body_hash
stringlengths
64
64
body
stringlengths
23
109k
docstring
stringlengths
1
57k
path
stringlengths
4
198
name
stringlengths
1
115
repository_name
stringlengths
7
111
repository_stars
float64
0
191k
lang
stringclasses
1 value
body_without_docstring
stringlengths
14
108k
unified
stringlengths
45
133k
0ab9dc29f4edf199279d1c3d4e2b4b62700990f0fa8d90e0e3fde6e2ca115e9b
def t(*shape: Dimension) -> TensorType: '\n Creates an object with the given shape, for testing.\n ' return TestShaped(shape)
Creates an object with the given shape, for testing.
tests/gpflow/experimental/check_shapes/utils.py
t
joelberkeley/GPflow
0
python
def t(*shape: Dimension) -> TensorType: '\n \n ' return TestShaped(shape)
def t(*shape: Dimension) -> TensorType: '\n \n ' return TestShaped(shape)<|docstring|>Creates an object with the given shape, for testing.<|endoftext|>
5416f81381da8b1d07b3144b753f7ed095235a5933a48a44c9e8a761e77f776d
def update_availability_zone(ec2, availability_zone: str, volumes: List[AbstractInstanceVolume]): "Checks that existing volumes located in the same AZ and the AZ from the\n config file matches volumes AZ.\n\n Args:\n ec2: EC2 boto3 client\n availability_zone: Availability Zone from the configuration.\n volumes: List of volume objects.\n\n Returns:\n The final AZ where the instance should be run or an empty string if\n the instance can be run in any AZ.\n\n Raises:\n ValueError: AZ in the config file doesn't match the AZs of the volumes or\n AZs of the volumes are different.\n " availability_zone = availability_zone for volume in volumes: if isinstance(volume, EbsVolume): ec2_volume = Volume.get_by_name(ec2, volume.ec2_volume_name) if ec2_volume: if (availability_zone and (availability_zone != ec2_volume.availability_zone)): raise ValueError("The availability zone in the configuration file doesn't match the availability zone of the existing volume or you have two existing volumes in different availability zones.") availability_zone = ec2_volume.availability_zone return availability_zone
Checks that existing volumes located in the same AZ and the AZ from the config file matches volumes AZ. Args: ec2: EC2 boto3 client availability_zone: Availability Zone from the configuration. volumes: List of volume objects. Returns: The final AZ where the instance should be run or an empty string if the instance can be run in any AZ. Raises: ValueError: AZ in the config file doesn't match the AZs of the volumes or AZs of the volumes are different.
spotty/providers/aws/helpers/availability_zone.py
update_availability_zone
wilmeragsgh/spotty
246
python
def update_availability_zone(ec2, availability_zone: str, volumes: List[AbstractInstanceVolume]): "Checks that existing volumes located in the same AZ and the AZ from the\n config file matches volumes AZ.\n\n Args:\n ec2: EC2 boto3 client\n availability_zone: Availability Zone from the configuration.\n volumes: List of volume objects.\n\n Returns:\n The final AZ where the instance should be run or an empty string if\n the instance can be run in any AZ.\n\n Raises:\n ValueError: AZ in the config file doesn't match the AZs of the volumes or\n AZs of the volumes are different.\n " availability_zone = availability_zone for volume in volumes: if isinstance(volume, EbsVolume): ec2_volume = Volume.get_by_name(ec2, volume.ec2_volume_name) if ec2_volume: if (availability_zone and (availability_zone != ec2_volume.availability_zone)): raise ValueError("The availability zone in the configuration file doesn't match the availability zone of the existing volume or you have two existing volumes in different availability zones.") availability_zone = ec2_volume.availability_zone return availability_zone
def update_availability_zone(ec2, availability_zone: str, volumes: List[AbstractInstanceVolume]): "Checks that existing volumes located in the same AZ and the AZ from the\n config file matches volumes AZ.\n\n Args:\n ec2: EC2 boto3 client\n availability_zone: Availability Zone from the configuration.\n volumes: List of volume objects.\n\n Returns:\n The final AZ where the instance should be run or an empty string if\n the instance can be run in any AZ.\n\n Raises:\n ValueError: AZ in the config file doesn't match the AZs of the volumes or\n AZs of the volumes are different.\n " availability_zone = availability_zone for volume in volumes: if isinstance(volume, EbsVolume): ec2_volume = Volume.get_by_name(ec2, volume.ec2_volume_name) if ec2_volume: if (availability_zone and (availability_zone != ec2_volume.availability_zone)): raise ValueError("The availability zone in the configuration file doesn't match the availability zone of the existing volume or you have two existing volumes in different availability zones.") availability_zone = ec2_volume.availability_zone return availability_zone<|docstring|>Checks that existing volumes located in the same AZ and the AZ from the config file matches volumes AZ. Args: ec2: EC2 boto3 client availability_zone: Availability Zone from the configuration. volumes: List of volume objects. Returns: The final AZ where the instance should be run or an empty string if the instance can be run in any AZ. Raises: ValueError: AZ in the config file doesn't match the AZs of the volumes or AZs of the volumes are different.<|endoftext|>
13053b9ea0a6aa56558a8f00163c64a216b025f5db7a0266ac25136350a1ce98
def fit(self, X, Y2, learning_rate=0.01, max_epochs=1000): '\n Takes in arguments X and Y. The learning rate is defined by the user as well as the max_epochs.\n\n learning_rate = 1, 0.1, 0.01, 0.001, 0.0001, ens. \n\n max_epochs is the number of iterations, the higher == higher accuracy\n ' (N, D) = X.shape self.w = np.random.randn(D) self.b = 0 costs = [] for epoch in range(max_epochs): Y_hat = self.predict(X) P = np.argmax(Y_hat, axis=1) incorrect = np.nonzero((Y2 != P))[0] if (len(incorrect) == 0): break i = np.random.choice(incorrect) self.w += ((learning_rate * X[i]) * Y2[i].T) self.b += (learning_rate * Y2[i]) c = (len(incorrect) / float(N)) costs.append(c) print(('Final w: %s Final b: %s Number of epochs: %s / %s' % (self.w, self.b, (epoch + 1), max_epochs))) plt.plot(costs, label='costs') plt.legend() plt.show()
Takes in arguments X and Y. The learning rate is defined by the user as well as the max_epochs. learning_rate = 1, 0.1, 0.01, 0.001, 0.0001, ens. max_epochs is the number of iterations, the higher == higher accuracy
Supervised Machine Learning/Perceptron/Perceptron_multi.py
fit
marcelkotze007/mk007---ML-Python-library
0
python
def fit(self, X, Y2, learning_rate=0.01, max_epochs=1000): '\n Takes in arguments X and Y. The learning rate is defined by the user as well as the max_epochs.\n\n learning_rate = 1, 0.1, 0.01, 0.001, 0.0001, ens. \n\n max_epochs is the number of iterations, the higher == higher accuracy\n ' (N, D) = X.shape self.w = np.random.randn(D) self.b = 0 costs = [] for epoch in range(max_epochs): Y_hat = self.predict(X) P = np.argmax(Y_hat, axis=1) incorrect = np.nonzero((Y2 != P))[0] if (len(incorrect) == 0): break i = np.random.choice(incorrect) self.w += ((learning_rate * X[i]) * Y2[i].T) self.b += (learning_rate * Y2[i]) c = (len(incorrect) / float(N)) costs.append(c) print(('Final w: %s Final b: %s Number of epochs: %s / %s' % (self.w, self.b, (epoch + 1), max_epochs))) plt.plot(costs, label='costs') plt.legend() plt.show()
def fit(self, X, Y2, learning_rate=0.01, max_epochs=1000): '\n Takes in arguments X and Y. The learning rate is defined by the user as well as the max_epochs.\n\n learning_rate = 1, 0.1, 0.01, 0.001, 0.0001, ens. \n\n max_epochs is the number of iterations, the higher == higher accuracy\n ' (N, D) = X.shape self.w = np.random.randn(D) self.b = 0 costs = [] for epoch in range(max_epochs): Y_hat = self.predict(X) P = np.argmax(Y_hat, axis=1) incorrect = np.nonzero((Y2 != P))[0] if (len(incorrect) == 0): break i = np.random.choice(incorrect) self.w += ((learning_rate * X[i]) * Y2[i].T) self.b += (learning_rate * Y2[i]) c = (len(incorrect) / float(N)) costs.append(c) print(('Final w: %s Final b: %s Number of epochs: %s / %s' % (self.w, self.b, (epoch + 1), max_epochs))) plt.plot(costs, label='costs') plt.legend() plt.show()<|docstring|>Takes in arguments X and Y. The learning rate is defined by the user as well as the max_epochs. learning_rate = 1, 0.1, 0.01, 0.001, 0.0001, ens. max_epochs is the number of iterations, the higher == higher accuracy<|endoftext|>
9089694ace03d99caf78b056c4d27c6dd24dbeee1953a32902e6d2955fe5d05c
@staticmethod def random_users(): '\n based on the number of the active users in each day, randomly select user ids from user table\n :return: list of the active user ids\n ' ids_lst = User.load_all_ids_from_db() selected_users = list() users_In_Day = random.randint(10, (len(ids_lst[0]) - 1)) for i in range(users_In_Day): idx = random.randint(0, (len(ids_lst[0]) - 1)) selected_users.append(ids_lst[0][idx][0]) return selected_users
based on the number of the active users in each day, randomly select user ids from user table :return: list of the active user ids
chainedSCT/extraction/location_Extraction.py
random_users
MSBeni/SmartContactTracing_Chained
1
python
@staticmethod def random_users(): '\n based on the number of the active users in each day, randomly select user ids from user table\n :return: list of the active user ids\n ' ids_lst = User.load_all_ids_from_db() selected_users = list() users_In_Day = random.randint(10, (len(ids_lst[0]) - 1)) for i in range(users_In_Day): idx = random.randint(0, (len(ids_lst[0]) - 1)) selected_users.append(ids_lst[0][idx][0]) return selected_users
@staticmethod def random_users(): '\n based on the number of the active users in each day, randomly select user ids from user table\n :return: list of the active user ids\n ' ids_lst = User.load_all_ids_from_db() selected_users = list() users_In_Day = random.randint(10, (len(ids_lst[0]) - 1)) for i in range(users_In_Day): idx = random.randint(0, (len(ids_lst[0]) - 1)) selected_users.append(ids_lst[0][idx][0]) return selected_users<|docstring|>based on the number of the active users in each day, randomly select user ids from user table :return: list of the active user ids<|endoftext|>
586531daff81a97968287eb9a6a646eccb55b4aacf2f792db2921a37e6e652af
@classmethod def random_user_location(cls, step_size=0.5): "\n create locations based on defined step size and number of steps in the environment for each user\n :return: list of the positions' tuples\n " positions = list() x_pos = random.uniform(0.0, 20.0) y_pos = random.uniform(0.0, 10.0) positions.append((x_pos, y_pos)) num_steps = random.randint(20, 50) while (num_steps > 0): new_x_pos = (x_pos + (random.choice([(- 1), 1]) * step_size)) new_y_pos = (y_pos + (random.choice([(- 1), 1]) * step_size)) if ((0.0 <= new_x_pos <= 20.0) and (0.0 <= new_y_pos <= 10.0)): positions.append((new_x_pos, new_y_pos)) num_steps -= 1 return positions
create locations based on defined step size and number of steps in the environment for each user :return: list of the positions' tuples
chainedSCT/extraction/location_Extraction.py
random_user_location
MSBeni/SmartContactTracing_Chained
1
python
@classmethod def random_user_location(cls, step_size=0.5): "\n create locations based on defined step size and number of steps in the environment for each user\n :return: list of the positions' tuples\n " positions = list() x_pos = random.uniform(0.0, 20.0) y_pos = random.uniform(0.0, 10.0) positions.append((x_pos, y_pos)) num_steps = random.randint(20, 50) while (num_steps > 0): new_x_pos = (x_pos + (random.choice([(- 1), 1]) * step_size)) new_y_pos = (y_pos + (random.choice([(- 1), 1]) * step_size)) if ((0.0 <= new_x_pos <= 20.0) and (0.0 <= new_y_pos <= 10.0)): positions.append((new_x_pos, new_y_pos)) num_steps -= 1 return positions
@classmethod def random_user_location(cls, step_size=0.5): "\n create locations based on defined step size and number of steps in the environment for each user\n :return: list of the positions' tuples\n " positions = list() x_pos = random.uniform(0.0, 20.0) y_pos = random.uniform(0.0, 10.0) positions.append((x_pos, y_pos)) num_steps = random.randint(20, 50) while (num_steps > 0): new_x_pos = (x_pos + (random.choice([(- 1), 1]) * step_size)) new_y_pos = (y_pos + (random.choice([(- 1), 1]) * step_size)) if ((0.0 <= new_x_pos <= 20.0) and (0.0 <= new_y_pos <= 10.0)): positions.append((new_x_pos, new_y_pos)) num_steps -= 1 return positions<|docstring|>create locations based on defined step size and number of steps in the environment for each user :return: list of the positions' tuples<|endoftext|>
f21e53f4b1d8dc44c94cf84e7cf521f2436944c804fae40e364649f0974af0d5
@classmethod def save_location_to_db(cls, argument_handler): "\n create data specifically for all the active users and save timestamped data containing the user's locations to\n database\n :param argument_handler: imported arguments\n :return:\n " selected_users = cls.random_users() Location.create_locations_table() for user in selected_users: for j in range(argument_handler.numDays): date_local = (datetime.today() - timedelta(days=j)).date() xy_locations = cls.random_user_location() for i in range(len(xy_locations)): time_local = (datetime.now() - timedelta(seconds=5)).time() location_ = Location(user, date_local, time_local, xy_locations[i][0], xy_locations[i][1]) location_.save_loc_to_db()
create data specifically for all the active users and save timestamped data containing the user's locations to database :param argument_handler: imported arguments :return:
chainedSCT/extraction/location_Extraction.py
save_location_to_db
MSBeni/SmartContactTracing_Chained
1
python
@classmethod def save_location_to_db(cls, argument_handler): "\n create data specifically for all the active users and save timestamped data containing the user's locations to\n database\n :param argument_handler: imported arguments\n :return:\n " selected_users = cls.random_users() Location.create_locations_table() for user in selected_users: for j in range(argument_handler.numDays): date_local = (datetime.today() - timedelta(days=j)).date() xy_locations = cls.random_user_location() for i in range(len(xy_locations)): time_local = (datetime.now() - timedelta(seconds=5)).time() location_ = Location(user, date_local, time_local, xy_locations[i][0], xy_locations[i][1]) location_.save_loc_to_db()
@classmethod def save_location_to_db(cls, argument_handler): "\n create data specifically for all the active users and save timestamped data containing the user's locations to\n database\n :param argument_handler: imported arguments\n :return:\n " selected_users = cls.random_users() Location.create_locations_table() for user in selected_users: for j in range(argument_handler.numDays): date_local = (datetime.today() - timedelta(days=j)).date() xy_locations = cls.random_user_location() for i in range(len(xy_locations)): time_local = (datetime.now() - timedelta(seconds=5)).time() location_ = Location(user, date_local, time_local, xy_locations[i][0], xy_locations[i][1]) location_.save_loc_to_db()<|docstring|>create data specifically for all the active users and save timestamped data containing the user's locations to database :param argument_handler: imported arguments :return:<|endoftext|>
c44df322760ad13cc652265c8faa1f6a246a6997126933b38cbc660769b28a1b
def fixCollate(x, pass_pid=False): '\n 1. make sure only one shape and annotation type in the batch.\n 2. add a meta of the batch.\n ' hashstat = defaultdict(list) metas = defaultdict(list) for i in x: bf = i['meta'].batchflag metas[bf].append(i.pop('meta')) hashstat[bf].append(i) (bf, x) = max(hashstat.items(), key=(lambda t: len(t[1]))) metas = metas[bf] x = deep_collate(x, True, ['meta']) x.setdefault('Yb', None) x.setdefault('mask', None) x['meta'] = {'batchflag': bf, 'balanced': True, 'augindices': tuple((i.augmented for i in metas))} if pass_pid: x['meta'] = metas return x
1. make sure only one shape and annotation type in the batch. 2. add a meta of the batch.
src/data/dataloader.py
fixCollate
JamzumSum/yNet
5
python
def fixCollate(x, pass_pid=False): '\n 1. make sure only one shape and annotation type in the batch.\n 2. add a meta of the batch.\n ' hashstat = defaultdict(list) metas = defaultdict(list) for i in x: bf = i['meta'].batchflag metas[bf].append(i.pop('meta')) hashstat[bf].append(i) (bf, x) = max(hashstat.items(), key=(lambda t: len(t[1]))) metas = metas[bf] x = deep_collate(x, True, ['meta']) x.setdefault('Yb', None) x.setdefault('mask', None) x['meta'] = {'batchflag': bf, 'balanced': True, 'augindices': tuple((i.augmented for i in metas))} if pass_pid: x['meta'] = metas return x
def fixCollate(x, pass_pid=False): '\n 1. make sure only one shape and annotation type in the batch.\n 2. add a meta of the batch.\n ' hashstat = defaultdict(list) metas = defaultdict(list) for i in x: bf = i['meta'].batchflag metas[bf].append(i.pop('meta')) hashstat[bf].append(i) (bf, x) = max(hashstat.items(), key=(lambda t: len(t[1]))) metas = metas[bf] x = deep_collate(x, True, ['meta']) x.setdefault('Yb', None) x.setdefault('mask', None) x['meta'] = {'batchflag': bf, 'balanced': True, 'augindices': tuple((i.augmented for i in metas))} if pass_pid: x['meta'] = metas return x<|docstring|>1. make sure only one shape and annotation type in the batch. 2. add a meta of the batch.<|endoftext|>
ba3ef79d2175bb59326176f7136286e40cf2cc4fa22787a1967db228ea1d403b
def load_img(self, img): 'Loads image of piece' self.img = img
Loads image of piece
src/pieces/piece.py
load_img
pranavmodx/ChessX
3
python
def load_img(self, img): self.img = img
def load_img(self, img): self.img = img<|docstring|>Loads image of piece<|endoftext|>
a53ba955a9df9e51dc5ec1097125affb021cd44d8c1369991531361e65c478f2
def size(self): 'Returns size (or default size) of piece image' try: sz = self.img.get_height() return sz except: return 75
Returns size (or default size) of piece image
src/pieces/piece.py
size
pranavmodx/ChessX
3
python
def size(self): try: sz = self.img.get_height() return sz except: return 75
def size(self): try: sz = self.img.get_height() return sz except: return 75<|docstring|>Returns size (or default size) of piece image<|endoftext|>
c4225280b6a3f0aa1bd8b338004544f1e60ba38490be436c9d0d307c0937ec30
def display(self, screen): 'Displays image on screen' screen_obj = screen.blit(self.img, self.pos)
Displays image on screen
src/pieces/piece.py
display
pranavmodx/ChessX
3
python
def display(self, screen): screen_obj = screen.blit(self.img, self.pos)
def display(self, screen): screen_obj = screen.blit(self.img, self.pos)<|docstring|>Displays image on screen<|endoftext|>
c466a80db6b5120bdc1a06a0271eb5dea5531374d1992adf668e012ba7b2059c
def set_pos(self, pos): 'Set initial position of piece' self.pos = pos
Set initial position of piece
src/pieces/piece.py
set_pos
pranavmodx/ChessX
3
python
def set_pos(self, pos): self.pos = pos
def set_pos(self, pos): self.pos = pos<|docstring|>Set initial position of piece<|endoftext|>
728e2535720ddf4df5fc50904f80c9bf84cfcc61a54167cb208ef126a3c76d8c
def move(self, pos): 'Move piece to required position' self.pos = pos
Move piece to required position
src/pieces/piece.py
move
pranavmodx/ChessX
3
python
def move(self, pos): self.pos = pos
def move(self, pos): self.pos = pos<|docstring|>Move piece to required position<|endoftext|>
5fafd414803ac4ac9baddab34e355ff9767d75cc850e39a3b5fec3d4dbcbcf7f
@ioflo.base.deeding.deedify(salt.utils.stringutils.to_str('SaltRaetMaintFork'), ioinits={'opts': salt.utils.stringutils.to_str('.salt.opts'), 'proc_mgr': salt.utils.stringutils.to_str('.salt.usr.proc_mgr')}) def maint_fork(self): '\n For off the maintinence process from the master router process\n FloScript:\n\n do salt raet maint fork at enter\n ' self.proc_mgr.value.add_process(Maintenance, args=(self.opts.value,))
For off the maintinence process from the master router process FloScript: do salt raet maint fork at enter
salt/daemons/flo/maint.py
maint_fork
kaelaworthen/salt
12
python
@ioflo.base.deeding.deedify(salt.utils.stringutils.to_str('SaltRaetMaintFork'), ioinits={'opts': salt.utils.stringutils.to_str('.salt.opts'), 'proc_mgr': salt.utils.stringutils.to_str('.salt.usr.proc_mgr')}) def maint_fork(self): '\n For off the maintinence process from the master router process\n FloScript:\n\n do salt raet maint fork at enter\n ' self.proc_mgr.value.add_process(Maintenance, args=(self.opts.value,))
@ioflo.base.deeding.deedify(salt.utils.stringutils.to_str('SaltRaetMaintFork'), ioinits={'opts': salt.utils.stringutils.to_str('.salt.opts'), 'proc_mgr': salt.utils.stringutils.to_str('.salt.usr.proc_mgr')}) def maint_fork(self): '\n For off the maintinence process from the master router process\n FloScript:\n\n do salt raet maint fork at enter\n ' self.proc_mgr.value.add_process(Maintenance, args=(self.opts.value,))<|docstring|>For off the maintinence process from the master router process FloScript: do salt raet maint fork at enter<|endoftext|>
0026237438c38e6afb9e353d8e1163ea02be540cff9d2c2b477aa71aec9ac092
def run(self): '\n Spin up a worker, do this in s multiprocess\n ' behaviors = ['salt.daemons.flo'] preloads = [(salt.utils.stringutils.to_str('.salt.opts'), dict(value=self.opts))] console_logdir = self.opts.get('ioflo_console_logdir', '') if console_logdir: consolepath = os.path.join(console_logdir, 'maintenance.log') else: consolepath = '' ioflo.app.run.start(name='maintenance', period=float(self.opts['loop_interval']), stamp=0.0, real=self.opts['ioflo_realtime'], filepath=self.opts['maintenance_floscript'], behaviors=behaviors, username='', password='', mode=None, houses=None, metas=None, preloads=preloads, verbose=int(self.opts['ioflo_verbose']), consolepath=consolepath)
Spin up a worker, do this in s multiprocess
salt/daemons/flo/maint.py
run
kaelaworthen/salt
12
python
def run(self): '\n \n ' behaviors = ['salt.daemons.flo'] preloads = [(salt.utils.stringutils.to_str('.salt.opts'), dict(value=self.opts))] console_logdir = self.opts.get('ioflo_console_logdir', ) if console_logdir: consolepath = os.path.join(console_logdir, 'maintenance.log') else: consolepath = ioflo.app.run.start(name='maintenance', period=float(self.opts['loop_interval']), stamp=0.0, real=self.opts['ioflo_realtime'], filepath=self.opts['maintenance_floscript'], behaviors=behaviors, username=, password=, mode=None, houses=None, metas=None, preloads=preloads, verbose=int(self.opts['ioflo_verbose']), consolepath=consolepath)
def run(self): '\n \n ' behaviors = ['salt.daemons.flo'] preloads = [(salt.utils.stringutils.to_str('.salt.opts'), dict(value=self.opts))] console_logdir = self.opts.get('ioflo_console_logdir', ) if console_logdir: consolepath = os.path.join(console_logdir, 'maintenance.log') else: consolepath = ioflo.app.run.start(name='maintenance', period=float(self.opts['loop_interval']), stamp=0.0, real=self.opts['ioflo_realtime'], filepath=self.opts['maintenance_floscript'], behaviors=behaviors, username=, password=, mode=None, houses=None, metas=None, preloads=preloads, verbose=int(self.opts['ioflo_verbose']), consolepath=consolepath)<|docstring|>Spin up a worker, do this in s multiprocess<|endoftext|>
5e6be12f9cc30acc6abd3fa1201b23dcd998a2fc376d4401d6694d64ba3b1a30
def action(self): '\n Set up the objects used in the maint process\n ' self.fileserver.value = salt.fileserver.Fileserver(self.opts.value) self.runners.value = salt.loader.runner(self.opts.value) self.ckminions.value = salt.utils.minions.CkMinions(self.opts.value) self.pillargitfs.value = salt.daemons.masterapi.init_git_pillar(self.opts.value)
Set up the objects used in the maint process
salt/daemons/flo/maint.py
action
kaelaworthen/salt
12
python
def action(self): '\n \n ' self.fileserver.value = salt.fileserver.Fileserver(self.opts.value) self.runners.value = salt.loader.runner(self.opts.value) self.ckminions.value = salt.utils.minions.CkMinions(self.opts.value) self.pillargitfs.value = salt.daemons.masterapi.init_git_pillar(self.opts.value)
def action(self): '\n \n ' self.fileserver.value = salt.fileserver.Fileserver(self.opts.value) self.runners.value = salt.loader.runner(self.opts.value) self.ckminions.value = salt.utils.minions.CkMinions(self.opts.value) self.pillargitfs.value = salt.daemons.masterapi.init_git_pillar(self.opts.value)<|docstring|>Set up the objects used in the maint process<|endoftext|>
bb52ffcb101995fccb8cbe6eafdfc1682c0dac094cb66c82044a060548054426
def action(self): '\n Clean!\n ' salt.daemons.masterapi.clean_fsbackend(self.opts.value)
Clean!
salt/daemons/flo/maint.py
action
kaelaworthen/salt
12
python
def action(self): '\n \n ' salt.daemons.masterapi.clean_fsbackend(self.opts.value)
def action(self): '\n \n ' salt.daemons.masterapi.clean_fsbackend(self.opts.value)<|docstring|>Clean!<|endoftext|>
bdd10865a2c6758cfd5aab4c34016d83c39b49375146d4ca0f7359a72452e7c2
def action(self): '\n Clear out the old jobs cache\n ' salt.daemons.masterapi.clean_old_jobs(self.opts.value)
Clear out the old jobs cache
salt/daemons/flo/maint.py
action
kaelaworthen/salt
12
python
def action(self): '\n \n ' salt.daemons.masterapi.clean_old_jobs(self.opts.value)
def action(self): '\n \n ' salt.daemons.masterapi.clean_old_jobs(self.opts.value)<|docstring|>Clear out the old jobs cache<|endoftext|>
cf4956717ee0c0cee0ae10a60a0750dde9e868e94d884357ea8061f5691334aa
def action(self): '\n Update!\n ' for pillargit in self.pillargitfs.value: pillargit.update() salt.daemons.masterapi.fileserver_update(self.fileserver.value)
Update!
salt/daemons/flo/maint.py
action
kaelaworthen/salt
12
python
def action(self): '\n \n ' for pillargit in self.pillargitfs.value: pillargit.update() salt.daemons.masterapi.fileserver_update(self.fileserver.value)
def action(self): '\n \n ' for pillargit in self.pillargitfs.value: pillargit.update() salt.daemons.masterapi.fileserver_update(self.fileserver.value)<|docstring|>Update!<|endoftext|>
424027b04ab4a4b3544cc5e7dfac890aad797981c1f05b7c29fa0e897b2881ab
def google_plus_profile_links(iterable, icon_path=''): '\n mainfunc\n ' (yield '<div class="widget">') (yield '<ul id="accounts">') for (img, link, (sitename, filename, filepath, imgurl)) in iterable: (yield '<li>') (yield ('<a href=%s title=%s rel="me" target="_blank">' % (_repr(link['href']), _repr(link['title'])))) (yield ('<img src=%s alt=%s width="16" height="16"></img>' % (_repr(build_data_uri(filepath, 'image/png')), _repr(sitename)))) (yield '</a>') (yield '</li>') (yield '</ul>') (yield '</div>')
mainfunc
get_accounts.py
google_plus_profile_links
westurner/westurner.github.io
0
python
def google_plus_profile_links(iterable, icon_path=): '\n \n ' (yield '<div class="widget">') (yield '<ul id="accounts">') for (img, link, (sitename, filename, filepath, imgurl)) in iterable: (yield '<li>') (yield ('<a href=%s title=%s rel="me" target="_blank">' % (_repr(link['href']), _repr(link['title'])))) (yield ('<img src=%s alt=%s width="16" height="16"></img>' % (_repr(build_data_uri(filepath, 'image/png')), _repr(sitename)))) (yield '</a>') (yield '</li>') (yield '</ul>') (yield '</div>')
def google_plus_profile_links(iterable, icon_path=): '\n \n ' (yield '<div class="widget">') (yield '<ul id="accounts">') for (img, link, (sitename, filename, filepath, imgurl)) in iterable: (yield '<li>') (yield ('<a href=%s title=%s rel="me" target="_blank">' % (_repr(link['href']), _repr(link['title'])))) (yield ('<img src=%s alt=%s width="16" height="16"></img>' % (_repr(build_data_uri(filepath, 'image/png')), _repr(sitename)))) (yield '</a>') (yield '</li>') (yield '</ul>') (yield '</div>')<|docstring|>mainfunc<|endoftext|>
923947e780bc8f4de16896649b7d2e469c84c36b394f4ea3e957b768e6d74ad2
def reference2array(path): 'this function allows you read in hyperspectral reference in raw format and returns it as array that is averaged\n (this will be used to normalize the raw hyperspectral image)\n Inputs:\n path = path to the raw file of reference\n\n Returns:\n image_array_all = hyperspectral reference image in array format\n gdalhyper = hyperspectral reference image\n pixelWidth = pixelWidth\n cols = number of cols of raw image\n rows = number of rows of raw image\n bands = number of bands of raw image\n\n\n :param hyperimg: spectral object\n :param bands: list of band centers\n :param path: string\n :return filname: string\n ' device += 1 if (os.path.isfile(path) == False): fatal_error((str(path) + ' does not exist')) gdalhyper = gdal.Open(path, GA_ReadOnly) if (gdalhyper is None): print(("Couldn't open this file: " + path)) sys.exit('Try again!') else: print(('%s opened successfully' % path)) print('Get image size') cols = gdalhyper.RasterXSize rows = gdalhyper.RasterYSize bands = gdalhyper.RasterCount print(('columns: %i' % cols)) print(('rows: %i' % rows)) print(('bands: %i' % bands)) print('Get georeference information') geotransform = gdalhyper.GetGeoTransform() originX = geotransform[0] originY = geotransform[3] pixelWidth = geotransform[1] pixelHeight = geotransform[5] print(('origin x: %i' % originX)) print(('origin y: %i' % originY)) print(('width: %2.2f' % pixelWidth)) print(('height: %2.2f' % pixelHeight)) print('Convert image to 2D array') band = gdalhyper.GetRasterBand(1) image_array = band.ReadAsArray(0, 0, cols, rows) image_array_name = path print(type(image_array)) print(image_array.shape) output_list = [] for i in range(1, (bands + 1)): band = gdalhyper.GetRasterBand(i) image_array = band.ReadAsArray(0, 0, cols, rows) for y in zip(*image_array): avg_reflectance = (sum(y) / len(y)) output_list.append(avg_reflectance) image_array_ave = np.reshape(output_list, (bands, cols)) print('Average image width') print(image_array_ave.shape) return (image_array_all, gdalhyper, cols, rows, bands)
this function allows you read in hyperspectral reference in raw format and returns it as array that is averaged (this will be used to normalize the raw hyperspectral image) Inputs: path = path to the raw file of reference Returns: image_array_all = hyperspectral reference image in array format gdalhyper = hyperspectral reference image pixelWidth = pixelWidth cols = number of cols of raw image rows = number of rows of raw image bands = number of bands of raw image :param hyperimg: spectral object :param bands: list of band centers :param path: string :return filname: string
plantcv/hyperspectral/reference2array.py
reference2array
danforthcenter/plantcv-hyperspectral
1
python
def reference2array(path): 'this function allows you read in hyperspectral reference in raw format and returns it as array that is averaged\n (this will be used to normalize the raw hyperspectral image)\n Inputs:\n path = path to the raw file of reference\n\n Returns:\n image_array_all = hyperspectral reference image in array format\n gdalhyper = hyperspectral reference image\n pixelWidth = pixelWidth\n cols = number of cols of raw image\n rows = number of rows of raw image\n bands = number of bands of raw image\n\n\n :param hyperimg: spectral object\n :param bands: list of band centers\n :param path: string\n :return filname: string\n ' device += 1 if (os.path.isfile(path) == False): fatal_error((str(path) + ' does not exist')) gdalhyper = gdal.Open(path, GA_ReadOnly) if (gdalhyper is None): print(("Couldn't open this file: " + path)) sys.exit('Try again!') else: print(('%s opened successfully' % path)) print('Get image size') cols = gdalhyper.RasterXSize rows = gdalhyper.RasterYSize bands = gdalhyper.RasterCount print(('columns: %i' % cols)) print(('rows: %i' % rows)) print(('bands: %i' % bands)) print('Get georeference information') geotransform = gdalhyper.GetGeoTransform() originX = geotransform[0] originY = geotransform[3] pixelWidth = geotransform[1] pixelHeight = geotransform[5] print(('origin x: %i' % originX)) print(('origin y: %i' % originY)) print(('width: %2.2f' % pixelWidth)) print(('height: %2.2f' % pixelHeight)) print('Convert image to 2D array') band = gdalhyper.GetRasterBand(1) image_array = band.ReadAsArray(0, 0, cols, rows) image_array_name = path print(type(image_array)) print(image_array.shape) output_list = [] for i in range(1, (bands + 1)): band = gdalhyper.GetRasterBand(i) image_array = band.ReadAsArray(0, 0, cols, rows) for y in zip(*image_array): avg_reflectance = (sum(y) / len(y)) output_list.append(avg_reflectance) image_array_ave = np.reshape(output_list, (bands, cols)) print('Average image width') print(image_array_ave.shape) return (image_array_all, gdalhyper, cols, rows, bands)
def reference2array(path): 'this function allows you read in hyperspectral reference in raw format and returns it as array that is averaged\n (this will be used to normalize the raw hyperspectral image)\n Inputs:\n path = path to the raw file of reference\n\n Returns:\n image_array_all = hyperspectral reference image in array format\n gdalhyper = hyperspectral reference image\n pixelWidth = pixelWidth\n cols = number of cols of raw image\n rows = number of rows of raw image\n bands = number of bands of raw image\n\n\n :param hyperimg: spectral object\n :param bands: list of band centers\n :param path: string\n :return filname: string\n ' device += 1 if (os.path.isfile(path) == False): fatal_error((str(path) + ' does not exist')) gdalhyper = gdal.Open(path, GA_ReadOnly) if (gdalhyper is None): print(("Couldn't open this file: " + path)) sys.exit('Try again!') else: print(('%s opened successfully' % path)) print('Get image size') cols = gdalhyper.RasterXSize rows = gdalhyper.RasterYSize bands = gdalhyper.RasterCount print(('columns: %i' % cols)) print(('rows: %i' % rows)) print(('bands: %i' % bands)) print('Get georeference information') geotransform = gdalhyper.GetGeoTransform() originX = geotransform[0] originY = geotransform[3] pixelWidth = geotransform[1] pixelHeight = geotransform[5] print(('origin x: %i' % originX)) print(('origin y: %i' % originY)) print(('width: %2.2f' % pixelWidth)) print(('height: %2.2f' % pixelHeight)) print('Convert image to 2D array') band = gdalhyper.GetRasterBand(1) image_array = band.ReadAsArray(0, 0, cols, rows) image_array_name = path print(type(image_array)) print(image_array.shape) output_list = [] for i in range(1, (bands + 1)): band = gdalhyper.GetRasterBand(i) image_array = band.ReadAsArray(0, 0, cols, rows) for y in zip(*image_array): avg_reflectance = (sum(y) / len(y)) output_list.append(avg_reflectance) image_array_ave = np.reshape(output_list, (bands, cols)) print('Average image width') print(image_array_ave.shape) return (image_array_all, gdalhyper, cols, rows, bands)<|docstring|>this function allows you read in hyperspectral reference in raw format and returns it as array that is averaged (this will be used to normalize the raw hyperspectral image) Inputs: path = path to the raw file of reference Returns: image_array_all = hyperspectral reference image in array format gdalhyper = hyperspectral reference image pixelWidth = pixelWidth cols = number of cols of raw image rows = number of rows of raw image bands = number of bands of raw image :param hyperimg: spectral object :param bands: list of band centers :param path: string :return filname: string<|endoftext|>
153690b3eae9fab807e01e5e31143a00808470201a0d7b94e353aec02554df2a
def main_scan(): '\n Parser from terminal with\n $ python2 bruker2nifti_scan -h\n $ python2 bruker2nifti_scan -i input_file_path -o output_file_path\n ' parser = argparse.ArgumentParser() parser.add_argument('-i', '--input_scan_folder', dest='pfo_input', type=str, required=True, help='Bruker scan folder.') parser.add_argument('-o', '--output_scan_folder', dest='pfo_output', type=str, required=True, help='Output folder where the study will be saved.') parser.add_argument('--fin_output', dest='fin_output', type=str, default=None) parser.add_argument('-nifti_version', dest='nifti_version', type=int, default=1, help='Filename of the nifti output.') parser.add_argument('-qform_code', dest='qform_code', type=int, default=2) parser.add_argument('-sform_code', dest='sform_code', type=int, default=1) parser.add_argument('-do_not_save_npy', dest='do_not_save_npy', action='store_true') parser.add_argument('-do_not_save_human_readable', dest='do_not_save_human_readable', action='store_true') parser.add_argument('-correct_visu_slope', dest='correct_visu_slope', action='store_true') parser.add_argument('-correct_reco_slope', dest='correct_reco_slope', action='store_true') parser.add_argument('-apply_matrix', dest='user_matrix', type=str, default=None) parser.add_argument('-verbose', '-v', dest='verbose', type=int, default=1) args = parser.parse_args() bruconv = Bruker2Nifti(os.path.dirname(args.pfo_input), args.pfo_output) bruconv.nifti_version = args.nifti_version bruconv.qform_code = args.qform_code bruconv.sform_code = args.sform_code bruconv.save_npy = (not args.do_not_save_npy) bruconv.save_human_readable = (not args.do_not_save_human_readable) bruconv.correct_visu_slope = args.correct_visu_slope bruconv.correct_reco_slope = args.correct_reco_slope bruconv.user_matrix = args.user_matrix bruconv.verbose = args.verbose if (parser.add_argument > 0): print('\nConverter parameters: ') print('-------------------------------------------------------- ') print('Study Folder : {}'.format(os.path.dirname(args.pfo_input))) print('Scan to convert : {}'.format(os.path.basename(args.pfo_input))) print('List of scans : {}'.format(bruconv.scans_list)) print('Output NifTi version : {}'.format(bruconv.nifti_version)) print('Output NifTi q-form : {}'.format(bruconv.qform_code)) print('Output NifTi s-form : {}'.format(bruconv.sform_code)) print('Save npy : {}'.format(bruconv.save_npy)) print('Save human readable : {}'.format(bruconv.save_human_readable)) print('Correct the visu_slope : {}'.format(bruconv.correct_visu_slope)) print('Correct the reco_slope : {}'.format(bruconv.correct_reco_slope)) print('Apply matrix : {}'.format(bruconv.user_matrix)) print('-------------------------------------------------------- ') bruconv.convert_scan(args.pfo_input, args.pfo_output, nifti_file_name=args.fin_output, create_output_folder_if_not_exists=True)
Parser from terminal with $ python2 bruker2nifti_scan -h $ python2 bruker2nifti_scan -i input_file_path -o output_file_path
bruker2nifti/parsers/bruker2nii_scan.py
main_scan
neuroanatomy/bruker2nifti
0
python
def main_scan(): '\n Parser from terminal with\n $ python2 bruker2nifti_scan -h\n $ python2 bruker2nifti_scan -i input_file_path -o output_file_path\n ' parser = argparse.ArgumentParser() parser.add_argument('-i', '--input_scan_folder', dest='pfo_input', type=str, required=True, help='Bruker scan folder.') parser.add_argument('-o', '--output_scan_folder', dest='pfo_output', type=str, required=True, help='Output folder where the study will be saved.') parser.add_argument('--fin_output', dest='fin_output', type=str, default=None) parser.add_argument('-nifti_version', dest='nifti_version', type=int, default=1, help='Filename of the nifti output.') parser.add_argument('-qform_code', dest='qform_code', type=int, default=2) parser.add_argument('-sform_code', dest='sform_code', type=int, default=1) parser.add_argument('-do_not_save_npy', dest='do_not_save_npy', action='store_true') parser.add_argument('-do_not_save_human_readable', dest='do_not_save_human_readable', action='store_true') parser.add_argument('-correct_visu_slope', dest='correct_visu_slope', action='store_true') parser.add_argument('-correct_reco_slope', dest='correct_reco_slope', action='store_true') parser.add_argument('-apply_matrix', dest='user_matrix', type=str, default=None) parser.add_argument('-verbose', '-v', dest='verbose', type=int, default=1) args = parser.parse_args() bruconv = Bruker2Nifti(os.path.dirname(args.pfo_input), args.pfo_output) bruconv.nifti_version = args.nifti_version bruconv.qform_code = args.qform_code bruconv.sform_code = args.sform_code bruconv.save_npy = (not args.do_not_save_npy) bruconv.save_human_readable = (not args.do_not_save_human_readable) bruconv.correct_visu_slope = args.correct_visu_slope bruconv.correct_reco_slope = args.correct_reco_slope bruconv.user_matrix = args.user_matrix bruconv.verbose = args.verbose if (parser.add_argument > 0): print('\nConverter parameters: ') print('-------------------------------------------------------- ') print('Study Folder : {}'.format(os.path.dirname(args.pfo_input))) print('Scan to convert : {}'.format(os.path.basename(args.pfo_input))) print('List of scans : {}'.format(bruconv.scans_list)) print('Output NifTi version : {}'.format(bruconv.nifti_version)) print('Output NifTi q-form : {}'.format(bruconv.qform_code)) print('Output NifTi s-form : {}'.format(bruconv.sform_code)) print('Save npy : {}'.format(bruconv.save_npy)) print('Save human readable : {}'.format(bruconv.save_human_readable)) print('Correct the visu_slope : {}'.format(bruconv.correct_visu_slope)) print('Correct the reco_slope : {}'.format(bruconv.correct_reco_slope)) print('Apply matrix : {}'.format(bruconv.user_matrix)) print('-------------------------------------------------------- ') bruconv.convert_scan(args.pfo_input, args.pfo_output, nifti_file_name=args.fin_output, create_output_folder_if_not_exists=True)
def main_scan(): '\n Parser from terminal with\n $ python2 bruker2nifti_scan -h\n $ python2 bruker2nifti_scan -i input_file_path -o output_file_path\n ' parser = argparse.ArgumentParser() parser.add_argument('-i', '--input_scan_folder', dest='pfo_input', type=str, required=True, help='Bruker scan folder.') parser.add_argument('-o', '--output_scan_folder', dest='pfo_output', type=str, required=True, help='Output folder where the study will be saved.') parser.add_argument('--fin_output', dest='fin_output', type=str, default=None) parser.add_argument('-nifti_version', dest='nifti_version', type=int, default=1, help='Filename of the nifti output.') parser.add_argument('-qform_code', dest='qform_code', type=int, default=2) parser.add_argument('-sform_code', dest='sform_code', type=int, default=1) parser.add_argument('-do_not_save_npy', dest='do_not_save_npy', action='store_true') parser.add_argument('-do_not_save_human_readable', dest='do_not_save_human_readable', action='store_true') parser.add_argument('-correct_visu_slope', dest='correct_visu_slope', action='store_true') parser.add_argument('-correct_reco_slope', dest='correct_reco_slope', action='store_true') parser.add_argument('-apply_matrix', dest='user_matrix', type=str, default=None) parser.add_argument('-verbose', '-v', dest='verbose', type=int, default=1) args = parser.parse_args() bruconv = Bruker2Nifti(os.path.dirname(args.pfo_input), args.pfo_output) bruconv.nifti_version = args.nifti_version bruconv.qform_code = args.qform_code bruconv.sform_code = args.sform_code bruconv.save_npy = (not args.do_not_save_npy) bruconv.save_human_readable = (not args.do_not_save_human_readable) bruconv.correct_visu_slope = args.correct_visu_slope bruconv.correct_reco_slope = args.correct_reco_slope bruconv.user_matrix = args.user_matrix bruconv.verbose = args.verbose if (parser.add_argument > 0): print('\nConverter parameters: ') print('-------------------------------------------------------- ') print('Study Folder : {}'.format(os.path.dirname(args.pfo_input))) print('Scan to convert : {}'.format(os.path.basename(args.pfo_input))) print('List of scans : {}'.format(bruconv.scans_list)) print('Output NifTi version : {}'.format(bruconv.nifti_version)) print('Output NifTi q-form : {}'.format(bruconv.qform_code)) print('Output NifTi s-form : {}'.format(bruconv.sform_code)) print('Save npy : {}'.format(bruconv.save_npy)) print('Save human readable : {}'.format(bruconv.save_human_readable)) print('Correct the visu_slope : {}'.format(bruconv.correct_visu_slope)) print('Correct the reco_slope : {}'.format(bruconv.correct_reco_slope)) print('Apply matrix : {}'.format(bruconv.user_matrix)) print('-------------------------------------------------------- ') bruconv.convert_scan(args.pfo_input, args.pfo_output, nifti_file_name=args.fin_output, create_output_folder_if_not_exists=True)<|docstring|>Parser from terminal with $ python2 bruker2nifti_scan -h $ python2 bruker2nifti_scan -i input_file_path -o output_file_path<|endoftext|>
c1d48b5c1acf408253ef538b8f21b1d468fc58c94393d260d25d1e34c85d4474
def load_tags(self): 'Loads dictionary of tags for further use in BW2' filename = 'tags.csv' filepath = (DATA_DIR / filename) if (not filepath.is_file()): raise FileNotFoundError('The dictionary of tags could not be found.') with open(filepath) as f: csv_list = [[val.strip() for val in r.split(';')] for r in f.readlines()] data = csv_list dict_tags = {} for row in data: (name, tag) = row dict_tags[name] = tag return dict_tags
Loads dictionary of tags for further use in BW2
carculator/export.py
load_tags
SimonVoelker/carculator
0
python
def load_tags(self): filename = 'tags.csv' filepath = (DATA_DIR / filename) if (not filepath.is_file()): raise FileNotFoundError('The dictionary of tags could not be found.') with open(filepath) as f: csv_list = [[val.strip() for val in r.split(';')] for r in f.readlines()] data = csv_list dict_tags = {} for row in data: (name, tag) = row dict_tags[name] = tag return dict_tags
def load_tags(self): filename = 'tags.csv' filepath = (DATA_DIR / filename) if (not filepath.is_file()): raise FileNotFoundError('The dictionary of tags could not be found.') with open(filepath) as f: csv_list = [[val.strip() for val in r.split(';')] for r in f.readlines()] data = csv_list dict_tags = {} for row in data: (name, tag) = row dict_tags[name] = tag return dict_tags<|docstring|>Loads dictionary of tags for further use in BW2<|endoftext|>
a8f48a7e689fca6215efc4353460f53ad34516558dc162f577566b481fb36caf
def load_mapping_36_to_uvek(self): 'Load mapping dictionary between ecoinvent 3.6 and UVEK' filename = 'uvek_mapping.csv' filepath = (DATA_DIR / filename) if (not filepath.is_file()): raise FileNotFoundError('The dictionary of activities flows match between ecoinvent 3.6 and UVEK could not be found.') with open(filepath) as f: csv_list = [[val.strip() for val in r.split(';')] for r in f.readlines()] ((_, _, *header), *data) = csv_list dict_uvek = {} for row in data: (name, ref_prod, unit, location, uvek_name, uvek_ref_prod, uvek_unit, uvek_loc) = row dict_uvek[(name, ref_prod, unit, location)] = (uvek_name, uvek_ref_prod, uvek_unit, uvek_loc) return dict_uvek
Load mapping dictionary between ecoinvent 3.6 and UVEK
carculator/export.py
load_mapping_36_to_uvek
SimonVoelker/carculator
0
python
def load_mapping_36_to_uvek(self): filename = 'uvek_mapping.csv' filepath = (DATA_DIR / filename) if (not filepath.is_file()): raise FileNotFoundError('The dictionary of activities flows match between ecoinvent 3.6 and UVEK could not be found.') with open(filepath) as f: csv_list = [[val.strip() for val in r.split(';')] for r in f.readlines()] ((_, _, *header), *data) = csv_list dict_uvek = {} for row in data: (name, ref_prod, unit, location, uvek_name, uvek_ref_prod, uvek_unit, uvek_loc) = row dict_uvek[(name, ref_prod, unit, location)] = (uvek_name, uvek_ref_prod, uvek_unit, uvek_loc) return dict_uvek
def load_mapping_36_to_uvek(self): filename = 'uvek_mapping.csv' filepath = (DATA_DIR / filename) if (not filepath.is_file()): raise FileNotFoundError('The dictionary of activities flows match between ecoinvent 3.6 and UVEK could not be found.') with open(filepath) as f: csv_list = [[val.strip() for val in r.split(';')] for r in f.readlines()] ((_, _, *header), *data) = csv_list dict_uvek = {} for row in data: (name, ref_prod, unit, location, uvek_name, uvek_ref_prod, uvek_unit, uvek_loc) = row dict_uvek[(name, ref_prod, unit, location)] = (uvek_name, uvek_ref_prod, uvek_unit, uvek_loc) return dict_uvek<|docstring|>Load mapping dictionary between ecoinvent 3.6 and UVEK<|endoftext|>
271a1aadcf9f18fa2e4d7cf3dab5ed84bf07752d546e40276e0d04b6a3c219eb
def write_lci(self, presamples, ecoinvent_compatibility, ecoinvent_version): '\n Return the inventory as a dictionary\n If if there several values for one exchange, uncertainty information is generated.\n If `presamples` is True, returns the inventory as well as a `presamples` matrix.\n If `presamples` is False, returns the inventory with characterized uncertainty information.\n If `ecoinvent_compatibility` is True, the inventory is made compatible with ecoinvent. If False,\n the inventory is compatible with the REMIND-ecoinvent hybrid database output of the `rmnd_lca` library.\n\n :returns: a dictionary that contains all the exchanges\n :rtype: dict\n ' activities_to_be_removed = ['algae cultivation | algae broth production', 'algae harvesting| dry algae production', 'transport, pipeline, supercritical CO2, 200km w/o recompression', 'Ethanol from maize starch', 'Natural Gas provision (at medium pressure grid) {RER}, EU mix', 'woodchips from forestry residues', 'Ethanol from wheat straw pellets', 'straw pellets', 'Biodiesel from cooking oil', 'Straw bales | baling of straw', 'CO2 storage/natural gas, post, 200km pipeline, storage 1000m/2025', 'drilling, deep borehole/m', 'Sugar beet cultivation {RER} | sugar beet production Europe | Alloc Rec, U', 'Refined Waste Cooking Oil {RER} | Refining of waste cooking oil Europe | Alloc Rec, U', 'Ethanol from forest residues', 'Ethanol from sugarbeet', 'pipeline, supercritical CO2/km', 'Biodiesel from algae', 'Maize cultivation, drying and storage {RER} | Maize production Europe | Alloc Rec, U', 'Fischer Tropsch reactor and upgrading plant, construction', 'Walls and foundations, for hydrogen refuelling station', 'container, with pipes and fittings, for diaphragm compressor', 'RWGS tank construction', 'storage module, high pressure, at fuelling station', 'pumps, carbon dioxide capture process', 'PEM electrolyzer, Operation and Maintenance', 'heat exchanger, carbon dioxide capture process', 'biogas upgrading - sewage sludge - amine scrubbing - best', 'Hydrogen refuelling station, SMR', 'Hydrogen, gaseous, 700 bar, from SMR NG w/o CCS, at H2 fuelling station', 'transformer and rectifier unit, for electrolyzer', 'PEM electrolyzer, ACDC Converter', 'carbon dioxide, captured from atmosphere', 'PEM electrolyzer, Balance of Plant', 'Sabatier reaction methanation unit', 'PEM electrolyzer, Stack', 'hot water tank, carbon dioxide capture process', 'cooling unit, carbon dioxide capture process', 'diaphragm compressor module, high pressure', 'carbon dioxide capture system', 'Hydrogen dispenser, for gaseous hydrogen', 'diaphragms, for diaphragm compressor', 'MTG production facility, construction', 'Disposal, hydrogen fuelling station', 'production of 2 wt-% potassium iodide solution', 'production of nickle-based catalyst for methanation', 'wiring and tubing, carbon dioxide capture process', 'control panel, carbon dioxide capture process', 'adsorption and desorption unit, carbon dioxide capture process', 'Buffer tank', 'frequency converter, for diaphragm compressor', 'Hydrogen, gaseous, 30 bar, from hard coal gasification and reforming, at coal gasification plant', 'Methanol distillation', 'CO2 storage/at H2 production plant, pre, pipeline 200km, storage 1000m', 'Syngas, RWGS, Production', 'softwood forestry, mixed species, sustainable forest management, CF = -1', 'hardwood forestry, mixed species, sustainable forest management, CF = -1', 'Hydrogen, gaseous, 25 bar, from dual fluidised bed gasification of woody biomass with CCS, at gasification plant', 'market for wood chips, wet, measured as dry mass, CF = -1', 'Hydrogen, gaseous, 700 bar, from electrolysis, at H2 fuelling station', 'Hydrogen, gaseous, 25 bar, from electrolysis', 'Hydrogen, gaseous, 700 bar, from dual fluidised bed gasification of woody biomass with CCS, at H2 fuelling station', 'SMR BM, HT+LT, + CCS (MDEA), 98 (average), digestate incineration, 26 bar', 'Hydrogen, gaseous, 700 bar, from SMR of biogas, at H2 fuelling station', 'SMR NG + CCS (MDEA), 98 (average), 25 bar', 'SMR BM, HT+LT, with digestate incineration, 26 bar', 'Hydrogen, gaseous, 700 bar, from dual fluidised bed gasification of woody biomass, at H2 fuelling station', 'Hydrogen, gaseous, 700 bar, from SMR of biogas with CCS, at H2 fuelling station', 'Hydrogen, gaseous, 700 bar, from SMR NG w CCS, at H2 fuelling station', 'SMR NG + CCS (MDEA), 98 (average), 700 bar', 'Hydrogen, gaseous, 25 bar, from dual fluidised bed gasification of woody biomass, at gasification plant', 'Methanol Synthesis', 'Diesel production, synthetic, Fischer Tropsch process', 'Gasoline production, synthetic, from methanol'] uvek_activities_to_remove = ['market for activated carbon, granular', 'market for iodine', 'market for manganese sulfate', 'market for molybdenum trioxide', 'market for nickel sulfate', 'market for soda ash, light, crystalline, heptahydrate'] ei35_activities_to_remove = ['latex production'] uvek_multiplication_factors = {'Steam, for chemical processes, at plant': (1 / 2.257), 'Natural gas, from high pressure network (1-5 bar), at service station': 0.842, 'Disposal, passenger car': (1 / 1600)} list_act = [] if presamples: presamples_matrix = [] non_zeroes = np.nonzero(self.array[(0, :, :)]) (u, c) = np.unique(non_zeroes[1], return_counts=True) dup = u[(c > 1)] coords = np.column_stack((non_zeroes[0][np.isin(non_zeroes[1], dup)], non_zeroes[1][np.isin(non_zeroes[1], dup)])) bar = pyprind.ProgBar(len(dup)) for d in dup: bar.update(item_id=d) list_exc = [] for (row, col) in coords[(coords[(:, 1)] == d)]: tuple_output = self.indices[col] tuple_input = self.indices[row] mult_factor = 1 if ((ecoinvent_compatibility == False) and (tuple_output[0] in activities_to_be_removed)): break if (ecoinvent_compatibility == False): tuple_output = self.map_ecoinvent_remind.get(tuple_output, tuple_output) tuple_input = self.map_ecoinvent_remind.get(tuple_input, tuple_input) if (ecoinvent_compatibility == True): tuple_output = self.map_remind_ecoinvent.get(tuple_output, tuple_output) tuple_input = self.map_remind_ecoinvent.get(tuple_input, tuple_input) if (ecoinvent_version == '3.5'): tuple_output = self.map_36_to_35.get(tuple_output, tuple_output) tuple_input = self.map_36_to_35.get(tuple_input, tuple_input) if (tuple_output[0] in ei35_activities_to_remove): continue if (tuple_input[0] in ei35_activities_to_remove): continue if (ecoinvent_version == 'uvek'): tuple_output = self.map_36_to_uvek.get(tuple_output, tuple_output) if (tuple_input[0] in uvek_activities_to_remove): continue else: tuple_input = self.map_36_to_uvek.get(tuple_input, tuple_input) if (tuple_input[0] in uvek_multiplication_factors): mult_factor = uvek_multiplication_factors[tuple_input[0]] if (len(self.array[(:, row, col)]) == 1): amount = (self.array[(0, row, col)] * mult_factor) uncertainty = [('uncertainty type', 1)] elif np.all(np.isclose(self.array[(:, row, col)], self.array[(0, row, col)])): amount = (self.array[(0, row, col)] * mult_factor) uncertainty = [('uncertainty type', 1)] elif (presamples == True): amount = (np.median(self.array[(:, row, col)]) * mult_factor) uncertainty = [('uncertainty type', 1)] if (len(tuple_input) > 3): type_exc = 'technosphere' else: type_exc = 'biosphere' presamples_matrix.append(((self.array[(:, row, col)] * (- 1)), [(tuple_input, tuple_output, type_exc)], type_exc)) tag = [self.tags[t] for t in list(self.tags.keys()) if (t in tuple_input[0])] if (len(tag) > 0): tag = tag[0] else: tag = 'other' if (tuple_output == tuple_input): list_exc.append({'name': tuple_output[0], 'database': self.db_name, 'amount': amount, 'unit': tuple_output[2], 'type': 'production', 'location': tuple_output[1], 'reference product': tuple_output[3]}) list_exc[(- 1)].update(uncertainty) elif (len(tuple_input) > 3): list_exc.append({'name': tuple_input[0], 'database': self.db_name, 'amount': (amount * (- 1)), 'unit': tuple_input[2], 'type': 'technosphere', 'location': tuple_input[1], 'reference product': tuple_input[3], 'tag': tag}) list_exc[(- 1)].update(uncertainty) else: list_exc.append({'name': tuple_input[0], 'database': 'biosphere3', 'amount': (amount * (- 1)), 'unit': tuple_input[2], 'type': 'biosphere', 'categories': tuple_input[1], 'tag': tag}) list_exc[(- 1)].update(uncertainty) else: tag = [self.tags[t] for t in list(self.tags.keys()) if (t in tuple_output[0])] if (len(tag) > 0): tag = tag[0] else: tag = 'other' list_act.append({'production amount': 1, 'database': self.db_name, 'name': tuple_output[0], 'unit': tuple_output[2], 'location': tuple_output[1], 'exchanges': list_exc, 'reference product': tuple_output[3], 'type': 'process', 'code': str(uuid.uuid1()), 'tag': tag}) if presamples: return (list_act, presamples_matrix) else: return list_act
Return the inventory as a dictionary If if there several values for one exchange, uncertainty information is generated. If `presamples` is True, returns the inventory as well as a `presamples` matrix. If `presamples` is False, returns the inventory with characterized uncertainty information. If `ecoinvent_compatibility` is True, the inventory is made compatible with ecoinvent. If False, the inventory is compatible with the REMIND-ecoinvent hybrid database output of the `rmnd_lca` library. :returns: a dictionary that contains all the exchanges :rtype: dict
carculator/export.py
write_lci
SimonVoelker/carculator
0
python
def write_lci(self, presamples, ecoinvent_compatibility, ecoinvent_version): '\n Return the inventory as a dictionary\n If if there several values for one exchange, uncertainty information is generated.\n If `presamples` is True, returns the inventory as well as a `presamples` matrix.\n If `presamples` is False, returns the inventory with characterized uncertainty information.\n If `ecoinvent_compatibility` is True, the inventory is made compatible with ecoinvent. If False,\n the inventory is compatible with the REMIND-ecoinvent hybrid database output of the `rmnd_lca` library.\n\n :returns: a dictionary that contains all the exchanges\n :rtype: dict\n ' activities_to_be_removed = ['algae cultivation | algae broth production', 'algae harvesting| dry algae production', 'transport, pipeline, supercritical CO2, 200km w/o recompression', 'Ethanol from maize starch', 'Natural Gas provision (at medium pressure grid) {RER}, EU mix', 'woodchips from forestry residues', 'Ethanol from wheat straw pellets', 'straw pellets', 'Biodiesel from cooking oil', 'Straw bales | baling of straw', 'CO2 storage/natural gas, post, 200km pipeline, storage 1000m/2025', 'drilling, deep borehole/m', 'Sugar beet cultivation {RER} | sugar beet production Europe | Alloc Rec, U', 'Refined Waste Cooking Oil {RER} | Refining of waste cooking oil Europe | Alloc Rec, U', 'Ethanol from forest residues', 'Ethanol from sugarbeet', 'pipeline, supercritical CO2/km', 'Biodiesel from algae', 'Maize cultivation, drying and storage {RER} | Maize production Europe | Alloc Rec, U', 'Fischer Tropsch reactor and upgrading plant, construction', 'Walls and foundations, for hydrogen refuelling station', 'container, with pipes and fittings, for diaphragm compressor', 'RWGS tank construction', 'storage module, high pressure, at fuelling station', 'pumps, carbon dioxide capture process', 'PEM electrolyzer, Operation and Maintenance', 'heat exchanger, carbon dioxide capture process', 'biogas upgrading - sewage sludge - amine scrubbing - best', 'Hydrogen refuelling station, SMR', 'Hydrogen, gaseous, 700 bar, from SMR NG w/o CCS, at H2 fuelling station', 'transformer and rectifier unit, for electrolyzer', 'PEM electrolyzer, ACDC Converter', 'carbon dioxide, captured from atmosphere', 'PEM electrolyzer, Balance of Plant', 'Sabatier reaction methanation unit', 'PEM electrolyzer, Stack', 'hot water tank, carbon dioxide capture process', 'cooling unit, carbon dioxide capture process', 'diaphragm compressor module, high pressure', 'carbon dioxide capture system', 'Hydrogen dispenser, for gaseous hydrogen', 'diaphragms, for diaphragm compressor', 'MTG production facility, construction', 'Disposal, hydrogen fuelling station', 'production of 2 wt-% potassium iodide solution', 'production of nickle-based catalyst for methanation', 'wiring and tubing, carbon dioxide capture process', 'control panel, carbon dioxide capture process', 'adsorption and desorption unit, carbon dioxide capture process', 'Buffer tank', 'frequency converter, for diaphragm compressor', 'Hydrogen, gaseous, 30 bar, from hard coal gasification and reforming, at coal gasification plant', 'Methanol distillation', 'CO2 storage/at H2 production plant, pre, pipeline 200km, storage 1000m', 'Syngas, RWGS, Production', 'softwood forestry, mixed species, sustainable forest management, CF = -1', 'hardwood forestry, mixed species, sustainable forest management, CF = -1', 'Hydrogen, gaseous, 25 bar, from dual fluidised bed gasification of woody biomass with CCS, at gasification plant', 'market for wood chips, wet, measured as dry mass, CF = -1', 'Hydrogen, gaseous, 700 bar, from electrolysis, at H2 fuelling station', 'Hydrogen, gaseous, 25 bar, from electrolysis', 'Hydrogen, gaseous, 700 bar, from dual fluidised bed gasification of woody biomass with CCS, at H2 fuelling station', 'SMR BM, HT+LT, + CCS (MDEA), 98 (average), digestate incineration, 26 bar', 'Hydrogen, gaseous, 700 bar, from SMR of biogas, at H2 fuelling station', 'SMR NG + CCS (MDEA), 98 (average), 25 bar', 'SMR BM, HT+LT, with digestate incineration, 26 bar', 'Hydrogen, gaseous, 700 bar, from dual fluidised bed gasification of woody biomass, at H2 fuelling station', 'Hydrogen, gaseous, 700 bar, from SMR of biogas with CCS, at H2 fuelling station', 'Hydrogen, gaseous, 700 bar, from SMR NG w CCS, at H2 fuelling station', 'SMR NG + CCS (MDEA), 98 (average), 700 bar', 'Hydrogen, gaseous, 25 bar, from dual fluidised bed gasification of woody biomass, at gasification plant', 'Methanol Synthesis', 'Diesel production, synthetic, Fischer Tropsch process', 'Gasoline production, synthetic, from methanol'] uvek_activities_to_remove = ['market for activated carbon, granular', 'market for iodine', 'market for manganese sulfate', 'market for molybdenum trioxide', 'market for nickel sulfate', 'market for soda ash, light, crystalline, heptahydrate'] ei35_activities_to_remove = ['latex production'] uvek_multiplication_factors = {'Steam, for chemical processes, at plant': (1 / 2.257), 'Natural gas, from high pressure network (1-5 bar), at service station': 0.842, 'Disposal, passenger car': (1 / 1600)} list_act = [] if presamples: presamples_matrix = [] non_zeroes = np.nonzero(self.array[(0, :, :)]) (u, c) = np.unique(non_zeroes[1], return_counts=True) dup = u[(c > 1)] coords = np.column_stack((non_zeroes[0][np.isin(non_zeroes[1], dup)], non_zeroes[1][np.isin(non_zeroes[1], dup)])) bar = pyprind.ProgBar(len(dup)) for d in dup: bar.update(item_id=d) list_exc = [] for (row, col) in coords[(coords[(:, 1)] == d)]: tuple_output = self.indices[col] tuple_input = self.indices[row] mult_factor = 1 if ((ecoinvent_compatibility == False) and (tuple_output[0] in activities_to_be_removed)): break if (ecoinvent_compatibility == False): tuple_output = self.map_ecoinvent_remind.get(tuple_output, tuple_output) tuple_input = self.map_ecoinvent_remind.get(tuple_input, tuple_input) if (ecoinvent_compatibility == True): tuple_output = self.map_remind_ecoinvent.get(tuple_output, tuple_output) tuple_input = self.map_remind_ecoinvent.get(tuple_input, tuple_input) if (ecoinvent_version == '3.5'): tuple_output = self.map_36_to_35.get(tuple_output, tuple_output) tuple_input = self.map_36_to_35.get(tuple_input, tuple_input) if (tuple_output[0] in ei35_activities_to_remove): continue if (tuple_input[0] in ei35_activities_to_remove): continue if (ecoinvent_version == 'uvek'): tuple_output = self.map_36_to_uvek.get(tuple_output, tuple_output) if (tuple_input[0] in uvek_activities_to_remove): continue else: tuple_input = self.map_36_to_uvek.get(tuple_input, tuple_input) if (tuple_input[0] in uvek_multiplication_factors): mult_factor = uvek_multiplication_factors[tuple_input[0]] if (len(self.array[(:, row, col)]) == 1): amount = (self.array[(0, row, col)] * mult_factor) uncertainty = [('uncertainty type', 1)] elif np.all(np.isclose(self.array[(:, row, col)], self.array[(0, row, col)])): amount = (self.array[(0, row, col)] * mult_factor) uncertainty = [('uncertainty type', 1)] elif (presamples == True): amount = (np.median(self.array[(:, row, col)]) * mult_factor) uncertainty = [('uncertainty type', 1)] if (len(tuple_input) > 3): type_exc = 'technosphere' else: type_exc = 'biosphere' presamples_matrix.append(((self.array[(:, row, col)] * (- 1)), [(tuple_input, tuple_output, type_exc)], type_exc)) tag = [self.tags[t] for t in list(self.tags.keys()) if (t in tuple_input[0])] if (len(tag) > 0): tag = tag[0] else: tag = 'other' if (tuple_output == tuple_input): list_exc.append({'name': tuple_output[0], 'database': self.db_name, 'amount': amount, 'unit': tuple_output[2], 'type': 'production', 'location': tuple_output[1], 'reference product': tuple_output[3]}) list_exc[(- 1)].update(uncertainty) elif (len(tuple_input) > 3): list_exc.append({'name': tuple_input[0], 'database': self.db_name, 'amount': (amount * (- 1)), 'unit': tuple_input[2], 'type': 'technosphere', 'location': tuple_input[1], 'reference product': tuple_input[3], 'tag': tag}) list_exc[(- 1)].update(uncertainty) else: list_exc.append({'name': tuple_input[0], 'database': 'biosphere3', 'amount': (amount * (- 1)), 'unit': tuple_input[2], 'type': 'biosphere', 'categories': tuple_input[1], 'tag': tag}) list_exc[(- 1)].update(uncertainty) else: tag = [self.tags[t] for t in list(self.tags.keys()) if (t in tuple_output[0])] if (len(tag) > 0): tag = tag[0] else: tag = 'other' list_act.append({'production amount': 1, 'database': self.db_name, 'name': tuple_output[0], 'unit': tuple_output[2], 'location': tuple_output[1], 'exchanges': list_exc, 'reference product': tuple_output[3], 'type': 'process', 'code': str(uuid.uuid1()), 'tag': tag}) if presamples: return (list_act, presamples_matrix) else: return list_act
def write_lci(self, presamples, ecoinvent_compatibility, ecoinvent_version): '\n Return the inventory as a dictionary\n If if there several values for one exchange, uncertainty information is generated.\n If `presamples` is True, returns the inventory as well as a `presamples` matrix.\n If `presamples` is False, returns the inventory with characterized uncertainty information.\n If `ecoinvent_compatibility` is True, the inventory is made compatible with ecoinvent. If False,\n the inventory is compatible with the REMIND-ecoinvent hybrid database output of the `rmnd_lca` library.\n\n :returns: a dictionary that contains all the exchanges\n :rtype: dict\n ' activities_to_be_removed = ['algae cultivation | algae broth production', 'algae harvesting| dry algae production', 'transport, pipeline, supercritical CO2, 200km w/o recompression', 'Ethanol from maize starch', 'Natural Gas provision (at medium pressure grid) {RER}, EU mix', 'woodchips from forestry residues', 'Ethanol from wheat straw pellets', 'straw pellets', 'Biodiesel from cooking oil', 'Straw bales | baling of straw', 'CO2 storage/natural gas, post, 200km pipeline, storage 1000m/2025', 'drilling, deep borehole/m', 'Sugar beet cultivation {RER} | sugar beet production Europe | Alloc Rec, U', 'Refined Waste Cooking Oil {RER} | Refining of waste cooking oil Europe | Alloc Rec, U', 'Ethanol from forest residues', 'Ethanol from sugarbeet', 'pipeline, supercritical CO2/km', 'Biodiesel from algae', 'Maize cultivation, drying and storage {RER} | Maize production Europe | Alloc Rec, U', 'Fischer Tropsch reactor and upgrading plant, construction', 'Walls and foundations, for hydrogen refuelling station', 'container, with pipes and fittings, for diaphragm compressor', 'RWGS tank construction', 'storage module, high pressure, at fuelling station', 'pumps, carbon dioxide capture process', 'PEM electrolyzer, Operation and Maintenance', 'heat exchanger, carbon dioxide capture process', 'biogas upgrading - sewage sludge - amine scrubbing - best', 'Hydrogen refuelling station, SMR', 'Hydrogen, gaseous, 700 bar, from SMR NG w/o CCS, at H2 fuelling station', 'transformer and rectifier unit, for electrolyzer', 'PEM electrolyzer, ACDC Converter', 'carbon dioxide, captured from atmosphere', 'PEM electrolyzer, Balance of Plant', 'Sabatier reaction methanation unit', 'PEM electrolyzer, Stack', 'hot water tank, carbon dioxide capture process', 'cooling unit, carbon dioxide capture process', 'diaphragm compressor module, high pressure', 'carbon dioxide capture system', 'Hydrogen dispenser, for gaseous hydrogen', 'diaphragms, for diaphragm compressor', 'MTG production facility, construction', 'Disposal, hydrogen fuelling station', 'production of 2 wt-% potassium iodide solution', 'production of nickle-based catalyst for methanation', 'wiring and tubing, carbon dioxide capture process', 'control panel, carbon dioxide capture process', 'adsorption and desorption unit, carbon dioxide capture process', 'Buffer tank', 'frequency converter, for diaphragm compressor', 'Hydrogen, gaseous, 30 bar, from hard coal gasification and reforming, at coal gasification plant', 'Methanol distillation', 'CO2 storage/at H2 production plant, pre, pipeline 200km, storage 1000m', 'Syngas, RWGS, Production', 'softwood forestry, mixed species, sustainable forest management, CF = -1', 'hardwood forestry, mixed species, sustainable forest management, CF = -1', 'Hydrogen, gaseous, 25 bar, from dual fluidised bed gasification of woody biomass with CCS, at gasification plant', 'market for wood chips, wet, measured as dry mass, CF = -1', 'Hydrogen, gaseous, 700 bar, from electrolysis, at H2 fuelling station', 'Hydrogen, gaseous, 25 bar, from electrolysis', 'Hydrogen, gaseous, 700 bar, from dual fluidised bed gasification of woody biomass with CCS, at H2 fuelling station', 'SMR BM, HT+LT, + CCS (MDEA), 98 (average), digestate incineration, 26 bar', 'Hydrogen, gaseous, 700 bar, from SMR of biogas, at H2 fuelling station', 'SMR NG + CCS (MDEA), 98 (average), 25 bar', 'SMR BM, HT+LT, with digestate incineration, 26 bar', 'Hydrogen, gaseous, 700 bar, from dual fluidised bed gasification of woody biomass, at H2 fuelling station', 'Hydrogen, gaseous, 700 bar, from SMR of biogas with CCS, at H2 fuelling station', 'Hydrogen, gaseous, 700 bar, from SMR NG w CCS, at H2 fuelling station', 'SMR NG + CCS (MDEA), 98 (average), 700 bar', 'Hydrogen, gaseous, 25 bar, from dual fluidised bed gasification of woody biomass, at gasification plant', 'Methanol Synthesis', 'Diesel production, synthetic, Fischer Tropsch process', 'Gasoline production, synthetic, from methanol'] uvek_activities_to_remove = ['market for activated carbon, granular', 'market for iodine', 'market for manganese sulfate', 'market for molybdenum trioxide', 'market for nickel sulfate', 'market for soda ash, light, crystalline, heptahydrate'] ei35_activities_to_remove = ['latex production'] uvek_multiplication_factors = {'Steam, for chemical processes, at plant': (1 / 2.257), 'Natural gas, from high pressure network (1-5 bar), at service station': 0.842, 'Disposal, passenger car': (1 / 1600)} list_act = [] if presamples: presamples_matrix = [] non_zeroes = np.nonzero(self.array[(0, :, :)]) (u, c) = np.unique(non_zeroes[1], return_counts=True) dup = u[(c > 1)] coords = np.column_stack((non_zeroes[0][np.isin(non_zeroes[1], dup)], non_zeroes[1][np.isin(non_zeroes[1], dup)])) bar = pyprind.ProgBar(len(dup)) for d in dup: bar.update(item_id=d) list_exc = [] for (row, col) in coords[(coords[(:, 1)] == d)]: tuple_output = self.indices[col] tuple_input = self.indices[row] mult_factor = 1 if ((ecoinvent_compatibility == False) and (tuple_output[0] in activities_to_be_removed)): break if (ecoinvent_compatibility == False): tuple_output = self.map_ecoinvent_remind.get(tuple_output, tuple_output) tuple_input = self.map_ecoinvent_remind.get(tuple_input, tuple_input) if (ecoinvent_compatibility == True): tuple_output = self.map_remind_ecoinvent.get(tuple_output, tuple_output) tuple_input = self.map_remind_ecoinvent.get(tuple_input, tuple_input) if (ecoinvent_version == '3.5'): tuple_output = self.map_36_to_35.get(tuple_output, tuple_output) tuple_input = self.map_36_to_35.get(tuple_input, tuple_input) if (tuple_output[0] in ei35_activities_to_remove): continue if (tuple_input[0] in ei35_activities_to_remove): continue if (ecoinvent_version == 'uvek'): tuple_output = self.map_36_to_uvek.get(tuple_output, tuple_output) if (tuple_input[0] in uvek_activities_to_remove): continue else: tuple_input = self.map_36_to_uvek.get(tuple_input, tuple_input) if (tuple_input[0] in uvek_multiplication_factors): mult_factor = uvek_multiplication_factors[tuple_input[0]] if (len(self.array[(:, row, col)]) == 1): amount = (self.array[(0, row, col)] * mult_factor) uncertainty = [('uncertainty type', 1)] elif np.all(np.isclose(self.array[(:, row, col)], self.array[(0, row, col)])): amount = (self.array[(0, row, col)] * mult_factor) uncertainty = [('uncertainty type', 1)] elif (presamples == True): amount = (np.median(self.array[(:, row, col)]) * mult_factor) uncertainty = [('uncertainty type', 1)] if (len(tuple_input) > 3): type_exc = 'technosphere' else: type_exc = 'biosphere' presamples_matrix.append(((self.array[(:, row, col)] * (- 1)), [(tuple_input, tuple_output, type_exc)], type_exc)) tag = [self.tags[t] for t in list(self.tags.keys()) if (t in tuple_input[0])] if (len(tag) > 0): tag = tag[0] else: tag = 'other' if (tuple_output == tuple_input): list_exc.append({'name': tuple_output[0], 'database': self.db_name, 'amount': amount, 'unit': tuple_output[2], 'type': 'production', 'location': tuple_output[1], 'reference product': tuple_output[3]}) list_exc[(- 1)].update(uncertainty) elif (len(tuple_input) > 3): list_exc.append({'name': tuple_input[0], 'database': self.db_name, 'amount': (amount * (- 1)), 'unit': tuple_input[2], 'type': 'technosphere', 'location': tuple_input[1], 'reference product': tuple_input[3], 'tag': tag}) list_exc[(- 1)].update(uncertainty) else: list_exc.append({'name': tuple_input[0], 'database': 'biosphere3', 'amount': (amount * (- 1)), 'unit': tuple_input[2], 'type': 'biosphere', 'categories': tuple_input[1], 'tag': tag}) list_exc[(- 1)].update(uncertainty) else: tag = [self.tags[t] for t in list(self.tags.keys()) if (t in tuple_output[0])] if (len(tag) > 0): tag = tag[0] else: tag = 'other' list_act.append({'production amount': 1, 'database': self.db_name, 'name': tuple_output[0], 'unit': tuple_output[2], 'location': tuple_output[1], 'exchanges': list_exc, 'reference product': tuple_output[3], 'type': 'process', 'code': str(uuid.uuid1()), 'tag': tag}) if presamples: return (list_act, presamples_matrix) else: return list_act<|docstring|>Return the inventory as a dictionary If if there several values for one exchange, uncertainty information is generated. If `presamples` is True, returns the inventory as well as a `presamples` matrix. If `presamples` is False, returns the inventory with characterized uncertainty information. If `ecoinvent_compatibility` is True, the inventory is made compatible with ecoinvent. If False, the inventory is compatible with the REMIND-ecoinvent hybrid database output of the `rmnd_lca` library. :returns: a dictionary that contains all the exchanges :rtype: dict<|endoftext|>
07ea8306bec5e59a2b1e76a5756e061d8311c7e298c3281d1b5098a2779bc8c1
def write_lci_to_excel(self, directory, ecoinvent_compatibility, ecoinvent_version, software_compatibility, filename=None): '\n Export an Excel file that can be consumed by the software defined in `software_compatibility`.\n\n :param directory: str. path to export the file to.\n :param ecoinvent_compatibility: bool. If True, the inventory is compatible with ecoinvent. If False, the inventory is compatible with REMIND-ecoinvent.\n :param ecoinvent_version: str. "3.5", "3.6" or "uvek"\n :param software_compatibility: str. "brightway2" or "simapro"\n :returns: returns the file path of the exported inventory.\n :rtype: str.\n ' if (software_compatibility == 'brightway2'): if (filename is None): safe_name = (safe_filename('carculator_inventory_export_{}_brightway2'.format(str(datetime.date.today())), False) + '.xlsx') else: safe_name = (safe_filename(filename, False) + '.xlsx') else: safe_name = (safe_filename('carculator_inventory_export_{}_simapro'.format(str(datetime.date.today())), False) + '.csv') if (directory is None): filepath_export = safe_name else: if (not os.path.exists(directory)): os.makedirs(directory) filepath_export = os.path.join(directory, safe_name) list_act = self.write_lci(False, ecoinvent_compatibility, ecoinvent_version) if (software_compatibility == 'brightway2'): data = [] data.extend((['Database', self.db_name], ('format', 'Excel spreadsheet'))) data.append([]) for k in list_act: if k.get('exchanges'): data.extend((['Activity', k['name']], ('location', k['location']), ('production amount', float(k['production amount'])), ('reference product', k.get('reference product')), ('type', 'process'), ('unit', k['unit']), ('worksheet name', 'None'), ['Exchanges'], ['name', 'amount', 'database', 'location', 'unit', 'categories', 'type', 'reference product', 'tag'])) for e in k['exchanges']: data.append([e['name'], float(e['amount']), e['database'], e.get('location', 'None'), e['unit'], '::'.join(e.get('categories', ())), e['type'], e.get('reference product'), e.get('tag', 'other')]) else: data.extend((['Activity', k['name']], ('type', 'biosphere'), ('unit', k['unit']), ('worksheet name', 'None'))) data.append([]) workbook = xlsxwriter.Workbook(filepath_export) bold = workbook.add_format({'bold': True}) bold.set_font_size(12) highlighted = {'Activity', 'Database', 'Exchanges', 'Parameters', 'Database parameters', 'Project parameters'} frmt = (lambda x: (bold if (row[0] in highlighted) else None)) sheet = workbook.add_worksheet(create_valid_worksheet_name('test')) for (row_index, row) in enumerate(data): for (col_index, value) in enumerate(row): if (value is None): continue elif isinstance(value, float): sheet.write_number(row_index, col_index, value, frmt(value)) else: sheet.write_string(row_index, col_index, value, frmt(value)) print('Inventories exported to {}.'.format(filepath_export)) workbook.close() else: filename = 'simapro-biosphere.json' filepath = (DATA_DIR / filename) if (not filepath.is_file()): raise FileNotFoundError('The dictionary of biosphere flow match between ecoinvent and Simapro could not be found.') with open(filepath) as json_file: data = json.load(json_file) dict_bio = {} for d in data: dict_bio[d[2]] = d[1] filename = 'simapro-technosphere-3.5.csv' filepath = (DATA_DIR / filename) with open(filepath) as f: csv_list = [[val.strip() for val in r.split(';')] for r in f.readlines()] ((_, _, *header), *data) = csv_list dict_tech = {} for row in data: (name, location, simapro_name) = row dict_tech[(name, location)] = simapro_name headers = ['{CSV separator: Semicolon}', '{CSV Format version: 7.0.0}', '{Decimal separator: .}', '{Date separator: /}', '{Short date format: dd/MM/yyyy}'] fields = ['Process', 'Category type', 'Time Period', 'Geography', 'Technology', 'Representativeness', 'Multiple output allocation', 'Substitution allocation', 'Cut off rules', 'Capital goods', 'Date', 'Boundary with nature', 'Record', 'Generator', 'Literature references', 'External documents', 'Collection method', 'Data treatment', 'Verification', 'Products', 'Materials/fuels', 'Resources', 'Emissions to air', 'Emissions to water', 'Emissions to soil', 'Final waste flows', 'Non material emission', 'Social issues', 'Economic issues', 'Waste to treatment', 'End'] simapro_units = {'kilogram': 'kg', 'cubic meter': 'm3', 'kilowatt hour': 'kWh', 'kilometer': 'km', 'ton kilometer': 'tkm', 'megajoule': 'mj', 'unit': 'unit', 'square meter': 'm2', 'kilowatt': 'kW', 'hour': 'h', 'square meter-year': 'm2a', 'meter': 'm', 'vehicle-kilometer': 'vkm', 'meter-year': 'ma'} with open(filepath_export, 'w', newline='') as csvFile: writer = csv.writer(csvFile, delimiter=';') for item in headers: writer.writerow([item]) writer.writerow([]) for a in list_act: for item in fields: writer.writerow([item]) if (item == 'Process'): name = ((((a['name'].capitalize() + ' {') + a.get('location', 'GLO')) + '}') + '| Cut-off, U') writer.writerow([name]) if (item == 'Generator'): writer.writerow([('carculator ' + str(__version__))]) if (item == 'Geography'): writer.writerow([a['location']]) if (item == 'Time Period'): writer.writerow(['Between 2010 and 2020. Extrapolated to the selected years.']) if (item == 'Date'): writer.writerow([str(datetime.date.today())]) if (item == 'Cut off rules'): writer.writerow(['100:0 - polluter pays-principle.']) if (item == 'Multiple output allocation'): writer.writerow(['No']) if (item == 'Substitution allocation'): writer.writerow(['No']) if (item == 'Capital goods'): writer.writerow(['Included when relevant (e.g., factory and machinery.)']) if (item == 'Literature references'): writer.writerow(['Sacchi, R. et al., 2020, Renewable and Sustainable Energy Reviews (in review), https://www.psi.ch/en/ta/preprint']) if (item == 'External documents'): writer.writerow(['https://carculator.psi.ch']) if (item == 'Collection method'): writer.writerow(['Modeling and assumptions: https://carculator.readthedocs.io/en/latest/modeling.html']) if (item == 'Verification'): writer.writerow(['In review. Susceptible to change.']) if (item == 'Products'): for e in a['exchanges']: if (e['type'] == 'production'): name = ((((e['reference product'].capitalize() + ' {') + e.get('location', 'GLO')) + '}') + '| Cut-off, U') writer.writerow([dict_tech.get((a['name'], a['location']), name), simapro_units[a['unit']], 1.0, '100%', 'not defined', a['database']]) if (item == 'Materials/fuels'): for e in a['exchanges']: if ((e['type'] == 'technosphere') and ('waste' not in e['name'])): name = ((((e['reference product'].capitalize() + ' {') + e.get('location', 'GLO')) + '}') + '| Cut-off, U') writer.writerow([dict_tech.get((e['name'], e['location']), name), simapro_units[e['unit']], e['amount'], 'undefined', 0, 0, 0]) if (item == 'Resources'): for e in a['exchanges']: if ((e['type'] == 'biosphere') and (e['categories'][0] == 'natural resource')): writer.writerow([dict_bio.get(e['name']), simapro_units[e['unit']], e['amount'], 'undefined', 0, 0, 0]) if (item == 'Emissions to air'): for e in a['exchanges']: if ((e['type'] == 'biosphere') and (e['categories'][0] == 'air')): writer.writerow([dict_bio.get(e['name'], e['name']), simapro_units[e['unit']], e['amount'], 'undefined', 0, 0, 0]) if (item == 'Emissions to water'): for e in a['exchanges']: if ((e['type'] == 'biosphere') and (e['categories'][0] == 'water')): writer.writerow([dict_bio.get(e['name'], e['name']), simapro_units[e['unit']], e['amount'], 'undefined', 0, 0, 0]) if (item == 'Emissions to soil'): for e in a['exchanges']: if ((e['type'] == 'biosphere') and (e['categories'][0] == 'soil')): writer.writerow([dict_bio.get(e['name'], e['name']), simapro_units[e['unit']], e['amount'], 'undefined', 0, 0, 0]) if (item == 'Final waste flows'): for e in a['exchanges']: if ((e['type'] == 'technosphere') and ('waste' in e['name'])): writer.writerow([dict_bio.get(e['name'], e['name']), simapro_units[e['unit']], e['amount'], 'undefined', 0, 0, 0]) writer.writerow([]) csvFile.close() return filepath_export
Export an Excel file that can be consumed by the software defined in `software_compatibility`. :param directory: str. path to export the file to. :param ecoinvent_compatibility: bool. If True, the inventory is compatible with ecoinvent. If False, the inventory is compatible with REMIND-ecoinvent. :param ecoinvent_version: str. "3.5", "3.6" or "uvek" :param software_compatibility: str. "brightway2" or "simapro" :returns: returns the file path of the exported inventory. :rtype: str.
carculator/export.py
write_lci_to_excel
SimonVoelker/carculator
0
python
def write_lci_to_excel(self, directory, ecoinvent_compatibility, ecoinvent_version, software_compatibility, filename=None): '\n Export an Excel file that can be consumed by the software defined in `software_compatibility`.\n\n :param directory: str. path to export the file to.\n :param ecoinvent_compatibility: bool. If True, the inventory is compatible with ecoinvent. If False, the inventory is compatible with REMIND-ecoinvent.\n :param ecoinvent_version: str. "3.5", "3.6" or "uvek"\n :param software_compatibility: str. "brightway2" or "simapro"\n :returns: returns the file path of the exported inventory.\n :rtype: str.\n ' if (software_compatibility == 'brightway2'): if (filename is None): safe_name = (safe_filename('carculator_inventory_export_{}_brightway2'.format(str(datetime.date.today())), False) + '.xlsx') else: safe_name = (safe_filename(filename, False) + '.xlsx') else: safe_name = (safe_filename('carculator_inventory_export_{}_simapro'.format(str(datetime.date.today())), False) + '.csv') if (directory is None): filepath_export = safe_name else: if (not os.path.exists(directory)): os.makedirs(directory) filepath_export = os.path.join(directory, safe_name) list_act = self.write_lci(False, ecoinvent_compatibility, ecoinvent_version) if (software_compatibility == 'brightway2'): data = [] data.extend((['Database', self.db_name], ('format', 'Excel spreadsheet'))) data.append([]) for k in list_act: if k.get('exchanges'): data.extend((['Activity', k['name']], ('location', k['location']), ('production amount', float(k['production amount'])), ('reference product', k.get('reference product')), ('type', 'process'), ('unit', k['unit']), ('worksheet name', 'None'), ['Exchanges'], ['name', 'amount', 'database', 'location', 'unit', 'categories', 'type', 'reference product', 'tag'])) for e in k['exchanges']: data.append([e['name'], float(e['amount']), e['database'], e.get('location', 'None'), e['unit'], '::'.join(e.get('categories', ())), e['type'], e.get('reference product'), e.get('tag', 'other')]) else: data.extend((['Activity', k['name']], ('type', 'biosphere'), ('unit', k['unit']), ('worksheet name', 'None'))) data.append([]) workbook = xlsxwriter.Workbook(filepath_export) bold = workbook.add_format({'bold': True}) bold.set_font_size(12) highlighted = {'Activity', 'Database', 'Exchanges', 'Parameters', 'Database parameters', 'Project parameters'} frmt = (lambda x: (bold if (row[0] in highlighted) else None)) sheet = workbook.add_worksheet(create_valid_worksheet_name('test')) for (row_index, row) in enumerate(data): for (col_index, value) in enumerate(row): if (value is None): continue elif isinstance(value, float): sheet.write_number(row_index, col_index, value, frmt(value)) else: sheet.write_string(row_index, col_index, value, frmt(value)) print('Inventories exported to {}.'.format(filepath_export)) workbook.close() else: filename = 'simapro-biosphere.json' filepath = (DATA_DIR / filename) if (not filepath.is_file()): raise FileNotFoundError('The dictionary of biosphere flow match between ecoinvent and Simapro could not be found.') with open(filepath) as json_file: data = json.load(json_file) dict_bio = {} for d in data: dict_bio[d[2]] = d[1] filename = 'simapro-technosphere-3.5.csv' filepath = (DATA_DIR / filename) with open(filepath) as f: csv_list = [[val.strip() for val in r.split(';')] for r in f.readlines()] ((_, _, *header), *data) = csv_list dict_tech = {} for row in data: (name, location, simapro_name) = row dict_tech[(name, location)] = simapro_name headers = ['{CSV separator: Semicolon}', '{CSV Format version: 7.0.0}', '{Decimal separator: .}', '{Date separator: /}', '{Short date format: dd/MM/yyyy}'] fields = ['Process', 'Category type', 'Time Period', 'Geography', 'Technology', 'Representativeness', 'Multiple output allocation', 'Substitution allocation', 'Cut off rules', 'Capital goods', 'Date', 'Boundary with nature', 'Record', 'Generator', 'Literature references', 'External documents', 'Collection method', 'Data treatment', 'Verification', 'Products', 'Materials/fuels', 'Resources', 'Emissions to air', 'Emissions to water', 'Emissions to soil', 'Final waste flows', 'Non material emission', 'Social issues', 'Economic issues', 'Waste to treatment', 'End'] simapro_units = {'kilogram': 'kg', 'cubic meter': 'm3', 'kilowatt hour': 'kWh', 'kilometer': 'km', 'ton kilometer': 'tkm', 'megajoule': 'mj', 'unit': 'unit', 'square meter': 'm2', 'kilowatt': 'kW', 'hour': 'h', 'square meter-year': 'm2a', 'meter': 'm', 'vehicle-kilometer': 'vkm', 'meter-year': 'ma'} with open(filepath_export, 'w', newline=) as csvFile: writer = csv.writer(csvFile, delimiter=';') for item in headers: writer.writerow([item]) writer.writerow([]) for a in list_act: for item in fields: writer.writerow([item]) if (item == 'Process'): name = ((((a['name'].capitalize() + ' {') + a.get('location', 'GLO')) + '}') + '| Cut-off, U') writer.writerow([name]) if (item == 'Generator'): writer.writerow([('carculator ' + str(__version__))]) if (item == 'Geography'): writer.writerow([a['location']]) if (item == 'Time Period'): writer.writerow(['Between 2010 and 2020. Extrapolated to the selected years.']) if (item == 'Date'): writer.writerow([str(datetime.date.today())]) if (item == 'Cut off rules'): writer.writerow(['100:0 - polluter pays-principle.']) if (item == 'Multiple output allocation'): writer.writerow(['No']) if (item == 'Substitution allocation'): writer.writerow(['No']) if (item == 'Capital goods'): writer.writerow(['Included when relevant (e.g., factory and machinery.)']) if (item == 'Literature references'): writer.writerow(['Sacchi, R. et al., 2020, Renewable and Sustainable Energy Reviews (in review), https://www.psi.ch/en/ta/preprint']) if (item == 'External documents'): writer.writerow(['https://carculator.psi.ch']) if (item == 'Collection method'): writer.writerow(['Modeling and assumptions: https://carculator.readthedocs.io/en/latest/modeling.html']) if (item == 'Verification'): writer.writerow(['In review. Susceptible to change.']) if (item == 'Products'): for e in a['exchanges']: if (e['type'] == 'production'): name = ((((e['reference product'].capitalize() + ' {') + e.get('location', 'GLO')) + '}') + '| Cut-off, U') writer.writerow([dict_tech.get((a['name'], a['location']), name), simapro_units[a['unit']], 1.0, '100%', 'not defined', a['database']]) if (item == 'Materials/fuels'): for e in a['exchanges']: if ((e['type'] == 'technosphere') and ('waste' not in e['name'])): name = ((((e['reference product'].capitalize() + ' {') + e.get('location', 'GLO')) + '}') + '| Cut-off, U') writer.writerow([dict_tech.get((e['name'], e['location']), name), simapro_units[e['unit']], e['amount'], 'undefined', 0, 0, 0]) if (item == 'Resources'): for e in a['exchanges']: if ((e['type'] == 'biosphere') and (e['categories'][0] == 'natural resource')): writer.writerow([dict_bio.get(e['name']), simapro_units[e['unit']], e['amount'], 'undefined', 0, 0, 0]) if (item == 'Emissions to air'): for e in a['exchanges']: if ((e['type'] == 'biosphere') and (e['categories'][0] == 'air')): writer.writerow([dict_bio.get(e['name'], e['name']), simapro_units[e['unit']], e['amount'], 'undefined', 0, 0, 0]) if (item == 'Emissions to water'): for e in a['exchanges']: if ((e['type'] == 'biosphere') and (e['categories'][0] == 'water')): writer.writerow([dict_bio.get(e['name'], e['name']), simapro_units[e['unit']], e['amount'], 'undefined', 0, 0, 0]) if (item == 'Emissions to soil'): for e in a['exchanges']: if ((e['type'] == 'biosphere') and (e['categories'][0] == 'soil')): writer.writerow([dict_bio.get(e['name'], e['name']), simapro_units[e['unit']], e['amount'], 'undefined', 0, 0, 0]) if (item == 'Final waste flows'): for e in a['exchanges']: if ((e['type'] == 'technosphere') and ('waste' in e['name'])): writer.writerow([dict_bio.get(e['name'], e['name']), simapro_units[e['unit']], e['amount'], 'undefined', 0, 0, 0]) writer.writerow([]) csvFile.close() return filepath_export
def write_lci_to_excel(self, directory, ecoinvent_compatibility, ecoinvent_version, software_compatibility, filename=None): '\n Export an Excel file that can be consumed by the software defined in `software_compatibility`.\n\n :param directory: str. path to export the file to.\n :param ecoinvent_compatibility: bool. If True, the inventory is compatible with ecoinvent. If False, the inventory is compatible with REMIND-ecoinvent.\n :param ecoinvent_version: str. "3.5", "3.6" or "uvek"\n :param software_compatibility: str. "brightway2" or "simapro"\n :returns: returns the file path of the exported inventory.\n :rtype: str.\n ' if (software_compatibility == 'brightway2'): if (filename is None): safe_name = (safe_filename('carculator_inventory_export_{}_brightway2'.format(str(datetime.date.today())), False) + '.xlsx') else: safe_name = (safe_filename(filename, False) + '.xlsx') else: safe_name = (safe_filename('carculator_inventory_export_{}_simapro'.format(str(datetime.date.today())), False) + '.csv') if (directory is None): filepath_export = safe_name else: if (not os.path.exists(directory)): os.makedirs(directory) filepath_export = os.path.join(directory, safe_name) list_act = self.write_lci(False, ecoinvent_compatibility, ecoinvent_version) if (software_compatibility == 'brightway2'): data = [] data.extend((['Database', self.db_name], ('format', 'Excel spreadsheet'))) data.append([]) for k in list_act: if k.get('exchanges'): data.extend((['Activity', k['name']], ('location', k['location']), ('production amount', float(k['production amount'])), ('reference product', k.get('reference product')), ('type', 'process'), ('unit', k['unit']), ('worksheet name', 'None'), ['Exchanges'], ['name', 'amount', 'database', 'location', 'unit', 'categories', 'type', 'reference product', 'tag'])) for e in k['exchanges']: data.append([e['name'], float(e['amount']), e['database'], e.get('location', 'None'), e['unit'], '::'.join(e.get('categories', ())), e['type'], e.get('reference product'), e.get('tag', 'other')]) else: data.extend((['Activity', k['name']], ('type', 'biosphere'), ('unit', k['unit']), ('worksheet name', 'None'))) data.append([]) workbook = xlsxwriter.Workbook(filepath_export) bold = workbook.add_format({'bold': True}) bold.set_font_size(12) highlighted = {'Activity', 'Database', 'Exchanges', 'Parameters', 'Database parameters', 'Project parameters'} frmt = (lambda x: (bold if (row[0] in highlighted) else None)) sheet = workbook.add_worksheet(create_valid_worksheet_name('test')) for (row_index, row) in enumerate(data): for (col_index, value) in enumerate(row): if (value is None): continue elif isinstance(value, float): sheet.write_number(row_index, col_index, value, frmt(value)) else: sheet.write_string(row_index, col_index, value, frmt(value)) print('Inventories exported to {}.'.format(filepath_export)) workbook.close() else: filename = 'simapro-biosphere.json' filepath = (DATA_DIR / filename) if (not filepath.is_file()): raise FileNotFoundError('The dictionary of biosphere flow match between ecoinvent and Simapro could not be found.') with open(filepath) as json_file: data = json.load(json_file) dict_bio = {} for d in data: dict_bio[d[2]] = d[1] filename = 'simapro-technosphere-3.5.csv' filepath = (DATA_DIR / filename) with open(filepath) as f: csv_list = [[val.strip() for val in r.split(';')] for r in f.readlines()] ((_, _, *header), *data) = csv_list dict_tech = {} for row in data: (name, location, simapro_name) = row dict_tech[(name, location)] = simapro_name headers = ['{CSV separator: Semicolon}', '{CSV Format version: 7.0.0}', '{Decimal separator: .}', '{Date separator: /}', '{Short date format: dd/MM/yyyy}'] fields = ['Process', 'Category type', 'Time Period', 'Geography', 'Technology', 'Representativeness', 'Multiple output allocation', 'Substitution allocation', 'Cut off rules', 'Capital goods', 'Date', 'Boundary with nature', 'Record', 'Generator', 'Literature references', 'External documents', 'Collection method', 'Data treatment', 'Verification', 'Products', 'Materials/fuels', 'Resources', 'Emissions to air', 'Emissions to water', 'Emissions to soil', 'Final waste flows', 'Non material emission', 'Social issues', 'Economic issues', 'Waste to treatment', 'End'] simapro_units = {'kilogram': 'kg', 'cubic meter': 'm3', 'kilowatt hour': 'kWh', 'kilometer': 'km', 'ton kilometer': 'tkm', 'megajoule': 'mj', 'unit': 'unit', 'square meter': 'm2', 'kilowatt': 'kW', 'hour': 'h', 'square meter-year': 'm2a', 'meter': 'm', 'vehicle-kilometer': 'vkm', 'meter-year': 'ma'} with open(filepath_export, 'w', newline=) as csvFile: writer = csv.writer(csvFile, delimiter=';') for item in headers: writer.writerow([item]) writer.writerow([]) for a in list_act: for item in fields: writer.writerow([item]) if (item == 'Process'): name = ((((a['name'].capitalize() + ' {') + a.get('location', 'GLO')) + '}') + '| Cut-off, U') writer.writerow([name]) if (item == 'Generator'): writer.writerow([('carculator ' + str(__version__))]) if (item == 'Geography'): writer.writerow([a['location']]) if (item == 'Time Period'): writer.writerow(['Between 2010 and 2020. Extrapolated to the selected years.']) if (item == 'Date'): writer.writerow([str(datetime.date.today())]) if (item == 'Cut off rules'): writer.writerow(['100:0 - polluter pays-principle.']) if (item == 'Multiple output allocation'): writer.writerow(['No']) if (item == 'Substitution allocation'): writer.writerow(['No']) if (item == 'Capital goods'): writer.writerow(['Included when relevant (e.g., factory and machinery.)']) if (item == 'Literature references'): writer.writerow(['Sacchi, R. et al., 2020, Renewable and Sustainable Energy Reviews (in review), https://www.psi.ch/en/ta/preprint']) if (item == 'External documents'): writer.writerow(['https://carculator.psi.ch']) if (item == 'Collection method'): writer.writerow(['Modeling and assumptions: https://carculator.readthedocs.io/en/latest/modeling.html']) if (item == 'Verification'): writer.writerow(['In review. Susceptible to change.']) if (item == 'Products'): for e in a['exchanges']: if (e['type'] == 'production'): name = ((((e['reference product'].capitalize() + ' {') + e.get('location', 'GLO')) + '}') + '| Cut-off, U') writer.writerow([dict_tech.get((a['name'], a['location']), name), simapro_units[a['unit']], 1.0, '100%', 'not defined', a['database']]) if (item == 'Materials/fuels'): for e in a['exchanges']: if ((e['type'] == 'technosphere') and ('waste' not in e['name'])): name = ((((e['reference product'].capitalize() + ' {') + e.get('location', 'GLO')) + '}') + '| Cut-off, U') writer.writerow([dict_tech.get((e['name'], e['location']), name), simapro_units[e['unit']], e['amount'], 'undefined', 0, 0, 0]) if (item == 'Resources'): for e in a['exchanges']: if ((e['type'] == 'biosphere') and (e['categories'][0] == 'natural resource')): writer.writerow([dict_bio.get(e['name']), simapro_units[e['unit']], e['amount'], 'undefined', 0, 0, 0]) if (item == 'Emissions to air'): for e in a['exchanges']: if ((e['type'] == 'biosphere') and (e['categories'][0] == 'air')): writer.writerow([dict_bio.get(e['name'], e['name']), simapro_units[e['unit']], e['amount'], 'undefined', 0, 0, 0]) if (item == 'Emissions to water'): for e in a['exchanges']: if ((e['type'] == 'biosphere') and (e['categories'][0] == 'water')): writer.writerow([dict_bio.get(e['name'], e['name']), simapro_units[e['unit']], e['amount'], 'undefined', 0, 0, 0]) if (item == 'Emissions to soil'): for e in a['exchanges']: if ((e['type'] == 'biosphere') and (e['categories'][0] == 'soil')): writer.writerow([dict_bio.get(e['name'], e['name']), simapro_units[e['unit']], e['amount'], 'undefined', 0, 0, 0]) if (item == 'Final waste flows'): for e in a['exchanges']: if ((e['type'] == 'technosphere') and ('waste' in e['name'])): writer.writerow([dict_bio.get(e['name'], e['name']), simapro_units[e['unit']], e['amount'], 'undefined', 0, 0, 0]) writer.writerow([]) csvFile.close() return filepath_export<|docstring|>Export an Excel file that can be consumed by the software defined in `software_compatibility`. :param directory: str. path to export the file to. :param ecoinvent_compatibility: bool. If True, the inventory is compatible with ecoinvent. If False, the inventory is compatible with REMIND-ecoinvent. :param ecoinvent_version: str. "3.5", "3.6" or "uvek" :param software_compatibility: str. "brightway2" or "simapro" :returns: returns the file path of the exported inventory. :rtype: str.<|endoftext|>
17d085257d02727e8367cfa0a9c2d86cc0606545874576d2dedea71fbf314c30
def write_lci_to_bw(self, presamples, ecoinvent_compatibility, ecoinvent_version): '\n Return a LCIImporter object with the inventory as `data` attribute.\n\n :return: LCIImporter object to be imported in a Brightway2 project\n :rtype: bw2io.base_lci.LCIImporter\n ' if (presamples == True): (data, array) = self.write_lci(presamples, ecoinvent_compatibility, ecoinvent_version) i = bw2io.importers.base_lci.LCIImporter(self.db_name) i.data = data return (i, array) else: data = self.write_lci(presamples, ecoinvent_compatibility, ecoinvent_version) i = bw2io.importers.base_lci.LCIImporter(self.db_name) i.data = data return i
Return a LCIImporter object with the inventory as `data` attribute. :return: LCIImporter object to be imported in a Brightway2 project :rtype: bw2io.base_lci.LCIImporter
carculator/export.py
write_lci_to_bw
SimonVoelker/carculator
0
python
def write_lci_to_bw(self, presamples, ecoinvent_compatibility, ecoinvent_version): '\n Return a LCIImporter object with the inventory as `data` attribute.\n\n :return: LCIImporter object to be imported in a Brightway2 project\n :rtype: bw2io.base_lci.LCIImporter\n ' if (presamples == True): (data, array) = self.write_lci(presamples, ecoinvent_compatibility, ecoinvent_version) i = bw2io.importers.base_lci.LCIImporter(self.db_name) i.data = data return (i, array) else: data = self.write_lci(presamples, ecoinvent_compatibility, ecoinvent_version) i = bw2io.importers.base_lci.LCIImporter(self.db_name) i.data = data return i
def write_lci_to_bw(self, presamples, ecoinvent_compatibility, ecoinvent_version): '\n Return a LCIImporter object with the inventory as `data` attribute.\n\n :return: LCIImporter object to be imported in a Brightway2 project\n :rtype: bw2io.base_lci.LCIImporter\n ' if (presamples == True): (data, array) = self.write_lci(presamples, ecoinvent_compatibility, ecoinvent_version) i = bw2io.importers.base_lci.LCIImporter(self.db_name) i.data = data return (i, array) else: data = self.write_lci(presamples, ecoinvent_compatibility, ecoinvent_version) i = bw2io.importers.base_lci.LCIImporter(self.db_name) i.data = data return i<|docstring|>Return a LCIImporter object with the inventory as `data` attribute. :return: LCIImporter object to be imported in a Brightway2 project :rtype: bw2io.base_lci.LCIImporter<|endoftext|>
68e1629ee8b5ede40cc314ad7f9213694decfc709e67be7a60b76c87b9bd976d
def make_pdf(self, dist, params, size=10000): "Generate distributions's Probability Distribution Function " import pandas as pd arg = params[:(- 2)] loc = params[(- 2)] scale = params[(- 1)] start = (dist.ppf(0.01, *arg, loc=loc, scale=scale) if arg else dist.ppf(0.01, loc=loc, scale=scale)) end = (dist.ppf(0.99, *arg, loc=loc, scale=scale) if arg else dist.ppf(0.99, loc=loc, scale=scale)) x = np.linspace(start, end, size) y = dist.pdf(x, *arg, loc=loc, scale=scale) pdf = pd.Series(y, x) return pdf
Generate distributions's Probability Distribution Function
carculator/export.py
make_pdf
SimonVoelker/carculator
0
python
def make_pdf(self, dist, params, size=10000): " " import pandas as pd arg = params[:(- 2)] loc = params[(- 2)] scale = params[(- 1)] start = (dist.ppf(0.01, *arg, loc=loc, scale=scale) if arg else dist.ppf(0.01, loc=loc, scale=scale)) end = (dist.ppf(0.99, *arg, loc=loc, scale=scale) if arg else dist.ppf(0.99, loc=loc, scale=scale)) x = np.linspace(start, end, size) y = dist.pdf(x, *arg, loc=loc, scale=scale) pdf = pd.Series(y, x) return pdf
def make_pdf(self, dist, params, size=10000): " " import pandas as pd arg = params[:(- 2)] loc = params[(- 2)] scale = params[(- 1)] start = (dist.ppf(0.01, *arg, loc=loc, scale=scale) if arg else dist.ppf(0.01, loc=loc, scale=scale)) end = (dist.ppf(0.99, *arg, loc=loc, scale=scale) if arg else dist.ppf(0.99, loc=loc, scale=scale)) x = np.linspace(start, end, size) y = dist.pdf(x, *arg, loc=loc, scale=scale) pdf = pd.Series(y, x) return pdf<|docstring|>Generate distributions's Probability Distribution Function<|endoftext|>
78172f453840be45a9fab6858fa551770422b85ef3c1638330be5cc843fb1866
@commands.command(name='SingleShot', aliases=['Shoot']) async def single_shot(self, ctx, *, msg: str): '\n Performs a Combat roll for a single shot attack.\n\n Example:\n !SingleShot reflex, skill, number of dice, dice sides, damage modifier, distance\n ' params = msg.split(',') if (len(params) == 6): result = self.RollSingleShotAttack(int(params[0]), int(params[1]), int(params[2]), int(params[3]), int(params[4]), int(params[5])) (await ctx.send(result.Summary())) else: (await ctx.send('You are missing a piece of information.'))
Performs a Combat roll for a single shot attack. Example: !SingleShot reflex, skill, number of dice, dice sides, damage modifier, distance
bots/cogs/cp2020.py
single_shot
BryanOrabutt/discbot
0
python
@commands.command(name='SingleShot', aliases=['Shoot']) async def single_shot(self, ctx, *, msg: str): '\n Performs a Combat roll for a single shot attack.\n\n Example:\n !SingleShot reflex, skill, number of dice, dice sides, damage modifier, distance\n ' params = msg.split(',') if (len(params) == 6): result = self.RollSingleShotAttack(int(params[0]), int(params[1]), int(params[2]), int(params[3]), int(params[4]), int(params[5])) (await ctx.send(result.Summary())) else: (await ctx.send('You are missing a piece of information.'))
@commands.command(name='SingleShot', aliases=['Shoot']) async def single_shot(self, ctx, *, msg: str): '\n Performs a Combat roll for a single shot attack.\n\n Example:\n !SingleShot reflex, skill, number of dice, dice sides, damage modifier, distance\n ' params = msg.split(',') if (len(params) == 6): result = self.RollSingleShotAttack(int(params[0]), int(params[1]), int(params[2]), int(params[3]), int(params[4]), int(params[5])) (await ctx.send(result.Summary())) else: (await ctx.send('You are missing a piece of information.'))<|docstring|>Performs a Combat roll for a single shot attack. Example: !SingleShot reflex, skill, number of dice, dice sides, damage modifier, distance<|endoftext|>
9048ff8e2f44a161de9cdd133340778ac0c6857fdba0aaad6fb224346fccb3af
@commands.command(name='BurstShot', aliases=['Burst']) async def burst_shot(self, ctx, *, msg: str): '\n Performs a Combat roll for a burst attack.\n\n Example:\n !BurstShot reflex, skill, number of dice, dice sides, damage modifier, distance\n ' params = msg.split(',') if (len(params) == 6): result = self.RollBurstAttack(int(params[0]), int(params[1]), int(params[2]), int(params[3]), int(params[4]), int(params[5])) (await ctx.send(result.Summary())) else: (await ctx.send('You are missing a piece of information.'))
Performs a Combat roll for a burst attack. Example: !BurstShot reflex, skill, number of dice, dice sides, damage modifier, distance
bots/cogs/cp2020.py
burst_shot
BryanOrabutt/discbot
0
python
@commands.command(name='BurstShot', aliases=['Burst']) async def burst_shot(self, ctx, *, msg: str): '\n Performs a Combat roll for a burst attack.\n\n Example:\n !BurstShot reflex, skill, number of dice, dice sides, damage modifier, distance\n ' params = msg.split(',') if (len(params) == 6): result = self.RollBurstAttack(int(params[0]), int(params[1]), int(params[2]), int(params[3]), int(params[4]), int(params[5])) (await ctx.send(result.Summary())) else: (await ctx.send('You are missing a piece of information.'))
@commands.command(name='BurstShot', aliases=['Burst']) async def burst_shot(self, ctx, *, msg: str): '\n Performs a Combat roll for a burst attack.\n\n Example:\n !BurstShot reflex, skill, number of dice, dice sides, damage modifier, distance\n ' params = msg.split(',') if (len(params) == 6): result = self.RollBurstAttack(int(params[0]), int(params[1]), int(params[2]), int(params[3]), int(params[4]), int(params[5])) (await ctx.send(result.Summary())) else: (await ctx.send('You are missing a piece of information.'))<|docstring|>Performs a Combat roll for a burst attack. Example: !BurstShot reflex, skill, number of dice, dice sides, damage modifier, distance<|endoftext|>
1fd651124a1510c8e8996671abd85b5dfdce8217b8cb7283b87467c1b3286614
@commands.command(name='FullAutoShot', aliases=['FAS']) async def full_auto_shot(self, ctx, *, msg: str): '\n Performs a Combat roll for a full auto attack.\n\n Example:\n !FullAutoShot reflex, skill, shotsFired, number of dice, dice sides, damage modifier, distance\n ' params = msg.split(',') if (len(params) == 7): result = self.RollFullAutoAttack(int(params[0]), int(params[1]), int(params[2]), int(params[3]), int(params[4]), int(params[5]), int(params[6])) (await ctx.send(result.Summary())) else: (await ctx.send('You are missing a piece of information.'))
Performs a Combat roll for a full auto attack. Example: !FullAutoShot reflex, skill, shotsFired, number of dice, dice sides, damage modifier, distance
bots/cogs/cp2020.py
full_auto_shot
BryanOrabutt/discbot
0
python
@commands.command(name='FullAutoShot', aliases=['FAS']) async def full_auto_shot(self, ctx, *, msg: str): '\n Performs a Combat roll for a full auto attack.\n\n Example:\n !FullAutoShot reflex, skill, shotsFired, number of dice, dice sides, damage modifier, distance\n ' params = msg.split(',') if (len(params) == 7): result = self.RollFullAutoAttack(int(params[0]), int(params[1]), int(params[2]), int(params[3]), int(params[4]), int(params[5]), int(params[6])) (await ctx.send(result.Summary())) else: (await ctx.send('You are missing a piece of information.'))
@commands.command(name='FullAutoShot', aliases=['FAS']) async def full_auto_shot(self, ctx, *, msg: str): '\n Performs a Combat roll for a full auto attack.\n\n Example:\n !FullAutoShot reflex, skill, shotsFired, number of dice, dice sides, damage modifier, distance\n ' params = msg.split(',') if (len(params) == 7): result = self.RollFullAutoAttack(int(params[0]), int(params[1]), int(params[2]), int(params[3]), int(params[4]), int(params[5]), int(params[6])) (await ctx.send(result.Summary())) else: (await ctx.send('You are missing a piece of information.'))<|docstring|>Performs a Combat roll for a full auto attack. Example: !FullAutoShot reflex, skill, shotsFired, number of dice, dice sides, damage modifier, distance<|endoftext|>
2861f7b619250c817b99edf11f9f03b2f6e0c9bf2dba2f30f0aaff350dec50de
def mms_feeps_pad_spinavg(probe='1', data_units='intensity', datatype='electron', data_rate='srvy', level='l2', suffix='', energy=[70, 600], bin_size=16.3636): "\n This function will spin-average the FEEPS pitch angle distributions\n \n Parameters:\n probe: str\n probe #, e.g., '4' for MMS4\n\n data_units: str\n 'intensity' or 'count_rate'\n\n datatype: str\n 'electron' or 'ion'\n\n data_rate: str\n instrument data rate, e.g., 'srvy' or 'brst'\n\n level: str\n data level, e.g., 'l2'\n\n suffix: str\n suffix of the loaded data\n\n energy: list of float\n energy range to include in the calculation\n \n bin_size: float\n size of the pitch angle bins\n\n Returns:\n Name of tplot variable created.\n " units_label = '' if (data_units == 'intensity'): units_label = '1/(cm^2-sr-s-keV)' elif (data_units == 'counts'): units_label = '[counts/s]' if (datatype == 'electron'): lower_en = 71 else: lower_en = 78 prefix = (('mms' + str(probe)) + '_epd_feeps_') (sector_times, spin_sectors) = get_data((((((((prefix + data_rate) + '_') + level) + '_') + datatype) + '_spinsectnum') + suffix)) spin_starts = [(spin_end + 1) for spin_end in np.where((spin_sectors[:(- 1)] >= spin_sectors[1:]))[0]] en_range_string = (((str(int(energy[0])) + '-') + str(int(energy[1]))) + 'keV') var_name = (((((((((((prefix + data_rate) + '_') + level) + '_') + datatype) + '_') + data_units) + '_') + en_range_string) + '_pad') + suffix) (times, data, angles) = get_data(var_name) spin_avg_flux = np.zeros([len(spin_starts), len(angles)]) current_start = spin_starts[0] for spin_idx in range(1, (len(spin_starts) - 1)): with warnings.catch_warnings(): warnings.simplefilter('ignore', category=RuntimeWarning) spin_avg_flux[((spin_idx - 1), :)] = np.nanmean(data[(current_start:(spin_starts[spin_idx] + 1), :)], axis=0) current_start = (spin_starts[spin_idx] + 1) store_data(((var_name + '_spin') + suffix), data={'x': times[spin_starts], 'y': spin_avg_flux, 'v': angles}) options(((var_name + '_spin') + suffix), 'spec', True) options(((var_name + '_spin') + suffix), 'ylog', False) options(((var_name + '_spin') + suffix), 'zlog', True) options(((var_name + '_spin') + suffix), 'Colormap', 'jet') options(((var_name + '_spin') + suffix), 'ztitle', units_label) options(((var_name + '_spin') + suffix), 'ytitle', (((('MMS' + str(probe)) + ' ') + datatype) + ' PA (deg)')) return ((var_name + '_spin') + suffix)
This function will spin-average the FEEPS pitch angle distributions Parameters: probe: str probe #, e.g., '4' for MMS4 data_units: str 'intensity' or 'count_rate' datatype: str 'electron' or 'ion' data_rate: str instrument data rate, e.g., 'srvy' or 'brst' level: str data level, e.g., 'l2' suffix: str suffix of the loaded data energy: list of float energy range to include in the calculation bin_size: float size of the pitch angle bins Returns: Name of tplot variable created.
pyspedas/mms/feeps/mms_feeps_pad_spinavg.py
mms_feeps_pad_spinavg
xnchu/pyspedas
1
python
def mms_feeps_pad_spinavg(probe='1', data_units='intensity', datatype='electron', data_rate='srvy', level='l2', suffix=, energy=[70, 600], bin_size=16.3636): "\n This function will spin-average the FEEPS pitch angle distributions\n \n Parameters:\n probe: str\n probe #, e.g., '4' for MMS4\n\n data_units: str\n 'intensity' or 'count_rate'\n\n datatype: str\n 'electron' or 'ion'\n\n data_rate: str\n instrument data rate, e.g., 'srvy' or 'brst'\n\n level: str\n data level, e.g., 'l2'\n\n suffix: str\n suffix of the loaded data\n\n energy: list of float\n energy range to include in the calculation\n \n bin_size: float\n size of the pitch angle bins\n\n Returns:\n Name of tplot variable created.\n " units_label = if (data_units == 'intensity'): units_label = '1/(cm^2-sr-s-keV)' elif (data_units == 'counts'): units_label = '[counts/s]' if (datatype == 'electron'): lower_en = 71 else: lower_en = 78 prefix = (('mms' + str(probe)) + '_epd_feeps_') (sector_times, spin_sectors) = get_data((((((((prefix + data_rate) + '_') + level) + '_') + datatype) + '_spinsectnum') + suffix)) spin_starts = [(spin_end + 1) for spin_end in np.where((spin_sectors[:(- 1)] >= spin_sectors[1:]))[0]] en_range_string = (((str(int(energy[0])) + '-') + str(int(energy[1]))) + 'keV') var_name = (((((((((((prefix + data_rate) + '_') + level) + '_') + datatype) + '_') + data_units) + '_') + en_range_string) + '_pad') + suffix) (times, data, angles) = get_data(var_name) spin_avg_flux = np.zeros([len(spin_starts), len(angles)]) current_start = spin_starts[0] for spin_idx in range(1, (len(spin_starts) - 1)): with warnings.catch_warnings(): warnings.simplefilter('ignore', category=RuntimeWarning) spin_avg_flux[((spin_idx - 1), :)] = np.nanmean(data[(current_start:(spin_starts[spin_idx] + 1), :)], axis=0) current_start = (spin_starts[spin_idx] + 1) store_data(((var_name + '_spin') + suffix), data={'x': times[spin_starts], 'y': spin_avg_flux, 'v': angles}) options(((var_name + '_spin') + suffix), 'spec', True) options(((var_name + '_spin') + suffix), 'ylog', False) options(((var_name + '_spin') + suffix), 'zlog', True) options(((var_name + '_spin') + suffix), 'Colormap', 'jet') options(((var_name + '_spin') + suffix), 'ztitle', units_label) options(((var_name + '_spin') + suffix), 'ytitle', (((('MMS' + str(probe)) + ' ') + datatype) + ' PA (deg)')) return ((var_name + '_spin') + suffix)
def mms_feeps_pad_spinavg(probe='1', data_units='intensity', datatype='electron', data_rate='srvy', level='l2', suffix=, energy=[70, 600], bin_size=16.3636): "\n This function will spin-average the FEEPS pitch angle distributions\n \n Parameters:\n probe: str\n probe #, e.g., '4' for MMS4\n\n data_units: str\n 'intensity' or 'count_rate'\n\n datatype: str\n 'electron' or 'ion'\n\n data_rate: str\n instrument data rate, e.g., 'srvy' or 'brst'\n\n level: str\n data level, e.g., 'l2'\n\n suffix: str\n suffix of the loaded data\n\n energy: list of float\n energy range to include in the calculation\n \n bin_size: float\n size of the pitch angle bins\n\n Returns:\n Name of tplot variable created.\n " units_label = if (data_units == 'intensity'): units_label = '1/(cm^2-sr-s-keV)' elif (data_units == 'counts'): units_label = '[counts/s]' if (datatype == 'electron'): lower_en = 71 else: lower_en = 78 prefix = (('mms' + str(probe)) + '_epd_feeps_') (sector_times, spin_sectors) = get_data((((((((prefix + data_rate) + '_') + level) + '_') + datatype) + '_spinsectnum') + suffix)) spin_starts = [(spin_end + 1) for spin_end in np.where((spin_sectors[:(- 1)] >= spin_sectors[1:]))[0]] en_range_string = (((str(int(energy[0])) + '-') + str(int(energy[1]))) + 'keV') var_name = (((((((((((prefix + data_rate) + '_') + level) + '_') + datatype) + '_') + data_units) + '_') + en_range_string) + '_pad') + suffix) (times, data, angles) = get_data(var_name) spin_avg_flux = np.zeros([len(spin_starts), len(angles)]) current_start = spin_starts[0] for spin_idx in range(1, (len(spin_starts) - 1)): with warnings.catch_warnings(): warnings.simplefilter('ignore', category=RuntimeWarning) spin_avg_flux[((spin_idx - 1), :)] = np.nanmean(data[(current_start:(spin_starts[spin_idx] + 1), :)], axis=0) current_start = (spin_starts[spin_idx] + 1) store_data(((var_name + '_spin') + suffix), data={'x': times[spin_starts], 'y': spin_avg_flux, 'v': angles}) options(((var_name + '_spin') + suffix), 'spec', True) options(((var_name + '_spin') + suffix), 'ylog', False) options(((var_name + '_spin') + suffix), 'zlog', True) options(((var_name + '_spin') + suffix), 'Colormap', 'jet') options(((var_name + '_spin') + suffix), 'ztitle', units_label) options(((var_name + '_spin') + suffix), 'ytitle', (((('MMS' + str(probe)) + ' ') + datatype) + ' PA (deg)')) return ((var_name + '_spin') + suffix)<|docstring|>This function will spin-average the FEEPS pitch angle distributions Parameters: probe: str probe #, e.g., '4' for MMS4 data_units: str 'intensity' or 'count_rate' datatype: str 'electron' or 'ion' data_rate: str instrument data rate, e.g., 'srvy' or 'brst' level: str data level, e.g., 'l2' suffix: str suffix of the loaded data energy: list of float energy range to include in the calculation bin_size: float size of the pitch angle bins Returns: Name of tplot variable created.<|endoftext|>
3554f5d87f684fee34c882709d4e8efb0ce3e299f54fa13d3eabe3ea691f9a7a
def handle(self): 'Handles a request ignoring dropped connections.' try: self.stager = self.server.stager self.shell = self.stager.shell self.options = copy.deepcopy(self.server.server.options) self.loader = core.loader self.shell.print_verbose(('handler::handle() - Incoming HTTP from %s' % str(self.client_address))) return BaseHTTPRequestHandler.handle(self) except (socket.error, socket.timeout) as e: pass
Handles a request ignoring dropped connections.
core/handler.py
handle
fymore/-
9
python
def handle(self): try: self.stager = self.server.stager self.shell = self.stager.shell self.options = copy.deepcopy(self.server.server.options) self.loader = core.loader self.shell.print_verbose(('handler::handle() - Incoming HTTP from %s' % str(self.client_address))) return BaseHTTPRequestHandler.handle(self) except (socket.error, socket.timeout) as e: pass
def handle(self): try: self.stager = self.server.stager self.shell = self.stager.shell self.options = copy.deepcopy(self.server.server.options) self.loader = core.loader self.shell.print_verbose(('handler::handle() - Incoming HTTP from %s' % str(self.client_address))) return BaseHTTPRequestHandler.handle(self) except (socket.error, socket.timeout) as e: pass<|docstring|>Handles a request ignoring dropped connections.<|endoftext|>
551d1b43565a6683232d5db514e576a03c481e42886492269aba6f6e4e68f1b6
@app.get('/graph', status_code=200, tags=['READ', 'Graph']) def connect_Graph(): ' connects to the dgraph server' global graph_conn try: graph_conn = dGraph_conn() except Exception as e: logging.error('At connecting to graph DB') logging.error(e) raise HTTPException(status_code=502, detail=('Not connected to Graph. ' + str(e))) return {'msg': 'Connected to graph'}
connects to the dgraph server
dgraph/dGraph_fastAPI_server.py
connect_Graph
kavitharaju/vachan-graph
3
python
@app.get('/graph', status_code=200, tags=['READ', 'Graph']) def connect_Graph(): ' ' global graph_conn try: graph_conn = dGraph_conn() except Exception as e: logging.error('At connecting to graph DB') logging.error(e) raise HTTPException(status_code=502, detail=('Not connected to Graph. ' + str(e))) return {'msg': 'Connected to graph'}
@app.get('/graph', status_code=200, tags=['READ', 'Graph']) def connect_Graph(): ' ' global graph_conn try: graph_conn = dGraph_conn() except Exception as e: logging.error('At connecting to graph DB') logging.error(e) raise HTTPException(status_code=502, detail=('Not connected to Graph. ' + str(e))) return {'msg': 'Connected to graph'}<|docstring|>connects to the dgraph server<|endoftext|>
3c532e35f58f0432435ec593ce9d55371d473b5a42f050c0c995dba3f1c65d27
@app.delete('/graph', status_code=200, tags=['Graph', 'WRITE']) def delete(): ' delete the entire graph' global graph_conn try: res = graph_conn.drop_all() except Exception as e: logging.error('At deleting graph DB') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) return {'msg': 'Deleted the entire graph'}
delete the entire graph
dgraph/dGraph_fastAPI_server.py
delete
kavitharaju/vachan-graph
3
python
@app.delete('/graph', status_code=200, tags=['Graph', 'WRITE']) def delete(): ' ' global graph_conn try: res = graph_conn.drop_all() except Exception as e: logging.error('At deleting graph DB') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) return {'msg': 'Deleted the entire graph'}
@app.delete('/graph', status_code=200, tags=['Graph', 'WRITE']) def delete(): ' ' global graph_conn try: res = graph_conn.drop_all() except Exception as e: logging.error('At deleting graph DB') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) return {'msg': 'Deleted the entire graph'}<|docstring|>delete the entire graph<|endoftext|>
29715075a69eeec3bb5c927d77ba946febabdf0e7f2e10bbe0d7a970765dcc6d
@app.get('/strongs', status_code=200, tags=['READ', 'Strongs Number']) def get_strongs(strongs_number: Optional[int]=None, bbbcccvvv: Optional[str]=Query(None, regex='^\\w\\w\\w\\d\\d\\d\\d\\d\\d'), skip: Optional[int]=None, limit: Optional[int]=None): ' Get the list of strongs nodes and their property values.\n\tIf strongs_number is sepcified, its properties and occurances are returned.\n\tIf strongs_number is not present and bbbcccvvv(bbb- 3 letter bookcode, ccc- chapter number in 3 digits, vvv- verse number in 3 digits)\n\tis provided, lists all strongs in that verse, with their property values and positions(as per Gree bible).\n\tIf neither of the first two query params are provided, it lists all the strongs numbers in Greek.\n\tNumber of items returned can be set using the skip and limit parameters.' result = {} try: if ((not strongs_number) and (not bbbcccvvv)): query_res = graph_conn.query_data(all_strongs_query, {'$dummy': ''}) elif strongs_number: query_res = graph_conn.query_data(strongs_link_query, {'$strongs': str(strongs_number)}) logging.info(('query_res: %s' % query_res)) else: variables = {'$book': str(book_num_map[bbbcccvvv[:3].lower()]), '$chap': bbbcccvvv[3:6], '$ver': bbbcccvvv[(- 3):]} logging.info(('variables: %s' % variables)) query_res = graph_conn.query_data(strongs_in_verse_query, variables) logging.info(('query_res: %s' % query_res)) except Exception as e: logging.error('At fetching strongs numbers') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) logging.info(('skip: %s, limit %s' % (skip, limit))) if (not skip): skip = (- 1) if (not limit): limit = len(query_res['strongs']) result['strongs'] = query_res['strongs'][(skip + 1):limit] for (i, strong) in enumerate(result['strongs']): if ('occurances' in strong): occurs = [] for occur in strong['occurances']: logging.info(occur) logging.info(num_book_map) verse_link = ('%s/bibles/%s/books/%s/chapters/%s/verses/%s/words/%s' % (base_URL, occur['bible'], num_book_map[occur['book']], occur['chapter'], occur['verse'], occur['position'])) occurs.append(urllib.parse.quote(verse_link, safe='/:-')) result['strongs'][i]['occurances'] = occurs if ('StrongsNumber' in strong): strong_link = ('%s/strongs?strongs_number=%s' % (base_URL, strong['StrongsNumber'])) result['strongs'][i]['strongsLink'] = urllib.parse.quote(strong_link, safe='/:?=') return result
Get the list of strongs nodes and their property values. If strongs_number is sepcified, its properties and occurances are returned. If strongs_number is not present and bbbcccvvv(bbb- 3 letter bookcode, ccc- chapter number in 3 digits, vvv- verse number in 3 digits) is provided, lists all strongs in that verse, with their property values and positions(as per Gree bible). If neither of the first two query params are provided, it lists all the strongs numbers in Greek. Number of items returned can be set using the skip and limit parameters.
dgraph/dGraph_fastAPI_server.py
get_strongs
kavitharaju/vachan-graph
3
python
@app.get('/strongs', status_code=200, tags=['READ', 'Strongs Number']) def get_strongs(strongs_number: Optional[int]=None, bbbcccvvv: Optional[str]=Query(None, regex='^\\w\\w\\w\\d\\d\\d\\d\\d\\d'), skip: Optional[int]=None, limit: Optional[int]=None): ' Get the list of strongs nodes and their property values.\n\tIf strongs_number is sepcified, its properties and occurances are returned.\n\tIf strongs_number is not present and bbbcccvvv(bbb- 3 letter bookcode, ccc- chapter number in 3 digits, vvv- verse number in 3 digits)\n\tis provided, lists all strongs in that verse, with their property values and positions(as per Gree bible).\n\tIf neither of the first two query params are provided, it lists all the strongs numbers in Greek.\n\tNumber of items returned can be set using the skip and limit parameters.' result = {} try: if ((not strongs_number) and (not bbbcccvvv)): query_res = graph_conn.query_data(all_strongs_query, {'$dummy': }) elif strongs_number: query_res = graph_conn.query_data(strongs_link_query, {'$strongs': str(strongs_number)}) logging.info(('query_res: %s' % query_res)) else: variables = {'$book': str(book_num_map[bbbcccvvv[:3].lower()]), '$chap': bbbcccvvv[3:6], '$ver': bbbcccvvv[(- 3):]} logging.info(('variables: %s' % variables)) query_res = graph_conn.query_data(strongs_in_verse_query, variables) logging.info(('query_res: %s' % query_res)) except Exception as e: logging.error('At fetching strongs numbers') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) logging.info(('skip: %s, limit %s' % (skip, limit))) if (not skip): skip = (- 1) if (not limit): limit = len(query_res['strongs']) result['strongs'] = query_res['strongs'][(skip + 1):limit] for (i, strong) in enumerate(result['strongs']): if ('occurances' in strong): occurs = [] for occur in strong['occurances']: logging.info(occur) logging.info(num_book_map) verse_link = ('%s/bibles/%s/books/%s/chapters/%s/verses/%s/words/%s' % (base_URL, occur['bible'], num_book_map[occur['book']], occur['chapter'], occur['verse'], occur['position'])) occurs.append(urllib.parse.quote(verse_link, safe='/:-')) result['strongs'][i]['occurances'] = occurs if ('StrongsNumber' in strong): strong_link = ('%s/strongs?strongs_number=%s' % (base_URL, strong['StrongsNumber'])) result['strongs'][i]['strongsLink'] = urllib.parse.quote(strong_link, safe='/:?=') return result
@app.get('/strongs', status_code=200, tags=['READ', 'Strongs Number']) def get_strongs(strongs_number: Optional[int]=None, bbbcccvvv: Optional[str]=Query(None, regex='^\\w\\w\\w\\d\\d\\d\\d\\d\\d'), skip: Optional[int]=None, limit: Optional[int]=None): ' Get the list of strongs nodes and their property values.\n\tIf strongs_number is sepcified, its properties and occurances are returned.\n\tIf strongs_number is not present and bbbcccvvv(bbb- 3 letter bookcode, ccc- chapter number in 3 digits, vvv- verse number in 3 digits)\n\tis provided, lists all strongs in that verse, with their property values and positions(as per Gree bible).\n\tIf neither of the first two query params are provided, it lists all the strongs numbers in Greek.\n\tNumber of items returned can be set using the skip and limit parameters.' result = {} try: if ((not strongs_number) and (not bbbcccvvv)): query_res = graph_conn.query_data(all_strongs_query, {'$dummy': }) elif strongs_number: query_res = graph_conn.query_data(strongs_link_query, {'$strongs': str(strongs_number)}) logging.info(('query_res: %s' % query_res)) else: variables = {'$book': str(book_num_map[bbbcccvvv[:3].lower()]), '$chap': bbbcccvvv[3:6], '$ver': bbbcccvvv[(- 3):]} logging.info(('variables: %s' % variables)) query_res = graph_conn.query_data(strongs_in_verse_query, variables) logging.info(('query_res: %s' % query_res)) except Exception as e: logging.error('At fetching strongs numbers') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) logging.info(('skip: %s, limit %s' % (skip, limit))) if (not skip): skip = (- 1) if (not limit): limit = len(query_res['strongs']) result['strongs'] = query_res['strongs'][(skip + 1):limit] for (i, strong) in enumerate(result['strongs']): if ('occurances' in strong): occurs = [] for occur in strong['occurances']: logging.info(occur) logging.info(num_book_map) verse_link = ('%s/bibles/%s/books/%s/chapters/%s/verses/%s/words/%s' % (base_URL, occur['bible'], num_book_map[occur['book']], occur['chapter'], occur['verse'], occur['position'])) occurs.append(urllib.parse.quote(verse_link, safe='/:-')) result['strongs'][i]['occurances'] = occurs if ('StrongsNumber' in strong): strong_link = ('%s/strongs?strongs_number=%s' % (base_URL, strong['StrongsNumber'])) result['strongs'][i]['strongsLink'] = urllib.parse.quote(strong_link, safe='/:?=') return result<|docstring|>Get the list of strongs nodes and their property values. If strongs_number is sepcified, its properties and occurances are returned. If strongs_number is not present and bbbcccvvv(bbb- 3 letter bookcode, ccc- chapter number in 3 digits, vvv- verse number in 3 digits) is provided, lists all strongs in that verse, with their property values and positions(as per Gree bible). If neither of the first two query params are provided, it lists all the strongs numbers in Greek. Number of items returned can be set using the skip and limit parameters.<|endoftext|>
138fe6e6f27165191bd20fd71bf058c31537514ac309b88697959e5e4661fe9f
@app.put('/strongs/{strongs_number}', status_code=200, tags=['Strongs Number', 'WRITE']) def edit_strongs(strongs_number: int, key_values: List[StrongsPropertyValue]=Body(...)): ' Update a property value of selected strongs number node' logging.info(('input args strongs_number: %s, key_values: %s' % (strongs_number, key_values))) nquad = '' for prop in key_values: nquad += ('uid(u) <%s> "%s" .\n' % (prop.property.value, prop.value)) logging.info(('nquad: %s' % nquad)) try: graph_conn.upsert(query=strong_node_query, nquad=nquad, variables={'$strongs': str(strongs_number)}) except Exception as e: logging.error('At editing strongs numbers') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) raise HTTPException(status_code=503, detail='Not implemented properly. ')
Update a property value of selected strongs number node
dgraph/dGraph_fastAPI_server.py
edit_strongs
kavitharaju/vachan-graph
3
python
@app.put('/strongs/{strongs_number}', status_code=200, tags=['Strongs Number', 'WRITE']) def edit_strongs(strongs_number: int, key_values: List[StrongsPropertyValue]=Body(...)): ' ' logging.info(('input args strongs_number: %s, key_values: %s' % (strongs_number, key_values))) nquad = for prop in key_values: nquad += ('uid(u) <%s> "%s" .\n' % (prop.property.value, prop.value)) logging.info(('nquad: %s' % nquad)) try: graph_conn.upsert(query=strong_node_query, nquad=nquad, variables={'$strongs': str(strongs_number)}) except Exception as e: logging.error('At editing strongs numbers') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) raise HTTPException(status_code=503, detail='Not implemented properly. ')
@app.put('/strongs/{strongs_number}', status_code=200, tags=['Strongs Number', 'WRITE']) def edit_strongs(strongs_number: int, key_values: List[StrongsPropertyValue]=Body(...)): ' ' logging.info(('input args strongs_number: %s, key_values: %s' % (strongs_number, key_values))) nquad = for prop in key_values: nquad += ('uid(u) <%s> "%s" .\n' % (prop.property.value, prop.value)) logging.info(('nquad: %s' % nquad)) try: graph_conn.upsert(query=strong_node_query, nquad=nquad, variables={'$strongs': str(strongs_number)}) except Exception as e: logging.error('At editing strongs numbers') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) raise HTTPException(status_code=503, detail='Not implemented properly. ')<|docstring|>Update a property value of selected strongs number node<|endoftext|>
84e6cb1950c63924172906659a8aa91a11f76551471b0ca841a4161964333300
@app.post('/strongs', status_code=201, tags=['WRITE', 'Strongs Number']) def add_strongs(): 'creates a strongs dictionary.\n\t Collects strongs data from mysql DB and add to graph \n\t ' try: db = pymysql.connect(host='localhost', database=rel_db_name, user='root', password='password', charset='utf8mb4') cursor = db.cursor(pymysql.cursors.SSCursor) except Exception as e: logging.error('At MySql DB connection') logging.error(e) raise HTTPException(status_code=502, detail=('MySQL side error. ' + str(e))) tablename = 'Greek_Strongs_Lexicon' nodename = 'Greek Strongs' dict_node = {'dictionary': nodename, 'dgraph.type': 'DictionaryNode'} try: dict_node_uid = graph_conn.create_data(dict_node) except Exception as e: logging.error('At dict node creation') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) logging.info(('dict_node_uid: %s' % dict_node_uid)) cursor.execute((('Select ID, Pronunciation, Lexeme, Transliteration, Definition, StrongsNumber, EnglishWord from ' + tablename) + ' order by ID')) count_for_test = 0 while True: next_row = cursor.fetchone() if (not next_row): break count_for_test += 1 strongID = next_row[0] Pronunciation = next_row[1] Lexeme = next_row[2] Transliteration = next_row[3] Definition = next_row[4] StrongsNumberExtended = next_row[5] EnglishWord = next_row[6] strong_node = {'dgraph.type': 'StrongsNode', 'StrongsNumber': strongID, 'pronunciation': Pronunciation, 'lexeme': Lexeme, 'transliteration': Transliteration, 'definition': Definition, 'strongsNumberExtended': StrongsNumberExtended, 'englishWord': EnglishWord, 'belongsTo': {'uid': dict_node_uid}} try: strong_node_uid = graph_conn.create_data(strong_node) except Exception as e: logging.error('At strong node creation') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) logging.info(('strong_node_uid: %s' % strong_node_uid)) cursor.close() db.close() return {'msg': 'Added to graph'}
creates a strongs dictionary. Collects strongs data from mysql DB and add to graph
dgraph/dGraph_fastAPI_server.py
add_strongs
kavitharaju/vachan-graph
3
python
@app.post('/strongs', status_code=201, tags=['WRITE', 'Strongs Number']) def add_strongs(): 'creates a strongs dictionary.\n\t Collects strongs data from mysql DB and add to graph \n\t ' try: db = pymysql.connect(host='localhost', database=rel_db_name, user='root', password='password', charset='utf8mb4') cursor = db.cursor(pymysql.cursors.SSCursor) except Exception as e: logging.error('At MySql DB connection') logging.error(e) raise HTTPException(status_code=502, detail=('MySQL side error. ' + str(e))) tablename = 'Greek_Strongs_Lexicon' nodename = 'Greek Strongs' dict_node = {'dictionary': nodename, 'dgraph.type': 'DictionaryNode'} try: dict_node_uid = graph_conn.create_data(dict_node) except Exception as e: logging.error('At dict node creation') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) logging.info(('dict_node_uid: %s' % dict_node_uid)) cursor.execute((('Select ID, Pronunciation, Lexeme, Transliteration, Definition, StrongsNumber, EnglishWord from ' + tablename) + ' order by ID')) count_for_test = 0 while True: next_row = cursor.fetchone() if (not next_row): break count_for_test += 1 strongID = next_row[0] Pronunciation = next_row[1] Lexeme = next_row[2] Transliteration = next_row[3] Definition = next_row[4] StrongsNumberExtended = next_row[5] EnglishWord = next_row[6] strong_node = {'dgraph.type': 'StrongsNode', 'StrongsNumber': strongID, 'pronunciation': Pronunciation, 'lexeme': Lexeme, 'transliteration': Transliteration, 'definition': Definition, 'strongsNumberExtended': StrongsNumberExtended, 'englishWord': EnglishWord, 'belongsTo': {'uid': dict_node_uid}} try: strong_node_uid = graph_conn.create_data(strong_node) except Exception as e: logging.error('At strong node creation') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) logging.info(('strong_node_uid: %s' % strong_node_uid)) cursor.close() db.close() return {'msg': 'Added to graph'}
@app.post('/strongs', status_code=201, tags=['WRITE', 'Strongs Number']) def add_strongs(): 'creates a strongs dictionary.\n\t Collects strongs data from mysql DB and add to graph \n\t ' try: db = pymysql.connect(host='localhost', database=rel_db_name, user='root', password='password', charset='utf8mb4') cursor = db.cursor(pymysql.cursors.SSCursor) except Exception as e: logging.error('At MySql DB connection') logging.error(e) raise HTTPException(status_code=502, detail=('MySQL side error. ' + str(e))) tablename = 'Greek_Strongs_Lexicon' nodename = 'Greek Strongs' dict_node = {'dictionary': nodename, 'dgraph.type': 'DictionaryNode'} try: dict_node_uid = graph_conn.create_data(dict_node) except Exception as e: logging.error('At dict node creation') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) logging.info(('dict_node_uid: %s' % dict_node_uid)) cursor.execute((('Select ID, Pronunciation, Lexeme, Transliteration, Definition, StrongsNumber, EnglishWord from ' + tablename) + ' order by ID')) count_for_test = 0 while True: next_row = cursor.fetchone() if (not next_row): break count_for_test += 1 strongID = next_row[0] Pronunciation = next_row[1] Lexeme = next_row[2] Transliteration = next_row[3] Definition = next_row[4] StrongsNumberExtended = next_row[5] EnglishWord = next_row[6] strong_node = {'dgraph.type': 'StrongsNode', 'StrongsNumber': strongID, 'pronunciation': Pronunciation, 'lexeme': Lexeme, 'transliteration': Transliteration, 'definition': Definition, 'strongsNumberExtended': StrongsNumberExtended, 'englishWord': EnglishWord, 'belongsTo': {'uid': dict_node_uid}} try: strong_node_uid = graph_conn.create_data(strong_node) except Exception as e: logging.error('At strong node creation') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) logging.info(('strong_node_uid: %s' % strong_node_uid)) cursor.close() db.close() return {'msg': 'Added to graph'}<|docstring|>creates a strongs dictionary. Collects strongs data from mysql DB and add to graph<|endoftext|>
1be8feeb0d9d35bfada8ada23645b0b9d40baa1c71868427e9314a79665cbdf2
@app.get('/translationwords', status_code=200, tags=['READ', 'Translation Words']) def get_translationwords(translation_word: Optional[str]=None, bbbcccvvv: Optional[str]=Query(None, regex='^\\w\\w\\w\\d\\d\\d\\d\\d\\d'), skip: Optional[int]=None, limit: Optional[int]=None): ' Get the list of Translation word nodes and their property values.\n\tIf Translation word is sepcified, its properties and occurances are returned.\n\tIf Translation word is not present and bbbcccvvv(bbb- 3 letter bookcode, ccc- chapter number in 3 digits, vvv- verse number in 3 digits)\n\tis provided, lists all Translation words in that verse, with their property values and positions(as per Gree bible).\n\tIf neither of the first two query params are provided, it lists all the Translation words.\n\tNumber of items returned can be set using the skip and limit parameters.' result = {} try: if ((not translation_word) and (not bbbcccvvv)): query_res = graph_conn.query_data(all_tw_query, {'$dummy': ''}) elif translation_word: query_res = graph_conn.query_data(tw_link_query, {'$tw': translation_word}) logging.info(('query_res: %s' % query_res)) else: variables = {'$book': str(book_num_map[bbbcccvvv[:3].lower()]), '$chap': bbbcccvvv[3:6], '$ver': bbbcccvvv[(- 3):]} logging.info(('variables: %s' % variables)) query_res = graph_conn.query_data(tw_in_verse_query, variables) logging.info(('query_res: %s' % query_res)) except Exception as e: logging.error('At fetching translation words') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) logging.info(('skip: %s, limit %s' % (skip, limit))) if (not skip): skip = (- 1) if (not limit): limit = len(query_res['tw']) result['translationWords'] = query_res['tw'][(skip + 1):limit] for (i, tw) in enumerate(result['translationWords']): if ('occurances' in tw): occurs = [] for occur in tw['occurances']: verse_link = ('%s/bibles/%s/books/%s/chapters/%s/verses/%s/words/%s' % (base_URL, occur['bible'], num_book_map[occur['book']], occur['chapter'], occur['verse'], occur['position'])) occurs.append(urllib.parse.quote(verse_link, safe='/:-')) result['translationWords'][i]['occurances'] = occurs if ('translationWord' in tw): link = ('%s/translationwords?translation_word=%s' % (base_URL, tw['translationWord'])) result['translationWords'][i]['translationWordLink'] = urllib.parse.quote(link, safe='/:?=') return result
Get the list of Translation word nodes and their property values. If Translation word is sepcified, its properties and occurances are returned. If Translation word is not present and bbbcccvvv(bbb- 3 letter bookcode, ccc- chapter number in 3 digits, vvv- verse number in 3 digits) is provided, lists all Translation words in that verse, with their property values and positions(as per Gree bible). If neither of the first two query params are provided, it lists all the Translation words. Number of items returned can be set using the skip and limit parameters.
dgraph/dGraph_fastAPI_server.py
get_translationwords
kavitharaju/vachan-graph
3
python
@app.get('/translationwords', status_code=200, tags=['READ', 'Translation Words']) def get_translationwords(translation_word: Optional[str]=None, bbbcccvvv: Optional[str]=Query(None, regex='^\\w\\w\\w\\d\\d\\d\\d\\d\\d'), skip: Optional[int]=None, limit: Optional[int]=None): ' Get the list of Translation word nodes and their property values.\n\tIf Translation word is sepcified, its properties and occurances are returned.\n\tIf Translation word is not present and bbbcccvvv(bbb- 3 letter bookcode, ccc- chapter number in 3 digits, vvv- verse number in 3 digits)\n\tis provided, lists all Translation words in that verse, with their property values and positions(as per Gree bible).\n\tIf neither of the first two query params are provided, it lists all the Translation words.\n\tNumber of items returned can be set using the skip and limit parameters.' result = {} try: if ((not translation_word) and (not bbbcccvvv)): query_res = graph_conn.query_data(all_tw_query, {'$dummy': }) elif translation_word: query_res = graph_conn.query_data(tw_link_query, {'$tw': translation_word}) logging.info(('query_res: %s' % query_res)) else: variables = {'$book': str(book_num_map[bbbcccvvv[:3].lower()]), '$chap': bbbcccvvv[3:6], '$ver': bbbcccvvv[(- 3):]} logging.info(('variables: %s' % variables)) query_res = graph_conn.query_data(tw_in_verse_query, variables) logging.info(('query_res: %s' % query_res)) except Exception as e: logging.error('At fetching translation words') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) logging.info(('skip: %s, limit %s' % (skip, limit))) if (not skip): skip = (- 1) if (not limit): limit = len(query_res['tw']) result['translationWords'] = query_res['tw'][(skip + 1):limit] for (i, tw) in enumerate(result['translationWords']): if ('occurances' in tw): occurs = [] for occur in tw['occurances']: verse_link = ('%s/bibles/%s/books/%s/chapters/%s/verses/%s/words/%s' % (base_URL, occur['bible'], num_book_map[occur['book']], occur['chapter'], occur['verse'], occur['position'])) occurs.append(urllib.parse.quote(verse_link, safe='/:-')) result['translationWords'][i]['occurances'] = occurs if ('translationWord' in tw): link = ('%s/translationwords?translation_word=%s' % (base_URL, tw['translationWord'])) result['translationWords'][i]['translationWordLink'] = urllib.parse.quote(link, safe='/:?=') return result
@app.get('/translationwords', status_code=200, tags=['READ', 'Translation Words']) def get_translationwords(translation_word: Optional[str]=None, bbbcccvvv: Optional[str]=Query(None, regex='^\\w\\w\\w\\d\\d\\d\\d\\d\\d'), skip: Optional[int]=None, limit: Optional[int]=None): ' Get the list of Translation word nodes and their property values.\n\tIf Translation word is sepcified, its properties and occurances are returned.\n\tIf Translation word is not present and bbbcccvvv(bbb- 3 letter bookcode, ccc- chapter number in 3 digits, vvv- verse number in 3 digits)\n\tis provided, lists all Translation words in that verse, with their property values and positions(as per Gree bible).\n\tIf neither of the first two query params are provided, it lists all the Translation words.\n\tNumber of items returned can be set using the skip and limit parameters.' result = {} try: if ((not translation_word) and (not bbbcccvvv)): query_res = graph_conn.query_data(all_tw_query, {'$dummy': }) elif translation_word: query_res = graph_conn.query_data(tw_link_query, {'$tw': translation_word}) logging.info(('query_res: %s' % query_res)) else: variables = {'$book': str(book_num_map[bbbcccvvv[:3].lower()]), '$chap': bbbcccvvv[3:6], '$ver': bbbcccvvv[(- 3):]} logging.info(('variables: %s' % variables)) query_res = graph_conn.query_data(tw_in_verse_query, variables) logging.info(('query_res: %s' % query_res)) except Exception as e: logging.error('At fetching translation words') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) logging.info(('skip: %s, limit %s' % (skip, limit))) if (not skip): skip = (- 1) if (not limit): limit = len(query_res['tw']) result['translationWords'] = query_res['tw'][(skip + 1):limit] for (i, tw) in enumerate(result['translationWords']): if ('occurances' in tw): occurs = [] for occur in tw['occurances']: verse_link = ('%s/bibles/%s/books/%s/chapters/%s/verses/%s/words/%s' % (base_URL, occur['bible'], num_book_map[occur['book']], occur['chapter'], occur['verse'], occur['position'])) occurs.append(urllib.parse.quote(verse_link, safe='/:-')) result['translationWords'][i]['occurances'] = occurs if ('translationWord' in tw): link = ('%s/translationwords?translation_word=%s' % (base_URL, tw['translationWord'])) result['translationWords'][i]['translationWordLink'] = urllib.parse.quote(link, safe='/:?=') return result<|docstring|>Get the list of Translation word nodes and their property values. If Translation word is sepcified, its properties and occurances are returned. If Translation word is not present and bbbcccvvv(bbb- 3 letter bookcode, ccc- chapter number in 3 digits, vvv- verse number in 3 digits) is provided, lists all Translation words in that verse, with their property values and positions(as per Gree bible). If neither of the first two query params are provided, it lists all the Translation words. Number of items returned can be set using the skip and limit parameters.<|endoftext|>
4f1e5226810a0776710c35ba2217c801e54f5e24ac2f5397b256e64934ed1a86
@app.put('/translationwords/{translation_word}', status_code=200, tags=['WRITE', 'Translation Words']) def edit_translationwords(translation_word: str, key_values: List[TwPropertyValue]=Body(...)): ' Update a property value of selected Translation word' logging.info(('input args translation_word: %s, key_values: %s' % (translation_word, key_values))) nquad = '' for prop in key_values: nquad += ('uid(u) <%s> "%s" .\n' % (prop.property.value, prop.value)) logging.info(('nquad: %s' % nquad)) try: graph_conn.upsert(query=tw_node_query, nquad=nquad, variables={'$tw': translation_word}) except Exception as e: logging.error('At editing translation word') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) raise HTTPException(status_code=503, detail='Not implemented properly. ')
Update a property value of selected Translation word
dgraph/dGraph_fastAPI_server.py
edit_translationwords
kavitharaju/vachan-graph
3
python
@app.put('/translationwords/{translation_word}', status_code=200, tags=['WRITE', 'Translation Words']) def edit_translationwords(translation_word: str, key_values: List[TwPropertyValue]=Body(...)): ' ' logging.info(('input args translation_word: %s, key_values: %s' % (translation_word, key_values))) nquad = for prop in key_values: nquad += ('uid(u) <%s> "%s" .\n' % (prop.property.value, prop.value)) logging.info(('nquad: %s' % nquad)) try: graph_conn.upsert(query=tw_node_query, nquad=nquad, variables={'$tw': translation_word}) except Exception as e: logging.error('At editing translation word') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) raise HTTPException(status_code=503, detail='Not implemented properly. ')
@app.put('/translationwords/{translation_word}', status_code=200, tags=['WRITE', 'Translation Words']) def edit_translationwords(translation_word: str, key_values: List[TwPropertyValue]=Body(...)): ' ' logging.info(('input args translation_word: %s, key_values: %s' % (translation_word, key_values))) nquad = for prop in key_values: nquad += ('uid(u) <%s> "%s" .\n' % (prop.property.value, prop.value)) logging.info(('nquad: %s' % nquad)) try: graph_conn.upsert(query=tw_node_query, nquad=nquad, variables={'$tw': translation_word}) except Exception as e: logging.error('At editing translation word') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) raise HTTPException(status_code=503, detail='Not implemented properly. ')<|docstring|>Update a property value of selected Translation word<|endoftext|>
7e049584c3634722bc4b4e5719bea7e8e793a62e739108d007cb23381ffdab8e
@app.post('/translationwords', status_code=201, tags=['WRITE', 'Translation Words']) def add_translationwords(): 'creates a translation word dictionary.\n\t Collects tw data from CSV file and adds to graph \n\t ' tw_path = 'Resources/translationWords/tws.csv' nodename = 'translation words' dict_node = {'dictionary': nodename, 'dgraph.type': 'DictionaryNode'} try: dict_node_uid = graph_conn.create_data(dict_node) except Exception as e: logging.error('At dict node creation') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) logging.info(('dict_node_uid:%s' % dict_node_uid)) count_for_test = 0 with open(tw_path) as csv_file: csv_reader = csv.reader(csv_file, delimiter='\t') for row in csv_reader: count_for_test += 1 sl_no = row[0] tw = row[1] Type = row[2] word_forms = row[3].split(',') description = row[4] tw_node = {'dgraph.type': 'TWNode', 'translationWord': tw, 'slNo': sl_no, 'twType': Type, 'description': description, 'belongsTo': {'uid': dict_node_uid}} if (len(word_forms) > 0): tw_node['wordForms'] = word_forms try: tw_node_uid = graph_conn.create_data(tw_node) except Exception as e: logging.error('At tw node creation') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) logging.info(('tw_node_uid:%s' % tw_node_uid)) return {'msg': 'Added to graph'}
creates a translation word dictionary. Collects tw data from CSV file and adds to graph
dgraph/dGraph_fastAPI_server.py
add_translationwords
kavitharaju/vachan-graph
3
python
@app.post('/translationwords', status_code=201, tags=['WRITE', 'Translation Words']) def add_translationwords(): 'creates a translation word dictionary.\n\t Collects tw data from CSV file and adds to graph \n\t ' tw_path = 'Resources/translationWords/tws.csv' nodename = 'translation words' dict_node = {'dictionary': nodename, 'dgraph.type': 'DictionaryNode'} try: dict_node_uid = graph_conn.create_data(dict_node) except Exception as e: logging.error('At dict node creation') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) logging.info(('dict_node_uid:%s' % dict_node_uid)) count_for_test = 0 with open(tw_path) as csv_file: csv_reader = csv.reader(csv_file, delimiter='\t') for row in csv_reader: count_for_test += 1 sl_no = row[0] tw = row[1] Type = row[2] word_forms = row[3].split(',') description = row[4] tw_node = {'dgraph.type': 'TWNode', 'translationWord': tw, 'slNo': sl_no, 'twType': Type, 'description': description, 'belongsTo': {'uid': dict_node_uid}} if (len(word_forms) > 0): tw_node['wordForms'] = word_forms try: tw_node_uid = graph_conn.create_data(tw_node) except Exception as e: logging.error('At tw node creation') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) logging.info(('tw_node_uid:%s' % tw_node_uid)) return {'msg': 'Added to graph'}
@app.post('/translationwords', status_code=201, tags=['WRITE', 'Translation Words']) def add_translationwords(): 'creates a translation word dictionary.\n\t Collects tw data from CSV file and adds to graph \n\t ' tw_path = 'Resources/translationWords/tws.csv' nodename = 'translation words' dict_node = {'dictionary': nodename, 'dgraph.type': 'DictionaryNode'} try: dict_node_uid = graph_conn.create_data(dict_node) except Exception as e: logging.error('At dict node creation') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) logging.info(('dict_node_uid:%s' % dict_node_uid)) count_for_test = 0 with open(tw_path) as csv_file: csv_reader = csv.reader(csv_file, delimiter='\t') for row in csv_reader: count_for_test += 1 sl_no = row[0] tw = row[1] Type = row[2] word_forms = row[3].split(',') description = row[4] tw_node = {'dgraph.type': 'TWNode', 'translationWord': tw, 'slNo': sl_no, 'twType': Type, 'description': description, 'belongsTo': {'uid': dict_node_uid}} if (len(word_forms) > 0): tw_node['wordForms'] = word_forms try: tw_node_uid = graph_conn.create_data(tw_node) except Exception as e: logging.error('At tw node creation') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) logging.info(('tw_node_uid:%s' % tw_node_uid)) return {'msg': 'Added to graph'}<|docstring|>creates a translation word dictionary. Collects tw data from CSV file and adds to graph<|endoftext|>
87d0fafdfc9813105a8499d3e9eaea8b2e7c4fc92017d8d5f9c58ea5e1b19c84
@app.get('/bibles', status_code=200, tags=['READ', 'Bible Contents']) def get_bibles(bible_name: Optional[str]=None, language: Optional[str]=None, skip: Optional[int]=None, limit: Optional[int]=None): ' fetches bibles nodes, properties and available books. \n\tIf no query params are given, all bibles in graph are fetched.\n\tIf bible_name is specified, only that node is returned.\n\tIf only language if given, all bible nodes, and details vavailable in that language is returned\n\tNumber of items returned can be set using the skip and limit parameters.\n\t' result = {} try: if ((not bible_name) and (not language)): query_res = graph_conn.query_data(all_bibles_query, {'$dummy': ''}) elif bible_name: query_res = graph_conn.query_data(bible_name_query, {'$bib': bible_name}) logging.info(('query_res: %s' % query_res)) else: query_res = graph_conn.query_data(bible_lang_query, {'$lang': language}) logging.info(('query_res: %s' % query_res)) except Exception as e: logging.error('At fetching Bibles') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) logging.info(('skip: %s, limit %s' % (skip, limit))) if (not skip): skip = (- 1) if (not limit): limit = len(query_res['bibles']) result['bibles'] = query_res['bibles'][(skip + 1):limit] return result
fetches bibles nodes, properties and available books. If no query params are given, all bibles in graph are fetched. If bible_name is specified, only that node is returned. If only language if given, all bible nodes, and details vavailable in that language is returned Number of items returned can be set using the skip and limit parameters.
dgraph/dGraph_fastAPI_server.py
get_bibles
kavitharaju/vachan-graph
3
python
@app.get('/bibles', status_code=200, tags=['READ', 'Bible Contents']) def get_bibles(bible_name: Optional[str]=None, language: Optional[str]=None, skip: Optional[int]=None, limit: Optional[int]=None): ' fetches bibles nodes, properties and available books. \n\tIf no query params are given, all bibles in graph are fetched.\n\tIf bible_name is specified, only that node is returned.\n\tIf only language if given, all bible nodes, and details vavailable in that language is returned\n\tNumber of items returned can be set using the skip and limit parameters.\n\t' result = {} try: if ((not bible_name) and (not language)): query_res = graph_conn.query_data(all_bibles_query, {'$dummy': }) elif bible_name: query_res = graph_conn.query_data(bible_name_query, {'$bib': bible_name}) logging.info(('query_res: %s' % query_res)) else: query_res = graph_conn.query_data(bible_lang_query, {'$lang': language}) logging.info(('query_res: %s' % query_res)) except Exception as e: logging.error('At fetching Bibles') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) logging.info(('skip: %s, limit %s' % (skip, limit))) if (not skip): skip = (- 1) if (not limit): limit = len(query_res['bibles']) result['bibles'] = query_res['bibles'][(skip + 1):limit] return result
@app.get('/bibles', status_code=200, tags=['READ', 'Bible Contents']) def get_bibles(bible_name: Optional[str]=None, language: Optional[str]=None, skip: Optional[int]=None, limit: Optional[int]=None): ' fetches bibles nodes, properties and available books. \n\tIf no query params are given, all bibles in graph are fetched.\n\tIf bible_name is specified, only that node is returned.\n\tIf only language if given, all bible nodes, and details vavailable in that language is returned\n\tNumber of items returned can be set using the skip and limit parameters.\n\t' result = {} try: if ((not bible_name) and (not language)): query_res = graph_conn.query_data(all_bibles_query, {'$dummy': }) elif bible_name: query_res = graph_conn.query_data(bible_name_query, {'$bib': bible_name}) logging.info(('query_res: %s' % query_res)) else: query_res = graph_conn.query_data(bible_lang_query, {'$lang': language}) logging.info(('query_res: %s' % query_res)) except Exception as e: logging.error('At fetching Bibles') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) logging.info(('skip: %s, limit %s' % (skip, limit))) if (not skip): skip = (- 1) if (not limit): limit = len(query_res['bibles']) result['bibles'] = query_res['bibles'][(skip + 1):limit] return result<|docstring|>fetches bibles nodes, properties and available books. If no query params are given, all bibles in graph are fetched. If bible_name is specified, only that node is returned. If only language if given, all bible nodes, and details vavailable in that language is returned Number of items returned can be set using the skip and limit parameters.<|endoftext|>
2fb834d1bb79d1cce7c674b73d61da90eb6ab8a043e0a5530ab3868a4ff81e08
@app.put('/bibles/{bible_name}', status_code=200, tags=['WRITE', 'Bible Contents']) def edit_bible(bible_name: str, key_values: List[BiblePropertyValue]): ' Update a property value of selected bible node' logging.info(('input args bible_name: %s, key_values: %s' % (bible_name, key_values))) nquad = '' for prop in key_values: nquad += ('uid(u) <%s> "%s" .\n' % (prop.property.value, prop.value)) logging.info(('nquad: %s' % nquad)) try: graph_conn.upsert(query=bible_node_query, nquad=nquad, variables={'$bib': bible_name}) except Exception as e: logging.error('At editing Bible ') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) raise HTTPException(status_code=503, detail='Not implemented properly. ')
Update a property value of selected bible node
dgraph/dGraph_fastAPI_server.py
edit_bible
kavitharaju/vachan-graph
3
python
@app.put('/bibles/{bible_name}', status_code=200, tags=['WRITE', 'Bible Contents']) def edit_bible(bible_name: str, key_values: List[BiblePropertyValue]): ' ' logging.info(('input args bible_name: %s, key_values: %s' % (bible_name, key_values))) nquad = for prop in key_values: nquad += ('uid(u) <%s> "%s" .\n' % (prop.property.value, prop.value)) logging.info(('nquad: %s' % nquad)) try: graph_conn.upsert(query=bible_node_query, nquad=nquad, variables={'$bib': bible_name}) except Exception as e: logging.error('At editing Bible ') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) raise HTTPException(status_code=503, detail='Not implemented properly. ')
@app.put('/bibles/{bible_name}', status_code=200, tags=['WRITE', 'Bible Contents']) def edit_bible(bible_name: str, key_values: List[BiblePropertyValue]): ' ' logging.info(('input args bible_name: %s, key_values: %s' % (bible_name, key_values))) nquad = for prop in key_values: nquad += ('uid(u) <%s> "%s" .\n' % (prop.property.value, prop.value)) logging.info(('nquad: %s' % nquad)) try: graph_conn.upsert(query=bible_node_query, nquad=nquad, variables={'$bib': bible_name}) except Exception as e: logging.error('At editing Bible ') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) raise HTTPException(status_code=503, detail='Not implemented properly. ')<|docstring|>Update a property value of selected bible node<|endoftext|>
fdcf295d22e97ec44af1e98b35983cc96022078aa74b31cc6f87c6a5cc6e594c
def normalize_unicode(text, form='NFKC'): 'to normalize text contents before adding them to DB' return unicodedata.normalize(form, text)
to normalize text contents before adding them to DB
dgraph/dGraph_fastAPI_server.py
normalize_unicode
kavitharaju/vachan-graph
3
python
def normalize_unicode(text, form='NFKC'): return unicodedata.normalize(form, text)
def normalize_unicode(text, form='NFKC'): return unicodedata.normalize(form, text)<|docstring|>to normalize text contents before adding them to DB<|endoftext|>
3652a01ef2cf11d971aee0745601deff14dda0bf6d72b4e662c62d03a52ee60a
def parse_usfm(usfm_string): 'converts an uploaded usfm text to a JSON using usfm-grammar' if isinstance(usfm_string, bytes): usfm_string = usfm_string.decode('UTF-8') file = open('temp.usfm', 'w') file.write(usfm_string) file.close() process = subprocess.Popen(['/usr/bin/usfm-grammar temp.usfm --level=relaxed --filter=scripture'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) (stdout, stderr) = process.communicate() if stderr: raise Exception(stderr.decode('utf-8')) usfm_json = json.loads(stdout.decode('utf-8')) return usfm_json
converts an uploaded usfm text to a JSON using usfm-grammar
dgraph/dGraph_fastAPI_server.py
parse_usfm
kavitharaju/vachan-graph
3
python
def parse_usfm(usfm_string): if isinstance(usfm_string, bytes): usfm_string = usfm_string.decode('UTF-8') file = open('temp.usfm', 'w') file.write(usfm_string) file.close() process = subprocess.Popen(['/usr/bin/usfm-grammar temp.usfm --level=relaxed --filter=scripture'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) (stdout, stderr) = process.communicate() if stderr: raise Exception(stderr.decode('utf-8')) usfm_json = json.loads(stdout.decode('utf-8')) return usfm_json
def parse_usfm(usfm_string): if isinstance(usfm_string, bytes): usfm_string = usfm_string.decode('UTF-8') file = open('temp.usfm', 'w') file.write(usfm_string) file.close() process = subprocess.Popen(['/usr/bin/usfm-grammar temp.usfm --level=relaxed --filter=scripture'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) (stdout, stderr) = process.communicate() if stderr: raise Exception(stderr.decode('utf-8')) usfm_json = json.loads(stdout.decode('utf-8')) return usfm_json<|docstring|>converts an uploaded usfm text to a JSON using usfm-grammar<|endoftext|>
6ca0d162616850ad7ebc91af95576e59ac63067acff90bb3a1a1646cc72b4a6e
@app.post('/bibles/usfm', status_code=200, tags=['WRITE', 'Bible Contents']) def add_bible_usfm(bible_name: str=Body('Hindi IRV4 bible'), language: str=Body('Hindi'), version: str=Body('IRV4'), usfm_file: UploadFile=File(...)): 'Processes the usfm and adds contents to corresponding bible(creates new bible if not present already)' usfm = usfm_file.file.read() connect_Graph() try: bibNode_query_res = graph_conn.query_data(bible_uid_query, {'$bib': bible_name}) except Exception as e: logging.error('At fetching Bible uid') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) if (len(bibNode_query_res['bible']) == 0): bib_node = {'dgraph.type': 'BibleNode', 'bible': bible_name, 'language': language, 'version': str(version)} try: bib_node_uid = graph_conn.create_data(bib_node) logging.info(('bib_node_uid: %s' % bib_node_uid)) except Exception as e: logging.error('At creating Bible node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) elif (len(bibNode_query_res['bible']) > 1): logging.error('At fetching Bible uid') logging.error('matched multiple bible nodes') raise HTTPException(status_code=500, detail=('Graph side error. ' + ' matched multiple bible nodes')) else: bib_node_uid = bibNode_query_res['bible'][0]['uid'] book_json = parse_usfm(usfm) book_code = book_json['book']['bookCode'].upper() book_num = book_num_map[book_code.upper()] variables = {'$bib': bib_node_uid, '$book': book_code} try: bookNode_query_res = graph_conn.query_data(bookNode_query, variables) except Exception as e: logging.error('At fetching book node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) if (len(bookNode_query_res['book']) == 0): bookNode = {'dgraph.type': 'BookNode', 'book': book_code, 'bookNumber': book_num, 'belongsTo': {'uid': bib_node_uid}} try: bookNode_uid = graph_conn.create_data(bookNode) except Exception as e: logging.error('At creating book node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) elif (len(bookNode_query_res['book']) > 1): logging.error('At fetching book node') logging.error('Matched multiple book nodes') raise HTTPException(status_code=500, detail='Graph side error. Matched multiple book nodes') else: bookNode_uid = bookNode_query_res['book'][0]['uid'] for chapter in book_json['chapters']: chapter_num = chapter['chapterNumber'] variables = {'$book': bookNode_uid, '$chap': str(chapter_num)} try: chapNode_query_res = graph_conn.query_data(chapNode_query, variables) except Exception as e: logging.error('At fetching chapter node') logging.error(e) raise HTTPException(status_code=500, detail=('Graph side error. ' + str(e))) if (len(chapNode_query_res['chapter']) == 0): chapNode = {'dgraph.type': 'ChapterNode', 'chapter': chapter_num, 'belongsTo': {'uid': bookNode_uid}} try: chapNode_uid = graph_conn.create_data(chapNode) except Exception as e: logging.error('At creating chapter node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) elif (len(chapNode_query_res['chapter']) > 1): logging.error('At fetching chapter node') logging.error('Matched multiple chapter nodes') raise HTTPException(status_code=500, detail='Graph side error. Matched multiple chapter nodes') else: chapNode_uid = chapNode_query_res['chapter'][0]['uid'] for content in chapter['contents']: if ('verseNumber' in content): verse_num = content['verseNumber'] verse_text = content['verseText'] ref_string = ((((book_code + ' ') + str(chapter_num)) + ':') + str(verse_num)) variables = {'$chapter': chapNode_uid, '$verse': str(verse_num)} try: verseNode_query_res = graph_conn.query_data(verseNode_query, variables) except Exception as e: logging.error('At fetching verse node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) if (len(verseNode_query_res['verse']) == 0): verseNode = {'dgraph.type': 'VerseNode', 'verse': verse_num, 'refString': ref_string, 'verseText': verse_text, 'belongsTo': {'uid': chapNode_uid}} try: verseNode_uid = graph_conn.create_data(verseNode) except Exception as e: logging.error('At creating verse node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) elif (len(verseNode_query_res['verse']) > 1): logging.error('At creating chapter node') logging.error('Matched multiple verse nodes') raise HTTPException(status_code=500, detail='Graph side error. Matched multiple verse nodes') else: verseNode_uid = verseNode_query_res['verse'][0]['uid'] clean_text = re.sub(punct_pattern, ' ', verse_text) words = re.split('\\s+', clean_text) for (i, word) in enumerate(words): wordNode = {'dgraph.type': 'WordNode', 'word': word, 'belongsTo': {'uid': verseNode_uid}, 'position': i} try: wordNode_uid = graph_conn.create_data(wordNode) except Exception as e: logging.error('At creating word node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) logging.info(('wordNode_uid:%s' % wordNode_uid)) return {'message': 'usfm added'}
Processes the usfm and adds contents to corresponding bible(creates new bible if not present already)
dgraph/dGraph_fastAPI_server.py
add_bible_usfm
kavitharaju/vachan-graph
3
python
@app.post('/bibles/usfm', status_code=200, tags=['WRITE', 'Bible Contents']) def add_bible_usfm(bible_name: str=Body('Hindi IRV4 bible'), language: str=Body('Hindi'), version: str=Body('IRV4'), usfm_file: UploadFile=File(...)): usfm = usfm_file.file.read() connect_Graph() try: bibNode_query_res = graph_conn.query_data(bible_uid_query, {'$bib': bible_name}) except Exception as e: logging.error('At fetching Bible uid') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) if (len(bibNode_query_res['bible']) == 0): bib_node = {'dgraph.type': 'BibleNode', 'bible': bible_name, 'language': language, 'version': str(version)} try: bib_node_uid = graph_conn.create_data(bib_node) logging.info(('bib_node_uid: %s' % bib_node_uid)) except Exception as e: logging.error('At creating Bible node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) elif (len(bibNode_query_res['bible']) > 1): logging.error('At fetching Bible uid') logging.error('matched multiple bible nodes') raise HTTPException(status_code=500, detail=('Graph side error. ' + ' matched multiple bible nodes')) else: bib_node_uid = bibNode_query_res['bible'][0]['uid'] book_json = parse_usfm(usfm) book_code = book_json['book']['bookCode'].upper() book_num = book_num_map[book_code.upper()] variables = {'$bib': bib_node_uid, '$book': book_code} try: bookNode_query_res = graph_conn.query_data(bookNode_query, variables) except Exception as e: logging.error('At fetching book node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) if (len(bookNode_query_res['book']) == 0): bookNode = {'dgraph.type': 'BookNode', 'book': book_code, 'bookNumber': book_num, 'belongsTo': {'uid': bib_node_uid}} try: bookNode_uid = graph_conn.create_data(bookNode) except Exception as e: logging.error('At creating book node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) elif (len(bookNode_query_res['book']) > 1): logging.error('At fetching book node') logging.error('Matched multiple book nodes') raise HTTPException(status_code=500, detail='Graph side error. Matched multiple book nodes') else: bookNode_uid = bookNode_query_res['book'][0]['uid'] for chapter in book_json['chapters']: chapter_num = chapter['chapterNumber'] variables = {'$book': bookNode_uid, '$chap': str(chapter_num)} try: chapNode_query_res = graph_conn.query_data(chapNode_query, variables) except Exception as e: logging.error('At fetching chapter node') logging.error(e) raise HTTPException(status_code=500, detail=('Graph side error. ' + str(e))) if (len(chapNode_query_res['chapter']) == 0): chapNode = {'dgraph.type': 'ChapterNode', 'chapter': chapter_num, 'belongsTo': {'uid': bookNode_uid}} try: chapNode_uid = graph_conn.create_data(chapNode) except Exception as e: logging.error('At creating chapter node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) elif (len(chapNode_query_res['chapter']) > 1): logging.error('At fetching chapter node') logging.error('Matched multiple chapter nodes') raise HTTPException(status_code=500, detail='Graph side error. Matched multiple chapter nodes') else: chapNode_uid = chapNode_query_res['chapter'][0]['uid'] for content in chapter['contents']: if ('verseNumber' in content): verse_num = content['verseNumber'] verse_text = content['verseText'] ref_string = ((((book_code + ' ') + str(chapter_num)) + ':') + str(verse_num)) variables = {'$chapter': chapNode_uid, '$verse': str(verse_num)} try: verseNode_query_res = graph_conn.query_data(verseNode_query, variables) except Exception as e: logging.error('At fetching verse node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) if (len(verseNode_query_res['verse']) == 0): verseNode = {'dgraph.type': 'VerseNode', 'verse': verse_num, 'refString': ref_string, 'verseText': verse_text, 'belongsTo': {'uid': chapNode_uid}} try: verseNode_uid = graph_conn.create_data(verseNode) except Exception as e: logging.error('At creating verse node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) elif (len(verseNode_query_res['verse']) > 1): logging.error('At creating chapter node') logging.error('Matched multiple verse nodes') raise HTTPException(status_code=500, detail='Graph side error. Matched multiple verse nodes') else: verseNode_uid = verseNode_query_res['verse'][0]['uid'] clean_text = re.sub(punct_pattern, ' ', verse_text) words = re.split('\\s+', clean_text) for (i, word) in enumerate(words): wordNode = {'dgraph.type': 'WordNode', 'word': word, 'belongsTo': {'uid': verseNode_uid}, 'position': i} try: wordNode_uid = graph_conn.create_data(wordNode) except Exception as e: logging.error('At creating word node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) logging.info(('wordNode_uid:%s' % wordNode_uid)) return {'message': 'usfm added'}
@app.post('/bibles/usfm', status_code=200, tags=['WRITE', 'Bible Contents']) def add_bible_usfm(bible_name: str=Body('Hindi IRV4 bible'), language: str=Body('Hindi'), version: str=Body('IRV4'), usfm_file: UploadFile=File(...)): usfm = usfm_file.file.read() connect_Graph() try: bibNode_query_res = graph_conn.query_data(bible_uid_query, {'$bib': bible_name}) except Exception as e: logging.error('At fetching Bible uid') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) if (len(bibNode_query_res['bible']) == 0): bib_node = {'dgraph.type': 'BibleNode', 'bible': bible_name, 'language': language, 'version': str(version)} try: bib_node_uid = graph_conn.create_data(bib_node) logging.info(('bib_node_uid: %s' % bib_node_uid)) except Exception as e: logging.error('At creating Bible node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) elif (len(bibNode_query_res['bible']) > 1): logging.error('At fetching Bible uid') logging.error('matched multiple bible nodes') raise HTTPException(status_code=500, detail=('Graph side error. ' + ' matched multiple bible nodes')) else: bib_node_uid = bibNode_query_res['bible'][0]['uid'] book_json = parse_usfm(usfm) book_code = book_json['book']['bookCode'].upper() book_num = book_num_map[book_code.upper()] variables = {'$bib': bib_node_uid, '$book': book_code} try: bookNode_query_res = graph_conn.query_data(bookNode_query, variables) except Exception as e: logging.error('At fetching book node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) if (len(bookNode_query_res['book']) == 0): bookNode = {'dgraph.type': 'BookNode', 'book': book_code, 'bookNumber': book_num, 'belongsTo': {'uid': bib_node_uid}} try: bookNode_uid = graph_conn.create_data(bookNode) except Exception as e: logging.error('At creating book node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) elif (len(bookNode_query_res['book']) > 1): logging.error('At fetching book node') logging.error('Matched multiple book nodes') raise HTTPException(status_code=500, detail='Graph side error. Matched multiple book nodes') else: bookNode_uid = bookNode_query_res['book'][0]['uid'] for chapter in book_json['chapters']: chapter_num = chapter['chapterNumber'] variables = {'$book': bookNode_uid, '$chap': str(chapter_num)} try: chapNode_query_res = graph_conn.query_data(chapNode_query, variables) except Exception as e: logging.error('At fetching chapter node') logging.error(e) raise HTTPException(status_code=500, detail=('Graph side error. ' + str(e))) if (len(chapNode_query_res['chapter']) == 0): chapNode = {'dgraph.type': 'ChapterNode', 'chapter': chapter_num, 'belongsTo': {'uid': bookNode_uid}} try: chapNode_uid = graph_conn.create_data(chapNode) except Exception as e: logging.error('At creating chapter node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) elif (len(chapNode_query_res['chapter']) > 1): logging.error('At fetching chapter node') logging.error('Matched multiple chapter nodes') raise HTTPException(status_code=500, detail='Graph side error. Matched multiple chapter nodes') else: chapNode_uid = chapNode_query_res['chapter'][0]['uid'] for content in chapter['contents']: if ('verseNumber' in content): verse_num = content['verseNumber'] verse_text = content['verseText'] ref_string = ((((book_code + ' ') + str(chapter_num)) + ':') + str(verse_num)) variables = {'$chapter': chapNode_uid, '$verse': str(verse_num)} try: verseNode_query_res = graph_conn.query_data(verseNode_query, variables) except Exception as e: logging.error('At fetching verse node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) if (len(verseNode_query_res['verse']) == 0): verseNode = {'dgraph.type': 'VerseNode', 'verse': verse_num, 'refString': ref_string, 'verseText': verse_text, 'belongsTo': {'uid': chapNode_uid}} try: verseNode_uid = graph_conn.create_data(verseNode) except Exception as e: logging.error('At creating verse node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) elif (len(verseNode_query_res['verse']) > 1): logging.error('At creating chapter node') logging.error('Matched multiple verse nodes') raise HTTPException(status_code=500, detail='Graph side error. Matched multiple verse nodes') else: verseNode_uid = verseNode_query_res['verse'][0]['uid'] clean_text = re.sub(punct_pattern, ' ', verse_text) words = re.split('\\s+', clean_text) for (i, word) in enumerate(words): wordNode = {'dgraph.type': 'WordNode', 'word': word, 'belongsTo': {'uid': verseNode_uid}, 'position': i} try: wordNode_uid = graph_conn.create_data(wordNode) except Exception as e: logging.error('At creating word node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) logging.info(('wordNode_uid:%s' % wordNode_uid)) return {'message': 'usfm added'}<|docstring|>Processes the usfm and adds contents to corresponding bible(creates new bible if not present already)<|endoftext|>
c7de5a8e6ff9b3d8adea3622992741e8aa07c2689499832c72ea1983077bd03d
@app.post('/bibles', status_code=200, tags=['WRITE', 'Bible Contents']) def add_bible(bible_name: str=Body('Hindi IRV4 bible'), language: str=Body('Hindi'), version: str=Body('IRV4'), tablename: str=Body('Hin_IRV4_BibleWord'), bookcode: BibleBook=Body(BibleBook.mat)): ' create a bible node, fetches contents from specified table in MySQL DB and adds to Graph.\n\tCurrently the API is implemented to add only one book at a time. \n\tThis is due to the amount of time required.' try: bibNode_query_res = graph_conn.query_data(bible_uid_query, {'$bib': bible_name}) except Exception as e: logging.error('At fetching Bible uid') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) if (len(bibNode_query_res['bible']) == 0): bib_node = {'dgraph.type': 'BibleNode', 'bible': bible_name, 'language': language, 'version': str(version)} try: bib_node_uid = graph_conn.create_data(bib_node) logging.info(('bib_node_uid: %s' % bib_node_uid)) except Exception as e: logging.error('At creating Bible node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) elif (len(bibNode_query_res['bible']) > 1): logging.error('At fetching Bible uid') logging.error('matched multiple bible nodes') raise HTTPException(status_code=500, detail=('Graph side error. ' + ' matched multiple bible nodes')) else: bib_node_uid = bibNode_query_res['bible'][0]['uid'] try: db = pymysql.connect(host='localhost', database=rel_db_name, user='root', password='password', charset='utf8mb4') cursor = db.cursor(pymysql.cursors.SSCursor) except Exception as e: logging.error('At connecting to MYSQL') logging.error(e) raise HTTPException(status_code=502, detail=('MySQL side error. ' + str(e))) try: if (bible_name == 'Grk UGNT4 bible'): Morph_sequence = ['Role', 'Type', 'Mood', 'Tense', 'Voice', 'Person', 'Case', 'Gender', 'Number', 'Degree'] cursor.execute((('Select LID, Position, Word, Map.Book, Chapter, Verse,lookup.Book, Strongs, Morph, Pronunciation, TW, lookup.Code from ' + tablename) + ' JOIN Bcv_LidMap as Map ON LID=Map.ID JOIN Bible_Book_Lookup as lookup ON lookup.ID=Map.Book where lookup.ID = %s order by LID, Position'), book_num_map[bookcode.value]) else: cursor.execute((('Select LID, Position, Word, Map.Book, Chapter, Verse,lookup.Book, lookup.Code from ' + tablename) + ' JOIN Bcv_LidMap as Map ON LID=Map.ID JOIN Bible_Book_Lookup as lookup ON lookup.ID=Map.Book where lookup.ID=%s order by LID, Position'), book_num_map[bookcode.value]) except Exception as e: logging.error('At fetching data from MYSQL') logging.error(e) raise HTTPException(status_code=502, detail=('MySQL side error. ' + str(e))) count_for_test = 0 chapNode = None while True: next_row = cursor.fetchone() if (not next_row): break count_for_test += 1 LID = next_row[0] Position = next_row[1] Word = next_row[2] BookNum = next_row[3] Chapter = next_row[4] Verse = next_row[5] BookName = next_row[6] book_code = next_row[(- 1)] if (bible_name == 'Grk UGNT4 bible'): Strongs = next_row[7] Morph = next_row[8].split(',') Pronunciation = next_row[9] TW_fullString = next_row[10] logging.info(((((('Book,Chapter,Verse:' + str(BookNum)) + ',') + str(Chapter)) + ',') + str(Verse))) variables = {'$bib': bib_node_uid, '$book': BookName} try: bookNode_query_res = graph_conn.query_data(bookNode_query, variables) except Exception as e: logging.error('At fetching book node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) if (len(bookNode_query_res['book']) == 0): bookNode = {'dgraph.type': 'BookNode', 'book': BookName, 'bookNumber': BookNum, 'belongsTo': {'uid': bib_node_uid}} try: bookNode_uid = graph_conn.create_data(bookNode) except Exception as e: logging.error('At creating book node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) elif (len(bookNode_query_res['book']) > 1): logging.error('At fetching book node') logging.error('Matched multiple book nodes') raise HTTPException(status_code=500, detail='Graph side error. Matched multiple book nodes') else: bookNode_uid = bookNode_query_res['book'][0]['uid'] variables = {'$book': bookNode_uid, '$chap': str(Chapter)} try: chapNode_query_res = graph_conn.query_data(chapNode_query, variables) except Exception as e: logging.error('At fetching chapter node') logging.error(e) raise HTTPException(status_code=500, detail=('Graph side error. ' + str(e))) if (len(chapNode_query_res['chapter']) == 0): chapNode = {'dgraph.type': 'ChapterNode', 'chapter': Chapter, 'belongsTo': {'uid': bookNode_uid}} try: chapNode_uid = graph_conn.create_data(chapNode) except Exception as e: logging.error('At creating chapter node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) elif (len(chapNode_query_res['chapter']) > 1): logging.error('At fetching chapter node') logging.error('Matched multiple chapter nodes') raise HTTPException(status_code=500, detail='Graph side error. Matched multiple chapter nodes') else: chapNode_uid = chapNode_query_res['chapter'][0]['uid'] variables = {'$chapter': chapNode_uid, '$verse': str(Verse)} try: verseNode_query_res = graph_conn.query_data(verseNode_query, variables) except Exception as e: logging.error('At fetching verse node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) if (len(verseNode_query_res['verse']) == 0): verseNode = {'dgraph.type': 'VerseNode', 'verse': Verse, 'refString': ((((book_code + ' ') + str(Chapter)) + ':') + str(Verse)), 'belongsTo': {'uid': chapNode_uid}, 'lid': LID} try: verseNode_uid = graph_conn.create_data(verseNode) except Exception as e: logging.error('At creating verse node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) elif (len(verseNode_query_res['verse']) > 1): logging.error('At creating chapter node') logging.error('Matched multiple verse nodes') raise HTTPException(status_code=500, detail='Graph side error. Matched multiple verse nodes') else: verseNode_uid = verseNode_query_res['verse'][0]['uid'] wordNode = {'dgraph.type': 'WordNode', 'word': Word, 'belongsTo': {'uid': verseNode_uid}, 'position': Position} if (bible_name == 'Grk UGNT4 bible'): wordNode['pronunciation'] = Pronunciation for (key, value) in zip(Morph_sequence, Morph): if (value != ''): wordNode[key] = value variables = {'$strongnum': str(Strongs)} try: strongNode_query_res = graph_conn.query_data(strongNode_query, variables) except Exception as e: logging.error('At fetching strong node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) logging.info('strongNode_query_res:', strongNode_query_res) if (len(strongNode_query_res['strongs']) > 0): strongNode_uid = strongNode_query_res['strongs'][0]['uid'] wordNode['strongsLink'] = {'uid': strongNode_uid} if (TW_fullString != '-'): (Type, word) = TW_fullString.split('/')[(- 2):] variables = {'$word': word} try: twNode_query_res = graph_conn.query_data(twNode_query, variables) except Exception as e: logging.error('At fetching tw node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) if (len(twNode_query_res['tw']) > 0): twNode_uid = twNode_query_res['tw'][0]['uid'] wordNode['twLink'] = {'uid': twNode_uid} try: wordNode_uid = graph_conn.create_data(wordNode) except Exception as e: logging.error('At creating word node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) logging.info(('wordNode_uid:%s' % wordNode_uid)) cursor.close() db.close() text_tablename = tablename.replace('BibleWord', 'Text') if (text_tablename == 'Grk_UGNT4_Text'): text_tablename = 'Grk_UGNT_Text' add_verseTextToBible(bib_node_uid, text_tablename, bookcode.value) return {'msg': ('Added %s in %s' % (bookcode, bible_name))}
create a bible node, fetches contents from specified table in MySQL DB and adds to Graph. Currently the API is implemented to add only one book at a time. This is due to the amount of time required.
dgraph/dGraph_fastAPI_server.py
add_bible
kavitharaju/vachan-graph
3
python
@app.post('/bibles', status_code=200, tags=['WRITE', 'Bible Contents']) def add_bible(bible_name: str=Body('Hindi IRV4 bible'), language: str=Body('Hindi'), version: str=Body('IRV4'), tablename: str=Body('Hin_IRV4_BibleWord'), bookcode: BibleBook=Body(BibleBook.mat)): ' create a bible node, fetches contents from specified table in MySQL DB and adds to Graph.\n\tCurrently the API is implemented to add only one book at a time. \n\tThis is due to the amount of time required.' try: bibNode_query_res = graph_conn.query_data(bible_uid_query, {'$bib': bible_name}) except Exception as e: logging.error('At fetching Bible uid') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) if (len(bibNode_query_res['bible']) == 0): bib_node = {'dgraph.type': 'BibleNode', 'bible': bible_name, 'language': language, 'version': str(version)} try: bib_node_uid = graph_conn.create_data(bib_node) logging.info(('bib_node_uid: %s' % bib_node_uid)) except Exception as e: logging.error('At creating Bible node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) elif (len(bibNode_query_res['bible']) > 1): logging.error('At fetching Bible uid') logging.error('matched multiple bible nodes') raise HTTPException(status_code=500, detail=('Graph side error. ' + ' matched multiple bible nodes')) else: bib_node_uid = bibNode_query_res['bible'][0]['uid'] try: db = pymysql.connect(host='localhost', database=rel_db_name, user='root', password='password', charset='utf8mb4') cursor = db.cursor(pymysql.cursors.SSCursor) except Exception as e: logging.error('At connecting to MYSQL') logging.error(e) raise HTTPException(status_code=502, detail=('MySQL side error. ' + str(e))) try: if (bible_name == 'Grk UGNT4 bible'): Morph_sequence = ['Role', 'Type', 'Mood', 'Tense', 'Voice', 'Person', 'Case', 'Gender', 'Number', 'Degree'] cursor.execute((('Select LID, Position, Word, Map.Book, Chapter, Verse,lookup.Book, Strongs, Morph, Pronunciation, TW, lookup.Code from ' + tablename) + ' JOIN Bcv_LidMap as Map ON LID=Map.ID JOIN Bible_Book_Lookup as lookup ON lookup.ID=Map.Book where lookup.ID = %s order by LID, Position'), book_num_map[bookcode.value]) else: cursor.execute((('Select LID, Position, Word, Map.Book, Chapter, Verse,lookup.Book, lookup.Code from ' + tablename) + ' JOIN Bcv_LidMap as Map ON LID=Map.ID JOIN Bible_Book_Lookup as lookup ON lookup.ID=Map.Book where lookup.ID=%s order by LID, Position'), book_num_map[bookcode.value]) except Exception as e: logging.error('At fetching data from MYSQL') logging.error(e) raise HTTPException(status_code=502, detail=('MySQL side error. ' + str(e))) count_for_test = 0 chapNode = None while True: next_row = cursor.fetchone() if (not next_row): break count_for_test += 1 LID = next_row[0] Position = next_row[1] Word = next_row[2] BookNum = next_row[3] Chapter = next_row[4] Verse = next_row[5] BookName = next_row[6] book_code = next_row[(- 1)] if (bible_name == 'Grk UGNT4 bible'): Strongs = next_row[7] Morph = next_row[8].split(',') Pronunciation = next_row[9] TW_fullString = next_row[10] logging.info(((((('Book,Chapter,Verse:' + str(BookNum)) + ',') + str(Chapter)) + ',') + str(Verse))) variables = {'$bib': bib_node_uid, '$book': BookName} try: bookNode_query_res = graph_conn.query_data(bookNode_query, variables) except Exception as e: logging.error('At fetching book node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) if (len(bookNode_query_res['book']) == 0): bookNode = {'dgraph.type': 'BookNode', 'book': BookName, 'bookNumber': BookNum, 'belongsTo': {'uid': bib_node_uid}} try: bookNode_uid = graph_conn.create_data(bookNode) except Exception as e: logging.error('At creating book node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) elif (len(bookNode_query_res['book']) > 1): logging.error('At fetching book node') logging.error('Matched multiple book nodes') raise HTTPException(status_code=500, detail='Graph side error. Matched multiple book nodes') else: bookNode_uid = bookNode_query_res['book'][0]['uid'] variables = {'$book': bookNode_uid, '$chap': str(Chapter)} try: chapNode_query_res = graph_conn.query_data(chapNode_query, variables) except Exception as e: logging.error('At fetching chapter node') logging.error(e) raise HTTPException(status_code=500, detail=('Graph side error. ' + str(e))) if (len(chapNode_query_res['chapter']) == 0): chapNode = {'dgraph.type': 'ChapterNode', 'chapter': Chapter, 'belongsTo': {'uid': bookNode_uid}} try: chapNode_uid = graph_conn.create_data(chapNode) except Exception as e: logging.error('At creating chapter node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) elif (len(chapNode_query_res['chapter']) > 1): logging.error('At fetching chapter node') logging.error('Matched multiple chapter nodes') raise HTTPException(status_code=500, detail='Graph side error. Matched multiple chapter nodes') else: chapNode_uid = chapNode_query_res['chapter'][0]['uid'] variables = {'$chapter': chapNode_uid, '$verse': str(Verse)} try: verseNode_query_res = graph_conn.query_data(verseNode_query, variables) except Exception as e: logging.error('At fetching verse node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) if (len(verseNode_query_res['verse']) == 0): verseNode = {'dgraph.type': 'VerseNode', 'verse': Verse, 'refString': ((((book_code + ' ') + str(Chapter)) + ':') + str(Verse)), 'belongsTo': {'uid': chapNode_uid}, 'lid': LID} try: verseNode_uid = graph_conn.create_data(verseNode) except Exception as e: logging.error('At creating verse node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) elif (len(verseNode_query_res['verse']) > 1): logging.error('At creating chapter node') logging.error('Matched multiple verse nodes') raise HTTPException(status_code=500, detail='Graph side error. Matched multiple verse nodes') else: verseNode_uid = verseNode_query_res['verse'][0]['uid'] wordNode = {'dgraph.type': 'WordNode', 'word': Word, 'belongsTo': {'uid': verseNode_uid}, 'position': Position} if (bible_name == 'Grk UGNT4 bible'): wordNode['pronunciation'] = Pronunciation for (key, value) in zip(Morph_sequence, Morph): if (value != ): wordNode[key] = value variables = {'$strongnum': str(Strongs)} try: strongNode_query_res = graph_conn.query_data(strongNode_query, variables) except Exception as e: logging.error('At fetching strong node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) logging.info('strongNode_query_res:', strongNode_query_res) if (len(strongNode_query_res['strongs']) > 0): strongNode_uid = strongNode_query_res['strongs'][0]['uid'] wordNode['strongsLink'] = {'uid': strongNode_uid} if (TW_fullString != '-'): (Type, word) = TW_fullString.split('/')[(- 2):] variables = {'$word': word} try: twNode_query_res = graph_conn.query_data(twNode_query, variables) except Exception as e: logging.error('At fetching tw node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) if (len(twNode_query_res['tw']) > 0): twNode_uid = twNode_query_res['tw'][0]['uid'] wordNode['twLink'] = {'uid': twNode_uid} try: wordNode_uid = graph_conn.create_data(wordNode) except Exception as e: logging.error('At creating word node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) logging.info(('wordNode_uid:%s' % wordNode_uid)) cursor.close() db.close() text_tablename = tablename.replace('BibleWord', 'Text') if (text_tablename == 'Grk_UGNT4_Text'): text_tablename = 'Grk_UGNT_Text' add_verseTextToBible(bib_node_uid, text_tablename, bookcode.value) return {'msg': ('Added %s in %s' % (bookcode, bible_name))}
@app.post('/bibles', status_code=200, tags=['WRITE', 'Bible Contents']) def add_bible(bible_name: str=Body('Hindi IRV4 bible'), language: str=Body('Hindi'), version: str=Body('IRV4'), tablename: str=Body('Hin_IRV4_BibleWord'), bookcode: BibleBook=Body(BibleBook.mat)): ' create a bible node, fetches contents from specified table in MySQL DB and adds to Graph.\n\tCurrently the API is implemented to add only one book at a time. \n\tThis is due to the amount of time required.' try: bibNode_query_res = graph_conn.query_data(bible_uid_query, {'$bib': bible_name}) except Exception as e: logging.error('At fetching Bible uid') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) if (len(bibNode_query_res['bible']) == 0): bib_node = {'dgraph.type': 'BibleNode', 'bible': bible_name, 'language': language, 'version': str(version)} try: bib_node_uid = graph_conn.create_data(bib_node) logging.info(('bib_node_uid: %s' % bib_node_uid)) except Exception as e: logging.error('At creating Bible node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) elif (len(bibNode_query_res['bible']) > 1): logging.error('At fetching Bible uid') logging.error('matched multiple bible nodes') raise HTTPException(status_code=500, detail=('Graph side error. ' + ' matched multiple bible nodes')) else: bib_node_uid = bibNode_query_res['bible'][0]['uid'] try: db = pymysql.connect(host='localhost', database=rel_db_name, user='root', password='password', charset='utf8mb4') cursor = db.cursor(pymysql.cursors.SSCursor) except Exception as e: logging.error('At connecting to MYSQL') logging.error(e) raise HTTPException(status_code=502, detail=('MySQL side error. ' + str(e))) try: if (bible_name == 'Grk UGNT4 bible'): Morph_sequence = ['Role', 'Type', 'Mood', 'Tense', 'Voice', 'Person', 'Case', 'Gender', 'Number', 'Degree'] cursor.execute((('Select LID, Position, Word, Map.Book, Chapter, Verse,lookup.Book, Strongs, Morph, Pronunciation, TW, lookup.Code from ' + tablename) + ' JOIN Bcv_LidMap as Map ON LID=Map.ID JOIN Bible_Book_Lookup as lookup ON lookup.ID=Map.Book where lookup.ID = %s order by LID, Position'), book_num_map[bookcode.value]) else: cursor.execute((('Select LID, Position, Word, Map.Book, Chapter, Verse,lookup.Book, lookup.Code from ' + tablename) + ' JOIN Bcv_LidMap as Map ON LID=Map.ID JOIN Bible_Book_Lookup as lookup ON lookup.ID=Map.Book where lookup.ID=%s order by LID, Position'), book_num_map[bookcode.value]) except Exception as e: logging.error('At fetching data from MYSQL') logging.error(e) raise HTTPException(status_code=502, detail=('MySQL side error. ' + str(e))) count_for_test = 0 chapNode = None while True: next_row = cursor.fetchone() if (not next_row): break count_for_test += 1 LID = next_row[0] Position = next_row[1] Word = next_row[2] BookNum = next_row[3] Chapter = next_row[4] Verse = next_row[5] BookName = next_row[6] book_code = next_row[(- 1)] if (bible_name == 'Grk UGNT4 bible'): Strongs = next_row[7] Morph = next_row[8].split(',') Pronunciation = next_row[9] TW_fullString = next_row[10] logging.info(((((('Book,Chapter,Verse:' + str(BookNum)) + ',') + str(Chapter)) + ',') + str(Verse))) variables = {'$bib': bib_node_uid, '$book': BookName} try: bookNode_query_res = graph_conn.query_data(bookNode_query, variables) except Exception as e: logging.error('At fetching book node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) if (len(bookNode_query_res['book']) == 0): bookNode = {'dgraph.type': 'BookNode', 'book': BookName, 'bookNumber': BookNum, 'belongsTo': {'uid': bib_node_uid}} try: bookNode_uid = graph_conn.create_data(bookNode) except Exception as e: logging.error('At creating book node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) elif (len(bookNode_query_res['book']) > 1): logging.error('At fetching book node') logging.error('Matched multiple book nodes') raise HTTPException(status_code=500, detail='Graph side error. Matched multiple book nodes') else: bookNode_uid = bookNode_query_res['book'][0]['uid'] variables = {'$book': bookNode_uid, '$chap': str(Chapter)} try: chapNode_query_res = graph_conn.query_data(chapNode_query, variables) except Exception as e: logging.error('At fetching chapter node') logging.error(e) raise HTTPException(status_code=500, detail=('Graph side error. ' + str(e))) if (len(chapNode_query_res['chapter']) == 0): chapNode = {'dgraph.type': 'ChapterNode', 'chapter': Chapter, 'belongsTo': {'uid': bookNode_uid}} try: chapNode_uid = graph_conn.create_data(chapNode) except Exception as e: logging.error('At creating chapter node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) elif (len(chapNode_query_res['chapter']) > 1): logging.error('At fetching chapter node') logging.error('Matched multiple chapter nodes') raise HTTPException(status_code=500, detail='Graph side error. Matched multiple chapter nodes') else: chapNode_uid = chapNode_query_res['chapter'][0]['uid'] variables = {'$chapter': chapNode_uid, '$verse': str(Verse)} try: verseNode_query_res = graph_conn.query_data(verseNode_query, variables) except Exception as e: logging.error('At fetching verse node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) if (len(verseNode_query_res['verse']) == 0): verseNode = {'dgraph.type': 'VerseNode', 'verse': Verse, 'refString': ((((book_code + ' ') + str(Chapter)) + ':') + str(Verse)), 'belongsTo': {'uid': chapNode_uid}, 'lid': LID} try: verseNode_uid = graph_conn.create_data(verseNode) except Exception as e: logging.error('At creating verse node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) elif (len(verseNode_query_res['verse']) > 1): logging.error('At creating chapter node') logging.error('Matched multiple verse nodes') raise HTTPException(status_code=500, detail='Graph side error. Matched multiple verse nodes') else: verseNode_uid = verseNode_query_res['verse'][0]['uid'] wordNode = {'dgraph.type': 'WordNode', 'word': Word, 'belongsTo': {'uid': verseNode_uid}, 'position': Position} if (bible_name == 'Grk UGNT4 bible'): wordNode['pronunciation'] = Pronunciation for (key, value) in zip(Morph_sequence, Morph): if (value != ): wordNode[key] = value variables = {'$strongnum': str(Strongs)} try: strongNode_query_res = graph_conn.query_data(strongNode_query, variables) except Exception as e: logging.error('At fetching strong node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) logging.info('strongNode_query_res:', strongNode_query_res) if (len(strongNode_query_res['strongs']) > 0): strongNode_uid = strongNode_query_res['strongs'][0]['uid'] wordNode['strongsLink'] = {'uid': strongNode_uid} if (TW_fullString != '-'): (Type, word) = TW_fullString.split('/')[(- 2):] variables = {'$word': word} try: twNode_query_res = graph_conn.query_data(twNode_query, variables) except Exception as e: logging.error('At fetching tw node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) if (len(twNode_query_res['tw']) > 0): twNode_uid = twNode_query_res['tw'][0]['uid'] wordNode['twLink'] = {'uid': twNode_uid} try: wordNode_uid = graph_conn.create_data(wordNode) except Exception as e: logging.error('At creating word node') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) logging.info(('wordNode_uid:%s' % wordNode_uid)) cursor.close() db.close() text_tablename = tablename.replace('BibleWord', 'Text') if (text_tablename == 'Grk_UGNT4_Text'): text_tablename = 'Grk_UGNT_Text' add_verseTextToBible(bib_node_uid, text_tablename, bookcode.value) return {'msg': ('Added %s in %s' % (bookcode, bible_name))}<|docstring|>create a bible node, fetches contents from specified table in MySQL DB and adds to Graph. Currently the API is implemented to add only one book at a time. This is due to the amount of time required.<|endoftext|>
5329c53ae053be68a58e13572d0e1074a9c2fc5ec7d62bdfe015ed28e391853d
@app.get('/bibles/{bible_name}/books/{bookcode}/chapters/{chapter}', status_code=200, tags=['READ', 'Bible Contents']) def get_whole_chapter(bible_name: str, bookcode: BibleBook, chapter: int): ' fetches all verses of the chapter \n\tincluding their strong number, tw and bible name connections\n\t' result = {} try: variables = {'$bib': bible_name, '$book': str(book_num_map[bookcode]), '$chapter': str(chapter)} query_res = graph_conn.query_data(whole_chapter_query, variables) logging.info(('query_res: %s' % query_res)) except Exception as e: logging.error('At fetching chapter contents') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) try: result = query_res['chapter'][0]['~belongsTo'][0]['~belongsTo'][0] for (j, ver) in enumerate(result['verses']): for (i, wrd) in enumerate(ver['words']): if ('translationWord' in wrd): link = ('%s/translationwords?translation_word=%s' % (base_URL, wrd['translationWord'])) result['verses'][j]['words'][i]['translationWordLink'] = urllib.parse.quote(link, safe='/:?=') if ('strongsNumber' in wrd): link = ('%s/strongs?strongs_number=%s' % (base_URL, wrd['strongsNumber'])) result['verses'][j]['words'][i]['strongsLink'] = urllib.parse.quote(link, safe='/:?=') except Exception as e: logging.error('At parsing chapter contents') logging.error(e) raise HTTPException(status_code=404, detail='Requested content not Available. ') return result
fetches all verses of the chapter including their strong number, tw and bible name connections
dgraph/dGraph_fastAPI_server.py
get_whole_chapter
kavitharaju/vachan-graph
3
python
@app.get('/bibles/{bible_name}/books/{bookcode}/chapters/{chapter}', status_code=200, tags=['READ', 'Bible Contents']) def get_whole_chapter(bible_name: str, bookcode: BibleBook, chapter: int): ' fetches all verses of the chapter \n\tincluding their strong number, tw and bible name connections\n\t' result = {} try: variables = {'$bib': bible_name, '$book': str(book_num_map[bookcode]), '$chapter': str(chapter)} query_res = graph_conn.query_data(whole_chapter_query, variables) logging.info(('query_res: %s' % query_res)) except Exception as e: logging.error('At fetching chapter contents') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) try: result = query_res['chapter'][0]['~belongsTo'][0]['~belongsTo'][0] for (j, ver) in enumerate(result['verses']): for (i, wrd) in enumerate(ver['words']): if ('translationWord' in wrd): link = ('%s/translationwords?translation_word=%s' % (base_URL, wrd['translationWord'])) result['verses'][j]['words'][i]['translationWordLink'] = urllib.parse.quote(link, safe='/:?=') if ('strongsNumber' in wrd): link = ('%s/strongs?strongs_number=%s' % (base_URL, wrd['strongsNumber'])) result['verses'][j]['words'][i]['strongsLink'] = urllib.parse.quote(link, safe='/:?=') except Exception as e: logging.error('At parsing chapter contents') logging.error(e) raise HTTPException(status_code=404, detail='Requested content not Available. ') return result
@app.get('/bibles/{bible_name}/books/{bookcode}/chapters/{chapter}', status_code=200, tags=['READ', 'Bible Contents']) def get_whole_chapter(bible_name: str, bookcode: BibleBook, chapter: int): ' fetches all verses of the chapter \n\tincluding their strong number, tw and bible name connections\n\t' result = {} try: variables = {'$bib': bible_name, '$book': str(book_num_map[bookcode]), '$chapter': str(chapter)} query_res = graph_conn.query_data(whole_chapter_query, variables) logging.info(('query_res: %s' % query_res)) except Exception as e: logging.error('At fetching chapter contents') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) try: result = query_res['chapter'][0]['~belongsTo'][0]['~belongsTo'][0] for (j, ver) in enumerate(result['verses']): for (i, wrd) in enumerate(ver['words']): if ('translationWord' in wrd): link = ('%s/translationwords?translation_word=%s' % (base_URL, wrd['translationWord'])) result['verses'][j]['words'][i]['translationWordLink'] = urllib.parse.quote(link, safe='/:?=') if ('strongsNumber' in wrd): link = ('%s/strongs?strongs_number=%s' % (base_URL, wrd['strongsNumber'])) result['verses'][j]['words'][i]['strongsLink'] = urllib.parse.quote(link, safe='/:?=') except Exception as e: logging.error('At parsing chapter contents') logging.error(e) raise HTTPException(status_code=404, detail='Requested content not Available. ') return result<|docstring|>fetches all verses of the chapter including their strong number, tw and bible name connections<|endoftext|>
26a59acf1c58ba0b91a219dbcddfebc8a032498c72c3afc03f5580a922a0ce6d
@app.get('/bibles/{bible_name}/books/{bookcode}/chapters/{chapter}/verses/{verse}', status_code=200, tags=['READ', 'Bible Contents']) def get_one_verse(bible_name: str, bookcode: BibleBook, chapter: int, verse: int): ' fetches all verses of the chapter \n\tincluding their strong number, tw and bible name connections\n\t' result = {} try: variables = {'$bib': bible_name, '$book': str(book_num_map[bookcode]), '$chapter': str(chapter), '$verse': str(verse)} query_res = graph_conn.query_data(one_verse_query, variables) logging.info(('query_res: %s' % query_res)) except Exception as e: logging.error('At fetching chapter contents') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) try: result = query_res['verse'][0]['~belongsTo'][0]['~belongsTo'][0]['~belongsTo'][0] for (i, wrd) in enumerate(result['words']): if ('translationWord' in wrd): link = ('%s/translationwords?translation_word=%s' % (base_URL, wrd['translationWord'])) result['words'][i]['translationWordLink'] = urllib.parse.quote(link, safe='/:?=') if ('strongsNumber' in wrd): link = ('%s/strongs?strongs_number=%s' % (base_URL, wrd['strongsNumber'])) result['words'][i]['strongsLink'] = urllib.parse.quote(link, safe='/:?=') except Exception as e: logging.error('At parsing verse contents') logging.error(e) raise HTTPException(status_code=404, detail='Requested content not Available. ') return result
fetches all verses of the chapter including their strong number, tw and bible name connections
dgraph/dGraph_fastAPI_server.py
get_one_verse
kavitharaju/vachan-graph
3
python
@app.get('/bibles/{bible_name}/books/{bookcode}/chapters/{chapter}/verses/{verse}', status_code=200, tags=['READ', 'Bible Contents']) def get_one_verse(bible_name: str, bookcode: BibleBook, chapter: int, verse: int): ' fetches all verses of the chapter \n\tincluding their strong number, tw and bible name connections\n\t' result = {} try: variables = {'$bib': bible_name, '$book': str(book_num_map[bookcode]), '$chapter': str(chapter), '$verse': str(verse)} query_res = graph_conn.query_data(one_verse_query, variables) logging.info(('query_res: %s' % query_res)) except Exception as e: logging.error('At fetching chapter contents') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) try: result = query_res['verse'][0]['~belongsTo'][0]['~belongsTo'][0]['~belongsTo'][0] for (i, wrd) in enumerate(result['words']): if ('translationWord' in wrd): link = ('%s/translationwords?translation_word=%s' % (base_URL, wrd['translationWord'])) result['words'][i]['translationWordLink'] = urllib.parse.quote(link, safe='/:?=') if ('strongsNumber' in wrd): link = ('%s/strongs?strongs_number=%s' % (base_URL, wrd['strongsNumber'])) result['words'][i]['strongsLink'] = urllib.parse.quote(link, safe='/:?=') except Exception as e: logging.error('At parsing verse contents') logging.error(e) raise HTTPException(status_code=404, detail='Requested content not Available. ') return result
@app.get('/bibles/{bible_name}/books/{bookcode}/chapters/{chapter}/verses/{verse}', status_code=200, tags=['READ', 'Bible Contents']) def get_one_verse(bible_name: str, bookcode: BibleBook, chapter: int, verse: int): ' fetches all verses of the chapter \n\tincluding their strong number, tw and bible name connections\n\t' result = {} try: variables = {'$bib': bible_name, '$book': str(book_num_map[bookcode]), '$chapter': str(chapter), '$verse': str(verse)} query_res = graph_conn.query_data(one_verse_query, variables) logging.info(('query_res: %s' % query_res)) except Exception as e: logging.error('At fetching chapter contents') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) try: result = query_res['verse'][0]['~belongsTo'][0]['~belongsTo'][0]['~belongsTo'][0] for (i, wrd) in enumerate(result['words']): if ('translationWord' in wrd): link = ('%s/translationwords?translation_word=%s' % (base_URL, wrd['translationWord'])) result['words'][i]['translationWordLink'] = urllib.parse.quote(link, safe='/:?=') if ('strongsNumber' in wrd): link = ('%s/strongs?strongs_number=%s' % (base_URL, wrd['strongsNumber'])) result['words'][i]['strongsLink'] = urllib.parse.quote(link, safe='/:?=') except Exception as e: logging.error('At parsing verse contents') logging.error(e) raise HTTPException(status_code=404, detail='Requested content not Available. ') return result<|docstring|>fetches all verses of the chapter including their strong number, tw and bible name connections<|endoftext|>
690a50c826410c121d27be2f0c8dd3f423d99d871b0afbd9524d720afe12a960
@app.get('/bibles/{bible_name}/books/{bookcode}/chapters/{chapter}/verses/{verse}/words/{position}', status_code=200, tags=['READ', 'Bible Contents']) def get_verse_word(bible_name: str, bookcode: BibleBook, chapter: int, verse: int, position: int): ' fetches all verses of the chapter \n\tincluding their strong number, tw and bible name connections\n\t' result = {} try: variables = {'$bib': bible_name, '$book': str(book_num_map[bookcode]), '$chapter': str(chapter), '$verse': str(verse), '$pos': str(position)} query_res = graph_conn.query_data(word_query, variables) logging.info(('query_res: %s' % query_res)) except Exception as e: logging.error('At fetching chapter contents') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) try: result = query_res['word'][0]['~belongsTo'][0]['~belongsTo'][0]['~belongsTo'][0] for (i, wrd) in enumerate(result['words']): if ('translationWord' in wrd): link = ('%s/translationwords?translation_word=%s' % (base_URL, wrd['translationWord'])) result['words'][i]['translationWordLink'] = urllib.parse.quote(link, safe='/:?=') if ('strongsNumber' in wrd): link = ('%s/strongs?strongs_number=%s' % (base_URL, wrd['strongsNumber'])) result['words'][i]['strongsLink'] = urllib.parse.quote(link, safe='/:?=') except Exception as e: logging.error('At parsing verse contents') logging.error(e) raise HTTPException(status_code=404, detail='Requested content not Available. ') return result
fetches all verses of the chapter including their strong number, tw and bible name connections
dgraph/dGraph_fastAPI_server.py
get_verse_word
kavitharaju/vachan-graph
3
python
@app.get('/bibles/{bible_name}/books/{bookcode}/chapters/{chapter}/verses/{verse}/words/{position}', status_code=200, tags=['READ', 'Bible Contents']) def get_verse_word(bible_name: str, bookcode: BibleBook, chapter: int, verse: int, position: int): ' fetches all verses of the chapter \n\tincluding their strong number, tw and bible name connections\n\t' result = {} try: variables = {'$bib': bible_name, '$book': str(book_num_map[bookcode]), '$chapter': str(chapter), '$verse': str(verse), '$pos': str(position)} query_res = graph_conn.query_data(word_query, variables) logging.info(('query_res: %s' % query_res)) except Exception as e: logging.error('At fetching chapter contents') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) try: result = query_res['word'][0]['~belongsTo'][0]['~belongsTo'][0]['~belongsTo'][0] for (i, wrd) in enumerate(result['words']): if ('translationWord' in wrd): link = ('%s/translationwords?translation_word=%s' % (base_URL, wrd['translationWord'])) result['words'][i]['translationWordLink'] = urllib.parse.quote(link, safe='/:?=') if ('strongsNumber' in wrd): link = ('%s/strongs?strongs_number=%s' % (base_URL, wrd['strongsNumber'])) result['words'][i]['strongsLink'] = urllib.parse.quote(link, safe='/:?=') except Exception as e: logging.error('At parsing verse contents') logging.error(e) raise HTTPException(status_code=404, detail='Requested content not Available. ') return result
@app.get('/bibles/{bible_name}/books/{bookcode}/chapters/{chapter}/verses/{verse}/words/{position}', status_code=200, tags=['READ', 'Bible Contents']) def get_verse_word(bible_name: str, bookcode: BibleBook, chapter: int, verse: int, position: int): ' fetches all verses of the chapter \n\tincluding their strong number, tw and bible name connections\n\t' result = {} try: variables = {'$bib': bible_name, '$book': str(book_num_map[bookcode]), '$chapter': str(chapter), '$verse': str(verse), '$pos': str(position)} query_res = graph_conn.query_data(word_query, variables) logging.info(('query_res: %s' % query_res)) except Exception as e: logging.error('At fetching chapter contents') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) try: result = query_res['word'][0]['~belongsTo'][0]['~belongsTo'][0]['~belongsTo'][0] for (i, wrd) in enumerate(result['words']): if ('translationWord' in wrd): link = ('%s/translationwords?translation_word=%s' % (base_URL, wrd['translationWord'])) result['words'][i]['translationWordLink'] = urllib.parse.quote(link, safe='/:?=') if ('strongsNumber' in wrd): link = ('%s/strongs?strongs_number=%s' % (base_URL, wrd['strongsNumber'])) result['words'][i]['strongsLink'] = urllib.parse.quote(link, safe='/:?=') except Exception as e: logging.error('At parsing verse contents') logging.error(e) raise HTTPException(status_code=404, detail='Requested content not Available. ') return result<|docstring|>fetches all verses of the chapter including their strong number, tw and bible name connections<|endoftext|>
b4595fda4c8f817822e370f25ac5886695a709f82996789adab4ad41a662e1cb
@app.post('/names', status_code=201, tags=['WRITE', 'Bible Names']) def add_names(): 'creates a Bible names dictionary.\n\t* Pass I: Collect names from factgrid, ubs and wiki files and add to dictionary.\n\t* Pass II: Connect the names to each other based on known relations\n\t* Pass III: Connects names to each other using "sameAs" relation \n\t* Pass IV: Connects names to bible Words in English ULB bible\n\t ' nodename = 'Bible Names' variables = {'$dict': nodename} dict_node_query_result = graph_conn.query_data(dict_node_query, variables) if (len(dict_node_query_result['dict']) == 0): dict_node = {'dgraph.type': 'DictionaryNode', 'dictionary': nodename} try: dict_node_uid = graph_conn.create_data(dict_node) except Exception as e: logging.error('At dict node creation') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) elif (len(dict_node_query_result['dict']) == 1): dict_node_uid = dict_node_query_result['dict'][0]['uid'] else: logging.error('At dict node fetch') logging.error('More than one node matched') raise HTTPException(status_code=502, detail='Graph side error. More than one node matched') logging.info(('dict_node_uid: %s' % dict_node_uid)) factgrid_file = open('Resources/BibleNames/factgrid_person_query.json', 'r').read() factgrid_names = json.loads(factgrid_file) wiki_file = open('Resources/BibleNames/wiki_person_query.json', 'r').read() wiki_names = json.loads(wiki_file) ubs_names = get_nt_ot_names_from_ubs() logging.info('Pass I: Adding names to dictionary') for name in factgrid_names: external_uid = name['Person'] label = name['PersonLabel'] desc = '' if (',' in label): (label1, label2) = label.split(',', 1) label = label1 desc = (label2 + '. ') name_node = {'dgraph.type': 'NameNode', 'externalUid': external_uid, 'name': label, 'belongsTo': {'uid': dict_node_uid}} if ('PersonDescription' in name): desc += name['PersonDescription'] if (desc != ''): name_node['description'] = desc.strip() if ('GenderLabel' in name): name_node['gender'] = name['GenderLabel'] try: name_X_uid_query_res = graph_conn.query_data(name_X_uid_query, {'$xuid': external_uid}) if (len(name_X_uid_query_res['name']) > 0): logging.warn('Skipping name node creation') logging.warn(('Name already exists\nNew name node: %s\nExisting node: %s' % (name_node, name_X_uid_query_res['name'][0]))) else: name_node_uid = graph_conn.create_data(name_node) logging.info(('name: %s, name_node_uid: %s' % (label, name_node_uid))) except Exception as e: logging.error('At name node creation') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) for name in ubs_names: external_uid = ('ubs_name/' + name['id']) label = name['name'] name_node = {'externalUid': external_uid, 'name': label, 'belongsTo': {'uid': dict_node_uid}} if ('description' in name): name_node['description'] = name['description'].strip() try: name_X_uid_query_res = graph_conn.query_data(name_X_uid_query, {'$xuid': external_uid}) if (len(name_X_uid_query_res['name']) > 0): logging.warn('Skipping name node creation') logging.warn(('Name already exists\nNew name node: %s\nExisting node: %s' % (name_node, name_X_uid_query_res['name'][0]))) else: name_node_uid = graph_conn.create_data(name_node) logging.info(('name: %s, name_node_uid: %s' % (label, name_node_uid))) except Exception as e: logging.error('At name node creation') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) for name in wiki_names: external_uid = name['item'] label = name['itemLabel'] name_node = {'externalUid': external_uid, 'name': label, 'belongsTo': {'uid': dict_node_uid}} if ('itemDescription' in name): name_node['description'] = name['itemDescription'].strip() if ('gender' in name): name_node['gender'] = name['gender'].strip() if ('birthdate' in name): name_node['birthdate'] = name['birthdate'].strip() if ('deathdate' in name): name_node['deathdate'] = name['deathdate'].strip() if ('birthPlaceLabel' in name): name_node['birthPlace'] = name['birthPlaceLabel'].strip() if ('deathPlaceLabel' in name): name_node['deathPlace'] = name['deathPlaceLabel'].strip() try: name_X_uid_query_res = graph_conn.query_data(name_X_uid_query, {'$xuid': external_uid}) if (len(name_X_uid_query_res['name']) > 0): logging.warn('Skipping name node creation') logging.warn(('Name already exists\nNew name node: %s\nExisting node: %s' % (name_node, name_X_uid_query_res['name'][0]))) else: name_node_uid = graph_conn.create_data(name_node) logging.info(('name: %s, name_node_uid: %s' % (label, name_node_uid))) except Exception as e: logging.error('At name node creation') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) logging.info('Pass II: connecting names via known relations') for name in factgrid_names: external_uid = name['Person'] try: name_X_uid_query_res = graph_conn.query_data(name_X_uid_query, {'$xuid': external_uid}) if (len(name_X_uid_query_res['name']) == 1): name_node_uid = name_X_uid_query_res['name'][0]['uid'] else: logging.error('At name node fetching') logging.error(('Name node not found: %s' % external_uid)) raise HTTPException(status_code=502, detail='Graph side error. Name node not found.') except Exception as e: logging.error('At name node fetching') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) name_node = {'uid': name_node_uid} if ('Father' in name): father_external_uid = name['Father'] try: name_X_uid_query_res = graph_conn.query_data(name_X_uid_query, {'$xuid': father_external_uid}) if (len(name_X_uid_query_res['name']) == 1): father_node_uid = name_X_uid_query_res['name'][0]['uid'] name_node['father'] = {'uid': father_node_uid} else: logging.warn('At name node fetching') logging.warn(('Name node not found: %s' % father_external_uid)) except Exception as e: logging.error('At name node fetching') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) if ('Mother' in name): mother_external_uid = name['Mother'] try: name_X_uid_query_res = graph_conn.query_data(name_X_uid_query, {'$xuid': mother_external_uid}) if (len(name_X_uid_query_res['name']) == 1): mother_node_uid = name_X_uid_query_res['name'][0]['uid'] name_node['mother'] = {'uid': mother_node_uid} else: logging.warn('At name node fetching') logging.warn(('Name node not found: %s' % mother_external_uid)) except Exception as e: logging.error('At name node fetching') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) if (('father' in name_node) or ('mother' in name_node)): try: graph_conn.create_data(name_node) except Exception as e: logging.error('At name connecting') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) for name in wiki_names: external_uid = name['item'] try: name_X_uid_query_res = graph_conn.query_data(name_X_uid_query, {'$xuid': external_uid}) if (len(name_X_uid_query_res['name']) == 1): name_node_uid = name_X_uid_query_res['name'][0]['uid'] else: logging.error('At name node fetching') logging.error(('Name node not found: %s' % external_uid)) raise HTTPException(status_code=502, detail='Graph side error. Name node not found.') except Exception as e: logging.error('At name node fetching') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) name_node = {'uid': name_node_uid} if ('father' in name): father_external_uid = name['father'] try: name_X_uid_query_res = graph_conn.query_data(name_X_uid_query, {'$xuid': father_external_uid}) if (len(name_X_uid_query_res['name']) == 1): father_node_uid = name_X_uid_query_res['name'][0]['uid'] name_node['father'] = {'uid': father_node_uid} else: logging.warn('At name node fetching') logging.warn(('Name node not found: %s' % father_external_uid)) except Exception as e: logging.error('At name node fetching') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) if ('mother' in name): mother_external_uid = name['mother'] try: name_X_uid_query_res = graph_conn.query_data(name_X_uid_query, {'$xuid': mother_external_uid}) if (len(name_X_uid_query_res['name']) == 1): mother_node_uid = name_X_uid_query_res['name'][0]['uid'] name_node['mother'] = {'uid': mother_node_uid} else: logging.warn('At name node fetching') logging.warn(('Name node not found: %s' % mother_external_uid)) except Exception as e: logging.error('At name node fetching') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) if ('spouse' in name): spouse_external_uid = name['spouse'] try: name_X_uid_query_res = graph_conn.query_data(name_X_uid_query, {'$xuid': spouse_external_uid}) if (len(name_X_uid_query_res['name']) == 1): spouse_node_uid = name_X_uid_query_res['name'][0]['uid'] name_node['spouse'] = {'uid': spouse_node_uid} else: logging.warn('At name node fetching') logging.warn(('Name node not found: %s' % spouse_external_uid)) except Exception as e: logging.error('At name node fetching') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) if (('father' in name_node) or ('mother' in name_node) or ('spouse' in name_node)): try: graph_conn.create_data(name_node) except Exception as e: logging.error('At name connecting') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) logging.info('Pass III: Connecting names via sameAs relations based on manually connected data') connection_file = open('Resources/BibleNames/connected_ne.json').read() connections = json.loads(connection_file) factgrid_id_pattern = 'https://database.factgrid.de/entity/' wiki_id_pattern = 'http://www.wikidata.org/entity/' ubs_id_pattern = 'ubs_name/' for conn in connections: if (conn['linked'] != 'manual'): continue ids = [] if ('factgrid' in conn): f_ids = set(conn['factgrid']) ids += [(factgrid_id_pattern + id) for id in f_ids] if ('ubs' in conn): u_ids = set(conn['ubs']) ids += [(ubs_id_pattern + id) for id in u_ids] if ('wiki' in conn): w_ids = set(conn['wiki']) ids += [(wiki_id_pattern + id) for id in w_ids] for (a, b) in itertools.product(ids, ids): if (a == b): continue try: name_X_uid_query_res = graph_conn.query_data(name_X_uid_query, {'$xuid': a.strip()}) if (len(name_X_uid_query_res['name']) == 1): a_node_uid = name_X_uid_query_res['name'][0]['uid'] else: logging.warn('At fetching name nodes') logging.warn(('cannot find one node for a_node: %s' % a)) logging.warn(('got query result: %s' % name_X_uid_query_res)) continue except Exception as e: logging.error('At fetching name nodes') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) try: name_X_uid_query_res = graph_conn.query_data(name_X_uid_query, {'$xuid': b.strip()}) if (len(name_X_uid_query_res['name']) == 1): b_node_uid = name_X_uid_query_res['name'][0]['uid'] else: logging.warn('At fetching name nodes') logging.warn(('cannot find one node for b_node: %s' % b)) logging.warn(('got query result: %s' % name_X_uid_query_res)) continue except Exception as e: logging.error('At fetching name nodes') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) sameAs_connection = {'uid': a_node_uid, 'sameAs': {'uid': b_node_uid}} try: graph_conn.create_data(sameAs_connection) except Exception as e: logging.error('At name connecting via sameAs') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) logging.info('Pass IV: Connecting names to Bible words') for name in factgrid_names: external_uid = name['Person'] try: name_X_uid_query_res = graph_conn.query_data(name_X_uid_query, {'$xuid': external_uid}) if (len(name_X_uid_query_res['name']) == 1): name_node_uid = name_X_uid_query_res['name'][0]['uid'] search_names = [name_X_uid_query_res['name'][0]['name']] if ('sameAs' in name_X_uid_query_res['name'][0]): search_names += [same['name'] for same in name_X_uid_query_res['name'][0]['sameAs']] else: logging.error('At name node fetching') logging.error(('Name node not found: %s' % external_uid)) raise HTTPException(status_code=502, detail='Graph side error. Name node not found.') except Exception as e: logging.error('At name node fetching') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) ref_pattern = re.compile('(\\d* ?\\w+) (\\d+):?(\\d+)?') if ('notedLabel' in name): ref = name['notedLabel'] inconsistant_values = ['Superscript of Psalm 7', 'The General Epistle of Jude', 'New Testament', 'Pilate stone'] try: ref_obj = re.match(ref_pattern, ref) book = ref_obj.group(1) chapter = ref_obj.group(2) verse = ref_obj.group(3) except Exception as e: if (ref in inconsistant_values): continue logging.error(('At Parsing Reference:%s' % ref)) logging.error(e) raise HTTPException(status_code=502, detail=('Regex error. ' + str(e))) if (verse == None): verse = 0 variables = {'$bib': 'English ULB bible', '$book': str(book_num_map[book]), '$chapter': str(chapter), '$verse': str(verse)} try: one_verse_query_res = graph_conn.query_data(one_verse_query, variables) except Exception as e: logging.error(('At fetching words in verse:%s' % variables)) logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) found_verse = False found_word = False search_names_cleaned = [name.split(' ', 1)[0].replace(',', '').lower() for name in search_names] search_names = set(search_names_cleaned) if (len(one_verse_query_res['verse'][0]) > 0): if (('~belongsTo' in one_verse_query_res['verse'][0]) and (len(one_verse_query_res['verse'][0]['~belongsTo']) > 0)): if (('~belongsTo' in one_verse_query_res['verse'][0]['~belongsTo'][0]) and (len(one_verse_query_res['verse'][0]['~belongsTo'][0]['~belongsTo']) > 0)): if (('~belongsTo' in one_verse_query_res['verse'][0]['~belongsTo'][0]['~belongsTo'][0]) and (len(one_verse_query_res['verse'][0]['~belongsTo'][0]['~belongsTo'][0]['~belongsTo']) > 0)): words = one_verse_query_res['verse'][0]['~belongsTo'][0]['~belongsTo'][0]['~belongsTo'][0]['words'] for wrd in words: if (re.sub(non_letter_pattern, '', wrd['word'].lower().replace("'s", '')) in search_names): name_connection = {'uid': wrd['uid'], 'nameLink': {'uid': name_node_uid}} try: logging.info(('linking %s to %s' % (name['PersonLabel'], wrd['word']))) graph_conn.create_data(name_connection) pass except Exception as e: logging.error('At creating nameLink') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) found_word = True found_verse = True if (not found_verse): logging.warn(('verse %s not found' % variables)) elif (not found_word): text = ' '.join([wrd['word'] for wrd in words]) logging.warn(('Matching word not found in the searched verse\n %s >>> %s' % (name['PersonLabel'], text))) verse_not_found_count = 0 for name in ubs_names: external_uid = ('ubs_name/' + name['id']) try: name_X_uid_query_res = graph_conn.query_data(name_X_uid_query, {'$xuid': external_uid}) if (len(name_X_uid_query_res['name']) == 1): name_node_uid = name_X_uid_query_res['name'][0]['uid'] search_names = [name_X_uid_query_res['name'][0]['name']] if ('sameAs' in name_X_uid_query_res['name'][0]): search_names += [same['name'] for same in name_X_uid_query_res['name'][0]['sameAs']] else: logging.error('At name node fetching') logging.error(('Name node not found: %s' % external_uid)) raise HTTPException(status_code=502, detail='Graph side error. Name node not found.') except Exception as e: logging.error('At name node fetching') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) search_names_cleaned = [name.split(' ', 1)[0].replace(';', '').lower() for name in search_names] search_names = set(search_names_cleaned) if ('occurances' in name): refs = name['occurances'] for ref in refs: (book, chapter, verse, pos) = ref variables = {'$bib': 'English ULB bible', '$book': str(book), '$chapter': str(chapter), '$verse': str(verse)} try: one_verse_query_res = graph_conn.query_data(one_verse_query, variables) except Exception as e: logging.error(('At fetching words in verse:%s' % variables)) logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) found_verse = False found_word = False if (len(one_verse_query_res['verse'][0]) > 0): if (('~belongsTo' in one_verse_query_res['verse'][0]) and (len(one_verse_query_res['verse'][0]['~belongsTo']) > 0)): if (('~belongsTo' in one_verse_query_res['verse'][0]['~belongsTo'][0]) and (len(one_verse_query_res['verse'][0]['~belongsTo'][0]['~belongsTo']) > 0)): if (('~belongsTo' in one_verse_query_res['verse'][0]['~belongsTo'][0]['~belongsTo'][0]) and (len(one_verse_query_res['verse'][0]['~belongsTo'][0]['~belongsTo'][0]['~belongsTo']) > 0)): words = one_verse_query_res['verse'][0]['~belongsTo'][0]['~belongsTo'][0]['~belongsTo'][0]['words'] for wrd in words: if (re.sub(non_letter_pattern, '', wrd['word'].lower().replace("'s", '')) in search_names): name_connection = {'uid': wrd['uid'], 'nameLink': {'uid': name_node_uid}} try: logging.info(('linking %s to %s' % (name['name'], wrd['word']))) graph_conn.create_data(name_connection) pass except Exception as e: logging.error('At creating nameLink') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) found_word = True found_verse = True if (not found_verse): logging.warn(('verse %s not found' % variables)) verse_not_found_count += 1 elif (not found_word): text = ' '.join([wrd['word'] for wrd in words]) logging.warn(('Matching word not found in the searched verse\n %s >>> %s' % (name['name'], text))) return {'msg': 'Added names'}
creates a Bible names dictionary. * Pass I: Collect names from factgrid, ubs and wiki files and add to dictionary. * Pass II: Connect the names to each other based on known relations * Pass III: Connects names to each other using "sameAs" relation * Pass IV: Connects names to bible Words in English ULB bible
dgraph/dGraph_fastAPI_server.py
add_names
kavitharaju/vachan-graph
3
python
@app.post('/names', status_code=201, tags=['WRITE', 'Bible Names']) def add_names(): 'creates a Bible names dictionary.\n\t* Pass I: Collect names from factgrid, ubs and wiki files and add to dictionary.\n\t* Pass II: Connect the names to each other based on known relations\n\t* Pass III: Connects names to each other using "sameAs" relation \n\t* Pass IV: Connects names to bible Words in English ULB bible\n\t ' nodename = 'Bible Names' variables = {'$dict': nodename} dict_node_query_result = graph_conn.query_data(dict_node_query, variables) if (len(dict_node_query_result['dict']) == 0): dict_node = {'dgraph.type': 'DictionaryNode', 'dictionary': nodename} try: dict_node_uid = graph_conn.create_data(dict_node) except Exception as e: logging.error('At dict node creation') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) elif (len(dict_node_query_result['dict']) == 1): dict_node_uid = dict_node_query_result['dict'][0]['uid'] else: logging.error('At dict node fetch') logging.error('More than one node matched') raise HTTPException(status_code=502, detail='Graph side error. More than one node matched') logging.info(('dict_node_uid: %s' % dict_node_uid)) factgrid_file = open('Resources/BibleNames/factgrid_person_query.json', 'r').read() factgrid_names = json.loads(factgrid_file) wiki_file = open('Resources/BibleNames/wiki_person_query.json', 'r').read() wiki_names = json.loads(wiki_file) ubs_names = get_nt_ot_names_from_ubs() logging.info('Pass I: Adding names to dictionary') for name in factgrid_names: external_uid = name['Person'] label = name['PersonLabel'] desc = if (',' in label): (label1, label2) = label.split(',', 1) label = label1 desc = (label2 + '. ') name_node = {'dgraph.type': 'NameNode', 'externalUid': external_uid, 'name': label, 'belongsTo': {'uid': dict_node_uid}} if ('PersonDescription' in name): desc += name['PersonDescription'] if (desc != ): name_node['description'] = desc.strip() if ('GenderLabel' in name): name_node['gender'] = name['GenderLabel'] try: name_X_uid_query_res = graph_conn.query_data(name_X_uid_query, {'$xuid': external_uid}) if (len(name_X_uid_query_res['name']) > 0): logging.warn('Skipping name node creation') logging.warn(('Name already exists\nNew name node: %s\nExisting node: %s' % (name_node, name_X_uid_query_res['name'][0]))) else: name_node_uid = graph_conn.create_data(name_node) logging.info(('name: %s, name_node_uid: %s' % (label, name_node_uid))) except Exception as e: logging.error('At name node creation') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) for name in ubs_names: external_uid = ('ubs_name/' + name['id']) label = name['name'] name_node = {'externalUid': external_uid, 'name': label, 'belongsTo': {'uid': dict_node_uid}} if ('description' in name): name_node['description'] = name['description'].strip() try: name_X_uid_query_res = graph_conn.query_data(name_X_uid_query, {'$xuid': external_uid}) if (len(name_X_uid_query_res['name']) > 0): logging.warn('Skipping name node creation') logging.warn(('Name already exists\nNew name node: %s\nExisting node: %s' % (name_node, name_X_uid_query_res['name'][0]))) else: name_node_uid = graph_conn.create_data(name_node) logging.info(('name: %s, name_node_uid: %s' % (label, name_node_uid))) except Exception as e: logging.error('At name node creation') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) for name in wiki_names: external_uid = name['item'] label = name['itemLabel'] name_node = {'externalUid': external_uid, 'name': label, 'belongsTo': {'uid': dict_node_uid}} if ('itemDescription' in name): name_node['description'] = name['itemDescription'].strip() if ('gender' in name): name_node['gender'] = name['gender'].strip() if ('birthdate' in name): name_node['birthdate'] = name['birthdate'].strip() if ('deathdate' in name): name_node['deathdate'] = name['deathdate'].strip() if ('birthPlaceLabel' in name): name_node['birthPlace'] = name['birthPlaceLabel'].strip() if ('deathPlaceLabel' in name): name_node['deathPlace'] = name['deathPlaceLabel'].strip() try: name_X_uid_query_res = graph_conn.query_data(name_X_uid_query, {'$xuid': external_uid}) if (len(name_X_uid_query_res['name']) > 0): logging.warn('Skipping name node creation') logging.warn(('Name already exists\nNew name node: %s\nExisting node: %s' % (name_node, name_X_uid_query_res['name'][0]))) else: name_node_uid = graph_conn.create_data(name_node) logging.info(('name: %s, name_node_uid: %s' % (label, name_node_uid))) except Exception as e: logging.error('At name node creation') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) logging.info('Pass II: connecting names via known relations') for name in factgrid_names: external_uid = name['Person'] try: name_X_uid_query_res = graph_conn.query_data(name_X_uid_query, {'$xuid': external_uid}) if (len(name_X_uid_query_res['name']) == 1): name_node_uid = name_X_uid_query_res['name'][0]['uid'] else: logging.error('At name node fetching') logging.error(('Name node not found: %s' % external_uid)) raise HTTPException(status_code=502, detail='Graph side error. Name node not found.') except Exception as e: logging.error('At name node fetching') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) name_node = {'uid': name_node_uid} if ('Father' in name): father_external_uid = name['Father'] try: name_X_uid_query_res = graph_conn.query_data(name_X_uid_query, {'$xuid': father_external_uid}) if (len(name_X_uid_query_res['name']) == 1): father_node_uid = name_X_uid_query_res['name'][0]['uid'] name_node['father'] = {'uid': father_node_uid} else: logging.warn('At name node fetching') logging.warn(('Name node not found: %s' % father_external_uid)) except Exception as e: logging.error('At name node fetching') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) if ('Mother' in name): mother_external_uid = name['Mother'] try: name_X_uid_query_res = graph_conn.query_data(name_X_uid_query, {'$xuid': mother_external_uid}) if (len(name_X_uid_query_res['name']) == 1): mother_node_uid = name_X_uid_query_res['name'][0]['uid'] name_node['mother'] = {'uid': mother_node_uid} else: logging.warn('At name node fetching') logging.warn(('Name node not found: %s' % mother_external_uid)) except Exception as e: logging.error('At name node fetching') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) if (('father' in name_node) or ('mother' in name_node)): try: graph_conn.create_data(name_node) except Exception as e: logging.error('At name connecting') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) for name in wiki_names: external_uid = name['item'] try: name_X_uid_query_res = graph_conn.query_data(name_X_uid_query, {'$xuid': external_uid}) if (len(name_X_uid_query_res['name']) == 1): name_node_uid = name_X_uid_query_res['name'][0]['uid'] else: logging.error('At name node fetching') logging.error(('Name node not found: %s' % external_uid)) raise HTTPException(status_code=502, detail='Graph side error. Name node not found.') except Exception as e: logging.error('At name node fetching') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) name_node = {'uid': name_node_uid} if ('father' in name): father_external_uid = name['father'] try: name_X_uid_query_res = graph_conn.query_data(name_X_uid_query, {'$xuid': father_external_uid}) if (len(name_X_uid_query_res['name']) == 1): father_node_uid = name_X_uid_query_res['name'][0]['uid'] name_node['father'] = {'uid': father_node_uid} else: logging.warn('At name node fetching') logging.warn(('Name node not found: %s' % father_external_uid)) except Exception as e: logging.error('At name node fetching') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) if ('mother' in name): mother_external_uid = name['mother'] try: name_X_uid_query_res = graph_conn.query_data(name_X_uid_query, {'$xuid': mother_external_uid}) if (len(name_X_uid_query_res['name']) == 1): mother_node_uid = name_X_uid_query_res['name'][0]['uid'] name_node['mother'] = {'uid': mother_node_uid} else: logging.warn('At name node fetching') logging.warn(('Name node not found: %s' % mother_external_uid)) except Exception as e: logging.error('At name node fetching') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) if ('spouse' in name): spouse_external_uid = name['spouse'] try: name_X_uid_query_res = graph_conn.query_data(name_X_uid_query, {'$xuid': spouse_external_uid}) if (len(name_X_uid_query_res['name']) == 1): spouse_node_uid = name_X_uid_query_res['name'][0]['uid'] name_node['spouse'] = {'uid': spouse_node_uid} else: logging.warn('At name node fetching') logging.warn(('Name node not found: %s' % spouse_external_uid)) except Exception as e: logging.error('At name node fetching') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) if (('father' in name_node) or ('mother' in name_node) or ('spouse' in name_node)): try: graph_conn.create_data(name_node) except Exception as e: logging.error('At name connecting') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) logging.info('Pass III: Connecting names via sameAs relations based on manually connected data') connection_file = open('Resources/BibleNames/connected_ne.json').read() connections = json.loads(connection_file) factgrid_id_pattern = 'https://database.factgrid.de/entity/' wiki_id_pattern = 'http://www.wikidata.org/entity/' ubs_id_pattern = 'ubs_name/' for conn in connections: if (conn['linked'] != 'manual'): continue ids = [] if ('factgrid' in conn): f_ids = set(conn['factgrid']) ids += [(factgrid_id_pattern + id) for id in f_ids] if ('ubs' in conn): u_ids = set(conn['ubs']) ids += [(ubs_id_pattern + id) for id in u_ids] if ('wiki' in conn): w_ids = set(conn['wiki']) ids += [(wiki_id_pattern + id) for id in w_ids] for (a, b) in itertools.product(ids, ids): if (a == b): continue try: name_X_uid_query_res = graph_conn.query_data(name_X_uid_query, {'$xuid': a.strip()}) if (len(name_X_uid_query_res['name']) == 1): a_node_uid = name_X_uid_query_res['name'][0]['uid'] else: logging.warn('At fetching name nodes') logging.warn(('cannot find one node for a_node: %s' % a)) logging.warn(('got query result: %s' % name_X_uid_query_res)) continue except Exception as e: logging.error('At fetching name nodes') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) try: name_X_uid_query_res = graph_conn.query_data(name_X_uid_query, {'$xuid': b.strip()}) if (len(name_X_uid_query_res['name']) == 1): b_node_uid = name_X_uid_query_res['name'][0]['uid'] else: logging.warn('At fetching name nodes') logging.warn(('cannot find one node for b_node: %s' % b)) logging.warn(('got query result: %s' % name_X_uid_query_res)) continue except Exception as e: logging.error('At fetching name nodes') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) sameAs_connection = {'uid': a_node_uid, 'sameAs': {'uid': b_node_uid}} try: graph_conn.create_data(sameAs_connection) except Exception as e: logging.error('At name connecting via sameAs') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) logging.info('Pass IV: Connecting names to Bible words') for name in factgrid_names: external_uid = name['Person'] try: name_X_uid_query_res = graph_conn.query_data(name_X_uid_query, {'$xuid': external_uid}) if (len(name_X_uid_query_res['name']) == 1): name_node_uid = name_X_uid_query_res['name'][0]['uid'] search_names = [name_X_uid_query_res['name'][0]['name']] if ('sameAs' in name_X_uid_query_res['name'][0]): search_names += [same['name'] for same in name_X_uid_query_res['name'][0]['sameAs']] else: logging.error('At name node fetching') logging.error(('Name node not found: %s' % external_uid)) raise HTTPException(status_code=502, detail='Graph side error. Name node not found.') except Exception as e: logging.error('At name node fetching') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) ref_pattern = re.compile('(\\d* ?\\w+) (\\d+):?(\\d+)?') if ('notedLabel' in name): ref = name['notedLabel'] inconsistant_values = ['Superscript of Psalm 7', 'The General Epistle of Jude', 'New Testament', 'Pilate stone'] try: ref_obj = re.match(ref_pattern, ref) book = ref_obj.group(1) chapter = ref_obj.group(2) verse = ref_obj.group(3) except Exception as e: if (ref in inconsistant_values): continue logging.error(('At Parsing Reference:%s' % ref)) logging.error(e) raise HTTPException(status_code=502, detail=('Regex error. ' + str(e))) if (verse == None): verse = 0 variables = {'$bib': 'English ULB bible', '$book': str(book_num_map[book]), '$chapter': str(chapter), '$verse': str(verse)} try: one_verse_query_res = graph_conn.query_data(one_verse_query, variables) except Exception as e: logging.error(('At fetching words in verse:%s' % variables)) logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) found_verse = False found_word = False search_names_cleaned = [name.split(' ', 1)[0].replace(',', ).lower() for name in search_names] search_names = set(search_names_cleaned) if (len(one_verse_query_res['verse'][0]) > 0): if (('~belongsTo' in one_verse_query_res['verse'][0]) and (len(one_verse_query_res['verse'][0]['~belongsTo']) > 0)): if (('~belongsTo' in one_verse_query_res['verse'][0]['~belongsTo'][0]) and (len(one_verse_query_res['verse'][0]['~belongsTo'][0]['~belongsTo']) > 0)): if (('~belongsTo' in one_verse_query_res['verse'][0]['~belongsTo'][0]['~belongsTo'][0]) and (len(one_verse_query_res['verse'][0]['~belongsTo'][0]['~belongsTo'][0]['~belongsTo']) > 0)): words = one_verse_query_res['verse'][0]['~belongsTo'][0]['~belongsTo'][0]['~belongsTo'][0]['words'] for wrd in words: if (re.sub(non_letter_pattern, , wrd['word'].lower().replace("'s", )) in search_names): name_connection = {'uid': wrd['uid'], 'nameLink': {'uid': name_node_uid}} try: logging.info(('linking %s to %s' % (name['PersonLabel'], wrd['word']))) graph_conn.create_data(name_connection) pass except Exception as e: logging.error('At creating nameLink') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) found_word = True found_verse = True if (not found_verse): logging.warn(('verse %s not found' % variables)) elif (not found_word): text = ' '.join([wrd['word'] for wrd in words]) logging.warn(('Matching word not found in the searched verse\n %s >>> %s' % (name['PersonLabel'], text))) verse_not_found_count = 0 for name in ubs_names: external_uid = ('ubs_name/' + name['id']) try: name_X_uid_query_res = graph_conn.query_data(name_X_uid_query, {'$xuid': external_uid}) if (len(name_X_uid_query_res['name']) == 1): name_node_uid = name_X_uid_query_res['name'][0]['uid'] search_names = [name_X_uid_query_res['name'][0]['name']] if ('sameAs' in name_X_uid_query_res['name'][0]): search_names += [same['name'] for same in name_X_uid_query_res['name'][0]['sameAs']] else: logging.error('At name node fetching') logging.error(('Name node not found: %s' % external_uid)) raise HTTPException(status_code=502, detail='Graph side error. Name node not found.') except Exception as e: logging.error('At name node fetching') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) search_names_cleaned = [name.split(' ', 1)[0].replace(';', ).lower() for name in search_names] search_names = set(search_names_cleaned) if ('occurances' in name): refs = name['occurances'] for ref in refs: (book, chapter, verse, pos) = ref variables = {'$bib': 'English ULB bible', '$book': str(book), '$chapter': str(chapter), '$verse': str(verse)} try: one_verse_query_res = graph_conn.query_data(one_verse_query, variables) except Exception as e: logging.error(('At fetching words in verse:%s' % variables)) logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) found_verse = False found_word = False if (len(one_verse_query_res['verse'][0]) > 0): if (('~belongsTo' in one_verse_query_res['verse'][0]) and (len(one_verse_query_res['verse'][0]['~belongsTo']) > 0)): if (('~belongsTo' in one_verse_query_res['verse'][0]['~belongsTo'][0]) and (len(one_verse_query_res['verse'][0]['~belongsTo'][0]['~belongsTo']) > 0)): if (('~belongsTo' in one_verse_query_res['verse'][0]['~belongsTo'][0]['~belongsTo'][0]) and (len(one_verse_query_res['verse'][0]['~belongsTo'][0]['~belongsTo'][0]['~belongsTo']) > 0)): words = one_verse_query_res['verse'][0]['~belongsTo'][0]['~belongsTo'][0]['~belongsTo'][0]['words'] for wrd in words: if (re.sub(non_letter_pattern, , wrd['word'].lower().replace("'s", )) in search_names): name_connection = {'uid': wrd['uid'], 'nameLink': {'uid': name_node_uid}} try: logging.info(('linking %s to %s' % (name['name'], wrd['word']))) graph_conn.create_data(name_connection) pass except Exception as e: logging.error('At creating nameLink') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) found_word = True found_verse = True if (not found_verse): logging.warn(('verse %s not found' % variables)) verse_not_found_count += 1 elif (not found_word): text = ' '.join([wrd['word'] for wrd in words]) logging.warn(('Matching word not found in the searched verse\n %s >>> %s' % (name['name'], text))) return {'msg': 'Added names'}
@app.post('/names', status_code=201, tags=['WRITE', 'Bible Names']) def add_names(): 'creates a Bible names dictionary.\n\t* Pass I: Collect names from factgrid, ubs and wiki files and add to dictionary.\n\t* Pass II: Connect the names to each other based on known relations\n\t* Pass III: Connects names to each other using "sameAs" relation \n\t* Pass IV: Connects names to bible Words in English ULB bible\n\t ' nodename = 'Bible Names' variables = {'$dict': nodename} dict_node_query_result = graph_conn.query_data(dict_node_query, variables) if (len(dict_node_query_result['dict']) == 0): dict_node = {'dgraph.type': 'DictionaryNode', 'dictionary': nodename} try: dict_node_uid = graph_conn.create_data(dict_node) except Exception as e: logging.error('At dict node creation') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) elif (len(dict_node_query_result['dict']) == 1): dict_node_uid = dict_node_query_result['dict'][0]['uid'] else: logging.error('At dict node fetch') logging.error('More than one node matched') raise HTTPException(status_code=502, detail='Graph side error. More than one node matched') logging.info(('dict_node_uid: %s' % dict_node_uid)) factgrid_file = open('Resources/BibleNames/factgrid_person_query.json', 'r').read() factgrid_names = json.loads(factgrid_file) wiki_file = open('Resources/BibleNames/wiki_person_query.json', 'r').read() wiki_names = json.loads(wiki_file) ubs_names = get_nt_ot_names_from_ubs() logging.info('Pass I: Adding names to dictionary') for name in factgrid_names: external_uid = name['Person'] label = name['PersonLabel'] desc = if (',' in label): (label1, label2) = label.split(',', 1) label = label1 desc = (label2 + '. ') name_node = {'dgraph.type': 'NameNode', 'externalUid': external_uid, 'name': label, 'belongsTo': {'uid': dict_node_uid}} if ('PersonDescription' in name): desc += name['PersonDescription'] if (desc != ): name_node['description'] = desc.strip() if ('GenderLabel' in name): name_node['gender'] = name['GenderLabel'] try: name_X_uid_query_res = graph_conn.query_data(name_X_uid_query, {'$xuid': external_uid}) if (len(name_X_uid_query_res['name']) > 0): logging.warn('Skipping name node creation') logging.warn(('Name already exists\nNew name node: %s\nExisting node: %s' % (name_node, name_X_uid_query_res['name'][0]))) else: name_node_uid = graph_conn.create_data(name_node) logging.info(('name: %s, name_node_uid: %s' % (label, name_node_uid))) except Exception as e: logging.error('At name node creation') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) for name in ubs_names: external_uid = ('ubs_name/' + name['id']) label = name['name'] name_node = {'externalUid': external_uid, 'name': label, 'belongsTo': {'uid': dict_node_uid}} if ('description' in name): name_node['description'] = name['description'].strip() try: name_X_uid_query_res = graph_conn.query_data(name_X_uid_query, {'$xuid': external_uid}) if (len(name_X_uid_query_res['name']) > 0): logging.warn('Skipping name node creation') logging.warn(('Name already exists\nNew name node: %s\nExisting node: %s' % (name_node, name_X_uid_query_res['name'][0]))) else: name_node_uid = graph_conn.create_data(name_node) logging.info(('name: %s, name_node_uid: %s' % (label, name_node_uid))) except Exception as e: logging.error('At name node creation') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) for name in wiki_names: external_uid = name['item'] label = name['itemLabel'] name_node = {'externalUid': external_uid, 'name': label, 'belongsTo': {'uid': dict_node_uid}} if ('itemDescription' in name): name_node['description'] = name['itemDescription'].strip() if ('gender' in name): name_node['gender'] = name['gender'].strip() if ('birthdate' in name): name_node['birthdate'] = name['birthdate'].strip() if ('deathdate' in name): name_node['deathdate'] = name['deathdate'].strip() if ('birthPlaceLabel' in name): name_node['birthPlace'] = name['birthPlaceLabel'].strip() if ('deathPlaceLabel' in name): name_node['deathPlace'] = name['deathPlaceLabel'].strip() try: name_X_uid_query_res = graph_conn.query_data(name_X_uid_query, {'$xuid': external_uid}) if (len(name_X_uid_query_res['name']) > 0): logging.warn('Skipping name node creation') logging.warn(('Name already exists\nNew name node: %s\nExisting node: %s' % (name_node, name_X_uid_query_res['name'][0]))) else: name_node_uid = graph_conn.create_data(name_node) logging.info(('name: %s, name_node_uid: %s' % (label, name_node_uid))) except Exception as e: logging.error('At name node creation') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) logging.info('Pass II: connecting names via known relations') for name in factgrid_names: external_uid = name['Person'] try: name_X_uid_query_res = graph_conn.query_data(name_X_uid_query, {'$xuid': external_uid}) if (len(name_X_uid_query_res['name']) == 1): name_node_uid = name_X_uid_query_res['name'][0]['uid'] else: logging.error('At name node fetching') logging.error(('Name node not found: %s' % external_uid)) raise HTTPException(status_code=502, detail='Graph side error. Name node not found.') except Exception as e: logging.error('At name node fetching') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) name_node = {'uid': name_node_uid} if ('Father' in name): father_external_uid = name['Father'] try: name_X_uid_query_res = graph_conn.query_data(name_X_uid_query, {'$xuid': father_external_uid}) if (len(name_X_uid_query_res['name']) == 1): father_node_uid = name_X_uid_query_res['name'][0]['uid'] name_node['father'] = {'uid': father_node_uid} else: logging.warn('At name node fetching') logging.warn(('Name node not found: %s' % father_external_uid)) except Exception as e: logging.error('At name node fetching') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) if ('Mother' in name): mother_external_uid = name['Mother'] try: name_X_uid_query_res = graph_conn.query_data(name_X_uid_query, {'$xuid': mother_external_uid}) if (len(name_X_uid_query_res['name']) == 1): mother_node_uid = name_X_uid_query_res['name'][0]['uid'] name_node['mother'] = {'uid': mother_node_uid} else: logging.warn('At name node fetching') logging.warn(('Name node not found: %s' % mother_external_uid)) except Exception as e: logging.error('At name node fetching') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) if (('father' in name_node) or ('mother' in name_node)): try: graph_conn.create_data(name_node) except Exception as e: logging.error('At name connecting') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) for name in wiki_names: external_uid = name['item'] try: name_X_uid_query_res = graph_conn.query_data(name_X_uid_query, {'$xuid': external_uid}) if (len(name_X_uid_query_res['name']) == 1): name_node_uid = name_X_uid_query_res['name'][0]['uid'] else: logging.error('At name node fetching') logging.error(('Name node not found: %s' % external_uid)) raise HTTPException(status_code=502, detail='Graph side error. Name node not found.') except Exception as e: logging.error('At name node fetching') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) name_node = {'uid': name_node_uid} if ('father' in name): father_external_uid = name['father'] try: name_X_uid_query_res = graph_conn.query_data(name_X_uid_query, {'$xuid': father_external_uid}) if (len(name_X_uid_query_res['name']) == 1): father_node_uid = name_X_uid_query_res['name'][0]['uid'] name_node['father'] = {'uid': father_node_uid} else: logging.warn('At name node fetching') logging.warn(('Name node not found: %s' % father_external_uid)) except Exception as e: logging.error('At name node fetching') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) if ('mother' in name): mother_external_uid = name['mother'] try: name_X_uid_query_res = graph_conn.query_data(name_X_uid_query, {'$xuid': mother_external_uid}) if (len(name_X_uid_query_res['name']) == 1): mother_node_uid = name_X_uid_query_res['name'][0]['uid'] name_node['mother'] = {'uid': mother_node_uid} else: logging.warn('At name node fetching') logging.warn(('Name node not found: %s' % mother_external_uid)) except Exception as e: logging.error('At name node fetching') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) if ('spouse' in name): spouse_external_uid = name['spouse'] try: name_X_uid_query_res = graph_conn.query_data(name_X_uid_query, {'$xuid': spouse_external_uid}) if (len(name_X_uid_query_res['name']) == 1): spouse_node_uid = name_X_uid_query_res['name'][0]['uid'] name_node['spouse'] = {'uid': spouse_node_uid} else: logging.warn('At name node fetching') logging.warn(('Name node not found: %s' % spouse_external_uid)) except Exception as e: logging.error('At name node fetching') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) if (('father' in name_node) or ('mother' in name_node) or ('spouse' in name_node)): try: graph_conn.create_data(name_node) except Exception as e: logging.error('At name connecting') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) logging.info('Pass III: Connecting names via sameAs relations based on manually connected data') connection_file = open('Resources/BibleNames/connected_ne.json').read() connections = json.loads(connection_file) factgrid_id_pattern = 'https://database.factgrid.de/entity/' wiki_id_pattern = 'http://www.wikidata.org/entity/' ubs_id_pattern = 'ubs_name/' for conn in connections: if (conn['linked'] != 'manual'): continue ids = [] if ('factgrid' in conn): f_ids = set(conn['factgrid']) ids += [(factgrid_id_pattern + id) for id in f_ids] if ('ubs' in conn): u_ids = set(conn['ubs']) ids += [(ubs_id_pattern + id) for id in u_ids] if ('wiki' in conn): w_ids = set(conn['wiki']) ids += [(wiki_id_pattern + id) for id in w_ids] for (a, b) in itertools.product(ids, ids): if (a == b): continue try: name_X_uid_query_res = graph_conn.query_data(name_X_uid_query, {'$xuid': a.strip()}) if (len(name_X_uid_query_res['name']) == 1): a_node_uid = name_X_uid_query_res['name'][0]['uid'] else: logging.warn('At fetching name nodes') logging.warn(('cannot find one node for a_node: %s' % a)) logging.warn(('got query result: %s' % name_X_uid_query_res)) continue except Exception as e: logging.error('At fetching name nodes') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) try: name_X_uid_query_res = graph_conn.query_data(name_X_uid_query, {'$xuid': b.strip()}) if (len(name_X_uid_query_res['name']) == 1): b_node_uid = name_X_uid_query_res['name'][0]['uid'] else: logging.warn('At fetching name nodes') logging.warn(('cannot find one node for b_node: %s' % b)) logging.warn(('got query result: %s' % name_X_uid_query_res)) continue except Exception as e: logging.error('At fetching name nodes') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) sameAs_connection = {'uid': a_node_uid, 'sameAs': {'uid': b_node_uid}} try: graph_conn.create_data(sameAs_connection) except Exception as e: logging.error('At name connecting via sameAs') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) logging.info('Pass IV: Connecting names to Bible words') for name in factgrid_names: external_uid = name['Person'] try: name_X_uid_query_res = graph_conn.query_data(name_X_uid_query, {'$xuid': external_uid}) if (len(name_X_uid_query_res['name']) == 1): name_node_uid = name_X_uid_query_res['name'][0]['uid'] search_names = [name_X_uid_query_res['name'][0]['name']] if ('sameAs' in name_X_uid_query_res['name'][0]): search_names += [same['name'] for same in name_X_uid_query_res['name'][0]['sameAs']] else: logging.error('At name node fetching') logging.error(('Name node not found: %s' % external_uid)) raise HTTPException(status_code=502, detail='Graph side error. Name node not found.') except Exception as e: logging.error('At name node fetching') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) ref_pattern = re.compile('(\\d* ?\\w+) (\\d+):?(\\d+)?') if ('notedLabel' in name): ref = name['notedLabel'] inconsistant_values = ['Superscript of Psalm 7', 'The General Epistle of Jude', 'New Testament', 'Pilate stone'] try: ref_obj = re.match(ref_pattern, ref) book = ref_obj.group(1) chapter = ref_obj.group(2) verse = ref_obj.group(3) except Exception as e: if (ref in inconsistant_values): continue logging.error(('At Parsing Reference:%s' % ref)) logging.error(e) raise HTTPException(status_code=502, detail=('Regex error. ' + str(e))) if (verse == None): verse = 0 variables = {'$bib': 'English ULB bible', '$book': str(book_num_map[book]), '$chapter': str(chapter), '$verse': str(verse)} try: one_verse_query_res = graph_conn.query_data(one_verse_query, variables) except Exception as e: logging.error(('At fetching words in verse:%s' % variables)) logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) found_verse = False found_word = False search_names_cleaned = [name.split(' ', 1)[0].replace(',', ).lower() for name in search_names] search_names = set(search_names_cleaned) if (len(one_verse_query_res['verse'][0]) > 0): if (('~belongsTo' in one_verse_query_res['verse'][0]) and (len(one_verse_query_res['verse'][0]['~belongsTo']) > 0)): if (('~belongsTo' in one_verse_query_res['verse'][0]['~belongsTo'][0]) and (len(one_verse_query_res['verse'][0]['~belongsTo'][0]['~belongsTo']) > 0)): if (('~belongsTo' in one_verse_query_res['verse'][0]['~belongsTo'][0]['~belongsTo'][0]) and (len(one_verse_query_res['verse'][0]['~belongsTo'][0]['~belongsTo'][0]['~belongsTo']) > 0)): words = one_verse_query_res['verse'][0]['~belongsTo'][0]['~belongsTo'][0]['~belongsTo'][0]['words'] for wrd in words: if (re.sub(non_letter_pattern, , wrd['word'].lower().replace("'s", )) in search_names): name_connection = {'uid': wrd['uid'], 'nameLink': {'uid': name_node_uid}} try: logging.info(('linking %s to %s' % (name['PersonLabel'], wrd['word']))) graph_conn.create_data(name_connection) pass except Exception as e: logging.error('At creating nameLink') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) found_word = True found_verse = True if (not found_verse): logging.warn(('verse %s not found' % variables)) elif (not found_word): text = ' '.join([wrd['word'] for wrd in words]) logging.warn(('Matching word not found in the searched verse\n %s >>> %s' % (name['PersonLabel'], text))) verse_not_found_count = 0 for name in ubs_names: external_uid = ('ubs_name/' + name['id']) try: name_X_uid_query_res = graph_conn.query_data(name_X_uid_query, {'$xuid': external_uid}) if (len(name_X_uid_query_res['name']) == 1): name_node_uid = name_X_uid_query_res['name'][0]['uid'] search_names = [name_X_uid_query_res['name'][0]['name']] if ('sameAs' in name_X_uid_query_res['name'][0]): search_names += [same['name'] for same in name_X_uid_query_res['name'][0]['sameAs']] else: logging.error('At name node fetching') logging.error(('Name node not found: %s' % external_uid)) raise HTTPException(status_code=502, detail='Graph side error. Name node not found.') except Exception as e: logging.error('At name node fetching') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) search_names_cleaned = [name.split(' ', 1)[0].replace(';', ).lower() for name in search_names] search_names = set(search_names_cleaned) if ('occurances' in name): refs = name['occurances'] for ref in refs: (book, chapter, verse, pos) = ref variables = {'$bib': 'English ULB bible', '$book': str(book), '$chapter': str(chapter), '$verse': str(verse)} try: one_verse_query_res = graph_conn.query_data(one_verse_query, variables) except Exception as e: logging.error(('At fetching words in verse:%s' % variables)) logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) found_verse = False found_word = False if (len(one_verse_query_res['verse'][0]) > 0): if (('~belongsTo' in one_verse_query_res['verse'][0]) and (len(one_verse_query_res['verse'][0]['~belongsTo']) > 0)): if (('~belongsTo' in one_verse_query_res['verse'][0]['~belongsTo'][0]) and (len(one_verse_query_res['verse'][0]['~belongsTo'][0]['~belongsTo']) > 0)): if (('~belongsTo' in one_verse_query_res['verse'][0]['~belongsTo'][0]['~belongsTo'][0]) and (len(one_verse_query_res['verse'][0]['~belongsTo'][0]['~belongsTo'][0]['~belongsTo']) > 0)): words = one_verse_query_res['verse'][0]['~belongsTo'][0]['~belongsTo'][0]['~belongsTo'][0]['words'] for wrd in words: if (re.sub(non_letter_pattern, , wrd['word'].lower().replace("'s", )) in search_names): name_connection = {'uid': wrd['uid'], 'nameLink': {'uid': name_node_uid}} try: logging.info(('linking %s to %s' % (name['name'], wrd['word']))) graph_conn.create_data(name_connection) pass except Exception as e: logging.error('At creating nameLink') logging.error(e) raise HTTPException(status_code=502, detail=('Graph side error. ' + str(e))) found_word = True found_verse = True if (not found_verse): logging.warn(('verse %s not found' % variables)) verse_not_found_count += 1 elif (not found_word): text = ' '.join([wrd['word'] for wrd in words]) logging.warn(('Matching word not found in the searched verse\n %s >>> %s' % (name['name'], text))) return {'msg': 'Added names'}<|docstring|>creates a Bible names dictionary. * Pass I: Collect names from factgrid, ubs and wiki files and add to dictionary. * Pass II: Connect the names to each other based on known relations * Pass III: Connects names to each other using "sameAs" relation * Pass IV: Connects names to bible Words in English ULB bible<|endoftext|>
a4727a61ef56f30bc65e8c24adfcb99031b4b922cfef94a5f7e81f662dcba760
@app.post('/versification/original', status_code=201, tags=['WRITE', 'Versification']) def add_versification_orig(versification: dict): 'Create the entire versification structure with the original versification format' nodename = 'original' root_node = {'dgraph.type': 'VersificationNode', 'versification': nodename} root_node_uid = graph_conn.create_data(root_node) for book in versification['maxVerses']: book_node = {'dgraphType': 'VersificationBookNode', 'bookcode': book, 'belongsTo': {'uid': root_node_uid}} book_node_uid = graph_conn.create_data(book_node) for (i, chap_max) in enumerate(versification['maxVerses'][book]): chapter_node = {'dgraph.type': 'VersificationChapterNode', 'chapter': (i + 1), 'belongsTo': {'uid': book_node_uid}} chapter_node_uid = graph_conn.create_data(chapter_node) for verse in range(int(chap_max)): verse_node = {'dgraph.tyep': 'VersificationVerseNode', 'verseNumber': (verse + 1), 'belongsTo': {'uid': chapter_node_uid}} verse_node_uid = graph_conn.create_data(verse_node)
Create the entire versification structure with the original versification format
dgraph/dGraph_fastAPI_server.py
add_versification_orig
kavitharaju/vachan-graph
3
python
@app.post('/versification/original', status_code=201, tags=['WRITE', 'Versification']) def add_versification_orig(versification: dict): nodename = 'original' root_node = {'dgraph.type': 'VersificationNode', 'versification': nodename} root_node_uid = graph_conn.create_data(root_node) for book in versification['maxVerses']: book_node = {'dgraphType': 'VersificationBookNode', 'bookcode': book, 'belongsTo': {'uid': root_node_uid}} book_node_uid = graph_conn.create_data(book_node) for (i, chap_max) in enumerate(versification['maxVerses'][book]): chapter_node = {'dgraph.type': 'VersificationChapterNode', 'chapter': (i + 1), 'belongsTo': {'uid': book_node_uid}} chapter_node_uid = graph_conn.create_data(chapter_node) for verse in range(int(chap_max)): verse_node = {'dgraph.tyep': 'VersificationVerseNode', 'verseNumber': (verse + 1), 'belongsTo': {'uid': chapter_node_uid}} verse_node_uid = graph_conn.create_data(verse_node)
@app.post('/versification/original', status_code=201, tags=['WRITE', 'Versification']) def add_versification_orig(versification: dict): nodename = 'original' root_node = {'dgraph.type': 'VersificationNode', 'versification': nodename} root_node_uid = graph_conn.create_data(root_node) for book in versification['maxVerses']: book_node = {'dgraphType': 'VersificationBookNode', 'bookcode': book, 'belongsTo': {'uid': root_node_uid}} book_node_uid = graph_conn.create_data(book_node) for (i, chap_max) in enumerate(versification['maxVerses'][book]): chapter_node = {'dgraph.type': 'VersificationChapterNode', 'chapter': (i + 1), 'belongsTo': {'uid': book_node_uid}} chapter_node_uid = graph_conn.create_data(chapter_node) for verse in range(int(chap_max)): verse_node = {'dgraph.tyep': 'VersificationVerseNode', 'verseNumber': (verse + 1), 'belongsTo': {'uid': chapter_node_uid}} verse_node_uid = graph_conn.create_data(verse_node)<|docstring|>Create the entire versification structure with the original versification format<|endoftext|>
f464d341cdd17de2f12e25059b8261d8144c094b43615b709db76f6cfff86a81
@app.post('/versification/map', status_code=201, tags=['WRITE', 'Versification']) def add_versification_map(versification: dict, bible_name: str): 'Add maps from verses of selected bible to the original versification structure as per the map' connect_Graph() bib_res = graph_conn.query_data(bible_uid_query, {'$bib': bible_name}) if (len(bib_res['bible']) < 1): raise HTTPException('Bible not found:%s', bible_name) bib_uid = bib_res['bible'][0]['uid'] for source_verse in versification['verseMappings']: versi_verse = versification['verseMappings'][source_verse] src_vars = process_ref_string(source_verse) versi_vars = process_ref_string(versi_verse) for item in src_vars: item['$bib_uid'] = str(bib_uid) i = 0 for var1 in src_vars: var2 = versi_vars[i] if (i < (len(versi_vars) - 1)): i = (i + 1) versi_map_nodes(var1, var2) var1 = src_vars[(- 1)] while (i < (len(versi_vars) - 1)): var2 = versi_vars[i] versi_map_nodes(var1, var2) i += 1 for verse in versification['excludedVerses']: verse_vars = process_ref_string(verse) for var in verse_vars: versi_node = graph_conn.query_data(versi_verse_node_query, var) if (len(versi_node['verse']) < 1): raise Exception('Cant find versification node: %s', var) mapping = {'uid': str(bib_uid), 'excludedVerse': {'uid': versi_node['verse'][0]['uid']}} print(mapping) graph_conn.create_data(mapping) for verse in versification['partialVerses']: 'if component verses are coming as muiltiple verse nodes in Graph, \n\t\tadd a "partialVerse" relation from root verse to components' pass
Add maps from verses of selected bible to the original versification structure as per the map
dgraph/dGraph_fastAPI_server.py
add_versification_map
kavitharaju/vachan-graph
3
python
@app.post('/versification/map', status_code=201, tags=['WRITE', 'Versification']) def add_versification_map(versification: dict, bible_name: str): connect_Graph() bib_res = graph_conn.query_data(bible_uid_query, {'$bib': bible_name}) if (len(bib_res['bible']) < 1): raise HTTPException('Bible not found:%s', bible_name) bib_uid = bib_res['bible'][0]['uid'] for source_verse in versification['verseMappings']: versi_verse = versification['verseMappings'][source_verse] src_vars = process_ref_string(source_verse) versi_vars = process_ref_string(versi_verse) for item in src_vars: item['$bib_uid'] = str(bib_uid) i = 0 for var1 in src_vars: var2 = versi_vars[i] if (i < (len(versi_vars) - 1)): i = (i + 1) versi_map_nodes(var1, var2) var1 = src_vars[(- 1)] while (i < (len(versi_vars) - 1)): var2 = versi_vars[i] versi_map_nodes(var1, var2) i += 1 for verse in versification['excludedVerses']: verse_vars = process_ref_string(verse) for var in verse_vars: versi_node = graph_conn.query_data(versi_verse_node_query, var) if (len(versi_node['verse']) < 1): raise Exception('Cant find versification node: %s', var) mapping = {'uid': str(bib_uid), 'excludedVerse': {'uid': versi_node['verse'][0]['uid']}} print(mapping) graph_conn.create_data(mapping) for verse in versification['partialVerses']: 'if component verses are coming as muiltiple verse nodes in Graph, \n\t\tadd a "partialVerse" relation from root verse to components' pass
@app.post('/versification/map', status_code=201, tags=['WRITE', 'Versification']) def add_versification_map(versification: dict, bible_name: str): connect_Graph() bib_res = graph_conn.query_data(bible_uid_query, {'$bib': bible_name}) if (len(bib_res['bible']) < 1): raise HTTPException('Bible not found:%s', bible_name) bib_uid = bib_res['bible'][0]['uid'] for source_verse in versification['verseMappings']: versi_verse = versification['verseMappings'][source_verse] src_vars = process_ref_string(source_verse) versi_vars = process_ref_string(versi_verse) for item in src_vars: item['$bib_uid'] = str(bib_uid) i = 0 for var1 in src_vars: var2 = versi_vars[i] if (i < (len(versi_vars) - 1)): i = (i + 1) versi_map_nodes(var1, var2) var1 = src_vars[(- 1)] while (i < (len(versi_vars) - 1)): var2 = versi_vars[i] versi_map_nodes(var1, var2) i += 1 for verse in versification['excludedVerses']: verse_vars = process_ref_string(verse) for var in verse_vars: versi_node = graph_conn.query_data(versi_verse_node_query, var) if (len(versi_node['verse']) < 1): raise Exception('Cant find versification node: %s', var) mapping = {'uid': str(bib_uid), 'excludedVerse': {'uid': versi_node['verse'][0]['uid']}} print(mapping) graph_conn.create_data(mapping) for verse in versification['partialVerses']: 'if component verses are coming as muiltiple verse nodes in Graph, \n\t\tadd a "partialVerse" relation from root verse to components' pass<|docstring|>Add maps from verses of selected bible to the original versification structure as per the map<|endoftext|>
9d65a37f9d20d95785965d5117415ff907e0b292646a6a075656b829a720fc0b
@app.get('/versification/map', status_code=200, tags=['READ', 'Versification']) def get_versification_map(bible_name: str): 'Gets a text output as given by versification sniffer, if mapping is added for the bible' versification = {} versification['maxVerses'] = {} versification['partialVerses'] = {} versification['verseMappings'] = {} versification['excludedVerses'] = [] versification['unexcludedVerses'] = {} connect_Graph() bib_res = graph_conn.query_data(bible_uid_query, {'$bib': bible_name}) if (len(bib_res['bible']) < 1): raise HTTPException('Bible not found:%s', bible_name) bib_uid = bib_res['bible'][0]['uid'] verses = graph_conn.query_data(exluded_verses_query, {'$bib_uid': str(bib_uid)}) for ver in verses['verse']: ref = ('%s %s:%s' % (ver['book'], ver['chapter'], ver['verse'])) versification['excludedVerses'].append(ref) print(versification['excludedVerses']) mapped_verses = graph_conn.query_data(verse_mappings_query, {'$bib_uid': str(bib_uid)}) for ver in mapped_verses['verse']: key = ('%s %s:%s' % (num_book_map[ver['srcBook']], ver['srcChapter'], ver['srcVerse'])) val = ('%s %s:%s' % (ver['trgBook'], ver['trgChapter'], ver['trgVerse'])) if (key in versification['verseMappings']): match_obj = re.match(verse_range_pattern, versification['verseMappings'][key]) book = match_obj.group(1) chapter = match_obj.group(2) verse_s = match_obj.group(3) verse_e = match_obj.group(4) if ((book == ver['trgBook']) and (chapter == ver['trgChapter'])): if (verse_e is None): range_ = sorted([int(verse_s), ver['trgVerse']]) else: range_ = sorted([int(verse_s), int(verse_e), ver['trgVerse']]) sorted_range = ((str(range_[0]) + '-') + str(range_[(- 1)])) val = ('%s %s:%s' % (ver['trgBook'], ver['trgChapter'], sorted_range)) else: val = ((versification['verseMappings'][key] + ', ') + val) versification['verseMappings'][key] = val print(versification['verseMappings']) book_chapters = graph_conn.query_data(maxVerse_query, {'$bib_uid': str(bib_uid)}) for book in book_chapters['struct'][0]['~belongsTo']: book_code = num_book_map[book['bookNumber']] book_entry = [] for chap in book['~belongsTo']: book_entry.append(chap['maxVerse']) versification['maxVerses'][book_code] = book_entry print(versification['maxVerses']) return versification
Gets a text output as given by versification sniffer, if mapping is added for the bible
dgraph/dGraph_fastAPI_server.py
get_versification_map
kavitharaju/vachan-graph
3
python
@app.get('/versification/map', status_code=200, tags=['READ', 'Versification']) def get_versification_map(bible_name: str): versification = {} versification['maxVerses'] = {} versification['partialVerses'] = {} versification['verseMappings'] = {} versification['excludedVerses'] = [] versification['unexcludedVerses'] = {} connect_Graph() bib_res = graph_conn.query_data(bible_uid_query, {'$bib': bible_name}) if (len(bib_res['bible']) < 1): raise HTTPException('Bible not found:%s', bible_name) bib_uid = bib_res['bible'][0]['uid'] verses = graph_conn.query_data(exluded_verses_query, {'$bib_uid': str(bib_uid)}) for ver in verses['verse']: ref = ('%s %s:%s' % (ver['book'], ver['chapter'], ver['verse'])) versification['excludedVerses'].append(ref) print(versification['excludedVerses']) mapped_verses = graph_conn.query_data(verse_mappings_query, {'$bib_uid': str(bib_uid)}) for ver in mapped_verses['verse']: key = ('%s %s:%s' % (num_book_map[ver['srcBook']], ver['srcChapter'], ver['srcVerse'])) val = ('%s %s:%s' % (ver['trgBook'], ver['trgChapter'], ver['trgVerse'])) if (key in versification['verseMappings']): match_obj = re.match(verse_range_pattern, versification['verseMappings'][key]) book = match_obj.group(1) chapter = match_obj.group(2) verse_s = match_obj.group(3) verse_e = match_obj.group(4) if ((book == ver['trgBook']) and (chapter == ver['trgChapter'])): if (verse_e is None): range_ = sorted([int(verse_s), ver['trgVerse']]) else: range_ = sorted([int(verse_s), int(verse_e), ver['trgVerse']]) sorted_range = ((str(range_[0]) + '-') + str(range_[(- 1)])) val = ('%s %s:%s' % (ver['trgBook'], ver['trgChapter'], sorted_range)) else: val = ((versification['verseMappings'][key] + ', ') + val) versification['verseMappings'][key] = val print(versification['verseMappings']) book_chapters = graph_conn.query_data(maxVerse_query, {'$bib_uid': str(bib_uid)}) for book in book_chapters['struct'][0]['~belongsTo']: book_code = num_book_map[book['bookNumber']] book_entry = [] for chap in book['~belongsTo']: book_entry.append(chap['maxVerse']) versification['maxVerses'][book_code] = book_entry print(versification['maxVerses']) return versification
@app.get('/versification/map', status_code=200, tags=['READ', 'Versification']) def get_versification_map(bible_name: str): versification = {} versification['maxVerses'] = {} versification['partialVerses'] = {} versification['verseMappings'] = {} versification['excludedVerses'] = [] versification['unexcludedVerses'] = {} connect_Graph() bib_res = graph_conn.query_data(bible_uid_query, {'$bib': bible_name}) if (len(bib_res['bible']) < 1): raise HTTPException('Bible not found:%s', bible_name) bib_uid = bib_res['bible'][0]['uid'] verses = graph_conn.query_data(exluded_verses_query, {'$bib_uid': str(bib_uid)}) for ver in verses['verse']: ref = ('%s %s:%s' % (ver['book'], ver['chapter'], ver['verse'])) versification['excludedVerses'].append(ref) print(versification['excludedVerses']) mapped_verses = graph_conn.query_data(verse_mappings_query, {'$bib_uid': str(bib_uid)}) for ver in mapped_verses['verse']: key = ('%s %s:%s' % (num_book_map[ver['srcBook']], ver['srcChapter'], ver['srcVerse'])) val = ('%s %s:%s' % (ver['trgBook'], ver['trgChapter'], ver['trgVerse'])) if (key in versification['verseMappings']): match_obj = re.match(verse_range_pattern, versification['verseMappings'][key]) book = match_obj.group(1) chapter = match_obj.group(2) verse_s = match_obj.group(3) verse_e = match_obj.group(4) if ((book == ver['trgBook']) and (chapter == ver['trgChapter'])): if (verse_e is None): range_ = sorted([int(verse_s), ver['trgVerse']]) else: range_ = sorted([int(verse_s), int(verse_e), ver['trgVerse']]) sorted_range = ((str(range_[0]) + '-') + str(range_[(- 1)])) val = ('%s %s:%s' % (ver['trgBook'], ver['trgChapter'], sorted_range)) else: val = ((versification['verseMappings'][key] + ', ') + val) versification['verseMappings'][key] = val print(versification['verseMappings']) book_chapters = graph_conn.query_data(maxVerse_query, {'$bib_uid': str(bib_uid)}) for book in book_chapters['struct'][0]['~belongsTo']: book_code = num_book_map[book['bookNumber']] book_entry = [] for chap in book['~belongsTo']: book_entry.append(chap['maxVerse']) versification['maxVerses'][book_code] = book_entry print(versification['maxVerses']) return versification<|docstring|>Gets a text output as given by versification sniffer, if mapping is added for the bible<|endoftext|>
d9e0ff8a7f677e1ce5373b58d783499e2c06bf1b7e767a416c154ccf843e43d1
@app.get('/versification/verse', status_code=200, tags=['READ', 'Versification']) def get_verse_map(bookcode: BibleBook, chapter: int, verse: int): 'Gets all verses mapped to the original verse given by bcv.' connect_Graph() var = {'$book': bookcode.upper(), '$chapter': str(chapter), '$verse': str(verse)} mapped_verses = graph_conn.query_data(parallel_versi_verses_query, var)['verse'] res = mapped_verses mapped_bibles = set([item['bible'] for item in mapped_verses]) var['$book'] = str(book_num_map[bookcode]) parallelverses = graph_conn.query_data(simple_parallel_verses_query, var)['verse'] for ver in parallelverses: if (ver['bible'] not in mapped_bibles): res.append(ver) return res
Gets all verses mapped to the original verse given by bcv.
dgraph/dGraph_fastAPI_server.py
get_verse_map
kavitharaju/vachan-graph
3
python
@app.get('/versification/verse', status_code=200, tags=['READ', 'Versification']) def get_verse_map(bookcode: BibleBook, chapter: int, verse: int): connect_Graph() var = {'$book': bookcode.upper(), '$chapter': str(chapter), '$verse': str(verse)} mapped_verses = graph_conn.query_data(parallel_versi_verses_query, var)['verse'] res = mapped_verses mapped_bibles = set([item['bible'] for item in mapped_verses]) var['$book'] = str(book_num_map[bookcode]) parallelverses = graph_conn.query_data(simple_parallel_verses_query, var)['verse'] for ver in parallelverses: if (ver['bible'] not in mapped_bibles): res.append(ver) return res
@app.get('/versification/verse', status_code=200, tags=['READ', 'Versification']) def get_verse_map(bookcode: BibleBook, chapter: int, verse: int): connect_Graph() var = {'$book': bookcode.upper(), '$chapter': str(chapter), '$verse': str(verse)} mapped_verses = graph_conn.query_data(parallel_versi_verses_query, var)['verse'] res = mapped_verses mapped_bibles = set([item['bible'] for item in mapped_verses]) var['$book'] = str(book_num_map[bookcode]) parallelverses = graph_conn.query_data(simple_parallel_verses_query, var)['verse'] for ver in parallelverses: if (ver['bible'] not in mapped_bibles): res.append(ver) return res<|docstring|>Gets all verses mapped to the original verse given by bcv.<|endoftext|>
c2b7d7cd92c237f4329c2359036c8e250ec3e4fd25ff1f6303b7b96b0a1e962d
def __iter__(self): '\n Iterate over all bounding boxes.\n\n Yields\n ------\n BoundingBox\n ' i = 0 while True: try: i %= len(self.bounding_boxes) (yield self.bounding_boxes[i]) i += 1 except ZeroDivisionError: (yield None)
Iterate over all bounding boxes. Yields ------ BoundingBox
vision/interface.py
__iter__
cjhr95/IARC-2020
12
python
def __iter__(self): '\n Iterate over all bounding boxes.\n\n Yields\n ------\n BoundingBox\n ' i = 0 while True: try: i %= len(self.bounding_boxes) (yield self.bounding_boxes[i]) i += 1 except ZeroDivisionError: (yield None)
def __iter__(self): '\n Iterate over all bounding boxes.\n\n Yields\n ------\n BoundingBox\n ' i = 0 while True: try: i %= len(self.bounding_boxes) (yield self.bounding_boxes[i]) i += 1 except ZeroDivisionError: (yield None)<|docstring|>Iterate over all bounding boxes. Yields ------ BoundingBox<|endoftext|>
9b5e7e88d0459ac2342e67cb45800d32949744ef503359952c470ca6579ce9e8
def update(self, bounding_boxes): '\n Update environment.\n\n Parameters\n ----------\n bounding_boxes: list[BoundingBox]\n New environment data.\n ' self.bounding_boxes = bounding_boxes
Update environment. Parameters ---------- bounding_boxes: list[BoundingBox] New environment data.
vision/interface.py
update
cjhr95/IARC-2020
12
python
def update(self, bounding_boxes): '\n Update environment.\n\n Parameters\n ----------\n bounding_boxes: list[BoundingBox]\n New environment data.\n ' self.bounding_boxes = bounding_boxes
def update(self, bounding_boxes): '\n Update environment.\n\n Parameters\n ----------\n bounding_boxes: list[BoundingBox]\n New environment data.\n ' self.bounding_boxes = bounding_boxes<|docstring|>Update environment. Parameters ---------- bounding_boxes: list[BoundingBox] New environment data.<|endoftext|>
47e7c431436ac679de8704855f59db55f3b0743ae36d70e72c1190d81812025a
def main(): ' main entry point for module execution\n ' OnyxBufferPoolModule.main()
main entry point for module execution
ansible/venv/lib/python2.7/site-packages/ansible/modules/network/onyx/onyx_buffer_pool.py
main
gvashchenkolineate/gvashchenkolineate_infra_trytravis
17
python
def main(): ' \n ' OnyxBufferPoolModule.main()
def main(): ' \n ' OnyxBufferPoolModule.main()<|docstring|>main entry point for module execution<|endoftext|>
d5c7177704e803b8dcd8aa95b66e3df1900baafd9742e7c2c9969589f907df61
def init_module(self): ' initialize module\n ' element_spec = dict(name=dict(type='str', required=True), pool_type=dict(choices=['lossless', 'lossy'], default='lossy'), memory_percent=dict(type='float'), switch_priority=dict(type='int')) argument_spec = dict() argument_spec.update(element_spec) self._module = AnsibleModule(argument_spec=argument_spec, supports_check_mode=True)
initialize module
ansible/venv/lib/python2.7/site-packages/ansible/modules/network/onyx/onyx_buffer_pool.py
init_module
gvashchenkolineate/gvashchenkolineate_infra_trytravis
17
python
def init_module(self): ' \n ' element_spec = dict(name=dict(type='str', required=True), pool_type=dict(choices=['lossless', 'lossy'], default='lossy'), memory_percent=dict(type='float'), switch_priority=dict(type='int')) argument_spec = dict() argument_spec.update(element_spec) self._module = AnsibleModule(argument_spec=argument_spec, supports_check_mode=True)
def init_module(self): ' \n ' element_spec = dict(name=dict(type='str', required=True), pool_type=dict(choices=['lossless', 'lossy'], default='lossy'), memory_percent=dict(type='float'), switch_priority=dict(type='int')) argument_spec = dict() argument_spec.update(element_spec) self._module = AnsibleModule(argument_spec=argument_spec, supports_check_mode=True)<|docstring|>initialize module<|endoftext|>
c08f070d851cbc98dd7cf5df22530ae89254446be22e7605d100e93b7b41dfa2
def autolabel(rects, ax): 'Attach a text label above each bar in *rects*, displaying its height.' for rect in rects: height = rect.get_height() ax.annotate('{:.0f}'.format(height), xy=((rect.get_x() + (rect.get_width() / 2)), height), xytext=(0, 3), textcoords='offset points', ha='center', va='bottom')
Attach a text label above each bar in *rects*, displaying its height.
functions.py
autolabel
lesh3000/sql_problem
1
python
def autolabel(rects, ax): for rect in rects: height = rect.get_height() ax.annotate('{:.0f}'.format(height), xy=((rect.get_x() + (rect.get_width() / 2)), height), xytext=(0, 3), textcoords='offset points', ha='center', va='bottom')
def autolabel(rects, ax): for rect in rects: height = rect.get_height() ax.annotate('{:.0f}'.format(height), xy=((rect.get_x() + (rect.get_width() / 2)), height), xytext=(0, 3), textcoords='offset points', ha='center', va='bottom')<|docstring|>Attach a text label above each bar in *rects*, displaying its height.<|endoftext|>
b694a2c26a3cb907531d96b0dc61b0d0c052d33eeb6fad01bef2b0bf5e99b2dc
def loadLog(filePath): 'Loads json from path and converts to dataframe.\n\n Parameters\n ----------\n filePath : str, required\n \n the path of the file\n\n Returns\n ------\n obj\n \n Pandas DataFrame object\n \n ' dirname = os.path.abspath('') log = os.path.join(dirname, ('data/' + filePath)) with open(log) as json_file: data = json.load(json_file) return pd.json_normalize(data)
Loads json from path and converts to dataframe. Parameters ---------- filePath : str, required the path of the file Returns ------ obj Pandas DataFrame object
functions.py
loadLog
lesh3000/sql_problem
1
python
def loadLog(filePath): 'Loads json from path and converts to dataframe.\n\n Parameters\n ----------\n filePath : str, required\n \n the path of the file\n\n Returns\n ------\n obj\n \n Pandas DataFrame object\n \n ' dirname = os.path.abspath() log = os.path.join(dirname, ('data/' + filePath)) with open(log) as json_file: data = json.load(json_file) return pd.json_normalize(data)
def loadLog(filePath): 'Loads json from path and converts to dataframe.\n\n Parameters\n ----------\n filePath : str, required\n \n the path of the file\n\n Returns\n ------\n obj\n \n Pandas DataFrame object\n \n ' dirname = os.path.abspath() log = os.path.join(dirname, ('data/' + filePath)) with open(log) as json_file: data = json.load(json_file) return pd.json_normalize(data)<|docstring|>Loads json from path and converts to dataframe. Parameters ---------- filePath : str, required the path of the file Returns ------ obj Pandas DataFrame object<|endoftext|>
2fff0dcb9a8dc97973523a9cc7c0a6db5767729fde1c39e60badcda360a2ecbf
def compareDates(df, df1): 'makes comparisons of timelines available in slow and general logs\n -converts string to float\n -calculates and prints timelines of the logs\n -visualizes logs activites(number of requests per minute) in lineplot for each log\n -views and printsdescriptive stats (number of requests per minute) for each log\n -summarizes the above in boxplot\n -calculates the differences between the number of activities recorded in each log\n -plot the above on the scatter plot\n \n Parameters\n ----------\n df : pandas.dataFrame, required\n df1 : pandas.dataFrame, required\n\n ' gen = df['event_time'].map((lambda x: x[:19])).value_counts().sort_index() slow = df1['start_time'].map((lambda x: x[:19])).value_counts().sort_index() print('General log timeline is over: ') print((datetime.datetime.strptime(max(df['event_time']), '%Y-%m-%d %H:%M:%S.%f') - datetime.datetime.strptime(min(df['event_time']), '%Y-%m-%d %H:%M:%S.%f'))) print('_______________________________') print('Slow log timeline is over: ') print((datetime.datetime.strptime(max(df1['start_time']), '%Y-%m-%d %H:%M:%S.%f') - datetime.datetime.strptime(min(df1['start_time']), '%Y-%m-%d %H:%M:%S.%f'))) merged = pd.concat([gen, slow], axis=1).fillna(0).sort_index() (fig, ax) = plt.subplots() fig.set_size_inches(15, 7, forward=True) y = list(range(merged.shape[0])) logs = ['event_time', 'start_time'] rects1 = ax.plot(y, merged['event_time'], alpha=0.3, label='General log') rects2 = ax.plot(y, merged['start_time'], alpha=0.3, label='Slow log') plt.legend(prop={'size': 10}, title='Logs') plt.title('Requests per minute reported by both logs') plt.xlabel('Timeline (minutes)') plt.ylabel('Number of requests') plt.show() print(merged[['event_time', 'start_time']].describe()) (fig, ax) = plt.subplots() fig.set_size_inches(15, 7, forward=True) ax.set_title('Number of requests per minute') ax.boxplot(merged[['event_time', 'start_time']].T) ax.set_xticklabels(['General Log', 'Slow Log']) plt.show() differences = abs((merged['event_time'] - merged['start_time'])) print((('Logs provide ' + str(differences[(differences > 0)].shape[0])) + ' different values regarding number of requests per minute')) print('__________________________') plt.figure(figsize=(10, 5)) plt.title('Request number per minute differences') plt.xlabel('Timeline (minutes)') plt.ylabel('Difference in requests per minute') plt.scatter(range(differences.shape[0]), differences) plt.ylim(bottom=1.0)
makes comparisons of timelines available in slow and general logs -converts string to float -calculates and prints timelines of the logs -visualizes logs activites(number of requests per minute) in lineplot for each log -views and printsdescriptive stats (number of requests per minute) for each log -summarizes the above in boxplot -calculates the differences between the number of activities recorded in each log -plot the above on the scatter plot Parameters ---------- df : pandas.dataFrame, required df1 : pandas.dataFrame, required
functions.py
compareDates
lesh3000/sql_problem
1
python
def compareDates(df, df1): 'makes comparisons of timelines available in slow and general logs\n -converts string to float\n -calculates and prints timelines of the logs\n -visualizes logs activites(number of requests per minute) in lineplot for each log\n -views and printsdescriptive stats (number of requests per minute) for each log\n -summarizes the above in boxplot\n -calculates the differences between the number of activities recorded in each log\n -plot the above on the scatter plot\n \n Parameters\n ----------\n df : pandas.dataFrame, required\n df1 : pandas.dataFrame, required\n\n ' gen = df['event_time'].map((lambda x: x[:19])).value_counts().sort_index() slow = df1['start_time'].map((lambda x: x[:19])).value_counts().sort_index() print('General log timeline is over: ') print((datetime.datetime.strptime(max(df['event_time']), '%Y-%m-%d %H:%M:%S.%f') - datetime.datetime.strptime(min(df['event_time']), '%Y-%m-%d %H:%M:%S.%f'))) print('_______________________________') print('Slow log timeline is over: ') print((datetime.datetime.strptime(max(df1['start_time']), '%Y-%m-%d %H:%M:%S.%f') - datetime.datetime.strptime(min(df1['start_time']), '%Y-%m-%d %H:%M:%S.%f'))) merged = pd.concat([gen, slow], axis=1).fillna(0).sort_index() (fig, ax) = plt.subplots() fig.set_size_inches(15, 7, forward=True) y = list(range(merged.shape[0])) logs = ['event_time', 'start_time'] rects1 = ax.plot(y, merged['event_time'], alpha=0.3, label='General log') rects2 = ax.plot(y, merged['start_time'], alpha=0.3, label='Slow log') plt.legend(prop={'size': 10}, title='Logs') plt.title('Requests per minute reported by both logs') plt.xlabel('Timeline (minutes)') plt.ylabel('Number of requests') plt.show() print(merged[['event_time', 'start_time']].describe()) (fig, ax) = plt.subplots() fig.set_size_inches(15, 7, forward=True) ax.set_title('Number of requests per minute') ax.boxplot(merged[['event_time', 'start_time']].T) ax.set_xticklabels(['General Log', 'Slow Log']) plt.show() differences = abs((merged['event_time'] - merged['start_time'])) print((('Logs provide ' + str(differences[(differences > 0)].shape[0])) + ' different values regarding number of requests per minute')) print('__________________________') plt.figure(figsize=(10, 5)) plt.title('Request number per minute differences') plt.xlabel('Timeline (minutes)') plt.ylabel('Difference in requests per minute') plt.scatter(range(differences.shape[0]), differences) plt.ylim(bottom=1.0)
def compareDates(df, df1): 'makes comparisons of timelines available in slow and general logs\n -converts string to float\n -calculates and prints timelines of the logs\n -visualizes logs activites(number of requests per minute) in lineplot for each log\n -views and printsdescriptive stats (number of requests per minute) for each log\n -summarizes the above in boxplot\n -calculates the differences between the number of activities recorded in each log\n -plot the above on the scatter plot\n \n Parameters\n ----------\n df : pandas.dataFrame, required\n df1 : pandas.dataFrame, required\n\n ' gen = df['event_time'].map((lambda x: x[:19])).value_counts().sort_index() slow = df1['start_time'].map((lambda x: x[:19])).value_counts().sort_index() print('General log timeline is over: ') print((datetime.datetime.strptime(max(df['event_time']), '%Y-%m-%d %H:%M:%S.%f') - datetime.datetime.strptime(min(df['event_time']), '%Y-%m-%d %H:%M:%S.%f'))) print('_______________________________') print('Slow log timeline is over: ') print((datetime.datetime.strptime(max(df1['start_time']), '%Y-%m-%d %H:%M:%S.%f') - datetime.datetime.strptime(min(df1['start_time']), '%Y-%m-%d %H:%M:%S.%f'))) merged = pd.concat([gen, slow], axis=1).fillna(0).sort_index() (fig, ax) = plt.subplots() fig.set_size_inches(15, 7, forward=True) y = list(range(merged.shape[0])) logs = ['event_time', 'start_time'] rects1 = ax.plot(y, merged['event_time'], alpha=0.3, label='General log') rects2 = ax.plot(y, merged['start_time'], alpha=0.3, label='Slow log') plt.legend(prop={'size': 10}, title='Logs') plt.title('Requests per minute reported by both logs') plt.xlabel('Timeline (minutes)') plt.ylabel('Number of requests') plt.show() print(merged[['event_time', 'start_time']].describe()) (fig, ax) = plt.subplots() fig.set_size_inches(15, 7, forward=True) ax.set_title('Number of requests per minute') ax.boxplot(merged[['event_time', 'start_time']].T) ax.set_xticklabels(['General Log', 'Slow Log']) plt.show() differences = abs((merged['event_time'] - merged['start_time'])) print((('Logs provide ' + str(differences[(differences > 0)].shape[0])) + ' different values regarding number of requests per minute')) print('__________________________') plt.figure(figsize=(10, 5)) plt.title('Request number per minute differences') plt.xlabel('Timeline (minutes)') plt.ylabel('Difference in requests per minute') plt.scatter(range(differences.shape[0]), differences) plt.ylim(bottom=1.0)<|docstring|>makes comparisons of timelines available in slow and general logs -converts string to float -calculates and prints timelines of the logs -visualizes logs activites(number of requests per minute) in lineplot for each log -views and printsdescriptive stats (number of requests per minute) for each log -summarizes the above in boxplot -calculates the differences between the number of activities recorded in each log -plot the above on the scatter plot Parameters ---------- df : pandas.dataFrame, required df1 : pandas.dataFrame, required<|endoftext|>
d4dcfb2a999d72e60b216bd1f76a9569af79c666ba809a8e76c1f76e21371cc3
def clean(s): '- Removes text between */ /*\n - removes spaces in from nad behind the string\n\n Parameters\n ----------\n s : str, required\n \n string to preprocess\n\n Returns\n ------\n s: str\n ' s = re.sub('\\s+', ' ', s) try: s = re.search('(.*)/(.*)', s).group(2) except: pass return s.strip()
- Removes text between */ /* - removes spaces in from nad behind the string Parameters ---------- s : str, required string to preprocess Returns ------ s: str
functions.py
clean
lesh3000/sql_problem
1
python
def clean(s): '- Removes text between */ /*\n - removes spaces in from nad behind the string\n\n Parameters\n ----------\n s : str, required\n \n string to preprocess\n\n Returns\n ------\n s: str\n ' s = re.sub('\\s+', ' ', s) try: s = re.search('(.*)/(.*)', s).group(2) except: pass return s.strip()
def clean(s): '- Removes text between */ /*\n - removes spaces in from nad behind the string\n\n Parameters\n ----------\n s : str, required\n \n string to preprocess\n\n Returns\n ------\n s: str\n ' s = re.sub('\\s+', ' ', s) try: s = re.search('(.*)/(.*)', s).group(2) except: pass return s.strip()<|docstring|>- Removes text between */ /* - removes spaces in from nad behind the string Parameters ---------- s : str, required string to preprocess Returns ------ s: str<|endoftext|>
1e9831fad0d4b541cdfeadceffaee4b04f8c7ea0c2b1d1f6828800c107d117bc
def getCapitalWords(df): 'Gets words written in capital letters.\n\n Parameters\n ----------\n df : obj, pandas dataframe\n \n\n Returns\n ------\n list :str\n \n list of strings\n ' arr = set() for i in df: try: for u in i.split(): s = ''.join(re.findall('([A-Z])', u)) arr.add(s) except: pass return arr
Gets words written in capital letters. Parameters ---------- df : obj, pandas dataframe Returns ------ list :str list of strings
functions.py
getCapitalWords
lesh3000/sql_problem
1
python
def getCapitalWords(df): 'Gets words written in capital letters.\n\n Parameters\n ----------\n df : obj, pandas dataframe\n \n\n Returns\n ------\n list :str\n \n list of strings\n ' arr = set() for i in df: try: for u in i.split(): s = .join(re.findall('([A-Z])', u)) arr.add(s) except: pass return arr
def getCapitalWords(df): 'Gets words written in capital letters.\n\n Parameters\n ----------\n df : obj, pandas dataframe\n \n\n Returns\n ------\n list :str\n \n list of strings\n ' arr = set() for i in df: try: for u in i.split(): s = .join(re.findall('([A-Z])', u)) arr.add(s) except: pass return arr<|docstring|>Gets words written in capital letters. Parameters ---------- df : obj, pandas dataframe Returns ------ list :str list of strings<|endoftext|>
a39cfd12ce3c763bc6668cd5d1a951ce45d3c66957dae7dfcc59122e32bf1495
def process_ndex_neighborhood(gene_names, network_id=None, rdf_out='bel_output.rdf', print_output=True): "Return a BelProcessor for an NDEx network neighborhood.\n\n Parameters\n ----------\n gene_names : list\n A list of HGNC gene symbols to search the neighborhood of.\n Example: ['BRAF', 'MAP2K1']\n network_id : Optional[str]\n The UUID of the network in NDEx. By default, the BEL Large Corpus\n network is used.\n rdf_out : Optional[str]\n Name of the output file to save the RDF returned by the web service.\n This is useful for debugging purposes or to repeat the same query\n on an offline RDF file later. Default: bel_output.rdf\n\n Returns\n -------\n bp : BelProcessor\n A BelProcessor object which contains INDRA Statements in bp.statements.\n\n Notes\n -----\n This function calls process_belrdf to the returned RDF string from the\n webservice.\n " if (network_id is None): network_id = '9ea3c170-01ad-11e5-ac0f-000c29cb28fb' url = (ndex_bel2rdf + ('/network/%s/asBELRDF/query' % network_id)) params = {'searchString': ' '.join(gene_names)} res_json = ndex_client.send_request(url, params, is_json=True) if (not res_json): logger.error('No response for NDEx neighborhood query.') return None if res_json.get('error'): error_msg = res_json.get('message') logger.error(('BEL/RDF response contains error: %s' % error_msg)) return None rdf = res_json.get('content') if (not rdf): logger.error('BEL/RDF response is empty.') return None with open(rdf_out, 'wb') as fh: fh.write(rdf.encode('utf-8')) bp = process_belrdf(rdf, print_output=print_output) return bp
Return a BelProcessor for an NDEx network neighborhood. Parameters ---------- gene_names : list A list of HGNC gene symbols to search the neighborhood of. Example: ['BRAF', 'MAP2K1'] network_id : Optional[str] The UUID of the network in NDEx. By default, the BEL Large Corpus network is used. rdf_out : Optional[str] Name of the output file to save the RDF returned by the web service. This is useful for debugging purposes or to repeat the same query on an offline RDF file later. Default: bel_output.rdf Returns ------- bp : BelProcessor A BelProcessor object which contains INDRA Statements in bp.statements. Notes ----- This function calls process_belrdf to the returned RDF string from the webservice.
indra/bel/bel_api.py
process_ndex_neighborhood
jmuhlich/indra
0
python
def process_ndex_neighborhood(gene_names, network_id=None, rdf_out='bel_output.rdf', print_output=True): "Return a BelProcessor for an NDEx network neighborhood.\n\n Parameters\n ----------\n gene_names : list\n A list of HGNC gene symbols to search the neighborhood of.\n Example: ['BRAF', 'MAP2K1']\n network_id : Optional[str]\n The UUID of the network in NDEx. By default, the BEL Large Corpus\n network is used.\n rdf_out : Optional[str]\n Name of the output file to save the RDF returned by the web service.\n This is useful for debugging purposes or to repeat the same query\n on an offline RDF file later. Default: bel_output.rdf\n\n Returns\n -------\n bp : BelProcessor\n A BelProcessor object which contains INDRA Statements in bp.statements.\n\n Notes\n -----\n This function calls process_belrdf to the returned RDF string from the\n webservice.\n " if (network_id is None): network_id = '9ea3c170-01ad-11e5-ac0f-000c29cb28fb' url = (ndex_bel2rdf + ('/network/%s/asBELRDF/query' % network_id)) params = {'searchString': ' '.join(gene_names)} res_json = ndex_client.send_request(url, params, is_json=True) if (not res_json): logger.error('No response for NDEx neighborhood query.') return None if res_json.get('error'): error_msg = res_json.get('message') logger.error(('BEL/RDF response contains error: %s' % error_msg)) return None rdf = res_json.get('content') if (not rdf): logger.error('BEL/RDF response is empty.') return None with open(rdf_out, 'wb') as fh: fh.write(rdf.encode('utf-8')) bp = process_belrdf(rdf, print_output=print_output) return bp
def process_ndex_neighborhood(gene_names, network_id=None, rdf_out='bel_output.rdf', print_output=True): "Return a BelProcessor for an NDEx network neighborhood.\n\n Parameters\n ----------\n gene_names : list\n A list of HGNC gene symbols to search the neighborhood of.\n Example: ['BRAF', 'MAP2K1']\n network_id : Optional[str]\n The UUID of the network in NDEx. By default, the BEL Large Corpus\n network is used.\n rdf_out : Optional[str]\n Name of the output file to save the RDF returned by the web service.\n This is useful for debugging purposes or to repeat the same query\n on an offline RDF file later. Default: bel_output.rdf\n\n Returns\n -------\n bp : BelProcessor\n A BelProcessor object which contains INDRA Statements in bp.statements.\n\n Notes\n -----\n This function calls process_belrdf to the returned RDF string from the\n webservice.\n " if (network_id is None): network_id = '9ea3c170-01ad-11e5-ac0f-000c29cb28fb' url = (ndex_bel2rdf + ('/network/%s/asBELRDF/query' % network_id)) params = {'searchString': ' '.join(gene_names)} res_json = ndex_client.send_request(url, params, is_json=True) if (not res_json): logger.error('No response for NDEx neighborhood query.') return None if res_json.get('error'): error_msg = res_json.get('message') logger.error(('BEL/RDF response contains error: %s' % error_msg)) return None rdf = res_json.get('content') if (not rdf): logger.error('BEL/RDF response is empty.') return None with open(rdf_out, 'wb') as fh: fh.write(rdf.encode('utf-8')) bp = process_belrdf(rdf, print_output=print_output) return bp<|docstring|>Return a BelProcessor for an NDEx network neighborhood. Parameters ---------- gene_names : list A list of HGNC gene symbols to search the neighborhood of. Example: ['BRAF', 'MAP2K1'] network_id : Optional[str] The UUID of the network in NDEx. By default, the BEL Large Corpus network is used. rdf_out : Optional[str] Name of the output file to save the RDF returned by the web service. This is useful for debugging purposes or to repeat the same query on an offline RDF file later. Default: bel_output.rdf Returns ------- bp : BelProcessor A BelProcessor object which contains INDRA Statements in bp.statements. Notes ----- This function calls process_belrdf to the returned RDF string from the webservice.<|endoftext|>
356568ef6b10a892ddf7695b59ae7a1bdabaf223995934179a1fa1188b6aa22b
def process_belrdf(rdf_str, print_output=True): 'Return a BelProcessor for a BEL/RDF string.\n\n Parameters\n ----------\n rdf_str : str\n A BEL/RDF string to be processed. This will usually come from reading\n a .rdf file.\n\n Returns\n -------\n bp : BelProcessor\n A BelProcessor object which contains INDRA Statements in bp.statements.\n\n Notes\n -----\n This function calls all the specific get_type_of_mechanism()\n functions of the newly constructed BelProcessor to extract\n INDRA Statements.\n ' g = rdflib.Graph() try: g.parse(data=rdf_str, format='nt') except ParseError: logger.error('Could not parse rdf.') return None bp = BelProcessor(g) bp.get_complexes() bp.get_activating_subs() bp.get_modifications() bp.get_activating_mods() bp.get_composite_activating_mods() bp.get_transcription() bp.get_activation() if print_output: bp.print_statement_coverage() bp.print_statements() return bp
Return a BelProcessor for a BEL/RDF string. Parameters ---------- rdf_str : str A BEL/RDF string to be processed. This will usually come from reading a .rdf file. Returns ------- bp : BelProcessor A BelProcessor object which contains INDRA Statements in bp.statements. Notes ----- This function calls all the specific get_type_of_mechanism() functions of the newly constructed BelProcessor to extract INDRA Statements.
indra/bel/bel_api.py
process_belrdf
jmuhlich/indra
0
python
def process_belrdf(rdf_str, print_output=True): 'Return a BelProcessor for a BEL/RDF string.\n\n Parameters\n ----------\n rdf_str : str\n A BEL/RDF string to be processed. This will usually come from reading\n a .rdf file.\n\n Returns\n -------\n bp : BelProcessor\n A BelProcessor object which contains INDRA Statements in bp.statements.\n\n Notes\n -----\n This function calls all the specific get_type_of_mechanism()\n functions of the newly constructed BelProcessor to extract\n INDRA Statements.\n ' g = rdflib.Graph() try: g.parse(data=rdf_str, format='nt') except ParseError: logger.error('Could not parse rdf.') return None bp = BelProcessor(g) bp.get_complexes() bp.get_activating_subs() bp.get_modifications() bp.get_activating_mods() bp.get_composite_activating_mods() bp.get_transcription() bp.get_activation() if print_output: bp.print_statement_coverage() bp.print_statements() return bp
def process_belrdf(rdf_str, print_output=True): 'Return a BelProcessor for a BEL/RDF string.\n\n Parameters\n ----------\n rdf_str : str\n A BEL/RDF string to be processed. This will usually come from reading\n a .rdf file.\n\n Returns\n -------\n bp : BelProcessor\n A BelProcessor object which contains INDRA Statements in bp.statements.\n\n Notes\n -----\n This function calls all the specific get_type_of_mechanism()\n functions of the newly constructed BelProcessor to extract\n INDRA Statements.\n ' g = rdflib.Graph() try: g.parse(data=rdf_str, format='nt') except ParseError: logger.error('Could not parse rdf.') return None bp = BelProcessor(g) bp.get_complexes() bp.get_activating_subs() bp.get_modifications() bp.get_activating_mods() bp.get_composite_activating_mods() bp.get_transcription() bp.get_activation() if print_output: bp.print_statement_coverage() bp.print_statements() return bp<|docstring|>Return a BelProcessor for a BEL/RDF string. Parameters ---------- rdf_str : str A BEL/RDF string to be processed. This will usually come from reading a .rdf file. Returns ------- bp : BelProcessor A BelProcessor object which contains INDRA Statements in bp.statements. Notes ----- This function calls all the specific get_type_of_mechanism() functions of the newly constructed BelProcessor to extract INDRA Statements.<|endoftext|>
03f3acde8005df8b54da6018bdd9da75268b633125652d5396c4286c3039e810
def setup_conf(): 'Setup the cfg for the clean up utility.\n\n Use separate setup_conf for the utility because there are many options\n from the main config that do not apply during clean-up.\n ' conf = cfg.CONF cmd.register_cmd_opts(cmd.ovs_opts, conf) l3_config.register_l3_agent_config_opts(l3_config.OPTS, conf) agent_config.register_interface_driver_opts_helper(conf) agent_config.register_interface_opts() conf.set_default('ovsdb_timeout', CLEANUP_OVSDB_TIMEOUT, 'OVS') return conf
Setup the cfg for the clean up utility. Use separate setup_conf for the utility because there are many options from the main config that do not apply during clean-up.
neutron/cmd/ovs_cleanup.py
setup_conf
mmidolesov2/neutron-1
1
python
def setup_conf(): 'Setup the cfg for the clean up utility.\n\n Use separate setup_conf for the utility because there are many options\n from the main config that do not apply during clean-up.\n ' conf = cfg.CONF cmd.register_cmd_opts(cmd.ovs_opts, conf) l3_config.register_l3_agent_config_opts(l3_config.OPTS, conf) agent_config.register_interface_driver_opts_helper(conf) agent_config.register_interface_opts() conf.set_default('ovsdb_timeout', CLEANUP_OVSDB_TIMEOUT, 'OVS') return conf
def setup_conf(): 'Setup the cfg for the clean up utility.\n\n Use separate setup_conf for the utility because there are many options\n from the main config that do not apply during clean-up.\n ' conf = cfg.CONF cmd.register_cmd_opts(cmd.ovs_opts, conf) l3_config.register_l3_agent_config_opts(l3_config.OPTS, conf) agent_config.register_interface_driver_opts_helper(conf) agent_config.register_interface_opts() conf.set_default('ovsdb_timeout', CLEANUP_OVSDB_TIMEOUT, 'OVS') return conf<|docstring|>Setup the cfg for the clean up utility. Use separate setup_conf for the utility because there are many options from the main config that do not apply during clean-up.<|endoftext|>
d75f4794247b325698c5bc982be43cabe12268a67c5d09f471a699571971fa68
def get_bridge_deletable_ports(br): "\n Return a list of OVS Bridge ports, excluding the ports who should not be\n cleaned. such ports are tagged with the 'skip_cleanup' key in external_ids.\n " return [port.port_name for port in br.get_vif_ports() if (constants.SKIP_CLEANUP not in br.get_port_external_ids(port.port_name))]
Return a list of OVS Bridge ports, excluding the ports who should not be cleaned. such ports are tagged with the 'skip_cleanup' key in external_ids.
neutron/cmd/ovs_cleanup.py
get_bridge_deletable_ports
mmidolesov2/neutron-1
1
python
def get_bridge_deletable_ports(br): "\n Return a list of OVS Bridge ports, excluding the ports who should not be\n cleaned. such ports are tagged with the 'skip_cleanup' key in external_ids.\n " return [port.port_name for port in br.get_vif_ports() if (constants.SKIP_CLEANUP not in br.get_port_external_ids(port.port_name))]
def get_bridge_deletable_ports(br): "\n Return a list of OVS Bridge ports, excluding the ports who should not be\n cleaned. such ports are tagged with the 'skip_cleanup' key in external_ids.\n " return [port.port_name for port in br.get_vif_ports() if (constants.SKIP_CLEANUP not in br.get_port_external_ids(port.port_name))]<|docstring|>Return a list of OVS Bridge ports, excluding the ports who should not be cleaned. such ports are tagged with the 'skip_cleanup' key in external_ids.<|endoftext|>
0322a28700f4f67b534dd5b0da3f2c65a9642fb873fe3e8e5736a7e54f8a3d51
def collect_neutron_ports(bridges): 'Collect ports created by Neutron from OVS.' ports = [] for bridge in bridges: ovs = ovs_lib.OVSBridge(bridge) ports += get_bridge_deletable_ports(ovs) return ports
Collect ports created by Neutron from OVS.
neutron/cmd/ovs_cleanup.py
collect_neutron_ports
mmidolesov2/neutron-1
1
python
def collect_neutron_ports(bridges): ports = [] for bridge in bridges: ovs = ovs_lib.OVSBridge(bridge) ports += get_bridge_deletable_ports(ovs) return ports
def collect_neutron_ports(bridges): ports = [] for bridge in bridges: ovs = ovs_lib.OVSBridge(bridge) ports += get_bridge_deletable_ports(ovs) return ports<|docstring|>Collect ports created by Neutron from OVS.<|endoftext|>
3bbee0d0b5810045e260a9511df10a579f6bc422c922ea5f2f9f48129ff463b9
def delete_neutron_ports(ports): 'Delete non-internal ports created by Neutron\n\n Non-internal OVS ports need to be removed manually.\n ' for port in ports: device = ip_lib.IPDevice(port) if device.exists(): device.link.delete() LOG.info('Deleting port: %s', port)
Delete non-internal ports created by Neutron Non-internal OVS ports need to be removed manually.
neutron/cmd/ovs_cleanup.py
delete_neutron_ports
mmidolesov2/neutron-1
1
python
def delete_neutron_ports(ports): 'Delete non-internal ports created by Neutron\n\n Non-internal OVS ports need to be removed manually.\n ' for port in ports: device = ip_lib.IPDevice(port) if device.exists(): device.link.delete() LOG.info('Deleting port: %s', port)
def delete_neutron_ports(ports): 'Delete non-internal ports created by Neutron\n\n Non-internal OVS ports need to be removed manually.\n ' for port in ports: device = ip_lib.IPDevice(port) if device.exists(): device.link.delete() LOG.info('Deleting port: %s', port)<|docstring|>Delete non-internal ports created by Neutron Non-internal OVS ports need to be removed manually.<|endoftext|>
d48d90d072114086f30bc312b7f65bf3a4dbee657158d165e8040d455004c2ed
def main(): 'Main method for cleaning up OVS bridges.\n\n The utility cleans up the integration bridges used by Neutron.\n ' conf = setup_conf() conf() config.setup_logging() do_main(conf)
Main method for cleaning up OVS bridges. The utility cleans up the integration bridges used by Neutron.
neutron/cmd/ovs_cleanup.py
main
mmidolesov2/neutron-1
1
python
def main(): 'Main method for cleaning up OVS bridges.\n\n The utility cleans up the integration bridges used by Neutron.\n ' conf = setup_conf() conf() config.setup_logging() do_main(conf)
def main(): 'Main method for cleaning up OVS bridges.\n\n The utility cleans up the integration bridges used by Neutron.\n ' conf = setup_conf() conf() config.setup_logging() do_main(conf)<|docstring|>Main method for cleaning up OVS bridges. The utility cleans up the integration bridges used by Neutron.<|endoftext|>
a4f91b0b8e2b7f5c1897a2c52f1835c4feef7cdadc8a2aded5738d2ab5cc7acf
def sql_to_markdown(sql_query: str, showindex: bool=False): 'Run a SQL querry on the netspeedlogger database and print a table of the results' if database_has_results(): df = query(sql_query) print(df.to_markdown(index=showindex)) else: print('No results - run `netspeedlogger run` first')
Run a SQL querry on the netspeedlogger database and print a table of the results
netspeedlogger/cli.py
sql_to_markdown
radinplaid/netspeedlogger
0
python
def sql_to_markdown(sql_query: str, showindex: bool=False): if database_has_results(): df = query(sql_query) print(df.to_markdown(index=showindex)) else: print('No results - run `netspeedlogger run` first')
def sql_to_markdown(sql_query: str, showindex: bool=False): if database_has_results(): df = query(sql_query) print(df.to_markdown(index=showindex)) else: print('No results - run `netspeedlogger run` first')<|docstring|>Run a SQL querry on the netspeedlogger database and print a table of the results<|endoftext|>
48581f9342b7bf5d963eb30dfea8ba43be5bf1d0f2c89d0792c8ee9c76a6dfd4
def results(): 'Show all results from the netspeedlogger database\n\n If there are more than 10000 results, will show the first 10000\n ' sql_to_markdown("select substr(timestamp,1,19) as 'Date Time', download_speed/(1024*1024) as 'Download Speed (Mb/s)', upload_speed/(1024*1024) as 'Upload Speed (Mb/s)', bytes_sent/(1024) as 'kB Sent', bytes_received/(1024) as 'kB Recieved', server_id as 'Server ID', server_host as 'Server Host', ping as 'Ping (ms)' from netspeedlogger limit 10000")
Show all results from the netspeedlogger database If there are more than 10000 results, will show the first 10000
netspeedlogger/cli.py
results
radinplaid/netspeedlogger
0
python
def results(): 'Show all results from the netspeedlogger database\n\n If there are more than 10000 results, will show the first 10000\n ' sql_to_markdown("select substr(timestamp,1,19) as 'Date Time', download_speed/(1024*1024) as 'Download Speed (Mb/s)', upload_speed/(1024*1024) as 'Upload Speed (Mb/s)', bytes_sent/(1024) as 'kB Sent', bytes_received/(1024) as 'kB Recieved', server_id as 'Server ID', server_host as 'Server Host', ping as 'Ping (ms)' from netspeedlogger limit 10000")
def results(): 'Show all results from the netspeedlogger database\n\n If there are more than 10000 results, will show the first 10000\n ' sql_to_markdown("select substr(timestamp,1,19) as 'Date Time', download_speed/(1024*1024) as 'Download Speed (Mb/s)', upload_speed/(1024*1024) as 'Upload Speed (Mb/s)', bytes_sent/(1024) as 'kB Sent', bytes_received/(1024) as 'kB Recieved', server_id as 'Server ID', server_host as 'Server Host', ping as 'Ping (ms)' from netspeedlogger limit 10000")<|docstring|>Show all results from the netspeedlogger database If there are more than 10000 results, will show the first 10000<|endoftext|>
edae61c729bccb319cf155d3007a1d6547f634c560e0634bcf18048a4e87fde1
def summary(): 'Display summary of internet speed test results as a table' if database_has_results(): df = query("select substr(timestamp,1,19) as 'Date Time', download_speed/(1024*1024) as 'Download Speed (Mb/s)', upload_speed/(1024*1024) as 'Upload Speed (Mb/s)', ping as 'Ping (ms)' from netspeedlogger ") print(df.describe().to_markdown(index=True)) else: print('No results - run `netspeedlogger run` first')
Display summary of internet speed test results as a table
netspeedlogger/cli.py
summary
radinplaid/netspeedlogger
0
python
def summary(): if database_has_results(): df = query("select substr(timestamp,1,19) as 'Date Time', download_speed/(1024*1024) as 'Download Speed (Mb/s)', upload_speed/(1024*1024) as 'Upload Speed (Mb/s)', ping as 'Ping (ms)' from netspeedlogger ") print(df.describe().to_markdown(index=True)) else: print('No results - run `netspeedlogger run` first')
def summary(): if database_has_results(): df = query("select substr(timestamp,1,19) as 'Date Time', download_speed/(1024*1024) as 'Download Speed (Mb/s)', upload_speed/(1024*1024) as 'Upload Speed (Mb/s)', ping as 'Ping (ms)' from netspeedlogger ") print(df.describe().to_markdown(index=True)) else: print('No results - run `netspeedlogger run` first')<|docstring|>Display summary of internet speed test results as a table<|endoftext|>
4df2214f78d2dcbed7d5e4058eb8bb50a92542387b380acf66b83d35c6d6e77a
def speedtest(): 'Run an internet speed test using speedtest-cli and save the results to a local sqlite database' print('netspeedlogger speedtest') print(('=' * len('netspeedlogger speedtest'))) print('Starting to run an internet speed test, and logging the output') results_dict = run_speedtest() df = speedtest_dict_to_dataframe(results_dict) write_speedtest_to_database(df) print('Speedtest complete. Results:') print(df.to_markdown(index=False))
Run an internet speed test using speedtest-cli and save the results to a local sqlite database
netspeedlogger/cli.py
speedtest
radinplaid/netspeedlogger
0
python
def speedtest(): print('netspeedlogger speedtest') print(('=' * len('netspeedlogger speedtest'))) print('Starting to run an internet speed test, and logging the output') results_dict = run_speedtest() df = speedtest_dict_to_dataframe(results_dict) write_speedtest_to_database(df) print('Speedtest complete. Results:') print(df.to_markdown(index=False))
def speedtest(): print('netspeedlogger speedtest') print(('=' * len('netspeedlogger speedtest'))) print('Starting to run an internet speed test, and logging the output') results_dict = run_speedtest() df = speedtest_dict_to_dataframe(results_dict) write_speedtest_to_database(df) print('Speedtest complete. Results:') print(df.to_markdown(index=False))<|docstring|>Run an internet speed test using speedtest-cli and save the results to a local sqlite database<|endoftext|>
89d836977e3548190a6215d1b92523348d642435b76837f0ae670e919ae68bda
def delete_database(): 'Run a SQL querry on the netspeedlogger database and print a table of the results' db_path = get_database_path() print(f'Deleting netspeedlogger database at path: `{db_path}`') print("Are you sure you want to delete the whole database? Input 'y' for yes or 'n' for no") for i in range(10): confirmation = input("Please type 'y' for Yes or 'n' for No") if (confirmation == 'n'): return 'Not deleting database' elif (confirmation == 'y'): delete_database_if_exists() return 'Database deleted'
Run a SQL querry on the netspeedlogger database and print a table of the results
netspeedlogger/cli.py
delete_database
radinplaid/netspeedlogger
0
python
def delete_database(): db_path = get_database_path() print(f'Deleting netspeedlogger database at path: `{db_path}`') print("Are you sure you want to delete the whole database? Input 'y' for yes or 'n' for no") for i in range(10): confirmation = input("Please type 'y' for Yes or 'n' for No") if (confirmation == 'n'): return 'Not deleting database' elif (confirmation == 'y'): delete_database_if_exists() return 'Database deleted'
def delete_database(): db_path = get_database_path() print(f'Deleting netspeedlogger database at path: `{db_path}`') print("Are you sure you want to delete the whole database? Input 'y' for yes or 'n' for no") for i in range(10): confirmation = input("Please type 'y' for Yes or 'n' for No") if (confirmation == 'n'): return 'Not deleting database' elif (confirmation == 'y'): delete_database_if_exists() return 'Database deleted'<|docstring|>Run a SQL querry on the netspeedlogger database and print a table of the results<|endoftext|>
194f9f4f213fc22ba71a2c93a756b58b424298f3cb7601f7c6c3a3bb8cd0497f
def get_partitions(self, source): 'Process of read partitions data/ground truth' paths = self._get_partitions(source) dataset = dict() for i in self.partitions: dataset[i] = {'dt': [], 'gt': []} for item in paths[i]: img = cv2.imread(os.path.join(source, item[0]), cv2.IMREAD_GRAYSCALE) img = np.array(img[(item[2][0]:item[2][1], item[2][2]:item[2][3])], dtype=np.uint8) dataset[i]['dt'].append(img) dataset[i]['gt'].append(item[1]) return dataset
Process of read partitions data/ground truth
src/transform/rimes.py
get_partitions
keyochali/handwritten-text-recognition
2
python
def get_partitions(self, source): paths = self._get_partitions(source) dataset = dict() for i in self.partitions: dataset[i] = {'dt': [], 'gt': []} for item in paths[i]: img = cv2.imread(os.path.join(source, item[0]), cv2.IMREAD_GRAYSCALE) img = np.array(img[(item[2][0]:item[2][1], item[2][2]:item[2][3])], dtype=np.uint8) dataset[i]['dt'].append(img) dataset[i]['gt'].append(item[1]) return dataset
def get_partitions(self, source): paths = self._get_partitions(source) dataset = dict() for i in self.partitions: dataset[i] = {'dt': [], 'gt': []} for item in paths[i]: img = cv2.imread(os.path.join(source, item[0]), cv2.IMREAD_GRAYSCALE) img = np.array(img[(item[2][0]:item[2][1], item[2][2]:item[2][3])], dtype=np.uint8) dataset[i]['dt'].append(img) dataset[i]['gt'].append(item[1]) return dataset<|docstring|>Process of read partitions data/ground truth<|endoftext|>
3f60b1d39849555084fe8eb0d34c90e517a4bfa0a62db1b99c48d339faab5373
def _get_partitions(self, source): 'Read the partitions file' def generate(xml, subpath, partition, validation=False): xml = ET.parse(os.path.join(source, xml)).getroot() dt = [] for page_tag in xml: page_path = page_tag.attrib['FileName'] for (i, line_tag) in enumerate(page_tag.iter('Line')): text = html.unescape(line_tag.attrib['Value']) text = ' '.join(text.split()) if (len(text) > 3): bound = [abs(int(line_tag.attrib['Top'])), abs(int(line_tag.attrib['Bottom'])), abs(int(line_tag.attrib['Left'])), abs(int(line_tag.attrib['Right']))] dt.append([os.path.join(subpath, page_path), text, bound]) if validation: index = int((len(dt) * 0.9)) partition['valid'] = dt[index:] partition['train'] = dt[:index] else: partition['test'] = dt partition = dict() generate('training_2011.xml', 'training_2011', partition, validation=True) generate('eval_2011_annotated.xml', 'eval_2011', partition, validation=False) return partition
Read the partitions file
src/transform/rimes.py
_get_partitions
keyochali/handwritten-text-recognition
2
python
def _get_partitions(self, source): def generate(xml, subpath, partition, validation=False): xml = ET.parse(os.path.join(source, xml)).getroot() dt = [] for page_tag in xml: page_path = page_tag.attrib['FileName'] for (i, line_tag) in enumerate(page_tag.iter('Line')): text = html.unescape(line_tag.attrib['Value']) text = ' '.join(text.split()) if (len(text) > 3): bound = [abs(int(line_tag.attrib['Top'])), abs(int(line_tag.attrib['Bottom'])), abs(int(line_tag.attrib['Left'])), abs(int(line_tag.attrib['Right']))] dt.append([os.path.join(subpath, page_path), text, bound]) if validation: index = int((len(dt) * 0.9)) partition['valid'] = dt[index:] partition['train'] = dt[:index] else: partition['test'] = dt partition = dict() generate('training_2011.xml', 'training_2011', partition, validation=True) generate('eval_2011_annotated.xml', 'eval_2011', partition, validation=False) return partition
def _get_partitions(self, source): def generate(xml, subpath, partition, validation=False): xml = ET.parse(os.path.join(source, xml)).getroot() dt = [] for page_tag in xml: page_path = page_tag.attrib['FileName'] for (i, line_tag) in enumerate(page_tag.iter('Line')): text = html.unescape(line_tag.attrib['Value']) text = ' '.join(text.split()) if (len(text) > 3): bound = [abs(int(line_tag.attrib['Top'])), abs(int(line_tag.attrib['Bottom'])), abs(int(line_tag.attrib['Left'])), abs(int(line_tag.attrib['Right']))] dt.append([os.path.join(subpath, page_path), text, bound]) if validation: index = int((len(dt) * 0.9)) partition['valid'] = dt[index:] partition['train'] = dt[:index] else: partition['test'] = dt partition = dict() generate('training_2011.xml', 'training_2011', partition, validation=True) generate('eval_2011_annotated.xml', 'eval_2011', partition, validation=False) return partition<|docstring|>Read the partitions file<|endoftext|>
16eec2c4e118a67dda121b8f30f28c0df080b0a85fbaad06ac75d866b7bdccb9
def get_app_sec_failover_hostnames(config_id: Optional[int]=None, opts: Optional[pulumi.InvokeOptions]=None) -> AwaitableGetAppSecFailoverHostnamesResult: '\n **Scopes**: Security configuration\n\n Returns a list of the failover hostnames in a configuration. The returned information is described in the [List failover hostnames](https://developer.akamai.com/api/cloud_security/application_security/v1.html#getfailoverhostnames) section of the Application Security API.\n\n **Related API Endpoint**: [/appsec/v1/configs/{configId}/failover-hostnames](https://developer.akamai.com/api/cloud_security/application_security/v1.html#getfailoverhostnames)\n\n ## Example Usage\n\n Basic usage:\n\n ```python\n import pulumi\n import pulumi_akamai as akamai\n\n configuration = akamai.get_app_sec_configuration(name="Documentation")\n failover_hostnames_app_sec_failover_hostnames = akamai.get_app_sec_failover_hostnames(config_id=configuration.config_id)\n pulumi.export("failoverHostnames", failover_hostnames_app_sec_failover_hostnames.hostnames)\n pulumi.export("failoverHostnamesOutput", failover_hostnames_app_sec_failover_hostnames.output_text)\n pulumi.export("failoverHostnamesJson", failover_hostnames_app_sec_failover_hostnames.json)\n ```\n ## Output Options\n\n The following options can be used to determine the information returned, and how that returned information is formatted:\n\n - `hostnames`. List of the failover hostnames.\n - `json`. JSON-formatted list of the failover hostnames.\n\n\n :param int config_id: . Unique identifier of the security configuration associated with the failover hosts.\n ' __args__ = dict() __args__['configId'] = config_id if (opts is None): opts = pulumi.InvokeOptions() if (opts.version is None): opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('akamai:index/getAppSecFailoverHostnames:getAppSecFailoverHostnames', __args__, opts=opts, typ=GetAppSecFailoverHostnamesResult).value return AwaitableGetAppSecFailoverHostnamesResult(config_id=__ret__.config_id, hostnames=__ret__.hostnames, id=__ret__.id, json=__ret__.json, output_text=__ret__.output_text)
**Scopes**: Security configuration Returns a list of the failover hostnames in a configuration. The returned information is described in the [List failover hostnames](https://developer.akamai.com/api/cloud_security/application_security/v1.html#getfailoverhostnames) section of the Application Security API. **Related API Endpoint**: [/appsec/v1/configs/{configId}/failover-hostnames](https://developer.akamai.com/api/cloud_security/application_security/v1.html#getfailoverhostnames) ## Example Usage Basic usage: ```python import pulumi import pulumi_akamai as akamai configuration = akamai.get_app_sec_configuration(name="Documentation") failover_hostnames_app_sec_failover_hostnames = akamai.get_app_sec_failover_hostnames(config_id=configuration.config_id) pulumi.export("failoverHostnames", failover_hostnames_app_sec_failover_hostnames.hostnames) pulumi.export("failoverHostnamesOutput", failover_hostnames_app_sec_failover_hostnames.output_text) pulumi.export("failoverHostnamesJson", failover_hostnames_app_sec_failover_hostnames.json) ``` ## Output Options The following options can be used to determine the information returned, and how that returned information is formatted: - `hostnames`. List of the failover hostnames. - `json`. JSON-formatted list of the failover hostnames. :param int config_id: . Unique identifier of the security configuration associated with the failover hosts.
sdk/python/pulumi_akamai/get_app_sec_failover_hostnames.py
get_app_sec_failover_hostnames
pulumi/pulumi-akamai
3
python
def get_app_sec_failover_hostnames(config_id: Optional[int]=None, opts: Optional[pulumi.InvokeOptions]=None) -> AwaitableGetAppSecFailoverHostnamesResult: '\n **Scopes**: Security configuration\n\n Returns a list of the failover hostnames in a configuration. The returned information is described in the [List failover hostnames](https://developer.akamai.com/api/cloud_security/application_security/v1.html#getfailoverhostnames) section of the Application Security API.\n\n **Related API Endpoint**: [/appsec/v1/configs/{configId}/failover-hostnames](https://developer.akamai.com/api/cloud_security/application_security/v1.html#getfailoverhostnames)\n\n ## Example Usage\n\n Basic usage:\n\n ```python\n import pulumi\n import pulumi_akamai as akamai\n\n configuration = akamai.get_app_sec_configuration(name="Documentation")\n failover_hostnames_app_sec_failover_hostnames = akamai.get_app_sec_failover_hostnames(config_id=configuration.config_id)\n pulumi.export("failoverHostnames", failover_hostnames_app_sec_failover_hostnames.hostnames)\n pulumi.export("failoverHostnamesOutput", failover_hostnames_app_sec_failover_hostnames.output_text)\n pulumi.export("failoverHostnamesJson", failover_hostnames_app_sec_failover_hostnames.json)\n ```\n ## Output Options\n\n The following options can be used to determine the information returned, and how that returned information is formatted:\n\n - `hostnames`. List of the failover hostnames.\n - `json`. JSON-formatted list of the failover hostnames.\n\n\n :param int config_id: . Unique identifier of the security configuration associated with the failover hosts.\n ' __args__ = dict() __args__['configId'] = config_id if (opts is None): opts = pulumi.InvokeOptions() if (opts.version is None): opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('akamai:index/getAppSecFailoverHostnames:getAppSecFailoverHostnames', __args__, opts=opts, typ=GetAppSecFailoverHostnamesResult).value return AwaitableGetAppSecFailoverHostnamesResult(config_id=__ret__.config_id, hostnames=__ret__.hostnames, id=__ret__.id, json=__ret__.json, output_text=__ret__.output_text)
def get_app_sec_failover_hostnames(config_id: Optional[int]=None, opts: Optional[pulumi.InvokeOptions]=None) -> AwaitableGetAppSecFailoverHostnamesResult: '\n **Scopes**: Security configuration\n\n Returns a list of the failover hostnames in a configuration. The returned information is described in the [List failover hostnames](https://developer.akamai.com/api/cloud_security/application_security/v1.html#getfailoverhostnames) section of the Application Security API.\n\n **Related API Endpoint**: [/appsec/v1/configs/{configId}/failover-hostnames](https://developer.akamai.com/api/cloud_security/application_security/v1.html#getfailoverhostnames)\n\n ## Example Usage\n\n Basic usage:\n\n ```python\n import pulumi\n import pulumi_akamai as akamai\n\n configuration = akamai.get_app_sec_configuration(name="Documentation")\n failover_hostnames_app_sec_failover_hostnames = akamai.get_app_sec_failover_hostnames(config_id=configuration.config_id)\n pulumi.export("failoverHostnames", failover_hostnames_app_sec_failover_hostnames.hostnames)\n pulumi.export("failoverHostnamesOutput", failover_hostnames_app_sec_failover_hostnames.output_text)\n pulumi.export("failoverHostnamesJson", failover_hostnames_app_sec_failover_hostnames.json)\n ```\n ## Output Options\n\n The following options can be used to determine the information returned, and how that returned information is formatted:\n\n - `hostnames`. List of the failover hostnames.\n - `json`. JSON-formatted list of the failover hostnames.\n\n\n :param int config_id: . Unique identifier of the security configuration associated with the failover hosts.\n ' __args__ = dict() __args__['configId'] = config_id if (opts is None): opts = pulumi.InvokeOptions() if (opts.version is None): opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('akamai:index/getAppSecFailoverHostnames:getAppSecFailoverHostnames', __args__, opts=opts, typ=GetAppSecFailoverHostnamesResult).value return AwaitableGetAppSecFailoverHostnamesResult(config_id=__ret__.config_id, hostnames=__ret__.hostnames, id=__ret__.id, json=__ret__.json, output_text=__ret__.output_text)<|docstring|>**Scopes**: Security configuration Returns a list of the failover hostnames in a configuration. The returned information is described in the [List failover hostnames](https://developer.akamai.com/api/cloud_security/application_security/v1.html#getfailoverhostnames) section of the Application Security API. **Related API Endpoint**: [/appsec/v1/configs/{configId}/failover-hostnames](https://developer.akamai.com/api/cloud_security/application_security/v1.html#getfailoverhostnames) ## Example Usage Basic usage: ```python import pulumi import pulumi_akamai as akamai configuration = akamai.get_app_sec_configuration(name="Documentation") failover_hostnames_app_sec_failover_hostnames = akamai.get_app_sec_failover_hostnames(config_id=configuration.config_id) pulumi.export("failoverHostnames", failover_hostnames_app_sec_failover_hostnames.hostnames) pulumi.export("failoverHostnamesOutput", failover_hostnames_app_sec_failover_hostnames.output_text) pulumi.export("failoverHostnamesJson", failover_hostnames_app_sec_failover_hostnames.json) ``` ## Output Options The following options can be used to determine the information returned, and how that returned information is formatted: - `hostnames`. List of the failover hostnames. - `json`. JSON-formatted list of the failover hostnames. :param int config_id: . Unique identifier of the security configuration associated with the failover hosts.<|endoftext|>
0a41fe5df1928f72cd4445f5ffb7ca84937eca0fb9314a2b5e4079cda68ec434
@_utilities.lift_output_func(get_app_sec_failover_hostnames) def get_app_sec_failover_hostnames_output(config_id: Optional[pulumi.Input[int]]=None, opts: Optional[pulumi.InvokeOptions]=None) -> pulumi.Output[GetAppSecFailoverHostnamesResult]: '\n **Scopes**: Security configuration\n\n Returns a list of the failover hostnames in a configuration. The returned information is described in the [List failover hostnames](https://developer.akamai.com/api/cloud_security/application_security/v1.html#getfailoverhostnames) section of the Application Security API.\n\n **Related API Endpoint**: [/appsec/v1/configs/{configId}/failover-hostnames](https://developer.akamai.com/api/cloud_security/application_security/v1.html#getfailoverhostnames)\n\n ## Example Usage\n\n Basic usage:\n\n ```python\n import pulumi\n import pulumi_akamai as akamai\n\n configuration = akamai.get_app_sec_configuration(name="Documentation")\n failover_hostnames_app_sec_failover_hostnames = akamai.get_app_sec_failover_hostnames(config_id=configuration.config_id)\n pulumi.export("failoverHostnames", failover_hostnames_app_sec_failover_hostnames.hostnames)\n pulumi.export("failoverHostnamesOutput", failover_hostnames_app_sec_failover_hostnames.output_text)\n pulumi.export("failoverHostnamesJson", failover_hostnames_app_sec_failover_hostnames.json)\n ```\n ## Output Options\n\n The following options can be used to determine the information returned, and how that returned information is formatted:\n\n - `hostnames`. List of the failover hostnames.\n - `json`. JSON-formatted list of the failover hostnames.\n\n\n :param int config_id: . Unique identifier of the security configuration associated with the failover hosts.\n ' ...
**Scopes**: Security configuration Returns a list of the failover hostnames in a configuration. The returned information is described in the [List failover hostnames](https://developer.akamai.com/api/cloud_security/application_security/v1.html#getfailoverhostnames) section of the Application Security API. **Related API Endpoint**: [/appsec/v1/configs/{configId}/failover-hostnames](https://developer.akamai.com/api/cloud_security/application_security/v1.html#getfailoverhostnames) ## Example Usage Basic usage: ```python import pulumi import pulumi_akamai as akamai configuration = akamai.get_app_sec_configuration(name="Documentation") failover_hostnames_app_sec_failover_hostnames = akamai.get_app_sec_failover_hostnames(config_id=configuration.config_id) pulumi.export("failoverHostnames", failover_hostnames_app_sec_failover_hostnames.hostnames) pulumi.export("failoverHostnamesOutput", failover_hostnames_app_sec_failover_hostnames.output_text) pulumi.export("failoverHostnamesJson", failover_hostnames_app_sec_failover_hostnames.json) ``` ## Output Options The following options can be used to determine the information returned, and how that returned information is formatted: - `hostnames`. List of the failover hostnames. - `json`. JSON-formatted list of the failover hostnames. :param int config_id: . Unique identifier of the security configuration associated with the failover hosts.
sdk/python/pulumi_akamai/get_app_sec_failover_hostnames.py
get_app_sec_failover_hostnames_output
pulumi/pulumi-akamai
3
python
@_utilities.lift_output_func(get_app_sec_failover_hostnames) def get_app_sec_failover_hostnames_output(config_id: Optional[pulumi.Input[int]]=None, opts: Optional[pulumi.InvokeOptions]=None) -> pulumi.Output[GetAppSecFailoverHostnamesResult]: '\n **Scopes**: Security configuration\n\n Returns a list of the failover hostnames in a configuration. The returned information is described in the [List failover hostnames](https://developer.akamai.com/api/cloud_security/application_security/v1.html#getfailoverhostnames) section of the Application Security API.\n\n **Related API Endpoint**: [/appsec/v1/configs/{configId}/failover-hostnames](https://developer.akamai.com/api/cloud_security/application_security/v1.html#getfailoverhostnames)\n\n ## Example Usage\n\n Basic usage:\n\n ```python\n import pulumi\n import pulumi_akamai as akamai\n\n configuration = akamai.get_app_sec_configuration(name="Documentation")\n failover_hostnames_app_sec_failover_hostnames = akamai.get_app_sec_failover_hostnames(config_id=configuration.config_id)\n pulumi.export("failoverHostnames", failover_hostnames_app_sec_failover_hostnames.hostnames)\n pulumi.export("failoverHostnamesOutput", failover_hostnames_app_sec_failover_hostnames.output_text)\n pulumi.export("failoverHostnamesJson", failover_hostnames_app_sec_failover_hostnames.json)\n ```\n ## Output Options\n\n The following options can be used to determine the information returned, and how that returned information is formatted:\n\n - `hostnames`. List of the failover hostnames.\n - `json`. JSON-formatted list of the failover hostnames.\n\n\n :param int config_id: . Unique identifier of the security configuration associated with the failover hosts.\n ' ...
@_utilities.lift_output_func(get_app_sec_failover_hostnames) def get_app_sec_failover_hostnames_output(config_id: Optional[pulumi.Input[int]]=None, opts: Optional[pulumi.InvokeOptions]=None) -> pulumi.Output[GetAppSecFailoverHostnamesResult]: '\n **Scopes**: Security configuration\n\n Returns a list of the failover hostnames in a configuration. The returned information is described in the [List failover hostnames](https://developer.akamai.com/api/cloud_security/application_security/v1.html#getfailoverhostnames) section of the Application Security API.\n\n **Related API Endpoint**: [/appsec/v1/configs/{configId}/failover-hostnames](https://developer.akamai.com/api/cloud_security/application_security/v1.html#getfailoverhostnames)\n\n ## Example Usage\n\n Basic usage:\n\n ```python\n import pulumi\n import pulumi_akamai as akamai\n\n configuration = akamai.get_app_sec_configuration(name="Documentation")\n failover_hostnames_app_sec_failover_hostnames = akamai.get_app_sec_failover_hostnames(config_id=configuration.config_id)\n pulumi.export("failoverHostnames", failover_hostnames_app_sec_failover_hostnames.hostnames)\n pulumi.export("failoverHostnamesOutput", failover_hostnames_app_sec_failover_hostnames.output_text)\n pulumi.export("failoverHostnamesJson", failover_hostnames_app_sec_failover_hostnames.json)\n ```\n ## Output Options\n\n The following options can be used to determine the information returned, and how that returned information is formatted:\n\n - `hostnames`. List of the failover hostnames.\n - `json`. JSON-formatted list of the failover hostnames.\n\n\n :param int config_id: . Unique identifier of the security configuration associated with the failover hosts.\n ' ...<|docstring|>**Scopes**: Security configuration Returns a list of the failover hostnames in a configuration. The returned information is described in the [List failover hostnames](https://developer.akamai.com/api/cloud_security/application_security/v1.html#getfailoverhostnames) section of the Application Security API. **Related API Endpoint**: [/appsec/v1/configs/{configId}/failover-hostnames](https://developer.akamai.com/api/cloud_security/application_security/v1.html#getfailoverhostnames) ## Example Usage Basic usage: ```python import pulumi import pulumi_akamai as akamai configuration = akamai.get_app_sec_configuration(name="Documentation") failover_hostnames_app_sec_failover_hostnames = akamai.get_app_sec_failover_hostnames(config_id=configuration.config_id) pulumi.export("failoverHostnames", failover_hostnames_app_sec_failover_hostnames.hostnames) pulumi.export("failoverHostnamesOutput", failover_hostnames_app_sec_failover_hostnames.output_text) pulumi.export("failoverHostnamesJson", failover_hostnames_app_sec_failover_hostnames.json) ``` ## Output Options The following options can be used to determine the information returned, and how that returned information is formatted: - `hostnames`. List of the failover hostnames. - `json`. JSON-formatted list of the failover hostnames. :param int config_id: . Unique identifier of the security configuration associated with the failover hosts.<|endoftext|>
bcf5b51a327014088b63f706e1dc3987198031e1f0241bd10b06cf4dd5bcb53c
@property @pulumi.getter def id(self) -> str: '\n The provider-assigned unique ID for this managed resource.\n ' return pulumi.get(self, 'id')
The provider-assigned unique ID for this managed resource.
sdk/python/pulumi_akamai/get_app_sec_failover_hostnames.py
id
pulumi/pulumi-akamai
3
python
@property @pulumi.getter def id(self) -> str: '\n \n ' return pulumi.get(self, 'id')
@property @pulumi.getter def id(self) -> str: '\n \n ' return pulumi.get(self, 'id')<|docstring|>The provider-assigned unique ID for this managed resource.<|endoftext|>
99572c002fce0d5ba4f68c8a5eb5890985f89922939bdd4a21d0c5a5bde50671
def setUp(self): 'Sets up the needed objects used throughout the test.' self._resolver_context = context.Context() test_path = self._GetTestFilePath(['fvdetest.qcow2']) self._SkipIfPathNotExists(test_path) test_os_path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_OS, location=test_path) test_qcow_path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_QCOW, parent=test_os_path_spec) self._gpt_path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_GPT, location='/p1', parent=test_qcow_path_spec) self._cs_path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_CS, parent=self._gpt_path_spec)
Sets up the needed objects used throughout the test.
tests/vfs/cs_file_system.py
setUp
jaegeral/dfvfs
0
python
def setUp(self): self._resolver_context = context.Context() test_path = self._GetTestFilePath(['fvdetest.qcow2']) self._SkipIfPathNotExists(test_path) test_os_path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_OS, location=test_path) test_qcow_path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_QCOW, parent=test_os_path_spec) self._gpt_path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_GPT, location='/p1', parent=test_qcow_path_spec) self._cs_path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_CS, parent=self._gpt_path_spec)
def setUp(self): self._resolver_context = context.Context() test_path = self._GetTestFilePath(['fvdetest.qcow2']) self._SkipIfPathNotExists(test_path) test_os_path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_OS, location=test_path) test_qcow_path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_QCOW, parent=test_os_path_spec) self._gpt_path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_GPT, location='/p1', parent=test_qcow_path_spec) self._cs_path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_CS, parent=self._gpt_path_spec)<|docstring|>Sets up the needed objects used throughout the test.<|endoftext|>
dd029afa706cbbe66b58905cf013e0290da5ca47bd22950a743f7117c7cedf25
def tearDown(self): 'Cleans up the needed objects used throughout the test.' self._resolver_context.Empty()
Cleans up the needed objects used throughout the test.
tests/vfs/cs_file_system.py
tearDown
jaegeral/dfvfs
0
python
def tearDown(self): self._resolver_context.Empty()
def tearDown(self): self._resolver_context.Empty()<|docstring|>Cleans up the needed objects used throughout the test.<|endoftext|>
e311679ebf1fadbee5b334f89e54b53be7228e5436bdfd770d5f2b0e44a26218
def testOpenAndClose(self): 'Test the open and close functionality.' file_system = cs_file_system.CSFileSystem(self._resolver_context, self._cs_path_spec) self.assertIsNotNone(file_system) file_system.Open()
Test the open and close functionality.
tests/vfs/cs_file_system.py
testOpenAndClose
jaegeral/dfvfs
0
python
def testOpenAndClose(self): file_system = cs_file_system.CSFileSystem(self._resolver_context, self._cs_path_spec) self.assertIsNotNone(file_system) file_system.Open()
def testOpenAndClose(self): file_system = cs_file_system.CSFileSystem(self._resolver_context, self._cs_path_spec) self.assertIsNotNone(file_system) file_system.Open()<|docstring|>Test the open and close functionality.<|endoftext|>
cef935b3d35bd7f3b693e9976023f5b9ce389e1b17ea31959b354471d86f9162
def testFileEntryExistsByPathSpec(self): 'Test the file entry exists by path specification functionality.' file_system = cs_file_system.CSFileSystem(self._resolver_context, self._cs_path_spec) self.assertIsNotNone(file_system) file_system.Open() path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_CS, location='/', parent=self._gpt_path_spec) self.assertTrue(file_system.FileEntryExistsByPathSpec(path_spec)) path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_CS, parent=self._gpt_path_spec, volume_index=0) self.assertTrue(file_system.FileEntryExistsByPathSpec(path_spec)) path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_CS, location='/cs1', parent=self._gpt_path_spec) self.assertTrue(file_system.FileEntryExistsByPathSpec(path_spec)) path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_CS, parent=self._gpt_path_spec, volume_index=9) self.assertFalse(file_system.FileEntryExistsByPathSpec(path_spec)) path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_CS, location='/cs0', parent=self._gpt_path_spec) self.assertFalse(file_system.FileEntryExistsByPathSpec(path_spec)) path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_CS, location='/cs9', parent=self._gpt_path_spec) self.assertFalse(file_system.FileEntryExistsByPathSpec(path_spec))
Test the file entry exists by path specification functionality.
tests/vfs/cs_file_system.py
testFileEntryExistsByPathSpec
jaegeral/dfvfs
0
python
def testFileEntryExistsByPathSpec(self): file_system = cs_file_system.CSFileSystem(self._resolver_context, self._cs_path_spec) self.assertIsNotNone(file_system) file_system.Open() path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_CS, location='/', parent=self._gpt_path_spec) self.assertTrue(file_system.FileEntryExistsByPathSpec(path_spec)) path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_CS, parent=self._gpt_path_spec, volume_index=0) self.assertTrue(file_system.FileEntryExistsByPathSpec(path_spec)) path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_CS, location='/cs1', parent=self._gpt_path_spec) self.assertTrue(file_system.FileEntryExistsByPathSpec(path_spec)) path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_CS, parent=self._gpt_path_spec, volume_index=9) self.assertFalse(file_system.FileEntryExistsByPathSpec(path_spec)) path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_CS, location='/cs0', parent=self._gpt_path_spec) self.assertFalse(file_system.FileEntryExistsByPathSpec(path_spec)) path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_CS, location='/cs9', parent=self._gpt_path_spec) self.assertFalse(file_system.FileEntryExistsByPathSpec(path_spec))
def testFileEntryExistsByPathSpec(self): file_system = cs_file_system.CSFileSystem(self._resolver_context, self._cs_path_spec) self.assertIsNotNone(file_system) file_system.Open() path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_CS, location='/', parent=self._gpt_path_spec) self.assertTrue(file_system.FileEntryExistsByPathSpec(path_spec)) path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_CS, parent=self._gpt_path_spec, volume_index=0) self.assertTrue(file_system.FileEntryExistsByPathSpec(path_spec)) path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_CS, location='/cs1', parent=self._gpt_path_spec) self.assertTrue(file_system.FileEntryExistsByPathSpec(path_spec)) path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_CS, parent=self._gpt_path_spec, volume_index=9) self.assertFalse(file_system.FileEntryExistsByPathSpec(path_spec)) path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_CS, location='/cs0', parent=self._gpt_path_spec) self.assertFalse(file_system.FileEntryExistsByPathSpec(path_spec)) path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_CS, location='/cs9', parent=self._gpt_path_spec) self.assertFalse(file_system.FileEntryExistsByPathSpec(path_spec))<|docstring|>Test the file entry exists by path specification functionality.<|endoftext|>
04412eeb821aa5475e8e0d85edf0856562520aac4aceae2faf8724fa60cc1aeb
def testGetFileEntryByPathSpec(self): 'Tests the GetFileEntryByPathSpec function.' file_system = cs_file_system.CSFileSystem(self._resolver_context, self._cs_path_spec) self.assertIsNotNone(file_system) file_system.Open() path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_CS, location='/', parent=self._gpt_path_spec) file_entry = file_system.GetFileEntryByPathSpec(path_spec) self.assertIsNotNone(file_entry) self.assertEqual(file_entry.name, '') path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_CS, parent=self._gpt_path_spec, volume_index=0) file_entry = file_system.GetFileEntryByPathSpec(path_spec) self.assertIsNotNone(file_entry) self.assertEqual(file_entry.name, 'cs1') path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_CS, location='/cs1', parent=self._gpt_path_spec) file_entry = file_system.GetFileEntryByPathSpec(path_spec) self.assertIsNotNone(file_entry) self.assertEqual(file_entry.name, 'cs1') path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_CS, parent=self._gpt_path_spec, volume_index=9) file_entry = file_system.GetFileEntryByPathSpec(path_spec) self.assertIsNone(file_entry) path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_CS, location='/cs0', parent=self._gpt_path_spec) file_entry = file_system.GetFileEntryByPathSpec(path_spec) self.assertIsNone(file_entry) path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_CS, location='/cs9', parent=self._gpt_path_spec) file_entry = file_system.GetFileEntryByPathSpec(path_spec) self.assertIsNone(file_entry)
Tests the GetFileEntryByPathSpec function.
tests/vfs/cs_file_system.py
testGetFileEntryByPathSpec
jaegeral/dfvfs
0
python
def testGetFileEntryByPathSpec(self): file_system = cs_file_system.CSFileSystem(self._resolver_context, self._cs_path_spec) self.assertIsNotNone(file_system) file_system.Open() path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_CS, location='/', parent=self._gpt_path_spec) file_entry = file_system.GetFileEntryByPathSpec(path_spec) self.assertIsNotNone(file_entry) self.assertEqual(file_entry.name, ) path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_CS, parent=self._gpt_path_spec, volume_index=0) file_entry = file_system.GetFileEntryByPathSpec(path_spec) self.assertIsNotNone(file_entry) self.assertEqual(file_entry.name, 'cs1') path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_CS, location='/cs1', parent=self._gpt_path_spec) file_entry = file_system.GetFileEntryByPathSpec(path_spec) self.assertIsNotNone(file_entry) self.assertEqual(file_entry.name, 'cs1') path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_CS, parent=self._gpt_path_spec, volume_index=9) file_entry = file_system.GetFileEntryByPathSpec(path_spec) self.assertIsNone(file_entry) path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_CS, location='/cs0', parent=self._gpt_path_spec) file_entry = file_system.GetFileEntryByPathSpec(path_spec) self.assertIsNone(file_entry) path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_CS, location='/cs9', parent=self._gpt_path_spec) file_entry = file_system.GetFileEntryByPathSpec(path_spec) self.assertIsNone(file_entry)
def testGetFileEntryByPathSpec(self): file_system = cs_file_system.CSFileSystem(self._resolver_context, self._cs_path_spec) self.assertIsNotNone(file_system) file_system.Open() path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_CS, location='/', parent=self._gpt_path_spec) file_entry = file_system.GetFileEntryByPathSpec(path_spec) self.assertIsNotNone(file_entry) self.assertEqual(file_entry.name, ) path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_CS, parent=self._gpt_path_spec, volume_index=0) file_entry = file_system.GetFileEntryByPathSpec(path_spec) self.assertIsNotNone(file_entry) self.assertEqual(file_entry.name, 'cs1') path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_CS, location='/cs1', parent=self._gpt_path_spec) file_entry = file_system.GetFileEntryByPathSpec(path_spec) self.assertIsNotNone(file_entry) self.assertEqual(file_entry.name, 'cs1') path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_CS, parent=self._gpt_path_spec, volume_index=9) file_entry = file_system.GetFileEntryByPathSpec(path_spec) self.assertIsNone(file_entry) path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_CS, location='/cs0', parent=self._gpt_path_spec) file_entry = file_system.GetFileEntryByPathSpec(path_spec) self.assertIsNone(file_entry) path_spec = path_spec_factory.Factory.NewPathSpec(definitions.TYPE_INDICATOR_CS, location='/cs9', parent=self._gpt_path_spec) file_entry = file_system.GetFileEntryByPathSpec(path_spec) self.assertIsNone(file_entry)<|docstring|>Tests the GetFileEntryByPathSpec function.<|endoftext|>
047a7c44d6ab0e479cb8d1a44de9660ec0f288f579a4313341a383845fd3e575
def testGetRootFileEntry(self): 'Test the get root file entry functionality.' file_system = cs_file_system.CSFileSystem(self._resolver_context, self._cs_path_spec) self.assertIsNotNone(file_system) file_system.Open() file_entry = file_system.GetRootFileEntry() self.assertIsNotNone(file_entry) self.assertEqual(file_entry.name, '')
Test the get root file entry functionality.
tests/vfs/cs_file_system.py
testGetRootFileEntry
jaegeral/dfvfs
0
python
def testGetRootFileEntry(self): file_system = cs_file_system.CSFileSystem(self._resolver_context, self._cs_path_spec) self.assertIsNotNone(file_system) file_system.Open() file_entry = file_system.GetRootFileEntry() self.assertIsNotNone(file_entry) self.assertEqual(file_entry.name, )
def testGetRootFileEntry(self): file_system = cs_file_system.CSFileSystem(self._resolver_context, self._cs_path_spec) self.assertIsNotNone(file_system) file_system.Open() file_entry = file_system.GetRootFileEntry() self.assertIsNotNone(file_entry) self.assertEqual(file_entry.name, )<|docstring|>Test the get root file entry functionality.<|endoftext|>
732588fec966c5c3dd4f948a56b3a1194703f4e170521ce6c7ac6155fd021cc5
def f(x): 'Identity' return x
Identity
python/pyspark/sql/tests/test_udf.py
f
zoujhub/spark
35,083
python
def f(x): return x
def f(x): return x<|docstring|>Identity<|endoftext|>
2a9282ce919ffbb7dbf50b63cc526f17a73a961918e1b80d1fb04d08114f7e51
def download_weightscomp(ascii='ascii2', isotype='some'): "\n Downloader function for the NIST Atomic Weights and Isotopic Compositions database\n\n Makes a GET request to download data; then extracts preformatted text\n\n Parameters\n ----------\n ascii: str\n GET request parameter, refer to the NIST docs\n (default: 'ascii')\n isotype: str\n GET request parameter, refer to the NIST docs\n (default: 'some')\n\n Returns\n -------\n str\n Preformatted text data\n\n " logger.info('Downloading data from the NIST Atomic Weights and Isotopic Compositions Database.') r = requests.get(WEIGHTSCOMP_URL, params={'ascii': ascii, 'isotype': isotype}) soup = BeautifulSoup(r.text, 'html5lib') pre_text_data = soup.pre.get_text() pre_text_data = pre_text_data.replace(u'\xa0', u' ') return pre_text_data
Downloader function for the NIST Atomic Weights and Isotopic Compositions database Makes a GET request to download data; then extracts preformatted text Parameters ---------- ascii: str GET request parameter, refer to the NIST docs (default: 'ascii') isotype: str GET request parameter, refer to the NIST docs (default: 'some') Returns ------- str Preformatted text data
carsus/io/nist/weightscomp.py
download_weightscomp
epassaro/carsus
21
python
def download_weightscomp(ascii='ascii2', isotype='some'): "\n Downloader function for the NIST Atomic Weights and Isotopic Compositions database\n\n Makes a GET request to download data; then extracts preformatted text\n\n Parameters\n ----------\n ascii: str\n GET request parameter, refer to the NIST docs\n (default: 'ascii')\n isotype: str\n GET request parameter, refer to the NIST docs\n (default: 'some')\n\n Returns\n -------\n str\n Preformatted text data\n\n " logger.info('Downloading data from the NIST Atomic Weights and Isotopic Compositions Database.') r = requests.get(WEIGHTSCOMP_URL, params={'ascii': ascii, 'isotype': isotype}) soup = BeautifulSoup(r.text, 'html5lib') pre_text_data = soup.pre.get_text() pre_text_data = pre_text_data.replace(u'\xa0', u' ') return pre_text_data
def download_weightscomp(ascii='ascii2', isotype='some'): "\n Downloader function for the NIST Atomic Weights and Isotopic Compositions database\n\n Makes a GET request to download data; then extracts preformatted text\n\n Parameters\n ----------\n ascii: str\n GET request parameter, refer to the NIST docs\n (default: 'ascii')\n isotype: str\n GET request parameter, refer to the NIST docs\n (default: 'some')\n\n Returns\n -------\n str\n Preformatted text data\n\n " logger.info('Downloading data from the NIST Atomic Weights and Isotopic Compositions Database.') r = requests.get(WEIGHTSCOMP_URL, params={'ascii': ascii, 'isotype': isotype}) soup = BeautifulSoup(r.text, 'html5lib') pre_text_data = soup.pre.get_text() pre_text_data = pre_text_data.replace(u'\xa0', u' ') return pre_text_data<|docstring|>Downloader function for the NIST Atomic Weights and Isotopic Compositions database Makes a GET request to download data; then extracts preformatted text Parameters ---------- ascii: str GET request parameter, refer to the NIST docs (default: 'ascii') isotype: str GET request parameter, refer to the NIST docs (default: 'some') Returns ------- str Preformatted text data<|endoftext|>
6598327ad814a31f75872e4e452b2ca8da9aa56a9eb0036b8d0163e26f566380
def prepare_atomic_dataframe(self): ' Returns a new dataframe created from `base` and containing data *only* related to atoms ' atomic = self.base[ATOM_WEIGHT_COLS].reset_index(level=MASS_NUM_COL, drop=True) atomic = atomic[(~ atomic.index.duplicated())] atomic = self._prepare_atomic_weights(atomic) atomic = atomic[pd.notnull(atomic[AW_VAL_COL])] return atomic
Returns a new dataframe created from `base` and containing data *only* related to atoms
carsus/io/nist/weightscomp.py
prepare_atomic_dataframe
epassaro/carsus
21
python
def prepare_atomic_dataframe(self): ' ' atomic = self.base[ATOM_WEIGHT_COLS].reset_index(level=MASS_NUM_COL, drop=True) atomic = atomic[(~ atomic.index.duplicated())] atomic = self._prepare_atomic_weights(atomic) atomic = atomic[pd.notnull(atomic[AW_VAL_COL])] return atomic
def prepare_atomic_dataframe(self): ' ' atomic = self.base[ATOM_WEIGHT_COLS].reset_index(level=MASS_NUM_COL, drop=True) atomic = atomic[(~ atomic.index.duplicated())] atomic = self._prepare_atomic_weights(atomic) atomic = atomic[pd.notnull(atomic[AW_VAL_COL])] return atomic<|docstring|>Returns a new dataframe created from `base` and containing data *only* related to atoms<|endoftext|>
3500eb548c1fc1278ca5adfa4967b43835eb082564ee1248eb37267cf09dedd4
def prepare_isotope_dataframe(self): ' Returns a new dataframe created from `base` and containing data *only* related to isotopes ' pass
Returns a new dataframe created from `base` and containing data *only* related to isotopes
carsus/io/nist/weightscomp.py
prepare_isotope_dataframe
epassaro/carsus
21
python
def prepare_isotope_dataframe(self): ' ' pass
def prepare_isotope_dataframe(self): ' ' pass<|docstring|>Returns a new dataframe created from `base` and containing data *only* related to isotopes<|endoftext|>
b6b3423dbfbaca40105360cd59726f84fb618cf4d0c391a51815170908be1627
def ingest(self, atomic_weights=True): ' *Only* ingests atomic weights *for now* ' if (self.parser.base is None): self.download() if atomic_weights: self.ingest_atomic_weights() self.session.flush()
*Only* ingests atomic weights *for now*
carsus/io/nist/weightscomp.py
ingest
epassaro/carsus
21
python
def ingest(self, atomic_weights=True): ' ' if (self.parser.base is None): self.download() if atomic_weights: self.ingest_atomic_weights() self.session.flush()
def ingest(self, atomic_weights=True): ' ' if (self.parser.base is None): self.download() if atomic_weights: self.ingest_atomic_weights() self.session.flush()<|docstring|>*Only* ingests atomic weights *for now*<|endoftext|>
0080836b7e917f90245324cf234b2c35fefc4396ac862cd11015ee2e21f54841
def _get_version(self): 'Returns NIST Atomic Weights and Isotopic Components\n Database version.\n ' selector = 'td' html = requests.get(WEIGHTSCOMP_VERSION_URL).text bs = BeautifulSoup(html, 'html5lib') version = bs.select(selector) version = version[0].text.split()[1] self.version = version
Returns NIST Atomic Weights and Isotopic Components Database version.
carsus/io/nist/weightscomp.py
_get_version
epassaro/carsus
21
python
def _get_version(self): 'Returns NIST Atomic Weights and Isotopic Components\n Database version.\n ' selector = 'td' html = requests.get(WEIGHTSCOMP_VERSION_URL).text bs = BeautifulSoup(html, 'html5lib') version = bs.select(selector) version = version[0].text.split()[1] self.version = version
def _get_version(self): 'Returns NIST Atomic Weights and Isotopic Components\n Database version.\n ' selector = 'td' html = requests.get(WEIGHTSCOMP_VERSION_URL).text bs = BeautifulSoup(html, 'html5lib') version = bs.select(selector) version = version[0].text.split()[1] self.version = version<|docstring|>Returns NIST Atomic Weights and Isotopic Components Database version.<|endoftext|>
f1f59642a05c51f5b700ac4ff9138cb7101bed85a297786700a3c0a243c0a4dc
def to_hdf(self, fname): 'Dump the `base` attribute into an HDF5 file\n\n Parameters\n ----------\n fname : path\n Path to the HDF5 output file\n ' with pd.HDFStore(fname, 'w') as f: f.put('/atom_data', self.base, min_itemsize={'symbol': 2, 'name': 15})
Dump the `base` attribute into an HDF5 file Parameters ---------- fname : path Path to the HDF5 output file
carsus/io/nist/weightscomp.py
to_hdf
epassaro/carsus
21
python
def to_hdf(self, fname): 'Dump the `base` attribute into an HDF5 file\n\n Parameters\n ----------\n fname : path\n Path to the HDF5 output file\n ' with pd.HDFStore(fname, 'w') as f: f.put('/atom_data', self.base, min_itemsize={'symbol': 2, 'name': 15})
def to_hdf(self, fname): 'Dump the `base` attribute into an HDF5 file\n\n Parameters\n ----------\n fname : path\n Path to the HDF5 output file\n ' with pd.HDFStore(fname, 'w') as f: f.put('/atom_data', self.base, min_itemsize={'symbol': 2, 'name': 15})<|docstring|>Dump the `base` attribute into an HDF5 file Parameters ---------- fname : path Path to the HDF5 output file<|endoftext|>
934635ecf3d36384c1af2d3e35800e0a6ba146fb3805f1e5599eb04ea0b94491
def __init__(self, id: ID, database: Database, outputs: Tuple[ID], mark_as_test: bool=False): "\n\t\tDESCRIPTION\n\t\t-----------\n\t\tThe Constructor for LoadFromDataset\n\n\t\tParameters\n\t\t-----------\n\t\tid : bci_lib.ID\n\n\t\t\tid of the stage\n\n\t\tdatabase : bci_lib.Database\n\n\t\t\tThe dictionary which we held all our data in and it's accessible from all stages\n\n\t\tinputs : Tuple[ID, ...]\n\n\t\t\tIt's the tuple of some ids(bci_lib.ID) of input datas\n\n\t\toutputs : Tuple[ID, ...]\n\n\t\t\tIt's the tuple of some ids(bci_lib.ID) of output datas\n\n\t\tmark_as_test : bool | false\n\n\t\t\tIt can determine whether the data labeled as train(false) or test(true)\n\n\t\t-----------\n\t\t" super().__init__(id, database, (), outputs) self.mark_as_test = mark_as_test
DESCRIPTION ----------- The Constructor for LoadFromDataset Parameters ----------- id : bci_lib.ID id of the stage database : bci_lib.Database The dictionary which we held all our data in and it's accessible from all stages inputs : Tuple[ID, ...] It's the tuple of some ids(bci_lib.ID) of input datas outputs : Tuple[ID, ...] It's the tuple of some ids(bci_lib.ID) of output datas mark_as_test : bool | false It can determine whether the data labeled as train(false) or test(true) -----------
bci_lib/Stages/LoadData/LoadData.py
__init__
SahandSadeghpour/bci_lib
0
python
def __init__(self, id: ID, database: Database, outputs: Tuple[ID], mark_as_test: bool=False): "\n\t\tDESCRIPTION\n\t\t-----------\n\t\tThe Constructor for LoadFromDataset\n\n\t\tParameters\n\t\t-----------\n\t\tid : bci_lib.ID\n\n\t\t\tid of the stage\n\n\t\tdatabase : bci_lib.Database\n\n\t\t\tThe dictionary which we held all our data in and it's accessible from all stages\n\n\t\tinputs : Tuple[ID, ...]\n\n\t\t\tIt's the tuple of some ids(bci_lib.ID) of input datas\n\n\t\toutputs : Tuple[ID, ...]\n\n\t\t\tIt's the tuple of some ids(bci_lib.ID) of output datas\n\n\t\tmark_as_test : bool | false\n\n\t\t\tIt can determine whether the data labeled as train(false) or test(true)\n\n\t\t-----------\n\t\t" super().__init__(id, database, (), outputs) self.mark_as_test = mark_as_test
def __init__(self, id: ID, database: Database, outputs: Tuple[ID], mark_as_test: bool=False): "\n\t\tDESCRIPTION\n\t\t-----------\n\t\tThe Constructor for LoadFromDataset\n\n\t\tParameters\n\t\t-----------\n\t\tid : bci_lib.ID\n\n\t\t\tid of the stage\n\n\t\tdatabase : bci_lib.Database\n\n\t\t\tThe dictionary which we held all our data in and it's accessible from all stages\n\n\t\tinputs : Tuple[ID, ...]\n\n\t\t\tIt's the tuple of some ids(bci_lib.ID) of input datas\n\n\t\toutputs : Tuple[ID, ...]\n\n\t\t\tIt's the tuple of some ids(bci_lib.ID) of output datas\n\n\t\tmark_as_test : bool | false\n\n\t\t\tIt can determine whether the data labeled as train(false) or test(true)\n\n\t\t-----------\n\t\t" super().__init__(id, database, (), outputs) self.mark_as_test = mark_as_test<|docstring|>DESCRIPTION ----------- The Constructor for LoadFromDataset Parameters ----------- id : bci_lib.ID id of the stage database : bci_lib.Database The dictionary which we held all our data in and it's accessible from all stages inputs : Tuple[ID, ...] It's the tuple of some ids(bci_lib.ID) of input datas outputs : Tuple[ID, ...] It's the tuple of some ids(bci_lib.ID) of output datas mark_as_test : bool | false It can determine whether the data labeled as train(false) or test(true) -----------<|endoftext|>
ab49ae644720d0dd6cacdfe62e4ea5c53fa30fb4b491f9c538525cc8c3300ed0
def set_params(self, dataset: dict, save_in_cache: bool=True): '\n\t\tDESCRIPTION\n\t\t-----------\n\t\tLoad From Dataset\n\n\t\tParameter\n\t\t-----------\n\t\tdataset : dict or list\n\n\t\tsave_in_cache: bool | True\n\n\t\tExample\n\t\t-----------\n\n\t\t-----------\n\t\t' self._params = {'data_info': dataset, 'save_in_cache': save_in_cache} return self._params
DESCRIPTION ----------- Load From Dataset Parameter ----------- dataset : dict or list save_in_cache: bool | True Example ----------- -----------
bci_lib/Stages/LoadData/LoadData.py
set_params
SahandSadeghpour/bci_lib
0
python
def set_params(self, dataset: dict, save_in_cache: bool=True): '\n\t\tDESCRIPTION\n\t\t-----------\n\t\tLoad From Dataset\n\n\t\tParameter\n\t\t-----------\n\t\tdataset : dict or list\n\n\t\tsave_in_cache: bool | True\n\n\t\tExample\n\t\t-----------\n\n\t\t-----------\n\t\t' self._params = {'data_info': dataset, 'save_in_cache': save_in_cache} return self._params
def set_params(self, dataset: dict, save_in_cache: bool=True): '\n\t\tDESCRIPTION\n\t\t-----------\n\t\tLoad From Dataset\n\n\t\tParameter\n\t\t-----------\n\t\tdataset : dict or list\n\n\t\tsave_in_cache: bool | True\n\n\t\tExample\n\t\t-----------\n\n\t\t-----------\n\t\t' self._params = {'data_info': dataset, 'save_in_cache': save_in_cache} return self._params<|docstring|>DESCRIPTION ----------- Load From Dataset Parameter ----------- dataset : dict or list save_in_cache: bool | True Example ----------- -----------<|endoftext|>
c6782d79222d5a7e994d06e59171595a87369eea71ef0bea932c46caff9666b9
def do_task(self): '\n\t\tDESCRIPTION\n\t\t-----------\n\t\tImport the data from datasets and save it on database\n\t\t-----------\n\t\t' params = self.get_params() outputs = self._outputs data = Dataset.load(**params) self._set_output(data, outputs[0]) self._finish()
DESCRIPTION ----------- Import the data from datasets and save it on database -----------
bci_lib/Stages/LoadData/LoadData.py
do_task
SahandSadeghpour/bci_lib
0
python
def do_task(self): '\n\t\tDESCRIPTION\n\t\t-----------\n\t\tImport the data from datasets and save it on database\n\t\t-----------\n\t\t' params = self.get_params() outputs = self._outputs data = Dataset.load(**params) self._set_output(data, outputs[0]) self._finish()
def do_task(self): '\n\t\tDESCRIPTION\n\t\t-----------\n\t\tImport the data from datasets and save it on database\n\t\t-----------\n\t\t' params = self.get_params() outputs = self._outputs data = Dataset.load(**params) self._set_output(data, outputs[0]) self._finish()<|docstring|>DESCRIPTION ----------- Import the data from datasets and save it on database -----------<|endoftext|>
a93834e0c407387999bb48ce408b30bb68bda22c53e4239be1171a35e201e131
def __init__(self, id: ID, database: Database, outputs: Tuple[ID], mark_as_test: bool=False): "\n\t\tDESCRIPTION\n\t\t-----------\n\t\tThe Constructor for LoadRaw\n\n\t\tParameters\n\t\t-----------\n\t\tid : bci_lib.ID\n\n\t\t\tid of the stage\n\n\t\tdatabase : bci_lib.Database\n\n\t\t\tThe dictionary which we held all our data in and it's accessible from all stages\n\n\t\tinputs : Tuple[ID, ...]\n\n\t\t\tIt's the tuple of some ids(bci_lib.ID) of input datas\n\n\t\toutputs : Tuple[ID, ...]\n\n\t\t\tIt's the tuple of some ids(bci_lib.ID) of output datas\n\n\t\tmark_as_test : bool | false\n\n\t\t\tIt can determine whether the data labeled as train(false) or test(true)\n\n\t\t-----------\n\t\t" super().__init__(id, database, (), outputs) self.mark_as_test = mark_as_test
DESCRIPTION ----------- The Constructor for LoadRaw Parameters ----------- id : bci_lib.ID id of the stage database : bci_lib.Database The dictionary which we held all our data in and it's accessible from all stages inputs : Tuple[ID, ...] It's the tuple of some ids(bci_lib.ID) of input datas outputs : Tuple[ID, ...] It's the tuple of some ids(bci_lib.ID) of output datas mark_as_test : bool | false It can determine whether the data labeled as train(false) or test(true) -----------
bci_lib/Stages/LoadData/LoadData.py
__init__
SahandSadeghpour/bci_lib
0
python
def __init__(self, id: ID, database: Database, outputs: Tuple[ID], mark_as_test: bool=False): "\n\t\tDESCRIPTION\n\t\t-----------\n\t\tThe Constructor for LoadRaw\n\n\t\tParameters\n\t\t-----------\n\t\tid : bci_lib.ID\n\n\t\t\tid of the stage\n\n\t\tdatabase : bci_lib.Database\n\n\t\t\tThe dictionary which we held all our data in and it's accessible from all stages\n\n\t\tinputs : Tuple[ID, ...]\n\n\t\t\tIt's the tuple of some ids(bci_lib.ID) of input datas\n\n\t\toutputs : Tuple[ID, ...]\n\n\t\t\tIt's the tuple of some ids(bci_lib.ID) of output datas\n\n\t\tmark_as_test : bool | false\n\n\t\t\tIt can determine whether the data labeled as train(false) or test(true)\n\n\t\t-----------\n\t\t" super().__init__(id, database, (), outputs) self.mark_as_test = mark_as_test
def __init__(self, id: ID, database: Database, outputs: Tuple[ID], mark_as_test: bool=False): "\n\t\tDESCRIPTION\n\t\t-----------\n\t\tThe Constructor for LoadRaw\n\n\t\tParameters\n\t\t-----------\n\t\tid : bci_lib.ID\n\n\t\t\tid of the stage\n\n\t\tdatabase : bci_lib.Database\n\n\t\t\tThe dictionary which we held all our data in and it's accessible from all stages\n\n\t\tinputs : Tuple[ID, ...]\n\n\t\t\tIt's the tuple of some ids(bci_lib.ID) of input datas\n\n\t\toutputs : Tuple[ID, ...]\n\n\t\t\tIt's the tuple of some ids(bci_lib.ID) of output datas\n\n\t\tmark_as_test : bool | false\n\n\t\t\tIt can determine whether the data labeled as train(false) or test(true)\n\n\t\t-----------\n\t\t" super().__init__(id, database, (), outputs) self.mark_as_test = mark_as_test<|docstring|>DESCRIPTION ----------- The Constructor for LoadRaw Parameters ----------- id : bci_lib.ID id of the stage database : bci_lib.Database The dictionary which we held all our data in and it's accessible from all stages inputs : Tuple[ID, ...] It's the tuple of some ids(bci_lib.ID) of input datas outputs : Tuple[ID, ...] It's the tuple of some ids(bci_lib.ID) of output datas mark_as_test : bool | false It can determine whether the data labeled as train(false) or test(true) -----------<|endoftext|>
67e6ab5ebbff9898771d8c97c3bdea4e9d56d77cbe166c37a190ba793b4954d0
def set_params(self, rawdata: mne.io.Raw): '\n\t\tDESCRIPTION\n\t\t-----------\n\t\tLoad raw data\n\n\t\tParameter\n\t\t-----------\n\t\trawdata : Instance of mne.io.Raw\n\n\t\tExample\n\t\t-----------\n\n\t\t-----------\n\t\t' self._params = {'data': rawdata} return self._params
DESCRIPTION ----------- Load raw data Parameter ----------- rawdata : Instance of mne.io.Raw Example ----------- -----------
bci_lib/Stages/LoadData/LoadData.py
set_params
SahandSadeghpour/bci_lib
0
python
def set_params(self, rawdata: mne.io.Raw): '\n\t\tDESCRIPTION\n\t\t-----------\n\t\tLoad raw data\n\n\t\tParameter\n\t\t-----------\n\t\trawdata : Instance of mne.io.Raw\n\n\t\tExample\n\t\t-----------\n\n\t\t-----------\n\t\t' self._params = {'data': rawdata} return self._params
def set_params(self, rawdata: mne.io.Raw): '\n\t\tDESCRIPTION\n\t\t-----------\n\t\tLoad raw data\n\n\t\tParameter\n\t\t-----------\n\t\trawdata : Instance of mne.io.Raw\n\n\t\tExample\n\t\t-----------\n\n\t\t-----------\n\t\t' self._params = {'data': rawdata} return self._params<|docstring|>DESCRIPTION ----------- Load raw data Parameter ----------- rawdata : Instance of mne.io.Raw Example ----------- -----------<|endoftext|>
66490ace81b37022ffbe184f59c70fae9251f3a0615934fc782be91b65a1176e
def do_task(self): '\n\t\tDESCRIPTION\n\t\t-----------\n\t\tImport the raw data from user and save it on database\n\t\t-----------\n\t\t' raw = self._params.pop('data') output = RawData(self._outputs[0], raw) self._set_output(output, self._outputs[0])
DESCRIPTION ----------- Import the raw data from user and save it on database -----------
bci_lib/Stages/LoadData/LoadData.py
do_task
SahandSadeghpour/bci_lib
0
python
def do_task(self): '\n\t\tDESCRIPTION\n\t\t-----------\n\t\tImport the raw data from user and save it on database\n\t\t-----------\n\t\t' raw = self._params.pop('data') output = RawData(self._outputs[0], raw) self._set_output(output, self._outputs[0])
def do_task(self): '\n\t\tDESCRIPTION\n\t\t-----------\n\t\tImport the raw data from user and save it on database\n\t\t-----------\n\t\t' raw = self._params.pop('data') output = RawData(self._outputs[0], raw) self._set_output(output, self._outputs[0])<|docstring|>DESCRIPTION ----------- Import the raw data from user and save it on database -----------<|endoftext|>
4cd467ebba479fb54b0a35d03e7a0a7b13583fac8ef63d7d4ab9613b3e207394
def __init__(self, id: ID, database: Database, outputs: Tuple[ID], mark_as_test: bool=False): "\n\t\tDESCRIPTION\n\t\t-----------\n\t\tThe Constructor for LoadEpochs\n\n\t\tParameters\n\t\t-----------\n\t\tid : bci_lib.ID\n\n\t\t\tid of the stage\n\n\t\tdatabase : bci_lib.Database\n\n\t\t\tThe dictionary which we held all our data in and it's accessible from all stages\n\n\t\tinputs : Tuple[ID, ...]\n\n\t\t\tIt's the tuple of some ids(bci_lib.ID) of input datas\n\n\t\toutputs : Tuple[ID, ...]\n\n\t\t\tIt's the tuple of some ids(bci_lib.ID) of output datas\n\n\t\tmark_as_test : bool | false\n\n\t\t\tIt can determine whether the data labeled as train(false) or test(true)\n\n\t\t-----------\n\t\t" super().__init__(id, database, (), outputs) self.mark_as_test = mark_as_test
DESCRIPTION ----------- The Constructor for LoadEpochs Parameters ----------- id : bci_lib.ID id of the stage database : bci_lib.Database The dictionary which we held all our data in and it's accessible from all stages inputs : Tuple[ID, ...] It's the tuple of some ids(bci_lib.ID) of input datas outputs : Tuple[ID, ...] It's the tuple of some ids(bci_lib.ID) of output datas mark_as_test : bool | false It can determine whether the data labeled as train(false) or test(true) -----------
bci_lib/Stages/LoadData/LoadData.py
__init__
SahandSadeghpour/bci_lib
0
python
def __init__(self, id: ID, database: Database, outputs: Tuple[ID], mark_as_test: bool=False): "\n\t\tDESCRIPTION\n\t\t-----------\n\t\tThe Constructor for LoadEpochs\n\n\t\tParameters\n\t\t-----------\n\t\tid : bci_lib.ID\n\n\t\t\tid of the stage\n\n\t\tdatabase : bci_lib.Database\n\n\t\t\tThe dictionary which we held all our data in and it's accessible from all stages\n\n\t\tinputs : Tuple[ID, ...]\n\n\t\t\tIt's the tuple of some ids(bci_lib.ID) of input datas\n\n\t\toutputs : Tuple[ID, ...]\n\n\t\t\tIt's the tuple of some ids(bci_lib.ID) of output datas\n\n\t\tmark_as_test : bool | false\n\n\t\t\tIt can determine whether the data labeled as train(false) or test(true)\n\n\t\t-----------\n\t\t" super().__init__(id, database, (), outputs) self.mark_as_test = mark_as_test
def __init__(self, id: ID, database: Database, outputs: Tuple[ID], mark_as_test: bool=False): "\n\t\tDESCRIPTION\n\t\t-----------\n\t\tThe Constructor for LoadEpochs\n\n\t\tParameters\n\t\t-----------\n\t\tid : bci_lib.ID\n\n\t\t\tid of the stage\n\n\t\tdatabase : bci_lib.Database\n\n\t\t\tThe dictionary which we held all our data in and it's accessible from all stages\n\n\t\tinputs : Tuple[ID, ...]\n\n\t\t\tIt's the tuple of some ids(bci_lib.ID) of input datas\n\n\t\toutputs : Tuple[ID, ...]\n\n\t\t\tIt's the tuple of some ids(bci_lib.ID) of output datas\n\n\t\tmark_as_test : bool | false\n\n\t\t\tIt can determine whether the data labeled as train(false) or test(true)\n\n\t\t-----------\n\t\t" super().__init__(id, database, (), outputs) self.mark_as_test = mark_as_test<|docstring|>DESCRIPTION ----------- The Constructor for LoadEpochs Parameters ----------- id : bci_lib.ID id of the stage database : bci_lib.Database The dictionary which we held all our data in and it's accessible from all stages inputs : Tuple[ID, ...] It's the tuple of some ids(bci_lib.ID) of input datas outputs : Tuple[ID, ...] It's the tuple of some ids(bci_lib.ID) of output datas mark_as_test : bool | false It can determine whether the data labeled as train(false) or test(true) -----------<|endoftext|>