body_hash
stringlengths
64
64
body
stringlengths
23
109k
docstring
stringlengths
1
57k
path
stringlengths
4
198
name
stringlengths
1
115
repository_name
stringlengths
7
111
repository_stars
float64
0
191k
lang
stringclasses
1 value
body_without_docstring
stringlengths
14
108k
unified
stringlengths
45
133k
f1cf716decae4fe9dda10739db6a2e5e58dc9ba049463b17f4bd421099a1cf4a
def get_anchor_gt(all_img_data, class_count, C, img_length_calc_function, backend, mode='train'): '\n\t函数输入:\n\t图片信息\n\t类别统计信息\n\t训练信息类\n\t计算输出特征图大小的函数\n\tkeras用的什么内核\n\t是否为训练\n\n\t函数输出:\n\t图片\n\t数据对象:第一个是是否包含对象,第二个是回归梯度\n\t增强后的图片信息\n\t' sample_selector = SampleSelector(class_count) while True: if (mode == 'train'): np.random.shuffle(all_img_data) for img_data in all_img_data: try: if (C.balanced_classes and sample_selector.skip_sample_for_balanced_class(img_data)): continue if (mode == 'train'): (img_data_aug, x_img) = data_augment.augment(img_data, C, augment=True) else: (img_data_aug, x_img) = data_augment.augment(img_data, C, augment=False) (width, height) = (img_data_aug['width'], img_data_aug['height']) (rows, cols, _) = x_img.shape assert (cols == width) assert (rows == height) (resized_width, resized_height) = get_new_img_size(width, height, C.im_size) x_img = cv2.resize(x_img, (resized_width, resized_height), interpolation=cv2.INTER_CUBIC) try: (y_rpn_cls, y_rpn_regr) = calc_rpn(C, img_data_aug, width, height, resized_width, resized_height, img_length_calc_function) except: continue x_img = x_img[(:, :, (2, 1, 0))] x_img = x_img.astype(np.float32) x_img[(:, :, 0)] -= C.img_channel_mean[0] x_img[(:, :, 1)] -= C.img_channel_mean[1] x_img[(:, :, 2)] -= C.img_channel_mean[2] x_img /= C.img_scaling_factor x_img = np.transpose(x_img, (2, 0, 1)) x_img = np.expand_dims(x_img, axis=0) y_rpn_regr[(:, (y_rpn_regr.shape[1] // 2):, :, :)] *= C.std_scaling if (backend == 'tf'): x_img = np.transpose(x_img, (0, 2, 3, 1)) y_rpn_cls = np.transpose(y_rpn_cls, (0, 2, 3, 1)) y_rpn_regr = np.transpose(y_rpn_regr, (0, 2, 3, 1)) (yield (np.copy(x_img), [np.copy(y_rpn_cls), np.copy(y_rpn_regr)], img_data_aug)) except Exception as e: print(e) continue
函数输入: 图片信息 类别统计信息 训练信息类 计算输出特征图大小的函数 keras用的什么内核 是否为训练 函数输出: 图片 数据对象:第一个是是否包含对象,第二个是回归梯度 增强后的图片信息
keras_frcnn/data_generators.py
get_anchor_gt
zouzhen/simple-faster-rcnn
0
python
def get_anchor_gt(all_img_data, class_count, C, img_length_calc_function, backend, mode='train'): '\n\t函数输入:\n\t图片信息\n\t类别统计信息\n\t训练信息类\n\t计算输出特征图大小的函数\n\tkeras用的什么内核\n\t是否为训练\n\n\t函数输出:\n\t图片\n\t数据对象:第一个是是否包含对象,第二个是回归梯度\n\t增强后的图片信息\n\t' sample_selector = SampleSelector(class_count) while True: if (mode == 'train'): np.random.shuffle(all_img_data) for img_data in all_img_data: try: if (C.balanced_classes and sample_selector.skip_sample_for_balanced_class(img_data)): continue if (mode == 'train'): (img_data_aug, x_img) = data_augment.augment(img_data, C, augment=True) else: (img_data_aug, x_img) = data_augment.augment(img_data, C, augment=False) (width, height) = (img_data_aug['width'], img_data_aug['height']) (rows, cols, _) = x_img.shape assert (cols == width) assert (rows == height) (resized_width, resized_height) = get_new_img_size(width, height, C.im_size) x_img = cv2.resize(x_img, (resized_width, resized_height), interpolation=cv2.INTER_CUBIC) try: (y_rpn_cls, y_rpn_regr) = calc_rpn(C, img_data_aug, width, height, resized_width, resized_height, img_length_calc_function) except: continue x_img = x_img[(:, :, (2, 1, 0))] x_img = x_img.astype(np.float32) x_img[(:, :, 0)] -= C.img_channel_mean[0] x_img[(:, :, 1)] -= C.img_channel_mean[1] x_img[(:, :, 2)] -= C.img_channel_mean[2] x_img /= C.img_scaling_factor x_img = np.transpose(x_img, (2, 0, 1)) x_img = np.expand_dims(x_img, axis=0) y_rpn_regr[(:, (y_rpn_regr.shape[1] // 2):, :, :)] *= C.std_scaling if (backend == 'tf'): x_img = np.transpose(x_img, (0, 2, 3, 1)) y_rpn_cls = np.transpose(y_rpn_cls, (0, 2, 3, 1)) y_rpn_regr = np.transpose(y_rpn_regr, (0, 2, 3, 1)) (yield (np.copy(x_img), [np.copy(y_rpn_cls), np.copy(y_rpn_regr)], img_data_aug)) except Exception as e: print(e) continue
def get_anchor_gt(all_img_data, class_count, C, img_length_calc_function, backend, mode='train'): '\n\t函数输入:\n\t图片信息\n\t类别统计信息\n\t训练信息类\n\t计算输出特征图大小的函数\n\tkeras用的什么内核\n\t是否为训练\n\n\t函数输出:\n\t图片\n\t数据对象:第一个是是否包含对象,第二个是回归梯度\n\t增强后的图片信息\n\t' sample_selector = SampleSelector(class_count) while True: if (mode == 'train'): np.random.shuffle(all_img_data) for img_data in all_img_data: try: if (C.balanced_classes and sample_selector.skip_sample_for_balanced_class(img_data)): continue if (mode == 'train'): (img_data_aug, x_img) = data_augment.augment(img_data, C, augment=True) else: (img_data_aug, x_img) = data_augment.augment(img_data, C, augment=False) (width, height) = (img_data_aug['width'], img_data_aug['height']) (rows, cols, _) = x_img.shape assert (cols == width) assert (rows == height) (resized_width, resized_height) = get_new_img_size(width, height, C.im_size) x_img = cv2.resize(x_img, (resized_width, resized_height), interpolation=cv2.INTER_CUBIC) try: (y_rpn_cls, y_rpn_regr) = calc_rpn(C, img_data_aug, width, height, resized_width, resized_height, img_length_calc_function) except: continue x_img = x_img[(:, :, (2, 1, 0))] x_img = x_img.astype(np.float32) x_img[(:, :, 0)] -= C.img_channel_mean[0] x_img[(:, :, 1)] -= C.img_channel_mean[1] x_img[(:, :, 2)] -= C.img_channel_mean[2] x_img /= C.img_scaling_factor x_img = np.transpose(x_img, (2, 0, 1)) x_img = np.expand_dims(x_img, axis=0) y_rpn_regr[(:, (y_rpn_regr.shape[1] // 2):, :, :)] *= C.std_scaling if (backend == 'tf'): x_img = np.transpose(x_img, (0, 2, 3, 1)) y_rpn_cls = np.transpose(y_rpn_cls, (0, 2, 3, 1)) y_rpn_regr = np.transpose(y_rpn_regr, (0, 2, 3, 1)) (yield (np.copy(x_img), [np.copy(y_rpn_cls), np.copy(y_rpn_regr)], img_data_aug)) except Exception as e: print(e) continue<|docstring|>函数输入: 图片信息 类别统计信息 训练信息类 计算输出特征图大小的函数 keras用的什么内核 是否为训练 函数输出: 图片 数据对象:第一个是是否包含对象,第二个是回归梯度 增强后的图片信息<|endoftext|>
f990972f958a1fc0a5cc4c8fc3bf497ad9147c668fb2a41911526518a586e651
def skip_sample_for_balanced_class(self, img_data): "\n\t\t当输入一张图片时,决定是否要跳过该图片。该图片中包含需要的类返回False,否则返回True\n\t\t【注:cls_name = bbox['class']这是如何用键来取出值】\n\t\t" class_in_img = False for bbox in img_data['bboxes']: cls_name = bbox['class'] if (cls_name == self.curr_class): class_in_img = True self.curr_class = next(self.class_cycle) break if class_in_img: return False else: return True
当输入一张图片时,决定是否要跳过该图片。该图片中包含需要的类返回False,否则返回True 【注:cls_name = bbox['class']这是如何用键来取出值】
keras_frcnn/data_generators.py
skip_sample_for_balanced_class
zouzhen/simple-faster-rcnn
0
python
def skip_sample_for_balanced_class(self, img_data): "\n\t\t当输入一张图片时,决定是否要跳过该图片。该图片中包含需要的类返回False,否则返回True\n\t\t【注:cls_name = bbox['class']这是如何用键来取出值】\n\t\t" class_in_img = False for bbox in img_data['bboxes']: cls_name = bbox['class'] if (cls_name == self.curr_class): class_in_img = True self.curr_class = next(self.class_cycle) break if class_in_img: return False else: return True
def skip_sample_for_balanced_class(self, img_data): "\n\t\t当输入一张图片时,决定是否要跳过该图片。该图片中包含需要的类返回False,否则返回True\n\t\t【注:cls_name = bbox['class']这是如何用键来取出值】\n\t\t" class_in_img = False for bbox in img_data['bboxes']: cls_name = bbox['class'] if (cls_name == self.curr_class): class_in_img = True self.curr_class = next(self.class_cycle) break if class_in_img: return False else: return True<|docstring|>当输入一张图片时,决定是否要跳过该图片。该图片中包含需要的类返回False,否则返回True 【注:cls_name = bbox['class']这是如何用键来取出值】<|endoftext|>
99c18e6fb6be3937880a24bff27b2bdcbd323277a3291306359b8a2ecab40a2f
def import_visualizationProject_add(self, filename): 'table adds' data = base_importData() data.read_csv(filename) data.format_data() self.add_visualizationProject(data.data) data.clear_data()
table adds
SBaaS_visualization/visualization_project_io.py
import_visualizationProject_add
dmccloskey/SBaaS_visualization
0
python
def import_visualizationProject_add(self, filename): data = base_importData() data.read_csv(filename) data.format_data() self.add_visualizationProject(data.data) data.clear_data()
def import_visualizationProject_add(self, filename): data = base_importData() data.read_csv(filename) data.format_data() self.add_visualizationProject(data.data) data.clear_data()<|docstring|>table adds<|endoftext|>
6ce3b6a16e850e73179317f1ae79720af68cea7d3a7d2729d25710450d7fb54f
def import_visualizationProject_update(self, filename): 'table adds' data = base_importData() data.read_csv(filename) data.format_data() self.update_visualizationProject(data.data) data.clear_data()
table adds
SBaaS_visualization/visualization_project_io.py
import_visualizationProject_update
dmccloskey/SBaaS_visualization
0
python
def import_visualizationProject_update(self, filename): data = base_importData() data.read_csv(filename) data.format_data() self.update_visualizationProject(data.data) data.clear_data()
def import_visualizationProject_update(self, filename): data = base_importData() data.read_csv(filename) data.format_data() self.update_visualizationProject(data.data) data.clear_data()<|docstring|>table adds<|endoftext|>
c63438242068d87c9d349547d5d0c49513e10e8088052e665675d13f48b87ab2
def import_visualizationUser_add(self, filename): 'table adds' data = base_importData() data.read_csv(filename) data.format_data() self.add_visualizationUser(data.data) data.clear_data()
table adds
SBaaS_visualization/visualization_project_io.py
import_visualizationUser_add
dmccloskey/SBaaS_visualization
0
python
def import_visualizationUser_add(self, filename): data = base_importData() data.read_csv(filename) data.format_data() self.add_visualizationUser(data.data) data.clear_data()
def import_visualizationUser_add(self, filename): data = base_importData() data.read_csv(filename) data.format_data() self.add_visualizationUser(data.data) data.clear_data()<|docstring|>table adds<|endoftext|>
f829af0a31bb31c6857bb9a0a0abc5ee2e26ae9ed5d72add444d8260f8476069
def import_visualizationUser_update(self, filename): 'table adds' data = base_importData() data.read_csv(filename) data.format_data() self.update_visualizationUser(data.data) data.clear_data()
table adds
SBaaS_visualization/visualization_project_io.py
import_visualizationUser_update
dmccloskey/SBaaS_visualization
0
python
def import_visualizationUser_update(self, filename): data = base_importData() data.read_csv(filename) data.format_data() self.update_visualizationUser(data.data) data.clear_data()
def import_visualizationUser_update(self, filename): data = base_importData() data.read_csv(filename) data.format_data() self.update_visualizationUser(data.data) data.clear_data()<|docstring|>table adds<|endoftext|>
1cfed390fa46f9c92ce4adaa7f3ca340691cd6f89e44969f1fbd1a8b278af7b9
def export_visualizationProject_js(self, project_id_I, data_dir_I='tmp'): 'export visualization_project for visualization' print('exporting visualization_project...') data1_project = {} data1_project = self.get_project_projectID_visualizationProject(project_id_I) data1_O = [] data1_O = self.get_rows_projectID_visualizationProject(project_id_I) data2_O = [] data2_O = self.get_rows_projectID_visualizationProjectDescription(project_id_I) data3_O = [] data3_O = self.get_rows_projectID_visualizationProjectStatus(project_id_I) data1_keys = ['analysis_id', 'data_export_id', 'pipeline_id'] data1_nestkeys = ['data_export_id'] data1_keymap = {'buttonparameter': 'data_export_id', 'liparameter': 'analysis_id', 'buttontext': 'data_export_id', 'litext': 'analysis_id'} data2_keys = ['project_id', 'project_section', 'project_heading', 'project_tileorder'] data2_nestkeys = ['project_id'] data2_keymap = {'htmlmediasrc': 'project_media', 'htmlmediaalt': '', 'htmlmediahref': 'project_href', 'htmlmediaheading': 'project_heading', 'htmlmediaparagraph': 'project_paragraph'} data3_keys = ['project_id', 'pipeline_id', 'pipeline_progress'] data3_nestkeys = ['pipeline_id'] data3_keymap = {'xdata': 'pipeline_progress', 'ydata': 'pipeline_id', 'serieslabel': 'pipeline_id', 'featureslabel': 'pipeline_id', 'ydatalb': None, 'ydataub': None} dataobject_O = [] parametersobject_O = [] tile2datamap_O = {} tile_cnt = 0 row_cnt = 1 if data3_O: cnt = 1 tileid = ('tile' + str(tile_cnt)) colid = ('col' + str(cnt)) rowid = ('row' + str(row_cnt)) formtileparameters_O = {'tileheader': 'Filter menu', 'tiletype': 'html', 'tileid': 'filtermenu1', 'rowid': rowid, 'colid': colid, 'tileclass': 'panel panel-default', 'rowclass': 'row', 'colclass': 'col-sm-4'} formparameters_O = {'htmlid': 'filtermenuform1', 'htmltype': 'form_01', 'formsubmitbuttonidtext': {'id': 'submit1', 'text': 'submit'}, 'formresetbuttonidtext': {'id': 'reset1', 'text': 'reset'}, 'formupdatebuttonidtext': {'id': 'update1', 'text': 'update'}} formtileparameters_O.update(formparameters_O) dataobject_O.append({'data': data3_O, 'datakeys': data3_keys, 'datanestkeys': data3_nestkeys}) parametersobject_O.append(formtileparameters_O) tile2datamap_O.update({'filtermenu1': [tile_cnt]}) cnt += 1 svgtileid = ('tilesvg' + str(tile_cnt)) svgid = ('svg' + str(tile_cnt)) colid = ('col' + str(cnt)) svgparameters1_O = {'svgtype': 'horizontalbarschart2d_01', 'svgkeymap': [data3_keymap], 'svgid': ('svg' + str(cnt)), 'svgmargin': {'top': 50, 'right': 150, 'bottom': 50, 'left': 150}, 'svgwidth': 350, 'svgheight': 250, 'svgy1axislabel': 'fraction'} svgtileparameters1_O = {'tileheader': 'Project status', 'tiletype': 'svg', 'tileid': svgtileid, 'rowid': rowid, 'colid': colid, 'tileclass': 'panel panel-default', 'rowclass': 'row', 'colclass': 'col-sm-8'} svgtileparameters1_O.update(svgparameters1_O) parametersobject_O.append(svgtileparameters1_O) tile2datamap_O.update({svgtileid: [tile_cnt]}) tile_cnt += 1 row_cnt += 1 if data2_O: for (i, d) in enumerate(data2_O): tileid = ('tile' + str(tile_cnt)) colid = ('col' + str(i)) rowid = ('row' + str(row_cnt)) tileheader = d['project_section'] htmlid = ('html' + str(tile_cnt)) tileparameters = {'tileheader': tileheader, 'tiletype': 'html', 'tileid': tileid, 'rowid': rowid, 'colid': colid, 'tileclass': 'panel panel-default', 'rowclass': 'row', 'colclass': 'col-sm-6'} htmlparameters = {'htmlkeymap': [data2_keymap], 'htmltype': 'media_01', 'htmlid': htmlid} tileparameters.update(htmlparameters) parametersobject_O.append(tileparameters) dataobject_O.append({'data': [d], 'datakeys': data2_keys, 'datanestkeys': data2_nestkeys}) tile2datamap_O.update({tileid: [tile_cnt]}) tile_cnt += 1 row_cnt += 1 if data1_project: data1_dict = {} for data_export_id in data1_project['data_export_id']: data1_dict[data_export_id] = [] for d in data1_O: data1_dict[d['data_export_id']].append(d) data1_keys = list(data1_dict.keys()) data1_keys.sort() col_cnt = 0 for k in data1_keys: tileid = ('tile' + str(tile_cnt)) colid = ('col' + str(col_cnt)) rowid = ('row' + str(row_cnt)) tileheader = data1_dict[k][0]['pipeline_id'] htmlid = ('html' + str(tile_cnt)) tileparameters = {'tileheader': tileheader, 'tiletype': 'html', 'tileid': tileid, 'rowid': rowid, 'colid': colid, 'tileclass': 'panel panel-default', 'rowclass': 'row', 'colclass': 'col-sm-6', 'formsubmitbuttonidtext': {'id': 'submit1', 'text': 'submit'}} hrefparameters = {'hrefurl': 'project.html', 'htmlkeymap': [data1_keymap], 'htmltype': 'href_02', 'htmlid': htmlid} tileparameters.update(hrefparameters) parametersobject_O.append(tileparameters) dataobject_O.append({'data': data1_dict[k], 'datakeys': data1_keys, 'datanestkeys': data1_nestkeys}) tile2datamap_O.update({tileid: [tile_cnt]}) tile_cnt += 1 col_cnt += 1 ddtutilities = ddt_container(parameters_I=parametersobject_O, data_I=dataobject_O, tile2datamap_I=tile2datamap_O, filtermenu_I=None) if (data_dir_I == 'tmp'): filename_str = (self.settings['visualization_data'] + '/tmp/ddt_data.js') elif (data_dir_I == 'data_json'): data_json_O = ddtutilities.get_allObjects_js() return data_json_O with open(filename_str, 'w') as file: file.write(ddtutilities.get_allObjects())
export visualization_project for visualization
SBaaS_visualization/visualization_project_io.py
export_visualizationProject_js
dmccloskey/SBaaS_visualization
0
python
def export_visualizationProject_js(self, project_id_I, data_dir_I='tmp'): print('exporting visualization_project...') data1_project = {} data1_project = self.get_project_projectID_visualizationProject(project_id_I) data1_O = [] data1_O = self.get_rows_projectID_visualizationProject(project_id_I) data2_O = [] data2_O = self.get_rows_projectID_visualizationProjectDescription(project_id_I) data3_O = [] data3_O = self.get_rows_projectID_visualizationProjectStatus(project_id_I) data1_keys = ['analysis_id', 'data_export_id', 'pipeline_id'] data1_nestkeys = ['data_export_id'] data1_keymap = {'buttonparameter': 'data_export_id', 'liparameter': 'analysis_id', 'buttontext': 'data_export_id', 'litext': 'analysis_id'} data2_keys = ['project_id', 'project_section', 'project_heading', 'project_tileorder'] data2_nestkeys = ['project_id'] data2_keymap = {'htmlmediasrc': 'project_media', 'htmlmediaalt': , 'htmlmediahref': 'project_href', 'htmlmediaheading': 'project_heading', 'htmlmediaparagraph': 'project_paragraph'} data3_keys = ['project_id', 'pipeline_id', 'pipeline_progress'] data3_nestkeys = ['pipeline_id'] data3_keymap = {'xdata': 'pipeline_progress', 'ydata': 'pipeline_id', 'serieslabel': 'pipeline_id', 'featureslabel': 'pipeline_id', 'ydatalb': None, 'ydataub': None} dataobject_O = [] parametersobject_O = [] tile2datamap_O = {} tile_cnt = 0 row_cnt = 1 if data3_O: cnt = 1 tileid = ('tile' + str(tile_cnt)) colid = ('col' + str(cnt)) rowid = ('row' + str(row_cnt)) formtileparameters_O = {'tileheader': 'Filter menu', 'tiletype': 'html', 'tileid': 'filtermenu1', 'rowid': rowid, 'colid': colid, 'tileclass': 'panel panel-default', 'rowclass': 'row', 'colclass': 'col-sm-4'} formparameters_O = {'htmlid': 'filtermenuform1', 'htmltype': 'form_01', 'formsubmitbuttonidtext': {'id': 'submit1', 'text': 'submit'}, 'formresetbuttonidtext': {'id': 'reset1', 'text': 'reset'}, 'formupdatebuttonidtext': {'id': 'update1', 'text': 'update'}} formtileparameters_O.update(formparameters_O) dataobject_O.append({'data': data3_O, 'datakeys': data3_keys, 'datanestkeys': data3_nestkeys}) parametersobject_O.append(formtileparameters_O) tile2datamap_O.update({'filtermenu1': [tile_cnt]}) cnt += 1 svgtileid = ('tilesvg' + str(tile_cnt)) svgid = ('svg' + str(tile_cnt)) colid = ('col' + str(cnt)) svgparameters1_O = {'svgtype': 'horizontalbarschart2d_01', 'svgkeymap': [data3_keymap], 'svgid': ('svg' + str(cnt)), 'svgmargin': {'top': 50, 'right': 150, 'bottom': 50, 'left': 150}, 'svgwidth': 350, 'svgheight': 250, 'svgy1axislabel': 'fraction'} svgtileparameters1_O = {'tileheader': 'Project status', 'tiletype': 'svg', 'tileid': svgtileid, 'rowid': rowid, 'colid': colid, 'tileclass': 'panel panel-default', 'rowclass': 'row', 'colclass': 'col-sm-8'} svgtileparameters1_O.update(svgparameters1_O) parametersobject_O.append(svgtileparameters1_O) tile2datamap_O.update({svgtileid: [tile_cnt]}) tile_cnt += 1 row_cnt += 1 if data2_O: for (i, d) in enumerate(data2_O): tileid = ('tile' + str(tile_cnt)) colid = ('col' + str(i)) rowid = ('row' + str(row_cnt)) tileheader = d['project_section'] htmlid = ('html' + str(tile_cnt)) tileparameters = {'tileheader': tileheader, 'tiletype': 'html', 'tileid': tileid, 'rowid': rowid, 'colid': colid, 'tileclass': 'panel panel-default', 'rowclass': 'row', 'colclass': 'col-sm-6'} htmlparameters = {'htmlkeymap': [data2_keymap], 'htmltype': 'media_01', 'htmlid': htmlid} tileparameters.update(htmlparameters) parametersobject_O.append(tileparameters) dataobject_O.append({'data': [d], 'datakeys': data2_keys, 'datanestkeys': data2_nestkeys}) tile2datamap_O.update({tileid: [tile_cnt]}) tile_cnt += 1 row_cnt += 1 if data1_project: data1_dict = {} for data_export_id in data1_project['data_export_id']: data1_dict[data_export_id] = [] for d in data1_O: data1_dict[d['data_export_id']].append(d) data1_keys = list(data1_dict.keys()) data1_keys.sort() col_cnt = 0 for k in data1_keys: tileid = ('tile' + str(tile_cnt)) colid = ('col' + str(col_cnt)) rowid = ('row' + str(row_cnt)) tileheader = data1_dict[k][0]['pipeline_id'] htmlid = ('html' + str(tile_cnt)) tileparameters = {'tileheader': tileheader, 'tiletype': 'html', 'tileid': tileid, 'rowid': rowid, 'colid': colid, 'tileclass': 'panel panel-default', 'rowclass': 'row', 'colclass': 'col-sm-6', 'formsubmitbuttonidtext': {'id': 'submit1', 'text': 'submit'}} hrefparameters = {'hrefurl': 'project.html', 'htmlkeymap': [data1_keymap], 'htmltype': 'href_02', 'htmlid': htmlid} tileparameters.update(hrefparameters) parametersobject_O.append(tileparameters) dataobject_O.append({'data': data1_dict[k], 'datakeys': data1_keys, 'datanestkeys': data1_nestkeys}) tile2datamap_O.update({tileid: [tile_cnt]}) tile_cnt += 1 col_cnt += 1 ddtutilities = ddt_container(parameters_I=parametersobject_O, data_I=dataobject_O, tile2datamap_I=tile2datamap_O, filtermenu_I=None) if (data_dir_I == 'tmp'): filename_str = (self.settings['visualization_data'] + '/tmp/ddt_data.js') elif (data_dir_I == 'data_json'): data_json_O = ddtutilities.get_allObjects_js() return data_json_O with open(filename_str, 'w') as file: file.write(ddtutilities.get_allObjects())
def export_visualizationProject_js(self, project_id_I, data_dir_I='tmp'): print('exporting visualization_project...') data1_project = {} data1_project = self.get_project_projectID_visualizationProject(project_id_I) data1_O = [] data1_O = self.get_rows_projectID_visualizationProject(project_id_I) data2_O = [] data2_O = self.get_rows_projectID_visualizationProjectDescription(project_id_I) data3_O = [] data3_O = self.get_rows_projectID_visualizationProjectStatus(project_id_I) data1_keys = ['analysis_id', 'data_export_id', 'pipeline_id'] data1_nestkeys = ['data_export_id'] data1_keymap = {'buttonparameter': 'data_export_id', 'liparameter': 'analysis_id', 'buttontext': 'data_export_id', 'litext': 'analysis_id'} data2_keys = ['project_id', 'project_section', 'project_heading', 'project_tileorder'] data2_nestkeys = ['project_id'] data2_keymap = {'htmlmediasrc': 'project_media', 'htmlmediaalt': , 'htmlmediahref': 'project_href', 'htmlmediaheading': 'project_heading', 'htmlmediaparagraph': 'project_paragraph'} data3_keys = ['project_id', 'pipeline_id', 'pipeline_progress'] data3_nestkeys = ['pipeline_id'] data3_keymap = {'xdata': 'pipeline_progress', 'ydata': 'pipeline_id', 'serieslabel': 'pipeline_id', 'featureslabel': 'pipeline_id', 'ydatalb': None, 'ydataub': None} dataobject_O = [] parametersobject_O = [] tile2datamap_O = {} tile_cnt = 0 row_cnt = 1 if data3_O: cnt = 1 tileid = ('tile' + str(tile_cnt)) colid = ('col' + str(cnt)) rowid = ('row' + str(row_cnt)) formtileparameters_O = {'tileheader': 'Filter menu', 'tiletype': 'html', 'tileid': 'filtermenu1', 'rowid': rowid, 'colid': colid, 'tileclass': 'panel panel-default', 'rowclass': 'row', 'colclass': 'col-sm-4'} formparameters_O = {'htmlid': 'filtermenuform1', 'htmltype': 'form_01', 'formsubmitbuttonidtext': {'id': 'submit1', 'text': 'submit'}, 'formresetbuttonidtext': {'id': 'reset1', 'text': 'reset'}, 'formupdatebuttonidtext': {'id': 'update1', 'text': 'update'}} formtileparameters_O.update(formparameters_O) dataobject_O.append({'data': data3_O, 'datakeys': data3_keys, 'datanestkeys': data3_nestkeys}) parametersobject_O.append(formtileparameters_O) tile2datamap_O.update({'filtermenu1': [tile_cnt]}) cnt += 1 svgtileid = ('tilesvg' + str(tile_cnt)) svgid = ('svg' + str(tile_cnt)) colid = ('col' + str(cnt)) svgparameters1_O = {'svgtype': 'horizontalbarschart2d_01', 'svgkeymap': [data3_keymap], 'svgid': ('svg' + str(cnt)), 'svgmargin': {'top': 50, 'right': 150, 'bottom': 50, 'left': 150}, 'svgwidth': 350, 'svgheight': 250, 'svgy1axislabel': 'fraction'} svgtileparameters1_O = {'tileheader': 'Project status', 'tiletype': 'svg', 'tileid': svgtileid, 'rowid': rowid, 'colid': colid, 'tileclass': 'panel panel-default', 'rowclass': 'row', 'colclass': 'col-sm-8'} svgtileparameters1_O.update(svgparameters1_O) parametersobject_O.append(svgtileparameters1_O) tile2datamap_O.update({svgtileid: [tile_cnt]}) tile_cnt += 1 row_cnt += 1 if data2_O: for (i, d) in enumerate(data2_O): tileid = ('tile' + str(tile_cnt)) colid = ('col' + str(i)) rowid = ('row' + str(row_cnt)) tileheader = d['project_section'] htmlid = ('html' + str(tile_cnt)) tileparameters = {'tileheader': tileheader, 'tiletype': 'html', 'tileid': tileid, 'rowid': rowid, 'colid': colid, 'tileclass': 'panel panel-default', 'rowclass': 'row', 'colclass': 'col-sm-6'} htmlparameters = {'htmlkeymap': [data2_keymap], 'htmltype': 'media_01', 'htmlid': htmlid} tileparameters.update(htmlparameters) parametersobject_O.append(tileparameters) dataobject_O.append({'data': [d], 'datakeys': data2_keys, 'datanestkeys': data2_nestkeys}) tile2datamap_O.update({tileid: [tile_cnt]}) tile_cnt += 1 row_cnt += 1 if data1_project: data1_dict = {} for data_export_id in data1_project['data_export_id']: data1_dict[data_export_id] = [] for d in data1_O: data1_dict[d['data_export_id']].append(d) data1_keys = list(data1_dict.keys()) data1_keys.sort() col_cnt = 0 for k in data1_keys: tileid = ('tile' + str(tile_cnt)) colid = ('col' + str(col_cnt)) rowid = ('row' + str(row_cnt)) tileheader = data1_dict[k][0]['pipeline_id'] htmlid = ('html' + str(tile_cnt)) tileparameters = {'tileheader': tileheader, 'tiletype': 'html', 'tileid': tileid, 'rowid': rowid, 'colid': colid, 'tileclass': 'panel panel-default', 'rowclass': 'row', 'colclass': 'col-sm-6', 'formsubmitbuttonidtext': {'id': 'submit1', 'text': 'submit'}} hrefparameters = {'hrefurl': 'project.html', 'htmlkeymap': [data1_keymap], 'htmltype': 'href_02', 'htmlid': htmlid} tileparameters.update(hrefparameters) parametersobject_O.append(tileparameters) dataobject_O.append({'data': data1_dict[k], 'datakeys': data1_keys, 'datanestkeys': data1_nestkeys}) tile2datamap_O.update({tileid: [tile_cnt]}) tile_cnt += 1 col_cnt += 1 ddtutilities = ddt_container(parameters_I=parametersobject_O, data_I=dataobject_O, tile2datamap_I=tile2datamap_O, filtermenu_I=None) if (data_dir_I == 'tmp'): filename_str = (self.settings['visualization_data'] + '/tmp/ddt_data.js') elif (data_dir_I == 'data_json'): data_json_O = ddtutilities.get_allObjects_js() return data_json_O with open(filename_str, 'w') as file: file.write(ddtutilities.get_allObjects())<|docstring|>export visualization_project for visualization<|endoftext|>
8f52178042ff896999245da33cee42a2237839ad01e9c49e57d6306cab73ae20
def export_visualizationProject_csv(self, project_id_I, filename_O): 'export the visualization project to csv' data1_O = [] data1_O = self.get_rows_projectID_visualizationProject(project_id_I) io = base_exportData(data1_O) io.write_dict2csv(filename_O)
export the visualization project to csv
SBaaS_visualization/visualization_project_io.py
export_visualizationProject_csv
dmccloskey/SBaaS_visualization
0
python
def export_visualizationProject_csv(self, project_id_I, filename_O): data1_O = [] data1_O = self.get_rows_projectID_visualizationProject(project_id_I) io = base_exportData(data1_O) io.write_dict2csv(filename_O)
def export_visualizationProject_csv(self, project_id_I, filename_O): data1_O = [] data1_O = self.get_rows_projectID_visualizationProject(project_id_I) io = base_exportData(data1_O) io.write_dict2csv(filename_O)<|docstring|>export the visualization project to csv<|endoftext|>
c9d54ce187aa308eea231faf78ae3f2c8ebb6a00b101218ab12b80130d551a29
def yaml_load(yaml_str): 'Wrap YAML load library.' yml = YAML(typ='safe') return yml.load(yaml_str)
Wrap YAML load library.
faucet/config_parser_util.py
yaml_load
dangervon/faucet
393
python
def yaml_load(yaml_str): yml = YAML(typ='safe') return yml.load(yaml_str)
def yaml_load(yaml_str): yml = YAML(typ='safe') return yml.load(yaml_str)<|docstring|>Wrap YAML load library.<|endoftext|>
fb40df39879feca5967384e7a83bc342ca6b5cda906f88174afba84e381b790b
def yaml_dump(yaml_dict): 'Wrap YAML dump library.' with StringIO() as stream: yml = YAML(typ='safe') yml.dump(yaml_dict, stream=stream) return stream.getvalue()
Wrap YAML dump library.
faucet/config_parser_util.py
yaml_dump
dangervon/faucet
393
python
def yaml_dump(yaml_dict): with StringIO() as stream: yml = YAML(typ='safe') yml.dump(yaml_dict, stream=stream) return stream.getvalue()
def yaml_dump(yaml_dict): with StringIO() as stream: yml = YAML(typ='safe') yml.dump(yaml_dict, stream=stream) return stream.getvalue()<|docstring|>Wrap YAML dump library.<|endoftext|>
62674c90168d411cb8b5c163473971d4e8e8bb625b2fef3824b5d86353ffcdb8
def get_logger(logname): 'Return logger instance for config parsing.' return logging.getLogger((logname + '.config'))
Return logger instance for config parsing.
faucet/config_parser_util.py
get_logger
dangervon/faucet
393
python
def get_logger(logname): return logging.getLogger((logname + '.config'))
def get_logger(logname): return logging.getLogger((logname + '.config'))<|docstring|>Return logger instance for config parsing.<|endoftext|>
822aa163d469522bc20246ac4300478ee59d79100a5524fa2415360e595c9bf3
def read_config(config_file, logname): 'Return a parsed YAML config file or None.' logger = get_logger(logname) conf_txt = None conf = None try: with open(config_file, 'r', encoding='utf-8') as stream: conf_txt = stream.read() conf = yaml_load(conf_txt) except (TypeError, UnicodeDecodeError, PermissionError, ValueError, ScannerError, DuplicateKeyError, ComposerError, ConstructorError, ParserError) as err: logger.error('Error in file %s (%s)', config_file, str(err)) except FileNotFoundError as err: logger.error('Could not find requested file: %s (%s)', config_file, str(err)) return (conf, conf_txt)
Return a parsed YAML config file or None.
faucet/config_parser_util.py
read_config
dangervon/faucet
393
python
def read_config(config_file, logname): logger = get_logger(logname) conf_txt = None conf = None try: with open(config_file, 'r', encoding='utf-8') as stream: conf_txt = stream.read() conf = yaml_load(conf_txt) except (TypeError, UnicodeDecodeError, PermissionError, ValueError, ScannerError, DuplicateKeyError, ComposerError, ConstructorError, ParserError) as err: logger.error('Error in file %s (%s)', config_file, str(err)) except FileNotFoundError as err: logger.error('Could not find requested file: %s (%s)', config_file, str(err)) return (conf, conf_txt)
def read_config(config_file, logname): logger = get_logger(logname) conf_txt = None conf = None try: with open(config_file, 'r', encoding='utf-8') as stream: conf_txt = stream.read() conf = yaml_load(conf_txt) except (TypeError, UnicodeDecodeError, PermissionError, ValueError, ScannerError, DuplicateKeyError, ComposerError, ConstructorError, ParserError) as err: logger.error('Error in file %s (%s)', config_file, str(err)) except FileNotFoundError as err: logger.error('Could not find requested file: %s (%s)', config_file, str(err)) return (conf, conf_txt)<|docstring|>Return a parsed YAML config file or None.<|endoftext|>
c1bf4f61bbf9a1258f5ad7e791fdf1ba3298552f0faf6a0bc65a1241fa3e6ba2
def config_hash_content(content): 'Return hash of config file content.' config_hash = getattr(hashlib, CONFIG_HASH_FUNC) return config_hash(content.encode('utf-8')).hexdigest()
Return hash of config file content.
faucet/config_parser_util.py
config_hash_content
dangervon/faucet
393
python
def config_hash_content(content): config_hash = getattr(hashlib, CONFIG_HASH_FUNC) return config_hash(content.encode('utf-8')).hexdigest()
def config_hash_content(content): config_hash = getattr(hashlib, CONFIG_HASH_FUNC) return config_hash(content.encode('utf-8')).hexdigest()<|docstring|>Return hash of config file content.<|endoftext|>
b5e6769d764f74c70a0ee7eb14c34a3a606cd3664e5d8584a177aaa013e411fb
def config_file_hash(config_file_name): 'Return hash of YAML config file contents.' with open(config_file_name, encoding='utf-8') as config_file: return config_hash_content(config_file.read())
Return hash of YAML config file contents.
faucet/config_parser_util.py
config_file_hash
dangervon/faucet
393
python
def config_file_hash(config_file_name): with open(config_file_name, encoding='utf-8') as config_file: return config_hash_content(config_file.read())
def config_file_hash(config_file_name): with open(config_file_name, encoding='utf-8') as config_file: return config_hash_content(config_file.read())<|docstring|>Return hash of YAML config file contents.<|endoftext|>
5321fc10b27ff2f8495f9816e0143e9df147ed6dc7056a7acec957a071fd0587
def dp_config_path(config_file, parent_file=None): 'Return full path to config file.' if (parent_file and (not os.path.isabs(config_file))): return os.path.realpath(os.path.join(os.path.dirname(parent_file), config_file)) return os.path.realpath(config_file)
Return full path to config file.
faucet/config_parser_util.py
dp_config_path
dangervon/faucet
393
python
def dp_config_path(config_file, parent_file=None): if (parent_file and (not os.path.isabs(config_file))): return os.path.realpath(os.path.join(os.path.dirname(parent_file), config_file)) return os.path.realpath(config_file)
def dp_config_path(config_file, parent_file=None): if (parent_file and (not os.path.isabs(config_file))): return os.path.realpath(os.path.join(os.path.dirname(parent_file), config_file)) return os.path.realpath(config_file)<|docstring|>Return full path to config file.<|endoftext|>
49058b6442bf7c6268c32ddd4dc391c114d379ec013b36f00e803d46af2b26c8
def dp_include(config_hashes, config_contents, config_file, logname, top_confs): 'Handles including additional config files' logger = get_logger(logname) if (not os.path.isfile(config_file)): logger.warning('not a regular file or does not exist: %s', config_file) return False (conf, config_content) = read_config(config_file, logname) if (not conf): logger.warning('error loading config from file: %s', config_file) return False valid_conf_keys = set(top_confs.keys()).union({'include', 'include-optional', 'version'}) unknown_top_confs = (set(conf.keys()) - valid_conf_keys) if unknown_top_confs: logger.error('unknown top level config items: %s', unknown_top_confs) return False new_config_hashes = config_hashes.copy() new_config_hashes[config_file] = config_hash_content(config_content) new_config_contents = config_contents.copy() new_config_contents[config_file] = config_content new_top_confs = {} for (conf_name, curr_conf) in top_confs.items(): new_top_confs[conf_name] = curr_conf.copy() try: new_top_confs[conf_name].update(conf.pop(conf_name, {})) except (TypeError, ValueError): logger.error('Invalid config for "%s"', conf_name) return False for (include_directive, file_required) in (('include', True), ('include-optional', False)): include_values = conf.pop(include_directive, []) if (not isinstance(include_values, list)): logger.error('Include directive is not in a valid format') return False for include_file in include_values: if (not isinstance(include_file, str)): include_file = str(include_file) include_path = dp_config_path(include_file, parent_file=config_file) logger.info('including file: %s', include_path) if (include_path in config_hashes): logger.error('include file %s already loaded, include loop found in file: %s', include_path, config_file) return False if (not dp_include(new_config_hashes, config_contents, include_path, logname, new_top_confs)): if file_required: logger.error('unable to load required include file: %s', include_path) return False new_config_hashes[include_path] = None logger.warning('skipping optional include file: %s', include_path) config_hashes.update(new_config_hashes) config_contents.update(new_config_contents) for (conf_name, new_conf) in new_top_confs.items(): top_confs[conf_name].update(new_conf) return True
Handles including additional config files
faucet/config_parser_util.py
dp_include
dangervon/faucet
393
python
def dp_include(config_hashes, config_contents, config_file, logname, top_confs): logger = get_logger(logname) if (not os.path.isfile(config_file)): logger.warning('not a regular file or does not exist: %s', config_file) return False (conf, config_content) = read_config(config_file, logname) if (not conf): logger.warning('error loading config from file: %s', config_file) return False valid_conf_keys = set(top_confs.keys()).union({'include', 'include-optional', 'version'}) unknown_top_confs = (set(conf.keys()) - valid_conf_keys) if unknown_top_confs: logger.error('unknown top level config items: %s', unknown_top_confs) return False new_config_hashes = config_hashes.copy() new_config_hashes[config_file] = config_hash_content(config_content) new_config_contents = config_contents.copy() new_config_contents[config_file] = config_content new_top_confs = {} for (conf_name, curr_conf) in top_confs.items(): new_top_confs[conf_name] = curr_conf.copy() try: new_top_confs[conf_name].update(conf.pop(conf_name, {})) except (TypeError, ValueError): logger.error('Invalid config for "%s"', conf_name) return False for (include_directive, file_required) in (('include', True), ('include-optional', False)): include_values = conf.pop(include_directive, []) if (not isinstance(include_values, list)): logger.error('Include directive is not in a valid format') return False for include_file in include_values: if (not isinstance(include_file, str)): include_file = str(include_file) include_path = dp_config_path(include_file, parent_file=config_file) logger.info('including file: %s', include_path) if (include_path in config_hashes): logger.error('include file %s already loaded, include loop found in file: %s', include_path, config_file) return False if (not dp_include(new_config_hashes, config_contents, include_path, logname, new_top_confs)): if file_required: logger.error('unable to load required include file: %s', include_path) return False new_config_hashes[include_path] = None logger.warning('skipping optional include file: %s', include_path) config_hashes.update(new_config_hashes) config_contents.update(new_config_contents) for (conf_name, new_conf) in new_top_confs.items(): top_confs[conf_name].update(new_conf) return True
def dp_include(config_hashes, config_contents, config_file, logname, top_confs): logger = get_logger(logname) if (not os.path.isfile(config_file)): logger.warning('not a regular file or does not exist: %s', config_file) return False (conf, config_content) = read_config(config_file, logname) if (not conf): logger.warning('error loading config from file: %s', config_file) return False valid_conf_keys = set(top_confs.keys()).union({'include', 'include-optional', 'version'}) unknown_top_confs = (set(conf.keys()) - valid_conf_keys) if unknown_top_confs: logger.error('unknown top level config items: %s', unknown_top_confs) return False new_config_hashes = config_hashes.copy() new_config_hashes[config_file] = config_hash_content(config_content) new_config_contents = config_contents.copy() new_config_contents[config_file] = config_content new_top_confs = {} for (conf_name, curr_conf) in top_confs.items(): new_top_confs[conf_name] = curr_conf.copy() try: new_top_confs[conf_name].update(conf.pop(conf_name, {})) except (TypeError, ValueError): logger.error('Invalid config for "%s"', conf_name) return False for (include_directive, file_required) in (('include', True), ('include-optional', False)): include_values = conf.pop(include_directive, []) if (not isinstance(include_values, list)): logger.error('Include directive is not in a valid format') return False for include_file in include_values: if (not isinstance(include_file, str)): include_file = str(include_file) include_path = dp_config_path(include_file, parent_file=config_file) logger.info('including file: %s', include_path) if (include_path in config_hashes): logger.error('include file %s already loaded, include loop found in file: %s', include_path, config_file) return False if (not dp_include(new_config_hashes, config_contents, include_path, logname, new_top_confs)): if file_required: logger.error('unable to load required include file: %s', include_path) return False new_config_hashes[include_path] = None logger.warning('skipping optional include file: %s', include_path) config_hashes.update(new_config_hashes) config_contents.update(new_config_contents) for (conf_name, new_conf) in new_top_confs.items(): top_confs[conf_name].update(new_conf) return True<|docstring|>Handles including additional config files<|endoftext|>
c0b88f16e5d0cd26da0c4f86f4b5499ee10684c1f558be8ef2d796fb839b1c7e
def config_changed(top_config_file, new_top_config_file, config_hashes): 'Return True if configuration has changed.\n\n Args:\n top_config_file (str): name of FAUCET config file\n new_top_config_file (str): name, possibly new, of FAUCET config file.\n config_hashes (dict): map of config file/includes and hashes of contents.\n Returns:\n bool: True if the file, or any file it includes, has changed.\n ' if (new_top_config_file != top_config_file): return True if ((config_hashes is None) or (new_top_config_file is None)): return False for (config_file, config_hash) in config_hashes.items(): config_file_exists = os.path.isfile(config_file) if ((config_hash is None) and config_file_exists): return True if (config_hash and (not config_file_exists)): return True if config_file_exists: new_config_hash = config_file_hash(config_file) if (new_config_hash != config_hash): return True return False
Return True if configuration has changed. Args: top_config_file (str): name of FAUCET config file new_top_config_file (str): name, possibly new, of FAUCET config file. config_hashes (dict): map of config file/includes and hashes of contents. Returns: bool: True if the file, or any file it includes, has changed.
faucet/config_parser_util.py
config_changed
dangervon/faucet
393
python
def config_changed(top_config_file, new_top_config_file, config_hashes): 'Return True if configuration has changed.\n\n Args:\n top_config_file (str): name of FAUCET config file\n new_top_config_file (str): name, possibly new, of FAUCET config file.\n config_hashes (dict): map of config file/includes and hashes of contents.\n Returns:\n bool: True if the file, or any file it includes, has changed.\n ' if (new_top_config_file != top_config_file): return True if ((config_hashes is None) or (new_top_config_file is None)): return False for (config_file, config_hash) in config_hashes.items(): config_file_exists = os.path.isfile(config_file) if ((config_hash is None) and config_file_exists): return True if (config_hash and (not config_file_exists)): return True if config_file_exists: new_config_hash = config_file_hash(config_file) if (new_config_hash != config_hash): return True return False
def config_changed(top_config_file, new_top_config_file, config_hashes): 'Return True if configuration has changed.\n\n Args:\n top_config_file (str): name of FAUCET config file\n new_top_config_file (str): name, possibly new, of FAUCET config file.\n config_hashes (dict): map of config file/includes and hashes of contents.\n Returns:\n bool: True if the file, or any file it includes, has changed.\n ' if (new_top_config_file != top_config_file): return True if ((config_hashes is None) or (new_top_config_file is None)): return False for (config_file, config_hash) in config_hashes.items(): config_file_exists = os.path.isfile(config_file) if ((config_hash is None) and config_file_exists): return True if (config_hash and (not config_file_exists)): return True if config_file_exists: new_config_hash = config_file_hash(config_file) if (new_config_hash != config_hash): return True return False<|docstring|>Return True if configuration has changed. Args: top_config_file (str): name of FAUCET config file new_top_config_file (str): name, possibly new, of FAUCET config file. config_hashes (dict): map of config file/includes and hashes of contents. Returns: bool: True if the file, or any file it includes, has changed.<|endoftext|>
4c9b29cf12c9459d5619202ffed0ef0cbb2dab1329563de400b091eb8d81f4c1
def _has_expired(self) -> bool: '\n Evaluates whether the access token has expired.\n\n Returns\n -------\n has_expired : bool\n True if the access token has expired, otherwise False.\n\n ' if (time.time() > self._expiration): return True else: return False
Evaluates whether the access token has expired. Returns ------- has_expired : bool True if the access token has expired, otherwise False.
disruptive/authentication.py
_has_expired
friarswood/python-client
8
python
def _has_expired(self) -> bool: '\n Evaluates whether the access token has expired.\n\n Returns\n -------\n has_expired : bool\n True if the access token has expired, otherwise False.\n\n ' if (time.time() > self._expiration): return True else: return False
def _has_expired(self) -> bool: '\n Evaluates whether the access token has expired.\n\n Returns\n -------\n has_expired : bool\n True if the access token has expired, otherwise False.\n\n ' if (time.time() > self._expiration): return True else: return False<|docstring|>Evaluates whether the access token has expired. Returns ------- has_expired : bool True if the access token has expired, otherwise False.<|endoftext|>
447f40ad9330c459dd733d939ed1cd32c1c8e20b559186bb6c3e61c59c35ab0d
def get_token(self) -> str: '\n Returns the access token.\n If the token has expired, renew it.\n\n Returns\n -------\n token : str\n Access token added to the request header.\n\n ' if self._has_expired(): self.refresh() return self._token
Returns the access token. If the token has expired, renew it. Returns ------- token : str Access token added to the request header.
disruptive/authentication.py
get_token
friarswood/python-client
8
python
def get_token(self) -> str: '\n Returns the access token.\n If the token has expired, renew it.\n\n Returns\n -------\n token : str\n Access token added to the request header.\n\n ' if self._has_expired(): self.refresh() return self._token
def get_token(self) -> str: '\n Returns the access token.\n If the token has expired, renew it.\n\n Returns\n -------\n token : str\n Access token added to the request header.\n\n ' if self._has_expired(): self.refresh() return self._token<|docstring|>Returns the access token. If the token has expired, renew it. Returns ------- token : str Access token added to the request header.<|endoftext|>
69390d895e3068f79802ffcae2f582b39fa3f9856ad1adfd6333cc605cc98b5a
def refresh(self) -> None: '\n This function does nothing and is overwritten in all\n child classes. It only exists for consistency purposes\n as it is called in get_token().\n\n ' pass
This function does nothing and is overwritten in all child classes. It only exists for consistency purposes as it is called in get_token().
disruptive/authentication.py
refresh
friarswood/python-client
8
python
def refresh(self) -> None: '\n This function does nothing and is overwritten in all\n child classes. It only exists for consistency purposes\n as it is called in get_token().\n\n ' pass
def refresh(self) -> None: '\n This function does nothing and is overwritten in all\n child classes. It only exists for consistency purposes\n as it is called in get_token().\n\n ' pass<|docstring|>This function does nothing and is overwritten in all child classes. It only exists for consistency purposes as it is called in get_token().<|endoftext|>
abae14fb422a8dc80c3a3acf2d22651723adb36b69fb4038105ae2231e769526
def refresh(self) -> None: '\n If called, this function does nothing but raise an error as no\n authentication routine has been called to update the configuration\n variable, nor has an authentication object been provided.\n\n Raises\n ------\n Unauthorized\n If neither default_auth has been set nor the\n auth kwarg has been provided.\n\n ' msg = 'Missing Service Account credentials.\n\nEither set the following environment variables:\n\n DT_SERVICE_ACCOUNT_KEY_ID: Unique Service Account key ID.\n DT_SERVICE_ACCOUNT_SECRET: Unique Service Account secret.\n DT_SERVICE_ACCOUNT_EMAIL: Unique Service Account email.\n\nor provide them programmatically:\n\n import disruptive as dt\n\n dt.default_auth = dt.Auth.service_account(\n key_id="<SERVICE_ACCOUNT_KEY_ID>",\n secret="<SERVICE_ACCOUNT_SECRET>",\n email="<SERVICE_ACCOUNT_EMAIL>",\n )\n\nSee https://developer.d21s.com/api/libraries/python/client/authentication.html for more details.\n' raise dterrors.Unauthorized(msg)
If called, this function does nothing but raise an error as no authentication routine has been called to update the configuration variable, nor has an authentication object been provided. Raises ------ Unauthorized If neither default_auth has been set nor the auth kwarg has been provided.
disruptive/authentication.py
refresh
friarswood/python-client
8
python
def refresh(self) -> None: '\n If called, this function does nothing but raise an error as no\n authentication routine has been called to update the configuration\n variable, nor has an authentication object been provided.\n\n Raises\n ------\n Unauthorized\n If neither default_auth has been set nor the\n auth kwarg has been provided.\n\n ' msg = 'Missing Service Account credentials.\n\nEither set the following environment variables:\n\n DT_SERVICE_ACCOUNT_KEY_ID: Unique Service Account key ID.\n DT_SERVICE_ACCOUNT_SECRET: Unique Service Account secret.\n DT_SERVICE_ACCOUNT_EMAIL: Unique Service Account email.\n\nor provide them programmatically:\n\n import disruptive as dt\n\n dt.default_auth = dt.Auth.service_account(\n key_id="<SERVICE_ACCOUNT_KEY_ID>",\n secret="<SERVICE_ACCOUNT_SECRET>",\n email="<SERVICE_ACCOUNT_EMAIL>",\n )\n\nSee https://developer.d21s.com/api/libraries/python/client/authentication.html for more details.\n' raise dterrors.Unauthorized(msg)
def refresh(self) -> None: '\n If called, this function does nothing but raise an error as no\n authentication routine has been called to update the configuration\n variable, nor has an authentication object been provided.\n\n Raises\n ------\n Unauthorized\n If neither default_auth has been set nor the\n auth kwarg has been provided.\n\n ' msg = 'Missing Service Account credentials.\n\nEither set the following environment variables:\n\n DT_SERVICE_ACCOUNT_KEY_ID: Unique Service Account key ID.\n DT_SERVICE_ACCOUNT_SECRET: Unique Service Account secret.\n DT_SERVICE_ACCOUNT_EMAIL: Unique Service Account email.\n\nor provide them programmatically:\n\n import disruptive as dt\n\n dt.default_auth = dt.Auth.service_account(\n key_id="<SERVICE_ACCOUNT_KEY_ID>",\n secret="<SERVICE_ACCOUNT_SECRET>",\n email="<SERVICE_ACCOUNT_EMAIL>",\n )\n\nSee https://developer.d21s.com/api/libraries/python/client/authentication.html for more details.\n' raise dterrors.Unauthorized(msg)<|docstring|>If called, this function does nothing but raise an error as no authentication routine has been called to update the configuration variable, nor has an authentication object been provided. Raises ------ Unauthorized If neither default_auth has been set nor the auth kwarg has been provided.<|endoftext|>
70cdd5600c9773445a319bc415def095460d5382f4748f13f808cff90c401822
def refresh(self) -> None: '\n Refreshes the access token.\n\n This first exchanges the JWT for an access token, then updates\n the expiration and token attributes with the response.\n\n ' response: dict = self._get_access_token() self._expiration = (time.time() + response['expires_in']) self._token = 'Bearer {}'.format(response['access_token'])
Refreshes the access token. This first exchanges the JWT for an access token, then updates the expiration and token attributes with the response.
disruptive/authentication.py
refresh
friarswood/python-client
8
python
def refresh(self) -> None: '\n Refreshes the access token.\n\n This first exchanges the JWT for an access token, then updates\n the expiration and token attributes with the response.\n\n ' response: dict = self._get_access_token() self._expiration = (time.time() + response['expires_in']) self._token = 'Bearer {}'.format(response['access_token'])
def refresh(self) -> None: '\n Refreshes the access token.\n\n This first exchanges the JWT for an access token, then updates\n the expiration and token attributes with the response.\n\n ' response: dict = self._get_access_token() self._expiration = (time.time() + response['expires_in']) self._token = 'Bearer {}'.format(response['access_token'])<|docstring|>Refreshes the access token. This first exchanges the JWT for an access token, then updates the expiration and token attributes with the response.<|endoftext|>
1bbe9eeac44855f0a4e3d6c10b4596add56cf56f0c9f795c1b7b8cc064935017
def _get_access_token(self) -> dict: '\n Constructs and exchanges the JWT for an access token.\n\n Returns\n -------\n response : dict\n Dictionary containing expiration and the token itself.\n\n Raises\n ------\n BadRequest\n If the provided credentials could not be used for authentication.\n\n ' jwt_headers: dict[(str, str)] = {'alg': 'HS256', 'kid': self.key_id} jwt_payload: dict[(str, Any)] = {'iat': int(time.time()), 'exp': (int(time.time()) + 3600), 'aud': self.token_endpoint, 'iss': self.email} encoded_jwt: str = jwt.encode(payload=jwt_payload, key=self.secret, algorithm='HS256', headers=jwt_headers) request_data: str = urllib.parse.urlencode({'assertion': encoded_jwt, 'grant_type': 'urn:ietf:params:oauth:grant-type:jwt-bearer'}) try: access_token_response: dict = dtrequests.DTRequest.post(url='', base_url=self.token_endpoint, data=request_data, headers={'Content-Type': 'application/x-www-form-urlencoded'}, skip_auth=True) except dterrors.BadRequest: raise dterrors.Unauthorized('Could not authenticate with the provided credentials.\n\nRead more: https://developer.d21s.com/docs/authentication/oauth2#common-errors') return access_token_response
Constructs and exchanges the JWT for an access token. Returns ------- response : dict Dictionary containing expiration and the token itself. Raises ------ BadRequest If the provided credentials could not be used for authentication.
disruptive/authentication.py
_get_access_token
friarswood/python-client
8
python
def _get_access_token(self) -> dict: '\n Constructs and exchanges the JWT for an access token.\n\n Returns\n -------\n response : dict\n Dictionary containing expiration and the token itself.\n\n Raises\n ------\n BadRequest\n If the provided credentials could not be used for authentication.\n\n ' jwt_headers: dict[(str, str)] = {'alg': 'HS256', 'kid': self.key_id} jwt_payload: dict[(str, Any)] = {'iat': int(time.time()), 'exp': (int(time.time()) + 3600), 'aud': self.token_endpoint, 'iss': self.email} encoded_jwt: str = jwt.encode(payload=jwt_payload, key=self.secret, algorithm='HS256', headers=jwt_headers) request_data: str = urllib.parse.urlencode({'assertion': encoded_jwt, 'grant_type': 'urn:ietf:params:oauth:grant-type:jwt-bearer'}) try: access_token_response: dict = dtrequests.DTRequest.post(url=, base_url=self.token_endpoint, data=request_data, headers={'Content-Type': 'application/x-www-form-urlencoded'}, skip_auth=True) except dterrors.BadRequest: raise dterrors.Unauthorized('Could not authenticate with the provided credentials.\n\nRead more: https://developer.d21s.com/docs/authentication/oauth2#common-errors') return access_token_response
def _get_access_token(self) -> dict: '\n Constructs and exchanges the JWT for an access token.\n\n Returns\n -------\n response : dict\n Dictionary containing expiration and the token itself.\n\n Raises\n ------\n BadRequest\n If the provided credentials could not be used for authentication.\n\n ' jwt_headers: dict[(str, str)] = {'alg': 'HS256', 'kid': self.key_id} jwt_payload: dict[(str, Any)] = {'iat': int(time.time()), 'exp': (int(time.time()) + 3600), 'aud': self.token_endpoint, 'iss': self.email} encoded_jwt: str = jwt.encode(payload=jwt_payload, key=self.secret, algorithm='HS256', headers=jwt_headers) request_data: str = urllib.parse.urlencode({'assertion': encoded_jwt, 'grant_type': 'urn:ietf:params:oauth:grant-type:jwt-bearer'}) try: access_token_response: dict = dtrequests.DTRequest.post(url=, base_url=self.token_endpoint, data=request_data, headers={'Content-Type': 'application/x-www-form-urlencoded'}, skip_auth=True) except dterrors.BadRequest: raise dterrors.Unauthorized('Could not authenticate with the provided credentials.\n\nRead more: https://developer.d21s.com/docs/authentication/oauth2#common-errors') return access_token_response<|docstring|>Constructs and exchanges the JWT for an access token. Returns ------- response : dict Dictionary containing expiration and the token itself. Raises ------ BadRequest If the provided credentials could not be used for authentication.<|endoftext|>
99ba1a21cbd1a739f120f7acb06ed3be5b11a0bae4fb7c115819d1d0ea0631ac
@classmethod def service_account(cls, key_id: str, secret: str, email: str) -> ServiceAccountAuth: '\n This method uses an OAuth2 authentication flow. With the provided\n credentials, a `JWT <https://jwt.io/>`_ is created and exchanged for\n an access token.\n\n Parameters\n ----------\n key_id : str\n Unique Service Account key ID.\n secret : str\n Service Account secret.\n email : str\n Unique Service Account email address.\n\n Returns\n -------\n auth : ServiceAccountAuth\n Object to initialize and maintain authentication to the REST API.\n\n Examples\n --------\n >>> # Authenticate using Service Account credentials.\n >>> dt.default_auth = dt.Auth.service_account(\n >>> key_id="<SERVICE_ACCOUNT_KEY_ID>",\n >>> secret="<SERVICE_ACCOUNT_KEY_ID>",\n >>> email="<SERVICE_ACCOUNT_KEY_ID>",\n >>> )\n\n ' cls._verify_str_credentials({'key_id': key_id, 'secret': secret, 'email': email}) return ServiceAccountAuth(key_id, secret, email)
This method uses an OAuth2 authentication flow. With the provided credentials, a `JWT <https://jwt.io/>`_ is created and exchanged for an access token. Parameters ---------- key_id : str Unique Service Account key ID. secret : str Service Account secret. email : str Unique Service Account email address. Returns ------- auth : ServiceAccountAuth Object to initialize and maintain authentication to the REST API. Examples -------- >>> # Authenticate using Service Account credentials. >>> dt.default_auth = dt.Auth.service_account( >>> key_id="<SERVICE_ACCOUNT_KEY_ID>", >>> secret="<SERVICE_ACCOUNT_KEY_ID>", >>> email="<SERVICE_ACCOUNT_KEY_ID>", >>> )
disruptive/authentication.py
service_account
friarswood/python-client
8
python
@classmethod def service_account(cls, key_id: str, secret: str, email: str) -> ServiceAccountAuth: '\n This method uses an OAuth2 authentication flow. With the provided\n credentials, a `JWT <https://jwt.io/>`_ is created and exchanged for\n an access token.\n\n Parameters\n ----------\n key_id : str\n Unique Service Account key ID.\n secret : str\n Service Account secret.\n email : str\n Unique Service Account email address.\n\n Returns\n -------\n auth : ServiceAccountAuth\n Object to initialize and maintain authentication to the REST API.\n\n Examples\n --------\n >>> # Authenticate using Service Account credentials.\n >>> dt.default_auth = dt.Auth.service_account(\n >>> key_id="<SERVICE_ACCOUNT_KEY_ID>",\n >>> secret="<SERVICE_ACCOUNT_KEY_ID>",\n >>> email="<SERVICE_ACCOUNT_KEY_ID>",\n >>> )\n\n ' cls._verify_str_credentials({'key_id': key_id, 'secret': secret, 'email': email}) return ServiceAccountAuth(key_id, secret, email)
@classmethod def service_account(cls, key_id: str, secret: str, email: str) -> ServiceAccountAuth: '\n This method uses an OAuth2 authentication flow. With the provided\n credentials, a `JWT <https://jwt.io/>`_ is created and exchanged for\n an access token.\n\n Parameters\n ----------\n key_id : str\n Unique Service Account key ID.\n secret : str\n Service Account secret.\n email : str\n Unique Service Account email address.\n\n Returns\n -------\n auth : ServiceAccountAuth\n Object to initialize and maintain authentication to the REST API.\n\n Examples\n --------\n >>> # Authenticate using Service Account credentials.\n >>> dt.default_auth = dt.Auth.service_account(\n >>> key_id="<SERVICE_ACCOUNT_KEY_ID>",\n >>> secret="<SERVICE_ACCOUNT_KEY_ID>",\n >>> email="<SERVICE_ACCOUNT_KEY_ID>",\n >>> )\n\n ' cls._verify_str_credentials({'key_id': key_id, 'secret': secret, 'email': email}) return ServiceAccountAuth(key_id, secret, email)<|docstring|>This method uses an OAuth2 authentication flow. With the provided credentials, a `JWT <https://jwt.io/>`_ is created and exchanged for an access token. Parameters ---------- key_id : str Unique Service Account key ID. secret : str Service Account secret. email : str Unique Service Account email address. Returns ------- auth : ServiceAccountAuth Object to initialize and maintain authentication to the REST API. Examples -------- >>> # Authenticate using Service Account credentials. >>> dt.default_auth = dt.Auth.service_account( >>> key_id="<SERVICE_ACCOUNT_KEY_ID>", >>> secret="<SERVICE_ACCOUNT_KEY_ID>", >>> email="<SERVICE_ACCOUNT_KEY_ID>", >>> )<|endoftext|>
1983721c3527cd077737925680ff0716672456b50994729f5f87c96fb5bf0412
@staticmethod def _verify_str_credentials(credentials: dict) -> None: "\n Verifies that the provided credentials are strings.\n\n This check is added as people use environment variables, but\n if for instance os.environ.get() does not find one, it silently\n returns None. It's better to just check for it early.\n\n Parameters\n ----------\n credentials : dict\n Credentials used to authenticate the REST API.\n\n " for key in credentials: if isinstance(credentials[key], str): if (len(credentials[key]) == 0): raise dterrors.ConfigurationError('Authentication credential <{}> is empty string.'.format(key)) else: raise dterrors._raise_builtin(TypeError, 'Authentication credential <{}> got type <{}>. Expected <str>.'.format(key, type(credentials[key]).__name__))
Verifies that the provided credentials are strings. This check is added as people use environment variables, but if for instance os.environ.get() does not find one, it silently returns None. It's better to just check for it early. Parameters ---------- credentials : dict Credentials used to authenticate the REST API.
disruptive/authentication.py
_verify_str_credentials
friarswood/python-client
8
python
@staticmethod def _verify_str_credentials(credentials: dict) -> None: "\n Verifies that the provided credentials are strings.\n\n This check is added as people use environment variables, but\n if for instance os.environ.get() does not find one, it silently\n returns None. It's better to just check for it early.\n\n Parameters\n ----------\n credentials : dict\n Credentials used to authenticate the REST API.\n\n " for key in credentials: if isinstance(credentials[key], str): if (len(credentials[key]) == 0): raise dterrors.ConfigurationError('Authentication credential <{}> is empty string.'.format(key)) else: raise dterrors._raise_builtin(TypeError, 'Authentication credential <{}> got type <{}>. Expected <str>.'.format(key, type(credentials[key]).__name__))
@staticmethod def _verify_str_credentials(credentials: dict) -> None: "\n Verifies that the provided credentials are strings.\n\n This check is added as people use environment variables, but\n if for instance os.environ.get() does not find one, it silently\n returns None. It's better to just check for it early.\n\n Parameters\n ----------\n credentials : dict\n Credentials used to authenticate the REST API.\n\n " for key in credentials: if isinstance(credentials[key], str): if (len(credentials[key]) == 0): raise dterrors.ConfigurationError('Authentication credential <{}> is empty string.'.format(key)) else: raise dterrors._raise_builtin(TypeError, 'Authentication credential <{}> got type <{}>. Expected <str>.'.format(key, type(credentials[key]).__name__))<|docstring|>Verifies that the provided credentials are strings. This check is added as people use environment variables, but if for instance os.environ.get() does not find one, it silently returns None. It's better to just check for it early. Parameters ---------- credentials : dict Credentials used to authenticate the REST API.<|endoftext|>
8966e0727754c2b602020e44ed6039c24f50a3f429fe1f15f1271c4d0fc05984
def _hermitian_matrix_solve(matrix, rhs, method='default'): 'Matrix_solve using various methods.' if (method == 'cholesky'): if (matrix.dtype == tf.float32): return tf.cholesky_solve(tf.cholesky(matrix), rhs) else: matrix_realimag = _complex_to_realimag(matrix) n = matrix.shape[(- 1)] rhs_realimag = tf.concat([tf.real(rhs), tf.imag(rhs)], axis=(- 2)) lhs_realimag = tf.cholesky_solve(tf.cholesky(matrix_realimag), rhs_realimag) return tf.complex(lhs_realimag[(..., :n, :)], lhs_realimag[(..., n:, :)]) elif (method == 'ls'): return tf.matrix_solve_ls(matrix, rhs) elif (method == 'default'): return tf.matrix_solve(matrix, rhs) else: raise ValueError(f'Unknown matrix solve method {method}.')
Matrix_solve using various methods.
models/train/multichannel_filtering.py
_hermitian_matrix_solve
marciopuga/sound-separation
412
python
def _hermitian_matrix_solve(matrix, rhs, method='default'): if (method == 'cholesky'): if (matrix.dtype == tf.float32): return tf.cholesky_solve(tf.cholesky(matrix), rhs) else: matrix_realimag = _complex_to_realimag(matrix) n = matrix.shape[(- 1)] rhs_realimag = tf.concat([tf.real(rhs), tf.imag(rhs)], axis=(- 2)) lhs_realimag = tf.cholesky_solve(tf.cholesky(matrix_realimag), rhs_realimag) return tf.complex(lhs_realimag[(..., :n, :)], lhs_realimag[(..., n:, :)]) elif (method == 'ls'): return tf.matrix_solve_ls(matrix, rhs) elif (method == 'default'): return tf.matrix_solve(matrix, rhs) else: raise ValueError(f'Unknown matrix solve method {method}.')
def _hermitian_matrix_solve(matrix, rhs, method='default'): if (method == 'cholesky'): if (matrix.dtype == tf.float32): return tf.cholesky_solve(tf.cholesky(matrix), rhs) else: matrix_realimag = _complex_to_realimag(matrix) n = matrix.shape[(- 1)] rhs_realimag = tf.concat([tf.real(rhs), tf.imag(rhs)], axis=(- 2)) lhs_realimag = tf.cholesky_solve(tf.cholesky(matrix_realimag), rhs_realimag) return tf.complex(lhs_realimag[(..., :n, :)], lhs_realimag[(..., n:, :)]) elif (method == 'ls'): return tf.matrix_solve_ls(matrix, rhs) elif (method == 'default'): return tf.matrix_solve(matrix, rhs) else: raise ValueError(f'Unknown matrix solve method {method}.')<|docstring|>Matrix_solve using various methods.<|endoftext|>
f0cd1b38541be2d701e76a559b49983401864abf7531fb7e74af94bdef67236b
def _add_diagonal_matrix(ryy, diagload=0.001, epsilon=1e-08, use_diagonal_of=None): 'Regularize matrix usually before taking its inverse.\n\n Update ryy matrix with ryy += diagload * diag(matrix) + epsilon * I\n where matrix is either equal to ryy or another matrix given by\n use_diagonal_of parameter and I is the identity matrix and diag(.) is the\n diagonal matrix obtained from its argument.\n\n Args:\n ryy: A [..., mic, mic] complex64/float32 tensor, covariance matrix.\n diagload: A float32 value.\n epsilon: A float32 value.\n use_diagonal_of: None or another tensor [..., mic, mic] whose diagonal\n is used. If None, diagonal of ryy is used.\n\n Returns:\n [..., mic, mic] tensor, ryy + diagload * diag(use_diagonal_of) + epsilon*I.\n ' mic = signal_util.static_or_dynamic_dim_size(ryy, (- 1)) if (use_diagonal_of is None): use_diagonal_of = ryy diagonal_matrix = (((diagload * use_diagonal_of) + epsilon) * tf.eye(mic, dtype=ryy.dtype)) return (ryy + diagonal_matrix)
Regularize matrix usually before taking its inverse. Update ryy matrix with ryy += diagload * diag(matrix) + epsilon * I where matrix is either equal to ryy or another matrix given by use_diagonal_of parameter and I is the identity matrix and diag(.) is the diagonal matrix obtained from its argument. Args: ryy: A [..., mic, mic] complex64/float32 tensor, covariance matrix. diagload: A float32 value. epsilon: A float32 value. use_diagonal_of: None or another tensor [..., mic, mic] whose diagonal is used. If None, diagonal of ryy is used. Returns: [..., mic, mic] tensor, ryy + diagload * diag(use_diagonal_of) + epsilon*I.
models/train/multichannel_filtering.py
_add_diagonal_matrix
marciopuga/sound-separation
412
python
def _add_diagonal_matrix(ryy, diagload=0.001, epsilon=1e-08, use_diagonal_of=None): 'Regularize matrix usually before taking its inverse.\n\n Update ryy matrix with ryy += diagload * diag(matrix) + epsilon * I\n where matrix is either equal to ryy or another matrix given by\n use_diagonal_of parameter and I is the identity matrix and diag(.) is the\n diagonal matrix obtained from its argument.\n\n Args:\n ryy: A [..., mic, mic] complex64/float32 tensor, covariance matrix.\n diagload: A float32 value.\n epsilon: A float32 value.\n use_diagonal_of: None or another tensor [..., mic, mic] whose diagonal\n is used. If None, diagonal of ryy is used.\n\n Returns:\n [..., mic, mic] tensor, ryy + diagload * diag(use_diagonal_of) + epsilon*I.\n ' mic = signal_util.static_or_dynamic_dim_size(ryy, (- 1)) if (use_diagonal_of is None): use_diagonal_of = ryy diagonal_matrix = (((diagload * use_diagonal_of) + epsilon) * tf.eye(mic, dtype=ryy.dtype)) return (ryy + diagonal_matrix)
def _add_diagonal_matrix(ryy, diagload=0.001, epsilon=1e-08, use_diagonal_of=None): 'Regularize matrix usually before taking its inverse.\n\n Update ryy matrix with ryy += diagload * diag(matrix) + epsilon * I\n where matrix is either equal to ryy or another matrix given by\n use_diagonal_of parameter and I is the identity matrix and diag(.) is the\n diagonal matrix obtained from its argument.\n\n Args:\n ryy: A [..., mic, mic] complex64/float32 tensor, covariance matrix.\n diagload: A float32 value.\n epsilon: A float32 value.\n use_diagonal_of: None or another tensor [..., mic, mic] whose diagonal\n is used. If None, diagonal of ryy is used.\n\n Returns:\n [..., mic, mic] tensor, ryy + diagload * diag(use_diagonal_of) + epsilon*I.\n ' mic = signal_util.static_or_dynamic_dim_size(ryy, (- 1)) if (use_diagonal_of is None): use_diagonal_of = ryy diagonal_matrix = (((diagload * use_diagonal_of) + epsilon) * tf.eye(mic, dtype=ryy.dtype)) return (ryy + diagonal_matrix)<|docstring|>Regularize matrix usually before taking its inverse. Update ryy matrix with ryy += diagload * diag(matrix) + epsilon * I where matrix is either equal to ryy or another matrix given by use_diagonal_of parameter and I is the identity matrix and diag(.) is the diagonal matrix obtained from its argument. Args: ryy: A [..., mic, mic] complex64/float32 tensor, covariance matrix. diagload: A float32 value. epsilon: A float32 value. use_diagonal_of: None or another tensor [..., mic, mic] whose diagonal is used. If None, diagonal of ryy is used. Returns: [..., mic, mic] tensor, ryy + diagload * diag(use_diagonal_of) + epsilon*I.<|endoftext|>
0159a9a2fa2807a20d37c0ddf7b4bac8088f1f80764ab379cca9a8bfb3b6c8e9
def _get_beamformer_from_covariances(y_cov, t_cov, diagload=0.001, epsilon=1e-08, refmic=0, beamformer_type='wiener'): "Calculates beamformers from full covariance estimates.\n\n Typically mixture signal covariance is estimated from the mixture signal and\n the target covariance is estimated using a mask-based covariance estimation.\n\n Args:\n y_cov: Mixture signal covariance of shape [..., mic, mic].\n t_cov: Source signal covariance estimate of shape [..., mic, mic, source].\n diagload: diagonal loading factor.\n epsilon: data-independent stabilizer for diagonal loading.\n refmic: Reference mic.\n beamformer_type: 'wiener' or 'mvdr' or 'mpdr'.\n Returns:\n beamformers w of shape [..., mic, source].\n " y_cov_rank = tf.get_static_value(tf.rank(y_cov)) start = (y_cov_rank - 2) prefix = list(range(start)) if (y_cov_rank < 2): raise ValueError('Unsupported y_cov rank {}'.format(y_cov_rank)) if (beamformer_type == 'wiener'): w = _hermitian_matrix_solve(_add_diagonal_matrix(y_cov, diagload, epsilon), t_cov[(..., refmic, :)]) elif beamformer_type.startswith('mvdr'): mu = 0.0 t_cov = tf.transpose(t_cov, (prefix + [(start + 2), start, (start + 1)])) nt_cov = (tf.reduce_sum(t_cov, axis=(- 3), keepdims=True) - t_cov) y_cov = tf.expand_dims(y_cov, axis=(- 3)) nt_inv_t_matrix = _hermitian_matrix_solve(_add_diagonal_matrix(nt_cov, diagload=0.01, epsilon=epsilon, use_diagonal_of=y_cov), t_cov) scale = tf.reciprocal(((mu + tf.linalg.trace(nt_inv_t_matrix)) + 1e-08)) scale = tf.expand_dims(scale, (- 1)) w = (scale * nt_inv_t_matrix[(..., refmic)]) w = tf.transpose(w, (prefix + [(start + 1), start])) elif (beamformer_type == 'mpdr'): t_cov = tf.transpose(t_cov, (prefix + [(start + 2), start, (start + 1)])) y_cov = tf.expand_dims(y_cov, axis=(- 3)) y_cov = tf.broadcast_to(y_cov, tf.shape(t_cov)) y_inv_t_matrix = _hermitian_matrix_solve(_add_diagonal_matrix(y_cov, diagload, epsilon), t_cov) scale = tf.reciprocal((tf.linalg.trace(y_inv_t_matrix) + 1e-08)) scale = tf.cast(tf.expand_dims(scale, (- 1)), dtype=y_cov.dtype) w = (scale * y_inv_t_matrix[(..., refmic)]) w = tf.transpose(w, (prefix + [(start + 1), start])) else: raise ValueError('Unknown beamformer type {}.'.format(beamformer_type)) return w
Calculates beamformers from full covariance estimates. Typically mixture signal covariance is estimated from the mixture signal and the target covariance is estimated using a mask-based covariance estimation. Args: y_cov: Mixture signal covariance of shape [..., mic, mic]. t_cov: Source signal covariance estimate of shape [..., mic, mic, source]. diagload: diagonal loading factor. epsilon: data-independent stabilizer for diagonal loading. refmic: Reference mic. beamformer_type: 'wiener' or 'mvdr' or 'mpdr'. Returns: beamformers w of shape [..., mic, source].
models/train/multichannel_filtering.py
_get_beamformer_from_covariances
marciopuga/sound-separation
412
python
def _get_beamformer_from_covariances(y_cov, t_cov, diagload=0.001, epsilon=1e-08, refmic=0, beamformer_type='wiener'): "Calculates beamformers from full covariance estimates.\n\n Typically mixture signal covariance is estimated from the mixture signal and\n the target covariance is estimated using a mask-based covariance estimation.\n\n Args:\n y_cov: Mixture signal covariance of shape [..., mic, mic].\n t_cov: Source signal covariance estimate of shape [..., mic, mic, source].\n diagload: diagonal loading factor.\n epsilon: data-independent stabilizer for diagonal loading.\n refmic: Reference mic.\n beamformer_type: 'wiener' or 'mvdr' or 'mpdr'.\n Returns:\n beamformers w of shape [..., mic, source].\n " y_cov_rank = tf.get_static_value(tf.rank(y_cov)) start = (y_cov_rank - 2) prefix = list(range(start)) if (y_cov_rank < 2): raise ValueError('Unsupported y_cov rank {}'.format(y_cov_rank)) if (beamformer_type == 'wiener'): w = _hermitian_matrix_solve(_add_diagonal_matrix(y_cov, diagload, epsilon), t_cov[(..., refmic, :)]) elif beamformer_type.startswith('mvdr'): mu = 0.0 t_cov = tf.transpose(t_cov, (prefix + [(start + 2), start, (start + 1)])) nt_cov = (tf.reduce_sum(t_cov, axis=(- 3), keepdims=True) - t_cov) y_cov = tf.expand_dims(y_cov, axis=(- 3)) nt_inv_t_matrix = _hermitian_matrix_solve(_add_diagonal_matrix(nt_cov, diagload=0.01, epsilon=epsilon, use_diagonal_of=y_cov), t_cov) scale = tf.reciprocal(((mu + tf.linalg.trace(nt_inv_t_matrix)) + 1e-08)) scale = tf.expand_dims(scale, (- 1)) w = (scale * nt_inv_t_matrix[(..., refmic)]) w = tf.transpose(w, (prefix + [(start + 1), start])) elif (beamformer_type == 'mpdr'): t_cov = tf.transpose(t_cov, (prefix + [(start + 2), start, (start + 1)])) y_cov = tf.expand_dims(y_cov, axis=(- 3)) y_cov = tf.broadcast_to(y_cov, tf.shape(t_cov)) y_inv_t_matrix = _hermitian_matrix_solve(_add_diagonal_matrix(y_cov, diagload, epsilon), t_cov) scale = tf.reciprocal((tf.linalg.trace(y_inv_t_matrix) + 1e-08)) scale = tf.cast(tf.expand_dims(scale, (- 1)), dtype=y_cov.dtype) w = (scale * y_inv_t_matrix[(..., refmic)]) w = tf.transpose(w, (prefix + [(start + 1), start])) else: raise ValueError('Unknown beamformer type {}.'.format(beamformer_type)) return w
def _get_beamformer_from_covariances(y_cov, t_cov, diagload=0.001, epsilon=1e-08, refmic=0, beamformer_type='wiener'): "Calculates beamformers from full covariance estimates.\n\n Typically mixture signal covariance is estimated from the mixture signal and\n the target covariance is estimated using a mask-based covariance estimation.\n\n Args:\n y_cov: Mixture signal covariance of shape [..., mic, mic].\n t_cov: Source signal covariance estimate of shape [..., mic, mic, source].\n diagload: diagonal loading factor.\n epsilon: data-independent stabilizer for diagonal loading.\n refmic: Reference mic.\n beamformer_type: 'wiener' or 'mvdr' or 'mpdr'.\n Returns:\n beamformers w of shape [..., mic, source].\n " y_cov_rank = tf.get_static_value(tf.rank(y_cov)) start = (y_cov_rank - 2) prefix = list(range(start)) if (y_cov_rank < 2): raise ValueError('Unsupported y_cov rank {}'.format(y_cov_rank)) if (beamformer_type == 'wiener'): w = _hermitian_matrix_solve(_add_diagonal_matrix(y_cov, diagload, epsilon), t_cov[(..., refmic, :)]) elif beamformer_type.startswith('mvdr'): mu = 0.0 t_cov = tf.transpose(t_cov, (prefix + [(start + 2), start, (start + 1)])) nt_cov = (tf.reduce_sum(t_cov, axis=(- 3), keepdims=True) - t_cov) y_cov = tf.expand_dims(y_cov, axis=(- 3)) nt_inv_t_matrix = _hermitian_matrix_solve(_add_diagonal_matrix(nt_cov, diagload=0.01, epsilon=epsilon, use_diagonal_of=y_cov), t_cov) scale = tf.reciprocal(((mu + tf.linalg.trace(nt_inv_t_matrix)) + 1e-08)) scale = tf.expand_dims(scale, (- 1)) w = (scale * nt_inv_t_matrix[(..., refmic)]) w = tf.transpose(w, (prefix + [(start + 1), start])) elif (beamformer_type == 'mpdr'): t_cov = tf.transpose(t_cov, (prefix + [(start + 2), start, (start + 1)])) y_cov = tf.expand_dims(y_cov, axis=(- 3)) y_cov = tf.broadcast_to(y_cov, tf.shape(t_cov)) y_inv_t_matrix = _hermitian_matrix_solve(_add_diagonal_matrix(y_cov, diagload, epsilon), t_cov) scale = tf.reciprocal((tf.linalg.trace(y_inv_t_matrix) + 1e-08)) scale = tf.cast(tf.expand_dims(scale, (- 1)), dtype=y_cov.dtype) w = (scale * y_inv_t_matrix[(..., refmic)]) w = tf.transpose(w, (prefix + [(start + 1), start])) else: raise ValueError('Unknown beamformer type {}.'.format(beamformer_type)) return w<|docstring|>Calculates beamformers from full covariance estimates. Typically mixture signal covariance is estimated from the mixture signal and the target covariance is estimated using a mask-based covariance estimation. Args: y_cov: Mixture signal covariance of shape [..., mic, mic]. t_cov: Source signal covariance estimate of shape [..., mic, mic, source]. diagload: diagonal loading factor. epsilon: data-independent stabilizer for diagonal loading. refmic: Reference mic. beamformer_type: 'wiener' or 'mvdr' or 'mpdr'. Returns: beamformers w of shape [..., mic, source].<|endoftext|>
cb8017dd920e05b7cad9971c979d4a4596f7ef416f46fdd392299cc6427e6d91
def _estimate_time_invariant_covariances(y, t, use_complex_mask=False, refmic=0): 'Find time-invariant covariance matrices from masks.\n\n The inputs are the mixture signal and source estimates.\n Args:\n y: Mixture signal with shape [batch, mic, frame, bin].\n t: Source estimates at reference mic [batch, source, frame, bin].\n use_complex_mask: If True, use a complex mask.\n refmic: Reference microphone index.\n Returns:\n y_ti_cov: time-invariant spatial covariance matrix for mixture signal of\n shape [batch, bin, mic, mic].\n t_ti_cov: time-invariant spatial covariance matrix for source signals of\n shape [batch, bin, mic, mic, source].\n ' tensor_shaper = shaper.Shaper() tensor_shaper.register_axes(y, ['batch', 'mic', 'frame', 'bin']) y = tensor_shaper.change(y, ['batch', 'mic', 'frame', 'bin'], ['batch', 'frame', 'bin', 'mic', 1]) t = tensor_shaper.change(t, ['batch', 'source', 'frame', 'bin'], ['batch', 'frame', 'bin', 'source']) y_outprod = tf.matmul(y, y, adjoint_b=True) tensor_shaper.register_axes(y_outprod, ['batch', 'frame', 'bin', 'mic', 'mic']) y_ti_cov = tf.reduce_mean(y_outprod, axis=1) tensor_shaper.register_axes(y_ti_cov, ['batch', 'bin', 'mic', 'mic']) t_power = tf.square(tf.abs(t)) if use_complex_mask: y_refmic = y[(:, :, :, refmic:(refmic + 1), 0)] y_refmic_power = tf.square(tf.abs(y_refmic)) power_limit = 1e-08 est_masks = tf.where(tf.logical_and((y_refmic_power > power_limit), (t_power < (y_refmic_power * 3.0))), (t / (y_refmic + power_limit)), tf.zeros_like(t)) est_masks = tf.conj(est_masks) else: power_offset = 1e-08 t_power += power_offset est_masks = (t_power / tf.reduce_sum(t_power, axis=(- 1), keepdims=True)) est_masks = tf.cast(est_masks, dtype=y_outprod.dtype) est_masks = tensor_shaper.change(est_masks, ['batch', 'frame', 'bin', 'source'], ['batch', 'frame', 'bin', 1, 1, 'source']) masked_y_outprod = (tf.expand_dims(y_outprod, axis=(- 1)) * est_masks) tensor_shaper.register_axes(masked_y_outprod, ['batch', 'frame', 'bin', 'mic', 'mic', 'source']) t_ti_cov = tf.reduce_mean(masked_y_outprod, axis=1) tensor_shaper.register_axes(t_ti_cov, ['batch', 'bin', 'mic', 'mic', 'source']) return (y_ti_cov, t_ti_cov)
Find time-invariant covariance matrices from masks. The inputs are the mixture signal and source estimates. Args: y: Mixture signal with shape [batch, mic, frame, bin]. t: Source estimates at reference mic [batch, source, frame, bin]. use_complex_mask: If True, use a complex mask. refmic: Reference microphone index. Returns: y_ti_cov: time-invariant spatial covariance matrix for mixture signal of shape [batch, bin, mic, mic]. t_ti_cov: time-invariant spatial covariance matrix for source signals of shape [batch, bin, mic, mic, source].
models/train/multichannel_filtering.py
_estimate_time_invariant_covariances
marciopuga/sound-separation
412
python
def _estimate_time_invariant_covariances(y, t, use_complex_mask=False, refmic=0): 'Find time-invariant covariance matrices from masks.\n\n The inputs are the mixture signal and source estimates.\n Args:\n y: Mixture signal with shape [batch, mic, frame, bin].\n t: Source estimates at reference mic [batch, source, frame, bin].\n use_complex_mask: If True, use a complex mask.\n refmic: Reference microphone index.\n Returns:\n y_ti_cov: time-invariant spatial covariance matrix for mixture signal of\n shape [batch, bin, mic, mic].\n t_ti_cov: time-invariant spatial covariance matrix for source signals of\n shape [batch, bin, mic, mic, source].\n ' tensor_shaper = shaper.Shaper() tensor_shaper.register_axes(y, ['batch', 'mic', 'frame', 'bin']) y = tensor_shaper.change(y, ['batch', 'mic', 'frame', 'bin'], ['batch', 'frame', 'bin', 'mic', 1]) t = tensor_shaper.change(t, ['batch', 'source', 'frame', 'bin'], ['batch', 'frame', 'bin', 'source']) y_outprod = tf.matmul(y, y, adjoint_b=True) tensor_shaper.register_axes(y_outprod, ['batch', 'frame', 'bin', 'mic', 'mic']) y_ti_cov = tf.reduce_mean(y_outprod, axis=1) tensor_shaper.register_axes(y_ti_cov, ['batch', 'bin', 'mic', 'mic']) t_power = tf.square(tf.abs(t)) if use_complex_mask: y_refmic = y[(:, :, :, refmic:(refmic + 1), 0)] y_refmic_power = tf.square(tf.abs(y_refmic)) power_limit = 1e-08 est_masks = tf.where(tf.logical_and((y_refmic_power > power_limit), (t_power < (y_refmic_power * 3.0))), (t / (y_refmic + power_limit)), tf.zeros_like(t)) est_masks = tf.conj(est_masks) else: power_offset = 1e-08 t_power += power_offset est_masks = (t_power / tf.reduce_sum(t_power, axis=(- 1), keepdims=True)) est_masks = tf.cast(est_masks, dtype=y_outprod.dtype) est_masks = tensor_shaper.change(est_masks, ['batch', 'frame', 'bin', 'source'], ['batch', 'frame', 'bin', 1, 1, 'source']) masked_y_outprod = (tf.expand_dims(y_outprod, axis=(- 1)) * est_masks) tensor_shaper.register_axes(masked_y_outprod, ['batch', 'frame', 'bin', 'mic', 'mic', 'source']) t_ti_cov = tf.reduce_mean(masked_y_outprod, axis=1) tensor_shaper.register_axes(t_ti_cov, ['batch', 'bin', 'mic', 'mic', 'source']) return (y_ti_cov, t_ti_cov)
def _estimate_time_invariant_covariances(y, t, use_complex_mask=False, refmic=0): 'Find time-invariant covariance matrices from masks.\n\n The inputs are the mixture signal and source estimates.\n Args:\n y: Mixture signal with shape [batch, mic, frame, bin].\n t: Source estimates at reference mic [batch, source, frame, bin].\n use_complex_mask: If True, use a complex mask.\n refmic: Reference microphone index.\n Returns:\n y_ti_cov: time-invariant spatial covariance matrix for mixture signal of\n shape [batch, bin, mic, mic].\n t_ti_cov: time-invariant spatial covariance matrix for source signals of\n shape [batch, bin, mic, mic, source].\n ' tensor_shaper = shaper.Shaper() tensor_shaper.register_axes(y, ['batch', 'mic', 'frame', 'bin']) y = tensor_shaper.change(y, ['batch', 'mic', 'frame', 'bin'], ['batch', 'frame', 'bin', 'mic', 1]) t = tensor_shaper.change(t, ['batch', 'source', 'frame', 'bin'], ['batch', 'frame', 'bin', 'source']) y_outprod = tf.matmul(y, y, adjoint_b=True) tensor_shaper.register_axes(y_outprod, ['batch', 'frame', 'bin', 'mic', 'mic']) y_ti_cov = tf.reduce_mean(y_outprod, axis=1) tensor_shaper.register_axes(y_ti_cov, ['batch', 'bin', 'mic', 'mic']) t_power = tf.square(tf.abs(t)) if use_complex_mask: y_refmic = y[(:, :, :, refmic:(refmic + 1), 0)] y_refmic_power = tf.square(tf.abs(y_refmic)) power_limit = 1e-08 est_masks = tf.where(tf.logical_and((y_refmic_power > power_limit), (t_power < (y_refmic_power * 3.0))), (t / (y_refmic + power_limit)), tf.zeros_like(t)) est_masks = tf.conj(est_masks) else: power_offset = 1e-08 t_power += power_offset est_masks = (t_power / tf.reduce_sum(t_power, axis=(- 1), keepdims=True)) est_masks = tf.cast(est_masks, dtype=y_outprod.dtype) est_masks = tensor_shaper.change(est_masks, ['batch', 'frame', 'bin', 'source'], ['batch', 'frame', 'bin', 1, 1, 'source']) masked_y_outprod = (tf.expand_dims(y_outprod, axis=(- 1)) * est_masks) tensor_shaper.register_axes(masked_y_outprod, ['batch', 'frame', 'bin', 'mic', 'mic', 'source']) t_ti_cov = tf.reduce_mean(masked_y_outprod, axis=1) tensor_shaper.register_axes(t_ti_cov, ['batch', 'bin', 'mic', 'mic', 'source']) return (y_ti_cov, t_ti_cov)<|docstring|>Find time-invariant covariance matrices from masks. The inputs are the mixture signal and source estimates. Args: y: Mixture signal with shape [batch, mic, frame, bin]. t: Source estimates at reference mic [batch, source, frame, bin]. use_complex_mask: If True, use a complex mask. refmic: Reference microphone index. Returns: y_ti_cov: time-invariant spatial covariance matrix for mixture signal of shape [batch, bin, mic, mic]. t_ti_cov: time-invariant spatial covariance matrix for source signals of shape [batch, bin, mic, mic, source].<|endoftext|>
491f98de4f486335fcb4a3adea6ef8974a840f2e2412aad62d8509464c2dffc7
def time_invariant_multichannel_filtering(y, t, use_complex_mask=False, beamformer_type='wiener', refmic=0, diagload=0.001, epsilon=1e-08): "Computes a multi-channel Wiener filter from time-invariant covariances.\n\n Args:\n y: [batch, mic, frame, bin], complex64, mixture spectrogram.\n t: [batch, source, frame, bin], complex64, estimated spectrogram.\n use_complex_mask: If True, use a complex mask.\n beamformer_type: A string describing beamformer type. 'wiener', 'mvdr'\n or 'mpdr'.\n refmic: index of the reference mic.\n diagload: A float32 value, diagonal loading for the matrix inversion in\n beamforming.\n epsilon: A float32 value, data-independent stabilizer for diagonal loading.\n\n Returns:\n bf_y: [batch, source, frame, bin], complex64, beamformed spectrogram.\n w_H: [batch, bin, source, mic], complex64, beamformer coefficient conjugate.\n " tensor_shaper = shaper.Shaper() tensor_shaper.register_axes(y, ['batch', 'mic', 'frame', 'bin']) with tf.name_scope(None, 'time_invariant_multichannel_wiener_filter'): (y_ti_cov, t_ti_cov) = _estimate_time_invariant_covariances(y, t, use_complex_mask, refmic) tensor_shaper.register_axes(y_ti_cov, ['batch', 'bin', 'mic', 'mic']) tensor_shaper.register_axes(t_ti_cov, ['batch', 'bin', 'mic', 'mic', 'source']) w = _get_beamformer_from_covariances(y_ti_cov, t_ti_cov, diagload=diagload, epsilon=epsilon, refmic=refmic, beamformer_type=beamformer_type) w_h = tf.conj(tensor_shaper.change(w, ['batch', 'bin', 'mic', 'source'], ['batch', 'bin', 'source', 'mic'])) y = tensor_shaper.change(y, ['batch', 'mic', 'frame', 'bin'], ['batch', 'bin', 'mic', 'frame']) w_h_y = tf.matmul(w_h, y) bf_y = tensor_shaper.change(w_h_y, ['batch', 'bin', 'source', 'frame'], ['batch', 'source', 'frame', 'bin']) return (bf_y, w_h)
Computes a multi-channel Wiener filter from time-invariant covariances. Args: y: [batch, mic, frame, bin], complex64, mixture spectrogram. t: [batch, source, frame, bin], complex64, estimated spectrogram. use_complex_mask: If True, use a complex mask. beamformer_type: A string describing beamformer type. 'wiener', 'mvdr' or 'mpdr'. refmic: index of the reference mic. diagload: A float32 value, diagonal loading for the matrix inversion in beamforming. epsilon: A float32 value, data-independent stabilizer for diagonal loading. Returns: bf_y: [batch, source, frame, bin], complex64, beamformed spectrogram. w_H: [batch, bin, source, mic], complex64, beamformer coefficient conjugate.
models/train/multichannel_filtering.py
time_invariant_multichannel_filtering
marciopuga/sound-separation
412
python
def time_invariant_multichannel_filtering(y, t, use_complex_mask=False, beamformer_type='wiener', refmic=0, diagload=0.001, epsilon=1e-08): "Computes a multi-channel Wiener filter from time-invariant covariances.\n\n Args:\n y: [batch, mic, frame, bin], complex64, mixture spectrogram.\n t: [batch, source, frame, bin], complex64, estimated spectrogram.\n use_complex_mask: If True, use a complex mask.\n beamformer_type: A string describing beamformer type. 'wiener', 'mvdr'\n or 'mpdr'.\n refmic: index of the reference mic.\n diagload: A float32 value, diagonal loading for the matrix inversion in\n beamforming.\n epsilon: A float32 value, data-independent stabilizer for diagonal loading.\n\n Returns:\n bf_y: [batch, source, frame, bin], complex64, beamformed spectrogram.\n w_H: [batch, bin, source, mic], complex64, beamformer coefficient conjugate.\n " tensor_shaper = shaper.Shaper() tensor_shaper.register_axes(y, ['batch', 'mic', 'frame', 'bin']) with tf.name_scope(None, 'time_invariant_multichannel_wiener_filter'): (y_ti_cov, t_ti_cov) = _estimate_time_invariant_covariances(y, t, use_complex_mask, refmic) tensor_shaper.register_axes(y_ti_cov, ['batch', 'bin', 'mic', 'mic']) tensor_shaper.register_axes(t_ti_cov, ['batch', 'bin', 'mic', 'mic', 'source']) w = _get_beamformer_from_covariances(y_ti_cov, t_ti_cov, diagload=diagload, epsilon=epsilon, refmic=refmic, beamformer_type=beamformer_type) w_h = tf.conj(tensor_shaper.change(w, ['batch', 'bin', 'mic', 'source'], ['batch', 'bin', 'source', 'mic'])) y = tensor_shaper.change(y, ['batch', 'mic', 'frame', 'bin'], ['batch', 'bin', 'mic', 'frame']) w_h_y = tf.matmul(w_h, y) bf_y = tensor_shaper.change(w_h_y, ['batch', 'bin', 'source', 'frame'], ['batch', 'source', 'frame', 'bin']) return (bf_y, w_h)
def time_invariant_multichannel_filtering(y, t, use_complex_mask=False, beamformer_type='wiener', refmic=0, diagload=0.001, epsilon=1e-08): "Computes a multi-channel Wiener filter from time-invariant covariances.\n\n Args:\n y: [batch, mic, frame, bin], complex64, mixture spectrogram.\n t: [batch, source, frame, bin], complex64, estimated spectrogram.\n use_complex_mask: If True, use a complex mask.\n beamformer_type: A string describing beamformer type. 'wiener', 'mvdr'\n or 'mpdr'.\n refmic: index of the reference mic.\n diagload: A float32 value, diagonal loading for the matrix inversion in\n beamforming.\n epsilon: A float32 value, data-independent stabilizer for diagonal loading.\n\n Returns:\n bf_y: [batch, source, frame, bin], complex64, beamformed spectrogram.\n w_H: [batch, bin, source, mic], complex64, beamformer coefficient conjugate.\n " tensor_shaper = shaper.Shaper() tensor_shaper.register_axes(y, ['batch', 'mic', 'frame', 'bin']) with tf.name_scope(None, 'time_invariant_multichannel_wiener_filter'): (y_ti_cov, t_ti_cov) = _estimate_time_invariant_covariances(y, t, use_complex_mask, refmic) tensor_shaper.register_axes(y_ti_cov, ['batch', 'bin', 'mic', 'mic']) tensor_shaper.register_axes(t_ti_cov, ['batch', 'bin', 'mic', 'mic', 'source']) w = _get_beamformer_from_covariances(y_ti_cov, t_ti_cov, diagload=diagload, epsilon=epsilon, refmic=refmic, beamformer_type=beamformer_type) w_h = tf.conj(tensor_shaper.change(w, ['batch', 'bin', 'mic', 'source'], ['batch', 'bin', 'source', 'mic'])) y = tensor_shaper.change(y, ['batch', 'mic', 'frame', 'bin'], ['batch', 'bin', 'mic', 'frame']) w_h_y = tf.matmul(w_h, y) bf_y = tensor_shaper.change(w_h_y, ['batch', 'bin', 'source', 'frame'], ['batch', 'source', 'frame', 'bin']) return (bf_y, w_h)<|docstring|>Computes a multi-channel Wiener filter from time-invariant covariances. Args: y: [batch, mic, frame, bin], complex64, mixture spectrogram. t: [batch, source, frame, bin], complex64, estimated spectrogram. use_complex_mask: If True, use a complex mask. beamformer_type: A string describing beamformer type. 'wiener', 'mvdr' or 'mpdr'. refmic: index of the reference mic. diagload: A float32 value, diagonal loading for the matrix inversion in beamforming. epsilon: A float32 value, data-independent stabilizer for diagonal loading. Returns: bf_y: [batch, source, frame, bin], complex64, beamformed spectrogram. w_H: [batch, bin, source, mic], complex64, beamformer coefficient conjugate.<|endoftext|>
c7b6545df07d1bc67370dcc0605a6e961c9965ed8e575ad2e29dba5dd9bbe052
def compute_multichannel_filter(y, t, use_complex_mask=False, frame_context_length=1, frame_context_type='causal', beamformer_type='wiener', refmic=0, block_size_in_frames=(- 1), diagload=0.001, epsilon=1e-08): "Computes a multi-channel Wiener filter from spectrogram-like inputs.\n\n Args:\n y: [batch, mic, frame, bin], complex64/float32, mixture spectrogram.\n t: [batch, source, frame, bin], complex64/float32, estimated spectrogram.\n use_complex_mask: If True, use a complex mask.\n frame_context_length: An integer value to specify the number of\n contextual frames used in beamforming.\n frame_context_type: 'causal' or 'centered'.\n beamformer_type: A string describing beamformer type. 'wiener', 'mvdr'\n or 'mpdr'.\n refmic: index of the reference mic.\n block_size_in_frames: an int32 value, block size in frames.\n diagload: float32, diagonal loading value for the matrix inversion in\n beamforming. Note that this value is likely dependent on the energy level\n of the input mixture. The default value has been tuned based on the\n assumption that the time-domain RMS normalization is performed, and the\n covariance matrices are always divided by the number of frames.\n epsilon: A float32 value, data-independent stabilizer for diagonal loading.\n\n Returns:\n [batch, source, frame, bin], complex64/float32, beamformed y.\n " y = tf.convert_to_tensor(y, name='y') t = tf.convert_to_tensor(t, name='t') tensor_shaper = shaper.Shaper() tensor_shaper.register_axes(y, ['batch', 'mic', 'frame', 'bin']) tensor_shaper.register_axes(t, ['batch', 'source', 'frame', 'bin']) batch = tensor_shaper.axis_sizes['batch'] n_frames = tensor_shaper.axis_sizes['frame'] if (frame_context_length > 1): if (frame_context_type == 'causal'): y = tf.pad(y, [(0, 0), (0, 0), ((frame_context_length - 1), 0), (0, 0)]) center_frame_index = (frame_context_length - 1) elif (frame_context_type == 'centered'): pad_end = ((frame_context_length - 1) // 2) pad_begin = ((frame_context_length - 1) - pad_end) y = tf.pad(y, [(0, 0), (0, 0), (pad_begin, pad_end), (0, 0)]) center_frame_index = pad_begin else: raise ValueError('Unknown frame context type {}'.format(frame_context_type)) y = tf.signal.frame(y, frame_context_length, 1, axis=2) y = tensor_shaper.change(y, ['batch', 'mic', 'frame', 'context', 'bin'], ['batch', ('mic', 'context'), 'frame', 'bin']) refmic = ((refmic * frame_context_length) + center_frame_index) if (block_size_in_frames < 0): n_frames_in_block = n_frames perform_blocking = False else: assert (block_size_in_frames > 0) if tf.is_tensor(n_frames): n_frames_in_block = tf.minimum(n_frames, block_size_in_frames) else: n_frames_in_block = min(n_frames, block_size_in_frames) perform_blocking = True if perform_blocking: overlap_window = tf.cast(tf.signal.vorbis_window(n_frames_in_block), dtype=y.dtype) def extract_blocks(tensor): 'Extract overlapping blocks from signals.' half_size = (n_frames_in_block // 2) tensor = tf.pad(tensor, [(0, 0), (0, 0), (half_size, 0), (0, 0)]) tensor = tf.signal.frame(tensor, n_frames_in_block, half_size, pad_end=True, axis=(- 2)) local_shaper = shaper.Shaper() tensor = local_shaper.change(tensor, ['batch', 'chan', 'block', 'frame', 'bin'], [('batch', 'block'), 'chan', 'frame', 'bin']) window_reshaped = tf.reshape(overlap_window, [1, 1, n_frames_in_block, 1]) tensor *= window_reshaped return tensor y = extract_blocks(y) t = extract_blocks(t) (bf_y, _) = time_invariant_multichannel_filtering(y, t, use_complex_mask=use_complex_mask, beamformer_type=beamformer_type, refmic=refmic, diagload=diagload, epsilon=epsilon) if perform_blocking: block_shaper = shaper.Shaper() block_shaper.register_axes(bf_y, ['block_and_batch', 'source', 'frame_in_block', 'bin']) half_size = (n_frames_in_block // 2) n_blocks = (tf.shape(bf_y)[0] / batch) tensor_shape = tf.concat([[n_blocks, batch], tf.shape(bf_y)[1:]], axis=0) bf_y = tf.reshape(bf_y, tensor_shape) block_shaper.register_axes(bf_y, ['block', 'batch', 'source', 'frame_in_block', 'bin']) bf_y = block_shaper.change(bf_y, ['block', 'batch', 'source', 'frame_in_block', 'bin'], ['batch', 'source', 'bin', 'block', 'frame_in_block']) window_reshaped = tf.reshape(overlap_window, [1, 1, 1, 1, n_frames_in_block]) bf_y *= window_reshaped bf_y = tf.signal.overlap_and_add(bf_y, half_size) bf_y = bf_y[(..., half_size:(half_size + n_frames))] block_shaper.register_axes(bf_y, ['batch', 'source', 'bin', 'frame']) bf_y = block_shaper.change(bf_y, ['batch', 'source', 'bin', 'frame'], ['batch', 'source', 'frame', 'bin']) return bf_y
Computes a multi-channel Wiener filter from spectrogram-like inputs. Args: y: [batch, mic, frame, bin], complex64/float32, mixture spectrogram. t: [batch, source, frame, bin], complex64/float32, estimated spectrogram. use_complex_mask: If True, use a complex mask. frame_context_length: An integer value to specify the number of contextual frames used in beamforming. frame_context_type: 'causal' or 'centered'. beamformer_type: A string describing beamformer type. 'wiener', 'mvdr' or 'mpdr'. refmic: index of the reference mic. block_size_in_frames: an int32 value, block size in frames. diagload: float32, diagonal loading value for the matrix inversion in beamforming. Note that this value is likely dependent on the energy level of the input mixture. The default value has been tuned based on the assumption that the time-domain RMS normalization is performed, and the covariance matrices are always divided by the number of frames. epsilon: A float32 value, data-independent stabilizer for diagonal loading. Returns: [batch, source, frame, bin], complex64/float32, beamformed y.
models/train/multichannel_filtering.py
compute_multichannel_filter
marciopuga/sound-separation
412
python
def compute_multichannel_filter(y, t, use_complex_mask=False, frame_context_length=1, frame_context_type='causal', beamformer_type='wiener', refmic=0, block_size_in_frames=(- 1), diagload=0.001, epsilon=1e-08): "Computes a multi-channel Wiener filter from spectrogram-like inputs.\n\n Args:\n y: [batch, mic, frame, bin], complex64/float32, mixture spectrogram.\n t: [batch, source, frame, bin], complex64/float32, estimated spectrogram.\n use_complex_mask: If True, use a complex mask.\n frame_context_length: An integer value to specify the number of\n contextual frames used in beamforming.\n frame_context_type: 'causal' or 'centered'.\n beamformer_type: A string describing beamformer type. 'wiener', 'mvdr'\n or 'mpdr'.\n refmic: index of the reference mic.\n block_size_in_frames: an int32 value, block size in frames.\n diagload: float32, diagonal loading value for the matrix inversion in\n beamforming. Note that this value is likely dependent on the energy level\n of the input mixture. The default value has been tuned based on the\n assumption that the time-domain RMS normalization is performed, and the\n covariance matrices are always divided by the number of frames.\n epsilon: A float32 value, data-independent stabilizer for diagonal loading.\n\n Returns:\n [batch, source, frame, bin], complex64/float32, beamformed y.\n " y = tf.convert_to_tensor(y, name='y') t = tf.convert_to_tensor(t, name='t') tensor_shaper = shaper.Shaper() tensor_shaper.register_axes(y, ['batch', 'mic', 'frame', 'bin']) tensor_shaper.register_axes(t, ['batch', 'source', 'frame', 'bin']) batch = tensor_shaper.axis_sizes['batch'] n_frames = tensor_shaper.axis_sizes['frame'] if (frame_context_length > 1): if (frame_context_type == 'causal'): y = tf.pad(y, [(0, 0), (0, 0), ((frame_context_length - 1), 0), (0, 0)]) center_frame_index = (frame_context_length - 1) elif (frame_context_type == 'centered'): pad_end = ((frame_context_length - 1) // 2) pad_begin = ((frame_context_length - 1) - pad_end) y = tf.pad(y, [(0, 0), (0, 0), (pad_begin, pad_end), (0, 0)]) center_frame_index = pad_begin else: raise ValueError('Unknown frame context type {}'.format(frame_context_type)) y = tf.signal.frame(y, frame_context_length, 1, axis=2) y = tensor_shaper.change(y, ['batch', 'mic', 'frame', 'context', 'bin'], ['batch', ('mic', 'context'), 'frame', 'bin']) refmic = ((refmic * frame_context_length) + center_frame_index) if (block_size_in_frames < 0): n_frames_in_block = n_frames perform_blocking = False else: assert (block_size_in_frames > 0) if tf.is_tensor(n_frames): n_frames_in_block = tf.minimum(n_frames, block_size_in_frames) else: n_frames_in_block = min(n_frames, block_size_in_frames) perform_blocking = True if perform_blocking: overlap_window = tf.cast(tf.signal.vorbis_window(n_frames_in_block), dtype=y.dtype) def extract_blocks(tensor): 'Extract overlapping blocks from signals.' half_size = (n_frames_in_block // 2) tensor = tf.pad(tensor, [(0, 0), (0, 0), (half_size, 0), (0, 0)]) tensor = tf.signal.frame(tensor, n_frames_in_block, half_size, pad_end=True, axis=(- 2)) local_shaper = shaper.Shaper() tensor = local_shaper.change(tensor, ['batch', 'chan', 'block', 'frame', 'bin'], [('batch', 'block'), 'chan', 'frame', 'bin']) window_reshaped = tf.reshape(overlap_window, [1, 1, n_frames_in_block, 1]) tensor *= window_reshaped return tensor y = extract_blocks(y) t = extract_blocks(t) (bf_y, _) = time_invariant_multichannel_filtering(y, t, use_complex_mask=use_complex_mask, beamformer_type=beamformer_type, refmic=refmic, diagload=diagload, epsilon=epsilon) if perform_blocking: block_shaper = shaper.Shaper() block_shaper.register_axes(bf_y, ['block_and_batch', 'source', 'frame_in_block', 'bin']) half_size = (n_frames_in_block // 2) n_blocks = (tf.shape(bf_y)[0] / batch) tensor_shape = tf.concat([[n_blocks, batch], tf.shape(bf_y)[1:]], axis=0) bf_y = tf.reshape(bf_y, tensor_shape) block_shaper.register_axes(bf_y, ['block', 'batch', 'source', 'frame_in_block', 'bin']) bf_y = block_shaper.change(bf_y, ['block', 'batch', 'source', 'frame_in_block', 'bin'], ['batch', 'source', 'bin', 'block', 'frame_in_block']) window_reshaped = tf.reshape(overlap_window, [1, 1, 1, 1, n_frames_in_block]) bf_y *= window_reshaped bf_y = tf.signal.overlap_and_add(bf_y, half_size) bf_y = bf_y[(..., half_size:(half_size + n_frames))] block_shaper.register_axes(bf_y, ['batch', 'source', 'bin', 'frame']) bf_y = block_shaper.change(bf_y, ['batch', 'source', 'bin', 'frame'], ['batch', 'source', 'frame', 'bin']) return bf_y
def compute_multichannel_filter(y, t, use_complex_mask=False, frame_context_length=1, frame_context_type='causal', beamformer_type='wiener', refmic=0, block_size_in_frames=(- 1), diagload=0.001, epsilon=1e-08): "Computes a multi-channel Wiener filter from spectrogram-like inputs.\n\n Args:\n y: [batch, mic, frame, bin], complex64/float32, mixture spectrogram.\n t: [batch, source, frame, bin], complex64/float32, estimated spectrogram.\n use_complex_mask: If True, use a complex mask.\n frame_context_length: An integer value to specify the number of\n contextual frames used in beamforming.\n frame_context_type: 'causal' or 'centered'.\n beamformer_type: A string describing beamformer type. 'wiener', 'mvdr'\n or 'mpdr'.\n refmic: index of the reference mic.\n block_size_in_frames: an int32 value, block size in frames.\n diagload: float32, diagonal loading value for the matrix inversion in\n beamforming. Note that this value is likely dependent on the energy level\n of the input mixture. The default value has been tuned based on the\n assumption that the time-domain RMS normalization is performed, and the\n covariance matrices are always divided by the number of frames.\n epsilon: A float32 value, data-independent stabilizer for diagonal loading.\n\n Returns:\n [batch, source, frame, bin], complex64/float32, beamformed y.\n " y = tf.convert_to_tensor(y, name='y') t = tf.convert_to_tensor(t, name='t') tensor_shaper = shaper.Shaper() tensor_shaper.register_axes(y, ['batch', 'mic', 'frame', 'bin']) tensor_shaper.register_axes(t, ['batch', 'source', 'frame', 'bin']) batch = tensor_shaper.axis_sizes['batch'] n_frames = tensor_shaper.axis_sizes['frame'] if (frame_context_length > 1): if (frame_context_type == 'causal'): y = tf.pad(y, [(0, 0), (0, 0), ((frame_context_length - 1), 0), (0, 0)]) center_frame_index = (frame_context_length - 1) elif (frame_context_type == 'centered'): pad_end = ((frame_context_length - 1) // 2) pad_begin = ((frame_context_length - 1) - pad_end) y = tf.pad(y, [(0, 0), (0, 0), (pad_begin, pad_end), (0, 0)]) center_frame_index = pad_begin else: raise ValueError('Unknown frame context type {}'.format(frame_context_type)) y = tf.signal.frame(y, frame_context_length, 1, axis=2) y = tensor_shaper.change(y, ['batch', 'mic', 'frame', 'context', 'bin'], ['batch', ('mic', 'context'), 'frame', 'bin']) refmic = ((refmic * frame_context_length) + center_frame_index) if (block_size_in_frames < 0): n_frames_in_block = n_frames perform_blocking = False else: assert (block_size_in_frames > 0) if tf.is_tensor(n_frames): n_frames_in_block = tf.minimum(n_frames, block_size_in_frames) else: n_frames_in_block = min(n_frames, block_size_in_frames) perform_blocking = True if perform_blocking: overlap_window = tf.cast(tf.signal.vorbis_window(n_frames_in_block), dtype=y.dtype) def extract_blocks(tensor): 'Extract overlapping blocks from signals.' half_size = (n_frames_in_block // 2) tensor = tf.pad(tensor, [(0, 0), (0, 0), (half_size, 0), (0, 0)]) tensor = tf.signal.frame(tensor, n_frames_in_block, half_size, pad_end=True, axis=(- 2)) local_shaper = shaper.Shaper() tensor = local_shaper.change(tensor, ['batch', 'chan', 'block', 'frame', 'bin'], [('batch', 'block'), 'chan', 'frame', 'bin']) window_reshaped = tf.reshape(overlap_window, [1, 1, n_frames_in_block, 1]) tensor *= window_reshaped return tensor y = extract_blocks(y) t = extract_blocks(t) (bf_y, _) = time_invariant_multichannel_filtering(y, t, use_complex_mask=use_complex_mask, beamformer_type=beamformer_type, refmic=refmic, diagload=diagload, epsilon=epsilon) if perform_blocking: block_shaper = shaper.Shaper() block_shaper.register_axes(bf_y, ['block_and_batch', 'source', 'frame_in_block', 'bin']) half_size = (n_frames_in_block // 2) n_blocks = (tf.shape(bf_y)[0] / batch) tensor_shape = tf.concat([[n_blocks, batch], tf.shape(bf_y)[1:]], axis=0) bf_y = tf.reshape(bf_y, tensor_shape) block_shaper.register_axes(bf_y, ['block', 'batch', 'source', 'frame_in_block', 'bin']) bf_y = block_shaper.change(bf_y, ['block', 'batch', 'source', 'frame_in_block', 'bin'], ['batch', 'source', 'bin', 'block', 'frame_in_block']) window_reshaped = tf.reshape(overlap_window, [1, 1, 1, 1, n_frames_in_block]) bf_y *= window_reshaped bf_y = tf.signal.overlap_and_add(bf_y, half_size) bf_y = bf_y[(..., half_size:(half_size + n_frames))] block_shaper.register_axes(bf_y, ['batch', 'source', 'bin', 'frame']) bf_y = block_shaper.change(bf_y, ['batch', 'source', 'bin', 'frame'], ['batch', 'source', 'frame', 'bin']) return bf_y<|docstring|>Computes a multi-channel Wiener filter from spectrogram-like inputs. Args: y: [batch, mic, frame, bin], complex64/float32, mixture spectrogram. t: [batch, source, frame, bin], complex64/float32, estimated spectrogram. use_complex_mask: If True, use a complex mask. frame_context_length: An integer value to specify the number of contextual frames used in beamforming. frame_context_type: 'causal' or 'centered'. beamformer_type: A string describing beamformer type. 'wiener', 'mvdr' or 'mpdr'. refmic: index of the reference mic. block_size_in_frames: an int32 value, block size in frames. diagload: float32, diagonal loading value for the matrix inversion in beamforming. Note that this value is likely dependent on the energy level of the input mixture. The default value has been tuned based on the assumption that the time-domain RMS normalization is performed, and the covariance matrices are always divided by the number of frames. epsilon: A float32 value, data-independent stabilizer for diagonal loading. Returns: [batch, source, frame, bin], complex64/float32, beamformed y.<|endoftext|>
afce7ded5f2c9b64b63c28f87d6c7746199926f53363ed3768d2428234f90caf
def compute_multichannel_filter_from_signals(y, t, refmic=0, sample_rate=16000.0, ws=0.064, hs=0.032, frame_context_length=1, frame_context_type='causal', beamformer_type='wiener', block_size_in_seconds=(- 1), use_complex_mask=False, diagload=0.001, epsilon=1e-08): "Computes a multichannel Wiener filter to estimate a target t from y.\n\n Args:\n y: [batch, mic, time], float32, mixture waveform.\n t: [batch, source, time], float32, estimated waveform.\n refmic: Index of the reference mic.\n sample_rate: Sampling rate of audio in Hz.\n ws: Window size in seconds.\n hs: Hop size in seconds.\n frame_context_length: An integer value to specify the number of\n contextual frames used in beamforming.\n frame_context_type: 'causal' or 'centered'.\n beamformer_type: A string describing beamformer type. 'wiener', 'mvdr'\n or 'mpdr'.\n block_size_in_seconds: block size in seconds.\n use_complex_mask: If True, use a complex mask.\n diagload: float32, diagonal loading value for the matrix inversion in\n beamforming. Note that this value is likely dependent on the energy level\n of the input mixture. The default value has been tuned based on the\n assumption that the time-domain RMS normalization is performed, and the\n covariance matrices are always divided by the number of frames.\n epsilon: A float32 value, data-independent stabilizer for diagonal loading.\n\n Returns:\n [batch, source, time], float32, beamformed waveform y.\n " noisy_length = signal_util.static_or_dynamic_dim_size(y, (- 1)) transformer = signal_transformer.SignalTransformer(sample_rate=sample_rate, window_time_seconds=ws, hop_time_seconds=hs, magnitude_offset=1e-08, zeropad_beginning=True) y_spectrograms = transformer.forward(y) t_spectrograms = transformer.forward(t) block_size_in_frames = int(round((block_size_in_seconds / hs))) beamformed_spectrograms = compute_multichannel_filter(y_spectrograms, t_spectrograms, frame_context_length=frame_context_length, frame_context_type=frame_context_type, beamformer_type=beamformer_type, refmic=refmic, block_size_in_frames=block_size_in_frames, use_complex_mask=use_complex_mask, diagload=diagload, epsilon=epsilon) beamformed_waveforms = transformer.inverse(beamformed_spectrograms)[(..., :noisy_length)] return beamformed_waveforms
Computes a multichannel Wiener filter to estimate a target t from y. Args: y: [batch, mic, time], float32, mixture waveform. t: [batch, source, time], float32, estimated waveform. refmic: Index of the reference mic. sample_rate: Sampling rate of audio in Hz. ws: Window size in seconds. hs: Hop size in seconds. frame_context_length: An integer value to specify the number of contextual frames used in beamforming. frame_context_type: 'causal' or 'centered'. beamformer_type: A string describing beamformer type. 'wiener', 'mvdr' or 'mpdr'. block_size_in_seconds: block size in seconds. use_complex_mask: If True, use a complex mask. diagload: float32, diagonal loading value for the matrix inversion in beamforming. Note that this value is likely dependent on the energy level of the input mixture. The default value has been tuned based on the assumption that the time-domain RMS normalization is performed, and the covariance matrices are always divided by the number of frames. epsilon: A float32 value, data-independent stabilizer for diagonal loading. Returns: [batch, source, time], float32, beamformed waveform y.
models/train/multichannel_filtering.py
compute_multichannel_filter_from_signals
marciopuga/sound-separation
412
python
def compute_multichannel_filter_from_signals(y, t, refmic=0, sample_rate=16000.0, ws=0.064, hs=0.032, frame_context_length=1, frame_context_type='causal', beamformer_type='wiener', block_size_in_seconds=(- 1), use_complex_mask=False, diagload=0.001, epsilon=1e-08): "Computes a multichannel Wiener filter to estimate a target t from y.\n\n Args:\n y: [batch, mic, time], float32, mixture waveform.\n t: [batch, source, time], float32, estimated waveform.\n refmic: Index of the reference mic.\n sample_rate: Sampling rate of audio in Hz.\n ws: Window size in seconds.\n hs: Hop size in seconds.\n frame_context_length: An integer value to specify the number of\n contextual frames used in beamforming.\n frame_context_type: 'causal' or 'centered'.\n beamformer_type: A string describing beamformer type. 'wiener', 'mvdr'\n or 'mpdr'.\n block_size_in_seconds: block size in seconds.\n use_complex_mask: If True, use a complex mask.\n diagload: float32, diagonal loading value for the matrix inversion in\n beamforming. Note that this value is likely dependent on the energy level\n of the input mixture. The default value has been tuned based on the\n assumption that the time-domain RMS normalization is performed, and the\n covariance matrices are always divided by the number of frames.\n epsilon: A float32 value, data-independent stabilizer for diagonal loading.\n\n Returns:\n [batch, source, time], float32, beamformed waveform y.\n " noisy_length = signal_util.static_or_dynamic_dim_size(y, (- 1)) transformer = signal_transformer.SignalTransformer(sample_rate=sample_rate, window_time_seconds=ws, hop_time_seconds=hs, magnitude_offset=1e-08, zeropad_beginning=True) y_spectrograms = transformer.forward(y) t_spectrograms = transformer.forward(t) block_size_in_frames = int(round((block_size_in_seconds / hs))) beamformed_spectrograms = compute_multichannel_filter(y_spectrograms, t_spectrograms, frame_context_length=frame_context_length, frame_context_type=frame_context_type, beamformer_type=beamformer_type, refmic=refmic, block_size_in_frames=block_size_in_frames, use_complex_mask=use_complex_mask, diagload=diagload, epsilon=epsilon) beamformed_waveforms = transformer.inverse(beamformed_spectrograms)[(..., :noisy_length)] return beamformed_waveforms
def compute_multichannel_filter_from_signals(y, t, refmic=0, sample_rate=16000.0, ws=0.064, hs=0.032, frame_context_length=1, frame_context_type='causal', beamformer_type='wiener', block_size_in_seconds=(- 1), use_complex_mask=False, diagload=0.001, epsilon=1e-08): "Computes a multichannel Wiener filter to estimate a target t from y.\n\n Args:\n y: [batch, mic, time], float32, mixture waveform.\n t: [batch, source, time], float32, estimated waveform.\n refmic: Index of the reference mic.\n sample_rate: Sampling rate of audio in Hz.\n ws: Window size in seconds.\n hs: Hop size in seconds.\n frame_context_length: An integer value to specify the number of\n contextual frames used in beamforming.\n frame_context_type: 'causal' or 'centered'.\n beamformer_type: A string describing beamformer type. 'wiener', 'mvdr'\n or 'mpdr'.\n block_size_in_seconds: block size in seconds.\n use_complex_mask: If True, use a complex mask.\n diagload: float32, diagonal loading value for the matrix inversion in\n beamforming. Note that this value is likely dependent on the energy level\n of the input mixture. The default value has been tuned based on the\n assumption that the time-domain RMS normalization is performed, and the\n covariance matrices are always divided by the number of frames.\n epsilon: A float32 value, data-independent stabilizer for diagonal loading.\n\n Returns:\n [batch, source, time], float32, beamformed waveform y.\n " noisy_length = signal_util.static_or_dynamic_dim_size(y, (- 1)) transformer = signal_transformer.SignalTransformer(sample_rate=sample_rate, window_time_seconds=ws, hop_time_seconds=hs, magnitude_offset=1e-08, zeropad_beginning=True) y_spectrograms = transformer.forward(y) t_spectrograms = transformer.forward(t) block_size_in_frames = int(round((block_size_in_seconds / hs))) beamformed_spectrograms = compute_multichannel_filter(y_spectrograms, t_spectrograms, frame_context_length=frame_context_length, frame_context_type=frame_context_type, beamformer_type=beamformer_type, refmic=refmic, block_size_in_frames=block_size_in_frames, use_complex_mask=use_complex_mask, diagload=diagload, epsilon=epsilon) beamformed_waveforms = transformer.inverse(beamformed_spectrograms)[(..., :noisy_length)] return beamformed_waveforms<|docstring|>Computes a multichannel Wiener filter to estimate a target t from y. Args: y: [batch, mic, time], float32, mixture waveform. t: [batch, source, time], float32, estimated waveform. refmic: Index of the reference mic. sample_rate: Sampling rate of audio in Hz. ws: Window size in seconds. hs: Hop size in seconds. frame_context_length: An integer value to specify the number of contextual frames used in beamforming. frame_context_type: 'causal' or 'centered'. beamformer_type: A string describing beamformer type. 'wiener', 'mvdr' or 'mpdr'. block_size_in_seconds: block size in seconds. use_complex_mask: If True, use a complex mask. diagload: float32, diagonal loading value for the matrix inversion in beamforming. Note that this value is likely dependent on the energy level of the input mixture. The default value has been tuned based on the assumption that the time-domain RMS normalization is performed, and the covariance matrices are always divided by the number of frames. epsilon: A float32 value, data-independent stabilizer for diagonal loading. Returns: [batch, source, time], float32, beamformed waveform y.<|endoftext|>
392a09b0fc3eaf347d98dc0a431f964eede2dbba09220215937e2c8c38233c4a
def extract_blocks(tensor): 'Extract overlapping blocks from signals.' half_size = (n_frames_in_block // 2) tensor = tf.pad(tensor, [(0, 0), (0, 0), (half_size, 0), (0, 0)]) tensor = tf.signal.frame(tensor, n_frames_in_block, half_size, pad_end=True, axis=(- 2)) local_shaper = shaper.Shaper() tensor = local_shaper.change(tensor, ['batch', 'chan', 'block', 'frame', 'bin'], [('batch', 'block'), 'chan', 'frame', 'bin']) window_reshaped = tf.reshape(overlap_window, [1, 1, n_frames_in_block, 1]) tensor *= window_reshaped return tensor
Extract overlapping blocks from signals.
models/train/multichannel_filtering.py
extract_blocks
marciopuga/sound-separation
412
python
def extract_blocks(tensor): half_size = (n_frames_in_block // 2) tensor = tf.pad(tensor, [(0, 0), (0, 0), (half_size, 0), (0, 0)]) tensor = tf.signal.frame(tensor, n_frames_in_block, half_size, pad_end=True, axis=(- 2)) local_shaper = shaper.Shaper() tensor = local_shaper.change(tensor, ['batch', 'chan', 'block', 'frame', 'bin'], [('batch', 'block'), 'chan', 'frame', 'bin']) window_reshaped = tf.reshape(overlap_window, [1, 1, n_frames_in_block, 1]) tensor *= window_reshaped return tensor
def extract_blocks(tensor): half_size = (n_frames_in_block // 2) tensor = tf.pad(tensor, [(0, 0), (0, 0), (half_size, 0), (0, 0)]) tensor = tf.signal.frame(tensor, n_frames_in_block, half_size, pad_end=True, axis=(- 2)) local_shaper = shaper.Shaper() tensor = local_shaper.change(tensor, ['batch', 'chan', 'block', 'frame', 'bin'], [('batch', 'block'), 'chan', 'frame', 'bin']) window_reshaped = tf.reshape(overlap_window, [1, 1, n_frames_in_block, 1]) tensor *= window_reshaped return tensor<|docstring|>Extract overlapping blocks from signals.<|endoftext|>
47000a3b0e9a1df2a78a128f9d6693861e95c5e250396be2e33c95ad81968a0d
def has_object_destroy_permission(self, request): 'Currently refers only to delete action' return request.user.is_superuser
Currently refers only to delete action
care/facility/models/patient.py
has_object_destroy_permission
Nikhil713/care
0
python
def has_object_destroy_permission(self, request): return request.user.is_superuser
def has_object_destroy_permission(self, request): return request.user.is_superuser<|docstring|>Currently refers only to delete action<|endoftext|>
93ee366a9f934296bfa3bfa8018f6f9c9cc7eacaec184ed04ad8595f168b9a7a
def save(self, *args, **kwargs) -> None: "\n While saving, if the local body is not null, then district will be local body's district\n Overriding save will help in a collision where the local body's district and district fields are different.\n\n It also creates/updates the PatientSearch model\n\n Parameters\n ----------\n args: list of args - not used\n kwargs: keyword args - not used\n\n Returns\n -------\n None\n " if (self.local_body is not None): self.district = self.local_body.district if (self.district is not None): self.state = self.district.state self.year_of_birth = (self.date_of_birth.year if (self.date_of_birth is not None) else (datetime.datetime.now().year - self.age)) is_create = (self.pk is None) super().save(*args, **kwargs) if (is_create or (self.patient_search_id is None)): ps = PatientSearch.objects.create(name=self.name, gender=self.gender, phone_number=self.phone_number, date_of_birth=self.date_of_birth, year_of_birth=self.year_of_birth, state_id=self.state_id, patient_id=self.pk) self.patient_search_id = ps.pk self.save() else: PatientSearch.objects.filter(pk=self.patient_search_id).update(name=self.name, gender=self.gender, phone_number=self.phone_number, date_of_birth=self.date_of_birth, year_of_birth=self.year_of_birth, state_id=self.state_id)
While saving, if the local body is not null, then district will be local body's district Overriding save will help in a collision where the local body's district and district fields are different. It also creates/updates the PatientSearch model Parameters ---------- args: list of args - not used kwargs: keyword args - not used Returns ------- None
care/facility/models/patient.py
save
Nikhil713/care
0
python
def save(self, *args, **kwargs) -> None: "\n While saving, if the local body is not null, then district will be local body's district\n Overriding save will help in a collision where the local body's district and district fields are different.\n\n It also creates/updates the PatientSearch model\n\n Parameters\n ----------\n args: list of args - not used\n kwargs: keyword args - not used\n\n Returns\n -------\n None\n " if (self.local_body is not None): self.district = self.local_body.district if (self.district is not None): self.state = self.district.state self.year_of_birth = (self.date_of_birth.year if (self.date_of_birth is not None) else (datetime.datetime.now().year - self.age)) is_create = (self.pk is None) super().save(*args, **kwargs) if (is_create or (self.patient_search_id is None)): ps = PatientSearch.objects.create(name=self.name, gender=self.gender, phone_number=self.phone_number, date_of_birth=self.date_of_birth, year_of_birth=self.year_of_birth, state_id=self.state_id, patient_id=self.pk) self.patient_search_id = ps.pk self.save() else: PatientSearch.objects.filter(pk=self.patient_search_id).update(name=self.name, gender=self.gender, phone_number=self.phone_number, date_of_birth=self.date_of_birth, year_of_birth=self.year_of_birth, state_id=self.state_id)
def save(self, *args, **kwargs) -> None: "\n While saving, if the local body is not null, then district will be local body's district\n Overriding save will help in a collision where the local body's district and district fields are different.\n\n It also creates/updates the PatientSearch model\n\n Parameters\n ----------\n args: list of args - not used\n kwargs: keyword args - not used\n\n Returns\n -------\n None\n " if (self.local_body is not None): self.district = self.local_body.district if (self.district is not None): self.state = self.district.state self.year_of_birth = (self.date_of_birth.year if (self.date_of_birth is not None) else (datetime.datetime.now().year - self.age)) is_create = (self.pk is None) super().save(*args, **kwargs) if (is_create or (self.patient_search_id is None)): ps = PatientSearch.objects.create(name=self.name, gender=self.gender, phone_number=self.phone_number, date_of_birth=self.date_of_birth, year_of_birth=self.year_of_birth, state_id=self.state_id, patient_id=self.pk) self.patient_search_id = ps.pk self.save() else: PatientSearch.objects.filter(pk=self.patient_search_id).update(name=self.name, gender=self.gender, phone_number=self.phone_number, date_of_birth=self.date_of_birth, year_of_birth=self.year_of_birth, state_id=self.state_id)<|docstring|>While saving, if the local body is not null, then district will be local body's district Overriding save will help in a collision where the local body's district and district fields are different. It also creates/updates the PatientSearch model Parameters ---------- args: list of args - not used kwargs: keyword args - not used Returns ------- None<|endoftext|>
1a7a8d42f35343b6bdaa63eb99a18f03a472e5bf5f2fdc28ab82a85cc8645393
@staticmethod def locate_msbuild(): '\n Attempts to find msbuild executable in the local filesystem\n ' if (sys.platform == 'win32'): msbuild_search_patterns = [] vs_msbuild_pattern = '\\Microsoft Visual Studio\\*\\Community\\MSBuild\\*\\Bin\\MSBuild.exe' dotnet_msbuild_pattern = '\\Microsoft.NET\\Framework\\*\\MSBuild.exe' if ('ProgramFiles' in os.environ): msbuild_search_patterns.append((os.environ['ProgramFiles'] + vs_msbuild_pattern)) if ('ProgramFiles(x86)' in os.environ): msbuild_search_patterns.append((os.environ['ProgramFiles(x86)'] + vs_msbuild_pattern)) if ('WINDIR' in os.environ): msbuild_search_patterns.append((os.environ['WINDIR'] + dotnet_msbuild_pattern)) for pattern in msbuild_search_patterns: locations = glob.glob(pattern) for location in sorted(locations, reverse=True): if MsBuildRunner.valid_msbuild_executable(location): return location if MsBuildRunner.valid_msbuild_executable('msbuild'): return 'msbuild' return None
Attempts to find msbuild executable in the local filesystem
ugetcli/msbuild.py
locate_msbuild
AgeOfLearning/uget-cli
1
python
@staticmethod def locate_msbuild(): '\n \n ' if (sys.platform == 'win32'): msbuild_search_patterns = [] vs_msbuild_pattern = '\\Microsoft Visual Studio\\*\\Community\\MSBuild\\*\\Bin\\MSBuild.exe' dotnet_msbuild_pattern = '\\Microsoft.NET\\Framework\\*\\MSBuild.exe' if ('ProgramFiles' in os.environ): msbuild_search_patterns.append((os.environ['ProgramFiles'] + vs_msbuild_pattern)) if ('ProgramFiles(x86)' in os.environ): msbuild_search_patterns.append((os.environ['ProgramFiles(x86)'] + vs_msbuild_pattern)) if ('WINDIR' in os.environ): msbuild_search_patterns.append((os.environ['WINDIR'] + dotnet_msbuild_pattern)) for pattern in msbuild_search_patterns: locations = glob.glob(pattern) for location in sorted(locations, reverse=True): if MsBuildRunner.valid_msbuild_executable(location): return location if MsBuildRunner.valid_msbuild_executable('msbuild'): return 'msbuild' return None
@staticmethod def locate_msbuild(): '\n \n ' if (sys.platform == 'win32'): msbuild_search_patterns = [] vs_msbuild_pattern = '\\Microsoft Visual Studio\\*\\Community\\MSBuild\\*\\Bin\\MSBuild.exe' dotnet_msbuild_pattern = '\\Microsoft.NET\\Framework\\*\\MSBuild.exe' if ('ProgramFiles' in os.environ): msbuild_search_patterns.append((os.environ['ProgramFiles'] + vs_msbuild_pattern)) if ('ProgramFiles(x86)' in os.environ): msbuild_search_patterns.append((os.environ['ProgramFiles(x86)'] + vs_msbuild_pattern)) if ('WINDIR' in os.environ): msbuild_search_patterns.append((os.environ['WINDIR'] + dotnet_msbuild_pattern)) for pattern in msbuild_search_patterns: locations = glob.glob(pattern) for location in sorted(locations, reverse=True): if MsBuildRunner.valid_msbuild_executable(location): return location if MsBuildRunner.valid_msbuild_executable('msbuild'): return 'msbuild' return None<|docstring|>Attempts to find msbuild executable in the local filesystem<|endoftext|>
7db17b6e05763083ab3e06b43a391687384fff88da1fb40f357321f554ac0579
@staticmethod def valid_msbuild_executable(msbuild_path): '\n Returns True if path is a valid msbuild executable, otherwise False\n ' with open(os.devnull, 'w') as devnull: try: return (call((escape_exe_path(msbuild_path) + ' /?'), shell=True, stderr=devnull, stdout=devnull) == 0) except IOError: return False
Returns True if path is a valid msbuild executable, otherwise False
ugetcli/msbuild.py
valid_msbuild_executable
AgeOfLearning/uget-cli
1
python
@staticmethod def valid_msbuild_executable(msbuild_path): '\n \n ' with open(os.devnull, 'w') as devnull: try: return (call((escape_exe_path(msbuild_path) + ' /?'), shell=True, stderr=devnull, stdout=devnull) == 0) except IOError: return False
@staticmethod def valid_msbuild_executable(msbuild_path): '\n \n ' with open(os.devnull, 'w') as devnull: try: return (call((escape_exe_path(msbuild_path) + ' /?'), shell=True, stderr=devnull, stdout=devnull) == 0) except IOError: return False<|docstring|>Returns True if path is a valid msbuild executable, otherwise False<|endoftext|>
ddf813b78213e46d2b36707f288a8d638577fe4b2c5e55a491873872507dea21
def cmd(command): 'This wait causes all executions to run in sieries. \n For parralelization, remove .wait() and instead delay the \n R script calls unitl all neccesary data is created.' return subprocess.Popen(command, shell=True).wait()
This wait causes all executions to run in sieries. For parralelization, remove .wait() and instead delay the R script calls unitl all neccesary data is created.
Data/08.16.21_free_sym_rdsweep_mixediciv/simple_repeat.py
cmd
K-Johnson-Horrigan/Evolution-of-Endosymbiosis-Paper
2
python
def cmd(command): 'This wait causes all executions to run in sieries. \n For parralelization, remove .wait() and instead delay the \n R script calls unitl all neccesary data is created.' return subprocess.Popen(command, shell=True).wait()
def cmd(command): 'This wait causes all executions to run in sieries. \n For parralelization, remove .wait() and instead delay the \n R script calls unitl all neccesary data is created.' return subprocess.Popen(command, shell=True).wait()<|docstring|>This wait causes all executions to run in sieries. For parralelization, remove .wait() and instead delay the R script calls unitl all neccesary data is created.<|endoftext|>
fa4dba7a15f9b1e4d64dbe119c02ff246fc7ed798eadde8142bb8eafffef2e18
def silent_cmd(command): 'This wait causes all executions to run in sieries. \n For parralelization, remove .wait() and instead delay the \n R script calls unitl all neccesary data is created.' return subprocess.Popen(command, shell=True, stdout=subprocess.PIPE).wait()
This wait causes all executions to run in sieries. For parralelization, remove .wait() and instead delay the R script calls unitl all neccesary data is created.
Data/08.16.21_free_sym_rdsweep_mixediciv/simple_repeat.py
silent_cmd
K-Johnson-Horrigan/Evolution-of-Endosymbiosis-Paper
2
python
def silent_cmd(command): 'This wait causes all executions to run in sieries. \n For parralelization, remove .wait() and instead delay the \n R script calls unitl all neccesary data is created.' return subprocess.Popen(command, shell=True, stdout=subprocess.PIPE).wait()
def silent_cmd(command): 'This wait causes all executions to run in sieries. \n For parralelization, remove .wait() and instead delay the \n R script calls unitl all neccesary data is created.' return subprocess.Popen(command, shell=True, stdout=subprocess.PIPE).wait()<|docstring|>This wait causes all executions to run in sieries. For parralelization, remove .wait() and instead delay the R script calls unitl all neccesary data is created.<|endoftext|>
3b10dbdbab029f138a76a34931ae2918d5b9ee69aa350313a597aac0a0b1f98a
def __init__(self): '\n Constructor for he Wrapper Interface.\n Will hold the handlers set up in the environment in the `self._handlers` in a dictionary by key name.\n Will hold a list containing the key names of handlers set up as the main ones.\n ' self._handlers = {} self._main_handlers = [] self.initialized = False
Constructor for he Wrapper Interface. Will hold the handlers set up in the environment in the `self._handlers` in a dictionary by key name. Will hold a list containing the key names of handlers set up as the main ones.
mlapp/handlers/wrappers/wrapper_interface.py
__init__
zach-navina/mlapp
33
python
def __init__(self): '\n Constructor for he Wrapper Interface.\n Will hold the handlers set up in the environment in the `self._handlers` in a dictionary by key name.\n Will hold a list containing the key names of handlers set up as the main ones.\n ' self._handlers = {} self._main_handlers = [] self.initialized = False
def __init__(self): '\n Constructor for he Wrapper Interface.\n Will hold the handlers set up in the environment in the `self._handlers` in a dictionary by key name.\n Will hold a list containing the key names of handlers set up as the main ones.\n ' self._handlers = {} self._main_handlers = [] self.initialized = False<|docstring|>Constructor for he Wrapper Interface. Will hold the handlers set up in the environment in the `self._handlers` in a dictionary by key name. Will hold a list containing the key names of handlers set up as the main ones.<|endoftext|>
7f0500865c13acab3a7f1cab407f8f157b58e43c82b4c144c3b67063b8b4e554
@abstractmethod def init(self, handler_type): '\n Initialization, should be called once only\n Populates the `self._handlers` and `self_main_handlers` variables depending on the set environment\n :param handler_type: used for filtering services by the handler type\n ' if (not self.initialized): for service_name in settings.get('services', []): service_item = settings['services'][service_name] if ('type' not in service_item): raise Exception("'{}' service is missing 'type' key, must be filled in config.py with the one of the following: database/file_storage/database/spark".format(service_name)) if (service_item['type'] == handler_type): try: self._handlers[service_name] = service_item['handler'](service_item.get('settings', {})) if service_item.get('main', False): self._main_handlers.append(service_name) except SkipServiceException as e: pass except Exception as e: if (service_item['handler'] is None): raise Exception("'{}' service of type '{}' is missing a python library installation.".format(service_name, service_item.get('type'))) else: raise e self.initialized = True
Initialization, should be called once only Populates the `self._handlers` and `self_main_handlers` variables depending on the set environment :param handler_type: used for filtering services by the handler type
mlapp/handlers/wrappers/wrapper_interface.py
init
zach-navina/mlapp
33
python
@abstractmethod def init(self, handler_type): '\n Initialization, should be called once only\n Populates the `self._handlers` and `self_main_handlers` variables depending on the set environment\n :param handler_type: used for filtering services by the handler type\n ' if (not self.initialized): for service_name in settings.get('services', []): service_item = settings['services'][service_name] if ('type' not in service_item): raise Exception("'{}' service is missing 'type' key, must be filled in config.py with the one of the following: database/file_storage/database/spark".format(service_name)) if (service_item['type'] == handler_type): try: self._handlers[service_name] = service_item['handler'](service_item.get('settings', {})) if service_item.get('main', False): self._main_handlers.append(service_name) except SkipServiceException as e: pass except Exception as e: if (service_item['handler'] is None): raise Exception("'{}' service of type '{}' is missing a python library installation.".format(service_name, service_item.get('type'))) else: raise e self.initialized = True
@abstractmethod def init(self, handler_type): '\n Initialization, should be called once only\n Populates the `self._handlers` and `self_main_handlers` variables depending on the set environment\n :param handler_type: used for filtering services by the handler type\n ' if (not self.initialized): for service_name in settings.get('services', []): service_item = settings['services'][service_name] if ('type' not in service_item): raise Exception("'{}' service is missing 'type' key, must be filled in config.py with the one of the following: database/file_storage/database/spark".format(service_name)) if (service_item['type'] == handler_type): try: self._handlers[service_name] = service_item['handler'](service_item.get('settings', {})) if service_item.get('main', False): self._main_handlers.append(service_name) except SkipServiceException as e: pass except Exception as e: if (service_item['handler'] is None): raise Exception("'{}' service of type '{}' is missing a python library installation.".format(service_name, service_item.get('type'))) else: raise e self.initialized = True<|docstring|>Initialization, should be called once only Populates the `self._handlers` and `self_main_handlers` variables depending on the set environment :param handler_type: used for filtering services by the handler type<|endoftext|>
5fa1ee8922d43acb5f3bb5d9e3dcefbb64a154ee07d7aff6ce0bee623489a01c
def get(self, handler_name): '\n Get the handler instance by name\n :param handler_name: handler name string\n :return: Handler Instance\n ' return self._handlers.get(handler_name)
Get the handler instance by name :param handler_name: handler name string :return: Handler Instance
mlapp/handlers/wrappers/wrapper_interface.py
get
zach-navina/mlapp
33
python
def get(self, handler_name): '\n Get the handler instance by name\n :param handler_name: handler name string\n :return: Handler Instance\n ' return self._handlers.get(handler_name)
def get(self, handler_name): '\n Get the handler instance by name\n :param handler_name: handler name string\n :return: Handler Instance\n ' return self._handlers.get(handler_name)<|docstring|>Get the handler instance by name :param handler_name: handler name string :return: Handler Instance<|endoftext|>
4a1be46b8f2a0eda1fca91a0e025359df6197359c14df6dc8a8f62745571287e
def empty(self): '\n Checks if there are configured handlers as "main"\n ' return (len(self._main_handlers) == 0)
Checks if there are configured handlers as "main"
mlapp/handlers/wrappers/wrapper_interface.py
empty
zach-navina/mlapp
33
python
def empty(self): '\n \n ' return (len(self._main_handlers) == 0)
def empty(self): '\n \n ' return (len(self._main_handlers) == 0)<|docstring|>Checks if there are configured handlers as "main"<|endoftext|>
c84fd9d03363f2dac6e84e56405be627528d933cb2db349f4010df23d73ef42b
def create_app(test_config: Optional[Dict[(str, Any)]]=None, *, with_db: bool=True): 'Application factory.' app = Flask('main', static_url_path='', template_folder=cfg.TEMPLATES_DIR) app.config.from_object(cfg) if test_config: app.config.update(test_config) if app.debug: app.logger.propagate = True register_blueprints(app) register_extensions(app, test_config=test_config) register_route_checks(app) register_custom_helpers(app) app.jinja_env.lstrip_blocks = True app.jinja_env.trim_blocks = True if with_db: init_db(app) return app
Application factory.
lib/app_factory.py
create_app
pombredanne/vulncode-db
592
python
def create_app(test_config: Optional[Dict[(str, Any)]]=None, *, with_db: bool=True): app = Flask('main', static_url_path=, template_folder=cfg.TEMPLATES_DIR) app.config.from_object(cfg) if test_config: app.config.update(test_config) if app.debug: app.logger.propagate = True register_blueprints(app) register_extensions(app, test_config=test_config) register_route_checks(app) register_custom_helpers(app) app.jinja_env.lstrip_blocks = True app.jinja_env.trim_blocks = True if with_db: init_db(app) return app
def create_app(test_config: Optional[Dict[(str, Any)]]=None, *, with_db: bool=True): app = Flask('main', static_url_path=, template_folder=cfg.TEMPLATES_DIR) app.config.from_object(cfg) if test_config: app.config.update(test_config) if app.debug: app.logger.propagate = True register_blueprints(app) register_extensions(app, test_config=test_config) register_route_checks(app) register_custom_helpers(app) app.jinja_env.lstrip_blocks = True app.jinja_env.trim_blocks = True if with_db: init_db(app) return app<|docstring|>Application factory.<|endoftext|>
88b9020d0436319236c376376bf360717ff97a67b4901e6d2219c4b88afd59d7
def register_extensions(app, test_config=None): 'Register Flask extensions.' Bootstrap(app) public_paths = ['/favicon.ico', '/static/'] csrf = CSRFProtect() csrf.init_app(app) oauth.init_app(app) if ((not cfg.IS_PROD) and (not test_config)): DebugToolbarExtension(app) csrf.exempt(debug_toolbar_bp) public_paths.append('/_debug_toolbar/') def always_authorize(): for path in public_paths: if request.path.startswith(path): logging.warning('Bypassing ACL check for %s (matches %s)', request.path, path) request._authorized = True return app.before_request(always_authorize) bouncer.init_app(app) def check_or_404(response: Response): if ((response.status_code // 100) != 2): return response try: return bouncer.check_authorization(response) except Forbidden: logging.warning('Automatically denied access to response %d of %s', response.status_code, request.path) raise app.after_request(check_or_404)
Register Flask extensions.
lib/app_factory.py
register_extensions
pombredanne/vulncode-db
592
python
def register_extensions(app, test_config=None): Bootstrap(app) public_paths = ['/favicon.ico', '/static/'] csrf = CSRFProtect() csrf.init_app(app) oauth.init_app(app) if ((not cfg.IS_PROD) and (not test_config)): DebugToolbarExtension(app) csrf.exempt(debug_toolbar_bp) public_paths.append('/_debug_toolbar/') def always_authorize(): for path in public_paths: if request.path.startswith(path): logging.warning('Bypassing ACL check for %s (matches %s)', request.path, path) request._authorized = True return app.before_request(always_authorize) bouncer.init_app(app) def check_or_404(response: Response): if ((response.status_code // 100) != 2): return response try: return bouncer.check_authorization(response) except Forbidden: logging.warning('Automatically denied access to response %d of %s', response.status_code, request.path) raise app.after_request(check_or_404)
def register_extensions(app, test_config=None): Bootstrap(app) public_paths = ['/favicon.ico', '/static/'] csrf = CSRFProtect() csrf.init_app(app) oauth.init_app(app) if ((not cfg.IS_PROD) and (not test_config)): DebugToolbarExtension(app) csrf.exempt(debug_toolbar_bp) public_paths.append('/_debug_toolbar/') def always_authorize(): for path in public_paths: if request.path.startswith(path): logging.warning('Bypassing ACL check for %s (matches %s)', request.path, path) request._authorized = True return app.before_request(always_authorize) bouncer.init_app(app) def check_or_404(response: Response): if ((response.status_code // 100) != 2): return response try: return bouncer.check_authorization(response) except Forbidden: logging.warning('Automatically denied access to response %d of %s', response.status_code, request.path) raise app.after_request(check_or_404)<|docstring|>Register Flask extensions.<|endoftext|>
67ad1bd21180718b95116b833f785c6a5a2cb62b014bc21f3981430578847efb
def register_blueprints(app): 'Register Flask blueprints.' app.register_blueprint(admin_bp) app.register_blueprint(auth_bp) app.register_blueprint(api_bp) app.register_blueprint(api_v1_bp) app.register_blueprint(frontend_bp) app.register_blueprint(product_bp) app.register_blueprint(vcs_proxy_bp) app.register_blueprint(vuln_bp) app.register_blueprint(profile_bp) app.register_blueprint(review_bp)
Register Flask blueprints.
lib/app_factory.py
register_blueprints
pombredanne/vulncode-db
592
python
def register_blueprints(app): app.register_blueprint(admin_bp) app.register_blueprint(auth_bp) app.register_blueprint(api_bp) app.register_blueprint(api_v1_bp) app.register_blueprint(frontend_bp) app.register_blueprint(product_bp) app.register_blueprint(vcs_proxy_bp) app.register_blueprint(vuln_bp) app.register_blueprint(profile_bp) app.register_blueprint(review_bp)
def register_blueprints(app): app.register_blueprint(admin_bp) app.register_blueprint(auth_bp) app.register_blueprint(api_bp) app.register_blueprint(api_v1_bp) app.register_blueprint(frontend_bp) app.register_blueprint(product_bp) app.register_blueprint(vcs_proxy_bp) app.register_blueprint(vuln_bp) app.register_blueprint(profile_bp) app.register_blueprint(review_bp)<|docstring|>Register Flask blueprints.<|endoftext|>
aa21c16c9c36513a7f4ec34753abb30c5eba73d2d76aa24982f8d3fc80573ed4
def cnRemainder(ms): 'Chinese remainder theorem.\n (moduli, residues) -> Either explanation or solution\n ' def go(ms, rs): mp = numericProduct(ms) cms = [(mp // x) for x in ms] def possibleSoln(invs): return Right((sum(map(mul, cms, map(mul, rs, invs))) % mp)) return bindLR(zipWithEither(modMultInv)(cms)(ms))(possibleSoln) return (lambda rs: go(ms, rs))
Chinese remainder theorem. (moduli, residues) -> Either explanation or solution
Task/Chinese-remainder-theorem/Python/chinese-remainder-theorem-3.py
cnRemainder
mullikine/RosettaCodeData
1
python
def cnRemainder(ms): 'Chinese remainder theorem.\n (moduli, residues) -> Either explanation or solution\n ' def go(ms, rs): mp = numericProduct(ms) cms = [(mp // x) for x in ms] def possibleSoln(invs): return Right((sum(map(mul, cms, map(mul, rs, invs))) % mp)) return bindLR(zipWithEither(modMultInv)(cms)(ms))(possibleSoln) return (lambda rs: go(ms, rs))
def cnRemainder(ms): 'Chinese remainder theorem.\n (moduli, residues) -> Either explanation or solution\n ' def go(ms, rs): mp = numericProduct(ms) cms = [(mp // x) for x in ms] def possibleSoln(invs): return Right((sum(map(mul, cms, map(mul, rs, invs))) % mp)) return bindLR(zipWithEither(modMultInv)(cms)(ms))(possibleSoln) return (lambda rs: go(ms, rs))<|docstring|>Chinese remainder theorem. (moduli, residues) -> Either explanation or solution<|endoftext|>
8eecb336980150c2e57ac21944c865c47c82dd1d621986e961dcb1f2c53826fa
def modMultInv(a, b): 'Modular multiplicative inverse.' (x, y) = eGcd(a, b) return (Right(x) if (1 == ((a * x) + (b * y))) else Left(((('no modular inverse for ' + str(a)) + ' and ') + str(b))))
Modular multiplicative inverse.
Task/Chinese-remainder-theorem/Python/chinese-remainder-theorem-3.py
modMultInv
mullikine/RosettaCodeData
1
python
def modMultInv(a, b): (x, y) = eGcd(a, b) return (Right(x) if (1 == ((a * x) + (b * y))) else Left(((('no modular inverse for ' + str(a)) + ' and ') + str(b))))
def modMultInv(a, b): (x, y) = eGcd(a, b) return (Right(x) if (1 == ((a * x) + (b * y))) else Left(((('no modular inverse for ' + str(a)) + ' and ') + str(b))))<|docstring|>Modular multiplicative inverse.<|endoftext|>
6ec8bc5a3615884d80dde51a290ca142ec5f9bcebd30b9a3a3d6e76a9a3f5a26
def eGcd(a, b): 'Extended greatest common divisor.' def go(a, b): if (0 == b): return (1, 0) else: (q, r) = divmod(a, b) (s, t) = go(b, r) return (t, (s - (q * t))) return go(a, b)
Extended greatest common divisor.
Task/Chinese-remainder-theorem/Python/chinese-remainder-theorem-3.py
eGcd
mullikine/RosettaCodeData
1
python
def eGcd(a, b): def go(a, b): if (0 == b): return (1, 0) else: (q, r) = divmod(a, b) (s, t) = go(b, r) return (t, (s - (q * t))) return go(a, b)
def eGcd(a, b): def go(a, b): if (0 == b): return (1, 0) else: (q, r) = divmod(a, b) (s, t) = go(b, r) return (t, (s - (q * t))) return go(a, b)<|docstring|>Extended greatest common divisor.<|endoftext|>
4b7310571845c8fc023dc511fe5bc7a6ee7df8771a6fde325d7b7d9c57943fe3
def main(): 'Tests of soluble and insoluble cases.' print(fTable(((__doc__ + ':\n\n (moduli, residues) -> ') + 'Either solution or explanation\n'))(repr)(either(compose(quoted("'"))(curry(add)('No solution: ')))(compose(quoted(' '))(repr)))(uncurry(cnRemainder))([([10, 4, 12], [11, 12, 13]), ([11, 12, 13], [10, 4, 12]), ([10, 4, 9], [11, 22, 19]), ([3, 5, 7], [2, 3, 2]), ([2, 3, 2], [3, 5, 7])]))
Tests of soluble and insoluble cases.
Task/Chinese-remainder-theorem/Python/chinese-remainder-theorem-3.py
main
mullikine/RosettaCodeData
1
python
def main(): print(fTable(((__doc__ + ':\n\n (moduli, residues) -> ') + 'Either solution or explanation\n'))(repr)(either(compose(quoted("'"))(curry(add)('No solution: ')))(compose(quoted(' '))(repr)))(uncurry(cnRemainder))([([10, 4, 12], [11, 12, 13]), ([11, 12, 13], [10, 4, 12]), ([10, 4, 9], [11, 22, 19]), ([3, 5, 7], [2, 3, 2]), ([2, 3, 2], [3, 5, 7])]))
def main(): print(fTable(((__doc__ + ':\n\n (moduli, residues) -> ') + 'Either solution or explanation\n'))(repr)(either(compose(quoted("'"))(curry(add)('No solution: ')))(compose(quoted(' '))(repr)))(uncurry(cnRemainder))([([10, 4, 12], [11, 12, 13]), ([11, 12, 13], [10, 4, 12]), ([10, 4, 9], [11, 22, 19]), ([3, 5, 7], [2, 3, 2]), ([2, 3, 2], [3, 5, 7])]))<|docstring|>Tests of soluble and insoluble cases.<|endoftext|>
d93e2b27a14b4f1387f9d4fc110b8fc326281478d7cecbb41095b2a856991666
def Left(x): 'Constructor for an empty Either (option type) value\n with an associated string.' return {'type': 'Either', 'Right': None, 'Left': x}
Constructor for an empty Either (option type) value with an associated string.
Task/Chinese-remainder-theorem/Python/chinese-remainder-theorem-3.py
Left
mullikine/RosettaCodeData
1
python
def Left(x): 'Constructor for an empty Either (option type) value\n with an associated string.' return {'type': 'Either', 'Right': None, 'Left': x}
def Left(x): 'Constructor for an empty Either (option type) value\n with an associated string.' return {'type': 'Either', 'Right': None, 'Left': x}<|docstring|>Constructor for an empty Either (option type) value with an associated string.<|endoftext|>
5a76031363ff580ceb740af29844f13b7037c76f90bb7cd3eb00b76f66d3a279
def Right(x): 'Constructor for a populated Either (option type) value' return {'type': 'Either', 'Left': None, 'Right': x}
Constructor for a populated Either (option type) value
Task/Chinese-remainder-theorem/Python/chinese-remainder-theorem-3.py
Right
mullikine/RosettaCodeData
1
python
def Right(x): return {'type': 'Either', 'Left': None, 'Right': x}
def Right(x): return {'type': 'Either', 'Left': None, 'Right': x}<|docstring|>Constructor for a populated Either (option type) value<|endoftext|>
42e2a5b896055160ff121e322a72d7517e6249687963d7134ce44f49363eee70
def any_(p): 'True if p(x) holds for at least\n one item in xs.' def go(xs): for x in xs: if p(x): return True return False return (lambda xs: go(xs))
True if p(x) holds for at least one item in xs.
Task/Chinese-remainder-theorem/Python/chinese-remainder-theorem-3.py
any_
mullikine/RosettaCodeData
1
python
def any_(p): 'True if p(x) holds for at least\n one item in xs.' def go(xs): for x in xs: if p(x): return True return False return (lambda xs: go(xs))
def any_(p): 'True if p(x) holds for at least\n one item in xs.' def go(xs): for x in xs: if p(x): return True return False return (lambda xs: go(xs))<|docstring|>True if p(x) holds for at least one item in xs.<|endoftext|>
0c003c74418b0fb2cca75cc20e25cc5ea12138cb6055333cbf4d66b07d246b83
def bindLR(m): 'Either monad injection operator.\n Two computations sequentially composed,\n with any value produced by the first\n passed as an argument to the second.' return (lambda mf: (mf(m.get('Right')) if (None is m.get('Left')) else m))
Either monad injection operator. Two computations sequentially composed, with any value produced by the first passed as an argument to the second.
Task/Chinese-remainder-theorem/Python/chinese-remainder-theorem-3.py
bindLR
mullikine/RosettaCodeData
1
python
def bindLR(m): 'Either monad injection operator.\n Two computations sequentially composed,\n with any value produced by the first\n passed as an argument to the second.' return (lambda mf: (mf(m.get('Right')) if (None is m.get('Left')) else m))
def bindLR(m): 'Either monad injection operator.\n Two computations sequentially composed,\n with any value produced by the first\n passed as an argument to the second.' return (lambda mf: (mf(m.get('Right')) if (None is m.get('Left')) else m))<|docstring|>Either monad injection operator. Two computations sequentially composed, with any value produced by the first passed as an argument to the second.<|endoftext|>
db83133929783cffb42d3ca038fb5a28d9e7251f4a063d60f2fbd68d583f53b6
def compose(g): 'Right to left function composition.' return (lambda f: (lambda x: g(f(x))))
Right to left function composition.
Task/Chinese-remainder-theorem/Python/chinese-remainder-theorem-3.py
compose
mullikine/RosettaCodeData
1
python
def compose(g): return (lambda f: (lambda x: g(f(x))))
def compose(g): return (lambda f: (lambda x: g(f(x))))<|docstring|>Right to left function composition.<|endoftext|>
ceccfb71a9cc9700367741548eee67037ffc94a91a0a0f9dca60b94db212e1db
def curry(f): 'A curried function derived\n from an uncurried function.' return (lambda a: (lambda b: f(a, b)))
A curried function derived from an uncurried function.
Task/Chinese-remainder-theorem/Python/chinese-remainder-theorem-3.py
curry
mullikine/RosettaCodeData
1
python
def curry(f): 'A curried function derived\n from an uncurried function.' return (lambda a: (lambda b: f(a, b)))
def curry(f): 'A curried function derived\n from an uncurried function.' return (lambda a: (lambda b: f(a, b)))<|docstring|>A curried function derived from an uncurried function.<|endoftext|>
7daf3a4f2b7d955e88ece75b92280982e4e0fcecf6935a17550472ce1be018b3
def either(fl): 'The application of fl to e if e is a Left value,\n or the application of fr to e if e is a Right value.' return (lambda fr: (lambda e: (fl(e['Left']) if (None is e['Right']) else fr(e['Right']))))
The application of fl to e if e is a Left value, or the application of fr to e if e is a Right value.
Task/Chinese-remainder-theorem/Python/chinese-remainder-theorem-3.py
either
mullikine/RosettaCodeData
1
python
def either(fl): 'The application of fl to e if e is a Left value,\n or the application of fr to e if e is a Right value.' return (lambda fr: (lambda e: (fl(e['Left']) if (None is e['Right']) else fr(e['Right']))))
def either(fl): 'The application of fl to e if e is a Left value,\n or the application of fr to e if e is a Right value.' return (lambda fr: (lambda e: (fl(e['Left']) if (None is e['Right']) else fr(e['Right']))))<|docstring|>The application of fl to e if e is a Left value, or the application of fr to e if e is a Right value.<|endoftext|>
85c110da3241b035b35355ff5a2e5eec75c8f8f0e2ca8d3f2dde33b5ccc0c270
def fTable(s): 'Heading -> x display function ->\n fx display function ->\n f -> value list -> tabular string.' def go(xShow, fxShow, f, xs): w = max(map(compose(len)(xShow), xs)) return ((s + '\n') + '\n'.join([((xShow(x).rjust(w, ' ') + ' -> ') + fxShow(f(x))) for x in xs])) return (lambda xShow: (lambda fxShow: (lambda f: (lambda xs: go(xShow, fxShow, f, xs)))))
Heading -> x display function -> fx display function -> f -> value list -> tabular string.
Task/Chinese-remainder-theorem/Python/chinese-remainder-theorem-3.py
fTable
mullikine/RosettaCodeData
1
python
def fTable(s): 'Heading -> x display function ->\n fx display function ->\n f -> value list -> tabular string.' def go(xShow, fxShow, f, xs): w = max(map(compose(len)(xShow), xs)) return ((s + '\n') + '\n'.join([((xShow(x).rjust(w, ' ') + ' -> ') + fxShow(f(x))) for x in xs])) return (lambda xShow: (lambda fxShow: (lambda f: (lambda xs: go(xShow, fxShow, f, xs)))))
def fTable(s): 'Heading -> x display function ->\n fx display function ->\n f -> value list -> tabular string.' def go(xShow, fxShow, f, xs): w = max(map(compose(len)(xShow), xs)) return ((s + '\n') + '\n'.join([((xShow(x).rjust(w, ' ') + ' -> ') + fxShow(f(x))) for x in xs])) return (lambda xShow: (lambda fxShow: (lambda f: (lambda xs: go(xShow, fxShow, f, xs)))))<|docstring|>Heading -> x display function -> fx display function -> f -> value list -> tabular string.<|endoftext|>
e1d80058368e312cb639d6b89261710f4b410b570aef48614d69d447ad3e8aba
def numericProduct(xs): 'The arithmetic product of all numbers in xs.' return reduce(mul, xs, 1)
The arithmetic product of all numbers in xs.
Task/Chinese-remainder-theorem/Python/chinese-remainder-theorem-3.py
numericProduct
mullikine/RosettaCodeData
1
python
def numericProduct(xs): return reduce(mul, xs, 1)
def numericProduct(xs): return reduce(mul, xs, 1)<|docstring|>The arithmetic product of all numbers in xs.<|endoftext|>
2b7392a54c2b34a5ad32475c249e61e8681d571275c56d558430ebae2afd46fa
def partitionEithers(lrs): 'A list of Either values partitioned into a tuple\n of two lists, with all Left elements extracted\n into the first list, and Right elements\n extracted into the second list.\n ' def go(a, x): (ls, rs) = a r = x.get('Right') return (((ls + [x.get('Left')]), rs) if (None is r) else (ls, (rs + [r]))) return reduce(go, lrs, ([], []))
A list of Either values partitioned into a tuple of two lists, with all Left elements extracted into the first list, and Right elements extracted into the second list.
Task/Chinese-remainder-theorem/Python/chinese-remainder-theorem-3.py
partitionEithers
mullikine/RosettaCodeData
1
python
def partitionEithers(lrs): 'A list of Either values partitioned into a tuple\n of two lists, with all Left elements extracted\n into the first list, and Right elements\n extracted into the second list.\n ' def go(a, x): (ls, rs) = a r = x.get('Right') return (((ls + [x.get('Left')]), rs) if (None is r) else (ls, (rs + [r]))) return reduce(go, lrs, ([], []))
def partitionEithers(lrs): 'A list of Either values partitioned into a tuple\n of two lists, with all Left elements extracted\n into the first list, and Right elements\n extracted into the second list.\n ' def go(a, x): (ls, rs) = a r = x.get('Right') return (((ls + [x.get('Left')]), rs) if (None is r) else (ls, (rs + [r]))) return reduce(go, lrs, ([], []))<|docstring|>A list of Either values partitioned into a tuple of two lists, with all Left elements extracted into the first list, and Right elements extracted into the second list.<|endoftext|>
9b9aac0c21fa92e76717524d881408e32bcd52a9664d40d7c690daa469ea4442
def quoted(c): 'A string flanked on both sides\n by a specified quote character.\n ' return (lambda s: ((c + s) + c))
A string flanked on both sides by a specified quote character.
Task/Chinese-remainder-theorem/Python/chinese-remainder-theorem-3.py
quoted
mullikine/RosettaCodeData
1
python
def quoted(c): 'A string flanked on both sides\n by a specified quote character.\n ' return (lambda s: ((c + s) + c))
def quoted(c): 'A string flanked on both sides\n by a specified quote character.\n ' return (lambda s: ((c + s) + c))<|docstring|>A string flanked on both sides by a specified quote character.<|endoftext|>
9a1af0f9bfcb07e753aa2ddb5c8304bb31f634726917cf7e224e70ce90f296a3
def uncurry(f): 'A function over a tuple,\n derived from a curried function.' return (lambda xy: f(xy[0])(xy[1]))
A function over a tuple, derived from a curried function.
Task/Chinese-remainder-theorem/Python/chinese-remainder-theorem-3.py
uncurry
mullikine/RosettaCodeData
1
python
def uncurry(f): 'A function over a tuple,\n derived from a curried function.' return (lambda xy: f(xy[0])(xy[1]))
def uncurry(f): 'A function over a tuple,\n derived from a curried function.' return (lambda xy: f(xy[0])(xy[1]))<|docstring|>A function over a tuple, derived from a curried function.<|endoftext|>
9fe5cdc0ede46c439de8a86f06fc21caa1d6c8f0d41a74b33a506e62ac2ee169
def zipWithEither(f): 'Either a list of results if f succeeds with every pair\n in the zip of xs and ys, or an explanatory string\n if any application of f returns no result.\n ' def go(xs, ys): (ls, rs) = partitionEithers(map(f, xs, ys)) return (Left(ls[0]) if ls else Right(rs)) return (lambda xs: (lambda ys: go(xs, ys)))
Either a list of results if f succeeds with every pair in the zip of xs and ys, or an explanatory string if any application of f returns no result.
Task/Chinese-remainder-theorem/Python/chinese-remainder-theorem-3.py
zipWithEither
mullikine/RosettaCodeData
1
python
def zipWithEither(f): 'Either a list of results if f succeeds with every pair\n in the zip of xs and ys, or an explanatory string\n if any application of f returns no result.\n ' def go(xs, ys): (ls, rs) = partitionEithers(map(f, xs, ys)) return (Left(ls[0]) if ls else Right(rs)) return (lambda xs: (lambda ys: go(xs, ys)))
def zipWithEither(f): 'Either a list of results if f succeeds with every pair\n in the zip of xs and ys, or an explanatory string\n if any application of f returns no result.\n ' def go(xs, ys): (ls, rs) = partitionEithers(map(f, xs, ys)) return (Left(ls[0]) if ls else Right(rs)) return (lambda xs: (lambda ys: go(xs, ys)))<|docstring|>Either a list of results if f succeeds with every pair in the zip of xs and ys, or an explanatory string if any application of f returns no result.<|endoftext|>
13bdad0ac38a120865177590c77ae0f7231f15bb7de8e0f025b8f6836f154425
@abstractproperty def loop(self) -> asyncio.AbstractEventLoop: '\n Get the stored event loop or return one from the environment\n Should be stored in `self._loop` in the child class\n '
Get the stored event loop or return one from the environment Should be stored in `self._loop` in the child class
portscanner/mixins/loop.py
loop
GoodiesHQ/portscanner
0
python
@abstractproperty def loop(self) -> asyncio.AbstractEventLoop: '\n Get the stored event loop or return one from the environment\n Should be stored in `self._loop` in the child class\n '
@abstractproperty def loop(self) -> asyncio.AbstractEventLoop: '\n Get the stored event loop or return one from the environment\n Should be stored in `self._loop` in the child class\n '<|docstring|>Get the stored event loop or return one from the environment Should be stored in `self._loop` in the child class<|endoftext|>
271986193db4ee6a78b2202b63d5bd2a1c2a6623c1e4b27d7845eb275437657e
@abstractstaticmethod def _get_loop() -> asyncio.AbstractEventLoop: "\n Get the environment loop. It is up to the implementation\n if you'd like to raise an exception or create and set a new loop\n "
Get the environment loop. It is up to the implementation if you'd like to raise an exception or create and set a new loop
portscanner/mixins/loop.py
_get_loop
GoodiesHQ/portscanner
0
python
@abstractstaticmethod def _get_loop() -> asyncio.AbstractEventLoop: "\n Get the environment loop. It is up to the implementation\n if you'd like to raise an exception or create and set a new loop\n "
@abstractstaticmethod def _get_loop() -> asyncio.AbstractEventLoop: "\n Get the environment loop. It is up to the implementation\n if you'd like to raise an exception or create and set a new loop\n "<|docstring|>Get the environment loop. It is up to the implementation if you'd like to raise an exception or create and set a new loop<|endoftext|>
07d25e3fc61cc46e3454cd91c0267be58ae58d742eba90505e6866d52bf37f56
def __init__(self, product_name: str, recipes_list: list): '\n Initialize instance with product name string and list of Recipe instances.\n ' self._product_name = product_name self._recipes_list = recipes_list
Initialize instance with product name string and list of Recipe instances.
satisfy_calc/coproduct_recipes.py
__init__
sedatDemiriz/satisfy-calc
0
python
def __init__(self, product_name: str, recipes_list: list): '\n \n ' self._product_name = product_name self._recipes_list = recipes_list
def __init__(self, product_name: str, recipes_list: list): '\n \n ' self._product_name = product_name self._recipes_list = recipes_list<|docstring|>Initialize instance with product name string and list of Recipe instances.<|endoftext|>
33e0208c3012df01cfddcfd0dfbdfc3d4063f8995c991ac84d6e30efbe884d7a
def __str__(self): '\n Return summary of instance using product name and number of recipes included.\n ' num_recipes = self.num_recipes string = '{}: {} recipe'.format(self._product_name, num_recipes) if (num_recipes > 1): return (string + 's') else: return string
Return summary of instance using product name and number of recipes included.
satisfy_calc/coproduct_recipes.py
__str__
sedatDemiriz/satisfy-calc
0
python
def __str__(self): '\n \n ' num_recipes = self.num_recipes string = '{}: {} recipe'.format(self._product_name, num_recipes) if (num_recipes > 1): return (string + 's') else: return string
def __str__(self): '\n \n ' num_recipes = self.num_recipes string = '{}: {} recipe'.format(self._product_name, num_recipes) if (num_recipes > 1): return (string + 's') else: return string<|docstring|>Return summary of instance using product name and number of recipes included.<|endoftext|>
bfa6d95a1f18dcd8df7569c86b1aca31f269dd55f5ced35b2cc275965622804e
def __repr__(self): '\n TODO\n ' return self.__str__()
TODO
satisfy_calc/coproduct_recipes.py
__repr__
sedatDemiriz/satisfy-calc
0
python
def __repr__(self): '\n \n ' return self.__str__()
def __repr__(self): '\n \n ' return self.__str__()<|docstring|>TODO<|endoftext|>
952f53e5f8fc1f6f98268040b56b65243b354bf1ab4d81fbaef8cd434d1e80a3
def print_summary(self): '\n Prints all Recipe instances contained within Coproduct Recipe instance.\n ' n = 1 for recipe in self.recipes: print(str(n), '-', recipe.summary) n += 1
Prints all Recipe instances contained within Coproduct Recipe instance.
satisfy_calc/coproduct_recipes.py
print_summary
sedatDemiriz/satisfy-calc
0
python
def print_summary(self): '\n \n ' n = 1 for recipe in self.recipes: print(str(n), '-', recipe.summary) n += 1
def print_summary(self): '\n \n ' n = 1 for recipe in self.recipes: print(str(n), '-', recipe.summary) n += 1<|docstring|>Prints all Recipe instances contained within Coproduct Recipe instance.<|endoftext|>
bf44becddf120bf85ec1d841051320799601d9b934aec9ae980797d4a3319260
@property def product(self): '\n Return product name string.\n ' return self._product_name
Return product name string.
satisfy_calc/coproduct_recipes.py
product
sedatDemiriz/satisfy-calc
0
python
@property def product(self): '\n \n ' return self._product_name
@property def product(self): '\n \n ' return self._product_name<|docstring|>Return product name string.<|endoftext|>
d118a2d6028a62ea2d105a94941e70abd625a2d89151f226d17807e6056c5f3f
@product.setter def product(self, product): '\n Product name property setter.\n ' self._product_name = product
Product name property setter.
satisfy_calc/coproduct_recipes.py
product
sedatDemiriz/satisfy-calc
0
python
@product.setter def product(self, product): '\n \n ' self._product_name = product
@product.setter def product(self, product): '\n \n ' self._product_name = product<|docstring|>Product name property setter.<|endoftext|>
0001e74f9f27fb7ab66aadb376b47184e604a3d9e7248171bb4514bf0e2e1364
@property def recipes(self): '\n Return list of all included Recipe instances.\n ' return self._recipes_list
Return list of all included Recipe instances.
satisfy_calc/coproduct_recipes.py
recipes
sedatDemiriz/satisfy-calc
0
python
@property def recipes(self): '\n \n ' return self._recipes_list
@property def recipes(self): '\n \n ' return self._recipes_list<|docstring|>Return list of all included Recipe instances.<|endoftext|>
4044677e3f53e99f4c51766162cb89d0479a47a229a54ecbb9c3e5e6c6018275
@recipes.setter def recipes(self, recipes): '\n Recipes property setter.\n ' self._recipes = recipes
Recipes property setter.
satisfy_calc/coproduct_recipes.py
recipes
sedatDemiriz/satisfy-calc
0
python
@recipes.setter def recipes(self, recipes): '\n \n ' self._recipes = recipes
@recipes.setter def recipes(self, recipes): '\n \n ' self._recipes = recipes<|docstring|>Recipes property setter.<|endoftext|>
5fb210f66a8d21e31a931e521a9da2b498d10ed2d94a1118f41595a288ec3ce1
@property def num_recipes(self): '\n Return number of included Recipe instances.\n ' return len(self._recipes_list)
Return number of included Recipe instances.
satisfy_calc/coproduct_recipes.py
num_recipes
sedatDemiriz/satisfy-calc
0
python
@property def num_recipes(self): '\n \n ' return len(self._recipes_list)
@property def num_recipes(self): '\n \n ' return len(self._recipes_list)<|docstring|>Return number of included Recipe instances.<|endoftext|>
43f0b7d0e6abc91298c54dc1cb811442454e0eeb9357cde1e4ffac7cf57e1628
@property def is_raw(self): '\n Return True if material is raw.\n ' return (self._recipes_list == [])
Return True if material is raw.
satisfy_calc/coproduct_recipes.py
is_raw
sedatDemiriz/satisfy-calc
0
python
@property def is_raw(self): '\n \n ' return (self._recipes_list == [])
@property def is_raw(self): '\n \n ' return (self._recipes_list == [])<|docstring|>Return True if material is raw.<|endoftext|>
79a0728174148fe34dd25926ba78713d84ef089cd8ed92e2d1f3760e5049c354
def __init__(self, *args, **kwargs): ' Initialize a wxProperCheckBox.\n\n *args, **kwargs\n The positional and keyword arguments required to initialize\n a wx.RadioButton.\n\n ' super(wxProperCheckBox, self).__init__(*args, **kwargs) self._in_click = False self.Bind(wx.EVT_LEFT_DOWN, self.OnLeftDown) self.Bind(wx.EVT_LEFT_UP, self.OnLeftUp) self.Bind(wx.EVT_CHECKBOX, self.OnToggled)
Initialize a wxProperCheckBox. *args, **kwargs The positional and keyword arguments required to initialize a wx.RadioButton.
enaml/wx/wx_check_box.py
__init__
pberkes/enaml
11
python
def __init__(self, *args, **kwargs): ' Initialize a wxProperCheckBox.\n\n *args, **kwargs\n The positional and keyword arguments required to initialize\n a wx.RadioButton.\n\n ' super(wxProperCheckBox, self).__init__(*args, **kwargs) self._in_click = False self.Bind(wx.EVT_LEFT_DOWN, self.OnLeftDown) self.Bind(wx.EVT_LEFT_UP, self.OnLeftUp) self.Bind(wx.EVT_CHECKBOX, self.OnToggled)
def __init__(self, *args, **kwargs): ' Initialize a wxProperCheckBox.\n\n *args, **kwargs\n The positional and keyword arguments required to initialize\n a wx.RadioButton.\n\n ' super(wxProperCheckBox, self).__init__(*args, **kwargs) self._in_click = False self.Bind(wx.EVT_LEFT_DOWN, self.OnLeftDown) self.Bind(wx.EVT_LEFT_UP, self.OnLeftUp) self.Bind(wx.EVT_CHECKBOX, self.OnToggled)<|docstring|>Initialize a wxProperCheckBox. *args, **kwargs The positional and keyword arguments required to initialize a wx.RadioButton.<|endoftext|>
05d56452d611d91f196a779a034ecdb79b40d13028d88d4a12684e34eed0a399
def OnLeftDown(self, event): ' Handles the left down mouse event for the check box.\n\n This is first part of generating a click event.\n\n ' event.Skip() self._in_click = True
Handles the left down mouse event for the check box. This is first part of generating a click event.
enaml/wx/wx_check_box.py
OnLeftDown
pberkes/enaml
11
python
def OnLeftDown(self, event): ' Handles the left down mouse event for the check box.\n\n This is first part of generating a click event.\n\n ' event.Skip() self._in_click = True
def OnLeftDown(self, event): ' Handles the left down mouse event for the check box.\n\n This is first part of generating a click event.\n\n ' event.Skip() self._in_click = True<|docstring|>Handles the left down mouse event for the check box. This is first part of generating a click event.<|endoftext|>
c52bec0cecd7929faa48f1b4d99a022a398204ace91a80f8ec72ee22a0a1babb
def OnLeftUp(self, event): ' Handles the left up mouse event for the check box.\n\n This is the second part of generating a click event.\n\n ' event.Skip() if self._in_click: self._in_click = False event = wxCheckBoxClicked() wx.PostEvent(self, event)
Handles the left up mouse event for the check box. This is the second part of generating a click event.
enaml/wx/wx_check_box.py
OnLeftUp
pberkes/enaml
11
python
def OnLeftUp(self, event): ' Handles the left up mouse event for the check box.\n\n This is the second part of generating a click event.\n\n ' event.Skip() if self._in_click: self._in_click = False event = wxCheckBoxClicked() wx.PostEvent(self, event)
def OnLeftUp(self, event): ' Handles the left up mouse event for the check box.\n\n This is the second part of generating a click event.\n\n ' event.Skip() if self._in_click: self._in_click = False event = wxCheckBoxClicked() wx.PostEvent(self, event)<|docstring|>Handles the left up mouse event for the check box. This is the second part of generating a click event.<|endoftext|>
0ef048fc569c61809f6e9287b1434d81d2e83462a59359676f3a59781ac13b93
def OnToggled(self, event): ' Handles the standard toggle event and emits the custom\n toggle event for the check box.\n\n ' event = wxCheckBoxToggled() wx.PostEvent(self, event)
Handles the standard toggle event and emits the custom toggle event for the check box.
enaml/wx/wx_check_box.py
OnToggled
pberkes/enaml
11
python
def OnToggled(self, event): ' Handles the standard toggle event and emits the custom\n toggle event for the check box.\n\n ' event = wxCheckBoxToggled() wx.PostEvent(self, event)
def OnToggled(self, event): ' Handles the standard toggle event and emits the custom\n toggle event for the check box.\n\n ' event = wxCheckBoxToggled() wx.PostEvent(self, event)<|docstring|>Handles the standard toggle event and emits the custom toggle event for the check box.<|endoftext|>
cdb69e9930ba3d1a559c00f6bfa4231d72675d9c6a8f0891e350f54afe73019a
def SetValue(self, val): ' Overrides the default SetValue method to emit proper events.\n\n ' old = self.GetValue() if (old != val): super(wxProperCheckBox, self).SetValue(val) self._last = val event = wxCheckBoxToggled() wx.PostEvent(self, event)
Overrides the default SetValue method to emit proper events.
enaml/wx/wx_check_box.py
SetValue
pberkes/enaml
11
python
def SetValue(self, val): ' \n\n ' old = self.GetValue() if (old != val): super(wxProperCheckBox, self).SetValue(val) self._last = val event = wxCheckBoxToggled() wx.PostEvent(self, event)
def SetValue(self, val): ' \n\n ' old = self.GetValue() if (old != val): super(wxProperCheckBox, self).SetValue(val) self._last = val event = wxCheckBoxToggled() wx.PostEvent(self, event)<|docstring|>Overrides the default SetValue method to emit proper events.<|endoftext|>
770e64213f8b9010ddecc18786827821ad3ad51d38f39fe5c86fa31b6510f062
def create_widget(self): ' Create the underlying check box widget.\n\n ' self.widget = wxProperCheckBox(self.parent_widget())
Create the underlying check box widget.
enaml/wx/wx_check_box.py
create_widget
pberkes/enaml
11
python
def create_widget(self): ' \n\n ' self.widget = wxProperCheckBox(self.parent_widget())
def create_widget(self): ' \n\n ' self.widget = wxProperCheckBox(self.parent_widget())<|docstring|>Create the underlying check box widget.<|endoftext|>
7f72dd53d73575330ec9593fa95e93e128ba31099c3b16d679e15f791a50f91b
def init_widget(self): ' Create and initialize the check box control.\n\n ' super(WxCheckBox, self).init_widget() widget = self.widget widget.Bind(EVT_CHECKBOX_CLICKED, self.on_clicked) widget.Bind(EVT_CHECKBOX_TOGGLED, self.on_toggled)
Create and initialize the check box control.
enaml/wx/wx_check_box.py
init_widget
pberkes/enaml
11
python
def init_widget(self): ' \n\n ' super(WxCheckBox, self).init_widget() widget = self.widget widget.Bind(EVT_CHECKBOX_CLICKED, self.on_clicked) widget.Bind(EVT_CHECKBOX_TOGGLED, self.on_toggled)
def init_widget(self): ' \n\n ' super(WxCheckBox, self).init_widget() widget = self.widget widget.Bind(EVT_CHECKBOX_CLICKED, self.on_clicked) widget.Bind(EVT_CHECKBOX_TOGGLED, self.on_toggled)<|docstring|>Create and initialize the check box control.<|endoftext|>
ea9f06150aaa57a95ad4931616fd8332ffd0d33f70ba71b8be3c63dbad8d21d4
def set_checkable(self, checkable): ' Sets whether or not the widget is checkable.\n\n This is not supported in Wx.\n\n ' pass
Sets whether or not the widget is checkable. This is not supported in Wx.
enaml/wx/wx_check_box.py
set_checkable
pberkes/enaml
11
python
def set_checkable(self, checkable): ' Sets whether or not the widget is checkable.\n\n This is not supported in Wx.\n\n ' pass
def set_checkable(self, checkable): ' Sets whether or not the widget is checkable.\n\n This is not supported in Wx.\n\n ' pass<|docstring|>Sets whether or not the widget is checkable. This is not supported in Wx.<|endoftext|>
810e88e67d90f2623978aed8d96120304affc3aa1fd6c6d9fda781d7d9422cfd
def get_checked(self): ' Returns the checked state of the widget.\n\n ' return self.widget.GetValue()
Returns the checked state of the widget.
enaml/wx/wx_check_box.py
get_checked
pberkes/enaml
11
python
def get_checked(self): ' \n\n ' return self.widget.GetValue()
def get_checked(self): ' \n\n ' return self.widget.GetValue()<|docstring|>Returns the checked state of the widget.<|endoftext|>
5e1a42bcc2172abf5683182fc0f7285e171e1214b0b86119f6933aad50251b01
def set_checked(self, checked): " Sets the widget's checked state with the provided value.\n\n " self._guard |= CHECKED_GUARD try: self.widget.SetValue(checked) finally: self._guard &= (~ CHECKED_GUARD)
Sets the widget's checked state with the provided value.
enaml/wx/wx_check_box.py
set_checked
pberkes/enaml
11
python
def set_checked(self, checked): " \n\n " self._guard |= CHECKED_GUARD try: self.widget.SetValue(checked) finally: self._guard &= (~ CHECKED_GUARD)
def set_checked(self, checked): " \n\n " self._guard |= CHECKED_GUARD try: self.widget.SetValue(checked) finally: self._guard &= (~ CHECKED_GUARD)<|docstring|>Sets the widget's checked state with the provided value.<|endoftext|>
795a44f7e0637992266ad525b27b4f96550006dc8fa104e66dca9a9a754d8314
def cheat(self): '\n Returns False if there is not enough information to cheat, otherwise median predictions\n of current particpants that ranked top tier in the last completed period.\n ' participants = self.prediction_market.get_current_participants() if (len(participants) == 0): return False others_predictions = {participant: {'new': self.prediction_market.get_predictions_for_agent(participant)} for participant in participants} for participant in participants: try: old_preds = self.prediction_market.get_predictions_for_agent(participant, 2) others_predictions[participant]['old'] = old_preds except Exception: del others_predictions[participant] participants = list(others_predictions.keys()) if (len(participants) == 0): return False for participant in participants: mae = mean_absolute_error(self.aggregate_history[(- NUM_PREDICTIONS):], others_predictions[participant]['old']) if (mae > TOP_TIER_THRESHOLD): del others_predictions[participant] participants = list(others_predictions.keys()) if (len(participants) == 0): return False others_predictions_new = list(map((lambda entry: entry.get('new')), others_predictions.values())) predictions = list(map(np.median, zip(*others_predictions_new))) return (list(map(int, predictions)), list(others_predictions.keys()))
Returns False if there is not enough information to cheat, otherwise median predictions of current particpants that ranked top tier in the last completed period.
agent/agents/cheating_agent.py
cheat
rampopat/charje
1
python
def cheat(self): '\n Returns False if there is not enough information to cheat, otherwise median predictions\n of current particpants that ranked top tier in the last completed period.\n ' participants = self.prediction_market.get_current_participants() if (len(participants) == 0): return False others_predictions = {participant: {'new': self.prediction_market.get_predictions_for_agent(participant)} for participant in participants} for participant in participants: try: old_preds = self.prediction_market.get_predictions_for_agent(participant, 2) others_predictions[participant]['old'] = old_preds except Exception: del others_predictions[participant] participants = list(others_predictions.keys()) if (len(participants) == 0): return False for participant in participants: mae = mean_absolute_error(self.aggregate_history[(- NUM_PREDICTIONS):], others_predictions[participant]['old']) if (mae > TOP_TIER_THRESHOLD): del others_predictions[participant] participants = list(others_predictions.keys()) if (len(participants) == 0): return False others_predictions_new = list(map((lambda entry: entry.get('new')), others_predictions.values())) predictions = list(map(np.median, zip(*others_predictions_new))) return (list(map(int, predictions)), list(others_predictions.keys()))
def cheat(self): '\n Returns False if there is not enough information to cheat, otherwise median predictions\n of current particpants that ranked top tier in the last completed period.\n ' participants = self.prediction_market.get_current_participants() if (len(participants) == 0): return False others_predictions = {participant: {'new': self.prediction_market.get_predictions_for_agent(participant)} for participant in participants} for participant in participants: try: old_preds = self.prediction_market.get_predictions_for_agent(participant, 2) others_predictions[participant]['old'] = old_preds except Exception: del others_predictions[participant] participants = list(others_predictions.keys()) if (len(participants) == 0): return False for participant in participants: mae = mean_absolute_error(self.aggregate_history[(- NUM_PREDICTIONS):], others_predictions[participant]['old']) if (mae > TOP_TIER_THRESHOLD): del others_predictions[participant] participants = list(others_predictions.keys()) if (len(participants) == 0): return False others_predictions_new = list(map((lambda entry: entry.get('new')), others_predictions.values())) predictions = list(map(np.median, zip(*others_predictions_new))) return (list(map(int, predictions)), list(others_predictions.keys()))<|docstring|>Returns False if there is not enough information to cheat, otherwise median predictions of current particpants that ranked top tier in the last completed period.<|endoftext|>
cb31f02d360b64f166398ebfaca54fb2e6df00f6450577eea4c70f9ba1091e6d
def __initialize__(self): "\n This function initializes the distance matrix and uploads some of the relevant information.\n It adds 4 new parameters to the class:\n - self.output: a text to print when running the algorithm.\n - self.song_list_indexed: a list of pairs '(index_song, song)' where 'song' is the name of the file and 'index_song' is its index.\n - self.n_songs: the number of songs.\n - self.dists: an array of size (n_songs x n_songs) corresponding to the distance between two songs. \n " if (self.initialize_distances or (not osp.exists(osp.join(self.res_dir, 'song_list.txt')))): self.output = 'Song list and distance matrix initialized' self.song_list_indexed = [(i, s[:(- 4)]) for (i, s) in enumerate(os.listdir(self.mat_dir))] self.n_songs = len(self.song_list_indexed) self.dists = np.zeros((self.n_songs, self.n_songs)) with open(osp.join(self.res_dir, 'song_list.txt'), 'w') as song_list: for (index_song, song) in self.song_list_indexed: song_list.write((((str(index_song) + '\t') + song) + '\n')) song_list.close() else: self.song_list_indexed = [] with open(osp.join(self.res_dir, 'song_list.txt'), 'r') as song_list: for line in song_list: (index_song, song) = line.split('\n')[0].split('\t') index_song = int(index_song) self.song_list_indexed.append((index_song, song)) self.n_songs = len(self.song_list_indexed) if osp.exists(osp.join(self.res_dir, 'dists.txt')): self.output = 'Song list and distance matrix uploaded' self.dists = np.loadtxt(osp.join(self.res_dir, 'dists.txt'), delimiter='\t') else: self.output = 'Song list uploaded and distance matrix created' self.dists = np.zeros((self.n_songs, self.n_songs))
This function initializes the distance matrix and uploads some of the relevant information. It adds 4 new parameters to the class: - self.output: a text to print when running the algorithm. - self.song_list_indexed: a list of pairs '(index_song, song)' where 'song' is the name of the file and 'index_song' is its index. - self.n_songs: the number of songs. - self.dists: an array of size (n_songs x n_songs) corresponding to the distance between two songs.
measures.py
__initialize__
BenoitCorsini/music-patterns
1
python
def __initialize__(self): "\n This function initializes the distance matrix and uploads some of the relevant information.\n It adds 4 new parameters to the class:\n - self.output: a text to print when running the algorithm.\n - self.song_list_indexed: a list of pairs '(index_song, song)' where 'song' is the name of the file and 'index_song' is its index.\n - self.n_songs: the number of songs.\n - self.dists: an array of size (n_songs x n_songs) corresponding to the distance between two songs. \n " if (self.initialize_distances or (not osp.exists(osp.join(self.res_dir, 'song_list.txt')))): self.output = 'Song list and distance matrix initialized' self.song_list_indexed = [(i, s[:(- 4)]) for (i, s) in enumerate(os.listdir(self.mat_dir))] self.n_songs = len(self.song_list_indexed) self.dists = np.zeros((self.n_songs, self.n_songs)) with open(osp.join(self.res_dir, 'song_list.txt'), 'w') as song_list: for (index_song, song) in self.song_list_indexed: song_list.write((((str(index_song) + '\t') + song) + '\n')) song_list.close() else: self.song_list_indexed = [] with open(osp.join(self.res_dir, 'song_list.txt'), 'r') as song_list: for line in song_list: (index_song, song) = line.split('\n')[0].split('\t') index_song = int(index_song) self.song_list_indexed.append((index_song, song)) self.n_songs = len(self.song_list_indexed) if osp.exists(osp.join(self.res_dir, 'dists.txt')): self.output = 'Song list and distance matrix uploaded' self.dists = np.loadtxt(osp.join(self.res_dir, 'dists.txt'), delimiter='\t') else: self.output = 'Song list uploaded and distance matrix created' self.dists = np.zeros((self.n_songs, self.n_songs))
def __initialize__(self): "\n This function initializes the distance matrix and uploads some of the relevant information.\n It adds 4 new parameters to the class:\n - self.output: a text to print when running the algorithm.\n - self.song_list_indexed: a list of pairs '(index_song, song)' where 'song' is the name of the file and 'index_song' is its index.\n - self.n_songs: the number of songs.\n - self.dists: an array of size (n_songs x n_songs) corresponding to the distance between two songs. \n " if (self.initialize_distances or (not osp.exists(osp.join(self.res_dir, 'song_list.txt')))): self.output = 'Song list and distance matrix initialized' self.song_list_indexed = [(i, s[:(- 4)]) for (i, s) in enumerate(os.listdir(self.mat_dir))] self.n_songs = len(self.song_list_indexed) self.dists = np.zeros((self.n_songs, self.n_songs)) with open(osp.join(self.res_dir, 'song_list.txt'), 'w') as song_list: for (index_song, song) in self.song_list_indexed: song_list.write((((str(index_song) + '\t') + song) + '\n')) song_list.close() else: self.song_list_indexed = [] with open(osp.join(self.res_dir, 'song_list.txt'), 'r') as song_list: for line in song_list: (index_song, song) = line.split('\n')[0].split('\t') index_song = int(index_song) self.song_list_indexed.append((index_song, song)) self.n_songs = len(self.song_list_indexed) if osp.exists(osp.join(self.res_dir, 'dists.txt')): self.output = 'Song list and distance matrix uploaded' self.dists = np.loadtxt(osp.join(self.res_dir, 'dists.txt'), delimiter='\t') else: self.output = 'Song list uploaded and distance matrix created' self.dists = np.zeros((self.n_songs, self.n_songs))<|docstring|>This function initializes the distance matrix and uploads some of the relevant information. It adds 4 new parameters to the class: - self.output: a text to print when running the algorithm. - self.song_list_indexed: a list of pairs '(index_song, song)' where 'song' is the name of the file and 'index_song' is its index. - self.n_songs: the number of songs. - self.dists: an array of size (n_songs x n_songs) corresponding to the distance between two songs.<|endoftext|>
8ef172617d56b41221d15b4f53bedf32f7272db07f33392e1cd2f48f82a9f5c3
def distance(self, pat_mat1, pat_mat2): '\n This function defines the distance we use between two pattern matrices.\n ' return (np.mean((np.abs((pat_mat1 - pat_mat2)) ** self.p_norm)) ** (1 / self.p_norm))
This function defines the distance we use between two pattern matrices.
measures.py
distance
BenoitCorsini/music-patterns
1
python
def distance(self, pat_mat1, pat_mat2): '\n \n ' return (np.mean((np.abs((pat_mat1 - pat_mat2)) ** self.p_norm)) ** (1 / self.p_norm))
def distance(self, pat_mat1, pat_mat2): '\n \n ' return (np.mean((np.abs((pat_mat1 - pat_mat2)) ** self.p_norm)) ** (1 / self.p_norm))<|docstring|>This function defines the distance we use between two pattern matrices.<|endoftext|>
5921109c2c0e4b53fb0c4704fc95e3c522af1cc2dc75d1d1ec32bd46ea2f75d3
def compute_batch(self): "\n This function computes the distances of a single batch.\n It starts by normalizing all the matrices of the batch in the list 'batch_pat_mat'.\n Then it computes the distance between the songs of the batch and all the other songs.\n This process computes 'dists' by columns.\n " start_time = time() uncomputed_columns = np.all((self.dists == 0), axis=0) if np.any(uncomputed_columns): start_index = np.where(uncomputed_columns)[0][0] indices = np.arange(0, self.normalized_size, dtype=int) indices = np.reshape(indices, (1, self.normalized_size)) indices = np.repeat(indices, self.normalized_size, axis=0) dists_to_compute = self.song_list_indexed[start_index:(start_index + self.batch_size)] batch_pat_mat = [] for (index_song, song) in dists_to_compute: pat_mat = process(np.loadtxt(osp.join(self.mat_dir, (song + '.txt')), delimiter='\t')) n_measures = np.size(pat_mat, axis=0) norm_indices = np.floor(((indices * n_measures) / self.normalized_size)).astype(int) pat_mat = pat_mat[(norm_indices, norm_indices.T)] batch_pat_mat.append((index_song, pat_mat)) time_spent = time_to_string((time() - start_time)) print('Batch ready, start computing the distance ({})'.format(time_spent)) start_time = time() index_song = 1 for (index_song1, song1) in self.song_list_indexed[:start_index]: pat_mat1 = process(np.loadtxt(osp.join(self.mat_dir, (song1 + '.txt')), delimiter='\t')) n_measures = np.size(pat_mat1, axis=0) norm_indices = np.floor(((indices * n_measures) / self.normalized_size)).astype(int) pat_mat1 = pat_mat1[(norm_indices, norm_indices.T)] for (index_song2, pat_mat2) in batch_pat_mat: self.dists[(index_song1, index_song2)] = self.distance(pat_mat1, pat_mat2) time_spent = time_to_string((time() - start_time)) perc = int(((100.0 * index_song) / self.n_songs)) sys.stdout.write('\x1b[F\x1b[K') print('{}% of the distance computed ({})'.format(perc, time_spent)) index_song += 1 for (index_song1, pat_mat1) in batch_pat_mat: for (index_song2, pat_mat2) in batch_pat_mat: self.dists[(index_song1, index_song2)] = self.distance(pat_mat1, pat_mat2) time_spent = time_to_string((time() - start_time)) perc = int(((100.0 * index_song) / self.n_songs)) sys.stdout.write('\x1b[F\x1b[K') print('{}% of the distance computed ({})'.format(perc, time_spent)) index_song += 1 for (index_song1, song1) in self.song_list_indexed[(start_index + self.batch_size):]: pat_mat1 = process(np.loadtxt(osp.join(self.mat_dir, (song1 + '.txt')), delimiter='\t')) n_measures = np.size(pat_mat1, axis=0) norm_indices = np.floor(((indices * n_measures) / self.normalized_size)).astype(int) pat_mat1 = pat_mat1[(norm_indices, norm_indices.T)] for (index_song2, pat_mat2) in batch_pat_mat: self.dists[(index_song1, index_song2)] = self.distance(pat_mat1, pat_mat2) time_spent = time_to_string((time() - start_time)) perc = int(((100.0 * index_song) / self.n_songs)) sys.stdout.write('\x1b[F\x1b[K') print('{}% of the distance computed ({})'.format(perc, time_spent)) index_song += 1 sys.stdout.write('\x1b[F\x1b[K') np.savetxt(osp.join(self.res_dir, 'dists.txt'), self.dists, delimiter='\t') return time_to_string((time() - start_time))
This function computes the distances of a single batch. It starts by normalizing all the matrices of the batch in the list 'batch_pat_mat'. Then it computes the distance between the songs of the batch and all the other songs. This process computes 'dists' by columns.
measures.py
compute_batch
BenoitCorsini/music-patterns
1
python
def compute_batch(self): "\n This function computes the distances of a single batch.\n It starts by normalizing all the matrices of the batch in the list 'batch_pat_mat'.\n Then it computes the distance between the songs of the batch and all the other songs.\n This process computes 'dists' by columns.\n " start_time = time() uncomputed_columns = np.all((self.dists == 0), axis=0) if np.any(uncomputed_columns): start_index = np.where(uncomputed_columns)[0][0] indices = np.arange(0, self.normalized_size, dtype=int) indices = np.reshape(indices, (1, self.normalized_size)) indices = np.repeat(indices, self.normalized_size, axis=0) dists_to_compute = self.song_list_indexed[start_index:(start_index + self.batch_size)] batch_pat_mat = [] for (index_song, song) in dists_to_compute: pat_mat = process(np.loadtxt(osp.join(self.mat_dir, (song + '.txt')), delimiter='\t')) n_measures = np.size(pat_mat, axis=0) norm_indices = np.floor(((indices * n_measures) / self.normalized_size)).astype(int) pat_mat = pat_mat[(norm_indices, norm_indices.T)] batch_pat_mat.append((index_song, pat_mat)) time_spent = time_to_string((time() - start_time)) print('Batch ready, start computing the distance ({})'.format(time_spent)) start_time = time() index_song = 1 for (index_song1, song1) in self.song_list_indexed[:start_index]: pat_mat1 = process(np.loadtxt(osp.join(self.mat_dir, (song1 + '.txt')), delimiter='\t')) n_measures = np.size(pat_mat1, axis=0) norm_indices = np.floor(((indices * n_measures) / self.normalized_size)).astype(int) pat_mat1 = pat_mat1[(norm_indices, norm_indices.T)] for (index_song2, pat_mat2) in batch_pat_mat: self.dists[(index_song1, index_song2)] = self.distance(pat_mat1, pat_mat2) time_spent = time_to_string((time() - start_time)) perc = int(((100.0 * index_song) / self.n_songs)) sys.stdout.write('\x1b[F\x1b[K') print('{}% of the distance computed ({})'.format(perc, time_spent)) index_song += 1 for (index_song1, pat_mat1) in batch_pat_mat: for (index_song2, pat_mat2) in batch_pat_mat: self.dists[(index_song1, index_song2)] = self.distance(pat_mat1, pat_mat2) time_spent = time_to_string((time() - start_time)) perc = int(((100.0 * index_song) / self.n_songs)) sys.stdout.write('\x1b[F\x1b[K') print('{}% of the distance computed ({})'.format(perc, time_spent)) index_song += 1 for (index_song1, song1) in self.song_list_indexed[(start_index + self.batch_size):]: pat_mat1 = process(np.loadtxt(osp.join(self.mat_dir, (song1 + '.txt')), delimiter='\t')) n_measures = np.size(pat_mat1, axis=0) norm_indices = np.floor(((indices * n_measures) / self.normalized_size)).astype(int) pat_mat1 = pat_mat1[(norm_indices, norm_indices.T)] for (index_song2, pat_mat2) in batch_pat_mat: self.dists[(index_song1, index_song2)] = self.distance(pat_mat1, pat_mat2) time_spent = time_to_string((time() - start_time)) perc = int(((100.0 * index_song) / self.n_songs)) sys.stdout.write('\x1b[F\x1b[K') print('{}% of the distance computed ({})'.format(perc, time_spent)) index_song += 1 sys.stdout.write('\x1b[F\x1b[K') np.savetxt(osp.join(self.res_dir, 'dists.txt'), self.dists, delimiter='\t') return time_to_string((time() - start_time))
def compute_batch(self): "\n This function computes the distances of a single batch.\n It starts by normalizing all the matrices of the batch in the list 'batch_pat_mat'.\n Then it computes the distance between the songs of the batch and all the other songs.\n This process computes 'dists' by columns.\n " start_time = time() uncomputed_columns = np.all((self.dists == 0), axis=0) if np.any(uncomputed_columns): start_index = np.where(uncomputed_columns)[0][0] indices = np.arange(0, self.normalized_size, dtype=int) indices = np.reshape(indices, (1, self.normalized_size)) indices = np.repeat(indices, self.normalized_size, axis=0) dists_to_compute = self.song_list_indexed[start_index:(start_index + self.batch_size)] batch_pat_mat = [] for (index_song, song) in dists_to_compute: pat_mat = process(np.loadtxt(osp.join(self.mat_dir, (song + '.txt')), delimiter='\t')) n_measures = np.size(pat_mat, axis=0) norm_indices = np.floor(((indices * n_measures) / self.normalized_size)).astype(int) pat_mat = pat_mat[(norm_indices, norm_indices.T)] batch_pat_mat.append((index_song, pat_mat)) time_spent = time_to_string((time() - start_time)) print('Batch ready, start computing the distance ({})'.format(time_spent)) start_time = time() index_song = 1 for (index_song1, song1) in self.song_list_indexed[:start_index]: pat_mat1 = process(np.loadtxt(osp.join(self.mat_dir, (song1 + '.txt')), delimiter='\t')) n_measures = np.size(pat_mat1, axis=0) norm_indices = np.floor(((indices * n_measures) / self.normalized_size)).astype(int) pat_mat1 = pat_mat1[(norm_indices, norm_indices.T)] for (index_song2, pat_mat2) in batch_pat_mat: self.dists[(index_song1, index_song2)] = self.distance(pat_mat1, pat_mat2) time_spent = time_to_string((time() - start_time)) perc = int(((100.0 * index_song) / self.n_songs)) sys.stdout.write('\x1b[F\x1b[K') print('{}% of the distance computed ({})'.format(perc, time_spent)) index_song += 1 for (index_song1, pat_mat1) in batch_pat_mat: for (index_song2, pat_mat2) in batch_pat_mat: self.dists[(index_song1, index_song2)] = self.distance(pat_mat1, pat_mat2) time_spent = time_to_string((time() - start_time)) perc = int(((100.0 * index_song) / self.n_songs)) sys.stdout.write('\x1b[F\x1b[K') print('{}% of the distance computed ({})'.format(perc, time_spent)) index_song += 1 for (index_song1, song1) in self.song_list_indexed[(start_index + self.batch_size):]: pat_mat1 = process(np.loadtxt(osp.join(self.mat_dir, (song1 + '.txt')), delimiter='\t')) n_measures = np.size(pat_mat1, axis=0) norm_indices = np.floor(((indices * n_measures) / self.normalized_size)).astype(int) pat_mat1 = pat_mat1[(norm_indices, norm_indices.T)] for (index_song2, pat_mat2) in batch_pat_mat: self.dists[(index_song1, index_song2)] = self.distance(pat_mat1, pat_mat2) time_spent = time_to_string((time() - start_time)) perc = int(((100.0 * index_song) / self.n_songs)) sys.stdout.write('\x1b[F\x1b[K') print('{}% of the distance computed ({})'.format(perc, time_spent)) index_song += 1 sys.stdout.write('\x1b[F\x1b[K') np.savetxt(osp.join(self.res_dir, 'dists.txt'), self.dists, delimiter='\t') return time_to_string((time() - start_time))<|docstring|>This function computes the distances of a single batch. It starts by normalizing all the matrices of the batch in the list 'batch_pat_mat'. Then it computes the distance between the songs of the batch and all the other songs. This process computes 'dists' by columns.<|endoftext|>
f5ef3501134404f13bad6d704784c04390d1a129ff73427895293156c490aa13
def compute(self): "\n This function computes the distance matrix one batch a time.\n Note that if 'batch_size' x 'n_batch' < 'n_songs' then the distance matrix will not be filled.\n In this situation, the algorithm can be started from the previous stopping time by setting 'intialize_distances' to False\n " start_time = time() print('Distance Matrix starting...') print(self.output) for i in range(self.n_batch): time_spent = time_to_string((time() - start_time)) print('Batch {} of {} starting... ({})'.format((i + 1), self.n_batch, time_spent)) batch_time = self.compute_batch() sys.stdout.write('\x1b[F\x1b[K') print('Batch {} of {} done ({})'.format((i + 1), self.n_batch, batch_time)) time_algorithm = time_to_string((time() - start_time)) print('Distance Matrix executed in {}'.format(time_algorithm)) print("Matrix available as '{}'".format(osp.join(self.res_dir, 'dists.txt'))) self.check()
This function computes the distance matrix one batch a time. Note that if 'batch_size' x 'n_batch' < 'n_songs' then the distance matrix will not be filled. In this situation, the algorithm can be started from the previous stopping time by setting 'intialize_distances' to False
measures.py
compute
BenoitCorsini/music-patterns
1
python
def compute(self): "\n This function computes the distance matrix one batch a time.\n Note that if 'batch_size' x 'n_batch' < 'n_songs' then the distance matrix will not be filled.\n In this situation, the algorithm can be started from the previous stopping time by setting 'intialize_distances' to False\n " start_time = time() print('Distance Matrix starting...') print(self.output) for i in range(self.n_batch): time_spent = time_to_string((time() - start_time)) print('Batch {} of {} starting... ({})'.format((i + 1), self.n_batch, time_spent)) batch_time = self.compute_batch() sys.stdout.write('\x1b[F\x1b[K') print('Batch {} of {} done ({})'.format((i + 1), self.n_batch, batch_time)) time_algorithm = time_to_string((time() - start_time)) print('Distance Matrix executed in {}'.format(time_algorithm)) print("Matrix available as '{}'".format(osp.join(self.res_dir, 'dists.txt'))) self.check()
def compute(self): "\n This function computes the distance matrix one batch a time.\n Note that if 'batch_size' x 'n_batch' < 'n_songs' then the distance matrix will not be filled.\n In this situation, the algorithm can be started from the previous stopping time by setting 'intialize_distances' to False\n " start_time = time() print('Distance Matrix starting...') print(self.output) for i in range(self.n_batch): time_spent = time_to_string((time() - start_time)) print('Batch {} of {} starting... ({})'.format((i + 1), self.n_batch, time_spent)) batch_time = self.compute_batch() sys.stdout.write('\x1b[F\x1b[K') print('Batch {} of {} done ({})'.format((i + 1), self.n_batch, batch_time)) time_algorithm = time_to_string((time() - start_time)) print('Distance Matrix executed in {}'.format(time_algorithm)) print("Matrix available as '{}'".format(osp.join(self.res_dir, 'dists.txt'))) self.check()<|docstring|>This function computes the distance matrix one batch a time. Note that if 'batch_size' x 'n_batch' < 'n_songs' then the distance matrix will not be filled. In this situation, the algorithm can be started from the previous stopping time by setting 'intialize_distances' to False<|endoftext|>
efa92f0a437b518dd484a238524dd4b1cd2e921825999f0cd1f4239ad01928e1
def check_completion(self): "\n This function checks if all the columns of 'dists' are computed.\n " uncomputed_columns = np.all((self.dists == 0), axis=0) if np.any(uncomputed_columns): print('\x1b[1;37;46m!!!\x1b[0;38;40m The matrix is not fully computed \x1b[1;37;46m!!!\x1b[0;38;40m') return False else: return True
This function checks if all the columns of 'dists' are computed.
measures.py
check_completion
BenoitCorsini/music-patterns
1
python
def check_completion(self): "\n \n " uncomputed_columns = np.all((self.dists == 0), axis=0) if np.any(uncomputed_columns): print('\x1b[1;37;46m!!!\x1b[0;38;40m The matrix is not fully computed \x1b[1;37;46m!!!\x1b[0;38;40m') return False else: return True
def check_completion(self): "\n \n " uncomputed_columns = np.all((self.dists == 0), axis=0) if np.any(uncomputed_columns): print('\x1b[1;37;46m!!!\x1b[0;38;40m The matrix is not fully computed \x1b[1;37;46m!!!\x1b[0;38;40m') return False else: return True<|docstring|>This function checks if all the columns of 'dists' are computed.<|endoftext|>
2af286d1aa78068d4ea0a05ac63dfffd41162eb61e20d3d5609ce7c58e64156a
def check_values(self): "\n This function checks if all the entries of 'dists' are between 0 and 1.\n " check_values = ((self.dists >= 0) & (self.dists < 1)) if np.all(check_values): print('\x1b[1;37;42mCheck\x1b[0;38;40m no values outside of the range') else: for (index_song1, song1) in self.song_list_indexed: for (index_song2, song2) in self.song_list_indexed: if (index_song1 <= index_song2): if (not check_values[(index_song1, index_song2)]): print("\x1b[1;31;43mERROR!\x1b[0;38;40m The distance between '{}' and '{}' is {}".format(song1, song2, self.dists[(index_song1, index_song2)]))
This function checks if all the entries of 'dists' are between 0 and 1.
measures.py
check_values
BenoitCorsini/music-patterns
1
python
def check_values(self): "\n \n " check_values = ((self.dists >= 0) & (self.dists < 1)) if np.all(check_values): print('\x1b[1;37;42mCheck\x1b[0;38;40m no values outside of the range') else: for (index_song1, song1) in self.song_list_indexed: for (index_song2, song2) in self.song_list_indexed: if (index_song1 <= index_song2): if (not check_values[(index_song1, index_song2)]): print("\x1b[1;31;43mERROR!\x1b[0;38;40m The distance between '{}' and '{}' is {}".format(song1, song2, self.dists[(index_song1, index_song2)]))
def check_values(self): "\n \n " check_values = ((self.dists >= 0) & (self.dists < 1)) if np.all(check_values): print('\x1b[1;37;42mCheck\x1b[0;38;40m no values outside of the range') else: for (index_song1, song1) in self.song_list_indexed: for (index_song2, song2) in self.song_list_indexed: if (index_song1 <= index_song2): if (not check_values[(index_song1, index_song2)]): print("\x1b[1;31;43mERROR!\x1b[0;38;40m The distance between '{}' and '{}' is {}".format(song1, song2, self.dists[(index_song1, index_song2)]))<|docstring|>This function checks if all the entries of 'dists' are between 0 and 1.<|endoftext|>
f71f94f8568fb9a4d3ece5be3e7b88afa1b381ba9e6517d1bf3ef9615b133551
def check_symmetry(self): "\n This function checks if the matrix 'dists' is symmetric.\n " check_symmetry = (self.dists == self.dists.T) if np.all(check_symmetry): print('\x1b[1;37;42mCheck\x1b[0;38;40m the matrix is symmetric') else: for (index_song1, song1) in self.song_list_indexed: for (index_song2, song2) in self.song_list_indexed: if (index_song1 <= index_song2): if (not check_symmetry[(index_song1, index_song2)]): print("\x1b[1;31;43mERROR!\x1b[0;38;40m There is an asymetry between '{}' and '{}' : {} and {}".format(song1, song2, self.dists[(index_song1, index_song2)], self.dists[(index_song2, index_song1)]))
This function checks if the matrix 'dists' is symmetric.
measures.py
check_symmetry
BenoitCorsini/music-patterns
1
python
def check_symmetry(self): "\n \n " check_symmetry = (self.dists == self.dists.T) if np.all(check_symmetry): print('\x1b[1;37;42mCheck\x1b[0;38;40m the matrix is symmetric') else: for (index_song1, song1) in self.song_list_indexed: for (index_song2, song2) in self.song_list_indexed: if (index_song1 <= index_song2): if (not check_symmetry[(index_song1, index_song2)]): print("\x1b[1;31;43mERROR!\x1b[0;38;40m There is an asymetry between '{}' and '{}' : {} and {}".format(song1, song2, self.dists[(index_song1, index_song2)], self.dists[(index_song2, index_song1)]))
def check_symmetry(self): "\n \n " check_symmetry = (self.dists == self.dists.T) if np.all(check_symmetry): print('\x1b[1;37;42mCheck\x1b[0;38;40m the matrix is symmetric') else: for (index_song1, song1) in self.song_list_indexed: for (index_song2, song2) in self.song_list_indexed: if (index_song1 <= index_song2): if (not check_symmetry[(index_song1, index_song2)]): print("\x1b[1;31;43mERROR!\x1b[0;38;40m There is an asymetry between '{}' and '{}' : {} and {}".format(song1, song2, self.dists[(index_song1, index_song2)], self.dists[(index_song2, index_song1)]))<|docstring|>This function checks if the matrix 'dists' is symmetric.<|endoftext|>
a09e1f6d32c703f12429fb47ce74e862a285338a8d531116635e4f1c2c934f37
def check(self): '\n This function runs the different checks.\n ' if self.check_completion(): self.check_values() self.check_symmetry()
This function runs the different checks.
measures.py
check
BenoitCorsini/music-patterns
1
python
def check(self): '\n \n ' if self.check_completion(): self.check_values() self.check_symmetry()
def check(self): '\n \n ' if self.check_completion(): self.check_values() self.check_symmetry()<|docstring|>This function runs the different checks.<|endoftext|>
01ccf75b16f4554e62ffd89a76fd4225528b1c16963154ebdaaecb36ad172cf9
def __init__(self, initial_state=None): 'State is an abstract representation of the state\n of the world, and seq is the list of actions required\n to get to a particular state from the initial state(root).' self.state = initial_state self.seq = []
State is an abstract representation of the state of the world, and seq is the list of actions required to get to a particular state from the initial state(root).
part_a_archive/artificial_idiot/agent.py
__init__
Dovermore/artificial_intelligence_project
0
python
def __init__(self, initial_state=None): 'State is an abstract representation of the state\n of the world, and seq is the list of actions required\n to get to a particular state from the initial state(root).' self.state = initial_state self.seq = []
def __init__(self, initial_state=None): 'State is an abstract representation of the state\n of the world, and seq is the list of actions required\n to get to a particular state from the initial state(root).' self.state = initial_state self.seq = []<|docstring|>State is an abstract representation of the state of the world, and seq is the list of actions required to get to a particular state from the initial state(root).<|endoftext|>
4a6f390d7766e924ded4d8116f158b761d89a6d9ec5dfeffac651b09bcb99ac8
def __call__(self, percept): '[Figure 3.1] Formulate a goal and problem, then\n search for a sequence of actions to solve it.' self.state = self.update_state(self.state, percept) if (not self.seq): goal = self.formulate_goal(self.state) problem = self.formulate_problem(self.state, goal) self.seq = self.search(problem) if (not self.seq): return None return self.seq.pop(0)
[Figure 3.1] Formulate a goal and problem, then search for a sequence of actions to solve it.
part_a_archive/artificial_idiot/agent.py
__call__
Dovermore/artificial_intelligence_project
0
python
def __call__(self, percept): '[Figure 3.1] Formulate a goal and problem, then\n search for a sequence of actions to solve it.' self.state = self.update_state(self.state, percept) if (not self.seq): goal = self.formulate_goal(self.state) problem = self.formulate_problem(self.state, goal) self.seq = self.search(problem) if (not self.seq): return None return self.seq.pop(0)
def __call__(self, percept): '[Figure 3.1] Formulate a goal and problem, then\n search for a sequence of actions to solve it.' self.state = self.update_state(self.state, percept) if (not self.seq): goal = self.formulate_goal(self.state) problem = self.formulate_problem(self.state, goal) self.seq = self.search(problem) if (not self.seq): return None return self.seq.pop(0)<|docstring|>[Figure 3.1] Formulate a goal and problem, then search for a sequence of actions to solve it.<|endoftext|>
1d65680c45c72bafbb05c660b4a255f903992893312f7f1cfdfeb3836c1d417a
def get_all_query(): 'Get URL parameter (also known as "query strings" or "URL query parameters") as a dict' query = eval_js('Object.fromEntries(new URLSearchParams(window.location.search))') return query
Get URL parameter (also known as "query strings" or "URL query parameters") as a dict
pywebio_battery/web.py
get_all_query
pywebio/pywebio-battery
2
python
def get_all_query(): query = eval_js('Object.fromEntries(new URLSearchParams(window.location.search))') return query
def get_all_query(): query = eval_js('Object.fromEntries(new URLSearchParams(window.location.search))') return query<|docstring|>Get URL parameter (also known as "query strings" or "URL query parameters") as a dict<|endoftext|>
a2944252cc767a227a6e29c60eaae05a7dbfc95ecd27d6684030b76ac1eadb70
def get_query(name): 'Get URL parameter value' query = eval_js('new URLSearchParams(window.location.search).get(n)', n=name) return query
Get URL parameter value
pywebio_battery/web.py
get_query
pywebio/pywebio-battery
2
python
def get_query(name): query = eval_js('new URLSearchParams(window.location.search).get(n)', n=name) return query
def get_query(name): query = eval_js('new URLSearchParams(window.location.search).get(n)', n=name) return query<|docstring|>Get URL parameter value<|endoftext|>
c4f1a860806cdecb362fc720f5d7c6e8b1cce0f556f6cd5eb6d6bd37e2d7eaaf
def set_localstorage(key, value): "Save data to user's web browser\n\n The data is specific to the origin (protocol+domain+port) of the app.\n Different origins use different web browser local storage.\n\n :param str key: the key you want to create/update.\n :param str value: the value you want to give the key you are creating/updating.\n\n You can read the value by using :func:`get_localstorage(key) <get_localstorage>`\n " run_js('localStorage.setItem(key, value)', key=key, value=value)
Save data to user's web browser The data is specific to the origin (protocol+domain+port) of the app. Different origins use different web browser local storage. :param str key: the key you want to create/update. :param str value: the value you want to give the key you are creating/updating. You can read the value by using :func:`get_localstorage(key) <get_localstorage>`
pywebio_battery/web.py
set_localstorage
pywebio/pywebio-battery
2
python
def set_localstorage(key, value): "Save data to user's web browser\n\n The data is specific to the origin (protocol+domain+port) of the app.\n Different origins use different web browser local storage.\n\n :param str key: the key you want to create/update.\n :param str value: the value you want to give the key you are creating/updating.\n\n You can read the value by using :func:`get_localstorage(key) <get_localstorage>`\n " run_js('localStorage.setItem(key, value)', key=key, value=value)
def set_localstorage(key, value): "Save data to user's web browser\n\n The data is specific to the origin (protocol+domain+port) of the app.\n Different origins use different web browser local storage.\n\n :param str key: the key you want to create/update.\n :param str value: the value you want to give the key you are creating/updating.\n\n You can read the value by using :func:`get_localstorage(key) <get_localstorage>`\n " run_js('localStorage.setItem(key, value)', key=key, value=value)<|docstring|>Save data to user's web browser The data is specific to the origin (protocol+domain+port) of the app. Different origins use different web browser local storage. :param str key: the key you want to create/update. :param str value: the value you want to give the key you are creating/updating. You can read the value by using :func:`get_localstorage(key) <get_localstorage>`<|endoftext|>
6278ed116dd6506ba9e580fab95e2c4fbd3676f4b66da53e43005a399a2e1f68
def get_localstorage(key) -> str: "Get the key's value in user's web browser local storage" return eval_js('localStorage.getItem(key)', key=key)
Get the key's value in user's web browser local storage
pywebio_battery/web.py
get_localstorage
pywebio/pywebio-battery
2
python
def get_localstorage(key) -> str: return eval_js('localStorage.getItem(key)', key=key)
def get_localstorage(key) -> str: return eval_js('localStorage.getItem(key)', key=key)<|docstring|>Get the key's value in user's web browser local storage<|endoftext|>