inputs"] == {"user_id": 1} assert get_user_name_trace["output"] == "User 1" assert get_user_name_trace["error"] is None assert get_user_name_trace["end_time"] - get_user_name_trace["start_time"] == pytest.approx(1.0, abs=0.2) assert len(get_user_name_trace["children"]) == 1 # TODO: to verfiy the system metrics. This might need to be fixed. assert get_user_name_trace["system_metrics"] == {} # Assert the "get_user_name/is_valid_name" function is_valid_name_trace = get_user_name_trace["children"][0] assert is_valid_name_trace["name"] == "is_valid_name" assert is_valid_name_trace["type"] == "Function" assert is_valid_name_trace["inputs"] == {"name": "User 1"} assert is_valid_name_trace["output"] is True assert is_valid_name_trace["error"] is None # When running tests in MacOS, it will take longer. So we adjust abs to 0.15 and see if it needs to be extended. assert is_valid_name_trace["end_time"] - is_valid_name_trace["start_time"] == pytest.approx(0.5, abs=0.15) assert is_valid_name_trace["children"] == [] # TODO: to verfiy the system metrics. This might need to be fixed. assert is_valid_name_trace["system_metrics"] == {} # Assert the "format_greeting" function format_greeting_trace = greetings_trace["children"][1] assert format_greeting_trace["name"] == "format_greeting" assert format_greeting_trace["type"] == "Function" assert format_greeting_trace["inputs"] == {"user_name": "User 1"} assert format_greeting_trace["output"] == "Hello, User 1!" assert format_greeting_trace["error"] is None # When running tests in MacOS, it will take longer. So we adjust abs to 0.15 and see if it needs to be extended. assert format_greeting_trace["end_time"] - format_greeting_trace["start_time"] == pytest.approx(0.5, abs=0.15) assert format_greeting_trace["children"] == [] # TODO: to verfiy the system metrics. This might need to be fixed. assert format_greeting_trace["system_metrics"] == {}
0
promptflow_repo/promptflow/src/promptflow/tests/executor
promptflow_repo/promptflow/src/promptflow/tests/executor/e2etests/test_csharp_executor_proxy.py
import json import multiprocessing import threading from pathlib import Path from tempfile import mkdtemp from typing import Optional, Tuple, Union import pytest from promptflow._constants import FlowLanguage from promptflow._utils.exception_utils import ExceptionPresenter from promptflow.batch._batch_engine import BatchEngine from promptflow.batch._csharp_executor_proxy import CSharpExecutorProxy from promptflow.batch._result import BatchResult from promptflow.contracts.run_info import Status from promptflow.exceptions import ErrorTarget, ValidationException from promptflow.executor._errors import ConnectionNotFound from promptflow.storage._run_storage import AbstractRunStorage from ..mock_execution_server import run_executor_server from ..utils import MemoryRunStorage, get_flow_folder, get_flow_inputs_file, get_yaml_file @pytest.mark.unittest class TestCSharpExecutorProxy: def setup_method(self): BatchEngine.register_executor(FlowLanguage.CSharp, MockCSharpExecutorProxy) def test_batch(self): # submit a batch run _, batch_result = self._submit_batch_run() assert batch_result.status == Status.Completed assert batch_result.completed_lines == batch_result.total_lines assert batch_result.system_metrics.duration > 0 assert batch_result.completed_lines > 0 def test_batch_execution_error(self): # submit a batch run _, batch_result = self._submit_batch_run(has_error=True) assert batch_result.status == Status.Completed assert batch_result.total_lines == 3 assert batch_result.failed_lines == 1 assert batch_result.system_metrics.duration > 0 def test_batch_validation_error(self): # prepare the init error file to mock the validation error error_message = "'test_connection' not found." test_exception = ConnectionNotFound(message=error_message) error_dict = ExceptionPresenter.create(test_exception).to_dict() init_error_file = Path(mkdtemp()) / "init_error.json" with open(init_error_file, "w") as file: json.dump(error_dict, file) # submit a batch run with pytest.raises(ValidationException) as e: self._submit_batch_run(init_error_file=init_error_file) assert error_message in e.value.message assert e.value.error_codes == ["UserError", "ValidationError"] assert e.value.target == ErrorTarget.BATCH def test_batch_cancel(self): # use a thread to submit a batch run batch_engine, batch_run_thread = self._submit_batch_run(run_in_thread=True) assert batch_engine._is_canceled is False batch_run_thread.start() # cancel the batch run batch_engine.cancel() batch_run_thread.join() assert batch_engine._is_canceled is True assert batch_result_global.status == Status.Canceled assert batch_result_global.system_metrics.duration > 0 def _submit_batch_run( self, run_in_thread=False, has_error=False, init_error_file=None ) -> Union[Tuple[BatchEngine, threading.Thread], Tuple[BatchEngine, BatchResult]]: flow_folder = "csharp_flow" mem_run_storage = MemoryRunStorage() # init the batch engine batch_engine = BatchEngine( get_yaml_file(flow_folder), get_flow_folder(flow_folder), storage=mem_run_storage, has_error=has_error, init_error_file=init_error_file, ) # prepare the inputs input_dirs = {"data": get_flow_inputs_file(flow_folder)} inputs_mapping = {"question": "${data.question}"} output_dir = Path(mkdtemp()) if run_in_thread: return batch_engine, threading.Thread( target=self._batch_run_in_thread, args=(batch_engine, input_dirs, inputs_mapping, output_dir) ) else: return batch_engine, batch_engine.run(input_dirs, inputs_mapping, output_dir) def _batch_run_in_thread(self, batch_engine: BatchEngine, input_dirs, inputs_mapping, output_dir): global batch_result_global batch_result_global = batch_engine.run(input_dirs, inputs_mapping, output_dir) class MockCSharpExecutorProxy(CSharpExecutorProxy): def __init__(self, process: multiprocessing.Process, port: str): self._process = process self._port = port @classmethod async def create( cls, flow_file: Path, working_dir: Optional[Path] = None, *, connections: Optional[dict] = None, storage: Optional[AbstractRunStorage] = None, **kwargs, ) -> "MockCSharpExecutorProxy": """Create a new executor""" has_error = kwargs.get("has_error", False) init_error_file = kwargs.get("init_error_file", None) port = cls.find_available_port() process = multiprocessing.Process( target=run_executor_server, args=( int(port), has_error, init_error_file, ), ) process.start() executor_proxy = cls(process, port) await executor_proxy.ensure_executor_startup(init_error_file) return executor_proxy async def destroy(self): """Destroy the executor""" if self._process and self._process.is_alive(): self._process.terminate() try: self._process.join(timeout=5) except TimeoutError: self._process.kill() def _is_executor_active(self): return self._process and self._process.is_alive()
0
promptflow_repo/promptflow/src/promptflow/tests/executor
promptflow_repo/promptflow/src/promptflow/tests/executor/e2etests/test_batch_timeout.py
from pathlib import Path from tempfile import mkdtemp import pytest from promptflow._utils.exception_utils import ExceptionPresenter from promptflow.batch import BatchEngine from promptflow.batch._result import BatchResult, LineError from promptflow.contracts.run_info import Status from promptflow.executor._errors import BatchExecutionTimeoutError, LineExecutionTimeoutError from ..utils import MemoryRunStorage, get_flow_folder, get_flow_inputs_file, get_yaml_file SAMPLE_FLOW = "web_classification_no_variants" ONE_LINE_OF_BULK_TEST_TIMEOUT = "one_line_of_bulktest_timeout" @pytest.mark.usefixtures("use_secrets_config_file", "dev_connections") @pytest.mark.e2etest class TestBatchTimeout: @pytest.mark.parametrize( "flow_folder", [ ONE_LINE_OF_BULK_TEST_TIMEOUT, ], ) def test_batch_with_line_timeout(self, flow_folder, dev_connections): # set line timeout to 1 second for testing mem_run_storage = MemoryRunStorage() batch_engine = BatchEngine( get_yaml_file(flow_folder), get_flow_folder(flow_folder), connections=dev_connections, storage=mem_run_storage, ) batch_engine._line_timeout_sec = 5 # prepare input file and output dir input_dirs = {"data": get_flow_inputs_file(flow_folder, file_name="samples_all_timeout.json")} output_dir = Path(mkdtemp()) inputs_mapping = {"idx": "${data.idx}"} batch_results = batch_engine.run(input_dirs, inputs_mapping, output_dir) assert isinstance(batch_results, BatchResult) assert batch_results.completed_lines == 0 assert batch_results.failed_lines == 2 assert batch_results.total_lines == 2 assert batch_results.node_status == { "my_python_tool_with_failed_line.canceled": 2, "my_python_tool.completed": 2, } # assert mem_run_storage persists run infos correctly assert len(mem_run_storage._flow_runs) == 2, "Flow runs are persisted in memory storage." assert len(mem_run_storage._node_runs) == 4, "Node runs are persisted in memory storage." msg = "Tool execution is canceled because of the error: Line execution timeout after 5 seconds." for run in mem_run_storage._node_runs.values(): if run.node == "my_python_tool_with_failed_line": assert run.status == Status.Canceled assert run.error["message"] == msg else: assert run.status == Status.Completed assert batch_results.status == Status.Completed assert batch_results.total_lines == 2 assert batch_results.completed_lines == 0 assert batch_results.failed_lines == 2 assert batch_results.error_summary.failed_user_error_lines == 2 assert batch_results.error_summary.failed_system_error_lines == 0 for i, line_error in enumerate(batch_results.error_summary.error_list): assert isinstance(line_error, LineError) assert line_error.error["message"] == f"Line {i} execution timeout for exceeding 5 seconds" assert line_error.error["code"] == "UserError" @pytest.mark.parametrize( "flow_folder", [ ONE_LINE_OF_BULK_TEST_TIMEOUT, ], ) def test_batch_with_one_line_timeout(self, flow_folder, dev_connections): mem_run_storage = MemoryRunStorage() batch_engine = BatchEngine( get_yaml_file(flow_folder), get_flow_folder(flow_folder), connections=dev_connections, storage=mem_run_storage, ) batch_engine._line_timeout_sec = 5 # set line timeout to 5 seconds for testing # prepare input file and output dir input_dirs = {"data": get_flow_inputs_file(flow_folder, file_name="samples.json")} output_dir = Path(mkdtemp()) inputs_mapping = {"idx": "${data.idx}"} batch_results = batch_engine.run(input_dirs, inputs_mapping, output_dir) assert isinstance(batch_results, BatchResult) # assert the line status in batch result assert batch_results.status == Status.Completed assert batch_results.total_lines == 3 assert batch_results.completed_lines == 2 assert batch_results.failed_lines == 1 assert batch_results.node_status == { "my_python_tool_with_failed_line.completed": 2, "my_python_tool_with_failed_line.canceled": 1, "my_python_tool.completed": 3, } # assert the error summary in batch result assert batch_results.error_summary.failed_user_error_lines == 1 assert batch_results.error_summary.failed_system_error_lines == 0 assert isinstance(batch_results.error_summary.error_list[0], LineError) assert batch_results.error_summary.error_list[0].line_number == 2 assert batch_results.error_summary.error_list[0].error["code"] == "UserError" assert batch_results.error_summary.error_list[0].error["referenceCode"] == "Executor" assert batch_results.error_summary.error_list[0].error["innerError"]["code"] == "LineExecutionTimeoutError" assert ( batch_results.error_summary.error_list[0].error["message"] == "Line 2 execution timeout for exceeding 5 seconds" ) # assert mem_run_storage persists run infos correctly assert len(mem_run_storage._flow_runs) == 3, "Flow runs are persisted in memory storage." assert len(mem_run_storage._node_runs) == 6, "Node runs are persisted in memory storage." @pytest.mark.parametrize( "flow_folder, line_timeout_sec, batch_timeout_sec, expected_error", [ (ONE_LINE_OF_BULK_TEST_TIMEOUT, 600, 5, BatchExecutionTimeoutError(2, 5)), (ONE_LINE_OF_BULK_TEST_TIMEOUT, 3, 600, LineExecutionTimeoutError(2, 3)), (ONE_LINE_OF_BULK_TEST_TIMEOUT, 3, 5, LineExecutionTimeoutError(2, 3)), # TODO: Will change to BatchExecutionTimeoutError after refining the implementation of batch timeout. # (ONE_LINE_OF_BULK_TEST_TIMEOUT, 3, 3, LineExecutionTimeoutError(2, 3)), ], ) def test_batch_timeout(self, flow_folder, line_timeout_sec, batch_timeout_sec, expected_error): mem_run_storage = MemoryRunStorage() batch_engine = BatchEngine( get_yaml_file(flow_folder), get_flow_folder(flow_folder), connections={}, storage=mem_run_storage, ) batch_engine._line_timeout_sec = line_timeout_sec batch_engine._batch_timeout_sec = batch_timeout_sec input_dirs = {"data": get_flow_inputs_file(flow_folder, file_name="samples.json")} output_dir = Path(mkdtemp()) inputs_mapping = {"idx": "${data.idx}"} batch_results = batch_engine.run(input_dirs, inputs_mapping, output_dir) assert isinstance(batch_results, BatchResult) # assert the line status in batch result assert batch_results.status == Status.Completed assert batch_results.total_lines == 3 assert batch_results.completed_lines == 2 assert batch_results.failed_lines == 1 assert batch_results.node_status == { "my_python_tool_with_failed_line.completed": 2, "my_python_tool_with_failed_line.canceled": 1, "my_python_tool.completed": 3, } # assert the error summary in batch result assert batch_results.error_summary.failed_user_error_lines == 1 assert batch_results.error_summary.failed_system_error_lines == 0 assert isinstance(batch_results.error_summary.error_list[0], LineError) assert batch_results.error_summary.error_list[0].line_number == 2 actual_error_dict = batch_results.error_summary.error_list[0].error expected_error_dict = ExceptionPresenter.create(expected_error).to_dict() assert actual_error_dict["code"] == expected_error_dict["code"] assert actual_error_dict["message"] == expected_error_dict["message"] assert actual_error_dict["referenceCode"] == expected_error_dict["referenceCode"] assert actual_error_dict["innerError"]["code"] == expected_error_dict["innerError"]["code"] # assert mem_run_storage persists run infos correctly assert len(mem_run_storage._flow_runs) == 3, "Flow runs are persisted in memory storage." # TODO: Currently, the node status is incomplete. # We will assert the correct result after refining the implementation of batch timeout. assert len(mem_run_storage._node_runs) == 6, "Node runs are persisted in memory storage."
0
promptflow_repo/promptflow/src/promptflow/tests/executor
promptflow_repo/promptflow/src/promptflow/tests/executor/e2etests/test_telemetry.py
import json import uuid from collections import namedtuple from importlib.metadata import version from pathlib import Path from tempfile import mkdtemp from unittest.mock import patch import pytest from promptflow._core.operation_context import OperationContext from promptflow.batch._batch_engine import OUTPUT_FILE_NAME, BatchEngine from promptflow.contracts.run_mode import RunMode from promptflow.executor import FlowExecutor from ..utils import get_flow_folder, get_flow_inputs_file, get_yaml_file, load_jsonl IS_LEGACY_OPENAI = version("openai").startswith("0.") Completion = namedtuple("Completion", ["choices"]) Choice = namedtuple("Choice", ["delta"]) Delta = namedtuple("Delta", ["content"]) def stream_response(kwargs): if IS_LEGACY_OPENAI: delta = Delta(content=json.dumps(kwargs.get("headers", {}))) yield Completion(choices=[{"delta": delta}]) else: delta = Delta(content=json.dumps(kwargs.get("extra_headers", {}))) yield Completion(choices=[Choice(delta=delta)]) def mock_stream_chat(*args, **kwargs): return stream_response(kwargs) @pytest.mark.skip(reason="Skip on Mac and Windows and Linux, patch does not work in the spawn process") @pytest.mark.usefixtures("dev_connections") @pytest.mark.e2etest class TestExecutorTelemetry: def test_executor_openai_telemetry(self, dev_connections): """This test validates telemetry info header is correctly injected to OpenAI API by mocking chat api method. The mock method will return a generator that yields a namedtuple with a json string of the headers passed to the method. """ if IS_LEGACY_OPENAI: api = "openai.ChatCompletion.create" else: api = "openai.resources.chat.Completions.create" with patch(api, new=mock_stream_chat): operation_context = OperationContext.get_instance() operation_context.clear() flow_folder = "openai_chat_api_flow" # Set user-defined properties `scenario` in context operation_context.scenario = "test" executor = FlowExecutor.create(get_yaml_file(flow_folder), dev_connections) # flow run case inputs = {"question": "What's your name?", "chat_history": [], "stream": True} flow_result = executor.exec_line(inputs) assert isinstance(flow_result.output, dict) headers = json.loads(flow_result.output.get("answer", "")) assert "promptflow/" in headers.get("x-ms-useragent") assert headers.get("ms-azure-ai-promptflow-scenario") == "test" assert headers.get("ms-azure-ai-promptflow-run-mode") == RunMode.Test.name # batch run case run_id = str(uuid.uuid4()) batch_engine = BatchEngine( get_yaml_file(flow_folder), get_flow_folder(flow_folder), connections=dev_connections ) input_dirs = {"data": get_flow_inputs_file(flow_folder)} inputs_mapping = {"question": "${data.question}", "chat_history": "${data.chat_history}"} output_dir = Path(mkdtemp()) batch_engine.run(input_dirs, inputs_mapping, output_dir, run_id=run_id) outputs = load_jsonl(output_dir / OUTPUT_FILE_NAME) for line in outputs: headers = json.loads(line.get("answer", "")) assert "promptflow/" in headers.get("x-ms-useragent") assert headers.get("ms-azure-ai-promptflow-scenario") == "test" assert headers.get("ms-azure-ai-promptflow-run-mode") == RunMode.Batch.name # single_node case run_info = FlowExecutor.load_and_exec_node( get_yaml_file("openai_chat_api_flow"), "chat", flow_inputs=inputs, connections=dev_connections, raise_ex=True, ) assert run_info.output is not None headers = json.loads(run_info.output) assert "promptflow/" in headers.get("x-ms-useragent") assert headers.get("ms-azure-ai-promptflow-scenario") == "test" assert headers.get("ms-azure-ai-promptflow-run-mode") == RunMode.SingleNode.name
0
promptflow_repo/promptflow/src/promptflow/tests/executor
promptflow_repo/promptflow/src/promptflow/tests/executor/e2etests/test_async.py
import os import pytest from promptflow.executor import FlowExecutor from ..utils import get_flow_folder, get_yaml_file @pytest.mark.e2etest class TestAsync: @pytest.mark.parametrize( "folder_name, concurrency_levels, expected_concurrency", [ ("async_tools", [1, 2, 3], [1, 2, 2]), ("async_tools_with_sync_tools", [1, 2, 3], [1, 2, 2]), ], ) def test_executor_node_concurrency(self, folder_name, concurrency_levels, expected_concurrency): os.chdir(get_flow_folder(folder_name)) executor = FlowExecutor.create(get_yaml_file(folder_name), {}) def calculate_max_concurrency(flow_result): timeline = [] api_calls = flow_result.run_info.api_calls[0]["children"] for api_call in api_calls: timeline.append(("start", api_call["start_time"])) timeline.append(("end", api_call["end_time"])) timeline.sort(key=lambda x: x[1]) current_concurrency = 0 max_concurrency = 0 for event, _ in timeline: if event == "start": current_concurrency += 1 max_concurrency = max(max_concurrency, current_concurrency) elif event == "end": current_concurrency -= 1 return max_concurrency for i in range(len(concurrency_levels)): concurrency = concurrency_levels[i] flow_result = executor.exec_line({"input_str": "Hello"}, node_concurrency=concurrency) max_concurrency = calculate_max_concurrency(flow_result) assert max_concurrency == expected_concurrency[i] assert max_concurrency <= concurrency
0
promptflow_repo/promptflow/src/promptflow/tests/executor
promptflow_repo/promptflow/src/promptflow/tests/executor/e2etests/test_image.py
import os from pathlib import Path from tempfile import mkdtemp import pytest from promptflow._utils.multimedia_utils import MIME_PATTERN, _create_image_from_file, _is_url, is_multimedia_dict from promptflow.batch._batch_engine import OUTPUT_FILE_NAME, BatchEngine from promptflow.batch._result import BatchResult from promptflow.contracts.multimedia import Image from promptflow.contracts.run_info import FlowRunInfo, RunInfo, Status from promptflow.executor import FlowExecutor from promptflow.storage._run_storage import DefaultRunStorage from ..utils import get_flow_folder, get_yaml_file, is_image_file, is_jsonl_file, load_jsonl SIMPLE_IMAGE_FLOW = "python_tool_with_simple_image" SAMPLE_IMAGE_FLOW_WITH_DEFAULT = "python_tool_with_simple_image_with_default" SIMPLE_IMAGE_WITH_INVALID_DEFAULT_VALUE_FLOW = "python_tool_with_invalid_default_value" COMPOSITE_IMAGE_FLOW = "python_tool_with_composite_image" CHAT_FLOW_WITH_IMAGE = "chat_flow_with_image" EVAL_FLOW_WITH_SIMPLE_IMAGE = "eval_flow_with_simple_image" EVAL_FLOW_WITH_COMPOSITE_IMAGE = "eval_flow_with_composite_image" NESTED_API_CALLS_FLOW = "python_tool_with_image_nested_api_calls" IMAGE_URL = ( "https://raw.githubusercontent.com/microsoft/promptflow/main/src/promptflow/tests/test_configs/datas/logo.jpg" ) def get_test_cases_for_simple_input(flow_folder): working_dir = get_flow_folder(flow_folder) image = _create_image_from_file(working_dir / "logo.jpg") inputs = [ {"data:image/jpg;path": str(working_dir / "logo.jpg")}, {"data:image/jpg;base64": image.to_base64()}, {"data:image/jpg;url": IMAGE_URL}, str(working_dir / "logo.jpg"), image.to_base64(), IMAGE_URL, ] return [(flow_folder, {"image": input}) for input in inputs] def get_test_cases_for_composite_input(flow_folder): working_dir = get_flow_folder(flow_folder) image_1 = _create_image_from_file(working_dir / "logo.jpg") image_2 = _create_image_from_file(working_dir / "logo_2.png") inputs = [ [ {"data:image/jpg;path": str(working_dir / "logo.jpg")}, {"data:image/png;path": str(working_dir / "logo_2.png")}, ], [{"data:image/jpg;base64": image_1.to_base64()}, {"data:image/png;base64": image_2.to_base64()}], [{"data:image/jpg;url": IMAGE_URL}, {"data:image/png;url": IMAGE_URL}], ] return [ (flow_folder, {"image_list": input, "image_dict": {"image_1": input[0], "image_2": input[1]}}) for input in inputs ] def get_test_cases_for_node_run(): image = {"data:image/jpg;path": str(get_flow_folder(SIMPLE_IMAGE_FLOW) / "logo.jpg")} simple_image_input = {"image": image} image_list = [{"data:image/jpg;path": "logo.jpg"}, {"data:image/png;path": "logo_2.png"}] image_dict = { "image_dict": { "image_1": {"data:image/jpg;path": "logo.jpg"}, "image_2": {"data:image/png;path": "logo_2.png"}, } } composite_image_input = {"image_list": image_list, "image_dcit": image_dict} return [ (SIMPLE_IMAGE_FLOW, "python_node", simple_image_input, None), (SIMPLE_IMAGE_FLOW, "python_node_2", simple_image_input, {"python_node": image}), (COMPOSITE_IMAGE_FLOW, "python_node", composite_image_input, None), (COMPOSITE_IMAGE_FLOW, "python_node_2", composite_image_input, None), ( COMPOSITE_IMAGE_FLOW, "python_node_3", composite_image_input, {"python_node": image_list, "python_node_2": image_dict}, ), ] def contain_image_reference(value, parent_path="temp"): if isinstance(value, (FlowRunInfo, RunInfo)): assert contain_image_reference(value.api_calls, parent_path) assert contain_image_reference(value.inputs, parent_path) assert contain_image_reference(value.output, parent_path) return True assert not isinstance(value, Image) if isinstance(value, list): return any(contain_image_reference(item, parent_path) for item in value) if isinstance(value, dict): if is_multimedia_dict(value): v = list(value.values())[0] assert isinstance(v, str) assert _is_url(v) or str(Path(v).parent) == parent_path return True return any(contain_image_reference(v, parent_path) for v in value.values()) return False def contain_image_object(value): if isinstance(value, list): return any(contain_image_object(item) for item in value) elif isinstance(value, dict): assert not is_multimedia_dict(value) return any(contain_image_object(v) for v in value.values()) else: return isinstance(value, Image) @pytest.mark.usefixtures("dev_connections") @pytest.mark.e2etest class TestExecutorWithImage: @pytest.mark.parametrize( "flow_folder, inputs", get_test_cases_for_simple_input(SIMPLE_IMAGE_FLOW) + get_test_cases_for_composite_input(COMPOSITE_IMAGE_FLOW) + [(CHAT_FLOW_WITH_IMAGE, {}), (NESTED_API_CALLS_FLOW, {})], ) def test_executor_exec_line_with_image(self, flow_folder, inputs, dev_connections): working_dir = get_flow_folder(flow_folder) os.chdir(working_dir) storage = DefaultRunStorage(base_dir=working_dir, sub_dir=Path("./temp")) executor = FlowExecutor.create(get_yaml_file(flow_folder), dev_connections, storage=storage) flow_result = executor.exec_line(inputs) assert isinstance(flow_result.output, dict) assert contain_image_object(flow_result.output) # Assert output also contains plain text. assert any(isinstance(v, str) for v in flow_result.output) assert flow_result.run_info.status == Status.Completed assert contain_image_reference(flow_result.run_info) for _, node_run_info in flow_result.node_run_infos.items(): assert node_run_info.status == Status.Completed assert contain_image_reference(node_run_info) @pytest.mark.parametrize( "flow_folder, node_name, flow_inputs, dependency_nodes_outputs", get_test_cases_for_node_run() ) def test_executor_exec_node_with_image( self, flow_folder, node_name, flow_inputs, dependency_nodes_outputs, dev_connections ): working_dir = get_flow_folder(flow_folder) os.chdir(working_dir) storage = DefaultRunStorage(base_dir=working_dir, sub_dir=Path("./temp")) run_info = FlowExecutor.load_and_exec_node( get_yaml_file(flow_folder), node_name, flow_inputs=flow_inputs, dependency_nodes_outputs=dependency_nodes_outputs, connections=dev_connections, storage=storage, raise_ex=True, ) assert run_info.status == Status.Completed assert contain_image_reference(run_info) # Assert image could be persisted to the specified path. @pytest.mark.parametrize( "output_sub_dir, assign_storage, expected_path", [ ("test_path", True, "test_storage"), ("test_path", False, "test_path"), (None, True, "test_storage"), (None, False, "."), ], ) def test_executor_exec_node_with_image_storage_and_path(self, output_sub_dir, assign_storage, expected_path): flow_folder = SIMPLE_IMAGE_FLOW node_name = "python_node" image = {"data:image/jpg;path": str(get_flow_folder(SIMPLE_IMAGE_FLOW) / "logo.jpg")} flow_inputs = {"image": image} working_dir = get_flow_folder(flow_folder) os.chdir(working_dir) storage = DefaultRunStorage(base_dir=working_dir, sub_dir=Path("./test_storage")) run_info = FlowExecutor.load_and_exec_node( get_yaml_file(flow_folder), node_name, flow_inputs=flow_inputs, dependency_nodes_outputs=None, connections=None, storage=storage if assign_storage else None, output_sub_dir=output_sub_dir, raise_ex=True, ) assert run_info.status == Status.Completed assert contain_image_reference(run_info, parent_path=expected_path) @pytest.mark.parametrize( "flow_folder, node_name, flow_inputs, dependency_nodes_outputs", [ ( SIMPLE_IMAGE_WITH_INVALID_DEFAULT_VALUE_FLOW, "python_node_2", {}, { "python_node": { "data:image/jpg;path": str( get_flow_folder(SIMPLE_IMAGE_WITH_INVALID_DEFAULT_VALUE_FLOW) / "logo.jpg" ) } }, ) ], ) def test_executor_exec_node_with_invalid_default_value( self, flow_folder, node_name, flow_inputs, dependency_nodes_outputs, dev_connections ): working_dir = get_flow_folder(flow_folder) os.chdir(working_dir) storage = DefaultRunStorage(base_dir=working_dir, sub_dir=Path("./temp")) run_info = FlowExecutor.load_and_exec_node( get_yaml_file(flow_folder), node_name, flow_inputs=flow_inputs, dependency_nodes_outputs=dependency_nodes_outputs, connections=dev_connections, storage=storage, raise_ex=True, ) assert run_info.status == Status.Completed assert contain_image_reference(run_info) @pytest.mark.parametrize( "flow_folder, input_dirs, inputs_mapping, output_key, expected_outputs_number, has_aggregation_node", [ ( SIMPLE_IMAGE_FLOW, {"data": "."}, {"image": "${data.image}"}, "output", 4, False, ), ( SAMPLE_IMAGE_FLOW_WITH_DEFAULT, {"data": "."}, {"image_2": "${data.image_2}"}, "output", 4, False, ), ( COMPOSITE_IMAGE_FLOW, {"data": "inputs.jsonl"}, {"image_list": "${data.image_list}", "image_dict": "${data.image_dict}"}, "output", 2, False, ), ( CHAT_FLOW_WITH_IMAGE, {"data": "inputs.jsonl"}, {"question": "${data.question}", "chat_history": "${data.chat_history}"}, "answer", 2, False, ), ( EVAL_FLOW_WITH_SIMPLE_IMAGE, {"data": "inputs.jsonl"}, {"image": "${data.image}"}, "output", 2, True, ), ( EVAL_FLOW_WITH_COMPOSITE_IMAGE, {"data": "inputs.jsonl"}, {"image_list": "${data.image_list}", "image_dict": "${data.image_dict}"}, "output", 2, True, ), ], ) def test_batch_engine_with_image( self, flow_folder, input_dirs, inputs_mapping, output_key, expected_outputs_number, has_aggregation_node ): flow_file = get_yaml_file(flow_folder) working_dir = get_flow_folder(flow_folder) output_dir = Path(mkdtemp()) batch_result = BatchEngine(flow_file, working_dir).run( input_dirs, inputs_mapping, output_dir, max_lines_count=4 ) assert isinstance(batch_result, BatchResult) assert batch_result.completed_lines == expected_outputs_number assert all(is_jsonl_file(output_file) or is_image_file(output_file) for output_file in output_dir.iterdir()) outputs = load_jsonl(output_dir / OUTPUT_FILE_NAME) assert len(outputs) == expected_outputs_number for i, output in enumerate(outputs): assert isinstance(output, dict) assert "line_number" in output, f"line_number is not in {i}th output {output}" assert output["line_number"] == i, f"line_number is not correct in {i}th output {output}" result = output[output_key][0] if isinstance(output[output_key], list) else output[output_key] assert all(MIME_PATTERN.search(key) for key in result), f"image is not in {i}th output {output}" @pytest.mark.parametrize( "flow_folder, inputs", get_test_cases_for_simple_input(EVAL_FLOW_WITH_SIMPLE_IMAGE) + get_test_cases_for_composite_input(EVAL_FLOW_WITH_COMPOSITE_IMAGE), ) def test_executor_exec_aggregation_with_image(self, flow_folder, inputs, dev_connections): working_dir = get_flow_folder(flow_folder) os.chdir(working_dir) storage = DefaultRunStorage(base_dir=working_dir, sub_dir=Path("./temp")) executor = FlowExecutor.create(get_yaml_file(flow_folder), dev_connections, storage=storage) flow_result = executor.exec_line(inputs, index=0) flow_inputs = {k: [v] for k, v in inputs.items()} aggregation_inputs = {k: [v] for k, v in flow_result.aggregation_inputs.items()} aggregation_results = executor.exec_aggregation(flow_inputs, aggregation_inputs=aggregation_inputs) for _, node_run_info in aggregation_results.node_run_infos.items(): assert node_run_info.status == Status.Completed assert contain_image_reference(node_run_info) def test_batch_run_then_eval_with_image(self): # submit a flow in batch mode fisrt batch_flow_folder = get_flow_folder(COMPOSITE_IMAGE_FLOW) batch_flow_file = get_yaml_file(batch_flow_folder) batch_working_dir = get_flow_folder(batch_flow_folder) batch_output_dir = Path(mkdtemp()) batch_input_dirs = {"data": "inputs.jsonl"} batch_inputs_mapping = {"image_list": "${data.image_list}", "image_dict": "${data.image_dict}"} batch_result = BatchEngine(batch_flow_file, batch_working_dir).run( batch_input_dirs, batch_inputs_mapping, batch_output_dir ) assert batch_result.completed_lines == batch_result.total_lines # use the output of batch run as input of eval flow eval_flow_folder = get_flow_folder(EVAL_FLOW_WITH_COMPOSITE_IMAGE) eval_flow_file = get_yaml_file(eval_flow_folder) eval_working_dir = get_flow_folder(eval_flow_folder) eval_output_dir = Path(mkdtemp()) eval_input_dirs = { "data": batch_flow_folder / "inputs.jsonl", "run.outputs": batch_output_dir / OUTPUT_FILE_NAME, } eval_inputs_mapping = {"image_list": "${run.outputs.output}", "image_dict": "${data.image_dict}"} eval_result = BatchEngine(eval_flow_file, eval_working_dir).run( eval_input_dirs, eval_inputs_mapping, eval_output_dir ) assert eval_result.completed_lines == eval_result.total_lines
0
promptflow_repo/promptflow/src/promptflow/tests/executor
promptflow_repo/promptflow/src/promptflow/tests/executor/e2etests/test_eager_flow.py
import os from dataclasses import is_dataclass from pathlib import Path from tempfile import mkdtemp import pytest from promptflow.batch._batch_engine import OUTPUT_FILE_NAME, BatchEngine from promptflow.batch._result import BatchResult, LineResult from promptflow.contracts.run_info import Status from promptflow.executor._script_executor import ScriptExecutor from promptflow.executor.flow_executor import FlowExecutor from ..utils import ( EAGER_FLOW_ROOT, get_bulk_inputs_from_jsonl, get_entry_file, get_flow_folder, get_flow_inputs_file, get_yaml_file, load_jsonl, ) SAMPLE_FLOW = "web_classification_no_variants" SAMPLE_EVAL_FLOW = "classification_accuracy_evaluation" SAMPLE_FLOW_WITH_PARTIAL_FAILURE = "python_tool_partial_failure" def validate_batch_result(batch_result: BatchResult, flow_folder, output_dir, ensure_output): assert isinstance(batch_result, BatchResult) nlines = len(get_bulk_inputs_from_jsonl(flow_folder, root=EAGER_FLOW_ROOT)) assert batch_result.total_lines == nlines assert batch_result.completed_lines == nlines assert batch_result.start_time < batch_result.end_time assert batch_result.system_metrics.duration > 0 outputs = load_jsonl(output_dir / OUTPUT_FILE_NAME) assert len(outputs) == nlines for i, output in enumerate(outputs): assert isinstance(output, dict) assert "line_number" in output, f"line_number is not in {i}th output {output}" assert output["line_number"] == i, f"line_number is not correct in {i}th output {output}" assert ensure_output(output) @pytest.mark.usefixtures("dev_connections") @pytest.mark.e2etest class TestEagerFlow: @pytest.mark.parametrize( "flow_folder, entry, inputs, ensure_output", [ ( "dummy_flow_with_trace", "my_flow", {"text": "text", "models": ["model"]}, lambda x: x == "dummy_output" ), ( "flow_with_dataclass_output", "my_flow", {"text": "text", "models": ["model"]}, lambda x: is_dataclass(x) and x.text == "text" and x.models == ["model"] ), ] ) def test_flow_run(self, flow_folder, entry, inputs, ensure_output): # Test submitting eager flow to script executor flow_file = get_entry_file(flow_folder, root=EAGER_FLOW_ROOT) executor = ScriptExecutor(flow_file=flow_file, entry=entry) line_result = executor.exec_line(inputs=inputs, index=0) assert isinstance(line_result, LineResult) assert ensure_output(line_result.output) # Test submitting eager flow to flow executor working_dir = get_flow_folder(flow_folder, root=EAGER_FLOW_ROOT) os.chdir(working_dir) flow_file = get_yaml_file(flow_folder, root=EAGER_FLOW_ROOT) executor = FlowExecutor.create(flow_file=flow_file, connections={}) line_result = executor.exec_line(inputs=inputs, index=0) assert isinstance(line_result, LineResult) assert ensure_output(line_result.output) @pytest.mark.parametrize( "flow_folder, inputs, ensure_output", [ ( "dummy_flow_with_trace", {"text": "text", "models": ["model"]}, lambda x: x == "dummy_output" ), ( "flow_with_dataclass_output", {"text": "text", "models": ["model"]}, lambda x: is_dataclass(x) and x.text == "text" and x.models == ["model"] ), ] ) def test_flow_run_with_flow_yaml(self, flow_folder, inputs, ensure_output): working_dir = get_flow_folder(flow_folder, root=EAGER_FLOW_ROOT) os.chdir(working_dir) flow_file = get_yaml_file(flow_folder, root=EAGER_FLOW_ROOT) executor = FlowExecutor.create(flow_file=flow_file, connections={}) line_result = executor.exec_line(inputs=inputs, index=0) assert isinstance(line_result, LineResult) assert ensure_output(line_result.output) def test_exec_line_with_invalid_case(self): flow_file = get_entry_file("dummy_flow_with_exception", root=EAGER_FLOW_ROOT) executor = ScriptExecutor(flow_file=flow_file, entry="my_flow") line_result = executor.exec_line(inputs={"text": "text"}, index=0) assert isinstance(line_result, LineResult) assert line_result.output is None assert line_result.run_info.status == Status.Failed assert "dummy exception" in line_result.run_info.error["message"] @pytest.mark.parametrize( "flow_folder, inputs_mapping, entry, ensure_output", [ ( "dummy_flow_with_trace", {"text": "${data.text}", "models": "${data.models}"}, "my_flow", lambda x: "output" in x and x["output"] == "dummy_output", ), ( "flow_with_dataclass_output", {"text": "${data.text}", "models": "${data.models}"}, "my_flow", lambda x: x["text"] == "text" and isinstance(x["models"], list), ), ( "flow_with_dataclass_output", {}, # if inputs_mapping is empty, then the inputs will be the default value "my_flow", lambda x: x["text"] == "default_text" and x["models"] == ["default_model"], ) ] ) def test_batch_run(self, flow_folder, entry, inputs_mapping, ensure_output): batch_engine = BatchEngine( get_entry_file(flow_folder, root=EAGER_FLOW_ROOT), get_flow_folder(flow_folder, root=EAGER_FLOW_ROOT), entry=entry, ) input_dirs = {"data": get_flow_inputs_file(flow_folder, root=EAGER_FLOW_ROOT)} output_dir = Path(mkdtemp()) batch_result = batch_engine.run(input_dirs, inputs_mapping, output_dir) validate_batch_result(batch_result, flow_folder, output_dir, ensure_output) @pytest.mark.parametrize( "flow_folder, inputs_mapping, ensure_output", [ ( "dummy_flow_with_trace", {"text": "${data.text}", "models": "${data.models}"}, lambda x: "output" in x and x["output"] == "dummy_output", ), ( "flow_with_dataclass_output", {"text": "${data.text}", "models": "${data.models}"}, lambda x: x["text"] == "text" and isinstance(x["models"], list), ), ] ) def test_batch_run_with_flow_yaml(self, flow_folder, inputs_mapping, ensure_output): batch_engine = BatchEngine( get_yaml_file(flow_folder, root=EAGER_FLOW_ROOT), get_flow_folder(flow_folder, root=EAGER_FLOW_ROOT), ) input_dirs = {"data": get_flow_inputs_file(flow_folder, root=EAGER_FLOW_ROOT)} output_dir = Path(mkdtemp()) batch_result = batch_engine.run(input_dirs, inputs_mapping, output_dir) validate_batch_result(batch_result, flow_folder, output_dir, ensure_output) def test_batch_run_with_invalid_case(self): flow_folder = "dummy_flow_with_exception" batch_engine = BatchEngine( get_entry_file(flow_folder, root=EAGER_FLOW_ROOT), get_flow_folder(flow_folder, root=EAGER_FLOW_ROOT), entry="my_flow", ) input_dirs = {"data": get_flow_inputs_file(flow_folder, root=EAGER_FLOW_ROOT)} output_dir = Path(mkdtemp()) batch_result = batch_engine.run(input_dirs, {"text": "${data.text}"}, output_dir) assert isinstance(batch_result, BatchResult) nlines = len(get_bulk_inputs_from_jsonl(flow_folder, root=EAGER_FLOW_ROOT)) assert batch_result.total_lines == nlines assert batch_result.failed_lines == nlines assert batch_result.start_time < batch_result.end_time assert batch_result.system_metrics.duration > 0
0
promptflow_repo/promptflow/src/promptflow/tests/executor
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools/custom_llm_tool.py
from jinja2 import Template from promptflow import ToolProvider, tool from promptflow.connections import AzureOpenAIConnection from promptflow.contracts.types import PromptTemplate class TestCustomLLMTool(ToolProvider): def __init__(self, connection: AzureOpenAIConnection): super().__init__() self.connection = connection @tool def call(self, connection_2: AzureOpenAIConnection, api: str, template: PromptTemplate, **kwargs): prompt = Template(template, trim_blocks=True, keep_trailing_newline=True).render(**kwargs) assert isinstance(self.connection, AzureOpenAIConnection) assert isinstance(connection_2, AzureOpenAIConnection) assert api in ["completion", "chat"] return prompt
0
promptflow_repo/promptflow/src/promptflow/tests/executor
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools/tool_with_init_error.py
from promptflow import ToolProvider, tool class TestLoadErrorTool(ToolProvider): def __init__(self): raise Exception("Tool load error.") @tool def tool(self, name: str): return name
0
promptflow_repo/promptflow/src/promptflow/tests/executor
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools/tool_with_connection.py
from dataclasses import dataclass from promptflow import tool from promptflow._core.tools_manager import register_connections from promptflow.contracts.types import Secret @dataclass class TestConnection: name: str secret: Secret register_connections(TestConnection) @tool def tool_with_test_conn(conn: TestConnection): assert isinstance(conn, TestConnection) return conn.name + conn.secret
0
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools/custom_llm_tool/my_prompt.jinja2
{# Please replace the template with your own prompt. #} Write a simple program that displays the greeting message: "{{text}}" when executed.
0
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools/custom_llm_tool/package_tool_definition.json
{ "custom_llm_tool.TestCustomLLMTool.call": { "class_name": "TestCustomLLMTool", "function": "call", "inputs": { "connection": {"type": ["AzureOpenAIConnection"]}, "connection_2": {"type": ["AzureOpenAIConnection"]}, "api": {"type": ["string"]}, "template": {"type": ["PromptTemplate"]} }, "module": "custom_llm_tool", "name": "Test Custom LLM Tool", "description": "Test Custom LLM Tool", "type": "python" } }
0
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools/custom_llm_tool/flow.dag.yaml
inputs: text: type: string outputs: output: type: string reference: ${my_custom_llm_tool.output} nodes: - name: my_custom_llm_tool type: custom_llm source: type: package_with_prompt tool: custom_llm_tool.TestCustomLLMTool.call path: ./my_prompt.jinja2 inputs: connection: azure_open_ai_connection connection_2: azure_open_ai_connection api: completion text: ${inputs.text}
0
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools/custom_llm_tool/inputs.json
{}
0
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools/custom_llm_tool/samples.json
[ { "text": "Hello" }, { "text": "Hello World!" } ]
0
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools/custom_llm_tool_with_duplicated_inputs/package_tool_definition.json
{ "custom_llm_tool.TestCustomLLMTool.call": { "class_name": "TestCustomLLMTool", "function": "call", "inputs": { "connection": {"type": ["AzureOpenAIConnection"]}, "api": {"type": ["string"]}, "template": {"type": ["PromptTemplate"]} }, "module": "custom_llm_tool", "name": "Test Custom LLM Tool", "description": "Test Custom LLM Tool", "type": "python" } }
0
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools/custom_llm_tool_with_duplicated_inputs/flow.dag.yaml
inputs: text: type: string outputs: output: type: string reference: ${custom_llm_tool_with_duplicated_inputs.output} nodes: - name: custom_llm_tool_with_duplicated_inputs type: custom_llm source: type: package_with_prompt tool: custom_llm_tool.TestCustomLLMTool.call path: ./prompt_with_duplicated_inputs.jinja2 inputs: connection: azure_open_ai_connection api: completion text: ${inputs.text}
0
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools/custom_llm_tool_with_duplicated_inputs/prompt_with_duplicated_inputs.jinja2
{{api}}
0
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools/tool_with_init_error/package_tool_definition.json
{ "tool_with_init_error": { "class_name": "TestLoadErrorTool", "function": "tool", "inputs": { "name": {"type": ["string"]} }, "module": "tool_with_init_error", "name": "Tool with init error", "type": "python" } }
0
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools/tool_with_init_error/flow.dag.yaml
inputs: {} outputs: {} nodes: - name: tool_with_init_error type: python source: type: package tool: tool_with_init_error inputs: name: test_name
0
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools/tool_with_connection/package_tool_definition.json
{ "tool_with_connection": { "function": "tool_with_test_conn", "inputs": { "conn": {"type": ["TestConnection"]} }, "module": "tool_with_connection", "name": "Test Tool with Connection", "type": "python" } }
0
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools
promptflow_repo/promptflow/src/promptflow/tests/executor/package_tools/tool_with_connection/flow.dag.yaml
inputs: {} outputs: {} nodes: - name: tool_with_conn type: python source: type: package tool: tool_with_connection inputs: conn: test_conn
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/contracts/test_run_management.py
import json import pytest from promptflow._sdk._constants import VIS_JS_BUNDLE_FILENAME from promptflow.contracts._run_management import VisualizationRender @pytest.mark.unittest def test_visualization_render(): data = {"key": "value"} viz = VisualizationRender(data) assert viz.data == json.dumps(json.dumps(data)) assert viz.js_path == VIS_JS_BUNDLE_FILENAME
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/contracts/test_flow.py
from pathlib import Path import pytest from promptflow._sdk.entities._connection import AzureContentSafetyConnection from promptflow.contracts._errors import FailedToImportModule from promptflow.contracts.flow import ( Flow, FlowInputAssignment, FlowInputDefinition, FlowOutputDefinition, InputAssignment, InputValueType, Node, NodeVariant, NodeVariants, ToolSource, ToolSourceType, ) from promptflow.contracts.tool import Tool, ToolType, ValueType from ...utils import EAGER_FLOWS_ROOT, FLOW_ROOT, get_flow_folder, get_flow_package_tool_definition, get_yaml_file PACKAGE_TOOL_BASE = Path(__file__).parent.parent.parent / "package_tools" @pytest.mark.e2etest class TestFlowContract: @pytest.mark.parametrize( "flow_folder, expected_connection_names", [ ("web_classification", {"azure_open_ai_connection"}), ("basic-with-connection", {"azure_open_ai_connection"}), ("flow_with_dict_input_with_variant", {"mock_custom_connection"}), ], ) def test_flow_get_connection_names(self, flow_folder, expected_connection_names): flow_yaml = get_yaml_file(flow_folder) flow = Flow.from_yaml(flow_yaml) assert flow.get_connection_names() == expected_connection_names def test_flow_get_connection_input_names_for_node_with_variants(self): # Connection input exists only in python node flow_folder = "flow_with_dict_input_with_variant" flow_yaml = get_yaml_file(flow_folder) flow = Flow.from_yaml(flow_yaml) assert flow.get_connection_input_names_for_node("print_val") == ["conn"] def test_flow_get_connection_names_with_package_tool(self, mocker): flow_folder = PACKAGE_TOOL_BASE / "custom_llm_tool" flow_file = flow_folder / "flow.dag.yaml" package_tool_definition = get_flow_package_tool_definition(flow_folder) mocker.patch("promptflow._core.tools_manager.collect_package_tools", return_value=package_tool_definition) flow = Flow.from_yaml(flow_file) connection_names = flow.get_connection_names() assert connection_names == {"azure_open_ai_connection"} def test_flow_get_connection_input_names_for_node(self, mocker): flow_folder = PACKAGE_TOOL_BASE / "custom_llm_tool" flow_file = flow_folder / "flow.dag.yaml" package_tool_definition = get_flow_package_tool_definition(flow_folder) mocker.patch("promptflow._core.tools_manager.collect_package_tools", return_value=package_tool_definition) flow = Flow.from_yaml(flow_file) connection_names = flow.get_connection_input_names_for_node(flow.nodes[0].name) assert connection_names == ["connection", "connection_2"] assert flow.get_connection_input_names_for_node("not_exist") == [] @pytest.mark.parametrize( "flow_folder_name, environment_variables_overrides, except_environment_variables", [ pytest.param( "flow_with_environment_variables", {"env2": "runtime_env2", "env10": "aaaaa"}, { "env1": "2", "env2": "runtime_env2", "env3": "[1, 2, 3, 4, 5]", "env4": '{"a": 1, "b": "2"}', "env10": "aaaaa", }, id="LoadEnvVariablesWithOverrides", ), pytest.param( "flow_with_environment_variables", None, { "env1": "2", "env2": "spawn", "env3": "[1, 2, 3, 4, 5]", "env4": '{"a": 1, "b": "2"}', }, id="LoadEnvVariablesWithoutOverrides", ), pytest.param( "simple_hello_world", {"env2": "runtime_env2", "env10": "aaaaa"}, {"env2": "runtime_env2", "env10": "aaaaa"}, id="LoadEnvVariablesWithoutYamlLevelEnvVariables", ), ], ) def test_flow_get_environment_variables_with_overrides( self, flow_folder_name, environment_variables_overrides, except_environment_variables ): flow_folder = get_flow_folder(flow_folder_name) flow_file = "flow.dag.yaml" flow = Flow.from_yaml(flow_file=flow_file, working_dir=flow_folder) merged_environment_variables = flow.get_environment_variables_with_overrides( environment_variables_overrides=environment_variables_overrides, ) assert merged_environment_variables == except_environment_variables @pytest.mark.parametrize( "flow_folder_name, folder_root, flow_file, environment_variables_overrides, except_environment_variables", [ pytest.param( "flow_with_environment_variables", FLOW_ROOT, "flow.dag.yaml", {"env2": "runtime_env2", "env10": "aaaaa"}, { "env1": "2", "env2": "runtime_env2", "env3": "[1, 2, 3, 4, 5]", "env4": '{"a": 1, "b": "2"}', "env10": "aaaaa", }, id="LoadEnvVariablesWithOverrides", ), pytest.param( "flow_with_environment_variables", FLOW_ROOT, "flow.dag.yaml", None, { "env1": "2", "env2": "spawn", "env3": "[1, 2, 3, 4, 5]", "env4": '{"a": 1, "b": "2"}', }, id="LoadEnvVariablesWithoutOverrides", ), pytest.param( "simple_hello_world", FLOW_ROOT, "flow.dag.yaml", {"env2": "runtime_env2", "env10": "aaaaa"}, {"env2": "runtime_env2", "env10": "aaaaa"}, id="LoadEnvVariablesWithoutYamlLevelEnvVariables", ), pytest.param( "simple_with_yaml", EAGER_FLOWS_ROOT, "entry.py", None, {}, id="LoadEnvVariablesForEagerFlow", ), pytest.param( "simple_with_yaml", EAGER_FLOWS_ROOT, "entry.py", {"env2": "runtime_env2", "env10": "aaaaa"}, {"env2": "runtime_env2", "env10": "aaaaa"}, id="LoadEnvVariablesForEagerFlowWithOverrides", ), ], ) def test_load_env_variables( self, flow_folder_name, folder_root, flow_file, environment_variables_overrides, except_environment_variables ): flow_folder = get_flow_folder(flow_folder_name, folder_root) merged_environment_variables = Flow.load_env_variables( flow_file=flow_file, working_dir=flow_folder, environment_variables_overrides=environment_variables_overrides, ) assert merged_environment_variables == except_environment_variables @pytest.mark.unittest class TestFlow: @pytest.mark.parametrize( "flow, expected_value", [ ( Flow(id="flow_id", name="flow_name", nodes=[], inputs={}, outputs={}, tools=[]), { "id": "flow_id", "name": "flow_name", "nodes": [], "inputs": {}, "outputs": {}, "tools": [], "language": "python", }, ), ( Flow( id="flow_id", name="flow_name", nodes=[Node(name="node1", tool="tool1", inputs={})], inputs={"input1": FlowInputDefinition(type=ValueType.STRING)}, outputs={"output1": FlowOutputDefinition(type=ValueType.STRING, reference=None)}, tools=[], ), { "id": "flow_id", "name": "flow_name", "nodes": [{"name": "node1", "tool": "tool1", "inputs": {}}], "inputs": {"input1": {"type": ValueType.STRING.value}}, "outputs": {"output1": {"type": ValueType.STRING.value}}, "tools": [], "language": "python", }, ), ], ) def test_flow_serialize(self, flow, expected_value): assert flow.serialize() == expected_value @pytest.mark.parametrize( "data, expected_value", [ ( { "id": "flow_id", "name": "flow_name", "nodes": [{"name": "node1", "tool": "tool1", "inputs": {}, "outputs": {}}], "inputs": {"input1": {"type": ValueType.STRING.value}}, "outputs": {"output1": {"type": ValueType.STRING.value}}, "tools": [], }, Flow( id="flow_id", name="flow_name", nodes=[Node(name="node1", tool="tool1", inputs={})], inputs={ "input1": FlowInputDefinition( type=ValueType.STRING, description="", enum=[], is_chat_input=False, is_chat_history=None ) }, outputs={ "output1": FlowOutputDefinition( type=ValueType.STRING, reference=InputAssignment( value="", value_type=InputValueType.LITERAL, section="", property="" ), description="", evaluation_only=False, is_chat_output=False, ) }, tools=[], node_variants={}, program_language="python", environment_variables={}, ), ), ], ) def test_flow_deserialize(self, data, expected_value): assert Flow.deserialize(data) == expected_value def test_import_requisites(self): tool1 = Tool(name="tool1", type=ToolType.PYTHON, inputs={}, module="yaml") tool2 = Tool(name="tool2", type=ToolType.PYTHON, inputs={}, module="module") node1 = Node(name="node1", tool="tool1", inputs={}, module="yaml") node2 = Node(name="node2", tool="tool2", inputs={}, module="module") with pytest.raises(FailedToImportModule) as e: Flow._import_requisites([tool1], [node2]) assert str(e.value).startswith( "Failed to import modules with error: Import node 'node2' provider module 'module' failed." ) with pytest.raises(FailedToImportModule) as e: Flow._import_requisites([tool2], [node1]) assert str(e.value).startswith( "Failed to import modules with error: Import tool 'tool2' module 'module' failed." ) def test_apply_default_node_variants(self): node_variant = NodeVariant( node=Node(name="print_val_variant", tool=None, inputs={"input2": None}, use_variants=False), description=None, ) node_variants = { "print_val": NodeVariants( default_variant_id="variant1", variants={"variant1": node_variant}, ) } flow1 = Flow( id="test_flow_id", name="test_flow", nodes=[Node(name="print_val", tool=None, inputs={"input1": None}, use_variants=True)], inputs={}, outputs={}, tools=[], node_variants=node_variants, ) # test when node.use_variants is True flow1._apply_default_node_variants() assert flow1.nodes[0].use_variants is False assert flow1.nodes[0].inputs.keys() == {"input2"} assert flow1.nodes[0].name == "print_val" flow2 = Flow( id="test_flow_id", name="test_flow", nodes=[Node(name="print_val", tool=None, inputs={"input1": None}, use_variants=False)], inputs={}, outputs={}, tools=[], node_variants=node_variants, ) # test when node.use_variants is False tmp_nodes = flow2.nodes flow2._apply_default_node_variants() assert flow2.nodes == tmp_nodes @pytest.mark.parametrize( "node_variants", [ (None), ( { "test": NodeVariants( default_variant_id="variant1", variants={ "variant1": NodeVariant( node=Node(name="print_val_variant", tool=None, inputs={"input2": None}) ) }, ) } ), ( { "print_val": NodeVariants( default_variant_id="test", variants={ "variant1": NodeVariant( node=Node(name="print_val_variant", tool=None, inputs={"input2": None}) ) }, ) } ), ], ) def test_apply_default_node_variant(self, node_variants): node = Node(name="print_val", tool=None, inputs={"input1": None}, use_variants=True) assert Flow._apply_default_node_variant(node, node_variants) == node def test_apply_node_overrides(self): llm_node = Node(name="llm_node", tool=None, inputs={}, connection="open_ai_connection") test_node = Node( name="test_node", tool=None, inputs={"test": InputAssignment("test_value1", InputValueType.LITERAL)} ) flow = Flow(id="test_flow_id", name="test_flow", nodes=[llm_node, test_node], inputs={}, outputs={}, tools=[]) assert flow == flow._apply_node_overrides(None) assert flow == flow._apply_node_overrides({}) node_overrides = { "other_node.connection": "some_connection", } with pytest.raises(ValueError): flow._apply_node_overrides(node_overrides) node_overrides = { "llm_node.connection": "custom_connection", "test_node.test": "test_value2", } flow = flow._apply_node_overrides(node_overrides) assert flow.nodes[0].connection == "custom_connection" assert flow.nodes[1].inputs["test"].value == "test_value2" def test_has_aggregation_node(self): llm_node = Node(name="llm_node", tool=None, inputs={}) aggre_node = Node(name="aggre_node", tool=None, inputs={}, aggregation=True) flow1 = Flow(id="id", name="name", nodes=[llm_node], inputs={}, outputs={}, tools=[]) assert not flow1.has_aggregation_node() flow2 = Flow(id="id", name="name", nodes=[llm_node, aggre_node], inputs={}, outputs={}, tools=[]) assert flow2.has_aggregation_node() def test_get_node(self): llm_node = Node(name="llm_node", tool=None, inputs={}) flow = Flow(id="id", name="name", nodes=[llm_node], inputs={}, outputs={}, tools=[]) assert flow.get_node("llm_node") is llm_node assert flow.get_node("other_node") is None def test_get_tool(self): tool = Tool(name="tool", type=ToolType.PYTHON, inputs={}) flow = Flow(id="id", name="name", nodes=[], inputs={}, outputs={}, tools=[tool]) assert flow.get_tool("tool") is tool assert flow.get_tool("other_tool") is None def test_is_reduce_node(self): llm_node = Node(name="llm_node", tool=None, inputs={}) aggre_node = Node(name="aggre_node", tool=None, inputs={}, aggregation=True) flow = Flow(id="id", name="name", nodes=[llm_node, aggre_node], inputs={}, outputs={}, tools=[]) assert not flow.is_reduce_node("llm_node") assert flow.is_reduce_node("aggre_node") def test_is_normal_node(self): llm_node = Node(name="llm_node", tool=None, inputs={}) aggre_node = Node(name="aggre_node", tool=None, inputs={}, aggregation=True) flow = Flow(id="id", name="name", nodes=[llm_node, aggre_node], inputs={}, outputs={}, tools=[]) assert flow.is_normal_node("llm_node") assert not flow.is_normal_node("aggre_node") def test_is_llm_node(self): llm_node = Node(name="llm_node", tool=None, inputs={}, type=ToolType.LLM) aggre_node = Node(name="aggre_node", tool=None, inputs={}, aggregation=True) flow = Flow(id="id", name="name", nodes=[llm_node, aggre_node], inputs={}, outputs={}, tools=[]) assert flow.is_llm_node(llm_node) assert not flow.is_llm_node(aggre_node) def test_is_referenced_by_flow_output(self): llm_node = Node(name="llm_node", tool=None, inputs={}) aggre_node = Node(name="aggre_node", tool=None, inputs={}, aggregation=True) output = { "output": FlowOutputDefinition( type=ValueType.STRING, reference=InputAssignment("llm_node", InputValueType.NODE_REFERENCE, "output") ) } flow = Flow(id="id", name="name", nodes=[llm_node, aggre_node], inputs={}, outputs=output, tools=[]) assert flow.is_referenced_by_flow_output(llm_node) assert not flow.is_referenced_by_flow_output(aggre_node) def test_is_node_referenced_by(self): llm_node = Node(name="llm_node", tool=None, inputs={}) aggre_node = Node( name="aggre_node", tool=None, inputs={"input": InputAssignment(value="llm_node", value_type=InputValueType.NODE_REFERENCE)}, aggregation=True, ) flow = Flow(id="id", name="name", nodes=[llm_node, aggre_node], inputs={}, outputs={}, tools=[]) assert not flow.is_node_referenced_by(aggre_node, llm_node) assert flow.is_node_referenced_by(llm_node, aggre_node) def test_is_referenced_by_other_node(self): llm_node = Node(name="llm_node", tool=None, inputs={}) aggre_node = Node( name="aggre_node", tool=None, inputs={"input": InputAssignment(value="llm_node", value_type=InputValueType.NODE_REFERENCE)}, aggregation=True, ) flow = Flow(id="id", name="name", nodes=[llm_node, aggre_node], inputs={}, outputs={}, tools=[]) assert not flow.is_referenced_by_other_node(aggre_node) assert flow.is_referenced_by_other_node(llm_node) def test_is_chat_flow(self): chat_input = {"question": FlowInputDefinition(type=ValueType.STRING, is_chat_input=True)} standard_flow = Flow(id="id", name="name", nodes=[], inputs={}, outputs={}, tools=[]) chat_flow = Flow(id="id", name="name", nodes=[], inputs=chat_input, outputs={}, tools=[]) assert not standard_flow.is_chat_flow() assert chat_flow.is_chat_flow() def test_get_chat_input_name(self): chat_input = {"question": FlowInputDefinition(type=ValueType.STRING, is_chat_input=True)} standard_flow = Flow(id="id", name="name", nodes=[], inputs={}, outputs={}, tools=[]) chat_flow = Flow(id="id", name="name", nodes=[], inputs=chat_input, outputs={}, tools=[]) assert standard_flow.get_chat_input_name() is None assert chat_flow.get_chat_input_name() == "question" def test_get_chat_output_name(self): chat_output = {"answer": FlowOutputDefinition(type=ValueType.STRING, reference=None, is_chat_output=True)} standard_flow = Flow(id="id", name="name", nodes=[], inputs={}, outputs={}, tools=[]) chat_flow = Flow(id="id", name="name", nodes=[], inputs={}, outputs=chat_output, tools=[]) assert standard_flow.get_chat_output_name() is None assert chat_flow.get_chat_output_name() == "answer" def test_replace_with_variant(self): node0 = Node(name="node0", tool=None, inputs={"input0": None}, use_variants=True) node1 = Node(name="node1", tool="tool1", inputs={"input1": None}, use_variants=False) node2 = Node(name="node2", tool="tool2", inputs={"input2": None}, use_variants=False) node_variant = Node(name="node0", tool="tool3", inputs={"input3": None}, use_variants=False) node_variants = { "print_val": NodeVariants( default_variant_id="variant1", variants={"variant1": NodeVariant(node_variant, None)}, ) } flow = Flow("test_flow_id", "test_flow", [node0, node1, node2], {}, {}, [], node_variants) # flow = Flow.from_yaml(get_yaml_file("web_classification")) tool_cnt = len(flow.tools) flow._replace_with_variant(node_variant, [flow.nodes[1].tool, flow.nodes[2].tool]) assert "input3" in flow.nodes[0].inputs assert flow.nodes[0].tool == "tool3" assert len(flow.tools) == tool_cnt + 2 @pytest.mark.unittest class TestInputAssignment: @pytest.mark.parametrize( "value, expected_value", [ (InputAssignment("value", InputValueType.LITERAL), "value"), (InputAssignment("value", InputValueType.FLOW_INPUT), "${flow.value}"), (InputAssignment("value", InputValueType.NODE_REFERENCE, "section"), "${value.section}"), ( InputAssignment("value", InputValueType.NODE_REFERENCE, "section", "property"), "${value.section.property}", ), (InputAssignment(AzureContentSafetyConnection, InputValueType.LITERAL, "section", "property"), "ABCMeta"), ], ) def test_serialize(self, value, expected_value): assert value.serialize() == expected_value @pytest.mark.parametrize( "serialized_value, expected_value", [ ( "${value.section.property}", InputAssignment("value", InputValueType.NODE_REFERENCE, "section", "property"), ), ( "${flow.section.property}", FlowInputAssignment("section.property", prefix="flow.", value_type=InputValueType.FLOW_INPUT), ), ("${value}", InputAssignment("value", InputValueType.NODE_REFERENCE, "output")), ("$value", InputAssignment("$value", InputValueType.LITERAL)), ("value", InputAssignment("value", InputValueType.LITERAL)), ], ) def test_deserialize(self, serialized_value, expected_value): input_assignment = InputAssignment.deserialize(serialized_value) assert input_assignment == expected_value @pytest.mark.parametrize( "serialized_reference, expected_value", [ ("input", InputAssignment("input", InputValueType.NODE_REFERENCE, "output")), ("flow.section", FlowInputAssignment("section", value_type=InputValueType.FLOW_INPUT, prefix="flow.")), ( "flow.section.property", FlowInputAssignment("section.property", value_type=InputValueType.FLOW_INPUT, prefix="flow."), ), ], ) def test_deserialize_reference(self, serialized_reference, expected_value): assert InputAssignment.deserialize_reference(serialized_reference) == expected_value @pytest.mark.parametrize( "serialized_node_reference, expected_value", [ ("value", InputAssignment("value", InputValueType.NODE_REFERENCE, "output")), ("value.section", InputAssignment("value", InputValueType.NODE_REFERENCE, "section")), ("value.section.property", InputAssignment("value", InputValueType.NODE_REFERENCE, "section", "property")), ], ) def test_deserialize_node_reference(self, serialized_node_reference, expected_value): assert InputAssignment.deserialize_node_reference(serialized_node_reference) == expected_value @pytest.mark.unittest class TestFlowInputAssignment: @pytest.mark.parametrize( "input_value, expected_value", [ ("flow.section.property", True), ("inputs.section.property", True), ("section.property", False), ("", False), ], ) def test_is_flow_input(self, input_value, expected_value): assert FlowInputAssignment.is_flow_input(input_value) == expected_value def test_deserialize(self): expected_input = FlowInputAssignment("section.property", prefix="inputs.", value_type=InputValueType.FLOW_INPUT) assert FlowInputAssignment.deserialize("inputs.section.property") == expected_input expected_flow = FlowInputAssignment("section.property", prefix="flow.", value_type=InputValueType.FLOW_INPUT) assert FlowInputAssignment.deserialize("flow.section.property") == expected_flow with pytest.raises(ValueError): FlowInputAssignment.deserialize("value") @pytest.mark.unittest class TestToolSource: @pytest.mark.parametrize( "tool_source, expected_value", [ ({}, ToolSource(type=ToolSourceType.Code)), ({"type": ToolSourceType.Code.value}, ToolSource(type=ToolSourceType.Code)), ( {"type": ToolSourceType.Package.value, "tool": "tool", "path": "path"}, ToolSource(type=ToolSourceType.Package, tool="tool", path="path"), ), ], ) def test_deserialize(self, tool_source, expected_value): assert ToolSource.deserialize(tool_source) == expected_value @pytest.mark.unittest class TestNode: @pytest.mark.parametrize( "node, expected_value", [ ( Node(name="test_node", tool="test_tool", inputs={}), {"name": "test_node", "tool": "test_tool", "inputs": {}}, ), ( Node(name="test_node", tool="test_tool", inputs={}, aggregation=True), {"name": "test_node", "tool": "test_tool", "inputs": {}, "aggregation": True, "reduce": True}, ), ], ) def test_serialize(self, node, expected_value): assert node.serialize() == expected_value @pytest.mark.parametrize( "data, expected_value", [ ( {"name": "test_node", "tool": "test_tool", "inputs": {}}, Node(name="test_node", tool="test_tool", inputs={}), ), ( {"name": "test_node", "tool": "test_tool", "inputs": {}, "aggregation": True}, Node(name="test_node", tool="test_tool", inputs={}, aggregation=True), ), ], ) def test_deserialize(self, data, expected_value): assert Node.deserialize(data) == expected_value @pytest.mark.unittest class TestFlowInputDefinition: @pytest.mark.parametrize( "value, expected_value", [ (FlowInputDefinition(type=ValueType.BOOL), {"type": ValueType.BOOL.value}), ( FlowInputDefinition( type=ValueType.STRING, default="default", description="description", enum=["enum1", "enum2"], is_chat_input=True, is_chat_history=True, ), { "type": ValueType.STRING.value, "default": "default", "description": "description", "enum": ["enum1", "enum2"], "is_chat_input": True, "is_chat_history": True, }, ), ], ) def test_serialize(self, value, expected_value): assert value.serialize() == expected_value @pytest.mark.parametrize( "data, expected_value", [ ( { "type": ValueType.STRING, "default": "default", "description": "description", "enum": ["enum1", "enum2"], "is_chat_input": True, "is_chat_history": True, }, FlowInputDefinition( type=ValueType.STRING, default="default", description="description", enum=["enum1", "enum2"], is_chat_input=True, is_chat_history=True, ), ), ( { "type": ValueType.STRING, }, FlowInputDefinition( type=ValueType.STRING, description="", enum=[], is_chat_input=False, is_chat_history=None ), ), ], ) def test_deserialize(self, data, expected_value): assert FlowInputDefinition.deserialize(data) == expected_value @pytest.mark.unittest class TestFlowOutputDefinition: @pytest.mark.parametrize( "value, expected_value", [ (FlowOutputDefinition(type=ValueType.BOOL, reference=None), {"type": ValueType.BOOL.value}), ( FlowOutputDefinition( type=ValueType.STRING, reference=InputAssignment("value", InputValueType.NODE_REFERENCE), description="description", evaluation_only=True, is_chat_output=True, ), { "type": ValueType.STRING.value, "reference": "${value.}", "description": "description", "evaluation_only": True, "is_chat_output": True, }, ), ], ) def test_serialize(self, value, expected_value): assert value.serialize() == expected_value @pytest.mark.parametrize( "data, expected_value", [ ( { "type": ValueType.STRING, }, FlowOutputDefinition( type=ValueType.STRING, reference=InputAssignment("", InputValueType.LITERAL), ), ), ], ) def test_deserialize(self, data, expected_value): assert FlowOutputDefinition.deserialize(data) == expected_value
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/contracts/test_run_mode.py
import pytest from promptflow.contracts.run_mode import RunMode @pytest.mark.unittest @pytest.mark.parametrize( "run_mode, expected", [ ("Test", RunMode.Test), ("SingleNode", RunMode.SingleNode), ("Batch", RunMode.Batch), ("Default", RunMode.Test), ], ) def test_parse(run_mode, expected): assert RunMode.parse(run_mode) == expected @pytest.mark.unittest def test_parse_invalid(): with pytest.raises(ValueError): RunMode.parse(123)
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/contracts/test_types.py
import pytest from promptflow.contracts.types import AssistantDefinition, Secret, PromptTemplate, FilePath from promptflow.executor._assistant_tool_invoker import AssistantToolInvoker @pytest.mark.unittest def test_secret(): secret = Secret('my_secret') secret.set_secret_name('secret_name') assert secret.secret_name == 'secret_name' @pytest.mark.unittest def test_prompt_template(): prompt = PromptTemplate('my_prompt') assert isinstance(prompt, str) assert str(prompt) == 'my_prompt' @pytest.mark.unittest def test_file_path(): file_path = FilePath('my_file_path') assert isinstance(file_path, str) @pytest.mark.unittest def test_assistant_definition(): data = {"model": "model", "instructions": "instructions", "tools": []} assistant_definition = AssistantDefinition.deserialize(data) assert isinstance(assistant_definition, AssistantDefinition) assert assistant_definition.model == "model" assert assistant_definition.instructions == "instructions" assert assistant_definition.tools == [] assert assistant_definition.serialize() == data assert isinstance(assistant_definition.init_tool_invoker(), AssistantToolInvoker)
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/contracts/test_run_info.py
from datetime import datetime import pytest from promptflow.contracts.run_info import FlowRunInfo, RunInfo, Status @pytest.mark.unittest class TestStatus: @pytest.mark.parametrize( "status,expected", [ (Status.Completed, True), (Status.Failed, True), (Status.Bypassed, True), (Status.Canceled, True), (Status.Running, False), (Status.Preparing, False), (Status.NotStarted, False), (Status.CancelRequested, False), (123, False), ], ) def test_status_is_terminated(self, status, expected): assert Status.is_terminated(status) == expected @pytest.mark.unittest class TestRunInfo: def test_creation(self): run_info = RunInfo( node="node1", flow_run_id="123", run_id="123:456", status=Status.Running, inputs=[], output={}, metrics={}, error={}, parent_run_id="789", start_time=datetime.now(), end_time=datetime.now(), system_metrics={}, ) assert run_info.node == "node1" assert run_info.flow_run_id == "123" assert run_info.run_id == "123:456" assert run_info.status == Status.Running def test_deserialize(self): run_info_dict = { "node": "get_answer", "flow_run_id": "", "run_id": "dummy_run_id", "status": "Completed", "inputs": {"question": "string"}, "output": "Hello world: What's promptflow?", "metrics": None, "error": None, "parent_run_id": "dummy_flow_run_id", "start_time": "2023-11-24T06:03:20.2688262Z", "end_time": "2023-11-24T06:03:20.268858Z", "index": 0, "api_calls": None, "variant_id": "", "cached_run_id": None, "cached_flow_run_id": None, "logs": None, "system_metrics": {"duration": "00:00:00.0000318", "total_tokens": 0}, "result": "Hello world: What's promptflow?", } run_info = RunInfo.deserialize(run_info_dict) assert run_info.index == 0 assert isinstance(run_info.start_time, datetime) and isinstance(run_info.end_time, datetime) assert run_info.status == Status.Completed assert run_info.run_id == "dummy_run_id" assert run_info.api_calls is None assert run_info.system_metrics == {"duration": "00:00:00.0000318", "total_tokens": 0} assert run_info.output == "Hello world: What's promptflow?" @pytest.mark.unittest class TestFlowRunInfo: def test_creation(self): flow_run_info = FlowRunInfo( run_id="123:456", status=Status.Running, error={}, inputs={}, output={}, metrics={}, request={}, parent_run_id="789", root_run_id="123", source_run_id="456", flow_id="flow1", start_time=datetime.now(), end_time=datetime.now(), system_metrics={}, upload_metrics=False, ) assert flow_run_info.run_id == "123:456" assert flow_run_info.status == Status.Running assert flow_run_info.flow_id == "flow1" def test_deserialize(self): flow_run_info_dict = { "run_id": "dummy_run_id", "status": "Completed", "error": None, "inputs": {"question": "What's promptflow?"}, "output": {"answer": "Hello world: What's promptflow?"}, "metrics": None, "request": None, "parent_run_id": None, "root_run_id": None, "source_run_id": None, "flow_id": "Flow", "start_time": "2023-11-23T10:58:37.9436245Z", "end_time": "2023-11-23T10:58:37.9590789Z", "index": 0, "api_calls": None, "variant_id": "", "name": "", "description": "", "tags": None, "system_metrics": {"duration": "00:00:00.0154544", "total_tokens": 0}, "result": {"answer": "Hello world: What's promptflow?"}, "upload_metrics": False, } flow_run_info = FlowRunInfo.deserialize(flow_run_info_dict) assert flow_run_info.index == 0 assert isinstance(flow_run_info.start_time, datetime) and isinstance(flow_run_info.end_time, datetime) assert flow_run_info.status == Status.Completed assert flow_run_info.run_id == "dummy_run_id" assert flow_run_info.api_calls is None assert flow_run_info.system_metrics == {"duration": "00:00:00.0154544", "total_tokens": 0} assert flow_run_info.output == {"answer": "Hello world: What's promptflow?"}
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/contracts/test_tool.py
from enum import Enum from typing import Any, Callable, NewType, Optional, Tuple, TypeVar, Union import pytest from promptflow._core.tools_manager import connections from promptflow._sdk.entities import CustomStrongTypeConnection from promptflow._sdk.entities._connection import AzureContentSafetyConnection from promptflow.contracts.multimedia import Image from promptflow.contracts.run_info import Status from promptflow.contracts.tool import ( AssistantDefinition, ConnectionType, InputDefinition, OutputDefinition, Tool, ToolType, ValueType, _deserialize_enum, ) from promptflow.contracts.types import FilePath, PromptTemplate, Secret class MyConnection(CustomStrongTypeConnection): pass my_connection = MyConnection(name="my_connection", secrets={"key": "value"}) def some_function(): pass class TestStatus(Enum): Running = 1 Preparing = 2 Completed = 3 @pytest.mark.unittest @pytest.mark.parametrize( "enum, value, expected", [ (Status, "Running", Status.Running), (Status, "running", Status.Running), (Status, "FAILED", Status.Failed), (Status, "UNKNOWN", "UNKNOWN"), (TestStatus, "Running", "Running"), ], ) def test_deserialize_enum(enum, value, expected): assert _deserialize_enum(enum, value) == expected @pytest.mark.unittest class TestValueType: @pytest.mark.parametrize( "value, expected", [ (1, ValueType.INT), (1.0, ValueType.DOUBLE), (True, ValueType.BOOL), ("string", ValueType.STRING), ([], ValueType.LIST), ({}, ValueType.OBJECT), (Secret("secret"), ValueType.SECRET), (PromptTemplate("prompt"), ValueType.PROMPT_TEMPLATE), (FilePath("file_path"), ValueType.FILE_PATH), (AssistantDefinition("model", "instructions", []), ValueType.ASSISTANT_DEFINITION), ], ) def test_from_value(self, value, expected): assert ValueType.from_value(value) == expected @pytest.mark.parametrize( "value, expected", [ (int, ValueType.INT), (float, ValueType.DOUBLE), (bool, ValueType.BOOL), (str, ValueType.STRING), (list, ValueType.LIST), (dict, ValueType.OBJECT), (Secret, ValueType.SECRET), (PromptTemplate, ValueType.PROMPT_TEMPLATE), (FilePath, ValueType.FILE_PATH), (Image, ValueType.IMAGE), (AssistantDefinition, ValueType.ASSISTANT_DEFINITION), ], ) def test_from_type(self, value, expected): assert ValueType.from_type(value) == expected @pytest.mark.parametrize( "value, value_type, expected", [ ("1", ValueType.INT, 1), ("1.0", ValueType.DOUBLE, 1.0), ("true", ValueType.BOOL, True), ("false", ValueType.BOOL, False), (True, ValueType.BOOL, True), (123, ValueType.STRING, "123"), ('["a", "b", "c"]', ValueType.LIST, ["a", "b", "c"]), ('{"key": "value"}', ValueType.OBJECT, {"key": "value"}), ("[1, 2, 3]", ValueType.OBJECT, [1, 2, 3]), ("{", ValueType.OBJECT, "{"), ([1, 2, 3], ValueType.OBJECT, [1, 2, 3]), ], ) def test_parse(self, value, value_type, expected): assert value_type.parse(value) == expected @pytest.mark.parametrize( "value, value_type", [ ("1", ValueType.BOOL), ({}, ValueType.LIST), ], ) def test_parse_error(self, value, value_type): with pytest.raises(ValueError): value_type.parse(value) @pytest.mark.unittest class TestConnectionType: @pytest.mark.parametrize( "type_name, expected", [ ("AzureContentSafetyConnection", connections.get("AzureContentSafetyConnection")), ("AzureOpenAIConnection", connections.get("AzureOpenAIConnection")), ("_Connection", connections.get("_Connection")), ("unknown", None), (123, None), ], ) def test_get_connection_class(self, type_name, expected): assert ConnectionType.get_connection_class(type_name) == expected @pytest.mark.parametrize( "type_name, expected", [ ("AzureContentSafetyConnection", True), ("AzureOpenAIConnection", True), ("_Connection", True), ("unknown", False), (123, False), ], ) def test_is_connection_class_name(self, type_name, expected): assert ConnectionType.is_connection_class_name(type_name) == expected @pytest.mark.parametrize( "value, expected", [ (connections.get("AzureContentSafetyConnection"), True), (AzureContentSafetyConnection("api_key", "endpoint"), True), (Status, False), (ConnectionType.is_connection_value("non_connection_instance"), False), ], ) def test_is_connection_value(self, value, expected): assert ConnectionType.is_connection_value(value) == expected @pytest.mark.parametrize( "val, expected_res", [ (my_connection, True), (MyConnection, True), (list, False), # (list[str], False), # Python 3.9 # (list[int], False), ([1, 2, 3], False), (float, False), (int, False), (5, False), (str, False), (some_function, False), (Union[str, int], False), # ((int | str), False), # Python 3.10 (tuple, False), # (tuple[str, int], False), # Python 3.9 (Tuple[int, ...], False), # (dict[str, Any], False), # Python 3.9 ({"test1": [1, 2, 3], "test2": [4, 5, 6], "test3": [7, 8, 9]}, False), (Any, False), (None, False), (Optional[str], False), (TypeVar("T"), False), (TypeVar, False), (Callable, False), (Callable[..., Any], False), (NewType("MyType", int), False), ], ) def test_is_custom_strong_type(self, val, expected_res): assert ConnectionType.is_custom_strong_type(val) == expected_res def test_serialize_conn(self): assert ConnectionType.serialize_conn(AzureContentSafetyConnection) == "ABCMeta" connection_instance = AzureContentSafetyConnection("api_key", "endpoint") assert ConnectionType.serialize_conn(connection_instance) == "AzureContentSafetyConnection" with pytest.raises(ValueError): ConnectionType.serialize_conn("non_connection_instance") @pytest.mark.unittest class TestInputDefinition: def test_serialize(self): # test when len(type) == 1 input_def = InputDefinition( [ValueType.STRING], default="Default", description="Description", enum=["A", "B", "C"], custom_type=["customtype"], ) serialized = input_def.serialize() assert serialized == { "type": "string", "default": "Default", "description": "Description", "enum": ["A", "B", "C"], "custom_type": ["customtype"], } # test when len(type) > 1 input_def = InputDefinition([ValueType.STRING, ValueType.INT]) serialized = input_def.serialize() assert serialized == {"type": ["string", "int"]} def test_deserialize(self): serialized = {"type": "string", "default": "Default", "description": "Description", "enum": ["A", "B", "C"]} deserialized = InputDefinition.deserialize(serialized) assert deserialized.type == [ValueType.STRING] assert deserialized.default == "Default" assert deserialized.description == "Description" assert deserialized.enum == ["A", "B", "C"] serialized = {"type": ["string", "int"]} deserialized = InputDefinition.deserialize(serialized) assert deserialized.type == [ValueType.STRING, ValueType.INT] assert deserialized.default == "" assert deserialized.description == "" assert deserialized.enum == [] @pytest.mark.unittest class TestOutDefinition: @pytest.mark.parametrize( "value, expected", [ ( OutputDefinition([ValueType.STRING], description="Description", is_property=True), {"type": "string", "description": "Description", "is_property": True}, ), (OutputDefinition([ValueType.STRING, ValueType.INT]), {"type": ["string", "int"], "is_property": False}), ], ) def test_serialize(self, value, expected): assert value.serialize() == expected @pytest.mark.parametrize( "value, expected", [ ( {"type": "string", "description": "Description", "is_property": True}, OutputDefinition([ValueType.STRING], description="Description", is_property=True), ), ({"type": ["string", "int"]}, OutputDefinition([ValueType.STRING, ValueType.INT])), ], ) def test_deserialize(self, value, expected): assert OutputDefinition.deserialize(value) == expected @pytest.mark.unittest class TestTool: @pytest.mark.parametrize( "tool_type, expected_keys", [ (ToolType._ACTION, ["name", "description", "enable_kwargs"]), (ToolType.LLM, ["name", "type", "inputs", "description", "enable_kwargs"]), ], ) def test_serialize_tool(self, tool_type, expected_keys): tool = Tool(name="test_tool", type=tool_type, inputs={}, outputs={}, description="description") serialized_tool = tool.serialize() assert set(serialized_tool.keys()) == set(expected_keys) def test_deserialize_tool(self): data = { "name": "test_tool", "type": "LLM", "inputs": {"input1": {"type": "ValueType1"}}, } tool = Tool.deserialize(data) assert tool.name == data["name"] assert tool.type == ToolType[data["type"]] assert "input1" in tool.inputs @pytest.mark.parametrize( "tooltype, connection_type, expected", [ (ToolType.LLM, None, True), (ToolType._ACTION, ["AzureContentSafetyConnection"], True), (ToolType._ACTION, None, False), ], ) def test_require_connection(self, tooltype, connection_type, expected): tool = Tool(name="Test Tool", type=tooltype, inputs={}, connection_type=connection_type) assert tool._require_connection() == expected
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/contracts/test_multimedia.py
import pytest from promptflow.contracts.multimedia import Image, PFBytes @pytest.mark.unittest class TestMultimediaContract: @pytest.mark.parametrize( "value, mime_type, source_url", [ (b"test", "image/*", None), (b"test", "image/jpg", None), (b"test", "image/png", None), (b"test", None, None), (b"test", "image/*", "mock_url"), ] ) def test_image_contract(self, value, mime_type, source_url): image = Image(value, mime_type, source_url) if mime_type is None: mime_type = "image/*" assert image._mime_type == mime_type assert image._hash == "a94a8fe5" assert image.to_base64() == "dGVzdA==" assert image.to_base64(with_type=True) == f"data:{mime_type};base64,dGVzdA==" assert image.to_base64(with_type=True, dict_type=True) == {f"data:{mime_type};base64": "dGVzdA=="} assert bytes(image) == value assert image.source_url == source_url assert str(image) == "Image(a94a8fe5)" assert repr(image) == "Image(a94a8fe5)" assert image.serialize() == "Image(a94a8fe5)" assert image.serialize(lambda x: x.to_base64()) == "dGVzdA==" @pytest.mark.parametrize( "value, mime_type, source_url", [ (b"test", "image/*", None), (b"test", "image/jpg", None), (b"test", "image/png", None), (b"test", "image/*", "mock_url"), ] ) def test_pfbytes_contract(self, value, mime_type, source_url): pfBytes = PFBytes(value, mime_type, source_url) assert pfBytes._mime_type == mime_type assert pfBytes._hash == "a94a8fe5" assert pfBytes.to_base64() == "dGVzdA==" assert pfBytes.to_base64(with_type=True) == f"data:{mime_type};base64,dGVzdA==" assert pfBytes.to_base64(with_type=True, dict_type=True) == {f"data:{mime_type};base64": "dGVzdA=="} assert bytes(pfBytes) == value assert pfBytes.source_url == source_url
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/executor/test_flow_validator.py
import pytest from promptflow.contracts.flow import Flow, FlowInputDefinition from promptflow.contracts.tool import ValueType from promptflow.executor._errors import InputParseError, InputTypeError, InvalidAggregationInput, InvalidFlowRequest from promptflow.executor.flow_validator import FlowValidator from ...utils import WRONG_FLOW_ROOT, get_flow_from_folder @pytest.mark.unittest class TestFlowValidator: @pytest.mark.parametrize( "flow_folder, expected_node_order", [ ("unordered_nodes", ["first_node", "second_node", "third_node"]), ("unordered_nodes_with_skip", ["first_node", "second_node", "third_node"]), ("unordered_nodes_with_activate", ["first_node", "second_node", "third_node"]), ], ) def test_ensure_nodes_order(self, flow_folder, expected_node_order): flow = get_flow_from_folder(flow_folder) flow = FlowValidator._ensure_nodes_order(flow) node_order = [node.name for node in flow.nodes] assert node_order == expected_node_order @pytest.mark.parametrize( "flow_folder, error_message", [ ( "nodes_cycle", ( "Invalid node definitions found in the flow graph. Node circular dependency has been detected " "among the nodes in your flow. Kindly review the reference relationships for the nodes " "['first_node', 'second_node'] and resolve the circular reference issue in the flow." ), ), ( "nodes_cycle_with_activate", ( "Invalid node definitions found in the flow graph. Node circular dependency has been detected " "among the nodes in your flow. Kindly review the reference relationships " "for the nodes ['first_node', 'second_node'] and resolve the circular reference issue in the flow." ), ), ( "wrong_node_reference", ( "Invalid node definitions found in the flow graph. Node 'second_node' references a non-existent " "node 'third_node' in your flow. Please review your flow to ensure that the node " "name is accurately specified." ), ), ( "non_aggregation_reference_aggregation", ( "Invalid node definitions found in the flow graph. Non-aggregate node 'test_node' " "cannot reference aggregate nodes {'calculate_accuracy'}. Please review and rectify " "the node reference." ), ), ( "aggregation_activate_reference_non_aggregation", ( "Invalid node definitions found in the flow graph. Non-aggregation node 'grade' cannot be " "referenced in the activate config of the aggregation node 'calculate_accuracy'. Please " "review and rectify the node reference." ), ), ], ) def test_ensure_nodes_order_with_exception(self, flow_folder, error_message): flow = get_flow_from_folder(flow_folder, root=WRONG_FLOW_ROOT) with pytest.raises(InvalidFlowRequest) as e: FlowValidator._ensure_nodes_order(flow) assert str(e.value) == error_message, "Expected: {}, Actual: {}".format(error_message, str(e.value)) @pytest.mark.parametrize( "aggregated_flow_inputs, aggregation_inputs, error_message", [ ( {}, { "input1": "value1", }, "The input for aggregation is incorrect. " "The value for aggregated reference input 'input1' should be a list, " "but received str. Please adjust the input value to match the expected format.", ), ( { "input1": "value1", }, {}, "The input for aggregation is incorrect. " "The value for aggregated flow input 'input1' should be a list, " "but received str. Please adjust the input value to match the expected format.", ), ( {"input1": ["value1_1", "value1_2"]}, {"input_2": ["value2_1"]}, "The input for aggregation is incorrect. The length of all aggregated inputs should be the same. " "Current input lengths are: {'input1': 2, 'input_2': 1}. " "Please adjust the input value in your input data.", ), ( { "input1": "value1", }, { "input1": "value1", }, "The input for aggregation is incorrect. " "The input 'input1' appears in both aggregated flow input and aggregated reference input. " "Please remove one of them and try the operation again.", ), ], ) def test_validate_aggregation_inputs_error(self, aggregated_flow_inputs, aggregation_inputs, error_message): with pytest.raises(InvalidAggregationInput) as e: FlowValidator._validate_aggregation_inputs(aggregated_flow_inputs, aggregation_inputs) assert str(e.value) == error_message @pytest.mark.parametrize( "flow_folder", ["simple_flow_with_python_tool_and_aggregate"], ) def test_ensure_outputs_valid_with_aggregation(self, flow_folder): flow = get_flow_from_folder(flow_folder) assert flow.outputs["content"] is not None assert flow.outputs["aggregate_content"] is not None flow.outputs = FlowValidator._ensure_outputs_valid(flow) print(flow.outputs) assert flow.outputs["content"] is not None assert flow.outputs.get("aggregate_content") is None @pytest.mark.parametrize( "flow_folder, inputs, index, error_type, error_message", [ ( "flow_with_list_input", {"key": "['hello']"}, None, InputParseError, ( "Failed to parse the flow input. The value for flow input 'key' was " "interpreted as JSON string since its type is 'list'. However, the value " "'['hello']' is invalid for JSON parsing. Error details: (JSONDecodeError) " "Expecting value: line 1 column 2 (char 1). Please make sure your inputs are properly formatted." ), ), ( "flow_with_list_input", {"key": "['hello']"}, 0, InputParseError, ( "Failed to parse the flow input. The value for flow input 'key' in line 0 of input data was " "interpreted as JSON string since its type is 'list'. However, the value " "'['hello']' is invalid for JSON parsing. Error details: (JSONDecodeError) " "Expecting value: line 1 column 2 (char 1). Please make sure your inputs are properly formatted." ), ), ], ) def test_resolve_flow_inputs_type_json_error_for_list_type( self, flow_folder, inputs, index, error_type, error_message ): flow = get_flow_from_folder(flow_folder) with pytest.raises(error_type) as exe_info: FlowValidator.resolve_flow_inputs_type(flow, inputs, idx=index) assert error_message == exe_info.value.message @pytest.mark.parametrize( "inputs, expected_result", [({"test_input": ["1", "2"]}, {"test_input": [1, 2]})], ) def test_resolve_aggregated_flow_inputs_type(self, inputs, expected_result): flow = Flow( id="fakeId", name=None, nodes=[], inputs={"test_input": FlowInputDefinition(type=ValueType.INT)}, outputs=None, tools=[], ) result = FlowValidator.resolve_aggregated_flow_inputs_type(flow, inputs) assert result == expected_result @pytest.mark.parametrize( "inputs, expected_message", [ ( {"test_input": ["1", "str"]}, ( "The input for flow is incorrect. The value for flow input 'test_input' in line 1 of input data " "does not match the expected type 'int'. " "Please change flow input type or adjust the input value in your input data." ), ) ], ) def test_resolve_aggregated_flow_inputs_type_error(self, inputs, expected_message): flow = Flow( id="fakeId", name=None, nodes=[], inputs={"test_input": FlowInputDefinition(type=ValueType.INT)}, outputs=None, tools=[], ) with pytest.raises(InputTypeError) as ex: FlowValidator.resolve_aggregated_flow_inputs_type(flow, inputs) assert expected_message == str(ex.value) @pytest.mark.parametrize( "input, type, expected_result", [ ("1", ValueType.INT, 1), ('["1", "2"]', ValueType.LIST, ["1", "2"]), ], ) def test_parse_input_value(self, input, type, expected_result): input_key = "test_input" result = FlowValidator._parse_input_value(input_key, input, type) assert result == expected_result @pytest.mark.parametrize( "input, type, index, error_type, expected_message", [ ( "str", ValueType.INT, None, InputTypeError, ( "The input for flow is incorrect. The value for flow input 'my_input' does not match the expected " "type 'int'. Please change flow input type or adjust the input value in your input data." ), ), ( "['1', '2']", ValueType.LIST, None, InputParseError, ( "Failed to parse the flow input. The value for flow input 'my_input' was interpreted as JSON " "string since its type is 'list'. However, the value '['1', '2']' is invalid for JSON parsing. " "Error details: (JSONDecodeError) Expecting value: line 1 column 2 (char 1). " "Please make sure your inputs are properly formatted." ), ), ( "str", ValueType.INT, 10, InputTypeError, ( "The input for flow is incorrect. The value for flow input 'my_input' in line 10 of " "input data does not match the expected type 'int'. " "Please change flow input type or adjust the input value in your input data." ), ), ( "['1', '2']", ValueType.LIST, 10, InputParseError, ( "Failed to parse the flow input. The value for flow input 'my_input' in line 10 of input data " "was interpreted as JSON string since its type is 'list'. However, the value '['1', '2']' is " "invalid for JSON parsing. Error details: (JSONDecodeError) Expecting value: " "line 1 column 2 (char 1). Please make sure your inputs are properly formatted." ), ), ], ) def test_parse_input_value_error(self, input, type, index, error_type, expected_message): input_key = "my_input" with pytest.raises(error_type) as ex: FlowValidator._parse_input_value(input_key, input, type, index) assert expected_message == str(ex.value)
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/executor/test_dag_manager.py
import pytest from promptflow.contracts.flow import ActivateCondition, InputAssignment, Node from promptflow.executor._dag_manager import DAGManager def create_test_node(name, input, activate=None): input = InputAssignment.deserialize(input) activate = ActivateCondition.deserialize(activate, name) if activate else None return Node( name=name, tool="test_tool", connection="azure_open_ai_connection", inputs={"test_input": input, "test_input2": InputAssignment("hello world")}, provider="test_provider", api="test_api", activate=activate, ) def pop_ready_node_names(dag_manager: DAGManager): return {node.name for node in dag_manager.pop_ready_nodes()} def pop_bypassed_node_names(dag_manager: DAGManager): return {node.name for node in dag_manager.pop_bypassable_nodes()} @pytest.mark.unittest class TestDAGManager: def test_pop_ready_nodes(self): nodes = [ create_test_node("node1", input="value1"), create_test_node("node2", input="${node1.output}"), create_test_node("node3", input="${node1.output}"), ] dag_manager = DAGManager(nodes, flow_inputs={}) assert pop_ready_node_names(dag_manager) == {"node1"} dag_manager.complete_nodes({"node1": None}) assert pop_ready_node_names(dag_manager) == {"node2", "node3"} dag_manager.complete_nodes({"node2": None, "node3": None}) def test_pop_bypassed_nodes(self): nodes = [ create_test_node("node1", input="value1"), create_test_node("node2", input="${inputs.text}", activate={"when": "${inputs.text}", "is": "world"}), create_test_node("node3", input="${node1.output}"), create_test_node("node4", input="${node2.output}"), ] flow_inputs = {"text": "hello"} dag_manager = DAGManager(nodes, flow_inputs) expected_bypassed_nodes = {"node2", "node4"} assert pop_bypassed_node_names(dag_manager) == expected_bypassed_nodes assert dag_manager.bypassed_nodes.keys() == expected_bypassed_nodes def test_complete_nodes(self): nodes = [create_test_node("node1", input="value1")] dag_manager = DAGManager(nodes, flow_inputs={}) dag_manager.complete_nodes({"node1": {"output1": "value1"}}) assert len(dag_manager.completed_nodes_outputs) == 1 assert dag_manager.completed_nodes_outputs["node1"] == {"output1": "value1"} def test_completed(self): nodes = [ create_test_node("node1", input="${inputs.text}", activate={"when": "${inputs.text}", "is": "hello"}), create_test_node("node2", input="${node1.output}"), ] flow_inputs = {"text": "hello"} dag_manager = DAGManager(nodes, flow_inputs) assert pop_ready_node_names(dag_manager) == {"node1"} dag_manager.complete_nodes({"node1": {"output1": "value1"}}) assert pop_ready_node_names(dag_manager) == {"node2"} dag_manager.complete_nodes({"node2": {"output1": "value1"}}) assert dag_manager.completed_nodes_outputs.keys() == {"node1", "node2"} assert dag_manager.completed() def test_get_node_valid_inputs(self): nodes = [ create_test_node("node1", input="value1"), create_test_node("node2", input="${node1.output}"), ] def f(input): return input flow_inputs = {} dag_manager = DAGManager(nodes, flow_inputs) dag_manager.complete_nodes({"node1": {"output1": "value1"}}) valid_inputs = dag_manager.get_node_valid_inputs(nodes[1], f) assert valid_inputs == {"test_input": {"output1": "value1"}, "test_input2": "hello world"}
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/executor/test_assistant_tool_invoker.py
import pytest from pathlib import Path from typing import Callable from promptflow import tool from promptflow.executor._assistant_tool_invoker import AssistantToolInvoker from promptflow.executor._errors import UnsupportedAssistantToolType @pytest.mark.unittest class TestAssistantToolInvoker: @pytest.fixture def tool_definitions(self): return [ {"type": "code_interpreter"}, {"type": "retrieval"}, { "type": "function", "tool_type": "python", "source": {"type": "code", "path": "test_assistant_tool_invoker.py"}, } ] @pytest.mark.parametrize( "predefined_inputs", [({}), ({"input_int": 1})] ) def test_load_tools(self, predefined_inputs): input_int = 1 input_str = "test" tool_definitions = [ {"type": "code_interpreter"}, {"type": "retrieval"}, { "type": "function", "tool_type": "python", "source": {"type": "code", "path": "test_assistant_tool_invoker.py"}, "predefined_inputs": predefined_inputs } ] # Test load tools invoker = AssistantToolInvoker.init(tool_definitions, working_dir=Path(__file__).parent) for tool_name, assistant_tool in invoker._assistant_tools.items(): assert tool_name in ("code_interpreter", "retrieval", "sample_tool") assert assistant_tool.name == tool_name assert isinstance(assistant_tool.openai_definition, dict) if tool_name in ("code_interpreter", "retrieval"): assert assistant_tool.func is None else: assert isinstance(assistant_tool.func, Callable) # Test to_openai_tools descriptions = invoker.to_openai_tools() assert len(descriptions) == 3 properties = { "input_int": {"description": "This is a sample input int.", "type": "number"}, "input_str": {"description": "This is a sample input str.", "type": "string"} } required = ["input_int", "input_str"] self._remove_predefined_inputs(properties, predefined_inputs.keys()) self._remove_predefined_inputs(required, predefined_inputs.keys()) for description in descriptions: if description["type"] in ("code_interpreter", "retrieval"): assert description == {"type": description["type"]} else: assert description == { "type": "function", "function": { "name": "sample_tool", "description": "This is a sample tool.", "parameters": { "type": "object", "properties": properties, "required": required } } } # Test invoke tool kwargs = {"input_int": input_int, "input_str": input_str} self._remove_predefined_inputs(kwargs, predefined_inputs.keys()) result = invoker.invoke_tool(func_name="sample_tool", kwargs=kwargs) assert result == (input_int, input_str) def test_load_tools_with_invalid_case(self): tool_definitions = [{"type": "invalid_type"}] with pytest.raises(UnsupportedAssistantToolType) as exc_info: AssistantToolInvoker.init(tool_definitions) assert "Unsupported assistant tool type" in exc_info.value.message def _remove_predefined_inputs(self, value: any, predefined_inputs: list): for input in predefined_inputs: if input in value: if isinstance(value, dict): value.pop(input) elif isinstance(value, list): value.remove(input) @tool def sample_tool(input_int: int, input_str: str): """This is a sample tool. :param input_int: This is a sample input int. :type input_int: int :param input_str: This is a sample input str. :type input_str: str """ return input_int, input_str
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/executor/test_tool_resolver.py
import re import sys from pathlib import Path from typing import List from unittest.mock import mock_open import pytest from jinja2 import TemplateSyntaxError from promptflow._core._errors import InvalidSource from promptflow._core.tools_manager import ToolLoader from promptflow._internal import tool from promptflow._sdk.entities import CustomConnection, CustomStrongTypeConnection from promptflow.connections import AzureOpenAIConnection from promptflow.contracts.flow import InputAssignment, InputValueType, Node, ToolSource, ToolSourceType from promptflow.contracts.tool import AssistantDefinition, InputDefinition, Secret, Tool, ToolType, ValueType from promptflow.contracts.types import PromptTemplate from promptflow.exceptions import UserErrorException from promptflow.executor._errors import ( ConnectionNotFound, InvalidConnectionType, NodeInputValidationError, ResolveToolError, ValueTypeUnresolved, ) from promptflow.executor._tool_resolver import ResolvedTool, ToolResolver from ...utils import DATA_ROOT, FLOW_ROOT TEST_ROOT = Path(__file__).parent.parent.parent REQUESTS_PATH = TEST_ROOT / "test_configs/executor_api_requests" WRONG_REQUESTS_PATH = TEST_ROOT / "test_configs/executor_wrong_requests" class MyFirstCSTConnection(CustomStrongTypeConnection): api_key: Secret api_base: str @tool(streaming_option_parameter="stream_enabled") def mock_package_func(prompt: PromptTemplate, **kwargs): for k, v in kwargs.items(): prompt = prompt.replace(f"{{{{{k}}}}}", str(v)) return prompt @pytest.mark.unittest class TestToolResolver: @pytest.fixture def resolver(self): return ToolResolver(working_dir=None, connections={}) def test_resolve_tool_by_node_with_diff_type(self, resolver, mocker): node = mocker.Mock(name="node", tool=None, inputs={}) mocker.patch.object( resolver, "_resolve_package_node", return_value=mocker.Mock(node=node, definition=None, callable=None, init_args=None), ) mocker.patch.object( resolver, "_resolve_script_node", return_value=mocker.Mock(node=node, definition=None, callable=None, init_args=None), ) mocker.patch.object( resolver, "_resolve_prompt_node", return_value=mocker.Mock(node=node, definition=None, callable=None, init_args=None), ) mocker.patch.object( resolver, "_resolve_llm_node", return_value=mocker.Mock(node=node, definition=None, callable=None, init_args=None), ) mocker.patch.object( resolver, "_integrate_prompt_in_package_node", return_value=mocker.Mock(node=node, definition=None, callable=None, init_args=None), ) node.type = ToolType.PYTHON node.source = mocker.Mock(type=ToolSourceType.Package) resolver.resolve_tool_by_node(node) resolver._resolve_package_node.assert_called_once() node.type = ToolType.PYTHON node.source = mocker.Mock(type=ToolSourceType.Code) resolver.resolve_tool_by_node(node) resolver._resolve_script_node.assert_called_once() node.type = ToolType.PROMPT resolver.resolve_tool_by_node(node) resolver._resolve_prompt_node.assert_called_once() node.type = ToolType.LLM resolver.resolve_tool_by_node(node) resolver._resolve_llm_node.assert_called_once() resolver._resolve_package_node.reset_mock() node.type = ToolType.CUSTOM_LLM node.source = mocker.Mock(type=ToolSourceType.PackageWithPrompt) resolver.resolve_tool_by_node(node) resolver._resolve_package_node.assert_called_once() resolver._integrate_prompt_in_package_node.assert_called_once() def test_resolve_tool_by_node_with_invalid_type(self, resolver, mocker): node = mocker.Mock(name="node", tool=None, inputs={}) node.source = mocker.Mock(type=None) with pytest.raises(ResolveToolError) as exec_info: resolver.resolve_tool_by_node(node) assert isinstance(exec_info.value.inner_exception, NotImplementedError) assert "Tool type" in exec_info.value.message def test_resolve_tool_by_node_with_invalid_source_type(self, resolver, mocker): node = mocker.Mock(name="node", tool=None, inputs={}) node.type = ToolType.PYTHON node.source = mocker.Mock(type=None) with pytest.raises(ResolveToolError) as exec_info: resolver.resolve_tool_by_node(node) assert isinstance(exec_info.value.inner_exception, NotImplementedError) assert "Tool source type" in exec_info.value.message node.type = ToolType.CUSTOM_LLM node.source = mocker.Mock(type=None) with pytest.raises(ResolveToolError) as exec_info: resolver.resolve_tool_by_node(node) assert isinstance(exec_info.value.inner_exception, NotImplementedError) assert "Tool source type" in exec_info.value.message def test_resolve_tool_by_node_with_no_source(self, resolver, mocker): node = mocker.Mock(name="node", tool=None, inputs={}) node.source = None with pytest.raises(ResolveToolError) as ex: resolver.resolve_tool_by_node(node) assert isinstance(ex.value.inner_exception, UserErrorException) def test_resolve_tool_by_node_with_no_source_path(self, resolver, mocker): node = mocker.Mock(name="node", tool=None, inputs={}) node.type = ToolType.PROMPT node.source = mocker.Mock(type=ToolSourceType.Package, path=None) with pytest.raises(ResolveToolError) as exec_info: resolver.resolve_tool_by_node(node) assert isinstance(exec_info.value.inner_exception, InvalidSource) assert "Node source path" in exec_info.value.message def test_resolve_tool_by_node_with_duplicated_inputs(self, resolver, mocker): node = mocker.Mock(name="node", tool=None, inputs={}) node.type = ToolType.PROMPT mocker.patch.object(resolver, "_load_source_content", return_value="{{template}}") with pytest.raises(ResolveToolError) as exec_info: resolver.resolve_tool_by_node(node) assert isinstance(exec_info.value.inner_exception, NodeInputValidationError) assert "These inputs are duplicated" in exec_info.value.message def test_resolve_tool_by_node_with_invalid_template(self, resolver, mocker): node = mocker.Mock(tool=None, inputs={}) node.name = "node" node.type = ToolType.PROMPT mocker.patch.object(resolver, "_load_source_content", return_value="{{current context}}") with pytest.raises(ResolveToolError) as exec_info: resolver.resolve_tool_by_node(node) assert isinstance(exec_info.value.inner_exception, TemplateSyntaxError) expected_message = ( "Tool load failed in 'node': Jinja parsing failed at line 1: " "(TemplateSyntaxError) expected token 'end of print statement', got 'context'" ) assert expected_message in exec_info.value.message def test_convert_node_literal_input_types_with_invalid_case(self): # Case 1: conn_name not in connections, should raise conn_name not found error tool = Tool(name="mock", type="python", inputs={"conn": InputDefinition(type=["CustomConnection"])}) node = Node( name="mock", tool=tool, inputs={"conn": InputAssignment(value="conn_name", value_type=InputValueType.LITERAL)}, ) with pytest.raises(ConnectionNotFound): tool_resolver = ToolResolver(working_dir=None, connections={}) tool_resolver._convert_node_literal_input_types(node, tool) # Case 2: conn_name in connections, but type not matched connections = {"conn_name": {"type": "AzureOpenAIConnection", "value": {"api_key": "mock", "api_base": "mock"}}} with pytest.raises(NodeInputValidationError) as exe_info: tool_resolver = ToolResolver(working_dir=None, connections=connections) tool_resolver._convert_node_literal_input_types(node, tool) message = "'AzureOpenAIConnection' is not supported, valid types ['CustomConnection']" assert message in exe_info.value.message, "Expected: {}, Actual: {}".format(message, exe_info.value.message) # Case 3: Literal value, type mismatch tool = Tool(name="mock", type="python", inputs={"int_input": InputDefinition(type=[ValueType.INT])}) node = Node( name="mock", tool=tool, inputs={"int_input": InputAssignment(value="invalid", value_type=InputValueType.LITERAL)}, ) with pytest.raises(NodeInputValidationError) as exe_info: tool_resolver = ToolResolver(working_dir=None, connections={}) tool_resolver._convert_node_literal_input_types(node, tool) message = "value 'invalid' is not type int" assert message in exe_info.value.message, "Expected: {}, Actual: {}".format(message, exe_info.value.message) # Case 4: Unresolved value, like newly added type not in old version ValueType enum tool = Tool(name="mock", type="python", inputs={"int_input": InputDefinition(type=["A_good_type"])}) node = Node( name="mock", tool=tool, inputs={"int_input": InputAssignment(value="invalid", value_type=InputValueType.LITERAL)}, ) with pytest.raises(ValueTypeUnresolved): tool_resolver = ToolResolver(working_dir=None, connections={}) tool_resolver._convert_node_literal_input_types(node, tool) # Case 5: Literal value, invalid image in list tool = Tool(name="mock", type="python", inputs={"list_input": InputDefinition(type=[ValueType.LIST])}) invalid_image = {"data:image/jpg;base64": "invalid_image"} node = Node( name="mock", tool=tool, inputs={"list_input": InputAssignment(value=[invalid_image], value_type=InputValueType.LITERAL)}, ) with pytest.raises(NodeInputValidationError) as exe_info: tool_resolver = ToolResolver(working_dir=None, connections={}) tool_resolver._convert_node_literal_input_types(node, tool) message = "Invalid base64 image" assert message in exe_info.value.message, "Expected: {}, Actual: {}".format(message, exe_info.value.message) # Case 6: Literal value, invalid assistant definition path tool = Tool( name="mock", type="python", inputs={"assistant_definition": InputDefinition(type=[ValueType.ASSISTANT_DEFINITION])}, ) node = Node( name="mock", tool=tool, inputs={"assistant_definition": InputAssignment(value="invalid_path", value_type=InputValueType.LITERAL)}, ) with pytest.raises(NodeInputValidationError) as exe_info: tool_resolver = ToolResolver(working_dir=Path(__file__).parent, connections={}) tool_resolver._convert_node_literal_input_types(node, tool) assert ( "Failed to load assistant definition" in exe_info.value.message and "is not a valid path" in exe_info.value.message ), "Expected: {}, Actual: {}".format(message, exe_info.value.message) def test_resolve_llm_connection_to_inputs(self): # Case 1: node.connection is not specified tool = Tool(name="mock", type="python", inputs={"conn": InputDefinition(type=["CustomConnection"])}) node = Node( name="mock", tool=tool, inputs={"conn": InputAssignment(value="conn_name", value_type=InputValueType.LITERAL)}, ) connections = {"conn_name": {"type": "AzureOpenAIConnection", "value": {"api_key": "mock", "api_base": "mock"}}} with pytest.raises(ConnectionNotFound): tool_resolver = ToolResolver(working_dir=None, connections=connections) tool_resolver._resolve_llm_connection_to_inputs(node, tool) # Case 2: node.connection is not found from connection manager tool = Tool(name="mock", type="python", inputs={"conn": InputDefinition(type=["CustomConnection"])}) node = Node( name="mock", tool=tool, inputs={"conn": InputAssignment(value="conn_name", value_type=InputValueType.LITERAL)}, connection="conn_name1", ) connections = {} with pytest.raises(ConnectionNotFound): tool_resolver = ToolResolver(working_dir=None, connections=connections) tool_resolver._resolve_llm_connection_to_inputs(node, tool) # Case 3: Tool definition with bad input type list tool = Tool(name="mock", type="python", inputs={"conn": InputDefinition(type=["int"])}) node = Node( name="mock", tool=tool, inputs={"conn": InputAssignment(value="conn_name", value_type=InputValueType.LITERAL)}, connection="conn_name", ) connections = {"conn_name": {"type": "AzureOpenAIConnection", "value": {"api_key": "mock", "api_base": "mock"}}} with pytest.raises(InvalidConnectionType) as exe_info: tool_resolver = ToolResolver(working_dir=None, connections=connections) tool_resolver._resolve_llm_connection_to_inputs(node, tool) assert "Connection type can not be resolved for tool" in exe_info.value.message # Case 4: Tool type not match the connection manager return tool = Tool(name="mock", type="python", inputs={"conn": InputDefinition(type=["OpenAIConnection"])}) node = Node( name="mock", tool=tool, inputs={"conn": InputAssignment(value="conn_name", value_type=InputValueType.LITERAL)}, connection="conn_name", ) connections = {"conn_name": {"type": "AzureOpenAIConnection", "value": {"api_key": "mock", "api_base": "mock"}}} with pytest.raises(InvalidConnectionType) as exe_info: tool_resolver = ToolResolver(working_dir=None, connections=connections) tool_resolver._resolve_llm_connection_to_inputs(node, tool) assert "Invalid connection" in exe_info.value.message # Case 5: Normal case tool = Tool( name="mock", type="python", inputs={"conn": InputDefinition(type=["OpenAIConnection", "AzureOpenAIConnection"])}, ) node = Node( name="mock", tool=tool, inputs={"conn": InputAssignment(value="conn_name", value_type=InputValueType.LITERAL)}, connection="conn_name", ) connections = {"conn_name": {"type": "AzureOpenAIConnection", "value": {"api_key": "mock", "api_base": "mock"}}} tool_resolver = ToolResolver(working_dir=None, connections=connections) key, conn = tool_resolver._resolve_llm_connection_to_inputs(node, tool) assert key == "conn" assert isinstance(conn, AzureOpenAIConnection) def test_resolve_llm_node(self, mocker): def mock_llm_api_func(prompt: PromptTemplate, **kwargs): for k, v in kwargs.items(): prompt = prompt.replace(f"{{{{{k}}}}}", str(v)) return prompt tool_loader = ToolLoader(working_dir=None) tool = Tool(name="mock", type=ToolType.LLM, inputs={"conn": InputDefinition(type=["AzureOpenAIConnection"])}) mocker.patch.object(tool_loader, "load_tool_for_llm_node", return_value=tool) mocker.patch( "promptflow._core.tools_manager.BuiltinsManager._load_package_tool", return_value=(mock_llm_api_func, {"conn": AzureOpenAIConnection}), ) connections = {"conn_name": {"type": "AzureOpenAIConnection", "value": {"api_key": "mock", "api_base": "mock"}}} tool_resolver = ToolResolver(working_dir=None, connections=connections) tool_resolver._tool_loader = tool_loader mocker.patch.object(tool_resolver, "_load_source_content", return_value="{{text}}![image]({{image}})") node = Node( name="mock", tool=None, inputs={ "conn": InputAssignment(value="conn_name", value_type=InputValueType.LITERAL), "text": InputAssignment(value="Hello World!", value_type=InputValueType.LITERAL), "image": InputAssignment(value=str(DATA_ROOT / "logo.jpg"), value_type=InputValueType.LITERAL), }, connection="conn_name", provider="mock", ) resolved_tool = tool_resolver._resolve_llm_node(node, convert_input_types=True) assert len(resolved_tool.node.inputs) == 2 kwargs = {k: v.value for k, v in resolved_tool.node.inputs.items()} pattern = re.compile(r"^Hello World!!\[image\]\(Image\([a-z0-9]{8}\)\)$") prompt = resolved_tool.callable(**kwargs) assert re.match(pattern, prompt) def test_resolve_script_node(self, mocker): def mock_python_func(prompt: PromptTemplate, **kwargs): for k, v in kwargs.items(): prompt = prompt.replace(f"{{{{{k}}}}}", str(v)) return prompt tool_loader = ToolLoader(working_dir=None) tool = Tool(name="mock", type=ToolType.PYTHON, inputs={"conn": InputDefinition(type=["AzureOpenAIConnection"])}) mocker.patch.object(tool_loader, "load_tool_for_script_node", return_value=(None, tool)) mocker.patch( "promptflow._core.tools_manager.BuiltinsManager._load_tool_from_module", return_value=(mock_python_func, {"conn": AzureOpenAIConnection}), ) connections = {"conn_name": {"type": "AzureOpenAIConnection", "value": {"api_key": "mock", "api_base": "mock"}}} tool_resolver = ToolResolver(working_dir=None, connections=connections) tool_resolver._tool_loader = tool_loader node = Node( name="mock", tool=None, inputs={ "conn": InputAssignment(value="conn_name", value_type=InputValueType.LITERAL), "prompt": InputAssignment(value="{{text}}", value_type=InputValueType.LITERAL), "text": InputAssignment(value="Hello World!", value_type=InputValueType.LITERAL), }, connection="conn_name", provider="mock", ) resolved_tool = tool_resolver._resolve_script_node(node, convert_input_types=True) assert len(resolved_tool.node.inputs) == 2 kwargs = {k: v.value for k, v in resolved_tool.node.inputs.items()} assert resolved_tool.callable(**kwargs) == "Hello World!" def test_resolve_script_node_with_assistant_definition(self, mocker): def mock_python_func(input: AssistantDefinition): if input.model == "model" and input.instructions == "instructions" and input.tools == []: return True return False tool_loader = ToolLoader(working_dir=None) tool = Tool( name="mock", type=ToolType.PYTHON, inputs={"input": InputDefinition(type=[ValueType.ASSISTANT_DEFINITION])} ) mocker.patch.object(tool_loader, "load_tool_for_script_node", return_value=(None, tool)) mocker.patch( "promptflow._core.tools_manager.BuiltinsManager._load_tool_from_module", return_value=(mock_python_func, {}), ) tool_resolver = ToolResolver(working_dir=Path(__file__).parent, connections={}) tool_resolver._tool_loader = tool_loader mocker.patch("builtins.open", mock_open()) mocker.patch( "ruamel.yaml.YAML.load", return_value={"model": "model", "instructions": "instructions", "tools": []} ) node = Node( name="mock", tool=None, inputs={"input": InputAssignment(value="test_tool_resolver.py", value_type=InputValueType.LITERAL)}, ) resolved_tool = tool_resolver._resolve_script_node(node, convert_input_types=True) assert len(resolved_tool.node.inputs) == 1 kwargs = {k: v.value for k, v in resolved_tool.node.inputs.items()} assert resolved_tool.callable(**kwargs) def test_resolve_package_node(self, mocker): tool_loader = ToolLoader(working_dir=None) tool = Tool(name="mock", type=ToolType.PYTHON, inputs={"conn": InputDefinition(type=["AzureOpenAIConnection"])}) mocker.patch.object(tool_loader, "load_tool_for_package_node", return_value=tool) mocker.patch( "promptflow._core.tools_manager.BuiltinsManager._load_package_tool", return_value=(mock_package_func, {"conn": AzureOpenAIConnection}), ) connections = {"conn_name": {"type": "AzureOpenAIConnection", "value": {"api_key": "mock", "api_base": "mock"}}} tool_resolver = ToolResolver(working_dir=None, connections=connections) tool_resolver._tool_loader = tool_loader node = Node( name="mock", tool=None, inputs={ "conn": InputAssignment(value="conn_name", value_type=InputValueType.LITERAL), "prompt": InputAssignment(value="{{text}}", value_type=InputValueType.LITERAL), "text": InputAssignment(value="Hello World!", value_type=InputValueType.LITERAL), }, connection="conn_name", provider="mock", ) resolved_tool = tool_resolver._resolve_package_node(node, convert_input_types=True) assert len(resolved_tool.node.inputs) == 2 kwargs = {k: v.value for k, v in resolved_tool.node.inputs.items()} assert resolved_tool.callable(**kwargs) == "Hello World!" def test_integrate_prompt_in_package_node(self, mocker): tool_resolver = ToolResolver(working_dir=None, connections={}) mocker.patch.object( tool_resolver, "_load_source_content", return_value="{{text}}", ) tool = Tool(name="mock", type=ToolType.CUSTOM_LLM, inputs={"prompt": InputDefinition(type=["PromptTemplate"])}) node = Node( name="mock", tool=None, inputs={"text": InputAssignment(value="Hello World!", value_type=InputValueType.LITERAL)}, connection="conn_name", provider="mock", ) resolved_tool = ResolvedTool(node=node, callable=mock_package_func, definition=tool, init_args=None) assert resolved_tool.callable._streaming_option_parameter == "stream_enabled" resolved_tool = tool_resolver._integrate_prompt_in_package_node(resolved_tool) assert resolved_tool.callable._streaming_option_parameter == "stream_enabled" kwargs = {k: v.value for k, v in resolved_tool.node.inputs.items()} assert resolved_tool.callable(**kwargs) == "Hello World!" @pytest.mark.parametrize( "conn_types, expected_type", [ (["MyFirstCSTConnection"], MyFirstCSTConnection), (["CustomConnection", "MyFirstCSTConnection"], CustomConnection), (["CustomConnection", "MyFirstCSTConnection", "MySecondCSTConnection"], CustomConnection), (["MyFirstCSTConnection", "MySecondCSTConnection"], MyFirstCSTConnection), ], ) def test_convert_to_custom_strong_type_connection_value(self, conn_types: List[str], expected_type, mocker): connections = {"conn_name": {"type": "CustomConnection", "value": {"api_key": "mock", "api_base": "mock"}}} tool_resolver = ToolResolver(working_dir=None, connections=connections) node = mocker.Mock(name="node", tool=None, inputs={}) node.type = ToolType.PYTHON node.source = mocker.Mock(type=ToolSourceType.Code) tool = Tool(name="tool", type="python", inputs={"conn": InputDefinition(type=["CustomConnection"])}) m = sys.modules[__name__] v = InputAssignment(value="conn_name", value_type=InputValueType.LITERAL) actual = tool_resolver._convert_to_custom_strong_type_connection_value( "conn_name", v, node, tool, conn_types, m ) assert isinstance(actual, expected_type) assert actual.api_base == "mock" def test_load_source(self): # Create a mock Node object with a valid source path node = Node(name="mock", tool=None, inputs={}, source=ToolSource()) node.source.path = "./script_with_special_character/script_with_special_character.py" resolver = ToolResolver(FLOW_ROOT) result = resolver._load_source_content(node) assert "https://www.bing.com/\ue000\ue001/" in result @pytest.mark.parametrize( "source", [ None, ToolSource(path=None), # Then will try to read one directory. ToolSource(path=""), # Then will try to read one directory. ToolSource(path="NotExistPath.py"), ], ) def test_load_source_error(self, source): # Create a mock Node object with a valid source path node = Node(name="mock", tool=None, inputs={}, source=source) resolver = ToolResolver(FLOW_ROOT) with pytest.raises(InvalidSource) as _: resolver._load_source_content(node)
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/executor/test_input_assignment_parser.py
from typing import Any import pytest from promptflow._core._errors import NotSupported from promptflow.contracts.flow import InputAssignment from promptflow.executor._errors import ( InputNotFound, InputNotFoundFromAncestorNodeOutput, InvalidReferenceProperty, UnsupportedReference, ) from promptflow.executor._input_assignment_parser import parse_node_property, parse_value FLOW_INPUTS = {"text": "hello promptflow"} NODE_OUTPUTS = {"node1": "hello promptflow"} class WrongInputAssignment: value: Any value_type: str = "wrong_type" section: str = "" property: str = "" class DummyObject: value: str = "dummy" @pytest.mark.unittest class TestInputAssignmentParser: @pytest.mark.parametrize( "input, expected_value", [ ("hello promptflow", "hello promptflow"), ("${inputs.text}", "hello promptflow"), ("${node1.output}", "hello promptflow"), ], ) def test_parse_value(self, input, expected_value): input_assignment = InputAssignment.deserialize(input) actual_value = parse_value(input_assignment, NODE_OUTPUTS, FLOW_INPUTS) assert actual_value == expected_value @pytest.mark.parametrize( "input, expected_error_class, expected_error_message", [ ( "${inputs.word}", InputNotFound, ( "The input 'word' is not found from flow inputs 'text'. " "Please check the input name and try again." ), ), ( "${node2.output}", InputNotFoundFromAncestorNodeOutput, ( "The input 'node2' is not found from ancestor node outputs ['node1']. " "Please check the node name and try again." ), ), ( "${node1.word}", UnsupportedReference, ( "The section 'word' of reference is currently unsupported. " "Please specify the output part of the node 'node1'." ), ), ( WrongInputAssignment(), NotSupported, ( "The type 'wrong_type' is currently unsupported. " "Please choose from available types: ['Literal', 'FlowInput', 'NodeReference'] and try again." ), ), ], ) def test_parse_value_with_exception(self, input, expected_error_class, expected_error_message): input_assignment = InputAssignment.deserialize(input) if isinstance(input, str) else input with pytest.raises(expected_error_class) as e: parse_value(input_assignment, NODE_OUTPUTS, FLOW_INPUTS) assert e.value.message == f"Flow execution failed. {expected_error_message}" @pytest.mark.parametrize( "node_val, property, expected_value", [ ( {"output": "hello promptflow"}, "output", "hello promptflow", ), ( {"output": "hello promptflow"}, "['output']", "hello promptflow", ), ( {"output": "hello promptflow"}, '["output"]', "hello promptflow", ), ( {"output": {"text": "hello promptflow"}}, '["output"]["text"]', "hello promptflow", ), ( ["output1", "output2"], "[1]", "output2", ), ( DummyObject(), "value", "dummy", ), ], ) def test_parse_node_property(self, node_val, property, expected_value): actual_value = parse_node_property("node1", node_val, property) assert actual_value == expected_value @pytest.mark.parametrize( "node_val, property, expected_error_message", [ ( {"output_str": ["output1", "output2"]}, "output_str[2]", ( "Invalid property 'output_str[2]' when accessing the node 'node1'. " "Please check the property and try again." ), ), ( {"word": "hello promptflow"}, "text", ( "Invalid property 'text' when accessing the node 'node1'. " "Please check the property and try again." ), ), ( DummyObject(), "value_type", ( "Invalid property 'value_type' when accessing the node 'node1'. " "Please check the property and try again." ), ), ], ) def test_parse_node_property_with_exception(self, node_val, property, expected_error_message): with pytest.raises(InvalidReferenceProperty) as e: parse_node_property("node1", node_val, property) assert e.value.message == f"Flow execution failed. {expected_error_message}"
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/executor/test_flow_executor.py
from unittest.mock import Mock import pytest from promptflow import tool from promptflow.contracts.flow import FlowInputDefinition from promptflow.contracts.tool import ValueType from promptflow.executor.flow_executor import ( FlowExecutor, _ensure_node_result_is_serializable, _inject_stream_options, enable_streaming_for_llm_tool, ) from promptflow.tools.aoai import chat, completion from promptflow.tools.embedding import embedding @pytest.mark.unittest class TestFlowExecutor: @pytest.mark.parametrize( "flow_inputs, aggregated_flow_inputs, aggregation_inputs, expected_inputs", [ ( { "input_from_default": FlowInputDefinition(type=ValueType.STRING, default="default_value"), }, {}, {}, {"input_from_default": ["default_value"]}, ), ( { "input_no_default": FlowInputDefinition(type=ValueType.STRING), }, {}, {}, {}, # No default value for input. ), ( { "input_from_default": FlowInputDefinition(type=ValueType.STRING, default="default_value"), }, {"input_from_default": "input_value", "another_key": "input_value"}, {}, {"input_from_default": "input_value", "another_key": "input_value"}, ), ( { "input_from_default": FlowInputDefinition(type=ValueType.STRING, default="default_value"), }, {"another_key": ["input_value", "input_value"]}, {}, { "input_from_default": ["default_value", "default_value"], "another_key": ["input_value", "input_value"], }, ), ( { "input_from_default": FlowInputDefinition(type=ValueType.BOOL, default=False), }, {"another_key": ["input_value", "input_value"]}, {}, { "input_from_default": [False, False], "another_key": ["input_value", "input_value"], }, ), ( { "input_from_default": FlowInputDefinition(type=ValueType.STRING, default="default_value"), }, {}, {"another_key_in_aggregation_inputs": ["input_value", "input_value"]}, { "input_from_default": ["default_value", "default_value"], }, ), ], ) def test_apply_default_value_for_aggregation_input( self, flow_inputs, aggregated_flow_inputs, aggregation_inputs, expected_inputs ): result = FlowExecutor._apply_default_value_for_aggregation_input( flow_inputs, aggregated_flow_inputs, aggregation_inputs ) assert result == expected_inputs def func_with_stream_parameter(a: int, b: int, stream=False): return a + b, stream def func_without_stream_parameter(a: int, b: int): return a + b class TestEnableStreamForLLMTool: @pytest.mark.parametrize( "tool, should_be_wrapped", [ (completion, True), (chat, True), (embedding, False), ], ) def test_enable_stream_for_llm_tool(self, tool, should_be_wrapped): func = enable_streaming_for_llm_tool(tool) is_wrapped = func != tool assert is_wrapped == should_be_wrapped def test_func_with_stream_parameter_should_be_wrapped(self): func = enable_streaming_for_llm_tool(func_with_stream_parameter) assert func != func_with_stream_parameter result = func(a=1, b=2) assert result == (3, True) result = func_with_stream_parameter(a=1, b=2) assert result == (3, False) def test_func_without_stream_parameter_should_not_be_wrapped(self): func = enable_streaming_for_llm_tool(func_without_stream_parameter) assert func == func_without_stream_parameter result = func(a=1, b=2) assert result == 3 def test_inject_stream_options_no_stream_param(self): # Test that the function does not wrap the decorated function if it has no stream parameter func = _inject_stream_options(lambda: True)(func_without_stream_parameter) assert func == func_without_stream_parameter result = func(a=1, b=2) assert result == 3 def test_inject_stream_options_with_stream_param(self): # Test that the function wraps the decorated function and injects the stream option func = _inject_stream_options(lambda: True)(func_with_stream_parameter) assert func != func_with_stream_parameter result = func(a=1, b=2) assert result == (3, True) result = func_with_stream_parameter(a=1, b=2) assert result == (3, False) def test_inject_stream_options_with_mocked_should_stream(self): # Test that the function uses the should_stream callable to determine the stream option should_stream = Mock(return_value=True) func = _inject_stream_options(should_stream)(func_with_stream_parameter) result = func(a=1, b=2) assert result == (3, True) should_stream.return_value = False result = func(a=1, b=2) assert result == (3, False) @tool def streaming_tool(): for i in range(10): yield i @tool def non_streaming_tool(): return 1 class TestEnsureNodeResultIsSerializable: def test_streaming_tool_should_be_consumed_and_merged(self): func = _ensure_node_result_is_serializable(streaming_tool) assert func() == "0123456789" def test_non_streaming_tool_should_not_be_affected(self): func = _ensure_node_result_is_serializable(non_streaming_tool) assert func() == 1
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/executor/test_exceptions.py
import pytest from promptflow.exceptions import PromptflowException @pytest.mark.unittest class TestExceptions: def test_exception_message(self): ex = PromptflowException( message_format="Test exception message with parameters: {param}, {param1}.", param="test_param", ) assert ex.message == "Test exception message with parameters: test_param, <param1>." assert None not in ex.message_parameters
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/executor/test_flow_nodes_scheduler.py
from concurrent.futures import Future from typing import Callable from unittest.mock import MagicMock import pytest from promptflow._core.flow_execution_context import FlowExecutionContext from promptflow.contracts.flow import Node from promptflow.executor._dag_manager import DAGManager from promptflow.executor._flow_nodes_scheduler import ( DEFAULT_CONCURRENCY_BULK, DEFAULT_CONCURRENCY_FLOW, FlowNodesScheduler, NoNodeExecutedError, ) @pytest.mark.unittest class TestFlowNodesScheduler: def setup_method(self): # Define mock objects and methods self.tools_manager = MagicMock() self.context = MagicMock(spec=FlowExecutionContext) self.context.invoke_tool.side_effect = lambda _, func, kwargs: func(**kwargs) self.scheduler = FlowNodesScheduler(self.tools_manager, {}, [], DEFAULT_CONCURRENCY_BULK, self.context) def test_maximun_concurrency(self): scheduler = FlowNodesScheduler(self.tools_manager, {}, [], 1000, self.context) assert scheduler._node_concurrency == DEFAULT_CONCURRENCY_FLOW def test_collect_outputs(self): future1 = Future() future1.set_result("output1") future2 = Future() future2.set_result("output2") node1 = MagicMock(spec=Node) node1.name = "node1" node2 = MagicMock(spec=Node) node2.name = "node2" self.scheduler._future_to_node = {future1: node1, future2: node2} completed_nodes_outputs = self.scheduler._collect_outputs([future1, future2]) assert completed_nodes_outputs == {"node1": future1.result(), "node2": future2.result()} def test_bypass_nodes(self): executor = MagicMock() dag_manager = MagicMock(spec=DAGManager) node1 = MagicMock(spec=Node) node1.name = "node1" # The return value will be a list with one item for the first time. # Will be a list without item for the second time. dag_manager.pop_bypassable_nodes.side_effect = ([node1], []) self.scheduler._dag_manager = dag_manager self.scheduler._execute_nodes(executor) self.scheduler._context.bypass_node.assert_called_once_with(node1) def test_submit_nodes(self): executor = MagicMock() dag_manager = MagicMock(spec=DAGManager) node1 = MagicMock(spec=Node) node1.name = "node1" dag_manager.pop_bypassable_nodes.return_value = [] # The return value will be a list with one item for the first time. # Will be a list without item for the second time. dag_manager.pop_ready_nodes.return_value = [node1] self.scheduler._dag_manager = dag_manager self.scheduler._execute_nodes(executor) self.scheduler._context.bypass_node.assert_not_called() assert node1 in self.scheduler._future_to_node.values() def test_future_cancelled_for_exception(self): dag_manager = MagicMock(spec=DAGManager) self.scheduler._dag_manager = dag_manager dag_manager.completed.return_value = False dag_manager.pop_bypassable_nodes.return_value = [] dag_manager.pop_ready_nodes.return_value = [] failed_future = Future() failed_future.set_exception(Exception("test")) from concurrent.futures._base import CANCELLED, FINISHED failed_future._state = FINISHED cancelled_future = Future() node1 = MagicMock(spec=Node) node1.name = "node1" node2 = MagicMock(spec=Node) node2.name = "node2" self.scheduler._future_to_node = {failed_future: node1, cancelled_future: node2} try: self.scheduler.execute() except Exception: pass # Assert another future is cancelled. assert CANCELLED in cancelled_future._state def test_success_result(self): dag_manager = MagicMock(spec=DAGManager) finished_future = Future() finished_future.set_result("output1") finished_node = MagicMock(spec=Node) finished_node.name = "node1" self.scheduler._dag_manager = dag_manager self.scheduler._future_to_node = {finished_future: finished_node} # No more nodes need to run. dag_manager.pop_bypassable_nodes.return_value = [] dag_manager.pop_ready_nodes.return_value = [] dag_manager.completed.side_effect = (False, True) bypassed_node_result = {"bypassed_node": "output2"} dag_manager.bypassed_nodes = bypassed_node_result completed_node_result = {"completed_node": "output1"} dag_manager.completed_nodes_outputs = completed_node_result result = self.scheduler.execute() dag_manager.complete_nodes.assert_called_once_with({"node1": "output1"}) assert result == (completed_node_result, bypassed_node_result) def test_no_nodes_to_run(self): dag_manager = MagicMock(spec=DAGManager) dag_manager.pop_bypassable_nodes.return_value = [] dag_manager.pop_ready_nodes.return_value = [] dag_manager.completed.return_value = False self.scheduler._dag_manager = dag_manager with pytest.raises(NoNodeExecutedError) as _: self.scheduler.execute() def test_execute_single_node(self): node_to_run = MagicMock(spec=Node) node_to_run.name = "node1" mock_callable = MagicMock(spec=Callable) mock_callable.return_value = "output1" self.scheduler._tools_manager.get_tool.return_value = mock_callable dag_manager = MagicMock(spec=DAGManager) dag_manager.get_node_valid_inputs.return_value = {"input": 1} result = self.scheduler._exec_single_node_in_thread((node_to_run, dag_manager)) mock_callable.assert_called_once_with(**{"input": 1}) assert result == "output1"
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/executor/test_errors.py
import pytest from promptflow._core.tool_meta_generator import PythonLoadError from promptflow.exceptions import ErrorTarget from promptflow.executor._errors import ResolveToolError def code_with_bug(): 1 / 0 def raise_resolve_tool_error(func, target=None, module=None): try: func() except Exception as e: if target: raise ResolveToolError(node_name="MyTool", target=target, module=module) from e raise ResolveToolError(node_name="MyTool") from e def raise_python_load_error(): try: code_with_bug() except Exception as e: raise PythonLoadError(message="Test PythonLoadError.") from e def test_resolve_tool_error(): with pytest.raises(ResolveToolError) as e: raise_resolve_tool_error(raise_python_load_error, ErrorTarget.TOOL, "__pf_main__") exception = e.value inner_exception = exception.inner_exception assert isinstance(inner_exception, PythonLoadError) assert exception.message == "Tool load failed in 'MyTool': (PythonLoadError) Test PythonLoadError." assert exception.additional_info == inner_exception.additional_info assert exception.error_codes == ["UserError", "ToolValidationError", "PythonParsingError", "PythonLoadError"] assert exception.reference_code == "Tool/__pf_main__" def test_resolve_tool_error_with_none_inner(): with pytest.raises(ResolveToolError) as e: raise ResolveToolError(node_name="MyTool") exception = e.value assert exception.inner_exception is None assert exception.message == "Tool load failed in 'MyTool'." assert exception.additional_info is None assert exception.error_codes == ["SystemError", "ResolveToolError"] assert exception.reference_code == "Executor" def test_resolve_tool_error_with_no_PromptflowException_inner(): with pytest.raises(ResolveToolError) as e: raise_resolve_tool_error(code_with_bug) exception = e.value assert isinstance(exception.inner_exception, ZeroDivisionError) assert exception.message == "Tool load failed in 'MyTool': (ZeroDivisionError) division by zero" assert exception.additional_info is None assert exception.error_codes == ["SystemError", "ZeroDivisionError"] assert exception.reference_code == "Executor"
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/batch/test_base_executor_proxy.py
import json from pathlib import Path from tempfile import mkdtemp from typing import Optional from unittest.mock import AsyncMock, patch import httpx import pytest from promptflow._utils.exception_utils import ExceptionPresenter from promptflow.batch._base_executor_proxy import APIBasedExecutorProxy from promptflow.batch._errors import ExecutorServiceUnhealthy from promptflow.contracts.run_info import Status from promptflow.exceptions import ErrorTarget, ValidationException from promptflow.executor._errors import ConnectionNotFound from promptflow.storage._run_storage import AbstractRunStorage from ...mock_execution_server import _get_aggr_result_dict, _get_line_result_dict @pytest.mark.unittest class TestAPIBasedExecutorProxy: @pytest.mark.asyncio @pytest.mark.parametrize( "has_error", [False, True], ) async def test_exec_line_async(self, has_error): mock_executor_proxy = await MockAPIBasedExecutorProxy.create("") run_id = "test_run_id" index = 1 inputs = {"question": "test"} with patch("httpx.AsyncClient.post", new_callable=AsyncMock) as mock: line_result_dict = _get_line_result_dict(run_id, index, inputs, has_error=has_error) status_code = 400 if has_error else 200 mock.return_value = httpx.Response(status_code, json=line_result_dict) line_result = await mock_executor_proxy.exec_line_async(inputs, index, run_id) assert line_result.output == {} if has_error else {"answer": "Hello world!"} assert line_result.run_info.run_id == run_id assert line_result.run_info.index == index assert line_result.run_info.status == Status.Failed if has_error else Status.Completed assert line_result.run_info.inputs == inputs assert (line_result.run_info.error is not None) == has_error @pytest.mark.asyncio async def test_exec_aggregation_async(self): mock_executor_proxy = await MockAPIBasedExecutorProxy.create("") run_id = "test_run_id" batch_inputs = {"question": ["test", "error"]} aggregation_inputs = {"${get_answer.output}": ["Incorrect", "Correct"]} with patch("httpx.AsyncClient.post", new_callable=AsyncMock) as mock: aggr_result_dict = _get_aggr_result_dict(run_id, aggregation_inputs) mock.return_value = httpx.Response(200, json=aggr_result_dict) aggr_result = await mock_executor_proxy.exec_aggregation_async(batch_inputs, aggregation_inputs, run_id) assert aggr_result.metrics == {"accuracy": 0.5} assert len(aggr_result.node_run_infos) == 1 assert aggr_result.node_run_infos["aggregation"].flow_run_id == run_id assert aggr_result.node_run_infos["aggregation"].inputs == aggregation_inputs assert aggr_result.node_run_infos["aggregation"].status == Status.Completed @pytest.mark.asyncio async def test_ensure_executor_startup_when_no_error(self): mock_executor_proxy = await MockAPIBasedExecutorProxy.create("") with patch.object(APIBasedExecutorProxy, "ensure_executor_health", new_callable=AsyncMock) as mock: with patch.object(APIBasedExecutorProxy, "_check_startup_error_from_file") as mock_check_startup_error: await mock_executor_proxy.ensure_executor_startup("") mock_check_startup_error.assert_not_called() mock.assert_called_once() @pytest.mark.asyncio async def test_ensure_executor_startup_when_not_healthy(self): # empty error file error_file = Path(mkdtemp()) / "error.json" error_file.touch() mock_executor_proxy = await MockAPIBasedExecutorProxy.create("") with patch.object(APIBasedExecutorProxy, "ensure_executor_health", new_callable=AsyncMock) as mock: mock.side_effect = ExecutorServiceUnhealthy("executor unhealthy") with pytest.raises(ExecutorServiceUnhealthy) as ex: await mock_executor_proxy.ensure_executor_startup(error_file) assert ex.value.message == "executor unhealthy" mock.assert_called_once() @pytest.mark.asyncio async def test_ensure_executor_startup_when_existing_validation_error(self): # prepare the error file error_file = Path(mkdtemp()) / "error.json" error_message = "Connection 'aoai_conn' not found" error_dict = ExceptionPresenter.create(ConnectionNotFound(message=error_message)).to_dict() with open(error_file, "w") as file: json.dump(error_dict, file, indent=4) mock_executor_proxy = await MockAPIBasedExecutorProxy.create("") with patch.object(APIBasedExecutorProxy, "ensure_executor_health", new_callable=AsyncMock) as mock: mock.side_effect = ExecutorServiceUnhealthy("executor unhealthy") with pytest.raises(ValidationException) as ex: await mock_executor_proxy.ensure_executor_startup(error_file) assert ex.value.message == error_message assert ex.value.target == ErrorTarget.BATCH @pytest.mark.asyncio async def test_ensure_executor_health_when_healthy(self): mock_executor_proxy = await MockAPIBasedExecutorProxy.create("") with patch.object(APIBasedExecutorProxy, "_check_health", return_value=True) as mock: await mock_executor_proxy.ensure_executor_health() mock.assert_called_once() @pytest.mark.asyncio async def test_ensure_executor_health_when_unhealthy(self): mock_executor_proxy = await MockAPIBasedExecutorProxy.create("") with patch.object(APIBasedExecutorProxy, "_check_health", return_value=False) as mock: with pytest.raises(ExecutorServiceUnhealthy): await mock_executor_proxy.ensure_executor_health() assert mock.call_count == 20 @pytest.mark.asyncio async def test_ensure_executor_health_when_not_active(self): mock_executor_proxy = await MockAPIBasedExecutorProxy.create("") with patch.object(APIBasedExecutorProxy, "_check_health", return_value=False) as mock: with patch.object(APIBasedExecutorProxy, "_is_executor_active", return_value=False): with pytest.raises(ExecutorServiceUnhealthy): await mock_executor_proxy.ensure_executor_health() mock.assert_not_called() @pytest.mark.asyncio @pytest.mark.parametrize( "mock_value, expected_result", [ (httpx.Response(200), True), (httpx.Response(500), False), (Exception("error"), False), ], ) async def test_check_health(self, mock_value, expected_result): mock_executor_proxy = await MockAPIBasedExecutorProxy.create("") with patch("httpx.AsyncClient.get", new_callable=AsyncMock) as mock: mock.return_value = mock_value assert await mock_executor_proxy._check_health() is expected_result @pytest.mark.asyncio @pytest.mark.parametrize( "response, expected_result", [ ( httpx.Response(200, json={"result": "test"}), {"result": "test"}, ), ( httpx.Response(500, json={"error": "test error"}), "test error", ), ( httpx.Response(400, json={"detail": "test"}), { "message": 'Unexpected error when executing a line, status code: 400, error: {"detail": "test"}', "messageFormat": ( "Unexpected error when executing a line, " "status code: {status_code}, error: {error}" ), "messageParameters": { "status_code": "400", "error": '{"detail": "test"}', }, "referenceCode": "Unknown", "code": "SystemError", "innerError": { "code": "UnexpectedError", "innerError": None, }, }, ), ( httpx.Response(502, text="test"), { "message": "Unexpected error when executing a line, status code: 502, error: test", "messageFormat": ( "Unexpected error when executing a line, " "status code: {status_code}, error: {error}" ), "messageParameters": { "status_code": "502", "error": "test", }, "referenceCode": "Unknown", "code": "SystemError", "innerError": { "code": "UnexpectedError", "innerError": None, }, }, ), ], ) async def test_process_http_response(self, response, expected_result): mock_executor_proxy = await MockAPIBasedExecutorProxy.create("") assert mock_executor_proxy._process_http_response(response) == expected_result class MockAPIBasedExecutorProxy(APIBasedExecutorProxy): @property def api_endpoint(self) -> str: return "http://localhost:8080" @classmethod async def create( cls, flow_file: Path, working_dir: Optional[Path] = None, *, connections: Optional[dict] = None, storage: Optional[AbstractRunStorage] = None, **kwargs, ) -> "MockAPIBasedExecutorProxy": return MockAPIBasedExecutorProxy()
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/batch/test_batch_inputs_processor.py
import json from pathlib import Path from tempfile import mkdtemp import pytest from promptflow._core._errors import UnexpectedError from promptflow._utils.utils import dump_list_to_jsonl from promptflow.batch._batch_inputs_processor import BatchInputsProcessor, apply_inputs_mapping from promptflow.batch._errors import EmptyInputsData, InputMappingError from promptflow.contracts.flow import FlowInputDefinition from promptflow.contracts.tool import ValueType from ...utils import DATA_ROOT @pytest.mark.unittest class TestBatchInputsProcessor: def test_process_batch_inputs(self): data = [ {"question": "What's promptflow?"}, {"question": "Do you like promptflow?"}, ] data_file = Path(mkdtemp()) / "data.jsonl" dump_list_to_jsonl(data_file, data) input_dirs = {"data": data_file} inputs_mapping = {"question": "${data.question}"} batch_inputs = BatchInputsProcessor("", {}).process_batch_inputs(input_dirs, inputs_mapping) assert batch_inputs == [ {"line_number": 0, "question": "What's promptflow?"}, {"line_number": 1, "question": "Do you like promptflow?"}, ] def test_process_batch_inputs_error(self): data_file = Path(mkdtemp()) / "data.jsonl" data_file.touch() input_dirs = {"data": data_file} inputs_mapping = {"question": "${data.question}"} with pytest.raises(EmptyInputsData) as e: BatchInputsProcessor("", {}).process_batch_inputs(input_dirs, inputs_mapping) expected_error_message = ( "Couldn't find any inputs data at the given input paths. " "Please review the provided path and consider resubmitting." ) assert expected_error_message in e.value.message def test_resolve_data_from_input_path(self): inputs_dir = Path(mkdtemp()) # data.jsonl data = [ {"question": "What's promptflow?"}, {"question": "Do you like promptflow?"}, ] data_file = inputs_dir / "data.jsonl" dump_list_to_jsonl(data_file, data) # inputs.json inputs_file = inputs_dir / "inputs.json" with open(inputs_file, "w") as file: file.write(json.dumps(data)) result = BatchInputsProcessor("", {})._resolve_data_from_input_path(inputs_dir) assert result == data + data # if has max_lines_count result = BatchInputsProcessor("", {}, max_lines_count=1)._resolve_data_from_input_path(inputs_dir) assert result == [ {"question": "What's promptflow?"}, ] @pytest.mark.parametrize( "data_path", [ "10k.jsonl", "10k", ], ) def test_resolve_data_from_input_path_with_large_data(self, data_path): data_path = DATA_ROOT / "load_data_cases" / data_path result = BatchInputsProcessor("", {})._resolve_data_from_input_path(Path(data_path)) assert isinstance(result, list) assert len(result) == 10000 # specify max_rows_count max_rows_count = 5 head_results = BatchInputsProcessor( working_dir="", flow_inputs={}, max_lines_count=max_rows_count, )._resolve_data_from_input_path(Path(data_path)) assert isinstance(head_results, list) assert len(head_results) == max_rows_count assert result[:max_rows_count] == head_results @pytest.mark.parametrize( "inputs, inputs_mapping, expected", [ ( {"data.test": {"question": "longer input key has lower priority."}, "line_number": 0}, { "question": "${data.test.question}", # Question from the data "value": 1, }, {"question": "longer input key has lower priority.", "value": 1, "line_number": 0}, ), ( { # Missing line_number is also valid data. "data.test": {"question": "longer input key has lower priority."}, "data": {"test.question": "Shorter input key has higher priority."}, }, { "question": "${data.test.question}", # Question from the data "deployment_name": "text-davinci-003", # literal value }, { "question": "Shorter input key has higher priority.", "deployment_name": "text-davinci-003", }, ), ], ) def test_apply_inputs_mapping(self, inputs, inputs_mapping, expected): result = apply_inputs_mapping(inputs, inputs_mapping) assert expected == result, "Expected: {}, Actual: {}".format(expected, result) @pytest.mark.parametrize( "inputs, inputs_mapping, error_code, error_message", [ ( { "baseline": {"answer": 123, "question": "dummy"}, }, { "question": "${baseline.output}", "answer": "${data.output}", }, InputMappingError, "Couldn't find these mapping relations: ${baseline.output}, ${data.output}. " "Please make sure your input mapping keys and values match your YAML input section and input data.", ), ], ) def test_apply_inputs_mapping_error(self, inputs, inputs_mapping, error_code, error_message): with pytest.raises(error_code) as e: apply_inputs_mapping(inputs, inputs_mapping) assert error_message in str(e.value), "Expected: {}, Actual: {}".format(error_message, str(e.value)) @pytest.mark.parametrize( "inputs, expected", [ ( { "data": [{"question": "q1", "answer": "ans1"}, {"question": "q2", "answer": "ans2"}], "output": [{"answer": "output_ans1"}, {"answer": "output_ans2"}], }, [ # Get 2 lines data. { "data": {"question": "q1", "answer": "ans1"}, "output": {"answer": "output_ans1"}, "line_number": 0, }, { "data": {"question": "q2", "answer": "ans2"}, "output": {"answer": "output_ans2"}, "line_number": 1, }, ], ), ( { "data": [{"question": "q1", "answer": "ans1"}, {"question": "q2", "answer": "ans2"}], "output": [{"answer": "output_ans2", "line_number": 1}], }, [ # Only one line valid data. { "data": {"question": "q2", "answer": "ans2"}, "output": {"answer": "output_ans2", "line_number": 1}, "line_number": 1, }, ], ), ], ) def test_merge_input_dicts_by_line(self, inputs, expected): result = BatchInputsProcessor("", {})._merge_input_dicts_by_line(inputs) json.dumps(result) assert expected == result, "Expected: {}, Actual: {}".format(expected, result) @pytest.mark.parametrize( "inputs, error_code, error_message", [ ( { "baseline": [], }, InputMappingError, "The input for batch run is incorrect. Input from key 'baseline' is an empty list, which means we " "cannot generate a single line input for the flow run. Please rectify the input and try again.", ), ( { "data": [{"question": "q1", "answer": "ans1"}, {"question": "q2", "answer": "ans2"}], "baseline": [{"answer": "baseline_ans2"}], }, InputMappingError, "The input for batch run is incorrect. Line numbers are not aligned. Some lists have dictionaries " "missing the 'line_number' key, and the lengths of these lists are different. List lengths are: " "{'data': 2, 'baseline': 1}. Please make sure these lists have the same length " "or add 'line_number' key to each dictionary.", ), ], ) def test_merge_input_dicts_by_line_error(self, inputs, error_code, error_message): with pytest.raises(error_code) as e: BatchInputsProcessor("", {})._merge_input_dicts_by_line(inputs) assert error_message == str(e.value), "Expected: {}, Actual: {}".format(error_message, str(e.value)) @pytest.mark.parametrize("inputs_mapping", [{"question": "${data.question}"}, {}]) def test_complete_inputs_mapping_by_default_value(self, inputs_mapping): inputs = { "question": None, "groundtruth": None, "input_with_default_value": FlowInputDefinition(type=ValueType.BOOL, default=False), } updated_inputs_mapping = BatchInputsProcessor("", inputs)._complete_inputs_mapping_by_default_value( inputs_mapping ) assert "input_with_default_value" not in updated_inputs_mapping assert updated_inputs_mapping == {"question": "${data.question}", "groundtruth": "${data.groundtruth}"} @pytest.mark.parametrize( "inputs, inputs_mapping, expected", [ ( # Use default mapping generated from flow inputs. { "data": [{"question": "q1", "groundtruth": "ans1"}, {"question": "q2", "groundtruth": "ans2"}], }, {}, [ { "question": "q1", "groundtruth": "ans1", "line_number": 0, }, { "question": "q2", "groundtruth": "ans2", "line_number": 1, }, ], ), ( # Partially use default mapping generated from flow inputs. { "data": [{"question": "q1", "groundtruth": "ans1"}, {"question": "q2", "groundtruth": "ans2"}], }, { "question": "${data.question}", }, [ { "question": "q1", "groundtruth": "ans1", "line_number": 0, }, { "question": "q2", "groundtruth": "ans2", "line_number": 1, }, ], ), ( { "data": [ {"question": "q1", "answer": "ans1", "line_number": 5}, {"question": "q2", "answer": "ans2", "line_number": 6}, ], "baseline": [ {"answer": "baseline_ans1", "line_number": 5}, {"answer": "baseline_ans2", "line_number": 7}, ], }, { "question": "${data.question}", # Question from the data "groundtruth": "${data.answer}", # Answer from the data "baseline": "${baseline.answer}", # Answer from the baseline "deployment_name": "text-davinci-003", # literal value "line_number": "${data.question}", # line_number mapping should be ignored }, [ { "question": "q1", "groundtruth": "ans1", "baseline": "baseline_ans1", "deployment_name": "text-davinci-003", "line_number": 5, }, ], ), ], ) def test_validate_and_apply_inputs_mapping(self, inputs, inputs_mapping, expected): flow_inputs = {"question": None, "groundtruth": None} result = BatchInputsProcessor("", flow_inputs)._validate_and_apply_inputs_mapping(inputs, inputs_mapping) assert expected == result, "Expected: {}, Actual: {}".format(expected, result) def test_validate_and_apply_inputs_mapping_empty_input(self): inputs = { "data": [{"question": "q1", "answer": "ans1"}, {"question": "q2", "answer": "ans2"}], "baseline": [{"answer": "baseline_ans1"}, {"answer": "baseline_ans2"}], } result = BatchInputsProcessor("", {})._validate_and_apply_inputs_mapping(inputs, {}) assert result == [ {"line_number": 0}, {"line_number": 1}, ], "Empty flow inputs and inputs_mapping should return list with empty dicts." @pytest.mark.parametrize( "inputs_mapping, error_code", [ ( {"question": "${question}"}, InputMappingError, ), ], ) def test_validate_and_apply_inputs_mapping_error(self, inputs_mapping, error_code): flow_inputs = {"question": None} with pytest.raises(error_code) as _: BatchInputsProcessor("", flow_inputs)._validate_and_apply_inputs_mapping( inputs={}, inputs_mapping=inputs_mapping ) @pytest.mark.parametrize( "inputs, inputs_mapping, error_code, error_message", [ ( { "data": [{"question": "q1", "answer": "ans1"}, {"question": "q2", "answer": "ans2"}], }, None, UnexpectedError, "The input for batch run is incorrect. Please make sure to set up a proper input mapping " "before proceeding. If you need additional help, feel free to contact support for further assistance.", ), ], ) def test_inputs_mapping_for_all_lines_error(self, inputs, inputs_mapping, error_code, error_message): with pytest.raises(error_code) as e: BatchInputsProcessor("", {})._apply_inputs_mapping_for_all_lines(inputs, inputs_mapping) assert error_message == str(e.value), "Expected: {}, Actual: {}".format(error_message, str(e.value))
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/batch/test_batch_engine.py
from pathlib import Path from tempfile import mkdtemp from unittest.mock import Mock, patch import pytest from promptflow._core._errors import UnexpectedError from promptflow.batch import APIBasedExecutorProxy, BatchEngine, CSharpExecutorProxy, PythonExecutorProxy from promptflow.contracts.run_info import Status from promptflow.exceptions import ErrorTarget from promptflow.executor._errors import ConnectionNotFound from promptflow.executor._result import AggregationResult from ...utils import MemoryRunStorage, get_yaml_file, load_jsonl from .test_result import get_line_results, get_node_run_infos @pytest.mark.unittest class TestBatchEngine: @pytest.mark.parametrize( "side_effect, ex_type, ex_target, ex_codes, ex_msg", [ ( Exception("test error"), UnexpectedError, ErrorTarget.BATCH, ["SystemError", "UnexpectedError"], "Unexpected error occurred while executing the batch run. Error: (Exception) test error.", ), ( ConnectionNotFound(message="Connection 'aoai_conn' not found"), ConnectionNotFound, ErrorTarget.EXECUTOR, ["UserError", "ValidationError", "InvalidRequest", "ConnectionNotFound"], "Connection 'aoai_conn' not found", ), ], ) def test_batch_engine_run_error(self, side_effect, ex_type, ex_target, ex_codes, ex_msg): batch_engine = BatchEngine(get_yaml_file("print_input_flow")) with patch("promptflow.batch._batch_engine.BatchEngine._exec_in_task") as mock_func: mock_func.side_effect = side_effect with patch( "promptflow.batch._batch_inputs_processor.BatchInputsProcessor.process_batch_inputs", new=Mock() ): with pytest.raises(ex_type) as e: batch_engine.run({}, {}, Path(".")) assert e.value.target == ex_target assert e.value.error_codes == ex_codes assert e.value.message == ex_msg def test_register_executor(self): # assert original values assert BatchEngine.executor_proxy_classes["python"] == PythonExecutorProxy assert BatchEngine.executor_proxy_classes["csharp"] == CSharpExecutorProxy class MockJSExecutorProxy(APIBasedExecutorProxy): pass # register new proxy BatchEngine.register_executor("js", MockJSExecutorProxy) assert BatchEngine.executor_proxy_classes["js"] == MockJSExecutorProxy assert len(BatchEngine.executor_proxy_classes) == 3 def test_cancel(self): batch_engine = BatchEngine(get_yaml_file("print_input_flow")) assert batch_engine._is_canceled is False batch_engine.cancel() assert batch_engine._is_canceled is True def test_persist_run_info(self): line_dict = { 0: {"node_0": Status.Completed, "node_1": Status.Completed, "node_2": Status.Completed}, 1: {"node_0": Status.Completed, "node_1": Status.Failed, "node_2": Status.Completed}, 2: {"node_0": Status.Completed, "node_1": Status.Completed, "node_2": Status.Bypassed}, } line_results = get_line_results(line_dict) mem_run_storge = MemoryRunStorage() batch_engine = BatchEngine(get_yaml_file("print_input_flow"), "", storage=mem_run_storge) batch_engine._persist_run_info(line_results) assert len(mem_run_storge._flow_runs) == 3 assert len(mem_run_storge._node_runs) == 9 def test_persist_outputs(self): outputs = [ {"line_number": 0, "output": "Hello World!"}, {"line_number": 1, "output": "Hello Microsoft!"}, {"line_number": 2, "output": "Hello Promptflow!"}, ] output_dir = Path(mkdtemp()) batch_engine = BatchEngine(get_yaml_file("print_input_flow")) batch_engine._persist_outputs(outputs, output_dir) actual_outputs = load_jsonl(output_dir / "output.jsonl") assert actual_outputs == outputs def test_update_aggr_result(self): output = {"output": "Hello World!"} metrics = {"accuracy": 0.9} node_run_infos = get_node_run_infos({"aggr_1": Status.Completed, "aggr_2": Status.Completed}) aggre_result = AggregationResult(output={}, metrics={}, node_run_infos={}) aggr_exec_result = AggregationResult(output=output, metrics=metrics, node_run_infos=node_run_infos) batch_engine = BatchEngine(get_yaml_file("print_input_flow")) batch_engine._update_aggr_result(aggre_result, aggr_exec_result) assert aggre_result.output == output assert aggre_result.metrics == metrics assert aggre_result.node_run_infos == node_run_infos
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/batch/test_csharp_executor_proxy.py
import json import socket import subprocess from pathlib import Path from tempfile import mkdtemp from unittest.mock import MagicMock, patch import pytest from promptflow._core._errors import MetaFileNotFound, MetaFileReadError from promptflow._sdk._constants import FLOW_TOOLS_JSON, PROMPT_FLOW_DIR_NAME from promptflow.batch import CSharpExecutorProxy from promptflow.executor._result import AggregationResult from ...utils import get_flow_folder, get_yaml_file async def get_executor_proxy(): flow_file = get_yaml_file("csharp_flow") working_dir = get_flow_folder("csharp_flow") with patch.object(CSharpExecutorProxy, "ensure_executor_startup", return_value=None): return await CSharpExecutorProxy.create(flow_file, working_dir) @pytest.mark.unittest class TestCSharpExecutorProxy: @pytest.mark.asyncio async def test_create(self): with patch("subprocess.Popen") as mock_popen: mock_popen.return_value = MagicMock() executor_proxy = await get_executor_proxy() mock_popen.assert_called_once() assert executor_proxy is not None assert executor_proxy._process is not None assert executor_proxy._port is not None assert executor_proxy.api_endpoint == f"http://localhost:{executor_proxy._port}" @pytest.mark.asyncio async def test_destroy_with_already_terminated(self): mock_process = MagicMock() mock_process.poll.return_value = 0 executor_proxy = await get_executor_proxy() executor_proxy._process = mock_process await executor_proxy.destroy() mock_process.poll.assert_called_once() mock_process.terminate.assert_not_called() @pytest.mark.asyncio async def test_destroy_with_terminates_gracefully(self): mock_process = MagicMock() mock_process.poll.return_value = None executor_proxy = await get_executor_proxy() executor_proxy._process = mock_process await executor_proxy.destroy() mock_process.poll.assert_called_once() mock_process.terminate.assert_called_once() mock_process.wait.assert_called_once_with(timeout=5) mock_process.kill.assert_not_called() @pytest.mark.asyncio async def test_destroy_with_force_kill(self): mock_process = MagicMock() mock_process.poll.return_value = None mock_process.wait.side_effect = subprocess.TimeoutExpired(cmd="cmd", timeout=5) executor_proxy = await get_executor_proxy() executor_proxy._process = mock_process await executor_proxy.destroy() mock_process.poll.assert_called_once() mock_process.terminate.assert_called_once() mock_process.wait.assert_called_once_with(timeout=5) mock_process.kill.assert_called_once() @pytest.mark.asyncio async def test_exec_aggregation_async(self): executor_proxy = await get_executor_proxy() aggr_result = await executor_proxy.exec_aggregation_async("", "", "") assert isinstance(aggr_result, AggregationResult) @pytest.mark.asyncio @pytest.mark.parametrize( "exit_code, expected_result", [ (None, True), (0, False), (1, False), ], ) async def test_is_executor_active(self, exit_code, expected_result): executor_proxy = await get_executor_proxy() executor_proxy._process = MagicMock() executor_proxy._process.poll.return_value = exit_code assert executor_proxy._is_executor_active() == expected_result def test_get_tool_metadata_succeed(self): working_dir = Path(mkdtemp()) expected_tool_meta = {"name": "csharp_flow", "version": "0.1.0"} tool_meta_file = working_dir / PROMPT_FLOW_DIR_NAME / FLOW_TOOLS_JSON tool_meta_file.parent.mkdir(parents=True, exist_ok=True) with open(tool_meta_file, "w") as file: json.dump(expected_tool_meta, file, indent=4) tool_meta = CSharpExecutorProxy.get_tool_metadata("", working_dir) assert tool_meta == expected_tool_meta def test_get_tool_metadata_failed_with_file_not_found(self): working_dir = Path(mkdtemp()) with pytest.raises(MetaFileNotFound): CSharpExecutorProxy.get_tool_metadata("", working_dir) def test_get_tool_metadata_failed_with_content_not_json(self): working_dir = Path(mkdtemp()) tool_meta_file = working_dir / PROMPT_FLOW_DIR_NAME / FLOW_TOOLS_JSON tool_meta_file.parent.mkdir(parents=True, exist_ok=True) tool_meta_file.touch() with pytest.raises(MetaFileReadError): CSharpExecutorProxy.get_tool_metadata("", working_dir) def test_find_available_port(self): port = CSharpExecutorProxy.find_available_port() assert isinstance(port, str) assert int(port) > 0, "Port number should be greater than 0" try: with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: s.bind(("localhost", int(port))) except OSError: pytest.fail("Port is not actually available")
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/batch/test_result.py
from datetime import datetime import pytest from promptflow.batch._result import BatchResult, ErrorSummary, LineError, SystemMetrics from promptflow.contracts.run_info import FlowRunInfo from promptflow.contracts.run_info import RunInfo as NodeRunInfo from promptflow.contracts.run_info import Status from promptflow.executor._result import AggregationResult, LineResult def get_node_run_infos(node_dict: dict, index=None, api_calls=None, system_metrics=None): return { k: NodeRunInfo( node=k, flow_run_id="flow_run_id", run_id=f"{index}_run_id_{k}", status=v, inputs=[], output={}, metrics={}, error={"code": "UserError", "message": "test message"} if v == Status.Failed else None, parent_run_id="", start_time=None, end_time=None, index=index, api_calls=api_calls, system_metrics=system_metrics, ) for k, v in node_dict.items() } def get_flow_run_info(status_dict: dict, index: int): status = Status.Failed if any(status == Status.Failed for status in status_dict.values()) else Status.Completed error = {"code": "UserError", "message": "test message"} if status == Status.Failed else None return FlowRunInfo( run_id=f"{index}_run_id", status=status, error=error, inputs={}, output={}, metrics={}, request=None, parent_run_id="", root_run_id="", source_run_id="", flow_id="", start_time=datetime.utcnow(), end_time=datetime.utcnow(), index=index, ) def get_line_results(line_dict: dict, api_calls=None, system_metrics=None): return [ LineResult( output={}, aggregation_inputs={}, run_info=get_flow_run_info(status_dict=v, index=k), node_run_infos=get_node_run_infos(node_dict=v, index=k, api_calls=api_calls, system_metrics=system_metrics), ) for k, v in line_dict.items() ] def get_aggregation_result(aggr_dict: dict, api_calls=None, system_metrics=None): return AggregationResult( output={}, metrics={}, node_run_infos=get_node_run_infos(node_dict=aggr_dict, api_calls=api_calls, system_metrics=system_metrics), ) def get_batch_result(line_dict, aggr_dict, line_api_calls=None, aggr_api_calls=None): line_results = get_line_results(line_dict=line_dict, api_calls=line_api_calls) aggr_result = get_aggregation_result(aggr_dict=aggr_dict, api_calls=aggr_api_calls) return BatchResult.create(datetime.utcnow(), datetime.utcnow(), line_results=line_results, aggr_result=aggr_result) def get_api_call(type, name, inputs={}, output={}, children=None): return {"type": type, "name": name, "inputs": inputs, "output": output, "children": children} @pytest.mark.unittest class TestBatchResult: def test_node_status(self): line_dict = { 0: {"node_0": Status.Completed, "node_1": Status.Completed, "node_2": Status.Completed}, 1: {"node_0": Status.Completed, "node_1": Status.Failed, "node_2": Status.Completed}, 2: {"node_0": Status.Completed, "node_1": Status.Completed, "node_2": Status.Bypassed}, } aggr_dict = {"aggr_0": Status.Completed, "aggr_1": Status.Failed, "aggr_2": Status.Bypassed} batch_result = get_batch_result(line_dict=line_dict, aggr_dict=aggr_dict) assert batch_result.total_lines == 3 assert batch_result.completed_lines == 2 assert batch_result.failed_lines == 1 assert batch_result.node_status == { "node_0.completed": 3, "node_1.completed": 2, "node_1.failed": 1, "node_2.completed": 2, "node_2.bypassed": 1, "aggr_0.completed": 1, "aggr_1.failed": 1, "aggr_2.bypassed": 1, } def test_system_metrics(self): from openai.types.completion import Completion, CompletionChoice line_dict = {0: {"node_0": Status.Completed}} aggr_dict = {"aggr_0": Status.Completed} api_call_1 = get_api_call( "LLM", "openai.resources.completions.Completions.create", inputs={"prompt": "Please tell me a joke.", "model": "text-davinci-003"}, output={"choices": [{"text": "text"}]}, ) api_call_2 = get_api_call( "LLM", "openai.resources.completions.Completions.create", inputs={ "prompt": ["Please tell me a joke.", "Please tell me a joke about fruit."], "model": "text-davinci-003", }, output=[ Completion( choices=[CompletionChoice(text="text", finish_reason="stop", index=0, logprobs=None)], id="id", created=0, model="model", object="text_completion", ), Completion( choices=[CompletionChoice(text="text", finish_reason="stop", index=0, logprobs=None)], id="id", created=0, model="model", object="text_completion", ), ], ) line_api_calls = get_api_call("Chain", "Chain", children=[api_call_1, api_call_2]) aggr_api_call = get_api_call( "LLM", "openai.resources.chat.completions.Completions.create", inputs={ "messages": [{"system": "You are a helpful assistant.", "user": "Please tell me a joke."}], "model": "gpt-35-turbo", }, output={"choices": [{"message": {"content": "content"}}]}, ) batch_result = get_batch_result( line_dict=line_dict, aggr_dict=aggr_dict, line_api_calls=[line_api_calls], aggr_api_calls=[aggr_api_call] ) assert batch_result.system_metrics.total_tokens == 42 assert batch_result.system_metrics.prompt_tokens == 38 assert batch_result.system_metrics.completion_tokens == 4 system_metrics_dict = { "total_tokens": 42, "prompt_tokens": 38, "completion_tokens": 4, } assert system_metrics_dict.items() <= batch_result.system_metrics.to_dict().items() @pytest.mark.parametrize( "api_call", [ get_api_call("LLM", "Completion", inputs="invalid"), get_api_call("LLM", "Completion", output="invalid"), get_api_call("LLM", "Invalid"), get_api_call("LLM", "Completion"), get_api_call("LLM", "Completion", inputs={"api_type": "azure"}), get_api_call("LLM", "ChatCompletion", inputs={"api_type": "azure", "engine": "invalid"}), ], ) def test_invalid_api_calls(self, api_call): line_dict = {0: {"node_0": Status.Completed}} batch_result = get_batch_result(line_dict=line_dict, aggr_dict={}, line_api_calls=[api_call]) assert batch_result.system_metrics.total_tokens == 0 assert batch_result.system_metrics.completion_tokens == 0 assert batch_result.system_metrics.prompt_tokens == 0 def test_error_summary(self): line_dict = { 0: {"node_0": Status.Completed, "node_1": Status.Completed, "node_2": Status.Completed}, 1: {"node_0": Status.Completed, "node_1": Status.Failed, "node_2": Status.Completed}, 2: {"node_0": Status.Completed, "node_1": Status.Completed, "node_2": Status.Bypassed}, } aggr_dict = { "aggr_0": Status.Completed, "aggr_1": Status.Failed, "aggr_2": Status.Bypassed, "aggr_4": Status.Failed, } batch_result = get_batch_result(line_dict=line_dict, aggr_dict=aggr_dict) assert batch_result.total_lines == 3 assert batch_result.failed_lines == 1 assert batch_result.error_summary.failed_system_error_lines == 0 assert batch_result.error_summary.failed_user_error_lines == 1 assert batch_result.error_summary.error_list == [ LineError(line_number=1, error={"code": "UserError", "message": "test message"}), ] assert batch_result.error_summary.error_list[0].to_dict() == { "line_number": 1, "error": { "code": "UserError", "message": "test message", }, } assert batch_result.error_summary.aggr_error_dict == { "aggr_1": {"code": "UserError", "message": "test message"}, "aggr_4": {"code": "UserError", "message": "test message"}, } @pytest.mark.unittest class TestErrorSummary: def test_create(self): line_dict = { 0: {"node_0": Status.Failed, "node_1": Status.Completed, "node_2": Status.Completed}, 1: {"node_0": Status.Completed, "node_1": Status.Failed, "node_2": Status.Completed}, } line_results = get_line_results(line_dict) line_results[0].run_info.error = {"code": "SystemError", "message": "test system error message"} aggr_dict = {"aggr_0": Status.Completed, "aggr_1": Status.Failed} aggr_result = get_aggregation_result(aggr_dict) error_summary = ErrorSummary.create(line_results, aggr_result) assert error_summary.failed_user_error_lines == 1 assert error_summary.failed_system_error_lines == 1 assert error_summary.error_list == [ LineError(line_number=0, error={"code": "SystemError", "message": "test system error message"}), LineError(line_number=1, error={"code": "UserError", "message": "test message"}), ] assert error_summary.aggr_error_dict == {"aggr_1": {"code": "UserError", "message": "test message"}} @pytest.mark.unittest class TestSystemMetrics: def test_create(slef): line_dict = { 0: {"node_0": Status.Completed, "node_1": Status.Completed}, 1: {"node_0": Status.Completed, "node_1": Status.Completed}, } line_system_metrics = { "total_tokens": 5, "prompt_tokens": 3, "completion_tokens": 2, } line_results = get_line_results(line_dict, system_metrics=line_system_metrics) aggr_dict = {"aggr_0": Status.Completed} # invalid system metrics aggr_system_metrics = { "total_tokens": 10, "prompt_tokens": 6, } aggr_result = get_aggregation_result(aggr_dict, system_metrics=aggr_system_metrics) system_metrics = SystemMetrics.create(datetime.utcnow(), datetime.utcnow(), line_results, aggr_result) assert system_metrics.total_tokens == 20 assert system_metrics.prompt_tokens == 12 assert system_metrics.completion_tokens == 8 system_metrics_dict = { "total_tokens": 20, "prompt_tokens": 12, "completion_tokens": 8, } assert system_metrics_dict.items() <= system_metrics.to_dict().items()
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/integrations/test_langchain.py
import pytest from langchain.schema import AgentAction, AgentFinish from promptflow.integrations.langchain import LangChainEventType, PromptFlowCallbackHandler @pytest.mark.unittest class TestLangchain: def get_handler(self): class MockTracer(): def __init__(self): self._trace_stack = [] def _push(self, trace): self._trace_stack.append(trace) def _pop(self, output=None, error=None): self._trace_stack.pop() handler = PromptFlowCallbackHandler() handler._tracer = MockTracer() return handler def test_langchain_traces(self): handler = self.get_handler() handler.on_agent_action(action=AgentAction("test_agent_name", "test", "test")) handler.on_tool_start(serialized={"name": "test_tool_name"}, input_str="test") handler.on_chain_start(serialized={"id": ["test_chain_name"]}, inputs={"test": "test"}) handler.on_llm_start(serialized={"test": "test"}, prompts=["test"]) assert handler._events_stack == [ LangChainEventType.AGENT, LangChainEventType.TOOL, LangChainEventType.CHAIN, LangChainEventType.LLM ] assert len(handler._tracer._trace_stack) == 4 assert handler._tracer._trace_stack[0].name == "test_agent_name" assert handler._tracer._trace_stack[1].name == "test_tool_name" assert handler._tracer._trace_stack[2].name == "test_chain_name" assert handler._tracer._trace_stack[3].name == "LLM" # The default name handler.on_llm_error(error=None) handler.on_chain_error(error=None) handler.on_tool_error(error=None) handler.on_agent_finish(finish=AgentFinish({"test": "test"}, "test")) assert len(handler._events_stack) == 0 assert len(handler._tracer._trace_stack) == 0 def test_langchain_traces_with_unpaired_events(self): handler = self.get_handler() handler.on_tool_start(serialized={"test": "test"}, input_str="test") # Missing on_chain_start # Missing on_llm_start assert len(handler._tracer._trace_stack) == 1 handler.on_llm_end(response=None) handler.on_chain_end(outputs={"test": "test"}) assert len(handler._tracer._trace_stack) == 1 handler.on_tool_end(output="test") assert len(handler._events_stack) == 0 assert len(handler._tracer._trace_stack) == 0 handler = self.get_handler() handler.on_tool_start(serialized={"test": "test"}, input_str="test") handler.on_chain_start(serialized={"test": "test"}, inputs={"test": "test"}) handler.on_llm_start(serialized={"test": "test"}, prompts=["test"]) assert len(handler._tracer._trace_stack) == 3 # Missing on_chain_end # Missing on_llm_end handler.on_tool_end(output="test") assert len(handler._events_stack) == 0 assert len(handler._tracer._trace_stack) == 0
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/storage/test_queue_run_storage.py
import pytest from multiprocessing import Queue from promptflow.executor._line_execution_process_pool import QueueRunStorage from promptflow.contracts.run_info import FlowRunInfo from promptflow.contracts.run_info import RunInfo as NodeRunInfo @pytest.mark.unittest class TestLineExecutionProcessPool: def test_persist_node_run(self): queue = Queue() run_storage = QueueRunStorage(queue) node_run_info = NodeRunInfo( node="node1", flow_run_id="flow_run_id", run_id="run_id", status="status", inputs="inputs", output="output", metrics="metrics", error="error", parent_run_id="parent_run_id", start_time="start_time", end_time="end_time", index="index", api_calls="api_calls", variant_id="variant_id", cached_run_id="cached_run_id", cached_flow_run_id="cached_flow_run_id", logs="logs", system_metrics="system_metrics", result="result", ) run_storage.persist_node_run(node_run_info) assert queue.get() == node_run_info def test_persist_flow_run(self): queue = Queue() run_storage = QueueRunStorage(queue) flow_run_info = FlowRunInfo( run_id="run_id", status="status", inputs="inputs", output="output", metrics="metrics", request="request", root_run_id="root_run_id", source_run_id="source_run_id", flow_id="flow_id", error="error", parent_run_id="parent_run_id", start_time="start_time", end_time="end_time", index="index", api_calls="api_calls", variant_id="variant_id", system_metrics="system_metrics", result="result", ) run_storage.persist_flow_run(flow_run_info) assert queue.get() == flow_run_info
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/storage/test_run_records.py
import json from datetime import datetime import pytest from promptflow._utils.dataclass_serializer import serialize from promptflow.contracts.run_info import FlowRunInfo, RunInfo, Status from promptflow.storage.run_records import LineRunRecord, NodeRunRecord @pytest.mark.unittest def test_line_record(): start_time = datetime(2023, 7, 12) end_time = datetime(2023, 7, 13) flow_run_info = FlowRunInfo( run_id=None, status=Status.Completed, error=None, inputs=None, output=None, metrics=None, request=None, parent_run_id=None, root_run_id=None, source_run_id=None, flow_id=None, start_time=start_time, end_time=end_time, index=0, variant_id=None, ) line_record = LineRunRecord.from_run_info(flow_run_info) assert line_record.line_number == 0 assert line_record.start_time == start_time.isoformat() assert line_record.end_time == end_time.isoformat() assert line_record.status == Status.Completed.value assert line_record.run_info == serialize(flow_run_info) @pytest.mark.unittest def test_line_serialize(): start_time = datetime(2023, 7, 12) end_time = datetime(2023, 7, 13) flow_run_info = FlowRunInfo( run_id=None, status=Status.Completed, error=None, inputs=None, output=None, metrics=None, request=None, parent_run_id=None, root_run_id=None, source_run_id=None, flow_id=None, start_time=start_time, end_time=end_time, index=0, variant_id=None, ) line_record = LineRunRecord.from_run_info(flow_run_info) result = line_record.serialize() expected_result = json.dumps(line_record.__dict__) assert result == expected_result @pytest.mark.unittest def test_node_record(): start_time = datetime(2023, 7, 12) end_time = datetime(2023, 7, 13) node_run_info = RunInfo( node=None, run_id=None, flow_run_id=None, status=Status.Completed, inputs=None, output=None, metrics=None, error=None, parent_run_id=None, start_time=start_time, end_time=end_time, index=0, ) node_record = NodeRunRecord.from_run_info(node_run_info) assert node_record.line_number == 0 assert node_record.start_time == start_time.isoformat() assert node_record.end_time == end_time.isoformat() assert node_record.status == Status.Completed.value assert node_record.run_info == serialize(node_run_info) @pytest.mark.unittest def test_node_serialize(): start_time = datetime(2023, 7, 12) end_time = datetime(2023, 7, 13) node_run_info = RunInfo( node=None, run_id=None, flow_run_id=None, status=Status.Completed, inputs=None, output=None, metrics=None, error=None, parent_run_id=None, start_time=start_time, end_time=end_time, index=0, ) node_record = NodeRunRecord.from_run_info(node_run_info) result = node_record.serialize() expected_result = json.dumps(node_record.__dict__) assert result == expected_result
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/_core/test_operation_context.py
import threading import pytest from promptflow._core.operation_context import OperationContext from promptflow._version import VERSION from promptflow.contracts.run_mode import RunMode def set_run_mode(context: OperationContext, run_mode: RunMode): """This method simulates the runtime.execute_request() It is aimed to set the run_mode into operation context. """ context.run_mode = run_mode.name if run_mode is not None else "" @pytest.mark.unittest class TestOperationContext: def test_get_user_agent(self): operation_context = OperationContext() assert operation_context.get_user_agent() == f"promptflow/{VERSION}" operation_context.user_agent = "test_agent/0.0.2" assert operation_context.get_user_agent() == f"test_agent/0.0.2 promptflow/{VERSION}" @pytest.mark.parametrize( "run_mode, expected", [ (RunMode.Test, "Test"), (RunMode.SingleNode, "SingleNode"), (RunMode.Batch, "Batch"), ], ) def test_run_mode(self, run_mode, expected): context = OperationContext() set_run_mode(context, run_mode) assert context.run_mode == expected def test_context_dict(self): context = OperationContext() context.run_mode = "Flow" context.user_agent = "test_agent/0.0.2" context.none_value = None context_dict = context.get_context_dict() assert context_dict["run_mode"] == "Flow" assert context_dict["user_agent"] == "test_agent/0.0.2" assert context_dict["none_value"] is None def test_setattr(self): context = OperationContext() context.run_mode = "Flow" assert context["run_mode"] == "Flow" def test_setattr_non_primitive(self): # Test set non-primitive type context = OperationContext() with pytest.raises(TypeError): context.foo = [1, 2, 3] def test_getattr(self): context = OperationContext() context["run_mode"] = "Flow" assert context.run_mode == "Flow" def test_getattr_missing(self): context = OperationContext() with pytest.raises(AttributeError): context.foo def test_delattr(self): # test that delattr works as expected context = OperationContext() context.foo = "bar" del context.foo assert "foo" not in context # test that delattr raises AttributeError for non-existent name with pytest.raises(AttributeError): del context.baz def test_append_user_agent(self): context = OperationContext() user_agent = ' ' + context.user_agent if 'user_agent' in context else '' context.append_user_agent("test_agent/0.0.2") assert context.user_agent == "test_agent/0.0.2" + user_agent context.append_user_agent("test_agent/0.0.3") assert context.user_agent == "test_agent/0.0.2 test_agent/0.0.3" + user_agent def test_get_instance(self): context1 = OperationContext.get_instance() context2 = OperationContext.get_instance() assert context1 is context2 def test_set_batch_input_source_from_inputs_mapping_run(self): input_mapping = {"input1": "${run.outputs.output1}", "input2": "${run.outputs.output2}"} context = OperationContext() context.set_batch_input_source_from_inputs_mapping(input_mapping) assert context.batch_input_source == "Run" def test_set_batch_input_source_from_inputs_mapping_data(self): input_mapping = {"url": "${data.url}"} context = OperationContext() context.set_batch_input_source_from_inputs_mapping(input_mapping) assert context.batch_input_source == "Data" def test_set_batch_input_source_from_inputs_mapping_none(self): input_mapping = None context = OperationContext() assert not hasattr(context, "batch_input_source") context.set_batch_input_source_from_inputs_mapping(input_mapping) assert context.batch_input_source == "Data" def test_set_batch_input_source_from_inputs_mapping_empty(self): input_mapping = {} context = OperationContext() assert not hasattr(context, "batch_input_source") context.set_batch_input_source_from_inputs_mapping(input_mapping) assert context.batch_input_source == "Data" def test_different_thread_have_different_instance(self): # create a list to store the OperationContext instances from each thread instances = [] # define a function that gets the OperationContext instance and appends it to the list def get_instance(): instance = OperationContext.get_instance() instances.append(instance) # create two threads and run the function in each thread thread1 = threading.Thread(target=get_instance) thread2 = threading.Thread(target=get_instance) thread1.start() thread2.start() thread1.join() thread2.join() # assert that the list has two elements and they are different objects assert len(instances) == 2 assert instances[0] is not instances[1]
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/_core/test_run_tracker.py
import pytest from promptflow._core._errors import RunRecordNotFound from promptflow._core.generator_proxy import GeneratorProxy from promptflow._core.run_tracker import RunTracker from promptflow.connections import AzureOpenAIConnection from promptflow.contracts.run_info import Status class UnserializableClass: def __init__(self, data: str): self.data = data @pytest.mark.unittest class TestRunTracker: def test_run_tracker(self): # TODO: Refactor this test case, it's very confusing now. # Initialize run tracker with dummy run storage run_tracker = RunTracker.init_dummy() # Start flow run run_tracker.start_flow_run("test_flow_id", "test_root_run_id", "test_flow_run_id") assert len(run_tracker._flow_runs) == 1 assert run_tracker._current_run_id == "test_flow_run_id" flow_input = {"flow_input": "input_0"} run_tracker.set_inputs("test_flow_run_id", flow_input) # Start node runs run_info = run_tracker.start_node_run("node_0", "test_root_run_id", "test_flow_run_id", "run_id_0", index=0) run_info.index = 0 run_info = run_tracker.start_node_run("node_0", "test_root_run_id", "test_flow_run_id", "run_id_1", index=1) run_info.index = 1 run_tracker.start_node_run("node_aggr", "test_root_run_id", "test_flow_run_id", "run_id_aggr", index=None) assert len(run_tracker._node_runs) == 3 assert run_tracker._current_run_id == "run_id_aggr" # Test collect_all_run_infos_as_dicts run_tracker.allow_generator_types = True run_tracker.set_inputs( "run_id_0", {"input": "input_0", "connection": AzureOpenAIConnection("api_key", "api_base")} ) run_tracker.set_inputs( "run_id_1", {"input": "input_1", "generator": GeneratorProxy(item for item in range(10))} ) run_infos = run_tracker.collect_all_run_infos_as_dicts() assert len(run_infos["flow_runs"]) == 1 assert len(run_infos["node_runs"]) == 3 assert run_infos["node_runs"][0]["inputs"] == {"input": "input_0", "connection": "AzureOpenAIConnection"} assert run_infos["node_runs"][1]["inputs"] == {"input": "input_1", "generator": []} # Test end run with normal result result = {"result": "result"} run_info_0 = run_tracker.end_run(run_id="run_id_0", result=result) assert run_info_0.status == Status.Completed assert run_info_0.output == result # Test end run with unserializable result result = {"unserialized_value": UnserializableClass("test")} run_info_1 = run_tracker.end_run(run_id="run_id_1", result=result) assert run_info_1.status == Status.Completed assert run_info_1.output == str(result) # Test end run with invalid run id with pytest.raises(RunRecordNotFound): run_tracker.end_run(run_id="invalid_run_id") # Test end run with exception ex = Exception("Failed") run_info_aggr = run_tracker.end_run(run_id="run_id_aggr", ex=ex) assert run_info_aggr.status == Status.Failed assert run_info_aggr.error["message"] == "Failed" # Test end flow run with unserializable result result = {"unserialized_value": UnserializableClass("test")} run_info_flow = run_tracker.end_run(run_id="test_flow_run_id", result=result) assert run_info_flow.status == Status.Failed assert "The output 'unserialized_value' for flow is incorrect." in run_info_flow.error["message"] # Test _update_flow_run_info_with_node_runs run_info_0.api_calls, run_info_0.system_metrics = [{"name": "caht"}], {"total_tokens": 10} run_info_1.api_calls, run_info_1.system_metrics = [{"name": "completion"}], {"total_tokens": 20} run_info_aggr.api_calls, run_info_aggr.system_metrics = [ {"name": "caht"}, {"name": "completion"}], {"total_tokens": 30} run_tracker._update_flow_run_info_with_node_runs(run_info_flow) assert len(run_info_flow.api_calls) == 1, "There should be only one top level api call for flow run." assert run_info_flow.system_metrics["total_tokens"] == 60 assert run_info_flow.api_calls[0]["name"] == "flow" assert run_info_flow.api_calls[0]["node_name"] == "flow" assert run_info_flow.api_calls[0]["type"] == "Flow" assert run_info_flow.api_calls[0]["system_metrics"]["total_tokens"] == 60 assert isinstance(run_info_flow.api_calls[0]["start_time"], float) assert isinstance(run_info_flow.api_calls[0]["end_time"], float) assert len(run_info_flow.api_calls[0]["children"]) == 4, "There should be 4 children under root." # Test get_status_summary status_summary = run_tracker.get_status_summary("test_root_run_id") assert status_summary == { "__pf__.lines.completed": 0, "__pf__.lines.failed": 1, "__pf__.nodes.node_0.completed": 2, "__pf__.nodes.node_aggr.completed": 0, } def test_run_tracker_flow_run_without_node_run(self): """When line timeout, there will be flow run info without node run info.""" # Initialize run tracker with dummy run storage run_tracker = RunTracker.init_dummy() # Start flow run run_tracker.start_flow_run("test_flow_id", "test_root_run_id", "test_flow_run_id_0", index=0) run_tracker.end_run("test_flow_run_id_0", ex=Exception("Timeout")) run_tracker.start_flow_run("test_flow_id", "test_root_run_id", "test_flow_run_id_1", index=1) run_tracker.end_run("test_flow_run_id_1", result={"result": "result"}) assert len(run_tracker._flow_runs) == 2 # Start node runs run_tracker.start_node_run("node_0", "test_root_run_id", "test_flow_run_id_2", "test_node_run_id_1", index=0) run_tracker.end_run("test_node_run_id_1", result={"result": "result"}) assert len(run_tracker._node_runs) == 1 status_summary = run_tracker.get_status_summary("test_root_run_id") assert status_summary == { "__pf__.lines.completed": 1, "__pf__.lines.failed": 1, "__pf__.nodes.node_0.completed": 1, }
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/_core/test_tracer.py
import inspect import pytest from promptflow._core.generator_proxy import GeneratorProxy from promptflow._core.tracer import Tracer, _create_trace_from_function_call, _traced, trace from promptflow.connections import AzureOpenAIConnection from promptflow.contracts.trace import Trace, TraceType def generator(): for i in range(3): yield i @pytest.mark.unittest class TestTracer: def test_end_tracing(self): # Activate the tracer in the current context tracer = Tracer("test_run_id") tracer._activate_in_context() # Assert that there is an active tracer instance assert Tracer.active_instance() is tracer # End tracing and get the traces as a JSON string traces = Tracer.end_tracing() # Assert that the traces is a list assert isinstance(traces, list) # Assert that there is no active tracer instance after ending tracing assert Tracer.active_instance() is None # Test the raise_ex argument of the end_tracing method with pytest.raises(Exception): # Try to end tracing again with raise_ex=True Tracer.end_tracing(raise_ex=True) # Try to end tracing again with raise_ex=False traces = Tracer.end_tracing(raise_ex=False) # Assert that the traces are empty assert not traces def test_start_tracing(self): # Assert that there is no active tracer instance before starting tracing assert Tracer.active_instance() is None # Start tracing with a mock run_id Tracer.start_tracing("test_run_id") # Assert that there is an active tracer instance after starting tracing assert Tracer.active_instance() is not None # Assert that the active tracer instance has the correct run_id assert Tracer.active_instance()._run_id == "test_run_id" Tracer.end_tracing() def test_push_pop(self, caplog): # test the push method with a single trace Tracer.start_tracing("test_run_id") tracer = Tracer.active_instance() trace1 = Trace("test1", inputs=[1, 2, 3], type=TraceType.TOOL) trace2 = Trace("test2", inputs=[4, 5, 6], type=TraceType.TOOL) Tracer.push(trace1) assert tracer._traces == [trace1] assert tracer._id_to_trace == {trace1.id: trace1} # test the push method with a nested trace Tracer.push(trace2) assert tracer._traces == [trace1] # check if the tracer still has only the first trace in its _traces list # check if the tracer has both traces in its trace dict assert tracer._id_to_trace == {trace1.id: trace1, trace2.id: trace2} assert trace1.children == [trace2] # check if the first trace has the second trace as its child # test the pop method with generator output tool_output = generator() error1 = ValueError("something went wrong") assert tracer._get_current_trace() is trace2 output = Tracer.pop(output=tool_output, error=error1) # check output iterator for i in range(3): assert next(output) == i assert isinstance(trace2.output, GeneratorProxy) assert trace2.error == { "message": str(error1), "type": type(error1).__qualname__, } assert tracer._get_current_trace() is trace1 # test the pop method with no arguments output = Tracer.pop() assert tracer._get_current_trace() is None assert trace1.output is None assert output is None Tracer.end_tracing() # test the push method with no active tracer Tracer.push(trace1) # assert that the warning message is logged assert "Try to push trace but no active tracer in current context." in caplog.text def test_unserializable_obj_to_serializable(self): # assert that the function returns a str object for unserializable objects assert Tracer.to_serializable(generator) == str(generator) @pytest.mark.parametrize("obj", [({"name": "Alice", "age": 25}), ([1, 2, 3]), (GeneratorProxy(generator())), (42)]) def test_to_serializable(self, obj): assert Tracer.to_serializable(obj) == obj def func_with_no_parameters(): pass def func_with_args_and_kwargs(arg1, arg2=None, *, kwarg1=None, kwarg2=None): _ = (arg1, arg2, kwarg1, kwarg2) async def func_with_args_and_kwargs_async(arg1, arg2=None, *, kwarg1=None, kwarg2=None): _ = (arg1, arg2, kwarg1, kwarg2) def func_with_connection_parameter(a: int, conn: AzureOpenAIConnection): _ = (a, conn) class MyClass: def my_method(self, a: int): _ = a @pytest.mark.unittest class TestCreateTraceFromFunctionCall: """This class tests the `_create_trace_from_function_call` function.""" def test_basic_fields_are_filled_and_others_are_not(self): trace = _create_trace_from_function_call(func_with_no_parameters) # These fields should be filled in this method call. assert trace.name == "func_with_no_parameters" assert trace.type == TraceType.FUNCTION assert trace.inputs == {} # start_time should be a timestamp, which is a float value currently. assert isinstance(trace.start_time, float) # These should be left empty in this method call. # They will be filled by the tracer later. assert trace.output is None assert trace.end_time is None assert trace.children == [] assert trace.error is None def test_basic_fields_are_filled_for_async_functions(self): trace = _create_trace_from_function_call( func_with_args_and_kwargs_async, args=[1, 2], kwargs={"kwarg1": 3, "kwarg2": 4} ) assert trace.name == "func_with_args_and_kwargs_async" assert trace.type == TraceType.FUNCTION assert trace.inputs == {"arg1": 1, "arg2": 2, "kwarg1": 3, "kwarg2": 4} def test_trace_name_should_contain_class_name_for_class_methods(self): obj = MyClass() trace = _create_trace_from_function_call(obj.my_method, args=[obj, 1]) assert trace.name == "MyClass.my_method" def test_trace_type_can_be_set_correctly(self): trace = _create_trace_from_function_call(func_with_no_parameters, trace_type=TraceType.TOOL) assert trace.type == TraceType.TOOL def test_args_and_kwargs_are_filled_correctly(self): trace = _create_trace_from_function_call( func_with_args_and_kwargs, args=[1, 2], kwargs={"kwarg1": 3, "kwarg2": 4} ) assert trace.inputs == {"arg1": 1, "arg2": 2, "kwarg1": 3, "kwarg2": 4} def test_args_called_with_name_should_be_filled_correctly(self): trace = _create_trace_from_function_call(func_with_args_and_kwargs, args=[1], kwargs={"arg2": 2, "kwarg2": 4}) assert trace.inputs == {"arg1": 1, "arg2": 2, "kwarg2": 4} def test_kwargs_called_without_name_should_be_filled_correctly(self): trace = _create_trace_from_function_call(func_with_args_and_kwargs, args=[1, 2, 3], kwargs={"kwarg2": 4}) assert trace.inputs == {"arg1": 1, "arg2": 2, "kwarg1": 3, "kwarg2": 4} def test_empty_args_should_be_excluded_from_inputs(self): trace = _create_trace_from_function_call(func_with_args_and_kwargs, args=[1]) assert trace.inputs == {"arg1": 1} def test_empty_kwargs_should_be_excluded_from_inputs(self): trace = _create_trace_from_function_call(func_with_args_and_kwargs, kwargs={"kwarg1": 1}) assert trace.inputs == {"kwarg1": 1} trace = _create_trace_from_function_call(func_with_args_and_kwargs, kwargs={"kwarg2": 2}) assert trace.inputs == {"kwarg2": 2} def test_args_and_kwargs_should_be_filled_in_called_order(self): trace = _create_trace_from_function_call( func_with_args_and_kwargs, args=[1, 2], kwargs={"kwarg2": 4, "kwarg1": 3} ) assert list(trace.inputs.keys()) == ["arg1", "arg2", "kwarg2", "kwarg1"] def test_connections_should_be_serialized(self): conn = AzureOpenAIConnection("test_name", "test_secret") trace = _create_trace_from_function_call(func_with_connection_parameter, args=[1, conn]) assert trace.inputs == {"a": 1, "conn": "AzureOpenAIConnection"} def test_self_arg_should_be_excluded_from_inputs(self): obj = MyClass() trace = _create_trace_from_function_call(obj.my_method, args=[1]) assert trace.inputs == {"a": 1} def sync_func(a: int): return a async def async_func(a: int): return a def sync_error_func(a: int): a / 0 async def async_error_func(a: int): a / 0 @pytest.mark.unittest class TestTraced: """This class tests the `_traced` function.""" def test_traced_sync_func_should_be_a_sync_func(self): assert inspect.iscoroutinefunction(_traced(sync_func)) is False def test_traced_async_func_should_be_an_async_func(self): assert inspect.iscoroutinefunction(_traced(async_func)) is True @pytest.mark.parametrize("func", [sync_func, async_func]) def test_original_function_and_wrapped_function_should_have_same_name(self, func): traced_func = _traced(func) assert traced_func.__name__ == func.__name__ @pytest.mark.parametrize("func", [sync_func, async_func]) def test_original_function_and_wrapped_function_attributes_are_set(self, func): traced_func = _traced(func) assert getattr(traced_func, "__original_function") == func @pytest.mark.asyncio @pytest.mark.parametrize("func", [sync_func, async_func]) async def test_trace_is_not_generated_when_tracer_is_not_active(self, func): # Do not call Tracer.start_tracing() here traced_func = _traced(func) if inspect.iscoroutinefunction(traced_func): result = await traced_func(1) else: result = traced_func(1) # Check the result is expected assert result == 1 # Check the generated trace is not generated traces = Tracer.end_tracing() assert len(traces) == 0 @pytest.mark.asyncio @pytest.mark.parametrize("func", [sync_func, async_func]) async def test_trace_is_generated_when_tracer_is_active(self, func): Tracer.start_tracing("test_run_id") traced_func = _traced(func) if inspect.iscoroutinefunction(traced_func): result = await traced_func(1) else: result = traced_func(1) # Check the result is expected assert result == 1 traces = Tracer.end_tracing() # Check the generated trace is expected assert len(traces) == 1 trace = traces[0] assert trace["name"] == func.__qualname__ assert trace["type"] == TraceType.FUNCTION assert trace["inputs"] == {"a": 1} assert trace["output"] == 1 assert trace["error"] is None assert trace["children"] == [] assert isinstance(trace["start_time"], float) assert isinstance(trace["end_time"], float) @pytest.mark.asyncio @pytest.mark.parametrize("func", [sync_error_func, async_error_func]) async def test_trace_is_generated_when_errors_occurred(self, func): Tracer.start_tracing("test_run_id") traced_func = _traced(func) with pytest.raises(ZeroDivisionError): if inspect.iscoroutinefunction(traced_func): await traced_func(1) else: traced_func(1) traces = Tracer.end_tracing() # Check the generated trace is expected assert len(traces) == 1 trace = traces[0] assert trace["name"] == func.__qualname__ assert trace["type"] == TraceType.FUNCTION assert trace["inputs"] == {"a": 1} assert trace["output"] is None assert trace["error"] == {"message": "division by zero", "type": "ZeroDivisionError"} assert trace["children"] == [] assert isinstance(trace["start_time"], float) assert isinstance(trace["end_time"], float) @pytest.mark.asyncio @pytest.mark.parametrize("func", [sync_func, async_func]) async def test_trace_type_can_be_set_correctly(self, func): Tracer.start_tracing("test_run_id") traced_func = _traced(func, trace_type=TraceType.TOOL) if inspect.iscoroutinefunction(traced_func): result = await traced_func(1) else: result = traced_func(1) assert result == 1 traces = Tracer.end_tracing() # Check the generated trace is expected assert len(traces) == 1 trace = traces[0] assert trace["name"] == func.__qualname__ assert trace["type"] == TraceType.TOOL @trace def my_tool(a: int): return a @trace async def my_tool_async(a: int): return a @pytest.mark.unittest class TestTrace: """This class tests `trace` function.""" @pytest.mark.asyncio @pytest.mark.parametrize( "func", [ my_tool, my_tool_async, ], ) async def test_traces_are_created_correctly(self, func): Tracer.start_tracing("test_run_id") if inspect.iscoroutinefunction(func): result = await func(1) else: result = func(1) assert result == 1 traces = Tracer.end_tracing() assert len(traces) == 1 trace = traces[0] assert trace["name"] == func.__qualname__ assert trace["type"] == TraceType.FUNCTION assert trace["inputs"] == {"a": 1} assert trace["output"] == 1 assert trace["error"] is None assert trace["children"] == [] assert isinstance(trace["start_time"], float) assert isinstance(trace["end_time"], float)
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/_core/test_api_injector.py
import logging from collections import namedtuple from importlib.metadata import version from types import GeneratorType from unittest.mock import MagicMock, patch import openai import pytest from promptflow._core.openai_injector import ( PROMPTFLOW_PREFIX, USER_AGENT_HEADER, _generate_api_and_injector, _openai_api_list, get_aoai_telemetry_headers, inject_async, inject_openai_api, inject_operation_headers, inject_sync, recover_openai_api, ) from promptflow._core.operation_context import OperationContext from promptflow._core.tracer import Tracer from promptflow._version import VERSION from promptflow.connections import AzureOpenAIConnection from promptflow.exceptions import UserErrorException from promptflow.tools.aoai import AzureOpenAI from promptflow.tools.embedding import embedding IS_LEGACY_OPENAI = version("openai").startswith("0.") # Mock classes and functions for test class MockAPI: def create(self): pass @pytest.mark.unittest def test_inject_operation_headers_sync(): @inject_operation_headers def f(**kwargs): return kwargs if IS_LEGACY_OPENAI: headers = "headers" kwargs_1 = {"headers": {"a": 1, "b": 2}} kwargs_2 = {"headers": {"ms-azure-ai-promptflow-called-from": "aoai-tool"}} else: headers = "extra_headers" kwargs_1 = {"extra_headers": {"a": 1, "b": 2}} kwargs_2 = {"extra_headers": {"ms-azure-ai-promptflow-called-from": "aoai-tool"}} injected_headers = get_aoai_telemetry_headers() assert f(a=1, b=2) == {"a": 1, "b": 2, headers: injected_headers} merged_headers = {**injected_headers, "a": 1, "b": 2} assert f(**kwargs_1) == {headers: merged_headers} aoai_tools_headers = injected_headers.copy() aoai_tools_headers.update({"ms-azure-ai-promptflow-called-from": "aoai-tool"}) assert f(**kwargs_2) == {headers: aoai_tools_headers} @pytest.mark.unittest @pytest.mark.asyncio async def test_inject_operation_headers_async(): @inject_operation_headers async def f(**kwargs): return kwargs if IS_LEGACY_OPENAI: headers = "headers" kwargs_1 = {"headers": {"a": 1, "b": 2}} kwargs_2 = {"headers": {"ms-azure-ai-promptflow-called-from": "aoai-tool"}} else: headers = "extra_headers" kwargs_1 = {"extra_headers": {"a": 1, "b": 2}} kwargs_2 = {"extra_headers": {"ms-azure-ai-promptflow-called-from": "aoai-tool"}} injected_headers = get_aoai_telemetry_headers() assert await f(a=1, b=2) == {"a": 1, "b": 2, headers: injected_headers} merged_headers = {**injected_headers, "a": 1, "b": 2} assert await f(**kwargs_1) == {headers: merged_headers} aoai_tools_headers = injected_headers.copy() aoai_tools_headers.update({"ms-azure-ai-promptflow-called-from": "aoai-tool"}) assert await f(**kwargs_2) == {headers: aoai_tools_headers} @pytest.mark.unittest def test_aoai_generator_proxy_sync(): def mock_aoai(**kwargs): # check if args has a stream parameter if "stream" in kwargs and kwargs["stream"]: # stream parameter is true, yield a string def generator(): yield "This is a yielded string" return generator() else: # stream parameter is false or not given, return a string return "This is a returned string" if IS_LEGACY_OPENAI: apis = ["openai.Completion.create", "openai.ChatCompletion.create", "openai.Embedding.create"] else: apis = [ "openai.resources.Completions.create", "openai.resources.chat.Completions.create", "openai.resources.Embeddings.create", ] with patch(apis[0], new=mock_aoai), patch(apis[1], new=mock_aoai), patch(apis[2], new=mock_aoai): Tracer.start_tracing("mock_run_id") inject_openai_api() if IS_LEGACY_OPENAI: return_string = openai.Completion.create(stream=False) return_generator = openai.Completion.create(stream=True) else: return_string = openai.resources.Completions.create(stream=False) return_generator = openai.resources.Completions.create(stream=True) assert return_string == "This is a returned string" assert isinstance(return_generator, GeneratorType) for _ in return_generator: pass traces = Tracer.end_tracing() assert len(traces) == 2 for trace in traces: assert trace["type"] == "LLM" if trace["inputs"]["stream"]: assert trace["output"] == ["This is a yielded string"] else: assert trace["output"] == "This is a returned string" @pytest.mark.unittest @pytest.mark.asyncio async def test_aoai_generator_proxy_async(): async def mock_aoai(**kwargs): # check if args has a stream parameter if "stream" in kwargs and kwargs["stream"]: # stream parameter is true, yield a string def generator(): yield "This is a yielded string" return generator() else: # stream parameter is false or not given, return a string return "This is a returned string" if IS_LEGACY_OPENAI: apis = ["openai.Completion.acreate", "openai.ChatCompletion.acreate", "openai.Embedding.acreate"] else: apis = [ "openai.resources.AsyncCompletions.create", "openai.resources.chat.AsyncCompletions.create", "openai.resources.AsyncEmbeddings.create", ] with patch(apis[0], new=mock_aoai), patch(apis[1], new=mock_aoai), patch(apis[2], new=mock_aoai): Tracer.start_tracing("mock_run_id") inject_openai_api() if IS_LEGACY_OPENAI: return_string = await openai.Completion.acreate(stream=False) return_generator = await openai.Completion.acreate(stream=True) else: return_string = await openai.resources.AsyncCompletions.create(stream=False) return_generator = await openai.resources.AsyncCompletions.create(stream=True) assert return_string == "This is a returned string" assert isinstance(return_generator, GeneratorType) for _ in return_generator: pass traces = Tracer.end_tracing() assert len(traces) == 2 for trace in traces: assert trace["type"] == "LLM" if trace["inputs"]["stream"]: assert trace["output"] == ["This is a yielded string"] else: assert trace["output"] == "This is a returned string" @pytest.mark.unittest def test_aoai_call_inject(): if IS_LEGACY_OPENAI: headers = "headers" apis = ["openai.Completion.create", "openai.ChatCompletion.create", "openai.Embedding.create"] else: headers = "extra_headers" apis = [ "openai.resources.Completions.create", "openai.resources.chat.Completions.create", "openai.resources.Embeddings.create", ] def mock_aoai(**kwargs): return kwargs.get(headers) with patch(apis[0], new=mock_aoai), patch(apis[1], new=mock_aoai), patch(apis[2], new=mock_aoai): inject_openai_api() injected_headers = get_aoai_telemetry_headers() if IS_LEGACY_OPENAI: return_headers_1 = openai.Completion.create(headers=None) return_headers_2 = openai.ChatCompletion.create(headers="abc") return_headers_3 = openai.Embedding.create(headers=1) else: return_headers_1 = openai.resources.Completions.create(extra_headers=None) return_headers_2 = openai.resources.chat.Completions.create(extra_headers="abc") return_headers_3 = openai.resources.Embeddings.create(extra_headers=1) assert return_headers_1 is not None assert injected_headers.items() <= return_headers_1.items() assert return_headers_2 is not None assert injected_headers.items() <= return_headers_2.items() assert return_headers_3 is not None assert injected_headers.items() <= return_headers_3.items() @pytest.mark.unittest def test_aoai_tool_header(): def mock_complete(*args, **kwargs): Response = namedtuple("Response", ["choices"]) Choice = namedtuple("Choice", ["text"]) choice = Choice(text=kwargs.get("extra_headers", {})) response = Response(choices=[choice]) return response def mock_chat(*args, **kwargs): Completion = namedtuple("Completion", ["choices"]) Choice = namedtuple("Choice", ["message"]) Message = namedtuple("Message", ["content"]) message = Message(content=kwargs.get("extra_headers", {})) choice = Choice(message=message) completion = Completion(choices=[choice]) return completion def mock_embedding(*args, **kwargs): Response = namedtuple("Response", ["data"]) Embedding = namedtuple("Embedding", ["embedding"]) response = Response(data=[Embedding(embedding=kwargs.get("extra_headers", {}))]) return response with patch("openai.resources.Completions.create", new=mock_complete), patch( "openai.resources.chat.Completions.create", new=mock_chat ), patch("openai.resources.Embeddings.create", new=mock_embedding): inject_openai_api() aoai_tool_header = {"ms-azure-ai-promptflow-called-from": "aoai-tool"} return_headers = AzureOpenAI(AzureOpenAIConnection(api_key="test", api_base="test")).completion( prompt="test", deployment_name="test" ) assert aoai_tool_header.items() <= return_headers.items() return_headers = AzureOpenAI(AzureOpenAIConnection(api_key="test", api_base="test")).chat( prompt="user:\ntest", deployment_name="test" ) assert aoai_tool_header.items() <= return_headers.items() return_headers = embedding( AzureOpenAIConnection(api_key="test", api_base="test"), input="test", deployment_name="test" ) assert aoai_tool_header.items() <= return_headers.items() @pytest.mark.unittest def test_aoai_chat_tool_prompt(): def mock_chat(*args, **kwargs): Completion = namedtuple("Completion", ["choices"]) Choice = namedtuple("Choice", ["message"]) Message = namedtuple("Message", ["content"]) message = Message(content=kwargs.get("messages", {})) choice = Choice(message=message) completion = Completion(choices=[choice]) return completion with patch("openai.resources.chat.Completions.create", new=mock_chat): inject_openai_api() return_messages = AzureOpenAI(AzureOpenAIConnection(api_key="test", api_base="test")).chat( prompt="user:\ntest", deployment_name="test" ) assert return_messages == [{"role": "user", "content": "test"}] return_messages = AzureOpenAI(AzureOpenAIConnection(api_key="test", api_base="test")).chat( prompt="user:\r\n", deployment_name="test" ) assert return_messages == [{"role": "user", "content": ""}] with pytest.raises(UserErrorException, match="The Chat API requires a specific format for prompt"): AzureOpenAI(AzureOpenAIConnection(api_key="test", api_base="test")).chat( prompt="user:", deployment_name="test" ) # The new generator-based test function @pytest.mark.parametrize( "is_legacy, expected_apis_with_injectors", [ ( True, [ ( ( ("openai", "Completion", "create"), ("openai", "ChatCompletion", "create"), ("openai", "Embedding", "create"), ), inject_sync, ), ( ( ("openai", "Completion", "acreate"), ("openai", "ChatCompletion", "acreate"), ("openai", "Embedding", "acreate"), ), inject_async, ), ], ), ( False, [ ( ( ("openai.resources.chat", "Completions", "create"), ("openai.resources", "Completions", "create"), ("openai.resources", "Embeddings", "create"), ), inject_sync, ), ( ( ("openai.resources.chat", "AsyncCompletions", "create"), ("openai.resources", "AsyncCompletions", "create"), ("openai.resources", "AsyncEmbeddings", "create"), ), inject_async, ), ], ), ], ) def test_api_list(is_legacy, expected_apis_with_injectors): with patch("promptflow._core.openai_injector.IS_LEGACY_OPENAI", is_legacy): # Using list comprehension to get all items from the generator actual_apis_with_injectors = list(_openai_api_list()) # Assert that the actual list matches the expected list assert actual_apis_with_injectors == expected_apis_with_injectors @pytest.mark.parametrize( "apis_with_injectors, expected_output, expected_logs", [ ([((("MockModule", "MockAPI", "create"),), inject_sync)], [(MockAPI, "create", inject_sync)], []), ([((("MockModule", "MockAPI", "create"),), inject_async)], [(MockAPI, "create", inject_async)], []), ], ) def test_generate_api_and_injector(apis_with_injectors, expected_output, expected_logs, caplog): with patch("importlib.import_module", return_value=MagicMock(MockAPI=MockAPI)) as mock_import_module: # Capture the logs with caplog.at_level(logging.WARNING): # Run the generator and collect the output result = list(_generate_api_and_injector(apis_with_injectors)) # Check if the result matches the expected output assert result == expected_output # Check if the logs match the expected logs assert len(caplog.records) == len(expected_logs) for record, expected_message in zip(caplog.records, expected_logs): assert expected_message in record.message mock_import_module.assert_called_with("MockModule") def test_generate_api_and_injector_attribute_error_logging(caplog): apis = [ ((("NonExistentModule", "NonExistentAPI", "create"),), MagicMock()), ((("MockModuleMissingMethod", "MockAPIMissingMethod", "missing_method"),), MagicMock()), ] # Set up the side effect for the mock def import_module_effect(name): if name == "MockModuleMissingMethod": module = MagicMock() delattr(module, "MockAPIMissingMethod") # Use delattr to remove the attribute return module else: raise ModuleNotFoundError(f"No module named '{name}'") with patch("importlib.import_module") as mock_import_module: mock_import_module.side_effect = import_module_effect with caplog.at_level(logging.WARNING): list(_generate_api_and_injector(apis)) assert len(caplog.records) == 2 assert "An unexpected error occurred" in caplog.records[0].message assert "NonExistentModule" in caplog.records[0].message assert "does not have the class" in caplog.records[1].message assert "MockAPIMissingMethod" in caplog.records[1].message # Verify that `importlib.import_module` was called with correct module names mock_import_module.assert_any_call("NonExistentModule") mock_import_module.assert_any_call("MockModuleMissingMethod") @pytest.mark.unittest def test_get_aoai_telemetry_headers(): # create a mock operation context mock_operation_context = OperationContext() mock_operation_context.user_agent = "test-user-agent" mock_operation_context.update( { "flow_id": "test-flow-id", "root_run_id": "test-root-run-id", "index": 1, "run_id": "test-run-id", "variant_id": "test-variant-id", } ) # patch the OperationContext.get_instance method to return the mock operation context with patch("promptflow._core.operation_context.OperationContext.get_instance") as mock_get_instance: mock_get_instance.return_value = mock_operation_context # call the function under test and get the headers headers = get_aoai_telemetry_headers() for key in headers.keys(): assert key.startswith(PROMPTFLOW_PREFIX) or key == USER_AGENT_HEADER assert "_" not in key # assert that the headers are correct assert headers[USER_AGENT_HEADER] == f"test-user-agent promptflow/{VERSION}" assert headers[f"{PROMPTFLOW_PREFIX}flow-id"] == "test-flow-id" assert headers[f"{PROMPTFLOW_PREFIX}root-run-id"] == "test-root-run-id" assert headers[f"{PROMPTFLOW_PREFIX}index"] == "1" assert headers[f"{PROMPTFLOW_PREFIX}run-id"] == "test-run-id" assert headers[f"{PROMPTFLOW_PREFIX}variant-id"] == "test-variant-id" @pytest.mark.unittest def test_inject_and_recover_openai_api(): class FakeAPIWithoutOriginal: @staticmethod def create(): pass class FakeAPIWithOriginal: @staticmethod def create(): pass def dummy_api(): pass # Real injector function that adds an _original attribute def injector(f): def wrapper_fun(*args, **kwargs): return f(*args, **kwargs) wrapper_fun._original = f return wrapper_fun # Set an _original attribute for the create method of FakeAPIWithOriginal FakeAPIWithOriginal.create._original = dummy_api # Store the original create methods before injection original_api_without_original = FakeAPIWithoutOriginal.create original_api_with_original = FakeAPIWithOriginal.create # Mock the generator function to yield our mocked api and method with patch( "promptflow._core.openai_injector.available_openai_apis_and_injectors", return_value=[(FakeAPIWithoutOriginal, "create", injector), (FakeAPIWithOriginal, "create", injector)], ): # Call the function to inject the APIs inject_openai_api() # Check that the _original attribute was set for the method that didn't have it assert hasattr(FakeAPIWithoutOriginal.create, "_original") # Ensure the _original attribute points to the correct original method assert FakeAPIWithoutOriginal.create._original is original_api_without_original # Check that the injector was not applied again to the method that already had an _original attribute # The _original attribute should still point to the mock, not the original method assert getattr(FakeAPIWithOriginal.create, "_original") is not FakeAPIWithOriginal.create # The original method should remain unchanged assert FakeAPIWithOriginal.create is original_api_with_original # Call the function to recover the APIs recover_openai_api() # Check that the _original attribute was removed for the method that didn't have it assert not hasattr(FakeAPIWithoutOriginal.create, "_original") assert not hasattr(FakeAPIWithOriginal.create, "_original") # The original methods should be restored assert FakeAPIWithoutOriginal.create is original_api_without_original assert FakeAPIWithOriginal.create is dummy_api
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/_core/test_tools_manager.py
import textwrap from pathlib import Path from unittest.mock import patch import pytest from mock import MagicMock from promptflow import tool from promptflow._core._errors import InputTypeMismatch, InvalidSource, PackageToolNotFoundError from promptflow._core.tools_manager import ( BuiltinsManager, ToolLoader, collect_package_tools, collect_package_tools_and_connections, ) from promptflow._utils.yaml_utils import load_yaml_string from promptflow.contracts.flow import InputAssignment, InputValueType, Node, ToolSource, ToolSourceType from promptflow.contracts.tool import Tool, ToolType from promptflow.exceptions import UserErrorException @pytest.mark.unittest class TestToolLoader: def test_load_tool_for_node_with_invalid_node(self): tool_loader = ToolLoader(working_dir="test_working_dir") node: Node = Node(name="test", tool="test_tool", inputs={}, type=ToolType.PYTHON) with pytest.raises(UserErrorException, match="Node test does not have source defined."): tool_loader.load_tool_for_node(node) node: Node = Node( name="test", tool="test_tool", inputs={}, type=ToolType.PYTHON, source=ToolSource(type="invalid_type") ) with pytest.raises( NotImplementedError, match="Tool source type invalid_type for python tool is not supported yet." ): tool_loader.load_tool_for_node(node) node: Node = Node( name="test", tool="test_tool", inputs={}, type=ToolType.CUSTOM_LLM, source=ToolSource(type="invalid_type") ) with pytest.raises( NotImplementedError, match="Tool source type invalid_type for custom_llm tool is not supported yet." ): tool_loader.load_tool_for_node(node) node: Node = Node( name="test", tool="test_tool", inputs={}, type="invalid_type", source=ToolSource(type=ToolSourceType.Code) ) with pytest.raises(NotImplementedError, match="Tool type invalid_type is not supported yet."): tool_loader.load_tool_for_node(node) def test_load_tool_for_package_node(self, mocker): package_tools = {"test_tool": Tool(name="test_tool", type=ToolType.PYTHON, inputs={}).serialize()} mocker.patch("promptflow._core.tools_manager.collect_package_tools", return_value=package_tools) tool_loader = ToolLoader( working_dir="test_working_dir", package_tool_keys=["promptflow._core.tools_manager.collect_package_tools"] ) node: Node = Node( name="test", tool="test_tool", inputs={}, type=ToolType.PYTHON, source=ToolSource(type=ToolSourceType.Package, tool="test_tool"), ) tool = tool_loader.load_tool_for_node(node) assert tool.name == "test_tool" node: Node = Node( name="test", tool="test_tool", inputs={}, type=ToolType.PYTHON, source=ToolSource(type=ToolSourceType.Package, tool="invalid_tool"), ) msg = ( "Package tool 'invalid_tool' is not found in the current environment. " "All available package tools are: ['test_tool']." ) with pytest.raises(PackageToolNotFoundError) as ex: tool_loader.load_tool_for_node(node) assert str(ex.value) == msg def test_load_tool_for_package_node_with_legacy_tool_id(self, mocker): package_tools = { "new_tool_1": Tool( name="new tool 1", type=ToolType.PYTHON, inputs={}, deprecated_tools=["old_tool_1"] ).serialize(), "new_tool_2": Tool( name="new tool 1", type=ToolType.PYTHON, inputs={}, deprecated_tools=["old_tool_2"] ).serialize(), "old_tool_2": Tool(name="old tool 2", type=ToolType.PYTHON, inputs={}).serialize(), } mocker.patch("promptflow._core.tools_manager.collect_package_tools", return_value=package_tools) tool_loader = ToolLoader(working_dir="test_working_dir", package_tool_keys=list(package_tools.keys())) node_with_legacy_tool: Node = Node( name="test_legacy_tool", tool="old_tool_1", inputs={}, type=ToolType.PYTHON, source=ToolSource(type=ToolSourceType.Package, tool="old_tool_1"), ) assert tool_loader.load_tool_for_node(node_with_legacy_tool).name == "new tool 1" node_with_legacy_tool_but_in_package_tools: Node = Node( name="test_legacy_tool_but_in_package_tools", tool="old_tool_2", inputs={}, type=ToolType.PYTHON, source=ToolSource(type=ToolSourceType.Package, tool="old_tool_2"), ) assert tool_loader.load_tool_for_node(node_with_legacy_tool_but_in_package_tools).name == "old tool 2" def test_load_tool_for_script_node(self): working_dir = Path(__file__).parent tool_loader = ToolLoader(working_dir=working_dir) file = "test_tools_manager.py" node: Node = Node( name="test", tool="sample_tool", inputs={}, type=ToolType.PYTHON, source=ToolSource(type=ToolSourceType.Code, path=file), ) tool = tool_loader.load_tool_for_node(node) assert tool.name == "sample_tool" @pytest.mark.parametrize( "source_path, error_message", [ (None, "Load tool failed for node 'test'. The source path is 'None'."), ("invalid_file.py", "Load tool failed for node 'test'. Tool file 'invalid_file.py' can not be found."), ], ) def test_load_tool_for_script_node_exception(self, source_path, error_message): working_dir = Path(__file__).parent tool_loader = ToolLoader(working_dir=working_dir) node: Node = Node( name="test", tool="sample_tool", inputs={}, type=ToolType.PYTHON, source=ToolSource(type=ToolSourceType.Code, path=source_path), ) with pytest.raises(InvalidSource) as ex: tool_loader.load_tool_for_script_node(node) assert str(ex.value) == error_message # This tool is for testing tools_manager.ToolLoader.load_tool_for_script_node @tool def sample_tool(input: str): return input @pytest.mark.unittest class TestToolsManager: def test_collect_package_tools_if_node_source_tool_is_legacy(self): legacy_node_source_tools = ["content_safety_text.tools.content_safety_text_tool.analyze_text"] package_tools = collect_package_tools(legacy_node_source_tools) assert "promptflow.tools.azure_content_safety.analyze_text" in package_tools.keys() def test_collect_package_tools_and_connections(self, install_custom_tool_pkg): keys = ["my_tool_package.tools.my_tool_2.MyTool.my_tool"] tools, specs, templates = collect_package_tools_and_connections(keys) assert len(tools) == 1 assert specs == { "my_tool_package.connections.MyFirstConnection": { "connectionCategory": "CustomKeys", "flowValueType": "CustomConnection", "connectionType": "MyFirstConnection", "ConnectionTypeDisplayName": "MyFirstConnection", "configSpecs": [ {"name": "api_key", "displayName": "Api Key", "configValueType": "Secret", "isOptional": False}, {"name": "api_base", "displayName": "Api Base", "configValueType": "str", "isOptional": True}, ], "module": "my_tool_package.connections", "package": "test-custom-tools", "package_version": "0.0.2", } } expected_template = { "$schema": "https://azuremlschemas.azureedge.net/promptflow/latest/CustomStrongTypeConnection.schema.json", "name": "to_replace_with_connection_name", "type": "custom", "custom_type": "MyFirstConnection", "module": "my_tool_package.connections", "package": "test-custom-tools", "package_version": "0.0.2", "configs": {"api_base": "This is my first connection."}, "secrets": {"api_key": "to_replace_with_api_key"}, } loaded_yaml = load_yaml_string(templates["my_tool_package.connections.MyFirstConnection"]) assert loaded_yaml == expected_template keys = ["my_tool_package.tools.my_tool_with_custom_strong_type_connection.my_tool"] tools, specs, templates = collect_package_tools_and_connections(keys) assert len(templates) == 1 expected_template = """ name: "to_replace_with_connection_name" type: custom custom_type: MyCustomConnection module: my_tool_package.tools.my_tool_with_custom_strong_type_connection package: test-custom-tools package_version: 0.0.2 configs: api_url: "This is a fake api url." # String type. The api url. secrets: # must-have api_key: "to_replace_with_api_key" # String type. The api key. """ content = templates["my_tool_package.tools.my_tool_with_custom_strong_type_connection.MyCustomConnection"] expected_template_str = textwrap.dedent(expected_template) assert expected_template_str in content def test_gen_dynamic_list(self, mocked_ws_triple, mock_module_with_list_func): from promptflow._sdk._utils import _gen_dynamic_list func_path = "my_tool_package.tools.tool_with_dynamic_list_input.my_list_func" func_kwargs = {"prefix": "My"} result = _gen_dynamic_list({"func_path": func_path, "func_kwargs": func_kwargs}) assert len(result) == 2 # test gen_dynamic_list with ws_triple. with patch("promptflow._cli._utils.get_workspace_triad_from_local", return_value=mocked_ws_triple): result = _gen_dynamic_list({"func_path": func_path, "func_kwargs": func_kwargs}) assert len(result) == 2 @pytest.mark.unittest class TestBuiltinsManager: def test_load_tool_from_module( self, ): # Test case 1: When class_name is None module = MagicMock() tool_name = "test_tool" module_name = "test_module" class_name = None method_name = "test_method" node_inputs = {"input1": InputAssignment(value_type=InputValueType.LITERAL, value="value1")} # Mock the behavior of the module and class module.test_method = MagicMock() # Call the method api, init_inputs = BuiltinsManager._load_tool_from_module( module, tool_name, module_name, class_name, method_name, node_inputs ) # Assertions assert api == module.test_method assert init_inputs == {} # Non literal input for init parameter will raise exception. module = MagicMock() tool_name = "test_tool" module_name = "test_module" class_name = "TestClass" method_name = "test_method" node_inputs = {"input1": InputAssignment(value_type=InputValueType.FLOW_INPUT, value="value1")} # Mock the behavior of the module and class module.TestClass = MagicMock() module.TestClass.get_initialize_inputs = MagicMock(return_value=["input1"]) module.TestClass.get_required_initialize_inputs = MagicMock(return_value=["input1"]) module.TestClass.test_method = MagicMock() # Call the method with pytest.raises(InputTypeMismatch) as ex: BuiltinsManager._load_tool_from_module(module, tool_name, module_name, class_name, method_name, node_inputs) expected_message = ( "Invalid input for 'test_tool': Initialization input 'input1' requires a literal value, " "but ${flow.value1} was received." ) assert expected_message == str(ex.value)
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/_core/test_connection_manager.py
import pytest from promptflow._core.connection_manager import ConnectionManager from promptflow.connections import AzureOpenAIConnection from promptflow.contracts.tool import ConnectionType def get_connection_dict(): return { "azure_open_ai_connection": { "type": "AzureOpenAIConnection", "value": { "api_key": "<azure-openai-key>", "api_base": "<api-base>", "api_type": "azure", "api_version": "2023-07-01-preview", }, }, "custom_connection": { "type": "CustomConnection", "value": { "api_key": "<your-key>", "url": "https://api.bing.microsoft.com/v7.0/search", }, "module": "promptflow.connections", "secret_keys": ["api_key"], }, } @pytest.mark.unittest class TestConnectionManager: def test_build_connections(self): new_connection = get_connection_dict() # Add not exist key new_connection["azure_open_ai_connection"]["value"]["not_exist"] = "test" connection_manager = ConnectionManager(new_connection) assert len(connection_manager._connections) == 2 assert isinstance(connection_manager.get("azure_open_ai_connection"), AzureOpenAIConnection) assert connection_manager.to_connections_dict() == new_connection def test_serialize(self): new_connection = get_connection_dict() connection_manager = ConnectionManager(new_connection) assert ( ConnectionType.serialize_conn(connection_manager.get("azure_open_ai_connection")) == "azure_open_ai_connection" ) assert ConnectionType.serialize_conn(connection_manager.get("custom_connection")) == "custom_connection" def test_get_secret_list(self): new_connection = get_connection_dict() connection_manager = ConnectionManager(new_connection) expected_list = ["<azure-openai-key>", "<your-key>"] assert set(connection_manager.get_secret_list()) == set(expected_list) def test_is_secret(self): new_connection = get_connection_dict() connection_manager = ConnectionManager(new_connection) connection = connection_manager.get("custom_connection") assert connection.is_secret("api_key") is True assert connection.is_secret("url") is False
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/_core/test_generator_proxy.py
import pytest from promptflow._core.generator_proxy import GeneratorProxy, generate_from_proxy def generator(): for i in range(3): yield i def iterator(): return iter([0, 1, 2]) @pytest.mark.unittest def test_generator_proxy_next(): proxy = GeneratorProxy(generator()) assert proxy.items == [] assert next(proxy) == 0 assert next(proxy) == 1 assert next(proxy) == 2 with pytest.raises(StopIteration): next(proxy) assert proxy.items == [0, 1, 2] @pytest.mark.unittest def test_generator_proxy_iter(): original_generator = generator() proxy = GeneratorProxy(generator()) for num in proxy: assert num == next(original_generator) assert proxy.items == [0, 1, 2] @pytest.mark.unittest def test_generate_from_proxy(): proxy = GeneratorProxy(generator()) original_generator = generator() for i in generate_from_proxy(proxy): assert i == next(original_generator) assert proxy.items == [0, 1, 2] @pytest.mark.unittest def test_iterator_proxy_next(): proxy = GeneratorProxy(iterator()) assert proxy.items == [] assert next(proxy) == 0 assert next(proxy) == 1 assert next(proxy) == 2 with pytest.raises(StopIteration): next(proxy) assert proxy.items == [0, 1, 2] @pytest.mark.unittest def test_iterator_proxy_iter(): original_iterator = iterator() proxy = GeneratorProxy(iterator()) for num in proxy: assert num == next(original_iterator) assert proxy.items == [0, 1, 2] @pytest.mark.unittest def test_generate_from_iterator_proxy(): proxy = GeneratorProxy(iterator()) original_iterator = iterator() for i in generate_from_proxy(proxy): assert i == next(original_iterator) assert proxy.items == [0, 1, 2]
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/_core/test_tool.py
import inspect import pytest from promptflow import tool from promptflow._core.tool import InputSetting, ToolType from promptflow._core.tracer import Tracer, TraceType from promptflow.exceptions import UserErrorException @tool def decorated_without_parentheses(a: int): return a @tool() def decorated_with_parentheses(a: int): return a @tool async def decorated_without_parentheses_async(a: int): return a @tool() async def decorated_with_parentheses_async(a: int): return a @tool( name="tool_with_attributes", description="Sample tool with a lot of attributes", type=ToolType.LLM, input_settings=InputSetting(), streaming_option_parameter="stream", extra_a="a", extra_b="b", ) def tool_with_attributes(stream: bool, a: int, b: int): return stream, a, b @pytest.mark.unittest class TestTool: """This class tests the `tool` decorator.""" @pytest.mark.asyncio @pytest.mark.parametrize( "func", [ decorated_with_parentheses, decorated_without_parentheses, decorated_with_parentheses_async, decorated_without_parentheses_async, ], ) async def test_traces_are_created_correctly(self, func): Tracer.start_tracing("test_run_id") if inspect.iscoroutinefunction(func): result = await func(1) else: result = func(1) assert result == 1 traces = Tracer.end_tracing() assert len(traces) == 1 trace = traces[0] assert trace["name"] == func.__qualname__ assert trace["type"] == TraceType.TOOL assert trace["inputs"] == {"a": 1} assert trace["output"] == 1 assert trace["error"] is None assert trace["children"] == [] assert isinstance(trace["start_time"], float) assert isinstance(trace["end_time"], float) def test_attributes_are_set_to_the_tool_function(self): stream, a, b = tool_with_attributes(True, 1, 2) # Check the results are as expected assert stream is True assert a == 1 assert b == 2 # Check the attributes are set to the function assert getattr(tool_with_attributes, "__tool") is None assert getattr(tool_with_attributes, "__name") == "tool_with_attributes" assert getattr(tool_with_attributes, "__description") == "Sample tool with a lot of attributes" assert getattr(tool_with_attributes, "__type") == ToolType.LLM assert getattr(tool_with_attributes, "__input_settings") == InputSetting() assert getattr(tool_with_attributes, "__extra_info") == {"extra_a": "a", "extra_b": "b"} assert getattr(tool_with_attributes, "_streaming_option_parameter") == "stream" def test_invalid_tool_type_should_raise_error(self): with pytest.raises(UserErrorException, match="Tool type invalid_type is not supported yet."): @tool(type="invalid_type") def invalid_tool_type(): pass
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/_core/test_log_manager.py
import logging import sys import time from multiprocessing.pool import ThreadPool import pytest from dateutil.parser import parse from promptflow._core.log_manager import NodeLogManager, NodeLogWriter RUN_ID = "dummy_run_id" NODE_NAME = "dummy_node" LINE_NUMBER = 1 def assert_print_result(i: int, run_logger: NodeLogWriter): run_id = f"{RUN_ID}-{i}" run_logger.set_node_info(run_id, NODE_NAME, LINE_NUMBER) time.sleep(i / 10) print(i) assert_datetime_prefix(run_logger.get_log(run_id), str(i) + "\n") def is_datetime(string: str) -> bool: """Check if a string follows datetime format.""" try: parse(string) return True except ValueError: return False def assert_datetime_prefix(string: str, expected_str: str): """Assert if string has a datetime prefix, such as: [2023-04-17T07:49:54+0000] example string """ datetime_prefix = string[string.index("[") + 1 : string.index("]")] inner_str = string[string.index("]") + 2 :] assert is_datetime(datetime_prefix) assert inner_str == expected_str @pytest.mark.unittest class TestNodeLogManager: def test_get_logs(self): with NodeLogManager(record_datetime=False) as lm: lm.set_node_context(RUN_ID, NODE_NAME, LINE_NUMBER) print("test") print("test2") print("test stderr", file=sys.stderr) assert lm.get_logs(RUN_ID).get("stdout") == "test\ntest2\n" assert lm.get_logs(RUN_ID).get("stderr") == "test stderr\n" lm.clear_node_context(RUN_ID) assert lm.get_logs(RUN_ID).get("stdout") is None assert lm.get_logs(RUN_ID).get("stderr") is None def test_logging(self): with NodeLogManager(record_datetime=False) as lm: lm.set_node_context(RUN_ID, NODE_NAME, LINE_NUMBER) stdout_logger = logging.getLogger("stdout") stderr_logger = logging.getLogger("stderr") stdout_logger.addHandler(logging.StreamHandler(stream=sys.stdout)) stderr_logger.addHandler(logging.StreamHandler(stream=sys.stderr)) stdout_logger.warning("test stdout") stderr_logger.warning("test stderr") logs = lm.get_logs(RUN_ID) assert logs.get("stdout") == "test stdout\n" assert logs.get("stderr") == "test stderr\n" def test_exit_context_manager(self): with NodeLogManager() as lm: assert lm.stdout_logger is sys.stdout assert lm.stdout_logger != sys.stdout def test_datetime_prefix(self): with NodeLogManager(record_datetime=True) as lm: lm.set_node_context(RUN_ID, NODE_NAME, LINE_NUMBER) print("test") print("test2") output = lm.get_logs(RUN_ID).get("stdout") outputs = output.split("\n") assert_datetime_prefix(outputs[0], "test") assert_datetime_prefix(outputs[1], "test2") assert outputs[2] == "" @pytest.mark.unittest class TestNodeLogWriter: def test_set_node_info(self): run_logger = NodeLogWriter(sys.stdout) assert run_logger.get_log(RUN_ID) is None run_logger.set_node_info(RUN_ID, NODE_NAME, LINE_NUMBER) assert run_logger.get_log(RUN_ID) == "" def test_clear_node_info(self): run_logger = NodeLogWriter(sys.stdout) run_logger.clear_node_info(RUN_ID) run_logger.set_node_info(RUN_ID, NODE_NAME, LINE_NUMBER) run_logger.clear_node_info(RUN_ID) assert run_logger.run_id_to_stdout.get(RUN_ID) is None def test_get_log(self): run_logger = NodeLogWriter(sys.stdout) sys.stdout = run_logger print("test") assert run_logger.get_log(RUN_ID) is None run_logger.set_node_info(RUN_ID, NODE_NAME, LINE_NUMBER) print("test") assert_datetime_prefix(run_logger.get_log(RUN_ID), "test\n") run_logger.clear_node_info(RUN_ID) assert run_logger.get_log(RUN_ID) is None def test_multi_thread(self): run_logger = NodeLogWriter(sys.stdout) sys.stdout = run_logger with ThreadPool(processes=10) as pool: results = pool.starmap(assert_print_result, ((i, run_logger) for i in range(10))) for r in results: pass
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/_core/test_metric_logger.py
import pytest from promptflow._core.metric_logger import MetricLoggerManager, add_metric_logger, log_metric, remove_metric_logger @pytest.mark.unittest class TestMetricLogger: def test_add_and_remove_metric_logger(self): # define log metric function metrics = {} def _log_metric(key, value): metrics[key] = value def _log_metric_invalid(key, value, variant_id, extra_param): metrics[key] = {variant_id: {value: extra_param}} add_metric_logger(_log_metric) assert MetricLoggerManager.get_instance()._metric_loggers == [_log_metric] add_metric_logger(_log_metric) assert MetricLoggerManager.get_instance()._metric_loggers == [_log_metric] add_metric_logger(_log_metric_invalid) assert MetricLoggerManager.get_instance()._metric_loggers == [_log_metric] add_metric_logger("test") assert MetricLoggerManager.get_instance()._metric_loggers == [_log_metric] remove_metric_logger(_log_metric) assert MetricLoggerManager.get_instance()._metric_loggers == [] def test_log_metric(self): # define log metric function metrics = {} def _log_metric(key, value): metrics[key] = value def _log_metric_with_variant_id(key, value, variant_id): metrics[key] = {variant_id: value} add_metric_logger(_log_metric) log_metric("test1", 1) assert metrics == {"test1": 1} add_metric_logger(_log_metric_with_variant_id) log_metric("test2", 1, "line_0") assert metrics == {"test1": 1, "test2": {"line_0": 1}}
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/processpool/test_line_execution_process_pool.py
import multiprocessing import os import sys import uuid from multiprocessing import Queue from pathlib import Path from tempfile import mkdtemp from unittest.mock import patch import pytest from pytest_mock import MockFixture from promptflow._utils.logger_utils import LogContext from promptflow.contracts.run_info import Status from promptflow.exceptions import ErrorTarget, UserErrorException from promptflow.executor import FlowExecutor from promptflow.executor._errors import SpawnedForkProcessManagerStartFailure from promptflow.executor._line_execution_process_pool import ( LineExecutionProcessPool, _exec_line, format_current_process_info, get_available_max_worker_count, log_process_status, ) from promptflow.executor._process_manager import create_spawned_fork_process_manager from promptflow.executor._result import LineResult from ...utils import get_flow_sample_inputs, get_yaml_file SAMPLE_FLOW = "web_classification_no_variants" def get_line_inputs(flow_folder=""): if flow_folder: inputs = get_bulk_inputs(flow_folder) return inputs[0] return { "url": "https://www.microsoft.com/en-us/windows/", "text": "some_text", } def get_bulk_inputs(nlinee=4, flow_folder="", sample_inputs_file="", return_dict=False): if flow_folder: if not sample_inputs_file: sample_inputs_file = "samples.json" inputs = get_flow_sample_inputs(flow_folder, sample_inputs_file=sample_inputs_file) if isinstance(inputs, list) and len(inputs) > 0: return inputs elif isinstance(inputs, dict): if return_dict: return inputs return [inputs] else: raise Exception(f"Invalid type of bulk input: {inputs}") return [get_line_inputs() for _ in range(nlinee)] def execute_in_fork_mode_subprocess( dev_connections, flow_folder, is_set_environ_pf_worker_count, pf_worker_count, n_process ): os.environ["PF_BATCH_METHOD"] = "fork" if is_set_environ_pf_worker_count: os.environ["PF_WORKER_COUNT"] = pf_worker_count executor = FlowExecutor.create(get_yaml_file(flow_folder), dev_connections) run_id = str(uuid.uuid4()) bulk_inputs = get_bulk_inputs() nlines = len(bulk_inputs) with patch("promptflow.executor._line_execution_process_pool.bulk_logger") as mock_logger: with LineExecutionProcessPool( executor, nlines, run_id, None, ) as pool: assert pool._n_process == n_process if is_set_environ_pf_worker_count: mock_logger.info.assert_any_call( f"Set process count to {pf_worker_count} with the environment " f"variable 'PF_WORKER_COUNT'." ) else: factors = { "default_worker_count": pool._DEFAULT_WORKER_COUNT, "row_count": pool._nlines, } mock_logger.info.assert_any_call( f"Set process count to {n_process} by taking the minimum value among the " f"factors of {factors}." ) def execute_in_spawn_mode_subprocess( dev_connections, flow_folder, is_set_environ_pf_worker_count, is_calculation_smaller_than_set, pf_worker_count, estimated_available_worker_count, n_process, ): os.environ["PF_BATCH_METHOD"] = "spawn" if is_set_environ_pf_worker_count: os.environ["PF_WORKER_COUNT"] = pf_worker_count executor = FlowExecutor.create( get_yaml_file(flow_folder), dev_connections, ) run_id = str(uuid.uuid4()) bulk_inputs = get_bulk_inputs() nlines = len(bulk_inputs) with patch("psutil.virtual_memory") as mock_mem: mock_mem.return_value.available = 128.0 * 1024 * 1024 with patch("psutil.Process") as mock_process: mock_process.return_value.memory_info.return_value.rss = 64 * 1024 * 1024 with patch("promptflow.executor._line_execution_process_pool.bulk_logger") as mock_logger: with LineExecutionProcessPool( executor, nlines, run_id, None, ) as pool: assert pool._n_process == n_process if is_set_environ_pf_worker_count and is_calculation_smaller_than_set: mock_logger.info.assert_any_call( f"Set process count to {pf_worker_count} with the environment " f"variable 'PF_WORKER_COUNT'." ) mock_logger.warning.assert_any_call( f"The current process count ({pf_worker_count}) is larger than recommended process count " f"({estimated_available_worker_count}) that estimated by system available memory. This may " f"cause memory exhaustion" ) elif is_set_environ_pf_worker_count and not is_calculation_smaller_than_set: mock_logger.info.assert_any_call( f"Set process count to {pf_worker_count} with the environment " f"variable 'PF_WORKER_COUNT'." ) elif not is_set_environ_pf_worker_count: factors = { "default_worker_count": pool._DEFAULT_WORKER_COUNT, "row_count": pool._nlines, "estimated_worker_count_based_on_memory_usage": estimated_available_worker_count, } mock_logger.info.assert_any_call( f"Set process count to {n_process} by taking the minimum value among the factors " f"of {factors}." ) def create_line_execution_process_pool(dev_connections): executor = FlowExecutor.create(get_yaml_file(SAMPLE_FLOW), dev_connections) run_id = str(uuid.uuid4()) bulk_inputs = get_bulk_inputs() nlines = len(bulk_inputs) line_execution_process_pool = LineExecutionProcessPool( executor, nlines, run_id, None, line_timeout_sec=1, ) return line_execution_process_pool def set_environment_successed_in_subprocess(dev_connections, pf_batch_method): os.environ["PF_BATCH_METHOD"] = pf_batch_method line_execution_process_pool = create_line_execution_process_pool(dev_connections) use_fork = line_execution_process_pool._use_fork assert use_fork is False def set_environment_failed_in_subprocess(dev_connections): with patch("promptflow.executor._line_execution_process_pool.bulk_logger") as mock_logger: mock_logger.warning.return_value = None os.environ["PF_BATCH_METHOD"] = "test" line_execution_process_pool = create_line_execution_process_pool(dev_connections) use_fork = line_execution_process_pool._use_fork assert use_fork == (multiprocessing.get_start_method() == "fork") sys_start_methods = multiprocessing.get_all_start_methods() exexpected_log_message = ( "Failed to set start method to 'test', start method test" f" is not in: {sys_start_methods}." ) mock_logger.warning.assert_called_once_with(exexpected_log_message) def not_set_environment_in_subprocess(dev_connections): line_execution_process_pool = create_line_execution_process_pool(dev_connections) use_fork = line_execution_process_pool._use_fork assert use_fork == (multiprocessing.get_start_method() == "fork") def custom_create_spawned_fork_process_manager(*args, **kwargs): create_spawned_fork_process_manager("test", *args, **kwargs) @pytest.mark.unittest class TestLineExecutionProcessPool: @pytest.mark.parametrize( "flow_folder", [ SAMPLE_FLOW, ], ) def test_line_execution_process_pool(self, flow_folder, dev_connections): log_path = str(Path(mkdtemp()) / "test.log") log_context_initializer = LogContext(log_path).get_initializer() log_context = log_context_initializer() with log_context: executor = FlowExecutor.create(get_yaml_file(flow_folder), dev_connections) executor._log_interval = 1 run_id = str(uuid.uuid4()) bulk_inputs = get_bulk_inputs() nlines = len(bulk_inputs) run_id = run_id or str(uuid.uuid4()) with LineExecutionProcessPool( executor, nlines, run_id, None, ) as pool: result_list = pool.run(zip(range(nlines), bulk_inputs)) assert len(result_list) == nlines for i, line_result in enumerate(result_list): assert isinstance(line_result, LineResult) assert line_result.run_info.status == Status.Completed, f"{i}th line got {line_result.run_info.status}" @pytest.mark.parametrize( "flow_folder", [ SAMPLE_FLOW, ], ) def test_line_execution_not_completed(self, flow_folder, dev_connections): executor = FlowExecutor.create(get_yaml_file(flow_folder), dev_connections) run_id = str(uuid.uuid4()) bulk_inputs = get_bulk_inputs() nlines = len(bulk_inputs) with LineExecutionProcessPool( executor, nlines, run_id, None, line_timeout_sec=1, ) as pool: result_list = pool.run(zip(range(nlines), bulk_inputs)) result_list = sorted(result_list, key=lambda r: r.run_info.index) assert len(result_list) == nlines for i, line_result in enumerate(result_list): assert isinstance(line_result, LineResult) assert line_result.run_info.error["message"] == f"Line {i} execution timeout for exceeding 1 seconds" assert line_result.run_info.error["code"] == "UserError" assert line_result.run_info.status == Status.Failed @pytest.mark.parametrize( "flow_folder", [ SAMPLE_FLOW, ], ) def test_exec_line(self, flow_folder, dev_connections, mocker: MockFixture): output_queue = Queue() executor = FlowExecutor.create(get_yaml_file(flow_folder), dev_connections) run_id = str(uuid.uuid4()) line_inputs = get_line_inputs() line_result = _exec_line( executor=executor, output_queue=output_queue, inputs=line_inputs, run_id=run_id, index=0, line_timeout_sec=600, ) assert isinstance(line_result, LineResult) @pytest.mark.parametrize( "flow_folder", [ SAMPLE_FLOW, ], ) def test_exec_line_failed_when_line_execution_not_start(self, flow_folder, dev_connections, mocker: MockFixture): output_queue = Queue() executor = FlowExecutor.create(get_yaml_file(flow_folder), dev_connections) test_error_msg = "Test user error" with patch("promptflow.executor.flow_executor.FlowExecutor.exec_line", autouse=True) as mock_exec_line: mock_exec_line.side_effect = UserErrorException( message=test_error_msg, target=ErrorTarget.AZURE_RUN_STORAGE ) run_id = str(uuid.uuid4()) line_inputs = get_line_inputs() line_result = _exec_line( executor=executor, output_queue=output_queue, inputs=line_inputs, run_id=run_id, index=0, line_timeout_sec=600, ) assert isinstance(line_result, LineResult) assert line_result.run_info.error["message"] == test_error_msg assert line_result.run_info.error["code"] == "UserError" assert line_result.run_info.status == Status.Failed @pytest.mark.parametrize( "flow_folder", [ SAMPLE_FLOW, ], ) def test_process_pool_run_with_exception(self, flow_folder, dev_connections, mocker: MockFixture): # mock process pool run execution raise error test_error_msg = "Test user error" mocker.patch( "promptflow.executor._line_execution_process_pool.LineExecutionProcessPool." "_monitor_workers_and_process_tasks_in_thread", side_effect=UserErrorException(message=test_error_msg, target=ErrorTarget.AZURE_RUN_STORAGE), ) executor = FlowExecutor.create(get_yaml_file(flow_folder), dev_connections) run_id = str(uuid.uuid4()) bulk_inputs = get_bulk_inputs() nlines = len(bulk_inputs) with LineExecutionProcessPool( executor, nlines, run_id, None, ) as pool: with pytest.raises(UserErrorException) as e: pool.run(zip(range(nlines), bulk_inputs)) assert e.value.message == test_error_msg assert e.value.target == ErrorTarget.AZURE_RUN_STORAGE assert e.value.error_codes[0] == "UserError" @pytest.mark.parametrize( ("flow_folder", "is_set_environ_pf_worker_count", "pf_worker_count", "n_process"), [(SAMPLE_FLOW, True, "3", 3), (SAMPLE_FLOW, False, None, 4)], ) def test_process_pool_parallelism_in_fork_mode( self, dev_connections, flow_folder, is_set_environ_pf_worker_count, pf_worker_count, n_process ): if "fork" not in multiprocessing.get_all_start_methods(): pytest.skip("Unsupported start method: fork") p = multiprocessing.Process( target=execute_in_fork_mode_subprocess, args=(dev_connections, flow_folder, is_set_environ_pf_worker_count, pf_worker_count, n_process), ) p.start() p.join() assert p.exitcode == 0 @pytest.mark.parametrize( ( "flow_folder", "is_set_environ_pf_worker_count", "is_calculation_smaller_than_set", "pf_worker_count", "estimated_available_worker_count", "n_process", ), [ (SAMPLE_FLOW, True, False, "2", 4, 2), (SAMPLE_FLOW, True, True, "6", 2, 6), (SAMPLE_FLOW, False, True, None, 2, 2), ], ) def test_process_pool_parallelism_in_spawn_mode( self, dev_connections, flow_folder, is_set_environ_pf_worker_count, is_calculation_smaller_than_set, pf_worker_count, estimated_available_worker_count, n_process, ): if "spawn" not in multiprocessing.get_all_start_methods(): pytest.skip("Unsupported start method: spawn") p = multiprocessing.Process( target=execute_in_spawn_mode_subprocess, args=( dev_connections, flow_folder, is_set_environ_pf_worker_count, is_calculation_smaller_than_set, pf_worker_count, estimated_available_worker_count, n_process, ), ) p.start() p.join() assert p.exitcode == 0 def test_process_set_environment_variable_successed(self, dev_connections): p = multiprocessing.Process( target=set_environment_successed_in_subprocess, args=( dev_connections, "spawn", ), ) p.start() p.join() assert p.exitcode == 0 def test_process_set_environment_variable_failed(self, dev_connections): p = multiprocessing.Process(target=set_environment_failed_in_subprocess, args=(dev_connections,)) p.start() p.join() assert p.exitcode == 0 def test_process_not_set_environment_variable(self, dev_connections): p = multiprocessing.Process(target=not_set_environment_in_subprocess, args=(dev_connections,)) p.start() p.join() assert p.exitcode == 0 @pytest.mark.skipif(sys.platform == "win32" or sys.platform == "darwin", reason="Only test on linux") @pytest.mark.parametrize( "flow_folder", [ SAMPLE_FLOW, ], ) @patch( "promptflow.executor._process_manager.create_spawned_fork_process_manager", custom_create_spawned_fork_process_manager, ) def test_spawned_fork_process_manager_crashed_in_fork_mode(self, flow_folder, dev_connections): executor = FlowExecutor.create(get_yaml_file(flow_folder), dev_connections) run_id = str(uuid.uuid4()) bulk_inputs = get_bulk_inputs() nlines = len(bulk_inputs) run_id = run_id or str(uuid.uuid4()) with pytest.raises(SpawnedForkProcessManagerStartFailure) as e: with LineExecutionProcessPool( executor, nlines, run_id, None, ) as pool: pool.run(zip(range(nlines), bulk_inputs)) assert "Failed to start spawned fork process manager" in str(e.value) class TestGetAvailableMaxWorkerCount: @pytest.mark.parametrize( "available_memory, process_memory, expected_max_worker_count, actual_calculate_worker_count", [ (128.0, 64.0, 2, 2), # available_memory/process_memory > 1 (63.0, 64.0, 1, 0), # available_memory/process_memory < 1 ], ) def test_get_available_max_worker_count( self, available_memory, process_memory, expected_max_worker_count, actual_calculate_worker_count ): with patch("psutil.virtual_memory") as mock_mem: mock_mem.return_value.available = available_memory * 1024 * 1024 with patch("psutil.Process") as mock_process: mock_process.return_value.memory_info.return_value.rss = process_memory * 1024 * 1024 with patch("promptflow.executor._line_execution_process_pool.bulk_logger") as mock_logger: mock_logger.warning.return_value = None estimated_available_worker_count = get_available_max_worker_count() assert estimated_available_worker_count == expected_max_worker_count if actual_calculate_worker_count < 1: mock_logger.warning.assert_called_with( f"Current system's available memory is {available_memory}MB, less than the memory " f"{process_memory}MB required by the process. The maximum available worker count is 1." ) else: mock_logger.info.assert_called_with( f"Current system's available memory is {available_memory}MB, " f"memory consumption of current process is {process_memory}MB, " f"estimated available worker count is {available_memory}/{process_memory} " f"= {actual_calculate_worker_count}" ) @pytest.mark.unittest class TestFormatCurrentProcess: def test_format_current_process_info(self): process_name = "process_name" process_pid = 123 line_number = 13 formatted_message = format_current_process_info(process_name, process_pid, line_number) expected_returned_log_message = ( f"Process name({process_name})-Process id({process_pid})-Line number({line_number})" ) assert formatted_message == expected_returned_log_message @patch("promptflow.executor._line_execution_process_pool.bulk_logger.info", autospec=True) def test_log_process_status_start_execution(self, mock_logger_info): process_name = "process_name" process_pid = 123 line_number = 13 log_process_status(process_name, process_pid, line_number) exexpected_during_execution_log_message = ( f"Process name({process_name})-Process id({process_pid})-Line number({line_number}) start execution." ) mock_logger_info.assert_called_once_with(exexpected_during_execution_log_message) @patch("promptflow.executor._line_execution_process_pool.bulk_logger.info", autospec=True) def test_log_process_status_completed(self, mock_logger_info): process_name = "process_name" process_pid = 123 line_number = 13 log_process_status(process_name, process_pid, line_number, is_completed=True) exexpected_during_execution_log_message = ( f"Process name({process_name})-Process id({process_pid})-Line number({line_number}) completed." ) mock_logger_info.assert_called_once_with(exexpected_during_execution_log_message) @patch("promptflow.executor._line_execution_process_pool.bulk_logger.info", autospec=True) def test_log_process_status_failed(self, mock_logger_info): process_name = "process_name" process_pid = 123 line_number = 13 log_process_status(process_name, process_pid, line_number, is_failed=True) exexpected_during_execution_log_message = ( f"Process name({process_name})-Process id({process_pid})-Line number({line_number}) failed." ) mock_logger_info.assert_called_once_with(exexpected_during_execution_log_message)
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/_utils/test_multimedia_utils.py
import re from pathlib import Path from unittest.mock import MagicMock, mock_open, patch import pytest from promptflow._utils._errors import InvalidImageInput, LoadMultimediaDataError from promptflow._utils.multimedia_utils import ( _create_image_from_base64, _create_image_from_file, _create_image_from_url, _process_multimedia_dict_recursively, _process_recursively, convert_multimedia_data_to_base64, create_image, load_multimedia_data, persist_multimedia_data, resolve_multimedia_data_recursively, ) from promptflow.contracts.flow import FlowInputDefinition from promptflow.contracts.multimedia import Image from promptflow.contracts.tool import ValueType from ...utils import DATA_ROOT TEST_IMAGE_PATH = DATA_ROOT / "logo.jpg" @pytest.mark.unittest class TestMultimediaUtils: @pytest.mark.parametrize("image_path", ["logo.jpg", "logo.png", "logo.webp", "logo.gif"]) def test_create_image_from_base64(self, image_path): image = _create_image_from_file(DATA_ROOT / image_path) base64_str = image.to_base64() image_from_base64 = _create_image_from_base64(base64_str) assert str(image) == str(image_from_base64) format = image_path.split(".")[-1] mime_type = f"image/{format}" if format != "jpg" else "image/jpeg" assert mime_type == image_from_base64._mime_type @patch("requests.get") def test_create_image_from_url_with_mime_type(self, mock_get): url = "https://example.com/image.jpg" content = b"image content" mime_type = "image/jpeg" mock_get.return_value = MagicMock(status_code=200, content=content) image = _create_image_from_url(url, mime_type) assert isinstance(image, Image) assert image._mime_type == mime_type assert image.source_url == url @patch("requests.get") def test_create_image_from_url_failure(self, mock_get): url = "https://example.com/image.jpg" message = "Failed to fetch image" code = 404 mock_get.return_value = MagicMock(status_code=code, text=message) with pytest.raises(InvalidImageInput) as ex: _create_image_from_url(url) expected_message = f"Failed to fetch image from URL: {url}. Error code: {code}. Error message: {message}." assert str(ex.value) == expected_message def test_create_image_with_dict(self, mocker): ## From path image_dict = {"data:image/jpg;path": TEST_IMAGE_PATH} image_from_path = create_image(image_dict) assert image_from_path._mime_type == "image/jpg" ## From base64 image_dict = {"data:image/jpg;base64": image_from_path.to_base64()} image_from_base64 = create_image(image_dict) assert str(image_from_path) == str(image_from_base64) assert image_from_base64._mime_type == "image/jpg" ## From url mocker.patch("requests.get", return_value=mocker.Mock(content=image_from_path, status_code=200)) image_dict = {"data:image/jpg;url": ""} image_from_url = create_image(image_dict) assert str(image_from_path) == str(image_from_url) assert image_from_url._mime_type == "image/jpg" mocker.patch("requests.get", return_value=mocker.Mock(content=None, status_code=404)) with pytest.raises(InvalidImageInput) as ex: create_image(image_dict) assert "Failed to fetch image from URL" in ex.value.message_format def test_create_image_with_string(self, mocker): ## From path image_from_path = create_image(str(TEST_IMAGE_PATH)) assert image_from_path._mime_type == "image/jpeg" # From base64 image_from_base64 = create_image(image_from_path.to_base64()) assert str(image_from_path) == str(image_from_base64) assert image_from_base64._mime_type == "image/jpeg" ## From url mocker.patch("promptflow._utils.multimedia_utils._is_url", return_value=True) mocker.patch("promptflow._utils.multimedia_utils._is_base64", return_value=False) mocker.patch("requests.get", return_value=mocker.Mock(content=image_from_path, status_code=200)) image_from_url = create_image("Test") assert str(image_from_path) == str(image_from_url) assert image_from_url._mime_type == "image/jpeg" ## From image image_from_image = create_image(image_from_path) assert str(image_from_path) == str(image_from_image) def test_create_image_with_invalid_cases(self): # Test invalid input type with pytest.raises(InvalidImageInput) as ex: create_image(0) assert "Unsupported image input type" in ex.value.message_format # Test invalid image dict with pytest.raises(InvalidImageInput) as ex: invalid_image_dict = {"invalid_image": "invalid_image"} create_image(invalid_image_dict) assert "Invalid image input format" in ex.value.message_format # Test none or empty input value with pytest.raises(InvalidImageInput) as ex: create_image(None) assert "Unsupported image input type" in ex.value.message_format with pytest.raises(InvalidImageInput) as ex: create_image("") assert "The image input should not be empty." in ex.value.message_format def test_persist_multimedia_date(self, mocker): image = _create_image_from_file(TEST_IMAGE_PATH) mocker.patch("builtins.open", mock_open()) data = {"image": image, "images": [image, image, "other_data"], "other_data": "other_data"} persisted_data = persist_multimedia_data(data, base_dir=Path(__file__).parent) file_name = re.compile(r"^[0-9a-z]{8}-[0-9a-z]{4}-[0-9a-z]{4}-[0-9a-z]{4}-[0-9a-z]{12}.jpeg$") assert re.match(file_name, persisted_data["image"]["data:image/jpeg;path"]) assert re.match(file_name, persisted_data["images"][0]["data:image/jpeg;path"]) assert re.match(file_name, persisted_data["images"][1]["data:image/jpeg;path"]) def test_convert_multimedia_date_to_base64(self): image = _create_image_from_file(TEST_IMAGE_PATH) data = {"image": image, "images": [image, image, "other_data"], "other_data": "other_data"} base64_data = convert_multimedia_data_to_base64(data) assert base64_data == { "image": image.to_base64(), "images": [image.to_base64(), image.to_base64(), "other_data"], "other_data": "other_data", } base64_data = convert_multimedia_data_to_base64(data, with_type=True) prefix = f"data:{image._mime_type};base64," assert base64_data == { "image": prefix + image.to_base64(), "images": [prefix + image.to_base64(), prefix + image.to_base64(), "other_data"], "other_data": "other_data", } def test_load_multimedia_data(self): # Case 1: Test normal node inputs = { "image": FlowInputDefinition(type=ValueType.IMAGE), "images": FlowInputDefinition(type=ValueType.LIST), "object": FlowInputDefinition(type=ValueType.OBJECT), } image_dict = {"data:image/jpg;path": str(TEST_IMAGE_PATH)} line_inputs = { "image": image_dict, "images": [image_dict, image_dict], "object": {"image": image_dict, "other_data": "other_data"}, } updated_inputs = load_multimedia_data(inputs, line_inputs) image = _create_image_from_file(TEST_IMAGE_PATH) assert updated_inputs == { "image": image, "images": [image, image], "object": {"image": image, "other_data": "other_data"}, } # Case 2: Test aggregation node line_inputs = { "image": [image_dict, image_dict], "images": [[image_dict, image_dict], [image_dict]], "object": [{"image": image_dict, "other_data": "other_data"}, {"other_data": "other_data"}], } updated_inputs = load_multimedia_data(inputs, line_inputs) assert updated_inputs == { "image": [image, image], "images": [[image, image], [image]], "object": [{"image": image, "other_data": "other_data"}, {"other_data": "other_data"}], } # Case 3: Test invalid input type with pytest.raises(LoadMultimediaDataError) as ex: line_inputs = {"image": 0} load_multimedia_data(inputs, line_inputs) assert ( "Failed to load image for input 'image': " "(InvalidImageInput) Unsupported image input type") in ex.value.message def test_resolve_multimedia_data_recursively(self): image_dict = {"data:image/jpg;path": "logo.jpg"} value = { "image": image_dict, "images": [image_dict, image_dict], "object": {"image": image_dict, "other_data": "other_data"}, } input_dir = TEST_IMAGE_PATH updated_value = resolve_multimedia_data_recursively(input_dir, value) updated_image_dict = {"data:image/jpg;path": str(DATA_ROOT / "logo.jpg")} assert updated_value == { "image": updated_image_dict, "images": [updated_image_dict, updated_image_dict], "object": {"image": updated_image_dict, "other_data": "other_data"}, } def test_process_recursively(self): image = _create_image_from_file(TEST_IMAGE_PATH) value = {"image": image, "images": [image, image], "object": {"image": image, "other_data": "other_data"}} process_funcs = {Image: lambda x: str(x)} updated_value = _process_recursively(value, process_funcs) image_str = str(image) assert updated_value == { "image": image_str, "images": [image_str, image_str], "object": {"image": image_str, "other_data": "other_data"}, } assert value != updated_value def test_process_recursively_inplace(self): image = _create_image_from_file(TEST_IMAGE_PATH) value = {"image": image, "images": [image, image], "object": {"image": image, "other_data": "other_data"}} process_funcs = {Image: lambda x: str(x)} _process_recursively(value, process_funcs, inplace=True) image_str = str(image) assert value == { "image": image_str, "images": [image_str, image_str], "object": {"image": image_str, "other_data": "other_data"}, } def test_process_multimedia_dict_recursively(self): def process_func(image_dict): return "image_placeholder" image_dict = {"data:image/jpg;path": "logo.jpg"} value = { "image": image_dict, "images": [image_dict, image_dict], "object": {"image": image_dict, "other_data": "other_data"}, } updated_value = _process_multimedia_dict_recursively(value, process_func) assert updated_value == { "image": "image_placeholder", "images": ["image_placeholder", "image_placeholder"], "object": {"image": "image_placeholder", "other_data": "other_data"}, }
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/_utils/test_feature_utils.py
import pytest from promptflow._utils.feature_utils import Feature, get_feature_list @pytest.mark.unittest def test_get_feature_list(): feature_list = get_feature_list() assert isinstance(feature_list, list) assert all(isinstance(feature, Feature) for feature in feature_list)
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/_utils/test_tool_utils.py
import inspect from typing import Union import pytest from promptflow._core._errors import DuplicateToolMappingError from promptflow._utils.tool_utils import ( DynamicListError, ListFunctionResponseError, _find_deprecated_tools, append_workspace_triple_to_func_input_params, function_to_interface, load_function_from_function_path, param_to_definition, validate_dynamic_list_func_response_type, ) from promptflow.connections import AzureOpenAIConnection, CustomConnection from promptflow.contracts.tool import ValueType, Tool, ToolType # mock functions for dynamic list function testing def mock_dynamic_list_func1(): pass def mock_dynamic_list_func2(input1): pass def mock_dynamic_list_func3(input1, input2): pass def mock_dynamic_list_func4(input1, input2, **kwargs): pass def mock_dynamic_list_func5(input1, input2, subscription_id): pass def mock_dynamic_list_func6(input1, input2, subscription_id, resource_group_name, workspace_name): pass def mock_dynamic_list_func7(input1, input2, subscription_id, **kwargs): pass def mock_dynamic_list_func8(input1, input2, subscription_id, resource_group_name, workspace_name, **kwargs): pass @pytest.mark.unittest class TestToolUtils: def test_function_to_interface(self): def func(conn: [AzureOpenAIConnection, CustomConnection], input: [str, int]): pass input_defs, _, connection_types, _ = function_to_interface(func) assert len(input_defs) == 2 assert input_defs["conn"].type == ["AzureOpenAIConnection", "CustomConnection"] assert input_defs["input"].type == [ValueType.OBJECT] assert connection_types == [["AzureOpenAIConnection", "CustomConnection"]] def test_function_to_interface_with_invalid_initialize_inputs(self): def func(input_str: str): pass with pytest.raises(Exception) as exec_info: function_to_interface(func, {"input_str": "test"}) assert "Duplicate inputs found from" in exec_info.value.args[0] def test_function_to_interface_with_kwargs(self): def func(input_str: str, **kwargs): pass _, _, _, enable_kwargs = function_to_interface(func) assert enable_kwargs is True def func(input_str: str): pass _, _, _, enable_kwargs = function_to_interface(func) assert enable_kwargs is False def test_param_to_definition(self): from promptflow._sdk.entities import CustomStrongTypeConnection from promptflow.contracts.tool import Secret class MyFirstConnection(CustomStrongTypeConnection): api_key: Secret api_base: str class MySecondConnection(CustomStrongTypeConnection): api_key: Secret api_base: str def some_func( conn1: MyFirstConnection, conn2: Union[CustomConnection, MyFirstConnection], conn3: Union[MyFirstConnection, CustomConnection], conn4: Union[MyFirstConnection, MySecondConnection], conn5: CustomConnection, conn6: Union[CustomConnection, int], conn7: Union[MyFirstConnection, int], ): pass sig = inspect.signature(some_func) input_def, _ = param_to_definition(sig.parameters.get("conn1"), gen_custom_type_conn=True) assert input_def.type == ["CustomConnection"] assert input_def.custom_type == ["MyFirstConnection"] input_def, _ = param_to_definition(sig.parameters.get("conn2"), gen_custom_type_conn=True) assert input_def.type == ["CustomConnection"] assert input_def.custom_type == ["MyFirstConnection"] input_def, _ = param_to_definition(sig.parameters.get("conn3"), gen_custom_type_conn=True) assert input_def.type == ["CustomConnection"] assert input_def.custom_type == ["MyFirstConnection"] input_def, _ = param_to_definition(sig.parameters.get("conn4"), gen_custom_type_conn=True) assert input_def.type == ["CustomConnection"] assert input_def.custom_type == ["MyFirstConnection", "MySecondConnection"] input_def, _ = param_to_definition(sig.parameters.get("conn5"), gen_custom_type_conn=True) assert input_def.type == ["CustomConnection"] assert input_def.custom_type is None input_def, _ = param_to_definition(sig.parameters.get("conn6"), gen_custom_type_conn=True) assert input_def.type == [ValueType.OBJECT] assert input_def.custom_type is None input_def, _ = param_to_definition(sig.parameters.get("conn7"), gen_custom_type_conn=True) assert input_def.type == [ValueType.OBJECT] assert input_def.custom_type is None @pytest.mark.parametrize( "func, func_input_params_dict, use_ws_triple, expected_res", [ (mock_dynamic_list_func1, None, False, {}), (mock_dynamic_list_func2, {"input1": "value1"}, False, {"input1": "value1"}), ( mock_dynamic_list_func3, {"input1": "value1", "input2": "value2"}, False, {"input1": "value1", "input2": "value2"}, ), (mock_dynamic_list_func3, {"input1": "value1"}, False, {"input1": "value1"}), (mock_dynamic_list_func3, {"input1": "value1"}, True, {"input1": "value1"}), ( mock_dynamic_list_func4, {"input1": "value1"}, True, { "input1": "value1", "subscription_id": "mock_subscription_id", "resource_group_name": "mock_resource_group", "workspace_name": "mock_workspace_name", }, ), ( mock_dynamic_list_func5, {"input1": "value1"}, True, {"input1": "value1", "subscription_id": "mock_subscription_id"}, ), ( mock_dynamic_list_func5, {"input1": "value1", "subscription_id": "input_subscription_id"}, True, {"input1": "value1", "subscription_id": "input_subscription_id"}, ), ( mock_dynamic_list_func6, {"input1": "value1"}, True, { "input1": "value1", "subscription_id": "mock_subscription_id", "resource_group_name": "mock_resource_group", "workspace_name": "mock_workspace_name", }, ), ( mock_dynamic_list_func6, { "input1": "value1", "workspace_name": "input_workspace_name", }, True, { "input1": "value1", "workspace_name": "input_workspace_name", "subscription_id": "mock_subscription_id", "resource_group_name": "mock_resource_group", }, ), ( mock_dynamic_list_func7, {"input1": "value1"}, True, { "input1": "value1", "subscription_id": "mock_subscription_id", "resource_group_name": "mock_resource_group", "workspace_name": "mock_workspace_name", }, ), ( mock_dynamic_list_func7, {"input1": "value1", "subscription_id": "input_subscription_id"}, True, { "input1": "value1", "subscription_id": "input_subscription_id", "resource_group_name": "mock_resource_group", "workspace_name": "mock_workspace_name", }, ), ( mock_dynamic_list_func8, {"input1": "value1"}, True, { "input1": "value1", "subscription_id": "mock_subscription_id", "resource_group_name": "mock_resource_group", "workspace_name": "mock_workspace_name", }, ), ( mock_dynamic_list_func8, { "input1": "value1", "subscription_id": "input_subscription_id", "resource_group_name": "input_resource_group", "workspace_name": "input_workspace_name", }, True, { "input1": "value1", "subscription_id": "input_subscription_id", "resource_group_name": "input_resource_group", "workspace_name": "input_workspace_name", }, ), ], ) def test_append_workspace_triple_to_func_input_params( self, func, func_input_params_dict, use_ws_triple, expected_res, mocked_ws_triple ): ws_triple_dict = mocked_ws_triple._asdict() if use_ws_triple else None func_sig_params = inspect.signature(func).parameters actual_combined_inputs = append_workspace_triple_to_func_input_params( func_sig_params=func_sig_params, func_input_params_dict=func_input_params_dict, ws_triple_dict=ws_triple_dict, ) assert actual_combined_inputs == expected_res @pytest.mark.parametrize( "res", [ ( [ { "value": "fig0", "display_value": "My_fig0", "hyperlink": "https://www.bing.com/search?q=fig0", "description": "this is 0 item", }, { "value": "kiwi1", "display_value": "My_kiwi1", "hyperlink": "https://www.bing.com/search?q=kiwi1", "description": "this is 1 item", }, ] ), ([{"value": "fig0"}, {"value": "kiwi1"}]), ([{"value": "fig0", "display_value": "My_fig0"}, {"value": "kiwi1", "display_value": "My_kiwi1"}]), ( [ {"value": "fig0", "display_value": "My_fig0", "hyperlink": "https://www.bing.com/search?q=fig0"}, { "value": "kiwi1", "display_value": "My_kiwi1", "hyperlink": "https://www.bing.com/search?q=kiwi1", }, ] ), ([{"value": "fig0", "hyperlink": "https://www.bing.com/search?q=fig0"}]), ( [ {"value": "fig0", "display_value": "My_fig0", "description": "this is 0 item"}, { "value": "kiwi1", "display_value": "My_kiwi1", "hyperlink": "https://www.bing.com/search?q=kiwi1", "description": "this is 1 item", }, ] ), ], ) def test_validate_dynamic_list_func_response_type(self, res): validate_dynamic_list_func_response_type(response=res, f="mock_func") @pytest.mark.parametrize( "res, err_msg", [ (None, "mock_func response can not be empty."), ([], "mock_func response can not be empty."), (["a", "b"], "mock_func response must be a list of dict. a is not a dict."), ({"a": "b"}, "mock_func response must be a list."), ([{"a": "b"}], "mock_func response dict must have 'value' key."), ([{"value": 1 + 2j}], "mock_func response dict value \\(1\\+2j\\) is not json serializable."), ], ) def test_validate_dynamic_list_func_response_type_with_error(self, res, err_msg): error_message = ( f"Unable to display list of items due to '{err_msg}'. \nPlease contact the tool " f"author/support team for troubleshooting assistance." ) with pytest.raises(ListFunctionResponseError, match=error_message): validate_dynamic_list_func_response_type(response=res, f="mock_func") def test_load_function_from_function_path(self, mock_module_with_list_func): func_path = "my_tool_package.tools.tool_with_dynamic_list_input.my_list_func" load_function_from_function_path(func_path) def test_load_function_from_function_path_with_error(self, mock_module_with_list_func): func_path = "mock_func_path" with pytest.raises( DynamicListError, match="Unable to display list of items due to 'Failed to parse function from function path: " "'mock_func_path'. Expected format: format 'my_module.my_func'. Detailed error: not enough " "values to unpack \\(expected 2, got 1\\)'. \nPlease contact the tool author/support team for " "troubleshooting assistance.", ): load_function_from_function_path(func_path) func_path = "fake_tool_pkg.tools.tool_with_dynamic_list_input.my_list_func" with pytest.raises( DynamicListError, match="Unable to display list of items due to 'Failed to parse function from function path: " "'fake_tool_pkg.tools.tool_with_dynamic_list_input.my_list_func'. Expected format: format " "'my_module.my_func'. Detailed error: No module named 'fake_tool_pkg''. \nPlease contact the tool " "author/support team for troubleshooting assistance.", ): load_function_from_function_path(func_path) func_path = "my_tool_package.tools.tool_with_dynamic_list_input.my_field" with pytest.raises( DynamicListError, match="Unable to display list of items due to 'Failed to parse function from function path: " "'my_tool_package.tools.tool_with_dynamic_list_input.my_field'. Expected format: " "format 'my_module.my_func'. Detailed error: Unable to display list of items due to ''1' " "is not callable.'. \nPlease contact the tool author/support team for troubleshooting assistance.", ): load_function_from_function_path(func_path) def test_find_deprecated_tools(self): package_tools = { "new_tool_1": Tool( name="new tool 1", type=ToolType.PYTHON, inputs={}, deprecated_tools=["old_tool_1"]).serialize(), "new_tool_2": Tool( name="new tool 1", type=ToolType.PYTHON, inputs={}, deprecated_tools=["old_tool_1"]).serialize(), } with pytest.raises(DuplicateToolMappingError, match="secure operation"): _find_deprecated_tools(package_tools)
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/_utils/test_execution_utils.py
import pytest from promptflow._utils.execution_utils import apply_default_value_for_input from promptflow.contracts.flow import FlowInputDefinition from promptflow.contracts.tool import ValueType @pytest.mark.unittest class TestFlowExecutor: @pytest.mark.parametrize( "flow_inputs, inputs, expected_inputs", [ ( { "input_from_default": FlowInputDefinition(type=ValueType.STRING, default="default_value"), }, None, # Could handle None input {"input_from_default": "default_value"}, ), ( { "input_from_default": FlowInputDefinition(type=ValueType.STRING, default="default_value"), }, {}, {"input_from_default": "default_value"}, ), ( { "input_no_default": FlowInputDefinition(type=ValueType.STRING), }, {}, {}, # No default value for input. ), ( { "input_from_default": FlowInputDefinition(type=ValueType.STRING, default="default_value"), }, {"input_from_default": "input_value", "another_key": "input_value"}, {"input_from_default": "input_value", "another_key": "input_value"}, ), ( { "input_from_default": FlowInputDefinition(type=ValueType.BOOL, default=False), }, {}, {"input_from_default": False}, ), ( { "input_from_default": FlowInputDefinition(type=ValueType.LIST, default=[]), }, {}, {"input_from_default": []}, ), ( { "input_from_default": FlowInputDefinition(type=ValueType.OBJECT, default={}), }, {}, {"input_from_default": {}}, ), ], ) def test_apply_default_value_for_input(self, flow_inputs, inputs, expected_inputs): result = apply_default_value_for_input(flow_inputs, inputs) assert result == expected_inputs
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/_utils/test_connection_utils.py
import pytest from promptflow._sdk.entities import CustomStrongTypeConnection from promptflow._utils.connection_utils import ( generate_custom_strong_type_connection_spec, generate_custom_strong_type_connection_template, ) from promptflow.contracts.types import Secret class MyCustomConnectionWithNoComments(CustomStrongTypeConnection): api_key: Secret api_base: str class MyCustomConnectionWithDefaultValue(CustomStrongTypeConnection): api_key: Secret api_base: str = "default value of api-base" class MyCustomConnectionWithInvalidComments(CustomStrongTypeConnection): """My custom connection with invalid comments. :param api_key: The api key. :type api_key: String :param api_base: The api base. :type api_base: String :param api_key_2: The api key 2. :type api_key_2: String """ api_key: Secret api_base: str class MyCustomConnectionMissingTypeComments(CustomStrongTypeConnection): """My custom connection with missing type comments. :param api_key: The api key. """ api_key: Secret api_base: str class MyCustomConnectionMissingParamComments(CustomStrongTypeConnection): """My custom connection with missing param comments. :type api_key: String """ api_key: Secret api_base: str @pytest.mark.unittest class TestConnectionUtils: @pytest.mark.parametrize( "cls, expected_str_in_template", [ ( MyCustomConnectionWithNoComments, ['api_base: "to_replace_with_api_base"\n', 'api_key: "to_replace_with_api_key"\n'], ), ( MyCustomConnectionWithInvalidComments, [ 'api_base: "to_replace_with_api_base" # String type. The api base.\n', 'api_key: "to_replace_with_api_key" # String type. The api key.\n', ], ), (MyCustomConnectionMissingTypeComments, ['api_key: "to_replace_with_api_key" # The api key.']), (MyCustomConnectionMissingParamComments, ['api_key: "to_replace_with_api_key" # String type.']), ], ) def test_generate_custom_strong_type_connection_template_with_comments(self, cls, expected_str_in_template): package = "test-package" package_version = "0.0.1" spec = generate_custom_strong_type_connection_spec(cls, package, package_version) template = generate_custom_strong_type_connection_template(cls, spec, package, package_version) for comment in expected_str_in_template: assert comment in template def test_generate_custom_strong_type_connection_template_with_default_value(self): package = "test-package" package_version = "0.0.1" spec = generate_custom_strong_type_connection_spec(MyCustomConnectionWithDefaultValue, package, package_version) template = generate_custom_strong_type_connection_template( MyCustomConnectionWithDefaultValue, spec, package, package_version ) assert 'api_base: "default value of api-base"' in template @pytest.mark.parametrize( "input_value, expected_connection_names", [ pytest.param( "new_ai_connection", ["new_ai_connection"], id="standard", ), pytest.param( "${node.output}", [], id="output_reference", ), pytest.param( "${inputs.question}", [], id="input_reference", ), ], ) def test_get_used_connection_names_from_flow_meta(self, input_value: str, expected_connection_names: list): from promptflow._sdk._submitter.utils import SubmitterHelper connection_names = SubmitterHelper.get_used_connection_names( { "package": { "(Promptflow.Tools)Promptflow.Tools.BuiltInTools.AOAI.Chat": { "name": "Promptflow.Tools.BuiltInTools.AOAI.Chat", "type": "csharp", "inputs": { "connection": {"type": ["AzureOpenAIConnection"]}, "prompt": {"type": ["string"]}, "deployment_name": {"type": ["string"]}, "objects": {"type": ["object"]}, }, "description": "", "class_name": "AOAI", "module": "Promptflow.Tools.BuiltInTools.AOAI", "function": "Chat", "is_builtin": True, "package": "Promptflow.Tools", "package_version": "0.0.14.0", "toolId": "(Promptflow.Tools)Promptflow.Tools.BuiltInTools.AOAI.Chat", }, }, "code": {}, }, { "nodes": [ { "name": "get_summarized_text_content", "type": "csharp", "source": { "type": "package", "tool": "(Promptflow.Tools)Promptflow.Tools.BuiltInTools.AOAI.Chat", }, "inputs": { "connection": input_value, }, }, ] }, ) assert connection_names == expected_connection_names
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/_utils/test_multimedia_data_converter.py
from pathlib import Path from unittest.mock import Mock import pytest from promptflow._utils.multimedia_data_converter import ( AbstractMultimediaInfoConverter, MultimediaConverter, MultimediaFormatAdapter20231201, MultimediaInfo, ResourceType, ) @pytest.mark.unittest class TestMultimediaConverter: def test_convert_content_recursively(self): converter = MultimediaConverter(Path("flow.yaml")) # Don't convert anything. content = { "image": {"data:image/jpg;url": "https://example.com/logo.jpg"}, "images": [ {"data:image/jpg;url": "https://example.com/logo.jpg"}, {"data:image/jpg;base64": "base64 string"}, ], "object": {"image": {"data:image/png;path": "random_path"}, "other_data": "other_data"}, } mock_converter = Mock(spec=AbstractMultimediaInfoConverter) mock_converter.convert.side_effect = lambda x: x result = converter.convert_content_recursively(content, mock_converter) assert result == content # Convert all valid images. mock_converter.convert.side_effect = lambda x: MultimediaInfo("image/jpg", ResourceType("path"), "logo.jpg") result = converter.convert_content_recursively(content, mock_converter) expected_result = { "image": {"data:image/jpg;path": "logo.jpg"}, "images": [ {"data:image/jpg;path": "logo.jpg"}, {"data:image/jpg;path": "logo.jpg"}, ], "object": {"image": {"data:image/jpg;path": "logo.jpg"}, "other_data": "other_data"}, } assert result == expected_result @pytest.mark.unittest class TestMultimediaFormatAdapter20231201: def test_is_valid_format(self): adapter = MultimediaFormatAdapter20231201() assert adapter.is_valid_format({"data:image/jpg;path": "logo.jpg"}) assert adapter.is_valid_format({"data:image/jpg;url": "https://example.com/logo.jpg"}) assert not adapter.is_valid_format({"data:audio/mp3;path": "audio.mp3"}) assert not adapter.is_valid_format({"data:video/mp4;url": "https://example.com/video.mp4"}) def test_extract_info(self): adapter = MultimediaFormatAdapter20231201() # Valid formats expected_result = MultimediaInfo("image/jpg", ResourceType.PATH, "random_path") assert adapter.extract_info({"data:image/jpg;path": "random_path"}) == expected_result expected_result = MultimediaInfo("image/jpg", ResourceType.URL, "random_url") assert adapter.extract_info({"data:image/jpg;url": "random_url"}) == expected_result expected_result = MultimediaInfo("image/jpg", ResourceType.BASE64, "random_base64") assert adapter.extract_info({"data:image/jpg;base64": "random_base64"}) == expected_result # Invalid format assert adapter.extract_info({"data:video/mp4;url": "https://example.com/video.mp4"}) is None assert adapter.extract_info({"data:image/mp4;url2": "https://example.com/video.mp4"}) is None assert adapter.extract_info({"content:image/mp4;path": "random_path"}) is None def test_create_data(self): adapter = MultimediaFormatAdapter20231201() info = MultimediaInfo("image/jpg", ResourceType.PATH, "random_path") expected_result = {"data:image/jpg;path": "random_path"} assert adapter.create_data(info) == expected_result info = MultimediaInfo("image/jpg", ResourceType.URL, "random_url") expected_result = {"data:image/jpg;url": "random_url"} assert adapter.create_data(info) == expected_result info = MultimediaInfo("image/jpg", ResourceType.BASE64, "base64 string") expected_result = {"data:image/jpg;base64": "base64 string"} assert adapter.create_data(info) == expected_result # Bad case when client provides invalid resource type. info = MultimediaInfo("image/jpg", "path", "base64 string") expected_result = {"data:image/jpg;base64": "base64 string"} with pytest.raises(AttributeError): adapter.create_data(info)
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/_utils/test_exception_utils.py
import json import re from traceback import TracebackException import pytest from promptflow._core._errors import ToolExecutionError from promptflow._core.operation_context import OperationContext from promptflow._utils.exception_utils import ( ErrorResponse, ExceptionPresenter, JsonSerializedPromptflowException, get_tb_next, infer_error_code_from_class, last_frame_info, remove_suffix, ) from promptflow.exceptions import ( ErrorTarget, PromptflowException, SystemErrorException, UserErrorException, ValidationException, ) def set_inner_exception_by_parameter(): raise PromptflowException("test", error=ValueError("bad number")) def set_inner_exception_by_raise_from(): raise PromptflowException("test") from ValueError("bad number") def code_with_bug(): 1 / 0 def raise_tool_execution_error(): try: code_with_bug() except Exception as e: raise ToolExecutionError(node_name="MyTool") from e def raise_exception_with_object(): raise PromptflowException(message_format="{inner_exception}", inner_exception=Exception("exception message")) def raise_user_error(): try: code_with_bug() except Exception as e: raise UserErrorException("run failed", target=ErrorTarget.TOOL) from e def raise_context_exception(): try: code_with_bug() except Exception as e: raise CustomizedContextException(e) class CustomizedContextException(Exception): def __init__(self, inner_exception): self.inner_exception = inner_exception @property def message(self): code_with_bug() return "context exception" class CustomizedException(Exception): pass class CustomUserError(UserErrorException): pass class CustomDefaultTargetError(UserErrorException): def __init__(self, target=ErrorTarget.EXECUTOR, **kwargs): super().__init__(target=target, **kwargs) def raise_general_exception(): try: code_with_bug() except Exception as e: raise CustomizedException("General exception") from e def raise_promptflow_exception(): try: code_with_bug() except Exception as e: raise PromptflowException("Promptflow exception") from e def raise_promptflow_exception_without_inner_exception(): try: code_with_bug() except Exception: raise PromptflowException("Promptflow exception") TOOL_EXECUTION_ERROR_TRACEBACK = r"""Traceback \(most recent call last\): File ".*test_exception_utils.py", line .*, in code_with_bug 1 / 0 ZeroDivisionError: division by zero """ TOOL_EXCEPTION_TRACEBACK = r""" The above exception was the direct cause of the following exception: Traceback \(most recent call last\): File ".*test_exception_utils.py", line .*, in test_.* raise_tool_execution_error\(\) File ".*test_exception_utils.py", line .*, in raise_tool_execution_error raise ToolExecutionError\(node_name="MyTool"\) from e """ TOOL_EXCEPTION_INNER_TRACEBACK = r"""Traceback \(most recent call last\): File ".*test_exception_utils.py", line .*, in raise_tool_execution_error code_with_bug\(\) File ".*test_exception_utils.py", line .*, in code_with_bug 1 / 0 """ GENERAL_EXCEPTION_TRACEBACK = r""" The above exception was the direct cause of the following exception: Traceback \(most recent call last\): File ".*test_exception_utils.py", line .*, in test_debug_info_for_general_exception raise_general_exception\(\) File ".*test_exception_utils.py", line .*, in raise_general_exception raise CustomizedException\("General exception"\) from e """ GENERAL_EXCEPTION_INNER_TRACEBACK = r"""Traceback \(most recent call last\): File ".*test_exception_utils.py", line .*, in raise_general_exception code_with_bug\(\) File ".*test_exception_utils.py", line .*, in code_with_bug 1 / 0 """ CONTEXT_EXCEPTION_TRACEBACK = r""" During handling of the above exception, another exception occurred: Traceback \(most recent call last\): File ".*test_exception_utils.py", line .*, in test_debug_info_for_context_exception raise_context_exception\(\) File ".*test_exception_utils.py", line .*, in raise_context_exception raise CustomizedContextException\(e\) """ CONTEXT_EXCEPTION_INNER_TRACEBACK = r"""Traceback \(most recent call last\): File ".*test_exception_utils.py", line .*, in raise_context_exception code_with_bug\(\) File ".*test_exception_utils.py", line .*, in code_with_bug 1 / 0 """ @pytest.mark.unittest class TestExceptionUtilsCommonMethod: def test_get_tb_next(self): with pytest.raises(ToolExecutionError) as e: raise_tool_execution_error() tb_next = get_tb_next(e.value.__traceback__, 3) te = TracebackException(type(e.value), e.value, tb_next) formatted_tb = "".join(te.format()) assert re.match(TOOL_EXCEPTION_INNER_TRACEBACK, formatted_tb) def test_last_frame_info(self): with pytest.raises(ToolExecutionError) as e: raise_tool_execution_error() frame_info = last_frame_info(e.value) assert "test_exception_utils.py" in frame_info.get("filename") assert frame_info.get("lineno") > 0 assert frame_info.get("name") == "raise_tool_execution_error" assert last_frame_info(None) == {} @pytest.mark.parametrize( "error_class, expected_error_code", [ (UserErrorException, "UserError"), (SystemErrorException, "SystemError"), (ValidationException, "ValidationError"), (ToolExecutionError, "ToolExecutionError"), (ValueError, "ValueError"), ], ) def test_infer_error_code_from_class(self, error_class, expected_error_code): assert infer_error_code_from_class(error_class) == expected_error_code @pytest.mark.unittest class TestExceptionPresenter: def test_debug_info(self): # Test ToolExecutionError with pytest.raises(ToolExecutionError) as e: raise_tool_execution_error() presenter = ExceptionPresenter.create(e.value) debug_info = presenter.debug_info assert debug_info["type"] == "ToolExecutionError" assert re.match(TOOL_EXCEPTION_TRACEBACK, debug_info["stackTrace"]) inner_exception = debug_info["innerException"] assert inner_exception["type"] == "ZeroDivisionError" assert re.match(TOOL_EXCEPTION_INNER_TRACEBACK, inner_exception["stackTrace"]) def test_debug_info_for_context_exception(self): with pytest.raises(CustomizedContextException) as e: raise_context_exception() presenter = ExceptionPresenter.create(e.value) debug_info = presenter.debug_info assert debug_info["type"] == "CustomizedContextException" assert re.match(CONTEXT_EXCEPTION_TRACEBACK, debug_info["stackTrace"]) inner_exception = debug_info["innerException"] assert inner_exception["type"] == "ZeroDivisionError" assert re.match(CONTEXT_EXCEPTION_INNER_TRACEBACK, inner_exception["stackTrace"]) def test_debug_info_for_general_exception(self): # Test General Exception with pytest.raises(CustomizedException) as e: raise_general_exception() presenter = ExceptionPresenter.create(e.value) debug_info = presenter.debug_info assert debug_info["type"] == "CustomizedException" assert re.match(GENERAL_EXCEPTION_TRACEBACK, debug_info["stackTrace"]) inner_exception = debug_info["innerException"] assert inner_exception["type"] == "ZeroDivisionError" assert re.match(GENERAL_EXCEPTION_INNER_TRACEBACK, inner_exception["stackTrace"]) def test_to_dict_for_general_exception(self): with pytest.raises(CustomizedException) as e: raise_general_exception() presenter = ExceptionPresenter.create(e.value) dct = presenter.to_dict(include_debug_info=True) assert "debugInfo" in dct dct.pop("debugInfo") assert dct == { "code": "SystemError", "message": "General exception", "messageFormat": "", "messageParameters": {}, "innerError": { "code": "CustomizedException", "innerError": None, }, } def test_to_dict_for_promptflow_exception(self): with pytest.raises(PromptflowException) as e: raise_promptflow_exception() presenter = ExceptionPresenter.create(e.value) dct = presenter.to_dict(include_debug_info=False) assert dct == { "code": "SystemError", "message": "Promptflow exception", "messageFormat": "", "messageParameters": {}, "referenceCode": "Unknown", "innerError": { "code": "ZeroDivisionError", "innerError": None, }, } def test_to_dict_for_promptflow_exception_without_inner_exception(self): with pytest.raises(PromptflowException) as e: raise_promptflow_exception_without_inner_exception() presenter = ExceptionPresenter.create(e.value) dct = presenter.to_dict(include_debug_info=False) assert dct == { "code": "SystemError", "message": "Promptflow exception", "messageFormat": "", "messageParameters": {}, "referenceCode": "Unknown", "innerError": None, } def test_to_dict_for_tool_execution_error(self): with pytest.raises(ToolExecutionError) as e: raise_tool_execution_error() presenter = ExceptionPresenter.create(e.value) assert re.search(TOOL_EXCEPTION_INNER_TRACEBACK, presenter.formatted_traceback) assert re.search(TOOL_EXCEPTION_TRACEBACK, presenter.formatted_traceback) dct = presenter.to_dict(include_debug_info=False) assert dct.pop("additionalInfo") is not None assert dct == { "code": "UserError", "message": "Execution failure in 'MyTool': (ZeroDivisionError) division by zero", "messageFormat": "Execution failure in '{node_name}'.", "messageParameters": {"node_name": "MyTool"}, "referenceCode": "Tool", "innerError": { "code": "ToolExecutionError", "innerError": None, }, } @pytest.mark.parametrize( "raise_exception_func, error_class, expected_error_codes", [ (raise_general_exception, CustomizedException, ["SystemError", "CustomizedException"]), (raise_tool_execution_error, ToolExecutionError, ["UserError", "ToolExecutionError"]), (raise_promptflow_exception, PromptflowException, ["SystemError", "ZeroDivisionError"]), (raise_promptflow_exception_without_inner_exception, PromptflowException, ["SystemError"]), ], ) def test_error_codes(self, raise_exception_func, error_class, expected_error_codes): with pytest.raises(error_class) as e: raise_exception_func() presenter = ExceptionPresenter.create(e.value) assert presenter.error_codes == expected_error_codes @pytest.mark.unittest class TestErrorResponse: def test_from_error_dict(self): error_dict = { "code": "UserError", "message": "Flow run failed.", } response = ErrorResponse.from_error_dict(error_dict) assert response.response_code == "400" assert response.error_codes == ["UserError"] assert response.message == "Flow run failed." response_dct = response.to_dict() assert response_dct["time"] is not None response_dct.pop("time") component_name = response_dct.pop("componentName", None) assert component_name == OperationContext.get_instance().get_user_agent() assert "promptflow" in component_name assert response_dct == { "error": { "code": "UserError", "message": "Flow run failed.", }, "correlation": None, "environment": None, "location": None, } def test_to_simplied_dict(self): with pytest.raises(CustomizedException) as e: raise_general_exception() error_response = ErrorResponse.from_exception(e.value) assert error_response.to_simplified_dict() == { "error": { "code": "SystemError", "message": "General exception", } } def test_from_exception(self): with pytest.raises(CustomizedException) as e: raise_general_exception() response = ErrorResponse.from_exception(e.value).to_dict() assert response["time"] is not None response.pop("time") component_name = response.pop("componentName", None) assert component_name == OperationContext.get_instance().get_user_agent() assert "promptflow" in component_name assert response == { "error": { "code": "SystemError", "message": "General exception", "messageFormat": "", "messageParameters": {}, "innerError": { "code": "CustomizedException", "innerError": None, }, }, "correlation": None, "environment": None, "location": None, } @pytest.mark.unittest @pytest.mark.parametrize( "input_dict, expected", [ ({"code": "firstError"}, "firstError"), ({"code": "firstError", "innerError": {}}, "firstError"), ({"code": "firstError", "innerError": {"code": "secondError"}}, "firstError/secondError"), ({"code": None, "innerError": {"code": "secondError"}}, ""), # Dict doesn't have code in outmost will return empty string. ({"error": {"code": "firstError", "innerError": {"code": "secondError"}}}, ""), ], ) def test_error_code_hierarchy(self, input_dict, expected): assert ErrorResponse.from_error_dict(input_dict).error_code_hierarchy == expected @pytest.mark.parametrize( "error_dict, expected_innermost_error_code", [ ( { "code": "UserError", "innerError": { "code": "ToolExecutionError", "innerError": None, }, }, "ToolExecutionError", ), ({"code": "UserError", "innerError": None}, "UserError"), ({"message": "UserError", "innerError": None}, None), ], ) def test_innermost_error_code_with_code(self, error_dict, expected_innermost_error_code): inner_error_code = ErrorResponse.from_error_dict(error_dict).innermost_error_code assert inner_error_code == expected_innermost_error_code @pytest.mark.parametrize( "error_dict, expected_additional_info", [ ({"code": "UserError"}, {}), ( { "code": "UserError", "additionalInfo": [ { "type": "test_additional_info", "info": "This is additional info for testing.", }, "not_dict", { "type": "empty_info", }, { "info": "Empty type", }, { "test": "Invalid additional info", }, ], }, {"test_additional_info": "This is additional info for testing."}, ), ], ) def test_additional_info(self, error_dict, expected_additional_info): error_response = ErrorResponse.from_error_dict(error_dict) assert error_response.additional_info == expected_additional_info assert all(error_response.get_additional_info(key) == value for key, value in expected_additional_info.items()) @pytest.mark.parametrize( "raise_exception_func, error_class", [ (raise_general_exception, CustomizedException), (raise_tool_execution_error, ToolExecutionError), ], ) def test_get_user_execution_error_info(self, raise_exception_func, error_class): with pytest.raises(error_class) as e: raise_exception_func() error_repsonse = ErrorResponse.from_exception(e.value) actual_error_info = error_repsonse.get_user_execution_error_info() self.assert_user_execution_error_info(e.value, actual_error_info) def assert_user_execution_error_info(self, exception, error_info): if isinstance(exception, ToolExecutionError): assert error_info["type"] == "ZeroDivisionError" assert error_info["message"] == "division by zero" assert error_info["filename"].endswith("test_exception_utils.py") assert error_info["lineno"] > 0 assert error_info["name"] == "code_with_bug" assert re.match( r"Traceback \(most recent call last\):\n" r' File ".*test_exception_utils.py", line .*, in code_with_bug\n' r" 1 / 0\n" r"(.*\n)?" # Python >= 3.11 add extra line here like a pointer. r"ZeroDivisionError: division by zero\n", error_info["traceback"], ) # assert re.match(TOOL_EXECUTION_ERROR_TRACEBACK, error_info["traceback"]) else: assert error_info == {} @pytest.mark.unittest class TestExceptions: @pytest.mark.parametrize( "ex, expected_message, expected_message_format, expected_message_parameters", [ ( CustomUserError("message"), "message", "", {}, ), ( CustomUserError(message="message"), "message", "", {}, ), ( CustomUserError("message", target=ErrorTarget.TOOL), "message", "", {}, ), ( CustomUserError(message="message", target=ErrorTarget.TOOL), "message", "", {}, ), ( CustomUserError(message_format="Hello world"), "Hello world", "Hello world", {}, ), ( CustomUserError(message_format="Hello {name}", name="world"), "Hello world", "Hello {name}", { "name": "world", }, ), ( CustomUserError(message_format="Hello {name}", name="world", not_used="whatever"), "Hello world", "Hello {name}", { "name": "world", }, ), ( CustomUserError(message_format="Hello {name}", name="world", target=ErrorTarget.TOOL), "Hello world", "Hello {name}", { "name": "world", }, ), ( CustomUserError(message_format="Hello {name} and {name}", name="world"), "Hello world and world", "Hello {name} and {name}", { "name": "world", }, ), ( CustomUserError(message_format="Hello {name} and {name}", name="world"), "Hello world and world", "Hello {name} and {name}", { "name": "world", }, ), ( CustomUserError( message_format="Tool '{tool_name}' execution failed due to {error}", tool_name="my tool", error="bug", ), "Tool 'my tool' execution failed due to bug", "Tool '{tool_name}' execution failed due to {error}", { "tool_name": "my tool", "error": "bug", }, ), ], ) def test_message_and_format(self, ex, expected_message, expected_message_format, expected_message_parameters): with pytest.raises(CustomUserError) as exc: raise ex assert exc.value.message == expected_message assert exc.value.message_format == expected_message_format assert exc.value.message_parameters == expected_message_parameters @pytest.mark.parametrize( "ex, expected_message, exepcted_target", [ ( CustomDefaultTargetError(message="message", target=ErrorTarget.TOOL), "message", ErrorTarget.TOOL, ), ( CustomDefaultTargetError(message="message"), "message", ErrorTarget.EXECUTOR, ), ], ) def test_target_and_message(self, ex, expected_message, exepcted_target): with pytest.raises(CustomDefaultTargetError) as exc: raise ex assert exc.value.message == expected_message assert exc.value.target == exepcted_target def test_reference_code(self): with pytest.raises(ToolExecutionError) as e: raise_tool_execution_error() e = e.value assert e.reference_code == ErrorTarget.TOOL.value module = "promptflow_vectordb.tool.faiss_index_loopup" e.module = module assert e.reference_code == f"{ErrorTarget.TOOL.value}/{module}" @pytest.mark.parametrize( "func_that_raises_exception", [ set_inner_exception_by_parameter, set_inner_exception_by_raise_from, ], ) def test_inner_exception(self, func_that_raises_exception): with pytest.raises(PromptflowException) as e: func_that_raises_exception() inner_exception = e.value.inner_exception assert isinstance(inner_exception, ValueError) assert str(inner_exception) == "bad number" assert str(e.value) == "test" def test_tool_execution_error(self): with pytest.raises(ToolExecutionError) as e: raise_tool_execution_error() inner_exception = e.value.inner_exception assert isinstance(inner_exception, ZeroDivisionError) assert str(inner_exception) == "division by zero" assert e.value.message == "Execution failure in 'MyTool': (ZeroDivisionError) division by zero" last_frame_info = e.value.tool_last_frame_info assert "test_exception_utils.py" in last_frame_info.get("filename") assert last_frame_info.get("lineno") > 0 assert last_frame_info.get("name") == "code_with_bug" assert re.match( r"Traceback \(most recent call last\):\n" r' File ".*test_exception_utils.py", line .*, in code_with_bug\n' r" 1 / 0\n" r"(.*\n)?" # Python >= 3.11 add extra line here like a pointer. r"ZeroDivisionError: division by zero\n", e.value.tool_traceback, ) def test_code_hierarchy(self): with pytest.raises(ToolExecutionError) as e: raise_tool_execution_error() e = e.value assert e.error_codes == ["UserError", "ToolExecutionError"] assert ExceptionPresenter.create(e).error_code_recursed == { "code": "UserError", "innerError": { "code": "ToolExecutionError", "innerError": None, }, } def test_debug_info(self): with pytest.raises(ToolExecutionError) as e: raise_tool_execution_error() e = e.value presenter = ExceptionPresenter.create(e) assert presenter.debug_info["type"] == "ToolExecutionError" assert re.match(TOOL_EXCEPTION_TRACEBACK, presenter.debug_info["stackTrace"]) inner_exception = presenter.debug_info["innerException"] assert inner_exception["type"] == "ZeroDivisionError" assert re.match(TOOL_EXCEPTION_INNER_TRACEBACK, inner_exception["stackTrace"]) def test_additional_info(self): with pytest.raises(ToolExecutionError) as e: raise_tool_execution_error() additional_info = ExceptionPresenter.create(e.value).to_dict().get("additionalInfo") assert len(additional_info) == 1 info_0 = additional_info[0] assert info_0["type"] == "ToolExecutionErrorDetails" info_0_value = info_0["info"] assert info_0_value.get("type") == "ZeroDivisionError" assert info_0_value.get("message") == "division by zero" assert re.match(r".*test_exception_utils.py", info_0_value["filename"]) assert info_0_value.get("lineno") > 0 assert info_0_value.get("name") == "code_with_bug" assert re.match( r"Traceback \(most recent call last\):\n" r' File ".*test_exception_utils.py", line .*, in code_with_bug\n' r" 1 / 0\n" r"(.*\n)?" # Python >= 3.11 add extra line here like a pointer. r"ZeroDivisionError: division by zero\n", info_0_value.get("traceback"), ) def test_additional_info_for_empty_inner_error(self): ex = ToolExecutionError(node_name="Node1") dct = ExceptionPresenter.create(ex).to_dict() additional_info = dct.get("additionalInfo") assert additional_info is None def test_additional_info_for_empty_case(self): with pytest.raises(UserErrorException) as e: raise_user_error() dct = ExceptionPresenter.create(e.value).to_dict() additional_info = dct.get("additionalInfo") assert additional_info is None @pytest.mark.parametrize("include_debug_info", [True, False]) def test_to_dict_turning_on_or_off_debug_info(self, include_debug_info): with pytest.raises(ToolExecutionError) as e: raise_tool_execution_error() e = e.value result = ExceptionPresenter.create(e).to_dict(include_debug_info=include_debug_info) if include_debug_info: assert "debugInfo" in result else: assert "debugInfo" not in result def test_to_dict(self): with pytest.raises(ToolExecutionError) as e: raise_tool_execution_error() e = e.value # We do not check include_debug_info=True since the traceback already checked in other cases result = ExceptionPresenter.create(e).to_dict(include_debug_info=False) # Wo do not check additonalInfo since it is already checked in other cases result.pop("additionalInfo") assert result == { "message": "Execution failure in 'MyTool': (ZeroDivisionError) division by zero", "messageFormat": "Execution failure in '{node_name}'.", "messageParameters": {"node_name": "MyTool"}, "referenceCode": "Tool", "code": "UserError", "innerError": { "code": "ToolExecutionError", "innerError": None, }, } def test_to_dict_object_parameter(self): with pytest.raises(PromptflowException) as e: raise_exception_with_object() e = e.value # We do not check include_debug_info=True since the traceback already checked in other cases result = ExceptionPresenter.create(e).to_dict(include_debug_info=False) # Assert message is str(exception) assert result == { "message": "exception message", "messageFormat": "{inner_exception}", "messageParameters": {"inner_exception": "exception message"}, "referenceCode": "Unknown", "code": "SystemError", "innerError": None, } @pytest.mark.parametrize("include_debug_info", [True, False]) def test_to_dict_for_JsonSerializedPromptflowException(self, include_debug_info): with pytest.raises(ToolExecutionError) as e: raise_tool_execution_error() exception_dict = ExceptionPresenter.create(e.value).to_dict(include_debug_info=True) message = json.dumps(exception_dict) exception = JsonSerializedPromptflowException(message=message) assert str(exception) == message json_serialized_exception_dict = ExceptionPresenter.create(exception).to_dict( include_debug_info=include_debug_info ) error_dict = exception.to_dict(include_debug_info=include_debug_info) assert error_dict == json_serialized_exception_dict if include_debug_info: assert "debugInfo" in error_dict error_dict.pop("debugInfo") error_dict.pop("additionalInfo") assert error_dict == { "code": "UserError", "message": "Execution failure in 'MyTool': (ZeroDivisionError) division by zero", "messageFormat": "Execution failure in '{node_name}'.", "messageParameters": {"node_name": "MyTool"}, "referenceCode": "Tool", "innerError": { "code": "ToolExecutionError", "innerError": None, }, } def test_remove_suffix(self): assert remove_suffix('PackageToolNotFoundError.', '.') == 'PackageToolNotFoundError' assert remove_suffix('PackageToolNotFoundError', 'Error') == 'PackageToolNotFound' assert remove_suffix('PackageToolNotFoundError', 'PackageToolNotFoundError') == '' assert remove_suffix('PackageToolNotFoundError', 'NonExistedSuffix') == 'PackageToolNotFoundError' assert remove_suffix('PackageToolNotFoundError', '') == 'PackageToolNotFoundError' assert remove_suffix('PackageToolNotFoundError', None) == 'PackageToolNotFoundError' assert remove_suffix('', 'NonExistedSuffix') == '' assert remove_suffix(None, 'NonExistedSuffix') is None
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/_utils/test_logger_utils.py
import io import logging import time from multiprocessing.pool import ThreadPool from pathlib import Path from tempfile import mkdtemp from unittest.mock import Mock from uuid import uuid4 import pytest from promptflow._utils.credential_scrubber import CredentialScrubber from promptflow._utils.logger_utils import ( CredentialScrubberFormatter, FileHandler, FileHandlerConcurrentWrapper, LogContext, bulk_logger, scrub_credentials, update_log_path, update_single_log_path, ) from promptflow.contracts.run_mode import RunMode from ...utils import load_content def _set_handler(logger: logging.Logger, handler: FileHandler, log_content: str): for h in logger.handlers: if isinstance(h, FileHandlerConcurrentWrapper): h.handler = handler time.sleep(1) logger.warning(log_content) h.clear() class DummyException(Exception): pass @pytest.fixture def logger(): logger = logging.getLogger(str(uuid4())) logger.setLevel(logging.INFO) return logger @pytest.fixture def stream_handler(): stream = io.StringIO() return logging.StreamHandler(stream) @pytest.mark.unittest class TestCredentialScrubberFormatter: def test_log(self, logger, stream_handler): """Make sure credentials by logger.log are scrubbed.""" formatter = CredentialScrubberFormatter() formatter.set_credential_list(["dummy secret"]) stream_handler.setFormatter(formatter) logger.addHandler(stream_handler) logger.info("testinfo&sig=signature") logger.error("testerror&key=accountkey") logger.warning("testwarning&sig=signature") logger.critical("print dummy secret") expected_log_output = ( f"testinfo&sig={CredentialScrubber.PLACE_HOLDER}\n" f"testerror&key={CredentialScrubber.PLACE_HOLDER}\n" f"testwarning&sig={CredentialScrubber.PLACE_HOLDER}\n" f"print {CredentialScrubber.PLACE_HOLDER}\n" ) assert stream_handler.stream.getvalue() == expected_log_output def test_log_with_args(self, logger, stream_handler): """Make sure credentials by logger.log (in args) are scrubbed.""" formatter = CredentialScrubberFormatter() formatter.set_credential_list(["dummy secret"]) stream_handler.setFormatter(formatter) logger.addHandler(stream_handler) logger.info("testinfo&sig=%s credential=%s", "signature", "dummy secret") expected_log_output = ( f"testinfo&sig={CredentialScrubber.PLACE_HOLDER} " f"credential={CredentialScrubber.PLACE_HOLDER}\n" ) assert stream_handler.stream.getvalue() == expected_log_output def test_log_with_exc_info(self, logger, stream_handler): """Make sure credentials in exception are scrubbed.""" formatter = CredentialScrubberFormatter() formatter.set_credential_list(["dummy secret"]) stream_handler.setFormatter(formatter) logger.addHandler(stream_handler) exception = DummyException("credential=dummy secret accountkey=accountkey") logger.exception("test exception", exc_info=exception) expected_log_output = "credential=**data_scrubbed** accountkey=**data_scrubbed**" assert expected_log_output in stream_handler.stream.getvalue() def test_set_credential_list_thread_safe(self): formatter = CredentialScrubberFormatter() def set_and_check_credential_list(credential_list): formatter.set_credential_list(credential_list) time.sleep(1) assert formatter.credential_scrubber.custom_str_set == set(credential_list) with ThreadPool(processes=3) as pool: results = pool.map(set_and_check_credential_list, [[f"secret {i}", f"credential {i}"] for i in range(3)]) _ = list(results) @pytest.mark.unittest class TestFileHandlerConcurrentWrapper: def test_set_handler_thread_safe(self): wrapper = FileHandlerConcurrentWrapper() logger = logging.getLogger("test execution log handler") logger.addHandler(wrapper) process_num = 3 folder_path = Path(mkdtemp()) log_path_list = [str(folder_path / f"log_{i}.log") for i in range(process_num)] with ThreadPool(processes=process_num) as pool: results = pool.starmap( _set_handler, ((logger, FileHandler(log_path_list[i]), f"log {i}") for i in range(process_num)) ) results = list(results) # Make sure log content is as expected. for i, log_path in enumerate(log_path_list): with open(log_path, "r") as f: log = f.read() log_lines = log.split("\n") assert len(log_lines) == 2 assert f"log {i}" in log_lines[0] assert log_lines[1] == "" def test_clear(self): wrapper = FileHandlerConcurrentWrapper() assert wrapper.handler is None log_path = str(Path(mkdtemp()) / "logs.log") file_handler = FileHandler(log_path) file_handler.close = Mock(side_effect=Exception("test exception")) wrapper.handler = file_handler wrapper.clear() assert wrapper.handler is None @pytest.mark.unittest class TestLogContext: def test_context_manager(self): log_handler = FileHandlerConcurrentWrapper() logger = logging.getLogger("test_setup_logger_context") logger.addHandler(log_handler) log_path = str(Path(mkdtemp()) / "test.log") try: log_context_initializer = LogContext(log_path).get_initializer() log_context = log_context_initializer() log_context.input_logger = logger assert LogContext.get_current() is None with log_context: assert LogContext.get_current() is not None # Make sure context variables are set. inner_handler = log_handler._context_var.get() assert isinstance(inner_handler, FileHandler) assert isinstance(inner_handler._formatter, CredentialScrubberFormatter) scrubber = inner_handler._formatter._context_var.get() assert scrubber is not None logger.warning("Print %s", "&sig=signature") # Raise exception for test. raise DummyException("Raise exception for test.") except DummyException: pass # Make sure log content is as expected. with open(log_path, "r") as f: log_content = f.read() assert f"Print &sig={CredentialScrubber.PLACE_HOLDER}" in log_content # Make sure context variables are cleaned up. assert log_handler._context_var.get() is None def test_empty_file_path(self, logger, stream_handler): logger.addHandler(stream_handler) logger.addHandler(FileHandlerConcurrentWrapper()) with LogContext("", input_logger=logger): logger.info("test log") assert stream_handler.stream.getvalue() == "test log\n" def test_update_log_path(self): log_handler = FileHandlerConcurrentWrapper() input_logger = logging.getLogger("input_logger") input_logger.addHandler(log_handler) folder_path = Path(mkdtemp()) original_log_path = str(folder_path / "original_log.log") with LogContext(original_log_path, input_logger=input_logger, run_mode=RunMode.Batch): bulk_logger.info("test log") input_logger.warning("test input log") original_log = load_content(original_log_path) keywords = ["test log", "test input log", "execution.bulk", "input_logger", "INFO", "WARNING"] assert all(keyword in original_log for keyword in keywords) # Update log path log_path = str(folder_path / "log_without_input_logger.log") update_log_path(log_path, input_logger) bulk_logger.info("test update log") input_logger.warning("test update input log") log = load_content(log_path) keywords = ["test update log", "test update input log", "execution.bulk", "input_logger", "INFO", "WARNING"] assert all(keyword in log for keyword in keywords) def test_update_single_log_path(self): log_handler = FileHandlerConcurrentWrapper() input_logger = logging.getLogger("input_logger") input_logger.addHandler(log_handler) folder_path = Path(mkdtemp()) original_log_path = str(folder_path / "original_log.log") with LogContext(original_log_path, input_logger=input_logger, run_mode=RunMode.Batch): bulk_logger.info("test log") input_logger.warning("test input log") original_log = load_content(original_log_path) keywords = ["test log", "test input log", "execution.bulk", "input_logger", "INFO", "WARNING"] assert all(keyword in original_log for keyword in keywords) # Update log path bulk_log_path = str(folder_path / "update_bulk_log.log") update_single_log_path(bulk_log_path, bulk_logger) input_log_path = str(folder_path / "update_input_log.log") update_single_log_path(input_log_path, input_logger) bulk_logger.info("test update log") input_logger.warning("test update input log") bulk_log = load_content(bulk_log_path) input_log = load_content(input_log_path) bulk_keywords = ["test update log", "execution.bulk", "INFO"] input_keywords = ["test update input log", "input_logger", "WARNING"] assert all(keyword in bulk_log for keyword in bulk_keywords) assert all(keyword not in bulk_log for keyword in input_keywords) assert all(keyword in input_log for keyword in input_keywords) assert all(keyword not in input_log for keyword in bulk_keywords) def test_scrub_credentials(self): log_content = "sig=signature&key=accountkey" folder_path = Path(mkdtemp()) logs_path = str(folder_path / "logs.log") scrubbed_log_content = scrub_credentials(log_content) assert scrubbed_log_content == "sig=**data_scrubbed**&key=**data_scrubbed**" with LogContext(logs_path): scrubbed_log_content = scrub_credentials(log_content) assert scrubbed_log_content == "sig=**data_scrubbed**&key=**data_scrubbed**"
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/_utils/test_thread_utils.py
import re import sys import time from io import StringIO from logging import WARNING, Logger, StreamHandler import pytest from promptflow._utils.thread_utils import RepeatLogTimer from promptflow._utils.utils import generate_elapsed_time_messages class DummyException(Exception): pass @pytest.mark.skipif(sys.platform == "darwin", reason="Skip on Mac") @pytest.mark.unittest class TestRepeatLogTimer: def test_context_manager(self): s = StringIO() logger = Logger("test_repeat_log_timer") logger.addHandler(StreamHandler(s)) interval_seconds = 1 start_time = time.perf_counter() with RepeatLogTimer( interval_seconds=interval_seconds, logger=logger, level=WARNING, log_message_function=generate_elapsed_time_messages, args=("Test", start_time, interval_seconds, None), ): time.sleep(10.5) logs = s.getvalue().split("\n") logs = [log for log in logs if log] log_pattern = re.compile( r"^Test has been running for [0-9]+ seconds, thread None cannot be found in sys._current_frames, " r"maybe it has been terminated due to unexpected errors.$" ) assert logs, "Logs are empty." for log in logs: assert re.match(log_pattern, log), f"The wrong log: {log}"
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/_utils/test_credential_scrubber.py
import pytest from promptflow._utils.credential_scrubber import CredentialScrubber def mock_connection_string(): connection_str_before_key = "DefaultEndpointsProtocol=https;AccountName=accountName;" connection_str_after_key = "EndpointSuffix=core.windows.net" return ( f"{connection_str_before_key}AccountKey=accountKey;{connection_str_after_key}", f"{connection_str_before_key}AccountKey={CredentialScrubber.PLACE_HOLDER};{connection_str_after_key}", ) def mock_sas_uri(): uri_without_signature = "https://bloburi/containerName/file.txt?sv=2021-10-04&se=2023-05-17&sr=b&sp=rw" return (f"{uri_without_signature}&sig=signature", f"{uri_without_signature}&sig={CredentialScrubber.PLACE_HOLDER}") @pytest.mark.unittest class TestCredentialScrubber: def test_scrub_sigature_in_sasuri(self): input_str, ground_truth = mock_sas_uri() assert CredentialScrubber().scrub(input_str) == ground_truth def test_scrub_key_in_connection_string(self): input_str, ground_truth = mock_connection_string() output = CredentialScrubber().scrub(input_str) assert output == ground_truth def test_add_regex(self): scrubber = CredentialScrubber() scrubber.add_regex(r"(?<=credential=)[^\s;&]+") assert scrubber.scrub("test&credential=credential") == f"test&credential={CredentialScrubber.PLACE_HOLDER}" def test_add_str(self): scrubber = CredentialScrubber() scrubber.add_str(None) assert len(scrubber.custom_str_set) == 0 scrubber.add_str("credential") assert len(scrubber.custom_str_set) == 1 assert scrubber.scrub("test&secret=credential") == f"test&secret={CredentialScrubber.PLACE_HOLDER}" def test_add_str_length_threshold(self): """If the secret is too short (length <= 2 chars), it will not be scrubbed.""" scrubber = CredentialScrubber() scrubber.add_str("yy") assert scrubber.scrub("test&secret=yy") == "test&secret=yy" def test_normal_str_not_affected(self): assert CredentialScrubber().scrub("no secret") == "no secret" def test_clear(self): scrubber = CredentialScrubber() scrubber.add_str("credential") scrubber.add_regex(r"(?<=credential=)[^\s;&]+") assert len(scrubber.custom_str_set) == 1 assert len(scrubber.custom_regex_set) == 1 scrubber.clear() assert len(scrubber.custom_str_set) == 0 assert len(scrubber.custom_regex_set) == 0
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/_utils/test_generate_tool_meta_utils.py
import os import re import sys from multiprocessing import Pool from pathlib import Path from unittest.mock import patch import pytest from promptflow._core.tool_meta_generator import ( JinjaParsingError, MultipleToolsDefined, NoToolDefined, PythonLoadError, PythonParsingError, generate_prompt_meta, generate_python_meta, generate_tool_meta_dict_by_file, ) from promptflow._utils.exception_utils import ExceptionPresenter from ...utils import FLOW_ROOT, load_json TEST_ROOT = Path(__file__).parent.parent.parent.parent TOOLS_ROOT = TEST_ROOT / "test_configs/wrong_tools" def cd_and_run(working_dir, source_path, tool_type): os.chdir(working_dir) sys.path.insert(0, working_dir) try: return generate_tool_meta_dict_by_file(source_path, tool_type) except Exception as e: return f"({e.__class__.__name__}) {e}" def cd_and_run_with_read_text_error(working_dir, source_path, tool_type): def mock_read_text_error(self: Path, *args, **kwargs): raise Exception("Mock read text error.") os.chdir(working_dir) sys.path.insert(0, working_dir) try: with patch("promptflow._core.tool_meta_generator.Path.read_text", new=mock_read_text_error): return generate_tool_meta_dict_by_file(source_path, tool_type) except Exception as e: return f"({e.__class__.__name__}) {e}" def cd_and_run_with_bad_function_interface(working_dir, source_path, tool_type): def mock_function_to_interface(*args, **kwargs): raise Exception("Mock function to interface error.") os.chdir(working_dir) sys.path.insert(0, working_dir) try: with patch("promptflow._core.tool_meta_generator.function_to_interface", new=mock_function_to_interface): return generate_tool_meta_dict_by_file(source_path, tool_type) except Exception as e: return f"({e.__class__.__name__}) {e}" def generate_tool_meta_dict_by_file_with_cd(wd, tool_path, tool_type, func): with Pool(1) as pool: return pool.apply(func, (wd, tool_path, tool_type)) @pytest.mark.unittest class TestToolMetaUtils: @pytest.mark.parametrize( "flow_dir, tool_path, tool_type", [ ("prompt_tools", "summarize_text_content_prompt.jinja2", "prompt"), ("prompt_tools", "summarize_text_content_prompt.jinja2", "llm"), ("script_with_import", "dummy_utils/main.py", "python"), ("script_with___file__", "script_with___file__.py", "python"), ("script_with_special_character", "script_with_special_character.py", "python"), ], ) def test_generate_tool_meta_dict_by_file(self, flow_dir, tool_path, tool_type): wd = str((FLOW_ROOT / flow_dir).resolve()) meta_dict = generate_tool_meta_dict_by_file_with_cd(wd, tool_path, tool_type, cd_and_run) assert isinstance(meta_dict, dict), "Call cd_and_run failed:\n" + meta_dict target_file = (Path(wd) / tool_path).with_suffix(".meta.json") expected_dict = load_json(target_file) if tool_type == "llm": expected_dict["type"] = "llm" # We use prompt as default for jinja2 assert meta_dict == expected_dict @pytest.mark.parametrize( "flow_dir, tool_path, tool_type, func, msg_pattern", [ pytest.param( "prompt_tools", "summarize_text_content_prompt.jinja2", "python", cd_and_run, r"\(PythonLoaderNotFound\) Failed to load python file '.*summarize_text_content_prompt.jinja2'. " r"Please make sure it is a valid .py file.", id="PythonLoaderNotFound", ), pytest.param( "script_with_import", "fail.py", "python", cd_and_run, r"\(PythonLoadError\) Failed to load python module from file '.*fail.py': " r"\(ModuleNotFoundError\) No module named 'aaa'", id="PythonLoadError", ), pytest.param( "simple_flow_with_python_tool", "divide_num.py", "python", cd_and_run_with_bad_function_interface, r"\(BadFunctionInterface\) Parse interface for tool 'divide_num' failed: " r"\(Exception\) Mock function to interface error.", id="BadFunctionInterface", ), pytest.param( "script_with_import", "aaa.py", "python", cd_and_run, r"\(MetaFileNotFound\) Generate tool meta failed for python tool. " r"Meta file 'aaa.py' can not be found.", id="MetaFileNotFound", ), pytest.param( "simple_flow_with_python_tool", "divide_num.py", "python", cd_and_run_with_read_text_error, r"\(MetaFileReadError\) Generate tool meta failed for python tool. " r"Read meta file 'divide_num.py' failed: \(Exception\) Mock read text error.", id="MetaFileReadError", ), pytest.param( "simple_flow_with_python_tool", "divide_num.py", "action", cd_and_run, r"\(NotSupported\) Generate tool meta failed. The type 'action' is currently unsupported. " r"Please choose from available types: python,llm,prompt and try again.", id="NotSupported", ), ], ) def test_generate_tool_meta_dict_by_file_exception(self, flow_dir, tool_path, tool_type, func, msg_pattern): wd = str((FLOW_ROOT / flow_dir).resolve()) ret = generate_tool_meta_dict_by_file_with_cd(wd, tool_path, tool_type, func) assert isinstance(ret, str), "Call cd_and_run should fail but succeeded:\n" + str(ret) assert re.match(msg_pattern, ret) @pytest.mark.parametrize( "content, error_code, message", [ pytest.param( "zzz", PythonParsingError, "Failed to load python module. Python parsing failed: (NameError) name 'zzz' is not defined", id="PythonParsingError_NameError", ), pytest.param( "# Nothing", NoToolDefined, "No tool found in the python script. " "Please make sure you have one and only one tool definition in your script.", id="NoToolDefined", ), pytest.param( "multiple_tools.py", MultipleToolsDefined, "Expected 1 but collected 2 tools: tool1, tool2. " "Please make sure you have one and only one tool definition in your script.", id="MultipleToolsDefined", ), pytest.param( "{% zzz", PythonParsingError, "Failed to load python module. Python parsing failed: " "(SyntaxError) invalid syntax (<string>, line 1)", id="PythonParsingError_SyntaxError", ), ], ) def test_custom_python_meta(self, content, error_code, message) -> None: if content.endswith(".py"): source = TOOLS_ROOT / content with open(source, "r") as f: code = f.read() else: code = content source = None with pytest.raises(error_code) as ex: generate_python_meta("some_tool", code, source) assert message == str(ex.value) @pytest.mark.parametrize( "content, error_code, message", [ pytest.param( "{% zzz", JinjaParsingError, "Generate tool meta failed for llm tool. Jinja parsing failed at line 1: " "(TemplateSyntaxError) Encountered unknown tag 'zzz'.", id="JinjaParsingError_Code", ), pytest.param( "no_end.jinja2", JinjaParsingError, "Generate tool meta failed for llm tool. Jinja parsing failed at line 2: " "(TemplateSyntaxError) Unexpected end of template. Jinja was looking for the following tags: " "'endfor' or 'else'. The innermost block that needs to be closed is 'for'.", id="JinjaParsingError_File", ), ], ) def test_custom_llm_meta(self, content, error_code, message) -> None: if content.endswith(".jinja2"): with open(TOOLS_ROOT / content, "r") as f: code = f.read() else: code = content with pytest.raises(error_code) as ex: generate_prompt_meta("some_tool", code) assert message == str(ex.value) @pytest.mark.parametrize( "content, error_code, message", [ pytest.param( "{% zzz", JinjaParsingError, "Generate tool meta failed for prompt tool. Jinja parsing failed at line 1: " "(TemplateSyntaxError) Encountered unknown tag 'zzz'.", id="JinjaParsingError_Code", ), pytest.param( "no_end.jinja2", JinjaParsingError, "Generate tool meta failed for prompt tool. Jinja parsing failed at line 2: " "(TemplateSyntaxError) Unexpected end of template. Jinja was looking for the following tags: " "'endfor' or 'else'. The innermost block that needs to be closed is 'for'.", id="JinjaParsingError_File", ), ], ) def test_custom_prompt_meta(self, content, error_code, message) -> None: if content.endswith(".jinja2"): with open(TOOLS_ROOT / content, "r") as f: code = f.read() else: code = content with pytest.raises(error_code) as ex: generate_prompt_meta("some_tool", code, prompt_only=True) assert message == str(ex.value) @pytest.mark.unittest class TestPythonLoadError: def test_additional_info(self): source = TOOLS_ROOT / "load_error.py" with open(source, "r") as f: code = f.read() with pytest.raises(PythonLoadError) as ex: generate_python_meta("some_tool", code, source) additional_info = ExceptionPresenter.create(ex.value).to_dict().get("additionalInfo") assert len(additional_info) == 1 info_0 = additional_info[0] assert info_0["type"] == "UserCodeStackTrace" info_0_value = info_0["info"] assert info_0_value.get("type") == "ZeroDivisionError" assert info_0_value.get("message") == "division by zero" assert re.match(r".*load_error.py", info_0_value["filename"]) assert info_0_value.get("lineno") == 3 assert info_0_value.get("name") == "<module>" assert re.search( r"Traceback \(most recent call last\):\n" r' File ".*load_error.py", line .*, in <module>\n' r" 1 / 0\n" r"(.*\n)?" # Python >= 3.11 add extra line here like a pointer. r"ZeroDivisionError: division by zero\n", info_0_value.get("traceback"), ) def test_additional_info_for_empty_inner_error(self): ex = PythonLoadError(message_format="Test empty error") additional_info = ExceptionPresenter.create(ex).to_dict().get("additionalInfo") assert additional_info is None
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/_utils/test_utils.py
import pytest import os from unittest.mock import patch from datetime import datetime from promptflow._utils.utils import is_json_serializable, get_int_env_var, log_progress class MyObj: pass @pytest.mark.unittest class TestUtils: @pytest.mark.parametrize("value, expected_res", [(None, True), (1, True), ("", True), (MyObj(), False)]) def test_is_json_serializable(self, value, expected_res): assert is_json_serializable(value) == expected_res @pytest.mark.parametrize( "env_var, env_value, default_value, expected_result", [ ("TEST_VAR", "10", None, 10), # Valid integer string ("TEST_VAR", "invalid", None, None), # Invalid integer strings ("TEST_VAR", None, 5, 5), # Environment variable does not exist ("TEST_VAR", "10", 5, 10), # Valid integer string with a default value ("TEST_VAR", "invalid", 5, 5), # Invalid integer string with a default value ]) def test_get_int_env_var(self, env_var, env_value, default_value, expected_result): with patch.dict(os.environ, {env_var: env_value} if env_value is not None else {}): assert get_int_env_var(env_var, default_value) == expected_result @pytest.mark.parametrize( "env_var, env_value, expected_result", [ ("TEST_VAR", "10", 10), # Valid integer string ("TEST_VAR", "invalid", None), # Invalid integer strings ("TEST_VAR", None, None), # Environment variable does not exist ]) def test_get_int_env_var_without_default_vaue(self, env_var, env_value, expected_result): with patch.dict(os.environ, {env_var: env_value} if env_value is not None else {}): assert get_int_env_var(env_var) == expected_result @patch('promptflow.executor._line_execution_process_pool.bulk_logger', autospec=True) def test_log_progress(self, mock_logger): run_start_time = datetime.utcnow() count = 1 # Tests do not log when not specified at specified intervals (interval = 2) total_count = 20 log_progress(run_start_time, mock_logger, count, total_count) mock_logger.info.assert_not_called() # Test logging at specified intervals (interval = 2) count = 8 log_progress(run_start_time, mock_logger, count, total_count) mock_logger.info.assert_any_call("Finished 8 / 20 lines.") mock_logger.reset_mock() # Test logging using last_log_count parameter (conut - last_log_count > interval(2)) log_progress(run_start_time, mock_logger, count, total_count, last_log_count=5) mock_logger.info.assert_any_call("Finished 8 / 20 lines.") mock_logger.reset_mock() # Test don't log using last_log_count parameter ((conut - last_log_count < interval(2)) log_progress(run_start_time, mock_logger, count, total_count, last_log_count=7) mock_logger.info.assert_not_called()
0
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests
promptflow_repo/promptflow/src/promptflow/tests/executor/unittests/_utils/test_dataclass_serializer.py
import pytest from datetime import datetime from dataclasses import dataclass from typing import Dict, List from promptflow._core.generator_proxy import GeneratorProxy from promptflow._utils.dataclass_serializer import \ get_type, serialize, deserialize_dataclass, deserialize_value, assertEqual from promptflow.contracts.run_info import RunInfo, Status from promptflow._core.connection_manager import ConnectionManager from promptflow.storage.run_records import NodeRunRecord from unittest.mock import patch, Mock import sys def get_connection_dict(): return { "azure_open_ai_connection": { "type": "AzureOpenAIConnection", "value": { "api_key": "<azure-openai-key>", "api_base": "<aoai-api-endpoint>", "api_type": "azure", "api_version": "2023-07-01-preview", }, }, "custom_connection": { "type": "CustomConnection", "value": { "api_key": "<your-key>", "url": "<connection-endpoint>", }, "module": "promptflow.connections", "secret_keys": ["api_key"], }, } @pytest.mark.unittest @pytest.mark.parametrize( "type_input, expected", [ (NodeRunRecord, NodeRunRecord), ([NodeRunRecord], List[NodeRunRecord]), (dict(a=NodeRunRecord), Dict[str, NodeRunRecord]), (int, int), (str, str), ] ) def test_get_type(type_input, expected): assert get_type(type_input) == expected @pytest.mark.unittest def test_serialize_dataclass(): start_time = datetime(2023, 9, 4) end_time = datetime(2023, 9, 4) node_run_info = RunInfo( node=None, run_id=None, flow_run_id=None, status=Status.Completed, inputs=None, output=None, metrics=None, error=None, parent_run_id=None, start_time=start_time, end_time=end_time, index=0, ) node_record = NodeRunRecord.from_run_info(node_run_info) serialized_info = serialize(node_run_info) serialized_record = serialize(node_record) # test dataclass without serialize attribute assert serialized_info['status'] == "Completed" assert serialized_info['start_time'] == "2023-09-04T00:00:00Z" assert deserialize_value(serialized_info, RunInfo) == node_run_info # test dataclass with serialize attribute assert serialized_record == node_record.serialize() @pytest.mark.unittest @pytest.mark.parametrize( "value, value_type, expected", [ (datetime(2023, 9, 4), datetime, "2023-09-04T00:00:00Z"), (Status.Completed, Status, "Completed"), ([1, 2, 3], List[int], [1, 2, 3]), ({"a": 1, "b": 2}, Dict[str, int], {"a": 1, "b": 2}), (1, int, 1), ("a", str, "a"), ] ) def test_serialize_value(value, value_type, expected): assert serialize(value) == expected assert deserialize_value(serialize(value), value_type) == value @pytest.mark.unittest def test_serialize_remove_null(): value = {"a": 1, "b": None} value_type = Dict[str, int] assert deserialize_value(serialize(value, remove_null=True), value_type) == {"a": 1, "b": None} @dataclass class DummyDataClass: name: str age: int assert serialize(DummyDataClass("Dummy", None), remove_null=True) == {'name': 'Dummy'} @pytest.mark.unittest def test_serialize_connection(): new_connection = get_connection_dict() connection_manager = ConnectionManager(new_connection) assert serialize(connection_manager.get("azure_open_ai_connection")) == "azure_open_ai_connection" @pytest.mark.unittest def test_serialize_generator(): def generator(): for i in range(3): yield i g = GeneratorProxy(generator()) next(g) assert serialize(g) == [0] @pytest.mark.unittest @patch.dict('sys.modules', {'pydantic': None}) def test_import_pydantic_error(): # mock pydantic is not installed class DummyClass: def __init__(self, name, age): self.name = name self.age = age dummy = DummyClass('Test', 20) assert serialize(dummy) == dummy @pytest.mark.unittest @patch.dict('sys.modules', {'pydantic': Mock()}) def test_import_pydantic(): # mock pydantic is installed class MockBaseModel: def dict(self): return {"key": "value"} mock_value = MockBaseModel() sys.modules['pydantic'].BaseModel = MockBaseModel assert serialize(mock_value) == mock_value.dict() assert serialize(123) == 123 @pytest.mark.unittest def test_deserialize_dataclass(): # test when cls is not dataclass with pytest.raises(ValueError): deserialize_dataclass(int, 1) # test when data is not a dict with pytest.raises(ValueError): deserialize_dataclass(NodeRunRecord, "NodeRunRecord") @dataclass class DummyDataClassWithDefault: name: str = "Default Name" age: int = 0 # test deserialize dataclass with default value data = {"age": 25} obj = deserialize_dataclass(DummyDataClassWithDefault, data) assert obj.name == "Default Name" assert obj.age == 25 @pytest.mark.unittest @pytest.mark.parametrize( "a, b, expected", [ (1, 2, 1), (Status.Completed, Status, Status.Completed), (None, datetime, None), ("2022-01-01T00:00:00", datetime, datetime.fromisoformat("2022-01-01T00:00:00")), ] ) def test_deserialize_value(a, b, expected): assert deserialize_value(a, b) == expected @pytest.mark.unittest @pytest.mark.parametrize( "a, b, path, are_equal", [ # Test with identical dicts ({'key1': 'value1', 'key2': 'value2'}, {'key1': 'value1', 'key2': 'value2'}, \ "unittests/_utils/test_dataclass_serializer", True), # Test with non-identical dicts ({'key1': 'value1', 'key2': 'value2'}, {'key1': 'value1', 'key3': 'value3'}, \ "unittests/_utils/test_dataclass_serializer", False), # Test with identical lists (['item1', 'item2'], ['item1', 'item2'], "", True), # Test with non-identical lists (['item1', 'item2'], ['item1', 'item3'], "", False), # Test with other types (1, 1, "", True), (1, 2, "", False), ('string', 'string', "", True), ('string1', 'string2', "", False), ] ) def test_assertEqual(a, b, path, are_equal): if are_equal: assertEqual(a, b, path) else: with pytest.raises(AssertionError): assertEqual(a, b, path)
0
promptflow_repo/promptflow/src/promptflow/tests
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test/conftest.py
import base64 import json import multiprocessing import os from pathlib import Path from unittest.mock import patch import pytest from mock import mock from pytest_mock import MockerFixture from sqlalchemy import create_engine from promptflow import PFClient from promptflow._sdk._configuration import Configuration from promptflow._sdk._constants import EXPERIMENT_CREATED_ON_INDEX_NAME, EXPERIMENT_TABLE_NAME, LOCAL_MGMT_DB_PATH from promptflow._sdk._serving.app import create_app as create_serving_app from promptflow._sdk.entities import AzureOpenAIConnection as AzureOpenAIConnectionEntity from promptflow._sdk.entities._connection import CustomConnection, _Connection from promptflow.executor._line_execution_process_pool import _process_wrapper from promptflow.executor._process_manager import create_spawned_fork_process_manager from .recording_utilities import RecordStorage, mock_tool, recording_array_extend, recording_array_reset PROMOTFLOW_ROOT = Path(__file__) / "../../.." RUNTIME_TEST_CONFIGS_ROOT = Path(PROMOTFLOW_ROOT / "tests/test_configs/runtime") RECORDINGS_TEST_CONFIGS_ROOT = Path(PROMOTFLOW_ROOT / "tests/test_configs/node_recordings").resolve() CONNECTION_FILE = (PROMOTFLOW_ROOT / "connections.json").resolve().absolute().as_posix() MODEL_ROOT = Path(PROMOTFLOW_ROOT / "tests/test_configs/flows") @pytest.fixture(scope="session") def local_client() -> PFClient: yield PFClient() @pytest.fixture(scope="session") def pf() -> PFClient: yield PFClient() @pytest.fixture() def local_aoai_connection(local_client, azure_open_ai_connection): conn = AzureOpenAIConnectionEntity( name="azure_open_ai_connection", api_key=azure_open_ai_connection.api_key, api_base=azure_open_ai_connection.api_base, ) local_client.connections.create_or_update(conn) return conn @pytest.fixture() def local_alt_aoai_connection(local_client, azure_open_ai_connection): conn = AzureOpenAIConnectionEntity( name="new_ai_connection", api_key=azure_open_ai_connection.api_key, api_base=azure_open_ai_connection.api_base, ) local_client.connections.create_or_update(conn) return conn @pytest.fixture() def local_custom_connection(local_client, azure_open_ai_connection): conn = CustomConnection( name="test_custom_connection", secrets={"test_secret": "test_value"}, ) local_client.connections.create_or_update(conn) return conn _connection_setup = False @pytest.fixture def setup_local_connection(local_client, azure_open_ai_connection): global _connection_setup if _connection_setup: return connection_dict = json.loads(open(CONNECTION_FILE, "r").read()) for name, _dct in connection_dict.items(): if _dct["type"] == "BingConnection": continue local_client.connections.create_or_update(_Connection._from_execution_connection_dict(name=name, data=_dct)) _connection_setup = True @pytest.fixture def setup_experiment_table(): with mock.patch("promptflow._sdk._configuration.Configuration.is_internal_features_enabled") as mock_func: mock_func.return_value = True # Call this session to initialize session maker, then add experiment table from promptflow._sdk._orm import Experiment, mgmt_db_session from promptflow._sdk._orm.session import create_index_if_not_exists, create_or_update_table mgmt_db_session() engine = create_engine(f"sqlite:///{str(LOCAL_MGMT_DB_PATH)}", future=True) if Configuration.get_instance().is_internal_features_enabled(): create_or_update_table(engine, orm_class=Experiment, tablename=EXPERIMENT_TABLE_NAME) create_index_if_not_exists(engine, EXPERIMENT_CREATED_ON_INDEX_NAME, EXPERIMENT_TABLE_NAME, "created_on") @pytest.fixture def flow_serving_client(mocker: MockerFixture): model_path = (Path(MODEL_ROOT) / "basic-with-connection").resolve().absolute().as_posix() mocker.patch.dict(os.environ, {"PROMPTFLOW_PROJECT_PATH": model_path}) mocker.patch.dict(os.environ, {"USER_AGENT": "test-user-agent"}) app = create_serving_app(environment_variables={"API_TYPE": "${azure_open_ai_connection.api_type}"}) app.config.update( { "TESTING": True, } ) return app.test_client() @pytest.fixture def flow_serving_client_with_encoded_connection(mocker: MockerFixture): from promptflow._core.connection_manager import ConnectionManager from promptflow._sdk._serving.utils import encode_dict connection_dict = json.loads(open(CONNECTION_FILE, "r").read()) connection_manager = ConnectionManager(connection_dict) connections = {"PROMPTFLOW_ENCODED_CONNECTIONS": encode_dict(connection_manager.to_connections_dict())} return create_client_by_model("basic-with-connection", mocker, connections, extension_type="azureml") @pytest.fixture def evaluation_flow_serving_client(mocker: MockerFixture): model_path = (Path(MODEL_ROOT) / "web_classification").resolve().absolute().as_posix() mocker.patch.dict(os.environ, {"PROMPTFLOW_PROJECT_PATH": model_path}) app = create_serving_app() app.config.update( { "TESTING": True, } ) return app.test_client() def create_client_by_model( model_name: str, mocker: MockerFixture, connections: dict = {}, extension_type=None, environment_variables={} ): model_path = (Path(MODEL_ROOT) / model_name).resolve().absolute().as_posix() mocker.patch.dict(os.environ, {"PROMPTFLOW_PROJECT_PATH": model_path}) if connections: mocker.patch.dict(os.environ, connections) if extension_type and extension_type == "azureml": environment_variables["API_TYPE"] = "${azure_open_ai_connection.api_type}" app = create_serving_app(environment_variables=environment_variables, extension_type=extension_type) app.config.update( { "TESTING": True, } ) return app.test_client() @pytest.fixture def serving_client_llm_chat(mocker: MockerFixture): return create_client_by_model("chat_flow_with_stream_output", mocker) @pytest.fixture def serving_client_python_stream_tools(mocker: MockerFixture): return create_client_by_model("python_stream_tools", mocker) @pytest.fixture def sample_image(): image_path = (Path(MODEL_ROOT) / "python_tool_with_simple_image" / "logo.jpg").resolve() return base64.b64encode(open(image_path, "rb").read()).decode("utf-8") @pytest.fixture def serving_client_image_python_flow(mocker: MockerFixture): return create_client_by_model("python_tool_with_simple_image", mocker) @pytest.fixture def serving_client_composite_image_flow(mocker: MockerFixture): return create_client_by_model("python_tool_with_composite_image", mocker) @pytest.fixture def serving_client_with_environment_variables(mocker: MockerFixture): return create_client_by_model( "flow_with_environment_variables", mocker, environment_variables={"env2": "runtime_env2", "env10": "aaaaa"}, ) @pytest.fixture def recording_file_override(request: pytest.FixtureRequest, mocker: MockerFixture): if RecordStorage.is_replaying_mode() or RecordStorage.is_recording_mode(): file_path = RECORDINGS_TEST_CONFIGS_ROOT / "node_cache.shelve" RecordStorage.get_instance(file_path) yield SpawnProcess = multiprocessing.get_context("spawn").Process class MockSpawnProcess(SpawnProcess): def __init__(self, group=None, target=None, *args, **kwargs): if target == _process_wrapper: target = _mock_process_wrapper if target == create_spawned_fork_process_manager: target = _mock_create_spawned_fork_process_manager super().__init__(group, target, *args, **kwargs) @pytest.fixture def recording_injection(mocker: MockerFixture, recording_file_override): original_process_class = multiprocessing.get_context("spawn").Process multiprocessing.get_context("spawn").Process = MockSpawnProcess if "spawn" == multiprocessing.get_start_method(): multiprocessing.Process = MockSpawnProcess patches = setup_recording_injection_if_enabled() try: yield (RecordStorage.is_replaying_mode() or RecordStorage.is_recording_mode(), recording_array_extend) finally: if RecordStorage.is_replaying_mode() or RecordStorage.is_recording_mode(): RecordStorage.get_instance().delete_lock_file() recording_array_reset() multiprocessing.get_context("spawn").Process = original_process_class if "spawn" == multiprocessing.get_start_method(): multiprocessing.Process = original_process_class for patcher in patches: patcher.stop() def setup_recording_injection_if_enabled(): patches = [] if RecordStorage.is_replaying_mode() or RecordStorage.is_recording_mode(): file_path = RECORDINGS_TEST_CONFIGS_ROOT / "node_cache.shelve" RecordStorage.get_instance(file_path) from promptflow._core.tool import tool as original_tool mocked_tool = mock_tool(original_tool) patch_targets = ["promptflow._core.tool.tool", "promptflow._internal.tool", "promptflow.tool"] for target in patch_targets: patcher = patch(target, mocked_tool) patches.append(patcher) patcher.start() return patches def _mock_process_wrapper(*args, **kwargs): setup_recording_injection_if_enabled() return _process_wrapper(*args, **kwargs) def _mock_create_spawned_fork_process_manager(*args, **kwargs): setup_recording_injection_if_enabled() return create_spawned_fork_process_manager(*args, **kwargs)
0
promptflow_repo/promptflow/src/promptflow/tests
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test/.coveragerc
[run] source = */promptflow/_cli/* */promptflow/_sdk/* */promptflow/azure/* omit = */promptflow/azure/_restclient/* *__init__.py*
0
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test/e2etests/test_connection.py
import uuid from pathlib import Path import pydash import pytest from promptflow._sdk._constants import SCRUBBED_VALUE from promptflow._sdk._pf_client import PFClient from promptflow._sdk.entities import AzureOpenAIConnection, CustomConnection _client = PFClient() TEST_ROOT = Path(__file__).parent.parent.parent CONNECTION_ROOT = TEST_ROOT / "test_configs/connections" @pytest.mark.cli_test @pytest.mark.e2etest class TestConnection: def test_connection_operations(self): name = f"Connection_{str(uuid.uuid4())[:4]}" conn = AzureOpenAIConnection(name=name, api_key="test", api_base="test") # Create _client.connections.create_or_update(conn) # Get result = _client.connections.get(name) assert pydash.omit(result._to_dict(), ["created_date", "last_modified_date", "name"]) == { "module": "promptflow.connections", "type": "azure_open_ai", "api_key": "******", "api_base": "test", "api_type": "azure", "api_version": "2023-07-01-preview", } # Update conn.api_base = "test2" result = _client.connections.create_or_update(conn) assert pydash.omit(result._to_dict(), ["created_date", "last_modified_date", "name"]) == { "module": "promptflow.connections", "type": "azure_open_ai", "api_key": "******", "api_base": "test2", "api_type": "azure", "api_version": "2023-07-01-preview", } # List result = _client.connections.list() assert len(result) > 0 # Delete _client.connections.delete(name) with pytest.raises(Exception) as e: _client.connections.get(name) assert "is not found." in str(e.value) def test_connection_get_and_update(self): # Test api key not updated name = f"Connection_{str(uuid.uuid4())[:4]}" conn = AzureOpenAIConnection(name=name, api_key="test", api_base="test") result = _client.connections.create_or_update(conn) assert result.api_key == SCRUBBED_VALUE # Update api_base only Assert no exception result.api_base = "test2" result = _client.connections.create_or_update(result) assert result._to_dict()["api_base"] == "test2" # Assert value not scrubbed assert result._secrets["api_key"] == "test" _client.connections.delete(name) # Invalid update with pytest.raises(Exception) as e: result._secrets = {} _client.connections.create_or_update(result) assert "secrets ['api_key'] value invalid, please fill them" in str(e.value) def test_custom_connection_get_and_update(self): # Test api key not updated name = f"Connection_{str(uuid.uuid4())[:4]}" conn = CustomConnection(name=name, secrets={"api_key": "test"}, configs={"api_base": "test"}) result = _client.connections.create_or_update(conn) assert result.secrets["api_key"] == SCRUBBED_VALUE # Update api_base only Assert no exception result.configs["api_base"] = "test2" result = _client.connections.create_or_update(result) assert result._to_dict()["configs"]["api_base"] == "test2" # Assert value not scrubbed assert result._secrets["api_key"] == "test" _client.connections.delete(name) # Invalid update with pytest.raises(Exception) as e: result._secrets = {} _client.connections.create_or_update(result) assert "secrets ['api_key'] value invalid, please fill them" in str(e.value) @pytest.mark.parametrize( "file_name, expected_updated_item, expected_secret_item", [ ("azure_openai_connection.yaml", ("api_base", "new_value"), ("api_key", "<to-be-replaced>")), ("custom_connection.yaml", ("key1", "new_value"), ("key2", "test2")), ], ) def test_upsert_connection_from_file(self, file_name, expected_updated_item, expected_secret_item): from promptflow._cli._pf._connection import _upsert_connection_from_file name = f"Connection_{str(uuid.uuid4())[:4]}" result = _upsert_connection_from_file(file=CONNECTION_ROOT / file_name, params_override=[{"name": name}]) assert result is not None update_file_name = f"update_{file_name}" result = _upsert_connection_from_file(file=CONNECTION_ROOT / update_file_name, params_override=[{"name": name}]) # Test secrets not updated, and configs updated assert ( result.configs[expected_updated_item[0]] == expected_updated_item[1] ), "Assert configs updated failed, expected: {}, actual: {}".format( expected_updated_item[1], result.configs[expected_updated_item[0]] ) assert ( result._secrets[expected_secret_item[0]] == expected_secret_item[1] ), "Assert secrets not updated failed, expected: {}, actual: {}".format( expected_secret_item[1], result._secrets[expected_secret_item[0]] )
0
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test/e2etests/test_custom_strong_type_connection.py
import uuid from pathlib import Path import pydash import pytest from promptflow._sdk._constants import SCRUBBED_VALUE, CustomStrongTypeConnectionConfigs from promptflow._sdk._pf_client import PFClient from promptflow._sdk.entities import CustomStrongTypeConnection from promptflow.contracts.types import Secret class MyCustomConnection(CustomStrongTypeConnection): api_key: Secret api_base: str _client = PFClient() TEST_ROOT = Path(__file__).parent.parent.parent CONNECTION_ROOT = TEST_ROOT / "test_configs/connections" @pytest.mark.cli_test @pytest.mark.e2etest class TestCustomStrongTypeConnection: def test_connection_operations(self): name = f"Connection_{str(uuid.uuid4())[:4]}" conn = MyCustomConnection(name=name, secrets={"api_key": "test"}, configs={"api_base": "test"}) # Create _client.connections.create_or_update(conn) # Get result = _client.connections.get(name) assert pydash.omit(result._to_dict(), ["created_date", "last_modified_date", "name"]) == { "module": "promptflow.connections", "type": "custom", "configs": { "api_base": "test", "promptflow.connection.custom_type": "MyCustomConnection", "promptflow.connection.module": "sdk_cli_test.e2etests.test_custom_strong_type_connection", }, "secrets": {"api_key": "******"}, } # Update conn.configs["api_base"] = "test2" result = _client.connections.create_or_update(conn) assert pydash.omit(result._to_dict(), ["created_date", "last_modified_date", "name"]) == { "module": "promptflow.connections", "type": "custom", "configs": { "api_base": "test2", "promptflow.connection.custom_type": "MyCustomConnection", "promptflow.connection.module": "sdk_cli_test.e2etests.test_custom_strong_type_connection", }, "secrets": {"api_key": "******"}, } # List result = _client.connections.list() assert len(result) > 0 # Delete _client.connections.delete(name) with pytest.raises(Exception) as e: _client.connections.get(name) assert "is not found." in str(e.value) def test_connection_update(self): name = f"Connection_{str(uuid.uuid4())[:4]}" conn = MyCustomConnection(name=name, secrets={"api_key": "test"}, configs={"api_base": "test"}) # Create _client.connections.create_or_update(conn) # Get custom_conn = _client.connections.get(name) assert pydash.omit(custom_conn._to_dict(), ["created_date", "last_modified_date", "name"]) == { "module": "promptflow.connections", "type": "custom", "configs": { "api_base": "test", "promptflow.connection.custom_type": "MyCustomConnection", "promptflow.connection.module": "sdk_cli_test.e2etests.test_custom_strong_type_connection", }, "secrets": {"api_key": "******"}, } # Update custom_conn.configs["api_base"] = "test2" result = _client.connections.create_or_update(custom_conn) assert pydash.omit(result._to_dict(), ["created_date", "last_modified_date", "name"]) == { "module": "promptflow.connections", "type": "custom", "configs": { "api_base": "test2", "promptflow.connection.custom_type": "MyCustomConnection", "promptflow.connection.module": "sdk_cli_test.e2etests.test_custom_strong_type_connection", }, "secrets": {"api_key": "******"}, } # List result = _client.connections.list() assert len(result) > 0 # Delete _client.connections.delete(name) with pytest.raises(Exception) as e: _client.connections.get(name) assert "is not found." in str(e.value) def test_connection_get_and_update(self): # Test api key not updated name = f"Connection_{str(uuid.uuid4())[:4]}" conn = MyCustomConnection(name=name, secrets={"api_key": "test"}, configs={"api_base": "test"}) result = _client.connections.create_or_update(conn) assert result.secrets["api_key"] == SCRUBBED_VALUE # Update api_base only Assert no exception result.configs["api_base"] = "test2" result = _client.connections.create_or_update(result) assert result._to_dict()["configs"]["api_base"] == "test2" # Assert value not scrubbed assert result._secrets["api_key"] == "test" _client.connections.delete(name) # Invalid update with pytest.raises(Exception) as e: result._secrets = {} _client.connections.create_or_update(result) assert "secrets ['api_key'] value invalid, please fill them" in str(e.value) def test_connection_get_and_update_with_key(self): # Test api key not updated name = f"Connection_{str(uuid.uuid4())[:4]}" conn = MyCustomConnection(name=name, secrets={"api_key": "test"}, configs={"api_base": "test"}) assert conn.api_base == "test" assert conn.configs["api_base"] == "test" result = _client.connections.create_or_update(conn) converted_conn = result._convert_to_custom_strong_type( module=__class__.__module__, to_class="MyCustomConnection" ) assert isinstance(converted_conn, MyCustomConnection) assert converted_conn.api_base == "test" converted_conn.api_base = "test2" assert converted_conn.api_base == "test2" assert converted_conn.configs["api_base"] == "test2" @pytest.mark.parametrize( "file_name, expected_updated_item, expected_secret_item", [ ("custom_strong_type_connection.yaml", ("api_base", "new_value"), ("api_key", "<to-be-replaced>")), ], ) def test_upsert_connection_from_file( self, install_custom_tool_pkg, file_name, expected_updated_item, expected_secret_item ): from promptflow._cli._pf._connection import _upsert_connection_from_file name = f"Connection_{str(uuid.uuid4())[:4]}" result = _upsert_connection_from_file(file=CONNECTION_ROOT / file_name, params_override=[{"name": name}]) assert result is not None assert result.configs[CustomStrongTypeConnectionConfigs.PROMPTFLOW_MODULE_KEY] == "my_tool_package.connections" update_file_name = f"update_{file_name}" result = _upsert_connection_from_file(file=CONNECTION_ROOT / update_file_name, params_override=[{"name": name}]) # Test secrets not updated, and configs updated assert ( result.configs[expected_updated_item[0]] == expected_updated_item[1] ), "Assert configs updated failed, expected: {}, actual: {}".format( expected_updated_item[1], result.configs[expected_updated_item[0]] ) assert ( result._secrets[expected_secret_item[0]] == expected_secret_item[1] ), "Assert secrets not updated failed, expected: {}, actual: {}".format( expected_secret_item[1], result._secrets[expected_secret_item[0]] )
0
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test/e2etests/test_orm.py
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import datetime import json import uuid import pytest from promptflow._sdk._constants import ListViewType, RunStatus, RunTypes from promptflow._sdk._errors import RunNotFoundError from promptflow._sdk._orm import RunInfo @pytest.fixture() def run_name() -> str: name = str(uuid.uuid4()) run_info = RunInfo( name=name, type=RunTypes.BATCH, created_on=datetime.datetime.now().isoformat(), status=RunStatus.NOT_STARTED, display_name=name, description="", tags=None, properties=json.dumps({}), ) run_info.dump() return name @pytest.mark.sdk_test @pytest.mark.e2etest class TestRunInfo: def test_get(self, run_name: str) -> None: run_info = RunInfo.get(run_name) assert run_info.name == run_name assert run_info.type == RunTypes.BATCH assert run_info.status == RunStatus.NOT_STARTED assert run_info.display_name == run_name assert run_info.description == "" assert run_info.tags is None assert run_info.properties == json.dumps({}) def test_get_not_exist(self) -> None: not_exist_name = str(uuid.uuid4()) with pytest.raises(RunNotFoundError) as excinfo: RunInfo.get(not_exist_name) assert f"Run name {not_exist_name!r} cannot be found." in str(excinfo.value) def test_list_order_by_created_time_desc(self) -> None: for _ in range(3): RunInfo( name=str(uuid.uuid4()), created_on=datetime.datetime.now().isoformat(), status=RunStatus.NOT_STARTED, description="", tags=None, properties=json.dumps({}), ).dump() runs = RunInfo.list(max_results=3, list_view_type=ListViewType.ALL) # in very edge case, the created_on can be same, so use ">=" here assert runs[0].created_on >= runs[1].created_on >= runs[2].created_on def test_archive(self, run_name: str) -> None: run_info = RunInfo.get(run_name) assert run_info.archived is False run_info.archive() # in-memory archived flag assert run_info.archived is True # db archived flag assert RunInfo.get(run_name).archived is True def test_restore(self, run_name: str) -> None: run_info = RunInfo.get(run_name) run_info.archive() run_info = RunInfo.get(run_name) assert run_info.archived is True run_info.restore() # in-memory archived flag assert run_info.archived is False # db archived flag assert RunInfo.get(run_name).archived is False def test_update(self, run_name: str) -> None: run_info = RunInfo.get(run_name) assert run_info.status == RunStatus.NOT_STARTED assert run_info.display_name == run_name assert run_info.description == "" assert run_info.tags is None updated_status = RunStatus.COMPLETED updated_display_name = f"updated_{run_name}" updated_description = "updated_description" updated_tags = [{"key1": "value1", "key2": "value2"}] run_info.update( status=updated_status, display_name=updated_display_name, description=updated_description, tags=updated_tags, ) # in-memory status, display_name, description and tags assert run_info.status == updated_status assert run_info.display_name == updated_display_name assert run_info.description == updated_description assert run_info.tags == json.dumps(updated_tags) # db status, display_name, description and tags run_info = RunInfo.get(run_name) assert run_info.status == updated_status assert run_info.display_name == updated_display_name assert run_info.description == updated_description assert run_info.tags == json.dumps(updated_tags) def test_null_type_and_display_name(self) -> None: # test run_info table schema change: # 1. type can be null(we will deprecate this concept in the future) # 2. display_name can be null as default value name = str(uuid.uuid4()) run_info = RunInfo( name=name, created_on=datetime.datetime.now().isoformat(), status=RunStatus.NOT_STARTED, description="", tags=None, properties=json.dumps({}), ) run_info.dump() run_info_from_db = RunInfo.get(name) assert run_info_from_db.type is None assert run_info_from_db.display_name is None
0
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test/e2etests/test_flow_run.py
import os import shutil import sys import tempfile import uuid from pathlib import Path import numpy as np import pandas as pd import pytest from marshmallow import ValidationError from pytest_mock import MockerFixture from promptflow import PFClient from promptflow._constants import PROMPTFLOW_CONNECTIONS from promptflow._sdk._constants import ( FLOW_DIRECTORY_MACRO_IN_CONFIG, PROMPT_FLOW_DIR_NAME, FlowRunProperties, LocalStorageFilenames, RunStatus, ) from promptflow._sdk._errors import ( ConnectionNotFoundError, InvalidFlowError, InvalidRunError, InvalidRunStatusError, RunExistsError, RunNotFoundError, ) from promptflow._sdk._load_functions import load_flow, load_run from promptflow._sdk._run_functions import create_yaml_run from promptflow._sdk._submitter.utils import SubmitterHelper from promptflow._sdk._utils import _get_additional_includes from promptflow._sdk.entities import Run from promptflow._sdk.operations._local_storage_operations import LocalStorageOperations from promptflow.connections import AzureOpenAIConnection from promptflow.exceptions import UserErrorException from ..recording_utilities import RecordStorage PROMOTFLOW_ROOT = Path(__file__) / "../../../.." TEST_ROOT = Path(__file__).parent.parent.parent MODEL_ROOT = TEST_ROOT / "test_configs/e2e_samples" CONNECTION_FILE = (PROMOTFLOW_ROOT / "connections.json").resolve().absolute().as_posix() FLOWS_DIR = "./tests/test_configs/flows" EAGER_FLOWS_DIR = "./tests/test_configs/eager_flows" RUNS_DIR = "./tests/test_configs/runs" DATAS_DIR = "./tests/test_configs/datas" def create_run_against_multi_line_data(client) -> Run: return client.run( flow=f"{FLOWS_DIR}/web_classification", data=f"{DATAS_DIR}/webClassification3.jsonl", column_mapping={"url": "${data.url}"}, ) def create_run_against_multi_line_data_without_llm(client: PFClient) -> Run: return client.run( flow=f"{FLOWS_DIR}/print_env_var", data=f"{DATAS_DIR}/env_var_names.jsonl", ) def create_run_against_run(client, run: Run) -> Run: return client.run( flow=f"{FLOWS_DIR}/classification_accuracy_evaluation", data=f"{DATAS_DIR}/webClassification3.jsonl", run=run.name, column_mapping={ "groundtruth": "${data.answer}", "prediction": "${run.outputs.category}", "variant_id": "${data.variant_id}", }, ) def assert_run_with_invalid_column_mapping(client: PFClient, run: Run) -> None: assert run.status == RunStatus.FAILED with pytest.raises(InvalidRunStatusError): client.stream(run.name) local_storage = LocalStorageOperations(run) assert os.path.exists(local_storage._exception_path) exception = local_storage.load_exception() assert "The input for batch run is incorrect. Couldn't find these mapping relations" in exception["message"] assert exception["code"] == "UserError" assert exception["innerError"]["innerError"]["code"] == "BulkRunException" @pytest.mark.usefixtures( "use_secrets_config_file", "recording_injection", "setup_local_connection", "install_custom_tool_pkg" ) @pytest.mark.sdk_test @pytest.mark.e2etest class TestFlowRun: def test_basic_flow_bulk_run(self, azure_open_ai_connection: AzureOpenAIConnection, pf) -> None: data_path = f"{DATAS_DIR}/webClassification3.jsonl" pf.run(flow=f"{FLOWS_DIR}/web_classification", data=data_path) # Test repeated execute flow run pf.run(flow=f"{FLOWS_DIR}/web_classification", data=data_path) pf.run(flow=f"{FLOWS_DIR}/web_classification_v1", data=data_path) pf.run(flow=f"{FLOWS_DIR}/web_classification_v2", data=data_path) # TODO: check details # df = pf.show_details(baseline, v1, v2) def test_basic_run_bulk(self, azure_open_ai_connection: AzureOpenAIConnection, local_client, pf): result = pf.run( flow=f"{FLOWS_DIR}/web_classification", data=f"{DATAS_DIR}/webClassification1.jsonl", column_mapping={"url": "${data.url}"}, ) local_storage = LocalStorageOperations(result) detail = local_storage.load_detail() tuning_node = next((x for x in detail["node_runs"] if x["node"] == "summarize_text_content"), None) # used default variant config assert tuning_node["inputs"]["temperature"] == 0.3 assert "variant_0" in result.name run = local_client.runs.get(name=result.name) assert run.status == "Completed" # write to user_dir/.promptflow/.runs assert ".promptflow" in run.properties["output_path"] def test_local_storage_delete(self, pf): result = pf.run(flow=f"{FLOWS_DIR}/print_env_var", data=f"{DATAS_DIR}/env_var_names.jsonl") local_storage = LocalStorageOperations(result) local_storage.delete() assert not os.path.exists(local_storage._outputs_path) def test_flow_run_delete(self, pf): result = pf.run(flow=f"{FLOWS_DIR}/print_env_var", data=f"{DATAS_DIR}/env_var_names.jsonl") local_storage = LocalStorageOperations(result) output_path = local_storage.path # delete new created run by name pf.runs.delete(result.name) # check folders and dbs are deleted assert not os.path.exists(output_path) from promptflow._sdk._orm import RunInfo as ORMRun pytest.raises(RunNotFoundError, lambda: ORMRun.get(result.name)) pytest.raises(RunNotFoundError, lambda: pf.runs.get(result.name)) def test_flow_run_delete_fake_id_raise(self, pf: PFClient): run = "fake_run_id" # delete new created run by name pytest.raises(RunNotFoundError, lambda: pf.runs.delete(name=run)) @pytest.mark.skipif(sys.platform == "win32", reason="Windows doesn't support chmod, just test permission errors") def test_flow_run_delete_invalid_permission_raise(self, pf: PFClient): result = pf.run(flow=f"{FLOWS_DIR}/print_env_var", data=f"{DATAS_DIR}/env_var_names.jsonl") local_storage = LocalStorageOperations(result) output_path = local_storage.path os.chmod(output_path, 0o555) # delete new created run by name pytest.raises(InvalidRunError, lambda: pf.runs.delete(name=result.name)) # Change folder permission back os.chmod(output_path, 0o755) pf.runs.delete(name=result.name) assert not os.path.exists(output_path) def test_visualize_run_with_referenced_run_deleted(self, pf: PFClient): run_id = str(uuid.uuid4()) run = load_run( source=f"{RUNS_DIR}/sample_bulk_run.yaml", params_override=[{"name": run_id}], ) run_a = pf.runs.create_or_update(run=run) local_storage_a = LocalStorageOperations(run_a) output_path_a = local_storage_a.path run = load_run(source=f"{RUNS_DIR}/sample_eval_run.yaml", params_override=[{"run": run_id}]) run_b = pf.runs.create_or_update(run=run) local_storage_b = LocalStorageOperations(run_b) output_path_b = local_storage_b.path pf.runs.delete(run_a.name) assert not os.path.exists(output_path_a) assert os.path.exists(output_path_b) # visualize doesn't raise error pf.runs.visualize(run_b.name) def test_basic_flow_with_variant(self, azure_open_ai_connection: AzureOpenAIConnection, local_client, pf) -> None: result = pf.run( flow=f"{FLOWS_DIR}/web_classification", data=f"{DATAS_DIR}/webClassification1.jsonl", column_mapping={"url": "${data.url}"}, variant="${summarize_text_content.variant_0}", ) local_storage = LocalStorageOperations(result) detail = local_storage.load_detail() tuning_node = next((x for x in detail["node_runs"] if x["node"] == "summarize_text_content"), None) assert "variant_0" in result.name # used variant_0 config assert tuning_node["inputs"]["temperature"] == 0.2 result = pf.run( flow=f"{FLOWS_DIR}/web_classification", data=f"{DATAS_DIR}/webClassification1.jsonl", column_mapping={"url": "${data.url}"}, variant="${summarize_text_content.variant_1}", ) local_storage = LocalStorageOperations(result) detail = local_storage.load_detail() tuning_node = next((x for x in detail["node_runs"] if x["node"] == "summarize_text_content"), None) assert "variant_1" in result.name # used variant_1 config assert tuning_node["inputs"]["temperature"] == 0.3 def test_run_bulk_error(self, pf): # path not exist with pytest.raises(FileNotFoundError) as e: pf.run( flow=f"{MODEL_ROOT}/not_exist", data=f"{DATAS_DIR}/webClassification3.jsonl", column_mapping={"question": "${data.question}", "context": "${data.context}"}, variant="${summarize_text_content.variant_0}", ) assert "not exist" in str(e.value) # tuning_node not exist with pytest.raises(InvalidFlowError) as e: pf.run( flow=f"{FLOWS_DIR}/web_classification", data=f"{DATAS_DIR}/webClassification3.jsonl", column_mapping={"question": "${data.question}", "context": "${data.context}"}, variant="${not_exist.variant_0}", ) assert "Node not_exist not found in flow" in str(e.value) # invalid variant format with pytest.raises(UserErrorException) as e: pf.run( flow=f"{FLOWS_DIR}/web_classification", data=f"{DATAS_DIR}/webClassification3.jsonl", column_mapping={"question": "${data.question}", "context": "${data.context}"}, variant="v", ) assert "Invalid variant format: v, variant should be in format of ${TUNING_NODE.VARIANT}" in str(e.value) def test_basic_evaluation(self, azure_open_ai_connection: AzureOpenAIConnection, local_client, pf): result = pf.run( flow=f"{FLOWS_DIR}/print_env_var", data=f"{DATAS_DIR}/env_var_names.jsonl", ) assert local_client.runs.get(result.name).status == "Completed" eval_result = pf.run( flow=f"{FLOWS_DIR}/classification_accuracy_evaluation", run=result.name, column_mapping={ "prediction": "${run.outputs.output}", # evaluation reference run.inputs # NOTE: we need this value to guard behavior when a run reference another run's inputs "variant_id": "${run.inputs.key}", # can reference other columns in data which doesn't exist in base run's inputs "groundtruth": "${run.inputs.extra_key}", }, ) assert local_client.runs.get(eval_result.name).status == "Completed" def test_flow_demo(self, azure_open_ai_connection, pf): data_path = f"{DATAS_DIR}/webClassification3.jsonl" column_mapping = { "groundtruth": "${data.answer}", "prediction": "${run.outputs.category}", "variant_id": "${data.variant_id}", } metrics = {} for flow_name, output_key in [ ("web_classification", "baseline"), ("web_classification_v1", "v1"), ("web_classification_v2", "v2"), ]: v = pf.run(flow=f"{FLOWS_DIR}/web_classification", data=data_path) metrics[output_key] = pf.run( flow=f"{FLOWS_DIR}/classification_accuracy_evaluation", data=data_path, run=v, column_mapping=column_mapping, ) def test_submit_run_from_yaml(self, local_client, pf): run_id = str(uuid.uuid4()) run = create_yaml_run(source=f"{RUNS_DIR}/sample_bulk_run.yaml", params_override=[{"name": run_id}]) assert local_client.runs.get(run.name).status == "Completed" eval_run = create_yaml_run( source=f"{RUNS_DIR}/sample_eval_run.yaml", params_override=[{"run": run_id}], ) assert local_client.runs.get(eval_run.name).status == "Completed" @pytest.mark.usefixtures("enable_logger_propagate") def test_submit_run_with_extra_params(self, pf, caplog): run_id = str(uuid.uuid4()) run = create_yaml_run(source=f"{RUNS_DIR}/extra_field.yaml", params_override=[{"name": run_id}]) assert pf.runs.get(run.name).status == "Completed" assert "Run schema validation warnings. Unknown fields found" in caplog.text def test_run_with_connection(self, local_client, local_aoai_connection, pf): # remove connection file to test connection resolving os.environ.pop(PROMPTFLOW_CONNECTIONS) result = pf.run( flow=f"{FLOWS_DIR}/web_classification", data=f"{DATAS_DIR}/webClassification1.jsonl", column_mapping={"url": "${data.url}"}, ) local_storage = LocalStorageOperations(result) detail = local_storage.load_detail() tuning_node = next((x for x in detail["node_runs"] if x["node"] == "summarize_text_content"), None) # used default variant config assert tuning_node["inputs"]["temperature"] == 0.3 run = local_client.runs.get(name=result.name) assert run.status == "Completed" def test_run_with_connection_overwrite(self, local_client, local_aoai_connection, local_alt_aoai_connection, pf): result = pf.run( flow=f"{FLOWS_DIR}/web_classification", data=f"{DATAS_DIR}/webClassification1.jsonl", connections={"classify_with_llm": {"connection": "new_ai_connection"}}, ) run = local_client.runs.get(name=result.name) assert run.status == "Completed" def test_custom_connection_overwrite(self, local_client, local_custom_connection, pf): result = pf.run( flow=f"{FLOWS_DIR}/custom_connection_flow", data=f"{DATAS_DIR}/env_var_names.jsonl", connections={"print_env": {"connection": "test_custom_connection"}}, ) run = local_client.runs.get(name=result.name) assert run.status == "Completed" # overwrite non-exist connection with pytest.raises(InvalidFlowError) as e: pf.run( flow=f"{FLOWS_DIR}/custom_connection_flow", data=f"{DATAS_DIR}/env_var_names.jsonl", connections={"print_env": {"new_connection": "test_custom_connection"}}, ) assert "Connection with name new_connection not found" in str(e.value) def test_basic_flow_with_package_tool_with_custom_strong_type_connection( self, install_custom_tool_pkg, local_client, pf ): result = pf.run( flow=f"{FLOWS_DIR}/flow_with_package_tool_with_custom_strong_type_connection", data=f"{FLOWS_DIR}/flow_with_package_tool_with_custom_strong_type_connection/data.jsonl", connections={"My_First_Tool_00f8": {"connection": "custom_strong_type_connection"}}, ) run = local_client.runs.get(name=result.name) assert run.status == "Completed" def test_basic_flow_with_script_tool_with_custom_strong_type_connection( self, install_custom_tool_pkg, local_client, pf ): # Prepare custom connection from promptflow.connections import CustomConnection conn = CustomConnection(name="custom_connection_2", secrets={"api_key": "test"}, configs={"api_url": "test"}) local_client.connections.create_or_update(conn) result = pf.run( flow=f"{FLOWS_DIR}/flow_with_script_tool_with_custom_strong_type_connection", data=f"{FLOWS_DIR}/flow_with_script_tool_with_custom_strong_type_connection/data.jsonl", ) run = local_client.runs.get(name=result.name) assert run.status == "Completed" def test_run_with_connection_overwrite_non_exist(self, local_client, local_aoai_connection, pf): # overwrite non_exist connection with pytest.raises(ConnectionNotFoundError): pf.run( flow=f"{FLOWS_DIR}/web_classification", data=f"{DATAS_DIR}/webClassification1.jsonl", connections={"classify_with_llm": {"connection": "Not_exist"}}, ) def test_run_reference_failed_run(self, pf): failed_run = pf.run( flow=f"{FLOWS_DIR}/failed_flow", data=f"{DATAS_DIR}/webClassification1.jsonl", column_mapping={"text": "${data.url}"}, ) # "update" run status to failed since currently all run will be completed unless there's bug pf.runs.update( name=failed_run.name, status="Failed", ) run_name = str(uuid.uuid4()) with pytest.raises(UserErrorException) as e: pf.run( name=run_name, flow=f"{FLOWS_DIR}/custom_connection_flow", run=failed_run, connections={"print_env": {"connection": "test_custom_connection"}}, ) assert "is not completed, got status" in str(e.value) # run should not be created with pytest.raises(RunNotFoundError): pf.runs.get(name=run_name) def test_referenced_output_not_exist(self, pf: PFClient) -> None: # failed run won't generate output failed_run = pf.run( flow=f"{FLOWS_DIR}/failed_flow", data=f"{DATAS_DIR}/webClassification1.jsonl", column_mapping={"text": "${data.url}"}, ) run_name = str(uuid.uuid4()) run = pf.run( name=run_name, run=failed_run, flow=f"{FLOWS_DIR}/failed_flow", column_mapping={"text": "${run.outputs.text}"}, ) assert_run_with_invalid_column_mapping(pf, run) def test_connection_overwrite_file(self, local_client, local_aoai_connection): run = create_yaml_run( source=f"{RUNS_DIR}/run_with_connections.yaml", ) run = local_client.runs.get(name=run.name) assert run.status == "Completed" def test_connection_overwrite_model(self, local_client, local_aoai_connection): run = create_yaml_run( source=f"{RUNS_DIR}/run_with_connections_model.yaml", ) run = local_client.runs.get(name=run.name) assert run.status == "Completed" def test_resolve_connection(self, local_client, local_aoai_connection): flow = load_flow(f"{FLOWS_DIR}/web_classification_no_variants") connections = SubmitterHelper.resolve_connections(flow, local_client) assert local_aoai_connection.name in connections def test_run_with_env_overwrite(self, local_client, local_aoai_connection): run = create_yaml_run( source=f"{RUNS_DIR}/run_with_env.yaml", ) outputs = local_client.runs._get_outputs(run=run) assert outputs["output"][0] == local_aoai_connection.api_base def test_pf_run_with_env_overwrite(self, local_client, local_aoai_connection, pf): run = pf.run( flow=f"{FLOWS_DIR}/print_env_var", data=f"{DATAS_DIR}/env_var_names.jsonl", environment_variables={"API_BASE": "${azure_open_ai_connection.api_base}"}, ) outputs = local_client.runs._get_outputs(run=run) assert outputs["output"][0] == local_aoai_connection.api_base def test_eval_run_not_exist(self, pf): name = str(uuid.uuid4()) with pytest.raises(RunNotFoundError) as e: pf.runs.create_or_update( run=Run( name=name, flow=Path(f"{FLOWS_DIR}/classification_accuracy_evaluation"), run="not_exist", column_mapping={ "groundtruth": "${data.answer}", "prediction": "${run.outputs.category}", # evaluation reference run.inputs "url": "${run.inputs.url}", }, ) ) assert "Run name 'not_exist' cannot be found" in str(e.value) # run should not be created with pytest.raises(RunNotFoundError): pf.runs.get(name=name) def test_eval_run_data_deleted(self, pf): with tempfile.TemporaryDirectory() as temp_dir: shutil.copy(f"{DATAS_DIR}/env_var_names.jsonl", temp_dir) result = pf.run( flow=f"{FLOWS_DIR}/print_env_var", data=f"{temp_dir}/env_var_names.jsonl", ) assert pf.runs.get(result.name).status == "Completed" # delete original run's input data os.remove(f"{temp_dir}/env_var_names.jsonl") with pytest.raises(UserErrorException) as e: pf.run( flow=f"{FLOWS_DIR}/classification_accuracy_evaluation", run=result.name, column_mapping={ "prediction": "${run.outputs.output}", # evaluation reference run.inputs # NOTE: we need this value to guard behavior when a run reference another run's inputs "variant_id": "${run.inputs.key}", # can reference other columns in data which doesn't exist in base run's inputs "groundtruth": "${run.inputs.extra_key}", }, ) assert "Please make sure it exists and not deleted." in str(e.value) def test_eval_run_data_not_exist(self, pf): base_run = pf.run( flow=f"{FLOWS_DIR}/print_env_var", data=f"{DATAS_DIR}/env_var_names.jsonl", ) assert pf.runs.get(base_run.name).status == "Completed" eval_run = pf.run( flow=f"{FLOWS_DIR}/classification_accuracy_evaluation", run=base_run.name, column_mapping={ "prediction": "${run.outputs.output}", # evaluation reference run.inputs # NOTE: we need this value to guard behavior when a run reference another run's inputs "variant_id": "${run.inputs.key}", # can reference other columns in data which doesn't exist in base run's inputs "groundtruth": "${run.inputs.extra_key}", }, ) result = pf.run( flow=f"{FLOWS_DIR}/classification_accuracy_evaluation", run=eval_run.name, column_mapping={ "prediction": "${run.outputs.output}", # evaluation reference run.inputs # NOTE: we need this value to guard behavior when a run reference another run's inputs "variant_id": "${run.inputs.key}", # can reference other columns in data which doesn't exist in base run's inputs "groundtruth": "${run.inputs.extra_key}", }, ) # Run failed because run inputs data is None, and error will be in the run output error.json assert result.status == "Failed" def test_create_run_with_tags(self, pf): name = str(uuid.uuid4()) display_name = "test_run_with_tags" tags = {"key1": "tag1"} run = pf.run( name=name, display_name=display_name, tags=tags, flow=f"{FLOWS_DIR}/print_env_var", data=f"{DATAS_DIR}/env_var_names.jsonl", environment_variables={"API_BASE": "${azure_open_ai_connection.api_base}"}, ) assert run.name == name assert "test_run_with_tags" == run.display_name assert run.tags == tags def test_run_display_name(self, pf): # use run name if not specify display_name run = pf.runs.create_or_update( run=Run( flow=Path(f"{FLOWS_DIR}/print_env_var"), data=f"{DATAS_DIR}/env_var_names.jsonl", environment_variables={"API_BASE": "${azure_open_ai_connection.api_base}"}, ) ) assert run.display_name == run.name assert "print_env_var" in run.display_name # will respect if specified in run base_run = pf.runs.create_or_update( run=Run( flow=Path(f"{FLOWS_DIR}/print_env_var"), data=f"{DATAS_DIR}/env_var_names.jsonl", environment_variables={"API_BASE": "${azure_open_ai_connection.api_base}"}, display_name="my_run", ) ) assert base_run.display_name == "my_run" run = pf.runs.create_or_update( run=Run( flow=Path(f"{FLOWS_DIR}/print_env_var"), data=f"{DATAS_DIR}/env_var_names.jsonl", environment_variables={"API_BASE": "${azure_open_ai_connection.api_base}"}, display_name="my_run_${variant_id}_${run}", run=base_run, ) ) assert run.display_name == f"my_run_variant_0_{base_run.name}" run = pf.runs.create_or_update( run=Run( flow=Path(f"{FLOWS_DIR}/print_env_var"), data=f"{DATAS_DIR}/env_var_names.jsonl", environment_variables={"API_BASE": "${azure_open_ai_connection.api_base}"}, display_name="my_run_${timestamp}", run=base_run, ) ) assert "${timestamp}" not in run.display_name def test_run_dump(self, azure_open_ai_connection: AzureOpenAIConnection, pf) -> None: data_path = f"{DATAS_DIR}/webClassification3.jsonl" run = pf.run(flow=f"{FLOWS_DIR}/web_classification", data=data_path) # in fact, `pf.run` will internally query the run from db in `RunSubmitter` # explicitly call ORM get here to emphasize the dump operatoin # if no dump operation, a RunNotFoundError will be raised here pf.runs.get(run.name) def test_run_list(self, azure_open_ai_connection: AzureOpenAIConnection, pf) -> None: # create a run to ensure there is at least one run in the db data_path = f"{DATAS_DIR}/webClassification3.jsonl" pf.run(flow=f"{FLOWS_DIR}/web_classification", data=data_path) # not specify `max_result` here, so that if there are legacy runs in the db # list runs API can collect them, and can somehow cover legacy schema runs = pf.runs.list() assert len(runs) >= 1 def test_stream_run_summary(self, azure_open_ai_connection: AzureOpenAIConnection, local_client, capfd, pf) -> None: data_path = f"{DATAS_DIR}/webClassification3.jsonl" run = pf.run(flow=f"{FLOWS_DIR}/web_classification", data=data_path) local_client.runs.stream(run.name) out, _ = capfd.readouterr() print(out) assert 'Run status: "Completed"' in out assert "Output path: " in out def test_stream_incomplete_run_summary( self, azure_open_ai_connection: AzureOpenAIConnection, local_client, capfd, pf ) -> None: # use wrong data to create a failed run data_path = f"{DATAS_DIR}/webClassification3.jsonl" name = str(uuid.uuid4()) run = pf.run( flow=f"{FLOWS_DIR}/failed_flow", data=data_path, column_mapping={"text": "${data.url}"}, name=name, ) local_client.runs.stream(run.name) # assert error message in stream API out, _ = capfd.readouterr() assert 'Run status: "Completed"' in out # won't print exception, use can get it from run._to_dict() # assert "failed with exception" in out def test_run_data_not_provided(self, pf): with pytest.raises(ValueError) as e: pf.run( flow=f"{FLOWS_DIR}/web_classification", ) assert "at least one of data or run must be provided" in str(e) def test_get_details(self, azure_open_ai_connection: AzureOpenAIConnection, pf) -> None: data_path = f"{DATAS_DIR}/webClassification3.jsonl" run = pf.run( flow=f"{FLOWS_DIR}/web_classification", data=data_path, column_mapping={"url": "${data.url}"}, ) from promptflow._sdk.operations._local_storage_operations import LocalStorageOperations local_storage = LocalStorageOperations(run) # there should be line_number in original DataFrame, but not in details DataFrame # as we will set index on line_number to ensure the order outputs = pd.read_json(local_storage._outputs_path, orient="records", lines=True) details = pf.get_details(run) assert "line_number" in outputs and "line_number" not in details def test_visualize_run(self, azure_open_ai_connection: AzureOpenAIConnection, pf) -> None: data_path = f"{DATAS_DIR}/webClassification3.jsonl" run1 = pf.run( flow=f"{FLOWS_DIR}/web_classification", data=data_path, column_mapping={"url": "${data.url}"}, ) run2 = pf.run( flow=f"{FLOWS_DIR}/classification_accuracy_evaluation", data=data_path, run=run1.name, column_mapping={ "groundtruth": "${data.answer}", "prediction": "${run.outputs.category}", "variant_id": "${data.variant_id}", }, ) pf.visualize([run1, run2]) def test_incomplete_run_visualize( self, azure_open_ai_connection: AzureOpenAIConnection, pf, capfd: pytest.CaptureFixture ) -> None: failed_run = pf.run( flow=f"{FLOWS_DIR}/failed_flow", data=f"{DATAS_DIR}/webClassification1.jsonl", column_mapping={"text": "${data.url}"}, ) # "update" run status to failed since currently all run will be completed unless there's bug pf.runs.update( name=failed_run.name, status="Failed", ) # patch logger.error to print, so that we can capture the error message using capfd from promptflow._sdk.operations import _run_operations _run_operations.logger.error = print pf.visualize(failed_run) captured = capfd.readouterr() expected_error_message = ( f"Cannot visualize non-completed run. Run {failed_run.name!r} is not completed, the status is 'Failed'." ) assert expected_error_message in captured.out def test_flow_bulk_run_with_additional_includes(self, azure_open_ai_connection: AzureOpenAIConnection, pf): data_path = f"{DATAS_DIR}/webClassification3.jsonl" run = pf.run(flow=f"{FLOWS_DIR}/web_classification_with_additional_include", data=data_path) additional_includes = _get_additional_includes(run.flow / "flow.dag.yaml") snapshot_path = Path.home() / ".promptflow" / ".runs" / run.name / "snapshot" for item in additional_includes: assert (snapshot_path / Path(item).name).exists() # Addition includes in snapshot is removed additional_includes = _get_additional_includes(snapshot_path / "flow.dag.yaml") assert not additional_includes def test_input_mapping_source_not_found_error(self, azure_open_ai_connection: AzureOpenAIConnection, pf): # input_mapping source not found error won't create run name = str(uuid.uuid4()) data_path = f"{DATAS_DIR}/webClassification3.jsonl" run = pf.run( flow=f"{FLOWS_DIR}/web_classification", data=data_path, column_mapping={"not_exist": "${data.not_exist_key}"}, name=name, ) assert_run_with_invalid_column_mapping(pf, run) def test_input_mapping_with_dict(self, azure_open_ai_connection: AzureOpenAIConnection, pf): data_path = f"{DATAS_DIR}/webClassification3.jsonl" run = pf.run( flow=f"{FLOWS_DIR}/flow_with_dict_input", data=data_path, column_mapping={"key": {"value": "1"}, "url": "${data.url}"}, ) outputs = pf.runs._get_outputs(run=run) assert "dict" in outputs["output"][0] def test_run_exist_error(self, pf): name = str(uuid.uuid4()) data_path = f"{DATAS_DIR}/webClassification3.jsonl" pf.run( name=name, flow=f"{FLOWS_DIR}/flow_with_dict_input", data=data_path, column_mapping={"key": {"value": "1"}, "url": "${data.url}"}, ) # create a new run won't affect original run with pytest.raises(RunExistsError): pf.run( name=name, flow=f"{FLOWS_DIR}/flow_with_dict_input", data=data_path, column_mapping={"key": {"value": "1"}, "url": "${data.url}"}, ) run = pf.runs.get(name) assert run.status == RunStatus.COMPLETED assert not os.path.exists(run._output_path / LocalStorageFilenames.EXCEPTION) def test_run_local_storage_structure(self, local_client, pf) -> None: run = create_run_against_multi_line_data(pf) local_storage = LocalStorageOperations(local_client.runs.get(run.name)) run_output_path = local_storage.path assert (Path(run_output_path) / "flow_outputs").is_dir() assert (Path(run_output_path) / "flow_outputs" / "output.jsonl").is_file() assert (Path(run_output_path) / "flow_artifacts").is_dir() # 3 line runs for webClassification3.jsonl assert len([_ for _ in (Path(run_output_path) / "flow_artifacts").iterdir()]) == 3 assert (Path(run_output_path) / "node_artifacts").is_dir() # 5 nodes web classification flow DAG assert len([_ for _ in (Path(run_output_path) / "node_artifacts").iterdir()]) == 5 def test_run_snapshot_with_flow_tools_json(self, local_client, pf) -> None: run = create_run_against_multi_line_data(pf) local_storage = LocalStorageOperations(local_client.runs.get(run.name)) assert (local_storage._snapshot_folder_path / ".promptflow").is_dir() assert (local_storage._snapshot_folder_path / ".promptflow" / "flow.tools.json").is_file() def test_get_metrics_format(self, local_client, pf) -> None: run1 = create_run_against_multi_line_data(pf) run2 = create_run_against_run(pf, run1) # ensure the result is a flatten dict assert local_client.runs.get_metrics(run2.name).keys() == {"accuracy"} def test_get_detail_format(self, local_client, pf) -> None: run = create_run_against_multi_line_data(pf) # data is a jsonl file, so we can know the number of line runs with open(f"{DATAS_DIR}/webClassification3.jsonl", "r") as f: data = f.readlines() number_of_lines = len(data) local_storage = LocalStorageOperations(local_client.runs.get(run.name)) detail = local_storage.load_detail() assert isinstance(detail, dict) # flow runs assert "flow_runs" in detail assert isinstance(detail["flow_runs"], list) assert len(detail["flow_runs"]) == number_of_lines # node runs assert "node_runs" in detail assert isinstance(detail["node_runs"], list) def test_run_logs(self, pf): data_path = f"{DATAS_DIR}/webClassification3.jsonl" run = pf.run( flow=f"{FLOWS_DIR}/flow_with_user_output", data=data_path, column_mapping={"key": {"value": "1"}, "url": "${data.url}"}, ) local_storage = LocalStorageOperations(run=run) logs = local_storage.logger.get_logs() # For Batch run, the executor uses bulk logger to print logs, and only prints the error log of the nodes. existing_keywords = ["execution", "execution.bulk", "WARNING", "error log"] assert all([keyword in logs for keyword in existing_keywords]) non_existing_keywords = ["execution.flow", "user log"] assert all([keyword not in logs for keyword in non_existing_keywords]) def test_get_detail_against_partial_fail_run(self, pf) -> None: run = pf.run( flow=f"{FLOWS_DIR}/partial_fail", data=f"{FLOWS_DIR}/partial_fail/data.jsonl", ) detail = pf.runs.get_details(name=run.name) detail.fillna("", inplace=True) assert len(detail) == 3 def test_flow_with_only_static_values(self, pf): name = str(uuid.uuid4()) data_path = f"{DATAS_DIR}/webClassification3.jsonl" with pytest.raises(UserErrorException) as e: pf.run( flow=f"{FLOWS_DIR}/flow_with_dict_input", data=data_path, column_mapping={"key": {"value": "1"}}, name=name, ) assert "Column mapping must contain at least one mapping binding" in str(e.value) # run should not be created with pytest.raises(RunNotFoundError): pf.runs.get(name=name) def test_error_message_dump(self, pf): failed_run = pf.run( flow=f"{FLOWS_DIR}/failed_flow", data=f"{DATAS_DIR}/webClassification1.jsonl", column_mapping={"text": "${data.url}"}, ) # even if all lines failed, the bulk run's status is completed. assert failed_run.status == "Completed" # error messages will store in local local_storage = LocalStorageOperations(failed_run) assert os.path.exists(local_storage._exception_path) exception = local_storage.load_exception() assert "Failed to run 1/1 lines. First error message is" in exception["message"] # line run failures will be stored in additionalInfo assert len(exception["additionalInfo"][0]["info"]["errors"]) == 1 # show run will get error message run = pf.runs.get(name=failed_run.name) run_dict = run._to_dict() assert "error" in run_dict assert run_dict["error"] == exception @pytest.mark.skipif(RecordStorage.is_replaying_mode(), reason="System metrics not supported in replaying mode") def test_system_metrics_in_properties(self, pf) -> None: run = create_run_against_multi_line_data(pf) assert FlowRunProperties.SYSTEM_METRICS in run.properties assert isinstance(run.properties[FlowRunProperties.SYSTEM_METRICS], dict) assert "total_tokens" in run.properties[FlowRunProperties.SYSTEM_METRICS] def test_run_get_inputs(self, pf): # inputs should be persisted when defaults are used run = pf.run( flow=f"{FLOWS_DIR}/default_input", data=f"{DATAS_DIR}/webClassification1.jsonl", ) inputs = pf.runs._get_inputs(run=run) assert inputs == { "line_number": [0], "input_bool": [False], "input_dict": [{}], "input_list": [[]], "input_str": ["input value from default"], } # inputs should be persisted when data value are used run = pf.run( flow=f"{FLOWS_DIR}/flow_with_dict_input", data=f"{DATAS_DIR}/dictInput1.jsonl", ) inputs = pf.runs._get_inputs(run=run) assert inputs == {"key": [{"key": "value in data"}], "line_number": [0]} # inputs should be persisted when column-mapping are used run = pf.run( flow=f"{FLOWS_DIR}/flow_with_dict_input", data=f"{DATAS_DIR}/webClassification1.jsonl", column_mapping={"key": {"value": "value in column-mapping"}, "url": "${data.url}"}, ) inputs = pf.runs._get_inputs(run=run) assert inputs == { "key": [{"value": "value in column-mapping"}], "line_number": [0], "url": ["https://www.youtube.com/watch?v=o5ZQyXaAv1g"], } def test_executor_logs_in_batch_run_logs(self, pf) -> None: run = create_run_against_multi_line_data_without_llm(pf) local_storage = LocalStorageOperations(run=run) logs = local_storage.logger.get_logs() # below warning is printed by executor before the batch run executed # the warning message results from we do not use column mapping # so it is expected to be printed here assert "Starting run without column mapping may lead to unexpected results." in logs def test_basic_image_flow_bulk_run(self, pf, local_client) -> None: image_flow_path = f"{FLOWS_DIR}/python_tool_with_simple_image" data_path = f"{image_flow_path}/image_inputs/inputs.jsonl" result = pf.run(flow=image_flow_path, data=data_path, column_mapping={"image": "${data.image}"}) run = local_client.runs.get(name=result.name) assert run.status == "Completed" assert "error" not in run._to_dict() def test_python_tool_with_composite_image(self, pf) -> None: image_flow_path = f"{FLOWS_DIR}/python_tool_with_composite_image" data_path = f"{image_flow_path}/inputs.jsonl" result = pf.run( flow=image_flow_path, data=data_path, column_mapping={ "image_list": "${data.image_list}", "image_dict": "${data.image_dict}", }, ) run = pf.runs.get(name=result.name) assert run.status == "Completed" # no error when processing lines assert "error" not in run._to_dict() # test input from output result = pf.run( run=result, flow=image_flow_path, column_mapping={ "image_list": "${run.outputs.output}" # image dict will use default value, which is relative to flow's folder }, ) run = pf.runs.get(name=result.name) assert run.status == "Completed" # no error when processing lines assert "error" not in run._to_dict() def test_image_without_default(self, pf): image_flow_path = f"{FLOWS_DIR}/python_tool_with_simple_image_without_default" data_path = f"{DATAS_DIR}/image_inputs" result = pf.run( flow=image_flow_path, data=data_path, column_mapping={ "image_1": "${data.image}", "image_2": "${data.image}", }, ) run = pf.runs.get(name=result.name) assert run.status == "Completed", run.name # no error when processing lines assert "error" not in run._to_dict(), run.name def test_get_details_for_image_in_flow(self, pf) -> None: image_flow_path = f"{FLOWS_DIR}/python_tool_with_simple_image" data_path = f"{image_flow_path}/image_inputs/inputs.jsonl" run = pf.run( flow=image_flow_path, data=data_path, column_mapping={"image": "${data.image}"}, ) details = pf.get_details(run.name) for i in range(len(details)): input_image_path = details["inputs.image"][i]["data:image/png;path"] assert Path(input_image_path).is_absolute() output_image_path = details["outputs.output"][i]["data:image/png;path"] assert Path(output_image_path).is_absolute() def test_stream_raise_on_error_false(self, pf: PFClient, capfd: pytest.CaptureFixture) -> None: data_path = f"{DATAS_DIR}/webClassification3.jsonl" run = pf.run( flow=f"{FLOWS_DIR}/web_classification", data=data_path, column_mapping={"not_exist": "${data.not_exist_key}"}, name=str(uuid.uuid4()), ) # raise_on_error=False, will print error message in stdout pf.stream(run.name, raise_on_error=False) out, _ = capfd.readouterr() assert "The input for batch run is incorrect. Couldn't find these mapping relations" in out def test_stream_canceled_run(self, pf: PFClient, capfd: pytest.CaptureFixture) -> None: run = create_run_against_multi_line_data_without_llm(pf) pf.runs.update(name=run.name, status=RunStatus.CANCELED) # (default) raise_on_error=True with pytest.raises(InvalidRunStatusError): pf.stream(run.name) # raise_on_error=False pf.stream(run.name, raise_on_error=False) out, _ = capfd.readouterr() assert "Run is canceled." in out def test_specify_run_output_path(self, pf: PFClient, mocker: MockerFixture) -> None: # mock to imitate user specify config run.output_path specified_run_output_path = (Path.home() / PROMPT_FLOW_DIR_NAME / ".mock").resolve().as_posix() with mocker.patch( "promptflow._sdk._configuration.Configuration.get_run_output_path", return_value=specified_run_output_path, ): run = create_run_against_multi_line_data_without_llm(pf) local_storage = LocalStorageOperations(run=run) expected_output_path_prefix = (Path(specified_run_output_path) / run.name).resolve().as_posix() assert local_storage.outputs_folder.as_posix().startswith(expected_output_path_prefix) def test_override_run_output_path_in_pf_client(self) -> None: specified_run_output_path = (Path.home() / PROMPT_FLOW_DIR_NAME / ".another_mock").resolve().as_posix() pf = PFClient(config={"run.output_path": specified_run_output_path}) run = create_run_against_multi_line_data_without_llm(pf) local_storage = LocalStorageOperations(run=run) expected_output_path_prefix = (Path(specified_run_output_path) / run.name).resolve().as_posix() assert local_storage.outputs_folder.as_posix().startswith(expected_output_path_prefix) def test_specify_run_output_path_with_macro(self, pf: PFClient, mocker: MockerFixture) -> None: # mock to imitate user specify invalid config run.output_path with mocker.patch( "promptflow._sdk._configuration.Configuration.get_run_output_path", return_value=f"{FLOW_DIRECTORY_MACRO_IN_CONFIG}/.promptflow", ): for _ in range(3): run = create_run_against_multi_line_data_without_llm(pf) local_storage = LocalStorageOperations(run=run) expected_path_prefix = Path(FLOWS_DIR) / "print_env_var" / ".promptflow" / run.name expected_path_prefix = expected_path_prefix.resolve().as_posix() assert local_storage.outputs_folder.as_posix().startswith(expected_path_prefix) def test_specify_run_output_path_with_invalid_macro(self, pf: PFClient, mocker: MockerFixture) -> None: # mock to imitate user specify invalid config run.output_path with mocker.patch( "promptflow._sdk._configuration.Configuration.get_run_output_path", # this case will happen when user manually modifies ~/.promptflow/pf.yaml return_value=f"{FLOW_DIRECTORY_MACRO_IN_CONFIG}", ): run = create_run_against_multi_line_data_without_llm(pf) # as the specified run output path is invalid # the actual run output path will be the default value local_storage = LocalStorageOperations(run=run) expected_output_path_prefix = (Path.home() / PROMPT_FLOW_DIR_NAME / ".runs" / run.name).resolve().as_posix() assert local_storage.outputs_folder.as_posix().startswith(expected_output_path_prefix) def test_failed_run_to_dict_exclude(self, pf): failed_run = pf.run( flow=f"{FLOWS_DIR}/failed_flow", data=f"{DATAS_DIR}/webClassification1.jsonl", column_mapping={"text": "${data.url}"}, ) default = failed_run._to_dict() # CLI will exclude additional info and debug info exclude = failed_run._to_dict(exclude_additional_info=True, exclude_debug_info=True) assert "additionalInfo" in default["error"] and "additionalInfo" not in exclude["error"] assert "debugInfo" in default["error"] and "debugInfo" not in exclude["error"] def test_create_run_with_existing_run_folder(self, pf): # TODO: Should use fixture to create an run and download it to be used here. run_name = "web_classification_variant_0_20231205_120253_104100" # clean the run if exists from promptflow._cli._utils import _try_delete_existing_run_record _try_delete_existing_run_record(run_name) # assert the run doesn't exist with pytest.raises(RunNotFoundError): pf.runs.get(run_name) # create the run with run folder run_folder = f"{RUNS_DIR}/{run_name}" run = Run._load_from_source(source=run_folder) pf.runs.create_or_update(run) # test with other local run operations run = pf.runs.get(run_name) assert run.name == run_name details = pf.get_details(run_name) assert details.shape == (3, 5) metrics = pf.runs.get_metrics(run_name) assert metrics == {} pf.stream(run_name) pf.visualize([run_name]) def test_aggregation_node_failed(self, pf): failed_run = pf.run( flow=f"{FLOWS_DIR}/aggregation_node_failed", data=f"{FLOWS_DIR}/aggregation_node_failed/data.jsonl", ) # even if all lines failed, the bulk run's status is completed. assert failed_run.status == "Completed" # error messages will store in local local_storage = LocalStorageOperations(failed_run) assert os.path.exists(local_storage._exception_path) exception = local_storage.load_exception() assert "First error message is" in exception["message"] # line run failures will be stored in additionalInfo assert len(exception["additionalInfo"][0]["info"]["errors"]) == 1 # show run will get error message run = pf.runs.get(name=failed_run.name) run_dict = run._to_dict() assert "error" in run_dict assert run_dict["error"] == exception def test_get_details_against_partial_completed_run(self, pf: PFClient, monkeypatch) -> None: # TODO: remove this patch after executor switch to default spawn monkeypatch.setenv("PF_BATCH_METHOD", "spawn") flow_mod2 = f"{FLOWS_DIR}/mod-n/two" flow_mod3 = f"{FLOWS_DIR}/mod-n/three" data_path = f"{DATAS_DIR}/numbers.jsonl" # batch run against data run1 = pf.run( flow=flow_mod2, data=data_path, column_mapping={"number": "${data.value}"}, ) pf.runs.stream(run1) details1 = pf.get_details(run1) assert len(details1) == 20 assert len(details1.loc[details1["outputs.output"] != "(Failed)"]) == 10 # assert to ensure inputs and outputs are aligned for _, row in details1.iterrows(): if str(row["outputs.output"]) != "(Failed)": assert int(row["inputs.number"]) == int(row["outputs.output"]) # batch run against previous run run2 = pf.run( flow=flow_mod3, run=run1, column_mapping={"number": "${run.outputs.output}"}, ) pf.runs.stream(run2) details2 = pf.get_details(run2) assert len(details2) == 10 assert len(details2.loc[details2["outputs.output"] != "(Failed)"]) == 4 # assert to ensure inputs and outputs are aligned for _, row in details2.iterrows(): if str(row["outputs.output"]) != "(Failed)": assert int(row["inputs.number"]) == int(row["outputs.output"]) monkeypatch.delenv("PF_BATCH_METHOD") def test_flow_with_nan_inf(self, pf: PFClient, monkeypatch) -> None: # TODO: remove this patch after executor switch to default spawn monkeypatch.setenv("PF_BATCH_METHOD", "spawn") run = pf.run( flow=f"{FLOWS_DIR}/flow-with-nan-inf", data=f"{DATAS_DIR}/numbers.jsonl", column_mapping={"number": "${data.value}"}, ) pf.stream(run) local_storage = LocalStorageOperations(run=run) # default behavior: no special logic for nan and inf detail = local_storage.load_detail() first_line_run_output = detail["flow_runs"][0]["output"]["output"] assert isinstance(first_line_run_output["nan"], float) assert np.isnan(first_line_run_output["nan"]) assert isinstance(first_line_run_output["inf"], float) assert np.isinf(first_line_run_output["inf"]) # handles nan and inf, which is real scenario during visualize detail = local_storage.load_detail(parse_const_as_str=True) first_line_run_output = detail["flow_runs"][0]["output"]["output"] assert isinstance(first_line_run_output["nan"], str) assert first_line_run_output["nan"] == "NaN" assert isinstance(first_line_run_output["inf"], str) assert first_line_run_output["inf"] == "Infinity" monkeypatch.delenv("PF_BATCH_METHOD") @pytest.mark.skip("Enable this when executor change merges") def test_eager_flow_run_without_yaml(self, pf): # TODO(2898455): support this flow_path = Path(f"{EAGER_FLOWS_DIR}/simple_without_yaml/entry.py") run = pf.run( flow=flow_path, entry="my_flow", data=f"{DATAS_DIR}/simple_eager_flow_data.jsonl", ) assert run.status == "Completed" def test_eager_flow_run_with_yaml(self, pf): flow_path = Path(f"{EAGER_FLOWS_DIR}/simple_with_yaml") run = pf.run( flow=flow_path, data=f"{DATAS_DIR}/simple_eager_flow_data.jsonl", ) assert run.status == "Completed" def test_eager_flow_test_invalid_cases(self, pf): # no entry provided flow_path = Path(f"{EAGER_FLOWS_DIR}/simple_without_yaml/entry.py") with pytest.raises(UserErrorException) as e: pf.run( flow=flow_path, data=f"{DATAS_DIR}/simple_eager_flow_data.jsonl", ) assert "Entry function is not specified" in str(e.value) # no path provided flow_path = Path(f"{EAGER_FLOWS_DIR}/invalid_no_path/") with pytest.raises(ValidationError) as e: pf.run( flow=flow_path, data=f"{DATAS_DIR}/simple_eager_flow_data.jsonl", ) assert "'path': ['Missing data for required field.']" in str(e.value) def test_get_incomplete_run(self, local_client, pf) -> None: with tempfile.TemporaryDirectory() as temp_dir: shutil.copytree(f"{FLOWS_DIR}/print_env_var", f"{temp_dir}/print_env_var") run = pf.run( flow=f"{temp_dir}/print_env_var", data=f"{DATAS_DIR}/env_var_names.jsonl", ) # remove run dag shutil.rmtree(f"{temp_dir}/print_env_var") # can still get run operations LocalStorageOperations(run=run) # can to_dict run._to_dict()
0
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test/e2etests/test_flow_serve_azureml_extension.py
import json import pytest @pytest.mark.usefixtures("recording_injection") @pytest.mark.e2etest def test_azureml_serving_api_with_encoded_connection(flow_serving_client_with_encoded_connection): response = flow_serving_client_with_encoded_connection.get("/health") assert b'{"status":"Healthy","version":"0.0.1"}' in response.data response = flow_serving_client_with_encoded_connection.post("/score", data=json.dumps({"text": "hi"})) assert ( response.status_code == 200 ), f"Response code indicates error {response.status_code} - {response.data.decode()}" assert "output_prompt" in json.loads(response.data.decode())
0
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test/e2etests/test_flow_serve.py
import json import os import re import pytest from promptflow._core.operation_context import OperationContext @pytest.mark.usefixtures("recording_injection", "setup_local_connection") @pytest.mark.e2etest def test_swagger(flow_serving_client): swagger_dict = json.loads(flow_serving_client.get("/swagger.json").data.decode()) assert swagger_dict == { "components": {"securitySchemes": {"bearerAuth": {"scheme": "bearer", "type": "http"}}}, "info": { "title": "Promptflow[basic-with-connection] API", "version": "1.0.0", "x-flow-name": "basic-with-connection", }, "openapi": "3.0.0", "paths": { "/score": { "post": { "requestBody": { "content": { "application/json": { "example": {"text": "Hello World!"}, "schema": { "properties": {"text": {"type": "string"}}, "required": ["text"], "type": "object", }, } }, "description": "promptflow input data", "required": True, }, "responses": { "200": { "content": { "application/json": { "schema": {"properties": {"output_prompt": {"type": "string"}}, "type": "object"} } }, "description": "successful operation", }, "400": {"description": "Invalid input"}, "default": {"description": "unexpected error"}, }, "summary": "run promptflow: basic-with-connection with an given input", } } }, "security": [{"bearerAuth": []}], } @pytest.mark.usefixtures("recording_injection", "setup_local_connection") @pytest.mark.e2etest def test_chat_swagger(serving_client_llm_chat): swagger_dict = json.loads(serving_client_llm_chat.get("/swagger.json").data.decode()) assert swagger_dict == { "components": {"securitySchemes": {"bearerAuth": {"scheme": "bearer", "type": "http"}}}, "info": { "title": "Promptflow[chat_flow_with_stream_output] API", "version": "1.0.0", "x-flow-name": "chat_flow_with_stream_output", "x-chat-history": "chat_history", "x-chat-input": "question", "x-flow-type": "chat", "x-chat-output": "answer", }, "openapi": "3.0.0", "paths": { "/score": { "post": { "requestBody": { "content": { "application/json": { "example": {}, "schema": { "properties": { "chat_history": { "type": "array", "items": {"type": "object", "additionalProperties": {}}, }, "question": {"type": "string", "default": "What is ChatGPT?"}, }, "required": ["chat_history", "question"], "type": "object", }, } }, "description": "promptflow input data", "required": True, }, "responses": { "200": { "content": { "application/json": { "schema": {"properties": {"answer": {"type": "string"}}, "type": "object"} } }, "description": "successful operation", }, "400": {"description": "Invalid input"}, "default": {"description": "unexpected error"}, }, "summary": "run promptflow: chat_flow_with_stream_output with an given input", } } }, "security": [{"bearerAuth": []}], } @pytest.mark.usefixtures("recording_injection", "setup_local_connection") @pytest.mark.e2etest def test_user_agent(flow_serving_client): operation_context = OperationContext.get_instance() assert "test-user-agent" in operation_context.get_user_agent() assert "promptflow-local-serving" in operation_context.get_user_agent() @pytest.mark.usefixtures("recording_injection", "setup_local_connection") @pytest.mark.e2etest def test_serving_api(flow_serving_client): response = flow_serving_client.get("/health") assert b'{"status":"Healthy","version":"0.0.1"}' in response.data response = flow_serving_client.get("/") print(response.data) assert response.status_code == 200 response = flow_serving_client.post("/score", data=json.dumps({"text": "hi"})) assert ( response.status_code == 200 ), f"Response code indicates error {response.status_code} - {response.data.decode()}" assert "output_prompt" in json.loads(response.data.decode()) # Assert environment variable resolved assert os.environ["API_TYPE"] == "azure" @pytest.mark.usefixtures("recording_injection", "setup_local_connection") @pytest.mark.e2etest def test_evaluation_flow_serving_api(evaluation_flow_serving_client): response = evaluation_flow_serving_client.post("/score", data=json.dumps({"url": "https://www.microsoft.com/"})) assert ( response.status_code == 200 ), f"Response code indicates error {response.status_code} - {response.data.decode()}" assert "category" in json.loads(response.data.decode()) @pytest.mark.e2etest def test_unknown_api(flow_serving_client): response = flow_serving_client.get("/unknown") assert b"not supported by current app" in response.data assert response.status_code == 404 response = flow_serving_client.post("/health") # health api should be GET assert b"not supported by current app" in response.data assert response.status_code == 404 @pytest.mark.usefixtures("recording_injection", "setup_local_connection") @pytest.mark.e2etest @pytest.mark.parametrize( "accept, expected_status_code, expected_content_type", [ ("text/event-stream", 200, "text/event-stream; charset=utf-8"), ("text/html", 406, "application/json"), ("application/json", 200, "application/json"), ("*/*", 200, "application/json"), ("text/event-stream, application/json", 200, "text/event-stream; charset=utf-8"), ("application/json, */*", 200, "application/json"), ("", 200, "application/json"), ], ) def test_stream_llm_chat( serving_client_llm_chat, accept, expected_status_code, expected_content_type, ): payload = { "question": "What is the capital of France?", "chat_history": [], } headers = { "Content-Type": "application/json", "Accept": accept, } response = serving_client_llm_chat.post("/score", json=payload, headers=headers) assert response.status_code == expected_status_code assert response.content_type == expected_content_type if response.status_code == 406: assert response.json["error"]["code"] == "UserError" assert ( f"Media type {accept} in Accept header is not acceptable. Supported media type(s) -" in response.json["error"]["message"] ) if "text/event-stream" in response.content_type: for line in response.data.decode().split("\n"): print(line) else: result = response.json print(result) @pytest.mark.e2etest @pytest.mark.parametrize( "accept, expected_status_code, expected_content_type", [ ("text/event-stream", 200, "text/event-stream; charset=utf-8"), ("text/html", 406, "application/json"), ("application/json", 200, "application/json"), ("*/*", 200, "application/json"), ("text/event-stream, application/json", 200, "text/event-stream; charset=utf-8"), ("application/json, */*", 200, "application/json"), ("", 200, "application/json"), ], ) def test_stream_python_stream_tools( serving_client_python_stream_tools, accept, expected_status_code, expected_content_type, ): payload = { "text": "Hello World!", } headers = { "Content-Type": "application/json", "Accept": accept, } response = serving_client_python_stream_tools.post("/score", json=payload, headers=headers) assert response.status_code == expected_status_code assert response.content_type == expected_content_type # The predefined flow in this test case is echo flow, which will return the input text. # Check output as test logic validation. # Stream generator generating logic # - The output is split into words, and each word is sent as a separate event # - Event data is a dict { $flowoutput_field_name : $word} # - The event data is formatted as f"data: {json.dumps(data)}\n\n" # - Generator will yield the event data for each word if response.status_code == 200: expected_output = f"Echo: {payload.get('text')}" if "text/event-stream" in response.content_type: words = expected_output.split() lines = response.data.decode().split("\n\n") # The last line is empty lines = lines[:-1] assert all(f"data: {json.dumps({'output_echo' : f'{w} '})}" == l for w, l in zip(words, lines)) else: # For json response, iterator is joined into a string with "" as delimiter words = expected_output.split() merged_text = "".join(word + " " for word in words) expected_json = {"output_echo": merged_text} result = response.json assert expected_json == result elif response.status_code == 406: assert response.json["error"]["code"] == "UserError" assert ( f"Media type {accept} in Accept header is not acceptable. Supported media type(s) -" in response.json["error"]["message"] ) @pytest.mark.usefixtures("recording_injection") @pytest.mark.e2etest @pytest.mark.parametrize( "accept, expected_status_code, expected_content_type", [ ("text/event-stream", 406, "application/json"), ("application/json", 200, "application/json"), ("*/*", 200, "application/json"), ("text/event-stream, application/json", 200, "application/json"), ("application/json, */*", 200, "application/json"), ("", 200, "application/json"), ], ) def test_stream_python_nonstream_tools( flow_serving_client, accept, expected_status_code, expected_content_type, ): payload = { "text": "Hello World!", } headers = { "Content-Type": "application/json", "Accept": accept, } response = flow_serving_client.post("/score", json=payload, headers=headers) if "text/event-stream" in response.content_type: for line in response.data.decode().split("\n"): print(line) else: result = response.json print(result) assert response.status_code == expected_status_code assert response.content_type == expected_content_type @pytest.mark.usefixtures("serving_client_image_python_flow", "recording_injection", "setup_local_connection") @pytest.mark.e2etest def test_image_flow(serving_client_image_python_flow, sample_image): response = serving_client_image_python_flow.post("/score", data=json.dumps({"image": sample_image})) assert ( response.status_code == 200 ), f"Response code indicates error {response.status_code} - {response.data.decode()}" response = json.loads(response.data.decode()) assert {"output"} == response.keys() key_regex = re.compile(r"data:image/(.*);base64") assert re.match(key_regex, list(response["output"].keys())[0]) @pytest.mark.usefixtures("serving_client_composite_image_flow", "recording_injection", "setup_local_connection") @pytest.mark.e2etest def test_list_image_flow(serving_client_composite_image_flow, sample_image): image_dict = {"data:image/jpg;base64": sample_image} response = serving_client_composite_image_flow.post( "/score", data=json.dumps({"image_list": [image_dict], "image_dict": {"my_image": image_dict}}) ) assert ( response.status_code == 200 ), f"Response code indicates error {response.status_code} - {response.data.decode()}" response = json.loads(response.data.decode()) assert {"output"} == response.keys() assert ( "data:image/jpg;base64" in response["output"][0] ), f"data:image/jpg;base64 not in output list {response['output']}" @pytest.mark.usefixtures("serving_client_with_environment_variables") @pytest.mark.e2etest def test_flow_with_environment_variables(serving_client_with_environment_variables): except_environment_variables = { "env1": "2", "env2": "runtime_env2", "env3": "[1, 2, 3, 4, 5]", "env4": '{"a": 1, "b": "2"}', "env10": "aaaaa", } for key, value in except_environment_variables.items(): response = serving_client_with_environment_variables.post("/score", data=json.dumps({"key": key})) assert ( response.status_code == 200 ), f"Response code indicates error {response.status_code} - {response.data.decode()}" response = json.loads(response.data.decode()) assert {"output"} == response.keys() assert response["output"] == value
0
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test/e2etests/test_flow_test.py
import logging import tempfile from pathlib import Path from types import GeneratorType import papermill import pytest from marshmallow import ValidationError from promptflow._sdk._constants import LOGGER_NAME from promptflow._sdk._pf_client import PFClient from promptflow.exceptions import UserErrorException PROMOTFLOW_ROOT = Path(__file__) / "../../../.." TEST_ROOT = Path(__file__).parent.parent.parent MODEL_ROOT = TEST_ROOT / "test_configs/e2e_samples" CONNECTION_FILE = (PROMOTFLOW_ROOT / "connections.json").resolve().absolute().as_posix() FLOWS_DIR = (TEST_ROOT / "test_configs/flows").resolve().absolute().as_posix() EAGER_FLOWS_DIR = (TEST_ROOT / "test_configs/eager_flows").resolve().absolute().as_posix() FLOW_RESULT_KEYS = ["category", "evidence"] _client = PFClient() @pytest.mark.usefixtures( "use_secrets_config_file", "recording_injection", "setup_local_connection", "install_custom_tool_pkg" ) @pytest.mark.sdk_test @pytest.mark.e2etest class TestFlowTest: def test_pf_test_flow(self): inputs = {"url": "https://www.youtube.com/watch?v=o5ZQyXaAv1g", "answer": "Channel", "evidence": "Url"} flow_path = Path(f"{FLOWS_DIR}/web_classification").absolute() result = _client.test(flow=flow_path, inputs=inputs) assert all([key in FLOW_RESULT_KEYS for key in result]) result = _client.test(flow=f"{FLOWS_DIR}/web_classification") assert all([key in FLOW_RESULT_KEYS for key in result]) def test_pf_test_flow_with_package_tool_with_custom_strong_type_connection(self, install_custom_tool_pkg): inputs = {"text": "Hello World!"} flow_path = Path(f"{FLOWS_DIR}/flow_with_package_tool_with_custom_strong_type_connection").absolute() # Test that connection would be custom strong type in flow result = _client.test(flow=flow_path, inputs=inputs) assert result == {"out": "connection_value is MyFirstConnection: True"} # Test node run result = _client.test(flow=flow_path, inputs={"input_text": "Hello World!"}, node="My_Second_Tool_usi3") assert result == "Hello World!This is my first custom connection." def test_pf_test_flow_with_package_tool_with_custom_connection_as_input_value(self, install_custom_tool_pkg): # Prepare custom connection from promptflow.connections import CustomConnection conn = CustomConnection(name="custom_connection_3", secrets={"api_key": "test"}, configs={"api_base": "test"}) _client.connections.create_or_update(conn) inputs = {"text": "Hello World!"} flow_path = Path(f"{FLOWS_DIR}/flow_with_package_tool_with_custom_connection").absolute() # Test that connection would be custom strong type in flow result = _client.test(flow=flow_path, inputs=inputs) assert result == {"out": "connection_value is MyFirstConnection: True"} def test_pf_test_flow_with_script_tool_with_custom_strong_type_connection(self): # Prepare custom connection from promptflow.connections import CustomConnection conn = CustomConnection(name="custom_connection_2", secrets={"api_key": "test"}, configs={"api_url": "test"}) _client.connections.create_or_update(conn) inputs = {"text": "Hello World!"} flow_path = Path(f"{FLOWS_DIR}/flow_with_script_tool_with_custom_strong_type_connection").absolute() # Test that connection would be custom strong type in flow result = _client.test(flow=flow_path, inputs=inputs) assert result == {"out": "connection_value is MyCustomConnection: True"} # Test node run result = _client.test(flow=flow_path, inputs={"input_param": "Hello World!"}, node="my_script_tool") assert result == "connection_value is MyCustomConnection: True" def test_pf_test_with_streaming_output(self): flow_path = Path(f"{FLOWS_DIR}/chat_flow_with_stream_output") result = _client.test(flow=flow_path) chat_output = result["answer"] assert isinstance(chat_output, GeneratorType) assert "".join(chat_output) flow_path = Path(f"{FLOWS_DIR}/basic_with_builtin_llm_node") result = _client.test(flow=flow_path) chat_output = result["output"] assert isinstance(chat_output, str) def test_pf_test_node(self): inputs = {"classify_with_llm.output": '{"category": "App", "evidence": "URL"}'} flow_path = Path(f"{FLOWS_DIR}/web_classification").absolute() result = _client.test(flow=flow_path, inputs=inputs, node="convert_to_dict") assert all([key in FLOW_RESULT_KEYS for key in result]) def test_pf_test_flow_with_variant(self): inputs = {"url": "https://www.youtube.com/watch?v=o5ZQyXaAv1g", "answer": "Channel", "evidence": "Url"} result = _client.test( flow=f"{FLOWS_DIR}/web_classification", inputs=inputs, variant="${summarize_text_content.variant_1}" ) assert all([key in FLOW_RESULT_KEYS for key in result]) @pytest.mark.skip("TODO this test case failed in windows and Mac") def test_pf_test_with_additional_includes(self, caplog): from promptflow import VERSION print(VERSION) with caplog.at_level(level=logging.WARNING, logger=LOGGER_NAME): inputs = {"url": "https://www.youtube.com/watch?v=o5ZQyXaAv1g", "answer": "Channel", "evidence": "Url"} result = _client.test(flow=f"{FLOWS_DIR}/web_classification_with_additional_include", inputs=inputs) duplicate_file_content = "Found duplicate file in additional includes" assert any([duplicate_file_content in record.message for record in caplog.records]) assert all([key in FLOW_RESULT_KEYS for key in result]) inputs = {"classify_with_llm.output": '{"category": "App", "evidence": "URL"}'} result = _client.test(flow=f"{FLOWS_DIR}/web_classification", inputs=inputs, node="convert_to_dict") assert all([key in FLOW_RESULT_KEYS for key in result]) # Test additional includes don't exist with pytest.raises(UserErrorException) as e: _client.test(flow=f"{FLOWS_DIR}/web_classification_with_invalid_additional_include") assert "Unable to find additional include ../invalid/file/path" in str(e.value) def test_pf_flow_test_with_symbolic(self, prepare_symbolic_flow): inputs = {"url": "https://www.youtube.com/watch?v=o5ZQyXaAv1g", "answer": "Channel", "evidence": "Url"} result = _client.test(flow=f"{FLOWS_DIR}/web_classification_with_additional_include", inputs=inputs) assert all([key in FLOW_RESULT_KEYS for key in result]) inputs = {"classify_with_llm.output": '{"category": "App", "evidence": "URL"}'} result = _client.test(flow=f"{FLOWS_DIR}/web_classification", inputs=inputs, node="convert_to_dict") assert all([key in FLOW_RESULT_KEYS for key in result]) def test_pf_flow_test_with_exception(self, capsys): # Test flow with exception inputs = {"url": "https://www.youtube.com/watch?v=o5ZQyXaAv1g", "answer": "Channel", "evidence": "Url"} flow_path = Path(f"{FLOWS_DIR}/web_classification_with_exception").absolute() with pytest.raises(UserErrorException) as exception: _client.test(flow=flow_path, inputs=inputs) assert "Execution failure in 'convert_to_dict': (Exception) mock exception" in str(exception.value) # Test node with exception inputs = {"classify_with_llm.output": '{"category": "App", "evidence": "URL"}'} with pytest.raises(Exception) as exception: _client.test(flow=flow_path, inputs=inputs, node="convert_to_dict") output = capsys.readouterr() assert "convert_to_dict.py" in output.out assert "mock exception" in str(exception.value) def test_node_test_with_connection_input(self): flow_path = Path(f"{FLOWS_DIR}/basic-with-connection").absolute() inputs = { "connection": "azure_open_ai_connection", "hello_prompt.output": "system:\n Your task is to write python program for me\nuser:\n" "Write a simple Hello World! program that displays " "the greeting message when executed.", } result = _client.test( flow=flow_path, inputs=inputs, node="echo_my_prompt", environment_variables={"API_TYPE": "${azure_open_ai_connection.api_type}"}, ) assert result def test_pf_flow_with_aggregation(self): flow_path = Path(f"{FLOWS_DIR}/classification_accuracy_evaluation").absolute() inputs = {"variant_id": "variant_0", "groundtruth": "Pdf", "prediction": "PDF"} result = _client._flows._test(flow=flow_path, inputs=inputs) assert "calculate_accuracy" in result.node_run_infos assert result.run_info.metrics == {"accuracy": 1.0} def test_generate_tool_meta_in_additional_folder(self): flow_path = Path(f"{FLOWS_DIR}/web_classification_with_additional_include").absolute() flow_tools, _ = _client._flows._generate_tools_meta(flow=flow_path) for tool in flow_tools["code"].values(): assert (Path(flow_path) / tool["source"]).exists() def test_pf_test_with_non_english_input(self): result = _client.test(flow=f"{FLOWS_DIR}/flow_with_non_english_input") assert result["output"] == "Hello 日本語" def test_pf_node_test_with_dict_input(self): flow_path = Path(f"{FLOWS_DIR}/flow_with_dict_input").absolute() flow_inputs = {"key": {"input_key": "input_value"}} result = _client._flows._test(flow=flow_path, inputs=flow_inputs) assert result.run_info.status.value == "Completed" inputs = { "get_dict_val.output.value": result.node_run_infos["get_dict_val"].output, "get_dict_val.output.origin_value": result.node_run_infos["get_dict_val"].output, } node_result = _client._flows._test(flow=flow_path, node="print_val", inputs=inputs) assert node_result.status.value == "Completed" inputs = { "val": result.node_run_infos["get_dict_val"].output, "origin_val": result.node_run_infos["get_dict_val"].output } node_result = _client._flows._test(flow=flow_path, node="print_val", inputs=inputs) assert node_result.status.value == "Completed" def test_pf_node_test_with_node_ref(self): flow_path = Path(f"{FLOWS_DIR}/flow_with_dict_input").absolute() flow_inputs = {"key": {"input_key": "input_value"}} result = _client._flows._test(flow=flow_path, inputs=flow_inputs) assert result.run_info.status.value == "Completed" # Test node ref with reference node output names inputs = { "get_dict_val.output.value": result.node_run_infos["get_dict_val"].output["value"], "get_dict_val.output.origin_value": result.node_run_infos["get_dict_val"].output["origin_value"], } ref_result = _client._flows._test(flow=flow_path, node="print_val", inputs=inputs) assert ref_result.status.value == "Completed" # Test node ref with testing node input names inputs = { "val": result.node_run_infos["get_dict_val"].output["value"], "origin_val": result.node_run_infos["get_dict_val"].output["origin_value"], } variable_result = _client._flows._test(flow=flow_path, node="print_val", inputs=inputs) assert variable_result.status.value == "Completed" def test_pf_test_flow_in_notebook(self): notebook_path = Path(f"{TEST_ROOT}/test_configs/notebooks/dummy.ipynb").absolute() with tempfile.TemporaryDirectory() as temp_dir: output_notebook_path = Path(temp_dir) / "output.ipynb" papermill.execute_notebook( notebook_path, output_path=output_notebook_path, cwd=notebook_path.parent, ) def test_eager_flow_test(self): flow_path = Path(f"{EAGER_FLOWS_DIR}/simple_without_yaml/entry.py").absolute() result = _client._flows._test(flow=flow_path, entry="my_flow", inputs={"input_val": "val1"}) assert result.run_info.status.value == "Completed" def test_eager_flow_test_with_yaml(self): flow_path = Path(f"{EAGER_FLOWS_DIR}/simple_with_yaml/").absolute() result = _client._flows._test(flow=flow_path, inputs={"input_val": "val1"}) assert result.run_info.status.value == "Completed" def test_eager_flow_test_with_primitive_output(self): flow_path = Path(f"{EAGER_FLOWS_DIR}/primitive_output/").absolute() result = _client._flows._test(flow=flow_path, inputs={"input_val": "val1"}) assert result.run_info.status.value == "Completed" def test_eager_flow_test_invalid_cases(self): # no entry provided flow_path = Path(f"{EAGER_FLOWS_DIR}/simple_without_yaml/entry.py").absolute() with pytest.raises(UserErrorException) as e: _client._flows._test(flow=flow_path, inputs={"input_val": "val1"}) assert "Entry function is not specified" in str(e.value) # no path provided flow_path = Path(f"{EAGER_FLOWS_DIR}/invalid_no_path/").absolute() with pytest.raises(ValidationError) as e: _client._flows._test(flow=flow_path, inputs={"input_val": "val1"}) assert "'path': ['Missing data for required field.']" in str(e.value) # dup entries provided flow_path = Path(f"{EAGER_FLOWS_DIR}/simple_with_yaml/").absolute() with pytest.raises(UserErrorException) as e: _client._flows._test(flow=flow_path, entry="my_flow", inputs={"input_val": "val1"}) assert "Specifying entry function is not allowed" in str(e.value) # wrong entry provided # required inputs not provided
0
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test/e2etests/test_flow_local_operations.py
import copy import os.path import re import shutil import tempfile from pathlib import Path import mock import pytest from promptflow._sdk._constants import FLOW_TOOLS_JSON, NODE_VARIANTS, PROMPT_FLOW_DIR_NAME, USE_VARIANTS from promptflow._utils.yaml_utils import load_yaml from promptflow.connections import AzureOpenAIConnection PROMOTFLOW_ROOT = Path(__file__) / "../../../.." TEST_ROOT = Path(__file__).parent.parent.parent MODEL_ROOT = TEST_ROOT / "test_configs/e2e_samples" CONNECTION_FILE = (PROMOTFLOW_ROOT / "connections.json").resolve().absolute().as_posix() FLOWS_DIR = "./tests/test_configs/flows" DATAS_DIR = "./tests/test_configs/datas" def e2e_test_docker_build_and_run(output_path): """Build and run the docker image locally. This function is for adhoc local test and need to run on a dev machine with docker installed. """ import subprocess subprocess.check_output(["docker", "build", ".", "-t", "test"], cwd=output_path) subprocess.check_output(["docker", "tag", "test", "elliotz/promptflow-export-result:latest"], cwd=output_path) subprocess.check_output( [ "docker", "run", "-e", "CUSTOM_CONNECTION_AZURE_OPENAI_API_KEY='xxx'" "elliotz/promptflow-export-result:latest", ], cwd=output_path, ) @pytest.fixture def setup_connections(azure_open_ai_connection: AzureOpenAIConnection): _ = { "azure_open_ai_connection": azure_open_ai_connection, } from promptflow._sdk._pf_client import PFClient from promptflow._sdk.entities._connection import _Connection _client = PFClient() _client.connections.create_or_update( _Connection._load( data={ "name": "custom_connection", "type": "custom", "configs": { "CHAT_DEPLOYMENT_NAME": "gpt-35-turbo", "AZURE_OPENAI_API_BASE": azure_open_ai_connection.api_base, }, "secrets": { "AZURE_OPENAI_API_KEY": azure_open_ai_connection.api_key, }, } ) ) _client.connections.create_or_update( _Connection._load( data={ "name": "azure_open_ai_connection", "type": "azure_open_ai", "api_type": azure_open_ai_connection.api_type, "api_base": azure_open_ai_connection.api_base, "api_version": azure_open_ai_connection.api_version, "api_key": azure_open_ai_connection.api_key, } ) ) @pytest.mark.usefixtures("use_secrets_config_file", "setup_connections") @pytest.mark.sdk_test @pytest.mark.e2etest class TestFlowLocalOperations: def test_flow_build_as_docker(self, pf) -> None: source = f"{FLOWS_DIR}/intent-copilot" output_path = f"{FLOWS_DIR}/export/linux" shutil.rmtree(output_path, ignore_errors=True) (Path(source) / ".runs").mkdir(exist_ok=True) (Path(source) / ".runs" / "dummy_run_file").touch() with mock.patch("promptflow._sdk.operations._flow_operations.generate_random_string") as mock_random_string: mock_random_string.return_value = "dummy1" pf.flows.build( flow=source, output=output_path, format="docker", ) assert mock_random_string.call_count == 1 # check if .amlignore works assert os.path.isdir(f"{source}/data") assert not (Path(output_path) / "flow" / "data").exists() # check if .runs is ignored by default assert os.path.isfile(f"{source}/.runs/dummy_run_file") assert not (Path(output_path) / "flow" / ".runs" / "dummy_run_file").exists() # e2e_test_docker_build_and_run(output_path) def test_flow_build_as_docker_with_additional_includes(self, pf) -> None: source = f"{FLOWS_DIR}/web_classification_with_additional_include" with tempfile.TemporaryDirectory() as temp_dir: pf.flows.build( flow=source, output=temp_dir, format="docker", ) for additional_include in [ "../external_files/convert_to_dict.py", "../external_files/fetch_text_content_from_url.py", "../external_files/summarize_text_content.jinja2", ]: additional_include_path = Path(source, additional_include) target_path = Path(temp_dir, "flow", additional_include_path.name) assert target_path.is_file() assert target_path.read_text() == additional_include_path.read_text() def test_flow_build_flow_only(self, pf) -> None: source = f"{FLOWS_DIR}/web_classification_with_additional_include" with tempfile.TemporaryDirectory() as temp_dir: pf.flows.build( flow=source, output=temp_dir, format="docker", flow_only=True, ) for additional_include in [ "../external_files/convert_to_dict.py", "../external_files/fetch_text_content_from_url.py", "../external_files/summarize_text_content.jinja2", ]: additional_include_path = Path(source, additional_include) target_path = Path(temp_dir, additional_include_path.name) assert target_path.is_file() assert target_path.read_text() == additional_include_path.read_text() assert Path(temp_dir, PROMPT_FLOW_DIR_NAME, FLOW_TOOLS_JSON).is_file() with open(Path(temp_dir, "flow.dag.yaml"), "r", encoding="utf-8") as f: flow_dag_content = load_yaml(f) assert NODE_VARIANTS not in flow_dag_content assert "additional_includes" not in flow_dag_content assert not any([USE_VARIANTS in node for node in flow_dag_content["nodes"]]) def test_flow_build_as_docker_with_variant(self, pf) -> None: source = f"{FLOWS_DIR}/web_classification_with_additional_include" flow_dag_path = Path(source, "flow.dag.yaml") flow_dag = load_yaml(flow_dag_path) with tempfile.TemporaryDirectory() as temp_dir: pf.flows.build( flow=source, output=temp_dir, format="docker", variant="${summarize_text_content.variant_0}", ) new_flow_dag_path = Path(temp_dir, "flow", "flow.dag.yaml") new_flow_dag = load_yaml(new_flow_dag_path) target_node = next(filter(lambda x: x["name"] == "summarize_text_content", new_flow_dag["nodes"])) target_node.pop("name") assert target_node == flow_dag["node_variants"]["summarize_text_content"]["variants"]["variant_0"]["node"] def test_flow_build_generate_flow_tools_json(self, pf) -> None: source = f"{FLOWS_DIR}/web_classification_with_additional_include" with tempfile.TemporaryDirectory() as temp_dir: pf.flows.build( flow=source, output=temp_dir, variant="${summarize_text_content.variant_0}", ) flow_tools_path = Path(temp_dir) / "flow" / PROMPT_FLOW_DIR_NAME / FLOW_TOOLS_JSON assert flow_tools_path.is_file() # package in flow.tools.json is not determined by the flow, so we don't check it here assert load_yaml(flow_tools_path)["code"] == { "classify_with_llm.jinja2": { "inputs": { "examples": {"type": ["string"]}, "text_content": {"type": ["string"]}, "url": {"type": ["string"]}, }, "source": "classify_with_llm.jinja2", "type": "llm", }, "convert_to_dict.py": { "function": "convert_to_dict", "inputs": {"input_str": {"type": ["string"]}}, "source": "convert_to_dict.py", "type": "python", }, "fetch_text_content_from_url.py": { "function": "fetch_text_content_from_url", "inputs": {"url": {"type": ["string"]}}, "source": "fetch_text_content_from_url.py", "type": "python", }, "prepare_examples.py": { "function": "prepare_examples", "source": "prepare_examples.py", "type": "python", }, "summarize_text_content.jinja2": { "inputs": {"text": {"type": ["string"]}}, "source": "summarize_text_content.jinja2", "type": "llm", }, } def test_flow_validate_generate_flow_tools_json(self, pf) -> None: source = f"{FLOWS_DIR}/web_classification_with_additional_include" flow_tools_path = Path(source) / PROMPT_FLOW_DIR_NAME / FLOW_TOOLS_JSON flow_tools_path.unlink(missing_ok=True) validation_result = pf.flows.validate(flow=source) assert validation_result.passed assert flow_tools_path.is_file() # package in flow.tools.json is not determined by the flow, so we don't check it here assert load_yaml(flow_tools_path)["code"] == { "classify_with_llm.jinja2": { "inputs": { "examples": {"type": ["string"]}, "text_content": {"type": ["string"]}, "url": {"type": ["string"]}, }, "source": "classify_with_llm.jinja2", "type": "llm", }, "convert_to_dict.py": { "function": "convert_to_dict", "inputs": {"input_str": {"type": ["string"]}}, "source": os.path.join("..", "external_files", "convert_to_dict.py"), "type": "python", }, "fetch_text_content_from_url.py": { "function": "fetch_text_content_from_url", "inputs": {"url": {"type": ["string"]}}, "source": os.path.join("..", "external_files", "fetch_text_content_from_url.py"), "type": "python", }, "prepare_examples.py": { "function": "prepare_examples", "source": "prepare_examples.py", "type": "python", }, "summarize_text_content.jinja2": { "inputs": {"text": {"type": ["string"]}}, "source": os.path.join("..", "external_files", "summarize_text_content.jinja2"), "type": "llm", }, "summarize_text_content__variant_1.jinja2": { "inputs": {"text": {"type": ["string"]}}, "source": "summarize_text_content__variant_1.jinja2", "type": "llm", }, } def test_flow_validation_failed(self, pf) -> None: source = f"{FLOWS_DIR}/web_classification_invalid" flow_tools_path = Path(source) / PROMPT_FLOW_DIR_NAME / FLOW_TOOLS_JSON flow_tools_path.unlink(missing_ok=True) validation_result = pf.flows.validate(flow=source) error_messages = copy.deepcopy(validation_result.error_messages) assert "Failed to load python module from file" in error_messages.pop("nodes.2.source.path", "") for yaml_path in [ "node_variants.summarize_text_content.variants.variant_0.node.source.path", "nodes.1.source.path", ]: assert re.search(r"Meta file '.*' can not be found.", error_messages.pop(yaml_path, "")) assert error_messages == { "inputs.url.type": "Missing data for required field.", "outputs.category.type": "Missing data for required field.", } assert "line 22" in repr(validation_result) assert flow_tools_path.is_file() flow_tools = load_yaml(flow_tools_path) assert "code" in flow_tools assert flow_tools["code"] == { "classify_with_llm.jinja2": { "inputs": { "examples": {"type": ["string"]}, "text_content": {"type": ["string"]}, "url": {"type": ["string"]}, }, "source": "classify_with_llm.jinja2", "type": "prompt", }, "./classify_with_llm.jinja2": { "inputs": { "examples": {"type": ["string"]}, "text_content": {"type": ["string"]}, "url": {"type": ["string"]}, }, "source": "./classify_with_llm.jinja2", "type": "llm", }, "convert_to_dict.py": { "function": "convert_to_dict", "inputs": {"input_str": {"type": ["string"]}}, "source": "convert_to_dict.py", "type": "python", }, "fetch_text_content_from_url.py": { "function": "fetch_text_content_from_url", "inputs": {"url": {"type": ["string"]}}, "source": os.path.join("..", "external_files", "fetch_text_content_from_url.py"), "type": "python", }, "summarize_text_content__variant_1.jinja2": { "inputs": {"text": {"type": ["string"]}}, "source": "summarize_text_content__variant_1.jinja2", "type": "llm", }, } def test_flow_generate_tools_meta(self, pf) -> None: source = f"{FLOWS_DIR}/web_classification_invalid" tools_meta, tools_error = pf.flows._generate_tools_meta(source) assert tools_meta["code"] == { "classify_with_llm.jinja2": { "inputs": { "examples": {"type": ["string"]}, "text_content": {"type": ["string"]}, "url": {"type": ["string"]}, }, "source": "classify_with_llm.jinja2", "type": "prompt", }, "./classify_with_llm.jinja2": { "inputs": { "examples": {"type": ["string"]}, "text_content": {"type": ["string"]}, "url": {"type": ["string"]}, }, "source": "./classify_with_llm.jinja2", "type": "llm", }, "convert_to_dict.py": { "function": "convert_to_dict", "inputs": {"input_str": {"type": ["string"]}}, "source": "convert_to_dict.py", "type": "python", }, "fetch_text_content_from_url.py": { "function": "fetch_text_content_from_url", "inputs": {"url": {"type": ["string"]}}, "source": os.path.join("..", "external_files", "fetch_text_content_from_url.py"), "type": "python", }, "summarize_text_content__variant_1.jinja2": { "inputs": {"text": {"type": ["string"]}}, "source": "summarize_text_content__variant_1.jinja2", "type": "llm", }, } # promptflow-tools is not installed in ci # assert list(tools_meta["package"]) == ["promptflow.tools.azure_translator.get_translation"] assert "Failed to load python module from file" in tools_error.pop("prepare_examples.py", "") assert re.search(r"Meta file '.*' can not be found.", tools_error.pop("summarize_text_content.jinja2", "")) assert tools_error == {} tools_meta, tools_error = pf.flows._generate_tools_meta(source, source_name="summarize_text_content.jinja2") assert tools_meta == {"code": {}, "package": {}} assert re.search(r"Meta file '.*' can not be found.", tools_error.pop("summarize_text_content.jinja2", "")) assert tools_error == {} tools_meta, tools_error = pf.flows._generate_tools_meta(source, source_name="fetch_text_content_from_url.py") assert tools_meta == { "code": { "fetch_text_content_from_url.py": { "function": "fetch_text_content_from_url", "inputs": {"url": {"type": ["string"]}}, "source": os.path.join("..", "external_files", "fetch_text_content_from_url.py"), "type": "python", }, }, "package": {}, } assert tools_error == {} @pytest.mark.skip(reason="It will fail in CI for some reasons. Still need to investigate.") def test_flow_generate_tools_meta_timeout(self, pf) -> None: source = f"{FLOWS_DIR}/web_classification_invalid" for tools_meta, tools_error in [ pf.flows._generate_tools_meta(source, timeout=1), # There is no built-in method to forcefully stop a running thread in Python # because abruptly stopping a thread can cause issues like resource leaks, # deadlocks, or inconsistent states. # Caller (VSCode extension) will handle the timeout error. # pf.flows._generate_tools_meta(source, source_name="convert_to_dict.py", timeout=1), ]: assert tools_meta == {"code": {}, "package": {}} assert tools_error for error in tools_error.values(): assert "timeout" in error def test_flow_generate_tools_meta_with_pkg_tool_with_custom_strong_type_connection(self, pf) -> None: source = f"{FLOWS_DIR}/flow_with_package_tool_with_custom_strong_type_connection" tools_meta, tools_error = pf.flows._generate_tools_meta(source) assert tools_error == {} assert tools_meta["code"] == {} assert tools_meta["package"] == { "my_tool_package.tools.my_tool_1.my_tool": { "function": "my_tool", "inputs": { "connection": { "type": ["CustomConnection"], "custom_type": ["MyFirstConnection", "MySecondConnection"], }, "input_text": {"type": ["string"]}, }, "module": "my_tool_package.tools.my_tool_1", "name": "My First Tool", "description": "This is my first tool", "type": "python", "package": "test-custom-tools", "package_version": "0.0.2", }, "my_tool_package.tools.my_tool_2.MyTool.my_tool": { "class_name": "MyTool", "function": "my_tool", "inputs": { "connection": {"type": ["CustomConnection"], "custom_type": ["MySecondConnection"]}, "input_text": {"type": ["string"]}, }, "module": "my_tool_package.tools.my_tool_2", "name": "My Second Tool", "description": "This is my second tool", "type": "python", "package": "test-custom-tools", "package_version": "0.0.2", }, } def test_flow_generate_tools_meta_with_script_tool_with_custom_strong_type_connection(self, pf) -> None: source = f"{FLOWS_DIR}/flow_with_script_tool_with_custom_strong_type_connection" tools_meta, tools_error = pf.flows._generate_tools_meta(source) assert tools_error == {} assert tools_meta["package"] == {} assert tools_meta["code"] == { "my_script_tool.py": { "function": "my_tool", "inputs": {"connection": {"type": ["CustomConnection"]}, "input_param": {"type": ["string"]}}, "source": "my_script_tool.py", "type": "python", } }
0
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test/e2etests/test_experiment.py
from pathlib import Path import pytest from ruamel.yaml import YAML from promptflow import PFClient from promptflow._sdk._constants import ExperimentStatus, RunStatus from promptflow._sdk._load_functions import load_common from promptflow._sdk.entities._experiment import ( CommandNode, Experiment, ExperimentData, ExperimentInput, ExperimentTemplate, FlowNode, ) TEST_ROOT = Path(__file__).parent.parent.parent EXP_ROOT = TEST_ROOT / "test_configs/experiments" FLOW_ROOT = TEST_ROOT / "test_configs/flows" yaml = YAML(typ="safe") @pytest.mark.e2etest @pytest.mark.usefixtures("setup_experiment_table") class TestExperiment: def test_experiment_from_template(self): template_path = EXP_ROOT / "basic-no-script-template" / "basic.exp.yaml" # Load template and create experiment template = load_common(ExperimentTemplate, source=template_path) experiment = Experiment.from_template(template) # Assert experiment parts are resolved assert len(experiment.nodes) == 2 assert all(isinstance(n, FlowNode) for n in experiment.nodes) assert len(experiment.data) == 1 assert isinstance(experiment.data[0], ExperimentData) assert len(experiment.inputs) == 1 assert isinstance(experiment.inputs[0], ExperimentInput) # Assert type is resolved assert experiment.inputs[0].default == 1 # Pop schema and resolve path expected = dict(yaml.load(open(template_path, "r", encoding="utf-8").read())) expected.pop("$schema") expected["data"][0]["path"] = (FLOW_ROOT / "web_classification" / "data.jsonl").absolute().as_posix() expected["nodes"][0]["path"] = (experiment._output_dir / "snapshots" / "main").absolute().as_posix() expected["nodes"][1]["path"] = (experiment._output_dir / "snapshots" / "eval").absolute().as_posix() experiment_dict = experiment._to_dict() assert experiment_dict["data"][0].items() == expected["data"][0].items() assert experiment_dict["nodes"][0].items() == expected["nodes"][0].items() assert experiment_dict["nodes"][1].items() == expected["nodes"][1].items() assert experiment_dict.items() >= expected.items() def test_experiment_from_template_with_script_node(self): template_path = EXP_ROOT / "basic-script-template" / "basic-script.exp.yaml" # Load template and create experiment template = load_common(ExperimentTemplate, source=template_path) experiment = Experiment.from_template(template) # Assert command node load correctly assert len(experiment.nodes) == 4 expected = dict(yaml.load(open(template_path, "r", encoding="utf-8").read())) experiment_dict = experiment._to_dict() assert isinstance(experiment.nodes[0], CommandNode) assert isinstance(experiment.nodes[1], FlowNode) assert isinstance(experiment.nodes[2], FlowNode) assert isinstance(experiment.nodes[3], CommandNode) gen_data_snapshot_path = experiment._output_dir / "snapshots" / "gen_data" echo_snapshot_path = experiment._output_dir / "snapshots" / "echo" expected["nodes"][0]["code"] = gen_data_snapshot_path.absolute().as_posix() expected["nodes"][3]["code"] = echo_snapshot_path.absolute().as_posix() expected["nodes"][3]["environment_variables"] = {} assert experiment_dict["nodes"][0].items() == expected["nodes"][0].items() assert experiment_dict["nodes"][3].items() == expected["nodes"][3].items() # Assert snapshots assert gen_data_snapshot_path.exists() file_count = len(list(gen_data_snapshot_path.rglob("*"))) assert file_count == 1 assert (gen_data_snapshot_path / "generate_data.py").exists() # Assert no file exists in echo path assert echo_snapshot_path.exists() file_count = len(list(echo_snapshot_path.rglob("*"))) assert file_count == 0 def test_experiment_create_and_get(self): template_path = EXP_ROOT / "basic-no-script-template" / "basic.exp.yaml" # Load template and create experiment template = load_common(ExperimentTemplate, source=template_path) experiment = Experiment.from_template(template) client = PFClient() exp = client._experiments.create_or_update(experiment) assert len(client._experiments.list()) > 0 exp_get = client._experiments.get(name=exp.name) assert exp_get._to_dict() == exp._to_dict() @pytest.mark.usefixtures("use_secrets_config_file", "recording_injection", "setup_local_connection") def test_experiment_start(self): template_path = EXP_ROOT / "basic-no-script-template" / "basic.exp.yaml" # Load template and create experiment template = load_common(ExperimentTemplate, source=template_path) experiment = Experiment.from_template(template) client = PFClient() exp = client._experiments.create_or_update(experiment) exp = client._experiments.start(exp.name) assert exp.status == ExperimentStatus.TERMINATED # Assert main run assert len(exp.node_runs["main"]) > 0 main_run = client.runs.get(name=exp.node_runs["main"][0]["name"]) assert main_run.status == RunStatus.COMPLETED assert main_run.variant == "${summarize_text_content.variant_0}" assert main_run.display_name == "main" assert len(exp.node_runs["eval"]) > 0 # Assert eval run and metrics eval_run = client.runs.get(name=exp.node_runs["eval"][0]["name"]) assert eval_run.status == RunStatus.COMPLETED assert eval_run.display_name == "eval" metrics = client.runs.get_metrics(name=eval_run.name) assert "accuracy" in metrics @pytest.mark.usefixtures("use_secrets_config_file", "recording_injection", "setup_local_connection") def test_experiment_with_script_start(self): template_path = EXP_ROOT / "basic-script-template" / "basic-script.exp.yaml" # Load template and create experiment template = load_common(ExperimentTemplate, source=template_path) experiment = Experiment.from_template(template) client = PFClient() exp = client._experiments.create_or_update(experiment) exp = client._experiments.start(exp.name) assert exp.status == ExperimentStatus.TERMINATED assert len(exp.node_runs) == 4 for key, val in exp.node_runs.items(): assert val[0]["status"] == RunStatus.COMPLETED, f"Node {key} run failed"
0
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test/e2etests/test_cli_perf.py
import contextlib import io import multiprocessing import os import sys import tempfile import timeit import uuid from pathlib import Path from unittest import mock import pytest from promptflow._cli._user_agent import USER_AGENT as CLI_USER_AGENT # noqa: E402 from promptflow._sdk._telemetry import log_activity from promptflow._sdk._utils import ClientUserAgentUtil FLOWS_DIR = "./tests/test_configs/flows" CONNECTIONS_DIR = "./tests/test_configs/connections" DATAS_DIR = "./tests/test_configs/datas" def mock_log_activity(*args, **kwargs): custom_message = "github run: https://github.com/microsoft/promptflow/actions/runs/{0}".format( os.environ.get("GITHUB_RUN_ID") ) if len(args) == 4: if args[3] is not None: args[3]["custom_message"] = custom_message else: args = list(args) args[3] = {"custom_message": custom_message} elif "custom_dimensions" in kwargs and kwargs["custom_dimensions"] is not None: kwargs["custom_dimensions"]["custom_message"] = custom_message else: kwargs["custom_dimensions"] = {"custom_message": custom_message} return log_activity(*args, **kwargs) def run_cli_command(cmd, time_limit=3600, result_queue=None): from promptflow._cli._pf.entry import main sys.argv = list(cmd) output = io.StringIO() st = timeit.default_timer() with contextlib.redirect_stdout(output), mock.patch.object( ClientUserAgentUtil, "get_user_agent" ) as get_user_agent_fun, mock.patch( "promptflow._sdk._telemetry.activity.log_activity", side_effect=mock_log_activity ), mock.patch( "promptflow._cli._pf.entry.log_activity", side_effect=mock_log_activity ): # Client side will modify user agent only through ClientUserAgentUtil to avoid impact executor/runtime. get_user_agent_fun.return_value = f"{CLI_USER_AGENT} perf_monitor/1.0" user_agent = ClientUserAgentUtil.get_user_agent() assert user_agent == f"{CLI_USER_AGENT} perf_monitor/1.0" main() ed = timeit.default_timer() print(f"{cmd}, \n Total time: {ed - st}s") assert ed - st < time_limit, f"The time limit is {time_limit}s, but it took {ed - st}s." res_value = output.getvalue() if result_queue: result_queue.put(res_value) return res_value def subprocess_run_cli_command(cmd, time_limit=3600): result_queue = multiprocessing.Queue() process = multiprocessing.Process( target=run_cli_command, args=(cmd,), kwargs={"time_limit": time_limit, "result_queue": result_queue} ) process.start() process.join() assert process.exitcode == 0 return result_queue.get_nowait() @pytest.mark.usefixtures("use_secrets_config_file", "setup_local_connection") @pytest.mark.perf_monitor_test class TestCliPerf: def test_pf_run_create(self, time_limit=20) -> None: res = subprocess_run_cli_command( cmd=( "pf", "run", "create", "--flow", f"{FLOWS_DIR}/print_input_flow", "--data", f"{DATAS_DIR}/print_input_flow.jsonl", ), time_limit=time_limit, ) assert "Completed" in res def test_pf_run_update(self, time_limit=10) -> None: run_name = str(uuid.uuid4()) run_cli_command( cmd=( "pf", "run", "create", "--flow", f"{FLOWS_DIR}/print_input_flow", "--data", f"{DATAS_DIR}/print_input_flow.jsonl", "--name", run_name, ) ) res = subprocess_run_cli_command( cmd=("pf", "run", "update", "--name", run_name, "--set", "description=test pf run update"), time_limit=time_limit, ) assert "Completed" in res def test_pf_flow_test(self, time_limit=10): subprocess_run_cli_command( cmd=( "pf", "flow", "test", "--flow", f"{FLOWS_DIR}/print_input_flow", "--inputs", "text=https://www.youtube.com/watch?v=o5ZQyXaAv1g", ), time_limit=time_limit, ) output_path = Path(FLOWS_DIR) / "print_input_flow" / ".promptflow" / "flow.output.json" assert output_path.exists() def test_pf_flow_build(self, time_limit=20): with tempfile.TemporaryDirectory() as temp_dir: subprocess_run_cli_command( cmd=( "pf", "flow", "build", "--source", f"{FLOWS_DIR}/print_input_flow/flow.dag.yaml", "--output", temp_dir, "--format", "docker", ), time_limit=time_limit, ) def test_pf_connection_create(self, time_limit=10): name = f"Connection_{str(uuid.uuid4())[:4]}" res = subprocess_run_cli_command( cmd=( "pf", "connection", "create", "--file", f"{CONNECTIONS_DIR}/azure_openai_connection.yaml", "--name", f"{name}", ), time_limit=time_limit, ) assert "api_type" in res def test_pf_connection_list(self, time_limit=10): name = "connection_list" res = run_cli_command( cmd=( "pf", "connection", "create", "--file", f"{CONNECTIONS_DIR}/azure_openai_connection.yaml", "--name", f"{name}", ) ) assert "api_type" in res res = subprocess_run_cli_command(cmd=("pf", "connection", "list"), time_limit=time_limit) assert "api_type" in res
0
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test/e2etests/test_tool.py
import importlib.util import json import sys from pathlib import Path from unittest.mock import patch import pytest from promptflow import ToolProvider, tool from promptflow._core.tool_meta_generator import ToolValidationError from promptflow._sdk._pf_client import PFClient from promptflow.entities import DynamicList, InputSetting from promptflow.exceptions import UserErrorException PROMOTFLOW_ROOT = Path(__file__) / "../../../.." TEST_ROOT = Path(__file__).parent.parent.parent TOOL_ROOT = TEST_ROOT / "test_configs/tools" _client = PFClient() @pytest.mark.e2etest class TestTool: def get_tool_meta(self, tool_path): module_name = f"test_tool.{Path(tool_path).stem}" # Load the module from the file path spec = importlib.util.spec_from_file_location(module_name, tool_path) module = importlib.util.module_from_spec(spec) # Load the module's code spec.loader.exec_module(module) tools_meta, _ = _client.tools._generate_tool_meta(module) return tools_meta def test_python_tool_meta(self): tool_path = TOOL_ROOT / "python_tool.py" tool_meta = self.get_tool_meta(tool_path) expect_tool_meta = { "test_tool.python_tool.PythonTool.python_tool": { "class_name": "PythonTool", "function": "python_tool", "inputs": {"connection": {"type": ["AzureOpenAIConnection"]}, "input1": {"type": ["string"]}}, "module": "test_tool.python_tool", "name": "PythonTool.python_tool", "type": "python", }, "test_tool.python_tool.my_python_tool": { "function": "my_python_tool", "inputs": {"input1": {"type": ["string"]}}, "module": "test_tool.python_tool", "name": "python_tool", "type": "python", }, "test_tool.python_tool.my_python_tool_without_name": { "function": "my_python_tool_without_name", "inputs": {"input1": {"type": ["string"]}}, "module": "test_tool.python_tool", "name": "my_python_tool_without_name", "type": "python", }, } assert tool_meta == expect_tool_meta def test_llm_tool_meta(self): tool_path = TOOL_ROOT / "custom_llm_tool.py" tool_meta = self.get_tool_meta(tool_path) expect_tool_meta = { "test_tool.custom_llm_tool.my_tool": { "name": "My Custom LLM Tool", "type": "custom_llm", "inputs": {"connection": {"type": ["CustomConnection"]}}, "description": "This is a tool to demonstrate the custom_llm tool type", "module": "test_tool.custom_llm_tool", "function": "my_tool", "enable_kwargs": True, }, "test_tool.custom_llm_tool.TestCustomLLMTool.tool_func": { "name": "My Custom LLM Tool", "type": "custom_llm", "inputs": {"connection": {"type": ["AzureOpenAIConnection"]}, "api": {"type": ["string"]}}, "description": "This is a tool to demonstrate the custom_llm tool type", "module": "test_tool.custom_llm_tool", "class_name": "TestCustomLLMTool", "function": "tool_func", "enable_kwargs": True, }, } assert tool_meta == expect_tool_meta def test_invalid_tool_type(self): with pytest.raises(UserErrorException) as exception: @tool(name="invalid_tool_type", type="invalid_type") def invalid_tool_type(): pass assert exception.value.message == "Tool type invalid_type is not supported yet." def test_tool_with_custom_connection(self): tool_path = TOOL_ROOT / "tool_with_custom_connection.py" tool_meta = self.get_tool_meta(tool_path) expect_tool_meta = { "test_tool.tool_with_custom_connection.MyTool.my_tool": { "name": "My Second Tool", "type": "python", "inputs": {"connection": {"type": ["CustomConnection"]}, "input_text": {"type": ["string"]}}, "description": "This is my second tool", "module": "test_tool.tool_with_custom_connection", "class_name": "MyTool", "function": "my_tool", } } assert tool_meta == expect_tool_meta tool_path = TOOL_ROOT / "tool_with_custom_strong_type_connection.py" tool_meta = self.get_tool_meta(tool_path) expect_tool_meta = { "test_tool.tool_with_custom_strong_type_connection.my_tool": { "name": "Tool With Custom Strong Type Connection", "type": "python", "inputs": { "connection": {"type": ["CustomConnection"], "custom_type": ["MyCustomConnection"]}, "input_text": {"type": ["string"]}, }, "description": "This is my tool with custom strong type connection.", "module": "test_tool.tool_with_custom_strong_type_connection", "function": "my_tool", } } assert tool_meta == expect_tool_meta def test_tool_with_input_settings(self): tool_path = TOOL_ROOT / "tool_with_dynamic_list_input.py" tool_meta = self.get_tool_meta(tool_path) expect_tool_meta = { "test_tool.tool_with_dynamic_list_input.my_tool": { "description": "This is my tool with dynamic list input", "function": "my_tool", "inputs": { "endpoint_name": { "dynamic_list": { "func_kwargs": [ { "default": "", "name": "prefix", "optional": True, "reference": "${inputs.input_prefix}", "type": ["string"], } ], "func_path": "test_tool.tool_with_dynamic_list_input.list_endpoint_names", }, "type": ["string"], }, "input_prefix": {"type": ["string"]}, "input_text": { "allow_manual_entry": True, "dynamic_list": { "func_kwargs": [ { "default": "", "name": "prefix", "optional": True, "reference": "${inputs.input_prefix}", "type": ["string"], }, {"default": 10, "name": "size", "optional": True, "type": ["int"]}, ], "func_path": "test_tool.tool_with_dynamic_list_input.my_list_func", }, "is_multi_select": True, "type": ["list"], }, }, "module": "test_tool.tool_with_dynamic_list_input", "name": "My Tool with Dynamic List Input", "type": "python", } } assert tool_meta == expect_tool_meta tool_path = TOOL_ROOT / "tool_with_enabled_by_value.py" tool_meta = self.get_tool_meta(tool_path) expect_tool_meta = { "test_tool.tool_with_enabled_by_value.my_tool": { "name": "My Tool with Enabled By Value", "type": "python", "inputs": { "user_type": {"type": ["string"], "enum": ["student", "teacher"]}, "student_id": {"type": ["string"], "enabled_by": "user_type", "enabled_by_value": ["student"]}, "teacher_id": {"type": ["string"], "enabled_by": "user_type", "enabled_by_value": ["teacher"]}, }, "description": "This is my tool with enabled by value", "module": "test_tool.tool_with_enabled_by_value", "function": "my_tool", } } assert tool_meta == expect_tool_meta def test_dynamic_list_with_invalid_reference(self): def my_list_func(prefix: str, size: int = 10): pass # value in reference doesn't exist in tool inputs invalid_dynamic_list_setting = DynamicList(function=my_list_func, input_mapping={"prefix": "invalid_input"}) input_settings = { "input_text": InputSetting( dynamic_list=invalid_dynamic_list_setting, allow_manual_entry=True, is_multi_select=True ) } @tool( name="My Tool with Dynamic List Input", description="This is my tool with dynamic list input", input_settings=input_settings, ) def my_tool(input_text: list, input_prefix: str) -> str: return f"Hello {input_prefix} {','.join(input_text)}" with pytest.raises(ToolValidationError) as exception: _client.tools.validate(my_tool, raise_error=True) assert "Cannot find invalid_input in the tool inputs." in exception.value.message # invalid dynamic func input invalid_dynamic_list_setting = DynamicList( function=my_list_func, input_mapping={"invalid_input": "input_prefix"} ) input_settings = { "input_text": InputSetting( dynamic_list=invalid_dynamic_list_setting, allow_manual_entry=True, is_multi_select=True ) } @tool( name="My Tool with Dynamic List Input", description="This is my tool with dynamic list input", input_settings=input_settings, ) def my_tool(input_text: list, input_prefix: str) -> str: return f"Hello {input_prefix} {','.join(input_text)}" with pytest.raises(ToolValidationError) as exception: _client.tools.validate(my_tool, raise_error=True) assert "Cannot find invalid_input in the inputs of dynamic_list func" in exception.value.message # check required inputs of dynamic list func invalid_dynamic_list_setting = DynamicList(function=my_list_func, input_mapping={"size": "input_prefix"}) input_settings = { "input_text": InputSetting( dynamic_list=invalid_dynamic_list_setting, ) } @tool( name="My Tool with Dynamic List Input", description="This is my tool with dynamic list input", input_settings=input_settings, ) def my_tool(input_text: list, input_prefix: str) -> str: return f"Hello {input_prefix} {','.join(input_text)}" with pytest.raises(ToolValidationError) as exception: _client.tools.validate(my_tool, raise_error=True) assert "Missing required input(s) of dynamic_list function: ['prefix']" in exception.value.message def test_enabled_by_with_invalid_input(self): # value in enabled_by_value doesn't exist in tool inputs input1_settings = InputSetting(enabled_by="invalid_input") @tool(name="enabled_by_with_invalid_input", input_settings={"input1": input1_settings}) def enabled_by_with_invalid_input(input1: str, input2: str): pass with pytest.raises(ToolValidationError) as exception: _client.tools.validate(enabled_by_with_invalid_input, raise_error=True) assert 'Cannot find the input \\"invalid_input\\"' in exception.value.message def test_tool_with_file_path_input(self): tool_path = TOOL_ROOT / "tool_with_file_path_input.py" tool_meta = self.get_tool_meta(tool_path) expect_tool_meta = { "test_tool.tool_with_file_path_input.my_tool": { "name": "Tool with FilePath Input", "type": "python", "inputs": {"input_file": {"type": ["file_path"]}, "input_text": {"type": ["string"]}}, "description": "This is a tool to demonstrate the usage of FilePath input", "module": "test_tool.tool_with_file_path_input", "function": "my_tool", } } assert expect_tool_meta == tool_meta def test_tool_with_generated_by_input(self): tool_path = TOOL_ROOT / "tool_with_generated_by_input.py" tool_meta = self.get_tool_meta(tool_path) with open(TOOL_ROOT / "expected_generated_by_meta.json", "r") as f: expect_tool_meta = json.load(f) assert expect_tool_meta == tool_meta def test_validate_tool_script(self): tool_script_path = TOOL_ROOT / "custom_llm_tool.py" result = _client.tools.validate(tool_script_path) assert result.passed tool_script_path = TOOL_ROOT / "tool_with_dynamic_list_input.py" result = _client.tools.validate(tool_script_path) assert result.passed tool_script_path = TOOL_ROOT / "invalid_tool.py" result = _client.tools.validate(tool_script_path) assert len(result._errors) == 4 assert "1 is not of type 'string'" in result.error_messages["invalid_schema_type"] assert ( "Cannot provide both `icon` and `icon_light` or `icon_dark`." in result.error_messages["invalid_tool_icon"] ) assert ( 'Cannot find the input "invalid_input" for the enabled_by of teacher_id.' in result.error_messages["invalid_input_settings"] ) assert ( 'Cannot find the input "invalid_input" for the enabled_by of student_id.' in result.error_messages["invalid_input_settings"] ) assert all(str(tool_script_path) == item.location for item in result._errors) with pytest.raises(ToolValidationError): _client.tools.validate(TOOL_ROOT / "invalid_tool.py", raise_error=True) def test_validate_tool_func(self): def load_module_by_path(source): module_name = Path(source).stem spec = importlib.util.spec_from_file_location(module_name, source) module = importlib.util.module_from_spec(spec) # Load the module's code spec.loader.exec_module(module) return module tool_script_path = TOOL_ROOT / "custom_llm_tool.py" module = load_module_by_path(tool_script_path) tool_func = getattr(module, "my_tool") result = _client.tools.validate(tool_func) assert result.passed tool_script_path = TOOL_ROOT / "invalid_tool.py" module = load_module_by_path(tool_script_path) tool_func = getattr(module, "invalid_schema_type") result = _client.tools.validate(tool_func) assert "invalid_schema_type" in result.error_messages assert "1 is not of type 'string'" in result.error_messages["invalid_schema_type"] assert "invalid_schema_type" == result._errors[0].function_name assert str(tool_script_path) == result._errors[0].location with pytest.raises(ToolValidationError): _client.tools.validate(tool_func, raise_error=True) def test_validate_package_tool(self): package_tool_path = TOOL_ROOT / "tool_package" sys.path.append(str(package_tool_path.resolve())) import tool_package with patch("promptflow._sdk.operations._tool_operations.ToolOperations._is_package_tool", return_value=True): result = _client.tools.validate(tool_package) assert len(result._errors) == 4 assert "1 is not of type 'string'" in result.error_messages["invalid_schema_type"] assert ( "Cannot provide both `icon` and `icon_light` or `icon_dark`." in result.error_messages["invalid_tool_icon"] ) assert ( 'Cannot find the input "invalid_input" for the enabled_by of teacher_id.' in result.error_messages["invalid_input_settings"] ) assert ( 'Cannot find the input "invalid_input" for the enabled_by of student_id.' in result.error_messages["invalid_input_settings"] ) def test_validate_tool_class(self): from promptflow.tools.serpapi import SerpAPI result = _client.tools.validate(SerpAPI) assert result.passed class InvalidToolClass(ToolProvider): def __init__(self): super().__init__() @tool(name="My Custom Tool") def tool_func(self, api: str): pass @tool(name=1) def invalid_tool_func(self, api: str): pass result = _client.tools.validate(InvalidToolClass) assert not result.passed assert result._kwargs["total_count"] == 2 assert result._kwargs["invalid_count"] == 1 assert len(result._errors) == 1 assert "1 is not of type 'string'" in result._errors[0].message
0
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test/e2etests/test_executable.py
import subprocess import sys import tempfile from pathlib import Path import mock import pytest from .test_cli import run_pf_command FLOWS_DIR = "./tests/test_configs/flows" RUNS_DIR = "./tests/test_configs/runs" CONNECTIONS_DIR = "./tests/test_configs/connections" DATAS_DIR = "./tests/test_configs/datas" @pytest.mark.usefixtures("use_secrets_config_file", "setup_local_connection", "install_custom_tool_pkg") @pytest.mark.cli_test @pytest.mark.e2etest class TestExecutable: @pytest.mark.skipif( sys.platform == "win32" or sys.platform == "darwin", reason="Raise Exception: Process terminated with exit code 4294967295", ) def test_flow_build_executable(self): source = f"{FLOWS_DIR}/web_classification/flow.dag.yaml" target = "promptflow._sdk.operations._flow_operations.FlowOperations._run_pyinstaller" with mock.patch(target) as mocked: mocked.return_value = None with tempfile.TemporaryDirectory() as temp_dir: run_pf_command( "flow", "build", "--source", source, "--output", temp_dir, "--format", "executable", ) # Start the Python script as a subprocess app_file = Path(temp_dir, "app.py").as_posix() process = subprocess.Popen(["python", app_file], stderr=subprocess.PIPE) try: # Wait for a specified time (in seconds) wait_time = 5 process.wait(timeout=wait_time) if process.returncode == 0: pass else: raise Exception( f"Process terminated with exit code {process.returncode}, " f"{process.stderr.read().decode('utf-8')}" ) except (subprocess.TimeoutExpired, KeyboardInterrupt): pass finally: # Kill the process process.terminate() process.wait() # Ensure the process is fully terminated
0
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test/e2etests/test_flow_as_func.py
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import shutil from pathlib import Path from tempfile import TemporaryDirectory from types import GeneratorType import pytest from promptflow import load_flow from promptflow._sdk._errors import ConnectionNotFoundError, InvalidFlowError from promptflow._sdk.entities import CustomConnection from promptflow._sdk.operations._flow_context_resolver import FlowContextResolver from promptflow._utils.flow_utils import dump_flow_dag, load_flow_dag from promptflow.entities import FlowContext from promptflow.exceptions import UserErrorException FLOWS_DIR = "./tests/test_configs/flows" RUNS_DIR = "./tests/test_configs/runs" DATAS_DIR = "./tests/test_configs/datas" @pytest.mark.usefixtures( "use_secrets_config_file", "recording_injection", "setup_local_connection", "install_custom_tool_pkg" ) @pytest.mark.sdk_test @pytest.mark.e2etest class TestFlowAsFunc: def test_flow_as_a_func(self): f = load_flow(f"{FLOWS_DIR}/print_env_var") result = f(key="unknown") assert result["output"] is None assert "line_number" not in result def test_flow_as_a_func_with_connection_overwrite(self): from promptflow._sdk._errors import ConnectionNotFoundError f = load_flow(f"{FLOWS_DIR}/web_classification") f.context.connections = {"classify_with_llm": {"connection": "not_exist"}} with pytest.raises(ConnectionNotFoundError) as e: f(url="https://www.youtube.com/watch?v=o5ZQyXaAv1g") assert "Connection 'not_exist' is not found" in str(e.value) def test_flow_as_a_func_with_connection_obj(self): f = load_flow(f"{FLOWS_DIR}/flow_with_custom_connection") f.context.connections = {"hello_node": {"connection": CustomConnection(secrets={"k": "v"})}} result = f(text="hello") assert result["output"]["secrets"] == {"k": "v"} def test_overrides(self): f = load_flow(f"{FLOWS_DIR}/print_env_var") f.context = FlowContext( # node print_env will take "provided_key" instead of flow input overrides={"nodes.print_env.inputs.key": "provided_key"}, ) # the key="unknown" will not take effect result = f(key="unknown") assert result["output"] is None @pytest.mark.skip(reason="This experience has not finalized yet.") def test_flow_as_a_func_with_token_based_connection(self): class MyCustomConnection(CustomConnection): def get_token(self): return "fake_token" f = load_flow(f"{FLOWS_DIR}/flow_with_custom_connection") f.context.connections = {"hello_node": {"connection": MyCustomConnection(secrets={"k": "v"})}} result = f(text="hello") assert result == {} def test_exception_handle(self): f = load_flow(f"{FLOWS_DIR}/flow_with_invalid_import") with pytest.raises(UserErrorException) as e: f(text="hello") assert "Failed to load python module " in str(e.value) f = load_flow(f"{FLOWS_DIR}/print_env_var") with pytest.raises(UserErrorException) as e: f() assert "Required input fields ['key'] are missing" in str(e.value) def test_stream_output(self): f = load_flow(f"{FLOWS_DIR}/chat_flow_with_python_node_streaming_output") f.context.streaming = True result = f( chat_history=[ {"inputs": {"chat_input": "Hi"}, "outputs": {"chat_output": "Hello! How can I assist you today?"}} ], question="How are you?", ) assert isinstance(result["answer"], GeneratorType) @pytest.mark.skip(reason="This experience has not finalized yet.") def test_environment_variables(self): f = load_flow(f"{FLOWS_DIR}/print_env_var") f.context.environment_variables = {"key": "value"} result = f(key="key") assert result["output"] == "value" def test_flow_as_a_func_with_variant(self): flow_path = Path(f"{FLOWS_DIR}/flow_with_dict_input_with_variant").absolute() f = load_flow( flow_path, ) f.context.variant = "${print_val.variant1}" # variant1 will use a mock_custom_connection with pytest.raises(ConnectionNotFoundError) as e: f(key="a") assert "Connection 'mock_custom_connection' is not found." in str(e.value) # non-exist variant f.context.variant = "${print_val.variant_2}" with pytest.raises(InvalidFlowError) as e: f(key="a") assert "Variant variant_2 not found for node print_val" in str(e.value) def test_non_scrubbed_connection(self): f = load_flow(f"{FLOWS_DIR}/flow_with_custom_connection") f.context.connections = {"hello_node": {"connection": CustomConnection(secrets={"k": "*****"})}} with pytest.raises(UserErrorException) as e: f(text="hello") assert "please make sure connection has decrypted secrets to use in flow execution." in str(e) def test_local_connection_object(self, pf, azure_open_ai_connection): f = load_flow(f"{FLOWS_DIR}/flow_with_custom_connection") # local connection without secret will lead to error connection = pf.connections.get("azure_open_ai_connection", with_secrets=False) f.context.connections = {"hello_node": {"connection": connection}} with pytest.raises(UserErrorException) as e: f(text="hello") assert "please make sure connection has decrypted secrets to use in flow execution." in str(e) def test_non_secret_connection(self): f = load_flow(f"{FLOWS_DIR}/flow_with_custom_connection") # execute connection without secrets won't get error since the connection doesn't have scrubbed secrets # we only raise error when there are scrubbed secrets in connection f.context.connections = {"hello_node": {"connection": CustomConnection(secrets={})}} f(text="hello") def test_flow_context_cache(self): # same flow context has same hash assert hash(FlowContext()) == hash(FlowContext()) # getting executor for same flow will hit cache flow1 = load_flow(f"{FLOWS_DIR}/print_env_var") flow2 = load_flow(f"{FLOWS_DIR}/print_env_var") flow_executor1 = FlowContextResolver.resolve( flow=flow1, ) flow_executor2 = FlowContextResolver.resolve( flow=flow2, ) assert flow_executor1 is flow_executor2 # getting executor for same flow + context will hit cache flow1 = load_flow(f"{FLOWS_DIR}/flow_with_custom_connection") flow1.context = FlowContext(connections={"hello_node": {"connection": CustomConnection(secrets={"k": "v"})}}) flow2 = load_flow(f"{FLOWS_DIR}/flow_with_custom_connection") flow2.context = FlowContext(connections={"hello_node": {"connection": CustomConnection(secrets={"k": "v"})}}) flow_executor1 = FlowContextResolver.resolve( flow=flow1, ) flow_executor2 = FlowContextResolver.resolve( flow=flow2, ) assert flow_executor1 is flow_executor2 flow1 = load_flow(f"{FLOWS_DIR}/flow_with_dict_input_with_variant") flow1.context = FlowContext( variant="${print_val.variant1}", connections={"print_val": {"conn": CustomConnection(secrets={"k": "v"})}}, overrides={"nodes.print_val.inputs.key": "a"}, ) flow2 = load_flow(f"{FLOWS_DIR}/flow_with_dict_input_with_variant") flow2.context = FlowContext( variant="${print_val.variant1}", connections={"print_val": {"conn": CustomConnection(secrets={"k": "v"})}}, overrides={"nodes.print_val.inputs.key": "a"}, ) flow_executor1 = FlowContextResolver.resolve(flow=flow1) flow_executor2 = FlowContextResolver.resolve(flow=flow2) assert flow_executor1 is flow_executor2 def test_flow_cache_not_hit(self): with TemporaryDirectory() as tmp_dir: shutil.copytree(f"{FLOWS_DIR}/print_env_var", f"{tmp_dir}/print_env_var") flow_path = Path(f"{tmp_dir}/print_env_var") # load same file with different content will not hit cache flow1 = load_flow(flow_path) # update content _, flow_dag = load_flow_dag(flow_path) flow_dag["inputs"] = {"key": {"type": "string", "default": "key1"}} dump_flow_dag(flow_dag, flow_path) flow2 = load_flow(f"{tmp_dir}/print_env_var") flow_executor1 = FlowContextResolver.resolve( flow=flow1, ) flow_executor2 = FlowContextResolver.resolve( flow=flow2, ) assert flow_executor1 is not flow_executor2 def test_flow_context_cache_not_hit(self): flow1 = load_flow(f"{FLOWS_DIR}/flow_with_custom_connection") flow1.context = FlowContext(connections={"hello_node": {"connection": CustomConnection(secrets={"k": "v"})}}) flow2 = load_flow(f"{FLOWS_DIR}/flow_with_custom_connection") flow2.context = FlowContext(connections={"hello_node": {"connection": CustomConnection(secrets={"k2": "v"})}}) flow_executor1 = FlowContextResolver.resolve( flow=flow1, ) flow_executor2 = FlowContextResolver.resolve( flow=flow2, ) assert flow_executor1 is not flow_executor2 flow1 = load_flow(f"{FLOWS_DIR}/flow_with_dict_input_with_variant") flow1.context = FlowContext( variant="${print_val.variant1}", connections={"print_val": {"conn": CustomConnection(secrets={"k": "v"})}}, overrides={"nodes.print_val.inputs.key": "a"}, ) flow2 = load_flow(f"{FLOWS_DIR}/flow_with_dict_input_with_variant") flow2.context = FlowContext( variant="${print_val.variant1}", connections={"print_val": {"conn": CustomConnection(secrets={"k": "v"})}}, overrides={"nodes.print_val.inputs.key": "b"}, ) flow_executor1 = FlowContextResolver.resolve(flow=flow1) flow_executor2 = FlowContextResolver.resolve(flow=flow2) assert flow_executor1 is not flow_executor2 @pytest.mark.timeout(10) def test_flow_as_func_perf_test(self): # this test should not take long due to caching logic f = load_flow(f"{FLOWS_DIR}/print_env_var") for i in range(100): f(key="key")
0
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test/e2etests/test_cli.py
import importlib import importlib.util import json import logging import multiprocessing import os import os.path import shutil import sys import tempfile import uuid from pathlib import Path from tempfile import mkdtemp from typing import Dict, List from unittest.mock import patch import mock import pytest from promptflow._cli._pf.entry import main from promptflow._constants import PF_USER_AGENT from promptflow._core.operation_context import OperationContext from promptflow._sdk._constants import LOGGER_NAME, SCRUBBED_VALUE, ExperimentStatus from promptflow._sdk._errors import RunNotFoundError from promptflow._sdk._utils import ClientUserAgentUtil, setup_user_agent_to_operation_context from promptflow._sdk.operations._local_storage_operations import LocalStorageOperations from promptflow._sdk.operations._run_operations import RunOperations from promptflow._utils.context_utils import _change_working_dir from promptflow._utils.utils import environment_variable_overwrite, parse_ua_to_dict from promptflow._utils.yaml_utils import dump_yaml, load_yaml from promptflow.exceptions import UserErrorException FLOWS_DIR = "./tests/test_configs/flows" EXPERIMENT_DIR = "./tests/test_configs/experiments" RUNS_DIR = "./tests/test_configs/runs" CONNECTIONS_DIR = "./tests/test_configs/connections" DATAS_DIR = "./tests/test_configs/datas" TOOL_ROOT = "./tests/test_configs/tools" TARGET_URL = "https://www.youtube.com/watch?v=o5ZQyXaAv1g" # TODO: move this to a shared utility module def run_pf_command(*args, cwd=None): """Run a pf command with the given arguments and working directory. There have been some unknown issues in using subprocess on CI, so we use this function instead, which will also provide better debugging experience. """ origin_argv, origin_cwd = sys.argv, os.path.abspath(os.curdir) try: sys.argv = ["pf"] + list(args) if cwd: os.chdir(cwd) main() finally: sys.argv = origin_argv os.chdir(origin_cwd) def run_batch(local_client, line_timeout_seconds, timeout_index=None): os.environ["PF_LINE_TIMEOUT_SEC"] = line_timeout_seconds run_id = str(uuid.uuid4()) run_pf_command( "run", "create", "--flow", f"{FLOWS_DIR}/simple_flow_with_ten_inputs", "--data", f"{FLOWS_DIR}/simple_flow_with_ten_inputs/data.jsonl", "--name", run_id, ) run = local_client.runs.get(name=run_id) local_storage = LocalStorageOperations(run) detail = local_storage.load_detail() flow_runs_list = detail["flow_runs"] for i, flow_run in enumerate(flow_runs_list): if i == timeout_index: assert flow_run["status"] == "Failed" assert flow_run["error"]["message"] == f"Line {i} execution timeout for exceeding 54 seconds" assert flow_run["error"]["code"] == "UserError" assert flow_run["error"]["innerError"]["code"] == "LineExecutionTimeoutError" else: assert flow_run["status"] == "Completed" os.environ.pop("PF_LINE_TIMEOUT_SEC") @pytest.mark.usefixtures( "use_secrets_config_file", "recording_injection", "setup_local_connection", "install_custom_tool_pkg" ) @pytest.mark.cli_test @pytest.mark.e2etest class TestCli: def test_pf_version(self, capfd): run_pf_command("--version") out, _ = capfd.readouterr() assert "0.0.1\n" in out def test_basic_flow_run(self, capfd) -> None: # fetch std out run_pf_command( "run", "create", "--flow", f"{FLOWS_DIR}/web_classification", "--data", f"{DATAS_DIR}/webClassification3.jsonl", "--name", str(uuid.uuid4()), ) out, _ = capfd.readouterr() assert "Completed" in out def test_basic_flow_run_batch_and_eval(self, capfd) -> None: run_id = str(uuid.uuid4()) run_pf_command( "run", "create", "--flow", f"{FLOWS_DIR}/web_classification", "--data", f"{DATAS_DIR}/webClassification3.jsonl", "--name", run_id, ) out, _ = capfd.readouterr() assert "Completed" in out # Check the CLI works correctly when the parameter is surrounded by quotation, as below shown: # --param "key=value" key="value" run_pf_command( "run", "create", "--flow", f"{FLOWS_DIR}/classification_accuracy_evaluation", "--column-mapping", "'groundtruth=${data.answer}'", "prediction='${run.outputs.category}'", "variant_id=${data.variant_id}", "--data", f"{DATAS_DIR}/webClassification3.jsonl", "--run", run_id, ) out, _ = capfd.readouterr() assert "Completed" in out def test_submit_run_with_yaml(self, capfd): run_id = str(uuid.uuid4()) run_pf_command( "run", "create", "--file", "./sample_bulk_run.yaml", "--name", run_id, cwd=f"{RUNS_DIR}", ) out, _ = capfd.readouterr() assert "Completed" in out run_pf_command( "run", "create", "--file", "./sample_eval_run.yaml", "--run", run_id, cwd=f"{RUNS_DIR}", ) out, _ = capfd.readouterr() assert "Completed" in out def test_submit_batch_variant(self, local_client): run_id = str(uuid.uuid4()) run_pf_command( "run", "create", "--flow", f"{FLOWS_DIR}/web_classification", "--data", f"{DATAS_DIR}/webClassification3.jsonl", "--name", run_id, "--variant", "${summarize_text_content.variant_0}", ) run = local_client.runs.get(name=run_id) local_storage = LocalStorageOperations(run) detail = local_storage.load_detail() tuning_node = next((x for x in detail["node_runs"] if x["node"] == "summarize_text_content"), None) # used variant_0 config, defaults using variant_1 assert tuning_node["inputs"]["temperature"] == 0.2 def test_environment_variable_overwrite(self, local_client, local_aoai_connection): run_id = str(uuid.uuid4()) run_pf_command( "run", "create", "--name", run_id, "--flow", f"{FLOWS_DIR}/print_env_var", "--data", f"{DATAS_DIR}/env_var_names.jsonl", "--environment-variables", "API_BASE=${azure_open_ai_connection.api_base}", ) outputs = local_client.runs._get_outputs(run=run_id) assert outputs["output"][0] == local_aoai_connection.api_base def test_connection_overwrite(self, local_alt_aoai_connection, capfd): # CLi command will fail with SystemExit with pytest.raises(SystemExit): run_pf_command( "run", "create", "--flow", f"{FLOWS_DIR}/web_classification", "--data", f"{DATAS_DIR}/webClassification3.jsonl", "--connection", "classify_with_llm.connection=not_exist", ) out, _ = capfd.readouterr() run_pf_command( "run", "create", "--flow", f"{FLOWS_DIR}/web_classification", "--data", f"{DATAS_DIR}/webClassification3.jsonl", "--connection", "classify_with_llm.connection=new_ai_connection", ) out, _ = capfd.readouterr() assert "Completed" in out run_pf_command( "run", "create", "--flow", f"{FLOWS_DIR}/web_classification", "--data", f"{DATAS_DIR}/webClassification3.jsonl", "--connection", "classify_with_llm.model=new_model", ) out, _ = capfd.readouterr() assert "Completed" in out def test_create_with_set(self, local_client): run_id = str(uuid.uuid4()) display_name = "test_run" description = "test description" run_pf_command( "run", "create", "--name", run_id, "--flow", f"{FLOWS_DIR}/print_env_var", "--data", f"{DATAS_DIR}/env_var_names.jsonl", "--environment-variables", "API_BASE=${azure_open_ai_connection.api_base}", "--set", f"display_name={display_name}", "tags.key=val", f"description={description}", ) run = local_client.runs.get(run_id) assert display_name in run.display_name assert run.tags == {"key": "val"} assert run.description == description run_id = str(uuid.uuid4()) run_pf_command( "run", "create", "--file", "./sample_bulk_run.yaml", "--name", run_id, "--set", f"display_name={display_name}", "tags.key=val", f"description={description}", cwd=f"{RUNS_DIR}", ) assert display_name in run.display_name assert run.tags == {"key": "val"} assert run.description == description def test_pf_flow_test(self): run_pf_command( "flow", "test", "--flow", f"{FLOWS_DIR}/web_classification", "--inputs", "url=https://www.youtube.com/watch?v=o5ZQyXaAv1g", "answer=Channel", "evidence=Url", ) output_path = Path(FLOWS_DIR) / "web_classification" / ".promptflow" / "flow.output.json" assert output_path.exists() log_path = Path(FLOWS_DIR) / "web_classification" / ".promptflow" / "flow.log" with open(log_path, "r") as f: previous_log_content = f.read() # Test without input run_pf_command( "flow", "test", "--flow", f"{FLOWS_DIR}/web_classification", ) output_path = Path(FLOWS_DIR) / "web_classification" / ".promptflow" / "flow.output.json" assert output_path.exists() log_path = Path(FLOWS_DIR) / "web_classification" / ".promptflow" / "flow.log" with open(log_path, "r") as f: log_content = f.read() assert previous_log_content not in log_content def test_pf_flow_test_with_non_english_input_output(self, capsys): question = "什么是 chat gpt" run_pf_command("flow", "test", "--flow", f"{FLOWS_DIR}/chat_flow", "--inputs", f'question="{question}"') stdout, _ = capsys.readouterr() output_path = Path(FLOWS_DIR) / "chat_flow" / ".promptflow" / "flow.output.json" assert output_path.exists() with open(output_path, "r", encoding="utf-8") as f: outputs = json.load(f) assert outputs["answer"] in json.loads(stdout)["answer"] detail_path = Path(FLOWS_DIR) / "chat_flow" / ".promptflow" / "flow.detail.json" assert detail_path.exists() with open(detail_path, "r", encoding="utf-8") as f: detail = json.load(f) assert detail["flow_runs"][0]["inputs"]["question"] == question assert detail["flow_runs"][0]["output"]["answer"] == outputs["answer"] def test_pf_flow_with_variant(self, capsys): with tempfile.TemporaryDirectory() as temp_dir: shutil.copytree((Path(FLOWS_DIR) / "web_classification").resolve().as_posix(), temp_dir, dirs_exist_ok=True) dag = Path(temp_dir) / "flow.dag.yaml" flow_dict = load_yaml(dag) node_name = "summarize_text_content" node = next(filter(lambda item: item["name"] == node_name, flow_dict["nodes"])) flow_dict["nodes"].remove(node) flow_dict["nodes"].append({"name": node_name, "use_variants": True}) with open(Path(temp_dir) / "flow.dag.yaml", "w") as f: dump_yaml(flow_dict, f) run_pf_command( "flow", "test", "--flow", temp_dir, "--inputs", "url=https://www.youtube.com/watch?v=o5ZQyXaAv1g", "answer=Channel", "evidence=Url", ) output_path = Path(temp_dir) / ".promptflow" / "flow.output.json" assert output_path.exists() run_pf_command( "flow", "test", "--flow", temp_dir, "--inputs", "url=https://www.youtube.com/watch?v=o5ZQyXaAv1g", "answer=Channel", "evidence=Url", "--variant", "'${summarize_text_content.variant_1}'", ) output_path = Path(temp_dir) / ".promptflow" / "flow-summarize_text_content-variant_1.output.json" assert output_path.exists() # Test flow dag with invalid format node_name = flow_dict["nodes"][0]["name"] flow_dict["nodes"][0]["use_variants"] = True flow_dict["node_variants"][node_name] = { "default_variant_id": "invalid_variant", "variants": [{"variant_0": {}}], } with open(Path(temp_dir) / "flow.dag.yaml", "w") as f: dump_yaml(flow_dict, f) with pytest.raises(SystemExit): run_pf_command( "flow", "test", "--flow", temp_dir, "--inputs", "url=https://www.youtube.com/watch?v=o5ZQyXaAv1g", "answer=Channel", "evidence=Url", "--variant", "${summarize_text_content.variant_1}", ) outerr = capsys.readouterr() assert f"Cannot find the variant invalid_variant for {node_name}." in outerr.out def test_pf_flow_test_single_node(self): node_name = "fetch_text_content_from_url" run_pf_command( "flow", "test", "--flow", f"{FLOWS_DIR}/web_classification", "--inputs", "inputs.url=" "https://www.microsoft.com/en-us/d/xbox-wireless-controller-stellar-shift-special-edition/94fbjc7h0h6h", "--node", node_name, ) output_path = Path(FLOWS_DIR) / "web_classification" / ".promptflow" / f"flow-{node_name}.node.detail.json" assert output_path.exists() node_name = "fetch_text_content_from_url" run_pf_command( "flow", "test", "--flow", f"{FLOWS_DIR}/web_classification", "--inputs", "url=" "https://www.microsoft.com/en-us/d/xbox-wireless-controller-stellar-shift-special-edition/94fbjc7h0h6h", "--node", node_name, ) output_path = Path(FLOWS_DIR) / "web_classification" / ".promptflow" / f"flow-{node_name}.node.detail.json" assert output_path.exists() # Test node with node reference input run_pf_command( "flow", "test", "--flow", f"{FLOWS_DIR}/web_classification", "--inputs", 'input_str={"category": "App", "evidence": "URL"}', "--node", "convert_to_dict", ) output_path = Path(FLOWS_DIR) / "web_classification" / ".promptflow" / "flow-convert_to_dict.node.detail.json" assert output_path.exists() # Test without input run_pf_command( "flow", "test", "--flow", f"{FLOWS_DIR}/web_classification", "--node", node_name, ) output_path = Path(FLOWS_DIR) / "web_classification" / ".promptflow" / f"flow-{node_name}.node.detail.json" assert output_path.exists() # Test with input file run_pf_command( "flow", "test", "--flow", f"{FLOWS_DIR}/web_classification", "--node", node_name, "--input", f"{FLOWS_DIR}/web_classification/{node_name}_input.jsonl", ) output_path = Path(FLOWS_DIR) / "web_classification" / ".promptflow" / f"flow-{node_name}.node.detail.json" assert output_path.exists() # Test with input file run_pf_command( "flow", "test", "--flow", f"{FLOWS_DIR}/web_classification", "--node", node_name, "--inputs", f"{FLOWS_DIR}/web_classification/{node_name}_input.jsonl", ) output_path = Path(FLOWS_DIR) / "web_classification" / ".promptflow" / f"flow-{node_name}.node.detail.json" assert output_path.exists() def test_pf_flow_test_debug_single_node(self): node_name = "fetch_text_content_from_url" run_pf_command( "flow", "test", "--flow", f"{FLOWS_DIR}/web_classification", "--inputs", "inputs.url=" "https://www.microsoft.com/en-us/d/xbox-wireless-controller-stellar-shift-special-edition/94fbjc7h0h6h", "--node", node_name, "--debug", ) # Debug node with node reference input run_pf_command( "flow", "test", "--flow", f"{FLOWS_DIR}/web_classification", "--inputs", 'classify_with_llm.output={"category": "App", "evidence": "URL"}', "--node", "convert_to_dict", "--debug", ) def test_pf_flow_test_with_additional_includes(self): run_pf_command( "flow", "test", "--flow", f"{FLOWS_DIR}/web_classification_with_additional_include", "--inputs", "url=https://www.youtube.com/watch?v=o5ZQyXaAv1g", "answer=Channel", "evidence=Url", ) output_path = ( Path(FLOWS_DIR) / "web_classification_with_additional_include" / ".promptflow" / "flow.output.json" ) assert output_path.exists() node_name = "fetch_text_content_from_url" run_pf_command( "flow", "test", "--flow", f"{FLOWS_DIR}/web_classification_with_additional_include", "--inputs", "inputs.url=" "https://www.microsoft.com/en-us/d/xbox-wireless-controller-stellar-shift-special-edition/94fbjc7h0h6h", "--node", node_name, ) def test_pf_flow_test_with_symbolic(self, prepare_symbolic_flow): run_pf_command( "flow", "test", "--flow", f"{FLOWS_DIR}/web_classification_with_symbolic", "--inputs", "url=https://www.youtube.com/watch?v=o5ZQyXaAv1g", "answer=Channel", "evidence=Url", ) output_path = Path(FLOWS_DIR) / "web_classification_with_symbolic" / ".promptflow" / "flow.output.json" assert output_path.exists() node_name = "fetch_text_content_from_url" run_pf_command( "flow", "test", "--flow", f"{FLOWS_DIR}/web_classification_with_symbolic", "--inputs", "inputs.url=" "https://www.microsoft.com/en-us/d/xbox-wireless-controller-stellar-shift-special-edition/94fbjc7h0h6h", "--node", node_name, ) @pytest.mark.parametrize( "flow_folder_name, env_key, except_value", [ pytest.param( "print_env_var", "API_BASE", "${azure_open_ai_connection.api_base}", id="TestFlowWithEnvironmentVariables", ), pytest.param( "flow_with_environment_variables", "env1", "2", id="LoadEnvVariablesWithoutOverridesInYaml", ), ], ) def test_flow_test_with_environment_variable(self, flow_folder_name, env_key, except_value, local_client): from promptflow._sdk._submitter.utils import SubmitterHelper def validate_stdout(detail_path): with open(detail_path, "r") as f: details = json.load(f) assert details["node_runs"][0]["logs"]["stdout"] env = {env_key: except_value} SubmitterHelper.resolve_environment_variables(env, local_client) run_pf_command( "flow", "test", "--flow", f"{FLOWS_DIR}/{flow_folder_name}", "--inputs", f"key={env_key}", "--environment-variables", "API_BASE=${azure_open_ai_connection.api_base}", ) with open(Path(FLOWS_DIR) / flow_folder_name / ".promptflow" / "flow.output.json", "r") as f: outputs = json.load(f) assert outputs["output"] == env[env_key] validate_stdout(Path(FLOWS_DIR) / flow_folder_name / ".promptflow" / "flow.detail.json") # Test log contains user printed outputs log_path = Path(FLOWS_DIR) / flow_folder_name / ".promptflow" / "flow.log" with open(log_path, "r") as f: log_content = f.read() assert env[env_key] in log_content run_pf_command( "flow", "test", "--flow", f"{FLOWS_DIR}/{flow_folder_name}", "--inputs", f"inputs.key={env_key}", "--environment-variables", "API_BASE=${azure_open_ai_connection.api_base}", "--node", "print_env", ) with open(Path(FLOWS_DIR) / flow_folder_name / ".promptflow" / "flow-print_env.node.output.json", "r") as f: outputs = json.load(f) assert outputs["value"] == env[env_key] validate_stdout(Path(FLOWS_DIR) / flow_folder_name / ".promptflow" / "flow-print_env.node.detail.json") def _validate_requirement(self, flow_path): with open(flow_path) as f: flow_dict = load_yaml(f) assert flow_dict.get("environment", {}).get("python_requirements_txt", None) assert (flow_path.parent / flow_dict["environment"]["python_requirements_txt"]).exists() def test_flow_with_exception(self, capsys): with pytest.raises(SystemExit): run_pf_command( "flow", "test", "--flow", f"{FLOWS_DIR}/web_classification_with_exception", ) captured = capsys.readouterr() assert "Execution failure in 'convert_to_dict': (Exception) mock exception" in captured.out output_path = Path(FLOWS_DIR) / "web_classification_with_exception" / ".promptflow" / "flow.detail.json" assert output_path.exists() with pytest.raises(SystemExit): run_pf_command( "flow", "test", "--flow", f"{FLOWS_DIR}/web_classification_with_exception", "--inputs", 'classify_with_llm.output={"category": "App", "evidence": "URL"}', "--node", "convert_to_dict", ) captured = capsys.readouterr() assert "convert_to_dict.py" in captured.out assert "mock exception" in captured.out output_path = ( Path(FLOWS_DIR) / "web_classification_with_exception" / ".promptflow" / "flow-convert_to_dict.node.detail.json" ) assert output_path.exists() def test_init_eval_flow(self): temp_dir = mkdtemp() with _change_working_dir(temp_dir): flow_name = "eval_flow" # Init standard flow run_pf_command( "flow", "init", "--flow", flow_name, "--type", "evaluation", ) ignore_file_path = Path(temp_dir) / flow_name / ".gitignore" assert ignore_file_path.exists() ignore_file_path.unlink() # TODO remove variant_id & line_number in evaluate template run_pf_command("flow", "test", "--flow", flow_name, "--inputs", "groundtruth=App", "prediction=App") self._validate_requirement(Path(temp_dir) / flow_name / "flow.dag.yaml") def test_init_chat_flow(self): temp_dir = mkdtemp() with _change_working_dir(temp_dir): flow_name = "chat_flow" # Init standard flow run_pf_command( "flow", "init", "--flow", flow_name, "--type", "chat", ) ignore_file_path = Path(temp_dir) / flow_name / ".gitignore" assert ignore_file_path.exists() ignore_file_path.unlink() # Only azure openai connection in test env with open(Path(temp_dir) / flow_name / "flow.dag.yaml", "r") as f: flow_dict = load_yaml(f) flow_dict["nodes"][0]["provider"] = "AzureOpenAI" flow_dict["nodes"][0]["connection"] = "azure_open_ai_connection" with open(Path(temp_dir) / flow_name / "flow.dag.yaml", "w") as f: dump_yaml(flow_dict, f) run_pf_command("flow", "test", "--flow", flow_name, "--inputs", "question=hi") self._validate_requirement(Path(temp_dir) / flow_name / "flow.dag.yaml") def test_flow_init(self, capsys): temp_dir = mkdtemp() with _change_working_dir(temp_dir): flow_name = "standard_flow" # Init standard flow run_pf_command( "flow", "init", "--flow", flow_name, "--type", "standard", ) self._validate_requirement(Path(temp_dir) / flow_name / "flow.dag.yaml") ignore_file_path = Path(temp_dir) / flow_name / ".gitignore" requirements_file_path = Path(temp_dir) / flow_name / "requirements.txt" assert ignore_file_path.exists() assert requirements_file_path.exists() ignore_file_path.unlink() run_pf_command("flow", "test", "--flow", flow_name, "--inputs", "text=value") jinja_name = "input1" run_pf_command( "flow", "init", "--flow", flow_name, "--entry", "hello.py", "--function", "my_python_tool", "--prompt-template", f"{jinja_name}=hello.jinja2", ) self._validate_requirement(Path(temp_dir) / flow_name / "flow.dag.yaml") assert ignore_file_path.exists() assert requirements_file_path.exists() with open(Path(temp_dir) / flow_name / ".promptflow" / "flow.tools.json", "r") as f: tools_dict = json.load(f)["code"] assert jinja_name in tools_dict assert len(tools_dict[jinja_name]["inputs"]) == 1 assert tools_dict[jinja_name]["inputs"]["text"]["type"] == ["string"] assert tools_dict[jinja_name]["source"] == "hello.jinja2" # Test prompt-template doesn't exist run_pf_command( "flow", "init", "--flow", flow_name, "--entry", "hello.py", "--function", "my_python_tool", "--prompt-template", f"{jinja_name}={jinja_name}.jinja2", ) self._validate_requirement(Path(temp_dir) / flow_name / "flow.dag.yaml") assert (Path(temp_dir) / flow_name / f"{jinja_name}.jinja2").exists() # Test template name doesn't exist in python function jinja_name = "mock_jinja" with pytest.raises(UserErrorException) as ex: run_pf_command( "flow", "init", "--flow", flow_name, "--entry", "hello.py", "--function", "my_python_tool", "--prompt-template", f"{jinja_name}={jinja_name}.jinja2", ) assert f"Template parameter {jinja_name} doesn't find in python function arguments." in str(ex.value) with pytest.raises(SystemExit): run_pf_command("flow", "init") _, err = capsys.readouterr() assert "pf flow init: error: the following arguments are required: --flow" in err def test_flow_init_intent_copilot(self): flow_path = os.path.join(FLOWS_DIR, "intent-copilot") run_pf_command( "flow", "init", "--flow", flow_path, "--entry", "intent.py", "--function", "extract_intent", "--prompt-template", "chat_prompt=user_intent_zero_shot.jinja2", ) with open(Path(flow_path) / "flow.dag.yaml", "r") as f: flow_dict = load_yaml(f) assert "chat_history" in flow_dict["inputs"] assert "customer_info" in flow_dict["inputs"] chat_prompt_node = next(filter(lambda item: item["name"] == "chat_prompt", flow_dict["nodes"])) assert "chat_history" in chat_prompt_node["inputs"] assert "customer_info" in chat_prompt_node["inputs"] def test_flow_init_with_connection_and_deployment(self): def check_connection_and_deployment(flow_folder, connection, deployment): with open(Path(flow_folder) / "flow.dag.yaml", "r") as f: flow_dict = load_yaml(f) assert flow_dict["nodes"][0]["inputs"]["deployment_name"] == deployment assert flow_dict["nodes"][0]["connection"] == connection temp_dir = mkdtemp() with _change_working_dir(temp_dir): flow_name = "chat_flow" flow_folder = Path(temp_dir) / flow_name # When configure local connection provider, init chat flow without connection and deployment. run_pf_command( "flow", "init", "--flow", flow_name, "--type", "chat", ) # Assert connection files created assert (flow_folder / "azure_openai.yaml").exists() assert (flow_folder / "openai.yaml").exists() # When configure local connection provider, init chat flow with connection and deployment. connection = "connection_name" deployment = "deployment_name" run_pf_command( "flow", "init", "--flow", flow_name, "--type", "chat", "--connection", connection, "--deployment", deployment, "--yes", ) # Assert connection files created and the connection/deployment is set in flow.dag.yaml check_connection_and_deployment(flow_folder, connection=connection, deployment=deployment) connection_files = [flow_folder / "azure_openai.yaml", flow_folder / "openai.yaml"] for file in connection_files: assert file.exists() with open(file, "r") as f: connection_dict = load_yaml(f) assert connection_dict["name"] == connection shutil.rmtree(flow_folder) target = "promptflow._sdk._pf_client.Configuration.get_connection_provider" with mock.patch(target) as mocked: mocked.return_value = "azureml:xx" # When configure azure connection provider, init chat flow without connection and deployment. run_pf_command( "flow", "init", "--flow", flow_name, "--type", "chat", "--yes", ) # Assert connection files not created. assert not (flow_folder / "azure_openai.yaml").exists() assert not (flow_folder / "openai.yaml").exists() # When configure azure connection provider, init chat flow with connection and deployment. connection = "connection_name" deployment = "deployment_name" run_pf_command( "flow", "init", "--flow", flow_name, "--type", "chat", "--connection", connection, "--deployment", deployment, "--yes", ) # Assert connection files not created and the connection/deployment is set in flow.dag.yaml check_connection_and_deployment(flow_folder, connection=connection, deployment=deployment) assert not (flow_folder / "azure_openai.yaml").exists() assert not (flow_folder / "openai.yaml").exists() def test_flow_chat(self, monkeypatch, capsys): chat_list = ["hi", "what is chat gpt?"] def mock_input(*args, **kwargs): if chat_list: return chat_list.pop() else: raise KeyboardInterrupt() monkeypatch.setattr("builtins.input", mock_input) run_pf_command( "flow", "test", "--flow", f"{FLOWS_DIR}/chat_flow", "--interactive", ) output_path = Path(FLOWS_DIR) / "chat_flow" / ".promptflow" / "chat.output.json" assert output_path.exists() detail_path = Path(FLOWS_DIR) / "chat_flow" / ".promptflow" / "chat.detail.json" assert detail_path.exists() # Test streaming output chat_list = ["hi", "what is chat gpt?"] run_pf_command( "flow", "test", "--flow", f"{FLOWS_DIR}/chat_flow_with_stream_output", "--interactive", ) output_path = Path(FLOWS_DIR) / "chat_flow_with_stream_output" / ".promptflow" / "chat.output.json" assert output_path.exists() detail_path = Path(FLOWS_DIR) / "chat_flow_with_stream_output" / ".promptflow" / "chat.detail.json" assert detail_path.exists() chat_list = ["hi", "what is chat gpt?"] run_pf_command( "flow", "test", "--flow", f"{FLOWS_DIR}/chat_flow_with_python_node_streaming_output", "--interactive", ) output_path = Path(FLOWS_DIR) / "chat_flow_with_stream_output" / ".promptflow" / "chat.output.json" assert output_path.exists() detail_path = Path(FLOWS_DIR) / "chat_flow_with_stream_output" / ".promptflow" / "chat.detail.json" assert detail_path.exists() # Validate terminal output chat_list = ["hi", "what is chat gpt?"] run_pf_command("flow", "test", "--flow", f"{FLOWS_DIR}/chat_flow", "--interactive", "--verbose") outerr = capsys.readouterr() # Check node output assert "chat_node:" in outerr.out assert "show_answer:" in outerr.out assert "[show_answer]: print:" in outerr.out chat_list = ["hi", "what is chat gpt?"] with pytest.raises(SystemExit): run_pf_command( "flow", "test", "--flow", f"{FLOWS_DIR}/chat_flow_with_exception", "--interactive", ) outerr = capsys.readouterr() assert "Execution failure in 'show_answer': (Exception) mock exception" in outerr.out output_path = Path(FLOWS_DIR) / "chat_flow" / ".promptflow" / "chat.output.json" assert output_path.exists() detail_path = Path(FLOWS_DIR) / "chat_flow" / ".promptflow" / "chat.detail.json" assert detail_path.exists() with pytest.raises(SystemExit): run_pf_command( "flow", "test", "--flow", f"{FLOWS_DIR}/chat_flow_with_multi_output_invalid", "--interactive", ) outerr = capsys.readouterr() assert "chat flow does not support multiple chat outputs" in outerr.out def test_flow_test_with_default_chat_history(self): run_pf_command( "flow", "test", "--flow", f"{FLOWS_DIR}/chat_flow_with_default_history", ) output_path = Path(FLOWS_DIR) / "chat_flow_with_default_history" / ".promptflow" / "flow.output.json" assert output_path.exists() detail_path = Path(FLOWS_DIR) / "chat_flow_with_default_history" / ".promptflow" / "flow.detail.json" assert detail_path.exists() with open(detail_path, "r") as f: details = json.load(f) expect_chat_history = [ {"inputs": {"question": "hi"}, "outputs": {"answer": "hi"}}, {"inputs": {"question": "who are you"}, "outputs": {"answer": "who are you"}}, ] assert details["flow_runs"][0]["inputs"]["chat_history"] == expect_chat_history def test_flow_test_with_user_defined_chat_history(self, monkeypatch, capsys): chat_list = ["hi", "what is chat gpt?"] def mock_input(*args, **kwargs): if chat_list: return chat_list.pop() else: raise KeyboardInterrupt() monkeypatch.setattr("builtins.input", mock_input) run_pf_command( "flow", "test", "--flow", f"{FLOWS_DIR}/chat_flow_with_defined_chat_history", "--interactive", ) output_path = Path(FLOWS_DIR) / "chat_flow_with_defined_chat_history" / ".promptflow" / "chat.output.json" assert output_path.exists() detail_path = Path(FLOWS_DIR) / "chat_flow_with_defined_chat_history" / ".promptflow" / "chat.detail.json" assert detail_path.exists() # Test is_chat_history is set False with pytest.raises(SystemExit): chat_list = ["hi", "what is chat gpt?"] run_pf_command( "flow", "test", "--flow", f"{FLOWS_DIR}/chat_flow_without_defined_chat_history", "--interactive", ) outerr = capsys.readouterr() assert "chat_history is required in the inputs of chat flow" in outerr.out @pytest.mark.parametrize( "extra_args,expected_err", [ pytest.param( [], "Required input(s) ['key'] are missing for \"flow\".", id="missing_required_flow_inputs", ), pytest.param( ["--node", "print_env"], "Required input(s) ['key'] are missing for \"print_env\".", id="missing_required_node_inputs", ), ], ) def test_flow_test_inputs_missing(self, capsys, caplog, extra_args: List[str], expected_err: str): with pytest.raises(SystemExit): run_pf_command( "flow", "test", "--flow", f"{FLOWS_DIR}/print_env_var", "--environment-variables", "API_BASE=${azure_open_ai_connection.api_base}", *extra_args, ) stdout, _ = capsys.readouterr() assert expected_err in stdout @pytest.mark.parametrize( "extra_args,expected_inputs,expected_log_prefixes", [ pytest.param( [ "--inputs", f"url={TARGET_URL}", "answer=Channel", "evidence=Url", ], [ {"answer": "Channel", "evidence": "Url"}, {"url": TARGET_URL, "answer": "Channel", "evidence": "Url"}, ], [ "Unknown input(s) of flow: ", "flow input(s): ", ], id="unknown_flow_inputs", ), pytest.param( [ "--inputs", f"inputs.url={TARGET_URL}", "unknown_input=unknown_val", "--node", "fetch_text_content_from_url", ], [ {"unknown_input": "unknown_val"}, {"fetch_url": TARGET_URL, "unknown_input": "unknown_val"}, ], [ "Unknown input(s) of fetch_text_content_from_url: ", "fetch_text_content_from_url input(s): ", ], id="unknown_inputs_node", ), ], ) def test_flow_test_inputs_unknown( self, caplog, extra_args: List[str], expected_inputs: List[Dict[str, str]], expected_log_prefixes: List[str] ): logger = logging.getLogger(LOGGER_NAME) logger.propagate = True def validate_log(log_msg, prefix, expect_dict): log_inputs = json.loads(log_msg[len(prefix) :].replace("'", '"')) assert prefix in log_msg assert expect_dict == log_inputs with caplog.at_level(level=logging.INFO, logger=LOGGER_NAME): run_pf_command("flow", "test", "--flow", f"{FLOWS_DIR}/web_classification", *extra_args) for log, expected_input, expected_log_prefix in zip(caplog.records, expected_inputs, expected_log_prefixes): validate_log( prefix=expected_log_prefix, log_msg=log.message, expect_dict=expected_input, ) def test_flow_build(self): source = f"{FLOWS_DIR}/web_classification_with_additional_include/flow.dag.yaml" output_path = "dist" def get_node_settings(_flow_dag_path: Path): flow_dag = load_yaml(_flow_dag_path) target_node = next(filter(lambda x: x["name"] == "summarize_text_content", flow_dag["nodes"])) target_node.pop("name") return target_node try: run_pf_command( "flow", "build", "--source", source, "--output", output_path, "--format", "docker", "--variant", "${summarize_text_content.variant_0}", ) new_flow_dag_path = Path(output_path, "flow", "flow.dag.yaml") flow_dag = load_yaml(Path(source)) assert ( get_node_settings(new_flow_dag_path) == flow_dag["node_variants"]["summarize_text_content"]["variants"]["variant_0"]["node"] ) assert get_node_settings(Path(source)) != get_node_settings(new_flow_dag_path) connection_path = Path(output_path, "connections", "azure_open_ai_connection.yaml") assert connection_path.exists() finally: shutil.rmtree(output_path, ignore_errors=True) def test_flow_build_with_ua(self): with pytest.raises(UserErrorException) as e: run_pf_command( "flow", "build", "--source", "not_exist", "--output", "dist", "--format", "docker", "--user-agent", "test/1.0.0", ) assert "not exist" in str(e.value) @pytest.mark.parametrize( "file_name, expected, update_item", [ ( "azure_openai_connection.yaml", { "module": "promptflow.connections", "type": "azure_open_ai", "api_type": "azure", "api_version": "2023-07-01-preview", "api_key": SCRUBBED_VALUE, "api_base": "aoai-api-endpoint", }, ("api_base", "new_value"), ), ( "custom_connection.yaml", { "module": "promptflow.connections", "type": "custom", "configs": {"key1": "test1"}, "secrets": {"key2": SCRUBBED_VALUE}, }, ("configs.key1", "new_value"), ), ( "custom_strong_type_connection.yaml", { "module": "promptflow.connections", "type": "custom", "configs": { "api_base": "This is my first connection.", "promptflow.connection.custom_type": "MyFirstConnection", "promptflow.connection.module": "my_tool_package.connections", "promptflow.connection.package": "test-custom-tools", "promptflow.connection.package_version": "0.0.2", }, "secrets": {"api_key": SCRUBBED_VALUE}, }, ("configs.api_base", "new_value"), ), ], ) def test_connection_create_update( self, install_custom_tool_pkg, file_name, expected, update_item, capfd, local_client ): name = f"Connection_{str(uuid.uuid4())[:4]}" run_pf_command("connection", "create", "--file", f"{CONNECTIONS_DIR}/{file_name}", "--name", f"{name}") out, err = capfd.readouterr() # Assert in to skip some datetime fields assert expected.items() <= json.loads(out).items() # Update with --set update_key, update_value = update_item run_pf_command("connection", "update", "--set", f"{update_key}={update_value}", "--name", f"{name}") out, _ = capfd.readouterr() assert update_value in out, f"expected updated value {update_value} not in {out}" connection = local_client.connections.get(name) # Assert secrets are not scrubbed assert not any(v == SCRUBBED_VALUE for v in connection._secrets.values()) def test_input_with_dict_val(self, pf): run_id = str(uuid.uuid4()) run_pf_command( "run", "create", "--file", "./input_with_dict_val.yaml", "--name", run_id, cwd=f"{RUNS_DIR}", ) outputs = pf.runs._get_outputs(run=run_id) assert "dict" in outputs["output"][0] def test_visualize_ignore_space(self) -> None: names = ["a,b,c,d", "a, b, c, d", "a, b , c, d"] groundtruth = ["a", "b", "c", "d"] def mocked_visualize(*args, **kwargs): runs = args[0] assert runs == groundtruth with patch.object(RunOperations, "visualize") as mock_visualize: mock_visualize.side_effect = mocked_visualize for name in names: run_pf_command( "run", "visualize", "--names", name, ) def test_pf_run_with_stream_log(self, capfd): run_pf_command( "run", "create", "--flow", f"{FLOWS_DIR}/flow_with_user_output", "--data", f"{DATAS_DIR}/webClassification3.jsonl", "--column-mapping", "key=value", "extra=${data.url}", "--stream", ) out, _ = capfd.readouterr() # For Batch run, the executor uses bulk logger to print logs, and only prints the error log of the nodes. existing_keywords = ["execution", "execution.bulk", "WARNING", "error log"] non_existing_keywords = ["execution.flow", "user log"] for keyword in existing_keywords: assert keyword in out for keyword in non_existing_keywords: assert keyword not in out def test_pf_run_no_stream_log(self, capfd): # without --stream, logs will be in the run's log file run_pf_command( "run", "create", "--flow", f"{FLOWS_DIR}/flow_with_user_output", "--data", f"{DATAS_DIR}/webClassification3.jsonl", "--column-mapping", "key=value", "extra=${data.url}", ) out, _ = capfd.readouterr() assert "user log" not in out assert "error log" not in out # flow logs won't stream assert "Executing node print_val. node run id:" not in out # executor logs won't stream assert "Node print_val completes." not in out def test_format_cli_exception(self, capsys): from promptflow._sdk.operations._connection_operations import ConnectionOperations with patch.dict(os.environ, {"PROMPTFLOW_STRUCTURE_EXCEPTION_OUTPUT": "true"}): with pytest.raises(SystemExit): run_pf_command( "connection", "show", "--name", "invalid_connection_name", ) outerr = capsys.readouterr() assert outerr.err error_msg = json.loads(outerr.err) assert error_msg["code"] == "UserError" assert error_msg["innerError"]["innerError"]["code"] == "ConnectionNotFoundError" def mocked_connection_get(*args, **kwargs): raise Exception("mock exception") with patch.object(ConnectionOperations, "get") as mock_connection_get: mock_connection_get.side_effect = mocked_connection_get with pytest.raises(Exception): run_pf_command( "connection", "show", "--name", "invalid_connection_name", ) outerr = capsys.readouterr() assert outerr.err error_msg = json.loads(outerr.err) assert error_msg["code"] == "SystemError" with pytest.raises(SystemExit): run_pf_command( "connection", "show", "--name", "invalid_connection_name", ) outerr = capsys.readouterr() assert not outerr.err def test_tool_init(self, capsys): with tempfile.TemporaryDirectory() as temp_dir: package_name = "package_name" func_name = "func_name" run_pf_command("tool", "init", "--package", package_name, "--tool", func_name, cwd=temp_dir) package_folder = Path(temp_dir) / package_name sys.path.append(str(package_folder.absolute())) assert (package_folder / package_name / f"{func_name}.py").exists() assert (package_folder / package_name / "utils.py").exists() assert (package_folder / package_name / "__init__.py").exists() assert (package_folder / "setup.py").exists() assert (package_folder / "README.md").exists() spec = importlib.util.spec_from_file_location( f"{package_name}.utils", package_folder / package_name / "utils.py" ) utils = importlib.util.module_from_spec(spec) spec.loader.exec_module(utils) assert hasattr(utils, "list_package_tools") tools_meta = utils.list_package_tools() assert f"{package_name}.{func_name}.{func_name}" in tools_meta meta = tools_meta[f"{package_name}.{func_name}.{func_name}"] assert meta["function"] == func_name assert meta["module"] == f"{package_name}.{func_name}" assert meta["name"] == func_name assert meta["description"] == f"This is {func_name} tool" assert meta["type"] == "python" # Invalid package/tool name invalid_package_name = "123-package-name" invalid_tool_name = "123_tool_name" with pytest.raises(SystemExit): run_pf_command("tool", "init", "--package", invalid_package_name, "--tool", func_name, cwd=temp_dir) outerr = capsys.readouterr() assert f"The package name {invalid_package_name} is a invalid identifier." in outerr.out with pytest.raises(SystemExit): run_pf_command("tool", "init", "--package", package_name, "--tool", invalid_tool_name, cwd=temp_dir) outerr = capsys.readouterr() assert f"The tool name {invalid_tool_name} is a invalid identifier." in outerr.out with pytest.raises(SystemExit): run_pf_command("tool", "init", "--tool", invalid_tool_name, cwd=temp_dir) outerr = capsys.readouterr() assert f"The tool name {invalid_tool_name} is a invalid identifier." in outerr.out # Test init package tool with extra info package_name = "tool_with_extra_info" package_folder = Path(temp_dir) / package_name package_folder.mkdir(exist_ok=True, parents=True) manifest_file = package_folder / "MANIFEST.in" mock_manifest_content = "include mock/path" with open(manifest_file, "w") as f: f.write(mock_manifest_content) icon_path = Path(DATAS_DIR) / "logo.jpg" category = "test_category" tags = {"tag1": "value1", "tag2": "value2"} run_pf_command( "tool", "init", "--package", package_name, "--tool", func_name, "--set", f"icon={icon_path.absolute()}", f"category={category}", f"tags={tags}", cwd=temp_dir, ) with open(manifest_file, "r") as f: content = f.read() assert mock_manifest_content in content assert f"include {package_name}/icons" in content # Add a tool script with icon tool_script_name = "tool_func_with_icon" run_pf_command( "tool", "init", "--tool", tool_script_name, "--set", f"icon={icon_path.absolute()}", f"category={category}", f"tags={tags}", cwd=Path(temp_dir) / package_name / package_name, ) sys.path.append(str(package_folder.absolute())) spec = importlib.util.spec_from_file_location( f"{package_name}.utils", package_folder / package_name / "utils.py" ) utils = importlib.util.module_from_spec(spec) spec.loader.exec_module(utils) assert hasattr(utils, "list_package_tools") tools_meta = utils.list_package_tools() meta = tools_meta[f"{package_name}.{func_name}.{func_name}"] assert meta["category"] == category assert meta["tags"] == tags assert meta["icon"].startswith("data:image") assert tools_meta[f"{package_name}.{tool_script_name}.{tool_script_name}"]["icon"].startswith("data:image") # icon doesn't exist with pytest.raises(SystemExit): run_pf_command( "tool", "init", "--package", package_name, "--tool", func_name, "--set", "icon=invalid_icon_path", cwd=temp_dir, ) outerr = capsys.readouterr() assert "Cannot find the icon path" in outerr.out def test_tool_list(self, capsys): # List package tools in environment run_pf_command("tool", "list") outerr = capsys.readouterr() tools_dict = json.loads(outerr.out) package_tool_name = "promptflow.tools.embedding.embedding" assert package_tool_name in tools_dict["package"] # List flow tools and package tools run_pf_command("tool", "list", "--flow", f"{FLOWS_DIR}/chat_flow") outerr = capsys.readouterr() tools_dict = json.loads(outerr.out) expect_flow_tools = { "chat.jinja2": { "type": "llm", "inputs": {"chat_history": {"type": ["string"]}, "question": {"type": ["string"]}}, "source": "chat.jinja2", }, "show_answer.py": { "type": "python", "inputs": {"chat_answer": {"type": ["string"]}}, "source": "show_answer.py", "function": "show_answer", }, } assert tools_dict["code"] == expect_flow_tools assert package_tool_name in tools_dict["package"] # Invalid flow parameter with pytest.raises(SystemExit): run_pf_command("tool", "list", "--flow", "invalid_flow_folder") outerr = capsys.readouterr() assert "invalid_flow_folder does not exist" in outerr.out def test_tool_validate(self): # Test validate tool script tool_script_path = Path(TOOL_ROOT) / "custom_llm_tool.py" run_pf_command("tool", "validate", "--source", str(tool_script_path)) invalid_tool_script_path = Path(TOOL_ROOT) / "invalid_tool.py" with pytest.raises(SystemExit): run_pf_command("tool", "validate", "--source", str(invalid_tool_script_path)) # Test validate package tool tool_script_path = Path(TOOL_ROOT) / "tool_package" sys.path.append(str(tool_script_path.resolve())) with patch("promptflow._sdk.operations._tool_operations.ToolOperations._is_package_tool", return_value=True): with pytest.raises(SystemExit): run_pf_command("tool", "validate", "--source", "tool_package") # Test validate tool in package with pytest.raises(SystemExit): run_pf_command("tool", "validate", "--source", "tool_package.invalid_tool.invalid_input_settings") def test_flow_test_with_image_input_and_output(self): run_pf_command( "flow", "test", "--flow", f"{FLOWS_DIR}/python_tool_with_simple_image", ) output_path = Path(FLOWS_DIR) / "python_tool_with_simple_image" / ".promptflow" / "output" assert output_path.exists() image_path = Path(FLOWS_DIR) / "python_tool_with_simple_image" / ".promptflow" / "intermediate" assert image_path.exists() def test_flow_test_with_composite_image(self): run_pf_command( "flow", "test", "--flow", f"{FLOWS_DIR}/python_tool_with_composite_image", ) output_path = Path(FLOWS_DIR) / "python_tool_with_composite_image" / ".promptflow" / "output" assert output_path.exists() image_path = Path(FLOWS_DIR) / "python_tool_with_composite_image" / ".promptflow" / "intermediate" assert image_path.exists() def test_run_file_with_set(self, pf) -> None: name = str(uuid.uuid4()) run_pf_command( "run", "create", "--file", f"{RUNS_DIR}/run_with_env.yaml", "--set", f"name={name}", ) # run exists pf.runs.get(name=name) def test_run_file_with_set_priority(self, pf) -> None: # --name has higher priority than --set name1 = str(uuid.uuid4()) name2 = str(uuid.uuid4()) run_pf_command( "run", "create", "--file", f"{RUNS_DIR}/run_with_env.yaml", "--set", f"name={name1}", "--name", name2, ) # run exists try: pf.runs.get(name=name1) except RunNotFoundError: pass pf.runs.get(name=name2) def test_data_scrubbing(self): # Prepare connection run_pf_command( "connection", "create", "--file", f"{CONNECTIONS_DIR}/custom_connection.yaml", "--name", "custom_connection" ) # Test flow run run_pf_command( "flow", "test", "--flow", f"{FLOWS_DIR}/print_secret_flow", ) output_path = Path(FLOWS_DIR) / "print_secret_flow" / ".promptflow" / "flow.output.json" assert output_path.exists() log_path = Path(FLOWS_DIR) / "print_secret_flow" / ".promptflow" / "flow.log" with open(log_path, "r") as f: log_content = f.read() assert "**data_scrubbed**" in log_content # Test node run run_pf_command( "flow", "test", "--flow", f"{FLOWS_DIR}/print_secret_flow", "--node", "print_secret", "--inputs", "conn=custom_connection", "inputs.topic=atom", ) output_path = Path(FLOWS_DIR) / "print_secret_flow" / ".promptflow" / "flow-print_secret.node.detail.json" assert output_path.exists() log_path = Path(FLOWS_DIR) / "print_secret_flow" / ".promptflow" / "print_secret.node.log" with open(log_path, "r") as f: log_content = f.read() assert "**data_scrubbed**" in log_content def test_cli_ua(self, pf): # clear user agent before test context = OperationContext().get_instance() context.user_agent = "" with environment_variable_overwrite(PF_USER_AGENT, ""): with pytest.raises(SystemExit): run_pf_command( "run", "show", "--name", "not_exist", ) user_agent = ClientUserAgentUtil.get_user_agent() ua_dict = parse_ua_to_dict(user_agent) assert ua_dict.keys() == {"promptflow-sdk", "promptflow-cli"} def test_config_set_pure_flow_directory_macro(self, capfd: pytest.CaptureFixture) -> None: run_pf_command( "config", "set", "run.output_path='${flow_directory}'", ) out, _ = capfd.readouterr() expected_error_message = ( "Invalid config value '${flow_directory}' for 'run.output_path': " "Cannot specify flow directory as run output path; " "if you want to specify run output path under flow directory, " "please use its child folder, e.g. '${flow_directory}/.runs'." ) assert expected_error_message in out from promptflow._sdk._configuration import Configuration config = Configuration.get_instance() assert config.get_run_output_path() is None def test_user_agent_in_cli(self): context = OperationContext().get_instance() context.user_agent = "" with pytest.raises(SystemExit): run_pf_command( "run", "show", "--name", "not_exist", "--user-agent", "a/1.0.0 b/2.0", ) user_agent = ClientUserAgentUtil.get_user_agent() ua_dict = parse_ua_to_dict(user_agent) assert ua_dict.keys() == {"promptflow-sdk", "promptflow-cli", "a", "b"} context.user_agent = "" def test_node_run_telemetry(self, local_client): from promptflow._sdk._telemetry.logging_handler import PromptFlowSDKLogHandler def assert_node_run(*args, **kwargs): record = args[0] assert record.msg.startswith("pf.flow.node_test") or record.msg.startswith("pf.flows.node_test") assert record.custom_dimensions["activity_name"] in ["pf.flow.node_test", "pf.flows.node_test"] def assert_flow_test(*args, **kwargs): record = args[0] assert record.msg.startswith("pf.flow.test") or record.msg.startswith("pf.flows.test") assert record.custom_dimensions["activity_name"] in ["pf.flow.test", "pf.flows.test"] with tempfile.TemporaryDirectory() as temp_dir: shutil.copytree((Path(FLOWS_DIR) / "print_env_var").resolve().as_posix(), temp_dir, dirs_exist_ok=True) with patch.object(PromptFlowSDKLogHandler, "emit") as mock_logger: mock_logger.side_effect = assert_node_run run_pf_command( "flow", "test", "--flow", temp_dir, "--inputs", "key=API_BASE", "--node", "print_env", ) with patch.object(PromptFlowSDKLogHandler, "emit") as mock_logger: mock_logger.side_effect = assert_flow_test run_pf_command( "flow", "test", "--flow", temp_dir, "--inputs", "key=API_BASE", ) def test_run_create_with_existing_run_folder(self): run_name = "web_classification_variant_0_20231205_120253_104100" # clean the run if exists from promptflow import PFClient from promptflow._cli._utils import _try_delete_existing_run_record pf = PFClient() _try_delete_existing_run_record(run_name) # assert the run doesn't exist with pytest.raises(RunNotFoundError): pf.runs.get(run_name) uuid_str = str(uuid.uuid4()) run_folder = Path(RUNS_DIR) / run_name run_pf_command( "run", "create", "--source", Path(run_folder).resolve().as_posix(), "--set", f"display_name={uuid_str}", f"description={uuid_str}", f"tags.tag1={uuid_str}", ) # check run results run = pf.runs.get(run_name) assert run.display_name == uuid_str assert run.description == uuid_str assert run.tags["tag1"] == uuid_str def test_cli_command_no_sub_command(self, capfd): try: run_pf_command( "run", ) # argparse will return SystemExit after running --help except SystemExit: pass # will run pf run -h out, _ = capfd.readouterr() assert "A CLI tool to manage runs for prompt flow." in out try: run_pf_command("run", "-h") # argparse will return SystemExit after running --help except SystemExit: pass # will run pf run -h out, _ = capfd.readouterr() assert "A CLI tool to manage runs for prompt flow." in out def test_unknown_command(self, capfd): try: run_pf_command( "unknown", ) # argparse will return SystemExit after running --help except SystemExit: pass _, err = capfd.readouterr() assert "invalid choice" in err def test_config_set_user_agent(self) -> None: run_pf_command( "config", "set", "user_agent=test/1.0.0", ) user_agent = setup_user_agent_to_operation_context(None) ua_dict = parse_ua_to_dict(user_agent) assert ua_dict.keys() == {"promptflow-sdk", "promptflow-cli", "PFCustomer_test"} # clear user agent run_pf_command( "config", "set", "user_agent=", ) context = OperationContext().get_instance() context.user_agent = "" def test_basic_flow_run_delete(self, monkeypatch, local_client, capfd) -> None: input_list = ["y"] def mock_input(*args, **kwargs): if input_list: return input_list.pop() else: raise KeyboardInterrupt() monkeypatch.setattr("builtins.input", mock_input) run_id = str(uuid.uuid4()) run_pf_command( "run", "create", "--name", run_id, "--flow", f"{FLOWS_DIR}/print_env_var", "--data", f"{DATAS_DIR}/env_var_names.jsonl", ) out, _ = capfd.readouterr() assert "Completed" in out run_a = local_client.runs.get(name=run_id) local_storage = LocalStorageOperations(run_a) path_a = local_storage.path assert os.path.exists(path_a) # delete the run run_pf_command( "run", "delete", "--name", f"{run_id}", ) # both runs are deleted and their folders are deleted assert not os.path.exists(path_a) def test_basic_flow_run_delete_no_confirm(self, monkeypatch, local_client, capfd) -> None: run_id = str(uuid.uuid4()) run_pf_command( "run", "create", "--name", run_id, "--flow", f"{FLOWS_DIR}/print_env_var", "--data", f"{DATAS_DIR}/env_var_names.jsonl", ) out, _ = capfd.readouterr() assert "Completed" in out run_a = local_client.runs.get(name=run_id) local_storage = LocalStorageOperations(run_a) path_a = local_storage.path assert os.path.exists(path_a) # delete the run run_pf_command("run", "delete", "--name", f"{run_id}", "-y") # both runs are deleted and their folders are deleted assert not os.path.exists(path_a) def test_basic_flow_run_delete_error(self, monkeypatch) -> None: input_list = ["y"] def mock_input(*args, **kwargs): if input_list: return input_list.pop() else: raise KeyboardInterrupt() monkeypatch.setattr("builtins.input", mock_input) run_id = str(uuid.uuid4()) # delete the run with pytest.raises(SystemExit): run_pf_command( "run", "delete", "--name", f"{run_id}", ) def test_experiment_hide_by_default(self, monkeypatch, capfd): # experiment will be hide if no config set with pytest.raises(SystemExit): run_pf_command( "experiment", "create", "--template", f"{EXPERIMENT_DIR}/basic-no-script-template/basic.exp.yaml", ) @pytest.mark.usefixtures("setup_experiment_table") def test_experiment_start(self, monkeypatch, capfd, local_client): with mock.patch("promptflow._sdk._configuration.Configuration.is_internal_features_enabled") as mock_func: mock_func.return_value = True exp_name = str(uuid.uuid4()) run_pf_command( "experiment", "create", "--template", f"{EXPERIMENT_DIR}/basic-script-template/basic-script.exp.yaml", "--name", exp_name, ) out, _ = capfd.readouterr() assert exp_name in out assert ExperimentStatus.NOT_STARTED in out run_pf_command( "experiment", "start", "--name", exp_name, ) out, _ = capfd.readouterr() assert ExperimentStatus.TERMINATED in out exp = local_client._experiments.get(name=exp_name) assert len(exp.node_runs) == 4 assert all(len(exp.node_runs[node_name]) > 0 for node_name in exp.node_runs) metrics = local_client.runs.get_metrics(name=exp.node_runs["eval"][0]["name"]) assert "accuracy" in metrics def test_batch_run_timeout(self, local_client): line_timeout_seconds = "54" timout_index = 9 p = multiprocessing.Process( target=run_batch, args=(local_client, line_timeout_seconds, timout_index), ) p.start() p.join() assert p.exitcode == 0 def test_batch_run_completed_within_the_required_time(self, local_client): line_timeout_seconds = "600" p = multiprocessing.Process( target=run_batch, args=( local_client, line_timeout_seconds, ), ) p.start() p.join() assert p.exitcode == 0 def test_run_list(self, local_client): from promptflow._sdk.entities import Run with patch.object(Run, "_to_dict") as mock_to_dict: mock_to_dict.side_effect = RuntimeError("mock exception") run_pf_command( "run", "list", ) def test_pf_flow_test_with_detail(self, tmpdir): run_pf_command( "flow", "test", "--flow", f"{FLOWS_DIR}/web_classification", "--inputs", "url=https://www.youtube.com/watch?v=o5ZQyXaAv1g", "answer=Channel", "evidence=Url", "--detail", Path(tmpdir).as_posix(), ) # when specify parameter `detail`, detail, output and log will be saved in both # the specified folder and ".promptflow" under flow folder for parent_folder in [ Path(FLOWS_DIR) / "web_classification" / ".promptflow", Path(tmpdir), ]: for filename in ["flow.detail.json", "flow.output.json", "flow.log"]: path = parent_folder / filename assert path.is_file() def test_pf_flow_test_single_node_with_detail(self, tmpdir): node_name = "fetch_text_content_from_url" run_pf_command( "flow", "test", "--flow", f"{FLOWS_DIR}/web_classification", "--inputs", "inputs.url=" "https://www.microsoft.com/en-us/d/xbox-wireless-controller-stellar-shift-special-edition/94fbjc7h0h6h", "--node", node_name, "--detail", Path(tmpdir).as_posix(), ) output_path = Path(FLOWS_DIR) / "web_classification" / ".promptflow" / f"flow-{node_name}.node.detail.json" assert output_path.exists() # when specify parameter `detail`, node detail, output and log will be saved in both # the specified folder and ".promptflow" under flow folder for parent_folder in [ Path(FLOWS_DIR) / "web_classification" / ".promptflow", Path(tmpdir), ]: for filename in [ f"flow-{node_name}.node.detail.json", f"flow-{node_name}.node.output.json", f"{node_name}.node.log", ]: path = parent_folder / filename assert path.is_file()
0
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test/unittests/test_flow.py
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- from pathlib import Path import pytest from marshmallow import ValidationError from promptflow import load_flow from promptflow._sdk.entities._eager_flow import EagerFlow from promptflow._sdk.entities._flow import ProtectedFlow from promptflow.exceptions import UserErrorException FLOWS_DIR = Path("./tests/test_configs/flows") EAGER_FLOWS_DIR = Path("./tests/test_configs/eager_flows") @pytest.mark.sdk_test @pytest.mark.unittest class TestRun: @pytest.mark.parametrize( "kwargs", [ {"source": EAGER_FLOWS_DIR / "simple_with_yaml"}, {"source": EAGER_FLOWS_DIR / "simple_with_yaml" / "flow.dag.yaml"}, {"source": EAGER_FLOWS_DIR / "simple_without_yaml" / "entry.py", "entry": "my_flow"}, {"source": EAGER_FLOWS_DIR / "multiple_entries" / "entry1.py", "entry": "my_flow1"}, {"source": EAGER_FLOWS_DIR / "multiple_entries" / "entry1.py", "entry": "my_flow2"}, ], ) def test_eager_flow_load(self, kwargs): flow = load_flow(**kwargs) assert isinstance(flow, EagerFlow) @pytest.mark.parametrize( "kwargs", [ {"source": FLOWS_DIR / "print_input_flow"}, {"source": FLOWS_DIR / "print_input_flow" / "flow.dag.yaml"}, ], ) def test_dag_flow_load(self, kwargs): flow = load_flow(**kwargs) assert isinstance(flow, ProtectedFlow) def test_flow_load_advanced(self): flow = load_flow(source=EAGER_FLOWS_DIR / "flow_with_environment") assert isinstance(flow, EagerFlow) assert flow._data["environment"] == {"python_requirements_txt": "requirements.txt"} @pytest.mark.parametrize( "kwargs, error_message, exception_type", [ ( { "source": EAGER_FLOWS_DIR / "multiple_entries" / "entry1.py", }, "Entry function is not specified", UserErrorException, ), ( { "source": EAGER_FLOWS_DIR / "multiple_entries" / "not_exist.py", }, "does not exist", UserErrorException, ), ( { "source": EAGER_FLOWS_DIR / "invalid_no_path", }, "{'path': ['Missing data for required field.']}", ValidationError, ), ( { "source": EAGER_FLOWS_DIR / "invalid_illegal_path", }, "Can't find directory or file in resolved absolute path:", ValidationError, ), ( {"source": EAGER_FLOWS_DIR / "invalid_extra_fields_nodes"}, "{'nodes': ['Unknown field.']}", ValidationError, ), ], ) def test_flow_load_invalid(self, kwargs, error_message, exception_type): with pytest.raises(exception_type) as e: load_flow(**kwargs) assert error_message in str(e.value)
0
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test/unittests/test_connection.py
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- from pathlib import Path from unittest.mock import patch import pytest from promptflow._cli._pf._connection import validate_and_interactive_get_secrets from promptflow._sdk._constants import SCRUBBED_VALUE, CustomStrongTypeConnectionConfigs from promptflow._sdk._load_functions import _load_env_to_connection from promptflow._sdk.entities._connection import ( AzureContentSafetyConnection, AzureOpenAIConnection, CognitiveSearchConnection, CustomConnection, FormRecognizerConnection, OpenAIConnection, QdrantConnection, SerpConnection, WeaviateConnection, _Connection, ) from promptflow._utils.yaml_utils import load_yaml from promptflow.exceptions import UserErrorException TEST_ROOT = Path(__file__).parent.parent.parent CONNECTION_ROOT = TEST_ROOT / "test_configs/connections" @pytest.mark.unittest class TestConnection: @pytest.mark.parametrize( "file_name, class_name, init_param, expected", [ ( "azure_openai_connection.yaml", AzureOpenAIConnection, { "name": "my_azure_open_ai_connection", "api_type": "azure", "api_version": "2023-07-01-preview", "api_key": "<to-be-replaced>", "api_base": "aoai-api-endpoint", }, { "module": "promptflow.connections", "type": "azure_open_ai", }, ), ( "openai_connection.yaml", OpenAIConnection, { "name": "my_open_ai_connection", "api_key": "<to-be-replaced>", "organization": "org", }, { "module": "promptflow.connections", "type": "open_ai", }, ), ( "openai_connection_base_url.yaml", OpenAIConnection, { "name": "my_open_ai_connection", "api_key": "<to-be-replaced>", "organization": "org", "base_url": "custom_base_url", }, { "module": "promptflow.connections", "type": "open_ai", }, ), ( "custom_connection.yaml", CustomConnection, { "name": "my_custom_connection", "configs": {"key1": "test1"}, "secrets": {"key2": "test2"}, }, { "module": "promptflow.connections", "type": "custom", }, ), ( "azure_content_safety_connection.yaml", AzureContentSafetyConnection, { "name": "my_azure_content_safety_connection", "api_key": "<to-be-replaced>", "endpoint": "endpoint", "api_version": "2023-04-30-preview", "api_type": "Content Safety", }, { "module": "promptflow.connections", "type": "azure_content_safety", }, ), ( "cognitive_search_connection.yaml", CognitiveSearchConnection, { "name": "my_cognitive_search_connection", "api_key": "<to-be-replaced>", "api_base": "endpoint", "api_version": "2023-07-01-Preview", }, { "module": "promptflow.connections", "type": "cognitive_search", }, ), ( "serp_connection.yaml", SerpConnection, { "name": "my_serp_connection", "api_key": "<to-be-replaced>", }, { "module": "promptflow.connections", "type": "serp", }, ), ( "form_recognizer_connection.yaml", FormRecognizerConnection, { "name": "my_form_recognizer_connection", "api_key": "<to-be-replaced>", "endpoint": "endpoint", "api_version": "2023-07-31", "api_type": "Form Recognizer", }, { "module": "promptflow.connections", "type": "form_recognizer", }, ), ( "qdrant_connection.yaml", QdrantConnection, { "name": "my_qdrant_connection", "api_key": "<to-be-replaced>", "api_base": "endpoint", }, { "module": "promptflow_vectordb.connections", "type": "qdrant", }, ), ( "weaviate_connection.yaml", WeaviateConnection, { "name": "my_weaviate_connection", "api_key": "<to-be-replaced>", "api_base": "endpoint", }, { "module": "promptflow_vectordb.connections", "type": "weaviate", }, ), ], ) def test_connection_load_dump(self, file_name, class_name, init_param, expected): conn = _Connection._load(data=load_yaml(CONNECTION_ROOT / file_name)) expected = {**expected, **init_param} assert dict(conn._to_dict()) == expected assert class_name(**init_param)._to_dict() == expected def test_connection_load_from_env(self): connection = _load_env_to_connection(source=CONNECTION_ROOT / ".env", params_override=[{"name": "env_conn"}]) assert connection._to_dict() == { "name": "env_conn", "module": "promptflow.connections", "type": "custom", "configs": {}, "secrets": {"aaa": "bbb", "ccc": "ddd"}, } assert ( connection.__str__() == """name: env_conn module: promptflow.connections type: custom configs: {} secrets: aaa: bbb ccc: ddd """ ) def test_connection_load_from_env_file_bad_case(self): # Test file not found with pytest.raises(FileNotFoundError) as e: _load_env_to_connection(source=CONNECTION_ROOT / "mock.env", params_override=[{"name": "env_conn"}]) assert "not found" in str(e.value) # Test file empty with pytest.raises(Exception) as e: _load_env_to_connection(source=CONNECTION_ROOT / "empty.env", params_override=[{"name": "env_conn"}]) assert "Load nothing" in str(e.value) def test_to_execution_connection_dict(self): # Assert custom connection build connection = CustomConnection(name="test_connection", configs={"a": "1"}, secrets={"b": "2"}) assert connection._to_execution_connection_dict() == { "module": "promptflow.connections", "secret_keys": ["b"], "type": "CustomConnection", "value": {"a": "1", "b": "2"}, } # Assert strong type - AzureOpenAI connection = AzureOpenAIConnection( name="test_connection_1", type="AzureOpenAI", api_key="test_key", api_base="test_base", api_type="azure", api_version="2023-07-01-preview", ) assert connection._to_execution_connection_dict() == { "module": "promptflow.connections", "secret_keys": ["api_key"], "type": "AzureOpenAIConnection", "value": { "api_base": "test_base", "api_key": "test_key", "api_type": "azure", "api_version": "2023-07-01-preview", }, } # Assert strong type - OpenAI connection = OpenAIConnection( name="test_connection_1", type="AzureOpenAI", api_key="test_key", organization="test_org", ) assert connection._to_execution_connection_dict() == { "module": "promptflow.connections", "secret_keys": ["api_key"], "type": "OpenAIConnection", "value": {"api_key": "test_key", "organization": "test_org"}, } def test_validate_and_interactive_get_secrets(self): # Path 1: Create connection = CustomConnection( name="test_connection", secrets={"key1": SCRUBBED_VALUE, "key2": "", "key3": "<no-change>", "key4": "<user-input>", "key5": "**"}, ) with patch("promptflow._cli._pf._connection.get_secret_input", new=lambda prompt: "test_value"): validate_and_interactive_get_secrets(connection, is_update=False) assert connection.secrets == { "key1": "test_value", "key2": "test_value", "key3": "test_value", "key4": "test_value", "key5": "test_value", } # Path 2: Update # Scrubbed value will be filled in _validate_and_encrypt_secrets for update, so no changes here. connection = CustomConnection( name="test_connection", secrets={"key1": SCRUBBED_VALUE, "key2": "", "key3": "<no-change>", "key4": "<user-input>", "key5": "**"}, ) with patch("promptflow._cli._pf._connection.get_secret_input", new=lambda prompt: "test_value"): validate_and_interactive_get_secrets(connection, is_update=True) assert connection.secrets == { "key1": SCRUBBED_VALUE, "key2": "", "key3": "<no-change>", "key4": "test_value", "key5": "**", } def test_validate_and_encrypt_secrets(self): # Path 1: Create connection = CustomConnection( name="test_connection", secrets={"key1": SCRUBBED_VALUE, "key2": "", "key3": "<no-change>", "key4": "<user-input>", "key5": "**"}, ) with pytest.raises(Exception) as e: connection._validate_and_encrypt_secrets() assert "secrets ['key1', 'key2', 'key3', 'key4', 'key5'] value invalid, please fill them" in str(e.value) # Path 2: Update connection._secrets = {"key1": "val1", "key2": "val2", "key4": "val4", "key5": "*"} # raise error for key3 as original value missing. # raise error for key5 as original value still scrubbed. # raise error for key4 even if it was in _secrets, because it requires <user-input>. with pytest.raises(Exception) as e: connection._validate_and_encrypt_secrets() assert "secrets ['key3', 'key4', 'key5'] value invalid, please fill them" in str(e.value) def test_convert_to_custom_strong_type(self, install_custom_tool_pkg): module_name = "my_tool_package.tools.my_tool_2" custom_conn_type = "MyFirstConnection" import importlib module = importlib.import_module(module_name) # Connection created by custom strong type connection template for package tool connection = CustomConnection( name="test_connection", configs={ "a": "1", CustomStrongTypeConnectionConfigs.PROMPTFLOW_MODULE_KEY: module_name, CustomStrongTypeConnectionConfigs.PROMPTFLOW_TYPE_KEY: custom_conn_type, }, secrets={"b": "2"}, ) res = connection._convert_to_custom_strong_type() assert isinstance(res, module.MyFirstConnection) assert res.secrets == {"b": "2"} # Connection created by custom connection template for script tool connection = CustomConnection(name="test_connection", configs={"a": "1"}, secrets={"b": "2"}) res = connection._convert_to_custom_strong_type(module=module, to_class=custom_conn_type) assert isinstance(res, module.MyFirstConnection) assert res.configs == {"a": "1"} # Connection created with custom connection type in portal for package tool connection._convert_to_custom_strong_type(module=module_name, to_class=custom_conn_type) assert isinstance(res, module.MyFirstConnection) assert res.configs == {"a": "1"} # Invalid module module_name = "not_existing_module" with pytest.raises(ModuleNotFoundError, match=r".*No module named 'not_existing_module'*"): connection._convert_to_custom_strong_type(module=module_name, to_class=custom_conn_type) module_name = None with pytest.raises( UserErrorException, match=r".*Failed to convert to custom strong type connection because of invalid module or class*", ): connection._convert_to_custom_strong_type(module=module_name, to_class=custom_conn_type) custom_conn_type = None with pytest.raises( UserErrorException, match=r".*Failed to convert to custom strong type connection because of invalid module or class*", ): connection._convert_to_custom_strong_type(module=module_name, to_class=custom_conn_type)
0
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test/unittests/test_orm.py
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import uuid import pytest from sqlalchemy import TEXT, Column, create_engine, inspect, text from sqlalchemy.orm import declarative_base, sessionmaker from promptflow._sdk._constants import HOME_PROMPT_FLOW_DIR from promptflow._sdk._orm.session import create_or_update_table, support_transaction TABLENAME = "orm_entity" def random_string() -> str: return str(uuid.uuid4()) def dump(obj, engine) -> None: session_maker = sessionmaker(bind=engine) with session_maker() as session: session.add(obj) session.commit() class SchemaV1(declarative_base()): __tablename__ = TABLENAME column1 = Column(TEXT, primary_key=True) column2 = Column(TEXT) __pf_schema_version__ = "1" @staticmethod def generate(engine) -> None: entity = SchemaV1(column1=random_string(), column2=random_string()) dump(entity, engine) return class SchemaV2(declarative_base()): __tablename__ = TABLENAME column1 = Column(TEXT, primary_key=True) column2 = Column(TEXT) column3 = Column(TEXT) __pf_schema_version__ = "2" @staticmethod def generate(engine) -> None: entity = SchemaV2(column1=random_string(), column2=random_string(), column3=random_string()) dump(entity, engine) return class SchemaV3(declarative_base()): __tablename__ = TABLENAME column1 = Column(TEXT, primary_key=True) column2 = Column(TEXT) column3 = Column(TEXT) column4 = Column(TEXT) __pf_schema_version__ = "3" @staticmethod def generate(engine) -> None: entity = SchemaV3( column1=random_string(), column2=random_string(), column3=random_string(), column4=random_string() ) dump(entity, engine) return # exactly same schema as SchemaV3 class SchemaV4(declarative_base()): __tablename__ = TABLENAME column1 = Column(TEXT, primary_key=True) column2 = Column(TEXT) column3 = Column(TEXT) column4 = Column(TEXT) __pf_schema_version__ = "4" @staticmethod def generate(engine) -> None: entity = SchemaV4( column1=random_string(), column2=random_string(), column3=random_string(), column4=random_string() ) dump(entity, engine) return def mock_use(engine, orm_class, entity_num: int = 1) -> None: create_or_update_table(engine, orm_class, TABLENAME) for _ in range(entity_num): orm_class.generate(engine) def generate_engine(): db_path = (HOME_PROMPT_FLOW_DIR / ".test" / f"{uuid.uuid4()}.sqlite").resolve() if not db_path.parent.is_dir(): db_path.parent.mkdir(parents=True, exist_ok=True) return create_engine(f"sqlite:///{str(db_path)}", future=True) @pytest.mark.sdk_test @pytest.mark.unittest class TestSchemaManagement: def test_fixed_version(self) -> None: engine = generate_engine() mock_use(engine, SchemaV3) mock_use(engine, SchemaV3, entity_num=2) mock_use(engine, SchemaV3, entity_num=3) # 1 table assert inspect(engine).has_table(TABLENAME) # 6 rows entities = [entity for entity in sessionmaker(bind=engine)().query(SchemaV3).all()] assert len(entities) == 6 def test_version_upgrade(self) -> None: engine = generate_engine() mock_use(engine, SchemaV1) mock_use(engine, SchemaV2) mock_use(engine, SchemaV3) # 3 tables: 1 current and 2 legacy assert inspect(engine).has_table(TABLENAME) assert inspect(engine).has_table(f"{TABLENAME}_v1") assert inspect(engine).has_table(f"{TABLENAME}_v2") # 2 rows in current table entities = [entity for entity in sessionmaker(bind=engine)().query(SchemaV3).all()] assert len(entities) == 3 def test_version_downgrade(self, capfd) -> None: engine = generate_engine() mock_use(engine, SchemaV3) mock_use(engine, SchemaV2) mock_use(engine, SchemaV1) # 1 table assert inspect(engine).has_table(TABLENAME) # 2 rows entities = [entity for entity in sessionmaker(bind=engine)().query(SchemaV1).all()] assert len(entities) == 3 # with warning message out, _ = capfd.readouterr() assert "While we will do our best to ensure compatibility, " in out def test_version_mixing(self) -> None: engine = generate_engine() mock_use(engine, SchemaV2, entity_num=2) mock_use(engine, SchemaV3, entity_num=3) # 1 upgrade mock_use(engine, SchemaV2, entity_num=1) mock_use(engine, SchemaV1, entity_num=4) mock_use(engine, SchemaV3, entity_num=2) # 2 tables: 1 current and 1 legacy assert inspect(engine).has_table(TABLENAME) assert inspect(engine).has_table(f"{TABLENAME}_v2") # 12(all) rows in current table entities = [entity for entity in sessionmaker(bind=engine)().query(SchemaV3).all()] assert len(entities) == 12 def test_version_across_same_schema_version(self, capfd) -> None: engine = generate_engine() # when 3->4, no warning message mock_use(engine, SchemaV3) mock_use(engine, SchemaV4) out, _ = capfd.readouterr() assert "While we will do our best to ensure compatibility, " not in out # same schema, no warning message mock_use(engine, SchemaV4) out, _ = capfd.readouterr() assert "While we will do our best to ensure compatibility, " not in out # when 4->3, warning message on upgrade should be printed mock_use(engine, SchemaV3) out, _ = capfd.readouterr() assert "While we will do our best to ensure compatibility, " in out def test_db_without_schema_info(self) -> None: engine = generate_engine() # manually create a table to avoid creation of schema_info table with engine.begin() as connection: connection.execute(text(f"CREATE TABLE {TABLENAME} (column1 TEXT PRIMARY KEY);")) connection.execute( text(f"INSERT INTO {TABLENAME} (column1) VALUES (:column1);"), {"column1": random_string()}, ) mock_use(engine, SchemaV3) # 2 tables: 1 current and 1 legacy with name containing timestamp assert inspect(engine).has_table(TABLENAME) # 2 rows in current table entities = [entity for entity in sessionmaker(bind=engine)().query(SchemaV3).all()] assert len(entities) == 2 @pytest.mark.sdk_test @pytest.mark.unittest class TestTransaction: def test_commit(self) -> None: engine = generate_engine() engine = support_transaction(engine) tablename = "transaction_test" sql = f"CREATE TABLE {tablename} (id INTEGER PRIMARY KEY);" with engine.begin() as connection: connection.execute(text(sql)) connection.commit() assert inspect(engine).has_table(tablename) def test_rollback(self) -> None: engine = generate_engine() engine = support_transaction(engine) tablename = "transaction_test" sql = f"CREATE TABLE {tablename} (id INTEGER PRIMARY KEY);" with engine.begin() as connection: connection.execute(text(sql)) connection.rollback() assert not inspect(engine).has_table(tablename) def test_exception_during_transaction(self) -> None: engine = generate_engine() engine = support_transaction(engine) tablename = "transaction_test" sql = f"CREATE TABLE {tablename} (id INTEGER PRIMARY KEY);" try: with engine.begin() as connection: connection.execute(text(sql)) # raise exception, so that SQLAlchemy should help rollback raise Exception("test exception") except Exception: pass assert not inspect(engine).has_table(tablename)
0
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test/unittests/test_flow_serve.py
from pathlib import Path import pytest from sdk_cli_test.conftest import MODEL_ROOT from promptflow._cli._pf._flow import _resolve_python_flow_additional_includes @pytest.mark.unittest def test_flow_serve_resolve_additional_includes(): # Assert flow path not changed if no additional includes flow_path = (Path(MODEL_ROOT) / "web_classification").resolve().absolute().as_posix() resolved_flow_path = _resolve_python_flow_additional_includes(flow_path) assert flow_path == resolved_flow_path # Assert additional includes are resolved correctly flow_path = (Path(MODEL_ROOT) / "web_classification_with_additional_include").resolve().absolute().as_posix() resolved_flow_path = _resolve_python_flow_additional_includes(flow_path) assert (Path(resolved_flow_path) / "convert_to_dict.py").exists() assert (Path(resolved_flow_path) / "fetch_text_content_from_url.py").exists() assert (Path(resolved_flow_path) / "summarize_text_content.jinja2").exists()
0
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test/unittests/test_flow_invoker.py
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- from pathlib import Path import pytest from promptflow._sdk._serving._errors import UnexpectedConnectionProviderReturn, UnsupportedConnectionProvider from promptflow._sdk._serving.flow_invoker import FlowInvoker from promptflow.exceptions import UserErrorException PROMOTFLOW_ROOT = Path(__file__).parent.parent.parent.parent FLOWS_DIR = Path(PROMOTFLOW_ROOT / "tests/test_configs/flows") EXAMPLE_FLOW = FLOWS_DIR / "web_classification" @pytest.mark.sdk_test @pytest.mark.unittest class TestFlowInvoker: # Note: e2e test of flow invoker has been covered by test_flow_serve. def test_flow_invoker_unsupported_connection_provider(self): with pytest.raises(UnsupportedConnectionProvider): FlowInvoker(flow=EXAMPLE_FLOW, connection_provider=[]) with pytest.raises(UserErrorException): FlowInvoker(flow=EXAMPLE_FLOW, connection_provider="unsupported") def test_flow_invoker_custom_connection_provider(self): # Return is not a list with pytest.raises(UnexpectedConnectionProviderReturn) as e: FlowInvoker(flow=EXAMPLE_FLOW, connection_provider=lambda: {}) assert "should return a list of connections" in str(e.value) # Return is not connection type with pytest.raises(UnexpectedConnectionProviderReturn) as e: FlowInvoker(flow=EXAMPLE_FLOW, connection_provider=lambda: [1, 2]) assert "should be connection type" in str(e.value)
0
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test/unittests/test_pf_client.py
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import pytest from promptflow import PFClient from promptflow._sdk._utils import ClientUserAgentUtil @pytest.mark.sdk_test @pytest.mark.e2etest class TestPFClient: def test_pf_client_user_agent(self): PFClient() assert "promptflow-sdk" in ClientUserAgentUtil.get_user_agent() assert "promptflow/" not in ClientUserAgentUtil.get_user_agent()
0
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test/unittests/test_tool.py
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import importlib.util from pathlib import Path import pytest TOOL_DIR = Path("./tests/test_configs/tools") @pytest.mark.unittest class TestTool: def get_tool_meta_by_path(self, client, tool_path, module_name): # Load the module from the file path spec = importlib.util.spec_from_file_location(module_name, tool_path) tool_module = importlib.util.module_from_spec(spec) # Load the module's code spec.loader.exec_module(tool_module) # List meta data of tools tool_meta = client.tools._generate_tool_meta(tool_module) return tool_meta def test_python_tool_meta(self, pf): tool_path = TOOL_DIR / "python_tool.py" tools_meta, _ = self.get_tool_meta_by_path(pf, tool_path, "python_tool") # Get python script tool meta expect_tools_meta = { "python_tool.my_python_tool": { "name": "python_tool", "type": "python", "inputs": {"input1": {"type": ["string"]}}, "module": "python_tool", "function": "my_python_tool", }, "python_tool.my_python_tool_without_name": { "name": "my_python_tool_without_name", "type": "python", "inputs": {"input1": {"type": ["string"]}}, "module": "python_tool", "function": "my_python_tool_without_name", }, "python_tool.PythonTool.python_tool": { "name": "PythonTool.python_tool", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection"]}, "input1": {"type": ["string"]}}, "module": "python_tool", "class_name": "PythonTool", "function": "python_tool", }, } assert tools_meta == expect_tools_meta def test_custom_tool_meta(self, pf): tool_path = TOOL_DIR / "custom_llm_tool.py" tools_meta, _ = self.get_tool_meta_by_path(pf, tool_path, "custom_llm_tool") expect_meta = { "custom_llm_tool.TestCustomLLMTool.tool_func": { "class_name": "TestCustomLLMTool", "description": "This is a tool to demonstrate the custom_llm tool type", "enable_kwargs": True, "function": "tool_func", "inputs": {"api": {"type": ["string"]}, "connection": {"type": ["AzureOpenAIConnection"]}}, "module": "custom_llm_tool", "name": "My Custom LLM Tool", "type": "custom_llm", }, "custom_llm_tool.my_tool": { "description": "This is a tool to demonstrate the custom_llm tool type", "enable_kwargs": True, "function": "my_tool", "inputs": {"connection": {"type": ["CustomConnection"]}}, "module": "custom_llm_tool", "name": "My Custom LLM Tool", "type": "custom_llm", }, } assert tools_meta == expect_meta
0
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test/unittests/test_exceptions.py
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import pytest from azure.core.exceptions import HttpResponseError from promptflow._sdk._orm import RunInfo from promptflow.exceptions import _ErrorInfo, ErrorCategory, ErrorTarget, UserErrorException from promptflow.executor import FlowValidator from promptflow.executor._errors import InvalidNodeReference FLOWS_DIR = "./tests/test_configs/flows/print_input_flow" @pytest.mark.unittest class TestExceptions: def test_error_category_with_unknow_error(self, pf): ex = None try: pf.run("./exceptions/flows") except Exception as e: ex = e error_category, error_type, error_target, error_message, error_detail = _ErrorInfo.get_error_info(ex) assert error_category == ErrorCategory.UNKNOWN assert error_type == "FileNotFoundError" assert error_target == ErrorTarget.UNKNOWN assert error_message == "" assert ( "module=promptflow._sdk._pf_client, " 'code=raise FileNotFoundError(f"flow path {flow} does not exist"), ' "lineno=" ) in error_detail def test_error_category_with_user_error(self, pf): ex = None try: RunInfo.get("run_name") except Exception as e: ex = e error_category, error_type, error_target, error_message, error_detail = _ErrorInfo.get_error_info(ex) assert error_category == ErrorCategory.USER_ERROR assert error_type == "RunNotFoundError" assert error_target == ErrorTarget.CONTROL_PLANE_SDK assert error_message == "" assert ( "module=promptflow._sdk._orm.run_info, " 'code=raise RunNotFoundError(f"Run name {name!r} cannot be found."), ' "lineno=" ) in error_detail def test_error_category_with_system_error(self): ex = None try: FlowValidator._validate_aggregation_inputs({}, {"input1": "value1"}) except Exception as e: ex = e error_category, error_type, error_target, error_message, error_detail = _ErrorInfo.get_error_info(ex) assert error_category == ErrorCategory.SYSTEM_ERROR assert error_type == "InvalidAggregationInput" assert error_target == ErrorTarget.UNKNOWN assert error_message == ( "The input for aggregation is incorrect. " "The value for aggregated reference input '{input_key}' should be a list, " "but received {value_type}. " "Please adjust the input value to match the expected format." ) assert ( "module=promptflow.executor.flow_validator, " "code=raise InvalidAggregationInput(, " "lineno=" ) in error_detail def test_error_category_with_http_error(self, subscription_id, resource_group_name, workspace_name): try: raise HttpResponseError(message="HttpResponseError") except Exception as e: ex = e error_category, error_type, error_target, error_message, error_detail = _ErrorInfo.get_error_info(ex) assert error_category == ErrorCategory.UNKNOWN assert error_type == "HttpResponseError" assert error_target == ErrorTarget.UNKNOWN assert error_message == "" assert error_detail == "" @pytest.mark.parametrize( "status_code, expected_error_category", [ (203, ErrorCategory.UNKNOWN), (304, ErrorCategory.UNKNOWN), (400, ErrorCategory.UNKNOWN), (401, ErrorCategory.UNKNOWN), (429, ErrorCategory.UNKNOWN), (500, ErrorCategory.UNKNOWN), ], ) def test_error_category_with_status_code(self, status_code, expected_error_category): try: raise Exception() except Exception as e: e.status_code = status_code ex = e error_category, error_type, error_target, error_message, error_detail = _ErrorInfo.get_error_info(ex) assert error_category == expected_error_category assert error_type == "Exception" assert error_target == ErrorTarget.UNKNOWN assert error_message == "" assert error_detail == "" def test_error_category_with_executor_error(self): try: msg_format = ( "Invalid node definitions found in the flow graph. Non-aggregation node '{invalid_reference}' " "cannot be referenced in the activate config of the aggregation node '{node_name}'. Please " "review and rectify the node reference." ) raise InvalidNodeReference(message_format=msg_format, invalid_reference=None, node_name="node_name") except Exception as e: ex = e error_category, error_type, error_target, error_message, error_detail = _ErrorInfo.get_error_info(ex) assert error_category == ErrorCategory.USER_ERROR assert error_type == "InvalidNodeReference" assert error_target == ErrorTarget.EXECUTOR assert error_message == ( "Invalid node definitions found in the flow graph. Non-aggregation node '{invalid_reference}' " "cannot be referenced in the activate config of the aggregation node '{node_name}'. Please " "review and rectify the node reference." ) assert error_detail == "" def test_error_category_with_cause_exception1(self): """cause exception is PromptflowException and e is PromptflowException, recording e.""" ex = None try: try: FlowValidator._validate_aggregation_inputs({}, {"input1": "value1"}) except Exception as e: raise UserErrorException("FlowValidator._validate_aggregation_inputs failed") from e except Exception as e: ex = e error_category, error_type, error_target, error_message, error_detail = _ErrorInfo.get_error_info(ex) assert error_category == ErrorCategory.USER_ERROR assert error_type == "InvalidAggregationInput" assert error_target == ErrorTarget.UNKNOWN assert error_message == "" assert error_detail == "" ex = None try: try: FlowValidator._validate_aggregation_inputs({}, {"input1": "value1"}) except Exception as e: raise UserErrorException(message=str(e), error=e) except Exception as e: ex = e error_category, error_type, error_target, error_message, error_detail = _ErrorInfo.get_error_info(ex) assert error_category == ErrorCategory.USER_ERROR assert error_type == "InvalidAggregationInput" assert error_target == ErrorTarget.UNKNOWN assert error_message == "" assert error_detail == "" def test_error_category_with_cause_exception2(self): """cause exception is PromptflowException and e is not PromptflowException, recording cause exception.""" ex = None try: try: FlowValidator._validate_aggregation_inputs({}, {"input1": "value1"}) except Exception as e: raise Exception("FlowValidator._validate_aggregation_inputs failed") from e except Exception as e: ex = e error_category, error_type, error_target, error_message, error_detail = _ErrorInfo.get_error_info(ex) assert error_category == ErrorCategory.SYSTEM_ERROR assert error_type == "InvalidAggregationInput" assert error_target == ErrorTarget.UNKNOWN assert error_message == ( "The input for aggregation is incorrect. The value for aggregated reference " "input '{input_key}' should be a list, but received {value_type}. Please " "adjust the input value to match the expected format." ) assert ( "module=promptflow.executor.flow_validator, " "code=raise InvalidAggregationInput(, " "lineno=" ) in error_detail def test_error_category_with_cause_exception3(self, pf): """cause exception is not PromptflowException and e is not PromptflowException, recording e exception.""" ex = None try: try: pf.run("./exceptions/flows") except Exception as e: raise Exception("pf run failed") from e except Exception as e: ex = e error_category, error_type, error_target, error_message, error_detail = _ErrorInfo.get_error_info(ex) assert error_category == ErrorCategory.UNKNOWN assert error_type == "Exception" assert error_target == ErrorTarget.UNKNOWN assert error_message == "" assert error_detail == ""
0
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test/unittests/test_run.py
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import copy import uuid from pathlib import Path from unittest.mock import patch import pytest from marshmallow import ValidationError from promptflow._sdk._constants import BASE_PATH_CONTEXT_KEY, NODES from promptflow._sdk._errors import InvalidFlowError from promptflow._sdk._load_functions import load_run from promptflow._sdk._pf_client import PFClient from promptflow._sdk._run_functions import create_yaml_run from promptflow._sdk._submitter import RunSubmitter, overwrite_variant, variant_overwrite_context from promptflow._sdk.entities import Run from promptflow._sdk.operations._local_storage_operations import LocalStorageOperations from promptflow._utils.yaml_utils import load_yaml PROMOTFLOW_ROOT = Path(__file__) / "../../../.." FLOWS_DIR = Path("./tests/test_configs/flows") RUNS_DIR = Path("./tests/test_configs/runs") DATAS_DIR = Path("./tests/test_configs/datas") @pytest.mark.sdk_test @pytest.mark.unittest class TestRun: def test_overwrite_variant_context(self): with variant_overwrite_context( flow_path=FLOWS_DIR / "web_classification", tuning_node="summarize_text_content", variant="variant_0" ) as flow: with open(flow.path) as f: flow_dag = load_yaml(f) node_name_2_node = {node["name"]: node for node in flow_dag[NODES]} node = node_name_2_node["summarize_text_content"] assert node["inputs"]["temperature"] == "0.2" def test_overwrite_connections(self): with variant_overwrite_context( flow_path=FLOWS_DIR / "web_classification", connections={"classify_with_llm": {"connection": "azure_open_ai", "deployment_name": "gpt-35-turbo"}}, ) as flow: with open(flow.path) as f: flow_dag = load_yaml(f) node_name_2_node = {node["name"]: node for node in flow_dag[NODES]} node = node_name_2_node["classify_with_llm"] assert node["connection"] == "azure_open_ai" assert node["inputs"]["deployment_name"] == "gpt-35-turbo" @pytest.mark.parametrize( "connections, error_message", [ ( { "classify_with_llm": { "connection": "azure_open_ai", "deployment_name": "gpt-35-turbo", "unsupported": 1, } }, "Unsupported llm connection overwrite keys", ), ("str", "Invalid connections overwrite format: str"), ({"not_exist": 1}, "Node not_exist not found in flow"), ({"classify_with_llm": 1}, "Invalid connection overwrite format: 1, only dict is supported."), ], ) def test_overwrite_connections_invalid(self, connections, error_message): with pytest.raises(InvalidFlowError) as e: with variant_overwrite_context( flow_path=FLOWS_DIR / "web_classification", connections=connections, ): pass assert error_message in str(e.value) def test_load_run(self): input_dict = { "data": (DATAS_DIR / "webClassification1.jsonl").resolve().as_posix(), "column_mapping": {"context": "${data.context}"}, "flow": (FLOWS_DIR / "web_classification").resolve().as_posix(), } bulk_run = Run._load_from_dict( data=input_dict, context={BASE_PATH_CONTEXT_KEY: FLOWS_DIR}, additional_message="" ) assert isinstance(bulk_run, Run) def test_dot_env_resolve(self): run_id = str(uuid.uuid4()) source = f"{RUNS_DIR}/sample_bulk_run.yaml" run = load_run(source=source, params_override=[{"name": run_id}]) assert run.environment_variables == {"FOO": "BAR"} def test_run_invalid_flow_path(self): run_id = str(uuid.uuid4()) source = f"{RUNS_DIR}/bulk_run_invalid_flow_path.yaml" with pytest.raises(ValidationError) as e: load_run(source=source, params_override=[{"name": run_id}]) assert "Can't find directory or file in resolved absolute path:" in str(e.value) def test_run_invalid_remote_flow(self): run_id = str(uuid.uuid4()) source = f"{RUNS_DIR}/bulk_run_invalid_remote_flow_str.yaml" with pytest.raises(ValidationError) as e: load_run(source=source, params_override=[{"name": run_id}]) assert "Invalid remote flow path. Currently only azureml:<flow-name> is supported" in str(e.value) def test_data_not_exist_validation_error(self): source = f"{RUNS_DIR}/sample_bulk_run.yaml" with pytest.raises(ValidationError) as e: load_run(source=source, params_override=[{"data": "not_exist"}]) assert "Can't find directory or file" in str(e.value) assert "Invalid remote path." in str(e.value) @pytest.mark.parametrize( "source, error_msg", [ (f"{RUNS_DIR}/illegal/non_exist_data.yaml", "Can't find directory or file"), ], ) def test_invalid_yaml(self, source, error_msg): with pytest.raises(ValidationError) as e: create_yaml_run(source=source) assert error_msg in str(e.value) def test_run_bulk_invalid_params(self, pf): # Test if function raises FileNotFoundError with pytest.raises(FileNotFoundError): pf.run(flow="invalid_path", data="fake_data") with pytest.raises(FileNotFoundError): pf.run(flow="invalid_path", data="fake_data", batch_run="fake_run") def test_overwrite_variant(self): flow_dag = { "nodes": [ { "name": "node1", "use_variants": True, "variant_id": "default", "inputs": { "param1": "value1", "param2": "value2", }, }, ], "node_variants": { "node1": { "default_variant_id": "variant1", "variants": { "variant1": { "node": { "inputs": { "param1": "value1_variant1", "param2": "value2_variant1", }, }, }, }, }, }, } # Test if function raises InvalidFlowError with pytest.raises(InvalidFlowError): overwrite_variant(flow_dag, "node3", "variant1") with pytest.raises(InvalidFlowError): overwrite_variant(flow_dag, "node1", "variant3") # Test if function overwrites variant correctly dag = copy.deepcopy(flow_dag) overwrite_variant(dag, "node1", "variant1") assert dag["nodes"][0]["inputs"]["param1"] == "value1_variant1" assert dag["nodes"][0]["inputs"]["param2"] == "value2_variant1" # test overwrite default variant dag = copy.deepcopy(flow_dag) overwrite_variant(dag) assert dag["nodes"][0]["inputs"]["param1"] == "value1_variant1" assert dag["nodes"][0]["inputs"]["param2"] == "value2_variant1" @patch("promptflow._sdk.operations._run_operations.RunOperations.update") def test_submit(self, mock_update): # Define input parameters flow_path = f"{FLOWS_DIR}/web_classification" client = PFClient() run_submitter = RunSubmitter(client.runs) run = Run( name=str(uuid.uuid4()), flow=Path(flow_path), data=f"{DATAS_DIR}/webClassification3.jsonl", ) # Submit run run_submitter.submit(run) # Check if Run.update method was called mock_update.assert_called_once() def test_flow_run_with_non_english_inputs(self, pf): flow_path = f"{FLOWS_DIR}/flow_with_non_english_input" data = f"{FLOWS_DIR}/flow_with_non_english_input/data.jsonl" run = pf.run(flow=flow_path, data=data, column_mapping={"text": "${data.text}"}) local_storage = LocalStorageOperations(run=run) # assert non english in output.jsonl output_jsonl_path = local_storage._outputs_path with open(output_jsonl_path, "r", encoding="utf-8") as f: outputs_text = f.readlines() assert outputs_text == [ '{"line_number": 0, "output": "Hello 123 日本語"}\n', '{"line_number": 1, "output": "World 123 日本語"}\n', ] # assert non english in memory outputs = local_storage.load_outputs() assert outputs == {"output": ["Hello 123 日本語", "World 123 日本語"]} @pytest.mark.usefixtures("enable_logger_propagate") def test_flow_run_with_unknown_field(self, caplog): run_yaml = Path(RUNS_DIR) / "sample_bulk_run.yaml" load_run(source=run_yaml, params_override=[{"unknown_field": "unknown_value"}]) assert "Unknown fields found" in caplog.text
0
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test/unittests/test_local_storage_operations.py
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import pandas as pd import pytest from promptflow._sdk._constants import LINE_NUMBER from promptflow._sdk.operations._local_storage_operations import LocalStorageOperations @pytest.mark.unittest class TestLocalStorageOperations: def test_outputs_padding(self) -> None: data = [ {LINE_NUMBER: 1, "col": "a"}, {LINE_NUMBER: 2, "col": "b"}, ] df = pd.DataFrame(data) df_with_padding = LocalStorageOperations._outputs_padding(df, inputs_line_numbers=[0, 1, 2, 3, 4]) df_with_padding.fillna("", inplace=True) assert len(df_with_padding) == 5 assert df_with_padding.iloc[0].to_dict() == {LINE_NUMBER: 0, "col": ""} assert df_with_padding.iloc[1].to_dict() == {LINE_NUMBER: 1, "col": "a"} assert df_with_padding.iloc[2].to_dict() == {LINE_NUMBER: 2, "col": "b"} assert df_with_padding.iloc[3].to_dict() == {LINE_NUMBER: 3, "col": ""} assert df_with_padding.iloc[4].to_dict() == {LINE_NUMBER: 4, "col": ""} # in evaluation run, inputs may not have all line number df_with_padding = LocalStorageOperations._outputs_padding(df, inputs_line_numbers=[1, 2, 4]) df_with_padding.fillna("", inplace=True) assert len(df_with_padding) == 3 assert df_with_padding.iloc[0].to_dict() == {LINE_NUMBER: 1, "col": "a"} assert df_with_padding.iloc[1].to_dict() == {LINE_NUMBER: 2, "col": "b"} assert df_with_padding.iloc[2].to_dict() == {LINE_NUMBER: 4, "col": ""}
0
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test
promptflow_repo/promptflow/src/promptflow/tests/sdk_cli_test/unittests/test_utils.py
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import argparse import datetime import importlib import json import os import shutil import sys import tempfile import threading import time from pathlib import Path from unittest.mock import patch import mock import pandas as pd import pytest from requests import Response from promptflow._cli._params import AppendToDictAction from promptflow._cli._utils import ( _build_sorted_column_widths_tuple_list, _calculate_column_widths, list_of_dict_to_nested_dict, ) from promptflow._constants import LAST_CHECK_TIME, PF_VERSION_CHECK from promptflow._sdk._constants import HOME_PROMPT_FLOW_DIR, PROMPT_FLOW_HOME_DIR_ENV_VAR from promptflow._sdk._errors import GenerateFlowToolsJsonError from promptflow._sdk._telemetry.logging_handler import get_scrubbed_cloud_role from promptflow._sdk._utils import ( _generate_connections_dir, decrypt_secret_value, encrypt_secret_value, generate_flow_tools_json, override_connection_config_with_environment_variable, refresh_connections_dir, resolve_connections_environment_variable_reference, snake_to_camel, ) from promptflow._utils.load_data import load_data from promptflow._utils.retry_utils import http_retry_wrapper, retry from promptflow._utils.version_hint_utils import check_latest_version TEST_ROOT = Path(__file__).parent.parent.parent CONNECTION_ROOT = TEST_ROOT / "test_configs/connections" @pytest.mark.unittest class TestUtils: def test_encrypt_decrypt_value(self): test_value = "test" encrypted = encrypt_secret_value(test_value) assert decrypt_secret_value("mock", encrypted) == test_value def test_snake_to_camel(self): assert snake_to_camel("test_snake_case") == "TestSnakeCase" assert snake_to_camel("TestSnakeCase") == "TestSnakeCase" def test_sqlite_retry(self, capfd) -> None: from sqlalchemy.exc import OperationalError from promptflow._sdk._orm.retry import sqlite_retry @sqlite_retry def mock_sqlite_op() -> None: print("sqlite op...") raise OperationalError("statement", "params", "orig") # it will finally raise an OperationalError with pytest.raises(OperationalError): mock_sqlite_op() # assert function execution time from stdout out, _ = capfd.readouterr() assert out.count("sqlite op...") == 3 def test_resolve_connections_environment_variable_reference(self): connections = { "test_connection": { "type": "AzureOpenAIConnection", "value": { "api_key": "${env:AZURE_OPENAI.API_KEY}", "api_base": "${env:AZURE_OPENAI_API_BASE}", }, }, "test_custom_connection": { "type": "CustomConnection", "value": {"key": "${env:CUSTOM_KEY}", "key2": "value2"}, }, } with mock.patch.dict( os.environ, {"AZURE_OPENAI.API_KEY": "KEY", "AZURE_OPENAI_API_BASE": "BASE", "CUSTOM_KEY": "CUSTOM_VALUE"} ): resolve_connections_environment_variable_reference(connections) assert connections["test_connection"]["value"]["api_key"] == "KEY" assert connections["test_connection"]["value"]["api_base"] == "BASE" assert connections["test_custom_connection"]["value"]["key"] == "CUSTOM_VALUE" # test bad cases connections = { "test_connection": { "type": "AzureOpenAIConnection", "value": {"none_value": None, "integer_value": 1, "float_value": 1.0, "dict_value": {}}, }, } resolve_connections_environment_variable_reference(connections) assert connections["test_connection"]["value"] == { "none_value": None, "integer_value": 1, "float_value": 1.0, "dict_value": {}, } def test_override_connection_config_with_environment_variable(self): connections = { "test_connection": { "type": "AzureOpenAIConnection", "value": { "api_key": "KEY", "api_base": "https://gpt-test-eus.openai.azure.com/", }, }, "test_custom_connection": { "type": "CustomConnection", "value": {"key": "value1", "key2": "value2"}, }, } with mock.patch.dict( os.environ, {"TEST_CONNECTION_API_BASE": "BASE", "TEST_CUSTOM_CONNECTION_KEY": "CUSTOM_VALUE"} ): override_connection_config_with_environment_variable(connections) assert connections["test_connection"]["value"]["api_key"] == "KEY" assert connections["test_connection"]["value"]["api_base"] == "BASE" assert connections["test_custom_connection"]["value"]["key"] == "CUSTOM_VALUE" assert connections["test_custom_connection"]["value"]["key2"] == "value2" def test_generate_flow_tools_json(self) -> None: # call twice to ensure system path won't be affected during generation for _ in range(2): flow_src_path = "./tests/test_configs/flows/flow_with_sys_inject" with tempfile.TemporaryDirectory() as temp_dir: flow_dst_path = os.path.join(temp_dir, "flow_with_sys_inject") shutil.copytree(flow_src_path, flow_dst_path) flow_tools_json = generate_flow_tools_json(flow_dst_path, dump=False) groundtruth = { "hello.py": { "type": "python", "inputs": { "input1": { "type": [ "string", ], }, }, "source": "hello.py", "function": "my_python_tool", } } assert flow_tools_json["code"] == groundtruth def test_generate_flow_tools_json_expecting_fail(self) -> None: flow_path = "./tests/test_configs/flows/flow_with_invalid_import" with pytest.raises(GenerateFlowToolsJsonError) as e: generate_flow_tools_json(flow_path, dump=False) assert "Generate meta failed, detail error(s):" in str(e.value) # raise_error = False flow_tools_json = generate_flow_tools_json(flow_path, dump=False, raise_error=False) assert len(flow_tools_json["code"]) == 0 @pytest.mark.parametrize( "python_path, env_hash", [ ("D:\\Tools\\Anaconda3\\envs\\pf\\python.exe", ("a9620c3cdb7ccf3ec9f4005e5b19c12d1e1fef80")), ("/Users/fake_user/anaconda3/envs/pf/bin/python3.10", ("e3f33eadd9be376014eb75a688930930ca83c056")), ], ) def test_generate_connections_dir(self, python_path, env_hash): expected_result = (HOME_PROMPT_FLOW_DIR / "envs" / env_hash / "connections").resolve() with patch.object(sys, "executable", python_path): result = _generate_connections_dir() assert result == expected_result def test_refresh_connections_dir(self): from promptflow._core.tools_manager import collect_package_tools_and_connections tools, specs, templates = collect_package_tools_and_connections() refresh_connections_dir(specs, templates) conn_dir = _generate_connections_dir() assert len(os.listdir(conn_dir)) > 0, "No files were generated" @pytest.mark.parametrize("concurrent_count", [1, 2, 4, 8]) def test_concurrent_execution_of_refresh_connections_dir(self, concurrent_count): threads = [] # Create and start threads for _ in range(concurrent_count): thread = threading.Thread( target=lambda: refresh_connections_dir(connection_spec_files=[], connection_template_yamls=[]) ) thread.start() threads.append(thread) for thread in threads: thread.join() def test_concurrent_hint_for_update(self): def mock_check_latest_version(): time.sleep(5) check_latest_version() with patch("promptflow._utils.version_hint_utils.datetime") as mock_datetime, patch( "promptflow._utils.version_hint_utils.check_latest_version", side_effect=mock_check_latest_version ): from promptflow._sdk._telemetry import monitor_operation class HintForUpdate: @monitor_operation(activity_name="pf.flows.test") def hint_func(self): return current_time = datetime.datetime.now() mock_datetime.datetime.now.return_value = current_time mock_datetime.datetime.strptime.return_value = current_time - datetime.timedelta(days=8) mock_datetime.timedelta.return_value = datetime.timedelta(days=7) HintForUpdate().hint_func() assert Path(HOME_PROMPT_FLOW_DIR / PF_VERSION_CHECK).exists() with open(HOME_PROMPT_FLOW_DIR / PF_VERSION_CHECK, "r") as f: cached_versions = json.load(f) # since mock_check_latest_version is a demon thread, it will exit when main thread complete, so # LAST_CHECK_TIME won't be updated since sleep 5s assert LAST_CHECK_TIME not in cached_versions or cached_versions[LAST_CHECK_TIME] != str(current_time) @pytest.mark.parametrize( "data_path", [ "./tests/test_configs/datas/load_data_cases/colors.csv", "./tests/test_configs/datas/load_data_cases/colors.json", "./tests/test_configs/datas/load_data_cases/colors.jsonl", "./tests/test_configs/datas/load_data_cases/colors.tsv", "./tests/test_configs/datas/load_data_cases/colors.parquet", ], ) def test_load_data(self, data_path: str) -> None: # for csv and tsv format, all columns will be string; # for rest, integer will be int and float will be float is_string = "csv" in data_path or "tsv" in data_path df = load_data(data_path) assert len(df) == 3 assert df[0]["name"] == "Red" assert isinstance(df[0]["id_text"], str) assert df[0]["id_text"] == "1.0" if is_string: assert isinstance(df[0]["id_int"], str) assert df[0]["id_int"] == "1" assert isinstance(df[0]["id_float"], str) assert df[0]["id_float"] == "1.0" else: assert isinstance(df[0]["id_int"], int) assert df[0]["id_int"] == 1 assert isinstance(df[0]["id_float"], float) assert df[0]["id_float"] == 1.0 @pytest.mark.parametrize( "data_path", [ "./tests/test_configs/datas/load_data_cases/10k.jsonl", "./tests/test_configs/datas/load_data_cases/10k", ], ) def test_load_10k_data(self, data_path: str) -> None: df = load_data(data_path) assert len(df) == 10000 # specify max_rows_count max_rows_count = 5000 head_rows = load_data(data_path, max_rows_count=max_rows_count) assert len(head_rows) == max_rows_count assert head_rows == df[:max_rows_count] @pytest.mark.parametrize( "script_name, expected_result", [ ("pfs", "pfs"), ("pfutil.py", "pfutil.py"), ("pf", "pf"), ("pfazure", "pfazure"), ("pf.exe", "pf.exe"), ("pfazure.exe", "pfazure.exe"), ("app.py", "app.py"), ("python -m unittest", "python -m unittest"), ("pytest", "pytest"), ("gunicorn", "gunicorn"), ("ipykernel_launcher.py", "ipykernel_launcher.py"), ("jupyter-notebook", "jupyter-notebook"), ("jupyter-lab", "jupyter-lab"), ("python", "python"), ("Unknown Application", "Unknown Application"), ("unknown_script.py", "***.py"), ("path/to/unknown_script.py", "***.py"), (r"path\to\unknown_script.py", "***.py"), ('invalid_chars_\\/:*?"<>|', "***"), ], ) def test_get_scrubbed_cloud_role(self, script_name, expected_result): with mock.patch("sys.argv", [script_name]): assert get_scrubbed_cloud_role() == expected_result def test_configure_pf_home_dir(self, tmpdir) -> None: from promptflow._sdk import _constants custom_pf_home_dir_path = Path(tmpdir / ".promptflow").resolve() assert not custom_pf_home_dir_path.exists() with patch.dict(os.environ, {PROMPT_FLOW_HOME_DIR_ENV_VAR: custom_pf_home_dir_path.as_posix()}): importlib.reload(_constants) assert _constants.HOME_PROMPT_FLOW_DIR.as_posix() == custom_pf_home_dir_path.as_posix() assert _constants.HOME_PROMPT_FLOW_DIR.is_dir() importlib.reload(_constants) def test_configure_pf_home_dir_with_invalid_path(self) -> None: from promptflow._sdk import _constants invalid_path = "/invalid:path" with patch.dict(os.environ, {PROMPT_FLOW_HOME_DIR_ENV_VAR: invalid_path}): assert os.getenv(PROMPT_FLOW_HOME_DIR_ENV_VAR) == invalid_path importlib.reload(_constants) assert _constants.HOME_PROMPT_FLOW_DIR.as_posix() == (Path.home() / ".promptflow").resolve().as_posix() importlib.reload(_constants) @pytest.mark.unittest class TestCLIUtils: def test_list_of_dict_to_nested_dict(self): test_list = [{"node1.connection": "a"}, {"node2.deploy_name": "b"}] result = list_of_dict_to_nested_dict(test_list) assert result == {"node1": {"connection": "a"}, "node2": {"deploy_name": "b"}} test_list = [{"node1.connection": "a"}, {"node1.deploy_name": "b"}] result = list_of_dict_to_nested_dict(test_list) assert result == {"node1": {"connection": "a", "deploy_name": "b"}} def test_append_to_dict_action(self): parser = argparse.ArgumentParser(prog="test_dict_action") parser.add_argument("--dict", action=AppendToDictAction, nargs="+") args = ["--dict", "key1=val1", "'key2=val2'", '"key3=val3"', "key4='val4'", "key5=\"val5'"] args = parser.parse_args(args) expect_dict = { "key1": "val1", "key2": "val2", "key3": "val3", "key4": "val4", "key5": "\"val5'", } assert args.dict[0] == expect_dict def test_build_sorted_column_widths_tuple_list(self) -> None: columns = ["col1", "col2", "col3"] values1 = {"col1": 1, "col2": 4, "col3": 3} values2 = {"col1": 3, "col2": 3, "col3": 1} margins = {"col1": 1, "col2": 2, "col3": 2} # sort by (max(values1, values2) + margins) res = _build_sorted_column_widths_tuple_list(columns, values1, values2, margins) assert res == [("col2", 6), ("col3", 5), ("col1", 4)] def test_calculate_column_widths(self) -> None: data = [ { "inputs.url": "https://www.youtube.com/watch?v=o5ZQyXaAv1g", "inputs.answer": "Channel", "inputs.evidence": "Url", "outputs.category": "Channel", "outputs.evidence": "URL", }, { "inputs.url": "https://arxiv.org/abs/2307.04767", "inputs.answer": "Academic", "inputs.evidence": "Text content", "outputs.category": "Academic", "outputs.evidence": "Text content", }, { "inputs.url": "https://play.google.com/store/apps/details?id=com.twitter.android", "inputs.answer": "App", "inputs.evidence": "Both", "outputs.category": "App", "outputs.evidence": "Both", }, ] df = pd.DataFrame(data) terminal_width = 120 res = _calculate_column_widths(df, terminal_width) assert res == [4, 23, 13, 15, 15, 15] def test_calculate_column_widths_edge_case(self) -> None: nan = float("nan") # test case comes from examples/flow/evaluation/eval-qna-non-rag data = [ { "inputs.groundtruth": "The Alpine Explorer Tent has the highest rainfly waterproof rating at 3000m", "inputs.answer": "There are various tents available in the market that offer different levels of waterproofing. However, one tent that is often highly regarded for its waterproofing capabilities is the MSR Hubba Hubba NX tent. It features a durable rainfly and a bathtub-style floor construction, both of which contribute to its excellent water resistance. It is always recommended to read product specifications and customer reviews to ensure you find a tent that meets your specific waterproofing requirements.", # noqa: E501 "inputs.context": "{${data.context}}", "inputs.question": "Which tent is the most waterproof?", "inputs.metrics": "gpt_groundedness,f1_score", "inputs.line_number": 0, "inputs.ground_truth": "The Alpine Explorer Tent has the highest rainfly waterproof rating at 3000m", "outputs.line_number": 0, "outputs.ada_similarity": nan, "outputs.f1_score": 0.049999999999999996, "outputs.gpt_coherence": nan, "outputs.gpt_fluency": nan, "outputs.gpt_groundedness": 3.0, "outputs.gpt_relevance": nan, "outputs.gpt_similarity": nan, }, { "inputs.groundtruth": "The Adventure Dining Table has a higher weight capacity than all of the other camping tables mentioned", # noqa: E501 "inputs.answer": "There are various camping tables available that can hold different amounts of weight. Some heavy-duty camping tables can hold up to 300 pounds or more, while others may have lower weight capacities. It's important to check the specifications of each table before purchasing to ensure it can support the weight you require.", # noqa: E501 "inputs.context": "{${data.context}}", "inputs.question": "Which tent is the most waterproof?", "inputs.metrics": "gpt_groundedness,f1_score", "inputs.ground_truth": "The Alpine Explorer Tent has the highest rainfly waterproof rating at 3000m", "outputs.line_number": 1, "outputs.ada_similarity": nan, "outputs.f1_score": 0.0, "outputs.gpt_coherence": nan, "outputs.gpt_fluency": nan, "outputs.gpt_groundedness": 3.0, "outputs.gpt_relevance": nan, "outputs.gpt_similarity": nan, }, ] df = pd.DataFrame(data) terminal_width = 74 # GitHub Actions scenario res = _calculate_column_widths(df, terminal_width) # the column width should at least 1 to avoid tabulate error assert res == [4, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] @pytest.mark.unittest class TestRetryUtils: def test_retry(self): counter = 0 class A: def mock_f(self): return 1 class B(A): @retry(Exception, tries=2, delay=1, backoff=1) def mock_f(self): nonlocal counter counter += 1 raise Exception("mock exception") with pytest.raises(Exception): B().mock_f() assert counter == 2 def test_http_retry(self): counter = 0 def mock_http_request(): nonlocal counter counter += 1 resp = Response() resp.status_code = 429 return resp http_retry_wrapper(mock_http_request, tries=2, delay=1, backoff=1)() assert counter == 2
0