body_hash
stringlengths
64
64
body
stringlengths
23
109k
docstring
stringlengths
1
57k
path
stringlengths
4
198
name
stringlengths
1
115
repository_name
stringlengths
7
111
repository_stars
float64
0
191k
lang
stringclasses
1 value
body_without_docstring
stringlengths
14
108k
unified
stringlengths
45
133k
9fe1680508af573fd1ade4b87f0fe908f5f8e011810b0c294a72cd0001b455b1
def r(line): '\n Selects rho from a given line.\n ' (r, _) = line return r
Selects rho from a given line.
stitch/lineutils.py
r
KnorpelSenf/bladestitching
1
python
def r(line): '\n \n ' (r, _) = line return r
def r(line): '\n \n ' (r, _) = line return r<|docstring|>Selects rho from a given line.<|endoftext|>
121a4b4b80593f826f9bc9a2321919f85b098b3acdbd6eea7d883bebf25e1c72
def t(line): '\n Selects theta from a given line.\n ' (_, t) = line return t
Selects theta from a given line.
stitch/lineutils.py
t
KnorpelSenf/bladestitching
1
python
def t(line): '\n \n ' (_, t) = line return t
def t(line): '\n \n ' (_, t) = line return t<|docstring|>Selects theta from a given line.<|endoftext|>
5db8d2e01c12714c4b14f7cd13ec1e22f189ebb3a6d7c28e3a1f180d77150427
def x(line): '\n Selects the x coordinate of the foot point from a given line.\n ' (r, t) = line return (r * np.cos(t))
Selects the x coordinate of the foot point from a given line.
stitch/lineutils.py
x
KnorpelSenf/bladestitching
1
python
def x(line): '\n \n ' (r, t) = line return (r * np.cos(t))
def x(line): '\n \n ' (r, t) = line return (r * np.cos(t))<|docstring|>Selects the x coordinate of the foot point from a given line.<|endoftext|>
89e4ddc2c2d8e0b10b141197c6d5160e90574ec546b13c3c8a7b5cd08fb11986
def y(line): '\n Selects the y coordinate of the foot point from a given line.\n ' (r, t) = line return (r * np.sin(t))
Selects the y coordinate of the foot point from a given line.
stitch/lineutils.py
y
KnorpelSenf/bladestitching
1
python
def y(line): '\n \n ' (r, t) = line return (r * np.sin(t))
def y(line): '\n \n ' (r, t) = line return (r * np.sin(t))<|docstring|>Selects the y coordinate of the foot point from a given line.<|endoftext|>
08168078e74808ed230c17fa01107d448be66e6d3d78f3b7256942849ca839af
def eq(line): '\n Turns a line into a nice string representation.\n ' (rho, theta) = line r = '{:6.2f}'.format(float(rho)) t = '{:4.4f}'.format(float(theta)) return (((((r + ' = x * sin(') + t) + ') + y * cos(') + t) + ')')
Turns a line into a nice string representation.
stitch/lineutils.py
eq
KnorpelSenf/bladestitching
1
python
def eq(line): '\n \n ' (rho, theta) = line r = '{:6.2f}'.format(float(rho)) t = '{:4.4f}'.format(float(theta)) return (((((r + ' = x * sin(') + t) + ') + y * cos(') + t) + ')')
def eq(line): '\n \n ' (rho, theta) = line r = '{:6.2f}'.format(float(rho)) t = '{:4.4f}'.format(float(theta)) return (((((r + ' = x * sin(') + t) + ') + y * cos(') + t) + ')')<|docstring|>Turns a line into a nice string representation.<|endoftext|>
72651bf86bd16dfbfc409ce56dee72a36ab4bfb77d28f11e419ddb650d4b56d1
def xy(line): '\n Turns a line into a nice string representation of its foot point.\n ' return 'FP({:4d}, {:4d})'.format(x(line), y(line))
Turns a line into a nice string representation of its foot point.
stitch/lineutils.py
xy
KnorpelSenf/bladestitching
1
python
def xy(line): '\n \n ' return 'FP({:4d}, {:4d})'.format(x(line), y(line))
def xy(line): '\n \n ' return 'FP({:4d}, {:4d})'.format(x(line), y(line))<|docstring|>Turns a line into a nice string representation of its foot point.<|endoftext|>
f5c3bcccbc029c8823faa3549fb6024880bbd7a5f958856de4158a40f08da005
def are_lines_similar(r, s, max_rho=30, max_theta=0.1): '\n Returns true if two given normalized lines\n do not deviate too far from each other\n as specified by the parameters,\n and false otherwise.\n ' (rho_r, theta_r) = r (rho_s, theta_s) = s diff_t = abs((theta_r - theta_s)) similar = ((abs((rho_r - rho_s)) < max_rho) and (diff_t < max_theta)) similar_inverted = ((abs((rho_r + rho_s)) < max_rho) and (abs((diff_t - np.pi)) < max_theta)) return (similar or similar_inverted)
Returns true if two given normalized lines do not deviate too far from each other as specified by the parameters, and false otherwise.
stitch/lineutils.py
are_lines_similar
KnorpelSenf/bladestitching
1
python
def are_lines_similar(r, s, max_rho=30, max_theta=0.1): '\n Returns true if two given normalized lines\n do not deviate too far from each other\n as specified by the parameters,\n and false otherwise.\n ' (rho_r, theta_r) = r (rho_s, theta_s) = s diff_t = abs((theta_r - theta_s)) similar = ((abs((rho_r - rho_s)) < max_rho) and (diff_t < max_theta)) similar_inverted = ((abs((rho_r + rho_s)) < max_rho) and (abs((diff_t - np.pi)) < max_theta)) return (similar or similar_inverted)
def are_lines_similar(r, s, max_rho=30, max_theta=0.1): '\n Returns true if two given normalized lines\n do not deviate too far from each other\n as specified by the parameters,\n and false otherwise.\n ' (rho_r, theta_r) = r (rho_s, theta_s) = s diff_t = abs((theta_r - theta_s)) similar = ((abs((rho_r - rho_s)) < max_rho) and (diff_t < max_theta)) similar_inverted = ((abs((rho_r + rho_s)) < max_rho) and (abs((diff_t - np.pi)) < max_theta)) return (similar or similar_inverted)<|docstring|>Returns true if two given normalized lines do not deviate too far from each other as specified by the parameters, and false otherwise.<|endoftext|>
9be59430ca95aab7a7e71a3a0f81430d5b6a7fce39abc290e50edce056f54c42
def is_line_left(line, x, y): "\n Returns true if the given line is right of the given point\n in the sense that the line's foot point\n would be in the first or fourth quadrant\n if the given point would be the origin.\n " return (not is_line_right(line, x, y))
Returns true if the given line is right of the given point in the sense that the line's foot point would be in the first or fourth quadrant if the given point would be the origin.
stitch/lineutils.py
is_line_left
KnorpelSenf/bladestitching
1
python
def is_line_left(line, x, y): "\n Returns true if the given line is right of the given point\n in the sense that the line's foot point\n would be in the first or fourth quadrant\n if the given point would be the origin.\n " return (not is_line_right(line, x, y))
def is_line_left(line, x, y): "\n Returns true if the given line is right of the given point\n in the sense that the line's foot point\n would be in the first or fourth quadrant\n if the given point would be the origin.\n " return (not is_line_right(line, x, y))<|docstring|>Returns true if the given line is right of the given point in the sense that the line's foot point would be in the first or fourth quadrant if the given point would be the origin.<|endoftext|>
c69d407c3a9f1dc11f90a35090699c419673a721e85aef74fa573297a432f35f
def is_line_right(line, x, y): "\n Returns true if the given line is left of the given point\n in the sense that the line's foot point\n would be in the second or third quadrant\n if the given point would be the origin.\n " halfpi = (np.pi / 2) return ((- halfpi) <= t(move_origin(line, x, y, norm=True)) < halfpi)
Returns true if the given line is left of the given point in the sense that the line's foot point would be in the second or third quadrant if the given point would be the origin.
stitch/lineutils.py
is_line_right
KnorpelSenf/bladestitching
1
python
def is_line_right(line, x, y): "\n Returns true if the given line is left of the given point\n in the sense that the line's foot point\n would be in the second or third quadrant\n if the given point would be the origin.\n " halfpi = (np.pi / 2) return ((- halfpi) <= t(move_origin(line, x, y, norm=True)) < halfpi)
def is_line_right(line, x, y): "\n Returns true if the given line is left of the given point\n in the sense that the line's foot point\n would be in the second or third quadrant\n if the given point would be the origin.\n " halfpi = (np.pi / 2) return ((- halfpi) <= t(move_origin(line, x, y, norm=True)) < halfpi)<|docstring|>Returns true if the given line is left of the given point in the sense that the line's foot point would be in the second or third quadrant if the given point would be the origin.<|endoftext|>
a260fad2ddc360e1f51c641168abb55d3ce1e1fcab996ea8738e7e8109748e3a
def translate(line, x=0, y=0, norm=True): '\n Translates a line by the given distance in x and y direction.\n ' return move_origin(line, (- x), (- y), norm=norm)
Translates a line by the given distance in x and y direction.
stitch/lineutils.py
translate
KnorpelSenf/bladestitching
1
python
def translate(line, x=0, y=0, norm=True): '\n \n ' return move_origin(line, (- x), (- y), norm=norm)
def translate(line, x=0, y=0, norm=True): '\n \n ' return move_origin(line, (- x), (- y), norm=norm)<|docstring|>Translates a line by the given distance in x and y direction.<|endoftext|>
799df462e46cdae5f97137735796978dca53f58814ec78abb694c07797ec8da8
def move_origin(line, x=0, y=0, norm=True): "\n Transforms a line's representation by moving the origin as specified.\n " (rho, theta) = line dist = np.sqrt(((x * x) + (y * y))) alpha = np.arctan2(y, x) omega = (theta - alpha) rho_prime = (rho - (dist * np.cos(omega))) line = (rho_prime, theta) return (normalize(line) if norm else line)
Transforms a line's representation by moving the origin as specified.
stitch/lineutils.py
move_origin
KnorpelSenf/bladestitching
1
python
def move_origin(line, x=0, y=0, norm=True): "\n \n " (rho, theta) = line dist = np.sqrt(((x * x) + (y * y))) alpha = np.arctan2(y, x) omega = (theta - alpha) rho_prime = (rho - (dist * np.cos(omega))) line = (rho_prime, theta) return (normalize(line) if norm else line)
def move_origin(line, x=0, y=0, norm=True): "\n \n " (rho, theta) = line dist = np.sqrt(((x * x) + (y * y))) alpha = np.arctan2(y, x) omega = (theta - alpha) rho_prime = (rho - (dist * np.cos(omega))) line = (rho_prime, theta) return (normalize(line) if norm else line)<|docstring|>Transforms a line's representation by moving the origin as specified.<|endoftext|>
a143a3675d8f35f536660ae38b94dea5b1c08bc05cf135e8458dddbbadf70198
def rotate(line, theta, x=0, y=0, norm=True): '\n Rotates a line around the origin\n or optionally around a given coordinate\n by the specified angle.\n ' custom_anchor = ((x != 0) or (y != 0)) if custom_anchor: line = move_origin(line, x, y, norm=False) (r, t) = line t += theta line = (r, t) if custom_anchor: line = move_origin(line, (- x), (- y), norm=False) return (normalize(line) if norm else line)
Rotates a line around the origin or optionally around a given coordinate by the specified angle.
stitch/lineutils.py
rotate
KnorpelSenf/bladestitching
1
python
def rotate(line, theta, x=0, y=0, norm=True): '\n Rotates a line around the origin\n or optionally around a given coordinate\n by the specified angle.\n ' custom_anchor = ((x != 0) or (y != 0)) if custom_anchor: line = move_origin(line, x, y, norm=False) (r, t) = line t += theta line = (r, t) if custom_anchor: line = move_origin(line, (- x), (- y), norm=False) return (normalize(line) if norm else line)
def rotate(line, theta, x=0, y=0, norm=True): '\n Rotates a line around the origin\n or optionally around a given coordinate\n by the specified angle.\n ' custom_anchor = ((x != 0) or (y != 0)) if custom_anchor: line = move_origin(line, x, y, norm=False) (r, t) = line t += theta line = (r, t) if custom_anchor: line = move_origin(line, (- x), (- y), norm=False) return (normalize(line) if norm else line)<|docstring|>Rotates a line around the origin or optionally around a given coordinate by the specified angle.<|endoftext|>
3f8dfae70a949a91011c571810a576ea0a0e8eea6bd40187155e59fb8ec36c43
def normalize(line): '\n Normalizes a line such that rho is positive and -pi <= theta < pi holds true.\n ' (r, t) = line if (r < 0): (r, t) = ((- r), (np.pi + t)) while (t < (- np.pi)): t += (2 * np.pi) while (t >= np.pi): t -= (2 * np.pi) return (r, t)
Normalizes a line such that rho is positive and -pi <= theta < pi holds true.
stitch/lineutils.py
normalize
KnorpelSenf/bladestitching
1
python
def normalize(line): '\n \n ' (r, t) = line if (r < 0): (r, t) = ((- r), (np.pi + t)) while (t < (- np.pi)): t += (2 * np.pi) while (t >= np.pi): t -= (2 * np.pi) return (r, t)
def normalize(line): '\n \n ' (r, t) = line if (r < 0): (r, t) = ((- r), (np.pi + t)) while (t < (- np.pi)): t += (2 * np.pi) while (t >= np.pi): t -= (2 * np.pi) return (r, t)<|docstring|>Normalizes a line such that rho is positive and -pi <= theta < pi holds true.<|endoftext|>
1b3efb332905fa7ce97f364be219ff6d0d9f4097fca6b574c3c46795c0b10c37
def get_bisecting_line(l, r): '\n Takes two lines and returns their bisecting line.\n This implementation works well for parallel lines\n as it does not rely on the intersection point of the input lines.\n As a result, it also works well for almost parallel lines. It introduces\n (almost) no errors due to imprecision of floating point operations.\n ' (rho_l, theta_l) = l (rho_r, theta_r) = r theta = ((theta_l + theta_r) / 2) (x_l, y_l) = ((rho_l * np.cos(theta_l)), (rho_l * np.sin(theta_l))) (x_r, y_r) = ((rho_r * np.cos(theta_r)), (rho_r * np.sin(theta_r))) alpha_l = ((np.pi / 2) + theta_l) alpha_r = ((np.pi / 2) + theta_r) intersect_l = (np.tan((theta - theta_l)) * rho_l) intersect_r = (np.tan((theta - theta_r)) * rho_r) xn_l = (x_l + (intersect_l * np.cos(alpha_l))) yn_l = (y_l + (intersect_l * np.sin(alpha_l))) xn_r = (x_r + (intersect_r * np.cos(alpha_r))) yn_r = (y_r + (intersect_r * np.sin(alpha_r))) (x, y) = (((xn_l + xn_r) / 2), ((yn_l + yn_r) / 2)) rho = np.sqrt(((x * x) + (y * y))) return (rho, theta)
Takes two lines and returns their bisecting line. This implementation works well for parallel lines as it does not rely on the intersection point of the input lines. As a result, it also works well for almost parallel lines. It introduces (almost) no errors due to imprecision of floating point operations.
stitch/lineutils.py
get_bisecting_line
KnorpelSenf/bladestitching
1
python
def get_bisecting_line(l, r): '\n Takes two lines and returns their bisecting line.\n This implementation works well for parallel lines\n as it does not rely on the intersection point of the input lines.\n As a result, it also works well for almost parallel lines. It introduces\n (almost) no errors due to imprecision of floating point operations.\n ' (rho_l, theta_l) = l (rho_r, theta_r) = r theta = ((theta_l + theta_r) / 2) (x_l, y_l) = ((rho_l * np.cos(theta_l)), (rho_l * np.sin(theta_l))) (x_r, y_r) = ((rho_r * np.cos(theta_r)), (rho_r * np.sin(theta_r))) alpha_l = ((np.pi / 2) + theta_l) alpha_r = ((np.pi / 2) + theta_r) intersect_l = (np.tan((theta - theta_l)) * rho_l) intersect_r = (np.tan((theta - theta_r)) * rho_r) xn_l = (x_l + (intersect_l * np.cos(alpha_l))) yn_l = (y_l + (intersect_l * np.sin(alpha_l))) xn_r = (x_r + (intersect_r * np.cos(alpha_r))) yn_r = (y_r + (intersect_r * np.sin(alpha_r))) (x, y) = (((xn_l + xn_r) / 2), ((yn_l + yn_r) / 2)) rho = np.sqrt(((x * x) + (y * y))) return (rho, theta)
def get_bisecting_line(l, r): '\n Takes two lines and returns their bisecting line.\n This implementation works well for parallel lines\n as it does not rely on the intersection point of the input lines.\n As a result, it also works well for almost parallel lines. It introduces\n (almost) no errors due to imprecision of floating point operations.\n ' (rho_l, theta_l) = l (rho_r, theta_r) = r theta = ((theta_l + theta_r) / 2) (x_l, y_l) = ((rho_l * np.cos(theta_l)), (rho_l * np.sin(theta_l))) (x_r, y_r) = ((rho_r * np.cos(theta_r)), (rho_r * np.sin(theta_r))) alpha_l = ((np.pi / 2) + theta_l) alpha_r = ((np.pi / 2) + theta_r) intersect_l = (np.tan((theta - theta_l)) * rho_l) intersect_r = (np.tan((theta - theta_r)) * rho_r) xn_l = (x_l + (intersect_l * np.cos(alpha_l))) yn_l = (y_l + (intersect_l * np.sin(alpha_l))) xn_r = (x_r + (intersect_r * np.cos(alpha_r))) yn_r = (y_r + (intersect_r * np.sin(alpha_r))) (x, y) = (((xn_l + xn_r) / 2), ((yn_l + yn_r) / 2)) rho = np.sqrt(((x * x) + (y * y))) return (rho, theta)<|docstring|>Takes two lines and returns their bisecting line. This implementation works well for parallel lines as it does not rely on the intersection point of the input lines. As a result, it also works well for almost parallel lines. It introduces (almost) no errors due to imprecision of floating point operations.<|endoftext|>
dddfbf8b18312bc024d298708590345acea9335cdfe998d55228c42eeccf0d5a
def vertical_distance(line0, line1): "\n Computes the distance `line1` needs to moved vertically\n such that its foot point lies on `line0`. If `line0` is\n a vertical line (its theta value is either `0` or `pi`),\n this distance is either 0 (if `line1`'s foot point is on `line0`)\n or it cannot be defined (if `line1`'s foot point is not on `line0`).\n In both cases, `0` is returned.\n " beta = (- t(line0)) sinbeta = np.sin(beta) if (not sinbeta): return 0 (x0, y0) = (x(line0), y(line0)) (x1, y1) = (x(line1), y(line1)) dist_x = (x0 - x1) dist_y = (y0 - y1) if (not dist_x): return dist_y b = np.sqrt(((dist_x * dist_x) + (dist_y * dist_y))) gamma = ((np.pi / 2) + np.arctan2(dist_y, dist_x)) alpha = ((np.pi - beta) - gamma) return ((np.sin(alpha) * b) / sinbeta)
Computes the distance `line1` needs to moved vertically such that its foot point lies on `line0`. If `line0` is a vertical line (its theta value is either `0` or `pi`), this distance is either 0 (if `line1`'s foot point is on `line0`) or it cannot be defined (if `line1`'s foot point is not on `line0`). In both cases, `0` is returned.
stitch/lineutils.py
vertical_distance
KnorpelSenf/bladestitching
1
python
def vertical_distance(line0, line1): "\n Computes the distance `line1` needs to moved vertically\n such that its foot point lies on `line0`. If `line0` is\n a vertical line (its theta value is either `0` or `pi`),\n this distance is either 0 (if `line1`'s foot point is on `line0`)\n or it cannot be defined (if `line1`'s foot point is not on `line0`).\n In both cases, `0` is returned.\n " beta = (- t(line0)) sinbeta = np.sin(beta) if (not sinbeta): return 0 (x0, y0) = (x(line0), y(line0)) (x1, y1) = (x(line1), y(line1)) dist_x = (x0 - x1) dist_y = (y0 - y1) if (not dist_x): return dist_y b = np.sqrt(((dist_x * dist_x) + (dist_y * dist_y))) gamma = ((np.pi / 2) + np.arctan2(dist_y, dist_x)) alpha = ((np.pi - beta) - gamma) return ((np.sin(alpha) * b) / sinbeta)
def vertical_distance(line0, line1): "\n Computes the distance `line1` needs to moved vertically\n such that its foot point lies on `line0`. If `line0` is\n a vertical line (its theta value is either `0` or `pi`),\n this distance is either 0 (if `line1`'s foot point is on `line0`)\n or it cannot be defined (if `line1`'s foot point is not on `line0`).\n In both cases, `0` is returned.\n " beta = (- t(line0)) sinbeta = np.sin(beta) if (not sinbeta): return 0 (x0, y0) = (x(line0), y(line0)) (x1, y1) = (x(line1), y(line1)) dist_x = (x0 - x1) dist_y = (y0 - y1) if (not dist_x): return dist_y b = np.sqrt(((dist_x * dist_x) + (dist_y * dist_y))) gamma = ((np.pi / 2) + np.arctan2(dist_y, dist_x)) alpha = ((np.pi - beta) - gamma) return ((np.sin(alpha) * b) / sinbeta)<|docstring|>Computes the distance `line1` needs to moved vertically such that its foot point lies on `line0`. If `line0` is a vertical line (its theta value is either `0` or `pi`), this distance is either 0 (if `line1`'s foot point is on `line0`) or it cannot be defined (if `line1`'s foot point is not on `line0`). In both cases, `0` is returned.<|endoftext|>
8fe565769fc2348cf7bbaac1f57b58353ad6b8187e7217996a92648469bd2e38
def root(line): '\n Assume `cos(t(line)) != 0`. Be `f` the linear function\n that describes `line`.\n\n This function then solves `f(x) = 0` for `x` and returns `x`.\n In other words, it returns the `x` value of the intersection point\n between the given line and the x-axis.\n\n Crashes on `cos(t(line)) == 0` (division by zero).\n ' (rho, theta) = line return (rho / np.cos(theta))
Assume `cos(t(line)) != 0`. Be `f` the linear function that describes `line`. This function then solves `f(x) = 0` for `x` and returns `x`. In other words, it returns the `x` value of the intersection point between the given line and the x-axis. Crashes on `cos(t(line)) == 0` (division by zero).
stitch/lineutils.py
root
KnorpelSenf/bladestitching
1
python
def root(line): '\n Assume `cos(t(line)) != 0`. Be `f` the linear function\n that describes `line`.\n\n This function then solves `f(x) = 0` for `x` and returns `x`.\n In other words, it returns the `x` value of the intersection point\n between the given line and the x-axis.\n\n Crashes on `cos(t(line)) == 0` (division by zero).\n ' (rho, theta) = line return (rho / np.cos(theta))
def root(line): '\n Assume `cos(t(line)) != 0`. Be `f` the linear function\n that describes `line`.\n\n This function then solves `f(x) = 0` for `x` and returns `x`.\n In other words, it returns the `x` value of the intersection point\n between the given line and the x-axis.\n\n Crashes on `cos(t(line)) == 0` (division by zero).\n ' (rho, theta) = line return (rho / np.cos(theta))<|docstring|>Assume `cos(t(line)) != 0`. Be `f` the linear function that describes `line`. This function then solves `f(x) = 0` for `x` and returns `x`. In other words, it returns the `x` value of the intersection point between the given line and the x-axis. Crashes on `cos(t(line)) == 0` (division by zero).<|endoftext|>
2a0c8b9d4e3430fdbbcc222bf8fb5a9af86731c7c2be686ec818c63cf24d7da3
def verify_boot_variable(device, boot_images, output=None): " Verifies given boot_images are set to the next-reload BOOT vars\n\n Args:\n device (obj): The device to execute on.\n\n boot_images (list): The images that are expected to be configured\n as the boot variable for the next reload.\n\n output (str, optional): The device output from 'show boot'. If not\n provided the API will gather it from the device automatically.\n Defaults to None.\n\n Returns:\n True - if the expected images are configured\n False - if the expected images are NOT configured\n\n Raises:\n N/A\n " next_boot_variables = device.api.get_boot_variables(boot_var='next', output=output) if (len(next_boot_variables) != len(boot_images)): return False for (index, expected_image) in enumerate(boot_images): configured_image = next_boot_variables[index] if ((expected_image.startswith('bootflash:') or expected_image.startswith('flash:')) and (configured_image.startswith('bootflash:') or configured_image.startswith('flash:'))): log.info("On cat9k platforms, the 'flash:' and 'bootflash:' directories are the same. Ignoring these directories during comparison.") if (expected_image.split(':')[(- 1)] != configured_image.split(':')[(- 1)]): log.warning('The boot variables on the device {} do not equal the expected images {}'.format(next_boot_variables, boot_images)) return False elif (expected_image != next_boot_variables[index]): log.warning('The boot variables on the device {} do not equal the expected images {}'.format(next_boot_variables, boot_images)) return False log.info('The boot variables on the device {} equal the expected images {}'.format(next_boot_variables, boot_images)) return True
Verifies given boot_images are set to the next-reload BOOT vars Args: device (obj): The device to execute on. boot_images (list): The images that are expected to be configured as the boot variable for the next reload. output (str, optional): The device output from 'show boot'. If not provided the API will gather it from the device automatically. Defaults to None. Returns: True - if the expected images are configured False - if the expected images are NOT configured Raises: N/A
pkgs/sdk-pkg/src/genie/libs/sdk/apis/iosxe/cat9k/platform/verify.py
verify_boot_variable
jbronikowski/genielibs
94
python
def verify_boot_variable(device, boot_images, output=None): " Verifies given boot_images are set to the next-reload BOOT vars\n\n Args:\n device (obj): The device to execute on.\n\n boot_images (list): The images that are expected to be configured\n as the boot variable for the next reload.\n\n output (str, optional): The device output from 'show boot'. If not\n provided the API will gather it from the device automatically.\n Defaults to None.\n\n Returns:\n True - if the expected images are configured\n False - if the expected images are NOT configured\n\n Raises:\n N/A\n " next_boot_variables = device.api.get_boot_variables(boot_var='next', output=output) if (len(next_boot_variables) != len(boot_images)): return False for (index, expected_image) in enumerate(boot_images): configured_image = next_boot_variables[index] if ((expected_image.startswith('bootflash:') or expected_image.startswith('flash:')) and (configured_image.startswith('bootflash:') or configured_image.startswith('flash:'))): log.info("On cat9k platforms, the 'flash:' and 'bootflash:' directories are the same. Ignoring these directories during comparison.") if (expected_image.split(':')[(- 1)] != configured_image.split(':')[(- 1)]): log.warning('The boot variables on the device {} do not equal the expected images {}'.format(next_boot_variables, boot_images)) return False elif (expected_image != next_boot_variables[index]): log.warning('The boot variables on the device {} do not equal the expected images {}'.format(next_boot_variables, boot_images)) return False log.info('The boot variables on the device {} equal the expected images {}'.format(next_boot_variables, boot_images)) return True
def verify_boot_variable(device, boot_images, output=None): " Verifies given boot_images are set to the next-reload BOOT vars\n\n Args:\n device (obj): The device to execute on.\n\n boot_images (list): The images that are expected to be configured\n as the boot variable for the next reload.\n\n output (str, optional): The device output from 'show boot'. If not\n provided the API will gather it from the device automatically.\n Defaults to None.\n\n Returns:\n True - if the expected images are configured\n False - if the expected images are NOT configured\n\n Raises:\n N/A\n " next_boot_variables = device.api.get_boot_variables(boot_var='next', output=output) if (len(next_boot_variables) != len(boot_images)): return False for (index, expected_image) in enumerate(boot_images): configured_image = next_boot_variables[index] if ((expected_image.startswith('bootflash:') or expected_image.startswith('flash:')) and (configured_image.startswith('bootflash:') or configured_image.startswith('flash:'))): log.info("On cat9k platforms, the 'flash:' and 'bootflash:' directories are the same. Ignoring these directories during comparison.") if (expected_image.split(':')[(- 1)] != configured_image.split(':')[(- 1)]): log.warning('The boot variables on the device {} do not equal the expected images {}'.format(next_boot_variables, boot_images)) return False elif (expected_image != next_boot_variables[index]): log.warning('The boot variables on the device {} do not equal the expected images {}'.format(next_boot_variables, boot_images)) return False log.info('The boot variables on the device {} equal the expected images {}'.format(next_boot_variables, boot_images)) return True<|docstring|>Verifies given boot_images are set to the next-reload BOOT vars Args: device (obj): The device to execute on. boot_images (list): The images that are expected to be configured as the boot variable for the next reload. output (str, optional): The device output from 'show boot'. If not provided the API will gather it from the device automatically. Defaults to None. Returns: True - if the expected images are configured False - if the expected images are NOT configured Raises: N/A<|endoftext|>
361ff2f59c1b249129b4964da0b80652af57d416dc8c23ab22c277dd2bc9085f
def get_and_check_entity_basics(hass, default_mock_hap, entity_id, entity_name, device_model): 'Get and test basic device.' ha_entity = hass.states.get(entity_id) assert (ha_entity is not None) assert (ha_entity.attributes['model_type'] == device_model) assert (ha_entity.name == entity_name) hmip_device = default_mock_hap.home.template.search_mock_device_by_id(ha_entity.attributes['id']) assert (hmip_device is not None) return (ha_entity, hmip_device)
Get and test basic device.
tests/components/homematicip_cloud/helper.py
get_and_check_entity_basics
SoldierCorp/home-assistant
2
python
def get_and_check_entity_basics(hass, default_mock_hap, entity_id, entity_name, device_model): ha_entity = hass.states.get(entity_id) assert (ha_entity is not None) assert (ha_entity.attributes['model_type'] == device_model) assert (ha_entity.name == entity_name) hmip_device = default_mock_hap.home.template.search_mock_device_by_id(ha_entity.attributes['id']) assert (hmip_device is not None) return (ha_entity, hmip_device)
def get_and_check_entity_basics(hass, default_mock_hap, entity_id, entity_name, device_model): ha_entity = hass.states.get(entity_id) assert (ha_entity is not None) assert (ha_entity.attributes['model_type'] == device_model) assert (ha_entity.name == entity_name) hmip_device = default_mock_hap.home.template.search_mock_device_by_id(ha_entity.attributes['id']) assert (hmip_device is not None) return (ha_entity, hmip_device)<|docstring|>Get and test basic device.<|endoftext|>
5cec8ee2aaccceb22e77b17c7ddf4ba8b96ae32204953ba324d40fec2df810c8
async def async_manipulate_test_data(hass, hmip_device, attribute, new_value, channel=1): 'Set new value on hmip device.' if (channel == 1): setattr(hmip_device, attribute, new_value) functional_channel = hmip_device.functionalChannels[channel] setattr(functional_channel, attribute, new_value) hmip_device.fire_update_event() (await hass.async_block_till_done())
Set new value on hmip device.
tests/components/homematicip_cloud/helper.py
async_manipulate_test_data
SoldierCorp/home-assistant
2
python
async def async_manipulate_test_data(hass, hmip_device, attribute, new_value, channel=1): if (channel == 1): setattr(hmip_device, attribute, new_value) functional_channel = hmip_device.functionalChannels[channel] setattr(functional_channel, attribute, new_value) hmip_device.fire_update_event() (await hass.async_block_till_done())
async def async_manipulate_test_data(hass, hmip_device, attribute, new_value, channel=1): if (channel == 1): setattr(hmip_device, attribute, new_value) functional_channel = hmip_device.functionalChannels[channel] setattr(functional_channel, attribute, new_value) hmip_device.fire_update_event() (await hass.async_block_till_done())<|docstring|>Set new value on hmip device.<|endoftext|>
23e8c91b6d6152c9a2fc65d83159900153334b9df449b9b340db6e52e9502499
def _get_mock(instance): 'Create a mock and copy instance attributes over mock.' mock = Mock(spec=instance, wraps=instance) mock.__dict__.update(instance.__dict__) return mock
Create a mock and copy instance attributes over mock.
tests/components/homematicip_cloud/helper.py
_get_mock
SoldierCorp/home-assistant
2
python
def _get_mock(instance): mock = Mock(spec=instance, wraps=instance) mock.__dict__.update(instance.__dict__) return mock
def _get_mock(instance): mock = Mock(spec=instance, wraps=instance) mock.__dict__.update(instance.__dict__) return mock<|docstring|>Create a mock and copy instance attributes over mock.<|endoftext|>
94fa77cfdd8524bf2462172651661679b168ad8ea28feb0c243c542f497525ee
def __init__(self, connection=None): 'Init template with connection.' super().__init__(connection=connection) self.mock_devices = [] self.mock_groups = []
Init template with connection.
tests/components/homematicip_cloud/helper.py
__init__
SoldierCorp/home-assistant
2
python
def __init__(self, connection=None): super().__init__(connection=connection) self.mock_devices = [] self.mock_groups = []
def __init__(self, connection=None): super().__init__(connection=connection) self.mock_devices = [] self.mock_groups = []<|docstring|>Init template with connection.<|endoftext|>
1534db049d74012ab42f4dfaec97107844b0f873aae99cb7ebe96156985998c7
def init_home(self, json_path=HOME_JSON): 'Init template with json.' json_state = json.loads(load_fixture(HOME_JSON), encoding='UTF-8') self.update_home(json_state=json_state, clearConfig=True) self._generate_mocks() return self
Init template with json.
tests/components/homematicip_cloud/helper.py
init_home
SoldierCorp/home-assistant
2
python
def init_home(self, json_path=HOME_JSON): json_state = json.loads(load_fixture(HOME_JSON), encoding='UTF-8') self.update_home(json_state=json_state, clearConfig=True) self._generate_mocks() return self
def init_home(self, json_path=HOME_JSON): json_state = json.loads(load_fixture(HOME_JSON), encoding='UTF-8') self.update_home(json_state=json_state, clearConfig=True) self._generate_mocks() return self<|docstring|>Init template with json.<|endoftext|>
ac805dee40f82fca5c478f0ad8393528cee6bfa1d413814cde3ece4e538d4394
def _generate_mocks(self): 'Generate mocks for groups and devices.' for device in self.devices: self.mock_devices.append(_get_mock(device)) for group in self.groups: self.mock_groups.append(_get_mock(group))
Generate mocks for groups and devices.
tests/components/homematicip_cloud/helper.py
_generate_mocks
SoldierCorp/home-assistant
2
python
def _generate_mocks(self): for device in self.devices: self.mock_devices.append(_get_mock(device)) for group in self.groups: self.mock_groups.append(_get_mock(group))
def _generate_mocks(self): for device in self.devices: self.mock_devices.append(_get_mock(device)) for group in self.groups: self.mock_groups.append(_get_mock(group))<|docstring|>Generate mocks for groups and devices.<|endoftext|>
a220ecbb55750d4170bc614fa7a52ece97073b13eb9e1f37671cafd1b02496c8
def search_mock_device_by_id(self, device_id): 'Search a device by given id.' for device in self.mock_devices: if (device.id == device_id): return device return None
Search a device by given id.
tests/components/homematicip_cloud/helper.py
search_mock_device_by_id
SoldierCorp/home-assistant
2
python
def search_mock_device_by_id(self, device_id): for device in self.mock_devices: if (device.id == device_id): return device return None
def search_mock_device_by_id(self, device_id): for device in self.mock_devices: if (device.id == device_id): return device return None<|docstring|>Search a device by given id.<|endoftext|>
2a0bdca85e408eb903d239fb02a4a86c31607d677e8578ef7f9c527d48636e59
def search_mock_group_by_id(self, group_id): 'Search a group by given id.' for group in self.mock_groups: if (group.id == group_id): return group return None
Search a group by given id.
tests/components/homematicip_cloud/helper.py
search_mock_group_by_id
SoldierCorp/home-assistant
2
python
def search_mock_group_by_id(self, group_id): for group in self.mock_groups: if (group.id == group_id): return group return None
def search_mock_group_by_id(self, group_id): for group in self.mock_groups: if (group.id == group_id): return group return None<|docstring|>Search a group by given id.<|endoftext|>
323218d661688a5b3a66988216f8016a05fa49e71164e843110e46e9a4c50785
def get_async_home_mock(self): '\n Create Mock for Async_Home. based on template to be used for testing.\n\n It adds collections of mocked devices and groups to the home objects,\n and sets reuired attributes.\n ' mock_home = Mock(check_connection=self._connection, id=HAPID, connected=True, dutyCycle=self.dutyCycle, devices=self.mock_devices, groups=self.mock_groups, weather=self.weather, location=self.location, label='home label', template=self, spec=AsyncHome) mock_home.name = '' return mock_home
Create Mock for Async_Home. based on template to be used for testing. It adds collections of mocked devices and groups to the home objects, and sets reuired attributes.
tests/components/homematicip_cloud/helper.py
get_async_home_mock
SoldierCorp/home-assistant
2
python
def get_async_home_mock(self): '\n Create Mock for Async_Home. based on template to be used for testing.\n\n It adds collections of mocked devices and groups to the home objects,\n and sets reuired attributes.\n ' mock_home = Mock(check_connection=self._connection, id=HAPID, connected=True, dutyCycle=self.dutyCycle, devices=self.mock_devices, groups=self.mock_groups, weather=self.weather, location=self.location, label='home label', template=self, spec=AsyncHome) mock_home.name = return mock_home
def get_async_home_mock(self): '\n Create Mock for Async_Home. based on template to be used for testing.\n\n It adds collections of mocked devices and groups to the home objects,\n and sets reuired attributes.\n ' mock_home = Mock(check_connection=self._connection, id=HAPID, connected=True, dutyCycle=self.dutyCycle, devices=self.mock_devices, groups=self.mock_groups, weather=self.weather, location=self.location, label='home label', template=self, spec=AsyncHome) mock_home.name = return mock_home<|docstring|>Create Mock for Async_Home. based on template to be used for testing. It adds collections of mocked devices and groups to the home objects, and sets reuired attributes.<|endoftext|>
b4caaf442c44473f24a47daee29af536ff7389e60c040e7cd8c606d10f50b47e
def _get_vendor_specific_argv(self, username, host, port=None, subsystem=None, command=None): 'Return arguments to pass to rbssh.\n Args:\n username (unicode):\n The username to connect with.\n host (unicode):\n The hostname to connect to.\n port (int, optional):\n The custom port to connect to.\n subsystem (unicode, optional):\n The SSH subsystem to use.\n command (unicode, optional):\n The command to invoke through the SSH connection.\n Returns:\n list of unicode:\n The list of arguments to pass to :command:`rbssh`.\n ' args = [self.executable_path] if (port is not None): args.extend(['-p', six.text_type(port)]) if (username is not None): args.extend(['-l', username]) if (subsystem is not None): args.extend(['-s', host, subsystem]) else: args.extend(([host] + command)) return args
Return arguments to pass to rbssh. Args: username (unicode): The username to connect with. host (unicode): The hostname to connect to. port (int, optional): The custom port to connect to. subsystem (unicode, optional): The SSH subsystem to use. command (unicode, optional): The command to invoke through the SSH connection. Returns: list of unicode: The list of arguments to pass to :command:`rbssh`.
reviewboard/scmtools/bzr/plugins/bzrlib/plugins/rbssh.py
_get_vendor_specific_argv
BarracudaPff/code-golf-data-pythpn
0
python
def _get_vendor_specific_argv(self, username, host, port=None, subsystem=None, command=None): 'Return arguments to pass to rbssh.\n Args:\n username (unicode):\n The username to connect with.\n host (unicode):\n The hostname to connect to.\n port (int, optional):\n The custom port to connect to.\n subsystem (unicode, optional):\n The SSH subsystem to use.\n command (unicode, optional):\n The command to invoke through the SSH connection.\n Returns:\n list of unicode:\n The list of arguments to pass to :command:`rbssh`.\n ' args = [self.executable_path] if (port is not None): args.extend(['-p', six.text_type(port)]) if (username is not None): args.extend(['-l', username]) if (subsystem is not None): args.extend(['-s', host, subsystem]) else: args.extend(([host] + command)) return args
def _get_vendor_specific_argv(self, username, host, port=None, subsystem=None, command=None): 'Return arguments to pass to rbssh.\n Args:\n username (unicode):\n The username to connect with.\n host (unicode):\n The hostname to connect to.\n port (int, optional):\n The custom port to connect to.\n subsystem (unicode, optional):\n The SSH subsystem to use.\n command (unicode, optional):\n The command to invoke through the SSH connection.\n Returns:\n list of unicode:\n The list of arguments to pass to :command:`rbssh`.\n ' args = [self.executable_path] if (port is not None): args.extend(['-p', six.text_type(port)]) if (username is not None): args.extend(['-l', username]) if (subsystem is not None): args.extend(['-s', host, subsystem]) else: args.extend(([host] + command)) return args<|docstring|>Return arguments to pass to rbssh. Args: username (unicode): The username to connect with. host (unicode): The hostname to connect to. port (int, optional): The custom port to connect to. subsystem (unicode, optional): The SSH subsystem to use. command (unicode, optional): The command to invoke through the SSH connection. Returns: list of unicode: The list of arguments to pass to :command:`rbssh`.<|endoftext|>
d557a79aae67b16a0a9ccb11f8e988cf03a89f8dd8e1f6101ca9ed1c45a2b028
def scaled_dot_product_attention(query: tf.Tensor, key: tf.Tensor, value: tf.Tensor, mask: tf.Tensor): 'Calculate the attention weights.\n\n q (query), k (key), v (value) must have matching leading dimensions.\n k, v must have matching penultimate dimension, i.e.: seq_len_k = seq_len_v.\n The mask has different shapes depending on its type(padding or look ahead)\n but it must be broadcastable for addition.\n\n Args:\n query: Query feature vectors, shape == (..., seq_len_q, depth).\n key: Key feature vectors, shape == (..., seq_len_k, depth).\n value: Value feature vectors, shape == (..., seq_len_v, depth_v).\n mask: Float tensor with shape broadcastable\n to (..., seq_len_q, seq_len_k). Defaults to None.\n Returns:\n output: The output attention vectors.\n attention_weights: The attention weights.\n ' matmul_qk = tf.matmul(query, key, transpose_b=True) ftr_dim = tf.cast(tf.shape(key)[(- 1)], tf.float32) scaled_attention_logits = (matmul_qk / tf.math.sqrt(ftr_dim)) if (mask is not None): scaled_attention_logits += (mask * (- 1000000000.0)) attention_weights = tf.nn.softmax(scaled_attention_logits, axis=(- 1)) output = tf.matmul(attention_weights, value) return (output, attention_weights)
Calculate the attention weights. q (query), k (key), v (value) must have matching leading dimensions. k, v must have matching penultimate dimension, i.e.: seq_len_k = seq_len_v. The mask has different shapes depending on its type(padding or look ahead) but it must be broadcastable for addition. Args: query: Query feature vectors, shape == (..., seq_len_q, depth). key: Key feature vectors, shape == (..., seq_len_k, depth). value: Value feature vectors, shape == (..., seq_len_v, depth_v). mask: Float tensor with shape broadcastable to (..., seq_len_q, seq_len_k). Defaults to None. Returns: output: The output attention vectors. attention_weights: The attention weights.
utils/models/transformer_models.py
scaled_dot_product_attention
zhuchen03/federated
0
python
def scaled_dot_product_attention(query: tf.Tensor, key: tf.Tensor, value: tf.Tensor, mask: tf.Tensor): 'Calculate the attention weights.\n\n q (query), k (key), v (value) must have matching leading dimensions.\n k, v must have matching penultimate dimension, i.e.: seq_len_k = seq_len_v.\n The mask has different shapes depending on its type(padding or look ahead)\n but it must be broadcastable for addition.\n\n Args:\n query: Query feature vectors, shape == (..., seq_len_q, depth).\n key: Key feature vectors, shape == (..., seq_len_k, depth).\n value: Value feature vectors, shape == (..., seq_len_v, depth_v).\n mask: Float tensor with shape broadcastable\n to (..., seq_len_q, seq_len_k). Defaults to None.\n Returns:\n output: The output attention vectors.\n attention_weights: The attention weights.\n ' matmul_qk = tf.matmul(query, key, transpose_b=True) ftr_dim = tf.cast(tf.shape(key)[(- 1)], tf.float32) scaled_attention_logits = (matmul_qk / tf.math.sqrt(ftr_dim)) if (mask is not None): scaled_attention_logits += (mask * (- 1000000000.0)) attention_weights = tf.nn.softmax(scaled_attention_logits, axis=(- 1)) output = tf.matmul(attention_weights, value) return (output, attention_weights)
def scaled_dot_product_attention(query: tf.Tensor, key: tf.Tensor, value: tf.Tensor, mask: tf.Tensor): 'Calculate the attention weights.\n\n q (query), k (key), v (value) must have matching leading dimensions.\n k, v must have matching penultimate dimension, i.e.: seq_len_k = seq_len_v.\n The mask has different shapes depending on its type(padding or look ahead)\n but it must be broadcastable for addition.\n\n Args:\n query: Query feature vectors, shape == (..., seq_len_q, depth).\n key: Key feature vectors, shape == (..., seq_len_k, depth).\n value: Value feature vectors, shape == (..., seq_len_v, depth_v).\n mask: Float tensor with shape broadcastable\n to (..., seq_len_q, seq_len_k). Defaults to None.\n Returns:\n output: The output attention vectors.\n attention_weights: The attention weights.\n ' matmul_qk = tf.matmul(query, key, transpose_b=True) ftr_dim = tf.cast(tf.shape(key)[(- 1)], tf.float32) scaled_attention_logits = (matmul_qk / tf.math.sqrt(ftr_dim)) if (mask is not None): scaled_attention_logits += (mask * (- 1000000000.0)) attention_weights = tf.nn.softmax(scaled_attention_logits, axis=(- 1)) output = tf.matmul(attention_weights, value) return (output, attention_weights)<|docstring|>Calculate the attention weights. q (query), k (key), v (value) must have matching leading dimensions. k, v must have matching penultimate dimension, i.e.: seq_len_k = seq_len_v. The mask has different shapes depending on its type(padding or look ahead) but it must be broadcastable for addition. Args: query: Query feature vectors, shape == (..., seq_len_q, depth). key: Key feature vectors, shape == (..., seq_len_k, depth). value: Value feature vectors, shape == (..., seq_len_v, depth_v). mask: Float tensor with shape broadcastable to (..., seq_len_q, seq_len_k). Defaults to None. Returns: output: The output attention vectors. attention_weights: The attention weights.<|endoftext|>
0bdf7bd4befbcefccca8b9e3372b0e9f0e7584460f00499fdcf0dd18d00a0b78
def point_wise_feed_forward_network(d_model, dff): 'Returns all the possible positional encodings.\n Args:\n d_model: Dimension of the input feature.\n dff: Dimension of the hidden layer.\n Returns:\n `tf.keras.Sequential`: A one-hidden-layer MLP.\n ' return tf.keras.Sequential([tf.keras.layers.Dense(dff, activation='relu'), tf.keras.layers.Dense(d_model)])
Returns all the possible positional encodings. Args: d_model: Dimension of the input feature. dff: Dimension of the hidden layer. Returns: `tf.keras.Sequential`: A one-hidden-layer MLP.
utils/models/transformer_models.py
point_wise_feed_forward_network
zhuchen03/federated
0
python
def point_wise_feed_forward_network(d_model, dff): 'Returns all the possible positional encodings.\n Args:\n d_model: Dimension of the input feature.\n dff: Dimension of the hidden layer.\n Returns:\n `tf.keras.Sequential`: A one-hidden-layer MLP.\n ' return tf.keras.Sequential([tf.keras.layers.Dense(dff, activation='relu'), tf.keras.layers.Dense(d_model)])
def point_wise_feed_forward_network(d_model, dff): 'Returns all the possible positional encodings.\n Args:\n d_model: Dimension of the input feature.\n dff: Dimension of the hidden layer.\n Returns:\n `tf.keras.Sequential`: A one-hidden-layer MLP.\n ' return tf.keras.Sequential([tf.keras.layers.Dense(dff, activation='relu'), tf.keras.layers.Dense(d_model)])<|docstring|>Returns all the possible positional encodings. Args: d_model: Dimension of the input feature. dff: Dimension of the hidden layer. Returns: `tf.keras.Sequential`: A one-hidden-layer MLP.<|endoftext|>
8548d49361eb96961882f97e15f8462c93e133fe7b4cf52c041c1b67f273397a
def positional_encoding(position, d_model): 'Returns all the possible positional encodings. #add one sentence about why we need positional encoding, probably link to the equation in paper?\n Args:\n position: Maximum number of positions.\n d_model: Dimension of features of MultiHeadAttention layers.\n Returns:\n `tf.Tensor`: The position encodings of the input sequence.\n ' def get_angles(pos, i, d_model): angle_rates = (1 / np.power(position, ((2 * (i // 2)) / np.float32(d_model)))) return (pos * angle_rates) angle_rads = get_angles(np.arange(position)[(:, np.newaxis)], np.arange(d_model)[(np.newaxis, :)], d_model) angle_rads[(:, 0::2)] = np.sin(angle_rads[(:, 0::2)]) angle_rads[(:, 1::2)] = np.cos(angle_rads[(:, 1::2)]) pos_encoding = angle_rads[(np.newaxis, ...)] return tf.cast(pos_encoding, dtype=tf.float32)
Returns all the possible positional encodings. #add one sentence about why we need positional encoding, probably link to the equation in paper? Args: position: Maximum number of positions. d_model: Dimension of features of MultiHeadAttention layers. Returns: `tf.Tensor`: The position encodings of the input sequence.
utils/models/transformer_models.py
positional_encoding
zhuchen03/federated
0
python
def positional_encoding(position, d_model): 'Returns all the possible positional encodings. #add one sentence about why we need positional encoding, probably link to the equation in paper?\n Args:\n position: Maximum number of positions.\n d_model: Dimension of features of MultiHeadAttention layers.\n Returns:\n `tf.Tensor`: The position encodings of the input sequence.\n ' def get_angles(pos, i, d_model): angle_rates = (1 / np.power(position, ((2 * (i // 2)) / np.float32(d_model)))) return (pos * angle_rates) angle_rads = get_angles(np.arange(position)[(:, np.newaxis)], np.arange(d_model)[(np.newaxis, :)], d_model) angle_rads[(:, 0::2)] = np.sin(angle_rads[(:, 0::2)]) angle_rads[(:, 1::2)] = np.cos(angle_rads[(:, 1::2)]) pos_encoding = angle_rads[(np.newaxis, ...)] return tf.cast(pos_encoding, dtype=tf.float32)
def positional_encoding(position, d_model): 'Returns all the possible positional encodings. #add one sentence about why we need positional encoding, probably link to the equation in paper?\n Args:\n position: Maximum number of positions.\n d_model: Dimension of features of MultiHeadAttention layers.\n Returns:\n `tf.Tensor`: The position encodings of the input sequence.\n ' def get_angles(pos, i, d_model): angle_rates = (1 / np.power(position, ((2 * (i // 2)) / np.float32(d_model)))) return (pos * angle_rates) angle_rads = get_angles(np.arange(position)[(:, np.newaxis)], np.arange(d_model)[(np.newaxis, :)], d_model) angle_rads[(:, 0::2)] = np.sin(angle_rads[(:, 0::2)]) angle_rads[(:, 1::2)] = np.cos(angle_rads[(:, 1::2)]) pos_encoding = angle_rads[(np.newaxis, ...)] return tf.cast(pos_encoding, dtype=tf.float32)<|docstring|>Returns all the possible positional encodings. #add one sentence about why we need positional encoding, probably link to the equation in paper? Args: position: Maximum number of positions. d_model: Dimension of features of MultiHeadAttention layers. Returns: `tf.Tensor`: The position encodings of the input sequence.<|endoftext|>
d1619a57bceda6ce7a6b2421bfd5a138cf36eacb7233f1d8bacab39a51a598ce
def create_transformer_lm(vocab_size=10000, num_oov_buckets=1, d_embed=96, d_model=512, dff=2048, num_heads=8, num_layers=1, max_position_encoding=10000, dropout=0.1, name='transformer_lm'): 'Create the transformer-based language model for next-token prediction.\n Args:\n vocab_size: Vocab size for normal tokens.\n num_oov_buckets: Number of out of vocabulary buckets.\n d_embed: Dimension of the token embeddings.\n d_model: Dimension of features of MultiHeadAttention layers.\n dff: Dimension of hidden layers of the FFN.\n num_heads: Number of attention heads.\n num_layers: Number of Transformer blocks.\n max_position_encoding: Maximum number of positions for position embeddings.\n dropout: Dropout rate.\n name: Name of the model.\n Returns:\n `tf.keras.Model`.\n ' extended_vocab_size = ((vocab_size + 3) + num_oov_buckets) inputs = tf.keras.layers.Input(shape=(None,)) transformer = TransformerLM(num_layers, d_embed, d_model, num_heads, dff, extended_vocab_size, max_position_encoding, rate=dropout) features = transformer(inputs) transpose_embedding = TransposableEmbedding(transformer.embedding) logits = transpose_embedding(features) return tf.keras.Model(inputs=inputs, outputs=logits, name=name)
Create the transformer-based language model for next-token prediction. Args: vocab_size: Vocab size for normal tokens. num_oov_buckets: Number of out of vocabulary buckets. d_embed: Dimension of the token embeddings. d_model: Dimension of features of MultiHeadAttention layers. dff: Dimension of hidden layers of the FFN. num_heads: Number of attention heads. num_layers: Number of Transformer blocks. max_position_encoding: Maximum number of positions for position embeddings. dropout: Dropout rate. name: Name of the model. Returns: `tf.keras.Model`.
utils/models/transformer_models.py
create_transformer_lm
zhuchen03/federated
0
python
def create_transformer_lm(vocab_size=10000, num_oov_buckets=1, d_embed=96, d_model=512, dff=2048, num_heads=8, num_layers=1, max_position_encoding=10000, dropout=0.1, name='transformer_lm'): 'Create the transformer-based language model for next-token prediction.\n Args:\n vocab_size: Vocab size for normal tokens.\n num_oov_buckets: Number of out of vocabulary buckets.\n d_embed: Dimension of the token embeddings.\n d_model: Dimension of features of MultiHeadAttention layers.\n dff: Dimension of hidden layers of the FFN.\n num_heads: Number of attention heads.\n num_layers: Number of Transformer blocks.\n max_position_encoding: Maximum number of positions for position embeddings.\n dropout: Dropout rate.\n name: Name of the model.\n Returns:\n `tf.keras.Model`.\n ' extended_vocab_size = ((vocab_size + 3) + num_oov_buckets) inputs = tf.keras.layers.Input(shape=(None,)) transformer = TransformerLM(num_layers, d_embed, d_model, num_heads, dff, extended_vocab_size, max_position_encoding, rate=dropout) features = transformer(inputs) transpose_embedding = TransposableEmbedding(transformer.embedding) logits = transpose_embedding(features) return tf.keras.Model(inputs=inputs, outputs=logits, name=name)
def create_transformer_lm(vocab_size=10000, num_oov_buckets=1, d_embed=96, d_model=512, dff=2048, num_heads=8, num_layers=1, max_position_encoding=10000, dropout=0.1, name='transformer_lm'): 'Create the transformer-based language model for next-token prediction.\n Args:\n vocab_size: Vocab size for normal tokens.\n num_oov_buckets: Number of out of vocabulary buckets.\n d_embed: Dimension of the token embeddings.\n d_model: Dimension of features of MultiHeadAttention layers.\n dff: Dimension of hidden layers of the FFN.\n num_heads: Number of attention heads.\n num_layers: Number of Transformer blocks.\n max_position_encoding: Maximum number of positions for position embeddings.\n dropout: Dropout rate.\n name: Name of the model.\n Returns:\n `tf.keras.Model`.\n ' extended_vocab_size = ((vocab_size + 3) + num_oov_buckets) inputs = tf.keras.layers.Input(shape=(None,)) transformer = TransformerLM(num_layers, d_embed, d_model, num_heads, dff, extended_vocab_size, max_position_encoding, rate=dropout) features = transformer(inputs) transpose_embedding = TransposableEmbedding(transformer.embedding) logits = transpose_embedding(features) return tf.keras.Model(inputs=inputs, outputs=logits, name=name)<|docstring|>Create the transformer-based language model for next-token prediction. Args: vocab_size: Vocab size for normal tokens. num_oov_buckets: Number of out of vocabulary buckets. d_embed: Dimension of the token embeddings. d_model: Dimension of features of MultiHeadAttention layers. dff: Dimension of hidden layers of the FFN. num_heads: Number of attention heads. num_layers: Number of Transformer blocks. max_position_encoding: Maximum number of positions for position embeddings. dropout: Dropout rate. name: Name of the model. Returns: `tf.keras.Model`.<|endoftext|>
739e58b202c66e7508d67e648f037cc90a7430a8c7538e0c8ae7a7ae36bf6f5e
def split_heads(self, x, batch_size): 'Split the last dimension into (num_heads, depth).\n Transpose the result such that the shape is (batch_size, num_heads, seq_len, depth)\n ' x = tf.reshape(x, (batch_size, (- 1), self.num_heads, self.depth)) return tf.transpose(x, perm=[0, 2, 1, 3])
Split the last dimension into (num_heads, depth). Transpose the result such that the shape is (batch_size, num_heads, seq_len, depth)
utils/models/transformer_models.py
split_heads
zhuchen03/federated
0
python
def split_heads(self, x, batch_size): 'Split the last dimension into (num_heads, depth).\n Transpose the result such that the shape is (batch_size, num_heads, seq_len, depth)\n ' x = tf.reshape(x, (batch_size, (- 1), self.num_heads, self.depth)) return tf.transpose(x, perm=[0, 2, 1, 3])
def split_heads(self, x, batch_size): 'Split the last dimension into (num_heads, depth).\n Transpose the result such that the shape is (batch_size, num_heads, seq_len, depth)\n ' x = tf.reshape(x, (batch_size, (- 1), self.num_heads, self.depth)) return tf.transpose(x, perm=[0, 2, 1, 3])<|docstring|>Split the last dimension into (num_heads, depth). Transpose the result such that the shape is (batch_size, num_heads, seq_len, depth)<|endoftext|>
b1915d6f629907b3f62c97e6819b5aeabbe6793441f60eeb2cd919a539351df0
def download_source_ligatures(): '\n\tDownloads the Fira Code OpenType fonts (version 3.1), which contains the source ligatures.\n\n\tRemarks:\n\t\tThe Fira Code font version downloaded is the latest available that can be applied. For more information see the following issue: https://github.com/tonsky/FiraCode/issues/1100\n\t' if (not path.isdir(LIGATURES_SOURCE)): makedirs(LIGATURES_SOURCE, exist_ok=True) with open(request.urlretrieve('https://api.github.com/repos/tonsky/FiraCode/contents/distr/otf?ref=e9943d2d631a4558613d7a77c58ed1d3cb790992')[0], 'r') as stream: json = load(stream) for entry in json: github.download_file(entry['download_url'], path.join(LIGATURES_SOURCE, path.basename(entry['path'])))
Downloads the Fira Code OpenType fonts (version 3.1), which contains the source ligatures. Remarks: The Fira Code font version downloaded is the latest available that can be applied. For more information see the following issue: https://github.com/tonsky/FiraCode/issues/1100
helpers/fonts.py
download_source_ligatures
lperezperez/font-patcher-helper
0
python
def download_source_ligatures(): '\n\tDownloads the Fira Code OpenType fonts (version 3.1), which contains the source ligatures.\n\n\tRemarks:\n\t\tThe Fira Code font version downloaded is the latest available that can be applied. For more information see the following issue: https://github.com/tonsky/FiraCode/issues/1100\n\t' if (not path.isdir(LIGATURES_SOURCE)): makedirs(LIGATURES_SOURCE, exist_ok=True) with open(request.urlretrieve('https://api.github.com/repos/tonsky/FiraCode/contents/distr/otf?ref=e9943d2d631a4558613d7a77c58ed1d3cb790992')[0], 'r') as stream: json = load(stream) for entry in json: github.download_file(entry['download_url'], path.join(LIGATURES_SOURCE, path.basename(entry['path'])))
def download_source_ligatures(): '\n\tDownloads the Fira Code OpenType fonts (version 3.1), which contains the source ligatures.\n\n\tRemarks:\n\t\tThe Fira Code font version downloaded is the latest available that can be applied. For more information see the following issue: https://github.com/tonsky/FiraCode/issues/1100\n\t' if (not path.isdir(LIGATURES_SOURCE)): makedirs(LIGATURES_SOURCE, exist_ok=True) with open(request.urlretrieve('https://api.github.com/repos/tonsky/FiraCode/contents/distr/otf?ref=e9943d2d631a4558613d7a77c58ed1d3cb790992')[0], 'r') as stream: json = load(stream) for entry in json: github.download_file(entry['download_url'], path.join(LIGATURES_SOURCE, path.basename(entry['path'])))<|docstring|>Downloads the Fira Code OpenType fonts (version 3.1), which contains the source ligatures. Remarks: The Fira Code font version downloaded is the latest available that can be applied. For more information see the following issue: https://github.com/tonsky/FiraCode/issues/1100<|endoftext|>
1759bf23343f81088130fcd7c56ffc0c5aaff489233c7bf54349aefc46c374c1
def get_font_files(paths: list): '\n\tGet fonts from the specified paths.\n\n\tArguments:\n\t\tpaths (list): A list of paths whether to retrieve fonts.\n\t' font_files = [] for font_path in paths: if (path.isfile(font_path) and (path.splitext(font_path)[(- 1)] in EXTENSIONS)): font_files.append(font_path) elif path.isdir(font_path): for (root, folder_names, file_names) in walk(font_path): for file_name in file_names: if (path.splitext(file_name)[(- 1)] in EXTENSIONS): font_files.append(path.join(root, file_name)) else: stderr.write(f'Cannot retrieve path {font_path}') return font_files
Get fonts from the specified paths. Arguments: paths (list): A list of paths whether to retrieve fonts.
helpers/fonts.py
get_font_files
lperezperez/font-patcher-helper
0
python
def get_font_files(paths: list): '\n\tGet fonts from the specified paths.\n\n\tArguments:\n\t\tpaths (list): A list of paths whether to retrieve fonts.\n\t' font_files = [] for font_path in paths: if (path.isfile(font_path) and (path.splitext(font_path)[(- 1)] in EXTENSIONS)): font_files.append(font_path) elif path.isdir(font_path): for (root, folder_names, file_names) in walk(font_path): for file_name in file_names: if (path.splitext(file_name)[(- 1)] in EXTENSIONS): font_files.append(path.join(root, file_name)) else: stderr.write(f'Cannot retrieve path {font_path}') return font_files
def get_font_files(paths: list): '\n\tGet fonts from the specified paths.\n\n\tArguments:\n\t\tpaths (list): A list of paths whether to retrieve fonts.\n\t' font_files = [] for font_path in paths: if (path.isfile(font_path) and (path.splitext(font_path)[(- 1)] in EXTENSIONS)): font_files.append(font_path) elif path.isdir(font_path): for (root, folder_names, file_names) in walk(font_path): for file_name in file_names: if (path.splitext(file_name)[(- 1)] in EXTENSIONS): font_files.append(path.join(root, file_name)) else: stderr.write(f'Cannot retrieve path {font_path}') return font_files<|docstring|>Get fonts from the specified paths. Arguments: paths (list): A list of paths whether to retrieve fonts.<|endoftext|>
cd35b7be653d5748cb40f393e37665be6e209725b7476e290972a242c2a965c3
def normalize_styles(font_style: str): '\n\tNormalizes font styles and converts wheights, widths and optical sizes to one camel-case word.\n\n\tArguments:\n\t\tfont_style (str): The original font styles.\n\t' return font_style.replace('Hairline', 'Thin').replace('Extra Light', 'ExtraLight').replace('Ultra Light', 'ExtraLight').replace('XLight', 'ExtraLight').replace('Book', 'Regular').replace('Demi Bold', 'SemiBold').replace('Semi Bold', 'SemiBold').replace('Extra Bold', 'ExtraBold').replace('Ultra Bold', 'ExtraBold').replace('Heavy', 'Black').replace('XNarrow', 'ExtraNarrow').replace('SSm', 'ScreenSmart')
Normalizes font styles and converts wheights, widths and optical sizes to one camel-case word. Arguments: font_style (str): The original font styles.
helpers/fonts.py
normalize_styles
lperezperez/font-patcher-helper
0
python
def normalize_styles(font_style: str): '\n\tNormalizes font styles and converts wheights, widths and optical sizes to one camel-case word.\n\n\tArguments:\n\t\tfont_style (str): The original font styles.\n\t' return font_style.replace('Hairline', 'Thin').replace('Extra Light', 'ExtraLight').replace('Ultra Light', 'ExtraLight').replace('XLight', 'ExtraLight').replace('Book', 'Regular').replace('Demi Bold', 'SemiBold').replace('Semi Bold', 'SemiBold').replace('Extra Bold', 'ExtraBold').replace('Ultra Bold', 'ExtraBold').replace('Heavy', 'Black').replace('XNarrow', 'ExtraNarrow').replace('SSm', 'ScreenSmart')
def normalize_styles(font_style: str): '\n\tNormalizes font styles and converts wheights, widths and optical sizes to one camel-case word.\n\n\tArguments:\n\t\tfont_style (str): The original font styles.\n\t' return font_style.replace('Hairline', 'Thin').replace('Extra Light', 'ExtraLight').replace('Ultra Light', 'ExtraLight').replace('XLight', 'ExtraLight').replace('Book', 'Regular').replace('Demi Bold', 'SemiBold').replace('Semi Bold', 'SemiBold').replace('Extra Bold', 'ExtraBold').replace('Ultra Bold', 'ExtraBold').replace('Heavy', 'Black').replace('XNarrow', 'ExtraNarrow').replace('SSm', 'ScreenSmart')<|docstring|>Normalizes font styles and converts wheights, widths and optical sizes to one camel-case word. Arguments: font_style (str): The original font styles.<|endoftext|>
21dce7beb0275f69c0d4edef485e618fcead539c3b1b25ffd935b21ee522b184
def get_style_abbreviated(font_name: str): '\n\tGets the specified `font_name` with the style abbreviations recommended in the Adobe Tech note #5088 (http://wwwimages.adobe.com/content/dam/acom/en/devnet/font/pdfs/5088.FontNames.pdf)\n\n\tArguments:\n\t\tfont_name (str): The font name to abbreviate.\n\t' return font_name.replace('Bold', 'Bd').replace('Book', 'Bk').replace('Black', 'Blk').replace('Compressed', 'Cm').replace('Condensed', 'Cn').replace('Compact', 'Ct').replace('Demi', 'Dm').replace('Display', 'Ds').replace('Extended', 'Ex').replace('Heavy', 'Hv').replace('Inclined', 'Ic').replace('Italic', 'It').replace('Kursiv', 'Ks').replace('Light', 'Lt').replace('Medium', 'Md').replace('Nord', 'Nd').replace('Narrow', 'Nr').replace('Oblique', 'Obl').replace('Poster', 'Po').replace('Regular', 'Rg').replace('Slanted', 'Sl').replace('Semi', 'Sm').replace('Super', 'Su').replace('Thin', 'Th').replace('Ultra', 'Ult').replace('Upright', 'Up').replace('Extra', 'X')
Gets the specified `font_name` with the style abbreviations recommended in the Adobe Tech note #5088 (http://wwwimages.adobe.com/content/dam/acom/en/devnet/font/pdfs/5088.FontNames.pdf) Arguments: font_name (str): The font name to abbreviate.
helpers/fonts.py
get_style_abbreviated
lperezperez/font-patcher-helper
0
python
def get_style_abbreviated(font_name: str): '\n\tGets the specified `font_name` with the style abbreviations recommended in the Adobe Tech note #5088 (http://wwwimages.adobe.com/content/dam/acom/en/devnet/font/pdfs/5088.FontNames.pdf)\n\n\tArguments:\n\t\tfont_name (str): The font name to abbreviate.\n\t' return font_name.replace('Bold', 'Bd').replace('Book', 'Bk').replace('Black', 'Blk').replace('Compressed', 'Cm').replace('Condensed', 'Cn').replace('Compact', 'Ct').replace('Demi', 'Dm').replace('Display', 'Ds').replace('Extended', 'Ex').replace('Heavy', 'Hv').replace('Inclined', 'Ic').replace('Italic', 'It').replace('Kursiv', 'Ks').replace('Light', 'Lt').replace('Medium', 'Md').replace('Nord', 'Nd').replace('Narrow', 'Nr').replace('Oblique', 'Obl').replace('Poster', 'Po').replace('Regular', 'Rg').replace('Slanted', 'Sl').replace('Semi', 'Sm').replace('Super', 'Su').replace('Thin', 'Th').replace('Ultra', 'Ult').replace('Upright', 'Up').replace('Extra', 'X')
def get_style_abbreviated(font_name: str): '\n\tGets the specified `font_name` with the style abbreviations recommended in the Adobe Tech note #5088 (http://wwwimages.adobe.com/content/dam/acom/en/devnet/font/pdfs/5088.FontNames.pdf)\n\n\tArguments:\n\t\tfont_name (str): The font name to abbreviate.\n\t' return font_name.replace('Bold', 'Bd').replace('Book', 'Bk').replace('Black', 'Blk').replace('Compressed', 'Cm').replace('Condensed', 'Cn').replace('Compact', 'Ct').replace('Demi', 'Dm').replace('Display', 'Ds').replace('Extended', 'Ex').replace('Heavy', 'Hv').replace('Inclined', 'Ic').replace('Italic', 'It').replace('Kursiv', 'Ks').replace('Light', 'Lt').replace('Medium', 'Md').replace('Nord', 'Nd').replace('Narrow', 'Nr').replace('Oblique', 'Obl').replace('Poster', 'Po').replace('Regular', 'Rg').replace('Slanted', 'Sl').replace('Semi', 'Sm').replace('Super', 'Su').replace('Thin', 'Th').replace('Ultra', 'Ult').replace('Upright', 'Up').replace('Extra', 'X')<|docstring|>Gets the specified `font_name` with the style abbreviations recommended in the Adobe Tech note #5088 (http://wwwimages.adobe.com/content/dam/acom/en/devnet/font/pdfs/5088.FontNames.pdf) Arguments: font_name (str): The font name to abbreviate.<|endoftext|>
beac9c05a4a0f122776415fd4455b194746f757955107827855ca7cba76cc05d
def remove_wws_styles(font_name: str): '\n\tRemove font WWS (weight, width, and slope) styles from `font_name`\n\n\tArguments:\n\t\tfont_name (str): The font name from which the styles will be removed.\n\t' return font_name.replace('Thin', '').replace('ExtraLight', '').replace('Light', '').replace('Regular', '').replace('Medium', '').replace('SemiBold', '').replace('ExtraBold', '').replace('Bold', '').replace('Black', '').replace('Italic', '').strip()
Remove font WWS (weight, width, and slope) styles from `font_name` Arguments: font_name (str): The font name from which the styles will be removed.
helpers/fonts.py
remove_wws_styles
lperezperez/font-patcher-helper
0
python
def remove_wws_styles(font_name: str): '\n\tRemove font WWS (weight, width, and slope) styles from `font_name`\n\n\tArguments:\n\t\tfont_name (str): The font name from which the styles will be removed.\n\t' return font_name.replace('Thin', ).replace('ExtraLight', ).replace('Light', ).replace('Regular', ).replace('Medium', ).replace('SemiBold', ).replace('ExtraBold', ).replace('Bold', ).replace('Black', ).replace('Italic', ).strip()
def remove_wws_styles(font_name: str): '\n\tRemove font WWS (weight, width, and slope) styles from `font_name`\n\n\tArguments:\n\t\tfont_name (str): The font name from which the styles will be removed.\n\t' return font_name.replace('Thin', ).replace('ExtraLight', ).replace('Light', ).replace('Regular', ).replace('Medium', ).replace('SemiBold', ).replace('ExtraBold', ).replace('Bold', ).replace('Black', ).replace('Italic', ).strip()<|docstring|>Remove font WWS (weight, width, and slope) styles from `font_name` Arguments: font_name (str): The font name from which the styles will be removed.<|endoftext|>
f5473862050403695d7c877c908eca1034eae3f17c31f4dfc2f2e6c308a76b64
def remove_styles(font_name: str): '\n\tRemove font styles from `font_name`\n\n\tArguments:\n\t\tfont_name (str): The font name from which the styles will be removed.\n\t' return remove_wws_styles(font_name).replace('Condensed', '').replace('ExtraNarrow', '').replace('Narrow', '').replace('ScreenSmart', '').replace('Mono', '').strip()
Remove font styles from `font_name` Arguments: font_name (str): The font name from which the styles will be removed.
helpers/fonts.py
remove_styles
lperezperez/font-patcher-helper
0
python
def remove_styles(font_name: str): '\n\tRemove font styles from `font_name`\n\n\tArguments:\n\t\tfont_name (str): The font name from which the styles will be removed.\n\t' return remove_wws_styles(font_name).replace('Condensed', ).replace('ExtraNarrow', ).replace('Narrow', ).replace('ScreenSmart', ).replace('Mono', ).strip()
def remove_styles(font_name: str): '\n\tRemove font styles from `font_name`\n\n\tArguments:\n\t\tfont_name (str): The font name from which the styles will be removed.\n\t' return remove_wws_styles(font_name).replace('Condensed', ).replace('ExtraNarrow', ).replace('Narrow', ).replace('ScreenSmart', ).replace('Mono', ).strip()<|docstring|>Remove font styles from `font_name` Arguments: font_name (str): The font name from which the styles will be removed.<|endoftext|>
d7040e0e8847551c74d2e4b742b0f6f8b40cf786c3bdac068d8fd0e2aad0b53e
def get_name_id(font: fontforge.font, name_id: str): '\n\tGets the specified `value` for the `font` `name_id`.\n\n\tArguments:\n\t\tfont (fontforge.font): A FontForge loaded font.\n\t\tname_id (str): An Open Type Name ID.\n\t' for sfnt_name in font.sfnt_names: if (sfnt_name[1] == name_id): return sfnt_name[2]
Gets the specified `value` for the `font` `name_id`. Arguments: font (fontforge.font): A FontForge loaded font. name_id (str): An Open Type Name ID.
helpers/fonts.py
get_name_id
lperezperez/font-patcher-helper
0
python
def get_name_id(font: fontforge.font, name_id: str): '\n\tGets the specified `value` for the `font` `name_id`.\n\n\tArguments:\n\t\tfont (fontforge.font): A FontForge loaded font.\n\t\tname_id (str): An Open Type Name ID.\n\t' for sfnt_name in font.sfnt_names: if (sfnt_name[1] == name_id): return sfnt_name[2]
def get_name_id(font: fontforge.font, name_id: str): '\n\tGets the specified `value` for the `font` `name_id`.\n\n\tArguments:\n\t\tfont (fontforge.font): A FontForge loaded font.\n\t\tname_id (str): An Open Type Name ID.\n\t' for sfnt_name in font.sfnt_names: if (sfnt_name[1] == name_id): return sfnt_name[2]<|docstring|>Gets the specified `value` for the `font` `name_id`. Arguments: font (fontforge.font): A FontForge loaded font. name_id (str): An Open Type Name ID.<|endoftext|>
f8d86d308338f5119f2b6d4470ccb215cdfc8a94d88ce02d8e68b30debbdbb00
def set_name_id(font: fontforge.font, name_id: str, value: str): '\n\tSets the specified `value` for the `font` `name_id`.\n\n\tArguments:\n\t\tfont (fontforge.font): A FontForge loaded font.\n\t\tname_id (str): An Open Type Name ID.\n\t\tvalue (str): A value to set for the `font` `name_id`.\n\t' font.sfnt_names = tuple((((row[0], row[1], value) if (row[1] == name_id) else row) for row in font.sfnt_names))
Sets the specified `value` for the `font` `name_id`. Arguments: font (fontforge.font): A FontForge loaded font. name_id (str): An Open Type Name ID. value (str): A value to set for the `font` `name_id`.
helpers/fonts.py
set_name_id
lperezperez/font-patcher-helper
0
python
def set_name_id(font: fontforge.font, name_id: str, value: str): '\n\tSets the specified `value` for the `font` `name_id`.\n\n\tArguments:\n\t\tfont (fontforge.font): A FontForge loaded font.\n\t\tname_id (str): An Open Type Name ID.\n\t\tvalue (str): A value to set for the `font` `name_id`.\n\t' font.sfnt_names = tuple((((row[0], row[1], value) if (row[1] == name_id) else row) for row in font.sfnt_names))
def set_name_id(font: fontforge.font, name_id: str, value: str): '\n\tSets the specified `value` for the `font` `name_id`.\n\n\tArguments:\n\t\tfont (fontforge.font): A FontForge loaded font.\n\t\tname_id (str): An Open Type Name ID.\n\t\tvalue (str): A value to set for the `font` `name_id`.\n\t' font.sfnt_names = tuple((((row[0], row[1], value) if (row[1] == name_id) else row) for row in font.sfnt_names))<|docstring|>Sets the specified `value` for the `font` `name_id`. Arguments: font (fontforge.font): A FontForge loaded font. name_id (str): An Open Type Name ID. value (str): A value to set for the `font` `name_id`.<|endoftext|>
10380f29401c425f034358df894291d33089abe5a479e61aa184470b56b0fbc7
def rename_fontforge(font: fontforge.font): '\n\tTries to rename `font` naming table based on the OpenType specifications (https://docs.microsoft.com/typography/opentype/spec/name#name-ids)\n\n\tArguments:\n\t\tfont (fontforge.font): The font to rename.\n\t' font.fullname = normalize_styles(font.fullname.replace(NERD_FONT_SUFFIX, '')) font.familyname = remove_styles(font.fullname) subfamilyname = font.fullname.replace(font.familyname, '').strip() font.fullname = f'{font.familyname} {subfamilyname}' font.fontname = font.fullname.replace(' ', '-') if (len(font.fontname) > 31): font.fontname = get_style_abbreviated(font.fontname)[:31] wws_family = remove_wws_styles(font.fullname) version_groups = VERSION_PATTERN.match(font.version).groups() if (version_groups[1] is None): font.version = f'Version {float(version_groups[0])}' else: font.version = f'Version {float(version_groups[0])};{version_groups[1]} {version_groups[2]}' set_name_id(font, 'Family', font.familyname) set_name_id(font, 'SubFamily', subfamilyname) set_name_id(font, 'UniqueID', ((font.fontname + ';') + font.version.replace('Version ', '').replace('Nerd Fonts ', 'NF')).replace(' ', '-')) set_name_id(font, 'Fullname', font.fullname) set_name_id(font, 'Version', font.version) set_name_id(font, 'PostScriptName', font.fontname) set_name_id(font, 'Preferred Family', font.familyname) set_name_id(font, 'Preferred Styles', subfamilyname) set_name_id(font, 'Compatible Full', font.fullname) set_name_id(font, 'Sample Text', 'Kuba harpisto ŝajnis amuziĝi facilege ĉe via ĵaŭda ĥoro') set_name_id(font, 'WWS Family', wws_family) set_name_id(font, 'WWS SubFamily', font.fullname.replace(wws_family, '').strip())
Tries to rename `font` naming table based on the OpenType specifications (https://docs.microsoft.com/typography/opentype/spec/name#name-ids) Arguments: font (fontforge.font): The font to rename.
helpers/fonts.py
rename_fontforge
lperezperez/font-patcher-helper
0
python
def rename_fontforge(font: fontforge.font): '\n\tTries to rename `font` naming table based on the OpenType specifications (https://docs.microsoft.com/typography/opentype/spec/name#name-ids)\n\n\tArguments:\n\t\tfont (fontforge.font): The font to rename.\n\t' font.fullname = normalize_styles(font.fullname.replace(NERD_FONT_SUFFIX, )) font.familyname = remove_styles(font.fullname) subfamilyname = font.fullname.replace(font.familyname, ).strip() font.fullname = f'{font.familyname} {subfamilyname}' font.fontname = font.fullname.replace(' ', '-') if (len(font.fontname) > 31): font.fontname = get_style_abbreviated(font.fontname)[:31] wws_family = remove_wws_styles(font.fullname) version_groups = VERSION_PATTERN.match(font.version).groups() if (version_groups[1] is None): font.version = f'Version {float(version_groups[0])}' else: font.version = f'Version {float(version_groups[0])};{version_groups[1]} {version_groups[2]}' set_name_id(font, 'Family', font.familyname) set_name_id(font, 'SubFamily', subfamilyname) set_name_id(font, 'UniqueID', ((font.fontname + ';') + font.version.replace('Version ', ).replace('Nerd Fonts ', 'NF')).replace(' ', '-')) set_name_id(font, 'Fullname', font.fullname) set_name_id(font, 'Version', font.version) set_name_id(font, 'PostScriptName', font.fontname) set_name_id(font, 'Preferred Family', font.familyname) set_name_id(font, 'Preferred Styles', subfamilyname) set_name_id(font, 'Compatible Full', font.fullname) set_name_id(font, 'Sample Text', 'Kuba harpisto ŝajnis amuziĝi facilege ĉe via ĵaŭda ĥoro') set_name_id(font, 'WWS Family', wws_family) set_name_id(font, 'WWS SubFamily', font.fullname.replace(wws_family, ).strip())
def rename_fontforge(font: fontforge.font): '\n\tTries to rename `font` naming table based on the OpenType specifications (https://docs.microsoft.com/typography/opentype/spec/name#name-ids)\n\n\tArguments:\n\t\tfont (fontforge.font): The font to rename.\n\t' font.fullname = normalize_styles(font.fullname.replace(NERD_FONT_SUFFIX, )) font.familyname = remove_styles(font.fullname) subfamilyname = font.fullname.replace(font.familyname, ).strip() font.fullname = f'{font.familyname} {subfamilyname}' font.fontname = font.fullname.replace(' ', '-') if (len(font.fontname) > 31): font.fontname = get_style_abbreviated(font.fontname)[:31] wws_family = remove_wws_styles(font.fullname) version_groups = VERSION_PATTERN.match(font.version).groups() if (version_groups[1] is None): font.version = f'Version {float(version_groups[0])}' else: font.version = f'Version {float(version_groups[0])};{version_groups[1]} {version_groups[2]}' set_name_id(font, 'Family', font.familyname) set_name_id(font, 'SubFamily', subfamilyname) set_name_id(font, 'UniqueID', ((font.fontname + ';') + font.version.replace('Version ', ).replace('Nerd Fonts ', 'NF')).replace(' ', '-')) set_name_id(font, 'Fullname', font.fullname) set_name_id(font, 'Version', font.version) set_name_id(font, 'PostScriptName', font.fontname) set_name_id(font, 'Preferred Family', font.familyname) set_name_id(font, 'Preferred Styles', subfamilyname) set_name_id(font, 'Compatible Full', font.fullname) set_name_id(font, 'Sample Text', 'Kuba harpisto ŝajnis amuziĝi facilege ĉe via ĵaŭda ĥoro') set_name_id(font, 'WWS Family', wws_family) set_name_id(font, 'WWS SubFamily', font.fullname.replace(wws_family, ).strip())<|docstring|>Tries to rename `font` naming table based on the OpenType specifications (https://docs.microsoft.com/typography/opentype/spec/name#name-ids) Arguments: font (fontforge.font): The font to rename.<|endoftext|>
823d72cdcbb26cdc38f25e814453b50a0f8ccf5cb5587df2b40db239039cdb3e
def rename_font(font_file_path: str, output_folder: str=RENAMED_FONTS_PATH): '\n\tRenames the font located in the specified `font_file_path` and stores in `output_folder`.\n\n\tArguments:\n\t\tfont_file_path (str): The path of the font file.\n\t\toutput_folder (str): The renamed font file folder to store.\n\t' if (not path.isfile(font_file_path)): stderr.write(f'Cant not retrieve font at {font_file_path}') font = fontforge.open(font_file_path) rename_fontforge(font) output_folder = path.join(output_folder, font.familyname) makedirs(output_folder, exist_ok=True) font.generate(path.join(output_folder, (font.fullname + path.splitext(font_file_path)[(- 1)])))
Renames the font located in the specified `font_file_path` and stores in `output_folder`. Arguments: font_file_path (str): The path of the font file. output_folder (str): The renamed font file folder to store.
helpers/fonts.py
rename_font
lperezperez/font-patcher-helper
0
python
def rename_font(font_file_path: str, output_folder: str=RENAMED_FONTS_PATH): '\n\tRenames the font located in the specified `font_file_path` and stores in `output_folder`.\n\n\tArguments:\n\t\tfont_file_path (str): The path of the font file.\n\t\toutput_folder (str): The renamed font file folder to store.\n\t' if (not path.isfile(font_file_path)): stderr.write(f'Cant not retrieve font at {font_file_path}') font = fontforge.open(font_file_path) rename_fontforge(font) output_folder = path.join(output_folder, font.familyname) makedirs(output_folder, exist_ok=True) font.generate(path.join(output_folder, (font.fullname + path.splitext(font_file_path)[(- 1)])))
def rename_font(font_file_path: str, output_folder: str=RENAMED_FONTS_PATH): '\n\tRenames the font located in the specified `font_file_path` and stores in `output_folder`.\n\n\tArguments:\n\t\tfont_file_path (str): The path of the font file.\n\t\toutput_folder (str): The renamed font file folder to store.\n\t' if (not path.isfile(font_file_path)): stderr.write(f'Cant not retrieve font at {font_file_path}') font = fontforge.open(font_file_path) rename_fontforge(font) output_folder = path.join(output_folder, font.familyname) makedirs(output_folder, exist_ok=True) font.generate(path.join(output_folder, (font.fullname + path.splitext(font_file_path)[(- 1)])))<|docstring|>Renames the font located in the specified `font_file_path` and stores in `output_folder`. Arguments: font_file_path (str): The path of the font file. output_folder (str): The renamed font file folder to store.<|endoftext|>
939bcc75c26a31b79bc45009e0af7d5d3c7e1edb637053469eabb20208d33912
def ligaturize(font_file_path: str, output_folder: str=LIGATURIZED_FONTS_PATH): '\n\tLigaturizes the font in `font_file_path` using a compatible wheight font in `ligatures_font_path` and stores in `output_folder`.\n\n\tArguments:\n\t\tfont_file_path (str): The font file path to ligaturize.\n\t\tligatures_font_folder (str): The folder where the source ligaturized fonts are stored.\n\t\toutput_folder (str): The ligaturized font file folder to store.\n\t' font = fontforge.open(font_file_path) rename_fontforge(font) output_folder = path.join(output_folder, font.familyname) output_file_path = path.join(output_folder, path.basename(font_file_path)) if path.isfile(output_file_path): stderr.write(f'File "{output_file_path}" already exists.') return ligaturizer = Ligaturizer(font) def ligature_length(lig): return len(lig['chars']) for lig_spec in sorted(LIGATURES, key=ligature_length): try: ligaturizer.add_ligature(lig_spec['chars'], lig_spec['firacode_ligature_name']) except Exception: stderr.write(f'Cannot add ligature {lig_spec} to {font_file_path}') return font.upos += font.uwidth makedirs(output_folder, exist_ok=True) font.generate(output_file_path)
Ligaturizes the font in `font_file_path` using a compatible wheight font in `ligatures_font_path` and stores in `output_folder`. Arguments: font_file_path (str): The font file path to ligaturize. ligatures_font_folder (str): The folder where the source ligaturized fonts are stored. output_folder (str): The ligaturized font file folder to store.
helpers/fonts.py
ligaturize
lperezperez/font-patcher-helper
0
python
def ligaturize(font_file_path: str, output_folder: str=LIGATURIZED_FONTS_PATH): '\n\tLigaturizes the font in `font_file_path` using a compatible wheight font in `ligatures_font_path` and stores in `output_folder`.\n\n\tArguments:\n\t\tfont_file_path (str): The font file path to ligaturize.\n\t\tligatures_font_folder (str): The folder where the source ligaturized fonts are stored.\n\t\toutput_folder (str): The ligaturized font file folder to store.\n\t' font = fontforge.open(font_file_path) rename_fontforge(font) output_folder = path.join(output_folder, font.familyname) output_file_path = path.join(output_folder, path.basename(font_file_path)) if path.isfile(output_file_path): stderr.write(f'File "{output_file_path}" already exists.') return ligaturizer = Ligaturizer(font) def ligature_length(lig): return len(lig['chars']) for lig_spec in sorted(LIGATURES, key=ligature_length): try: ligaturizer.add_ligature(lig_spec['chars'], lig_spec['firacode_ligature_name']) except Exception: stderr.write(f'Cannot add ligature {lig_spec} to {font_file_path}') return font.upos += font.uwidth makedirs(output_folder, exist_ok=True) font.generate(output_file_path)
def ligaturize(font_file_path: str, output_folder: str=LIGATURIZED_FONTS_PATH): '\n\tLigaturizes the font in `font_file_path` using a compatible wheight font in `ligatures_font_path` and stores in `output_folder`.\n\n\tArguments:\n\t\tfont_file_path (str): The font file path to ligaturize.\n\t\tligatures_font_folder (str): The folder where the source ligaturized fonts are stored.\n\t\toutput_folder (str): The ligaturized font file folder to store.\n\t' font = fontforge.open(font_file_path) rename_fontforge(font) output_folder = path.join(output_folder, font.familyname) output_file_path = path.join(output_folder, path.basename(font_file_path)) if path.isfile(output_file_path): stderr.write(f'File "{output_file_path}" already exists.') return ligaturizer = Ligaturizer(font) def ligature_length(lig): return len(lig['chars']) for lig_spec in sorted(LIGATURES, key=ligature_length): try: ligaturizer.add_ligature(lig_spec['chars'], lig_spec['firacode_ligature_name']) except Exception: stderr.write(f'Cannot add ligature {lig_spec} to {font_file_path}') return font.upos += font.uwidth makedirs(output_folder, exist_ok=True) font.generate(output_file_path)<|docstring|>Ligaturizes the font in `font_file_path` using a compatible wheight font in `ligatures_font_path` and stores in `output_folder`. Arguments: font_file_path (str): The font file path to ligaturize. ligatures_font_folder (str): The folder where the source ligaturized fonts are stored. output_folder (str): The ligaturized font file folder to store.<|endoftext|>
82405a160ff253156a6593a7234b9af060b307e8339978e50e606d70e31f85fa
def download_nerd_fonts(nerd_font_family: str, url: str=''): '\n\tDownloads the patched fonts under the specified URL of a Nerd fonts patched font family subfolder.\n\n\tArguments:\n\t\tnerd_font_family (str): The patched family name.\n\t\turl (str): URL of a patched font family subfolder. If not specified, then uses the base URL for the specified `nerd_font_family`.\n\t' if (not url): url = ('https://github.com/ryanoasis/nerd-fonts/tree/master/patched-fonts/' + nerd_font_family) branch = REPO_BRANCH.search(url) response = request.urlretrieve(((((url[:branch.start()].replace('github.com', 'api.github.com/repos', 1) + '/contents/') + url[branch.end():]) + '?ref=') + branch.group(2))) with open(response[0], 'r') as stream: json = load(stream) for entry in json: if (entry['download_url'] is not None): file_parts = path.splitext(path.basename(entry['path'])) if ((file_parts[(- 1)] in EXTENSIONS) and file_parts[0].endswith(NERD_FONT_SUFFIX)): github.download_file(entry['download_url'], path.join(PATCHED_FONTS_PATH, nerd_font_family, (file_parts[0].replace(NERD_FONT_SUFFIX, '') + file_parts[(- 1)]))) else: download_nerd_fonts(nerd_font_family, entry['html_url'])
Downloads the patched fonts under the specified URL of a Nerd fonts patched font family subfolder. Arguments: nerd_font_family (str): The patched family name. url (str): URL of a patched font family subfolder. If not specified, then uses the base URL for the specified `nerd_font_family`.
helpers/fonts.py
download_nerd_fonts
lperezperez/font-patcher-helper
0
python
def download_nerd_fonts(nerd_font_family: str, url: str=): '\n\tDownloads the patched fonts under the specified URL of a Nerd fonts patched font family subfolder.\n\n\tArguments:\n\t\tnerd_font_family (str): The patched family name.\n\t\turl (str): URL of a patched font family subfolder. If not specified, then uses the base URL for the specified `nerd_font_family`.\n\t' if (not url): url = ('https://github.com/ryanoasis/nerd-fonts/tree/master/patched-fonts/' + nerd_font_family) branch = REPO_BRANCH.search(url) response = request.urlretrieve(((((url[:branch.start()].replace('github.com', 'api.github.com/repos', 1) + '/contents/') + url[branch.end():]) + '?ref=') + branch.group(2))) with open(response[0], 'r') as stream: json = load(stream) for entry in json: if (entry['download_url'] is not None): file_parts = path.splitext(path.basename(entry['path'])) if ((file_parts[(- 1)] in EXTENSIONS) and file_parts[0].endswith(NERD_FONT_SUFFIX)): github.download_file(entry['download_url'], path.join(PATCHED_FONTS_PATH, nerd_font_family, (file_parts[0].replace(NERD_FONT_SUFFIX, ) + file_parts[(- 1)]))) else: download_nerd_fonts(nerd_font_family, entry['html_url'])
def download_nerd_fonts(nerd_font_family: str, url: str=): '\n\tDownloads the patched fonts under the specified URL of a Nerd fonts patched font family subfolder.\n\n\tArguments:\n\t\tnerd_font_family (str): The patched family name.\n\t\turl (str): URL of a patched font family subfolder. If not specified, then uses the base URL for the specified `nerd_font_family`.\n\t' if (not url): url = ('https://github.com/ryanoasis/nerd-fonts/tree/master/patched-fonts/' + nerd_font_family) branch = REPO_BRANCH.search(url) response = request.urlretrieve(((((url[:branch.start()].replace('github.com', 'api.github.com/repos', 1) + '/contents/') + url[branch.end():]) + '?ref=') + branch.group(2))) with open(response[0], 'r') as stream: json = load(stream) for entry in json: if (entry['download_url'] is not None): file_parts = path.splitext(path.basename(entry['path'])) if ((file_parts[(- 1)] in EXTENSIONS) and file_parts[0].endswith(NERD_FONT_SUFFIX)): github.download_file(entry['download_url'], path.join(PATCHED_FONTS_PATH, nerd_font_family, (file_parts[0].replace(NERD_FONT_SUFFIX, ) + file_parts[(- 1)]))) else: download_nerd_fonts(nerd_font_family, entry['html_url'])<|docstring|>Downloads the patched fonts under the specified URL of a Nerd fonts patched font family subfolder. Arguments: nerd_font_family (str): The patched family name. url (str): URL of a patched font family subfolder. If not specified, then uses the base URL for the specified `nerd_font_family`.<|endoftext|>
071b2cbd2a5bbbe383c6c7a34892ea8e4e34148d17e175d0873e36ddc84515e2
def run_patcher(font_file_path: str, output_folder: str=PATCHED_FONTS_PATH): '\n\tRuns the Nerd fonts patcher.\n\n\tArguments:\n\t\tfont_file_path (str): The font file path to patch.\n\t\toutput_folder (str): The output folder where the patched font will be stored.\n\t' makedirs(output_folder, exist_ok=True) system(f'./font-patcher -w -c "{font_file_path}" -out "{output_folder}"')
Runs the Nerd fonts patcher. Arguments: font_file_path (str): The font file path to patch. output_folder (str): The output folder where the patched font will be stored.
helpers/fonts.py
run_patcher
lperezperez/font-patcher-helper
0
python
def run_patcher(font_file_path: str, output_folder: str=PATCHED_FONTS_PATH): '\n\tRuns the Nerd fonts patcher.\n\n\tArguments:\n\t\tfont_file_path (str): The font file path to patch.\n\t\toutput_folder (str): The output folder where the patched font will be stored.\n\t' makedirs(output_folder, exist_ok=True) system(f'./font-patcher -w -c "{font_file_path}" -out "{output_folder}"')
def run_patcher(font_file_path: str, output_folder: str=PATCHED_FONTS_PATH): '\n\tRuns the Nerd fonts patcher.\n\n\tArguments:\n\t\tfont_file_path (str): The font file path to patch.\n\t\toutput_folder (str): The output folder where the patched font will be stored.\n\t' makedirs(output_folder, exist_ok=True) system(f'./font-patcher -w -c "{font_file_path}" -out "{output_folder}"')<|docstring|>Runs the Nerd fonts patcher. Arguments: font_file_path (str): The font file path to patch. output_folder (str): The output folder where the patched font will be stored.<|endoftext|>
75a2f28451d0372c4fe25c250ea0a8d916a22575f668def8d8553c87063f4f33
def run_in_parallel(paths: list, target, args: tuple=()): '\n\tRuns multiple processes in parallel mode.\n\n\tArguments:\n\t\tpaths (list): The list of paths to retrieve fonts.\n\t\ttarget (function): The function to run in parallel mode.\n\t\targs (tuple): The target functuion arguments.\n\t' processes = [] process_count = cpu_count() for font_file in get_font_files(paths): if (len(processes) == process_count): for process in processes: process.join() processes = [] processes.append(Process(target=target, args=((font_file,) + args))) processes[(- 1)].start() if (len(processes) > 0): for process in processes: process.join()
Runs multiple processes in parallel mode. Arguments: paths (list): The list of paths to retrieve fonts. target (function): The function to run in parallel mode. args (tuple): The target functuion arguments.
helpers/fonts.py
run_in_parallel
lperezperez/font-patcher-helper
0
python
def run_in_parallel(paths: list, target, args: tuple=()): '\n\tRuns multiple processes in parallel mode.\n\n\tArguments:\n\t\tpaths (list): The list of paths to retrieve fonts.\n\t\ttarget (function): The function to run in parallel mode.\n\t\targs (tuple): The target functuion arguments.\n\t' processes = [] process_count = cpu_count() for font_file in get_font_files(paths): if (len(processes) == process_count): for process in processes: process.join() processes = [] processes.append(Process(target=target, args=((font_file,) + args))) processes[(- 1)].start() if (len(processes) > 0): for process in processes: process.join()
def run_in_parallel(paths: list, target, args: tuple=()): '\n\tRuns multiple processes in parallel mode.\n\n\tArguments:\n\t\tpaths (list): The list of paths to retrieve fonts.\n\t\ttarget (function): The function to run in parallel mode.\n\t\targs (tuple): The target functuion arguments.\n\t' processes = [] process_count = cpu_count() for font_file in get_font_files(paths): if (len(processes) == process_count): for process in processes: process.join() processes = [] processes.append(Process(target=target, args=((font_file,) + args))) processes[(- 1)].start() if (len(processes) > 0): for process in processes: process.join()<|docstring|>Runs multiple processes in parallel mode. Arguments: paths (list): The list of paths to retrieve fonts. target (function): The function to run in parallel mode. args (tuple): The target functuion arguments.<|endoftext|>
847aded5b291a5369b1c655680f4814bf0880735ea149d60b569e5153c74b0b0
def __init__(self, font, scale_character_glyphs_threshold=0.1, copy_character_glyphs=False): 'Initializes a new instance of `Ligaturizer` class.' self.font = font self.firacode = fontforge.open(path.join(LIGATURES_SOURCE, f'FiraCode-{self.get_seamless_font_weight()}.otf')) self.scale_character_glyphs_threshold = scale_character_glyphs_threshold self.should_copy_character_glyphs = copy_character_glyphs self._lig_counter = 0 self.firacode.em = self.font.em self.emwidth = self.font[ord('m')].width
Initializes a new instance of `Ligaturizer` class.
helpers/fonts.py
__init__
lperezperez/font-patcher-helper
0
python
def __init__(self, font, scale_character_glyphs_threshold=0.1, copy_character_glyphs=False): self.font = font self.firacode = fontforge.open(path.join(LIGATURES_SOURCE, f'FiraCode-{self.get_seamless_font_weight()}.otf')) self.scale_character_glyphs_threshold = scale_character_glyphs_threshold self.should_copy_character_glyphs = copy_character_glyphs self._lig_counter = 0 self.firacode.em = self.font.em self.emwidth = self.font[ord('m')].width
def __init__(self, font, scale_character_glyphs_threshold=0.1, copy_character_glyphs=False): self.font = font self.firacode = fontforge.open(path.join(LIGATURES_SOURCE, f'FiraCode-{self.get_seamless_font_weight()}.otf')) self.scale_character_glyphs_threshold = scale_character_glyphs_threshold self.should_copy_character_glyphs = copy_character_glyphs self._lig_counter = 0 self.firacode.em = self.font.em self.emwidth = self.font[ord('m')].width<|docstring|>Initializes a new instance of `Ligaturizer` class.<|endoftext|>
3fc852b89d2063abc12ca2df5f34fd27fa324dd53a16f71c6c466152982b1fa3
def copy_ligature_from_source(self, ligature_name): 'Tries to copy the specified ligature_name.' try: self.firacode.selection.none() self.firacode.selection.select(ligature_name) self.firacode.copy() return True except ValueError: return False
Tries to copy the specified ligature_name.
helpers/fonts.py
copy_ligature_from_source
lperezperez/font-patcher-helper
0
python
def copy_ligature_from_source(self, ligature_name): try: self.firacode.selection.none() self.firacode.selection.select(ligature_name) self.firacode.copy() return True except ValueError: return False
def copy_ligature_from_source(self, ligature_name): try: self.firacode.selection.none() self.firacode.selection.select(ligature_name) self.firacode.copy() return True except ValueError: return False<|docstring|>Tries to copy the specified ligature_name.<|endoftext|>
87a655318da4e18aa7a4acfb255173cdcdfc08757e4288a33cc57f0af31fc84e
def copy_character_glyphs(self, chars): 'Copy individual (non-ligature) characters from the ligature font.' if (not self.should_copy_character_glyphs): return for char in chars: self.firacode.selection.none() self.firacode.selection.select(char) self.firacode.copy() self.font.selection.none() self.font.selection.select(char) self.font.paste() self.correct_character_width(self.font[ord(CHAR_DICTIONARY[char])])
Copy individual (non-ligature) characters from the ligature font.
helpers/fonts.py
copy_character_glyphs
lperezperez/font-patcher-helper
0
python
def copy_character_glyphs(self, chars): if (not self.should_copy_character_glyphs): return for char in chars: self.firacode.selection.none() self.firacode.selection.select(char) self.firacode.copy() self.font.selection.none() self.font.selection.select(char) self.font.paste() self.correct_character_width(self.font[ord(CHAR_DICTIONARY[char])])
def copy_character_glyphs(self, chars): if (not self.should_copy_character_glyphs): return for char in chars: self.firacode.selection.none() self.firacode.selection.select(char) self.firacode.copy() self.font.selection.none() self.font.selection.select(char) self.font.paste() self.correct_character_width(self.font[ord(CHAR_DICTIONARY[char])])<|docstring|>Copy individual (non-ligature) characters from the ligature font.<|endoftext|>
f12f3cdb5fb621d33071078248d24b74d4f784db683ddf4dbc8be19c28e883e8
def correct_ligature_width(self, glyph): 'Correct the horizontal advance and scale of a ligature.' if (glyph.width == self.emwidth): return glyph.transform(scale((float(self.emwidth) / glyph.width), 1.0)) glyph.width = self.emwidth
Correct the horizontal advance and scale of a ligature.
helpers/fonts.py
correct_ligature_width
lperezperez/font-patcher-helper
0
python
def correct_ligature_width(self, glyph): if (glyph.width == self.emwidth): return glyph.transform(scale((float(self.emwidth) / glyph.width), 1.0)) glyph.width = self.emwidth
def correct_ligature_width(self, glyph): if (glyph.width == self.emwidth): return glyph.transform(scale((float(self.emwidth) / glyph.width), 1.0)) glyph.width = self.emwidth<|docstring|>Correct the horizontal advance and scale of a ligature.<|endoftext|>
31e3d25cfc23b699a561423612f93b2882d4584c187c0329b4d1457fd8f651a2
def add_ligature(self, input_chars, firacode_ligature_name): 'Adds a ligature from Fira Code font.' if (firacode_ligature_name is None): self.copy_character_glyphs(input_chars) return if (not self.copy_ligature_from_source(firacode_ligature_name)): return self._lig_counter += 1 ligature_name = f'lig.{self._lig_counter}' self.font.createChar((- 1), ligature_name) self.font.selection.none() self.font.selection.select(ligature_name) self.font.paste() self.correct_ligature_width(self.font[ligature_name]) self.font.selection.none() self.font.selection.select('space') self.font.copy() def lookup_name(i): return f'lookup.{self._lig_counter}.{i}' def lookup_sub_name(i): return f'lookup.sub.{self._lig_counter}.{i}' def cr_name(i): return f'CR.{self._lig_counter}.{i}' for (i, char) in enumerate(input_chars): self.font.addLookup(lookup_name(i), 'gsub_single', (), ()) self.font.addLookupSubtable(lookup_name(i), lookup_sub_name(i)) if (char not in self.font): self.font[ord(CHAR_DICTIONARY[char])].glyphname = char if (i < (len(input_chars) - 1)): self.font.createChar((- 1), cr_name(i)) self.font.selection.none() self.font.selection.select(cr_name(i)) self.font.paste() self.font[char].addPosSub(lookup_sub_name(i), cr_name(i)) else: self.font[char].addPosSub(lookup_sub_name(i), ligature_name) calt_lookup_name = f'calt.{self._lig_counter}' self.font.addLookup(calt_lookup_name, 'gsub_contextchain', (), (('calt', (('DFLT', ('dflt',)), ('arab', ('dflt',)), ('armn', ('dflt',)), ('cyrl', ('SRB ', 'dflt')), ('geor', ('dflt',)), ('grek', ('dflt',)), ('lao ', ('dflt',)), ('latn', ('CAT ', 'ESP ', 'GAL ', 'ISM ', 'KSM ', 'LSM ', 'MOL ', 'NSM ', 'ROM ', 'SKS ', 'SSM ', 'dflt')), ('math', ('dflt',)), ('thai', ('dflt',)))),)) for (i, char) in enumerate(input_chars): self.add_calt(calt_lookup_name, f'calt.{self._lig_counter}.{i}', '{prev} | {cur} @<{lookup}> | {next}', prev=' '.join((cr_name(j) for j in range(i))), cur=char, lookup=lookup_name(i), next=' '.join(input_chars[(i + 1):])) self.add_calt(calt_lookup_name, f'calt.{self._lig_counter}.{(i + 1)}', '| {first} | {rest} {last}', first=input_chars[0], rest=' '.join(input_chars[1:]), last=input_chars[(- 1)]) self.add_calt(calt_lookup_name, f'calt.{self._lig_counter}.{(i + 2)}', '{first} | {first} | {rest}', first=input_chars[0], rest=' '.join(input_chars[1:]))
Adds a ligature from Fira Code font.
helpers/fonts.py
add_ligature
lperezperez/font-patcher-helper
0
python
def add_ligature(self, input_chars, firacode_ligature_name): if (firacode_ligature_name is None): self.copy_character_glyphs(input_chars) return if (not self.copy_ligature_from_source(firacode_ligature_name)): return self._lig_counter += 1 ligature_name = f'lig.{self._lig_counter}' self.font.createChar((- 1), ligature_name) self.font.selection.none() self.font.selection.select(ligature_name) self.font.paste() self.correct_ligature_width(self.font[ligature_name]) self.font.selection.none() self.font.selection.select('space') self.font.copy() def lookup_name(i): return f'lookup.{self._lig_counter}.{i}' def lookup_sub_name(i): return f'lookup.sub.{self._lig_counter}.{i}' def cr_name(i): return f'CR.{self._lig_counter}.{i}' for (i, char) in enumerate(input_chars): self.font.addLookup(lookup_name(i), 'gsub_single', (), ()) self.font.addLookupSubtable(lookup_name(i), lookup_sub_name(i)) if (char not in self.font): self.font[ord(CHAR_DICTIONARY[char])].glyphname = char if (i < (len(input_chars) - 1)): self.font.createChar((- 1), cr_name(i)) self.font.selection.none() self.font.selection.select(cr_name(i)) self.font.paste() self.font[char].addPosSub(lookup_sub_name(i), cr_name(i)) else: self.font[char].addPosSub(lookup_sub_name(i), ligature_name) calt_lookup_name = f'calt.{self._lig_counter}' self.font.addLookup(calt_lookup_name, 'gsub_contextchain', (), (('calt', (('DFLT', ('dflt',)), ('arab', ('dflt',)), ('armn', ('dflt',)), ('cyrl', ('SRB ', 'dflt')), ('geor', ('dflt',)), ('grek', ('dflt',)), ('lao ', ('dflt',)), ('latn', ('CAT ', 'ESP ', 'GAL ', 'ISM ', 'KSM ', 'LSM ', 'MOL ', 'NSM ', 'ROM ', 'SKS ', 'SSM ', 'dflt')), ('math', ('dflt',)), ('thai', ('dflt',)))),)) for (i, char) in enumerate(input_chars): self.add_calt(calt_lookup_name, f'calt.{self._lig_counter}.{i}', '{prev} | {cur} @<{lookup}> | {next}', prev=' '.join((cr_name(j) for j in range(i))), cur=char, lookup=lookup_name(i), next=' '.join(input_chars[(i + 1):])) self.add_calt(calt_lookup_name, f'calt.{self._lig_counter}.{(i + 1)}', '| {first} | {rest} {last}', first=input_chars[0], rest=' '.join(input_chars[1:]), last=input_chars[(- 1)]) self.add_calt(calt_lookup_name, f'calt.{self._lig_counter}.{(i + 2)}', '{first} | {first} | {rest}', first=input_chars[0], rest=' '.join(input_chars[1:]))
def add_ligature(self, input_chars, firacode_ligature_name): if (firacode_ligature_name is None): self.copy_character_glyphs(input_chars) return if (not self.copy_ligature_from_source(firacode_ligature_name)): return self._lig_counter += 1 ligature_name = f'lig.{self._lig_counter}' self.font.createChar((- 1), ligature_name) self.font.selection.none() self.font.selection.select(ligature_name) self.font.paste() self.correct_ligature_width(self.font[ligature_name]) self.font.selection.none() self.font.selection.select('space') self.font.copy() def lookup_name(i): return f'lookup.{self._lig_counter}.{i}' def lookup_sub_name(i): return f'lookup.sub.{self._lig_counter}.{i}' def cr_name(i): return f'CR.{self._lig_counter}.{i}' for (i, char) in enumerate(input_chars): self.font.addLookup(lookup_name(i), 'gsub_single', (), ()) self.font.addLookupSubtable(lookup_name(i), lookup_sub_name(i)) if (char not in self.font): self.font[ord(CHAR_DICTIONARY[char])].glyphname = char if (i < (len(input_chars) - 1)): self.font.createChar((- 1), cr_name(i)) self.font.selection.none() self.font.selection.select(cr_name(i)) self.font.paste() self.font[char].addPosSub(lookup_sub_name(i), cr_name(i)) else: self.font[char].addPosSub(lookup_sub_name(i), ligature_name) calt_lookup_name = f'calt.{self._lig_counter}' self.font.addLookup(calt_lookup_name, 'gsub_contextchain', (), (('calt', (('DFLT', ('dflt',)), ('arab', ('dflt',)), ('armn', ('dflt',)), ('cyrl', ('SRB ', 'dflt')), ('geor', ('dflt',)), ('grek', ('dflt',)), ('lao ', ('dflt',)), ('latn', ('CAT ', 'ESP ', 'GAL ', 'ISM ', 'KSM ', 'LSM ', 'MOL ', 'NSM ', 'ROM ', 'SKS ', 'SSM ', 'dflt')), ('math', ('dflt',)), ('thai', ('dflt',)))),)) for (i, char) in enumerate(input_chars): self.add_calt(calt_lookup_name, f'calt.{self._lig_counter}.{i}', '{prev} | {cur} @<{lookup}> | {next}', prev=' '.join((cr_name(j) for j in range(i))), cur=char, lookup=lookup_name(i), next=' '.join(input_chars[(i + 1):])) self.add_calt(calt_lookup_name, f'calt.{self._lig_counter}.{(i + 1)}', '| {first} | {rest} {last}', first=input_chars[0], rest=' '.join(input_chars[1:]), last=input_chars[(- 1)]) self.add_calt(calt_lookup_name, f'calt.{self._lig_counter}.{(i + 2)}', '{first} | {first} | {rest}', first=input_chars[0], rest=' '.join(input_chars[1:]))<|docstring|>Adds a ligature from Fira Code font.<|endoftext|>
615c42878fb513175dbb5414a699108e46c9111b35839dff8f65dc44e3ab3ca6
def draw_bbox(rect, im=None, values=True, black=True, width=1): '\n rect: [x, y, x, y]\n two points (x, y), (x, y)\n values: bool\n draw values\n black: bool\n draw grid and numbers in black or white\n ' color = (0, 0, 0) if (not black): color = (255, 255, 255) if (im is None): im = Image.new('RGB', (100, 100), color='grey') draw = ImageDraw.Draw(im) draw.rectangle(rect, outline=color, width=width) if values: draw.text((rect[0], rect[1]), text=f'({rect[0]}x, {rect[1]}y)', fill=color) draw.text((rect[0], rect[3]), text=f'({rect[0]}x, {rect[3]}y)', fill=color) draw.text((rect[2], rect[1]), text=f'({rect[2]}x, {rect[1]}y)', fill=color) draw.text((rect[2], rect[3]), text=f'({rect[2]}x, {rect[3]}y)', fill=color) draw.text((((rect[0] + rect[2]) / 2), ((rect[1] + rect[3]) / 2)), text=f'{rect}', fill=color) return im
rect: [x, y, x, y] two points (x, y), (x, y) values: bool draw values black: bool draw grid and numbers in black or white
ipyannotator/datasets/generators.py
draw_bbox
EnriqueMoran/ipyannotator
19
python
def draw_bbox(rect, im=None, values=True, black=True, width=1): '\n rect: [x, y, x, y]\n two points (x, y), (x, y)\n values: bool\n draw values\n black: bool\n draw grid and numbers in black or white\n ' color = (0, 0, 0) if (not black): color = (255, 255, 255) if (im is None): im = Image.new('RGB', (100, 100), color='grey') draw = ImageDraw.Draw(im) draw.rectangle(rect, outline=color, width=width) if values: draw.text((rect[0], rect[1]), text=f'({rect[0]}x, {rect[1]}y)', fill=color) draw.text((rect[0], rect[3]), text=f'({rect[0]}x, {rect[3]}y)', fill=color) draw.text((rect[2], rect[1]), text=f'({rect[2]}x, {rect[1]}y)', fill=color) draw.text((rect[2], rect[3]), text=f'({rect[2]}x, {rect[3]}y)', fill=color) draw.text((((rect[0] + rect[2]) / 2), ((rect[1] + rect[3]) / 2)), text=f'{rect}', fill=color) return im
def draw_bbox(rect, im=None, values=True, black=True, width=1): '\n rect: [x, y, x, y]\n two points (x, y), (x, y)\n values: bool\n draw values\n black: bool\n draw grid and numbers in black or white\n ' color = (0, 0, 0) if (not black): color = (255, 255, 255) if (im is None): im = Image.new('RGB', (100, 100), color='grey') draw = ImageDraw.Draw(im) draw.rectangle(rect, outline=color, width=width) if values: draw.text((rect[0], rect[1]), text=f'({rect[0]}x, {rect[1]}y)', fill=color) draw.text((rect[0], rect[3]), text=f'({rect[0]}x, {rect[3]}y)', fill=color) draw.text((rect[2], rect[1]), text=f'({rect[2]}x, {rect[1]}y)', fill=color) draw.text((rect[2], rect[3]), text=f'({rect[2]}x, {rect[3]}y)', fill=color) draw.text((((rect[0] + rect[2]) / 2), ((rect[1] + rect[3]) / 2)), text=f'{rect}', fill=color) return im<|docstring|>rect: [x, y, x, y] two points (x, y), (x, y) values: bool draw values black: bool draw grid and numbers in black or white<|endoftext|>
ed527e45f7907ebda9201299aeeba31901d9cb2af187ec29972dbf57fac73bca
def overlap(boxA, boxB, verbose=False): '\n Returns the max relative overlap between two bboxs.\n ' (interArea, boxAArea, boxBArea, _) = bbox_intersection(boxA, boxB) return max((interArea / float(boxAArea)), (interArea / float(boxBArea)))
Returns the max relative overlap between two bboxs.
ipyannotator/datasets/generators.py
overlap
EnriqueMoran/ipyannotator
19
python
def overlap(boxA, boxB, verbose=False): '\n \n ' (interArea, boxAArea, boxBArea, _) = bbox_intersection(boxA, boxB) return max((interArea / float(boxAArea)), (interArea / float(boxBArea)))
def overlap(boxA, boxB, verbose=False): '\n \n ' (interArea, boxAArea, boxBArea, _) = bbox_intersection(boxA, boxB) return max((interArea / float(boxAArea)), (interArea / float(boxBArea)))<|docstring|>Returns the max relative overlap between two bboxs.<|endoftext|>
bf127ad432dcf44f84839bf82226177badfbc4972037828a9a8833d398828707
def sample_bbox(bboxs=(), canvas_size=(100, 100), diag=(0.3, 0.3), ratio=(1, 1), max_iou=0.0, max_overlap=0.0, max_tries=1000, random_seed=None): '\n bboxs: [(x, y, x, y), ..., (x, y, x, y)]\n List of existing bboxs.\n canvas_size: (int, int)\n Size of the canvas (width, height) on which to position the new bbox.\n max_iou: float [0, 1]\n Maximum acceptable intersection over union between any two bboxs.\n max_overlap: float [0, 1]\n Maximum overlap between any two bboxs.\n diag: (float, float) or float\n Range of acceptable diagonal lenght relative to canvas diagonal.\n ratio: (float, float) or float\n Range of acceptable width / height ratios of the new bbox.\n max_tries: int\n Number of random tries to create a valid bbox\n ' rng = np.random.RandomState(random_seed) (width, height) = canvas_size canvas_diag = np.sqrt(((width ** 2) + (height ** 2))) for i in range(max_tries): s_diag = (np.random.uniform(*diag) * canvas_diag) s_ratio = np.random.uniform(*ratio) s_height = np.sqrt(((s_diag ** 2) / (1.0 + (s_ratio ** 2)))) s_width = (s_ratio * s_height) cx = np.random.randint((s_width / 2), (width - (s_width / 2))) cy = np.random.randint((s_height / 2), (height - (s_height / 2))) bbox = ((cx - (s_width / 2)), (cy - (s_height / 2)), (cx + (s_width / 2)), (cy + (s_height / 2))) bbox = tuple((int(v) for v in bbox)) if (len(bboxs) == 0): return bbox violation = False for b in bboxs: iou = bb_intersection_over_union(b, bbox) b_overlap = overlap(b, bbox) if ((iou > max_iou) or (b_overlap > max_overlap)): violation = True if (not violation): return bbox return None
bboxs: [(x, y, x, y), ..., (x, y, x, y)] List of existing bboxs. canvas_size: (int, int) Size of the canvas (width, height) on which to position the new bbox. max_iou: float [0, 1] Maximum acceptable intersection over union between any two bboxs. max_overlap: float [0, 1] Maximum overlap between any two bboxs. diag: (float, float) or float Range of acceptable diagonal lenght relative to canvas diagonal. ratio: (float, float) or float Range of acceptable width / height ratios of the new bbox. max_tries: int Number of random tries to create a valid bbox
ipyannotator/datasets/generators.py
sample_bbox
EnriqueMoran/ipyannotator
19
python
def sample_bbox(bboxs=(), canvas_size=(100, 100), diag=(0.3, 0.3), ratio=(1, 1), max_iou=0.0, max_overlap=0.0, max_tries=1000, random_seed=None): '\n bboxs: [(x, y, x, y), ..., (x, y, x, y)]\n List of existing bboxs.\n canvas_size: (int, int)\n Size of the canvas (width, height) on which to position the new bbox.\n max_iou: float [0, 1]\n Maximum acceptable intersection over union between any two bboxs.\n max_overlap: float [0, 1]\n Maximum overlap between any two bboxs.\n diag: (float, float) or float\n Range of acceptable diagonal lenght relative to canvas diagonal.\n ratio: (float, float) or float\n Range of acceptable width / height ratios of the new bbox.\n max_tries: int\n Number of random tries to create a valid bbox\n ' rng = np.random.RandomState(random_seed) (width, height) = canvas_size canvas_diag = np.sqrt(((width ** 2) + (height ** 2))) for i in range(max_tries): s_diag = (np.random.uniform(*diag) * canvas_diag) s_ratio = np.random.uniform(*ratio) s_height = np.sqrt(((s_diag ** 2) / (1.0 + (s_ratio ** 2)))) s_width = (s_ratio * s_height) cx = np.random.randint((s_width / 2), (width - (s_width / 2))) cy = np.random.randint((s_height / 2), (height - (s_height / 2))) bbox = ((cx - (s_width / 2)), (cy - (s_height / 2)), (cx + (s_width / 2)), (cy + (s_height / 2))) bbox = tuple((int(v) for v in bbox)) if (len(bboxs) == 0): return bbox violation = False for b in bboxs: iou = bb_intersection_over_union(b, bbox) b_overlap = overlap(b, bbox) if ((iou > max_iou) or (b_overlap > max_overlap)): violation = True if (not violation): return bbox return None
def sample_bbox(bboxs=(), canvas_size=(100, 100), diag=(0.3, 0.3), ratio=(1, 1), max_iou=0.0, max_overlap=0.0, max_tries=1000, random_seed=None): '\n bboxs: [(x, y, x, y), ..., (x, y, x, y)]\n List of existing bboxs.\n canvas_size: (int, int)\n Size of the canvas (width, height) on which to position the new bbox.\n max_iou: float [0, 1]\n Maximum acceptable intersection over union between any two bboxs.\n max_overlap: float [0, 1]\n Maximum overlap between any two bboxs.\n diag: (float, float) or float\n Range of acceptable diagonal lenght relative to canvas diagonal.\n ratio: (float, float) or float\n Range of acceptable width / height ratios of the new bbox.\n max_tries: int\n Number of random tries to create a valid bbox\n ' rng = np.random.RandomState(random_seed) (width, height) = canvas_size canvas_diag = np.sqrt(((width ** 2) + (height ** 2))) for i in range(max_tries): s_diag = (np.random.uniform(*diag) * canvas_diag) s_ratio = np.random.uniform(*ratio) s_height = np.sqrt(((s_diag ** 2) / (1.0 + (s_ratio ** 2)))) s_width = (s_ratio * s_height) cx = np.random.randint((s_width / 2), (width - (s_width / 2))) cy = np.random.randint((s_height / 2), (height - (s_height / 2))) bbox = ((cx - (s_width / 2)), (cy - (s_height / 2)), (cx + (s_width / 2)), (cy + (s_height / 2))) bbox = tuple((int(v) for v in bbox)) if (len(bboxs) == 0): return bbox violation = False for b in bboxs: iou = bb_intersection_over_union(b, bbox) b_overlap = overlap(b, bbox) if ((iou > max_iou) or (b_overlap > max_overlap)): violation = True if (not violation): return bbox return None<|docstring|>bboxs: [(x, y, x, y), ..., (x, y, x, y)] List of existing bboxs. canvas_size: (int, int) Size of the canvas (width, height) on which to position the new bbox. max_iou: float [0, 1] Maximum acceptable intersection over union between any two bboxs. max_overlap: float [0, 1] Maximum overlap between any two bboxs. diag: (float, float) or float Range of acceptable diagonal lenght relative to canvas diagonal. ratio: (float, float) or float Range of acceptable width / height ratios of the new bbox. max_tries: int Number of random tries to create a valid bbox<|endoftext|>
29ad643ffdc9d7719811f532e6d55930ad93d8d362c943e470aa513ecbace8ac
def vertices_nao_adjacentes(self): '\n Provê uma lista de vértices não adjacentes no grafo. A lista terá o seguinte formato: [X-Z, X-W, ...]\n Onde X, Z e W são vértices no grafo que não tem uma aresta entre eles.\n :return: Uma lista com os pares de vértices não adjacentes\n ' verticesNaoAdj = list() for i in range(len(self.M)): for j in range(len(self.M)): if ((i < j) and (self.M[i][j] == {})): verticesNaoAdj.append(f'{self.N[i]}-{self.N[j]}') return verticesNaoAdj
Provê uma lista de vértices não adjacentes no grafo. A lista terá o seguinte formato: [X-Z, X-W, ...] Onde X, Z e W são vértices no grafo que não tem uma aresta entre eles. :return: Uma lista com os pares de vértices não adjacentes
Roteiro 6/meu_grafo_matriz_adjacencia_nao_dir.py
vertices_nao_adjacentes
JhonatanGuilherme/GraphTheory
0
python
def vertices_nao_adjacentes(self): '\n Provê uma lista de vértices não adjacentes no grafo. A lista terá o seguinte formato: [X-Z, X-W, ...]\n Onde X, Z e W são vértices no grafo que não tem uma aresta entre eles.\n :return: Uma lista com os pares de vértices não adjacentes\n ' verticesNaoAdj = list() for i in range(len(self.M)): for j in range(len(self.M)): if ((i < j) and (self.M[i][j] == {})): verticesNaoAdj.append(f'{self.N[i]}-{self.N[j]}') return verticesNaoAdj
def vertices_nao_adjacentes(self): '\n Provê uma lista de vértices não adjacentes no grafo. A lista terá o seguinte formato: [X-Z, X-W, ...]\n Onde X, Z e W são vértices no grafo que não tem uma aresta entre eles.\n :return: Uma lista com os pares de vértices não adjacentes\n ' verticesNaoAdj = list() for i in range(len(self.M)): for j in range(len(self.M)): if ((i < j) and (self.M[i][j] == {})): verticesNaoAdj.append(f'{self.N[i]}-{self.N[j]}') return verticesNaoAdj<|docstring|>Provê uma lista de vértices não adjacentes no grafo. A lista terá o seguinte formato: [X-Z, X-W, ...] Onde X, Z e W são vértices no grafo que não tem uma aresta entre eles. :return: Uma lista com os pares de vértices não adjacentes<|endoftext|>
546de9c317c45a1ec23384e5516d4d8b1b3a002938d4db6a73e35e4ddecf3c93
def ha_laco(self): '\n Verifica se existe algum laço no grafo.\n :return: Um valor booleano que indica se existe algum laço.\n ' for i in range(len(self.M)): if (self.M[i][i] != {}): return True return False
Verifica se existe algum laço no grafo. :return: Um valor booleano que indica se existe algum laço.
Roteiro 6/meu_grafo_matriz_adjacencia_nao_dir.py
ha_laco
JhonatanGuilherme/GraphTheory
0
python
def ha_laco(self): '\n Verifica se existe algum laço no grafo.\n :return: Um valor booleano que indica se existe algum laço.\n ' for i in range(len(self.M)): if (self.M[i][i] != {}): return True return False
def ha_laco(self): '\n Verifica se existe algum laço no grafo.\n :return: Um valor booleano que indica se existe algum laço.\n ' for i in range(len(self.M)): if (self.M[i][i] != {}): return True return False<|docstring|>Verifica se existe algum laço no grafo. :return: Um valor booleano que indica se existe algum laço.<|endoftext|>
0a93a391fd892a5f57868ea8484c6776e0eaeaad6aa7a81e9eade46034e059f7
def grau(self, V=''): '\n Provê o grau do vértice passado como parâmetro\n :param V: O rótulo do vértice a ser analisado\n :return: Um valor inteiro que indica o grau do vértice\n :raises: VerticeInvalidoException se o vértice não existe no grafo\n ' if self.existeVertice(V): contador = 0 indice = self.N.index(V) for i in self.M[indice]: if ((type(i) == dict) and (len(i) >= 1)): contador += len(i) for i in range(len(self.M)): for j in range(len(self.M)): if ((i <= j) and (j == indice)): contador += len(self.M[i][j]) return contador raise VerticeInvalidoException
Provê o grau do vértice passado como parâmetro :param V: O rótulo do vértice a ser analisado :return: Um valor inteiro que indica o grau do vértice :raises: VerticeInvalidoException se o vértice não existe no grafo
Roteiro 6/meu_grafo_matriz_adjacencia_nao_dir.py
grau
JhonatanGuilherme/GraphTheory
0
python
def grau(self, V=): '\n Provê o grau do vértice passado como parâmetro\n :param V: O rótulo do vértice a ser analisado\n :return: Um valor inteiro que indica o grau do vértice\n :raises: VerticeInvalidoException se o vértice não existe no grafo\n ' if self.existeVertice(V): contador = 0 indice = self.N.index(V) for i in self.M[indice]: if ((type(i) == dict) and (len(i) >= 1)): contador += len(i) for i in range(len(self.M)): for j in range(len(self.M)): if ((i <= j) and (j == indice)): contador += len(self.M[i][j]) return contador raise VerticeInvalidoException
def grau(self, V=): '\n Provê o grau do vértice passado como parâmetro\n :param V: O rótulo do vértice a ser analisado\n :return: Um valor inteiro que indica o grau do vértice\n :raises: VerticeInvalidoException se o vértice não existe no grafo\n ' if self.existeVertice(V): contador = 0 indice = self.N.index(V) for i in self.M[indice]: if ((type(i) == dict) and (len(i) >= 1)): contador += len(i) for i in range(len(self.M)): for j in range(len(self.M)): if ((i <= j) and (j == indice)): contador += len(self.M[i][j]) return contador raise VerticeInvalidoException<|docstring|>Provê o grau do vértice passado como parâmetro :param V: O rótulo do vértice a ser analisado :return: Um valor inteiro que indica o grau do vértice :raises: VerticeInvalidoException se o vértice não existe no grafo<|endoftext|>
b18c84535780541d8a00f7f7bedda7a39c6791606d7fc74f494445e0d4731a6a
def ha_paralelas(self): '\n Verifica se há arestas paralelas no grafo\n :return: Um valor booleano que indica se existem arestas paralelas no grafo.\n ' for i in self.M: for j in i: if (len(j) > 1): return True return False
Verifica se há arestas paralelas no grafo :return: Um valor booleano que indica se existem arestas paralelas no grafo.
Roteiro 6/meu_grafo_matriz_adjacencia_nao_dir.py
ha_paralelas
JhonatanGuilherme/GraphTheory
0
python
def ha_paralelas(self): '\n Verifica se há arestas paralelas no grafo\n :return: Um valor booleano que indica se existem arestas paralelas no grafo.\n ' for i in self.M: for j in i: if (len(j) > 1): return True return False
def ha_paralelas(self): '\n Verifica se há arestas paralelas no grafo\n :return: Um valor booleano que indica se existem arestas paralelas no grafo.\n ' for i in self.M: for j in i: if (len(j) > 1): return True return False<|docstring|>Verifica se há arestas paralelas no grafo :return: Um valor booleano que indica se existem arestas paralelas no grafo.<|endoftext|>
3949450e323b3567b325464f8be63febe6efa730bb60f216dc961aaedaa2ed5c
def arestas_sobre_vertice(self, V): '\n Provê uma lista que contém os rótulos das arestas que incidem sobre o vértice passado como parâmetro\n :param V: O vértice a ser analisado\n :return: Uma lista os rótulos das arestas que incidem sobre o vértice\n :raises: VerticeInvalidoException se o vértice não existe no grafo\n ' if self.existeVertice(V): arestasSobreV = list() indice = self.N.index(V) for i in range(len(self.M)): for j in range(len(self.M)): if ((i <= j) and ((i == indice) or (j == indice))): for k in self.M[i][j]: if (k not in arestasSobreV): arestasSobreV.append(k) return sorted(arestasSobreV) raise VerticeInvalidoException
Provê uma lista que contém os rótulos das arestas que incidem sobre o vértice passado como parâmetro :param V: O vértice a ser analisado :return: Uma lista os rótulos das arestas que incidem sobre o vértice :raises: VerticeInvalidoException se o vértice não existe no grafo
Roteiro 6/meu_grafo_matriz_adjacencia_nao_dir.py
arestas_sobre_vertice
JhonatanGuilherme/GraphTheory
0
python
def arestas_sobre_vertice(self, V): '\n Provê uma lista que contém os rótulos das arestas que incidem sobre o vértice passado como parâmetro\n :param V: O vértice a ser analisado\n :return: Uma lista os rótulos das arestas que incidem sobre o vértice\n :raises: VerticeInvalidoException se o vértice não existe no grafo\n ' if self.existeVertice(V): arestasSobreV = list() indice = self.N.index(V) for i in range(len(self.M)): for j in range(len(self.M)): if ((i <= j) and ((i == indice) or (j == indice))): for k in self.M[i][j]: if (k not in arestasSobreV): arestasSobreV.append(k) return sorted(arestasSobreV) raise VerticeInvalidoException
def arestas_sobre_vertice(self, V): '\n Provê uma lista que contém os rótulos das arestas que incidem sobre o vértice passado como parâmetro\n :param V: O vértice a ser analisado\n :return: Uma lista os rótulos das arestas que incidem sobre o vértice\n :raises: VerticeInvalidoException se o vértice não existe no grafo\n ' if self.existeVertice(V): arestasSobreV = list() indice = self.N.index(V) for i in range(len(self.M)): for j in range(len(self.M)): if ((i <= j) and ((i == indice) or (j == indice))): for k in self.M[i][j]: if (k not in arestasSobreV): arestasSobreV.append(k) return sorted(arestasSobreV) raise VerticeInvalidoException<|docstring|>Provê uma lista que contém os rótulos das arestas que incidem sobre o vértice passado como parâmetro :param V: O vértice a ser analisado :return: Uma lista os rótulos das arestas que incidem sobre o vértice :raises: VerticeInvalidoException se o vértice não existe no grafo<|endoftext|>
69b4bbbfa58fa986f7d9ae10b67e49a0baceceb0ce5d8bbc6179f7b033376aaf
def eh_completo(self): '\n Verifica se o grafo é completo.\n :return: Um valor booleano que indica se o grafo é completo\n ' if (self.ha_laco() or self.ha_paralelas()): return False for i in range(len(self.M)): for j in range(len(self.M)): if ((i < j) and (self.M[i][j] == {})): return False return True
Verifica se o grafo é completo. :return: Um valor booleano que indica se o grafo é completo
Roteiro 6/meu_grafo_matriz_adjacencia_nao_dir.py
eh_completo
JhonatanGuilherme/GraphTheory
0
python
def eh_completo(self): '\n Verifica se o grafo é completo.\n :return: Um valor booleano que indica se o grafo é completo\n ' if (self.ha_laco() or self.ha_paralelas()): return False for i in range(len(self.M)): for j in range(len(self.M)): if ((i < j) and (self.M[i][j] == {})): return False return True
def eh_completo(self): '\n Verifica se o grafo é completo.\n :return: Um valor booleano que indica se o grafo é completo\n ' if (self.ha_laco() or self.ha_paralelas()): return False for i in range(len(self.M)): for j in range(len(self.M)): if ((i < j) and (self.M[i][j] == {})): return False return True<|docstring|>Verifica se o grafo é completo. :return: Um valor booleano que indica se o grafo é completo<|endoftext|>
91442c280922f87faa229439e53b1295ae17036eba405e44872d0f2cc7b80324
def pad_sentence(self, sen_len: int, feature: dict, article_number: int) -> tuple(): 'Returns padded sentences so that within the batch, each sentence has the same number of words.\n\n Args:\n sen_len (list): Number of words that each sentence should have.\n feature (dict): Respective training instance of the batch.\n article_number (int): Article number.\n\n Returns:\n (tuple): Sentences and attention masks of the respective document after sentence-level padding.\n ' sentences = [(sentence + ([self.tokenizer.convert_tokens_to_ids(self.tokenizer.pad_token)] * (sen_len - len(sentence)))) for sentence in feature[f'article_{article_number}']] masks = [(sentence + ([0] * (sen_len - len(sentence)))) for sentence in feature[f'mask_{article_number}']] return (sentences, masks)
Returns padded sentences so that within the batch, each sentence has the same number of words. Args: sen_len (list): Number of words that each sentence should have. feature (dict): Respective training instance of the batch. article_number (int): Article number. Returns: (tuple): Sentences and attention masks of the respective document after sentence-level padding.
data_collator.py
pad_sentence
ogal93/pre-training-multilingual-document-encoders
0
python
def pad_sentence(self, sen_len: int, feature: dict, article_number: int) -> tuple(): 'Returns padded sentences so that within the batch, each sentence has the same number of words.\n\n Args:\n sen_len (list): Number of words that each sentence should have.\n feature (dict): Respective training instance of the batch.\n article_number (int): Article number.\n\n Returns:\n (tuple): Sentences and attention masks of the respective document after sentence-level padding.\n ' sentences = [(sentence + ([self.tokenizer.convert_tokens_to_ids(self.tokenizer.pad_token)] * (sen_len - len(sentence)))) for sentence in feature[f'article_{article_number}']] masks = [(sentence + ([0] * (sen_len - len(sentence)))) for sentence in feature[f'mask_{article_number}']] return (sentences, masks)
def pad_sentence(self, sen_len: int, feature: dict, article_number: int) -> tuple(): 'Returns padded sentences so that within the batch, each sentence has the same number of words.\n\n Args:\n sen_len (list): Number of words that each sentence should have.\n feature (dict): Respective training instance of the batch.\n article_number (int): Article number.\n\n Returns:\n (tuple): Sentences and attention masks of the respective document after sentence-level padding.\n ' sentences = [(sentence + ([self.tokenizer.convert_tokens_to_ids(self.tokenizer.pad_token)] * (sen_len - len(sentence)))) for sentence in feature[f'article_{article_number}']] masks = [(sentence + ([0] * (sen_len - len(sentence)))) for sentence in feature[f'mask_{article_number}']] return (sentences, masks)<|docstring|>Returns padded sentences so that within the batch, each sentence has the same number of words. Args: sen_len (list): Number of words that each sentence should have. feature (dict): Respective training instance of the batch. article_number (int): Article number. Returns: (tuple): Sentences and attention masks of the respective document after sentence-level padding.<|endoftext|>
0ea606bad9521c6b312e3b7dfc76044dd7e24a6a8f90227caac948b6f5c49e5b
def pad_document(self, sentences: list, masks: list, document_mask: list, doc_len: int): ' Does document level padding so that within the batch, each document has the same\n number of sentences.\n\n Args:\n sentences (list): Sentences of the respective document.\n masks (list): Sentence level attention masks of the respective document.\n document_mask (list): Document level attention mask of the respective document\n doc_len (int): Number of sentences that each document of the batch should have.\n ' if self.consider_dcls: doc_len -= 1 mask_padding_array = [0 for i0 in range(len(masks[0]))] sentence_padding_array = [self.tokenizer.convert_tokens_to_ids(self.tokenizer.pad_token) for i0 in range(len(sentences[0]))] if (len(sentences) < doc_len): sentences += [sentence_padding_array for difference in range((doc_len - len(sentences)))] masks += [mask_padding_array for difference in range((doc_len - len(masks)))] document_mask.extend(([0] * (doc_len - len(document_mask)))) elif (len(sentences) > doc_len): sentences[:] = sentences[:doc_len] masks[:] = masks[:doc_len] document_mask[:] = document_mask[:doc_len]
Does document level padding so that within the batch, each document has the same number of sentences. Args: sentences (list): Sentences of the respective document. masks (list): Sentence level attention masks of the respective document. document_mask (list): Document level attention mask of the respective document doc_len (int): Number of sentences that each document of the batch should have.
data_collator.py
pad_document
ogal93/pre-training-multilingual-document-encoders
0
python
def pad_document(self, sentences: list, masks: list, document_mask: list, doc_len: int): ' Does document level padding so that within the batch, each document has the same\n number of sentences.\n\n Args:\n sentences (list): Sentences of the respective document.\n masks (list): Sentence level attention masks of the respective document.\n document_mask (list): Document level attention mask of the respective document\n doc_len (int): Number of sentences that each document of the batch should have.\n ' if self.consider_dcls: doc_len -= 1 mask_padding_array = [0 for i0 in range(len(masks[0]))] sentence_padding_array = [self.tokenizer.convert_tokens_to_ids(self.tokenizer.pad_token) for i0 in range(len(sentences[0]))] if (len(sentences) < doc_len): sentences += [sentence_padding_array for difference in range((doc_len - len(sentences)))] masks += [mask_padding_array for difference in range((doc_len - len(masks)))] document_mask.extend(([0] * (doc_len - len(document_mask)))) elif (len(sentences) > doc_len): sentences[:] = sentences[:doc_len] masks[:] = masks[:doc_len] document_mask[:] = document_mask[:doc_len]
def pad_document(self, sentences: list, masks: list, document_mask: list, doc_len: int): ' Does document level padding so that within the batch, each document has the same\n number of sentences.\n\n Args:\n sentences (list): Sentences of the respective document.\n masks (list): Sentence level attention masks of the respective document.\n document_mask (list): Document level attention mask of the respective document\n doc_len (int): Number of sentences that each document of the batch should have.\n ' if self.consider_dcls: doc_len -= 1 mask_padding_array = [0 for i0 in range(len(masks[0]))] sentence_padding_array = [self.tokenizer.convert_tokens_to_ids(self.tokenizer.pad_token) for i0 in range(len(sentences[0]))] if (len(sentences) < doc_len): sentences += [sentence_padding_array for difference in range((doc_len - len(sentences)))] masks += [mask_padding_array for difference in range((doc_len - len(masks)))] document_mask.extend(([0] * (doc_len - len(document_mask)))) elif (len(sentences) > doc_len): sentences[:] = sentences[:doc_len] masks[:] = masks[:doc_len] document_mask[:] = document_mask[:doc_len]<|docstring|>Does document level padding so that within the batch, each document has the same number of sentences. Args: sentences (list): Sentences of the respective document. masks (list): Sentence level attention masks of the respective document. document_mask (list): Document level attention mask of the respective document doc_len (int): Number of sentences that each document of the batch should have.<|endoftext|>
6561f9d41fa145a967164bd07c6c3b47e35095091191746335d4071530516ea0
def add_command(self, command: str, params=None, usage: str='', example=None): '\n Inserts commands..\n ' self.COMMANDS[command] = {'command': command, 'params': params, 'usage': usage, 'example': example} return self
Inserts commands..
plugins/__init__.py
add_command
dopamusicopbot/Andencento
2
python
def add_command(self, command: str, params=None, usage: str=, example=None): '\n \n ' self.COMMANDS[command] = {'command': command, 'params': params, 'usage': usage, 'example': example} return self
def add_command(self, command: str, params=None, usage: str=, example=None): '\n \n ' self.COMMANDS[command] = {'command': command, 'params': params, 'usage': usage, 'example': example} return self<|docstring|>Inserts commands..<|endoftext|>
decb9db1fe927ed082df19230bff6197cc52c474d125d24b1820ca0ae7bbc2e3
def get_result(self): '\n Brings results.\n ' result = f'''**📗 File :** `{self.FILE}` ''' if ((self.WARNING == '') and (self.INFO == '')): result += f'''**⬇️ Official:** {('✅' if self.IS_OFFICIAL else '❌')} ''' else: result += f'''**⬇️ Official:** {('✅' if self.IS_OFFICIAL else '❌')} ''' if (self.INFO == ''): if (not (self.WARNING == '')): result += f'''**⚠️ Warning :** {self.WARNING} ''' else: if (not (self.WARNING == '')): result += f'''**⚠️ Warning :** {self.WARNING} ''' result += f'''**ℹ️ Info:** {self.INFO} ''' for command in self.COMMANDS: command = self.COMMANDS[command] if (command['params'] is None): result += f'''**🛠 Command :** `{COMMAND_HAND_LER[:1]}{command['command']}` ''' else: result += f'''**🛠 Command :** `{COMMAND_HAND_LER[:1]}{command['command']} {command['params']}` ''' if (command['example'] is None): result += f'''**💬 Details :** `{command['usage']}` ''' else: result += f'''**💬 Details :** `{command['usage']}` ''' result += f'''**⌨️ For Example :** `{COMMAND_HAND_LER[:1]}{command['example']}` ''' return result
Brings results.
plugins/__init__.py
get_result
dopamusicopbot/Andencento
2
python
def get_result(self): '\n \n ' result = f'**📗 File :** `{self.FILE}` ' if ((self.WARNING == ) and (self.INFO == )): result += f'**⬇️ Official:** {('✅' if self.IS_OFFICIAL else '❌')} ' else: result += f'**⬇️ Official:** {('✅' if self.IS_OFFICIAL else '❌')} ' if (self.INFO == ): if (not (self.WARNING == )): result += f'**⚠️ Warning :** {self.WARNING} ' else: if (not (self.WARNING == )): result += f'**⚠️ Warning :** {self.WARNING} ' result += f'**ℹ️ Info:** {self.INFO} ' for command in self.COMMANDS: command = self.COMMANDS[command] if (command['params'] is None): result += f'**🛠 Command :** `{COMMAND_HAND_LER[:1]}{command['command']}` ' else: result += f'**🛠 Command :** `{COMMAND_HAND_LER[:1]}{command['command']} {command['params']}` ' if (command['example'] is None): result += f'**💬 Details :** `{command['usage']}` ' else: result += f'**💬 Details :** `{command['usage']}` ' result += f'**⌨️ For Example :** `{COMMAND_HAND_LER[:1]}{command['example']}` ' return result
def get_result(self): '\n \n ' result = f'**📗 File :** `{self.FILE}` ' if ((self.WARNING == ) and (self.INFO == )): result += f'**⬇️ Official:** {('✅' if self.IS_OFFICIAL else '❌')} ' else: result += f'**⬇️ Official:** {('✅' if self.IS_OFFICIAL else '❌')} ' if (self.INFO == ): if (not (self.WARNING == )): result += f'**⚠️ Warning :** {self.WARNING} ' else: if (not (self.WARNING == )): result += f'**⚠️ Warning :** {self.WARNING} ' result += f'**ℹ️ Info:** {self.INFO} ' for command in self.COMMANDS: command = self.COMMANDS[command] if (command['params'] is None): result += f'**🛠 Command :** `{COMMAND_HAND_LER[:1]}{command['command']}` ' else: result += f'**🛠 Command :** `{COMMAND_HAND_LER[:1]}{command['command']} {command['params']}` ' if (command['example'] is None): result += f'**💬 Details :** `{command['usage']}` ' else: result += f'**💬 Details :** `{command['usage']}` ' result += f'**⌨️ For Example :** `{COMMAND_HAND_LER[:1]}{command['example']}` ' return result<|docstring|>Brings results.<|endoftext|>
ed0adac415a80b97bb0ac79e0a4c9c44e540993d1dc85337087ec41a4c53af81
def add(self): '\n Directly adds CMD_HELP.\n ' CMD_HELP_BOT[self.FILE] = {'info': {'official': self.IS_OFFICIAL, 'warning': self.WARNING, 'info': self.INFO}, 'commands': self.COMMANDS} CMD_HELP[self.FILE] = self.get_result() return True
Directly adds CMD_HELP.
plugins/__init__.py
add
dopamusicopbot/Andencento
2
python
def add(self): '\n \n ' CMD_HELP_BOT[self.FILE] = {'info': {'official': self.IS_OFFICIAL, 'warning': self.WARNING, 'info': self.INFO}, 'commands': self.COMMANDS} CMD_HELP[self.FILE] = self.get_result() return True
def add(self): '\n \n ' CMD_HELP_BOT[self.FILE] = {'info': {'official': self.IS_OFFICIAL, 'warning': self.WARNING, 'info': self.INFO}, 'commands': self.COMMANDS} CMD_HELP[self.FILE] = self.get_result() return True<|docstring|>Directly adds CMD_HELP.<|endoftext|>
db8a75103fcc80b68140f8f0ce3a2daba29eaba168871b355bca7b3eb38b0d31
def load_jupyter_server_extension(nbapp): 'serve the Corina_Trackerv2.ipynb directory with bokeh server' Popen(['panel', 'serve', 'Corina_Trackerv2.ipynb', '--allow-websocket-origin=*'])
serve the Corina_Trackerv2.ipynb directory with bokeh server
panelserverextension.py
load_jupyter_server_extension
marcs994/20200603_Coronav2
0
python
def load_jupyter_server_extension(nbapp): Popen(['panel', 'serve', 'Corina_Trackerv2.ipynb', '--allow-websocket-origin=*'])
def load_jupyter_server_extension(nbapp): Popen(['panel', 'serve', 'Corina_Trackerv2.ipynb', '--allow-websocket-origin=*'])<|docstring|>serve the Corina_Trackerv2.ipynb directory with bokeh server<|endoftext|>
062b46547536617fb88626bc13bc6f9a218a1647ab38fc04b33b5e1a3841a107
def test_missing_servername(self): '\n Some web-servers require that the "Host" be included on SSL connections when the server is hosting multiple domains on the same IP.\n\n Without the host header, the server is unable to determine which certificate to provide and thus closes the connection.\n\n http://lukemurphey.net/issues/1035\n ' url_field = URLField('test_ping', 'title', 'this is a test') result = WebPing.ping(url_field.to_python('https://lukemurphey.net'), timeout=3) self.assertEqual(result.response_code, 200)
Some web-servers require that the "Host" be included on SSL connections when the server is hosting multiple domains on the same IP. Without the host header, the server is unable to determine which certificate to provide and thus closes the connection. http://lukemurphey.net/issues/1035
tests/unit.py
test_missing_servername
sudhir-12/splunk-website-monitoring
0
python
def test_missing_servername(self): '\n Some web-servers require that the "Host" be included on SSL connections when the server is hosting multiple domains on the same IP.\n\n Without the host header, the server is unable to determine which certificate to provide and thus closes the connection.\n\n http://lukemurphey.net/issues/1035\n ' url_field = URLField('test_ping', 'title', 'this is a test') result = WebPing.ping(url_field.to_python('https://lukemurphey.net'), timeout=3) self.assertEqual(result.response_code, 200)
def test_missing_servername(self): '\n Some web-servers require that the "Host" be included on SSL connections when the server is hosting multiple domains on the same IP.\n\n Without the host header, the server is unable to determine which certificate to provide and thus closes the connection.\n\n http://lukemurphey.net/issues/1035\n ' url_field = URLField('test_ping', 'title', 'this is a test') result = WebPing.ping(url_field.to_python('https://lukemurphey.net'), timeout=3) self.assertEqual(result.response_code, 200)<|docstring|>Some web-servers require that the "Host" be included on SSL connections when the server is hosting multiple domains on the same IP. Without the host header, the server is unable to determine which certificate to provide and thus closes the connection. http://lukemurphey.net/issues/1035<|endoftext|>
ee97fa96f670ff419367a35df6c076d20571c64c5d90af4f7b6f1deb3250163c
@skipIfNoServer def test_custom_user_agent(self): '\n http://lukemurphey.net/issues/1341\n ' url_field = URLField('test_ping', 'title', 'this is a test') result = WebPing.ping(url_field.to_python((('http://127.0.0.1:' + str(self.web_server_port)) + '/user_agent_check')), user_agent='USER_AGENT_CHECK_DOESNT_MATCH', timeout=3) self.assertEqual(result.response_code, 200) result = WebPing.ping(url_field.to_python((('http://127.0.0.1:' + str(self.web_server_port)) + '/user_agent_check')), user_agent='USER_AGENT_CHECK', timeout=3) self.assertEqual(result.response_code, 201)
http://lukemurphey.net/issues/1341
tests/unit.py
test_custom_user_agent
sudhir-12/splunk-website-monitoring
0
python
@skipIfNoServer def test_custom_user_agent(self): '\n \n ' url_field = URLField('test_ping', 'title', 'this is a test') result = WebPing.ping(url_field.to_python((('http://127.0.0.1:' + str(self.web_server_port)) + '/user_agent_check')), user_agent='USER_AGENT_CHECK_DOESNT_MATCH', timeout=3) self.assertEqual(result.response_code, 200) result = WebPing.ping(url_field.to_python((('http://127.0.0.1:' + str(self.web_server_port)) + '/user_agent_check')), user_agent='USER_AGENT_CHECK', timeout=3) self.assertEqual(result.response_code, 201)
@skipIfNoServer def test_custom_user_agent(self): '\n \n ' url_field = URLField('test_ping', 'title', 'this is a test') result = WebPing.ping(url_field.to_python((('http://127.0.0.1:' + str(self.web_server_port)) + '/user_agent_check')), user_agent='USER_AGENT_CHECK_DOESNT_MATCH', timeout=3) self.assertEqual(result.response_code, 200) result = WebPing.ping(url_field.to_python((('http://127.0.0.1:' + str(self.web_server_port)) + '/user_agent_check')), user_agent='USER_AGENT_CHECK', timeout=3) self.assertEqual(result.response_code, 201)<|docstring|>http://lukemurphey.net/issues/1341<|endoftext|>
5c45afbd6d2dfe8ecbff483d226758361e6adc8476d8c6caa2b126e12cefe197
def __init__(self, conditions): '\n Args:\n conditions list<Condition>: a list of condition\n ' self._conditions = conditions
Args: conditions list<Condition>: a list of condition
src/clustaar/authorize/conditions_combinations.py
__init__
Clustaar/clustaar.authorize
0
python
def __init__(self, conditions): '\n Args:\n conditions list<Condition>: a list of condition\n ' self._conditions = conditions
def __init__(self, conditions): '\n Args:\n conditions list<Condition>: a list of condition\n ' self._conditions = conditions<|docstring|>Args: conditions list<Condition>: a list of condition<|endoftext|>
5c45afbd6d2dfe8ecbff483d226758361e6adc8476d8c6caa2b126e12cefe197
def __init__(self, conditions): '\n Args:\n conditions list<Condition>: a list of condition\n ' self._conditions = conditions
Args: conditions list<Condition>: a list of condition
src/clustaar/authorize/conditions_combinations.py
__init__
Clustaar/clustaar.authorize
0
python
def __init__(self, conditions): '\n Args:\n conditions list<Condition>: a list of condition\n ' self._conditions = conditions
def __init__(self, conditions): '\n Args:\n conditions list<Condition>: a list of condition\n ' self._conditions = conditions<|docstring|>Args: conditions list<Condition>: a list of condition<|endoftext|>
e1ceeec8563d9d74f658047a0755bfb13f339422d47f9b98f2ca35ce977dd2df
def unlinkChildren(parent: Path) -> int: 'Removes all symlinks that are immediate children of parent dir.\n\n\t:param parent: The parent directory\n\t:return: Count of removed symlinks\n\t' removedCount = 0 for child in parent.glob('*'): if child.is_symlink(): child.unlink() removedCount += 1 return removedCount
Removes all symlinks that are immediate children of parent dir. :param parent: The parent directory :return: Count of removed symlinks
depz/x50_unlink.py
unlinkChildren
rtmigo/lnkdpn
1
python
def unlinkChildren(parent: Path) -> int: 'Removes all symlinks that are immediate children of parent dir.\n\n\t:param parent: The parent directory\n\t:return: Count of removed symlinks\n\t' removedCount = 0 for child in parent.glob('*'): if child.is_symlink(): child.unlink() removedCount += 1 return removedCount
def unlinkChildren(parent: Path) -> int: 'Removes all symlinks that are immediate children of parent dir.\n\n\t:param parent: The parent directory\n\t:return: Count of removed symlinks\n\t' removedCount = 0 for child in parent.glob('*'): if child.is_symlink(): child.unlink() removedCount += 1 return removedCount<|docstring|>Removes all symlinks that are immediate children of parent dir. :param parent: The parent directory :return: Count of removed symlinks<|endoftext|>
e44c2407dbaa8a3683fefea322122682203c418a07a9330a6657ce19638bcc2b
def unlinkChildrenAndMaybeRemove(parent: Path) -> None: 'Removes all the symlinks that a direct children of [parent].\n\tThen removes the directory if it contained only symlinks.\n\tIf the directory was empty before the call, it will not be removed\n\t(it did not contain any symlinks).\n\t' if unlinkChildren(parent): if (not list(parent.glob('*'))): os.rmdir(str(parent))
Removes all the symlinks that a direct children of [parent]. Then removes the directory if it contained only symlinks. If the directory was empty before the call, it will not be removed (it did not contain any symlinks).
depz/x50_unlink.py
unlinkChildrenAndMaybeRemove
rtmigo/lnkdpn
1
python
def unlinkChildrenAndMaybeRemove(parent: Path) -> None: 'Removes all the symlinks that a direct children of [parent].\n\tThen removes the directory if it contained only symlinks.\n\tIf the directory was empty before the call, it will not be removed\n\t(it did not contain any symlinks).\n\t' if unlinkChildren(parent): if (not list(parent.glob('*'))): os.rmdir(str(parent))
def unlinkChildrenAndMaybeRemove(parent: Path) -> None: 'Removes all the symlinks that a direct children of [parent].\n\tThen removes the directory if it contained only symlinks.\n\tIf the directory was empty before the call, it will not be removed\n\t(it did not contain any symlinks).\n\t' if unlinkChildren(parent): if (not list(parent.glob('*'))): os.rmdir(str(parent))<|docstring|>Removes all the symlinks that a direct children of [parent]. Then removes the directory if it contained only symlinks. If the directory was empty before the call, it will not be removed (it did not contain any symlinks).<|endoftext|>
3f8b55fb5ced4b0406b766f418f828d97f06105a94016762fda4fda332b29031
def lsp_document_changes(refactoring: Refactoring) -> List[Union[(TextDocumentEdit, RenameFile)]]: 'Get lsp text document edits from Jedi refactoring.\n\n This is the main public function that you probably want\n ' converter = RefactoringConverter(refactoring) return [*converter.lsp_text_document_edits(), *converter.lsp_renames()]
Get lsp text document edits from Jedi refactoring. This is the main public function that you probably want
.vscode-insiders/extensions/ms-python.python-2021.1.502429796/pythonFiles/lib/python/jedi_language_server/text_edit_utils.py
lsp_document_changes
Guitaraholic/dotfiles
1
python
def lsp_document_changes(refactoring: Refactoring) -> List[Union[(TextDocumentEdit, RenameFile)]]: 'Get lsp text document edits from Jedi refactoring.\n\n This is the main public function that you probably want\n ' converter = RefactoringConverter(refactoring) return [*converter.lsp_text_document_edits(), *converter.lsp_renames()]
def lsp_document_changes(refactoring: Refactoring) -> List[Union[(TextDocumentEdit, RenameFile)]]: 'Get lsp text document edits from Jedi refactoring.\n\n This is the main public function that you probably want\n ' converter = RefactoringConverter(refactoring) return [*converter.lsp_text_document_edits(), *converter.lsp_renames()]<|docstring|>Get lsp text document edits from Jedi refactoring. This is the main public function that you probably want<|endoftext|>
a13eca0d3f36db7d7b6d135c95a6292fbbbb0c42a0d7152c5077687ab8af5e5f
def lsp_text_edits(changed_file: ChangedFile) -> List[TextEdit]: 'Take a jedi `ChangedFile` and convert to list of text edits.\n\n Handles inserts, replaces, and deletions within a text file\n ' old_code = changed_file._module_node.get_code() new_code = changed_file.get_new_code() opcode_position_lookup_old = get_opcode_position_lookup(old_code) text_edits = [] for opcode in get_opcodes(old_code, new_code): if (opcode.op in _OPCODES_CHANGE): start = opcode_position_lookup_old[opcode.old_start] end = opcode_position_lookup_old[opcode.old_end] start_char = (opcode.old_start - start.range_start) end_char = (opcode.old_end - end.range_start) new_text = new_code[opcode.new_start:opcode.new_end] text_edits.append(TextEdit(range=Range(start=Position(line=start.line, character=start_char), end=Position(line=end.line, character=end_char)), new_text=new_text)) return text_edits
Take a jedi `ChangedFile` and convert to list of text edits. Handles inserts, replaces, and deletions within a text file
.vscode-insiders/extensions/ms-python.python-2021.1.502429796/pythonFiles/lib/python/jedi_language_server/text_edit_utils.py
lsp_text_edits
Guitaraholic/dotfiles
1
python
def lsp_text_edits(changed_file: ChangedFile) -> List[TextEdit]: 'Take a jedi `ChangedFile` and convert to list of text edits.\n\n Handles inserts, replaces, and deletions within a text file\n ' old_code = changed_file._module_node.get_code() new_code = changed_file.get_new_code() opcode_position_lookup_old = get_opcode_position_lookup(old_code) text_edits = [] for opcode in get_opcodes(old_code, new_code): if (opcode.op in _OPCODES_CHANGE): start = opcode_position_lookup_old[opcode.old_start] end = opcode_position_lookup_old[opcode.old_end] start_char = (opcode.old_start - start.range_start) end_char = (opcode.old_end - end.range_start) new_text = new_code[opcode.new_start:opcode.new_end] text_edits.append(TextEdit(range=Range(start=Position(line=start.line, character=start_char), end=Position(line=end.line, character=end_char)), new_text=new_text)) return text_edits
def lsp_text_edits(changed_file: ChangedFile) -> List[TextEdit]: 'Take a jedi `ChangedFile` and convert to list of text edits.\n\n Handles inserts, replaces, and deletions within a text file\n ' old_code = changed_file._module_node.get_code() new_code = changed_file.get_new_code() opcode_position_lookup_old = get_opcode_position_lookup(old_code) text_edits = [] for opcode in get_opcodes(old_code, new_code): if (opcode.op in _OPCODES_CHANGE): start = opcode_position_lookup_old[opcode.old_start] end = opcode_position_lookup_old[opcode.old_end] start_char = (opcode.old_start - start.range_start) end_char = (opcode.old_end - end.range_start) new_text = new_code[opcode.new_start:opcode.new_end] text_edits.append(TextEdit(range=Range(start=Position(line=start.line, character=start_char), end=Position(line=end.line, character=end_char)), new_text=new_text)) return text_edits<|docstring|>Take a jedi `ChangedFile` and convert to list of text edits. Handles inserts, replaces, and deletions within a text file<|endoftext|>
e56df34ad278de7199f856ee6c6dd6c18adabe0a7409c94e4340814124c1eeee
def get_opcodes(old: str, new: str) -> List[Opcode]: 'Obtain typed opcodes from two files (old and new)' diff = difflib.SequenceMatcher(a=old, b=new) return [Opcode(*opcode) for opcode in diff.get_opcodes()]
Obtain typed opcodes from two files (old and new)
.vscode-insiders/extensions/ms-python.python-2021.1.502429796/pythonFiles/lib/python/jedi_language_server/text_edit_utils.py
get_opcodes
Guitaraholic/dotfiles
1
python
def get_opcodes(old: str, new: str) -> List[Opcode]: diff = difflib.SequenceMatcher(a=old, b=new) return [Opcode(*opcode) for opcode in diff.get_opcodes()]
def get_opcodes(old: str, new: str) -> List[Opcode]: diff = difflib.SequenceMatcher(a=old, b=new) return [Opcode(*opcode) for opcode in diff.get_opcodes()]<|docstring|>Obtain typed opcodes from two files (old and new)<|endoftext|>
881c2e3b3d983079c555c473f8fe775e52cdd22c84f0f28b6b73a19eca7fe02b
def get_opcode_position_lookup(code: str) -> Dict[(int, LinePosition)]: 'Obtain the opcode lookup position.\n\n This function is beautiful. It takes code and creates a data\n structure within which one can look up opcode-friendly values. It\n relies on the `RangeDict` above, which lets you look up a value\n within a range of linear values\n ' original_lines = code.splitlines(keepends=True) line_lookup = RangeDict() start = 0 for (line, code_line) in enumerate(original_lines): end = (start + len(code_line)) key = range(start, (end + 1)) line_lookup[key] = LinePosition(start, end, line, code_line) start = end return line_lookup
Obtain the opcode lookup position. This function is beautiful. It takes code and creates a data structure within which one can look up opcode-friendly values. It relies on the `RangeDict` above, which lets you look up a value within a range of linear values
.vscode-insiders/extensions/ms-python.python-2021.1.502429796/pythonFiles/lib/python/jedi_language_server/text_edit_utils.py
get_opcode_position_lookup
Guitaraholic/dotfiles
1
python
def get_opcode_position_lookup(code: str) -> Dict[(int, LinePosition)]: 'Obtain the opcode lookup position.\n\n This function is beautiful. It takes code and creates a data\n structure within which one can look up opcode-friendly values. It\n relies on the `RangeDict` above, which lets you look up a value\n within a range of linear values\n ' original_lines = code.splitlines(keepends=True) line_lookup = RangeDict() start = 0 for (line, code_line) in enumerate(original_lines): end = (start + len(code_line)) key = range(start, (end + 1)) line_lookup[key] = LinePosition(start, end, line, code_line) start = end return line_lookup
def get_opcode_position_lookup(code: str) -> Dict[(int, LinePosition)]: 'Obtain the opcode lookup position.\n\n This function is beautiful. It takes code and creates a data\n structure within which one can look up opcode-friendly values. It\n relies on the `RangeDict` above, which lets you look up a value\n within a range of linear values\n ' original_lines = code.splitlines(keepends=True) line_lookup = RangeDict() start = 0 for (line, code_line) in enumerate(original_lines): end = (start + len(code_line)) key = range(start, (end + 1)) line_lookup[key] = LinePosition(start, end, line, code_line) start = end return line_lookup<|docstring|>Obtain the opcode lookup position. This function is beautiful. It takes code and creates a data structure within which one can look up opcode-friendly values. It relies on the `RangeDict` above, which lets you look up a value within a range of linear values<|endoftext|>
d0a9cce50cea3d2959dc30cffe9d79bedc00941eab243160d851b713151741c2
def lsp_renames(self) -> Iterator[RenameFile]: 'Get all File rename operations.' for (old_name, new_name) in self.refactoring.get_renames(): (yield RenameFile(old_uri=from_fs_path(old_name), new_uri=from_fs_path(new_name), options=RenameFileOptions(ignore_if_exists=True, overwrite=True)))
Get all File rename operations.
.vscode-insiders/extensions/ms-python.python-2021.1.502429796/pythonFiles/lib/python/jedi_language_server/text_edit_utils.py
lsp_renames
Guitaraholic/dotfiles
1
python
def lsp_renames(self) -> Iterator[RenameFile]: for (old_name, new_name) in self.refactoring.get_renames(): (yield RenameFile(old_uri=from_fs_path(old_name), new_uri=from_fs_path(new_name), options=RenameFileOptions(ignore_if_exists=True, overwrite=True)))
def lsp_renames(self) -> Iterator[RenameFile]: for (old_name, new_name) in self.refactoring.get_renames(): (yield RenameFile(old_uri=from_fs_path(old_name), new_uri=from_fs_path(new_name), options=RenameFileOptions(ignore_if_exists=True, overwrite=True)))<|docstring|>Get all File rename operations.<|endoftext|>
7579a15ea8ab76b65f2e26ccd2ca0c431c43ed011032df2161fda623dd88a652
def lsp_text_document_edits(self) -> Iterator[TextDocumentEdit]: 'Get all text document edits.' changed_files = self.refactoring.get_changed_files() for (path, changed_file) in changed_files.items(): uri = from_fs_path(path) text_edits = lsp_text_edits(changed_file) (yield TextDocumentEdit(text_document=VersionedTextDocumentIdentifier(uri=uri, version=None), edits=text_edits))
Get all text document edits.
.vscode-insiders/extensions/ms-python.python-2021.1.502429796/pythonFiles/lib/python/jedi_language_server/text_edit_utils.py
lsp_text_document_edits
Guitaraholic/dotfiles
1
python
def lsp_text_document_edits(self) -> Iterator[TextDocumentEdit]: changed_files = self.refactoring.get_changed_files() for (path, changed_file) in changed_files.items(): uri = from_fs_path(path) text_edits = lsp_text_edits(changed_file) (yield TextDocumentEdit(text_document=VersionedTextDocumentIdentifier(uri=uri, version=None), edits=text_edits))
def lsp_text_document_edits(self) -> Iterator[TextDocumentEdit]: changed_files = self.refactoring.get_changed_files() for (path, changed_file) in changed_files.items(): uri = from_fs_path(path) text_edits = lsp_text_edits(changed_file) (yield TextDocumentEdit(text_document=VersionedTextDocumentIdentifier(uri=uri, version=None), edits=text_edits))<|docstring|>Get all text document edits.<|endoftext|>
9ac7551a3e5504f166669213d44b21bac4fd12bd9a33af70eff37b0f6ca88015
def define_folder(loc_): '\n Creating folder based on the giving location information. \n If the given information is not folder, it gives error message.\n \n Parameters\n ----------\n loc_ : str\n The location of folder\n Returns\n -------\n path_ : str\n It gives the created location.\n ' prefix = '' if (loc_[0] == '/'): prefix = '/' loc_ = [x for x in loc_.split('/') if (x != '')] loc_ = '/'.join(loc_) loc_ = (prefix + loc_) if (loc_.split('/')[(- 1)].find('.') > 0 == False): print('PLEASE ENTER FOLDER PATH!!, given information is ', loc_) else: path_ = '' count = 0 for s_ in loc_.split('/'): path_ = ((path_ + s_) + '/') if (os.path.exists(path_) == False): count = (count + 1) os.mkdir(path_) if (count > 0): print('PATH created!!') print('FOLDER information, ', path_) return path_
Creating folder based on the giving location information. If the given information is not folder, it gives error message. Parameters ---------- loc_ : str The location of folder Returns ------- path_ : str It gives the created location.
scripts/path_scripts.py
define_folder
pelingundogdu/mlfpm-esr9-m1.16
0
python
def define_folder(loc_): '\n Creating folder based on the giving location information. \n If the given information is not folder, it gives error message.\n \n Parameters\n ----------\n loc_ : str\n The location of folder\n Returns\n -------\n path_ : str\n It gives the created location.\n ' prefix = if (loc_[0] == '/'): prefix = '/' loc_ = [x for x in loc_.split('/') if (x != )] loc_ = '/'.join(loc_) loc_ = (prefix + loc_) if (loc_.split('/')[(- 1)].find('.') > 0 == False): print('PLEASE ENTER FOLDER PATH!!, given information is ', loc_) else: path_ = count = 0 for s_ in loc_.split('/'): path_ = ((path_ + s_) + '/') if (os.path.exists(path_) == False): count = (count + 1) os.mkdir(path_) if (count > 0): print('PATH created!!') print('FOLDER information, ', path_) return path_
def define_folder(loc_): '\n Creating folder based on the giving location information. \n If the given information is not folder, it gives error message.\n \n Parameters\n ----------\n loc_ : str\n The location of folder\n Returns\n -------\n path_ : str\n It gives the created location.\n ' prefix = if (loc_[0] == '/'): prefix = '/' loc_ = [x for x in loc_.split('/') if (x != )] loc_ = '/'.join(loc_) loc_ = (prefix + loc_) if (loc_.split('/')[(- 1)].find('.') > 0 == False): print('PLEASE ENTER FOLDER PATH!!, given information is ', loc_) else: path_ = count = 0 for s_ in loc_.split('/'): path_ = ((path_ + s_) + '/') if (os.path.exists(path_) == False): count = (count + 1) os.mkdir(path_) if (count > 0): print('PATH created!!') print('FOLDER information, ', path_) return path_<|docstring|>Creating folder based on the giving location information. If the given information is not folder, it gives error message. Parameters ---------- loc_ : str The location of folder Returns ------- path_ : str It gives the created location.<|endoftext|>
9ff5cceb7e4c3077ad1156df9499efedc8c6469469e734c8b1da34c16bfdb011
def send_temperature(bus, input_file): 'Sends a temperature over the CAN Bus.\n\n :param input_file: The file from which the temperature should be read.\n :param bus: The Bus instance.\n ' temperature = read_temperature_from_file(input_file) try: temperature = float(temperature) except ValueError: raise ValueError('Could not convert temperature to float') else: temperature = int(temperature) msg = can.Message(data=[temperature]) bus.send(msg)
Sends a temperature over the CAN Bus. :param input_file: The file from which the temperature should be read. :param bus: The Bus instance.
sender.py
send_temperature
sh4nks/tempserver
3
python
def send_temperature(bus, input_file): 'Sends a temperature over the CAN Bus.\n\n :param input_file: The file from which the temperature should be read.\n :param bus: The Bus instance.\n ' temperature = read_temperature_from_file(input_file) try: temperature = float(temperature) except ValueError: raise ValueError('Could not convert temperature to float') else: temperature = int(temperature) msg = can.Message(data=[temperature]) bus.send(msg)
def send_temperature(bus, input_file): 'Sends a temperature over the CAN Bus.\n\n :param input_file: The file from which the temperature should be read.\n :param bus: The Bus instance.\n ' temperature = read_temperature_from_file(input_file) try: temperature = float(temperature) except ValueError: raise ValueError('Could not convert temperature to float') else: temperature = int(temperature) msg = can.Message(data=[temperature]) bus.send(msg)<|docstring|>Sends a temperature over the CAN Bus. :param input_file: The file from which the temperature should be read. :param bus: The Bus instance.<|endoftext|>
ced9508f08a3bcd5698458355a2782297d5c531c92ccc1965a30f5d555f67a1e
def read_temperature_from_file(input_file): 'Reads a temperature from the given file and returns it.\n\n :param intput_file: The full path to the file from which the temperature\n should be read.\n ' temperature = None with open(input_file) as f: temperature = f.read().rstrip() return temperature
Reads a temperature from the given file and returns it. :param intput_file: The full path to the file from which the temperature should be read.
sender.py
read_temperature_from_file
sh4nks/tempserver
3
python
def read_temperature_from_file(input_file): 'Reads a temperature from the given file and returns it.\n\n :param intput_file: The full path to the file from which the temperature\n should be read.\n ' temperature = None with open(input_file) as f: temperature = f.read().rstrip() return temperature
def read_temperature_from_file(input_file): 'Reads a temperature from the given file and returns it.\n\n :param intput_file: The full path to the file from which the temperature\n should be read.\n ' temperature = None with open(input_file) as f: temperature = f.read().rstrip() return temperature<|docstring|>Reads a temperature from the given file and returns it. :param intput_file: The full path to the file from which the temperature should be read.<|endoftext|>
27fbbcfc3a94ede93fd61a3d94325641933367db82518632384bde084bdb0f1d
def test_deco_sklearn_cluster_KMeans_class(): '\n Code from "Demonstration of k-means assumptions",\n http://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html#example-cluster-plot-kmeans-assumptions-py\n\n This test demonstrates\n * decorating an "external" class and its subclasses --\n KMeans from sklearn.cluster and its subclasses,\n amongst which is MiniBatchKMeans\n * using the `override` keyword with one of the `log_calls.decorate_*`\n functions to make a change to the settings of (all the methods of)\n an already-decorated class\n\n >>> from log_calls import log_calls\n >>> from sklearn.cluster import KMeans, MiniBatchKMeans\n >>> from sklearn.datasets import make_blobs\n >>> n_samples = 1500\n >>> random_state = 170\n >>> X, y = make_blobs(n_samples=n_samples, random_state=random_state)\n\nFirst, let\'s see the call hierarchy:\n\n >>> log_calls.decorate_hierarchy(KMeans, log_args=False, override=True)\n\n >>> kmo = KMeans(n_clusters=2, random_state=random_state,\n ... n_init=10)\n KMeans.__init__ <== called by <module>\n KMeans.__init__ ==> returning to <module>\n >>> y_pred = kmo.fit_predict(X)\n KMeans.fit_predict <== called by <module>\n KMeans.fit <== called by KMeans.fit_predict\n KMeans._check_fit_data <== called by KMeans.fit\n KMeans._check_fit_data ==> returning to KMeans.fit\n KMeans.fit ==> returning to KMeans.fit_predict\n KMeans.fit_predict ==> returning to <module>\n\n`MiniBatchKMeans` is a subclass of `KMeans`, so that class is decorated too.\n\n >>> mbk = MiniBatchKMeans(init=\'k-means++\', n_clusters=2, batch_size=45,\n ... n_init=10, max_no_improvement=10)\n MiniBatchKMeans.__init__ <== called by <module>\n KMeans.__init__ <== called by MiniBatchKMeans.__init__\n KMeans.__init__ ==> returning to MiniBatchKMeans.__init__\n MiniBatchKMeans.__init__ ==> returning to <module>\n\n >>> mbk.fit(X) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE\n MiniBatchKMeans.fit <== called by <module>\n MiniBatchKMeans._labels_inertia_minibatch <== called by MiniBatchKMeans.fit\n MiniBatchKMeans._labels_inertia_minibatch ==> returning to MiniBatchKMeans.fit\n MiniBatchKMeans.fit ==> returning to <module>\n MiniBatchKMeans(batch_size=45, compute_labels=True, init=\'k-means++\',\n init_size=None, max_iter=100, max_no_improvement=10, n_clusters=2,\n n_init=10, random_state=None, reassignment_ratio=0.01, tol=0.0,\n verbose=0)\n\nNow let\'s view arguments too:\n >>> log_calls.decorate_class(KMeans, decorate_subclasses=True,\n ... log_args=True, args_sep=\'\\n\',\n ... override=True)\n >>> # Incorrect number of clusters\n >>> mbk.fit(X) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE\n MiniBatchKMeans.fit <== called by <module>\n arguments:\n self=MiniBatchKMeans(batch_size=45, compute_labels=True, init=\'k-means++\',\n init_size=None, max_iter=100, max_no_improvement=10, n_clusters=2,\n n_init=10, random_state=None, reassignment_ratio=0.01, tol=0.0,\n verbose=0)\n X=array([[ -5.19811282e+00, 6.41869316e-01],\n [ -5.75229538e+00, 4.18627111e-01],\n [ -1.08448984e+01, -7.55352273e+00],\n ...,\n [ 1.36105255e+00, -9.07491863e-01],\n [ -3.54141108e-01, 7.12241630e-01],\n [ 1.88577252e+00, 1.41185693e-03]])\n defaults:\n y=None\n MiniBatchKMeans._labels_inertia_minibatch <== called by MiniBatchKMeans.fit\n arguments:\n self=MiniBatchKMeans(batch_size=45, compute_labels=True, init=\'k-means++\',\n init_size=None, max_iter=100, max_no_improvement=10, n_clusters=2,\n n_init=10, random_state=None, reassignment_ratio=0.01, tol=0.0,\n verbose=0)\n X=array([[ -5.19811282e+00, 6.41869316e-01],\n [ -5.75229538e+00, 4.18627111e-01],\n [ -1.08448984e+01, -7.55352273e+00],\n ...,\n [ 1.36105255e+00, -9.07491863e-01],\n [ -3.54141108e-01, 7.12241630e-01],\n [ 1.88577252e+00, 1.41185693e-03]])\n MiniBatchKMeans._labels_inertia_minibatch ==> returning to MiniBatchKMeans.fit\n MiniBatchKMeans.fit ==> returning to <module>\n MiniBatchKMeans(batch_size=45, compute_labels=True, init=\'k-means++\',\n init_size=None, max_iter=100, max_no_improvement=10, n_clusters=2,\n n_init=10, random_state=None, reassignment_ratio=0.01, tol=0.0,\n verbose=0)\n\n Note: the ellipses in the values of array `X` are produced by the `repr` of `numpy`.\n ' pass
Code from "Demonstration of k-means assumptions", http://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html#example-cluster-plot-kmeans-assumptions-py This test demonstrates * decorating an "external" class and its subclasses -- KMeans from sklearn.cluster and its subclasses, amongst which is MiniBatchKMeans * using the `override` keyword with one of the `log_calls.decorate_*` functions to make a change to the settings of (all the methods of) an already-decorated class >>> from log_calls import log_calls >>> from sklearn.cluster import KMeans, MiniBatchKMeans >>> from sklearn.datasets import make_blobs >>> n_samples = 1500 >>> random_state = 170 >>> X, y = make_blobs(n_samples=n_samples, random_state=random_state) First, let's see the call hierarchy: >>> log_calls.decorate_hierarchy(KMeans, log_args=False, override=True) >>> kmo = KMeans(n_clusters=2, random_state=random_state, ... n_init=10) KMeans.__init__ <== called by <module> KMeans.__init__ ==> returning to <module> >>> y_pred = kmo.fit_predict(X) KMeans.fit_predict <== called by <module> KMeans.fit <== called by KMeans.fit_predict KMeans._check_fit_data <== called by KMeans.fit KMeans._check_fit_data ==> returning to KMeans.fit KMeans.fit ==> returning to KMeans.fit_predict KMeans.fit_predict ==> returning to <module> `MiniBatchKMeans` is a subclass of `KMeans`, so that class is decorated too. >>> mbk = MiniBatchKMeans(init='k-means++', n_clusters=2, batch_size=45, ... n_init=10, max_no_improvement=10) MiniBatchKMeans.__init__ <== called by <module> KMeans.__init__ <== called by MiniBatchKMeans.__init__ KMeans.__init__ ==> returning to MiniBatchKMeans.__init__ MiniBatchKMeans.__init__ ==> returning to <module> >>> mbk.fit(X) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE MiniBatchKMeans.fit <== called by <module> MiniBatchKMeans._labels_inertia_minibatch <== called by MiniBatchKMeans.fit MiniBatchKMeans._labels_inertia_minibatch ==> returning to MiniBatchKMeans.fit MiniBatchKMeans.fit ==> returning to <module> MiniBatchKMeans(batch_size=45, compute_labels=True, init='k-means++', init_size=None, max_iter=100, max_no_improvement=10, n_clusters=2, n_init=10, random_state=None, reassignment_ratio=0.01, tol=0.0, verbose=0) Now let's view arguments too: >>> log_calls.decorate_class(KMeans, decorate_subclasses=True, ... log_args=True, args_sep='\n', ... override=True) >>> # Incorrect number of clusters >>> mbk.fit(X) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE MiniBatchKMeans.fit <== called by <module> arguments: self=MiniBatchKMeans(batch_size=45, compute_labels=True, init='k-means++', init_size=None, max_iter=100, max_no_improvement=10, n_clusters=2, n_init=10, random_state=None, reassignment_ratio=0.01, tol=0.0, verbose=0) X=array([[ -5.19811282e+00, 6.41869316e-01], [ -5.75229538e+00, 4.18627111e-01], [ -1.08448984e+01, -7.55352273e+00], ..., [ 1.36105255e+00, -9.07491863e-01], [ -3.54141108e-01, 7.12241630e-01], [ 1.88577252e+00, 1.41185693e-03]]) defaults: y=None MiniBatchKMeans._labels_inertia_minibatch <== called by MiniBatchKMeans.fit arguments: self=MiniBatchKMeans(batch_size=45, compute_labels=True, init='k-means++', init_size=None, max_iter=100, max_no_improvement=10, n_clusters=2, n_init=10, random_state=None, reassignment_ratio=0.01, tol=0.0, verbose=0) X=array([[ -5.19811282e+00, 6.41869316e-01], [ -5.75229538e+00, 4.18627111e-01], [ -1.08448984e+01, -7.55352273e+00], ..., [ 1.36105255e+00, -9.07491863e-01], [ -3.54141108e-01, 7.12241630e-01], [ 1.88577252e+00, 1.41185693e-03]]) MiniBatchKMeans._labels_inertia_minibatch ==> returning to MiniBatchKMeans.fit MiniBatchKMeans.fit ==> returning to <module> MiniBatchKMeans(batch_size=45, compute_labels=True, init='k-means++', init_size=None, max_iter=100, max_no_improvement=10, n_clusters=2, n_init=10, random_state=None, reassignment_ratio=0.01, tol=0.0, verbose=0) Note: the ellipses in the values of array `X` are produced by the `repr` of `numpy`.
tests/test_with_sklearn/test_decorate_sklearn_KMeans.py
test_deco_sklearn_cluster_KMeans_class
Twangist/log_calls
16
python
def test_deco_sklearn_cluster_KMeans_class(): '\n Code from "Demonstration of k-means assumptions",\n http://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html#example-cluster-plot-kmeans-assumptions-py\n\n This test demonstrates\n * decorating an "external" class and its subclasses --\n KMeans from sklearn.cluster and its subclasses,\n amongst which is MiniBatchKMeans\n * using the `override` keyword with one of the `log_calls.decorate_*`\n functions to make a change to the settings of (all the methods of)\n an already-decorated class\n\n >>> from log_calls import log_calls\n >>> from sklearn.cluster import KMeans, MiniBatchKMeans\n >>> from sklearn.datasets import make_blobs\n >>> n_samples = 1500\n >>> random_state = 170\n >>> X, y = make_blobs(n_samples=n_samples, random_state=random_state)\n\nFirst, let\'s see the call hierarchy:\n\n >>> log_calls.decorate_hierarchy(KMeans, log_args=False, override=True)\n\n >>> kmo = KMeans(n_clusters=2, random_state=random_state,\n ... n_init=10)\n KMeans.__init__ <== called by <module>\n KMeans.__init__ ==> returning to <module>\n >>> y_pred = kmo.fit_predict(X)\n KMeans.fit_predict <== called by <module>\n KMeans.fit <== called by KMeans.fit_predict\n KMeans._check_fit_data <== called by KMeans.fit\n KMeans._check_fit_data ==> returning to KMeans.fit\n KMeans.fit ==> returning to KMeans.fit_predict\n KMeans.fit_predict ==> returning to <module>\n\n`MiniBatchKMeans` is a subclass of `KMeans`, so that class is decorated too.\n\n >>> mbk = MiniBatchKMeans(init=\'k-means++\', n_clusters=2, batch_size=45,\n ... n_init=10, max_no_improvement=10)\n MiniBatchKMeans.__init__ <== called by <module>\n KMeans.__init__ <== called by MiniBatchKMeans.__init__\n KMeans.__init__ ==> returning to MiniBatchKMeans.__init__\n MiniBatchKMeans.__init__ ==> returning to <module>\n\n >>> mbk.fit(X) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE\n MiniBatchKMeans.fit <== called by <module>\n MiniBatchKMeans._labels_inertia_minibatch <== called by MiniBatchKMeans.fit\n MiniBatchKMeans._labels_inertia_minibatch ==> returning to MiniBatchKMeans.fit\n MiniBatchKMeans.fit ==> returning to <module>\n MiniBatchKMeans(batch_size=45, compute_labels=True, init=\'k-means++\',\n init_size=None, max_iter=100, max_no_improvement=10, n_clusters=2,\n n_init=10, random_state=None, reassignment_ratio=0.01, tol=0.0,\n verbose=0)\n\nNow let\'s view arguments too:\n >>> log_calls.decorate_class(KMeans, decorate_subclasses=True,\n ... log_args=True, args_sep=\'\\n\',\n ... override=True)\n >>> # Incorrect number of clusters\n >>> mbk.fit(X) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE\n MiniBatchKMeans.fit <== called by <module>\n arguments:\n self=MiniBatchKMeans(batch_size=45, compute_labels=True, init=\'k-means++\',\n init_size=None, max_iter=100, max_no_improvement=10, n_clusters=2,\n n_init=10, random_state=None, reassignment_ratio=0.01, tol=0.0,\n verbose=0)\n X=array([[ -5.19811282e+00, 6.41869316e-01],\n [ -5.75229538e+00, 4.18627111e-01],\n [ -1.08448984e+01, -7.55352273e+00],\n ...,\n [ 1.36105255e+00, -9.07491863e-01],\n [ -3.54141108e-01, 7.12241630e-01],\n [ 1.88577252e+00, 1.41185693e-03]])\n defaults:\n y=None\n MiniBatchKMeans._labels_inertia_minibatch <== called by MiniBatchKMeans.fit\n arguments:\n self=MiniBatchKMeans(batch_size=45, compute_labels=True, init=\'k-means++\',\n init_size=None, max_iter=100, max_no_improvement=10, n_clusters=2,\n n_init=10, random_state=None, reassignment_ratio=0.01, tol=0.0,\n verbose=0)\n X=array([[ -5.19811282e+00, 6.41869316e-01],\n [ -5.75229538e+00, 4.18627111e-01],\n [ -1.08448984e+01, -7.55352273e+00],\n ...,\n [ 1.36105255e+00, -9.07491863e-01],\n [ -3.54141108e-01, 7.12241630e-01],\n [ 1.88577252e+00, 1.41185693e-03]])\n MiniBatchKMeans._labels_inertia_minibatch ==> returning to MiniBatchKMeans.fit\n MiniBatchKMeans.fit ==> returning to <module>\n MiniBatchKMeans(batch_size=45, compute_labels=True, init=\'k-means++\',\n init_size=None, max_iter=100, max_no_improvement=10, n_clusters=2,\n n_init=10, random_state=None, reassignment_ratio=0.01, tol=0.0,\n verbose=0)\n\n Note: the ellipses in the values of array `X` are produced by the `repr` of `numpy`.\n ' pass
def test_deco_sklearn_cluster_KMeans_class(): '\n Code from "Demonstration of k-means assumptions",\n http://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html#example-cluster-plot-kmeans-assumptions-py\n\n This test demonstrates\n * decorating an "external" class and its subclasses --\n KMeans from sklearn.cluster and its subclasses,\n amongst which is MiniBatchKMeans\n * using the `override` keyword with one of the `log_calls.decorate_*`\n functions to make a change to the settings of (all the methods of)\n an already-decorated class\n\n >>> from log_calls import log_calls\n >>> from sklearn.cluster import KMeans, MiniBatchKMeans\n >>> from sklearn.datasets import make_blobs\n >>> n_samples = 1500\n >>> random_state = 170\n >>> X, y = make_blobs(n_samples=n_samples, random_state=random_state)\n\nFirst, let\'s see the call hierarchy:\n\n >>> log_calls.decorate_hierarchy(KMeans, log_args=False, override=True)\n\n >>> kmo = KMeans(n_clusters=2, random_state=random_state,\n ... n_init=10)\n KMeans.__init__ <== called by <module>\n KMeans.__init__ ==> returning to <module>\n >>> y_pred = kmo.fit_predict(X)\n KMeans.fit_predict <== called by <module>\n KMeans.fit <== called by KMeans.fit_predict\n KMeans._check_fit_data <== called by KMeans.fit\n KMeans._check_fit_data ==> returning to KMeans.fit\n KMeans.fit ==> returning to KMeans.fit_predict\n KMeans.fit_predict ==> returning to <module>\n\n`MiniBatchKMeans` is a subclass of `KMeans`, so that class is decorated too.\n\n >>> mbk = MiniBatchKMeans(init=\'k-means++\', n_clusters=2, batch_size=45,\n ... n_init=10, max_no_improvement=10)\n MiniBatchKMeans.__init__ <== called by <module>\n KMeans.__init__ <== called by MiniBatchKMeans.__init__\n KMeans.__init__ ==> returning to MiniBatchKMeans.__init__\n MiniBatchKMeans.__init__ ==> returning to <module>\n\n >>> mbk.fit(X) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE\n MiniBatchKMeans.fit <== called by <module>\n MiniBatchKMeans._labels_inertia_minibatch <== called by MiniBatchKMeans.fit\n MiniBatchKMeans._labels_inertia_minibatch ==> returning to MiniBatchKMeans.fit\n MiniBatchKMeans.fit ==> returning to <module>\n MiniBatchKMeans(batch_size=45, compute_labels=True, init=\'k-means++\',\n init_size=None, max_iter=100, max_no_improvement=10, n_clusters=2,\n n_init=10, random_state=None, reassignment_ratio=0.01, tol=0.0,\n verbose=0)\n\nNow let\'s view arguments too:\n >>> log_calls.decorate_class(KMeans, decorate_subclasses=True,\n ... log_args=True, args_sep=\'\\n\',\n ... override=True)\n >>> # Incorrect number of clusters\n >>> mbk.fit(X) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE\n MiniBatchKMeans.fit <== called by <module>\n arguments:\n self=MiniBatchKMeans(batch_size=45, compute_labels=True, init=\'k-means++\',\n init_size=None, max_iter=100, max_no_improvement=10, n_clusters=2,\n n_init=10, random_state=None, reassignment_ratio=0.01, tol=0.0,\n verbose=0)\n X=array([[ -5.19811282e+00, 6.41869316e-01],\n [ -5.75229538e+00, 4.18627111e-01],\n [ -1.08448984e+01, -7.55352273e+00],\n ...,\n [ 1.36105255e+00, -9.07491863e-01],\n [ -3.54141108e-01, 7.12241630e-01],\n [ 1.88577252e+00, 1.41185693e-03]])\n defaults:\n y=None\n MiniBatchKMeans._labels_inertia_minibatch <== called by MiniBatchKMeans.fit\n arguments:\n self=MiniBatchKMeans(batch_size=45, compute_labels=True, init=\'k-means++\',\n init_size=None, max_iter=100, max_no_improvement=10, n_clusters=2,\n n_init=10, random_state=None, reassignment_ratio=0.01, tol=0.0,\n verbose=0)\n X=array([[ -5.19811282e+00, 6.41869316e-01],\n [ -5.75229538e+00, 4.18627111e-01],\n [ -1.08448984e+01, -7.55352273e+00],\n ...,\n [ 1.36105255e+00, -9.07491863e-01],\n [ -3.54141108e-01, 7.12241630e-01],\n [ 1.88577252e+00, 1.41185693e-03]])\n MiniBatchKMeans._labels_inertia_minibatch ==> returning to MiniBatchKMeans.fit\n MiniBatchKMeans.fit ==> returning to <module>\n MiniBatchKMeans(batch_size=45, compute_labels=True, init=\'k-means++\',\n init_size=None, max_iter=100, max_no_improvement=10, n_clusters=2,\n n_init=10, random_state=None, reassignment_ratio=0.01, tol=0.0,\n verbose=0)\n\n Note: the ellipses in the values of array `X` are produced by the `repr` of `numpy`.\n ' pass<|docstring|>Code from "Demonstration of k-means assumptions", http://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html#example-cluster-plot-kmeans-assumptions-py This test demonstrates * decorating an "external" class and its subclasses -- KMeans from sklearn.cluster and its subclasses, amongst which is MiniBatchKMeans * using the `override` keyword with one of the `log_calls.decorate_*` functions to make a change to the settings of (all the methods of) an already-decorated class >>> from log_calls import log_calls >>> from sklearn.cluster import KMeans, MiniBatchKMeans >>> from sklearn.datasets import make_blobs >>> n_samples = 1500 >>> random_state = 170 >>> X, y = make_blobs(n_samples=n_samples, random_state=random_state) First, let's see the call hierarchy: >>> log_calls.decorate_hierarchy(KMeans, log_args=False, override=True) >>> kmo = KMeans(n_clusters=2, random_state=random_state, ... n_init=10) KMeans.__init__ <== called by <module> KMeans.__init__ ==> returning to <module> >>> y_pred = kmo.fit_predict(X) KMeans.fit_predict <== called by <module> KMeans.fit <== called by KMeans.fit_predict KMeans._check_fit_data <== called by KMeans.fit KMeans._check_fit_data ==> returning to KMeans.fit KMeans.fit ==> returning to KMeans.fit_predict KMeans.fit_predict ==> returning to <module> `MiniBatchKMeans` is a subclass of `KMeans`, so that class is decorated too. >>> mbk = MiniBatchKMeans(init='k-means++', n_clusters=2, batch_size=45, ... n_init=10, max_no_improvement=10) MiniBatchKMeans.__init__ <== called by <module> KMeans.__init__ <== called by MiniBatchKMeans.__init__ KMeans.__init__ ==> returning to MiniBatchKMeans.__init__ MiniBatchKMeans.__init__ ==> returning to <module> >>> mbk.fit(X) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE MiniBatchKMeans.fit <== called by <module> MiniBatchKMeans._labels_inertia_minibatch <== called by MiniBatchKMeans.fit MiniBatchKMeans._labels_inertia_minibatch ==> returning to MiniBatchKMeans.fit MiniBatchKMeans.fit ==> returning to <module> MiniBatchKMeans(batch_size=45, compute_labels=True, init='k-means++', init_size=None, max_iter=100, max_no_improvement=10, n_clusters=2, n_init=10, random_state=None, reassignment_ratio=0.01, tol=0.0, verbose=0) Now let's view arguments too: >>> log_calls.decorate_class(KMeans, decorate_subclasses=True, ... log_args=True, args_sep='\n', ... override=True) >>> # Incorrect number of clusters >>> mbk.fit(X) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE MiniBatchKMeans.fit <== called by <module> arguments: self=MiniBatchKMeans(batch_size=45, compute_labels=True, init='k-means++', init_size=None, max_iter=100, max_no_improvement=10, n_clusters=2, n_init=10, random_state=None, reassignment_ratio=0.01, tol=0.0, verbose=0) X=array([[ -5.19811282e+00, 6.41869316e-01], [ -5.75229538e+00, 4.18627111e-01], [ -1.08448984e+01, -7.55352273e+00], ..., [ 1.36105255e+00, -9.07491863e-01], [ -3.54141108e-01, 7.12241630e-01], [ 1.88577252e+00, 1.41185693e-03]]) defaults: y=None MiniBatchKMeans._labels_inertia_minibatch <== called by MiniBatchKMeans.fit arguments: self=MiniBatchKMeans(batch_size=45, compute_labels=True, init='k-means++', init_size=None, max_iter=100, max_no_improvement=10, n_clusters=2, n_init=10, random_state=None, reassignment_ratio=0.01, tol=0.0, verbose=0) X=array([[ -5.19811282e+00, 6.41869316e-01], [ -5.75229538e+00, 4.18627111e-01], [ -1.08448984e+01, -7.55352273e+00], ..., [ 1.36105255e+00, -9.07491863e-01], [ -3.54141108e-01, 7.12241630e-01], [ 1.88577252e+00, 1.41185693e-03]]) MiniBatchKMeans._labels_inertia_minibatch ==> returning to MiniBatchKMeans.fit MiniBatchKMeans.fit ==> returning to <module> MiniBatchKMeans(batch_size=45, compute_labels=True, init='k-means++', init_size=None, max_iter=100, max_no_improvement=10, n_clusters=2, n_init=10, random_state=None, reassignment_ratio=0.01, tol=0.0, verbose=0) Note: the ellipses in the values of array `X` are produced by the `repr` of `numpy`.<|endoftext|>
dbbde837535d9ef38fd3937f84d7fbad6f0a4c60030f0f52843e0bbd8aefe074
def build_entity(self, data, i): 'Build entity object from data.\n Go into entity collection\n\n Args:\n data (:obj:`Obj`): source object.\n i (:obj: `int`): index (row labels) of object in dataframe\n Return:\n (:obj:`Obj`), e.g.\n {\n "entity": {\n "type": "protein",\n "name": "formate--tetrahydrofolate ligase",\n "identifiers": [{}... {}]\n }\n } \n ' entity = {} entity['type'] = 'protein' entity['name'] = str(data.iloc[(i, 0)])[(str(data.iloc[(i, 0)]).rfind('|') + 2):] entity['identifiers'] = [] entity['identifiers'].append({'namespace': 'Seq_ID', 'value': str(data.iloc[(i, 0)])[str(data.iloc[(i, 0)]).find('W'):str(data.iloc[(i, 0)]).rfind('|')]}) return entity
Build entity object from data. Go into entity collection Args: data (:obj:`Obj`): source object. i (:obj: `int`): index (row labels) of object in dataframe Return: (:obj:`Obj`), e.g. { "entity": { "type": "protein", "name": "formate--tetrahydrofolate ligase", "identifiers": [{}... {}] } }
datanator/data_source/protein_localization/victoria_insert_neg_wo_outer_membrane.py
build_entity
KarrLab/Kinetic-Datanator
10
python
def build_entity(self, data, i): 'Build entity object from data.\n Go into entity collection\n\n Args:\n data (:obj:`Obj`): source object.\n i (:obj: `int`): index (row labels) of object in dataframe\n Return:\n (:obj:`Obj`), e.g.\n {\n "entity": {\n "type": "protein",\n "name": "formate--tetrahydrofolate ligase",\n "identifiers": [{}... {}]\n }\n } \n ' entity = {} entity['type'] = 'protein' entity['name'] = str(data.iloc[(i, 0)])[(str(data.iloc[(i, 0)]).rfind('|') + 2):] entity['identifiers'] = [] entity['identifiers'].append({'namespace': 'Seq_ID', 'value': str(data.iloc[(i, 0)])[str(data.iloc[(i, 0)]).find('W'):str(data.iloc[(i, 0)]).rfind('|')]}) return entity
def build_entity(self, data, i): 'Build entity object from data.\n Go into entity collection\n\n Args:\n data (:obj:`Obj`): source object.\n i (:obj: `int`): index (row labels) of object in dataframe\n Return:\n (:obj:`Obj`), e.g.\n {\n "entity": {\n "type": "protein",\n "name": "formate--tetrahydrofolate ligase",\n "identifiers": [{}... {}]\n }\n } \n ' entity = {} entity['type'] = 'protein' entity['name'] = str(data.iloc[(i, 0)])[(str(data.iloc[(i, 0)]).rfind('|') + 2):] entity['identifiers'] = [] entity['identifiers'].append({'namespace': 'Seq_ID', 'value': str(data.iloc[(i, 0)])[str(data.iloc[(i, 0)]).find('W'):str(data.iloc[(i, 0)]).rfind('|')]}) return entity<|docstring|>Build entity object from data. Go into entity collection Args: data (:obj:`Obj`): source object. i (:obj: `int`): index (row labels) of object in dataframe Return: (:obj:`Obj`), e.g. { "entity": { "type": "protein", "name": "formate--tetrahydrofolate ligase", "identifiers": [{}... {}] } }<|endoftext|>
6e448888ec60849640f0551c4877a068059bf4eef9a54a8e1af5473c962c03ed
def build_obs(self, data, i): 'Build observation objects from data.\n Go into observations collection.\n Args:\n data (:obj:`Obj`): source object.\n i (:obj: `int`): index (row labels) of object in dataframe\n Return:\n obj(:obj:`Obj`)\n {\n "entity": {\n "type": "protein",\n "name": "formate--tetrahydrofolate ligase",\n "identifiers": [{}... {}]\n },\n "value": [],\n "source": {}, ...\n }\n ' entity = {} entity['type'] = 'protein' entity['name'] = str(data.iloc[(i, 0)])[(str(data.iloc[(i, 0)]).rfind('|') + 2):] entity['identifiers'] = [] entity['identifiers'].append({'namespace': 'Seq_ID', 'value': str(data.iloc[(i, 0)])[str(data.iloc[(i, 0)]).find('W'):str(data.iloc[(i, 0)]).rfind('|')]}) print(str(data.iloc[(i, 0)])[str(data.iloc[(i, 0)]).find('W'):]) values_p = [] if (data.iloc[(i, 27)] == None): values_p.append({'type': 'localization_score', 'value': float(data.iloc[(i, 1)]), 'description': 'Cytoplasmic Membrane'}) values_p.append({'type': 'localization_score', 'value': float(data.iloc[(i, 2)]), 'description': 'Cell Wall'}) values_p.append({'type': 'localization_score', 'value': float(data.iloc[(i, 3)]), 'description': 'Extracellular'}) values_p.append({'type': 'localization_score', 'value': float(data.iloc[(i, 4)]), 'description': 'Cytoplasmic'}) values_p.append({'type': 'localization', 'value': str(data.iloc[(i, 5)]), 'description': 'predicted'}) else: values_p.append({'type': 'localization_score', 'value': float(data.iloc[(i, 27)]), 'description': 'Cytoplasmic Membrane'}) values_p.append({'type': 'localization_score', 'value': float(data.iloc[(i, 28)]), 'description': 'Cell Wall'}) values_p.append({'type': 'localization_score', 'value': float(data.iloc[(i, 29)]), 'description': 'Extracellular'}) values_p.append({'type': 'localization_score', 'value': float(data.iloc[(i, 30)]), 'description': 'Cytoplasmic'}) values_p.append({'type': 'localization', 'value': str(data.iloc[(i, 31)]), 'description': 'predicted'}) genotype = {} genotype['cellType'] = 'Gram negative without Outer Membrane' source = [{'namespace': 'PSORTb', 'value': 'Version 3.0'}] ob_p = {'entity': entity, 'genotype': genotype, 'values': values_p, 'source': source, 'schema_version': '2.0'} return ob_p
Build observation objects from data. Go into observations collection. Args: data (:obj:`Obj`): source object. i (:obj: `int`): index (row labels) of object in dataframe Return: obj(:obj:`Obj`) { "entity": { "type": "protein", "name": "formate--tetrahydrofolate ligase", "identifiers": [{}... {}] }, "value": [], "source": {}, ... }
datanator/data_source/protein_localization/victoria_insert_neg_wo_outer_membrane.py
build_obs
KarrLab/Kinetic-Datanator
10
python
def build_obs(self, data, i): 'Build observation objects from data.\n Go into observations collection.\n Args:\n data (:obj:`Obj`): source object.\n i (:obj: `int`): index (row labels) of object in dataframe\n Return:\n obj(:obj:`Obj`)\n {\n "entity": {\n "type": "protein",\n "name": "formate--tetrahydrofolate ligase",\n "identifiers": [{}... {}]\n },\n "value": [],\n "source": {}, ...\n }\n ' entity = {} entity['type'] = 'protein' entity['name'] = str(data.iloc[(i, 0)])[(str(data.iloc[(i, 0)]).rfind('|') + 2):] entity['identifiers'] = [] entity['identifiers'].append({'namespace': 'Seq_ID', 'value': str(data.iloc[(i, 0)])[str(data.iloc[(i, 0)]).find('W'):str(data.iloc[(i, 0)]).rfind('|')]}) print(str(data.iloc[(i, 0)])[str(data.iloc[(i, 0)]).find('W'):]) values_p = [] if (data.iloc[(i, 27)] == None): values_p.append({'type': 'localization_score', 'value': float(data.iloc[(i, 1)]), 'description': 'Cytoplasmic Membrane'}) values_p.append({'type': 'localization_score', 'value': float(data.iloc[(i, 2)]), 'description': 'Cell Wall'}) values_p.append({'type': 'localization_score', 'value': float(data.iloc[(i, 3)]), 'description': 'Extracellular'}) values_p.append({'type': 'localization_score', 'value': float(data.iloc[(i, 4)]), 'description': 'Cytoplasmic'}) values_p.append({'type': 'localization', 'value': str(data.iloc[(i, 5)]), 'description': 'predicted'}) else: values_p.append({'type': 'localization_score', 'value': float(data.iloc[(i, 27)]), 'description': 'Cytoplasmic Membrane'}) values_p.append({'type': 'localization_score', 'value': float(data.iloc[(i, 28)]), 'description': 'Cell Wall'}) values_p.append({'type': 'localization_score', 'value': float(data.iloc[(i, 29)]), 'description': 'Extracellular'}) values_p.append({'type': 'localization_score', 'value': float(data.iloc[(i, 30)]), 'description': 'Cytoplasmic'}) values_p.append({'type': 'localization', 'value': str(data.iloc[(i, 31)]), 'description': 'predicted'}) genotype = {} genotype['cellType'] = 'Gram negative without Outer Membrane' source = [{'namespace': 'PSORTb', 'value': 'Version 3.0'}] ob_p = {'entity': entity, 'genotype': genotype, 'values': values_p, 'source': source, 'schema_version': '2.0'} return ob_p
def build_obs(self, data, i): 'Build observation objects from data.\n Go into observations collection.\n Args:\n data (:obj:`Obj`): source object.\n i (:obj: `int`): index (row labels) of object in dataframe\n Return:\n obj(:obj:`Obj`)\n {\n "entity": {\n "type": "protein",\n "name": "formate--tetrahydrofolate ligase",\n "identifiers": [{}... {}]\n },\n "value": [],\n "source": {}, ...\n }\n ' entity = {} entity['type'] = 'protein' entity['name'] = str(data.iloc[(i, 0)])[(str(data.iloc[(i, 0)]).rfind('|') + 2):] entity['identifiers'] = [] entity['identifiers'].append({'namespace': 'Seq_ID', 'value': str(data.iloc[(i, 0)])[str(data.iloc[(i, 0)]).find('W'):str(data.iloc[(i, 0)]).rfind('|')]}) print(str(data.iloc[(i, 0)])[str(data.iloc[(i, 0)]).find('W'):]) values_p = [] if (data.iloc[(i, 27)] == None): values_p.append({'type': 'localization_score', 'value': float(data.iloc[(i, 1)]), 'description': 'Cytoplasmic Membrane'}) values_p.append({'type': 'localization_score', 'value': float(data.iloc[(i, 2)]), 'description': 'Cell Wall'}) values_p.append({'type': 'localization_score', 'value': float(data.iloc[(i, 3)]), 'description': 'Extracellular'}) values_p.append({'type': 'localization_score', 'value': float(data.iloc[(i, 4)]), 'description': 'Cytoplasmic'}) values_p.append({'type': 'localization', 'value': str(data.iloc[(i, 5)]), 'description': 'predicted'}) else: values_p.append({'type': 'localization_score', 'value': float(data.iloc[(i, 27)]), 'description': 'Cytoplasmic Membrane'}) values_p.append({'type': 'localization_score', 'value': float(data.iloc[(i, 28)]), 'description': 'Cell Wall'}) values_p.append({'type': 'localization_score', 'value': float(data.iloc[(i, 29)]), 'description': 'Extracellular'}) values_p.append({'type': 'localization_score', 'value': float(data.iloc[(i, 30)]), 'description': 'Cytoplasmic'}) values_p.append({'type': 'localization', 'value': str(data.iloc[(i, 31)]), 'description': 'predicted'}) genotype = {} genotype['cellType'] = 'Gram negative without Outer Membrane' source = [{'namespace': 'PSORTb', 'value': 'Version 3.0'}] ob_p = {'entity': entity, 'genotype': genotype, 'values': values_p, 'source': source, 'schema_version': '2.0'} return ob_p<|docstring|>Build observation objects from data. Go into observations collection. Args: data (:obj:`Obj`): source object. i (:obj: `int`): index (row labels) of object in dataframe Return: obj(:obj:`Obj`) { "entity": { "type": "protein", "name": "formate--tetrahydrofolate ligase", "identifiers": [{}... {}] }, "value": [], "source": {}, ... }<|endoftext|>
6b7f221970ce12bfe1b01e4658081435e54c61ee243a423da79985bc713fbd5a
def __init__(self, out_folder: StorageFolderLocation=None, images: List[AiBcrImageStorageFile]=None, options: AiBcrOptions=None): '\n Parse business card images from Storage request \n :param out_folder: Parse output folder location on storage \n :type out_folder: StorageFolderLocation\n :param images: Images to parse. \n :type images: List[AiBcrImageStorageFile]\n :param options: Recognition options. \n :type options: AiBcrOptions\n ' self._out_folder = None self._images = None self._options = None if (out_folder is not None): self.out_folder = out_folder if (images is not None): self.images = images if (options is not None): self.options = options
Parse business card images from Storage request :param out_folder: Parse output folder location on storage :type out_folder: StorageFolderLocation :param images: Images to parse. :type images: List[AiBcrImageStorageFile] :param options: Recognition options. :type options: AiBcrOptions
sdk/AsposeEmailCloudSdk/models/ai_bcr_parse_storage_request.py
__init__
aspose-email-cloud/aspose-email-cloud-python
1
python
def __init__(self, out_folder: StorageFolderLocation=None, images: List[AiBcrImageStorageFile]=None, options: AiBcrOptions=None): '\n Parse business card images from Storage request \n :param out_folder: Parse output folder location on storage \n :type out_folder: StorageFolderLocation\n :param images: Images to parse. \n :type images: List[AiBcrImageStorageFile]\n :param options: Recognition options. \n :type options: AiBcrOptions\n ' self._out_folder = None self._images = None self._options = None if (out_folder is not None): self.out_folder = out_folder if (images is not None): self.images = images if (options is not None): self.options = options
def __init__(self, out_folder: StorageFolderLocation=None, images: List[AiBcrImageStorageFile]=None, options: AiBcrOptions=None): '\n Parse business card images from Storage request \n :param out_folder: Parse output folder location on storage \n :type out_folder: StorageFolderLocation\n :param images: Images to parse. \n :type images: List[AiBcrImageStorageFile]\n :param options: Recognition options. \n :type options: AiBcrOptions\n ' self._out_folder = None self._images = None self._options = None if (out_folder is not None): self.out_folder = out_folder if (images is not None): self.images = images if (options is not None): self.options = options<|docstring|>Parse business card images from Storage request :param out_folder: Parse output folder location on storage :type out_folder: StorageFolderLocation :param images: Images to parse. :type images: List[AiBcrImageStorageFile] :param options: Recognition options. :type options: AiBcrOptions<|endoftext|>
339b719eb937f97d2b683d3878e7c86042cb1efda1cd7f0aea06358f4ac608a8
@property def out_folder(self) -> StorageFolderLocation: '\n Parse output folder location on storage \n\n :return: The out_folder of this AiBcrParseStorageRequest.\n :rtype: StorageFolderLocation\n ' return self._out_folder
Parse output folder location on storage :return: The out_folder of this AiBcrParseStorageRequest. :rtype: StorageFolderLocation
sdk/AsposeEmailCloudSdk/models/ai_bcr_parse_storage_request.py
out_folder
aspose-email-cloud/aspose-email-cloud-python
1
python
@property def out_folder(self) -> StorageFolderLocation: '\n Parse output folder location on storage \n\n :return: The out_folder of this AiBcrParseStorageRequest.\n :rtype: StorageFolderLocation\n ' return self._out_folder
@property def out_folder(self) -> StorageFolderLocation: '\n Parse output folder location on storage \n\n :return: The out_folder of this AiBcrParseStorageRequest.\n :rtype: StorageFolderLocation\n ' return self._out_folder<|docstring|>Parse output folder location on storage :return: The out_folder of this AiBcrParseStorageRequest. :rtype: StorageFolderLocation<|endoftext|>
5c1e204503c0bbbc48b8f28f4fde099d6d035eb6c2e7d7effa6dc0fb17352ec0
@out_folder.setter def out_folder(self, out_folder: StorageFolderLocation): '\n Parse output folder location on storage \n\n :param out_folder: The out_folder of this AiBcrParseStorageRequest.\n :type: StorageFolderLocation\n ' if (out_folder is None): raise ValueError('Invalid value for `out_folder`, must not be `None`') self._out_folder = out_folder
Parse output folder location on storage :param out_folder: The out_folder of this AiBcrParseStorageRequest. :type: StorageFolderLocation
sdk/AsposeEmailCloudSdk/models/ai_bcr_parse_storage_request.py
out_folder
aspose-email-cloud/aspose-email-cloud-python
1
python
@out_folder.setter def out_folder(self, out_folder: StorageFolderLocation): '\n Parse output folder location on storage \n\n :param out_folder: The out_folder of this AiBcrParseStorageRequest.\n :type: StorageFolderLocation\n ' if (out_folder is None): raise ValueError('Invalid value for `out_folder`, must not be `None`') self._out_folder = out_folder
@out_folder.setter def out_folder(self, out_folder: StorageFolderLocation): '\n Parse output folder location on storage \n\n :param out_folder: The out_folder of this AiBcrParseStorageRequest.\n :type: StorageFolderLocation\n ' if (out_folder is None): raise ValueError('Invalid value for `out_folder`, must not be `None`') self._out_folder = out_folder<|docstring|>Parse output folder location on storage :param out_folder: The out_folder of this AiBcrParseStorageRequest. :type: StorageFolderLocation<|endoftext|>
510048e2f1ac5bfb270913bbf31294852d8fe090d7a3b29e500b7e6a319811a9
@property def images(self) -> List[AiBcrImageStorageFile]: '\n Images to parse. \n\n :return: The images of this AiBcrParseStorageRequest.\n :rtype: list[AiBcrImageStorageFile]\n ' return self._images
Images to parse. :return: The images of this AiBcrParseStorageRequest. :rtype: list[AiBcrImageStorageFile]
sdk/AsposeEmailCloudSdk/models/ai_bcr_parse_storage_request.py
images
aspose-email-cloud/aspose-email-cloud-python
1
python
@property def images(self) -> List[AiBcrImageStorageFile]: '\n Images to parse. \n\n :return: The images of this AiBcrParseStorageRequest.\n :rtype: list[AiBcrImageStorageFile]\n ' return self._images
@property def images(self) -> List[AiBcrImageStorageFile]: '\n Images to parse. \n\n :return: The images of this AiBcrParseStorageRequest.\n :rtype: list[AiBcrImageStorageFile]\n ' return self._images<|docstring|>Images to parse. :return: The images of this AiBcrParseStorageRequest. :rtype: list[AiBcrImageStorageFile]<|endoftext|>
f85cb0b339dc26076e71d7605cb3730b742427b263f2f3a950c2a231e4c07b92
@images.setter def images(self, images: List[AiBcrImageStorageFile]): '\n Images to parse. \n\n :param images: The images of this AiBcrParseStorageRequest.\n :type: list[AiBcrImageStorageFile]\n ' if (images is None): raise ValueError('Invalid value for `images`, must not be `None`') self._images = images
Images to parse. :param images: The images of this AiBcrParseStorageRequest. :type: list[AiBcrImageStorageFile]
sdk/AsposeEmailCloudSdk/models/ai_bcr_parse_storage_request.py
images
aspose-email-cloud/aspose-email-cloud-python
1
python
@images.setter def images(self, images: List[AiBcrImageStorageFile]): '\n Images to parse. \n\n :param images: The images of this AiBcrParseStorageRequest.\n :type: list[AiBcrImageStorageFile]\n ' if (images is None): raise ValueError('Invalid value for `images`, must not be `None`') self._images = images
@images.setter def images(self, images: List[AiBcrImageStorageFile]): '\n Images to parse. \n\n :param images: The images of this AiBcrParseStorageRequest.\n :type: list[AiBcrImageStorageFile]\n ' if (images is None): raise ValueError('Invalid value for `images`, must not be `None`') self._images = images<|docstring|>Images to parse. :param images: The images of this AiBcrParseStorageRequest. :type: list[AiBcrImageStorageFile]<|endoftext|>
93f53dcf2d2378e549559c0c1917b47a056908062b4ab2dfc51ad69584b4868f
@property def options(self) -> AiBcrOptions: '\n Recognition options. \n\n :return: The options of this AiBcrParseStorageRequest.\n :rtype: AiBcrOptions\n ' return self._options
Recognition options. :return: The options of this AiBcrParseStorageRequest. :rtype: AiBcrOptions
sdk/AsposeEmailCloudSdk/models/ai_bcr_parse_storage_request.py
options
aspose-email-cloud/aspose-email-cloud-python
1
python
@property def options(self) -> AiBcrOptions: '\n Recognition options. \n\n :return: The options of this AiBcrParseStorageRequest.\n :rtype: AiBcrOptions\n ' return self._options
@property def options(self) -> AiBcrOptions: '\n Recognition options. \n\n :return: The options of this AiBcrParseStorageRequest.\n :rtype: AiBcrOptions\n ' return self._options<|docstring|>Recognition options. :return: The options of this AiBcrParseStorageRequest. :rtype: AiBcrOptions<|endoftext|>
c2bd7e7954ecb260ce733f1461e7fcffd01f301cadb1a25b7a971cb53467f219
@options.setter def options(self, options: AiBcrOptions): '\n Recognition options. \n\n :param options: The options of this AiBcrParseStorageRequest.\n :type: AiBcrOptions\n ' self._options = options
Recognition options. :param options: The options of this AiBcrParseStorageRequest. :type: AiBcrOptions
sdk/AsposeEmailCloudSdk/models/ai_bcr_parse_storage_request.py
options
aspose-email-cloud/aspose-email-cloud-python
1
python
@options.setter def options(self, options: AiBcrOptions): '\n Recognition options. \n\n :param options: The options of this AiBcrParseStorageRequest.\n :type: AiBcrOptions\n ' self._options = options
@options.setter def options(self, options: AiBcrOptions): '\n Recognition options. \n\n :param options: The options of this AiBcrParseStorageRequest.\n :type: AiBcrOptions\n ' self._options = options<|docstring|>Recognition options. :param options: The options of this AiBcrParseStorageRequest. :type: AiBcrOptions<|endoftext|>
137ba0f026bd6074febc2e7ebe1fec840dba70990f936f32b47eaf0fb048bd4a
def to_dict(self): 'Returns the model properties as a dict' result = {} for (attr, _) in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map((lambda x: (x.to_dict() if hasattr(x, 'to_dict') else x)), value)) elif hasattr(value, 'to_dict'): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map((lambda item: ((item[0], item[1].to_dict()) if hasattr(item[1], 'to_dict') else item)), value.items())) else: result[attr] = value return result
Returns the model properties as a dict
sdk/AsposeEmailCloudSdk/models/ai_bcr_parse_storage_request.py
to_dict
aspose-email-cloud/aspose-email-cloud-python
1
python
def to_dict(self): result = {} for (attr, _) in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map((lambda x: (x.to_dict() if hasattr(x, 'to_dict') else x)), value)) elif hasattr(value, 'to_dict'): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map((lambda item: ((item[0], item[1].to_dict()) if hasattr(item[1], 'to_dict') else item)), value.items())) else: result[attr] = value return result
def to_dict(self): result = {} for (attr, _) in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map((lambda x: (x.to_dict() if hasattr(x, 'to_dict') else x)), value)) elif hasattr(value, 'to_dict'): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map((lambda item: ((item[0], item[1].to_dict()) if hasattr(item[1], 'to_dict') else item)), value.items())) else: result[attr] = value return result<|docstring|>Returns the model properties as a dict<|endoftext|>
cbb19eaa2fc8a113d9e32f924ef280a7e97563f8915f94f65dab438997af2e99
def to_str(self): 'Returns the string representation of the model' return pprint.pformat(self.to_dict())
Returns the string representation of the model
sdk/AsposeEmailCloudSdk/models/ai_bcr_parse_storage_request.py
to_str
aspose-email-cloud/aspose-email-cloud-python
1
python
def to_str(self): return pprint.pformat(self.to_dict())
def to_str(self): return pprint.pformat(self.to_dict())<|docstring|>Returns the string representation of the model<|endoftext|>
772243a2c2b3261a9b954d07aaf295e3c1242a579a495e2d6a5679c677861703
def __repr__(self): 'For `print` and `pprint`' return self.to_str()
For `print` and `pprint`
sdk/AsposeEmailCloudSdk/models/ai_bcr_parse_storage_request.py
__repr__
aspose-email-cloud/aspose-email-cloud-python
1
python
def __repr__(self): return self.to_str()
def __repr__(self): return self.to_str()<|docstring|>For `print` and `pprint`<|endoftext|>
d5038990226da977db63139f3e80da64db722941cf3b61a00858a3ada30884b2
def __eq__(self, other): 'Returns true if both objects are equal' if (not isinstance(other, AiBcrParseStorageRequest)): return False return (self.__dict__ == other.__dict__)
Returns true if both objects are equal
sdk/AsposeEmailCloudSdk/models/ai_bcr_parse_storage_request.py
__eq__
aspose-email-cloud/aspose-email-cloud-python
1
python
def __eq__(self, other): if (not isinstance(other, AiBcrParseStorageRequest)): return False return (self.__dict__ == other.__dict__)
def __eq__(self, other): if (not isinstance(other, AiBcrParseStorageRequest)): return False return (self.__dict__ == other.__dict__)<|docstring|>Returns true if both objects are equal<|endoftext|>
43dc6740163eb9fc1161d09cb2208a64c7ad0cc8d9c8637ac3264522d3ec7e42
def __ne__(self, other): 'Returns true if both objects are not equal' return (not (self == other))
Returns true if both objects are not equal
sdk/AsposeEmailCloudSdk/models/ai_bcr_parse_storage_request.py
__ne__
aspose-email-cloud/aspose-email-cloud-python
1
python
def __ne__(self, other): return (not (self == other))
def __ne__(self, other): return (not (self == other))<|docstring|>Returns true if both objects are not equal<|endoftext|>
04561ed8c278b208df3c56c7fca1d58c4d2a5be7dc8267ae03072e88f79ab11c
def pagination_number_get(page_name: str) -> int: ' Gets the pagination number from variable in session. ' return session.pagination_number_get(page_name)
Gets the pagination number from variable in session.
modules/utilities.py
pagination_number_get
romanpindela/api-wars-master-websql-python-flask-codecool-json-ajax-
0
python
def pagination_number_get(page_name: str) -> int: ' ' return session.pagination_number_get(page_name)
def pagination_number_get(page_name: str) -> int: ' ' return session.pagination_number_get(page_name)<|docstring|>Gets the pagination number from variable in session.<|endoftext|>
76bc32b26ca5a73f62c153088b039d89b1f620d0153c819d2c0689d282a94148
def pagination_number_set(page_name: str, items_number: int): '\n Calculates the number of pages of pagination.\n The result is rounded up from the formula: (numerator + denominator - 1) // denominator\n Next, sets the number of subpages (pagination of the page) and remembers it as variable in the sessions.\n ' pagination_number = (((items_number + swapi.PAGINATION_NUMBER) - 1) // swapi.PAGINATION_NUMBER) session.pagination_number_set(page_name, pagination_number)
Calculates the number of pages of pagination. The result is rounded up from the formula: (numerator + denominator - 1) // denominator Next, sets the number of subpages (pagination of the page) and remembers it as variable in the sessions.
modules/utilities.py
pagination_number_set
romanpindela/api-wars-master-websql-python-flask-codecool-json-ajax-
0
python
def pagination_number_set(page_name: str, items_number: int): '\n Calculates the number of pages of pagination.\n The result is rounded up from the formula: (numerator + denominator - 1) // denominator\n Next, sets the number of subpages (pagination of the page) and remembers it as variable in the sessions.\n ' pagination_number = (((items_number + swapi.PAGINATION_NUMBER) - 1) // swapi.PAGINATION_NUMBER) session.pagination_number_set(page_name, pagination_number)
def pagination_number_set(page_name: str, items_number: int): '\n Calculates the number of pages of pagination.\n The result is rounded up from the formula: (numerator + denominator - 1) // denominator\n Next, sets the number of subpages (pagination of the page) and remembers it as variable in the sessions.\n ' pagination_number = (((items_number + swapi.PAGINATION_NUMBER) - 1) // swapi.PAGINATION_NUMBER) session.pagination_number_set(page_name, pagination_number)<|docstring|>Calculates the number of pages of pagination. The result is rounded up from the formula: (numerator + denominator - 1) // denominator Next, sets the number of subpages (pagination of the page) and remembers it as variable in the sessions.<|endoftext|>
45cc5c36e64ca7fe1daeb8b5c00b9deb931fa10900da0ec08b16ec31c43f42bf
def change_list_value(array: list, value_old: str, value_new: str) -> list: ' Returns a given list with a changed value. ' for (index, value) in enumerate(array): if (value == value_old): array[index] = value_new return array
Returns a given list with a changed value.
modules/utilities.py
change_list_value
romanpindela/api-wars-master-websql-python-flask-codecool-json-ajax-
0
python
def change_list_value(array: list, value_old: str, value_new: str) -> list: ' ' for (index, value) in enumerate(array): if (value == value_old): array[index] = value_new return array
def change_list_value(array: list, value_old: str, value_new: str) -> list: ' ' for (index, value) in enumerate(array): if (value == value_old): array[index] = value_new return array<|docstring|>Returns a given list with a changed value.<|endoftext|>
a16f51f8198b21cfeb44efce984d2d2dc20b6f85a26c71f3b4f748c9c488b9f9
def unpack_data(data_list: list) -> str: ' Returns a string concatenated with the list data. ' return ', '.join(data_list)
Returns a string concatenated with the list data.
modules/utilities.py
unpack_data
romanpindela/api-wars-master-websql-python-flask-codecool-json-ajax-
0
python
def unpack_data(data_list: list) -> str: ' ' return ', '.join(data_list)
def unpack_data(data_list: list) -> str: ' ' return ', '.join(data_list)<|docstring|>Returns a string concatenated with the list data.<|endoftext|>