body_hash
stringlengths
64
64
body
stringlengths
23
109k
docstring
stringlengths
1
57k
path
stringlengths
4
198
name
stringlengths
1
115
repository_name
stringlengths
7
111
repository_stars
float64
0
191k
lang
stringclasses
1 value
body_without_docstring
stringlengths
14
108k
unified
stringlengths
45
133k
c5083085d3a01d6614e45e3bf4db3a645976f8b16d471ba996bad562a9cc8e89
def get_db_versions(compartment_id: Optional[str]=None, db_system_id: Optional[str]=None, db_system_shape: Optional[str]=None, filters: Optional[Sequence[pulumi.InputType['GetDbVersionsFilterArgs']]]=None, is_database_software_image_supported: Optional[bool]=None, is_upgrade_supported: Optional[bool]=None, storage_management: Optional[str]=None, opts: Optional[pulumi.InvokeOptions]=None) -> AwaitableGetDbVersionsResult: '\n This data source provides the list of Db Versions in Oracle Cloud Infrastructure Database service.\n\n Gets a list of supported Oracle Database versions.\n\n ## Example Usage\n\n ```python\n import pulumi\n import pulumi_oci as oci\n\n test_db_versions = oci.database.get_db_versions(compartment_id=var["compartment_id"],\n db_system_id=oci_database_db_system["test_db_system"]["id"],\n db_system_shape=var["db_version_db_system_shape"],\n is_database_software_image_supported=var["db_version_is_database_software_image_supported"],\n is_upgrade_supported=var["db_version_is_upgrade_supported"],\n storage_management=var["db_version_storage_management"])\n ```\n\n\n :param str compartment_id: The compartment [OCID](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm).\n :param str db_system_id: The DB system [OCID](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm). If provided, filters the results to the set of database versions which are supported for the DB system.\n :param str db_system_shape: If provided, filters the results to the set of database versions which are supported for the given shape.\n :param bool is_database_software_image_supported: If true, filters the results to the set of Oracle Database versions that are supported for Oracle Cloud Infrastructure database software images.\n :param bool is_upgrade_supported: If provided, filters the results to the set of database versions which are supported for Upgrade.\n :param str storage_management: The DB system storage management option. Used to list database versions available for that storage manager. Valid values are:\n * ASM - Automatic storage management\n * LVM - Logical volume management\n ' __args__ = dict() __args__['compartmentId'] = compartment_id __args__['dbSystemId'] = db_system_id __args__['dbSystemShape'] = db_system_shape __args__['filters'] = filters __args__['isDatabaseSoftwareImageSupported'] = is_database_software_image_supported __args__['isUpgradeSupported'] = is_upgrade_supported __args__['storageManagement'] = storage_management if (opts is None): opts = pulumi.InvokeOptions() if (opts.version is None): opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('oci:database/getDbVersions:getDbVersions', __args__, opts=opts, typ=GetDbVersionsResult).value return AwaitableGetDbVersionsResult(compartment_id=__ret__.compartment_id, db_system_id=__ret__.db_system_id, db_system_shape=__ret__.db_system_shape, db_versions=__ret__.db_versions, filters=__ret__.filters, id=__ret__.id, is_database_software_image_supported=__ret__.is_database_software_image_supported, is_upgrade_supported=__ret__.is_upgrade_supported, storage_management=__ret__.storage_management)
This data source provides the list of Db Versions in Oracle Cloud Infrastructure Database service. Gets a list of supported Oracle Database versions. ## Example Usage ```python import pulumi import pulumi_oci as oci test_db_versions = oci.database.get_db_versions(compartment_id=var["compartment_id"], db_system_id=oci_database_db_system["test_db_system"]["id"], db_system_shape=var["db_version_db_system_shape"], is_database_software_image_supported=var["db_version_is_database_software_image_supported"], is_upgrade_supported=var["db_version_is_upgrade_supported"], storage_management=var["db_version_storage_management"]) ``` :param str compartment_id: The compartment [OCID](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm). :param str db_system_id: The DB system [OCID](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm). If provided, filters the results to the set of database versions which are supported for the DB system. :param str db_system_shape: If provided, filters the results to the set of database versions which are supported for the given shape. :param bool is_database_software_image_supported: If true, filters the results to the set of Oracle Database versions that are supported for Oracle Cloud Infrastructure database software images. :param bool is_upgrade_supported: If provided, filters the results to the set of database versions which are supported for Upgrade. :param str storage_management: The DB system storage management option. Used to list database versions available for that storage manager. Valid values are: * ASM - Automatic storage management * LVM - Logical volume management
sdk/python/pulumi_oci/database/get_db_versions.py
get_db_versions
pellizzetti/pulumi-oci-dev
5
python
def get_db_versions(compartment_id: Optional[str]=None, db_system_id: Optional[str]=None, db_system_shape: Optional[str]=None, filters: Optional[Sequence[pulumi.InputType['GetDbVersionsFilterArgs']]]=None, is_database_software_image_supported: Optional[bool]=None, is_upgrade_supported: Optional[bool]=None, storage_management: Optional[str]=None, opts: Optional[pulumi.InvokeOptions]=None) -> AwaitableGetDbVersionsResult: '\n This data source provides the list of Db Versions in Oracle Cloud Infrastructure Database service.\n\n Gets a list of supported Oracle Database versions.\n\n ## Example Usage\n\n ```python\n import pulumi\n import pulumi_oci as oci\n\n test_db_versions = oci.database.get_db_versions(compartment_id=var["compartment_id"],\n db_system_id=oci_database_db_system["test_db_system"]["id"],\n db_system_shape=var["db_version_db_system_shape"],\n is_database_software_image_supported=var["db_version_is_database_software_image_supported"],\n is_upgrade_supported=var["db_version_is_upgrade_supported"],\n storage_management=var["db_version_storage_management"])\n ```\n\n\n :param str compartment_id: The compartment [OCID](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm).\n :param str db_system_id: The DB system [OCID](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm). If provided, filters the results to the set of database versions which are supported for the DB system.\n :param str db_system_shape: If provided, filters the results to the set of database versions which are supported for the given shape.\n :param bool is_database_software_image_supported: If true, filters the results to the set of Oracle Database versions that are supported for Oracle Cloud Infrastructure database software images.\n :param bool is_upgrade_supported: If provided, filters the results to the set of database versions which are supported for Upgrade.\n :param str storage_management: The DB system storage management option. Used to list database versions available for that storage manager. Valid values are:\n * ASM - Automatic storage management\n * LVM - Logical volume management\n ' __args__ = dict() __args__['compartmentId'] = compartment_id __args__['dbSystemId'] = db_system_id __args__['dbSystemShape'] = db_system_shape __args__['filters'] = filters __args__['isDatabaseSoftwareImageSupported'] = is_database_software_image_supported __args__['isUpgradeSupported'] = is_upgrade_supported __args__['storageManagement'] = storage_management if (opts is None): opts = pulumi.InvokeOptions() if (opts.version is None): opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('oci:database/getDbVersions:getDbVersions', __args__, opts=opts, typ=GetDbVersionsResult).value return AwaitableGetDbVersionsResult(compartment_id=__ret__.compartment_id, db_system_id=__ret__.db_system_id, db_system_shape=__ret__.db_system_shape, db_versions=__ret__.db_versions, filters=__ret__.filters, id=__ret__.id, is_database_software_image_supported=__ret__.is_database_software_image_supported, is_upgrade_supported=__ret__.is_upgrade_supported, storage_management=__ret__.storage_management)
def get_db_versions(compartment_id: Optional[str]=None, db_system_id: Optional[str]=None, db_system_shape: Optional[str]=None, filters: Optional[Sequence[pulumi.InputType['GetDbVersionsFilterArgs']]]=None, is_database_software_image_supported: Optional[bool]=None, is_upgrade_supported: Optional[bool]=None, storage_management: Optional[str]=None, opts: Optional[pulumi.InvokeOptions]=None) -> AwaitableGetDbVersionsResult: '\n This data source provides the list of Db Versions in Oracle Cloud Infrastructure Database service.\n\n Gets a list of supported Oracle Database versions.\n\n ## Example Usage\n\n ```python\n import pulumi\n import pulumi_oci as oci\n\n test_db_versions = oci.database.get_db_versions(compartment_id=var["compartment_id"],\n db_system_id=oci_database_db_system["test_db_system"]["id"],\n db_system_shape=var["db_version_db_system_shape"],\n is_database_software_image_supported=var["db_version_is_database_software_image_supported"],\n is_upgrade_supported=var["db_version_is_upgrade_supported"],\n storage_management=var["db_version_storage_management"])\n ```\n\n\n :param str compartment_id: The compartment [OCID](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm).\n :param str db_system_id: The DB system [OCID](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm). If provided, filters the results to the set of database versions which are supported for the DB system.\n :param str db_system_shape: If provided, filters the results to the set of database versions which are supported for the given shape.\n :param bool is_database_software_image_supported: If true, filters the results to the set of Oracle Database versions that are supported for Oracle Cloud Infrastructure database software images.\n :param bool is_upgrade_supported: If provided, filters the results to the set of database versions which are supported for Upgrade.\n :param str storage_management: The DB system storage management option. Used to list database versions available for that storage manager. Valid values are:\n * ASM - Automatic storage management\n * LVM - Logical volume management\n ' __args__ = dict() __args__['compartmentId'] = compartment_id __args__['dbSystemId'] = db_system_id __args__['dbSystemShape'] = db_system_shape __args__['filters'] = filters __args__['isDatabaseSoftwareImageSupported'] = is_database_software_image_supported __args__['isUpgradeSupported'] = is_upgrade_supported __args__['storageManagement'] = storage_management if (opts is None): opts = pulumi.InvokeOptions() if (opts.version is None): opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('oci:database/getDbVersions:getDbVersions', __args__, opts=opts, typ=GetDbVersionsResult).value return AwaitableGetDbVersionsResult(compartment_id=__ret__.compartment_id, db_system_id=__ret__.db_system_id, db_system_shape=__ret__.db_system_shape, db_versions=__ret__.db_versions, filters=__ret__.filters, id=__ret__.id, is_database_software_image_supported=__ret__.is_database_software_image_supported, is_upgrade_supported=__ret__.is_upgrade_supported, storage_management=__ret__.storage_management)<|docstring|>This data source provides the list of Db Versions in Oracle Cloud Infrastructure Database service. Gets a list of supported Oracle Database versions. ## Example Usage ```python import pulumi import pulumi_oci as oci test_db_versions = oci.database.get_db_versions(compartment_id=var["compartment_id"], db_system_id=oci_database_db_system["test_db_system"]["id"], db_system_shape=var["db_version_db_system_shape"], is_database_software_image_supported=var["db_version_is_database_software_image_supported"], is_upgrade_supported=var["db_version_is_upgrade_supported"], storage_management=var["db_version_storage_management"]) ``` :param str compartment_id: The compartment [OCID](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm). :param str db_system_id: The DB system [OCID](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm). If provided, filters the results to the set of database versions which are supported for the DB system. :param str db_system_shape: If provided, filters the results to the set of database versions which are supported for the given shape. :param bool is_database_software_image_supported: If true, filters the results to the set of Oracle Database versions that are supported for Oracle Cloud Infrastructure database software images. :param bool is_upgrade_supported: If provided, filters the results to the set of database versions which are supported for Upgrade. :param str storage_management: The DB system storage management option. Used to list database versions available for that storage manager. Valid values are: * ASM - Automatic storage management * LVM - Logical volume management<|endoftext|>
2a373f253e5685fbe0634864b1a5b1c27390955fc927d280a6ee94460eefe0e3
@property @pulumi.getter(name='dbVersions') def db_versions(self) -> Sequence['outputs.GetDbVersionsDbVersionResult']: '\n The list of db_versions.\n ' return pulumi.get(self, 'db_versions')
The list of db_versions.
sdk/python/pulumi_oci/database/get_db_versions.py
db_versions
pellizzetti/pulumi-oci-dev
5
python
@property @pulumi.getter(name='dbVersions') def db_versions(self) -> Sequence['outputs.GetDbVersionsDbVersionResult']: '\n \n ' return pulumi.get(self, 'db_versions')
@property @pulumi.getter(name='dbVersions') def db_versions(self) -> Sequence['outputs.GetDbVersionsDbVersionResult']: '\n \n ' return pulumi.get(self, 'db_versions')<|docstring|>The list of db_versions.<|endoftext|>
bcf5b51a327014088b63f706e1dc3987198031e1f0241bd10b06cf4dd5bcb53c
@property @pulumi.getter def id(self) -> str: '\n The provider-assigned unique ID for this managed resource.\n ' return pulumi.get(self, 'id')
The provider-assigned unique ID for this managed resource.
sdk/python/pulumi_oci/database/get_db_versions.py
id
pellizzetti/pulumi-oci-dev
5
python
@property @pulumi.getter def id(self) -> str: '\n \n ' return pulumi.get(self, 'id')
@property @pulumi.getter def id(self) -> str: '\n \n ' return pulumi.get(self, 'id')<|docstring|>The provider-assigned unique ID for this managed resource.<|endoftext|>
c00480ff2ef2e7a9e53600991794d5f514a0779124ca109362cc2713ea3ce4a7
@property @pulumi.getter(name='isUpgradeSupported') def is_upgrade_supported(self) -> Optional[bool]: '\n True if this version of the Oracle Database software is supported for Upgrade.\n ' return pulumi.get(self, 'is_upgrade_supported')
True if this version of the Oracle Database software is supported for Upgrade.
sdk/python/pulumi_oci/database/get_db_versions.py
is_upgrade_supported
pellizzetti/pulumi-oci-dev
5
python
@property @pulumi.getter(name='isUpgradeSupported') def is_upgrade_supported(self) -> Optional[bool]: '\n \n ' return pulumi.get(self, 'is_upgrade_supported')
@property @pulumi.getter(name='isUpgradeSupported') def is_upgrade_supported(self) -> Optional[bool]: '\n \n ' return pulumi.get(self, 'is_upgrade_supported')<|docstring|>True if this version of the Oracle Database software is supported for Upgrade.<|endoftext|>
701e6e9a76e5150a384c49215ea9432916b0949a0d78858c068c2dba0c315973
@staticmethod def duration(*args): ' Return the duration of the performance test. ' return datetime.timedelta(minutes=90, seconds=4)
Return the duration of the performance test.
backend/tests/unittests/metric/product/performance/performance_test_duration_tests.py
duration
ICTU/quality-report
25
python
@staticmethod def duration(*args): ' ' return datetime.timedelta(minutes=90, seconds=4)
@staticmethod def duration(*args): ' ' return datetime.timedelta(minutes=90, seconds=4)<|docstring|>Return the duration of the performance test.<|endoftext|>
edb82f2872bbebdbfd899d8de7209a0733df60cce2f23fbfd14605766c08694b
@staticmethod def name(): ' Return the name of the subject. ' return 'FakeSubject'
Return the name of the subject.
backend/tests/unittests/metric/product/performance/performance_test_duration_tests.py
name
ICTU/quality-report
25
python
@staticmethod def name(): ' ' return 'FakeSubject'
@staticmethod def name(): ' ' return 'FakeSubject'<|docstring|>Return the name of the subject.<|endoftext|>
d18905b1ed1a35a0d9d25b4fbe60ea3c1230bd23ebc6e9cb1a8bdd3cb5341eee
def metric_source_id(self, performance_report): ' Return the performance report id of the subject. ' return self.__performance_report_id
Return the performance report id of the subject.
backend/tests/unittests/metric/product/performance/performance_test_duration_tests.py
metric_source_id
ICTU/quality-report
25
python
def metric_source_id(self, performance_report): ' ' return self.__performance_report_id
def metric_source_id(self, performance_report): ' ' return self.__performance_report_id<|docstring|>Return the performance report id of the subject.<|endoftext|>
1cc5a2c867149e443360a85f737858c8735df3530158d350b346f4e367649c35
def test_value(self): ' Test that value of the metric equals the value reported by the performance report. ' self.assertEqual(90, self.__metric.value())
Test that value of the metric equals the value reported by the performance report.
backend/tests/unittests/metric/product/performance/performance_test_duration_tests.py
test_value
ICTU/quality-report
25
python
def test_value(self): ' ' self.assertEqual(90, self.__metric.value())
def test_value(self): ' ' self.assertEqual(90, self.__metric.value())<|docstring|>Test that value of the metric equals the value reported by the performance report.<|endoftext|>
ad17c098a8f9ec4029e1b003356ade19c73156a973a8a5fec99f62be03875350
def test_value_when_not_configured(self): " Test that the value of the metric is -1 when the report hasn't been configured. " performance_metric = self.metric_class(subject=FakeSubject(), project=domain.Project()) self.assertEqual((- 1), performance_metric.value())
Test that the value of the metric is -1 when the report hasn't been configured.
backend/tests/unittests/metric/product/performance/performance_test_duration_tests.py
test_value_when_not_configured
ICTU/quality-report
25
python
def test_value_when_not_configured(self): " " performance_metric = self.metric_class(subject=FakeSubject(), project=domain.Project()) self.assertEqual((- 1), performance_metric.value())
def test_value_when_not_configured(self): " " performance_metric = self.metric_class(subject=FakeSubject(), project=domain.Project()) self.assertEqual((- 1), performance_metric.value())<|docstring|>Test that the value of the metric is -1 when the report hasn't been configured.<|endoftext|>
edc8720f1d2fe031b7cf6ddc9bf5c806842b43955d779ed26d7d0948c8e61d39
def test_value_when_missing(self): ' Test that the value is negative when the test report is missing. ' class MissingPerformanceReport(): ' Fake a missing performance report. ' @staticmethod def duration(*args): ' Return a default value. ' return datetime.timedelta.max project = domain.Project(metric_sources={self.metric_class.metric_source_class: MissingPerformanceReport()}) performance_metric = self.metric_class(subject=FakeSubject(), project=project) self.assertEqual((- 1), performance_metric.value())
Test that the value is negative when the test report is missing.
backend/tests/unittests/metric/product/performance/performance_test_duration_tests.py
test_value_when_missing
ICTU/quality-report
25
python
def test_value_when_missing(self): ' ' class MissingPerformanceReport(): ' Fake a missing performance report. ' @staticmethod def duration(*args): ' Return a default value. ' return datetime.timedelta.max project = domain.Project(metric_sources={self.metric_class.metric_source_class: MissingPerformanceReport()}) performance_metric = self.metric_class(subject=FakeSubject(), project=project) self.assertEqual((- 1), performance_metric.value())
def test_value_when_missing(self): ' ' class MissingPerformanceReport(): ' Fake a missing performance report. ' @staticmethod def duration(*args): ' Return a default value. ' return datetime.timedelta.max project = domain.Project(metric_sources={self.metric_class.metric_source_class: MissingPerformanceReport()}) performance_metric = self.metric_class(subject=FakeSubject(), project=project) self.assertEqual((- 1), performance_metric.value())<|docstring|>Test that the value is negative when the test report is missing.<|endoftext|>
03c4d11a8b85fe76e227cec9f5b8b70b6aa5d5fe3c4209603b99defedd8937e4
def test_report(self): ' Test that the report for the metric is correct. ' self.assertEqual('De uitvoeringstijd van de {type} van FakeSubject is 90 minuten.'.format(type=self.test_type), self.__metric.report())
Test that the report for the metric is correct.
backend/tests/unittests/metric/product/performance/performance_test_duration_tests.py
test_report
ICTU/quality-report
25
python
def test_report(self): ' ' self.assertEqual('De uitvoeringstijd van de {type} van FakeSubject is 90 minuten.'.format(type=self.test_type), self.__metric.report())
def test_report(self): ' ' self.assertEqual('De uitvoeringstijd van de {type} van FakeSubject is 90 minuten.'.format(type=self.test_type), self.__metric.report())<|docstring|>Test that the report for the metric is correct.<|endoftext|>
10ce47536ab4b6aac715d1add56f982a9da77123105b47bf94f23424307384bf
def test_is_applicable(self): ' Test that the metric is applicable if the metric source can deliver the required information. ' self.assertFalse(self.__metric.is_applicable()) report = self.metric_source_class(report_url='http://report') project = domain.Project(metric_sources={self.metric_class.metric_source_class: report}) performance_metric = self.metric_class(self.__subject, project) self.assertTrue(performance_metric.is_applicable())
Test that the metric is applicable if the metric source can deliver the required information.
backend/tests/unittests/metric/product/performance/performance_test_duration_tests.py
test_is_applicable
ICTU/quality-report
25
python
def test_is_applicable(self): ' ' self.assertFalse(self.__metric.is_applicable()) report = self.metric_source_class(report_url='http://report') project = domain.Project(metric_sources={self.metric_class.metric_source_class: report}) performance_metric = self.metric_class(self.__subject, project) self.assertTrue(performance_metric.is_applicable())
def test_is_applicable(self): ' ' self.assertFalse(self.__metric.is_applicable()) report = self.metric_source_class(report_url='http://report') project = domain.Project(metric_sources={self.metric_class.metric_source_class: report}) performance_metric = self.metric_class(self.__subject, project) self.assertTrue(performance_metric.is_applicable())<|docstring|>Test that the metric is applicable if the metric source can deliver the required information.<|endoftext|>
f586d34d846ad777075b2977361d1ee9480ced6d88cf78831a8f0c054e6acf53
@staticmethod def duration(*args): ' Return a default value. ' return datetime.timedelta.max
Return a default value.
backend/tests/unittests/metric/product/performance/performance_test_duration_tests.py
duration
ICTU/quality-report
25
python
@staticmethod def duration(*args): ' ' return datetime.timedelta.max
@staticmethod def duration(*args): ' ' return datetime.timedelta.max<|docstring|>Return a default value.<|endoftext|>
7d0c0720279a9d1b8287cfb75727dda3fec23b31745bdf08bdb5cf031e9319e0
def generate_sas_token(uri, policy, key, expiry=None): 'Create a shared access signiture token as a string literal.\n :returns: SAS token as string literal.\n :rtype: str\n ' if (not expiry): expiry = (time.time() + 3600) encoded_uri = quote_plus(uri) ttl = int(expiry) sign_key = ('%s\n%d' % (encoded_uri, ttl)) signature = b64encode(HMAC(b64decode(key), sign_key.encode('utf-8'), sha256).digest()) result = {'sr': uri, 'sig': signature, 'se': str(ttl)} if policy: result['skn'] = policy return ('SharedAccessSignature ' + urlencode(result))
Create a shared access signiture token as a string literal. :returns: SAS token as string literal. :rtype: str
sdk/eventhub/azure-eventhub/samples/async_samples/iot_hub_connection_string_receive_async.py
generate_sas_token
cochi2/azure-sdk-for-python
2,728
python
def generate_sas_token(uri, policy, key, expiry=None): 'Create a shared access signiture token as a string literal.\n :returns: SAS token as string literal.\n :rtype: str\n ' if (not expiry): expiry = (time.time() + 3600) encoded_uri = quote_plus(uri) ttl = int(expiry) sign_key = ('%s\n%d' % (encoded_uri, ttl)) signature = b64encode(HMAC(b64decode(key), sign_key.encode('utf-8'), sha256).digest()) result = {'sr': uri, 'sig': signature, 'se': str(ttl)} if policy: result['skn'] = policy return ('SharedAccessSignature ' + urlencode(result))
def generate_sas_token(uri, policy, key, expiry=None): 'Create a shared access signiture token as a string literal.\n :returns: SAS token as string literal.\n :rtype: str\n ' if (not expiry): expiry = (time.time() + 3600) encoded_uri = quote_plus(uri) ttl = int(expiry) sign_key = ('%s\n%d' % (encoded_uri, ttl)) signature = b64encode(HMAC(b64decode(key), sign_key.encode('utf-8'), sha256).digest()) result = {'sr': uri, 'sig': signature, 'se': str(ttl)} if policy: result['skn'] = policy return ('SharedAccessSignature ' + urlencode(result))<|docstring|>Create a shared access signiture token as a string literal. :returns: SAS token as string literal. :rtype: str<|endoftext|>
ff1ec5be35ddb0902a92c8b746682f2c317a5c3a830b1a4168b6491f06f6d9da
async def receive_events_from_iothub(iothub_conn_str): 'Convert the iot hub connection string to the built-in eventhub connection string\n and receive events from the eventhub\n ' eventhub_conn_str = convert_iothub_to_eventhub_conn_str(iothub_conn_str) consumer_client = EventHubConsumerClient.from_connection_string(eventhub_conn_str, consumer_group='$Default') async def on_event_batch(partition_context, events): print('received {} events from partition {}'.format(len(events), partition_context.partition_id)) async with consumer_client: (await consumer_client.receive_batch(on_event_batch, starting_position=(- 1)))
Convert the iot hub connection string to the built-in eventhub connection string and receive events from the eventhub
sdk/eventhub/azure-eventhub/samples/async_samples/iot_hub_connection_string_receive_async.py
receive_events_from_iothub
cochi2/azure-sdk-for-python
2,728
python
async def receive_events_from_iothub(iothub_conn_str): 'Convert the iot hub connection string to the built-in eventhub connection string\n and receive events from the eventhub\n ' eventhub_conn_str = convert_iothub_to_eventhub_conn_str(iothub_conn_str) consumer_client = EventHubConsumerClient.from_connection_string(eventhub_conn_str, consumer_group='$Default') async def on_event_batch(partition_context, events): print('received {} events from partition {}'.format(len(events), partition_context.partition_id)) async with consumer_client: (await consumer_client.receive_batch(on_event_batch, starting_position=(- 1)))
async def receive_events_from_iothub(iothub_conn_str): 'Convert the iot hub connection string to the built-in eventhub connection string\n and receive events from the eventhub\n ' eventhub_conn_str = convert_iothub_to_eventhub_conn_str(iothub_conn_str) consumer_client = EventHubConsumerClient.from_connection_string(eventhub_conn_str, consumer_group='$Default') async def on_event_batch(partition_context, events): print('received {} events from partition {}'.format(len(events), partition_context.partition_id)) async with consumer_client: (await consumer_client.receive_batch(on_event_batch, starting_position=(- 1)))<|docstring|>Convert the iot hub connection string to the built-in eventhub connection string and receive events from the eventhub<|endoftext|>
f94caa89dd7fb56659ec20ef26ba2f0b4d692d4589f6f4861d047defa62c866a
def __init__(self, weight: int): ' 3 compartment dexmedetomidine Pk model\n\n Units:\n weight(kg)\n\n Reference:\n Hannivoort, L, et al \n Development of an Optimized Pharmacokinetic Model of Dexmedetomidine Using Target-controlled Infusion in Healthy Volunteers\n Anesthesiology 8 2015, Vol.123, 357-367. \n doi:10.1097/ALN.0000000000000740 \n ' self.v1 = (1.78 * (weight / 70)) self.v2 = (30.3 * (weight / 70)) self.v3 = (52.0 * (weight / 70)) self.Q1 = (0.686 * ((weight / 70) ** 0.75)) self.Q2 = (2.98 * ((self.v2 / 30.3) ** 0.75)) self.Q3 = (0.602 * ((self.v3 / 52.0) ** 0.75)) self.from_clearances() self.keo = 0 self.setup()
3 compartment dexmedetomidine Pk model Units: weight(kg) Reference: Hannivoort, L, et al Development of an Optimized Pharmacokinetic Model of Dexmedetomidine Using Target-controlled Infusion in Healthy Volunteers Anesthesiology 8 2015, Vol.123, 357-367. doi:10.1097/ALN.0000000000000740
PyTCI/models/dexmedetomidine.py
__init__
jcia2192/PyTCI
6
python
def __init__(self, weight: int): ' 3 compartment dexmedetomidine Pk model\n\n Units:\n weight(kg)\n\n Reference:\n Hannivoort, L, et al \n Development of an Optimized Pharmacokinetic Model of Dexmedetomidine Using Target-controlled Infusion in Healthy Volunteers\n Anesthesiology 8 2015, Vol.123, 357-367. \n doi:10.1097/ALN.0000000000000740 \n ' self.v1 = (1.78 * (weight / 70)) self.v2 = (30.3 * (weight / 70)) self.v3 = (52.0 * (weight / 70)) self.Q1 = (0.686 * ((weight / 70) ** 0.75)) self.Q2 = (2.98 * ((self.v2 / 30.3) ** 0.75)) self.Q3 = (0.602 * ((self.v3 / 52.0) ** 0.75)) self.from_clearances() self.keo = 0 self.setup()
def __init__(self, weight: int): ' 3 compartment dexmedetomidine Pk model\n\n Units:\n weight(kg)\n\n Reference:\n Hannivoort, L, et al \n Development of an Optimized Pharmacokinetic Model of Dexmedetomidine Using Target-controlled Infusion in Healthy Volunteers\n Anesthesiology 8 2015, Vol.123, 357-367. \n doi:10.1097/ALN.0000000000000740 \n ' self.v1 = (1.78 * (weight / 70)) self.v2 = (30.3 * (weight / 70)) self.v3 = (52.0 * (weight / 70)) self.Q1 = (0.686 * ((weight / 70) ** 0.75)) self.Q2 = (2.98 * ((self.v2 / 30.3) ** 0.75)) self.Q3 = (0.602 * ((self.v3 / 52.0) ** 0.75)) self.from_clearances() self.keo = 0 self.setup()<|docstring|>3 compartment dexmedetomidine Pk model Units: weight(kg) Reference: Hannivoort, L, et al Development of an Optimized Pharmacokinetic Model of Dexmedetomidine Using Target-controlled Infusion in Healthy Volunteers Anesthesiology 8 2015, Vol.123, 357-367. doi:10.1097/ALN.0000000000000740<|endoftext|>
10f94d50b0fb80625ca5b5fa7d99ecdd5d741a4113516049f1a9253968f078c4
def __init__(self, height: int): '\n\n Units:\n Height(cm)\n\n Reference:\n Dyck, JB, et al\n Computer-controlled infusion of intravenous dexmedetomidine hydrochloride in adult human volunteers\n Anesthesiology. 1993 May;78(5):821-8.\n PMID:8098191 DOI:10.1097/00000542-199305000-00003 \n ' self.v1 = 7.99 self.v2 = 13.8 self.v3 = 187 self.Q1 = round(((0.00791 * height) - 0.928), 4) self.Q2 = 2.26 self.Q3 = 1.99 self.from_clearances() self.keo = 0 self.setup()
Units: Height(cm) Reference: Dyck, JB, et al Computer-controlled infusion of intravenous dexmedetomidine hydrochloride in adult human volunteers Anesthesiology. 1993 May;78(5):821-8. PMID:8098191 DOI:10.1097/00000542-199305000-00003
PyTCI/models/dexmedetomidine.py
__init__
jcia2192/PyTCI
6
python
def __init__(self, height: int): '\n\n Units:\n Height(cm)\n\n Reference:\n Dyck, JB, et al\n Computer-controlled infusion of intravenous dexmedetomidine hydrochloride in adult human volunteers\n Anesthesiology. 1993 May;78(5):821-8.\n PMID:8098191 DOI:10.1097/00000542-199305000-00003 \n ' self.v1 = 7.99 self.v2 = 13.8 self.v3 = 187 self.Q1 = round(((0.00791 * height) - 0.928), 4) self.Q2 = 2.26 self.Q3 = 1.99 self.from_clearances() self.keo = 0 self.setup()
def __init__(self, height: int): '\n\n Units:\n Height(cm)\n\n Reference:\n Dyck, JB, et al\n Computer-controlled infusion of intravenous dexmedetomidine hydrochloride in adult human volunteers\n Anesthesiology. 1993 May;78(5):821-8.\n PMID:8098191 DOI:10.1097/00000542-199305000-00003 \n ' self.v1 = 7.99 self.v2 = 13.8 self.v3 = 187 self.Q1 = round(((0.00791 * height) - 0.928), 4) self.Q2 = 2.26 self.Q3 = 1.99 self.from_clearances() self.keo = 0 self.setup()<|docstring|>Units: Height(cm) Reference: Dyck, JB, et al Computer-controlled infusion of intravenous dexmedetomidine hydrochloride in adult human volunteers Anesthesiology. 1993 May;78(5):821-8. PMID:8098191 DOI:10.1097/00000542-199305000-00003<|endoftext|>
f15a0ec3e923a484fa1d3eb887128cb055beb5cf04a58c76d76d2bc87d819611
@property def computed_token(self): '\n | The computed token\n\n Type: str\n ' return self.__computed_token
| The computed token Type: str
ingenico/direct/sdk/domain/external_token_linked.py
computed_token
Ingenico/direct-sdk-python2
0
python
@property def computed_token(self): '\n | The computed token\n\n Type: str\n ' return self.__computed_token
@property def computed_token(self): '\n | The computed token\n\n Type: str\n ' return self.__computed_token<|docstring|>| The computed token Type: str<|endoftext|>
a7bf714a8324c4363574101c825dc7739825cbb42c4f3aa897d8d0b42cfae1d8
@property def gts_computed_token(self): '\n | Deprecated: Use the field ComputedToken instead.\n\n Type: str\n ' return self.__gts_computed_token
| Deprecated: Use the field ComputedToken instead. Type: str
ingenico/direct/sdk/domain/external_token_linked.py
gts_computed_token
Ingenico/direct-sdk-python2
0
python
@property def gts_computed_token(self): '\n | Deprecated: Use the field ComputedToken instead.\n\n Type: str\n ' return self.__gts_computed_token
@property def gts_computed_token(self): '\n | Deprecated: Use the field ComputedToken instead.\n\n Type: str\n ' return self.__gts_computed_token<|docstring|>| Deprecated: Use the field ComputedToken instead. Type: str<|endoftext|>
6529ff16876446095fbb04e51cdcd3d069604e8e45e5a6557a0a0146d1fd62ab
@property def generated_token(self): '\n | The generated token\n\n Type: str\n ' return self.__generated_token
| The generated token Type: str
ingenico/direct/sdk/domain/external_token_linked.py
generated_token
Ingenico/direct-sdk-python2
0
python
@property def generated_token(self): '\n | The generated token\n\n Type: str\n ' return self.__generated_token
@property def generated_token(self): '\n | The generated token\n\n Type: str\n ' return self.__generated_token<|docstring|>| The generated token Type: str<|endoftext|>
59203a65549ec4b8a39f63975bfc7f3d2c1f40d72366ab2973e3cfb50380981e
def setup_class(self): '\n Prepare a few simulated datasets for a P212121 crystal.\n ' args = {'pdb_path': '/sdf/home/a/apeck/tomoxtal/examples/input/3j7b.pdb', 'resolution': 9.0, 'size': 500} sf = cctbx_tools.reference_sf(args['pdb_path'], args['resolution'], expand_to_p1=True) data = cctbx_tools.reformat_sf(sf) keep_idx = np.unique(np.random.randint(0, high=data.shape[0], size=args['size'])) self.data = data[keep_idx] (self.sg_symbol, sg_no, self.cell, cs) = cctbx_tools.unit_cell_info(args['pdb_path'])
Prepare a few simulated datasets for a P212121 crystal.
tests/test_locate_origin.py
setup_class
apeck12/tomoxtal
0
python
def setup_class(self): '\n \n ' args = {'pdb_path': '/sdf/home/a/apeck/tomoxtal/examples/input/3j7b.pdb', 'resolution': 9.0, 'size': 500} sf = cctbx_tools.reference_sf(args['pdb_path'], args['resolution'], expand_to_p1=True) data = cctbx_tools.reformat_sf(sf) keep_idx = np.unique(np.random.randint(0, high=data.shape[0], size=args['size'])) self.data = data[keep_idx] (self.sg_symbol, sg_no, self.cell, cs) = cctbx_tools.unit_cell_info(args['pdb_path'])
def setup_class(self): '\n \n ' args = {'pdb_path': '/sdf/home/a/apeck/tomoxtal/examples/input/3j7b.pdb', 'resolution': 9.0, 'size': 500} sf = cctbx_tools.reference_sf(args['pdb_path'], args['resolution'], expand_to_p1=True) data = cctbx_tools.reformat_sf(sf) keep_idx = np.unique(np.random.randint(0, high=data.shape[0], size=args['size'])) self.data = data[keep_idx] (self.sg_symbol, sg_no, self.cell, cs) = cctbx_tools.unit_cell_info(args['pdb_path'])<|docstring|>Prepare a few simulated datasets for a P212121 crystal.<|endoftext|>
aa8d9bf7dcee125e9886595d783a2bf4325a5337d423f73866110a5ce3caa32e
def test_residuals_unshifted(self): '\n Check that known origins for space group 19 yield a phase residual of zero.\n ' eq_pos = np.array([0, 0.5, 1.0]) eq_pos = np.array(np.meshgrid(eq_pos, eq_pos, eq_pos)).T.reshape((- 1), 3) fo = LocateXtalOrigin(self.data, self.sg_symbol, self.cell, weighted=False) for fs in eq_pos: assert np.isclose(fo.eval_origin(fs), 0, atol=1e-06)
Check that known origins for space group 19 yield a phase residual of zero.
tests/test_locate_origin.py
test_residuals_unshifted
apeck12/tomoxtal
0
python
def test_residuals_unshifted(self): '\n \n ' eq_pos = np.array([0, 0.5, 1.0]) eq_pos = np.array(np.meshgrid(eq_pos, eq_pos, eq_pos)).T.reshape((- 1), 3) fo = LocateXtalOrigin(self.data, self.sg_symbol, self.cell, weighted=False) for fs in eq_pos: assert np.isclose(fo.eval_origin(fs), 0, atol=1e-06)
def test_residuals_unshifted(self): '\n \n ' eq_pos = np.array([0, 0.5, 1.0]) eq_pos = np.array(np.meshgrid(eq_pos, eq_pos, eq_pos)).T.reshape((- 1), 3) fo = LocateXtalOrigin(self.data, self.sg_symbol, self.cell, weighted=False) for fs in eq_pos: assert np.isclose(fo.eval_origin(fs), 0, atol=1e-06)<|docstring|>Check that known origins for space group 19 yield a phase residual of zero.<|endoftext|>
cafb2116d14427dceba3f888a55fa3be09f073c0a8c98733f2e1325578dfa947
def test_scan_shifted(self): '\n Check that correct origin is identified when a random phase shift is applied \n to data. Here use the scan_candidate_origins function with intensity-weighting.\n ' (self.data[(:, (- 1))], shifts) = phases_utils.add_random_phase_shift(self.data[(:, :3)], self.data[(:, (- 1))]) fshifts_list = np.random.uniform(size=(4, 3)) fshifts_list = np.vstack((fshifts_list, (1 - shifts))) fo = LocateXtalOrigin(self.data, self.sg_symbol, self.cell, weighted=True) (pred_shifts, scores) = fo.scan_candidate_origins(fshifts_list=fshifts_list, n_processes=1) assert np.allclose((pred_shifts[0] + shifts), 1, atol=1e-06) assert np.isclose(scores[0], 0, atol=1e-06) assert (not any([np.isclose(s, 0, atol=1e-06) for s in scores[1:]]))
Check that correct origin is identified when a random phase shift is applied to data. Here use the scan_candidate_origins function with intensity-weighting.
tests/test_locate_origin.py
test_scan_shifted
apeck12/tomoxtal
0
python
def test_scan_shifted(self): '\n Check that correct origin is identified when a random phase shift is applied \n to data. Here use the scan_candidate_origins function with intensity-weighting.\n ' (self.data[(:, (- 1))], shifts) = phases_utils.add_random_phase_shift(self.data[(:, :3)], self.data[(:, (- 1))]) fshifts_list = np.random.uniform(size=(4, 3)) fshifts_list = np.vstack((fshifts_list, (1 - shifts))) fo = LocateXtalOrigin(self.data, self.sg_symbol, self.cell, weighted=True) (pred_shifts, scores) = fo.scan_candidate_origins(fshifts_list=fshifts_list, n_processes=1) assert np.allclose((pred_shifts[0] + shifts), 1, atol=1e-06) assert np.isclose(scores[0], 0, atol=1e-06) assert (not any([np.isclose(s, 0, atol=1e-06) for s in scores[1:]]))
def test_scan_shifted(self): '\n Check that correct origin is identified when a random phase shift is applied \n to data. Here use the scan_candidate_origins function with intensity-weighting.\n ' (self.data[(:, (- 1))], shifts) = phases_utils.add_random_phase_shift(self.data[(:, :3)], self.data[(:, (- 1))]) fshifts_list = np.random.uniform(size=(4, 3)) fshifts_list = np.vstack((fshifts_list, (1 - shifts))) fo = LocateXtalOrigin(self.data, self.sg_symbol, self.cell, weighted=True) (pred_shifts, scores) = fo.scan_candidate_origins(fshifts_list=fshifts_list, n_processes=1) assert np.allclose((pred_shifts[0] + shifts), 1, atol=1e-06) assert np.isclose(scores[0], 0, atol=1e-06) assert (not any([np.isclose(s, 0, atol=1e-06) for s in scores[1:]]))<|docstring|>Check that correct origin is identified when a random phase shift is applied to data. Here use the scan_candidate_origins function with intensity-weighting.<|endoftext|>
3ed0617cba3751b2ca1bb4108a5c12824b6ffa04da407fb4a1b7cbdbd734997a
def __init__(self, *args, **kwargs): '\n Creates your memory instance\n Give it your caches configuration as a dictionary\n ' self.adapters = dict() self.caches = dict() self._cache_instances = dict() self.config = dict(adapters=dict(), caches=dict()) if (args or kwargs): self.init(*args, **kwargs)
Creates your memory instance Give it your caches configuration as a dictionary
shiftmemory/memory.py
__init__
projectshift/shift-memory
0
python
def __init__(self, *args, **kwargs): '\n Creates your memory instance\n Give it your caches configuration as a dictionary\n ' self.adapters = dict() self.caches = dict() self._cache_instances = dict() self.config = dict(adapters=dict(), caches=dict()) if (args or kwargs): self.init(*args, **kwargs)
def __init__(self, *args, **kwargs): '\n Creates your memory instance\n Give it your caches configuration as a dictionary\n ' self.adapters = dict() self.caches = dict() self._cache_instances = dict() self.config = dict(adapters=dict(), caches=dict()) if (args or kwargs): self.init(*args, **kwargs)<|docstring|>Creates your memory instance Give it your caches configuration as a dictionary<|endoftext|>
f64721441404072cb1d175a49b28c89f19cbf578a3f44fbf8ecdefe6fe70ab3c
def init(self, adapters=None, caches=None): '\n Delayed initializer\n This can be called by __init__ or later.\n\n :param adapters: dict, adapters configuration\n :param caches: dict, caches configuration\n :return:\n ' if adapters: self.adapters = adapters if caches: self.caches = caches
Delayed initializer This can be called by __init__ or later. :param adapters: dict, adapters configuration :param caches: dict, caches configuration :return:
shiftmemory/memory.py
init
projectshift/shift-memory
0
python
def init(self, adapters=None, caches=None): '\n Delayed initializer\n This can be called by __init__ or later.\n\n :param adapters: dict, adapters configuration\n :param caches: dict, caches configuration\n :return:\n ' if adapters: self.adapters = adapters if caches: self.caches = caches
def init(self, adapters=None, caches=None): '\n Delayed initializer\n This can be called by __init__ or later.\n\n :param adapters: dict, adapters configuration\n :param caches: dict, caches configuration\n :return:\n ' if adapters: self.adapters = adapters if caches: self.caches = caches<|docstring|>Delayed initializer This can be called by __init__ or later. :param adapters: dict, adapters configuration :param caches: dict, caches configuration :return:<|endoftext|>
04c03e7f6b710cd955db3f1bcf4a080848dfa434c09b1c7f48037e0a98b91fa7
def get_cache(self, cache_name): '\n Get cache\n Checks if a cache was already created and returns that. Otherwise\n attempts to create a cache from configuration and preserve\n for future use\n ' if (cache_name in self._cache_instances): return self._cache_instances[cache_name] if (cache_name not in self.caches): error = 'Cache [{}] is not configured'.format(cache_name) raise exceptions.ConfigurationException(error) cache_config = self.caches[cache_name] adapter_name = cache_config['adapter'] if (adapter_name not in self.adapters): error = 'Adapter [{}] is not configured'.format(adapter_name) raise exceptions.ConfigurationException(error) adapter_config = self.adapters[adapter_name] adapter_type = adapter_config['type'] adapter_class = (adapter_type[0].upper() + adapter_type[1:]) if (not hasattr(adapter, adapter_class)): error = 'Adapter class [{}] is missing'.format(adapter_class) raise exceptions.AdapterMissingException(error) cls = getattr(adapter, adapter_class) adapter_params = dict(namespace=cache_name, ttl=cache_config['ttl']) if ('config' in adapter_config): adapter_params['config'] = adapter_config['config'] cache = cls(**adapter_params) self._cache_instances[cache_name] = cache return self._cache_instances[cache_name]
Get cache Checks if a cache was already created and returns that. Otherwise attempts to create a cache from configuration and preserve for future use
shiftmemory/memory.py
get_cache
projectshift/shift-memory
0
python
def get_cache(self, cache_name): '\n Get cache\n Checks if a cache was already created and returns that. Otherwise\n attempts to create a cache from configuration and preserve\n for future use\n ' if (cache_name in self._cache_instances): return self._cache_instances[cache_name] if (cache_name not in self.caches): error = 'Cache [{}] is not configured'.format(cache_name) raise exceptions.ConfigurationException(error) cache_config = self.caches[cache_name] adapter_name = cache_config['adapter'] if (adapter_name not in self.adapters): error = 'Adapter [{}] is not configured'.format(adapter_name) raise exceptions.ConfigurationException(error) adapter_config = self.adapters[adapter_name] adapter_type = adapter_config['type'] adapter_class = (adapter_type[0].upper() + adapter_type[1:]) if (not hasattr(adapter, adapter_class)): error = 'Adapter class [{}] is missing'.format(adapter_class) raise exceptions.AdapterMissingException(error) cls = getattr(adapter, adapter_class) adapter_params = dict(namespace=cache_name, ttl=cache_config['ttl']) if ('config' in adapter_config): adapter_params['config'] = adapter_config['config'] cache = cls(**adapter_params) self._cache_instances[cache_name] = cache return self._cache_instances[cache_name]
def get_cache(self, cache_name): '\n Get cache\n Checks if a cache was already created and returns that. Otherwise\n attempts to create a cache from configuration and preserve\n for future use\n ' if (cache_name in self._cache_instances): return self._cache_instances[cache_name] if (cache_name not in self.caches): error = 'Cache [{}] is not configured'.format(cache_name) raise exceptions.ConfigurationException(error) cache_config = self.caches[cache_name] adapter_name = cache_config['adapter'] if (adapter_name not in self.adapters): error = 'Adapter [{}] is not configured'.format(adapter_name) raise exceptions.ConfigurationException(error) adapter_config = self.adapters[adapter_name] adapter_type = adapter_config['type'] adapter_class = (adapter_type[0].upper() + adapter_type[1:]) if (not hasattr(adapter, adapter_class)): error = 'Adapter class [{}] is missing'.format(adapter_class) raise exceptions.AdapterMissingException(error) cls = getattr(adapter, adapter_class) adapter_params = dict(namespace=cache_name, ttl=cache_config['ttl']) if ('config' in adapter_config): adapter_params['config'] = adapter_config['config'] cache = cls(**adapter_params) self._cache_instances[cache_name] = cache return self._cache_instances[cache_name]<|docstring|>Get cache Checks if a cache was already created and returns that. Otherwise attempts to create a cache from configuration and preserve for future use<|endoftext|>
39dc8215da51cae420a62a047ed98e1c0d30364cf7cdaf3be2c5038bac20aa87
def drop_cache(self, name): '\n Drop cache\n Deletes all items in cache by name\n ' cache = self.get_cache(name) if (not hasattr(cache, 'delete_all')): cls = type(cache) error = 'Adapter [{}] can not drop cache by namespace'.format(cls) raise exceptions.AdapterFeatureMissingException(error) return cache.delete_all()
Drop cache Deletes all items in cache by name
shiftmemory/memory.py
drop_cache
projectshift/shift-memory
0
python
def drop_cache(self, name): '\n Drop cache\n Deletes all items in cache by name\n ' cache = self.get_cache(name) if (not hasattr(cache, 'delete_all')): cls = type(cache) error = 'Adapter [{}] can not drop cache by namespace'.format(cls) raise exceptions.AdapterFeatureMissingException(error) return cache.delete_all()
def drop_cache(self, name): '\n Drop cache\n Deletes all items in cache by name\n ' cache = self.get_cache(name) if (not hasattr(cache, 'delete_all')): cls = type(cache) error = 'Adapter [{}] can not drop cache by namespace'.format(cls) raise exceptions.AdapterFeatureMissingException(error) return cache.delete_all()<|docstring|>Drop cache Deletes all items in cache by name<|endoftext|>
0223192a771b09d8faefe1db0ef92fe317a8c961c17a0730d893951f4ac7df97
def drop_all_caches(self): '\n Drop all caches\n Goes through every configured cache and drops all items. Will\n skip certain caches if they do not support drop all feature\n ' for name in self.caches.keys(): cache = self.get_cache(name) if hasattr(cache, 'delete_all'): cache.delete_all(name) return True
Drop all caches Goes through every configured cache and drops all items. Will skip certain caches if they do not support drop all feature
shiftmemory/memory.py
drop_all_caches
projectshift/shift-memory
0
python
def drop_all_caches(self): '\n Drop all caches\n Goes through every configured cache and drops all items. Will\n skip certain caches if they do not support drop all feature\n ' for name in self.caches.keys(): cache = self.get_cache(name) if hasattr(cache, 'delete_all'): cache.delete_all(name) return True
def drop_all_caches(self): '\n Drop all caches\n Goes through every configured cache and drops all items. Will\n skip certain caches if they do not support drop all feature\n ' for name in self.caches.keys(): cache = self.get_cache(name) if hasattr(cache, 'delete_all'): cache.delete_all(name) return True<|docstring|>Drop all caches Goes through every configured cache and drops all items. Will skip certain caches if they do not support drop all feature<|endoftext|>
cb654066fd288749e53aa78bd7cdf370aa7e1fb1b419c9842775f6029286338e
def optimize_cache(self, name): '\n Optimize cache\n Gets cache by name and performs optimization if supported\n ' cache = self.get_cache(name) if (not hasattr(cache, 'optimize')): cls = type(cache) error = 'Adapter [{}] can not optimize itself'.format(cls) raise exceptions.AdapterFeatureMissingException(error) return cache.optimize()
Optimize cache Gets cache by name and performs optimization if supported
shiftmemory/memory.py
optimize_cache
projectshift/shift-memory
0
python
def optimize_cache(self, name): '\n Optimize cache\n Gets cache by name and performs optimization if supported\n ' cache = self.get_cache(name) if (not hasattr(cache, 'optimize')): cls = type(cache) error = 'Adapter [{}] can not optimize itself'.format(cls) raise exceptions.AdapterFeatureMissingException(error) return cache.optimize()
def optimize_cache(self, name): '\n Optimize cache\n Gets cache by name and performs optimization if supported\n ' cache = self.get_cache(name) if (not hasattr(cache, 'optimize')): cls = type(cache) error = 'Adapter [{}] can not optimize itself'.format(cls) raise exceptions.AdapterFeatureMissingException(error) return cache.optimize()<|docstring|>Optimize cache Gets cache by name and performs optimization if supported<|endoftext|>
08fc786a06ac2438ca0f9c9407a5af9af82df7247a05756be9b5893d550b8078
def optimize_all_caches(self): '\n Optimize all caches\n Goes through every configured cache and optimizes. Will\n skip certain caches if they do not support optimization feature\n ' for name in self.caches.keys(): cache = self.get_cache(name) if hasattr(cache, 'optimize'): cache.optimize(name) return True
Optimize all caches Goes through every configured cache and optimizes. Will skip certain caches if they do not support optimization feature
shiftmemory/memory.py
optimize_all_caches
projectshift/shift-memory
0
python
def optimize_all_caches(self): '\n Optimize all caches\n Goes through every configured cache and optimizes. Will\n skip certain caches if they do not support optimization feature\n ' for name in self.caches.keys(): cache = self.get_cache(name) if hasattr(cache, 'optimize'): cache.optimize(name) return True
def optimize_all_caches(self): '\n Optimize all caches\n Goes through every configured cache and optimizes. Will\n skip certain caches if they do not support optimization feature\n ' for name in self.caches.keys(): cache = self.get_cache(name) if hasattr(cache, 'optimize'): cache.optimize(name) return True<|docstring|>Optimize all caches Goes through every configured cache and optimizes. Will skip certain caches if they do not support optimization feature<|endoftext|>
57b4bd2795167fdc2109826c0e52ec0f254ab3e60d4526f46439aa944492341f
@staticmethod def warp_boxes(boxes, mat): ' Warp point by proj matrix.\n Args:\n boxes (np.ndarray): in shape of [N, 4]\n mat (np.ndarray): in shape of [2, 3], projection matrix\n ' pts = boxes.reshape((- 1), 2) pts_ext = np.concatenate((pts, np.ones((pts.shape[0], 1))), axis=1) pts_ext = mat.dot(pts_ext.T).T pts_ext = pts_ext.reshape((- 1), 4) boxes = np.concatenate([np.min(pts_ext[(:, 0::2)], axis=1, keepdims=True), np.min(pts_ext[(:, 1::2)], axis=1, keepdims=True), np.max(pts_ext[(:, 0::2)], axis=1, keepdims=True), np.max(pts_ext[(:, 1::2)], axis=1, keepdims=True)], axis=1) return boxes
Warp point by proj matrix. Args: boxes (np.ndarray): in shape of [N, 4] mat (np.ndarray): in shape of [2, 3], projection matrix
pyvrl/models/pretraining/rot3d/rot3d_transforms.py
warp_boxes
LiZhenLiangLee/CtP-repro
37
python
@staticmethod def warp_boxes(boxes, mat): ' Warp point by proj matrix.\n Args:\n boxes (np.ndarray): in shape of [N, 4]\n mat (np.ndarray): in shape of [2, 3], projection matrix\n ' pts = boxes.reshape((- 1), 2) pts_ext = np.concatenate((pts, np.ones((pts.shape[0], 1))), axis=1) pts_ext = mat.dot(pts_ext.T).T pts_ext = pts_ext.reshape((- 1), 4) boxes = np.concatenate([np.min(pts_ext[(:, 0::2)], axis=1, keepdims=True), np.min(pts_ext[(:, 1::2)], axis=1, keepdims=True), np.max(pts_ext[(:, 0::2)], axis=1, keepdims=True), np.max(pts_ext[(:, 1::2)], axis=1, keepdims=True)], axis=1) return boxes
@staticmethod def warp_boxes(boxes, mat): ' Warp point by proj matrix.\n Args:\n boxes (np.ndarray): in shape of [N, 4]\n mat (np.ndarray): in shape of [2, 3], projection matrix\n ' pts = boxes.reshape((- 1), 2) pts_ext = np.concatenate((pts, np.ones((pts.shape[0], 1))), axis=1) pts_ext = mat.dot(pts_ext.T).T pts_ext = pts_ext.reshape((- 1), 4) boxes = np.concatenate([np.min(pts_ext[(:, 0::2)], axis=1, keepdims=True), np.min(pts_ext[(:, 1::2)], axis=1, keepdims=True), np.max(pts_ext[(:, 0::2)], axis=1, keepdims=True), np.max(pts_ext[(:, 1::2)], axis=1, keepdims=True)], axis=1) return boxes<|docstring|>Warp point by proj matrix. Args: boxes (np.ndarray): in shape of [N, 4] mat (np.ndarray): in shape of [2, 3], projection matrix<|endoftext|>
1517865131b7a22b9416f7dbaa3ae5a29a906913be3fcd1eb6d840ab4eaabfb4
@staticmethod def rotate(image, rot_flag): "\n Rotates an OpenCV 2 / NumPy image about it's centre by the given angle\n " if (rot_flag == 0): return image if isinstance(image, np.ndarray): (h, w) = image.shape[0:2] elif isinstance(image, list): (h, w) = image[0].shape[0:2] else: raise NotImplementedError center = ((w / 2), (h / 2)) if (rot_flag == 1): M = cv2.getRotationMatrix2D(center, 90, 1.0) elif (rot_flag == 2): M = cv2.getRotationMatrix2D(center, 180, 1.0) elif (rot_flag == 3): M = cv2.getRotationMatrix2D(center, 270, 1.0) else: raise NotImplementedError if isinstance(image, list): image = [cv2.warpAffine(i, M, (h, w), borderMode=cv2.BORDER_REPLICATE) for i in image] else: image = cv2.warpAffine(image, M, (h, w), borderMode=cv2.BORDER_REPLICATE) return image
Rotates an OpenCV 2 / NumPy image about it's centre by the given angle
pyvrl/models/pretraining/rot3d/rot3d_transforms.py
rotate
LiZhenLiangLee/CtP-repro
37
python
@staticmethod def rotate(image, rot_flag): "\n \n " if (rot_flag == 0): return image if isinstance(image, np.ndarray): (h, w) = image.shape[0:2] elif isinstance(image, list): (h, w) = image[0].shape[0:2] else: raise NotImplementedError center = ((w / 2), (h / 2)) if (rot_flag == 1): M = cv2.getRotationMatrix2D(center, 90, 1.0) elif (rot_flag == 2): M = cv2.getRotationMatrix2D(center, 180, 1.0) elif (rot_flag == 3): M = cv2.getRotationMatrix2D(center, 270, 1.0) else: raise NotImplementedError if isinstance(image, list): image = [cv2.warpAffine(i, M, (h, w), borderMode=cv2.BORDER_REPLICATE) for i in image] else: image = cv2.warpAffine(image, M, (h, w), borderMode=cv2.BORDER_REPLICATE) return image
@staticmethod def rotate(image, rot_flag): "\n \n " if (rot_flag == 0): return image if isinstance(image, np.ndarray): (h, w) = image.shape[0:2] elif isinstance(image, list): (h, w) = image[0].shape[0:2] else: raise NotImplementedError center = ((w / 2), (h / 2)) if (rot_flag == 1): M = cv2.getRotationMatrix2D(center, 90, 1.0) elif (rot_flag == 2): M = cv2.getRotationMatrix2D(center, 180, 1.0) elif (rot_flag == 3): M = cv2.getRotationMatrix2D(center, 270, 1.0) else: raise NotImplementedError if isinstance(image, list): image = [cv2.warpAffine(i, M, (h, w), borderMode=cv2.BORDER_REPLICATE) for i in image] else: image = cv2.warpAffine(image, M, (h, w), borderMode=cv2.BORDER_REPLICATE) return image<|docstring|>Rotates an OpenCV 2 / NumPy image about it's centre by the given angle<|endoftext|>
34ca3b520fa4c509ea5c0869425fe32ee1cf500bab874b721cb223c9ba170b01
def get_input(self, idx): '\n Returns x for a given idx.\n ' img_filename = os.path.join(self.data_dir, self._input_array[idx]) x = Image.open(img_filename).convert('RGB') return x
Returns x for a given idx.
wilds/datasets/waterbirds_dataset.py
get_input
sequoia-n9/wilds
355
python
def get_input(self, idx): '\n \n ' img_filename = os.path.join(self.data_dir, self._input_array[idx]) x = Image.open(img_filename).convert('RGB') return x
def get_input(self, idx): '\n \n ' img_filename = os.path.join(self.data_dir, self._input_array[idx]) x = Image.open(img_filename).convert('RGB') return x<|docstring|>Returns x for a given idx.<|endoftext|>
c054ebf531e1f34466435df355829bf6d85506642778e3daf5fa24f75a656bf1
def eval(self, y_pred, y_true, metadata, prediction_fn=None): '\n Computes all evaluation metrics.\n Args:\n - y_pred (Tensor): Predictions from a model. By default, they are predicted labels (LongTensor).\n But they can also be other model outputs such that prediction_fn(y_pred)\n are predicted labels.\n - y_true (LongTensor): Ground-truth labels\n - metadata (Tensor): Metadata\n - prediction_fn (function): A function that turns y_pred into predicted labels\n Output:\n - results (dictionary): Dictionary of evaluation metrics\n - results_str (str): String summarizing the evaluation metrics\n ' metric = Accuracy(prediction_fn=prediction_fn) (results, results_str) = self.standard_group_eval(metric, self._eval_grouper, y_pred, y_true, metadata) results['adj_acc_avg'] = (((((results['acc_y:landbird_background:land'] * 3498) + (results['acc_y:landbird_background:water'] * 184)) + (results['acc_y:waterbird_background:land'] * 56)) + (results['acc_y:waterbird_background:water'] * 1057)) / (((3498 + 184) + 56) + 1057)) del results['acc_avg'] results_str = (f'''Adjusted average acc: {results['adj_acc_avg']:.3f} ''' + '\n'.join(results_str.split('\n')[1:])) return (results, results_str)
Computes all evaluation metrics. Args: - y_pred (Tensor): Predictions from a model. By default, they are predicted labels (LongTensor). But they can also be other model outputs such that prediction_fn(y_pred) are predicted labels. - y_true (LongTensor): Ground-truth labels - metadata (Tensor): Metadata - prediction_fn (function): A function that turns y_pred into predicted labels Output: - results (dictionary): Dictionary of evaluation metrics - results_str (str): String summarizing the evaluation metrics
wilds/datasets/waterbirds_dataset.py
eval
sequoia-n9/wilds
355
python
def eval(self, y_pred, y_true, metadata, prediction_fn=None): '\n Computes all evaluation metrics.\n Args:\n - y_pred (Tensor): Predictions from a model. By default, they are predicted labels (LongTensor).\n But they can also be other model outputs such that prediction_fn(y_pred)\n are predicted labels.\n - y_true (LongTensor): Ground-truth labels\n - metadata (Tensor): Metadata\n - prediction_fn (function): A function that turns y_pred into predicted labels\n Output:\n - results (dictionary): Dictionary of evaluation metrics\n - results_str (str): String summarizing the evaluation metrics\n ' metric = Accuracy(prediction_fn=prediction_fn) (results, results_str) = self.standard_group_eval(metric, self._eval_grouper, y_pred, y_true, metadata) results['adj_acc_avg'] = (((((results['acc_y:landbird_background:land'] * 3498) + (results['acc_y:landbird_background:water'] * 184)) + (results['acc_y:waterbird_background:land'] * 56)) + (results['acc_y:waterbird_background:water'] * 1057)) / (((3498 + 184) + 56) + 1057)) del results['acc_avg'] results_str = (f'Adjusted average acc: {results['adj_acc_avg']:.3f} ' + '\n'.join(results_str.split('\n')[1:])) return (results, results_str)
def eval(self, y_pred, y_true, metadata, prediction_fn=None): '\n Computes all evaluation metrics.\n Args:\n - y_pred (Tensor): Predictions from a model. By default, they are predicted labels (LongTensor).\n But they can also be other model outputs such that prediction_fn(y_pred)\n are predicted labels.\n - y_true (LongTensor): Ground-truth labels\n - metadata (Tensor): Metadata\n - prediction_fn (function): A function that turns y_pred into predicted labels\n Output:\n - results (dictionary): Dictionary of evaluation metrics\n - results_str (str): String summarizing the evaluation metrics\n ' metric = Accuracy(prediction_fn=prediction_fn) (results, results_str) = self.standard_group_eval(metric, self._eval_grouper, y_pred, y_true, metadata) results['adj_acc_avg'] = (((((results['acc_y:landbird_background:land'] * 3498) + (results['acc_y:landbird_background:water'] * 184)) + (results['acc_y:waterbird_background:land'] * 56)) + (results['acc_y:waterbird_background:water'] * 1057)) / (((3498 + 184) + 56) + 1057)) del results['acc_avg'] results_str = (f'Adjusted average acc: {results['adj_acc_avg']:.3f} ' + '\n'.join(results_str.split('\n')[1:])) return (results, results_str)<|docstring|>Computes all evaluation metrics. Args: - y_pred (Tensor): Predictions from a model. By default, they are predicted labels (LongTensor). But they can also be other model outputs such that prediction_fn(y_pred) are predicted labels. - y_true (LongTensor): Ground-truth labels - metadata (Tensor): Metadata - prediction_fn (function): A function that turns y_pred into predicted labels Output: - results (dictionary): Dictionary of evaluation metrics - results_str (str): String summarizing the evaluation metrics<|endoftext|>
e5b4bf4d64449c9acf097b8223ce7a618520cc6be2e3e0e86df026e4e6fbdd73
def __init__(self, config_path, host, port): 'Creates a CommandRunner that connects to the specified |host| and |port|\n using the ssh config at the specified |config_path|.\n\n Args:\n config_path: Full path to SSH configuration.\n host: The hostname or IP address of the remote host.\n port: The port to connect to.' self._config_path = config_path self._host = host self._port = port
Creates a CommandRunner that connects to the specified |host| and |port| using the ssh config at the specified |config_path|. Args: config_path: Full path to SSH configuration. host: The hostname or IP address of the remote host. port: The port to connect to.
telemetry/telemetry/core/fuchsia_interface.py
__init__
alekzonder/catapult
0
python
def __init__(self, config_path, host, port): 'Creates a CommandRunner that connects to the specified |host| and |port|\n using the ssh config at the specified |config_path|.\n\n Args:\n config_path: Full path to SSH configuration.\n host: The hostname or IP address of the remote host.\n port: The port to connect to.' self._config_path = config_path self._host = host self._port = port
def __init__(self, config_path, host, port): 'Creates a CommandRunner that connects to the specified |host| and |port|\n using the ssh config at the specified |config_path|.\n\n Args:\n config_path: Full path to SSH configuration.\n host: The hostname or IP address of the remote host.\n port: The port to connect to.' self._config_path = config_path self._host = host self._port = port<|docstring|>Creates a CommandRunner that connects to the specified |host| and |port| using the ssh config at the specified |config_path|. Args: config_path: Full path to SSH configuration. host: The hostname or IP address of the remote host. port: The port to connect to.<|endoftext|>
abc90f5beed49feb477475a29701e0c1c4994bb0da664a39923e9fed8a71652b
def RunCommandPiped(self, command=None, ssh_args=None, **kwargs): "Executes an SSH command on the remote host and returns a process object\n with access to the command's stdio streams. Does not block.\n\n Args:\n command: A list of strings containing the command and its arguments.\n ssh_args: Arguments that will be passed to SSH.\n kwargs: A dictionary of parameters to be passed to subprocess.Popen().\n The parameters can be used to override stdin and stdout, for\n example.\n\n Returns:\n A Popen object for the command." if (not command): command = [] if (not ssh_args): ssh_args = [] ssh_command = (((self._GetSshCommandLinePrefix() + ssh_args) + ['--']) + command) logging.debug(' '.join(ssh_command)) return subprocess.Popen(ssh_command, **kwargs)
Executes an SSH command on the remote host and returns a process object with access to the command's stdio streams. Does not block. Args: command: A list of strings containing the command and its arguments. ssh_args: Arguments that will be passed to SSH. kwargs: A dictionary of parameters to be passed to subprocess.Popen(). The parameters can be used to override stdin and stdout, for example. Returns: A Popen object for the command.
telemetry/telemetry/core/fuchsia_interface.py
RunCommandPiped
alekzonder/catapult
0
python
def RunCommandPiped(self, command=None, ssh_args=None, **kwargs): "Executes an SSH command on the remote host and returns a process object\n with access to the command's stdio streams. Does not block.\n\n Args:\n command: A list of strings containing the command and its arguments.\n ssh_args: Arguments that will be passed to SSH.\n kwargs: A dictionary of parameters to be passed to subprocess.Popen().\n The parameters can be used to override stdin and stdout, for\n example.\n\n Returns:\n A Popen object for the command." if (not command): command = [] if (not ssh_args): ssh_args = [] ssh_command = (((self._GetSshCommandLinePrefix() + ssh_args) + ['--']) + command) logging.debug(' '.join(ssh_command)) return subprocess.Popen(ssh_command, **kwargs)
def RunCommandPiped(self, command=None, ssh_args=None, **kwargs): "Executes an SSH command on the remote host and returns a process object\n with access to the command's stdio streams. Does not block.\n\n Args:\n command: A list of strings containing the command and its arguments.\n ssh_args: Arguments that will be passed to SSH.\n kwargs: A dictionary of parameters to be passed to subprocess.Popen().\n The parameters can be used to override stdin and stdout, for\n example.\n\n Returns:\n A Popen object for the command." if (not command): command = [] if (not ssh_args): ssh_args = [] ssh_command = (((self._GetSshCommandLinePrefix() + ssh_args) + ['--']) + command) logging.debug(' '.join(ssh_command)) return subprocess.Popen(ssh_command, **kwargs)<|docstring|>Executes an SSH command on the remote host and returns a process object with access to the command's stdio streams. Does not block. Args: command: A list of strings containing the command and its arguments. ssh_args: Arguments that will be passed to SSH. kwargs: A dictionary of parameters to be passed to subprocess.Popen(). The parameters can be used to override stdin and stdout, for example. Returns: A Popen object for the command.<|endoftext|>
0c4223a57cb1e544cb72e6846a4876da59b0500733b7b5426dc4961a17f5955c
@classmethod def _instantiate(cls, request, *args, **kwargs): ' Instantiates the form. Allows customization in subclasses. ' return cls(*args, **kwargs)
Instantiates the form. Allows customization in subclasses.
horizon/horizon/forms.py
_instantiate
usc-isi/horizon-old
3
python
@classmethod def _instantiate(cls, request, *args, **kwargs): ' ' return cls(*args, **kwargs)
@classmethod def _instantiate(cls, request, *args, **kwargs): ' ' return cls(*args, **kwargs)<|docstring|>Instantiates the form. Allows customization in subclasses.<|endoftext|>
dcae572e414028e5d05daf67ef71e8c3f9163584ae5ccc95d589bc19ed996e08
@classmethod def maybe_handle(cls, request, *args, **kwargs): '\n If the form is valid, :meth:`.maybe_handle` calls a\n ``handle(request, data)`` method on its subclass to\n determine what action to take.\n\n Any exceptions raised during processing are captured and\n converted to messages.\n ' if (cls.__name__ != request.POST.get('method')): return (cls._instantiate(request, *args, **kwargs), None) if request.FILES: form = cls._instantiate(request, request.POST, request.FILES, *args, **kwargs) else: form = cls._instantiate(request, request.POST, *args, **kwargs) if (not form.is_valid()): return (form, None) data = form.clean() try: return (form, form.handle(request, data)) except Exception as e: LOG.exception(('Error while handling form "%s".' % cls.__name__)) if issubclass(e.__class__, exceptions.NotAuthorized): raise messages.error(request, (_('%s') % e.message)) return (form, None)
If the form is valid, :meth:`.maybe_handle` calls a ``handle(request, data)`` method on its subclass to determine what action to take. Any exceptions raised during processing are captured and converted to messages.
horizon/horizon/forms.py
maybe_handle
usc-isi/horizon-old
3
python
@classmethod def maybe_handle(cls, request, *args, **kwargs): '\n If the form is valid, :meth:`.maybe_handle` calls a\n ``handle(request, data)`` method on its subclass to\n determine what action to take.\n\n Any exceptions raised during processing are captured and\n converted to messages.\n ' if (cls.__name__ != request.POST.get('method')): return (cls._instantiate(request, *args, **kwargs), None) if request.FILES: form = cls._instantiate(request, request.POST, request.FILES, *args, **kwargs) else: form = cls._instantiate(request, request.POST, *args, **kwargs) if (not form.is_valid()): return (form, None) data = form.clean() try: return (form, form.handle(request, data)) except Exception as e: LOG.exception(('Error while handling form "%s".' % cls.__name__)) if issubclass(e.__class__, exceptions.NotAuthorized): raise messages.error(request, (_('%s') % e.message)) return (form, None)
@classmethod def maybe_handle(cls, request, *args, **kwargs): '\n If the form is valid, :meth:`.maybe_handle` calls a\n ``handle(request, data)`` method on its subclass to\n determine what action to take.\n\n Any exceptions raised during processing are captured and\n converted to messages.\n ' if (cls.__name__ != request.POST.get('method')): return (cls._instantiate(request, *args, **kwargs), None) if request.FILES: form = cls._instantiate(request, request.POST, request.FILES, *args, **kwargs) else: form = cls._instantiate(request, request.POST, *args, **kwargs) if (not form.is_valid()): return (form, None) data = form.clean() try: return (form, form.handle(request, data)) except Exception as e: LOG.exception(('Error while handling form "%s".' % cls.__name__)) if issubclass(e.__class__, exceptions.NotAuthorized): raise messages.error(request, (_('%s') % e.message)) return (form, None)<|docstring|>If the form is valid, :meth:`.maybe_handle` calls a ``handle(request, data)`` method on its subclass to determine what action to take. Any exceptions raised during processing are captured and converted to messages.<|endoftext|>
f4bd7f9beaaf69f2c3675993d19137aa64a45ec880f6bf0b48d635b8d33d0a0a
@beartype def __init__(self, pdf_target: Union[(Callable, list[Callable])]=None, log_pdf_target: Union[(Callable, list[Callable])]=None, args_target: tuple=None, burn_length: Annotated[(int, Is[(lambda x: (x >= 0))])]=0, jump: int=1, dimension: int=None, seed: list=None, save_log_pdf: bool=False, concatenate_chains: bool=True, initial_covariance: float=None, covariance_update_rate: float=100, scale_parameter: float=None, delayed_rejection_scale: float=(1 / 5), save_covariance: bool=False, random_state: RandomStateType=None, n_chains: int=None, nsamples: int=None, nsamples_per_chain: int=None): '\n Delayed Rejection Adaptive Metropolis algorithm :cite:`Dram1` :cite:`MCMC2`\n\n In this algorithm, the proposal density is Gaussian and its covariance C is being updated from samples as\n :code:`C = scale_parameter * C_sample` where :code:`C_sample` is the sample covariance. Also, the delayed\n rejection scheme is applied, i.e, if a candidate is not accepted another one is generated from the proposal with\n covariance :code:`delayed_rejection_scale ** 2 * C`.\n\n :param pdf_target: Target density function from which to draw random samples. Either `pdf_target` or\n `log_pdf_target` must be provided (the latter should be preferred for better numerical stability).\n\n If `pdf_target` is a callable, it refers to the joint pdf to sample from, it must take at least one input\n **x**, which are the point(s) at which to evaluate the pdf. Within :class:`.MCMC` the `pdf_target` is evaluated\n as:\n :code:`p(x) = pdf_target(x, \\*args_target)`\n\n where **x** is a :class:`numpy.ndarray of shape :code:`(nsamples, dimension)` and `args_target` are additional\n positional arguments that are provided to :class:`.MCMC` via its `args_target` input.\n\n If `pdf_target` is a list of callables, it refers to independent marginals to sample from. The marginal in\n dimension :code:`j` is evaluated as: :code:`p_j(xj) = pdf_target[j](xj, \\*args_target[j])` where **x** is a\n :class:`numpy.ndarray` of shape :code:`(nsamples, dimension)`\n :param log_pdf_target: Logarithm of the target density function from which to draw random samples.\n Either pdf_target or log_pdf_target must be provided (the latter should be preferred for better numerical\n stability).\n\n Same comments as for input `pdf_target`.\n :param args_target: Positional arguments of the pdf / log-pdf target function. See `pdf_target`\n :param burn_length: Length of burn-in - i.e., number of samples at the beginning of the chain to discard (note:\n no thinning during burn-in). Default is :math:`0`, no burn-in.\n :param jump: Thinning parameter, used to reduce correlation between samples. Setting :code:`jump=n` corresponds\n to skipping n-1 states between accepted states of the chain. Default is :math:`1` (no thinning).\n :param dimension: A scalar value defining the dimension of target density function. Either `dimension` and\n `n_chains` or `seed` must be provided.\n :param seed: Seed of the Markov chain(s), shape :code:`(n_chains, dimension)`.\n Default: :code:`zeros(n_chains x dimension)`.\n\n If `seed` is not provided, both `n_chains` and `dimension` must be provided.\n :param save_log_pdf: Boolean that indicates whether to save log-pdf values along with the samples.\n Default: :any:`False`\n :param concatenate_chains: Boolean that indicates whether to concatenate the chains after a run, i.e., samples\n are stored as a :class:`numpy.ndarray` of shape :code:`(nsamples * n_chains, dimension)` if :any:`True`,\n :code:`(nsamples, n_chains, dimension)` if :any:`False`.\n Default: :any:`True`\n :param n_chains: The number of Markov chains to generate. Either `dimension` and `n_chains` or `seed` must be\n provided.\n :param initial_covariance: Initial covariance for the gaussian proposal distribution. Default: I(dim)\n :param covariance_update_rate: Rate at which covariance is being updated, i.e., every k0 iterations.\n Default: :math:`100`\n :param scale_parameter: Scale parameter for covariance updating. Default: :math:`2.38^2/dim`\n :param delayed_rejection_scale: Scale parameter for delayed rejection. Default: :math:`1/5`\n :param save_covariance: If :any:`True`, updated covariance is saved in attribute :py:attr:`adaptive_covariance`.\n Default: :any:`False`\n :param random_state: Random seed used to initialize the pseudo-random number generator. Default is\n :any:`None`.\n :param nsamples: Number of samples to generate.\n :param nsamples_per_chain: Number of samples to generate per chain.\n ' self.nsamples = nsamples self.nsamples_per_chain = nsamples_per_chain super().__init__(pdf_target=pdf_target, log_pdf_target=log_pdf_target, args_target=args_target, dimension=dimension, seed=seed, burn_length=burn_length, jump=jump, save_log_pdf=save_log_pdf, concatenate_chains=concatenate_chains, random_state=random_state, n_chains=n_chains) self.logger = logging.getLogger(__name__) self.initial_covariance = initial_covariance if (self.initial_covariance is None): self.initial_covariance = np.eye(self.dimension) elif (not (isinstance(self.initial_covariance, np.ndarray) and (self.initial_covariance == (self.dimension, self.dimension)))): raise TypeError('UQpy: Input initial_covariance should be a 2D ndarray of shape (dimension, dimension)') self.covariance_update_rate = covariance_update_rate self.scale_parameter = scale_parameter if (self.scale_parameter is None): self.scale_parameter = ((2.38 ** 2) / self.dimension) self.delayed_rejection_scale = delayed_rejection_scale self.save_covariance = save_covariance for (key, typ) in zip(['covariance_update_rate', 'scale_parameter', 'delayed_rejection_scale', 'save_covariance'], [int, float, float, bool]): if (not isinstance(getattr(self, key), typ)): raise TypeError(((('Input ' + key) + ' must be of type ') + typ.__name__)) self.current_covariance = np.tile(self.initial_covariance[(np.newaxis, ...)], (self.n_chains, 1, 1)) self.sample_mean = np.zeros((self.n_chains, self.dimension)) self.sample_covariance = np.zeros((self.n_chains, self.dimension, self.dimension)) if self.save_covariance: self.adaptive_covariance = [self.current_covariance.copy()] self.logger.info((('\nUQpy: Initialization of ' + self.__class__.__name__) + ' algorithm complete.')) if ((nsamples is not None) or (nsamples_per_chain is not None)): self.run(nsamples=nsamples, nsamples_per_chain=nsamples_per_chain)
Delayed Rejection Adaptive Metropolis algorithm :cite:`Dram1` :cite:`MCMC2` In this algorithm, the proposal density is Gaussian and its covariance C is being updated from samples as :code:`C = scale_parameter * C_sample` where :code:`C_sample` is the sample covariance. Also, the delayed rejection scheme is applied, i.e, if a candidate is not accepted another one is generated from the proposal with covariance :code:`delayed_rejection_scale ** 2 * C`. :param pdf_target: Target density function from which to draw random samples. Either `pdf_target` or `log_pdf_target` must be provided (the latter should be preferred for better numerical stability). If `pdf_target` is a callable, it refers to the joint pdf to sample from, it must take at least one input **x**, which are the point(s) at which to evaluate the pdf. Within :class:`.MCMC` the `pdf_target` is evaluated as: :code:`p(x) = pdf_target(x, \*args_target)` where **x** is a :class:`numpy.ndarray of shape :code:`(nsamples, dimension)` and `args_target` are additional positional arguments that are provided to :class:`.MCMC` via its `args_target` input. If `pdf_target` is a list of callables, it refers to independent marginals to sample from. The marginal in dimension :code:`j` is evaluated as: :code:`p_j(xj) = pdf_target[j](xj, \*args_target[j])` where **x** is a :class:`numpy.ndarray` of shape :code:`(nsamples, dimension)` :param log_pdf_target: Logarithm of the target density function from which to draw random samples. Either pdf_target or log_pdf_target must be provided (the latter should be preferred for better numerical stability). Same comments as for input `pdf_target`. :param args_target: Positional arguments of the pdf / log-pdf target function. See `pdf_target` :param burn_length: Length of burn-in - i.e., number of samples at the beginning of the chain to discard (note: no thinning during burn-in). Default is :math:`0`, no burn-in. :param jump: Thinning parameter, used to reduce correlation between samples. Setting :code:`jump=n` corresponds to skipping n-1 states between accepted states of the chain. Default is :math:`1` (no thinning). :param dimension: A scalar value defining the dimension of target density function. Either `dimension` and `n_chains` or `seed` must be provided. :param seed: Seed of the Markov chain(s), shape :code:`(n_chains, dimension)`. Default: :code:`zeros(n_chains x dimension)`. If `seed` is not provided, both `n_chains` and `dimension` must be provided. :param save_log_pdf: Boolean that indicates whether to save log-pdf values along with the samples. Default: :any:`False` :param concatenate_chains: Boolean that indicates whether to concatenate the chains after a run, i.e., samples are stored as a :class:`numpy.ndarray` of shape :code:`(nsamples * n_chains, dimension)` if :any:`True`, :code:`(nsamples, n_chains, dimension)` if :any:`False`. Default: :any:`True` :param n_chains: The number of Markov chains to generate. Either `dimension` and `n_chains` or `seed` must be provided. :param initial_covariance: Initial covariance for the gaussian proposal distribution. Default: I(dim) :param covariance_update_rate: Rate at which covariance is being updated, i.e., every k0 iterations. Default: :math:`100` :param scale_parameter: Scale parameter for covariance updating. Default: :math:`2.38^2/dim` :param delayed_rejection_scale: Scale parameter for delayed rejection. Default: :math:`1/5` :param save_covariance: If :any:`True`, updated covariance is saved in attribute :py:attr:`adaptive_covariance`. Default: :any:`False` :param random_state: Random seed used to initialize the pseudo-random number generator. Default is :any:`None`. :param nsamples: Number of samples to generate. :param nsamples_per_chain: Number of samples to generate per chain.
src/UQpy/sampling/mcmc/DRAM.py
__init__
SURGroup/UncertaintyQuantification
0
python
@beartype def __init__(self, pdf_target: Union[(Callable, list[Callable])]=None, log_pdf_target: Union[(Callable, list[Callable])]=None, args_target: tuple=None, burn_length: Annotated[(int, Is[(lambda x: (x >= 0))])]=0, jump: int=1, dimension: int=None, seed: list=None, save_log_pdf: bool=False, concatenate_chains: bool=True, initial_covariance: float=None, covariance_update_rate: float=100, scale_parameter: float=None, delayed_rejection_scale: float=(1 / 5), save_covariance: bool=False, random_state: RandomStateType=None, n_chains: int=None, nsamples: int=None, nsamples_per_chain: int=None): '\n Delayed Rejection Adaptive Metropolis algorithm :cite:`Dram1` :cite:`MCMC2`\n\n In this algorithm, the proposal density is Gaussian and its covariance C is being updated from samples as\n :code:`C = scale_parameter * C_sample` where :code:`C_sample` is the sample covariance. Also, the delayed\n rejection scheme is applied, i.e, if a candidate is not accepted another one is generated from the proposal with\n covariance :code:`delayed_rejection_scale ** 2 * C`.\n\n :param pdf_target: Target density function from which to draw random samples. Either `pdf_target` or\n `log_pdf_target` must be provided (the latter should be preferred for better numerical stability).\n\n If `pdf_target` is a callable, it refers to the joint pdf to sample from, it must take at least one input\n **x**, which are the point(s) at which to evaluate the pdf. Within :class:`.MCMC` the `pdf_target` is evaluated\n as:\n :code:`p(x) = pdf_target(x, \\*args_target)`\n\n where **x** is a :class:`numpy.ndarray of shape :code:`(nsamples, dimension)` and `args_target` are additional\n positional arguments that are provided to :class:`.MCMC` via its `args_target` input.\n\n If `pdf_target` is a list of callables, it refers to independent marginals to sample from. The marginal in\n dimension :code:`j` is evaluated as: :code:`p_j(xj) = pdf_target[j](xj, \\*args_target[j])` where **x** is a\n :class:`numpy.ndarray` of shape :code:`(nsamples, dimension)`\n :param log_pdf_target: Logarithm of the target density function from which to draw random samples.\n Either pdf_target or log_pdf_target must be provided (the latter should be preferred for better numerical\n stability).\n\n Same comments as for input `pdf_target`.\n :param args_target: Positional arguments of the pdf / log-pdf target function. See `pdf_target`\n :param burn_length: Length of burn-in - i.e., number of samples at the beginning of the chain to discard (note:\n no thinning during burn-in). Default is :math:`0`, no burn-in.\n :param jump: Thinning parameter, used to reduce correlation between samples. Setting :code:`jump=n` corresponds\n to skipping n-1 states between accepted states of the chain. Default is :math:`1` (no thinning).\n :param dimension: A scalar value defining the dimension of target density function. Either `dimension` and\n `n_chains` or `seed` must be provided.\n :param seed: Seed of the Markov chain(s), shape :code:`(n_chains, dimension)`.\n Default: :code:`zeros(n_chains x dimension)`.\n\n If `seed` is not provided, both `n_chains` and `dimension` must be provided.\n :param save_log_pdf: Boolean that indicates whether to save log-pdf values along with the samples.\n Default: :any:`False`\n :param concatenate_chains: Boolean that indicates whether to concatenate the chains after a run, i.e., samples\n are stored as a :class:`numpy.ndarray` of shape :code:`(nsamples * n_chains, dimension)` if :any:`True`,\n :code:`(nsamples, n_chains, dimension)` if :any:`False`.\n Default: :any:`True`\n :param n_chains: The number of Markov chains to generate. Either `dimension` and `n_chains` or `seed` must be\n provided.\n :param initial_covariance: Initial covariance for the gaussian proposal distribution. Default: I(dim)\n :param covariance_update_rate: Rate at which covariance is being updated, i.e., every k0 iterations.\n Default: :math:`100`\n :param scale_parameter: Scale parameter for covariance updating. Default: :math:`2.38^2/dim`\n :param delayed_rejection_scale: Scale parameter for delayed rejection. Default: :math:`1/5`\n :param save_covariance: If :any:`True`, updated covariance is saved in attribute :py:attr:`adaptive_covariance`.\n Default: :any:`False`\n :param random_state: Random seed used to initialize the pseudo-random number generator. Default is\n :any:`None`.\n :param nsamples: Number of samples to generate.\n :param nsamples_per_chain: Number of samples to generate per chain.\n ' self.nsamples = nsamples self.nsamples_per_chain = nsamples_per_chain super().__init__(pdf_target=pdf_target, log_pdf_target=log_pdf_target, args_target=args_target, dimension=dimension, seed=seed, burn_length=burn_length, jump=jump, save_log_pdf=save_log_pdf, concatenate_chains=concatenate_chains, random_state=random_state, n_chains=n_chains) self.logger = logging.getLogger(__name__) self.initial_covariance = initial_covariance if (self.initial_covariance is None): self.initial_covariance = np.eye(self.dimension) elif (not (isinstance(self.initial_covariance, np.ndarray) and (self.initial_covariance == (self.dimension, self.dimension)))): raise TypeError('UQpy: Input initial_covariance should be a 2D ndarray of shape (dimension, dimension)') self.covariance_update_rate = covariance_update_rate self.scale_parameter = scale_parameter if (self.scale_parameter is None): self.scale_parameter = ((2.38 ** 2) / self.dimension) self.delayed_rejection_scale = delayed_rejection_scale self.save_covariance = save_covariance for (key, typ) in zip(['covariance_update_rate', 'scale_parameter', 'delayed_rejection_scale', 'save_covariance'], [int, float, float, bool]): if (not isinstance(getattr(self, key), typ)): raise TypeError(((('Input ' + key) + ' must be of type ') + typ.__name__)) self.current_covariance = np.tile(self.initial_covariance[(np.newaxis, ...)], (self.n_chains, 1, 1)) self.sample_mean = np.zeros((self.n_chains, self.dimension)) self.sample_covariance = np.zeros((self.n_chains, self.dimension, self.dimension)) if self.save_covariance: self.adaptive_covariance = [self.current_covariance.copy()] self.logger.info((('\nUQpy: Initialization of ' + self.__class__.__name__) + ' algorithm complete.')) if ((nsamples is not None) or (nsamples_per_chain is not None)): self.run(nsamples=nsamples, nsamples_per_chain=nsamples_per_chain)
@beartype def __init__(self, pdf_target: Union[(Callable, list[Callable])]=None, log_pdf_target: Union[(Callable, list[Callable])]=None, args_target: tuple=None, burn_length: Annotated[(int, Is[(lambda x: (x >= 0))])]=0, jump: int=1, dimension: int=None, seed: list=None, save_log_pdf: bool=False, concatenate_chains: bool=True, initial_covariance: float=None, covariance_update_rate: float=100, scale_parameter: float=None, delayed_rejection_scale: float=(1 / 5), save_covariance: bool=False, random_state: RandomStateType=None, n_chains: int=None, nsamples: int=None, nsamples_per_chain: int=None): '\n Delayed Rejection Adaptive Metropolis algorithm :cite:`Dram1` :cite:`MCMC2`\n\n In this algorithm, the proposal density is Gaussian and its covariance C is being updated from samples as\n :code:`C = scale_parameter * C_sample` where :code:`C_sample` is the sample covariance. Also, the delayed\n rejection scheme is applied, i.e, if a candidate is not accepted another one is generated from the proposal with\n covariance :code:`delayed_rejection_scale ** 2 * C`.\n\n :param pdf_target: Target density function from which to draw random samples. Either `pdf_target` or\n `log_pdf_target` must be provided (the latter should be preferred for better numerical stability).\n\n If `pdf_target` is a callable, it refers to the joint pdf to sample from, it must take at least one input\n **x**, which are the point(s) at which to evaluate the pdf. Within :class:`.MCMC` the `pdf_target` is evaluated\n as:\n :code:`p(x) = pdf_target(x, \\*args_target)`\n\n where **x** is a :class:`numpy.ndarray of shape :code:`(nsamples, dimension)` and `args_target` are additional\n positional arguments that are provided to :class:`.MCMC` via its `args_target` input.\n\n If `pdf_target` is a list of callables, it refers to independent marginals to sample from. The marginal in\n dimension :code:`j` is evaluated as: :code:`p_j(xj) = pdf_target[j](xj, \\*args_target[j])` where **x** is a\n :class:`numpy.ndarray` of shape :code:`(nsamples, dimension)`\n :param log_pdf_target: Logarithm of the target density function from which to draw random samples.\n Either pdf_target or log_pdf_target must be provided (the latter should be preferred for better numerical\n stability).\n\n Same comments as for input `pdf_target`.\n :param args_target: Positional arguments of the pdf / log-pdf target function. See `pdf_target`\n :param burn_length: Length of burn-in - i.e., number of samples at the beginning of the chain to discard (note:\n no thinning during burn-in). Default is :math:`0`, no burn-in.\n :param jump: Thinning parameter, used to reduce correlation between samples. Setting :code:`jump=n` corresponds\n to skipping n-1 states between accepted states of the chain. Default is :math:`1` (no thinning).\n :param dimension: A scalar value defining the dimension of target density function. Either `dimension` and\n `n_chains` or `seed` must be provided.\n :param seed: Seed of the Markov chain(s), shape :code:`(n_chains, dimension)`.\n Default: :code:`zeros(n_chains x dimension)`.\n\n If `seed` is not provided, both `n_chains` and `dimension` must be provided.\n :param save_log_pdf: Boolean that indicates whether to save log-pdf values along with the samples.\n Default: :any:`False`\n :param concatenate_chains: Boolean that indicates whether to concatenate the chains after a run, i.e., samples\n are stored as a :class:`numpy.ndarray` of shape :code:`(nsamples * n_chains, dimension)` if :any:`True`,\n :code:`(nsamples, n_chains, dimension)` if :any:`False`.\n Default: :any:`True`\n :param n_chains: The number of Markov chains to generate. Either `dimension` and `n_chains` or `seed` must be\n provided.\n :param initial_covariance: Initial covariance for the gaussian proposal distribution. Default: I(dim)\n :param covariance_update_rate: Rate at which covariance is being updated, i.e., every k0 iterations.\n Default: :math:`100`\n :param scale_parameter: Scale parameter for covariance updating. Default: :math:`2.38^2/dim`\n :param delayed_rejection_scale: Scale parameter for delayed rejection. Default: :math:`1/5`\n :param save_covariance: If :any:`True`, updated covariance is saved in attribute :py:attr:`adaptive_covariance`.\n Default: :any:`False`\n :param random_state: Random seed used to initialize the pseudo-random number generator. Default is\n :any:`None`.\n :param nsamples: Number of samples to generate.\n :param nsamples_per_chain: Number of samples to generate per chain.\n ' self.nsamples = nsamples self.nsamples_per_chain = nsamples_per_chain super().__init__(pdf_target=pdf_target, log_pdf_target=log_pdf_target, args_target=args_target, dimension=dimension, seed=seed, burn_length=burn_length, jump=jump, save_log_pdf=save_log_pdf, concatenate_chains=concatenate_chains, random_state=random_state, n_chains=n_chains) self.logger = logging.getLogger(__name__) self.initial_covariance = initial_covariance if (self.initial_covariance is None): self.initial_covariance = np.eye(self.dimension) elif (not (isinstance(self.initial_covariance, np.ndarray) and (self.initial_covariance == (self.dimension, self.dimension)))): raise TypeError('UQpy: Input initial_covariance should be a 2D ndarray of shape (dimension, dimension)') self.covariance_update_rate = covariance_update_rate self.scale_parameter = scale_parameter if (self.scale_parameter is None): self.scale_parameter = ((2.38 ** 2) / self.dimension) self.delayed_rejection_scale = delayed_rejection_scale self.save_covariance = save_covariance for (key, typ) in zip(['covariance_update_rate', 'scale_parameter', 'delayed_rejection_scale', 'save_covariance'], [int, float, float, bool]): if (not isinstance(getattr(self, key), typ)): raise TypeError(((('Input ' + key) + ' must be of type ') + typ.__name__)) self.current_covariance = np.tile(self.initial_covariance[(np.newaxis, ...)], (self.n_chains, 1, 1)) self.sample_mean = np.zeros((self.n_chains, self.dimension)) self.sample_covariance = np.zeros((self.n_chains, self.dimension, self.dimension)) if self.save_covariance: self.adaptive_covariance = [self.current_covariance.copy()] self.logger.info((('\nUQpy: Initialization of ' + self.__class__.__name__) + ' algorithm complete.')) if ((nsamples is not None) or (nsamples_per_chain is not None)): self.run(nsamples=nsamples, nsamples_per_chain=nsamples_per_chain)<|docstring|>Delayed Rejection Adaptive Metropolis algorithm :cite:`Dram1` :cite:`MCMC2` In this algorithm, the proposal density is Gaussian and its covariance C is being updated from samples as :code:`C = scale_parameter * C_sample` where :code:`C_sample` is the sample covariance. Also, the delayed rejection scheme is applied, i.e, if a candidate is not accepted another one is generated from the proposal with covariance :code:`delayed_rejection_scale ** 2 * C`. :param pdf_target: Target density function from which to draw random samples. Either `pdf_target` or `log_pdf_target` must be provided (the latter should be preferred for better numerical stability). If `pdf_target` is a callable, it refers to the joint pdf to sample from, it must take at least one input **x**, which are the point(s) at which to evaluate the pdf. Within :class:`.MCMC` the `pdf_target` is evaluated as: :code:`p(x) = pdf_target(x, \*args_target)` where **x** is a :class:`numpy.ndarray of shape :code:`(nsamples, dimension)` and `args_target` are additional positional arguments that are provided to :class:`.MCMC` via its `args_target` input. If `pdf_target` is a list of callables, it refers to independent marginals to sample from. The marginal in dimension :code:`j` is evaluated as: :code:`p_j(xj) = pdf_target[j](xj, \*args_target[j])` where **x** is a :class:`numpy.ndarray` of shape :code:`(nsamples, dimension)` :param log_pdf_target: Logarithm of the target density function from which to draw random samples. Either pdf_target or log_pdf_target must be provided (the latter should be preferred for better numerical stability). Same comments as for input `pdf_target`. :param args_target: Positional arguments of the pdf / log-pdf target function. See `pdf_target` :param burn_length: Length of burn-in - i.e., number of samples at the beginning of the chain to discard (note: no thinning during burn-in). Default is :math:`0`, no burn-in. :param jump: Thinning parameter, used to reduce correlation between samples. Setting :code:`jump=n` corresponds to skipping n-1 states between accepted states of the chain. Default is :math:`1` (no thinning). :param dimension: A scalar value defining the dimension of target density function. Either `dimension` and `n_chains` or `seed` must be provided. :param seed: Seed of the Markov chain(s), shape :code:`(n_chains, dimension)`. Default: :code:`zeros(n_chains x dimension)`. If `seed` is not provided, both `n_chains` and `dimension` must be provided. :param save_log_pdf: Boolean that indicates whether to save log-pdf values along with the samples. Default: :any:`False` :param concatenate_chains: Boolean that indicates whether to concatenate the chains after a run, i.e., samples are stored as a :class:`numpy.ndarray` of shape :code:`(nsamples * n_chains, dimension)` if :any:`True`, :code:`(nsamples, n_chains, dimension)` if :any:`False`. Default: :any:`True` :param n_chains: The number of Markov chains to generate. Either `dimension` and `n_chains` or `seed` must be provided. :param initial_covariance: Initial covariance for the gaussian proposal distribution. Default: I(dim) :param covariance_update_rate: Rate at which covariance is being updated, i.e., every k0 iterations. Default: :math:`100` :param scale_parameter: Scale parameter for covariance updating. Default: :math:`2.38^2/dim` :param delayed_rejection_scale: Scale parameter for delayed rejection. Default: :math:`1/5` :param save_covariance: If :any:`True`, updated covariance is saved in attribute :py:attr:`adaptive_covariance`. Default: :any:`False` :param random_state: Random seed used to initialize the pseudo-random number generator. Default is :any:`None`. :param nsamples: Number of samples to generate. :param nsamples_per_chain: Number of samples to generate per chain.<|endoftext|>
6e9a89bd820d7f733394b5e4fa8e71f8e15beb9007ca9371cd249b3fc5cb8256
def run_one_iteration(self, current_state: np.ndarray, current_log_pdf: np.ndarray): '\n Run one iteration of the mcmc chain for DRAM algorithm, starting at current state -\n see :class:`MCMC` class.\n ' from UQpy.distributions import MultivariateNormal multivariate_normal = MultivariateNormal(mean=np.zeros(self.dimension), cov=1.0) candidate = np.zeros_like(current_state) for (nc, current_cov) in enumerate(self.current_covariance): multivariate_normal.update_parameters(cov=current_cov) candidate[(nc, :)] = (current_state[(nc, :)] + multivariate_normal.rvs(nsamples=1, random_state=self.random_state).reshape((self.dimension,))) log_p_candidate = self.evaluate_log_target(candidate) accept_vec = np.zeros((self.n_chains,)) delayed_chains_indices = [] unif_rvs = Uniform().rvs(nsamples=self.n_chains, random_state=self.random_state).reshape(((- 1),)) for (nc, (cand, log_p_cand, log_p_curr)) in enumerate(zip(candidate, log_p_candidate, current_log_pdf)): accept = (np.log(unif_rvs[nc]) < (log_p_cand - log_p_curr)) if accept: current_state[(nc, :)] = cand current_log_pdf[nc] = log_p_cand accept_vec[nc] += 1.0 else: delayed_chains_indices.append(nc) if delayed_chains_indices: current_states_delayed = np.zeros((len(delayed_chains_indices), self.dimension)) candidates_delayed = np.zeros((len(delayed_chains_indices), self.dimension)) candidate2 = np.zeros((len(delayed_chains_indices), self.dimension)) for (i, nc) in enumerate(delayed_chains_indices): current_states_delayed[(i, :)] = current_state[(nc, :)] candidates_delayed[(i, :)] = candidate[(nc, :)] multivariate_normal.update_parameters(cov=((self.delayed_rejection_scale ** 2) * self.current_covariance[nc])) candidate2[(i, :)] = (current_states_delayed[(i, :)] + multivariate_normal.rvs(nsamples=1, random_state=self.random_state).reshape((self.dimension,))) log_p_candidate2 = self.evaluate_log_target(candidate2) log_prop_cand_cand2 = multivariate_normal.log_pdf((candidates_delayed - candidate2)) log_prop_cand_curr = multivariate_normal.log_pdf((candidates_delayed - current_states_delayed)) unif_rvs = Uniform().rvs(nsamples=len(delayed_chains_indices), random_state=self.random_state).reshape(((- 1),)) for (nc, cand2, log_p_cand2, j1, j2, u_rv) in zip(delayed_chains_indices, candidate2, log_p_candidate2, log_prop_cand_cand2, log_prop_cand_curr, unif_rvs): alpha_cand_cand2 = min(1.0, np.exp((log_p_candidate[nc] - log_p_cand2))) alpha_cand_curr = min(1.0, np.exp((log_p_candidate[nc] - current_log_pdf[nc]))) log_alpha2 = (((((log_p_cand2 - current_log_pdf[nc]) + j1) - j2) + np.log(max((1.0 - alpha_cand_cand2), (10 ** (- 320))))) - np.log(max((1.0 - alpha_cand_curr), (10 ** (- 320))))) accept = (np.log(u_rv) < min(0.0, log_alpha2)) if accept: current_state[(nc, :)] = cand2 current_log_pdf[nc] = log_p_cand2 accept_vec[nc] += 1.0 for nc in range(self.n_chains): (self.sample_mean[nc], self.sample_covariance[nc]) = self._recursive_update_mean_covariance(nsamples=self.iterations_number, new_sample=current_state[(nc, :)], previous_mean=self.sample_mean[nc], previous_covariance=self.sample_covariance[nc]) if ((self.iterations_number > 1) and ((self.iterations_number % self.covariance_update_rate) == 0)): self.current_covariance[nc] = ((self.scale_parameter * self.sample_covariance[nc]) + (1e-06 * np.eye(self.dimension))) if (self.save_covariance and ((self.iterations_number > 1) and ((self.iterations_number % self.covariance_update_rate) == 0))): self.adaptive_covariance.append(self.current_covariance.copy()) self._update_acceptance_rate(accept_vec) return (current_state, current_log_pdf)
Run one iteration of the mcmc chain for DRAM algorithm, starting at current state - see :class:`MCMC` class.
src/UQpy/sampling/mcmc/DRAM.py
run_one_iteration
SURGroup/UncertaintyQuantification
0
python
def run_one_iteration(self, current_state: np.ndarray, current_log_pdf: np.ndarray): '\n Run one iteration of the mcmc chain for DRAM algorithm, starting at current state -\n see :class:`MCMC` class.\n ' from UQpy.distributions import MultivariateNormal multivariate_normal = MultivariateNormal(mean=np.zeros(self.dimension), cov=1.0) candidate = np.zeros_like(current_state) for (nc, current_cov) in enumerate(self.current_covariance): multivariate_normal.update_parameters(cov=current_cov) candidate[(nc, :)] = (current_state[(nc, :)] + multivariate_normal.rvs(nsamples=1, random_state=self.random_state).reshape((self.dimension,))) log_p_candidate = self.evaluate_log_target(candidate) accept_vec = np.zeros((self.n_chains,)) delayed_chains_indices = [] unif_rvs = Uniform().rvs(nsamples=self.n_chains, random_state=self.random_state).reshape(((- 1),)) for (nc, (cand, log_p_cand, log_p_curr)) in enumerate(zip(candidate, log_p_candidate, current_log_pdf)): accept = (np.log(unif_rvs[nc]) < (log_p_cand - log_p_curr)) if accept: current_state[(nc, :)] = cand current_log_pdf[nc] = log_p_cand accept_vec[nc] += 1.0 else: delayed_chains_indices.append(nc) if delayed_chains_indices: current_states_delayed = np.zeros((len(delayed_chains_indices), self.dimension)) candidates_delayed = np.zeros((len(delayed_chains_indices), self.dimension)) candidate2 = np.zeros((len(delayed_chains_indices), self.dimension)) for (i, nc) in enumerate(delayed_chains_indices): current_states_delayed[(i, :)] = current_state[(nc, :)] candidates_delayed[(i, :)] = candidate[(nc, :)] multivariate_normal.update_parameters(cov=((self.delayed_rejection_scale ** 2) * self.current_covariance[nc])) candidate2[(i, :)] = (current_states_delayed[(i, :)] + multivariate_normal.rvs(nsamples=1, random_state=self.random_state).reshape((self.dimension,))) log_p_candidate2 = self.evaluate_log_target(candidate2) log_prop_cand_cand2 = multivariate_normal.log_pdf((candidates_delayed - candidate2)) log_prop_cand_curr = multivariate_normal.log_pdf((candidates_delayed - current_states_delayed)) unif_rvs = Uniform().rvs(nsamples=len(delayed_chains_indices), random_state=self.random_state).reshape(((- 1),)) for (nc, cand2, log_p_cand2, j1, j2, u_rv) in zip(delayed_chains_indices, candidate2, log_p_candidate2, log_prop_cand_cand2, log_prop_cand_curr, unif_rvs): alpha_cand_cand2 = min(1.0, np.exp((log_p_candidate[nc] - log_p_cand2))) alpha_cand_curr = min(1.0, np.exp((log_p_candidate[nc] - current_log_pdf[nc]))) log_alpha2 = (((((log_p_cand2 - current_log_pdf[nc]) + j1) - j2) + np.log(max((1.0 - alpha_cand_cand2), (10 ** (- 320))))) - np.log(max((1.0 - alpha_cand_curr), (10 ** (- 320))))) accept = (np.log(u_rv) < min(0.0, log_alpha2)) if accept: current_state[(nc, :)] = cand2 current_log_pdf[nc] = log_p_cand2 accept_vec[nc] += 1.0 for nc in range(self.n_chains): (self.sample_mean[nc], self.sample_covariance[nc]) = self._recursive_update_mean_covariance(nsamples=self.iterations_number, new_sample=current_state[(nc, :)], previous_mean=self.sample_mean[nc], previous_covariance=self.sample_covariance[nc]) if ((self.iterations_number > 1) and ((self.iterations_number % self.covariance_update_rate) == 0)): self.current_covariance[nc] = ((self.scale_parameter * self.sample_covariance[nc]) + (1e-06 * np.eye(self.dimension))) if (self.save_covariance and ((self.iterations_number > 1) and ((self.iterations_number % self.covariance_update_rate) == 0))): self.adaptive_covariance.append(self.current_covariance.copy()) self._update_acceptance_rate(accept_vec) return (current_state, current_log_pdf)
def run_one_iteration(self, current_state: np.ndarray, current_log_pdf: np.ndarray): '\n Run one iteration of the mcmc chain for DRAM algorithm, starting at current state -\n see :class:`MCMC` class.\n ' from UQpy.distributions import MultivariateNormal multivariate_normal = MultivariateNormal(mean=np.zeros(self.dimension), cov=1.0) candidate = np.zeros_like(current_state) for (nc, current_cov) in enumerate(self.current_covariance): multivariate_normal.update_parameters(cov=current_cov) candidate[(nc, :)] = (current_state[(nc, :)] + multivariate_normal.rvs(nsamples=1, random_state=self.random_state).reshape((self.dimension,))) log_p_candidate = self.evaluate_log_target(candidate) accept_vec = np.zeros((self.n_chains,)) delayed_chains_indices = [] unif_rvs = Uniform().rvs(nsamples=self.n_chains, random_state=self.random_state).reshape(((- 1),)) for (nc, (cand, log_p_cand, log_p_curr)) in enumerate(zip(candidate, log_p_candidate, current_log_pdf)): accept = (np.log(unif_rvs[nc]) < (log_p_cand - log_p_curr)) if accept: current_state[(nc, :)] = cand current_log_pdf[nc] = log_p_cand accept_vec[nc] += 1.0 else: delayed_chains_indices.append(nc) if delayed_chains_indices: current_states_delayed = np.zeros((len(delayed_chains_indices), self.dimension)) candidates_delayed = np.zeros((len(delayed_chains_indices), self.dimension)) candidate2 = np.zeros((len(delayed_chains_indices), self.dimension)) for (i, nc) in enumerate(delayed_chains_indices): current_states_delayed[(i, :)] = current_state[(nc, :)] candidates_delayed[(i, :)] = candidate[(nc, :)] multivariate_normal.update_parameters(cov=((self.delayed_rejection_scale ** 2) * self.current_covariance[nc])) candidate2[(i, :)] = (current_states_delayed[(i, :)] + multivariate_normal.rvs(nsamples=1, random_state=self.random_state).reshape((self.dimension,))) log_p_candidate2 = self.evaluate_log_target(candidate2) log_prop_cand_cand2 = multivariate_normal.log_pdf((candidates_delayed - candidate2)) log_prop_cand_curr = multivariate_normal.log_pdf((candidates_delayed - current_states_delayed)) unif_rvs = Uniform().rvs(nsamples=len(delayed_chains_indices), random_state=self.random_state).reshape(((- 1),)) for (nc, cand2, log_p_cand2, j1, j2, u_rv) in zip(delayed_chains_indices, candidate2, log_p_candidate2, log_prop_cand_cand2, log_prop_cand_curr, unif_rvs): alpha_cand_cand2 = min(1.0, np.exp((log_p_candidate[nc] - log_p_cand2))) alpha_cand_curr = min(1.0, np.exp((log_p_candidate[nc] - current_log_pdf[nc]))) log_alpha2 = (((((log_p_cand2 - current_log_pdf[nc]) + j1) - j2) + np.log(max((1.0 - alpha_cand_cand2), (10 ** (- 320))))) - np.log(max((1.0 - alpha_cand_curr), (10 ** (- 320))))) accept = (np.log(u_rv) < min(0.0, log_alpha2)) if accept: current_state[(nc, :)] = cand2 current_log_pdf[nc] = log_p_cand2 accept_vec[nc] += 1.0 for nc in range(self.n_chains): (self.sample_mean[nc], self.sample_covariance[nc]) = self._recursive_update_mean_covariance(nsamples=self.iterations_number, new_sample=current_state[(nc, :)], previous_mean=self.sample_mean[nc], previous_covariance=self.sample_covariance[nc]) if ((self.iterations_number > 1) and ((self.iterations_number % self.covariance_update_rate) == 0)): self.current_covariance[nc] = ((self.scale_parameter * self.sample_covariance[nc]) + (1e-06 * np.eye(self.dimension))) if (self.save_covariance and ((self.iterations_number > 1) and ((self.iterations_number % self.covariance_update_rate) == 0))): self.adaptive_covariance.append(self.current_covariance.copy()) self._update_acceptance_rate(accept_vec) return (current_state, current_log_pdf)<|docstring|>Run one iteration of the mcmc chain for DRAM algorithm, starting at current state - see :class:`MCMC` class.<|endoftext|>
eac4d7b3c8044a8904d896fe96239edef2f53e2f7bca9532e92eff1a78ce29af
@staticmethod def _recursive_update_mean_covariance(nsamples, new_sample, previous_mean, previous_covariance=None): '\n Iterative formula to compute a new sample mean and covariance based on previous ones and new sample.\n\n New covariance is computed only of previous_covariance is provided.\n\n **Inputs:**\n\n * n (int): Number of samples used to compute the new mean\n * new_sample (ndarray (dim, )): new sample\n * previous_mean (ndarray (dim, )): Previous sample mean, to be updated with new sample value\n * previous_covariance (ndarray (dim, dim)): Previous sample covariance, to be updated with new sample value\n\n **Output/Returns:**\n\n * new_mean (ndarray (dim, )): Updated sample mean\n * new_covariance (ndarray (dim, dim)): Updated sample covariance\n\n ' new_mean = ((((nsamples - 1) / nsamples) * previous_mean) + ((1 / nsamples) * new_sample)) if (previous_covariance is None): return new_mean dimensions = new_sample.size if (nsamples == 1): new_covariance = np.zeros((dimensions, dimensions)) else: delta_n = (new_sample - previous_mean).reshape((dimensions, 1)) new_covariance = ((((nsamples - 2) / (nsamples - 1)) * previous_covariance) + ((1 / nsamples) * np.matmul(delta_n, delta_n.T))) return (new_mean, new_covariance)
Iterative formula to compute a new sample mean and covariance based on previous ones and new sample. New covariance is computed only of previous_covariance is provided. **Inputs:** * n (int): Number of samples used to compute the new mean * new_sample (ndarray (dim, )): new sample * previous_mean (ndarray (dim, )): Previous sample mean, to be updated with new sample value * previous_covariance (ndarray (dim, dim)): Previous sample covariance, to be updated with new sample value **Output/Returns:** * new_mean (ndarray (dim, )): Updated sample mean * new_covariance (ndarray (dim, dim)): Updated sample covariance
src/UQpy/sampling/mcmc/DRAM.py
_recursive_update_mean_covariance
SURGroup/UncertaintyQuantification
0
python
@staticmethod def _recursive_update_mean_covariance(nsamples, new_sample, previous_mean, previous_covariance=None): '\n Iterative formula to compute a new sample mean and covariance based on previous ones and new sample.\n\n New covariance is computed only of previous_covariance is provided.\n\n **Inputs:**\n\n * n (int): Number of samples used to compute the new mean\n * new_sample (ndarray (dim, )): new sample\n * previous_mean (ndarray (dim, )): Previous sample mean, to be updated with new sample value\n * previous_covariance (ndarray (dim, dim)): Previous sample covariance, to be updated with new sample value\n\n **Output/Returns:**\n\n * new_mean (ndarray (dim, )): Updated sample mean\n * new_covariance (ndarray (dim, dim)): Updated sample covariance\n\n ' new_mean = ((((nsamples - 1) / nsamples) * previous_mean) + ((1 / nsamples) * new_sample)) if (previous_covariance is None): return new_mean dimensions = new_sample.size if (nsamples == 1): new_covariance = np.zeros((dimensions, dimensions)) else: delta_n = (new_sample - previous_mean).reshape((dimensions, 1)) new_covariance = ((((nsamples - 2) / (nsamples - 1)) * previous_covariance) + ((1 / nsamples) * np.matmul(delta_n, delta_n.T))) return (new_mean, new_covariance)
@staticmethod def _recursive_update_mean_covariance(nsamples, new_sample, previous_mean, previous_covariance=None): '\n Iterative formula to compute a new sample mean and covariance based on previous ones and new sample.\n\n New covariance is computed only of previous_covariance is provided.\n\n **Inputs:**\n\n * n (int): Number of samples used to compute the new mean\n * new_sample (ndarray (dim, )): new sample\n * previous_mean (ndarray (dim, )): Previous sample mean, to be updated with new sample value\n * previous_covariance (ndarray (dim, dim)): Previous sample covariance, to be updated with new sample value\n\n **Output/Returns:**\n\n * new_mean (ndarray (dim, )): Updated sample mean\n * new_covariance (ndarray (dim, dim)): Updated sample covariance\n\n ' new_mean = ((((nsamples - 1) / nsamples) * previous_mean) + ((1 / nsamples) * new_sample)) if (previous_covariance is None): return new_mean dimensions = new_sample.size if (nsamples == 1): new_covariance = np.zeros((dimensions, dimensions)) else: delta_n = (new_sample - previous_mean).reshape((dimensions, 1)) new_covariance = ((((nsamples - 2) / (nsamples - 1)) * previous_covariance) + ((1 / nsamples) * np.matmul(delta_n, delta_n.T))) return (new_mean, new_covariance)<|docstring|>Iterative formula to compute a new sample mean and covariance based on previous ones and new sample. New covariance is computed only of previous_covariance is provided. **Inputs:** * n (int): Number of samples used to compute the new mean * new_sample (ndarray (dim, )): new sample * previous_mean (ndarray (dim, )): Previous sample mean, to be updated with new sample value * previous_covariance (ndarray (dim, dim)): Previous sample covariance, to be updated with new sample value **Output/Returns:** * new_mean (ndarray (dim, )): Updated sample mean * new_covariance (ndarray (dim, dim)): Updated sample covariance<|endoftext|>
493af6c9b42bfc0a3fe37d83042b44fe7553dcaf0380da7e0c0a161a266f9bc6
def test_random_arithmetic(self): 'Compose some random formulas and evaluate it as\n Python float and vec1 and compare' for i in range(10000): startval = self._randint(100) term = self._build_random_term('_start', self.rnd.uniform(0.1, 0.99)) py_str = term.replace('_start', ('float(%i)' % startval)) vec_str = ('(%s)[0]' % term.replace('_start', ('vec(%i)' % startval))) self._compare_eval(py_str, vec_str)
Compose some random formulas and evaluate it as Python float and vec1 and compare
vector/tests.py
test_random_arithmetic
defgsus/lolpig
0
python
def test_random_arithmetic(self): 'Compose some random formulas and evaluate it as\n Python float and vec1 and compare' for i in range(10000): startval = self._randint(100) term = self._build_random_term('_start', self.rnd.uniform(0.1, 0.99)) py_str = term.replace('_start', ('float(%i)' % startval)) vec_str = ('(%s)[0]' % term.replace('_start', ('vec(%i)' % startval))) self._compare_eval(py_str, vec_str)
def test_random_arithmetic(self): 'Compose some random formulas and evaluate it as\n Python float and vec1 and compare' for i in range(10000): startval = self._randint(100) term = self._build_random_term('_start', self.rnd.uniform(0.1, 0.99)) py_str = term.replace('_start', ('float(%i)' % startval)) vec_str = ('(%s)[0]' % term.replace('_start', ('vec(%i)' % startval))) self._compare_eval(py_str, vec_str)<|docstring|>Compose some random formulas and evaluate it as Python float and vec1 and compare<|endoftext|>
77c1438d276d70cc4f9d2ec4a3e6a87b950cecfdb0d204cf8ddac87a4e871e50
def __gather_minions(self): '\n Return a list of minions to use for the batch run\n ' args = [self.opts['tgt'], 'test.ping', [], self.opts['timeout']] selected_target_option = self.opts.get('selected_target_option', None) if (selected_target_option is not None): args.append(selected_target_option) else: args.append(self.opts.get('expr_form', 'glob')) ping_gen = self.local.cmd_iter(*args, **self.eauth) fret = set() try: for ret in ping_gen: m = next(six.iterkeys(ret)) if (m is not None): fret.add(m) return (list(fret), ping_gen) except StopIteration: raise salt.exceptions.SaltClientError('No minions matched the target.')
Return a list of minions to use for the batch run
salt/cli/batch.py
__gather_minions
belvedere-trading/salt
3
python
def __gather_minions(self): '\n \n ' args = [self.opts['tgt'], 'test.ping', [], self.opts['timeout']] selected_target_option = self.opts.get('selected_target_option', None) if (selected_target_option is not None): args.append(selected_target_option) else: args.append(self.opts.get('expr_form', 'glob')) ping_gen = self.local.cmd_iter(*args, **self.eauth) fret = set() try: for ret in ping_gen: m = next(six.iterkeys(ret)) if (m is not None): fret.add(m) return (list(fret), ping_gen) except StopIteration: raise salt.exceptions.SaltClientError('No minions matched the target.')
def __gather_minions(self): '\n \n ' args = [self.opts['tgt'], 'test.ping', [], self.opts['timeout']] selected_target_option = self.opts.get('selected_target_option', None) if (selected_target_option is not None): args.append(selected_target_option) else: args.append(self.opts.get('expr_form', 'glob')) ping_gen = self.local.cmd_iter(*args, **self.eauth) fret = set() try: for ret in ping_gen: m = next(six.iterkeys(ret)) if (m is not None): fret.add(m) return (list(fret), ping_gen) except StopIteration: raise salt.exceptions.SaltClientError('No minions matched the target.')<|docstring|>Return a list of minions to use for the batch run<|endoftext|>
049a4987de83ef49ddab95434042d7ac10978431a71d968bbd754c2465810643
def get_bnum(self): '\n Return the active number of minions to maintain\n ' partition = (lambda x: ((float(x) / 100.0) * len(self.minions))) try: if ('%' in self.opts['batch']): res = partition(float(self.opts['batch'].strip('%'))) if (res < 1): return int(math.ceil(res)) else: return int(res) else: return int(self.opts['batch']) except ValueError: if (not self.quiet): print_cli('Invalid batch data sent: {0}\nData must be in the form of %10, 10% or 3'.format(self.opts['batch']))
Return the active number of minions to maintain
salt/cli/batch.py
get_bnum
belvedere-trading/salt
3
python
def get_bnum(self): '\n \n ' partition = (lambda x: ((float(x) / 100.0) * len(self.minions))) try: if ('%' in self.opts['batch']): res = partition(float(self.opts['batch'].strip('%'))) if (res < 1): return int(math.ceil(res)) else: return int(res) else: return int(self.opts['batch']) except ValueError: if (not self.quiet): print_cli('Invalid batch data sent: {0}\nData must be in the form of %10, 10% or 3'.format(self.opts['batch']))
def get_bnum(self): '\n \n ' partition = (lambda x: ((float(x) / 100.0) * len(self.minions))) try: if ('%' in self.opts['batch']): res = partition(float(self.opts['batch'].strip('%'))) if (res < 1): return int(math.ceil(res)) else: return int(res) else: return int(self.opts['batch']) except ValueError: if (not self.quiet): print_cli('Invalid batch data sent: {0}\nData must be in the form of %10, 10% or 3'.format(self.opts['batch']))<|docstring|>Return the active number of minions to maintain<|endoftext|>
7262e1a9cea311df32c3762898dd76d4cedf1b5d20c5571036ea64e175adcc25
def run(self): '\n Execute the batch run\n ' args = [[], self.opts['fun'], self.opts['arg'], self.opts['timeout'], 'list'] bnum = self.get_bnum() to_run = copy.deepcopy(self.minions) active = [] ret = {} iters = [] minion_tracker = {} while (len(ret) < len(self.minions)): next_ = [] if ((len(to_run) <= bnum) and (not active)): while to_run: next_.append(to_run.pop()) else: for i in range((bnum - len(active))): if to_run: minion_id = to_run.pop() if isinstance(minion_id, dict): next_.append(minion_id.keys()[0]) else: next_.append(minion_id) active += next_ args[0] = next_ if next_: if (not self.quiet): print_cli('\nExecuting run on {0}\n'.format(next_)) new_iter = self.local.cmd_iter_no_block(*args, raw=self.opts.get('raw', False), ret=self.opts.get('return', ''), **self.eauth) iters.append(new_iter) minion_tracker[new_iter] = {} minion_tracker[new_iter]['minions'] = next_ minion_tracker[new_iter]['active'] = True else: time.sleep(0.02) parts = {} for ping_ret in self.ping_gen: if (ping_ret is None): break m = next(ping_ret.iterkeys()) if (m not in self.minions): self.minions.append(m) to_run.append(m) for queue in iters: try: ncnt = 0 while True: part = next(queue) if (part is None): time.sleep(0.01) ncnt += 1 if (ncnt > 5): break continue if self.opts.get('raw'): parts.update({part['id']: part}) minion_tracker[queue]['minions'].remove(part['id']) else: parts.update(part) for id in part.keys(): minion_tracker[queue]['minions'].remove(id) except StopIteration: if (queue in minion_tracker): minion_tracker[queue]['active'] = False for minion in minion_tracker[queue]['minions']: if (minion not in parts): parts[minion] = {} parts[minion]['ret'] = {} for (minion, data) in six.iteritems(parts): if (minion in active): active.remove(minion) if self.opts.get('raw'): (yield data) else: ret[minion] = data['ret'] (yield {minion: data['ret']}) if (not self.quiet): ret[minion] = data['ret'] data[minion] = data.pop('ret') if ('out' in data): out = data.pop('out') else: out = None salt.output.display_output(data, out, self.opts) for queue in minion_tracker: if ((not minion_tracker[queue]['active']) and (queue in iters)): iters.remove(queue) for minion in minion_tracker[queue]['minions']: if (minion in active): active.remove(minion)
Execute the batch run
salt/cli/batch.py
run
belvedere-trading/salt
3
python
def run(self): '\n \n ' args = [[], self.opts['fun'], self.opts['arg'], self.opts['timeout'], 'list'] bnum = self.get_bnum() to_run = copy.deepcopy(self.minions) active = [] ret = {} iters = [] minion_tracker = {} while (len(ret) < len(self.minions)): next_ = [] if ((len(to_run) <= bnum) and (not active)): while to_run: next_.append(to_run.pop()) else: for i in range((bnum - len(active))): if to_run: minion_id = to_run.pop() if isinstance(minion_id, dict): next_.append(minion_id.keys()[0]) else: next_.append(minion_id) active += next_ args[0] = next_ if next_: if (not self.quiet): print_cli('\nExecuting run on {0}\n'.format(next_)) new_iter = self.local.cmd_iter_no_block(*args, raw=self.opts.get('raw', False), ret=self.opts.get('return', ), **self.eauth) iters.append(new_iter) minion_tracker[new_iter] = {} minion_tracker[new_iter]['minions'] = next_ minion_tracker[new_iter]['active'] = True else: time.sleep(0.02) parts = {} for ping_ret in self.ping_gen: if (ping_ret is None): break m = next(ping_ret.iterkeys()) if (m not in self.minions): self.minions.append(m) to_run.append(m) for queue in iters: try: ncnt = 0 while True: part = next(queue) if (part is None): time.sleep(0.01) ncnt += 1 if (ncnt > 5): break continue if self.opts.get('raw'): parts.update({part['id']: part}) minion_tracker[queue]['minions'].remove(part['id']) else: parts.update(part) for id in part.keys(): minion_tracker[queue]['minions'].remove(id) except StopIteration: if (queue in minion_tracker): minion_tracker[queue]['active'] = False for minion in minion_tracker[queue]['minions']: if (minion not in parts): parts[minion] = {} parts[minion]['ret'] = {} for (minion, data) in six.iteritems(parts): if (minion in active): active.remove(minion) if self.opts.get('raw'): (yield data) else: ret[minion] = data['ret'] (yield {minion: data['ret']}) if (not self.quiet): ret[minion] = data['ret'] data[minion] = data.pop('ret') if ('out' in data): out = data.pop('out') else: out = None salt.output.display_output(data, out, self.opts) for queue in minion_tracker: if ((not minion_tracker[queue]['active']) and (queue in iters)): iters.remove(queue) for minion in minion_tracker[queue]['minions']: if (minion in active): active.remove(minion)
def run(self): '\n \n ' args = [[], self.opts['fun'], self.opts['arg'], self.opts['timeout'], 'list'] bnum = self.get_bnum() to_run = copy.deepcopy(self.minions) active = [] ret = {} iters = [] minion_tracker = {} while (len(ret) < len(self.minions)): next_ = [] if ((len(to_run) <= bnum) and (not active)): while to_run: next_.append(to_run.pop()) else: for i in range((bnum - len(active))): if to_run: minion_id = to_run.pop() if isinstance(minion_id, dict): next_.append(minion_id.keys()[0]) else: next_.append(minion_id) active += next_ args[0] = next_ if next_: if (not self.quiet): print_cli('\nExecuting run on {0}\n'.format(next_)) new_iter = self.local.cmd_iter_no_block(*args, raw=self.opts.get('raw', False), ret=self.opts.get('return', ), **self.eauth) iters.append(new_iter) minion_tracker[new_iter] = {} minion_tracker[new_iter]['minions'] = next_ minion_tracker[new_iter]['active'] = True else: time.sleep(0.02) parts = {} for ping_ret in self.ping_gen: if (ping_ret is None): break m = next(ping_ret.iterkeys()) if (m not in self.minions): self.minions.append(m) to_run.append(m) for queue in iters: try: ncnt = 0 while True: part = next(queue) if (part is None): time.sleep(0.01) ncnt += 1 if (ncnt > 5): break continue if self.opts.get('raw'): parts.update({part['id']: part}) minion_tracker[queue]['minions'].remove(part['id']) else: parts.update(part) for id in part.keys(): minion_tracker[queue]['minions'].remove(id) except StopIteration: if (queue in minion_tracker): minion_tracker[queue]['active'] = False for minion in minion_tracker[queue]['minions']: if (minion not in parts): parts[minion] = {} parts[minion]['ret'] = {} for (minion, data) in six.iteritems(parts): if (minion in active): active.remove(minion) if self.opts.get('raw'): (yield data) else: ret[minion] = data['ret'] (yield {minion: data['ret']}) if (not self.quiet): ret[minion] = data['ret'] data[minion] = data.pop('ret') if ('out' in data): out = data.pop('out') else: out = None salt.output.display_output(data, out, self.opts) for queue in minion_tracker: if ((not minion_tracker[queue]['active']) and (queue in iters)): iters.remove(queue) for minion in minion_tracker[queue]['minions']: if (minion in active): active.remove(minion)<|docstring|>Execute the batch run<|endoftext|>
d2c78c21c894414edd8e076adb3cce9d238aff3c2c18a59aee831ce2d9e671a1
@property def version(self): '\n Sets the attribute value of version\n ' return self.__version
Sets the attribute value of version
mercadopago/config/config.py
version
mercadopago/sdk-python
100
python
@property def version(self): '\n \n ' return self.__version
@property def version(self): '\n \n ' return self.__version<|docstring|>Sets the attribute value of version<|endoftext|>
7abe64a71daec36ab6c327a40221267d0615d4b94f6d002c264716817f0e6082
@property def user_agent(self): '\n Sets the attribute value of user agent\n ' return self.__user_agent
Sets the attribute value of user agent
mercadopago/config/config.py
user_agent
mercadopago/sdk-python
100
python
@property def user_agent(self): '\n \n ' return self.__user_agent
@property def user_agent(self): '\n \n ' return self.__user_agent<|docstring|>Sets the attribute value of user agent<|endoftext|>
63c56e02203d01bc1e80da7275cbb527e74c4db60b75a649a41e798cd2a4465f
@property def product_id(self): '\n Sets the attribute value of product id\n ' return self.__product_id
Sets the attribute value of product id
mercadopago/config/config.py
product_id
mercadopago/sdk-python
100
python
@property def product_id(self): '\n \n ' return self.__product_id
@property def product_id(self): '\n \n ' return self.__product_id<|docstring|>Sets the attribute value of product id<|endoftext|>
b93ab0cd6d8ad7e902548823f9fcf18c22a104487a846871bdbda6870eb6a087
@property def tracking_id(self): '\n Sets the attribute value of tracking id\n ' return self.__tracking_id
Sets the attribute value of tracking id
mercadopago/config/config.py
tracking_id
mercadopago/sdk-python
100
python
@property def tracking_id(self): '\n \n ' return self.__tracking_id
@property def tracking_id(self): '\n \n ' return self.__tracking_id<|docstring|>Sets the attribute value of tracking id<|endoftext|>
83f5b7675a10fd4046a39f9edbf2f37a56d5649dda2b956fd4e8eb6ea1960b84
@property def api_base_url(self): '\n Sets the attribute value of api base url\n ' return self.__api_base_url
Sets the attribute value of api base url
mercadopago/config/config.py
api_base_url
mercadopago/sdk-python
100
python
@property def api_base_url(self): '\n \n ' return self.__api_base_url
@property def api_base_url(self): '\n \n ' return self.__api_base_url<|docstring|>Sets the attribute value of api base url<|endoftext|>
23965edca5b4f73d5b8faed8f8116ce21904cfa6fa53a4843e52abc3d9cb93a4
@property def mime_json(self): '\n Sets the attribute value of mime json\n ' return self.__mime_json
Sets the attribute value of mime json
mercadopago/config/config.py
mime_json
mercadopago/sdk-python
100
python
@property def mime_json(self): '\n \n ' return self.__mime_json
@property def mime_json(self): '\n \n ' return self.__mime_json<|docstring|>Sets the attribute value of mime json<|endoftext|>
17a65bb566939797083b8c979ec9782cbc8c59dbec9dcf06b391d38045856188
@property def mime_form(self): '\n Sets the attribute value of mime form\n ' return self.__mime_form
Sets the attribute value of mime form
mercadopago/config/config.py
mime_form
mercadopago/sdk-python
100
python
@property def mime_form(self): '\n \n ' return self.__mime_form
@property def mime_form(self): '\n \n ' return self.__mime_form<|docstring|>Sets the attribute value of mime form<|endoftext|>
01331f06f1e6efa5f547a5c81bb47baf46ca587bbd9fb41fe40f8d02fd1100a0
@classmethod def filter_create_attributes(cls, network, context): 'Filter out network attributes not required for a create.' odl_utils.try_del(network, ['status', 'subnets']) cls._filter_unmapped_null(network, cls._UNMAPPED_KEYS)
Filter out network attributes not required for a create.
networking_odl/ml2/mech_driver.py
filter_create_attributes
gokarslan/networking-odl2
0
python
@classmethod def filter_create_attributes(cls, network, context): odl_utils.try_del(network, ['status', 'subnets']) cls._filter_unmapped_null(network, cls._UNMAPPED_KEYS)
@classmethod def filter_create_attributes(cls, network, context): odl_utils.try_del(network, ['status', 'subnets']) cls._filter_unmapped_null(network, cls._UNMAPPED_KEYS)<|docstring|>Filter out network attributes not required for a create.<|endoftext|>
4eb081855307b3d2c65078a4b13f96af7b4954ca02e2cd71d5cadabfe3ed2d01
@classmethod def filter_update_attributes(cls, network, context): 'Filter out network attributes for an update operation.' odl_utils.try_del(network, ['id', 'status', 'subnets', 'tenant_id']) cls._filter_unmapped_null(network, cls._UNMAPPED_KEYS)
Filter out network attributes for an update operation.
networking_odl/ml2/mech_driver.py
filter_update_attributes
gokarslan/networking-odl2
0
python
@classmethod def filter_update_attributes(cls, network, context): odl_utils.try_del(network, ['id', 'status', 'subnets', 'tenant_id']) cls._filter_unmapped_null(network, cls._UNMAPPED_KEYS)
@classmethod def filter_update_attributes(cls, network, context): odl_utils.try_del(network, ['id', 'status', 'subnets', 'tenant_id']) cls._filter_unmapped_null(network, cls._UNMAPPED_KEYS)<|docstring|>Filter out network attributes for an update operation.<|endoftext|>
4e68229fea21f769a64c3d869ddb45855b5412085c80ebb25200c69e2cc466ef
@classmethod def filter_create_attributes(cls, subnet, context): 'Filter out subnet attributes not required for a create.' cls._filter_unmapped_null(subnet, cls._UNMAPPED_KEYS)
Filter out subnet attributes not required for a create.
networking_odl/ml2/mech_driver.py
filter_create_attributes
gokarslan/networking-odl2
0
python
@classmethod def filter_create_attributes(cls, subnet, context): cls._filter_unmapped_null(subnet, cls._UNMAPPED_KEYS)
@classmethod def filter_create_attributes(cls, subnet, context): cls._filter_unmapped_null(subnet, cls._UNMAPPED_KEYS)<|docstring|>Filter out subnet attributes not required for a create.<|endoftext|>
9a15849db7079e3b4796f9fe35629b3f0f306a0faa5baf73aa531f6d34f4811a
@classmethod def filter_update_attributes(cls, subnet, context): 'Filter out subnet attributes for an update operation.' odl_utils.try_del(subnet, ['id', 'network_id', 'ip_version', 'cidr', 'allocation_pools', 'tenant_id']) cls._filter_unmapped_null(subnet, cls._UNMAPPED_KEYS)
Filter out subnet attributes for an update operation.
networking_odl/ml2/mech_driver.py
filter_update_attributes
gokarslan/networking-odl2
0
python
@classmethod def filter_update_attributes(cls, subnet, context): odl_utils.try_del(subnet, ['id', 'network_id', 'ip_version', 'cidr', 'allocation_pools', 'tenant_id']) cls._filter_unmapped_null(subnet, cls._UNMAPPED_KEYS)
@classmethod def filter_update_attributes(cls, subnet, context): odl_utils.try_del(subnet, ['id', 'network_id', 'ip_version', 'cidr', 'allocation_pools', 'tenant_id']) cls._filter_unmapped_null(subnet, cls._UNMAPPED_KEYS)<|docstring|>Filter out subnet attributes for an update operation.<|endoftext|>
5b8cb39b3112d4c31580820fc8a891a9381447b51fb15d6d9c99999c1d3e1c04
@staticmethod def _add_security_groups(port, context): "Populate the 'security_groups' field with entire records." dbcontext = context._plugin_context groups = [context._plugin.get_security_group(dbcontext, sg) for sg in port['security_groups']] port['security_groups'] = groups
Populate the 'security_groups' field with entire records.
networking_odl/ml2/mech_driver.py
_add_security_groups
gokarslan/networking-odl2
0
python
@staticmethod def _add_security_groups(port, context): dbcontext = context._plugin_context groups = [context._plugin.get_security_group(dbcontext, sg) for sg in port['security_groups']] port['security_groups'] = groups
@staticmethod def _add_security_groups(port, context): dbcontext = context._plugin_context groups = [context._plugin.get_security_group(dbcontext, sg) for sg in port['security_groups']] port['security_groups'] = groups<|docstring|>Populate the 'security_groups' field with entire records.<|endoftext|>
5034ae4f389fe38f63ebaa758db027a6a629354655568cb08c5303bbbb0b61cd
@classmethod def _fixup_allowed_ipaddress_pairs(cls, allowed_address_pairs): 'unify (ip address or network address) into network address' for address_pair in allowed_address_pairs: ip_address = address_pair['ip_address'] network_address = str(netaddr.IPNetwork(ip_address)) address_pair['ip_address'] = network_address
unify (ip address or network address) into network address
networking_odl/ml2/mech_driver.py
_fixup_allowed_ipaddress_pairs
gokarslan/networking-odl2
0
python
@classmethod def _fixup_allowed_ipaddress_pairs(cls, allowed_address_pairs): for address_pair in allowed_address_pairs: ip_address = address_pair['ip_address'] network_address = str(netaddr.IPNetwork(ip_address)) address_pair['ip_address'] = network_address
@classmethod def _fixup_allowed_ipaddress_pairs(cls, allowed_address_pairs): for address_pair in allowed_address_pairs: ip_address = address_pair['ip_address'] network_address = str(netaddr.IPNetwork(ip_address)) address_pair['ip_address'] = network_address<|docstring|>unify (ip address or network address) into network address<|endoftext|>
a74295e843628c8d17d1a123a1a92dd1736864485236e6479fb444394c67b7df
@classmethod def filter_create_attributes(cls, port, context): 'Filter out port attributes not required for a create.' cls._add_security_groups(port, context) cls._fixup_allowed_ipaddress_pairs(port[addr_apidef.ADDRESS_PAIRS]) cls._filter_unmapped_null(port, cls._UNMAPPED_KEYS) odl_utils.try_del(port, ['status']) if (port['tenant_id'] == ''): LOG.debug('empty string was passed for tenant_id: %s(port)', port) port['tenant_id'] = context._network_context._network['tenant_id']
Filter out port attributes not required for a create.
networking_odl/ml2/mech_driver.py
filter_create_attributes
gokarslan/networking-odl2
0
python
@classmethod def filter_create_attributes(cls, port, context): cls._add_security_groups(port, context) cls._fixup_allowed_ipaddress_pairs(port[addr_apidef.ADDRESS_PAIRS]) cls._filter_unmapped_null(port, cls._UNMAPPED_KEYS) odl_utils.try_del(port, ['status']) if (port['tenant_id'] == ): LOG.debug('empty string was passed for tenant_id: %s(port)', port) port['tenant_id'] = context._network_context._network['tenant_id']
@classmethod def filter_create_attributes(cls, port, context): cls._add_security_groups(port, context) cls._fixup_allowed_ipaddress_pairs(port[addr_apidef.ADDRESS_PAIRS]) cls._filter_unmapped_null(port, cls._UNMAPPED_KEYS) odl_utils.try_del(port, ['status']) if (port['tenant_id'] == ): LOG.debug('empty string was passed for tenant_id: %s(port)', port) port['tenant_id'] = context._network_context._network['tenant_id']<|docstring|>Filter out port attributes not required for a create.<|endoftext|>
05007d1cda65b1f294e31bb12d72f281ffd77c1577a9fd2017660bbd45c745fc
@classmethod def filter_update_attributes(cls, port, context): 'Filter out port attributes for an update operation.' cls._add_security_groups(port, context) cls._fixup_allowed_ipaddress_pairs(port[addr_apidef.ADDRESS_PAIRS]) cls._filter_unmapped_null(port, cls._UNMAPPED_KEYS) odl_utils.try_del(port, ['network_id', 'id', 'status', 'tenant_id'])
Filter out port attributes for an update operation.
networking_odl/ml2/mech_driver.py
filter_update_attributes
gokarslan/networking-odl2
0
python
@classmethod def filter_update_attributes(cls, port, context): cls._add_security_groups(port, context) cls._fixup_allowed_ipaddress_pairs(port[addr_apidef.ADDRESS_PAIRS]) cls._filter_unmapped_null(port, cls._UNMAPPED_KEYS) odl_utils.try_del(port, ['network_id', 'id', 'status', 'tenant_id'])
@classmethod def filter_update_attributes(cls, port, context): cls._add_security_groups(port, context) cls._fixup_allowed_ipaddress_pairs(port[addr_apidef.ADDRESS_PAIRS]) cls._filter_unmapped_null(port, cls._UNMAPPED_KEYS) odl_utils.try_del(port, ['network_id', 'id', 'status', 'tenant_id'])<|docstring|>Filter out port attributes for an update operation.<|endoftext|>
a3b185267153c5290e4f676dd8d4897967568404c09998b776a9c3fab811560d
@staticmethod def filter_create_attributes(sg, context): 'Filter out security-group attributes not required for a create.' pass
Filter out security-group attributes not required for a create.
networking_odl/ml2/mech_driver.py
filter_create_attributes
gokarslan/networking-odl2
0
python
@staticmethod def filter_create_attributes(sg, context): pass
@staticmethod def filter_create_attributes(sg, context): pass<|docstring|>Filter out security-group attributes not required for a create.<|endoftext|>
73ea8a71c5c2d1fb6d4bdcb8bade549a322f11fc7679e8e4b6b6406b718dc60d
@staticmethod def filter_update_attributes(sg, context): 'Filter out security-group attributes for an update operation.' pass
Filter out security-group attributes for an update operation.
networking_odl/ml2/mech_driver.py
filter_update_attributes
gokarslan/networking-odl2
0
python
@staticmethod def filter_update_attributes(sg, context): pass
@staticmethod def filter_update_attributes(sg, context): pass<|docstring|>Filter out security-group attributes for an update operation.<|endoftext|>
bcf764df41173aa519a25744a2d824bf9f03f27a1a42eb981a4e7df8daac5339
@staticmethod def filter_create_attributes(sg_rule, context): 'Filter out sg-rule attributes not required for a create.' filters.filter_security_group_rule(sg_rule)
Filter out sg-rule attributes not required for a create.
networking_odl/ml2/mech_driver.py
filter_create_attributes
gokarslan/networking-odl2
0
python
@staticmethod def filter_create_attributes(sg_rule, context): filters.filter_security_group_rule(sg_rule)
@staticmethod def filter_create_attributes(sg_rule, context): filters.filter_security_group_rule(sg_rule)<|docstring|>Filter out sg-rule attributes not required for a create.<|endoftext|>
3716cec40d67121ff9d4d5b85af82d6df81d1a362aee8f9ab3e0cb22eca745a0
@staticmethod def filter_update_attributes(sg_rule, context): 'Filter out sg-rule attributes for an update operation.' filters.filter_security_group_rule(sg_rule)
Filter out sg-rule attributes for an update operation.
networking_odl/ml2/mech_driver.py
filter_update_attributes
gokarslan/networking-odl2
0
python
@staticmethod def filter_update_attributes(sg_rule, context): filters.filter_security_group_rule(sg_rule)
@staticmethod def filter_update_attributes(sg_rule, context): filters.filter_security_group_rule(sg_rule)<|docstring|>Filter out sg-rule attributes for an update operation.<|endoftext|>
9eda935d210b71f4219f192fee9d137a62b4f7590039b7646a37b8c09d0b2476
def synchronize(self, operation, object_type, context): 'Synchronize ODL with Neutron following a configuration change.' if self.out_of_sync: self.sync_full(context._plugin) if (operation in [odl_const.ODL_UPDATE, odl_const.ODL_DELETE]): self.sync_single_resource(operation, object_type, context) else: self.sync_single_resource(operation, object_type, context)
Synchronize ODL with Neutron following a configuration change.
networking_odl/ml2/mech_driver.py
synchronize
gokarslan/networking-odl2
0
python
def synchronize(self, operation, object_type, context): if self.out_of_sync: self.sync_full(context._plugin) if (operation in [odl_const.ODL_UPDATE, odl_const.ODL_DELETE]): self.sync_single_resource(operation, object_type, context) else: self.sync_single_resource(operation, object_type, context)
def synchronize(self, operation, object_type, context): if self.out_of_sync: self.sync_full(context._plugin) if (operation in [odl_const.ODL_UPDATE, odl_const.ODL_DELETE]): self.sync_single_resource(operation, object_type, context) else: self.sync_single_resource(operation, object_type, context)<|docstring|>Synchronize ODL with Neutron following a configuration change.<|endoftext|>
cf2826bb0a80aba57cbc643dc6c7eb64f88480874a2c6883acd6af42cdf14277
def sync_resources(self, plugin, dbcontext, collection_name): 'Sync objects from Neutron over to OpenDaylight.\n\n This will handle syncing networks, subnets, and ports from Neutron to\n OpenDaylight. It also filters out the requisite items which are not\n valid for create API operations.\n ' filter_cls = self.FILTER_MAP[collection_name] to_be_synced = [] obj_getter = getattr(plugin, ('get_%s' % collection_name)) if (collection_name == odl_const.ODL_SGS): resources = obj_getter(dbcontext, default_sg=True) else: resources = obj_getter(dbcontext) for resource in resources: try: collection_name_url = odl_utils.neutronify(collection_name) urlpath = ((collection_name_url + '/') + resource['id']) self.client.sendjson('get', urlpath, None) except requests.exceptions.HTTPError as e: with excutils.save_and_reraise_exception() as ctx: if (e.response.status_code == requests.codes.not_found): filter_cls.filter_create_attributes_with_plugin(resource, plugin, dbcontext) to_be_synced.append(resource) ctx.reraise = False else: pass if to_be_synced: key = (collection_name[:(- 1)] if (len(to_be_synced) == 1) else collection_name) collection_name_url = odl_utils.neutronify(collection_name) self.client.sendjson('post', collection_name_url, {key: to_be_synced})
Sync objects from Neutron over to OpenDaylight. This will handle syncing networks, subnets, and ports from Neutron to OpenDaylight. It also filters out the requisite items which are not valid for create API operations.
networking_odl/ml2/mech_driver.py
sync_resources
gokarslan/networking-odl2
0
python
def sync_resources(self, plugin, dbcontext, collection_name): 'Sync objects from Neutron over to OpenDaylight.\n\n This will handle syncing networks, subnets, and ports from Neutron to\n OpenDaylight. It also filters out the requisite items which are not\n valid for create API operations.\n ' filter_cls = self.FILTER_MAP[collection_name] to_be_synced = [] obj_getter = getattr(plugin, ('get_%s' % collection_name)) if (collection_name == odl_const.ODL_SGS): resources = obj_getter(dbcontext, default_sg=True) else: resources = obj_getter(dbcontext) for resource in resources: try: collection_name_url = odl_utils.neutronify(collection_name) urlpath = ((collection_name_url + '/') + resource['id']) self.client.sendjson('get', urlpath, None) except requests.exceptions.HTTPError as e: with excutils.save_and_reraise_exception() as ctx: if (e.response.status_code == requests.codes.not_found): filter_cls.filter_create_attributes_with_plugin(resource, plugin, dbcontext) to_be_synced.append(resource) ctx.reraise = False else: pass if to_be_synced: key = (collection_name[:(- 1)] if (len(to_be_synced) == 1) else collection_name) collection_name_url = odl_utils.neutronify(collection_name) self.client.sendjson('post', collection_name_url, {key: to_be_synced})
def sync_resources(self, plugin, dbcontext, collection_name): 'Sync objects from Neutron over to OpenDaylight.\n\n This will handle syncing networks, subnets, and ports from Neutron to\n OpenDaylight. It also filters out the requisite items which are not\n valid for create API operations.\n ' filter_cls = self.FILTER_MAP[collection_name] to_be_synced = [] obj_getter = getattr(plugin, ('get_%s' % collection_name)) if (collection_name == odl_const.ODL_SGS): resources = obj_getter(dbcontext, default_sg=True) else: resources = obj_getter(dbcontext) for resource in resources: try: collection_name_url = odl_utils.neutronify(collection_name) urlpath = ((collection_name_url + '/') + resource['id']) self.client.sendjson('get', urlpath, None) except requests.exceptions.HTTPError as e: with excutils.save_and_reraise_exception() as ctx: if (e.response.status_code == requests.codes.not_found): filter_cls.filter_create_attributes_with_plugin(resource, plugin, dbcontext) to_be_synced.append(resource) ctx.reraise = False else: pass if to_be_synced: key = (collection_name[:(- 1)] if (len(to_be_synced) == 1) else collection_name) collection_name_url = odl_utils.neutronify(collection_name) self.client.sendjson('post', collection_name_url, {key: to_be_synced})<|docstring|>Sync objects from Neutron over to OpenDaylight. This will handle syncing networks, subnets, and ports from Neutron to OpenDaylight. It also filters out the requisite items which are not valid for create API operations.<|endoftext|>
92757af3305f47b06004e24db8f4e9f50dd9a56c9a1d837878bd5a9caeddde53
@runtime.synchronized('odl-sync-full') def sync_full(self, plugin): 'Resync the entire database to ODL.\n\n Transition to the in-sync state on success.\n Note: we only allow a single thread in here at a time.\n ' if (not self.out_of_sync): return dbcontext = neutron_context.get_admin_context() for collection_name in [odl_const.ODL_SGS, odl_const.ODL_SG_RULES, odl_const.ODL_NETWORKS, odl_const.ODL_SUBNETS, odl_const.ODL_PORTS]: self.sync_resources(plugin, dbcontext, collection_name) self.out_of_sync = False
Resync the entire database to ODL. Transition to the in-sync state on success. Note: we only allow a single thread in here at a time.
networking_odl/ml2/mech_driver.py
sync_full
gokarslan/networking-odl2
0
python
@runtime.synchronized('odl-sync-full') def sync_full(self, plugin): 'Resync the entire database to ODL.\n\n Transition to the in-sync state on success.\n Note: we only allow a single thread in here at a time.\n ' if (not self.out_of_sync): return dbcontext = neutron_context.get_admin_context() for collection_name in [odl_const.ODL_SGS, odl_const.ODL_SG_RULES, odl_const.ODL_NETWORKS, odl_const.ODL_SUBNETS, odl_const.ODL_PORTS]: self.sync_resources(plugin, dbcontext, collection_name) self.out_of_sync = False
@runtime.synchronized('odl-sync-full') def sync_full(self, plugin): 'Resync the entire database to ODL.\n\n Transition to the in-sync state on success.\n Note: we only allow a single thread in here at a time.\n ' if (not self.out_of_sync): return dbcontext = neutron_context.get_admin_context() for collection_name in [odl_const.ODL_SGS, odl_const.ODL_SG_RULES, odl_const.ODL_NETWORKS, odl_const.ODL_SUBNETS, odl_const.ODL_PORTS]: self.sync_resources(plugin, dbcontext, collection_name) self.out_of_sync = False<|docstring|>Resync the entire database to ODL. Transition to the in-sync state on success. Note: we only allow a single thread in here at a time.<|endoftext|>
742397cb8b8f7979a6eb3c5995543a9b56fef446db6f697e274555205a8730d2
def sync_single_resource(self, operation, object_type, context): 'Sync over a single resource from Neutron to OpenDaylight.\n\n Handle syncing a single operation over to OpenDaylight, and correctly\n filter attributes out which are not required for the requisite\n operation (create or update) being handled.\n ' object_type_url = odl_utils.neutronify(object_type) try: obj_id = context.current['id'] if (operation == odl_const.ODL_DELETE): self.out_of_sync |= (not self.client.try_delete(((object_type_url + '/') + obj_id))) else: filter_cls = self.FILTER_MAP[object_type] if (operation == odl_const.ODL_CREATE): urlpath = object_type_url method = 'post' attr_filter = filter_cls.filter_create_attributes elif (operation == odl_const.ODL_UPDATE): urlpath = ((object_type_url + '/') + obj_id) method = 'put' attr_filter = filter_cls.filter_update_attributes resource = copy.deepcopy(context.current) attr_filter(resource, context) self.client.sendjson(method, urlpath, {object_type_url[:(- 1)]: resource}) except Exception: with excutils.save_and_reraise_exception(): LOG.error('Unable to perform %(operation)s on %(object_type)s %(object_id)s', {'operation': operation, 'object_type': object_type, 'object_id': obj_id}) self.out_of_sync = True
Sync over a single resource from Neutron to OpenDaylight. Handle syncing a single operation over to OpenDaylight, and correctly filter attributes out which are not required for the requisite operation (create or update) being handled.
networking_odl/ml2/mech_driver.py
sync_single_resource
gokarslan/networking-odl2
0
python
def sync_single_resource(self, operation, object_type, context): 'Sync over a single resource from Neutron to OpenDaylight.\n\n Handle syncing a single operation over to OpenDaylight, and correctly\n filter attributes out which are not required for the requisite\n operation (create or update) being handled.\n ' object_type_url = odl_utils.neutronify(object_type) try: obj_id = context.current['id'] if (operation == odl_const.ODL_DELETE): self.out_of_sync |= (not self.client.try_delete(((object_type_url + '/') + obj_id))) else: filter_cls = self.FILTER_MAP[object_type] if (operation == odl_const.ODL_CREATE): urlpath = object_type_url method = 'post' attr_filter = filter_cls.filter_create_attributes elif (operation == odl_const.ODL_UPDATE): urlpath = ((object_type_url + '/') + obj_id) method = 'put' attr_filter = filter_cls.filter_update_attributes resource = copy.deepcopy(context.current) attr_filter(resource, context) self.client.sendjson(method, urlpath, {object_type_url[:(- 1)]: resource}) except Exception: with excutils.save_and_reraise_exception(): LOG.error('Unable to perform %(operation)s on %(object_type)s %(object_id)s', {'operation': operation, 'object_type': object_type, 'object_id': obj_id}) self.out_of_sync = True
def sync_single_resource(self, operation, object_type, context): 'Sync over a single resource from Neutron to OpenDaylight.\n\n Handle syncing a single operation over to OpenDaylight, and correctly\n filter attributes out which are not required for the requisite\n operation (create or update) being handled.\n ' object_type_url = odl_utils.neutronify(object_type) try: obj_id = context.current['id'] if (operation == odl_const.ODL_DELETE): self.out_of_sync |= (not self.client.try_delete(((object_type_url + '/') + obj_id))) else: filter_cls = self.FILTER_MAP[object_type] if (operation == odl_const.ODL_CREATE): urlpath = object_type_url method = 'post' attr_filter = filter_cls.filter_create_attributes elif (operation == odl_const.ODL_UPDATE): urlpath = ((object_type_url + '/') + obj_id) method = 'put' attr_filter = filter_cls.filter_update_attributes resource = copy.deepcopy(context.current) attr_filter(resource, context) self.client.sendjson(method, urlpath, {object_type_url[:(- 1)]: resource}) except Exception: with excutils.save_and_reraise_exception(): LOG.error('Unable to perform %(operation)s on %(object_type)s %(object_id)s', {'operation': operation, 'object_type': object_type, 'object_id': obj_id}) self.out_of_sync = True<|docstring|>Sync over a single resource from Neutron to OpenDaylight. Handle syncing a single operation over to OpenDaylight, and correctly filter attributes out which are not required for the requisite operation (create or update) being handled.<|endoftext|>
6f58516908296ab0629c5d22aff05c7df5f3f01ae220d269a009c955d60b1785
def bind_port(self, port_context): 'Set binding for a valid segments\n\n ' self.port_binding_controller.bind_port(port_context)
Set binding for a valid segments
networking_odl/ml2/mech_driver.py
bind_port
gokarslan/networking-odl2
0
python
def bind_port(self, port_context): '\n\n ' self.port_binding_controller.bind_port(port_context)
def bind_port(self, port_context): '\n\n ' self.port_binding_controller.bind_port(port_context)<|docstring|>Set binding for a valid segments<|endoftext|>
c0b862eb53523ac7f0d3286cb85636e240f785df02d079098a779489138ddbf3
def check_vlan_transparency(self, context): 'Check VLAN transparency\n\n ' VLAN_TRANSPARENT_NETWORK_TYPES = [p_const.TYPE_VXLAN] network = context.current if (providernet.NETWORK_TYPE in network): return (network[providernet.NETWORK_TYPE] in VLAN_TRANSPARENT_NETWORK_TYPES) segments = network.get(mpnet.SEGMENTS) if (segments is None): return True return all(((segment[providernet.NETWORK_TYPE] in VLAN_TRANSPARENT_NETWORK_TYPES) for segment in segments))
Check VLAN transparency
networking_odl/ml2/mech_driver.py
check_vlan_transparency
gokarslan/networking-odl2
0
python
def check_vlan_transparency(self, context): '\n\n ' VLAN_TRANSPARENT_NETWORK_TYPES = [p_const.TYPE_VXLAN] network = context.current if (providernet.NETWORK_TYPE in network): return (network[providernet.NETWORK_TYPE] in VLAN_TRANSPARENT_NETWORK_TYPES) segments = network.get(mpnet.SEGMENTS) if (segments is None): return True return all(((segment[providernet.NETWORK_TYPE] in VLAN_TRANSPARENT_NETWORK_TYPES) for segment in segments))
def check_vlan_transparency(self, context): '\n\n ' VLAN_TRANSPARENT_NETWORK_TYPES = [p_const.TYPE_VXLAN] network = context.current if (providernet.NETWORK_TYPE in network): return (network[providernet.NETWORK_TYPE] in VLAN_TRANSPARENT_NETWORK_TYPES) segments = network.get(mpnet.SEGMENTS) if (segments is None): return True return all(((segment[providernet.NETWORK_TYPE] in VLAN_TRANSPARENT_NETWORK_TYPES) for segment in segments))<|docstring|>Check VLAN transparency<|endoftext|>
f7344443ffd67771fcb651f6c0bc8dd0a619e6bffa634a8fed2838c7c61b8f4c
def setUp(self): 'Set up test fixtures' self.options = {'c1': 0.5, 'c2': 0.7, 'w': 0.5, 'k': 2, 'p': 2} self.safe_bounds = (np.array([(- 5), (- 5)]), np.array([5, 5])) self.optimizer = LocalBestPSO(10, 2, options=self.options)
Set up test fixtures
tests/optimizers/test_local_best.py
setUp
ahcantao/pyswarms
0
python
def setUp(self): self.options = {'c1': 0.5, 'c2': 0.7, 'w': 0.5, 'k': 2, 'p': 2} self.safe_bounds = (np.array([(- 5), (- 5)]), np.array([5, 5])) self.optimizer = LocalBestPSO(10, 2, options=self.options)
def setUp(self): self.options = {'c1': 0.5, 'c2': 0.7, 'w': 0.5, 'k': 2, 'p': 2} self.safe_bounds = (np.array([(- 5), (- 5)]), np.array([5, 5])) self.optimizer = LocalBestPSO(10, 2, options=self.options)<|docstring|>Set up test fixtures<|endoftext|>
96c70d2963c45981f275d89ebf0c775614a66c08859820fbdd41c2445043cb24
def test_keyword_check_fail(self): 'Tests if exceptions are thrown when keywords are missing' check_c1 = {'c2': 0.7, 'w': 0.5, 'k': 2, 'p': 2} check_c2 = {'c1': 0.5, 'w': 0.5, 'k': 2, 'p': 2} check_m = {'c1': 0.5, 'c2': 0.7, 'k': 2, 'p': 2} check_k = {'c1': 0.5, 'c2': 0.7, 'w': 0.5, 'p': 2} check_p = {'c1': 0.5, 'c2': 0.7, 'w': 0.5, 'k': 2} with self.assertRaises(KeyError): optimizer = LocalBestPSO(5, 2, options=check_c1) with self.assertRaises(KeyError): optimizer = LocalBestPSO(5, 2, options=check_c2) with self.assertRaises(KeyError): optimizer = LocalBestPSO(5, 2, options=check_m) with self.assertRaises(KeyError): optimizer = LocalBestPSO(5, 2, options=check_k) with self.assertRaises(KeyError): optimizer = LocalBestPSO(5, 2, options=check_p)
Tests if exceptions are thrown when keywords are missing
tests/optimizers/test_local_best.py
test_keyword_check_fail
ahcantao/pyswarms
0
python
def test_keyword_check_fail(self): check_c1 = {'c2': 0.7, 'w': 0.5, 'k': 2, 'p': 2} check_c2 = {'c1': 0.5, 'w': 0.5, 'k': 2, 'p': 2} check_m = {'c1': 0.5, 'c2': 0.7, 'k': 2, 'p': 2} check_k = {'c1': 0.5, 'c2': 0.7, 'w': 0.5, 'p': 2} check_p = {'c1': 0.5, 'c2': 0.7, 'w': 0.5, 'k': 2} with self.assertRaises(KeyError): optimizer = LocalBestPSO(5, 2, options=check_c1) with self.assertRaises(KeyError): optimizer = LocalBestPSO(5, 2, options=check_c2) with self.assertRaises(KeyError): optimizer = LocalBestPSO(5, 2, options=check_m) with self.assertRaises(KeyError): optimizer = LocalBestPSO(5, 2, options=check_k) with self.assertRaises(KeyError): optimizer = LocalBestPSO(5, 2, options=check_p)
def test_keyword_check_fail(self): check_c1 = {'c2': 0.7, 'w': 0.5, 'k': 2, 'p': 2} check_c2 = {'c1': 0.5, 'w': 0.5, 'k': 2, 'p': 2} check_m = {'c1': 0.5, 'c2': 0.7, 'k': 2, 'p': 2} check_k = {'c1': 0.5, 'c2': 0.7, 'w': 0.5, 'p': 2} check_p = {'c1': 0.5, 'c2': 0.7, 'w': 0.5, 'k': 2} with self.assertRaises(KeyError): optimizer = LocalBestPSO(5, 2, options=check_c1) with self.assertRaises(KeyError): optimizer = LocalBestPSO(5, 2, options=check_c2) with self.assertRaises(KeyError): optimizer = LocalBestPSO(5, 2, options=check_m) with self.assertRaises(KeyError): optimizer = LocalBestPSO(5, 2, options=check_k) with self.assertRaises(KeyError): optimizer = LocalBestPSO(5, 2, options=check_p)<|docstring|>Tests if exceptions are thrown when keywords are missing<|endoftext|>
ce500ec09d57e02b2bc8fbb1cac8c604c4df52747ceeca2468e9983263a13003
def test_bound_size_fail(self): 'Tests if exception is thrown when bound length is not 2' bounds = tuple(np.array([(- 5), (- 5)])) with self.assertRaises(IndexError): optimizer = LocalBestPSO(5, 2, bounds=bounds, options=self.options)
Tests if exception is thrown when bound length is not 2
tests/optimizers/test_local_best.py
test_bound_size_fail
ahcantao/pyswarms
0
python
def test_bound_size_fail(self): bounds = tuple(np.array([(- 5), (- 5)])) with self.assertRaises(IndexError): optimizer = LocalBestPSO(5, 2, bounds=bounds, options=self.options)
def test_bound_size_fail(self): bounds = tuple(np.array([(- 5), (- 5)])) with self.assertRaises(IndexError): optimizer = LocalBestPSO(5, 2, bounds=bounds, options=self.options)<|docstring|>Tests if exception is thrown when bound length is not 2<|endoftext|>
aefadaa1a03004543334cc320acdce92272e25ab61a888940d4072cde6670cbc
def test_bound_type_fail(self): 'Tests if exception is thrown when bound type is not tuple' bounds = [np.array([(- 5), (- 5)]), np.array([5, 5])] with self.assertRaises(TypeError): optimizer = LocalBestPSO(5, 2, bounds=bounds, options=self.options)
Tests if exception is thrown when bound type is not tuple
tests/optimizers/test_local_best.py
test_bound_type_fail
ahcantao/pyswarms
0
python
def test_bound_type_fail(self): bounds = [np.array([(- 5), (- 5)]), np.array([5, 5])] with self.assertRaises(TypeError): optimizer = LocalBestPSO(5, 2, bounds=bounds, options=self.options)
def test_bound_type_fail(self): bounds = [np.array([(- 5), (- 5)]), np.array([5, 5])] with self.assertRaises(TypeError): optimizer = LocalBestPSO(5, 2, bounds=bounds, options=self.options)<|docstring|>Tests if exception is thrown when bound type is not tuple<|endoftext|>
211dcc619425fe6b77b56002f0c6955a6855158c4170455fdb5064c3b011a351
def test_bound_maxmin_fail(self): 'Tests if exception is thrown when min max of the bound is\n wrong.' bounds_1 = (np.array([5, 5]), np.array([(- 5), (- 5)])) bounds_2 = (np.array([5, (- 5)]), np.array([(- 5), 5])) with self.assertRaises(ValueError): optimizer = LocalBestPSO(5, 2, bounds=bounds_1, options=self.options) with self.assertRaises(ValueError): optimizer = LocalBestPSO(5, 2, bounds=bounds_2, options=self.options)
Tests if exception is thrown when min max of the bound is wrong.
tests/optimizers/test_local_best.py
test_bound_maxmin_fail
ahcantao/pyswarms
0
python
def test_bound_maxmin_fail(self): 'Tests if exception is thrown when min max of the bound is\n wrong.' bounds_1 = (np.array([5, 5]), np.array([(- 5), (- 5)])) bounds_2 = (np.array([5, (- 5)]), np.array([(- 5), 5])) with self.assertRaises(ValueError): optimizer = LocalBestPSO(5, 2, bounds=bounds_1, options=self.options) with self.assertRaises(ValueError): optimizer = LocalBestPSO(5, 2, bounds=bounds_2, options=self.options)
def test_bound_maxmin_fail(self): 'Tests if exception is thrown when min max of the bound is\n wrong.' bounds_1 = (np.array([5, 5]), np.array([(- 5), (- 5)])) bounds_2 = (np.array([5, (- 5)]), np.array([(- 5), 5])) with self.assertRaises(ValueError): optimizer = LocalBestPSO(5, 2, bounds=bounds_1, options=self.options) with self.assertRaises(ValueError): optimizer = LocalBestPSO(5, 2, bounds=bounds_2, options=self.options)<|docstring|>Tests if exception is thrown when min max of the bound is wrong.<|endoftext|>
f8ed45ae329f8d1e3bb705ce0d23a4807a7d963dc1c6e2936532f814328be5b7
def test_bound_shapes_fail(self): 'Tests if exception is thrown when bounds are of unequal\n shapes.' bounds = (np.array([(- 5), (- 5), (- 5)]), np.array([5, 5])) with self.assertRaises(IndexError): optimizer = LocalBestPSO(5, 2, bounds=bounds, options=self.options)
Tests if exception is thrown when bounds are of unequal shapes.
tests/optimizers/test_local_best.py
test_bound_shapes_fail
ahcantao/pyswarms
0
python
def test_bound_shapes_fail(self): 'Tests if exception is thrown when bounds are of unequal\n shapes.' bounds = (np.array([(- 5), (- 5), (- 5)]), np.array([5, 5])) with self.assertRaises(IndexError): optimizer = LocalBestPSO(5, 2, bounds=bounds, options=self.options)
def test_bound_shapes_fail(self): 'Tests if exception is thrown when bounds are of unequal\n shapes.' bounds = (np.array([(- 5), (- 5), (- 5)]), np.array([5, 5])) with self.assertRaises(IndexError): optimizer = LocalBestPSO(5, 2, bounds=bounds, options=self.options)<|docstring|>Tests if exception is thrown when bounds are of unequal shapes.<|endoftext|>
315188ad65f16eb34289b8384e9e5d2b2aef2f709c3ebed39ad566702c6b96c3
def test_bound_shape_dims_fail(self): 'Tests if exception is thrown when bound shape is not equal\n to dimensions.' bounds = (np.array([(- 5), (- 5), (- 5)]), np.array([5, 5, 5])) with self.assertRaises(IndexError): optimizer = LocalBestPSO(5, 2, bounds=bounds, options=self.options)
Tests if exception is thrown when bound shape is not equal to dimensions.
tests/optimizers/test_local_best.py
test_bound_shape_dims_fail
ahcantao/pyswarms
0
python
def test_bound_shape_dims_fail(self): 'Tests if exception is thrown when bound shape is not equal\n to dimensions.' bounds = (np.array([(- 5), (- 5), (- 5)]), np.array([5, 5, 5])) with self.assertRaises(IndexError): optimizer = LocalBestPSO(5, 2, bounds=bounds, options=self.options)
def test_bound_shape_dims_fail(self): 'Tests if exception is thrown when bound shape is not equal\n to dimensions.' bounds = (np.array([(- 5), (- 5), (- 5)]), np.array([5, 5, 5])) with self.assertRaises(IndexError): optimizer = LocalBestPSO(5, 2, bounds=bounds, options=self.options)<|docstring|>Tests if exception is thrown when bound shape is not equal to dimensions.<|endoftext|>
539b26db3cb9ed67529aef0deb1e3b9788c6c832e62744568bb8303d03b949b5
def test_k_fail(self): 'Tests if exception is thrown when feeding an invalid k.' k_less_than_min = {'c1': 0.5, 'c2': 0.7, 'w': 0.5, 'k': (- 1), 'p': 2} k_more_than_max = {'c1': 0.5, 'c2': 0.7, 'w': 0.5, 'k': 6, 'p': 2} with self.assertRaises(ValueError): optimizer = LocalBestPSO(5, 2, bounds=self.safe_bounds, options=k_less_than_min) with self.assertRaises(ValueError): optimizer = LocalBestPSO(5, 2, bounds=self.safe_bounds, options=k_more_than_max)
Tests if exception is thrown when feeding an invalid k.
tests/optimizers/test_local_best.py
test_k_fail
ahcantao/pyswarms
0
python
def test_k_fail(self): k_less_than_min = {'c1': 0.5, 'c2': 0.7, 'w': 0.5, 'k': (- 1), 'p': 2} k_more_than_max = {'c1': 0.5, 'c2': 0.7, 'w': 0.5, 'k': 6, 'p': 2} with self.assertRaises(ValueError): optimizer = LocalBestPSO(5, 2, bounds=self.safe_bounds, options=k_less_than_min) with self.assertRaises(ValueError): optimizer = LocalBestPSO(5, 2, bounds=self.safe_bounds, options=k_more_than_max)
def test_k_fail(self): k_less_than_min = {'c1': 0.5, 'c2': 0.7, 'w': 0.5, 'k': (- 1), 'p': 2} k_more_than_max = {'c1': 0.5, 'c2': 0.7, 'w': 0.5, 'k': 6, 'p': 2} with self.assertRaises(ValueError): optimizer = LocalBestPSO(5, 2, bounds=self.safe_bounds, options=k_less_than_min) with self.assertRaises(ValueError): optimizer = LocalBestPSO(5, 2, bounds=self.safe_bounds, options=k_more_than_max)<|docstring|>Tests if exception is thrown when feeding an invalid k.<|endoftext|>
f882520055fc01730a5b63f1c3d6c9b59f17264ef0af9075d4c864f661162cdb
def test_p_fail(self): 'Tests if exception is thrown when feeding an invalid p.' p_fail = {'c1': 0.5, 'c2': 0.7, 'w': 0.5, 'k': 2, 'p': 5} with self.assertRaises(ValueError): optimizer = LocalBestPSO(5, 2, options=p_fail)
Tests if exception is thrown when feeding an invalid p.
tests/optimizers/test_local_best.py
test_p_fail
ahcantao/pyswarms
0
python
def test_p_fail(self): p_fail = {'c1': 0.5, 'c2': 0.7, 'w': 0.5, 'k': 2, 'p': 5} with self.assertRaises(ValueError): optimizer = LocalBestPSO(5, 2, options=p_fail)
def test_p_fail(self): p_fail = {'c1': 0.5, 'c2': 0.7, 'w': 0.5, 'k': 2, 'p': 5} with self.assertRaises(ValueError): optimizer = LocalBestPSO(5, 2, options=p_fail)<|docstring|>Tests if exception is thrown when feeding an invalid p.<|endoftext|>
30b7437327ebad3e46c1cc93e228fd90f36b5ce5c976472980b4cf291e8fee4f
def test_vclamp_type_fail(self): 'Tests if exception is thrown when velocity_clamp is not a tuple.' velocity_clamp = [1, 3] with self.assertRaises(TypeError): optimizer = LocalBestPSO(5, 2, velocity_clamp=velocity_clamp, options=self.options)
Tests if exception is thrown when velocity_clamp is not a tuple.
tests/optimizers/test_local_best.py
test_vclamp_type_fail
ahcantao/pyswarms
0
python
def test_vclamp_type_fail(self): velocity_clamp = [1, 3] with self.assertRaises(TypeError): optimizer = LocalBestPSO(5, 2, velocity_clamp=velocity_clamp, options=self.options)
def test_vclamp_type_fail(self): velocity_clamp = [1, 3] with self.assertRaises(TypeError): optimizer = LocalBestPSO(5, 2, velocity_clamp=velocity_clamp, options=self.options)<|docstring|>Tests if exception is thrown when velocity_clamp is not a tuple.<|endoftext|>
16add44400dbcbefe0c5c6d8cd9498130d193f6d4a378b89bcf423711024bd78
def test_vclamp_shape_fail(self): 'Tests if exception is thrown when velocity_clamp is not equal to 2' velocity_clamp = (1, 1, 1) with self.assertRaises(IndexError): optimizer = LocalBestPSO(5, 2, velocity_clamp=velocity_clamp, options=self.options)
Tests if exception is thrown when velocity_clamp is not equal to 2
tests/optimizers/test_local_best.py
test_vclamp_shape_fail
ahcantao/pyswarms
0
python
def test_vclamp_shape_fail(self): velocity_clamp = (1, 1, 1) with self.assertRaises(IndexError): optimizer = LocalBestPSO(5, 2, velocity_clamp=velocity_clamp, options=self.options)
def test_vclamp_shape_fail(self): velocity_clamp = (1, 1, 1) with self.assertRaises(IndexError): optimizer = LocalBestPSO(5, 2, velocity_clamp=velocity_clamp, options=self.options)<|docstring|>Tests if exception is thrown when velocity_clamp is not equal to 2<|endoftext|>
826f942a8e848bf4a3f0771e09c49ce4769cb1b572ac79bab1e92d4972971222
def test_vclamp_minmax_fail(self): "Tests if exception is thrown when velocity_clamp's minmax is wrong" velocity_clamp = (3, 2) with self.assertRaises(ValueError): optimizer = LocalBestPSO(5, 2, velocity_clamp=velocity_clamp, options=self.options)
Tests if exception is thrown when velocity_clamp's minmax is wrong
tests/optimizers/test_local_best.py
test_vclamp_minmax_fail
ahcantao/pyswarms
0
python
def test_vclamp_minmax_fail(self): velocity_clamp = (3, 2) with self.assertRaises(ValueError): optimizer = LocalBestPSO(5, 2, velocity_clamp=velocity_clamp, options=self.options)
def test_vclamp_minmax_fail(self): velocity_clamp = (3, 2) with self.assertRaises(ValueError): optimizer = LocalBestPSO(5, 2, velocity_clamp=velocity_clamp, options=self.options)<|docstring|>Tests if exception is thrown when velocity_clamp's minmax is wrong<|endoftext|>
a9deb83dc04f6c553fc871dbd29dd97ff2716f36156e45550bd6da3244771454
def test_init_pos_type_fail(self): 'Tests if exception is thrown when init_pos is not a list.' init_pos = (0.1, 1.5) with self.assertRaises(TypeError): optimizer = LocalBestPSO(5, 2, init_pos=init_pos, options=self.options)
Tests if exception is thrown when init_pos is not a list.
tests/optimizers/test_local_best.py
test_init_pos_type_fail
ahcantao/pyswarms
0
python
def test_init_pos_type_fail(self): init_pos = (0.1, 1.5) with self.assertRaises(TypeError): optimizer = LocalBestPSO(5, 2, init_pos=init_pos, options=self.options)
def test_init_pos_type_fail(self): init_pos = (0.1, 1.5) with self.assertRaises(TypeError): optimizer = LocalBestPSO(5, 2, init_pos=init_pos, options=self.options)<|docstring|>Tests if exception is thrown when init_pos is not a list.<|endoftext|>
5ab632cdb081c54981c54869c8092db70dc0c524a2eb23a443ba4b436bea5b97
def test_init_pos_shape_fail(self): 'Tests if exception is thrown when init_pos dimension is not equal\n to dimensions' init_pos = [1.5, 3.2, 2.5] with self.assertRaises(IndexError): optimizer = LocalBestPSO(5, 2, init_pos=init_pos, options=self.options)
Tests if exception is thrown when init_pos dimension is not equal to dimensions
tests/optimizers/test_local_best.py
test_init_pos_shape_fail
ahcantao/pyswarms
0
python
def test_init_pos_shape_fail(self): 'Tests if exception is thrown when init_pos dimension is not equal\n to dimensions' init_pos = [1.5, 3.2, 2.5] with self.assertRaises(IndexError): optimizer = LocalBestPSO(5, 2, init_pos=init_pos, options=self.options)
def test_init_pos_shape_fail(self): 'Tests if exception is thrown when init_pos dimension is not equal\n to dimensions' init_pos = [1.5, 3.2, 2.5] with self.assertRaises(IndexError): optimizer = LocalBestPSO(5, 2, init_pos=init_pos, options=self.options)<|docstring|>Tests if exception is thrown when init_pos dimension is not equal to dimensions<|endoftext|>
688acb81bc4b102500c18f7e43e3813f09b4c400b664a63cc014a3c7ff807506
def test_reset_best_cost_inf(self): 'Tests if best cost is set to infinity when reset() is called' optimizer = LocalBestPSO(5, 2, options=self.options) optimizer.optimize(sphere_func, 100, verbose=0) optimizer.reset() self.assertEqual(optimizer.best_cost, np.inf)
Tests if best cost is set to infinity when reset() is called
tests/optimizers/test_local_best.py
test_reset_best_cost_inf
ahcantao/pyswarms
0
python
def test_reset_best_cost_inf(self): optimizer = LocalBestPSO(5, 2, options=self.options) optimizer.optimize(sphere_func, 100, verbose=0) optimizer.reset() self.assertEqual(optimizer.best_cost, np.inf)
def test_reset_best_cost_inf(self): optimizer = LocalBestPSO(5, 2, options=self.options) optimizer.optimize(sphere_func, 100, verbose=0) optimizer.reset() self.assertEqual(optimizer.best_cost, np.inf)<|docstring|>Tests if best cost is set to infinity when reset() is called<|endoftext|>
17618043161448b71ddd652b832d2f006f72a11e1116849fe7ef1fc27e45f0cb
def test_reset_best_pos_none(self): 'Tests if best pos is set to NoneType when reset() is called' optimizer = LocalBestPSO(5, 2, options=self.options) optimizer.optimize(sphere_func, 100, verbose=0) optimizer.reset() self.assertIsNone(optimizer.best_pos)
Tests if best pos is set to NoneType when reset() is called
tests/optimizers/test_local_best.py
test_reset_best_pos_none
ahcantao/pyswarms
0
python
def test_reset_best_pos_none(self): optimizer = LocalBestPSO(5, 2, options=self.options) optimizer.optimize(sphere_func, 100, verbose=0) optimizer.reset() self.assertIsNone(optimizer.best_pos)
def test_reset_best_pos_none(self): optimizer = LocalBestPSO(5, 2, options=self.options) optimizer.optimize(sphere_func, 100, verbose=0) optimizer.reset() self.assertIsNone(optimizer.best_pos)<|docstring|>Tests if best pos is set to NoneType when reset() is called<|endoftext|>
4a4e308dc51d299f98eeed524c50e7397956e07cb59d2b6e710d8ac7acf94cb3
def test_run_optimize(self): 'Perform a single run.' try: self.optimizer.optimize(sphere_func, 1000, verbose=0) trigger = True except: print('Execution failed.') trigger = False self.assertTrue(trigger)
Perform a single run.
tests/optimizers/test_local_best.py
test_run_optimize
ahcantao/pyswarms
0
python
def test_run_optimize(self): try: self.optimizer.optimize(sphere_func, 1000, verbose=0) trigger = True except: print('Execution failed.') trigger = False self.assertTrue(trigger)
def test_run_optimize(self): try: self.optimizer.optimize(sphere_func, 1000, verbose=0) trigger = True except: print('Execution failed.') trigger = False self.assertTrue(trigger)<|docstring|>Perform a single run.<|endoftext|>
1490fdfc6bccb3d2b0a09580bc57685caf1239e88c4a263a0e78b7a8054600ec
def test_cost_history_size(self): 'Check the size of the cost_history.' self.optimizer.optimize(sphere_func, 1000, verbose=0) cost_hist = self.optimizer.get_cost_history self.assertEqual(cost_hist.shape, (1000,))
Check the size of the cost_history.
tests/optimizers/test_local_best.py
test_cost_history_size
ahcantao/pyswarms
0
python
def test_cost_history_size(self): self.optimizer.optimize(sphere_func, 1000, verbose=0) cost_hist = self.optimizer.get_cost_history self.assertEqual(cost_hist.shape, (1000,))
def test_cost_history_size(self): self.optimizer.optimize(sphere_func, 1000, verbose=0) cost_hist = self.optimizer.get_cost_history self.assertEqual(cost_hist.shape, (1000,))<|docstring|>Check the size of the cost_history.<|endoftext|>
e75b428abbbba5c24d150945efc852aea48d5e53d617fdd91e176261863f9d61
def test_mean_pbest_history_size(self): 'Check the size of the mean_pbest_history.' self.optimizer.optimize(sphere_func, 1000, verbose=0) mean_pbest_hist = self.optimizer.get_mean_pbest_history self.assertEqual(mean_pbest_hist.shape, (1000,))
Check the size of the mean_pbest_history.
tests/optimizers/test_local_best.py
test_mean_pbest_history_size
ahcantao/pyswarms
0
python
def test_mean_pbest_history_size(self): self.optimizer.optimize(sphere_func, 1000, verbose=0) mean_pbest_hist = self.optimizer.get_mean_pbest_history self.assertEqual(mean_pbest_hist.shape, (1000,))
def test_mean_pbest_history_size(self): self.optimizer.optimize(sphere_func, 1000, verbose=0) mean_pbest_hist = self.optimizer.get_mean_pbest_history self.assertEqual(mean_pbest_hist.shape, (1000,))<|docstring|>Check the size of the mean_pbest_history.<|endoftext|>
ee8d3a78d7e73aefa04d7e3a13146fa48e0af81c2b722816270792c1c6dc73a0
def test_mean_neighbor_history_size(self): 'Check the size of the mean neighborhood history.' self.optimizer.optimize(sphere_func, 1000, verbose=0) mean_neighbor_hist = self.optimizer.get_mean_neighbor_history self.assertEqual(mean_neighbor_hist.shape, (1000,))
Check the size of the mean neighborhood history.
tests/optimizers/test_local_best.py
test_mean_neighbor_history_size
ahcantao/pyswarms
0
python
def test_mean_neighbor_history_size(self): self.optimizer.optimize(sphere_func, 1000, verbose=0) mean_neighbor_hist = self.optimizer.get_mean_neighbor_history self.assertEqual(mean_neighbor_hist.shape, (1000,))
def test_mean_neighbor_history_size(self): self.optimizer.optimize(sphere_func, 1000, verbose=0) mean_neighbor_hist = self.optimizer.get_mean_neighbor_history self.assertEqual(mean_neighbor_hist.shape, (1000,))<|docstring|>Check the size of the mean neighborhood history.<|endoftext|>
bb920536ca4d591c99bcc16208f36f1d2ce4eae3d81e6c4adfeb83561cdeade4
def test_pos_history_size(self): 'Check the size of the pos_history.' self.optimizer.optimize(sphere_func, 1000, verbose=0) pos_hist = self.optimizer.get_pos_history self.assertEqual(pos_hist.shape, (1000, 10, 2))
Check the size of the pos_history.
tests/optimizers/test_local_best.py
test_pos_history_size
ahcantao/pyswarms
0
python
def test_pos_history_size(self): self.optimizer.optimize(sphere_func, 1000, verbose=0) pos_hist = self.optimizer.get_pos_history self.assertEqual(pos_hist.shape, (1000, 10, 2))
def test_pos_history_size(self): self.optimizer.optimize(sphere_func, 1000, verbose=0) pos_hist = self.optimizer.get_pos_history self.assertEqual(pos_hist.shape, (1000, 10, 2))<|docstring|>Check the size of the pos_history.<|endoftext|>
b99ad300385132ccf81cf9b1a1711b366d6fa3a814ef225dd52065a668c839b9
def test_velocity_history_size(self): 'Check the size of the velocity_history.' self.optimizer.optimize(sphere_func, 1000, verbose=0) velocity_hist = self.optimizer.get_velocity_history self.assertEqual(velocity_hist.shape, (1000, 10, 2))
Check the size of the velocity_history.
tests/optimizers/test_local_best.py
test_velocity_history_size
ahcantao/pyswarms
0
python
def test_velocity_history_size(self): self.optimizer.optimize(sphere_func, 1000, verbose=0) velocity_hist = self.optimizer.get_velocity_history self.assertEqual(velocity_hist.shape, (1000, 10, 2))
def test_velocity_history_size(self): self.optimizer.optimize(sphere_func, 1000, verbose=0) velocity_hist = self.optimizer.get_velocity_history self.assertEqual(velocity_hist.shape, (1000, 10, 2))<|docstring|>Check the size of the velocity_history.<|endoftext|>
d57ec1cdcc7a50f33fc24573b0bb58b08fb8835616a7ab915dc47a7773c0315c
def test_ftol_effect(self): 'Check if setting ftol breaks the optimization process\n accordingly.' optimizer = LocalBestPSO(10, 2, options=self.options, ftol=0.1) optimizer.optimize(sphere_func, 5000, verbose=0) cost_hist = optimizer.get_cost_history self.assertNotEqual(cost_hist.shape, (5000,))
Check if setting ftol breaks the optimization process accordingly.
tests/optimizers/test_local_best.py
test_ftol_effect
ahcantao/pyswarms
0
python
def test_ftol_effect(self): 'Check if setting ftol breaks the optimization process\n accordingly.' optimizer = LocalBestPSO(10, 2, options=self.options, ftol=0.1) optimizer.optimize(sphere_func, 5000, verbose=0) cost_hist = optimizer.get_cost_history self.assertNotEqual(cost_hist.shape, (5000,))
def test_ftol_effect(self): 'Check if setting ftol breaks the optimization process\n accordingly.' optimizer = LocalBestPSO(10, 2, options=self.options, ftol=0.1) optimizer.optimize(sphere_func, 5000, verbose=0) cost_hist = optimizer.get_cost_history self.assertNotEqual(cost_hist.shape, (5000,))<|docstring|>Check if setting ftol breaks the optimization process accordingly.<|endoftext|>
de4de603feba75af7059b03e3af37fd4240b0bcd3c54d3fff22d46a4730e604a
def with_traced_module(func): 'Helper for providing tracing essentials (module and pin) for tracing\n wrappers.\n\n This helper enables tracing wrappers to dynamically be disabled when the\n corresponding pin is disabled.\n\n Usage::\n\n @with_traced_module\n def my_traced_wrapper(django, pin, func, instance, args, kwargs):\n # Do tracing stuff\n pass\n\n def patch():\n import django\n wrap(django.somefunc, my_traced_wrapper(django))\n ' def with_mod(mod): def wrapper(wrapped, instance, args, kwargs): pin = Pin._find(instance, mod) if (pin and (not pin.enabled())): return wrapped(*args, **kwargs) elif (not pin): log.debug('Pin not found for traced method %r', wrapped) return wrapped(*args, **kwargs) return func(mod, pin, wrapped, instance, args, kwargs) return wrapper return with_mod
Helper for providing tracing essentials (module and pin) for tracing wrappers. This helper enables tracing wrappers to dynamically be disabled when the corresponding pin is disabled. Usage:: @with_traced_module def my_traced_wrapper(django, pin, func, instance, args, kwargs): # Do tracing stuff pass def patch(): import django wrap(django.somefunc, my_traced_wrapper(django))
ddtrace/contrib/trace_utils.py
with_traced_module
sjhewitt/dd-trace-py
0
python
def with_traced_module(func): 'Helper for providing tracing essentials (module and pin) for tracing\n wrappers.\n\n This helper enables tracing wrappers to dynamically be disabled when the\n corresponding pin is disabled.\n\n Usage::\n\n @with_traced_module\n def my_traced_wrapper(django, pin, func, instance, args, kwargs):\n # Do tracing stuff\n pass\n\n def patch():\n import django\n wrap(django.somefunc, my_traced_wrapper(django))\n ' def with_mod(mod): def wrapper(wrapped, instance, args, kwargs): pin = Pin._find(instance, mod) if (pin and (not pin.enabled())): return wrapped(*args, **kwargs) elif (not pin): log.debug('Pin not found for traced method %r', wrapped) return wrapped(*args, **kwargs) return func(mod, pin, wrapped, instance, args, kwargs) return wrapper return with_mod
def with_traced_module(func): 'Helper for providing tracing essentials (module and pin) for tracing\n wrappers.\n\n This helper enables tracing wrappers to dynamically be disabled when the\n corresponding pin is disabled.\n\n Usage::\n\n @with_traced_module\n def my_traced_wrapper(django, pin, func, instance, args, kwargs):\n # Do tracing stuff\n pass\n\n def patch():\n import django\n wrap(django.somefunc, my_traced_wrapper(django))\n ' def with_mod(mod): def wrapper(wrapped, instance, args, kwargs): pin = Pin._find(instance, mod) if (pin and (not pin.enabled())): return wrapped(*args, **kwargs) elif (not pin): log.debug('Pin not found for traced method %r', wrapped) return wrapped(*args, **kwargs) return func(mod, pin, wrapped, instance, args, kwargs) return wrapper return with_mod<|docstring|>Helper for providing tracing essentials (module and pin) for tracing wrappers. This helper enables tracing wrappers to dynamically be disabled when the corresponding pin is disabled. Usage:: @with_traced_module def my_traced_wrapper(django, pin, func, instance, args, kwargs): # Do tracing stuff pass def patch(): import django wrap(django.somefunc, my_traced_wrapper(django))<|endoftext|>
28926a369ff0e10b71f4162a84e9ce375fec5ddba43bf479362a2cade3c129a4
def int_service(pin, int_config, default=None): "Returns the service name for an integration which is internal\n to the application. Internal meaning that the work belongs to the\n user's application. Eg. Web framework, sqlalchemy, web servers.\n\n For internal integrations we prioritize overrides, then global defaults and\n lastly the default provided by the integration.\n " int_config = (int_config or {}) if (pin and pin.service): return pin.service if (('service' in int_config) and (int_config.service is not None)): return int_config.service if (('service_name' in int_config) and (int_config.service_name is not None)): return int_config.service_name global_service = int_config.global_config._get_service() if global_service: return global_service if (('_default_service' in int_config) and (int_config._default_service is not None)): return int_config._default_service return default
Returns the service name for an integration which is internal to the application. Internal meaning that the work belongs to the user's application. Eg. Web framework, sqlalchemy, web servers. For internal integrations we prioritize overrides, then global defaults and lastly the default provided by the integration.
ddtrace/contrib/trace_utils.py
int_service
sjhewitt/dd-trace-py
0
python
def int_service(pin, int_config, default=None): "Returns the service name for an integration which is internal\n to the application. Internal meaning that the work belongs to the\n user's application. Eg. Web framework, sqlalchemy, web servers.\n\n For internal integrations we prioritize overrides, then global defaults and\n lastly the default provided by the integration.\n " int_config = (int_config or {}) if (pin and pin.service): return pin.service if (('service' in int_config) and (int_config.service is not None)): return int_config.service if (('service_name' in int_config) and (int_config.service_name is not None)): return int_config.service_name global_service = int_config.global_config._get_service() if global_service: return global_service if (('_default_service' in int_config) and (int_config._default_service is not None)): return int_config._default_service return default
def int_service(pin, int_config, default=None): "Returns the service name for an integration which is internal\n to the application. Internal meaning that the work belongs to the\n user's application. Eg. Web framework, sqlalchemy, web servers.\n\n For internal integrations we prioritize overrides, then global defaults and\n lastly the default provided by the integration.\n " int_config = (int_config or {}) if (pin and pin.service): return pin.service if (('service' in int_config) and (int_config.service is not None)): return int_config.service if (('service_name' in int_config) and (int_config.service_name is not None)): return int_config.service_name global_service = int_config.global_config._get_service() if global_service: return global_service if (('_default_service' in int_config) and (int_config._default_service is not None)): return int_config._default_service return default<|docstring|>Returns the service name for an integration which is internal to the application. Internal meaning that the work belongs to the user's application. Eg. Web framework, sqlalchemy, web servers. For internal integrations we prioritize overrides, then global defaults and lastly the default provided by the integration.<|endoftext|>
b042972c967865d8c16b27eef7b6457ba16cf840ebf4820b11b48f67ee62d7fd
def ext_service(pin, int_config, default=None): "Returns the service name for an integration which is external\n to the application. External meaning that the integration generates\n spans wrapping code that is outside the scope of the user's application. Eg. A database, RPC, cache, etc.\n " int_config = (int_config or {}) if (pin and pin.service): return pin.service if (('service' in int_config) and (int_config.service is not None)): return int_config.service if (('service_name' in int_config) and (int_config.service_name is not None)): return int_config.service_name if (('_default_service' in int_config) and (int_config._default_service is not None)): return int_config._default_service return default
Returns the service name for an integration which is external to the application. External meaning that the integration generates spans wrapping code that is outside the scope of the user's application. Eg. A database, RPC, cache, etc.
ddtrace/contrib/trace_utils.py
ext_service
sjhewitt/dd-trace-py
0
python
def ext_service(pin, int_config, default=None): "Returns the service name for an integration which is external\n to the application. External meaning that the integration generates\n spans wrapping code that is outside the scope of the user's application. Eg. A database, RPC, cache, etc.\n " int_config = (int_config or {}) if (pin and pin.service): return pin.service if (('service' in int_config) and (int_config.service is not None)): return int_config.service if (('service_name' in int_config) and (int_config.service_name is not None)): return int_config.service_name if (('_default_service' in int_config) and (int_config._default_service is not None)): return int_config._default_service return default
def ext_service(pin, int_config, default=None): "Returns the service name for an integration which is external\n to the application. External meaning that the integration generates\n spans wrapping code that is outside the scope of the user's application. Eg. A database, RPC, cache, etc.\n " int_config = (int_config or {}) if (pin and pin.service): return pin.service if (('service' in int_config) and (int_config.service is not None)): return int_config.service if (('service_name' in int_config) and (int_config.service_name is not None)): return int_config.service_name if (('_default_service' in int_config) and (int_config._default_service is not None)): return int_config._default_service return default<|docstring|>Returns the service name for an integration which is external to the application. External meaning that the integration generates spans wrapping code that is outside the scope of the user's application. Eg. A database, RPC, cache, etc.<|endoftext|>
19fa5d4563472ec9035dc0eee9a8d0e008e109f83149604daf94b7e99a504ee7
def activate_distributed_headers(tracer, int_config=None, request_headers=None, override=None): "\n Helper for activating a distributed trace headers' context if enabled in integration config.\n int_config will be used to check if distributed trace headers context will be activated, but\n override will override whatever value is set in int_config if passed any value other than None.\n " int_config = (int_config or {}) if (override is False): return None if (override or int_config.get('distributed_tracing_enabled', int_config.get('distributed_tracing', False))): context = HTTPPropagator.extract(request_headers) if context.trace_id: tracer.context_provider.activate(context)
Helper for activating a distributed trace headers' context if enabled in integration config. int_config will be used to check if distributed trace headers context will be activated, but override will override whatever value is set in int_config if passed any value other than None.
ddtrace/contrib/trace_utils.py
activate_distributed_headers
sjhewitt/dd-trace-py
0
python
def activate_distributed_headers(tracer, int_config=None, request_headers=None, override=None): "\n Helper for activating a distributed trace headers' context if enabled in integration config.\n int_config will be used to check if distributed trace headers context will be activated, but\n override will override whatever value is set in int_config if passed any value other than None.\n " int_config = (int_config or {}) if (override is False): return None if (override or int_config.get('distributed_tracing_enabled', int_config.get('distributed_tracing', False))): context = HTTPPropagator.extract(request_headers) if context.trace_id: tracer.context_provider.activate(context)
def activate_distributed_headers(tracer, int_config=None, request_headers=None, override=None): "\n Helper for activating a distributed trace headers' context if enabled in integration config.\n int_config will be used to check if distributed trace headers context will be activated, but\n override will override whatever value is set in int_config if passed any value other than None.\n " int_config = (int_config or {}) if (override is False): return None if (override or int_config.get('distributed_tracing_enabled', int_config.get('distributed_tracing', False))): context = HTTPPropagator.extract(request_headers) if context.trace_id: tracer.context_provider.activate(context)<|docstring|>Helper for activating a distributed trace headers' context if enabled in integration config. int_config will be used to check if distributed trace headers context will be activated, but override will override whatever value is set in int_config if passed any value other than None.<|endoftext|>
95be34c5604f03fa89ebaff43ed293dcce70b572a8f77a042962d70a0bdd3815
def flatten_dict(d, sep='.', prefix='', exclude=None): '\n Returns a normalized dict of depth 1\n ' flat = {} s = deque() s.append((prefix, d)) exclude = (exclude or set()) while s: (p, v) = s.pop() if (p in exclude): continue if isinstance(v, dict): s.extend((((((p + sep) + k) if p else k), v) for (k, v) in v.items())) else: flat[p] = v return flat
Returns a normalized dict of depth 1
ddtrace/contrib/trace_utils.py
flatten_dict
sjhewitt/dd-trace-py
0
python
def flatten_dict(d, sep='.', prefix=, exclude=None): '\n \n ' flat = {} s = deque() s.append((prefix, d)) exclude = (exclude or set()) while s: (p, v) = s.pop() if (p in exclude): continue if isinstance(v, dict): s.extend((((((p + sep) + k) if p else k), v) for (k, v) in v.items())) else: flat[p] = v return flat
def flatten_dict(d, sep='.', prefix=, exclude=None): '\n \n ' flat = {} s = deque() s.append((prefix, d)) exclude = (exclude or set()) while s: (p, v) = s.pop() if (p in exclude): continue if isinstance(v, dict): s.extend((((((p + sep) + k) if p else k), v) for (k, v) in v.items())) else: flat[p] = v return flat<|docstring|>Returns a normalized dict of depth 1<|endoftext|>
8f8033fd2507f46a22acd30b07541513f1e4aa425ecf038002321bfa39912c8a
def manage_updaters(request): 'Представление: управление загрузчиками.' from catalog.models import Updater if (request.user.has_perm('catalog.add_updater') or request.user.has_perm('catalog.change_updater') or request.user.has_perm('catalog.delete_updater')): updaters = Updater.objects.all().order_by('name') return render(request, 'catalog/manage_updaters.html', locals())
Представление: управление загрузчиками.
views.py
manage_updaters
anodos-ru/catalog
2
python
def manage_updaters(request): from catalog.models import Updater if (request.user.has_perm('catalog.add_updater') or request.user.has_perm('catalog.change_updater') or request.user.has_perm('catalog.delete_updater')): updaters = Updater.objects.all().order_by('name') return render(request, 'catalog/manage_updaters.html', locals())
def manage_updaters(request): from catalog.models import Updater if (request.user.has_perm('catalog.add_updater') or request.user.has_perm('catalog.change_updater') or request.user.has_perm('catalog.delete_updater')): updaters = Updater.objects.all().order_by('name') return render(request, 'catalog/manage_updaters.html', locals())<|docstring|>Представление: управление загрузчиками.<|endoftext|>
fda9ecb2872673f54245e90fb9994dc63164c1a3cf2b91436206ce6681843386
def manage_distributors(request): 'Представление: управление производителеми.' from catalog.models import Distributor if (request.user.has_perm('catalog.add_distributor') or request.user.has_perm('catalog.change_distributor') or request.user.has_perm('catalog.delete_distributor')): distributors = Distributor.objects.all().order_by('name') return render(request, 'catalog/manage_distributors.html', locals())
Представление: управление производителеми.
views.py
manage_distributors
anodos-ru/catalog
2
python
def manage_distributors(request): from catalog.models import Distributor if (request.user.has_perm('catalog.add_distributor') or request.user.has_perm('catalog.change_distributor') or request.user.has_perm('catalog.delete_distributor')): distributors = Distributor.objects.all().order_by('name') return render(request, 'catalog/manage_distributors.html', locals())
def manage_distributors(request): from catalog.models import Distributor if (request.user.has_perm('catalog.add_distributor') or request.user.has_perm('catalog.change_distributor') or request.user.has_perm('catalog.delete_distributor')): distributors = Distributor.objects.all().order_by('name') return render(request, 'catalog/manage_distributors.html', locals())<|docstring|>Представление: управление производителеми.<|endoftext|>