body_hash
stringlengths
64
64
body
stringlengths
23
109k
docstring
stringlengths
1
57k
path
stringlengths
4
198
name
stringlengths
1
115
repository_name
stringlengths
7
111
repository_stars
float64
0
191k
lang
stringclasses
1 value
body_without_docstring
stringlengths
14
108k
unified
stringlengths
45
133k
0b56f1dacb9bc27a0500ff79d49cb31c6342dcef1f74507b7b994f47ef1431a0
def set_params(self, epochsdata: mne.Epochs): '\n\t\tDESCRIPTION\n\t\t-----------\n\t\tLoad Epochs data\n\n\t\tParameter\n\t\t-----------\n\t\tepochsdata: Instance of mne.Epochs\n\n\t\tExample\n\t\t-----------\n\n\t\t-----------\n\t\t' self._params = {'data': epochsdata} return self._params
DESCRIPTION ----------- Load Epochs data Parameter ----------- epochsdata: Instance of mne.Epochs Example ----------- -----------
bci_lib/Stages/LoadData/LoadData.py
set_params
SahandSadeghpour/bci_lib
0
python
def set_params(self, epochsdata: mne.Epochs): '\n\t\tDESCRIPTION\n\t\t-----------\n\t\tLoad Epochs data\n\n\t\tParameter\n\t\t-----------\n\t\tepochsdata: Instance of mne.Epochs\n\n\t\tExample\n\t\t-----------\n\n\t\t-----------\n\t\t' self._params = {'data': epochsdata} return self._params
def set_params(self, epochsdata: mne.Epochs): '\n\t\tDESCRIPTION\n\t\t-----------\n\t\tLoad Epochs data\n\n\t\tParameter\n\t\t-----------\n\t\tepochsdata: Instance of mne.Epochs\n\n\t\tExample\n\t\t-----------\n\n\t\t-----------\n\t\t' self._params = {'data': epochsdata} return self._params<|docstring|>DESCRIPTION ----------- Load Epochs data Parameter ----------- epochsdata: Instance of mne.Epochs Example ----------- -----------<|endoftext|>
b7801fca452cf3e823dd0fbc10c3a10a51aaa33cc96918a1f72f7b86a150e652
def do_task(self): '\n\t\tDESCRIPTION\n\t\t-----------\n\t\tImport the epochs data from user and save it on database\n\t\t-----------\n\t\t' epochs = self._params.pop('data') output = EpochsData(self._outputs[0], epochs) self._set_output(output, self._outputs[0])
DESCRIPTION ----------- Import the epochs data from user and save it on database -----------
bci_lib/Stages/LoadData/LoadData.py
do_task
SahandSadeghpour/bci_lib
0
python
def do_task(self): '\n\t\tDESCRIPTION\n\t\t-----------\n\t\tImport the epochs data from user and save it on database\n\t\t-----------\n\t\t' epochs = self._params.pop('data') output = EpochsData(self._outputs[0], epochs) self._set_output(output, self._outputs[0])
def do_task(self): '\n\t\tDESCRIPTION\n\t\t-----------\n\t\tImport the epochs data from user and save it on database\n\t\t-----------\n\t\t' epochs = self._params.pop('data') output = EpochsData(self._outputs[0], epochs) self._set_output(output, self._outputs[0])<|docstring|>DESCRIPTION ----------- Import the epochs data from user and save it on database -----------<|endoftext|>
769f088229dcd811ebd578b3c3b269d4aed8f630bd1c6737a47f530526e87bf8
@property def detailed_balance_factor(self): 'Returns the detailed balance factor (sometimes called the Bose\n factor)\n\n Parameters\n ----------\n None\n\n Returns\n -------\n dbf : ndarray\n The detailed balance factor (temperature correction)\n\n ' return (1.0 - np.exp((((- self.Q[(:, 3)]) / BOLTZMANN_IN_MEV_K) / self.temp)))
Returns the detailed balance factor (sometimes called the Bose factor) Parameters ---------- None Returns ------- dbf : ndarray The detailed balance factor (temperature correction)
neutronpy/data/analysis.py
detailed_balance_factor
neutronpy/neutronpy
14
python
@property def detailed_balance_factor(self): 'Returns the detailed balance factor (sometimes called the Bose\n factor)\n\n Parameters\n ----------\n None\n\n Returns\n -------\n dbf : ndarray\n The detailed balance factor (temperature correction)\n\n ' return (1.0 - np.exp((((- self.Q[(:, 3)]) / BOLTZMANN_IN_MEV_K) / self.temp)))
@property def detailed_balance_factor(self): 'Returns the detailed balance factor (sometimes called the Bose\n factor)\n\n Parameters\n ----------\n None\n\n Returns\n -------\n dbf : ndarray\n The detailed balance factor (temperature correction)\n\n ' return (1.0 - np.exp((((- self.Q[(:, 3)]) / BOLTZMANN_IN_MEV_K) / self.temp)))<|docstring|>Returns the detailed balance factor (sometimes called the Bose factor) Parameters ---------- None Returns ------- dbf : ndarray The detailed balance factor (temperature correction)<|endoftext|>
28582406b270b2581438a80fe67ddf4dce7e43c55b8fd5eb7f2d37263baee53b
def integrate(self, bounds=None, background=None, hkle=True): 'Returns the integrated intensity within given bounds\n\n Parameters\n ----------\n bounds : bool, optional\n A boolean expression representing the bounds inside which the\n calculation will be performed\n\n background : float or dict, optional\n Default: None\n\n hkle : bool, optional\n If True, integrates only over h, k, l, e dimensions, otherwise\n integrates over all dimensions in :py:attr:`.Data.data`\n\n Returns\n -------\n result : float\n The integrated intensity either over all data, or within\n specified boundaries\n\n ' result = 0 for key in self.get_keys(hkle): result += np.trapz((self.intensity[self.get_bounds(bounds)] - self.estimate_background(background)), np.squeeze(self.data[key][self.get_bounds(bounds)])) return result
Returns the integrated intensity within given bounds Parameters ---------- bounds : bool, optional A boolean expression representing the bounds inside which the calculation will be performed background : float or dict, optional Default: None hkle : bool, optional If True, integrates only over h, k, l, e dimensions, otherwise integrates over all dimensions in :py:attr:`.Data.data` Returns ------- result : float The integrated intensity either over all data, or within specified boundaries
neutronpy/data/analysis.py
integrate
neutronpy/neutronpy
14
python
def integrate(self, bounds=None, background=None, hkle=True): 'Returns the integrated intensity within given bounds\n\n Parameters\n ----------\n bounds : bool, optional\n A boolean expression representing the bounds inside which the\n calculation will be performed\n\n background : float or dict, optional\n Default: None\n\n hkle : bool, optional\n If True, integrates only over h, k, l, e dimensions, otherwise\n integrates over all dimensions in :py:attr:`.Data.data`\n\n Returns\n -------\n result : float\n The integrated intensity either over all data, or within\n specified boundaries\n\n ' result = 0 for key in self.get_keys(hkle): result += np.trapz((self.intensity[self.get_bounds(bounds)] - self.estimate_background(background)), np.squeeze(self.data[key][self.get_bounds(bounds)])) return result
def integrate(self, bounds=None, background=None, hkle=True): 'Returns the integrated intensity within given bounds\n\n Parameters\n ----------\n bounds : bool, optional\n A boolean expression representing the bounds inside which the\n calculation will be performed\n\n background : float or dict, optional\n Default: None\n\n hkle : bool, optional\n If True, integrates only over h, k, l, e dimensions, otherwise\n integrates over all dimensions in :py:attr:`.Data.data`\n\n Returns\n -------\n result : float\n The integrated intensity either over all data, or within\n specified boundaries\n\n ' result = 0 for key in self.get_keys(hkle): result += np.trapz((self.intensity[self.get_bounds(bounds)] - self.estimate_background(background)), np.squeeze(self.data[key][self.get_bounds(bounds)])) return result<|docstring|>Returns the integrated intensity within given bounds Parameters ---------- bounds : bool, optional A boolean expression representing the bounds inside which the calculation will be performed background : float or dict, optional Default: None hkle : bool, optional If True, integrates only over h, k, l, e dimensions, otherwise integrates over all dimensions in :py:attr:`.Data.data` Returns ------- result : float The integrated intensity either over all data, or within specified boundaries<|endoftext|>
35752de05d9eccf4b7958942398d20f8273417b931550f275a87d865602abb5e
def position(self, bounds=None, background=None, hkle=True): 'Returns the position of a peak within the given bounds\n\n Parameters\n ----------\n bounds : bool, optional\n A boolean expression representing the bounds inside which the\n calculation will be performed\n\n background : float or dict, optional\n Default: None\n\n hkle : bool, optional\n If True, integrates only over h, k, l, e dimensions, otherwise\n integrates over all dimensions in :py:attr:`.Data.data`\n\n Returns\n -------\n result : tup\n The result is a tuple with position in each dimension of Q,\n (h, k, l, e)\n\n ' result = () for key in self.get_keys(hkle): _result = 0 for key_integrate in self.get_keys(hkle): _result += (np.trapz((self.data[key][self.get_bounds(bounds)] * (self.intensity[self.get_bounds(bounds)] - self.estimate_background(background))), self.data[key_integrate][self.get_bounds(bounds)]) / self.integrate(bounds, background)) result += (np.squeeze(_result),) if hkle: return result else: return dict(((key, value) for (key, value) in zip(self.get_keys(hkle), result)))
Returns the position of a peak within the given bounds Parameters ---------- bounds : bool, optional A boolean expression representing the bounds inside which the calculation will be performed background : float or dict, optional Default: None hkle : bool, optional If True, integrates only over h, k, l, e dimensions, otherwise integrates over all dimensions in :py:attr:`.Data.data` Returns ------- result : tup The result is a tuple with position in each dimension of Q, (h, k, l, e)
neutronpy/data/analysis.py
position
neutronpy/neutronpy
14
python
def position(self, bounds=None, background=None, hkle=True): 'Returns the position of a peak within the given bounds\n\n Parameters\n ----------\n bounds : bool, optional\n A boolean expression representing the bounds inside which the\n calculation will be performed\n\n background : float or dict, optional\n Default: None\n\n hkle : bool, optional\n If True, integrates only over h, k, l, e dimensions, otherwise\n integrates over all dimensions in :py:attr:`.Data.data`\n\n Returns\n -------\n result : tup\n The result is a tuple with position in each dimension of Q,\n (h, k, l, e)\n\n ' result = () for key in self.get_keys(hkle): _result = 0 for key_integrate in self.get_keys(hkle): _result += (np.trapz((self.data[key][self.get_bounds(bounds)] * (self.intensity[self.get_bounds(bounds)] - self.estimate_background(background))), self.data[key_integrate][self.get_bounds(bounds)]) / self.integrate(bounds, background)) result += (np.squeeze(_result),) if hkle: return result else: return dict(((key, value) for (key, value) in zip(self.get_keys(hkle), result)))
def position(self, bounds=None, background=None, hkle=True): 'Returns the position of a peak within the given bounds\n\n Parameters\n ----------\n bounds : bool, optional\n A boolean expression representing the bounds inside which the\n calculation will be performed\n\n background : float or dict, optional\n Default: None\n\n hkle : bool, optional\n If True, integrates only over h, k, l, e dimensions, otherwise\n integrates over all dimensions in :py:attr:`.Data.data`\n\n Returns\n -------\n result : tup\n The result is a tuple with position in each dimension of Q,\n (h, k, l, e)\n\n ' result = () for key in self.get_keys(hkle): _result = 0 for key_integrate in self.get_keys(hkle): _result += (np.trapz((self.data[key][self.get_bounds(bounds)] * (self.intensity[self.get_bounds(bounds)] - self.estimate_background(background))), self.data[key_integrate][self.get_bounds(bounds)]) / self.integrate(bounds, background)) result += (np.squeeze(_result),) if hkle: return result else: return dict(((key, value) for (key, value) in zip(self.get_keys(hkle), result)))<|docstring|>Returns the position of a peak within the given bounds Parameters ---------- bounds : bool, optional A boolean expression representing the bounds inside which the calculation will be performed background : float or dict, optional Default: None hkle : bool, optional If True, integrates only over h, k, l, e dimensions, otherwise integrates over all dimensions in :py:attr:`.Data.data` Returns ------- result : tup The result is a tuple with position in each dimension of Q, (h, k, l, e)<|endoftext|>
344c62c489c52ae591313dc1a846c34ae3712bc953d4290b42fe032a89a9f856
def width(self, bounds=None, background=None, fwhm=False, hkle=True): 'Returns the mean-squared width of a peak within the given bounds\n\n Parameters\n ----------\n bounds : bool, optional\n A boolean expression representing the bounds inside which the\n calculation will be performed\n\n background : float or dict, optional\n Default: None\n\n fwhm : bool, optional\n If True, returns width in fwhm, otherwise in mean-squared width.\n Default: False\n\n hkle : bool, optional\n If True, integrates only over h, k, l, e dimensions, otherwise\n integrates over all dimensions in :py:attr:`.Data.data`\n\n Returns\n -------\n result : tup\n The result is a tuple with the width in each dimension of Q,\n (h, k, l, e)\n\n ' result = () for key in self.get_keys(hkle): _result = 0 for key_integrate in self.get_keys(hkle): _result += (np.trapz((((self.data[key][self.get_bounds(bounds)] - self.position(bounds, background, hkle=False)[key]) ** 2) * (self.intensity[self.get_bounds(bounds)] - self.estimate_background(background))), self.data[key_integrate][self.get_bounds(bounds)]) / self.integrate(bounds, background)) if fwhm: result += (((np.sqrt(np.squeeze(_result)) * 2.0) * np.sqrt((2.0 * np.log(2.0)))),) else: result += (np.squeeze(_result),) if hkle: return result else: return dict(((key, value) for (key, value) in zip(self.get_keys(hkle), result)))
Returns the mean-squared width of a peak within the given bounds Parameters ---------- bounds : bool, optional A boolean expression representing the bounds inside which the calculation will be performed background : float or dict, optional Default: None fwhm : bool, optional If True, returns width in fwhm, otherwise in mean-squared width. Default: False hkle : bool, optional If True, integrates only over h, k, l, e dimensions, otherwise integrates over all dimensions in :py:attr:`.Data.data` Returns ------- result : tup The result is a tuple with the width in each dimension of Q, (h, k, l, e)
neutronpy/data/analysis.py
width
neutronpy/neutronpy
14
python
def width(self, bounds=None, background=None, fwhm=False, hkle=True): 'Returns the mean-squared width of a peak within the given bounds\n\n Parameters\n ----------\n bounds : bool, optional\n A boolean expression representing the bounds inside which the\n calculation will be performed\n\n background : float or dict, optional\n Default: None\n\n fwhm : bool, optional\n If True, returns width in fwhm, otherwise in mean-squared width.\n Default: False\n\n hkle : bool, optional\n If True, integrates only over h, k, l, e dimensions, otherwise\n integrates over all dimensions in :py:attr:`.Data.data`\n\n Returns\n -------\n result : tup\n The result is a tuple with the width in each dimension of Q,\n (h, k, l, e)\n\n ' result = () for key in self.get_keys(hkle): _result = 0 for key_integrate in self.get_keys(hkle): _result += (np.trapz((((self.data[key][self.get_bounds(bounds)] - self.position(bounds, background, hkle=False)[key]) ** 2) * (self.intensity[self.get_bounds(bounds)] - self.estimate_background(background))), self.data[key_integrate][self.get_bounds(bounds)]) / self.integrate(bounds, background)) if fwhm: result += (((np.sqrt(np.squeeze(_result)) * 2.0) * np.sqrt((2.0 * np.log(2.0)))),) else: result += (np.squeeze(_result),) if hkle: return result else: return dict(((key, value) for (key, value) in zip(self.get_keys(hkle), result)))
def width(self, bounds=None, background=None, fwhm=False, hkle=True): 'Returns the mean-squared width of a peak within the given bounds\n\n Parameters\n ----------\n bounds : bool, optional\n A boolean expression representing the bounds inside which the\n calculation will be performed\n\n background : float or dict, optional\n Default: None\n\n fwhm : bool, optional\n If True, returns width in fwhm, otherwise in mean-squared width.\n Default: False\n\n hkle : bool, optional\n If True, integrates only over h, k, l, e dimensions, otherwise\n integrates over all dimensions in :py:attr:`.Data.data`\n\n Returns\n -------\n result : tup\n The result is a tuple with the width in each dimension of Q,\n (h, k, l, e)\n\n ' result = () for key in self.get_keys(hkle): _result = 0 for key_integrate in self.get_keys(hkle): _result += (np.trapz((((self.data[key][self.get_bounds(bounds)] - self.position(bounds, background, hkle=False)[key]) ** 2) * (self.intensity[self.get_bounds(bounds)] - self.estimate_background(background))), self.data[key_integrate][self.get_bounds(bounds)]) / self.integrate(bounds, background)) if fwhm: result += (((np.sqrt(np.squeeze(_result)) * 2.0) * np.sqrt((2.0 * np.log(2.0)))),) else: result += (np.squeeze(_result),) if hkle: return result else: return dict(((key, value) for (key, value) in zip(self.get_keys(hkle), result)))<|docstring|>Returns the mean-squared width of a peak within the given bounds Parameters ---------- bounds : bool, optional A boolean expression representing the bounds inside which the calculation will be performed background : float or dict, optional Default: None fwhm : bool, optional If True, returns width in fwhm, otherwise in mean-squared width. Default: False hkle : bool, optional If True, integrates only over h, k, l, e dimensions, otherwise integrates over all dimensions in :py:attr:`.Data.data` Returns ------- result : tup The result is a tuple with the width in each dimension of Q, (h, k, l, e)<|endoftext|>
a4a48eefb3031e1b32f906b3409bb8f402b107e3b7ac13800fd786b19822de4a
def scattering_function(self, material, ei): 'Returns the neutron scattering function, i.e. the detector counts\n scaled by :math:`4 \\pi / \\sigma_{\\mathrm{tot}} * k_i/k_f`.\n\n Parameters\n ----------\n material : object\n Definition of the material given by the :py:class:`.Material`\n class\n\n ei : float\n Incident energy in meV\n\n Returns\n -------\n counts : ndarray\n The detector counts scaled by the total scattering cross section\n and ki/kf\n ' ki = Energy(energy=ei).wavevector kf = Energy(energy=(ei - self.e)).wavevector return (((((4 * np.pi) / material.total_scattering_cross_section) * ki) / kf) * self.detector)
Returns the neutron scattering function, i.e. the detector counts scaled by :math:`4 \pi / \sigma_{\mathrm{tot}} * k_i/k_f`. Parameters ---------- material : object Definition of the material given by the :py:class:`.Material` class ei : float Incident energy in meV Returns ------- counts : ndarray The detector counts scaled by the total scattering cross section and ki/kf
neutronpy/data/analysis.py
scattering_function
neutronpy/neutronpy
14
python
def scattering_function(self, material, ei): 'Returns the neutron scattering function, i.e. the detector counts\n scaled by :math:`4 \\pi / \\sigma_{\\mathrm{tot}} * k_i/k_f`.\n\n Parameters\n ----------\n material : object\n Definition of the material given by the :py:class:`.Material`\n class\n\n ei : float\n Incident energy in meV\n\n Returns\n -------\n counts : ndarray\n The detector counts scaled by the total scattering cross section\n and ki/kf\n ' ki = Energy(energy=ei).wavevector kf = Energy(energy=(ei - self.e)).wavevector return (((((4 * np.pi) / material.total_scattering_cross_section) * ki) / kf) * self.detector)
def scattering_function(self, material, ei): 'Returns the neutron scattering function, i.e. the detector counts\n scaled by :math:`4 \\pi / \\sigma_{\\mathrm{tot}} * k_i/k_f`.\n\n Parameters\n ----------\n material : object\n Definition of the material given by the :py:class:`.Material`\n class\n\n ei : float\n Incident energy in meV\n\n Returns\n -------\n counts : ndarray\n The detector counts scaled by the total scattering cross section\n and ki/kf\n ' ki = Energy(energy=ei).wavevector kf = Energy(energy=(ei - self.e)).wavevector return (((((4 * np.pi) / material.total_scattering_cross_section) * ki) / kf) * self.detector)<|docstring|>Returns the neutron scattering function, i.e. the detector counts scaled by :math:`4 \pi / \sigma_{\mathrm{tot}} * k_i/k_f`. Parameters ---------- material : object Definition of the material given by the :py:class:`.Material` class ei : float Incident energy in meV Returns ------- counts : ndarray The detector counts scaled by the total scattering cross section and ki/kf<|endoftext|>
a3bb695cc4cb06531f2dd17a9a188ef52c4d0fe301fa595ebb752d9c312446dc
def dynamic_susceptibility(self, material, ei): 'Returns the dynamic susceptibility\n :math:`\\chi^{\\prime\\prime}(\\mathbf{Q},\\hbar\\omega)`\n\n Parameters\n ----------\n material : object\n Definition of the material given by the :py:class:`.Material`\n class\n\n ei : float\n Incident energy in meV\n\n Returns\n -------\n counts : ndarray\n The detector counts turned into the scattering function multiplied\n by the detailed balance factor\n ' return (self.scattering_function(material, ei) * self.detailed_balance_factor)
Returns the dynamic susceptibility :math:`\chi^{\prime\prime}(\mathbf{Q},\hbar\omega)` Parameters ---------- material : object Definition of the material given by the :py:class:`.Material` class ei : float Incident energy in meV Returns ------- counts : ndarray The detector counts turned into the scattering function multiplied by the detailed balance factor
neutronpy/data/analysis.py
dynamic_susceptibility
neutronpy/neutronpy
14
python
def dynamic_susceptibility(self, material, ei): 'Returns the dynamic susceptibility\n :math:`\\chi^{\\prime\\prime}(\\mathbf{Q},\\hbar\\omega)`\n\n Parameters\n ----------\n material : object\n Definition of the material given by the :py:class:`.Material`\n class\n\n ei : float\n Incident energy in meV\n\n Returns\n -------\n counts : ndarray\n The detector counts turned into the scattering function multiplied\n by the detailed balance factor\n ' return (self.scattering_function(material, ei) * self.detailed_balance_factor)
def dynamic_susceptibility(self, material, ei): 'Returns the dynamic susceptibility\n :math:`\\chi^{\\prime\\prime}(\\mathbf{Q},\\hbar\\omega)`\n\n Parameters\n ----------\n material : object\n Definition of the material given by the :py:class:`.Material`\n class\n\n ei : float\n Incident energy in meV\n\n Returns\n -------\n counts : ndarray\n The detector counts turned into the scattering function multiplied\n by the detailed balance factor\n ' return (self.scattering_function(material, ei) * self.detailed_balance_factor)<|docstring|>Returns the dynamic susceptibility :math:`\chi^{\prime\prime}(\mathbf{Q},\hbar\omega)` Parameters ---------- material : object Definition of the material given by the :py:class:`.Material` class ei : float Incident energy in meV Returns ------- counts : ndarray The detector counts turned into the scattering function multiplied by the detailed balance factor<|endoftext|>
7a63b39b7aeaa1c55894cf98f0b7bd260b1330257c5418588d7a7a9b1372d4a3
def estimate_background(self, bg_params): "Estimate the background according to ``type`` specified.\n\n Parameters\n ----------\n bg_params : dict\n Input dictionary has keys 'type' and 'value'. Types are\n * 'constant' : background is the constant given by 'value'\n * 'percent' : background is estimated by the bottom x%, where x\n is value\n * 'minimum' : background is estimated as the detector counts\n\n Returns\n -------\n background : float or ndarray\n Value determined to be the background. Will return ndarray only if\n `'type'` is `'constant'` and `'value'` is an ndarray\n " if isinstance(bg_params, type(None)): return 0 elif isinstance(bg_params, numbers.Number): return bg_params elif (bg_params['type'] == 'constant'): return bg_params['value'] elif (bg_params['type'] == 'percent'): inten = self.intensity[(self.intensity >= 0.0)] Npts = int((inten.size * (bg_params['value'] / 100.0))) min_vals = inten[np.argsort(inten)[:Npts]] background = np.average(min_vals) return background elif (bg_params['type'] == 'minimum'): return min(self.intensity) else: return 0
Estimate the background according to ``type`` specified. Parameters ---------- bg_params : dict Input dictionary has keys 'type' and 'value'. Types are * 'constant' : background is the constant given by 'value' * 'percent' : background is estimated by the bottom x%, where x is value * 'minimum' : background is estimated as the detector counts Returns ------- background : float or ndarray Value determined to be the background. Will return ndarray only if `'type'` is `'constant'` and `'value'` is an ndarray
neutronpy/data/analysis.py
estimate_background
neutronpy/neutronpy
14
python
def estimate_background(self, bg_params): "Estimate the background according to ``type`` specified.\n\n Parameters\n ----------\n bg_params : dict\n Input dictionary has keys 'type' and 'value'. Types are\n * 'constant' : background is the constant given by 'value'\n * 'percent' : background is estimated by the bottom x%, where x\n is value\n * 'minimum' : background is estimated as the detector counts\n\n Returns\n -------\n background : float or ndarray\n Value determined to be the background. Will return ndarray only if\n `'type'` is `'constant'` and `'value'` is an ndarray\n " if isinstance(bg_params, type(None)): return 0 elif isinstance(bg_params, numbers.Number): return bg_params elif (bg_params['type'] == 'constant'): return bg_params['value'] elif (bg_params['type'] == 'percent'): inten = self.intensity[(self.intensity >= 0.0)] Npts = int((inten.size * (bg_params['value'] / 100.0))) min_vals = inten[np.argsort(inten)[:Npts]] background = np.average(min_vals) return background elif (bg_params['type'] == 'minimum'): return min(self.intensity) else: return 0
def estimate_background(self, bg_params): "Estimate the background according to ``type`` specified.\n\n Parameters\n ----------\n bg_params : dict\n Input dictionary has keys 'type' and 'value'. Types are\n * 'constant' : background is the constant given by 'value'\n * 'percent' : background is estimated by the bottom x%, where x\n is value\n * 'minimum' : background is estimated as the detector counts\n\n Returns\n -------\n background : float or ndarray\n Value determined to be the background. Will return ndarray only if\n `'type'` is `'constant'` and `'value'` is an ndarray\n " if isinstance(bg_params, type(None)): return 0 elif isinstance(bg_params, numbers.Number): return bg_params elif (bg_params['type'] == 'constant'): return bg_params['value'] elif (bg_params['type'] == 'percent'): inten = self.intensity[(self.intensity >= 0.0)] Npts = int((inten.size * (bg_params['value'] / 100.0))) min_vals = inten[np.argsort(inten)[:Npts]] background = np.average(min_vals) return background elif (bg_params['type'] == 'minimum'): return min(self.intensity) else: return 0<|docstring|>Estimate the background according to ``type`` specified. Parameters ---------- bg_params : dict Input dictionary has keys 'type' and 'value'. Types are * 'constant' : background is the constant given by 'value' * 'percent' : background is estimated by the bottom x%, where x is value * 'minimum' : background is estimated as the detector counts Returns ------- background : float or ndarray Value determined to be the background. Will return ndarray only if `'type'` is `'constant'` and `'value'` is an ndarray<|endoftext|>
530dfc779b72717ad9d7329cd9f91c5a2cc24c5ab611fa01ce177d8d49b17f39
def get_bounds(self, bounds): 'Generates a to_fit tuple if bounds is present in kwargs\n\n Parameters\n ----------\n bounds : dict\n\n Returns\n -------\n to_fit : tuple\n Tuple of indices\n\n ' if (bounds is not None): return np.where(bounds) else: return np.where(self.Q[(:, 0)])
Generates a to_fit tuple if bounds is present in kwargs Parameters ---------- bounds : dict Returns ------- to_fit : tuple Tuple of indices
neutronpy/data/analysis.py
get_bounds
neutronpy/neutronpy
14
python
def get_bounds(self, bounds): 'Generates a to_fit tuple if bounds is present in kwargs\n\n Parameters\n ----------\n bounds : dict\n\n Returns\n -------\n to_fit : tuple\n Tuple of indices\n\n ' if (bounds is not None): return np.where(bounds) else: return np.where(self.Q[(:, 0)])
def get_bounds(self, bounds): 'Generates a to_fit tuple if bounds is present in kwargs\n\n Parameters\n ----------\n bounds : dict\n\n Returns\n -------\n to_fit : tuple\n Tuple of indices\n\n ' if (bounds is not None): return np.where(bounds) else: return np.where(self.Q[(:, 0)])<|docstring|>Generates a to_fit tuple if bounds is present in kwargs Parameters ---------- bounds : dict Returns ------- to_fit : tuple Tuple of indices<|endoftext|>
80086f05e86ac7c546f2700f708132dfd95125d6e22c387f7c78764f9a56f3c5
def get_keys(self, hkle): 'Returns all of the Dictionary key names\n\n Parameters\n ----------\n hkle : bool\n If True only returns keys for h,k,l,e, otherwise returns all keys\n\n Returns\n -------\n keys : list\n :py:attr:`.Data.data` dictionary keys\n\n ' if hkle: return [key for key in self.data if (key in self.Q_keys.values())] else: return [key for key in self.data if (key not in self.data_keys.values())]
Returns all of the Dictionary key names Parameters ---------- hkle : bool If True only returns keys for h,k,l,e, otherwise returns all keys Returns ------- keys : list :py:attr:`.Data.data` dictionary keys
neutronpy/data/analysis.py
get_keys
neutronpy/neutronpy
14
python
def get_keys(self, hkle): 'Returns all of the Dictionary key names\n\n Parameters\n ----------\n hkle : bool\n If True only returns keys for h,k,l,e, otherwise returns all keys\n\n Returns\n -------\n keys : list\n :py:attr:`.Data.data` dictionary keys\n\n ' if hkle: return [key for key in self.data if (key in self.Q_keys.values())] else: return [key for key in self.data if (key not in self.data_keys.values())]
def get_keys(self, hkle): 'Returns all of the Dictionary key names\n\n Parameters\n ----------\n hkle : bool\n If True only returns keys for h,k,l,e, otherwise returns all keys\n\n Returns\n -------\n keys : list\n :py:attr:`.Data.data` dictionary keys\n\n ' if hkle: return [key for key in self.data if (key in self.Q_keys.values())] else: return [key for key in self.data if (key not in self.data_keys.values())]<|docstring|>Returns all of the Dictionary key names Parameters ---------- hkle : bool If True only returns keys for h,k,l,e, otherwise returns all keys Returns ------- keys : list :py:attr:`.Data.data` dictionary keys<|endoftext|>
1c91d615351ece963da9b9e9af70c2f5458b52e22898cb7087f0a70f0d5ecc7b
def get_service(self): 'Get the service name from the config file' prop = '{env}.service'.format(env=self.env) env_service_declaration = get(self.deploy_json, prop, False) return env_service_declaration
Get the service name from the config file
airmail/services/deploy_file.py
get_service
nymag/leviosa
0
python
def get_service(self): prop = '{env}.service'.format(env=self.env) env_service_declaration = get(self.deploy_json, prop, False) return env_service_declaration
def get_service(self): prop = '{env}.service'.format(env=self.env) env_service_declaration = get(self.deploy_json, prop, False) return env_service_declaration<|docstring|>Get the service name from the config file<|endoftext|>
e6e2120e5d43f756f83bd9eb6ef0e0c61ecdc2e53544b49808406583d437524f
def get_with_prefix(self, prop, delim='-'): 'Retrieve a value with <ORG>-<ENV>- prefix. Can pass in custom delimiter ' if (prop not in self.deploy_json): return None top_level = self.get_top_level_prop(prop) value = (top_level if (top_level != None) else self.get_prop(prop)) return ((((self.get_org() + delim) + self.env) + delim) + value)
Retrieve a value with <ORG>-<ENV>- prefix. Can pass in custom delimiter
airmail/services/deploy_file.py
get_with_prefix
nymag/leviosa
0
python
def get_with_prefix(self, prop, delim='-'): ' ' if (prop not in self.deploy_json): return None top_level = self.get_top_level_prop(prop) value = (top_level if (top_level != None) else self.get_prop(prop)) return ((((self.get_org() + delim) + self.env) + delim) + value)
def get_with_prefix(self, prop, delim='-'): ' ' if (prop not in self.deploy_json): return None top_level = self.get_top_level_prop(prop) value = (top_level if (top_level != None) else self.get_prop(prop)) return ((((self.get_org() + delim) + self.env) + delim) + value)<|docstring|>Retrieve a value with <ORG>-<ENV>- prefix. Can pass in custom delimiter<|endoftext|>
abfea78b8fb06f055fd23695117cc073b64ab2ddaf8af01e5036fb5e3ea4596a
def inject_cluster_and_family(self): 'Assign the cluster and family for the service/task using the `name` and `cluster` fields if set' cluster_val = self.get_with_prefix('cluster') family_val = self.get_with_prefix('name') if (cluster_val is None): cluster_val = self.get_with_prefix('name') set_(self.deploy_json, '.cluster', cluster_val) set_(self.deploy_json, '.family', family_val)
Assign the cluster and family for the service/task using the `name` and `cluster` fields if set
airmail/services/deploy_file.py
inject_cluster_and_family
nymag/leviosa
0
python
def inject_cluster_and_family(self): cluster_val = self.get_with_prefix('cluster') family_val = self.get_with_prefix('name') if (cluster_val is None): cluster_val = self.get_with_prefix('name') set_(self.deploy_json, '.cluster', cluster_val) set_(self.deploy_json, '.family', family_val)
def inject_cluster_and_family(self): cluster_val = self.get_with_prefix('cluster') family_val = self.get_with_prefix('name') if (cluster_val is None): cluster_val = self.get_with_prefix('name') set_(self.deploy_json, '.cluster', cluster_val) set_(self.deploy_json, '.family', family_val)<|docstring|>Assign the cluster and family for the service/task using the `name` and `cluster` fields if set<|endoftext|>
44c859bd58ddfbff6dca51039fbf932730feff1e582ff026a247891e1842dae6
def get_top_level_prop(self, prop, default=None): "Retrieve a property's value from the top level of the config" return get(self.deploy_json, prop, default)
Retrieve a property's value from the top level of the config
airmail/services/deploy_file.py
get_top_level_prop
nymag/leviosa
0
python
def get_top_level_prop(self, prop, default=None): return get(self.deploy_json, prop, default)
def get_top_level_prop(self, prop, default=None): return get(self.deploy_json, prop, default)<|docstring|>Retrieve a property's value from the top level of the config<|endoftext|>
245f2972e199b629268973729f0378ec8d9fe6416f5c8c90da6986893eb7973e
def get_prop(self, prop, default=None): "Get a property's value that is nested in the env object" prop = ((self.env + '.') + prop) return get(self.deploy_json, prop, default)
Get a property's value that is nested in the env object
airmail/services/deploy_file.py
get_prop
nymag/leviosa
0
python
def get_prop(self, prop, default=None): prop = ((self.env + '.') + prop) return get(self.deploy_json, prop, default)
def get_prop(self, prop, default=None): prop = ((self.env + '.') + prop) return get(self.deploy_json, prop, default)<|docstring|>Get a property's value that is nested in the env object<|endoftext|>
d6137f47c3b0f16821f3791ed1cb3b30ddf8984fec8546b1ea49c67f406da05a
def __init__(self, notes=None): 'PageOfNotesAllOf - a model defined in OpenAPI\n\n :param notes: The notes of this PageOfNotesAllOf. # noqa: E501\n :type notes: List[Note]\n ' self.openapi_types = {'notes': List[Note]} self.attribute_map = {'notes': 'notes'} self._notes = notes
PageOfNotesAllOf - a model defined in OpenAPI :param notes: The notes of this PageOfNotesAllOf. # noqa: E501 :type notes: List[Note]
server/openapi_server/models/page_of_notes_all_of.py
__init__
data2health/2014-i2b2-deid-db
3
python
def __init__(self, notes=None): 'PageOfNotesAllOf - a model defined in OpenAPI\n\n :param notes: The notes of this PageOfNotesAllOf. # noqa: E501\n :type notes: List[Note]\n ' self.openapi_types = {'notes': List[Note]} self.attribute_map = {'notes': 'notes'} self._notes = notes
def __init__(self, notes=None): 'PageOfNotesAllOf - a model defined in OpenAPI\n\n :param notes: The notes of this PageOfNotesAllOf. # noqa: E501\n :type notes: List[Note]\n ' self.openapi_types = {'notes': List[Note]} self.attribute_map = {'notes': 'notes'} self._notes = notes<|docstring|>PageOfNotesAllOf - a model defined in OpenAPI :param notes: The notes of this PageOfNotesAllOf. # noqa: E501 :type notes: List[Note]<|endoftext|>
bc9bcc1140a63419fee05af19335a7d50ece3da57e1ebbe9a998d5d92fee376f
@classmethod def from_dict(cls, dikt) -> 'PageOfNotesAllOf': 'Returns the dict as a model\n\n :param dikt: A dict.\n :type: dict\n :return: The PageOfNotes_allOf of this PageOfNotesAllOf. # noqa: E501\n :rtype: PageOfNotesAllOf\n ' return util.deserialize_model(dikt, cls)
Returns the dict as a model :param dikt: A dict. :type: dict :return: The PageOfNotes_allOf of this PageOfNotesAllOf. # noqa: E501 :rtype: PageOfNotesAllOf
server/openapi_server/models/page_of_notes_all_of.py
from_dict
data2health/2014-i2b2-deid-db
3
python
@classmethod def from_dict(cls, dikt) -> 'PageOfNotesAllOf': 'Returns the dict as a model\n\n :param dikt: A dict.\n :type: dict\n :return: The PageOfNotes_allOf of this PageOfNotesAllOf. # noqa: E501\n :rtype: PageOfNotesAllOf\n ' return util.deserialize_model(dikt, cls)
@classmethod def from_dict(cls, dikt) -> 'PageOfNotesAllOf': 'Returns the dict as a model\n\n :param dikt: A dict.\n :type: dict\n :return: The PageOfNotes_allOf of this PageOfNotesAllOf. # noqa: E501\n :rtype: PageOfNotesAllOf\n ' return util.deserialize_model(dikt, cls)<|docstring|>Returns the dict as a model :param dikt: A dict. :type: dict :return: The PageOfNotes_allOf of this PageOfNotesAllOf. # noqa: E501 :rtype: PageOfNotesAllOf<|endoftext|>
bbeeb5283724f5840f7222f96ef2585311053b2fdd9b5fd846d9a3be845ece15
@property def notes(self): 'Gets the notes of this PageOfNotesAllOf.\n\n An array of notes # noqa: E501\n\n :return: The notes of this PageOfNotesAllOf.\n :rtype: List[Note]\n ' return self._notes
Gets the notes of this PageOfNotesAllOf. An array of notes # noqa: E501 :return: The notes of this PageOfNotesAllOf. :rtype: List[Note]
server/openapi_server/models/page_of_notes_all_of.py
notes
data2health/2014-i2b2-deid-db
3
python
@property def notes(self): 'Gets the notes of this PageOfNotesAllOf.\n\n An array of notes # noqa: E501\n\n :return: The notes of this PageOfNotesAllOf.\n :rtype: List[Note]\n ' return self._notes
@property def notes(self): 'Gets the notes of this PageOfNotesAllOf.\n\n An array of notes # noqa: E501\n\n :return: The notes of this PageOfNotesAllOf.\n :rtype: List[Note]\n ' return self._notes<|docstring|>Gets the notes of this PageOfNotesAllOf. An array of notes # noqa: E501 :return: The notes of this PageOfNotesAllOf. :rtype: List[Note]<|endoftext|>
047e0aad3ff271a325db2632c0d0dd1462f67ba713f57cd7e2dcb5b049956813
@notes.setter def notes(self, notes): 'Sets the notes of this PageOfNotesAllOf.\n\n An array of notes # noqa: E501\n\n :param notes: The notes of this PageOfNotesAllOf.\n :type notes: List[Note]\n ' self._notes = notes
Sets the notes of this PageOfNotesAllOf. An array of notes # noqa: E501 :param notes: The notes of this PageOfNotesAllOf. :type notes: List[Note]
server/openapi_server/models/page_of_notes_all_of.py
notes
data2health/2014-i2b2-deid-db
3
python
@notes.setter def notes(self, notes): 'Sets the notes of this PageOfNotesAllOf.\n\n An array of notes # noqa: E501\n\n :param notes: The notes of this PageOfNotesAllOf.\n :type notes: List[Note]\n ' self._notes = notes
@notes.setter def notes(self, notes): 'Sets the notes of this PageOfNotesAllOf.\n\n An array of notes # noqa: E501\n\n :param notes: The notes of this PageOfNotesAllOf.\n :type notes: List[Note]\n ' self._notes = notes<|docstring|>Sets the notes of this PageOfNotesAllOf. An array of notes # noqa: E501 :param notes: The notes of this PageOfNotesAllOf. :type notes: List[Note]<|endoftext|>
9a9d54f664335d4d4cbadbdb3461ba2a21711c7415b234186700c41d0c12f7c6
def __init__(self, label_folder, image_folder_override=None): ' TODO: docstring' if (not Path(label_folder).is_dir()): raise ValueError('Label folder {} not a valid directory'.format(label_folder)) if (image_folder_override is not None): if (not Path(image_folder_override).is_dir()): raise ValueError('Image folder {} not a valid directory'.format(image_folder_override)) self._image_folder_override = image_folder_override self._label_folder = label_folder self._dataframe = pd.DataFrame() self._class_ids = dict()
TODO: docstring
modules/pascalvoc.py
__init__
dkloving/object-annotation-convert
0
python
def __init__(self, label_folder, image_folder_override=None): ' ' if (not Path(label_folder).is_dir()): raise ValueError('Label folder {} not a valid directory'.format(label_folder)) if (image_folder_override is not None): if (not Path(image_folder_override).is_dir()): raise ValueError('Image folder {} not a valid directory'.format(image_folder_override)) self._image_folder_override = image_folder_override self._label_folder = label_folder self._dataframe = pd.DataFrame() self._class_ids = dict()
def __init__(self, label_folder, image_folder_override=None): ' ' if (not Path(label_folder).is_dir()): raise ValueError('Label folder {} not a valid directory'.format(label_folder)) if (image_folder_override is not None): if (not Path(image_folder_override).is_dir()): raise ValueError('Image folder {} not a valid directory'.format(image_folder_override)) self._image_folder_override = image_folder_override self._label_folder = label_folder self._dataframe = pd.DataFrame() self._class_ids = dict()<|docstring|>TODO: docstring<|endoftext|>
ab402e4172f681c82b7b6acb77c423bccf9d7f7d17523abaf749cb2ce1f69812
def fit(self, deep_validate_images=False): 'TODO: docstring' if deep_validate_images: warn('Deep validation of images can be very slow on large datasets.') label_files = Path(self._label_folder).glob('*.xml') objects_df = pd.DataFrame() for label_file in label_files: file = label_file.read_text() xml = etree.fromstring(file) new_df = self.__xml_to_dataframe(xml, deep_validate_images) objects_df = pd.concat([objects_df, new_df]) self._dataframe = objects_df return self
TODO: docstring
modules/pascalvoc.py
fit
dkloving/object-annotation-convert
0
python
def fit(self, deep_validate_images=False): if deep_validate_images: warn('Deep validation of images can be very slow on large datasets.') label_files = Path(self._label_folder).glob('*.xml') objects_df = pd.DataFrame() for label_file in label_files: file = label_file.read_text() xml = etree.fromstring(file) new_df = self.__xml_to_dataframe(xml, deep_validate_images) objects_df = pd.concat([objects_df, new_df]) self._dataframe = objects_df return self
def fit(self, deep_validate_images=False): if deep_validate_images: warn('Deep validation of images can be very slow on large datasets.') label_files = Path(self._label_folder).glob('*.xml') objects_df = pd.DataFrame() for label_file in label_files: file = label_file.read_text() xml = etree.fromstring(file) new_df = self.__xml_to_dataframe(xml, deep_validate_images) objects_df = pd.concat([objects_df, new_df]) self._dataframe = objects_df return self<|docstring|>TODO: docstring<|endoftext|>
1090af748d450cfa4c999d04c0c237b23d2da60814bc7fafc0b4206b6c0e8d0b
def __xml_to_dataframe(self, xml, deep_validate_images): ' TODO: docstring' if (self._image_folder_override is None): image_id = str(Path(xml.find('path').text)) else: image_id = str(Path(self._image_folder_override).joinpath(Path(xml.find('filename').text))) image_width = xml.find('size').find('width').text image_height = xml.find('size').find('height').text image_depth = xml.find('size').find('depth').text image_valid = validate_image(image_id, deep_validate_images, image_width, image_height, image_depth) objects = [] for item in xml: if (item.tag == 'object'): class_name = item.find('name').text if (class_name not in self._class_ids): self._class_ids[class_name] = len(self._class_ids) class_id = self._class_ids[class_name] objects.append({'class_name': class_name, 'class_id': class_id, 'x_min': item.find('bndbox').find('xmin').text, 'x_max': item.find('bndbox').find('xmax').text, 'y_min': item.find('bndbox').find('ymin').text, 'y_max': item.find('bndbox').find('ymax').text}) objects = pd.DataFrame(objects) for item in ['image_id', 'image_width', 'image_height', 'image_depth', 'image_valid']: objects[item] = eval(item) return objects
TODO: docstring
modules/pascalvoc.py
__xml_to_dataframe
dkloving/object-annotation-convert
0
python
def __xml_to_dataframe(self, xml, deep_validate_images): ' ' if (self._image_folder_override is None): image_id = str(Path(xml.find('path').text)) else: image_id = str(Path(self._image_folder_override).joinpath(Path(xml.find('filename').text))) image_width = xml.find('size').find('width').text image_height = xml.find('size').find('height').text image_depth = xml.find('size').find('depth').text image_valid = validate_image(image_id, deep_validate_images, image_width, image_height, image_depth) objects = [] for item in xml: if (item.tag == 'object'): class_name = item.find('name').text if (class_name not in self._class_ids): self._class_ids[class_name] = len(self._class_ids) class_id = self._class_ids[class_name] objects.append({'class_name': class_name, 'class_id': class_id, 'x_min': item.find('bndbox').find('xmin').text, 'x_max': item.find('bndbox').find('xmax').text, 'y_min': item.find('bndbox').find('ymin').text, 'y_max': item.find('bndbox').find('ymax').text}) objects = pd.DataFrame(objects) for item in ['image_id', 'image_width', 'image_height', 'image_depth', 'image_valid']: objects[item] = eval(item) return objects
def __xml_to_dataframe(self, xml, deep_validate_images): ' ' if (self._image_folder_override is None): image_id = str(Path(xml.find('path').text)) else: image_id = str(Path(self._image_folder_override).joinpath(Path(xml.find('filename').text))) image_width = xml.find('size').find('width').text image_height = xml.find('size').find('height').text image_depth = xml.find('size').find('depth').text image_valid = validate_image(image_id, deep_validate_images, image_width, image_height, image_depth) objects = [] for item in xml: if (item.tag == 'object'): class_name = item.find('name').text if (class_name not in self._class_ids): self._class_ids[class_name] = len(self._class_ids) class_id = self._class_ids[class_name] objects.append({'class_name': class_name, 'class_id': class_id, 'x_min': item.find('bndbox').find('xmin').text, 'x_max': item.find('bndbox').find('xmax').text, 'y_min': item.find('bndbox').find('ymin').text, 'y_max': item.find('bndbox').find('ymax').text}) objects = pd.DataFrame(objects) for item in ['image_id', 'image_width', 'image_height', 'image_depth', 'image_valid']: objects[item] = eval(item) return objects<|docstring|>TODO: docstring<|endoftext|>
a8717cd1eb4899a0b06ec6d7591467e8aeb8a8ca6ffbeb9144e8619a3923291d
def _Install(vm): 'Installs the node.js package on the VM.' vm.Install('build_tools') vm.RemoteCommand('git clone {0} {1}'.format(GIT_REPO, NODE_DIR)) vm.RemoteCommand('cd {0} && git checkout {1}'.format(NODE_DIR, GIT_TAG)) vm.RemoteCommand('cd {0} && ./configure --prefix=/usr'.format(NODE_DIR)) vm.RemoteCommand('cd {0} && make && sudo make install'.format(NODE_DIR))
Installs the node.js package on the VM.
perfkitbenchmarker/linux_packages/node_js.py
_Install
kwinstonix/PerfKitBenchmarker
3
python
def _Install(vm): vm.Install('build_tools') vm.RemoteCommand('git clone {0} {1}'.format(GIT_REPO, NODE_DIR)) vm.RemoteCommand('cd {0} && git checkout {1}'.format(NODE_DIR, GIT_TAG)) vm.RemoteCommand('cd {0} && ./configure --prefix=/usr'.format(NODE_DIR)) vm.RemoteCommand('cd {0} && make && sudo make install'.format(NODE_DIR))
def _Install(vm): vm.Install('build_tools') vm.RemoteCommand('git clone {0} {1}'.format(GIT_REPO, NODE_DIR)) vm.RemoteCommand('cd {0} && git checkout {1}'.format(NODE_DIR, GIT_TAG)) vm.RemoteCommand('cd {0} && ./configure --prefix=/usr'.format(NODE_DIR)) vm.RemoteCommand('cd {0} && make && sudo make install'.format(NODE_DIR))<|docstring|>Installs the node.js package on the VM.<|endoftext|>
067a6e082b366fb986dd6892fb22dac253ee71a16d2fa533acd10607632018ac
def YumInstall(vm): 'Installs the node.js package on the VM.' _Install(vm)
Installs the node.js package on the VM.
perfkitbenchmarker/linux_packages/node_js.py
YumInstall
kwinstonix/PerfKitBenchmarker
3
python
def YumInstall(vm): _Install(vm)
def YumInstall(vm): _Install(vm)<|docstring|>Installs the node.js package on the VM.<|endoftext|>
aa4a5e14f25b15cebef4ec04a19977caec8bb207be4ceee4c1dd75d39bb525b3
def AptInstall(vm): 'Installs the node.js package on the VM.' _Install(vm)
Installs the node.js package on the VM.
perfkitbenchmarker/linux_packages/node_js.py
AptInstall
kwinstonix/PerfKitBenchmarker
3
python
def AptInstall(vm): _Install(vm)
def AptInstall(vm): _Install(vm)<|docstring|>Installs the node.js package on the VM.<|endoftext|>
ca0c3d94f42cd84cda0601ce6c30e576236135b62824666a023c98fa2653236f
def _Uninstall(vm): 'Uninstalls the node.js package on the VM.' vm.RemoteCommand('cd {0} && sudo make uninstall'.format(NODE_DIR))
Uninstalls the node.js package on the VM.
perfkitbenchmarker/linux_packages/node_js.py
_Uninstall
kwinstonix/PerfKitBenchmarker
3
python
def _Uninstall(vm): vm.RemoteCommand('cd {0} && sudo make uninstall'.format(NODE_DIR))
def _Uninstall(vm): vm.RemoteCommand('cd {0} && sudo make uninstall'.format(NODE_DIR))<|docstring|>Uninstalls the node.js package on the VM.<|endoftext|>
fcd0e8a78d9e42474a729dfe29bc0fd60ce4a4771b44a14b45bbb9d5e966bebb
def YumUninstall(vm): 'Uninstalls the node.js package on the VM.' _Uninstall(vm)
Uninstalls the node.js package on the VM.
perfkitbenchmarker/linux_packages/node_js.py
YumUninstall
kwinstonix/PerfKitBenchmarker
3
python
def YumUninstall(vm): _Uninstall(vm)
def YumUninstall(vm): _Uninstall(vm)<|docstring|>Uninstalls the node.js package on the VM.<|endoftext|>
4892b14e10f2a28798ed248985a6ca39224e963b305d8f5d70c21804bbdc8194
def AptUninstall(vm): 'Uninstalls the node.js package on the VM.' _Uninstall(vm)
Uninstalls the node.js package on the VM.
perfkitbenchmarker/linux_packages/node_js.py
AptUninstall
kwinstonix/PerfKitBenchmarker
3
python
def AptUninstall(vm): _Uninstall(vm)
def AptUninstall(vm): _Uninstall(vm)<|docstring|>Uninstalls the node.js package on the VM.<|endoftext|>
6fc20aafa811e854bca2795cee57b67e76ca0bf3fd8276797fb5884fa1d8b9dc
def __init__(self, xknx, group_address=None, device_name=None, after_update_cb=None): 'Initialize remote value of KNX DPT 17.001 (DPT_Scene_Number).' super().__init__(xknx, group_address, None, device_name=device_name, after_update_cb=after_update_cb)
Initialize remote value of KNX DPT 17.001 (DPT_Scene_Number).
xknx/remote_value/remote_value_scene_number.py
__init__
FredericMa/xknx
1
python
def __init__(self, xknx, group_address=None, device_name=None, after_update_cb=None): super().__init__(xknx, group_address, None, device_name=device_name, after_update_cb=after_update_cb)
def __init__(self, xknx, group_address=None, device_name=None, after_update_cb=None): super().__init__(xknx, group_address, None, device_name=device_name, after_update_cb=after_update_cb)<|docstring|>Initialize remote value of KNX DPT 17.001 (DPT_Scene_Number).<|endoftext|>
7366615a5a49e1b54d4fe13f7b6e6ce5736e88ee5b93a8c80313678373b5faf9
def payload_valid(self, payload): 'Test if telegram payload may be parsed.' return (isinstance(payload, DPTArray) and (len(payload.value) == 1))
Test if telegram payload may be parsed.
xknx/remote_value/remote_value_scene_number.py
payload_valid
FredericMa/xknx
1
python
def payload_valid(self, payload): return (isinstance(payload, DPTArray) and (len(payload.value) == 1))
def payload_valid(self, payload): return (isinstance(payload, DPTArray) and (len(payload.value) == 1))<|docstring|>Test if telegram payload may be parsed.<|endoftext|>
1847407c9c2dfc1d4d0c3b1553c3e25691cb98f3a59bb1907f093b1f3ff32a47
def to_knx(self, value): 'Convert value to payload.' return DPTArray(DPTSceneNumber.to_knx(value))
Convert value to payload.
xknx/remote_value/remote_value_scene_number.py
to_knx
FredericMa/xknx
1
python
def to_knx(self, value): return DPTArray(DPTSceneNumber.to_knx(value))
def to_knx(self, value): return DPTArray(DPTSceneNumber.to_knx(value))<|docstring|>Convert value to payload.<|endoftext|>
462f9b44d0c20d2c8d3904b357d94451be5abd6977a968288cf93837c7d6a466
def from_knx(self, payload): 'Convert current payload to value.' return DPTSceneNumber.from_knx(payload.value)
Convert current payload to value.
xknx/remote_value/remote_value_scene_number.py
from_knx
FredericMa/xknx
1
python
def from_knx(self, payload): return DPTSceneNumber.from_knx(payload.value)
def from_knx(self, payload): return DPTSceneNumber.from_knx(payload.value)<|docstring|>Convert current payload to value.<|endoftext|>
c5f7b873f7c02867db2dae34cf1ebe8bc5a39f0f64e69cacab9034bba46c5e25
@command('show', short_help='Display a Timer job') @click.argument('JOB_ID') @LoginManager.requires_login(LoginManager.TIMER_RS) def show_command(login_manager: LoginManager, job_id: str): '\n Display information about a particular job.\n ' timer_client = login_manager.get_timer_client() response = timer_client.get_job(job_id) formatted_print(response, text_format=FORMAT_TEXT_RECORD, fields=JOB_FORMAT_FIELDS)
Display information about a particular job.
src/globus_cli/commands/timer/show.py
show_command
globusonline/globus-cli
0
python
@command('show', short_help='Display a Timer job') @click.argument('JOB_ID') @LoginManager.requires_login(LoginManager.TIMER_RS) def show_command(login_manager: LoginManager, job_id: str): '\n \n ' timer_client = login_manager.get_timer_client() response = timer_client.get_job(job_id) formatted_print(response, text_format=FORMAT_TEXT_RECORD, fields=JOB_FORMAT_FIELDS)
@command('show', short_help='Display a Timer job') @click.argument('JOB_ID') @LoginManager.requires_login(LoginManager.TIMER_RS) def show_command(login_manager: LoginManager, job_id: str): '\n \n ' timer_client = login_manager.get_timer_client() response = timer_client.get_job(job_id) formatted_print(response, text_format=FORMAT_TEXT_RECORD, fields=JOB_FORMAT_FIELDS)<|docstring|>Display information about a particular job.<|endoftext|>
1c032bd95c739a72eab42a58fad01c83a9308f8d7bbe290a4964c6b610d0fac5
def make_mock_confirmation_notification(self, successes, **contact_info): 'contact_info and successes\n ' notification = Mock() notification.contact_info = contact_info notification.successes = successes return notification
contact_info and successes
intake/tests/services/test_submissions.py
make_mock_confirmation_notification
dane-king/intake
51
python
def make_mock_confirmation_notification(self, successes, **contact_info): '\n ' notification = Mock() notification.contact_info = contact_info notification.successes = successes return notification
def make_mock_confirmation_notification(self, successes, **contact_info): '\n ' notification = Mock() notification.contact_info = contact_info notification.successes = successes return notification<|docstring|>contact_info and successes<|endoftext|>
b6f848031cbf40d138413632b03d115f199fe4397873d35dcc1b3bb3e6dc2060
async def fetch_self(self) -> entity.ObjectiveEntity: 'Perform an HTTP request fetching this objective entity definition.\n\n Returns\n -------\n `aiobungie.crate.ObjectiveEntity`\n An objective entity definition.\n ' return (await self.net.request.fetch_objective_entity(self.hash))
Perform an HTTP request fetching this objective entity definition. Returns ------- `aiobungie.crate.ObjectiveEntity` An objective entity definition.
aiobungie/crate/records.py
fetch_self
nxtlo/aiobungie
36
python
async def fetch_self(self) -> entity.ObjectiveEntity: 'Perform an HTTP request fetching this objective entity definition.\n\n Returns\n -------\n `aiobungie.crate.ObjectiveEntity`\n An objective entity definition.\n ' return (await self.net.request.fetch_objective_entity(self.hash))
async def fetch_self(self) -> entity.ObjectiveEntity: 'Perform an HTTP request fetching this objective entity definition.\n\n Returns\n -------\n `aiobungie.crate.ObjectiveEntity`\n An objective entity definition.\n ' return (await self.net.request.fetch_objective_entity(self.hash))<|docstring|>Perform an HTTP request fetching this objective entity definition. Returns ------- `aiobungie.crate.ObjectiveEntity` An objective entity definition.<|endoftext|>
e77fe5fffebe0228266df778062ef7dbd81c0ba4e83154aede0370821194bd40
def messages_from_raw(r): 'Extract data messages from raw recorded SignalR data.\n\n This function can be used to extract message data from raw SignalR data\n which was saved using :class:`SignalRClient` in debug mode.\n\n Args:\n r (iterable) : Iterable containing raw SignalR responses.\n ' ret = list() errorcount = 0 for data in r: data = data.replace("'", '"').replace('True', 'true').replace('False', 'false') try: data = json.loads(data) except json.JSONDecodeError: errorcount += 1 continue messages = (data['M'] if (('M' in data) and (len(data['M']) > 0)) else {}) for inner_data in messages: hub = (inner_data['H'] if ('H' in inner_data) else '') if (hub.lower() == 'streaming'): message = inner_data['A'] ret.append(message) return (ret, errorcount)
Extract data messages from raw recorded SignalR data. This function can be used to extract message data from raw SignalR data which was saved using :class:`SignalRClient` in debug mode. Args: r (iterable) : Iterable containing raw SignalR responses.
fastf1/livetiming/client.py
messages_from_raw
althype/Fast-F1
690
python
def messages_from_raw(r): 'Extract data messages from raw recorded SignalR data.\n\n This function can be used to extract message data from raw SignalR data\n which was saved using :class:`SignalRClient` in debug mode.\n\n Args:\n r (iterable) : Iterable containing raw SignalR responses.\n ' ret = list() errorcount = 0 for data in r: data = data.replace("'", '"').replace('True', 'true').replace('False', 'false') try: data = json.loads(data) except json.JSONDecodeError: errorcount += 1 continue messages = (data['M'] if (('M' in data) and (len(data['M']) > 0)) else {}) for inner_data in messages: hub = (inner_data['H'] if ('H' in inner_data) else ) if (hub.lower() == 'streaming'): message = inner_data['A'] ret.append(message) return (ret, errorcount)
def messages_from_raw(r): 'Extract data messages from raw recorded SignalR data.\n\n This function can be used to extract message data from raw SignalR data\n which was saved using :class:`SignalRClient` in debug mode.\n\n Args:\n r (iterable) : Iterable containing raw SignalR responses.\n ' ret = list() errorcount = 0 for data in r: data = data.replace("'", '"').replace('True', 'true').replace('False', 'false') try: data = json.loads(data) except json.JSONDecodeError: errorcount += 1 continue messages = (data['M'] if (('M' in data) and (len(data['M']) > 0)) else {}) for inner_data in messages: hub = (inner_data['H'] if ('H' in inner_data) else ) if (hub.lower() == 'streaming'): message = inner_data['A'] ret.append(message) return (ret, errorcount)<|docstring|>Extract data messages from raw recorded SignalR data. This function can be used to extract message data from raw SignalR data which was saved using :class:`SignalRClient` in debug mode. Args: r (iterable) : Iterable containing raw SignalR responses.<|endoftext|>
1926e9a433013c47f3937e5a9a4033c3d62d552437c8541b439694fddeb90776
def start(self): 'Connect to the data stream and start writing the data to a file.' try: asyncio.run(self._async_start()) except KeyboardInterrupt: self.logger.warning('Keyboard interrupt - exiting...') return
Connect to the data stream and start writing the data to a file.
fastf1/livetiming/client.py
start
althype/Fast-F1
690
python
def start(self): try: asyncio.run(self._async_start()) except KeyboardInterrupt: self.logger.warning('Keyboard interrupt - exiting...') return
def start(self): try: asyncio.run(self._async_start()) except KeyboardInterrupt: self.logger.warning('Keyboard interrupt - exiting...') return<|docstring|>Connect to the data stream and start writing the data to a file.<|endoftext|>
323d91ac780f1a2e7059a7de2cf0d71d28252ac814da78b96f88b0bc900a19ba
def ClearContext(self): 'Clear any previous context.' self._context = None
Clear any previous context.
transitfeed/problems.py
ClearContext
robinjanke/transitfeed
647
python
def ClearContext(self): self._context = None
def ClearContext(self): self._context = None<|docstring|>Clear any previous context.<|endoftext|>
326ab3d0ee644429e0660673fc3995f10c8cf6ec50151341d148ac612f1604c8
def SetFileContext(self, file_name, row_num, row, headers): "Save the current context to be output with any errors.\n\n Args:\n file_name: string\n row_num: int\n row: list of strings\n headers: list of column headers, its order corresponding to row's\n " self._context = (file_name, row_num, row, headers)
Save the current context to be output with any errors. Args: file_name: string row_num: int row: list of strings headers: list of column headers, its order corresponding to row's
transitfeed/problems.py
SetFileContext
robinjanke/transitfeed
647
python
def SetFileContext(self, file_name, row_num, row, headers): "Save the current context to be output with any errors.\n\n Args:\n file_name: string\n row_num: int\n row: list of strings\n headers: list of column headers, its order corresponding to row's\n " self._context = (file_name, row_num, row, headers)
def SetFileContext(self, file_name, row_num, row, headers): "Save the current context to be output with any errors.\n\n Args:\n file_name: string\n row_num: int\n row: list of strings\n headers: list of column headers, its order corresponding to row's\n " self._context = (file_name, row_num, row, headers)<|docstring|>Save the current context to be output with any errors. Args: file_name: string row_num: int row: list of strings headers: list of column headers, its order corresponding to row's<|endoftext|>
094505d2c87cea707b25690c6bf74861df89bbf84efc8b413a27dd33e3d1a89c
def AddToAccumulator(self, e): 'Report an exception to the Problem Accumulator' self.accumulator._Report(e)
Report an exception to the Problem Accumulator
transitfeed/problems.py
AddToAccumulator
robinjanke/transitfeed
647
python
def AddToAccumulator(self, e): self.accumulator._Report(e)
def AddToAccumulator(self, e): self.accumulator._Report(e)<|docstring|>Report an exception to the Problem Accumulator<|endoftext|>
3b4bf9d05a6e6571a960615885aea76990d660fcc9f7036c970d7ab2411d0121
def InvalidLineEnd(self, bad_line_end, context=None, type=TYPE_WARNING): 'bad_line_end is a human readable string.' e = InvalidLineEnd(bad_line_end=bad_line_end, context=context, context2=self._context, type=type) self.AddToAccumulator(e)
bad_line_end is a human readable string.
transitfeed/problems.py
InvalidLineEnd
robinjanke/transitfeed
647
python
def InvalidLineEnd(self, bad_line_end, context=None, type=TYPE_WARNING): e = InvalidLineEnd(bad_line_end=bad_line_end, context=context, context2=self._context, type=type) self.AddToAccumulator(e)
def InvalidLineEnd(self, bad_line_end, context=None, type=TYPE_WARNING): e = InvalidLineEnd(bad_line_end=bad_line_end, context=context, context2=self._context, type=type) self.AddToAccumulator(e)<|docstring|>bad_line_end is a human readable string.<|endoftext|>
f86af560676aaad951626c54d11d7135fb0ba181fab19524d5c977628a91907d
@staticmethod def _LineWrap(text, width): '\n A word-wrap function that preserves existing line breaks\n and most spaces in the text. Expects that existing line\n breaks are posix newlines (\n).\n\n Taken from:\n http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/148061\n ' return reduce((lambda line, word, width=width: ('%s%s%s' % (line, ' \n'[((((len(line) - line.rfind('\n')) - 1) + len(word.split('\n', 1)[0])) >= width)], word))), text.split(' '))
A word-wrap function that preserves existing line breaks and most spaces in the text. Expects that existing line breaks are posix newlines ( ). Taken from: http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/148061
transitfeed/problems.py
_LineWrap
robinjanke/transitfeed
647
python
@staticmethod def _LineWrap(text, width): '\n A word-wrap function that preserves existing line breaks\n and most spaces in the text. Expects that existing line\n breaks are posix newlines (\n).\n\n Taken from:\n http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/148061\n ' return reduce((lambda line, word, width=width: ('%s%s%s' % (line, ' \n'[((((len(line) - line.rfind('\n')) - 1) + len(word.split('\n', 1)[0])) >= width)], word))), text.split(' '))
@staticmethod def _LineWrap(text, width): '\n A word-wrap function that preserves existing line breaks\n and most spaces in the text. Expects that existing line\n breaks are posix newlines (\n).\n\n Taken from:\n http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/148061\n ' return reduce((lambda line, word, width=width: ('%s%s%s' % (line, ' \n'[((((len(line) - line.rfind('\n')) - 1) + len(word.split('\n', 1)[0])) >= width)], word))), text.split(' '))<|docstring|>A word-wrap function that preserves existing line breaks and most spaces in the text. Expects that existing line breaks are posix newlines ( ). Taken from: http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/148061<|endoftext|>
863d1c353c4e844f7c715a00f7b9ddefb430f55cf8320d6467de3e3400113638
def __init__(self, context=None, context2=None, **kwargs): 'Initialize an exception object, saving all keyword arguments in self.\n context and context2, if present, must be a tuple of (file_name, row_num,\n row, headers). context2 comes from ProblemReporter.SetFileContext. context\n was passed in with the keyword arguments. context2 is ignored if context\n is present.' Exception.__init__(self) if context: self.__dict__.update(self.ContextTupleToDict(context)) elif context2: self.__dict__.update(self.ContextTupleToDict(context2)) self.__dict__.update(kwargs) if (('type' in kwargs) and (kwargs['type'] in ALL_TYPES)): self._type = kwargs['type'] else: self._type = TYPE_ERROR
Initialize an exception object, saving all keyword arguments in self. context and context2, if present, must be a tuple of (file_name, row_num, row, headers). context2 comes from ProblemReporter.SetFileContext. context was passed in with the keyword arguments. context2 is ignored if context is present.
transitfeed/problems.py
__init__
robinjanke/transitfeed
647
python
def __init__(self, context=None, context2=None, **kwargs): 'Initialize an exception object, saving all keyword arguments in self.\n context and context2, if present, must be a tuple of (file_name, row_num,\n row, headers). context2 comes from ProblemReporter.SetFileContext. context\n was passed in with the keyword arguments. context2 is ignored if context\n is present.' Exception.__init__(self) if context: self.__dict__.update(self.ContextTupleToDict(context)) elif context2: self.__dict__.update(self.ContextTupleToDict(context2)) self.__dict__.update(kwargs) if (('type' in kwargs) and (kwargs['type'] in ALL_TYPES)): self._type = kwargs['type'] else: self._type = TYPE_ERROR
def __init__(self, context=None, context2=None, **kwargs): 'Initialize an exception object, saving all keyword arguments in self.\n context and context2, if present, must be a tuple of (file_name, row_num,\n row, headers). context2 comes from ProblemReporter.SetFileContext. context\n was passed in with the keyword arguments. context2 is ignored if context\n is present.' Exception.__init__(self) if context: self.__dict__.update(self.ContextTupleToDict(context)) elif context2: self.__dict__.update(self.ContextTupleToDict(context2)) self.__dict__.update(kwargs) if (('type' in kwargs) and (kwargs['type'] in ALL_TYPES)): self._type = kwargs['type'] else: self._type = TYPE_ERROR<|docstring|>Initialize an exception object, saving all keyword arguments in self. context and context2, if present, must be a tuple of (file_name, row_num, row, headers). context2 comes from ProblemReporter.SetFileContext. context was passed in with the keyword arguments. context2 is ignored if context is present.<|endoftext|>
e19a0f30c7ec7f9ba2d1acf1c503c2ed8c71827df9cad533e8dce7d99450d8da
@staticmethod def ContextTupleToDict(context): 'Convert a tuple representing a context into a dict of (key, value) pairs\n ' d = {} if (not context): return d for (k, v) in zip(ExceptionWithContext.CONTEXT_PARTS, context): if ((v != '') and (v != None)): d[k] = v return d
Convert a tuple representing a context into a dict of (key, value) pairs
transitfeed/problems.py
ContextTupleToDict
robinjanke/transitfeed
647
python
@staticmethod def ContextTupleToDict(context): '\n ' d = {} if (not context): return d for (k, v) in zip(ExceptionWithContext.CONTEXT_PARTS, context): if ((v != ) and (v != None)): d[k] = v return d
@staticmethod def ContextTupleToDict(context): '\n ' d = {} if (not context): return d for (k, v) in zip(ExceptionWithContext.CONTEXT_PARTS, context): if ((v != ) and (v != None)): d[k] = v return d<|docstring|>Convert a tuple representing a context into a dict of (key, value) pairs<|endoftext|>
e8ba02d6dd5cffd2fc462ecd4e1fba19de775a462981757ed47e625feb642043
def GetDictToFormat(self): 'Return a copy of self as a dict, suitable for passing to FormatProblem' d = {} for (k, v) in self.__dict__.items(): d[k] = util.EncodeUnicode(v) return d
Return a copy of self as a dict, suitable for passing to FormatProblem
transitfeed/problems.py
GetDictToFormat
robinjanke/transitfeed
647
python
def GetDictToFormat(self): d = {} for (k, v) in self.__dict__.items(): d[k] = util.EncodeUnicode(v) return d
def GetDictToFormat(self): d = {} for (k, v) in self.__dict__.items(): d[k] = util.EncodeUnicode(v) return d<|docstring|>Return a copy of self as a dict, suitable for passing to FormatProblem<|endoftext|>
f2225740e71c0098f47e8b2956ca5f6396de4fdc9167d1def1a6490393685852
def FormatProblem(self, d=None): 'Return a text string describing the problem.\n\n Args:\n d: map returned by GetDictToFormat with with formatting added\n ' if (not d): d = self.GetDictToFormat() output_error_text = (self.__class__.ERROR_TEXT % d) if (('reason' in d) and d['reason']): return ('%s\n%s' % (output_error_text, d['reason'])) else: return output_error_text
Return a text string describing the problem. Args: d: map returned by GetDictToFormat with with formatting added
transitfeed/problems.py
FormatProblem
robinjanke/transitfeed
647
python
def FormatProblem(self, d=None): 'Return a text string describing the problem.\n\n Args:\n d: map returned by GetDictToFormat with with formatting added\n ' if (not d): d = self.GetDictToFormat() output_error_text = (self.__class__.ERROR_TEXT % d) if (('reason' in d) and d['reason']): return ('%s\n%s' % (output_error_text, d['reason'])) else: return output_error_text
def FormatProblem(self, d=None): 'Return a text string describing the problem.\n\n Args:\n d: map returned by GetDictToFormat with with formatting added\n ' if (not d): d = self.GetDictToFormat() output_error_text = (self.__class__.ERROR_TEXT % d) if (('reason' in d) and d['reason']): return ('%s\n%s' % (output_error_text, d['reason'])) else: return output_error_text<|docstring|>Return a text string describing the problem. Args: d: map returned by GetDictToFormat with with formatting added<|endoftext|>
110baf963463b61d1bbe1b747aef6544cc1975580f2597161d46c9b43a585f65
def FormatContext(self): 'Return a text string describing the context' text = '' if hasattr(self, 'feed_name'): text += ("In feed '%s': " % self.feed_name) if hasattr(self, 'file_name'): text += self.file_name if hasattr(self, 'row_num'): text += (':%i' % self.row_num) if hasattr(self, 'column_name'): text += (' column %s' % self.column_name) return text
Return a text string describing the context
transitfeed/problems.py
FormatContext
robinjanke/transitfeed
647
python
def FormatContext(self): text = if hasattr(self, 'feed_name'): text += ("In feed '%s': " % self.feed_name) if hasattr(self, 'file_name'): text += self.file_name if hasattr(self, 'row_num'): text += (':%i' % self.row_num) if hasattr(self, 'column_name'): text += (' column %s' % self.column_name) return text
def FormatContext(self): text = if hasattr(self, 'feed_name'): text += ("In feed '%s': " % self.feed_name) if hasattr(self, 'file_name'): text += self.file_name if hasattr(self, 'row_num'): text += (':%i' % self.row_num) if hasattr(self, 'column_name'): text += (' column %s' % self.column_name) return text<|docstring|>Return a text string describing the context<|endoftext|>
2556dc2c457a084b66684b8dbcec84a3fb8d83b5b62d364ca066ff5da93ae127
def __cmp__(self, y): "Return an int <0/0/>0 when self is more/same/less significant than y.\n\n Subclasses should define this if exceptions should be listed in something\n other than the order they are reported.\n\n Args:\n y: object to compare to self\n\n Returns:\n An int which is negative if self is more significant than y, 0 if they\n are similar significance and positive if self is less significant than\n y. Returning a float won't work.\n\n Raises:\n TypeError by default, meaning objects of the type can not be compared.\n " raise TypeError('__cmp__ not defined')
Return an int <0/0/>0 when self is more/same/less significant than y. Subclasses should define this if exceptions should be listed in something other than the order they are reported. Args: y: object to compare to self Returns: An int which is negative if self is more significant than y, 0 if they are similar significance and positive if self is less significant than y. Returning a float won't work. Raises: TypeError by default, meaning objects of the type can not be compared.
transitfeed/problems.py
__cmp__
robinjanke/transitfeed
647
python
def __cmp__(self, y): "Return an int <0/0/>0 when self is more/same/less significant than y.\n\n Subclasses should define this if exceptions should be listed in something\n other than the order they are reported.\n\n Args:\n y: object to compare to self\n\n Returns:\n An int which is negative if self is more significant than y, 0 if they\n are similar significance and positive if self is less significant than\n y. Returning a float won't work.\n\n Raises:\n TypeError by default, meaning objects of the type can not be compared.\n " raise TypeError('__cmp__ not defined')
def __cmp__(self, y): "Return an int <0/0/>0 when self is more/same/less significant than y.\n\n Subclasses should define this if exceptions should be listed in something\n other than the order they are reported.\n\n Args:\n y: object to compare to self\n\n Returns:\n An int which is negative if self is more significant than y, 0 if they\n are similar significance and positive if self is less significant than\n y. Returning a float won't work.\n\n Raises:\n TypeError by default, meaning objects of the type can not be compared.\n " raise TypeError('__cmp__ not defined')<|docstring|>Return an int <0/0/>0 when self is more/same/less significant than y. Subclasses should define this if exceptions should be listed in something other than the order they are reported. Args: y: object to compare to self Returns: An int which is negative if self is more significant than y, 0 if they are similar significance and positive if self is less significant than y. Returning a float won't work. Raises: TypeError by default, meaning objects of the type can not be compared.<|endoftext|>
621ad1803b1e6676b8779510e90f6cb3d9634262a3343e74bcc1e0a658d04efc
def GetOrderKey(self): 'Return a tuple that can be used to sort problems into a consistent order.\n\n Returns:\n A list of values.\n ' context_attributes = ['_type'] context_attributes.extend(ExceptionWithContext.CONTEXT_PARTS) context_attributes.extend(self._GetExtraOrderAttributes()) tokens = [] for context_attribute in context_attributes: tokens.append(getattr(self, context_attribute, None)) return tokens
Return a tuple that can be used to sort problems into a consistent order. Returns: A list of values.
transitfeed/problems.py
GetOrderKey
robinjanke/transitfeed
647
python
def GetOrderKey(self): 'Return a tuple that can be used to sort problems into a consistent order.\n\n Returns:\n A list of values.\n ' context_attributes = ['_type'] context_attributes.extend(ExceptionWithContext.CONTEXT_PARTS) context_attributes.extend(self._GetExtraOrderAttributes()) tokens = [] for context_attribute in context_attributes: tokens.append(getattr(self, context_attribute, None)) return tokens
def GetOrderKey(self): 'Return a tuple that can be used to sort problems into a consistent order.\n\n Returns:\n A list of values.\n ' context_attributes = ['_type'] context_attributes.extend(ExceptionWithContext.CONTEXT_PARTS) context_attributes.extend(self._GetExtraOrderAttributes()) tokens = [] for context_attribute in context_attributes: tokens.append(getattr(self, context_attribute, None)) return tokens<|docstring|>Return a tuple that can be used to sort problems into a consistent order. Returns: A list of values.<|endoftext|>
940356f2739a15094f81246ab70d8a13fdaf69a54e6aa0e485ef70bbd5209f76
def _GetExtraOrderAttributes(self): 'Return a list of extra attributes that should be used by GetOrderKey().\n\n The GetOrderkey method uses the list of class attributes defined in\n CONTEXT_PARTS to generate a list value that can be used as a comparison\n key for sorting problems in a consistent order. Some specific problem\n types may which to define additional attributes that should be used\n when generating the order key. They can override this method to do so.\n\n Returns:\n A list of class attribute names.\n ' return []
Return a list of extra attributes that should be used by GetOrderKey(). The GetOrderkey method uses the list of class attributes defined in CONTEXT_PARTS to generate a list value that can be used as a comparison key for sorting problems in a consistent order. Some specific problem types may which to define additional attributes that should be used when generating the order key. They can override this method to do so. Returns: A list of class attribute names.
transitfeed/problems.py
_GetExtraOrderAttributes
robinjanke/transitfeed
647
python
def _GetExtraOrderAttributes(self): 'Return a list of extra attributes that should be used by GetOrderKey().\n\n The GetOrderkey method uses the list of class attributes defined in\n CONTEXT_PARTS to generate a list value that can be used as a comparison\n key for sorting problems in a consistent order. Some specific problem\n types may which to define additional attributes that should be used\n when generating the order key. They can override this method to do so.\n\n Returns:\n A list of class attribute names.\n ' return []
def _GetExtraOrderAttributes(self): 'Return a list of extra attributes that should be used by GetOrderKey().\n\n The GetOrderkey method uses the list of class attributes defined in\n CONTEXT_PARTS to generate a list value that can be used as a comparison\n key for sorting problems in a consistent order. Some specific problem\n types may which to define additional attributes that should be used\n when generating the order key. They can override this method to do so.\n\n Returns:\n A list of class attribute names.\n ' return []<|docstring|>Return a list of extra attributes that should be used by GetOrderKey(). The GetOrderkey method uses the list of class attributes defined in CONTEXT_PARTS to generate a list value that can be used as a comparison key for sorting problems in a consistent order. Some specific problem types may which to define additional attributes that should be used when generating the order key. They can override this method to do so. Returns: A list of class attribute names.<|endoftext|>
aceb05fcb921c2130224dd1be1d8cba91a5c951e652a9aee0b31fd511545f39a
def __init__(self, raise_warnings=False): 'Initialise.\n\n Args:\n raise_warnings: If this is True then warnings are also raised as\n exceptions.\n If it is false, warnings are printed to the console using\n SimpleProblemAccumulator.\n ' self.raise_warnings = raise_warnings self.accumulator = SimpleProblemAccumulator()
Initialise. Args: raise_warnings: If this is True then warnings are also raised as exceptions. If it is false, warnings are printed to the console using SimpleProblemAccumulator.
transitfeed/problems.py
__init__
robinjanke/transitfeed
647
python
def __init__(self, raise_warnings=False): 'Initialise.\n\n Args:\n raise_warnings: If this is True then warnings are also raised as\n exceptions.\n If it is false, warnings are printed to the console using\n SimpleProblemAccumulator.\n ' self.raise_warnings = raise_warnings self.accumulator = SimpleProblemAccumulator()
def __init__(self, raise_warnings=False): 'Initialise.\n\n Args:\n raise_warnings: If this is True then warnings are also raised as\n exceptions.\n If it is false, warnings are printed to the console using\n SimpleProblemAccumulator.\n ' self.raise_warnings = raise_warnings self.accumulator = SimpleProblemAccumulator()<|docstring|>Initialise. Args: raise_warnings: If this is True then warnings are also raised as exceptions. If it is false, warnings are printed to the console using SimpleProblemAccumulator.<|endoftext|>
5c70d2239aeb91e311f1a35e390445109b0dd38ad3f185b23e9a838e1b542e1c
def spatial_pyramid_pooling(input, level): '\n\tinput: 4 channel input (bt,ch,r,c)\n\tlevel: no of levels of pooling\n\treturns : does spatial pyrimidal pooling and returns the output\n\t' assert (input.dim() == 4) output = [] "\n\t\tNOTE: Sumit's implementation\n\t" for i in range(1, (level + 1)): kernel_size = (int(np.ceil((input.size(2) / (1.0 * i)))), int(np.ceil((input.size(3) / (1.0 * i))))) stride_size = (int(np.floor((input.size(2) / (1.0 * i)))), int(np.floor((input.size(3) / (1.0 * i))))) level_out = F.max_pool2d(input, kernel_size=kernel_size, stride=stride_size) output.append(level_out.view(input.size()[0], (- 1))) final_out = torch.cat(output, 1) return final_out
input: 4 channel input (bt,ch,r,c) level: no of levels of pooling returns : does spatial pyrimidal pooling and returns the output
lib/Utility/FeatureOperations.py
spatial_pyramid_pooling
SAGNIKMJR/MetaQNN_ImageClassification_PyTorch
12
python
def spatial_pyramid_pooling(input, level): '\n\tinput: 4 channel input (bt,ch,r,c)\n\tlevel: no of levels of pooling\n\treturns : does spatial pyrimidal pooling and returns the output\n\t' assert (input.dim() == 4) output = [] "\n\t\tNOTE: Sumit's implementation\n\t" for i in range(1, (level + 1)): kernel_size = (int(np.ceil((input.size(2) / (1.0 * i)))), int(np.ceil((input.size(3) / (1.0 * i))))) stride_size = (int(np.floor((input.size(2) / (1.0 * i)))), int(np.floor((input.size(3) / (1.0 * i))))) level_out = F.max_pool2d(input, kernel_size=kernel_size, stride=stride_size) output.append(level_out.view(input.size()[0], (- 1))) final_out = torch.cat(output, 1) return final_out
def spatial_pyramid_pooling(input, level): '\n\tinput: 4 channel input (bt,ch,r,c)\n\tlevel: no of levels of pooling\n\treturns : does spatial pyrimidal pooling and returns the output\n\t' assert (input.dim() == 4) output = [] "\n\t\tNOTE: Sumit's implementation\n\t" for i in range(1, (level + 1)): kernel_size = (int(np.ceil((input.size(2) / (1.0 * i)))), int(np.ceil((input.size(3) / (1.0 * i))))) stride_size = (int(np.floor((input.size(2) / (1.0 * i)))), int(np.floor((input.size(3) / (1.0 * i))))) level_out = F.max_pool2d(input, kernel_size=kernel_size, stride=stride_size) output.append(level_out.view(input.size()[0], (- 1))) final_out = torch.cat(output, 1) return final_out<|docstring|>input: 4 channel input (bt,ch,r,c) level: no of levels of pooling returns : does spatial pyrimidal pooling and returns the output<|endoftext|>
67e60bc4ebb60e6cbcd81481f596780975effa0ff5ff0b107c3b21a14b1dd245
def full_average_pooling(input): '\n\tinput: 4 channel input (bt,ch,r,c)\n\treturns : bt*ch*1*1 feature maps performed by averaging pooling with kernel size == input size\n\t' assert (input.dim() == 4) return F.avg_pool2d(input, kernel_size=(input.size(2), input.size(3)))
input: 4 channel input (bt,ch,r,c) returns : bt*ch*1*1 feature maps performed by averaging pooling with kernel size == input size
lib/Utility/FeatureOperations.py
full_average_pooling
SAGNIKMJR/MetaQNN_ImageClassification_PyTorch
12
python
def full_average_pooling(input): '\n\tinput: 4 channel input (bt,ch,r,c)\n\treturns : bt*ch*1*1 feature maps performed by averaging pooling with kernel size == input size\n\t' assert (input.dim() == 4) return F.avg_pool2d(input, kernel_size=(input.size(2), input.size(3)))
def full_average_pooling(input): '\n\tinput: 4 channel input (bt,ch,r,c)\n\treturns : bt*ch*1*1 feature maps performed by averaging pooling with kernel size == input size\n\t' assert (input.dim() == 4) return F.avg_pool2d(input, kernel_size=(input.size(2), input.size(3)))<|docstring|>input: 4 channel input (bt,ch,r,c) returns : bt*ch*1*1 feature maps performed by averaging pooling with kernel size == input size<|endoftext|>
7d6662849587a8c00c437085efda1f2697320bd7d3247de39a91b50b3b6ff53d
def CenterCrop(cropTarget, cropVar): '\n\tcropTarget: target image (the shape is deduced from this image)\n\tcropVar: image to be cropped\n\treturns : crops CropVar to the size of cropTarget by performing center crop\n\t' cropSize = cropTarget.size() tw = (cropSize[2] // 2) th = (cropSize[3] // 2) varSize = cropVar.size() c1 = (varSize[2] // 2) c2 = (varSize[3] // 2) subW = 0 subH = 0 if (((cropSize[2] % 2) == 0) and ((varSize[2] % 2) == 0)): subW = 1 if (((cropSize[3] % 2) == 0) and ((varSize[3] % 2) == 0)): subH = 1 cropOp = cropVar[(:, :, (c1 - tw):(((c1 + tw) + 1) - subW), (c2 - th):(((c2 + th) + 1) - subH))].clone() return cropOp
cropTarget: target image (the shape is deduced from this image) cropVar: image to be cropped returns : crops CropVar to the size of cropTarget by performing center crop
lib/Utility/FeatureOperations.py
CenterCrop
SAGNIKMJR/MetaQNN_ImageClassification_PyTorch
12
python
def CenterCrop(cropTarget, cropVar): '\n\tcropTarget: target image (the shape is deduced from this image)\n\tcropVar: image to be cropped\n\treturns : crops CropVar to the size of cropTarget by performing center crop\n\t' cropSize = cropTarget.size() tw = (cropSize[2] // 2) th = (cropSize[3] // 2) varSize = cropVar.size() c1 = (varSize[2] // 2) c2 = (varSize[3] // 2) subW = 0 subH = 0 if (((cropSize[2] % 2) == 0) and ((varSize[2] % 2) == 0)): subW = 1 if (((cropSize[3] % 2) == 0) and ((varSize[3] % 2) == 0)): subH = 1 cropOp = cropVar[(:, :, (c1 - tw):(((c1 + tw) + 1) - subW), (c2 - th):(((c2 + th) + 1) - subH))].clone() return cropOp
def CenterCrop(cropTarget, cropVar): '\n\tcropTarget: target image (the shape is deduced from this image)\n\tcropVar: image to be cropped\n\treturns : crops CropVar to the size of cropTarget by performing center crop\n\t' cropSize = cropTarget.size() tw = (cropSize[2] // 2) th = (cropSize[3] // 2) varSize = cropVar.size() c1 = (varSize[2] // 2) c2 = (varSize[3] // 2) subW = 0 subH = 0 if (((cropSize[2] % 2) == 0) and ((varSize[2] % 2) == 0)): subW = 1 if (((cropSize[3] % 2) == 0) and ((varSize[3] % 2) == 0)): subH = 1 cropOp = cropVar[(:, :, (c1 - tw):(((c1 + tw) + 1) - subW), (c2 - th):(((c2 + th) + 1) - subH))].clone() return cropOp<|docstring|>cropTarget: target image (the shape is deduced from this image) cropVar: image to be cropped returns : crops CropVar to the size of cropTarget by performing center crop<|endoftext|>
a8b6f9791d41ab8100de8e64c48ba166e8512fc114368b31e612fa0ef111c6fb
def PeriodicShuffle(x, factor): '\n\tx: input feature map\n\tfactor: upsampling factor\n\treturns : upsampled image with the mentioned factor\n\t' (btSize, ch, rows, cols) = x.size() ch_target = (ch / (factor * factor)) ch_factor = (ch / ch_target) shape_1 = [btSize, (ch_factor // factor), (ch_factor // factor), rows, cols] shape_2 = [btSize, 1, (rows * factor), (cols * factor)] out = [] for i in range(ch_target): temp = x[(:, (i * ch_factor):((i + 1) * ch_factor), :, :)] temp = temp.view(shape_1) temp = temp.permute(0, 1, 3, 2, 4) temp = temp.contiguous() temp = temp.view(shape_2) out.append(temp) out = torch.cat(out, 1) return out
x: input feature map factor: upsampling factor returns : upsampled image with the mentioned factor
lib/Utility/FeatureOperations.py
PeriodicShuffle
SAGNIKMJR/MetaQNN_ImageClassification_PyTorch
12
python
def PeriodicShuffle(x, factor): '\n\tx: input feature map\n\tfactor: upsampling factor\n\treturns : upsampled image with the mentioned factor\n\t' (btSize, ch, rows, cols) = x.size() ch_target = (ch / (factor * factor)) ch_factor = (ch / ch_target) shape_1 = [btSize, (ch_factor // factor), (ch_factor // factor), rows, cols] shape_2 = [btSize, 1, (rows * factor), (cols * factor)] out = [] for i in range(ch_target): temp = x[(:, (i * ch_factor):((i + 1) * ch_factor), :, :)] temp = temp.view(shape_1) temp = temp.permute(0, 1, 3, 2, 4) temp = temp.contiguous() temp = temp.view(shape_2) out.append(temp) out = torch.cat(out, 1) return out
def PeriodicShuffle(x, factor): '\n\tx: input feature map\n\tfactor: upsampling factor\n\treturns : upsampled image with the mentioned factor\n\t' (btSize, ch, rows, cols) = x.size() ch_target = (ch / (factor * factor)) ch_factor = (ch / ch_target) shape_1 = [btSize, (ch_factor // factor), (ch_factor // factor), rows, cols] shape_2 = [btSize, 1, (rows * factor), (cols * factor)] out = [] for i in range(ch_target): temp = x[(:, (i * ch_factor):((i + 1) * ch_factor), :, :)] temp = temp.view(shape_1) temp = temp.permute(0, 1, 3, 2, 4) temp = temp.contiguous() temp = temp.view(shape_2) out.append(temp) out = torch.cat(out, 1) return out<|docstring|>x: input feature map factor: upsampling factor returns : upsampled image with the mentioned factor<|endoftext|>
949e2b0a84119a40bbe60b3b91b95fbaa32a386dd4908ba185623114aae8f87c
def KL_multivariate(means, logstds, means_0, stds_0): '\n KL in the special case where the target distribution \n is factorized and the prior is any multivariate gaussian\n ' dets = ((2.0 * tf.reduce_sum((tf.log(stds_0) - logstds))) - tf.cast(means.shape[0], tf.float32)) norm_trace = tf.reduce_sum(((((means - means_0) ** 2) + (tf.exp(logstds) ** 2)) / (stds_0 ** 2))) KL = (0.5 * (dets + norm_trace)) return KL
KL in the special case where the target distribution is factorized and the prior is any multivariate gaussian
models/models_organic_bandit.py
KL_multivariate
criteo-research/blob
14
python
def KL_multivariate(means, logstds, means_0, stds_0): '\n KL in the special case where the target distribution \n is factorized and the prior is any multivariate gaussian\n ' dets = ((2.0 * tf.reduce_sum((tf.log(stds_0) - logstds))) - tf.cast(means.shape[0], tf.float32)) norm_trace = tf.reduce_sum(((((means - means_0) ** 2) + (tf.exp(logstds) ** 2)) / (stds_0 ** 2))) KL = (0.5 * (dets + norm_trace)) return KL
def KL_multivariate(means, logstds, means_0, stds_0): '\n KL in the special case where the target distribution \n is factorized and the prior is any multivariate gaussian\n ' dets = ((2.0 * tf.reduce_sum((tf.log(stds_0) - logstds))) - tf.cast(means.shape[0], tf.float32)) norm_trace = tf.reduce_sum(((((means - means_0) ** 2) + (tf.exp(logstds) ** 2)) / (stds_0 ** 2))) KL = (0.5 * (dets + norm_trace)) return KL<|docstring|>KL in the special case where the target distribution is factorized and the prior is any multivariate gaussian<|endoftext|>
c86ce5be41573430c3204eccd528d45752776281f500033719eca7665a41fd8b
def check_complete(task, out_queue): '\n Checks if task is complete, puts the result to out_queue.\n ' logger.debug('Checking if %s is complete', task) try: is_complete = task.complete() except BaseException: is_complete = TracebackWrapper(traceback.format_exc()) out_queue.put((task, is_complete))
Checks if task is complete, puts the result to out_queue.
luigi/worker.py
check_complete
GlobalFishingWatch/luigi
2
python
def check_complete(task, out_queue): '\n \n ' logger.debug('Checking if %s is complete', task) try: is_complete = task.complete() except BaseException: is_complete = TracebackWrapper(traceback.format_exc()) out_queue.put((task, is_complete))
def check_complete(task, out_queue): '\n \n ' logger.debug('Checking if %s is complete', task) try: is_complete = task.complete() except BaseException: is_complete = TracebackWrapper(traceback.format_exc()) out_queue.put((task, is_complete))<|docstring|>Checks if task is complete, puts the result to out_queue.<|endoftext|>
6e082224e627c3bf1f3b6284aa79ed468bd5a5d0f4a451a7881239be81ee2428
def terminate(self): 'Terminate this process and its subprocesses.' try: return self._recursive_terminate() except ImportError: return super(TaskProcess, self).terminate()
Terminate this process and its subprocesses.
luigi/worker.py
terminate
GlobalFishingWatch/luigi
2
python
def terminate(self): try: return self._recursive_terminate() except ImportError: return super(TaskProcess, self).terminate()
def terminate(self): try: return self._recursive_terminate() except ImportError: return super(TaskProcess, self).terminate()<|docstring|>Terminate this process and its subprocesses.<|endoftext|>
2d05553e9e56ea42f7c782e719e027402a97c06c3c05df8eefb9d67356892845
def _add_task(self, *args, **kwargs): '\n Call ``self._scheduler.add_task``, but store the values too so we can\n implement :py:func:`luigi.execution_summary.summary`.\n ' task = self._scheduled_tasks.get(kwargs['task_id']) if task: msg = (task, kwargs['status'], kwargs['runnable']) self._add_task_history.append(msg) self._scheduler.add_task(*args, **kwargs)
Call ``self._scheduler.add_task``, but store the values too so we can implement :py:func:`luigi.execution_summary.summary`.
luigi/worker.py
_add_task
GlobalFishingWatch/luigi
2
python
def _add_task(self, *args, **kwargs): '\n Call ``self._scheduler.add_task``, but store the values too so we can\n implement :py:func:`luigi.execution_summary.summary`.\n ' task = self._scheduled_tasks.get(kwargs['task_id']) if task: msg = (task, kwargs['status'], kwargs['runnable']) self._add_task_history.append(msg) self._scheduler.add_task(*args, **kwargs)
def _add_task(self, *args, **kwargs): '\n Call ``self._scheduler.add_task``, but store the values too so we can\n implement :py:func:`luigi.execution_summary.summary`.\n ' task = self._scheduled_tasks.get(kwargs['task_id']) if task: msg = (task, kwargs['status'], kwargs['runnable']) self._add_task_history.append(msg) self._scheduler.add_task(*args, **kwargs)<|docstring|>Call ``self._scheduler.add_task``, but store the values too so we can implement :py:func:`luigi.execution_summary.summary`.<|endoftext|>
f376057ed6012832466ef0a588c647f2937bb764f694d7d7b925981dacb09b6c
def stop(self): '\n Stop the KeepAliveThread associated with this Worker.\n\n This should be called whenever you are done with a worker instance to clean up.\n\n Warning: this should _only_ be performed if you are sure this worker\n is not performing any work or will perform any work after this has been called\n\n TODO: also kill all currently running tasks\n\n TODO (maybe): Worker should be/have a context manager to enforce calling this\n whenever you stop using a Worker instance\n ' self._keep_alive_thread.stop() self._keep_alive_thread.join()
Stop the KeepAliveThread associated with this Worker. This should be called whenever you are done with a worker instance to clean up. Warning: this should _only_ be performed if you are sure this worker is not performing any work or will perform any work after this has been called TODO: also kill all currently running tasks TODO (maybe): Worker should be/have a context manager to enforce calling this whenever you stop using a Worker instance
luigi/worker.py
stop
GlobalFishingWatch/luigi
2
python
def stop(self): '\n Stop the KeepAliveThread associated with this Worker.\n\n This should be called whenever you are done with a worker instance to clean up.\n\n Warning: this should _only_ be performed if you are sure this worker\n is not performing any work or will perform any work after this has been called\n\n TODO: also kill all currently running tasks\n\n TODO (maybe): Worker should be/have a context manager to enforce calling this\n whenever you stop using a Worker instance\n ' self._keep_alive_thread.stop() self._keep_alive_thread.join()
def stop(self): '\n Stop the KeepAliveThread associated with this Worker.\n\n This should be called whenever you are done with a worker instance to clean up.\n\n Warning: this should _only_ be performed if you are sure this worker\n is not performing any work or will perform any work after this has been called\n\n TODO: also kill all currently running tasks\n\n TODO (maybe): Worker should be/have a context manager to enforce calling this\n whenever you stop using a Worker instance\n ' self._keep_alive_thread.stop() self._keep_alive_thread.join()<|docstring|>Stop the KeepAliveThread associated with this Worker. This should be called whenever you are done with a worker instance to clean up. Warning: this should _only_ be performed if you are sure this worker is not performing any work or will perform any work after this has been called TODO: also kill all currently running tasks TODO (maybe): Worker should be/have a context manager to enforce calling this whenever you stop using a Worker instance<|endoftext|>
f1a8464776a8a1a6462c99f2bcbd1a944ed0efbbf8c0be0a75dbad84fd0822d7
def add(self, task, multiprocess=False): '\n Add a Task for the worker to check and possibly schedule and run.\n\n Returns True if task and its dependencies were successfully scheduled or completed before.\n ' if ((self._first_task is None) and hasattr(task, 'task_id')): self._first_task = task.task_id self.add_succeeded = True if multiprocess: queue = multiprocessing.Manager().Queue() pool = multiprocessing.Pool() else: queue = DequeQueue() pool = SingleProcessPool() self._validate_task(task) pool.apply_async(check_complete, [task, queue]) queue_size = 1 try: seen = set([task.task_id]) while queue_size: current = queue.get() queue_size -= 1 (item, is_complete) = current for next in self._add(item, is_complete): if (next.task_id not in seen): self._validate_task(next) seen.add(next.task_id) pool.apply_async(check_complete, [next, queue]) queue_size += 1 except (KeyboardInterrupt, TaskException): raise except Exception as ex: self.add_succeeded = False formatted_traceback = traceback.format_exc() self._log_unexpected_error(task) task.trigger_event(Event.BROKEN_TASK, task, ex) self._email_unexpected_error(task, formatted_traceback) finally: pool.close() pool.join() return self.add_succeeded
Add a Task for the worker to check and possibly schedule and run. Returns True if task and its dependencies were successfully scheduled or completed before.
luigi/worker.py
add
GlobalFishingWatch/luigi
2
python
def add(self, task, multiprocess=False): '\n Add a Task for the worker to check and possibly schedule and run.\n\n Returns True if task and its dependencies were successfully scheduled or completed before.\n ' if ((self._first_task is None) and hasattr(task, 'task_id')): self._first_task = task.task_id self.add_succeeded = True if multiprocess: queue = multiprocessing.Manager().Queue() pool = multiprocessing.Pool() else: queue = DequeQueue() pool = SingleProcessPool() self._validate_task(task) pool.apply_async(check_complete, [task, queue]) queue_size = 1 try: seen = set([task.task_id]) while queue_size: current = queue.get() queue_size -= 1 (item, is_complete) = current for next in self._add(item, is_complete): if (next.task_id not in seen): self._validate_task(next) seen.add(next.task_id) pool.apply_async(check_complete, [next, queue]) queue_size += 1 except (KeyboardInterrupt, TaskException): raise except Exception as ex: self.add_succeeded = False formatted_traceback = traceback.format_exc() self._log_unexpected_error(task) task.trigger_event(Event.BROKEN_TASK, task, ex) self._email_unexpected_error(task, formatted_traceback) finally: pool.close() pool.join() return self.add_succeeded
def add(self, task, multiprocess=False): '\n Add a Task for the worker to check and possibly schedule and run.\n\n Returns True if task and its dependencies were successfully scheduled or completed before.\n ' if ((self._first_task is None) and hasattr(task, 'task_id')): self._first_task = task.task_id self.add_succeeded = True if multiprocess: queue = multiprocessing.Manager().Queue() pool = multiprocessing.Pool() else: queue = DequeQueue() pool = SingleProcessPool() self._validate_task(task) pool.apply_async(check_complete, [task, queue]) queue_size = 1 try: seen = set([task.task_id]) while queue_size: current = queue.get() queue_size -= 1 (item, is_complete) = current for next in self._add(item, is_complete): if (next.task_id not in seen): self._validate_task(next) seen.add(next.task_id) pool.apply_async(check_complete, [next, queue]) queue_size += 1 except (KeyboardInterrupt, TaskException): raise except Exception as ex: self.add_succeeded = False formatted_traceback = traceback.format_exc() self._log_unexpected_error(task) task.trigger_event(Event.BROKEN_TASK, task, ex) self._email_unexpected_error(task, formatted_traceback) finally: pool.close() pool.join() return self.add_succeeded<|docstring|>Add a Task for the worker to check and possibly schedule and run. Returns True if task and its dependencies were successfully scheduled or completed before.<|endoftext|>
313d7849a6c1f50aff7dc684e566283a84e3613c4287a9c481e2f7c0c684c31a
def _purge_children(self): '\n Find dead children and put a response on the result queue.\n\n :return:\n ' for (task_id, p) in six.iteritems(self._running_tasks): if ((not p.is_alive()) and p.exitcode): error_msg = ('Worker task %s died unexpectedly with exit code %s' % (task_id, p.exitcode)) elif ((p.timeout_time is not None) and (time.time() > float(p.timeout_time)) and p.is_alive()): p.terminate() error_msg = ('Worker task %s timed out and was terminated.' % task_id) else: continue logger.info(error_msg) self._task_result_queue.put((task_id, FAILED, error_msg, [], []))
Find dead children and put a response on the result queue. :return:
luigi/worker.py
_purge_children
GlobalFishingWatch/luigi
2
python
def _purge_children(self): '\n Find dead children and put a response on the result queue.\n\n :return:\n ' for (task_id, p) in six.iteritems(self._running_tasks): if ((not p.is_alive()) and p.exitcode): error_msg = ('Worker task %s died unexpectedly with exit code %s' % (task_id, p.exitcode)) elif ((p.timeout_time is not None) and (time.time() > float(p.timeout_time)) and p.is_alive()): p.terminate() error_msg = ('Worker task %s timed out and was terminated.' % task_id) else: continue logger.info(error_msg) self._task_result_queue.put((task_id, FAILED, error_msg, [], []))
def _purge_children(self): '\n Find dead children and put a response on the result queue.\n\n :return:\n ' for (task_id, p) in six.iteritems(self._running_tasks): if ((not p.is_alive()) and p.exitcode): error_msg = ('Worker task %s died unexpectedly with exit code %s' % (task_id, p.exitcode)) elif ((p.timeout_time is not None) and (time.time() > float(p.timeout_time)) and p.is_alive()): p.terminate() error_msg = ('Worker task %s timed out and was terminated.' % task_id) else: continue logger.info(error_msg) self._task_result_queue.put((task_id, FAILED, error_msg, [], []))<|docstring|>Find dead children and put a response on the result queue. :return:<|endoftext|>
0922b556e0b814b85164c2807e929eb879fa4b74b5e97e2f7b0b6d707f92cf2d
def _handle_next_task(self): '\n We have to catch three ways a task can be "done":\n\n 1. normal execution: the task runs/fails and puts a result back on the queue,\n 2. new dependencies: the task yielded new deps that were not complete and\n will be rescheduled and dependencies added,\n 3. child process dies: we need to catch this separately.\n ' while True: self._purge_children() try: (task_id, status, expl, missing, new_requirements) = self._task_result_queue.get(timeout=self._config.wait_interval) except Queue.Empty: return task = self._scheduled_tasks[task_id] if ((not task) or (task_id not in self._running_tasks)): continue new_deps = [] if new_requirements: new_req = [load_task(module, name, params) for (module, name, params) in new_requirements] for t in new_req: self.add(t) new_deps = [t.task_id for t in new_req] self._add_task(worker=self._id, task_id=task_id, status=status, expl=expl, resources=task.process_resources(), runnable=None, params=task.to_str_params(), family=task.task_family, module=task.task_module, new_deps=new_deps, assistant=self._assistant) if (status == RUNNING): continue self._running_tasks.pop(task_id) if missing: reschedule = True for task_id in missing: self.unfulfilled_counts[task_id] += 1 if (self.unfulfilled_counts[task_id] > self._config.max_reschedules): reschedule = False if reschedule: self.add(task) self.run_succeeded &= (status in (DONE, SUSPENDED)) return
We have to catch three ways a task can be "done": 1. normal execution: the task runs/fails and puts a result back on the queue, 2. new dependencies: the task yielded new deps that were not complete and will be rescheduled and dependencies added, 3. child process dies: we need to catch this separately.
luigi/worker.py
_handle_next_task
GlobalFishingWatch/luigi
2
python
def _handle_next_task(self): '\n We have to catch three ways a task can be "done":\n\n 1. normal execution: the task runs/fails and puts a result back on the queue,\n 2. new dependencies: the task yielded new deps that were not complete and\n will be rescheduled and dependencies added,\n 3. child process dies: we need to catch this separately.\n ' while True: self._purge_children() try: (task_id, status, expl, missing, new_requirements) = self._task_result_queue.get(timeout=self._config.wait_interval) except Queue.Empty: return task = self._scheduled_tasks[task_id] if ((not task) or (task_id not in self._running_tasks)): continue new_deps = [] if new_requirements: new_req = [load_task(module, name, params) for (module, name, params) in new_requirements] for t in new_req: self.add(t) new_deps = [t.task_id for t in new_req] self._add_task(worker=self._id, task_id=task_id, status=status, expl=expl, resources=task.process_resources(), runnable=None, params=task.to_str_params(), family=task.task_family, module=task.task_module, new_deps=new_deps, assistant=self._assistant) if (status == RUNNING): continue self._running_tasks.pop(task_id) if missing: reschedule = True for task_id in missing: self.unfulfilled_counts[task_id] += 1 if (self.unfulfilled_counts[task_id] > self._config.max_reschedules): reschedule = False if reschedule: self.add(task) self.run_succeeded &= (status in (DONE, SUSPENDED)) return
def _handle_next_task(self): '\n We have to catch three ways a task can be "done":\n\n 1. normal execution: the task runs/fails and puts a result back on the queue,\n 2. new dependencies: the task yielded new deps that were not complete and\n will be rescheduled and dependencies added,\n 3. child process dies: we need to catch this separately.\n ' while True: self._purge_children() try: (task_id, status, expl, missing, new_requirements) = self._task_result_queue.get(timeout=self._config.wait_interval) except Queue.Empty: return task = self._scheduled_tasks[task_id] if ((not task) or (task_id not in self._running_tasks)): continue new_deps = [] if new_requirements: new_req = [load_task(module, name, params) for (module, name, params) in new_requirements] for t in new_req: self.add(t) new_deps = [t.task_id for t in new_req] self._add_task(worker=self._id, task_id=task_id, status=status, expl=expl, resources=task.process_resources(), runnable=None, params=task.to_str_params(), family=task.task_family, module=task.task_module, new_deps=new_deps, assistant=self._assistant) if (status == RUNNING): continue self._running_tasks.pop(task_id) if missing: reschedule = True for task_id in missing: self.unfulfilled_counts[task_id] += 1 if (self.unfulfilled_counts[task_id] > self._config.max_reschedules): reschedule = False if reschedule: self.add(task) self.run_succeeded &= (status in (DONE, SUSPENDED)) return<|docstring|>We have to catch three ways a task can be "done": 1. normal execution: the task runs/fails and puts a result back on the queue, 2. new dependencies: the task yielded new deps that were not complete and will be rescheduled and dependencies added, 3. child process dies: we need to catch this separately.<|endoftext|>
a01773dd35a79109418b36875ac9111e60a7b31b0900bb5266fdb92315fd236c
def _keep_alive(self, n_pending_tasks, n_unique_pending): '\n Returns true if a worker should stay alive given.\n\n If worker-keep-alive is not set, this will always return false.\n For an assistant, it will always return the value of worker-keep-alive.\n Otherwise, it will return true for nonzero n_pending_tasks.\n\n If worker-count-uniques is true, it will also\n require that one of the tasks is unique to this worker.\n ' if (not self._config.keep_alive): return False elif self._assistant: return True else: return (n_pending_tasks and (n_unique_pending or (not self._config.count_uniques)))
Returns true if a worker should stay alive given. If worker-keep-alive is not set, this will always return false. For an assistant, it will always return the value of worker-keep-alive. Otherwise, it will return true for nonzero n_pending_tasks. If worker-count-uniques is true, it will also require that one of the tasks is unique to this worker.
luigi/worker.py
_keep_alive
GlobalFishingWatch/luigi
2
python
def _keep_alive(self, n_pending_tasks, n_unique_pending): '\n Returns true if a worker should stay alive given.\n\n If worker-keep-alive is not set, this will always return false.\n For an assistant, it will always return the value of worker-keep-alive.\n Otherwise, it will return true for nonzero n_pending_tasks.\n\n If worker-count-uniques is true, it will also\n require that one of the tasks is unique to this worker.\n ' if (not self._config.keep_alive): return False elif self._assistant: return True else: return (n_pending_tasks and (n_unique_pending or (not self._config.count_uniques)))
def _keep_alive(self, n_pending_tasks, n_unique_pending): '\n Returns true if a worker should stay alive given.\n\n If worker-keep-alive is not set, this will always return false.\n For an assistant, it will always return the value of worker-keep-alive.\n Otherwise, it will return true for nonzero n_pending_tasks.\n\n If worker-count-uniques is true, it will also\n require that one of the tasks is unique to this worker.\n ' if (not self._config.keep_alive): return False elif self._assistant: return True else: return (n_pending_tasks and (n_unique_pending or (not self._config.count_uniques)))<|docstring|>Returns true if a worker should stay alive given. If worker-keep-alive is not set, this will always return false. For an assistant, it will always return the value of worker-keep-alive. Otherwise, it will return true for nonzero n_pending_tasks. If worker-count-uniques is true, it will also require that one of the tasks is unique to this worker.<|endoftext|>
0a5ddea33ec6fae4d3f1c0806295d1de3683b6fa893a19700e740380cbd89b3f
def handle_interrupt(self, signum, _): '\n Stops the assistant from asking for more work on SIGUSR1\n ' if (signum == signal.SIGUSR1): self._config.keep_alive = False self._stop_requesting_work = True
Stops the assistant from asking for more work on SIGUSR1
luigi/worker.py
handle_interrupt
GlobalFishingWatch/luigi
2
python
def handle_interrupt(self, signum, _): '\n \n ' if (signum == signal.SIGUSR1): self._config.keep_alive = False self._stop_requesting_work = True
def handle_interrupt(self, signum, _): '\n \n ' if (signum == signal.SIGUSR1): self._config.keep_alive = False self._stop_requesting_work = True<|docstring|>Stops the assistant from asking for more work on SIGUSR1<|endoftext|>
e19e3cc8d905f1523e1c90ae5f062b5f92ff0e9a25e32d1bc0caa976011eda81
def run(self): '\n Returns True if all scheduled tasks were executed successfully.\n ' logger.info('Running Worker with %d processes', self.worker_processes) sleeper = self._sleeper() self.run_succeeded = True self._add_worker() while True: while (len(self._running_tasks) >= self.worker_processes): logger.debug('%d running tasks, waiting for next task to finish', len(self._running_tasks)) self._handle_next_task() (task_id, running_tasks, n_pending_tasks, n_unique_pending) = self._get_work() if (task_id is None): if (not self._stop_requesting_work): self._log_remote_tasks(running_tasks, n_pending_tasks, n_unique_pending) if (len(self._running_tasks) == 0): if self._keep_alive(n_pending_tasks, n_unique_pending): six.next(sleeper) continue else: break else: self._handle_next_task() continue logger.debug('Pending tasks: %s', n_pending_tasks) self._run_task(task_id) while len(self._running_tasks): logger.debug('Shut down Worker, %d more tasks to go', len(self._running_tasks)) self._handle_next_task() return self.run_succeeded
Returns True if all scheduled tasks were executed successfully.
luigi/worker.py
run
GlobalFishingWatch/luigi
2
python
def run(self): '\n \n ' logger.info('Running Worker with %d processes', self.worker_processes) sleeper = self._sleeper() self.run_succeeded = True self._add_worker() while True: while (len(self._running_tasks) >= self.worker_processes): logger.debug('%d running tasks, waiting for next task to finish', len(self._running_tasks)) self._handle_next_task() (task_id, running_tasks, n_pending_tasks, n_unique_pending) = self._get_work() if (task_id is None): if (not self._stop_requesting_work): self._log_remote_tasks(running_tasks, n_pending_tasks, n_unique_pending) if (len(self._running_tasks) == 0): if self._keep_alive(n_pending_tasks, n_unique_pending): six.next(sleeper) continue else: break else: self._handle_next_task() continue logger.debug('Pending tasks: %s', n_pending_tasks) self._run_task(task_id) while len(self._running_tasks): logger.debug('Shut down Worker, %d more tasks to go', len(self._running_tasks)) self._handle_next_task() return self.run_succeeded
def run(self): '\n \n ' logger.info('Running Worker with %d processes', self.worker_processes) sleeper = self._sleeper() self.run_succeeded = True self._add_worker() while True: while (len(self._running_tasks) >= self.worker_processes): logger.debug('%d running tasks, waiting for next task to finish', len(self._running_tasks)) self._handle_next_task() (task_id, running_tasks, n_pending_tasks, n_unique_pending) = self._get_work() if (task_id is None): if (not self._stop_requesting_work): self._log_remote_tasks(running_tasks, n_pending_tasks, n_unique_pending) if (len(self._running_tasks) == 0): if self._keep_alive(n_pending_tasks, n_unique_pending): six.next(sleeper) continue else: break else: self._handle_next_task() continue logger.debug('Pending tasks: %s', n_pending_tasks) self._run_task(task_id) while len(self._running_tasks): logger.debug('Shut down Worker, %d more tasks to go', len(self._running_tasks)) self._handle_next_task() return self.run_succeeded<|docstring|>Returns True if all scheduled tasks were executed successfully.<|endoftext|>
c9dcf846ca211f60f4348bd404a5dd2c9bc051cbc8e4940b1fd3e1c040040166
def _nested_dim(space): '\n Return the total number of dimensions in the entire (nested) space.\n ' if isinstance(space, Dict): return [*itertools.chain.from_iterable([_nested_dim_helper(s) for s in space.spaces.values()])] elif isinstance(space, Tuple): return [*itertools.chain.from_iterable([_nested_dim_helper(s) for s in space.spaces])] else: return _nested_dim_helper(space)
Return the total number of dimensions in the entire (nested) space.
abmarl/sim/wrappers/ravel_discrete_wrapper.py
_nested_dim
Leonardo767/Abmarl
7
python
def _nested_dim(space): '\n \n ' if isinstance(space, Dict): return [*itertools.chain.from_iterable([_nested_dim_helper(s) for s in space.spaces.values()])] elif isinstance(space, Tuple): return [*itertools.chain.from_iterable([_nested_dim_helper(s) for s in space.spaces])] else: return _nested_dim_helper(space)
def _nested_dim(space): '\n \n ' if isinstance(space, Dict): return [*itertools.chain.from_iterable([_nested_dim_helper(s) for s in space.spaces.values()])] elif isinstance(space, Tuple): return [*itertools.chain.from_iterable([_nested_dim_helper(s) for s in space.spaces])] else: return _nested_dim_helper(space)<|docstring|>Return the total number of dimensions in the entire (nested) space.<|endoftext|>
d039a82564a2432c0afd5bda97f2be3da645199f5327512b2d619b0f94e71737
def ravel(space, point): '\n Ravel point in space to a single discrete value.\n ' return _ravel_helper(space, point)[0]
Ravel point in space to a single discrete value.
abmarl/sim/wrappers/ravel_discrete_wrapper.py
ravel
Leonardo767/Abmarl
7
python
def ravel(space, point): '\n \n ' return _ravel_helper(space, point)[0]
def ravel(space, point): '\n \n ' return _ravel_helper(space, point)[0]<|docstring|>Ravel point in space to a single discrete value.<|endoftext|>
8b7c243d4ffa132035b5818f764113a3362e924b368c1abbebbdcb08387efcea
def unravel(space, point): '\n Unravel a single discrete point to a value in the space.\n ' if isinstance(space, Discrete): return point if isinstance(space, MultiDiscrete): return [*np.unravel_index(point, space.nvec)] if isinstance(space, MultiBinary): return [*np.unravel_index(point, ([2] * space.n))] if isinstance(space, Box): space_helper = ((space.high + 1) - space.low).flatten() return (np.reshape(np.unravel_index(point, space_helper), space.shape) + space.low) elif isinstance(space, Dict): dims = _nested_dim(space) unravelled_point = unravel(MultiDiscrete(dims), point) output = {} for (i, (key, value)) in enumerate(space.spaces.items()): output[key] = unravel(value, unravelled_point[i]) return output elif isinstance(space, Tuple): dims = _nested_dim(space) unravelled_point = unravel(MultiDiscrete(dims), point) output = [] for (i, value) in enumerate(space.spaces): output.append(unravel(value, unravelled_point[i])) return tuple(output)
Unravel a single discrete point to a value in the space.
abmarl/sim/wrappers/ravel_discrete_wrapper.py
unravel
Leonardo767/Abmarl
7
python
def unravel(space, point): '\n \n ' if isinstance(space, Discrete): return point if isinstance(space, MultiDiscrete): return [*np.unravel_index(point, space.nvec)] if isinstance(space, MultiBinary): return [*np.unravel_index(point, ([2] * space.n))] if isinstance(space, Box): space_helper = ((space.high + 1) - space.low).flatten() return (np.reshape(np.unravel_index(point, space_helper), space.shape) + space.low) elif isinstance(space, Dict): dims = _nested_dim(space) unravelled_point = unravel(MultiDiscrete(dims), point) output = {} for (i, (key, value)) in enumerate(space.spaces.items()): output[key] = unravel(value, unravelled_point[i]) return output elif isinstance(space, Tuple): dims = _nested_dim(space) unravelled_point = unravel(MultiDiscrete(dims), point) output = [] for (i, value) in enumerate(space.spaces): output.append(unravel(value, unravelled_point[i])) return tuple(output)
def unravel(space, point): '\n \n ' if isinstance(space, Discrete): return point if isinstance(space, MultiDiscrete): return [*np.unravel_index(point, space.nvec)] if isinstance(space, MultiBinary): return [*np.unravel_index(point, ([2] * space.n))] if isinstance(space, Box): space_helper = ((space.high + 1) - space.low).flatten() return (np.reshape(np.unravel_index(point, space_helper), space.shape) + space.low) elif isinstance(space, Dict): dims = _nested_dim(space) unravelled_point = unravel(MultiDiscrete(dims), point) output = {} for (i, (key, value)) in enumerate(space.spaces.items()): output[key] = unravel(value, unravelled_point[i]) return output elif isinstance(space, Tuple): dims = _nested_dim(space) unravelled_point = unravel(MultiDiscrete(dims), point) output = [] for (i, value) in enumerate(space.spaces): output.append(unravel(value, unravelled_point[i])) return tuple(output)<|docstring|>Unravel a single discrete point to a value in the space.<|endoftext|>
40b381557de949e5010d27e7e18967b28b363ed448b9cec86cf907017a044788
def ravel_space(space): '\n Convert the space into a Discrete space.\n ' dims = _nested_dim_helper(space) return Discrete(dims[0])
Convert the space into a Discrete space.
abmarl/sim/wrappers/ravel_discrete_wrapper.py
ravel_space
Leonardo767/Abmarl
7
python
def ravel_space(space): '\n \n ' dims = _nested_dim_helper(space) return Discrete(dims[0])
def ravel_space(space): '\n \n ' dims = _nested_dim_helper(space) return Discrete(dims[0])<|docstring|>Convert the space into a Discrete space.<|endoftext|>
2b8040b3fe673d377af90427740eb780f94b2ba33f045255052599eed446c8c4
def _isbounded(space): "\n Gym Box converts np.inf to min and max values for integer types. As a result,\n Box.is_bounded doesn't work because it checks for inf, not for min/max values\n of that dtype. This function checks for min/max values of the dtype.\n " return (space.is_bounded() and (not (space.low == np.iinfo(space.dtype).min).any()) and (not (space.low == np.iinfo(space.dtype).max).any()) and (not (space.high == np.iinfo(space.dtype).min).any()) and (not (space.high == np.iinfo(space.dtype).max).any()))
Gym Box converts np.inf to min and max values for integer types. As a result, Box.is_bounded doesn't work because it checks for inf, not for min/max values of that dtype. This function checks for min/max values of the dtype.
abmarl/sim/wrappers/ravel_discrete_wrapper.py
_isbounded
Leonardo767/Abmarl
7
python
def _isbounded(space): "\n Gym Box converts np.inf to min and max values for integer types. As a result,\n Box.is_bounded doesn't work because it checks for inf, not for min/max values\n of that dtype. This function checks for min/max values of the dtype.\n " return (space.is_bounded() and (not (space.low == np.iinfo(space.dtype).min).any()) and (not (space.low == np.iinfo(space.dtype).max).any()) and (not (space.high == np.iinfo(space.dtype).min).any()) and (not (space.high == np.iinfo(space.dtype).max).any()))
def _isbounded(space): "\n Gym Box converts np.inf to min and max values for integer types. As a result,\n Box.is_bounded doesn't work because it checks for inf, not for min/max values\n of that dtype. This function checks for min/max values of the dtype.\n " return (space.is_bounded() and (not (space.low == np.iinfo(space.dtype).min).any()) and (not (space.low == np.iinfo(space.dtype).max).any()) and (not (space.high == np.iinfo(space.dtype).min).any()) and (not (space.high == np.iinfo(space.dtype).max).any()))<|docstring|>Gym Box converts np.inf to min and max values for integer types. As a result, Box.is_bounded doesn't work because it checks for inf, not for min/max values of that dtype. This function checks for min/max values of the dtype.<|endoftext|>
e2c2bd4a044da411045a9d306beb974d4416e8281c1294749d0275517f194de4
def check_space(space): '\n Ensure that the space is of type that can be ravelled to discrete value.\n ' if (isinstance(space, Discrete) or isinstance(space, MultiDiscrete) or isinstance(space, MultiBinary)): return True elif (isinstance(space, Box) and np.issubdtype(space, np.int) and _isbounded(space)): return True elif isinstance(space, Dict): return all([check_space(sub_space) for sub_space in space.spaces.values()]) elif isinstance(space, Tuple): return all([check_space(sub_space) for sub_space in space.spaces]) else: return False
Ensure that the space is of type that can be ravelled to discrete value.
abmarl/sim/wrappers/ravel_discrete_wrapper.py
check_space
Leonardo767/Abmarl
7
python
def check_space(space): '\n \n ' if (isinstance(space, Discrete) or isinstance(space, MultiDiscrete) or isinstance(space, MultiBinary)): return True elif (isinstance(space, Box) and np.issubdtype(space, np.int) and _isbounded(space)): return True elif isinstance(space, Dict): return all([check_space(sub_space) for sub_space in space.spaces.values()]) elif isinstance(space, Tuple): return all([check_space(sub_space) for sub_space in space.spaces]) else: return False
def check_space(space): '\n \n ' if (isinstance(space, Discrete) or isinstance(space, MultiDiscrete) or isinstance(space, MultiBinary)): return True elif (isinstance(space, Box) and np.issubdtype(space, np.int) and _isbounded(space)): return True elif isinstance(space, Dict): return all([check_space(sub_space) for sub_space in space.spaces.values()]) elif isinstance(space, Tuple): return all([check_space(sub_space) for sub_space in space.spaces]) else: return False<|docstring|>Ensure that the space is of type that can be ravelled to discrete value.<|endoftext|>
886540c6c6d41f80df4c26d2e594121e4795c82f782127c79ec5640c86c830b6
@property def users(self): ' Returns users in a tuple ' return list(self.new_users.keys())
Returns users in a tuple
htpasswd/basic.py
users
willjp/htpasswd
19
python
@property def users(self): ' ' return list(self.new_users.keys())
@property def users(self): ' ' return list(self.new_users.keys())<|docstring|>Returns users in a tuple<|endoftext|>
4185993a993bc18a3e4ddcd0116a946e3ee8e2821de133e990287f1f7f295251
def add(self, user, password): ' Adds a user with password ' if self.__contains__(user): raise UserExists self.new_users[user] = (self._encrypt_password(password) + '\n')
Adds a user with password
htpasswd/basic.py
add
willjp/htpasswd
19
python
def add(self, user, password): ' ' if self.__contains__(user): raise UserExists self.new_users[user] = (self._encrypt_password(password) + '\n')
def add(self, user, password): ' ' if self.__contains__(user): raise UserExists self.new_users[user] = (self._encrypt_password(password) + '\n')<|docstring|>Adds a user with password<|endoftext|>
d862879aabc83f097293e91be48b761c39f24e63cc2033d1c0eb07517d0b9ba8
def pop(self, user): ' Deletes a user ' if (not self.__contains__(user)): raise UserNotExists self.new_users.pop(user)
Deletes a user
htpasswd/basic.py
pop
willjp/htpasswd
19
python
def pop(self, user): ' ' if (not self.__contains__(user)): raise UserNotExists self.new_users.pop(user)
def pop(self, user): ' ' if (not self.__contains__(user)): raise UserNotExists self.new_users.pop(user)<|docstring|>Deletes a user<|endoftext|>
8ff887171f038fe76ffa40d21f77506e8bb45e16fb4a98d68b7da2dde13c1eb7
def change_password(self, user, password): ' Changes user password ' if (not self.__contains__(user)): raise UserNotExists self.new_users[user] = (self._encrypt_password(password) + '\n')
Changes user password
htpasswd/basic.py
change_password
willjp/htpasswd
19
python
def change_password(self, user, password): ' ' if (not self.__contains__(user)): raise UserNotExists self.new_users[user] = (self._encrypt_password(password) + '\n')
def change_password(self, user, password): ' ' if (not self.__contains__(user)): raise UserNotExists self.new_users[user] = (self._encrypt_password(password) + '\n')<|docstring|>Changes user password<|endoftext|>
d7917cf0e39891f3fb5aa4f2d49286b8f3e203bea3f9a6821c023e4a424269fb
def _encrypt_password(self, password): 'encrypt the password for given mode ' if (self.encryption_mode.lower() == 'crypt'): return self._crypt_password(password) elif (self.encryption_mode.lower() == 'md5'): return self._md5_password(password) elif (self.encryption_mode.lower() == 'md5-base'): return self._md5_base_password(password) else: raise UnknownEncryptionMode(self.encryption_mode)
encrypt the password for given mode
htpasswd/basic.py
_encrypt_password
willjp/htpasswd
19
python
def _encrypt_password(self, password): ' ' if (self.encryption_mode.lower() == 'crypt'): return self._crypt_password(password) elif (self.encryption_mode.lower() == 'md5'): return self._md5_password(password) elif (self.encryption_mode.lower() == 'md5-base'): return self._md5_base_password(password) else: raise UnknownEncryptionMode(self.encryption_mode)
def _encrypt_password(self, password): ' ' if (self.encryption_mode.lower() == 'crypt'): return self._crypt_password(password) elif (self.encryption_mode.lower() == 'md5'): return self._md5_password(password) elif (self.encryption_mode.lower() == 'md5-base'): return self._md5_base_password(password) else: raise UnknownEncryptionMode(self.encryption_mode)<|docstring|>encrypt the password for given mode<|endoftext|>
cdaa177bbcc0b2bdfb5b6b6e4c61d9eee89ae4e769a759a07f8f86c10f0c2b2a
def _crypt_password(self, password): ' Crypts password ' def salt(): ' Generates some salt ' symbols = (ascii_letters + digits) return (choice(symbols) + choice(symbols)) return crypt(password, salt())
Crypts password
htpasswd/basic.py
_crypt_password
willjp/htpasswd
19
python
def _crypt_password(self, password): ' ' def salt(): ' Generates some salt ' symbols = (ascii_letters + digits) return (choice(symbols) + choice(symbols)) return crypt(password, salt())
def _crypt_password(self, password): ' ' def salt(): ' Generates some salt ' symbols = (ascii_letters + digits) return (choice(symbols) + choice(symbols)) return crypt(password, salt())<|docstring|>Crypts password<|endoftext|>
7ba2646bfc16dd3d215f52df7b00c687a1563677265245dcd16ba2ac73bf3f1b
def _md5_password(self, password): " Crypts password using openssl binary and MD5 (apache variant,\n 'apr1') encryption " return subprocess.check_output(['openssl', 'passwd', '-apr1', password]).decode('utf-8').strip()
Crypts password using openssl binary and MD5 (apache variant, 'apr1') encryption
htpasswd/basic.py
_md5_password
willjp/htpasswd
19
python
def _md5_password(self, password): " Crypts password using openssl binary and MD5 (apache variant,\n 'apr1') encryption " return subprocess.check_output(['openssl', 'passwd', '-apr1', password]).decode('utf-8').strip()
def _md5_password(self, password): " Crypts password using openssl binary and MD5 (apache variant,\n 'apr1') encryption " return subprocess.check_output(['openssl', 'passwd', '-apr1', password]).decode('utf-8').strip()<|docstring|>Crypts password using openssl binary and MD5 (apache variant, 'apr1') encryption<|endoftext|>
2357e192545659d0e04ed8f3c28f74a49aeb9b17b11c3242844189a4b873cff8
def _md5_base_password(self, password): ' Crypts password using openssl binary and MD5 based encryption ' return subprocess.check_output(['openssl', 'passwd', '-1', password]).decode('utf-8').strip()
Crypts password using openssl binary and MD5 based encryption
htpasswd/basic.py
_md5_base_password
willjp/htpasswd
19
python
def _md5_base_password(self, password): ' ' return subprocess.check_output(['openssl', 'passwd', '-1', password]).decode('utf-8').strip()
def _md5_base_password(self, password): ' ' return subprocess.check_output(['openssl', 'passwd', '-1', password]).decode('utf-8').strip()<|docstring|>Crypts password using openssl binary and MD5 based encryption<|endoftext|>
6b7e98b35ef0f0933aff8fd75cd7bcfdf2e3722f115e160395a43db8ce24f3d9
def salt(): ' Generates some salt ' symbols = (ascii_letters + digits) return (choice(symbols) + choice(symbols))
Generates some salt
htpasswd/basic.py
salt
willjp/htpasswd
19
python
def salt(): ' ' symbols = (ascii_letters + digits) return (choice(symbols) + choice(symbols))
def salt(): ' ' symbols = (ascii_letters + digits) return (choice(symbols) + choice(symbols))<|docstring|>Generates some salt<|endoftext|>
7dafbe2ed60b5d04aaca9f2aa4baa2ec41e2555639255751f726197fbca7d6b6
def refreshAll(self): "\n Set the text of lineEdit once it's valid\n " self.Videocapture_ = '0'
Set the text of lineEdit once it's valid
mainwindow.py
refreshAll
vitalik-ez/Diplom
0
python
def refreshAll(self): "\n \n " self.Videocapture_ = '0'
def refreshAll(self): "\n \n " self.Videocapture_ = '0'<|docstring|>Set the text of lineEdit once it's valid<|endoftext|>
b021fccdf18d63e4f1aa5ea187d71053a308a3d891a6b18bc68c890216d85350
@pyqtSlot() def runSlot(self): '\n Called when the user presses the Run button\n ' print('Clicked Run') self.refreshAll() print(self.Videocapture_) ui.hide() self.outputWindow_()
Called when the user presses the Run button
mainwindow.py
runSlot
vitalik-ez/Diplom
0
python
@pyqtSlot() def runSlot(self): '\n \n ' print('Clicked Run') self.refreshAll() print(self.Videocapture_) ui.hide() self.outputWindow_()
@pyqtSlot() def runSlot(self): '\n \n ' print('Clicked Run') self.refreshAll() print(self.Videocapture_) ui.hide() self.outputWindow_()<|docstring|>Called when the user presses the Run button<|endoftext|>
9ae81bcabf195317d124f4e5cb3749a2b19b91d12e0a651e0f805b4227081761
def outputWindow_(self): '\n Created new window for vidual output of the video in GUI\n ' self._new_window = Ui_OutputDialog() self._new_window.show() self._new_window.startVideo(self.Videocapture_) print('Video Played')
Created new window for vidual output of the video in GUI
mainwindow.py
outputWindow_
vitalik-ez/Diplom
0
python
def outputWindow_(self): '\n \n ' self._new_window = Ui_OutputDialog() self._new_window.show() self._new_window.startVideo(self.Videocapture_) print('Video Played')
def outputWindow_(self): '\n \n ' self._new_window = Ui_OutputDialog() self._new_window.show() self._new_window.startVideo(self.Videocapture_) print('Video Played')<|docstring|>Created new window for vidual output of the video in GUI<|endoftext|>
bce2b62feabce5b0cbd622dfa5065e78fee60096623a3061ed14637c5c561581
def SampleRandomPair(m): 'SampleRandomPair: Samples a pair [i,j] with 0<=i,j<=m-1 and i!=j, uniformly from the set of all such pairs\n It returns a list.\n \n >> SampleRandomPair(10)\n ' assert ((type(m) is int) and (m >= 2)), "'m' has to be an integer, which is >=2." sample = list() i = np.floor(np.random.uniform(0, m)) j = np.floor(np.random.uniform(0, (m - 1))) if (j == i): j = (j + 1) sample.append(int(i)) sample.append(int(j)) return sample
SampleRandomPair: Samples a pair [i,j] with 0<=i,j<=m-1 and i!=j, uniformly from the set of all such pairs It returns a list. >> SampleRandomPair(10)
TestEnvironment.py
SampleRandomPair
bjoernhad/CondorcetWinnerTestification
1
python
def SampleRandomPair(m): 'SampleRandomPair: Samples a pair [i,j] with 0<=i,j<=m-1 and i!=j, uniformly from the set of all such pairs\n It returns a list.\n \n >> SampleRandomPair(10)\n ' assert ((type(m) is int) and (m >= 2)), "'m' has to be an integer, which is >=2." sample = list() i = np.floor(np.random.uniform(0, m)) j = np.floor(np.random.uniform(0, (m - 1))) if (j == i): j = (j + 1) sample.append(int(i)) sample.append(int(j)) return sample
def SampleRandomPair(m): 'SampleRandomPair: Samples a pair [i,j] with 0<=i,j<=m-1 and i!=j, uniformly from the set of all such pairs\n It returns a list.\n \n >> SampleRandomPair(10)\n ' assert ((type(m) is int) and (m >= 2)), "'m' has to be an integer, which is >=2." sample = list() i = np.floor(np.random.uniform(0, m)) j = np.floor(np.random.uniform(0, (m - 1))) if (j == i): j = (j + 1) sample.append(int(i)) sample.append(int(j)) return sample<|docstring|>SampleRandomPair: Samples a pair [i,j] with 0<=i,j<=m-1 and i!=j, uniformly from the set of all such pairs It returns a list. >> SampleRandomPair(10)<|endoftext|>
80b705a89076fa9a37770bcc37c3344ea41cfa103cfb58ed8356eddf4ceb35e1
def __init__(self, P, N=False, R=False): 'TestEnvironment: Models the Dueling Bandits Setting. The ground-truth probabilities of alternative i winning against j is represented by a Reciprocal Relation P. \n Moreover, it tracks the information N[i,j] how often alternatives i and j are compared \n as well as the number R[i,j] how often alternative i won against j.\n The `time` is the total number of comparisons currently made, i.e. time = \\sum_{i,j} R[i,j]"\n P: Reciprocal Relation, in which the (i,j)-entry P.getEntry([i,j]) denotes the probability that i is preferred to j \n N: Either `False` or a NumPy array of size (m,m) with N[i,i]=0 and N[i,j]=N[j,i] for all i,j.\n R: Either `False` or a NumPy array of size (m,m) with R[i,j]+R[j,i]=N[i,j] for all i,j\n \n >> P=rr.sampleWST(3)\n >> N=np.array([[0,2,1],[2,0,1],[1,1,0]])\n >> R=np.array([[0,1,1],[1,0,0],[0,1,0]])\n >> TE = TestEnvironment(P,N,R)\n ' assert (type(P) is rr.ReciprocalRelation), '`P` has to be a Reciprocal Relation' assert (((type(N) == bool) and (N == False)) or ((type(N) is np.ndarray) and (N.shape == (P.m, P.m)))), 'N either has to be `False` or a NumPy array of size (m,m) with N[i,i] = 0 and N[i,j]=N[j,i] for all distinct i,j. (Here, m is the number of alternatives, i.e. m=P.m)' assert (((type(N) == bool) and (N == False)) or (all(((N[(i, i)] == 0) for i in range(0, P.m))) and ((N - np.matrix.transpose(N)) == np.zeros(N.shape)).all())), '`N` has to fulfill N[i,i] = 0 and N[i,j]=N[j,i] for all distinct i,j.' assert (((type(R) == bool) and (R == False)) or ((type(R) is np.ndarray) and (type(N) is np.ndarray) and (R.shape == (P.m, P.m)) and ((R + np.matrix.transpose(R)) == N).all())), '`R` has to be `False` or a NumPy array of size (m,m) with R[i,j]+R[j,i]=N[i,j] for all i,j. ((Here, m is the number of alternatives, i.e. m=P.m)' self.P = P if (type(N) == bool): self.N = np.array((np.zeros((P.m, P.m)) + 1), dtype=int) for i in range(0, P.m): self.N[(i, i)] = 0 else: self.N = N.astype(int) if (type(R) == bool): self.R = np.random.binomial(self.N, self.P.Q) for i in range(0, self.P.m): self.R[(i, i)] for j in range((i + 1), self.P.m): self.R[(j, i)] = (self.N[(i, j)] - self.R[(i, j)]) else: self.R = R.astype(int) self.time = int(np.sum(self.R))
TestEnvironment: Models the Dueling Bandits Setting. The ground-truth probabilities of alternative i winning against j is represented by a Reciprocal Relation P. Moreover, it tracks the information N[i,j] how often alternatives i and j are compared as well as the number R[i,j] how often alternative i won against j. The `time` is the total number of comparisons currently made, i.e. time = \sum_{i,j} R[i,j]" P: Reciprocal Relation, in which the (i,j)-entry P.getEntry([i,j]) denotes the probability that i is preferred to j N: Either `False` or a NumPy array of size (m,m) with N[i,i]=0 and N[i,j]=N[j,i] for all i,j. R: Either `False` or a NumPy array of size (m,m) with R[i,j]+R[j,i]=N[i,j] for all i,j >> P=rr.sampleWST(3) >> N=np.array([[0,2,1],[2,0,1],[1,1,0]]) >> R=np.array([[0,1,1],[1,0,0],[0,1,0]]) >> TE = TestEnvironment(P,N,R)
TestEnvironment.py
__init__
bjoernhad/CondorcetWinnerTestification
1
python
def __init__(self, P, N=False, R=False): 'TestEnvironment: Models the Dueling Bandits Setting. The ground-truth probabilities of alternative i winning against j is represented by a Reciprocal Relation P. \n Moreover, it tracks the information N[i,j] how often alternatives i and j are compared \n as well as the number R[i,j] how often alternative i won against j.\n The `time` is the total number of comparisons currently made, i.e. time = \\sum_{i,j} R[i,j]"\n P: Reciprocal Relation, in which the (i,j)-entry P.getEntry([i,j]) denotes the probability that i is preferred to j \n N: Either `False` or a NumPy array of size (m,m) with N[i,i]=0 and N[i,j]=N[j,i] for all i,j.\n R: Either `False` or a NumPy array of size (m,m) with R[i,j]+R[j,i]=N[i,j] for all i,j\n \n >> P=rr.sampleWST(3)\n >> N=np.array([[0,2,1],[2,0,1],[1,1,0]])\n >> R=np.array([[0,1,1],[1,0,0],[0,1,0]])\n >> TE = TestEnvironment(P,N,R)\n ' assert (type(P) is rr.ReciprocalRelation), '`P` has to be a Reciprocal Relation' assert (((type(N) == bool) and (N == False)) or ((type(N) is np.ndarray) and (N.shape == (P.m, P.m)))), 'N either has to be `False` or a NumPy array of size (m,m) with N[i,i] = 0 and N[i,j]=N[j,i] for all distinct i,j. (Here, m is the number of alternatives, i.e. m=P.m)' assert (((type(N) == bool) and (N == False)) or (all(((N[(i, i)] == 0) for i in range(0, P.m))) and ((N - np.matrix.transpose(N)) == np.zeros(N.shape)).all())), '`N` has to fulfill N[i,i] = 0 and N[i,j]=N[j,i] for all distinct i,j.' assert (((type(R) == bool) and (R == False)) or ((type(R) is np.ndarray) and (type(N) is np.ndarray) and (R.shape == (P.m, P.m)) and ((R + np.matrix.transpose(R)) == N).all())), '`R` has to be `False` or a NumPy array of size (m,m) with R[i,j]+R[j,i]=N[i,j] for all i,j. ((Here, m is the number of alternatives, i.e. m=P.m)' self.P = P if (type(N) == bool): self.N = np.array((np.zeros((P.m, P.m)) + 1), dtype=int) for i in range(0, P.m): self.N[(i, i)] = 0 else: self.N = N.astype(int) if (type(R) == bool): self.R = np.random.binomial(self.N, self.P.Q) for i in range(0, self.P.m): self.R[(i, i)] for j in range((i + 1), self.P.m): self.R[(j, i)] = (self.N[(i, j)] - self.R[(i, j)]) else: self.R = R.astype(int) self.time = int(np.sum(self.R))
def __init__(self, P, N=False, R=False): 'TestEnvironment: Models the Dueling Bandits Setting. The ground-truth probabilities of alternative i winning against j is represented by a Reciprocal Relation P. \n Moreover, it tracks the information N[i,j] how often alternatives i and j are compared \n as well as the number R[i,j] how often alternative i won against j.\n The `time` is the total number of comparisons currently made, i.e. time = \\sum_{i,j} R[i,j]"\n P: Reciprocal Relation, in which the (i,j)-entry P.getEntry([i,j]) denotes the probability that i is preferred to j \n N: Either `False` or a NumPy array of size (m,m) with N[i,i]=0 and N[i,j]=N[j,i] for all i,j.\n R: Either `False` or a NumPy array of size (m,m) with R[i,j]+R[j,i]=N[i,j] for all i,j\n \n >> P=rr.sampleWST(3)\n >> N=np.array([[0,2,1],[2,0,1],[1,1,0]])\n >> R=np.array([[0,1,1],[1,0,0],[0,1,0]])\n >> TE = TestEnvironment(P,N,R)\n ' assert (type(P) is rr.ReciprocalRelation), '`P` has to be a Reciprocal Relation' assert (((type(N) == bool) and (N == False)) or ((type(N) is np.ndarray) and (N.shape == (P.m, P.m)))), 'N either has to be `False` or a NumPy array of size (m,m) with N[i,i] = 0 and N[i,j]=N[j,i] for all distinct i,j. (Here, m is the number of alternatives, i.e. m=P.m)' assert (((type(N) == bool) and (N == False)) or (all(((N[(i, i)] == 0) for i in range(0, P.m))) and ((N - np.matrix.transpose(N)) == np.zeros(N.shape)).all())), '`N` has to fulfill N[i,i] = 0 and N[i,j]=N[j,i] for all distinct i,j.' assert (((type(R) == bool) and (R == False)) or ((type(R) is np.ndarray) and (type(N) is np.ndarray) and (R.shape == (P.m, P.m)) and ((R + np.matrix.transpose(R)) == N).all())), '`R` has to be `False` or a NumPy array of size (m,m) with R[i,j]+R[j,i]=N[i,j] for all i,j. ((Here, m is the number of alternatives, i.e. m=P.m)' self.P = P if (type(N) == bool): self.N = np.array((np.zeros((P.m, P.m)) + 1), dtype=int) for i in range(0, P.m): self.N[(i, i)] = 0 else: self.N = N.astype(int) if (type(R) == bool): self.R = np.random.binomial(self.N, self.P.Q) for i in range(0, self.P.m): self.R[(i, i)] for j in range((i + 1), self.P.m): self.R[(j, i)] = (self.N[(i, j)] - self.R[(i, j)]) else: self.R = R.astype(int) self.time = int(np.sum(self.R))<|docstring|>TestEnvironment: Models the Dueling Bandits Setting. The ground-truth probabilities of alternative i winning against j is represented by a Reciprocal Relation P. Moreover, it tracks the information N[i,j] how often alternatives i and j are compared as well as the number R[i,j] how often alternative i won against j. The `time` is the total number of comparisons currently made, i.e. time = \sum_{i,j} R[i,j]" P: Reciprocal Relation, in which the (i,j)-entry P.getEntry([i,j]) denotes the probability that i is preferred to j N: Either `False` or a NumPy array of size (m,m) with N[i,i]=0 and N[i,j]=N[j,i] for all i,j. R: Either `False` or a NumPy array of size (m,m) with R[i,j]+R[j,i]=N[i,j] for all i,j >> P=rr.sampleWST(3) >> N=np.array([[0,2,1],[2,0,1],[1,1,0]]) >> R=np.array([[0,1,1],[1,0,0],[0,1,0]]) >> TE = TestEnvironment(P,N,R)<|endoftext|>
2ff07b30ab129c1974da3ab244160b8c90cdfbefa81e1ee9f16d40f6112c8d7f
def show(self): 'show: Method to show the internal statistics P,N,R and time. For Debugging.\n \n >> TE=TestEnvironment(rr.sampleWST(4))\n >> TE.show()\n ' print('The (current) values of P,N,R and time are:\n', self.P.getRel(), ',\n', self.N, ',\n', self.R, ',\n', self.time)
show: Method to show the internal statistics P,N,R and time. For Debugging. >> TE=TestEnvironment(rr.sampleWST(4)) >> TE.show()
TestEnvironment.py
show
bjoernhad/CondorcetWinnerTestification
1
python
def show(self): 'show: Method to show the internal statistics P,N,R and time. For Debugging.\n \n >> TE=TestEnvironment(rr.sampleWST(4))\n >> TE.show()\n ' print('The (current) values of P,N,R and time are:\n', self.P.getRel(), ',\n', self.N, ',\n', self.R, ',\n', self.time)
def show(self): 'show: Method to show the internal statistics P,N,R and time. For Debugging.\n \n >> TE=TestEnvironment(rr.sampleWST(4))\n >> TE.show()\n ' print('The (current) values of P,N,R and time are:\n', self.P.getRel(), ',\n', self.N, ',\n', self.R, ',\n', self.time)<|docstring|>show: Method to show the internal statistics P,N,R and time. For Debugging. >> TE=TestEnvironment(rr.sampleWST(4)) >> TE.show()<|endoftext|>
12ead27095125137f5f3157801177d96120b1ff986be492202460393e520d393
def pullArmPair(self, i, j): 'pullArmPair: Models one comparison between alternative i and alternative j\n i: integer in 0,...,m-1 (m: number of alternatives)\n j: integer in 0,...,m-1 (m: number of alternatives)\n Returns "1" if i is the winner and "0" if j is the winner of the duel.\n \n >> TE=TestEnvironment(rr.sampleWST(4))\n >> TE.pullArmPair(1,2)\n ' assert ((type(i) == int) and (0 <= i) and (i < self.P.m)), '`i` has to be an integer in 0,...,m-1 (m: number of alternatives)' assert ((type(j) == int) and (0 <= j) and (j < self.P.m)), '`j` has to be an integer in 0,...,m-1 (m: number of alternatives)' assert (i != j), 'i and j have to be two DISTINCT arms.' self.N[(i, j)] += 1 self.N[(j, i)] += 1 winner = np.random.binomial(1, self.P.Q[(i, j)]) self.R[(i, j)] += winner self.R[(j, i)] += (1 - winner) self.time += 1 return winner
pullArmPair: Models one comparison between alternative i and alternative j i: integer in 0,...,m-1 (m: number of alternatives) j: integer in 0,...,m-1 (m: number of alternatives) Returns "1" if i is the winner and "0" if j is the winner of the duel. >> TE=TestEnvironment(rr.sampleWST(4)) >> TE.pullArmPair(1,2)
TestEnvironment.py
pullArmPair
bjoernhad/CondorcetWinnerTestification
1
python
def pullArmPair(self, i, j): 'pullArmPair: Models one comparison between alternative i and alternative j\n i: integer in 0,...,m-1 (m: number of alternatives)\n j: integer in 0,...,m-1 (m: number of alternatives)\n Returns "1" if i is the winner and "0" if j is the winner of the duel.\n \n >> TE=TestEnvironment(rr.sampleWST(4))\n >> TE.pullArmPair(1,2)\n ' assert ((type(i) == int) and (0 <= i) and (i < self.P.m)), '`i` has to be an integer in 0,...,m-1 (m: number of alternatives)' assert ((type(j) == int) and (0 <= j) and (j < self.P.m)), '`j` has to be an integer in 0,...,m-1 (m: number of alternatives)' assert (i != j), 'i and j have to be two DISTINCT arms.' self.N[(i, j)] += 1 self.N[(j, i)] += 1 winner = np.random.binomial(1, self.P.Q[(i, j)]) self.R[(i, j)] += winner self.R[(j, i)] += (1 - winner) self.time += 1 return winner
def pullArmPair(self, i, j): 'pullArmPair: Models one comparison between alternative i and alternative j\n i: integer in 0,...,m-1 (m: number of alternatives)\n j: integer in 0,...,m-1 (m: number of alternatives)\n Returns "1" if i is the winner and "0" if j is the winner of the duel.\n \n >> TE=TestEnvironment(rr.sampleWST(4))\n >> TE.pullArmPair(1,2)\n ' assert ((type(i) == int) and (0 <= i) and (i < self.P.m)), '`i` has to be an integer in 0,...,m-1 (m: number of alternatives)' assert ((type(j) == int) and (0 <= j) and (j < self.P.m)), '`j` has to be an integer in 0,...,m-1 (m: number of alternatives)' assert (i != j), 'i and j have to be two DISTINCT arms.' self.N[(i, j)] += 1 self.N[(j, i)] += 1 winner = np.random.binomial(1, self.P.Q[(i, j)]) self.R[(i, j)] += winner self.R[(j, i)] += (1 - winner) self.time += 1 return winner<|docstring|>pullArmPair: Models one comparison between alternative i and alternative j i: integer in 0,...,m-1 (m: number of alternatives) j: integer in 0,...,m-1 (m: number of alternatives) Returns "1" if i is the winner and "0" if j is the winner of the duel. >> TE=TestEnvironment(rr.sampleWST(4)) >> TE.pullArmPair(1,2)<|endoftext|>
f13620064318099595b81e439625e1182f1d48487fc8039ca0fa3b16593d38cc
def pullRandomArmPair(self): 'pullRandomArmPair: Samples an arm uniformly at random from the set of all possible arms and and pulls it. Returns the result in form of the lista list "[pair,winner] = [[pair[0],pair[1]],winner]".\n \n >> TE=TestEnvironment(rr.sampleWST(4))\n >> TE.pullRandomArmPair()\n ' pair = SampleRandomPair(self.P.m) winner = self.pullArmPair(pair[0], pair[1]) return [pair, winner]
pullRandomArmPair: Samples an arm uniformly at random from the set of all possible arms and and pulls it. Returns the result in form of the lista list "[pair,winner] = [[pair[0],pair[1]],winner]". >> TE=TestEnvironment(rr.sampleWST(4)) >> TE.pullRandomArmPair()
TestEnvironment.py
pullRandomArmPair
bjoernhad/CondorcetWinnerTestification
1
python
def pullRandomArmPair(self): 'pullRandomArmPair: Samples an arm uniformly at random from the set of all possible arms and and pulls it. Returns the result in form of the lista list "[pair,winner] = [[pair[0],pair[1]],winner]".\n \n >> TE=TestEnvironment(rr.sampleWST(4))\n >> TE.pullRandomArmPair()\n ' pair = SampleRandomPair(self.P.m) winner = self.pullArmPair(pair[0], pair[1]) return [pair, winner]
def pullRandomArmPair(self): 'pullRandomArmPair: Samples an arm uniformly at random from the set of all possible arms and and pulls it. Returns the result in form of the lista list "[pair,winner] = [[pair[0],pair[1]],winner]".\n \n >> TE=TestEnvironment(rr.sampleWST(4))\n >> TE.pullRandomArmPair()\n ' pair = SampleRandomPair(self.P.m) winner = self.pullArmPair(pair[0], pair[1]) return [pair, winner]<|docstring|>pullRandomArmPair: Samples an arm uniformly at random from the set of all possible arms and and pulls it. Returns the result in form of the lista list "[pair,winner] = [[pair[0],pair[1]],winner]". >> TE=TestEnvironment(rr.sampleWST(4)) >> TE.pullRandomArmPair()<|endoftext|>
ff037ee55eca10c34dd8c8fc730a78df6b5af13697d527b92e76a3b52182bd10
def pullAllArmPairs(self, number_of_times=1): 'pullAllArmPairs: Pulls each pairs of arms `number_of_times` often\n number_of_times: positive integer \n \n >> TE=TestEnvironment(rr.sampleWST(4))\n >> TE.pullAllArmPairs(3)\n ' bufN = (number_of_times * np.ones((self.P.m, self.P.m))) for i in range(0, self.P.m): bufN[(i, i)] = 0 bufR = np.random.binomial(bufN.astype(int), self.P.Q) for i in range(0, self.P.m): bufR[(i, i)] = 0 for j in range((i + 1), self.P.m): bufR[(j, i)] = (number_of_times - bufR[(i, j)]) self.__init__(self.P, (self.N + bufN).astype(int), (self.R + bufR).astype(int))
pullAllArmPairs: Pulls each pairs of arms `number_of_times` often number_of_times: positive integer >> TE=TestEnvironment(rr.sampleWST(4)) >> TE.pullAllArmPairs(3)
TestEnvironment.py
pullAllArmPairs
bjoernhad/CondorcetWinnerTestification
1
python
def pullAllArmPairs(self, number_of_times=1): 'pullAllArmPairs: Pulls each pairs of arms `number_of_times` often\n number_of_times: positive integer \n \n >> TE=TestEnvironment(rr.sampleWST(4))\n >> TE.pullAllArmPairs(3)\n ' bufN = (number_of_times * np.ones((self.P.m, self.P.m))) for i in range(0, self.P.m): bufN[(i, i)] = 0 bufR = np.random.binomial(bufN.astype(int), self.P.Q) for i in range(0, self.P.m): bufR[(i, i)] = 0 for j in range((i + 1), self.P.m): bufR[(j, i)] = (number_of_times - bufR[(i, j)]) self.__init__(self.P, (self.N + bufN).astype(int), (self.R + bufR).astype(int))
def pullAllArmPairs(self, number_of_times=1): 'pullAllArmPairs: Pulls each pairs of arms `number_of_times` often\n number_of_times: positive integer \n \n >> TE=TestEnvironment(rr.sampleWST(4))\n >> TE.pullAllArmPairs(3)\n ' bufN = (number_of_times * np.ones((self.P.m, self.P.m))) for i in range(0, self.P.m): bufN[(i, i)] = 0 bufR = np.random.binomial(bufN.astype(int), self.P.Q) for i in range(0, self.P.m): bufR[(i, i)] = 0 for j in range((i + 1), self.P.m): bufR[(j, i)] = (number_of_times - bufR[(i, j)]) self.__init__(self.P, (self.N + bufN).astype(int), (self.R + bufR).astype(int))<|docstring|>pullAllArmPairs: Pulls each pairs of arms `number_of_times` often number_of_times: positive integer >> TE=TestEnvironment(rr.sampleWST(4)) >> TE.pullAllArmPairs(3)<|endoftext|>
452842a4ae60d64f84f724def4309f04b26b0a4f2a969758a86fd75f6f71ce3e
def open_all_files_with_ext(dirs, ext: str) -> list: '\n Retrieve all filenames ending ext\n ' fnames = [] for dir_ in tqdm(dirs): for (root, subs, files) in os.walk(dir_): for fn in files: if fn.lower().endswith(ext): fnames.append(os.path.join(root, fn)) return fnames
Retrieve all filenames ending ext
mu7ron/utils.py
open_all_files_with_ext
eM7RON/mu7RON
0
python
def open_all_files_with_ext(dirs, ext: str) -> list: '\n \n ' fnames = [] for dir_ in tqdm(dirs): for (root, subs, files) in os.walk(dir_): for fn in files: if fn.lower().endswith(ext): fnames.append(os.path.join(root, fn)) return fnames
def open_all_files_with_ext(dirs, ext: str) -> list: '\n \n ' fnames = [] for dir_ in tqdm(dirs): for (root, subs, files) in os.walk(dir_): for fn in files: if fn.lower().endswith(ext): fnames.append(os.path.join(root, fn)) return fnames<|docstring|>Retrieve all filenames ending ext<|endoftext|>
0f73eb3345c4d6455c787ef8252fc34cb5393259be80a5bfccdeda232c69f94e
def tstamp(name: str='mugen', fmt: str='%d_%b_%Y_%H-%M-%S'): "\n Concatenates the current date & time to a string.\n Format: '%d_%b_%Y_%H-%M-%S'\n " return f'{name}_{datetime.datetime.now().strftime(fmt)}'
Concatenates the current date & time to a string. Format: '%d_%b_%Y_%H-%M-%S'
mu7ron/utils.py
tstamp
eM7RON/mu7RON
0
python
def tstamp(name: str='mugen', fmt: str='%d_%b_%Y_%H-%M-%S'): "\n Concatenates the current date & time to a string.\n Format: '%d_%b_%Y_%H-%M-%S'\n " return f'{name}_{datetime.datetime.now().strftime(fmt)}'
def tstamp(name: str='mugen', fmt: str='%d_%b_%Y_%H-%M-%S'): "\n Concatenates the current date & time to a string.\n Format: '%d_%b_%Y_%H-%M-%S'\n " return f'{name}_{datetime.datetime.now().strftime(fmt)}'<|docstring|>Concatenates the current date & time to a string. Format: '%d_%b_%Y_%H-%M-%S'<|endoftext|>
e717482e53da084ecb945d66508d2e8f22aa0b8c45f1ba24e14c4bbe78f2069f
def safe_len(x): '\n safely returns the length of an object without throwing an exception\n if the object is a number\n ' try: ret = len(x) except TypeError: ret = False return ret
safely returns the length of an object without throwing an exception if the object is a number
mu7ron/utils.py
safe_len
eM7RON/mu7RON
0
python
def safe_len(x): '\n safely returns the length of an object without throwing an exception\n if the object is a number\n ' try: ret = len(x) except TypeError: ret = False return ret
def safe_len(x): '\n safely returns the length of an object without throwing an exception\n if the object is a number\n ' try: ret = len(x) except TypeError: ret = False return ret<|docstring|>safely returns the length of an object without throwing an exception if the object is a number<|endoftext|>
f34a649d6d94e993123112e77e88618607568fa476ae998064066a80681cf8dd
def flatten(alist, depth=0): '\n A generator that flattens nested containers (list, tuple, set, np.ndarray) of any nested degree\n ' if (depth is 1): for sublist in alist: for item in sublist: (yield item) else: for item in alist: if (isinstance(item, (list, tuple, set, np.ndarray)) and (not isinstance(item, (str, bytes)))): (yield from flatten(item)) else: (yield item)
A generator that flattens nested containers (list, tuple, set, np.ndarray) of any nested degree
mu7ron/utils.py
flatten
eM7RON/mu7RON
0
python
def flatten(alist, depth=0): '\n \n ' if (depth is 1): for sublist in alist: for item in sublist: (yield item) else: for item in alist: if (isinstance(item, (list, tuple, set, np.ndarray)) and (not isinstance(item, (str, bytes)))): (yield from flatten(item)) else: (yield item)
def flatten(alist, depth=0): '\n \n ' if (depth is 1): for sublist in alist: for item in sublist: (yield item) else: for item in alist: if (isinstance(item, (list, tuple, set, np.ndarray)) and (not isinstance(item, (str, bytes)))): (yield from flatten(item)) else: (yield item)<|docstring|>A generator that flattens nested containers (list, tuple, set, np.ndarray) of any nested degree<|endoftext|>
b10a075db510705c35ece80aa07eec3612ba4b5ca9146a555e2ecb6a2f9b5838
def play(x, t=None): '\n A quick way to play a midi.Track or midi.Pattern. t=number\n of seconds to play the sequence.\n ' if isinstance(x, str): sname = x else: if isinstance(x, midi.Track): ptrn = midi.Pattern(format=1, resolution=480, tick_relative=True) ptrn.append(x) elif isinstance(x, midi.Pattern): ptrn = x else: raise TypeError working_dir = '' for s in ['data', 'midi', 'temp', 'working']: working_dir = os.path.join(working_dir, s) if (not os.path.isdir(working_dir)): os.mkdir(working_dir) valid = False while (not valid): i = 0 sname = os.path.join(working_dir, f'temp{i}.mid') try: if os.path.exists(sname): os.remove(sname) except PermissionError: i += 1 else: break midi.write_midifile(sname, ptrn) pygame.init() pygame.mixer.music.load(sname) if (t is not None): t_end = (time.time() + t) pygame.mixer.music.play() while (time.time() < t_end): pass pygame.mixer.music.stop() else: pygame.mixer.music.play()
A quick way to play a midi.Track or midi.Pattern. t=number of seconds to play the sequence.
mu7ron/utils.py
play
eM7RON/mu7RON
0
python
def play(x, t=None): '\n A quick way to play a midi.Track or midi.Pattern. t=number\n of seconds to play the sequence.\n ' if isinstance(x, str): sname = x else: if isinstance(x, midi.Track): ptrn = midi.Pattern(format=1, resolution=480, tick_relative=True) ptrn.append(x) elif isinstance(x, midi.Pattern): ptrn = x else: raise TypeError working_dir = for s in ['data', 'midi', 'temp', 'working']: working_dir = os.path.join(working_dir, s) if (not os.path.isdir(working_dir)): os.mkdir(working_dir) valid = False while (not valid): i = 0 sname = os.path.join(working_dir, f'temp{i}.mid') try: if os.path.exists(sname): os.remove(sname) except PermissionError: i += 1 else: break midi.write_midifile(sname, ptrn) pygame.init() pygame.mixer.music.load(sname) if (t is not None): t_end = (time.time() + t) pygame.mixer.music.play() while (time.time() < t_end): pass pygame.mixer.music.stop() else: pygame.mixer.music.play()
def play(x, t=None): '\n A quick way to play a midi.Track or midi.Pattern. t=number\n of seconds to play the sequence.\n ' if isinstance(x, str): sname = x else: if isinstance(x, midi.Track): ptrn = midi.Pattern(format=1, resolution=480, tick_relative=True) ptrn.append(x) elif isinstance(x, midi.Pattern): ptrn = x else: raise TypeError working_dir = for s in ['data', 'midi', 'temp', 'working']: working_dir = os.path.join(working_dir, s) if (not os.path.isdir(working_dir)): os.mkdir(working_dir) valid = False while (not valid): i = 0 sname = os.path.join(working_dir, f'temp{i}.mid') try: if os.path.exists(sname): os.remove(sname) except PermissionError: i += 1 else: break midi.write_midifile(sname, ptrn) pygame.init() pygame.mixer.music.load(sname) if (t is not None): t_end = (time.time() + t) pygame.mixer.music.play() while (time.time() < t_end): pass pygame.mixer.music.stop() else: pygame.mixer.music.play()<|docstring|>A quick way to play a midi.Track or midi.Pattern. t=number of seconds to play the sequence.<|endoftext|>
89c653b81cfd498749617b94bfea04f8aaeb76e1daadd83bbd928c40f892f7f1
def trck_gen(x): '\n loops through each track in x\n ' if isinstance(x, midi.Pattern): for trck in x: (yield trck) elif isinstance(x, MidiObj): for trck in x.ptrn: (yield trck) elif isinstance(x[0], MidiObj): for obj in x: for trck in obj.ptrn: (yield trck) else: for ptrn in x: for trck in ptrn: (yield trck)
loops through each track in x
mu7ron/utils.py
trck_gen
eM7RON/mu7RON
0
python
def trck_gen(x): '\n \n ' if isinstance(x, midi.Pattern): for trck in x: (yield trck) elif isinstance(x, MidiObj): for trck in x.ptrn: (yield trck) elif isinstance(x[0], MidiObj): for obj in x: for trck in obj.ptrn: (yield trck) else: for ptrn in x: for trck in ptrn: (yield trck)
def trck_gen(x): '\n \n ' if isinstance(x, midi.Pattern): for trck in x: (yield trck) elif isinstance(x, MidiObj): for trck in x.ptrn: (yield trck) elif isinstance(x[0], MidiObj): for obj in x: for trck in obj.ptrn: (yield trck) else: for ptrn in x: for trck in ptrn: (yield trck)<|docstring|>loops through each track in x<|endoftext|>
d92026c71622863b3ac7a8413913686d2fcfdf2ad79b3bf4445729163fb6b061
def evnt_gen(x): '\n loops through each event in x\n ' if isinstance(x, midi.Track): for evnt in x: (yield evnt) else: for trck in trck_gen(x): for evnt in trck: (yield evnt)
loops through each event in x
mu7ron/utils.py
evnt_gen
eM7RON/mu7RON
0
python
def evnt_gen(x): '\n \n ' if isinstance(x, midi.Track): for evnt in x: (yield evnt) else: for trck in trck_gen(x): for evnt in trck: (yield evnt)
def evnt_gen(x): '\n \n ' if isinstance(x, midi.Track): for evnt in x: (yield evnt) else: for trck in trck_gen(x): for evnt in trck: (yield evnt)<|docstring|>loops through each event in x<|endoftext|>
8cd6b579e897bc23822777a2577c10bcdfc08a9b430d6156f0f18b525d4c2733
def counter(alist, func=None): '\n - counts the number of things in a list\n - can apply a function (func) to item\n ' adict = {} for item in alist: if (func is not None): item = func(item) if (item is not None): adict[item] = (adict.get(item, 0) + 1) return adict
- counts the number of things in a list - can apply a function (func) to item
mu7ron/utils.py
counter
eM7RON/mu7RON
0
python
def counter(alist, func=None): '\n - counts the number of things in a list\n - can apply a function (func) to item\n ' adict = {} for item in alist: if (func is not None): item = func(item) if (item is not None): adict[item] = (adict.get(item, 0) + 1) return adict
def counter(alist, func=None): '\n - counts the number of things in a list\n - can apply a function (func) to item\n ' adict = {} for item in alist: if (func is not None): item = func(item) if (item is not None): adict[item] = (adict.get(item, 0) + 1) return adict<|docstring|>- counts the number of things in a list - can apply a function (func) to item<|endoftext|>
e301f74fa2ed648a5c3dfcaf80d411b584a88308d9b8dc221b6df48f6fe12e9f
def nptf(x): '\n Negative Power To Fraction\n For converting the second value in midi.TimesignatureEvent data from \n a negative power to a fraction\n ' return round((1 // (2 ** (- x))))
Negative Power To Fraction For converting the second value in midi.TimesignatureEvent data from a negative power to a fraction
mu7ron/utils.py
nptf
eM7RON/mu7RON
0
python
def nptf(x): '\n Negative Power To Fraction\n For converting the second value in midi.TimesignatureEvent data from \n a negative power to a fraction\n ' return round((1 // (2 ** (- x))))
def nptf(x): '\n Negative Power To Fraction\n For converting the second value in midi.TimesignatureEvent data from \n a negative power to a fraction\n ' return round((1 // (2 ** (- x))))<|docstring|>Negative Power To Fraction For converting the second value in midi.TimesignatureEvent data from a negative power to a fraction<|endoftext|>