body_hash
stringlengths
64
64
body
stringlengths
23
109k
docstring
stringlengths
1
57k
path
stringlengths
4
198
name
stringlengths
1
115
repository_name
stringlengths
7
111
repository_stars
float64
0
191k
lang
stringclasses
1 value
body_without_docstring
stringlengths
14
108k
unified
stringlengths
45
133k
5a70439ef8ab75d2db8ab826964d38b04112b0be41e63560fe1f6dea690b5686
def USGS2netcdf(ncfile, meta, time, discharge): '\n Convert the USGS files to netcdf4 format\n ' shpfile = (ncfile[:(- 2)] + 'shp') varname = 'discharge' longname = 'Stream Discharge Rate' units = 'm3 s-1' ncdict = [] ii = (- 1) for (tt, dd) in zip(time, discharge): ii += 1 timeout = othertime.MinutesSince(tt, basetime=datetime(1970, 1, 1)) ncdict = netcdfio.createObsDict(varname, longname, units, [dd], [timeout], [meta['Latitude'][ii]], [meta['Longitude'][ii]], [0.0], [meta['Station ID'][ii]], [meta['StationName'][ii]], ncdict=ncdict) globalatts = {'Title': 'USGS stream gage discharge data'} netcdfio.writePointData2Netcdf(ncfile, ncdict, globalatts) netcdfio.pointNC2shp(ncfile, shpfile)
Convert the USGS files to netcdf4 format
sfoda/dataio/datadownload/getUSGSnwis.py
USGS2netcdf
mrayson/sfoda
1
python
def USGS2netcdf(ncfile, meta, time, discharge): '\n \n ' shpfile = (ncfile[:(- 2)] + 'shp') varname = 'discharge' longname = 'Stream Discharge Rate' units = 'm3 s-1' ncdict = [] ii = (- 1) for (tt, dd) in zip(time, discharge): ii += 1 timeout = othertime.MinutesSince(tt, basetime=datetime(1970, 1, 1)) ncdict = netcdfio.createObsDict(varname, longname, units, [dd], [timeout], [meta['Latitude'][ii]], [meta['Longitude'][ii]], [0.0], [meta['Station ID'][ii]], [meta['StationName'][ii]], ncdict=ncdict) globalatts = {'Title': 'USGS stream gage discharge data'} netcdfio.writePointData2Netcdf(ncfile, ncdict, globalatts) netcdfio.pointNC2shp(ncfile, shpfile)
def USGS2netcdf(ncfile, meta, time, discharge): '\n \n ' shpfile = (ncfile[:(- 2)] + 'shp') varname = 'discharge' longname = 'Stream Discharge Rate' units = 'm3 s-1' ncdict = [] ii = (- 1) for (tt, dd) in zip(time, discharge): ii += 1 timeout = othertime.MinutesSince(tt, basetime=datetime(1970, 1, 1)) ncdict = netcdfio.createObsDict(varname, longname, units, [dd], [timeout], [meta['Latitude'][ii]], [meta['Longitude'][ii]], [0.0], [meta['Station ID'][ii]], [meta['StationName'][ii]], ncdict=ncdict) globalatts = {'Title': 'USGS stream gage discharge data'} netcdfio.writePointData2Netcdf(ncfile, ncdict, globalatts) netcdfio.pointNC2shp(ncfile, shpfile)<|docstring|>Convert the USGS files to netcdf4 format<|endoftext|>
7638813c7dc7c4cf54f562637e2ad176e786b209dd239bbd28b63e8d00bdc104
@commands.command() async def market(self, ctx, *, query): 'Shows listings for an item from the Marketboard' async with aiohttp.ClientSession() as session: async with session.get(f'https://xivapi.com/search?string={query}&indexes=Item&limit=1') as req: if (req.status != 200): (await ctx.send('Something went wrong :(')) itemDump = (await req.json()) if (itemDump['Results'] == 0): (await ctx.send(f'No results found for {query}')) else: itemID = itemDump['Results'][0]['ID'] itemName = itemDump['Results'][0]['Name'] itemIcon = itemDump['Results'][0]['Icon'] async with aiohttp.ClientSession() as session: async with session.get(f'https://universalis.app/api/Light/{itemID}?&listings=5') as req: if (req.status != 200): (await ctx.send('Something went wrong :(')) marketDump = (await req.json()) embed = discord.Embed() embed.add_field(name='Universalis Link:', value=f'https://universalis.app/market/{itemID}', inline=False) embed.set_author(name=itemName, icon_url=('https://xivapi.com/' + itemIcon)) for listing in marketDump['listings']: embed.add_field(name=listing['worldName'], value=(((str(listing['quantity']) + ' selling at ') + str(listing['pricePerUnit'])) + ' gil.'), inline=False) (await ctx.send(embed=embed))
Shows listings for an item from the Marketboard
Mailbot/cogs/xiv.py
market
tekofu/Mailbot
0
python
@commands.command() async def market(self, ctx, *, query): async with aiohttp.ClientSession() as session: async with session.get(f'https://xivapi.com/search?string={query}&indexes=Item&limit=1') as req: if (req.status != 200): (await ctx.send('Something went wrong :(')) itemDump = (await req.json()) if (itemDump['Results'] == 0): (await ctx.send(f'No results found for {query}')) else: itemID = itemDump['Results'][0]['ID'] itemName = itemDump['Results'][0]['Name'] itemIcon = itemDump['Results'][0]['Icon'] async with aiohttp.ClientSession() as session: async with session.get(f'https://universalis.app/api/Light/{itemID}?&listings=5') as req: if (req.status != 200): (await ctx.send('Something went wrong :(')) marketDump = (await req.json()) embed = discord.Embed() embed.add_field(name='Universalis Link:', value=f'https://universalis.app/market/{itemID}', inline=False) embed.set_author(name=itemName, icon_url=('https://xivapi.com/' + itemIcon)) for listing in marketDump['listings']: embed.add_field(name=listing['worldName'], value=(((str(listing['quantity']) + ' selling at ') + str(listing['pricePerUnit'])) + ' gil.'), inline=False) (await ctx.send(embed=embed))
@commands.command() async def market(self, ctx, *, query): async with aiohttp.ClientSession() as session: async with session.get(f'https://xivapi.com/search?string={query}&indexes=Item&limit=1') as req: if (req.status != 200): (await ctx.send('Something went wrong :(')) itemDump = (await req.json()) if (itemDump['Results'] == 0): (await ctx.send(f'No results found for {query}')) else: itemID = itemDump['Results'][0]['ID'] itemName = itemDump['Results'][0]['Name'] itemIcon = itemDump['Results'][0]['Icon'] async with aiohttp.ClientSession() as session: async with session.get(f'https://universalis.app/api/Light/{itemID}?&listings=5') as req: if (req.status != 200): (await ctx.send('Something went wrong :(')) marketDump = (await req.json()) embed = discord.Embed() embed.add_field(name='Universalis Link:', value=f'https://universalis.app/market/{itemID}', inline=False) embed.set_author(name=itemName, icon_url=('https://xivapi.com/' + itemIcon)) for listing in marketDump['listings']: embed.add_field(name=listing['worldName'], value=(((str(listing['quantity']) + ' selling at ') + str(listing['pricePerUnit'])) + ' gil.'), inline=False) (await ctx.send(embed=embed))<|docstring|>Shows listings for an item from the Marketboard<|endoftext|>
cfd8e7080a1883ff519b14ad3533caaa71ebf2b87186a39ec10ad85af89d456a
@commands.command() async def char(self, ctx, forename, surname, world): 'Searches for a character on the Lodestone' charRequest = f'{forename} {surname}' async with aiohttp.ClientSession() as session: async with session.get(f'https://xivapi.com/character/search?name= {charRequest}&server={world}') as req: if (req.status != 200): (await ctx.send('Something went wrong :(')) character = (await req.json()) embed = discord.Embed(description=('on ' + character['Results'][0]['Server'])) embed.set_image(url=character['Results'][0]['Avatar']) lodestoneURL = ('https://eu.finalfantasyxiv.com/lodestone/character/' + str(character['Results'][0]['ID'])) embed.add_field(name='Lodestone', value=f'[Profile]({lodestoneURL})', inline=False) embed.set_author(name=character['Results'][0]['Name'], icon_url=character['Results'][0]['Avatar']) (await ctx.send(embed=embed))
Searches for a character on the Lodestone
Mailbot/cogs/xiv.py
char
tekofu/Mailbot
0
python
@commands.command() async def char(self, ctx, forename, surname, world): charRequest = f'{forename} {surname}' async with aiohttp.ClientSession() as session: async with session.get(f'https://xivapi.com/character/search?name= {charRequest}&server={world}') as req: if (req.status != 200): (await ctx.send('Something went wrong :(')) character = (await req.json()) embed = discord.Embed(description=('on ' + character['Results'][0]['Server'])) embed.set_image(url=character['Results'][0]['Avatar']) lodestoneURL = ('https://eu.finalfantasyxiv.com/lodestone/character/' + str(character['Results'][0]['ID'])) embed.add_field(name='Lodestone', value=f'[Profile]({lodestoneURL})', inline=False) embed.set_author(name=character['Results'][0]['Name'], icon_url=character['Results'][0]['Avatar']) (await ctx.send(embed=embed))
@commands.command() async def char(self, ctx, forename, surname, world): charRequest = f'{forename} {surname}' async with aiohttp.ClientSession() as session: async with session.get(f'https://xivapi.com/character/search?name= {charRequest}&server={world}') as req: if (req.status != 200): (await ctx.send('Something went wrong :(')) character = (await req.json()) embed = discord.Embed(description=('on ' + character['Results'][0]['Server'])) embed.set_image(url=character['Results'][0]['Avatar']) lodestoneURL = ('https://eu.finalfantasyxiv.com/lodestone/character/' + str(character['Results'][0]['ID'])) embed.add_field(name='Lodestone', value=f'[Profile]({lodestoneURL})', inline=False) embed.set_author(name=character['Results'][0]['Name'], icon_url=character['Results'][0]['Avatar']) (await ctx.send(embed=embed))<|docstring|>Searches for a character on the Lodestone<|endoftext|>
875885ac8de802bb250af390300b0e35cc742964a6cdb7947c1a7b2c1f6d07fa
def smart_text(s, encoding='utf-8', strings_only=False, errors='strict'): "\n Returns a text object representing 's' -- unicode on Python 2 and str on\n Python 3. Treats bytestrings using the 'encoding' codec.\n If strings_only is True, don't convert (some) non-string-like objects.\n " if isinstance(s, Promise): return s return force_text(s, encoding, strings_only, errors)
Returns a text object representing 's' -- unicode on Python 2 and str on Python 3. Treats bytestrings using the 'encoding' codec. If strings_only is True, don't convert (some) non-string-like objects.
string_demon/helpers.py
smart_text
guokr/string_demon
0
python
def smart_text(s, encoding='utf-8', strings_only=False, errors='strict'): "\n Returns a text object representing 's' -- unicode on Python 2 and str on\n Python 3. Treats bytestrings using the 'encoding' codec.\n If strings_only is True, don't convert (some) non-string-like objects.\n " if isinstance(s, Promise): return s return force_text(s, encoding, strings_only, errors)
def smart_text(s, encoding='utf-8', strings_only=False, errors='strict'): "\n Returns a text object representing 's' -- unicode on Python 2 and str on\n Python 3. Treats bytestrings using the 'encoding' codec.\n If strings_only is True, don't convert (some) non-string-like objects.\n " if isinstance(s, Promise): return s return force_text(s, encoding, strings_only, errors)<|docstring|>Returns a text object representing 's' -- unicode on Python 2 and str on Python 3. Treats bytestrings using the 'encoding' codec. If strings_only is True, don't convert (some) non-string-like objects.<|endoftext|>
3d19b21d03aef4c2792b7b6a6e418b9e8e1eda5c7e55470d944092924bb44a86
def is_protected_type(obj): 'Determine if the object instance is of a protected type.\n Objects of protected types are preserved as-is when passed to\n force_text(strings_only=True).\n ' return isinstance(obj, _PROTECTED_TYPES)
Determine if the object instance is of a protected type. Objects of protected types are preserved as-is when passed to force_text(strings_only=True).
string_demon/helpers.py
is_protected_type
guokr/string_demon
0
python
def is_protected_type(obj): 'Determine if the object instance is of a protected type.\n Objects of protected types are preserved as-is when passed to\n force_text(strings_only=True).\n ' return isinstance(obj, _PROTECTED_TYPES)
def is_protected_type(obj): 'Determine if the object instance is of a protected type.\n Objects of protected types are preserved as-is when passed to\n force_text(strings_only=True).\n ' return isinstance(obj, _PROTECTED_TYPES)<|docstring|>Determine if the object instance is of a protected type. Objects of protected types are preserved as-is when passed to force_text(strings_only=True).<|endoftext|>
d1c4cf6a1cd0106c666ccd7672c77827ddb46a0bbbea9e43c169e84d622d9e5a
def force_text(s, encoding='utf-8', strings_only=False, errors='strict'): "\n Similar to smart_text, except that lazy instances are resolved to\n strings, rather than kept as lazy objects.\n If strings_only is True, don't convert (some) non-string-like objects.\n " if issubclass(type(s), six.text_type): return s if (strings_only and is_protected_type(s)): return s try: if (not issubclass(type(s), six.string_types)): if six.PY3: if isinstance(s, bytes): s = six.text_type(s, encoding, errors) else: s = six.text_type(s) elif hasattr(s, '__unicode__'): s = six.text_type(s) else: s = six.text_type(bytes(s), encoding, errors) else: s = s.decode(encoding, errors) except UnicodeDecodeError as e: if (not isinstance(s, Exception)): raise _UnicodeDecodeError(s, *e.args) else: s = ' '.join((force_text(arg, encoding, strings_only, errors) for arg in s)) return s
Similar to smart_text, except that lazy instances are resolved to strings, rather than kept as lazy objects. If strings_only is True, don't convert (some) non-string-like objects.
string_demon/helpers.py
force_text
guokr/string_demon
0
python
def force_text(s, encoding='utf-8', strings_only=False, errors='strict'): "\n Similar to smart_text, except that lazy instances are resolved to\n strings, rather than kept as lazy objects.\n If strings_only is True, don't convert (some) non-string-like objects.\n " if issubclass(type(s), six.text_type): return s if (strings_only and is_protected_type(s)): return s try: if (not issubclass(type(s), six.string_types)): if six.PY3: if isinstance(s, bytes): s = six.text_type(s, encoding, errors) else: s = six.text_type(s) elif hasattr(s, '__unicode__'): s = six.text_type(s) else: s = six.text_type(bytes(s), encoding, errors) else: s = s.decode(encoding, errors) except UnicodeDecodeError as e: if (not isinstance(s, Exception)): raise _UnicodeDecodeError(s, *e.args) else: s = ' '.join((force_text(arg, encoding, strings_only, errors) for arg in s)) return s
def force_text(s, encoding='utf-8', strings_only=False, errors='strict'): "\n Similar to smart_text, except that lazy instances are resolved to\n strings, rather than kept as lazy objects.\n If strings_only is True, don't convert (some) non-string-like objects.\n " if issubclass(type(s), six.text_type): return s if (strings_only and is_protected_type(s)): return s try: if (not issubclass(type(s), six.string_types)): if six.PY3: if isinstance(s, bytes): s = six.text_type(s, encoding, errors) else: s = six.text_type(s) elif hasattr(s, '__unicode__'): s = six.text_type(s) else: s = six.text_type(bytes(s), encoding, errors) else: s = s.decode(encoding, errors) except UnicodeDecodeError as e: if (not isinstance(s, Exception)): raise _UnicodeDecodeError(s, *e.args) else: s = ' '.join((force_text(arg, encoding, strings_only, errors) for arg in s)) return s<|docstring|>Similar to smart_text, except that lazy instances are resolved to strings, rather than kept as lazy objects. If strings_only is True, don't convert (some) non-string-like objects.<|endoftext|>
62098ff2973a86de6c5baae71035c6c58578131b784a5e4ba74df578e973d1ec
def smart_bytes(s, encoding='utf-8', strings_only=False, errors='strict'): "\n Returns a bytestring version of 's', encoded as specified in 'encoding'.\n If strings_only is True, don't convert (some) non-string-like objects.\n " if isinstance(s, Promise): return s return force_bytes(s, encoding, strings_only, errors)
Returns a bytestring version of 's', encoded as specified in 'encoding'. If strings_only is True, don't convert (some) non-string-like objects.
string_demon/helpers.py
smart_bytes
guokr/string_demon
0
python
def smart_bytes(s, encoding='utf-8', strings_only=False, errors='strict'): "\n Returns a bytestring version of 's', encoded as specified in 'encoding'.\n If strings_only is True, don't convert (some) non-string-like objects.\n " if isinstance(s, Promise): return s return force_bytes(s, encoding, strings_only, errors)
def smart_bytes(s, encoding='utf-8', strings_only=False, errors='strict'): "\n Returns a bytestring version of 's', encoded as specified in 'encoding'.\n If strings_only is True, don't convert (some) non-string-like objects.\n " if isinstance(s, Promise): return s return force_bytes(s, encoding, strings_only, errors)<|docstring|>Returns a bytestring version of 's', encoded as specified in 'encoding'. If strings_only is True, don't convert (some) non-string-like objects.<|endoftext|>
92b1e8f7abaf4fd15bb2c6b57efe507dc9457aeadf5bb227fb2b03f4240bee74
def force_bytes(s, encoding='utf-8', strings_only=False, errors='strict'): "\n Similar to smart_bytes, except that lazy instances are resolved to\n strings, rather than kept as lazy objects.\n If strings_only is True, don't convert (some) non-string-like objects.\n " if isinstance(s, bytes): if (encoding == 'utf-8'): return s else: return s.decode('utf-8', errors).encode(encoding, errors) if (strings_only and is_protected_type(s)): return s if isinstance(s, Promise): return six.text_type(s).encode(encoding, errors) if (not isinstance(s, six.string_types)): try: if six.PY3: return six.text_type(s).encode(encoding) else: return bytes(s) except UnicodeEncodeError: if isinstance(s, Exception): return b' '.join((force_bytes(arg, encoding, strings_only, errors) for arg in s)) return six.text_type(s).encode(encoding, errors) else: return s.encode(encoding, errors)
Similar to smart_bytes, except that lazy instances are resolved to strings, rather than kept as lazy objects. If strings_only is True, don't convert (some) non-string-like objects.
string_demon/helpers.py
force_bytes
guokr/string_demon
0
python
def force_bytes(s, encoding='utf-8', strings_only=False, errors='strict'): "\n Similar to smart_bytes, except that lazy instances are resolved to\n strings, rather than kept as lazy objects.\n If strings_only is True, don't convert (some) non-string-like objects.\n " if isinstance(s, bytes): if (encoding == 'utf-8'): return s else: return s.decode('utf-8', errors).encode(encoding, errors) if (strings_only and is_protected_type(s)): return s if isinstance(s, Promise): return six.text_type(s).encode(encoding, errors) if (not isinstance(s, six.string_types)): try: if six.PY3: return six.text_type(s).encode(encoding) else: return bytes(s) except UnicodeEncodeError: if isinstance(s, Exception): return b' '.join((force_bytes(arg, encoding, strings_only, errors) for arg in s)) return six.text_type(s).encode(encoding, errors) else: return s.encode(encoding, errors)
def force_bytes(s, encoding='utf-8', strings_only=False, errors='strict'): "\n Similar to smart_bytes, except that lazy instances are resolved to\n strings, rather than kept as lazy objects.\n If strings_only is True, don't convert (some) non-string-like objects.\n " if isinstance(s, bytes): if (encoding == 'utf-8'): return s else: return s.decode('utf-8', errors).encode(encoding, errors) if (strings_only and is_protected_type(s)): return s if isinstance(s, Promise): return six.text_type(s).encode(encoding, errors) if (not isinstance(s, six.string_types)): try: if six.PY3: return six.text_type(s).encode(encoding) else: return bytes(s) except UnicodeEncodeError: if isinstance(s, Exception): return b' '.join((force_bytes(arg, encoding, strings_only, errors) for arg in s)) return six.text_type(s).encode(encoding, errors) else: return s.encode(encoding, errors)<|docstring|>Similar to smart_bytes, except that lazy instances are resolved to strings, rather than kept as lazy objects. If strings_only is True, don't convert (some) non-string-like objects.<|endoftext|>
8e1fe1e0e450545f291d606386e297036c8289f8340eb2ca378c1667098d0331
def has_add_permission(self, request): '\n Returns True if the given request has permission to add an object.\n Can be overridden by the user in subclasses.\n ' raise NotImplementedError
Returns True if the given request has permission to add an object. Can be overridden by the user in subclasses.
admin/admins.py
has_add_permission
bpeschier/reek-admin
0
python
def has_add_permission(self, request): '\n Returns True if the given request has permission to add an object.\n Can be overridden by the user in subclasses.\n ' raise NotImplementedError
def has_add_permission(self, request): '\n Returns True if the given request has permission to add an object.\n Can be overridden by the user in subclasses.\n ' raise NotImplementedError<|docstring|>Returns True if the given request has permission to add an object. Can be overridden by the user in subclasses.<|endoftext|>
0656052c529d55aafe2a7e74a0c85cb5309a1e662425848ed5954db495ecafa7
def has_change_permission(self, request, obj=None): "\n Returns True if the given request has permission to change the given\n Django model instance, the default implementation doesn't examine the\n `obj` parameter.\n\n Can be overridden by the user in subclasses. In such case it should\n return True if the given request has permission to change the `obj`\n model instance. If `obj` is None, this should return True if the given\n request has permission to change *any* object of the given type.\n " raise NotImplementedError
Returns True if the given request has permission to change the given Django model instance, the default implementation doesn't examine the `obj` parameter. Can be overridden by the user in subclasses. In such case it should return True if the given request has permission to change the `obj` model instance. If `obj` is None, this should return True if the given request has permission to change *any* object of the given type.
admin/admins.py
has_change_permission
bpeschier/reek-admin
0
python
def has_change_permission(self, request, obj=None): "\n Returns True if the given request has permission to change the given\n Django model instance, the default implementation doesn't examine the\n `obj` parameter.\n\n Can be overridden by the user in subclasses. In such case it should\n return True if the given request has permission to change the `obj`\n model instance. If `obj` is None, this should return True if the given\n request has permission to change *any* object of the given type.\n " raise NotImplementedError
def has_change_permission(self, request, obj=None): "\n Returns True if the given request has permission to change the given\n Django model instance, the default implementation doesn't examine the\n `obj` parameter.\n\n Can be overridden by the user in subclasses. In such case it should\n return True if the given request has permission to change the `obj`\n model instance. If `obj` is None, this should return True if the given\n request has permission to change *any* object of the given type.\n " raise NotImplementedError<|docstring|>Returns True if the given request has permission to change the given Django model instance, the default implementation doesn't examine the `obj` parameter. Can be overridden by the user in subclasses. In such case it should return True if the given request has permission to change the `obj` model instance. If `obj` is None, this should return True if the given request has permission to change *any* object of the given type.<|endoftext|>
3581ed5898a8ea2e8575583b1919de282cd9d3255182f0573142e226689c9049
def has_delete_permission(self, request, obj=None): "\n Returns True if the given request has permission to change the given\n Django model instance, the default implementation doesn't examine the\n `obj` parameter.\n\n Can be overridden by the user in subclasses. In such case it should\n return True if the given request has permission to delete the `obj`\n model instance. If `obj` is None, this should return True if the given\n request has permission to delete *any* object of the given type.\n " raise NotImplementedError
Returns True if the given request has permission to change the given Django model instance, the default implementation doesn't examine the `obj` parameter. Can be overridden by the user in subclasses. In such case it should return True if the given request has permission to delete the `obj` model instance. If `obj` is None, this should return True if the given request has permission to delete *any* object of the given type.
admin/admins.py
has_delete_permission
bpeschier/reek-admin
0
python
def has_delete_permission(self, request, obj=None): "\n Returns True if the given request has permission to change the given\n Django model instance, the default implementation doesn't examine the\n `obj` parameter.\n\n Can be overridden by the user in subclasses. In such case it should\n return True if the given request has permission to delete the `obj`\n model instance. If `obj` is None, this should return True if the given\n request has permission to delete *any* object of the given type.\n " raise NotImplementedError
def has_delete_permission(self, request, obj=None): "\n Returns True if the given request has permission to change the given\n Django model instance, the default implementation doesn't examine the\n `obj` parameter.\n\n Can be overridden by the user in subclasses. In such case it should\n return True if the given request has permission to delete the `obj`\n model instance. If `obj` is None, this should return True if the given\n request has permission to delete *any* object of the given type.\n " raise NotImplementedError<|docstring|>Returns True if the given request has permission to change the given Django model instance, the default implementation doesn't examine the `obj` parameter. Can be overridden by the user in subclasses. In such case it should return True if the given request has permission to delete the `obj` model instance. If `obj` is None, this should return True if the given request has permission to delete *any* object of the given type.<|endoftext|>
9d3422d8ed4cba8d1d94ac3ccda9501694dbfda352b137278e9cc77edcf3f45a
def get_permissions(self, request): '\n Returns a dict of all perms for this model. This dict has the keys\n ``add``, ``change``, and ``delete`` mapping to the True/False for each\n of those actions.\n ' return {'add': self.has_add_permission(request), 'change': self.has_change_permission(request), 'delete': self.has_delete_permission(request)}
Returns a dict of all perms for this model. This dict has the keys ``add``, ``change``, and ``delete`` mapping to the True/False for each of those actions.
admin/admins.py
get_permissions
bpeschier/reek-admin
0
python
def get_permissions(self, request): '\n Returns a dict of all perms for this model. This dict has the keys\n ``add``, ``change``, and ``delete`` mapping to the True/False for each\n of those actions.\n ' return {'add': self.has_add_permission(request), 'change': self.has_change_permission(request), 'delete': self.has_delete_permission(request)}
def get_permissions(self, request): '\n Returns a dict of all perms for this model. This dict has the keys\n ``add``, ``change``, and ``delete`` mapping to the True/False for each\n of those actions.\n ' return {'add': self.has_add_permission(request), 'change': self.has_change_permission(request), 'delete': self.has_delete_permission(request)}<|docstring|>Returns a dict of all perms for this model. This dict has the keys ``add``, ``change``, and ``delete`` mapping to the True/False for each of those actions.<|endoftext|>
a04679b696eb6f4d477be7f637cb51c97d26128eb0b6a1029cefef8d9f3b4f7f
@staticmethod def create_index(): '\n Creates index in ElasticSearch\n ' ElasticSearchUtils.remove_index() es = Elasticsearch(hosts=[config['elasticsearch-host']], port=config['elasticsearch-port']) request_body = {'settings': {'number_of_shards': 5, 'number_of_replicas': 1}, 'mappings': {'cadaster_doc': {'properties': {'location': {'type': 'geo_point'}, 'constructions': {'type': 'nested', 'properties': {'door': {'type': 'keyword'}, 'doorway': {'type': 'keyword'}, 'floor': {'type': 'keyword'}, 'reform': {'type': 'nested', 'properties': {'type': {'type': 'keyword'}, 'year': {'type': 'keyword'}}}, 'surface': {'type': 'keyword'}, 'use': {'type': 'keyword'}}}}, 'dynamic_templates': [{'strings': {'match_mapping_type': 'string', 'mapping': {'type': 'text', 'fields': {'keyword': {'type': 'keyword'}}}}}]}}} logger.debug("Creating 'cadaster' index...") try: res = es.indices.create(index='cadaster', body=request_body) logger.debug(res) except Exception as e: logger.debug(e) es.transport.close()
Creates index in ElasticSearch
src/utils/elasticsearch_utils.py
create_index
jjmartinez-taiger/libreCatastro
9
python
@staticmethod def create_index(): '\n \n ' ElasticSearchUtils.remove_index() es = Elasticsearch(hosts=[config['elasticsearch-host']], port=config['elasticsearch-port']) request_body = {'settings': {'number_of_shards': 5, 'number_of_replicas': 1}, 'mappings': {'cadaster_doc': {'properties': {'location': {'type': 'geo_point'}, 'constructions': {'type': 'nested', 'properties': {'door': {'type': 'keyword'}, 'doorway': {'type': 'keyword'}, 'floor': {'type': 'keyword'}, 'reform': {'type': 'nested', 'properties': {'type': {'type': 'keyword'}, 'year': {'type': 'keyword'}}}, 'surface': {'type': 'keyword'}, 'use': {'type': 'keyword'}}}}, 'dynamic_templates': [{'strings': {'match_mapping_type': 'string', 'mapping': {'type': 'text', 'fields': {'keyword': {'type': 'keyword'}}}}}]}}} logger.debug("Creating 'cadaster' index...") try: res = es.indices.create(index='cadaster', body=request_body) logger.debug(res) except Exception as e: logger.debug(e) es.transport.close()
@staticmethod def create_index(): '\n \n ' ElasticSearchUtils.remove_index() es = Elasticsearch(hosts=[config['elasticsearch-host']], port=config['elasticsearch-port']) request_body = {'settings': {'number_of_shards': 5, 'number_of_replicas': 1}, 'mappings': {'cadaster_doc': {'properties': {'location': {'type': 'geo_point'}, 'constructions': {'type': 'nested', 'properties': {'door': {'type': 'keyword'}, 'doorway': {'type': 'keyword'}, 'floor': {'type': 'keyword'}, 'reform': {'type': 'nested', 'properties': {'type': {'type': 'keyword'}, 'year': {'type': 'keyword'}}}, 'surface': {'type': 'keyword'}, 'use': {'type': 'keyword'}}}}, 'dynamic_templates': [{'strings': {'match_mapping_type': 'string', 'mapping': {'type': 'text', 'fields': {'keyword': {'type': 'keyword'}}}}}]}}} logger.debug("Creating 'cadaster' index...") try: res = es.indices.create(index='cadaster', body=request_body) logger.debug(res) except Exception as e: logger.debug(e) es.transport.close()<|docstring|>Creates index in ElasticSearch<|endoftext|>
48db2e4d85a810e58f99fe481eed5227dc9475a8881b9a21dc71a3c4d4e6a1f9
@staticmethod def remove_index(): '\n Removes index from ElasticSearch\n ' es = Elasticsearch(hosts=[config['elasticsearch-host']], port=config['elasticsearch-port']) logger.debug("Deleting 'cadaster' index...") try: res = es.indices.delete(index='cadaster', ignore=[400, 404]) logger.debug(res) except Exception as e: logger.debug(e) es.transport.close()
Removes index from ElasticSearch
src/utils/elasticsearch_utils.py
remove_index
jjmartinez-taiger/libreCatastro
9
python
@staticmethod def remove_index(): '\n \n ' es = Elasticsearch(hosts=[config['elasticsearch-host']], port=config['elasticsearch-port']) logger.debug("Deleting 'cadaster' index...") try: res = es.indices.delete(index='cadaster', ignore=[400, 404]) logger.debug(res) except Exception as e: logger.debug(e) es.transport.close()
@staticmethod def remove_index(): '\n \n ' es = Elasticsearch(hosts=[config['elasticsearch-host']], port=config['elasticsearch-port']) logger.debug("Deleting 'cadaster' index...") try: res = es.indices.delete(index='cadaster', ignore=[400, 404]) logger.debug(res) except Exception as e: logger.debug(e) es.transport.close()<|docstring|>Removes index from ElasticSearch<|endoftext|>
4cbb777acc9922f292d608fd76a49d9a1bdf20a6a5a3a1a7642f3caf32175eab
@staticmethod def check_if_address_present(address, city_name, province_name): '\n Checks if an address has been already scrapped (to skip it).\n :param address: full addres (including tipo de via, nombre de via ...)\n :param city_name: City Name\n :param province_name: Province Name\n :return: True if already scrapped, False otherwise\n ' res = False query = {'query': {'bool': {'must': [{'prefix': {'address.full_address.keyword': '{}'.format(address)}}, {'match': {'address.province.keyword': '{}'.format(province_name)}}, {'match': {'address.city.keyword': '{}'.format(city_name)}}], 'must_not': [], 'should': []}}, 'from': 0, 'size': 11, 'sort': [], 'aggs': {}} es = Elasticsearch(hosts=[config['elasticsearch-host']], port=config['elasticsearch-port']) try: res = es.search(config['elasticsearch-index'], config['elasticsearch-doc'], query) hits = DotMap(res).hits.total if (hits == DotMap()): hits = 0 res = (hits > 0) except Exception as e: logger.debug(e) es.transport.close() return res
Checks if an address has been already scrapped (to skip it). :param address: full addres (including tipo de via, nombre de via ...) :param city_name: City Name :param province_name: Province Name :return: True if already scrapped, False otherwise
src/utils/elasticsearch_utils.py
check_if_address_present
jjmartinez-taiger/libreCatastro
9
python
@staticmethod def check_if_address_present(address, city_name, province_name): '\n Checks if an address has been already scrapped (to skip it).\n :param address: full addres (including tipo de via, nombre de via ...)\n :param city_name: City Name\n :param province_name: Province Name\n :return: True if already scrapped, False otherwise\n ' res = False query = {'query': {'bool': {'must': [{'prefix': {'address.full_address.keyword': '{}'.format(address)}}, {'match': {'address.province.keyword': '{}'.format(province_name)}}, {'match': {'address.city.keyword': '{}'.format(city_name)}}], 'must_not': [], 'should': []}}, 'from': 0, 'size': 11, 'sort': [], 'aggs': {}} es = Elasticsearch(hosts=[config['elasticsearch-host']], port=config['elasticsearch-port']) try: res = es.search(config['elasticsearch-index'], config['elasticsearch-doc'], query) hits = DotMap(res).hits.total if (hits == DotMap()): hits = 0 res = (hits > 0) except Exception as e: logger.debug(e) es.transport.close() return res
@staticmethod def check_if_address_present(address, city_name, province_name): '\n Checks if an address has been already scrapped (to skip it).\n :param address: full addres (including tipo de via, nombre de via ...)\n :param city_name: City Name\n :param province_name: Province Name\n :return: True if already scrapped, False otherwise\n ' res = False query = {'query': {'bool': {'must': [{'prefix': {'address.full_address.keyword': '{}'.format(address)}}, {'match': {'address.province.keyword': '{}'.format(province_name)}}, {'match': {'address.city.keyword': '{}'.format(city_name)}}], 'must_not': [], 'should': []}}, 'from': 0, 'size': 11, 'sort': [], 'aggs': {}} es = Elasticsearch(hosts=[config['elasticsearch-host']], port=config['elasticsearch-port']) try: res = es.search(config['elasticsearch-index'], config['elasticsearch-doc'], query) hits = DotMap(res).hits.total if (hits == DotMap()): hits = 0 res = (hits > 0) except Exception as e: logger.debug(e) es.transport.close() return res<|docstring|>Checks if an address has been already scrapped (to skip it). :param address: full addres (including tipo de via, nombre de via ...) :param city_name: City Name :param province_name: Province Name :return: True if already scrapped, False otherwise<|endoftext|>
b9b3b36aed1f4b25316ef6ad0d112a943f7195b72bb2b5f5fb3017544d0387cf
def fairCandySwap(self, A, B): '\n :type A: List[int]\n :type B: List[int]\n :rtype: List[int]\n ' (sum_A, sum_B) = (sum(A), sum(B)) counter_B = Counter(B) diff = ((sum_A - sum_B) / 2) for i in A: if counter_B.has_key((i - diff)): return [i, (i - diff)]
:type A: List[int] :type B: List[int] :rtype: List[int]
888.Fair-Candy-Swap.py
fairCandySwap
mickey0524/leetcode
18
python
def fairCandySwap(self, A, B): '\n :type A: List[int]\n :type B: List[int]\n :rtype: List[int]\n ' (sum_A, sum_B) = (sum(A), sum(B)) counter_B = Counter(B) diff = ((sum_A - sum_B) / 2) for i in A: if counter_B.has_key((i - diff)): return [i, (i - diff)]
def fairCandySwap(self, A, B): '\n :type A: List[int]\n :type B: List[int]\n :rtype: List[int]\n ' (sum_A, sum_B) = (sum(A), sum(B)) counter_B = Counter(B) diff = ((sum_A - sum_B) / 2) for i in A: if counter_B.has_key((i - diff)): return [i, (i - diff)]<|docstring|>:type A: List[int] :type B: List[int] :rtype: List[int]<|endoftext|>
99552f9e80569af2b172b91829d4aa49b135ae50d066f587b06a9e2267135ef6
@property def known_fields(self): '\n Return a set of known fields that can be returned by complete() method.\n ' return set()
Return a set of known fields that can be returned by complete() method.
music_browser/plugins/deezer.py
known_fields
tms-studio/python-music-browser
0
python
@property def known_fields(self): '\n \n ' return set()
@property def known_fields(self): '\n \n ' return set()<|docstring|>Return a set of known fields that can be returned by complete() method.<|endoftext|>
5053a120801a41fef256eefe40d26104a8abea1fab72efbf6c890050937f15d8
def query(self, track: SimpleTrack) -> object: '\n Complete metadata of a track based on simple track data like title, artist, or id.\n ' pass
Complete metadata of a track based on simple track data like title, artist, or id.
music_browser/plugins/deezer.py
query
tms-studio/python-music-browser
0
python
def query(self, track: SimpleTrack) -> object: '\n \n ' pass
def query(self, track: SimpleTrack) -> object: '\n \n ' pass<|docstring|>Complete metadata of a track based on simple track data like title, artist, or id.<|endoftext|>
3f75384fdb128b8276c52f7e8b904970bcc526c3a825e69e001886d01fa3c4ca
def search(self, query: str) -> List[SimpleTrack]: '\n Return list of tracks matching the query.\n\n Parameters:\n query: String describing what track you are looking for.\n\n Returns:\n List of tracks known by Deezer that matches the query.\n ' response = requests.get(('https://api.deezer.com/search?' + urlencode({'q': query}))) tracks = [] for track_data in response.json()['data']: tracks.append(SimpleTrack(album=track_data['album']['title'], artist=track_data['artist']['name'], title=track_data['title'], cover=('https://e-cdns-images.dzcdn.net/images/cover/%s/264x264-000000-80-0-0.jpg' % track_data['md5_image']), source={'id': str(track_data['id']), 'platform': 'deezer'})) return tracks
Return list of tracks matching the query. Parameters: query: String describing what track you are looking for. Returns: List of tracks known by Deezer that matches the query.
music_browser/plugins/deezer.py
search
tms-studio/python-music-browser
0
python
def search(self, query: str) -> List[SimpleTrack]: '\n Return list of tracks matching the query.\n\n Parameters:\n query: String describing what track you are looking for.\n\n Returns:\n List of tracks known by Deezer that matches the query.\n ' response = requests.get(('https://api.deezer.com/search?' + urlencode({'q': query}))) tracks = [] for track_data in response.json()['data']: tracks.append(SimpleTrack(album=track_data['album']['title'], artist=track_data['artist']['name'], title=track_data['title'], cover=('https://e-cdns-images.dzcdn.net/images/cover/%s/264x264-000000-80-0-0.jpg' % track_data['md5_image']), source={'id': str(track_data['id']), 'platform': 'deezer'})) return tracks
def search(self, query: str) -> List[SimpleTrack]: '\n Return list of tracks matching the query.\n\n Parameters:\n query: String describing what track you are looking for.\n\n Returns:\n List of tracks known by Deezer that matches the query.\n ' response = requests.get(('https://api.deezer.com/search?' + urlencode({'q': query}))) tracks = [] for track_data in response.json()['data']: tracks.append(SimpleTrack(album=track_data['album']['title'], artist=track_data['artist']['name'], title=track_data['title'], cover=('https://e-cdns-images.dzcdn.net/images/cover/%s/264x264-000000-80-0-0.jpg' % track_data['md5_image']), source={'id': str(track_data['id']), 'platform': 'deezer'})) return tracks<|docstring|>Return list of tracks matching the query. Parameters: query: String describing what track you are looking for. Returns: List of tracks known by Deezer that matches the query.<|endoftext|>
9b51de302c169e3865ce628b8a38f738a3f4b67924bee722fc6e3d745a211fbe
def gen_plot(self): "\n color_sequence = [\n '#1f77b4', '#aec7e8', '#ff7f0e', '#ffbb78', '#2ca02c',\n '#98df8a', '#d62728', '#ff9896', '#9467bd', '#c5b0d5',\n '#8c564b', '#c49c94', '#e377c2', '#f7b6d2', '#7f7f7f',\n '#c7c7c7', '#bcbd22', '#dbdb8d', '#17becf', '#9edae5',\n '#9caae5', '#1cafe2']\n " fig = plt.figure() means = self.load_data(self.fnames) np.save(((self.dir + '/') + 'allmean'), means, allow_pickle=False) ax1 = fig.add_subplot(1, 1, 1) maxval = (50 + (len(means) * 25)) no = list(range(50, maxval, 25)) no = np.array(no) values = [] for i in range(len(means)): values.append(np.max(means[i])) values = np.array(values) maxindx = argrelextrema(values, np.greater) minindx = argrelextrema(values, np.less) ax1.plot(no[maxindx], values[maxindx], label='Maxima', marker='^', linestyle='--', linewidth=2) ax1.plot(no[minindx], values[minindx], label='Minima', marker='o', linestyle='--', linewidth=1) ax1.plot(no, values, linewidth=1, label='Mean') ax1.set_xlabel('No. of Agents') ax1.set_ylabel('Performance') ax1.set_title(self.title) ax1.legend(fontsize='x-small') plt.tight_layout() fig.savefig((self.dir + '/agentsmean.pdf')) fig.savefig((self.dir + '/agentsmean.png')) plt.close(fig)
color_sequence = [ '#1f77b4', '#aec7e8', '#ff7f0e', '#ffbb78', '#2ca02c', '#98df8a', '#d62728', '#ff9896', '#9467bd', '#c5b0d5', '#8c564b', '#c49c94', '#e377c2', '#f7b6d2', '#7f7f7f', '#c7c7c7', '#bcbd22', '#dbdb8d', '#17becf', '#9edae5', '#9caae5', '#1cafe2']
swarms/utils/graph.py
gen_plot
aadeshnpn/swarm
9
python
def gen_plot(self): "\n color_sequence = [\n '#1f77b4', '#aec7e8', '#ff7f0e', '#ffbb78', '#2ca02c',\n '#98df8a', '#d62728', '#ff9896', '#9467bd', '#c5b0d5',\n '#8c564b', '#c49c94', '#e377c2', '#f7b6d2', '#7f7f7f',\n '#c7c7c7', '#bcbd22', '#dbdb8d', '#17becf', '#9edae5',\n '#9caae5', '#1cafe2']\n " fig = plt.figure() means = self.load_data(self.fnames) np.save(((self.dir + '/') + 'allmean'), means, allow_pickle=False) ax1 = fig.add_subplot(1, 1, 1) maxval = (50 + (len(means) * 25)) no = list(range(50, maxval, 25)) no = np.array(no) values = [] for i in range(len(means)): values.append(np.max(means[i])) values = np.array(values) maxindx = argrelextrema(values, np.greater) minindx = argrelextrema(values, np.less) ax1.plot(no[maxindx], values[maxindx], label='Maxima', marker='^', linestyle='--', linewidth=2) ax1.plot(no[minindx], values[minindx], label='Minima', marker='o', linestyle='--', linewidth=1) ax1.plot(no, values, linewidth=1, label='Mean') ax1.set_xlabel('No. of Agents') ax1.set_ylabel('Performance') ax1.set_title(self.title) ax1.legend(fontsize='x-small') plt.tight_layout() fig.savefig((self.dir + '/agentsmean.pdf')) fig.savefig((self.dir + '/agentsmean.png')) plt.close(fig)
def gen_plot(self): "\n color_sequence = [\n '#1f77b4', '#aec7e8', '#ff7f0e', '#ffbb78', '#2ca02c',\n '#98df8a', '#d62728', '#ff9896', '#9467bd', '#c5b0d5',\n '#8c564b', '#c49c94', '#e377c2', '#f7b6d2', '#7f7f7f',\n '#c7c7c7', '#bcbd22', '#dbdb8d', '#17becf', '#9edae5',\n '#9caae5', '#1cafe2']\n " fig = plt.figure() means = self.load_data(self.fnames) np.save(((self.dir + '/') + 'allmean'), means, allow_pickle=False) ax1 = fig.add_subplot(1, 1, 1) maxval = (50 + (len(means) * 25)) no = list(range(50, maxval, 25)) no = np.array(no) values = [] for i in range(len(means)): values.append(np.max(means[i])) values = np.array(values) maxindx = argrelextrema(values, np.greater) minindx = argrelextrema(values, np.less) ax1.plot(no[maxindx], values[maxindx], label='Maxima', marker='^', linestyle='--', linewidth=2) ax1.plot(no[minindx], values[minindx], label='Minima', marker='o', linestyle='--', linewidth=1) ax1.plot(no, values, linewidth=1, label='Mean') ax1.set_xlabel('No. of Agents') ax1.set_ylabel('Performance') ax1.set_title(self.title) ax1.legend(fontsize='x-small') plt.tight_layout() fig.savefig((self.dir + '/agentsmean.pdf')) fig.savefig((self.dir + '/agentsmean.png')) plt.close(fig)<|docstring|>color_sequence = [ '#1f77b4', '#aec7e8', '#ff7f0e', '#ffbb78', '#2ca02c', '#98df8a', '#d62728', '#ff9896', '#9467bd', '#c5b0d5', '#8c564b', '#c49c94', '#e377c2', '#f7b6d2', '#7f7f7f', '#c7c7c7', '#bcbd22', '#dbdb8d', '#17becf', '#9edae5', '#9caae5', '#1cafe2']<|endoftext|>
f1306ffe85796877af6f043957805e3d754d96eedc695caf649fbce8d25743e3
def assertEventEquals(self, expected, actual): 'Compares two events for equality, ignoring the timestamps.' expected = dict(expected) del expected['timestamp'] actual = dict(actual) del actual['timestamp'] self.assertEquals(expected, actual)
Compares two events for equality, ignoring the timestamps.
test/testhelper.py
assertEventEquals
srault95/logcabin
0
python
def assertEventEquals(self, expected, actual): expected = dict(expected) del expected['timestamp'] actual = dict(actual) del actual['timestamp'] self.assertEquals(expected, actual)
def assertEventEquals(self, expected, actual): expected = dict(expected) del expected['timestamp'] actual = dict(actual) del actual['timestamp'] self.assertEquals(expected, actual)<|docstring|>Compares two events for equality, ignoring the timestamps.<|endoftext|>
701a8ebd5bb6278ac29548879a36e689e6766ef0dc4055149c4f7746e3df715c
def any(_): 'Matches anything' return True
Matches anything
test/testhelper.py
any
srault95/logcabin
0
python
def any(_): return True
def any(_): return True<|docstring|>Matches anything<|endoftext|>
20bafeaeebee0b2c53f93e7f60db1246b402b0251b89ae1e87a82efef0fffbd5
@classmethod def setup_class(cls): ' set-up class ' cls.client = UserAuth('https://cerberus.fake.com', 'testuser', 'hardtoguesspasswd') cls.auth_resp = {'status': 'mfa_req', 'data': {'username': '[email protected]', 'state_token': '0127a384d305138d4e', 'client_token': 'None', 'user_id': '1325', 'devices': [{'id': '223', 'name': 'Google Authenticator'}]}} cls.auth_resp_multi = {'status': 'mfa_req', 'data': {'username': '[email protected]', 'state_token': '0127a384d305138d4e', 'client_token': 'None', 'user_id': '1325', 'devices': [{'id': '223', 'name': 'Google Authenticator'}, {'id': '224', 'name': 'OTP Authenticator'}]}}
set-up class
tests/test_user_auth.py
setup_class
splintercat/cerberus-python-client
16
python
@classmethod def setup_class(cls): ' ' cls.client = UserAuth('https://cerberus.fake.com', 'testuser', 'hardtoguesspasswd') cls.auth_resp = {'status': 'mfa_req', 'data': {'username': '[email protected]', 'state_token': '0127a384d305138d4e', 'client_token': 'None', 'user_id': '1325', 'devices': [{'id': '223', 'name': 'Google Authenticator'}]}} cls.auth_resp_multi = {'status': 'mfa_req', 'data': {'username': '[email protected]', 'state_token': '0127a384d305138d4e', 'client_token': 'None', 'user_id': '1325', 'devices': [{'id': '223', 'name': 'Google Authenticator'}, {'id': '224', 'name': 'OTP Authenticator'}]}}
@classmethod def setup_class(cls): ' ' cls.client = UserAuth('https://cerberus.fake.com', 'testuser', 'hardtoguesspasswd') cls.auth_resp = {'status': 'mfa_req', 'data': {'username': '[email protected]', 'state_token': '0127a384d305138d4e', 'client_token': 'None', 'user_id': '1325', 'devices': [{'id': '223', 'name': 'Google Authenticator'}]}} cls.auth_resp_multi = {'status': 'mfa_req', 'data': {'username': '[email protected]', 'state_token': '0127a384d305138d4e', 'client_token': 'None', 'user_id': '1325', 'devices': [{'id': '223', 'name': 'Google Authenticator'}, {'id': '224', 'name': 'OTP Authenticator'}]}}<|docstring|>set-up class<|endoftext|>
e47b919919f8c1326ee65fd9f96f5e46aa2954c060438a42be2fb6ce67d79f96
def test_username(self): ' Testing to make sure username match ' assert_equals(self.client.username, 'testuser')
Testing to make sure username match
tests/test_user_auth.py
test_username
splintercat/cerberus-python-client
16
python
def test_username(self): ' ' assert_equals(self.client.username, 'testuser')
def test_username(self): ' ' assert_equals(self.client.username, 'testuser')<|docstring|>Testing to make sure username match<|endoftext|>
65a75a8b8fd44a44df55c9f1d1a43038850940860e2a404fc888a75bc124ac9b
@patch('cerberus.user_auth.UserAuth.get_auth') def test_get_token(self, mock_get_auth): ' Test to make sure the correct token is returned ' mock_get_auth.return_value = {'status': 'success', 'data': {'client_token': {'client_token': '7f6808f1-ede3-2177-aa9d-45f507391310'}}} token = self.client.get_token() assert_equals(token, '7f6808f1-ede3-2177-aa9d-45f507391310')
Test to make sure the correct token is returned
tests/test_user_auth.py
test_get_token
splintercat/cerberus-python-client
16
python
@patch('cerberus.user_auth.UserAuth.get_auth') def test_get_token(self, mock_get_auth): ' ' mock_get_auth.return_value = {'status': 'success', 'data': {'client_token': {'client_token': '7f6808f1-ede3-2177-aa9d-45f507391310'}}} token = self.client.get_token() assert_equals(token, '7f6808f1-ede3-2177-aa9d-45f507391310')
@patch('cerberus.user_auth.UserAuth.get_auth') def test_get_token(self, mock_get_auth): ' ' mock_get_auth.return_value = {'status': 'success', 'data': {'client_token': {'client_token': '7f6808f1-ede3-2177-aa9d-45f507391310'}}} token = self.client.get_token() assert_equals(token, '7f6808f1-ede3-2177-aa9d-45f507391310')<|docstring|>Test to make sure the correct token is returned<|endoftext|>
5d30ba4efdb3dc9cd7c06e8c36ec631df8f47f45b4d0425ca66b9558d5dc07bb
@patch('requests.get') def test_get_auth(self, mock_get): '" Test that correct response is returned by get_auth ' mock_resp = self._mock_response(content=json.dumps(self.auth_resp)) mock_get.return_value = mock_resp response = self.client.get_auth() assert_dict_equal(response, self.auth_resp)
" Test that correct response is returned by get_auth
tests/test_user_auth.py
test_get_auth
splintercat/cerberus-python-client
16
python
@patch('requests.get') def test_get_auth(self, mock_get): ' ' mock_resp = self._mock_response(content=json.dumps(self.auth_resp)) mock_get.return_value = mock_resp response = self.client.get_auth() assert_dict_equal(response, self.auth_resp)
@patch('requests.get') def test_get_auth(self, mock_get): ' ' mock_resp = self._mock_response(content=json.dumps(self.auth_resp)) mock_get.return_value = mock_resp response = self.client.get_auth() assert_dict_equal(response, self.auth_resp)<|docstring|>" Test that correct response is returned by get_auth<|endoftext|>
d7f8e0fb8a4a64b58878099b73a7a1392cd73aa7cdd91807154e95cfd85a35f5
@patch(input_module, return_value='0987654321') @patch('requests.post') def test_mfa_response(self, mock_post, mock_input=None): ' Testing that mfa_response returns the correct json ' mfa_data = {'status': 'success', 'data': {'user_id': '134', 'username': '[email protected]', 'state_token': None, 'devices': [], 'client_token': {'client_token': '61e3-f3f-6536-a3e6-b498161d', 'policies': ['cloud-events-owner', 'pixie-dust-owner'], 'metadata': {'groups': 'Rainbow.Playgroun.User,CareBear.users', 'is_admin': 'false', 'username': '[email protected]'}, 'lease_duration': 3600, 'renewable': True}}} mock_post.return_value = self._mock_response(content=json.dumps(mfa_data)) response = self.client.get_mfa(self.auth_resp) assert_dict_equal(response, mfa_data)
Testing that mfa_response returns the correct json
tests/test_user_auth.py
test_mfa_response
splintercat/cerberus-python-client
16
python
@patch(input_module, return_value='0987654321') @patch('requests.post') def test_mfa_response(self, mock_post, mock_input=None): ' ' mfa_data = {'status': 'success', 'data': {'user_id': '134', 'username': '[email protected]', 'state_token': None, 'devices': [], 'client_token': {'client_token': '61e3-f3f-6536-a3e6-b498161d', 'policies': ['cloud-events-owner', 'pixie-dust-owner'], 'metadata': {'groups': 'Rainbow.Playgroun.User,CareBear.users', 'is_admin': 'false', 'username': '[email protected]'}, 'lease_duration': 3600, 'renewable': True}}} mock_post.return_value = self._mock_response(content=json.dumps(mfa_data)) response = self.client.get_mfa(self.auth_resp) assert_dict_equal(response, mfa_data)
@patch(input_module, return_value='0987654321') @patch('requests.post') def test_mfa_response(self, mock_post, mock_input=None): ' ' mfa_data = {'status': 'success', 'data': {'user_id': '134', 'username': '[email protected]', 'state_token': None, 'devices': [], 'client_token': {'client_token': '61e3-f3f-6536-a3e6-b498161d', 'policies': ['cloud-events-owner', 'pixie-dust-owner'], 'metadata': {'groups': 'Rainbow.Playgroun.User,CareBear.users', 'is_admin': 'false', 'username': '[email protected]'}, 'lease_duration': 3600, 'renewable': True}}} mock_post.return_value = self._mock_response(content=json.dumps(mfa_data)) response = self.client.get_mfa(self.auth_resp) assert_dict_equal(response, mfa_data)<|docstring|>Testing that mfa_response returns the correct json<|endoftext|>
30c9efb88fa116713fd5936d0f83c20f5bed9ceb941faec32df77e98b1e60e79
@patch(input_module, side_effect=['1', '0987654321']) @patch('requests.post') def test_multi_mfa_response(self, mock_post, mock_input=None): ' Testing that mfa_response returns the correct json when there are multiple MFAs available ' mfa_data = {'status': 'success', 'data': {'user_id': '134', 'username': '[email protected]', 'state_token': None, 'devices': [], 'client_token': {'client_token': '61e3-f3f-6536-a3e6-b498161d', 'policies': ['cloud-events-owner', 'pixie-dust-owner'], 'metadata': {'groups': 'Rainbow.Playgroun.User,CareBear.users', 'is_admin': 'false', 'username': '[email protected]'}, 'lease_duration': 3600, 'renewable': True}}} mock_post.return_value = self._mock_response(content=json.dumps(mfa_data)) response = self.client.get_mfa(self.auth_resp_multi) assert_dict_equal(response, mfa_data)
Testing that mfa_response returns the correct json when there are multiple MFAs available
tests/test_user_auth.py
test_multi_mfa_response
splintercat/cerberus-python-client
16
python
@patch(input_module, side_effect=['1', '0987654321']) @patch('requests.post') def test_multi_mfa_response(self, mock_post, mock_input=None): ' ' mfa_data = {'status': 'success', 'data': {'user_id': '134', 'username': '[email protected]', 'state_token': None, 'devices': [], 'client_token': {'client_token': '61e3-f3f-6536-a3e6-b498161d', 'policies': ['cloud-events-owner', 'pixie-dust-owner'], 'metadata': {'groups': 'Rainbow.Playgroun.User,CareBear.users', 'is_admin': 'false', 'username': '[email protected]'}, 'lease_duration': 3600, 'renewable': True}}} mock_post.return_value = self._mock_response(content=json.dumps(mfa_data)) response = self.client.get_mfa(self.auth_resp_multi) assert_dict_equal(response, mfa_data)
@patch(input_module, side_effect=['1', '0987654321']) @patch('requests.post') def test_multi_mfa_response(self, mock_post, mock_input=None): ' ' mfa_data = {'status': 'success', 'data': {'user_id': '134', 'username': '[email protected]', 'state_token': None, 'devices': [], 'client_token': {'client_token': '61e3-f3f-6536-a3e6-b498161d', 'policies': ['cloud-events-owner', 'pixie-dust-owner'], 'metadata': {'groups': 'Rainbow.Playgroun.User,CareBear.users', 'is_admin': 'false', 'username': '[email protected]'}, 'lease_duration': 3600, 'renewable': True}}} mock_post.return_value = self._mock_response(content=json.dumps(mfa_data)) response = self.client.get_mfa(self.auth_resp_multi) assert_dict_equal(response, mfa_data)<|docstring|>Testing that mfa_response returns the correct json when there are multiple MFAs available<|endoftext|>
4700395166e6ebcf8b17338cd2e955d254c2a4b33722de7ba3cbaa8a557107e9
@raises(CerberusClientException) @patch(input_module, return_value='a1') def test_multi_mfa_response_text(self, mock_input=None): ' Testing improper inputs for Multiple MFA selections, (a1) ' response = self.client.get_mfa(self.auth_resp_multi)
Testing improper inputs for Multiple MFA selections, (a1)
tests/test_user_auth.py
test_multi_mfa_response_text
splintercat/cerberus-python-client
16
python
@raises(CerberusClientException) @patch(input_module, return_value='a1') def test_multi_mfa_response_text(self, mock_input=None): ' ' response = self.client.get_mfa(self.auth_resp_multi)
@raises(CerberusClientException) @patch(input_module, return_value='a1') def test_multi_mfa_response_text(self, mock_input=None): ' ' response = self.client.get_mfa(self.auth_resp_multi)<|docstring|>Testing improper inputs for Multiple MFA selections, (a1)<|endoftext|>
20bc788ea31ff39fb245d363d92c7409dfef6e60a5898d8f283bab4ea20fc0d4
@raises(CerberusClientException) @patch(input_module, return_value='-1') def test_multi_mfa_response_low(self, mock_input=None): ' Testing improper inputs for Multiple MFA selections, (-1) ' response = self.client.get_mfa(self.auth_resp_multi)
Testing improper inputs for Multiple MFA selections, (-1)
tests/test_user_auth.py
test_multi_mfa_response_low
splintercat/cerberus-python-client
16
python
@raises(CerberusClientException) @patch(input_module, return_value='-1') def test_multi_mfa_response_low(self, mock_input=None): ' ' response = self.client.get_mfa(self.auth_resp_multi)
@raises(CerberusClientException) @patch(input_module, return_value='-1') def test_multi_mfa_response_low(self, mock_input=None): ' ' response = self.client.get_mfa(self.auth_resp_multi)<|docstring|>Testing improper inputs for Multiple MFA selections, (-1)<|endoftext|>
677f230078c7b633972bef7b4ee3951f3f4ccb663deb32ff40da7f552cd39ab5
@raises(CerberusClientException) @patch(input_module, return_value='2') def test_multi_mfa_response_high(self, mock_input=None): ' Testing improper inputs for Multiple MFA selections, (2) ' response = self.client.get_mfa(self.auth_resp_multi)
Testing improper inputs for Multiple MFA selections, (2)
tests/test_user_auth.py
test_multi_mfa_response_high
splintercat/cerberus-python-client
16
python
@raises(CerberusClientException) @patch(input_module, return_value='2') def test_multi_mfa_response_high(self, mock_input=None): ' ' response = self.client.get_mfa(self.auth_resp_multi)
@raises(CerberusClientException) @patch(input_module, return_value='2') def test_multi_mfa_response_high(self, mock_input=None): ' ' response = self.client.get_mfa(self.auth_resp_multi)<|docstring|>Testing improper inputs for Multiple MFA selections, (2)<|endoftext|>
dd8581bf69d0b419e575b630cdd8acd9f865d99b914069fdd81b0188d3848a82
@raises(CerberusClientException) @patch('requests.get') def test_when_not_200_status_code(self, mock_get): ' test when 200 status code is not returned' data = json.dumps({'error_id': '123', 'errors': []}) mock_resp = self._mock_response(status=404, reason='Not Found', content=data) mock_get.return_value = mock_resp self.client.get_auth()
test when 200 status code is not returned
tests/test_user_auth.py
test_when_not_200_status_code
splintercat/cerberus-python-client
16
python
@raises(CerberusClientException) @patch('requests.get') def test_when_not_200_status_code(self, mock_get): ' ' data = json.dumps({'error_id': '123', 'errors': []}) mock_resp = self._mock_response(status=404, reason='Not Found', content=data) mock_get.return_value = mock_resp self.client.get_auth()
@raises(CerberusClientException) @patch('requests.get') def test_when_not_200_status_code(self, mock_get): ' ' data = json.dumps({'error_id': '123', 'errors': []}) mock_resp = self._mock_response(status=404, reason='Not Found', content=data) mock_get.return_value = mock_resp self.client.get_auth()<|docstring|>test when 200 status code is not returned<|endoftext|>
1f562dbaa975bade676216ed2150aa374b136aa5461581441d08030e9c0e0514
def __init__(self, master, defPath=None, fileTypes=None, maxChar=30, callFunc=None, severity=opscore.RO.Constants.sevNormal, helpText=None, helpURL=None, **kargs): 'Creates a new Button.\n\n Inputs:\n - defPath: initial path; silently ignored if invalid or nonexistent\n - fileTypes: sequence of (label, pattern) tuples;\n use * as a pattern to allow all files of that labelled type;\n omit altogether to allow all files\n - maxChar: maximum # of characters of file path to display\n - callFunc callback function; the function receives one argument: self.\n It is called whenever the value changes (manually or via\n the associated variable being set).\n - severity initial severity; one of opscore.RO.Constants.sevNormal, sevWarning or sevError\n - helpText text for hot help\n - helpURL URL for longer help\n - all remaining keyword arguments are used to configure the Tkinter Button;\n command is supported, for the sake of conformity, but callFunc is preferred.\n ' self.fileTypes = fileTypes self.maxChar = max(3, int(maxChar)) self.helpText = helpText self.path = None self.defPath = None self.leftChar = 0 self.rightChar = ((self.maxChar - self.leftChar) - 1) tkinter.Button.__init__(self, master=master, command=self._doChoose, **kargs) opscore.RO.AddCallback.BaseMixin.__init__(self) CtxMenuMixin.__init__(self, helpURL=helpURL) SeverityActiveMixin.__init__(self, severity) self._initPath(defPath) if callFunc: self.addCallback(callFunc, False)
Creates a new Button. Inputs: - defPath: initial path; silently ignored if invalid or nonexistent - fileTypes: sequence of (label, pattern) tuples; use * as a pattern to allow all files of that labelled type; omit altogether to allow all files - maxChar: maximum # of characters of file path to display - callFunc callback function; the function receives one argument: self. It is called whenever the value changes (manually or via the associated variable being set). - severity initial severity; one of opscore.RO.Constants.sevNormal, sevWarning or sevError - helpText text for hot help - helpURL URL for longer help - all remaining keyword arguments are used to configure the Tkinter Button; command is supported, for the sake of conformity, but callFunc is preferred.
python/opscore/RO/Wdg/PathWdg.py
__init__
sdss/opscore
0
python
def __init__(self, master, defPath=None, fileTypes=None, maxChar=30, callFunc=None, severity=opscore.RO.Constants.sevNormal, helpText=None, helpURL=None, **kargs): 'Creates a new Button.\n\n Inputs:\n - defPath: initial path; silently ignored if invalid or nonexistent\n - fileTypes: sequence of (label, pattern) tuples;\n use * as a pattern to allow all files of that labelled type;\n omit altogether to allow all files\n - maxChar: maximum # of characters of file path to display\n - callFunc callback function; the function receives one argument: self.\n It is called whenever the value changes (manually or via\n the associated variable being set).\n - severity initial severity; one of opscore.RO.Constants.sevNormal, sevWarning or sevError\n - helpText text for hot help\n - helpURL URL for longer help\n - all remaining keyword arguments are used to configure the Tkinter Button;\n command is supported, for the sake of conformity, but callFunc is preferred.\n ' self.fileTypes = fileTypes self.maxChar = max(3, int(maxChar)) self.helpText = helpText self.path = None self.defPath = None self.leftChar = 0 self.rightChar = ((self.maxChar - self.leftChar) - 1) tkinter.Button.__init__(self, master=master, command=self._doChoose, **kargs) opscore.RO.AddCallback.BaseMixin.__init__(self) CtxMenuMixin.__init__(self, helpURL=helpURL) SeverityActiveMixin.__init__(self, severity) self._initPath(defPath) if callFunc: self.addCallback(callFunc, False)
def __init__(self, master, defPath=None, fileTypes=None, maxChar=30, callFunc=None, severity=opscore.RO.Constants.sevNormal, helpText=None, helpURL=None, **kargs): 'Creates a new Button.\n\n Inputs:\n - defPath: initial path; silently ignored if invalid or nonexistent\n - fileTypes: sequence of (label, pattern) tuples;\n use * as a pattern to allow all files of that labelled type;\n omit altogether to allow all files\n - maxChar: maximum # of characters of file path to display\n - callFunc callback function; the function receives one argument: self.\n It is called whenever the value changes (manually or via\n the associated variable being set).\n - severity initial severity; one of opscore.RO.Constants.sevNormal, sevWarning or sevError\n - helpText text for hot help\n - helpURL URL for longer help\n - all remaining keyword arguments are used to configure the Tkinter Button;\n command is supported, for the sake of conformity, but callFunc is preferred.\n ' self.fileTypes = fileTypes self.maxChar = max(3, int(maxChar)) self.helpText = helpText self.path = None self.defPath = None self.leftChar = 0 self.rightChar = ((self.maxChar - self.leftChar) - 1) tkinter.Button.__init__(self, master=master, command=self._doChoose, **kargs) opscore.RO.AddCallback.BaseMixin.__init__(self) CtxMenuMixin.__init__(self, helpURL=helpURL) SeverityActiveMixin.__init__(self, severity) self._initPath(defPath) if callFunc: self.addCallback(callFunc, False)<|docstring|>Creates a new Button. Inputs: - defPath: initial path; silently ignored if invalid or nonexistent - fileTypes: sequence of (label, pattern) tuples; use * as a pattern to allow all files of that labelled type; omit altogether to allow all files - maxChar: maximum # of characters of file path to display - callFunc callback function; the function receives one argument: self. It is called whenever the value changes (manually or via the associated variable being set). - severity initial severity; one of opscore.RO.Constants.sevNormal, sevWarning or sevError - helpText text for hot help - helpURL URL for longer help - all remaining keyword arguments are used to configure the Tkinter Button; command is supported, for the sake of conformity, but callFunc is preferred.<|endoftext|>
83383f72a2febbf74272f9a9cd1efd3515c426e41486d39fd7e6370f531fef17
def _doChoose(self): 'Put up a dialog to choose a new file.\n Subclasses must override.\n ' raise NotImplementedError('_doChoose must be implemented by a subclass')
Put up a dialog to choose a new file. Subclasses must override.
python/opscore/RO/Wdg/PathWdg.py
_doChoose
sdss/opscore
0
python
def _doChoose(self): 'Put up a dialog to choose a new file.\n Subclasses must override.\n ' raise NotImplementedError('_doChoose must be implemented by a subclass')
def _doChoose(self): 'Put up a dialog to choose a new file.\n Subclasses must override.\n ' raise NotImplementedError('_doChoose must be implemented by a subclass')<|docstring|>Put up a dialog to choose a new file. Subclasses must override.<|endoftext|>
6c142e891e92575afa81cc7a16026c7a717ff2c17263feb393866cf60cb4476d
def _initPath(self, defPath): 'During initialization set self.defPath and self.path.\n ' if defPath: try: self.checkPath(defPath) defPath = os.path.abspath(defPath) except ValueError: defPath = None self.defPath = defPath self.setPath(defPath)
During initialization set self.defPath and self.path.
python/opscore/RO/Wdg/PathWdg.py
_initPath
sdss/opscore
0
python
def _initPath(self, defPath): '\n ' if defPath: try: self.checkPath(defPath) defPath = os.path.abspath(defPath) except ValueError: defPath = None self.defPath = defPath self.setPath(defPath)
def _initPath(self, defPath): '\n ' if defPath: try: self.checkPath(defPath) defPath = os.path.abspath(defPath) except ValueError: defPath = None self.defPath = defPath self.setPath(defPath)<|docstring|>During initialization set self.defPath and self.path.<|endoftext|>
6108a3be46a0d68404e93f95abbfc9280aa70441294214cb55e3ba20fab1ba4b
def checkPath(self, path): 'Raise ValueError if path not None and does not exist.\n Override from base class to make more specific.\n ' if (path and (not os.path.exists(path))): raise ValueError(('Path %r does not exist' % (path,)))
Raise ValueError if path not None and does not exist. Override from base class to make more specific.
python/opscore/RO/Wdg/PathWdg.py
checkPath
sdss/opscore
0
python
def checkPath(self, path): 'Raise ValueError if path not None and does not exist.\n Override from base class to make more specific.\n ' if (path and (not os.path.exists(path))): raise ValueError(('Path %r does not exist' % (path,)))
def checkPath(self, path): 'Raise ValueError if path not None and does not exist.\n Override from base class to make more specific.\n ' if (path and (not os.path.exists(path))): raise ValueError(('Path %r does not exist' % (path,)))<|docstring|>Raise ValueError if path not None and does not exist. Override from base class to make more specific.<|endoftext|>
75e0e8d801ac47fced8077f22a2269cad57109326e455bf78711a3d776e65845
def setEnable(self, doEnable): 'Enable or disable widget\n\n Inputs:\n - doEnable: if True enable widget (set state to normal); otherwise set state to disabled\n\n Warning: if you want the state to be "active" you must set that explicitly.\n ' if doEnable: self['state'] = tkinter.NORMAL else: self['state'] = tkinter.DISABLED
Enable or disable widget Inputs: - doEnable: if True enable widget (set state to normal); otherwise set state to disabled Warning: if you want the state to be "active" you must set that explicitly.
python/opscore/RO/Wdg/PathWdg.py
setEnable
sdss/opscore
0
python
def setEnable(self, doEnable): 'Enable or disable widget\n\n Inputs:\n - doEnable: if True enable widget (set state to normal); otherwise set state to disabled\n\n Warning: if you want the state to be "active" you must set that explicitly.\n ' if doEnable: self['state'] = tkinter.NORMAL else: self['state'] = tkinter.DISABLED
def setEnable(self, doEnable): 'Enable or disable widget\n\n Inputs:\n - doEnable: if True enable widget (set state to normal); otherwise set state to disabled\n\n Warning: if you want the state to be "active" you must set that explicitly.\n ' if doEnable: self['state'] = tkinter.NORMAL else: self['state'] = tkinter.DISABLED<|docstring|>Enable or disable widget Inputs: - doEnable: if True enable widget (set state to normal); otherwise set state to disabled Warning: if you want the state to be "active" you must set that explicitly.<|endoftext|>
7f30fda178745b866568a8ea36f33176f26b288a94d8fbeaeb7152f499e24b31
def getEnable(self): 'Return True if widget is enabled, False otherwise\n\n Enabled is defined as the state is not "disabled" (thus "enabled" or "active").\n ' return (self['state'] != tkinter.DISABLED)
Return True if widget is enabled, False otherwise Enabled is defined as the state is not "disabled" (thus "enabled" or "active").
python/opscore/RO/Wdg/PathWdg.py
getEnable
sdss/opscore
0
python
def getEnable(self): 'Return True if widget is enabled, False otherwise\n\n Enabled is defined as the state is not "disabled" (thus "enabled" or "active").\n ' return (self['state'] != tkinter.DISABLED)
def getEnable(self): 'Return True if widget is enabled, False otherwise\n\n Enabled is defined as the state is not "disabled" (thus "enabled" or "active").\n ' return (self['state'] != tkinter.DISABLED)<|docstring|>Return True if widget is enabled, False otherwise Enabled is defined as the state is not "disabled" (thus "enabled" or "active").<|endoftext|>
9d575e60b06519b3a8c5146145fe666991201b4c9e76a227b5977abcdd93b885
def setPath(self, path): 'Set self.path to normalized version of path.\n\n Inputs:\n - path: path; if None or "" then no path\n\n Raise ValueError if path invalid or nonexistent.\n ' if (not path): dispStr = '' else: self.checkPath(path) path = os.path.abspath(path) if (len(path) > self.maxChar): dispStr = ''.join((path[0:self.leftChar], u('…'), path[(- self.rightChar):])) else: dispStr = path self.path = path self['text'] = dispStr self._doCallbacks()
Set self.path to normalized version of path. Inputs: - path: path; if None or "" then no path Raise ValueError if path invalid or nonexistent.
python/opscore/RO/Wdg/PathWdg.py
setPath
sdss/opscore
0
python
def setPath(self, path): 'Set self.path to normalized version of path.\n\n Inputs:\n - path: path; if None or then no path\n\n Raise ValueError if path invalid or nonexistent.\n ' if (not path): dispStr = else: self.checkPath(path) path = os.path.abspath(path) if (len(path) > self.maxChar): dispStr = .join((path[0:self.leftChar], u('…'), path[(- self.rightChar):])) else: dispStr = path self.path = path self['text'] = dispStr self._doCallbacks()
def setPath(self, path): 'Set self.path to normalized version of path.\n\n Inputs:\n - path: path; if None or then no path\n\n Raise ValueError if path invalid or nonexistent.\n ' if (not path): dispStr = else: self.checkPath(path) path = os.path.abspath(path) if (len(path) > self.maxChar): dispStr = .join((path[0:self.leftChar], u('…'), path[(- self.rightChar):])) else: dispStr = path self.path = path self['text'] = dispStr self._doCallbacks()<|docstring|>Set self.path to normalized version of path. Inputs: - path: path; if None or "" then no path Raise ValueError if path invalid or nonexistent.<|endoftext|>
d3d3dc47038034454b857de848531dc11330433f8c04ad14129c71cf48278ea4
def getPath(self): 'Return the current path (or None if no path).\n ' return self.path
Return the current path (or None if no path).
python/opscore/RO/Wdg/PathWdg.py
getPath
sdss/opscore
0
python
def getPath(self): '\n ' return self.path
def getPath(self): '\n ' return self.path<|docstring|>Return the current path (or None if no path).<|endoftext|>
68deab11050cfee50825c90f8493cf21ee68f3b99fbcc13985a93ec9e1c9d93e
def ctxConfigMenu(self, menu): 'Configure the contextual menu.\n Called just before the menu is posted.\n ' if (not self.getEnable()): return True if (self.path is None): state = 'disabled' else: state = 'normal' if self.path: copyLabel = ' '.join(('Copy', self.path)) else: copyLabel = 'Copy' menu.add_command(label=copyLabel, command=self._copyToClip, state=state) return True
Configure the contextual menu. Called just before the menu is posted.
python/opscore/RO/Wdg/PathWdg.py
ctxConfigMenu
sdss/opscore
0
python
def ctxConfigMenu(self, menu): 'Configure the contextual menu.\n Called just before the menu is posted.\n ' if (not self.getEnable()): return True if (self.path is None): state = 'disabled' else: state = 'normal' if self.path: copyLabel = ' '.join(('Copy', self.path)) else: copyLabel = 'Copy' menu.add_command(label=copyLabel, command=self._copyToClip, state=state) return True
def ctxConfigMenu(self, menu): 'Configure the contextual menu.\n Called just before the menu is posted.\n ' if (not self.getEnable()): return True if (self.path is None): state = 'disabled' else: state = 'normal' if self.path: copyLabel = ' '.join(('Copy', self.path)) else: copyLabel = 'Copy' menu.add_command(label=copyLabel, command=self._copyToClip, state=state) return True<|docstring|>Configure the contextual menu. Called just before the menu is posted.<|endoftext|>
71154e3bc701a52a2401dbc5ac0a9b41085f02636b78d0661af1a5028ceb3845
def _copyToClip(self): 'Copy the current path to the clipboard\n ' if (self.path is not None): self.clipboard_clear() self.clipboard_append(self.path)
Copy the current path to the clipboard
python/opscore/RO/Wdg/PathWdg.py
_copyToClip
sdss/opscore
0
python
def _copyToClip(self): '\n ' if (self.path is not None): self.clipboard_clear() self.clipboard_append(self.path)
def _copyToClip(self): '\n ' if (self.path is not None): self.clipboard_clear() self.clipboard_append(self.path)<|docstring|>Copy the current path to the clipboard<|endoftext|>
59d71efbaf899b3b9e3696070caa36dbbb0b98fc255d359766909a2f27caabb0
def _doChoose(self): 'Put up a dialog to choose a new file.\n ' if (self.path is not None): startDir = self.path else: startDir = self.defPath if (startDir and (not os.path.isdir(startDir))): parDir = os.path.split(self.path)[0] if os.path.isdir(parDir): startDir = parDir else: startDir = None kargs = {} if self.fileTypes: kargs['filetypes'] = self.fileTypes newPath = tkinter.filedialog.askdirectory(initialdir=startDir, mustexist=True, title=self.helpText, **kargs) if newPath: newPath = opscore.RO.CnvUtil.asStr(newPath) self.setPath(newPath)
Put up a dialog to choose a new file.
python/opscore/RO/Wdg/PathWdg.py
_doChoose
sdss/opscore
0
python
def _doChoose(self): '\n ' if (self.path is not None): startDir = self.path else: startDir = self.defPath if (startDir and (not os.path.isdir(startDir))): parDir = os.path.split(self.path)[0] if os.path.isdir(parDir): startDir = parDir else: startDir = None kargs = {} if self.fileTypes: kargs['filetypes'] = self.fileTypes newPath = tkinter.filedialog.askdirectory(initialdir=startDir, mustexist=True, title=self.helpText, **kargs) if newPath: newPath = opscore.RO.CnvUtil.asStr(newPath) self.setPath(newPath)
def _doChoose(self): '\n ' if (self.path is not None): startDir = self.path else: startDir = self.defPath if (startDir and (not os.path.isdir(startDir))): parDir = os.path.split(self.path)[0] if os.path.isdir(parDir): startDir = parDir else: startDir = None kargs = {} if self.fileTypes: kargs['filetypes'] = self.fileTypes newPath = tkinter.filedialog.askdirectory(initialdir=startDir, mustexist=True, title=self.helpText, **kargs) if newPath: newPath = opscore.RO.CnvUtil.asStr(newPath) self.setPath(newPath)<|docstring|>Put up a dialog to choose a new file.<|endoftext|>
8efccc8366293b61bd6d944608b5b771d87bd04f54ac25f7c4f9b231fe1b074b
def checkPath(self, path): 'Raise ValueError if path not None and not an existing directory' if (path and (not os.path.isdir(path))): raise ValueError(('Path %r is not an existing directory' % (path,)))
Raise ValueError if path not None and not an existing directory
python/opscore/RO/Wdg/PathWdg.py
checkPath
sdss/opscore
0
python
def checkPath(self, path): if (path and (not os.path.isdir(path))): raise ValueError(('Path %r is not an existing directory' % (path,)))
def checkPath(self, path): if (path and (not os.path.isdir(path))): raise ValueError(('Path %r is not an existing directory' % (path,)))<|docstring|>Raise ValueError if path not None and not an existing directory<|endoftext|>
456da0a439a30580888650396782833e3689394a5589f15862ba9735feb99098
def _doChoose(self): 'Put up a dialog to choose a new file.\n ' if (self.path is not None): startPath = self.path else: startPath = self.defPath if (startPath is not None): (startDir, startFile) = os.path.split(self.path) if (not os.path.isfile(startPath)): startFile = None else: startFile = None startDir = self.defDir if ((startDir is not None) and (not os.path.isdir(startDir))): startDir = startFile = None kargs = {} if self.fileTypes: kargs['filetypes'] = self.fileTypes newPath = tkinter.filedialog.askopenfilename(initialdir=startDir, initialfile=startFile, title=self.helpText, **kargs) if newPath: newPath = opscore.RO.CnvUtil.asStr(newPath) self.setPath(newPath)
Put up a dialog to choose a new file.
python/opscore/RO/Wdg/PathWdg.py
_doChoose
sdss/opscore
0
python
def _doChoose(self): '\n ' if (self.path is not None): startPath = self.path else: startPath = self.defPath if (startPath is not None): (startDir, startFile) = os.path.split(self.path) if (not os.path.isfile(startPath)): startFile = None else: startFile = None startDir = self.defDir if ((startDir is not None) and (not os.path.isdir(startDir))): startDir = startFile = None kargs = {} if self.fileTypes: kargs['filetypes'] = self.fileTypes newPath = tkinter.filedialog.askopenfilename(initialdir=startDir, initialfile=startFile, title=self.helpText, **kargs) if newPath: newPath = opscore.RO.CnvUtil.asStr(newPath) self.setPath(newPath)
def _doChoose(self): '\n ' if (self.path is not None): startPath = self.path else: startPath = self.defPath if (startPath is not None): (startDir, startFile) = os.path.split(self.path) if (not os.path.isfile(startPath)): startFile = None else: startFile = None startDir = self.defDir if ((startDir is not None) and (not os.path.isdir(startDir))): startDir = startFile = None kargs = {} if self.fileTypes: kargs['filetypes'] = self.fileTypes newPath = tkinter.filedialog.askopenfilename(initialdir=startDir, initialfile=startFile, title=self.helpText, **kargs) if newPath: newPath = opscore.RO.CnvUtil.asStr(newPath) self.setPath(newPath)<|docstring|>Put up a dialog to choose a new file.<|endoftext|>
63efb029657549d639203f94db88e4e7be03629fbf1d39f5dc22f55f34aeb427
def _initPath(self, defPath): 'During initialization set self.defDir, self.defPath and self.path.\n ' defDir = None if defPath: if os.path.isfile(defPath): defPath = os.path.abspath(defPath) elif os.path.isdir(defPath): defDir = os.path.abspath(defPath) defPath = None else: parDir = os.path.split(defPath)[0] if os.path.isdir(parDir): defDir = parDir defPath = None self.defDir = defDir self.defPath = defPath self.setPath(defPath)
During initialization set self.defDir, self.defPath and self.path.
python/opscore/RO/Wdg/PathWdg.py
_initPath
sdss/opscore
0
python
def _initPath(self, defPath): '\n ' defDir = None if defPath: if os.path.isfile(defPath): defPath = os.path.abspath(defPath) elif os.path.isdir(defPath): defDir = os.path.abspath(defPath) defPath = None else: parDir = os.path.split(defPath)[0] if os.path.isdir(parDir): defDir = parDir defPath = None self.defDir = defDir self.defPath = defPath self.setPath(defPath)
def _initPath(self, defPath): '\n ' defDir = None if defPath: if os.path.isfile(defPath): defPath = os.path.abspath(defPath) elif os.path.isdir(defPath): defDir = os.path.abspath(defPath) defPath = None else: parDir = os.path.split(defPath)[0] if os.path.isdir(parDir): defDir = parDir defPath = None self.defDir = defDir self.defPath = defPath self.setPath(defPath)<|docstring|>During initialization set self.defDir, self.defPath and self.path.<|endoftext|>
080d7638559e985e3f1e4d13fcffd9b4a54ab2414525d11531abefb50ddb11c6
def checkPath(self, path): 'Raise ValueError if path not None and not not an existing file' if (path and (not os.path.isfile(path))): raise ValueError(('Path %r is not an existing file' % (path,)))
Raise ValueError if path not None and not not an existing file
python/opscore/RO/Wdg/PathWdg.py
checkPath
sdss/opscore
0
python
def checkPath(self, path): if (path and (not os.path.isfile(path))): raise ValueError(('Path %r is not an existing file' % (path,)))
def checkPath(self, path): if (path and (not os.path.isfile(path))): raise ValueError(('Path %r is not an existing file' % (path,)))<|docstring|>Raise ValueError if path not None and not not an existing file<|endoftext|>
f0aa5cf90badbddbb1ebebcbaf89c4fd97227c2b42e5965ee56a81d23246bd17
def test_3d_multiple_properties(self): '\n loading two modalities, grouping subject names only\n ' data_param = {'mr': {'path_to_search': IMAGE_PATH_3D, 'filename_contains': 'Lesion', 'pixdim': (4, 3, 4), 'axcodes': 'RAS'}, 'ct': {'path_to_search': IMAGE_PATH_3D, 'filename_contains': 'Lesion', 'pixdim': (4, 3, 4), 'axcodes': 'RAS'}} reader = ImageReader().initialise(data_param) self.assertDictEqual(reader.spatial_ranks, {'mr': 3, 'ct': 3}) self.assertEqual(reader.output_list[0]['mr'].output_pixdim, ((4.0, 3.0, 4.0),)) self.assertEqual(reader.output_list[0]['mr'].output_axcodes, (('R', 'A', 'S'),)) (idx, data, interp) = reader() self.assertTrue(('mr' in data)) self.assertTrue(('ct' in data)) self.assertTrue((idx in range(len(reader.output_list)))) self.assertDictEqual(interp, {'mr': (1,), 'ct': (1,)}) self.assertAllClose(data['mr'].shape[:3], (62, 83, 62), atol=1) self.assertAllClose(data['mr'].shape[3:], (1, 1)) self.assertAllClose(data['ct'].shape[:3], (62, 83, 62), atol=1) self.assertAllClose(data['ct'].shape[3:], (1, 1))
loading two modalities, grouping subject names only
tests/reader_modular_test.py
test_3d_multiple_properties
tdml13/NiftyNet
1,403
python
def test_3d_multiple_properties(self): '\n \n ' data_param = {'mr': {'path_to_search': IMAGE_PATH_3D, 'filename_contains': 'Lesion', 'pixdim': (4, 3, 4), 'axcodes': 'RAS'}, 'ct': {'path_to_search': IMAGE_PATH_3D, 'filename_contains': 'Lesion', 'pixdim': (4, 3, 4), 'axcodes': 'RAS'}} reader = ImageReader().initialise(data_param) self.assertDictEqual(reader.spatial_ranks, {'mr': 3, 'ct': 3}) self.assertEqual(reader.output_list[0]['mr'].output_pixdim, ((4.0, 3.0, 4.0),)) self.assertEqual(reader.output_list[0]['mr'].output_axcodes, (('R', 'A', 'S'),)) (idx, data, interp) = reader() self.assertTrue(('mr' in data)) self.assertTrue(('ct' in data)) self.assertTrue((idx in range(len(reader.output_list)))) self.assertDictEqual(interp, {'mr': (1,), 'ct': (1,)}) self.assertAllClose(data['mr'].shape[:3], (62, 83, 62), atol=1) self.assertAllClose(data['mr'].shape[3:], (1, 1)) self.assertAllClose(data['ct'].shape[:3], (62, 83, 62), atol=1) self.assertAllClose(data['ct'].shape[3:], (1, 1))
def test_3d_multiple_properties(self): '\n \n ' data_param = {'mr': {'path_to_search': IMAGE_PATH_3D, 'filename_contains': 'Lesion', 'pixdim': (4, 3, 4), 'axcodes': 'RAS'}, 'ct': {'path_to_search': IMAGE_PATH_3D, 'filename_contains': 'Lesion', 'pixdim': (4, 3, 4), 'axcodes': 'RAS'}} reader = ImageReader().initialise(data_param) self.assertDictEqual(reader.spatial_ranks, {'mr': 3, 'ct': 3}) self.assertEqual(reader.output_list[0]['mr'].output_pixdim, ((4.0, 3.0, 4.0),)) self.assertEqual(reader.output_list[0]['mr'].output_axcodes, (('R', 'A', 'S'),)) (idx, data, interp) = reader() self.assertTrue(('mr' in data)) self.assertTrue(('ct' in data)) self.assertTrue((idx in range(len(reader.output_list)))) self.assertDictEqual(interp, {'mr': (1,), 'ct': (1,)}) self.assertAllClose(data['mr'].shape[:3], (62, 83, 62), atol=1) self.assertAllClose(data['mr'].shape[3:], (1, 1)) self.assertAllClose(data['ct'].shape[:3], (62, 83, 62), atol=1) self.assertAllClose(data['ct'].shape[3:], (1, 1))<|docstring|>loading two modalities, grouping subject names only<|endoftext|>
b82fdd74be55625f5d25489f86db42222f107d0a33519a85d08d9f0772ea3bb3
def test_3d_concat_properties(self): '\n loading two modalities, grouping subject names only\n ' data_param = {'mr': {'path_to_search': IMAGE_PATH_3D, 'filename_contains': 'LesionFin', 'pixdim': (4, 3, 4), 'axcodes': 'RAS'}, 'ct': {'path_to_search': IMAGE_PATH_3D, 'filename_contains': 'FLAIR', 'pixdim': (4, 3, 4), 'axcodes': 'RAS'}} grouping_param = {'image': ('mr', 'ct')} reader = ImageReader().initialise(data_param, grouping_param) self.assertDictEqual(reader.spatial_ranks, {'image': 3}) self.assertEqual(reader.output_list[0]['image'].output_pixdim, (((4.0, 3.0, 4.0),) * 2)) self.assertEqual(reader.output_list[0]['image'].output_axcodes, ((('R', 'A', 'S'),) * 2)) (idx, data, interp) = reader() self.assertTrue(('image' in data)) self.assertTrue((idx in range(len(reader.output_list)))) self.assertDictEqual(interp, {'image': (1, 1)}) self.assertAllClose(data['image'].shape[:3], (62, 83, 62), atol=1) self.assertAllClose(data['image'].shape[3:], (1, 2))
loading two modalities, grouping subject names only
tests/reader_modular_test.py
test_3d_concat_properties
tdml13/NiftyNet
1,403
python
def test_3d_concat_properties(self): '\n \n ' data_param = {'mr': {'path_to_search': IMAGE_PATH_3D, 'filename_contains': 'LesionFin', 'pixdim': (4, 3, 4), 'axcodes': 'RAS'}, 'ct': {'path_to_search': IMAGE_PATH_3D, 'filename_contains': 'FLAIR', 'pixdim': (4, 3, 4), 'axcodes': 'RAS'}} grouping_param = {'image': ('mr', 'ct')} reader = ImageReader().initialise(data_param, grouping_param) self.assertDictEqual(reader.spatial_ranks, {'image': 3}) self.assertEqual(reader.output_list[0]['image'].output_pixdim, (((4.0, 3.0, 4.0),) * 2)) self.assertEqual(reader.output_list[0]['image'].output_axcodes, ((('R', 'A', 'S'),) * 2)) (idx, data, interp) = reader() self.assertTrue(('image' in data)) self.assertTrue((idx in range(len(reader.output_list)))) self.assertDictEqual(interp, {'image': (1, 1)}) self.assertAllClose(data['image'].shape[:3], (62, 83, 62), atol=1) self.assertAllClose(data['image'].shape[3:], (1, 2))
def test_3d_concat_properties(self): '\n \n ' data_param = {'mr': {'path_to_search': IMAGE_PATH_3D, 'filename_contains': 'LesionFin', 'pixdim': (4, 3, 4), 'axcodes': 'RAS'}, 'ct': {'path_to_search': IMAGE_PATH_3D, 'filename_contains': 'FLAIR', 'pixdim': (4, 3, 4), 'axcodes': 'RAS'}} grouping_param = {'image': ('mr', 'ct')} reader = ImageReader().initialise(data_param, grouping_param) self.assertDictEqual(reader.spatial_ranks, {'image': 3}) self.assertEqual(reader.output_list[0]['image'].output_pixdim, (((4.0, 3.0, 4.0),) * 2)) self.assertEqual(reader.output_list[0]['image'].output_axcodes, ((('R', 'A', 'S'),) * 2)) (idx, data, interp) = reader() self.assertTrue(('image' in data)) self.assertTrue((idx in range(len(reader.output_list)))) self.assertDictEqual(interp, {'image': (1, 1)}) self.assertAllClose(data['image'].shape[:3], (62, 83, 62), atol=1) self.assertAllClose(data['image'].shape[3:], (1, 2))<|docstring|>loading two modalities, grouping subject names only<|endoftext|>
e1abadf3bc536cf627256a1468ee37a045dfcea40d37a88d760dce79fdaf56b8
def test_3d_multiple_properties(self): '\n loading two modalities, grouping subject names only\n ' data_param = {'mr': {'path_to_search': IMAGE_PATH_3D_1, 'filename_contains': 'x_y_z_1_1', 'pixdim': (4, 3, 4), 'axcodes': 'RAS'}, 'ct': {'path_to_search': IMAGE_PATH_3D_1, 'filename_contains': 'x_y_z_1_1', 'pixdim': (4, 3, 4), 'axcodes': 'RAS'}} reader = ImageReader().initialise(data_param) self.assertDictEqual(reader.spatial_ranks, {'mr': 3, 'ct': 3}) self.assertEqual(reader.output_list[0]['mr'].output_pixdim, ((4.0, 3.0, 4.0),)) self.assertEqual(reader.output_list[0]['mr'].output_axcodes, (('R', 'A', 'S'),)) (idx, data, interp) = reader() self.assertTrue(('mr' in data)) self.assertTrue(('ct' in data)) self.assertTrue((idx in range(len(reader.output_list)))) self.assertDictEqual(interp, {'mr': (1,), 'ct': (1,)}) self.assertAllClose(data['mr'].shape[:3], (12, 8, 10), atol=1) self.assertAllClose(data['mr'].shape[3:], (1, 1)) self.assertAllClose(data['ct'].shape[:3], (12, 8, 10), atol=1) self.assertAllClose(data['ct'].shape[3:], (1, 1))
loading two modalities, grouping subject names only
tests/reader_modular_test.py
test_3d_multiple_properties
tdml13/NiftyNet
1,403
python
def test_3d_multiple_properties(self): '\n \n ' data_param = {'mr': {'path_to_search': IMAGE_PATH_3D_1, 'filename_contains': 'x_y_z_1_1', 'pixdim': (4, 3, 4), 'axcodes': 'RAS'}, 'ct': {'path_to_search': IMAGE_PATH_3D_1, 'filename_contains': 'x_y_z_1_1', 'pixdim': (4, 3, 4), 'axcodes': 'RAS'}} reader = ImageReader().initialise(data_param) self.assertDictEqual(reader.spatial_ranks, {'mr': 3, 'ct': 3}) self.assertEqual(reader.output_list[0]['mr'].output_pixdim, ((4.0, 3.0, 4.0),)) self.assertEqual(reader.output_list[0]['mr'].output_axcodes, (('R', 'A', 'S'),)) (idx, data, interp) = reader() self.assertTrue(('mr' in data)) self.assertTrue(('ct' in data)) self.assertTrue((idx in range(len(reader.output_list)))) self.assertDictEqual(interp, {'mr': (1,), 'ct': (1,)}) self.assertAllClose(data['mr'].shape[:3], (12, 8, 10), atol=1) self.assertAllClose(data['mr'].shape[3:], (1, 1)) self.assertAllClose(data['ct'].shape[:3], (12, 8, 10), atol=1) self.assertAllClose(data['ct'].shape[3:], (1, 1))
def test_3d_multiple_properties(self): '\n \n ' data_param = {'mr': {'path_to_search': IMAGE_PATH_3D_1, 'filename_contains': 'x_y_z_1_1', 'pixdim': (4, 3, 4), 'axcodes': 'RAS'}, 'ct': {'path_to_search': IMAGE_PATH_3D_1, 'filename_contains': 'x_y_z_1_1', 'pixdim': (4, 3, 4), 'axcodes': 'RAS'}} reader = ImageReader().initialise(data_param) self.assertDictEqual(reader.spatial_ranks, {'mr': 3, 'ct': 3}) self.assertEqual(reader.output_list[0]['mr'].output_pixdim, ((4.0, 3.0, 4.0),)) self.assertEqual(reader.output_list[0]['mr'].output_axcodes, (('R', 'A', 'S'),)) (idx, data, interp) = reader() self.assertTrue(('mr' in data)) self.assertTrue(('ct' in data)) self.assertTrue((idx in range(len(reader.output_list)))) self.assertDictEqual(interp, {'mr': (1,), 'ct': (1,)}) self.assertAllClose(data['mr'].shape[:3], (12, 8, 10), atol=1) self.assertAllClose(data['mr'].shape[3:], (1, 1)) self.assertAllClose(data['ct'].shape[:3], (12, 8, 10), atol=1) self.assertAllClose(data['ct'].shape[3:], (1, 1))<|docstring|>loading two modalities, grouping subject names only<|endoftext|>
5a5bcf50cd262a0fdec15890e31c82c47e0241a94fa1ad32c75ba6477cce5c76
def test_3d_concat_properties(self): '\n loading two modalities, grouping subject names only\n ' data_param = {'mr': {'path_to_search': IMAGE_PATH_3D_1, 'filename_contains': 'x_y_z_1_1', 'pixdim': (4, 3, 4), 'axcodes': 'RAS'}, 'ct': {'path_to_search': IMAGE_PATH_3D_1, 'filename_contains': 'x_y_z_1_1', 'pixdim': (4, 3, 4), 'axcodes': 'RAS'}} grouping_param = {'image': ('mr', 'ct')} reader = ImageReader().initialise(data_param, grouping_param) self.assertDictEqual(reader.spatial_ranks, {'image': 3}) self.assertEqual(reader.output_list[0]['image'].output_pixdim, (((4.0, 3.0, 4.0),) * 2)) self.assertEqual(reader.output_list[0]['image'].output_axcodes, ((('R', 'A', 'S'),) * 2)) (idx, data, interp) = reader() self.assertTrue(('image' in data)) self.assertTrue((idx in range(len(reader.output_list)))) self.assertDictEqual(interp, {'image': (1, 1)}) self.assertAllClose(data['image'].shape[:3], (12, 8, 10), atol=1) self.assertAllClose(data['image'].shape[3:], (1, 2))
loading two modalities, grouping subject names only
tests/reader_modular_test.py
test_3d_concat_properties
tdml13/NiftyNet
1,403
python
def test_3d_concat_properties(self): '\n \n ' data_param = {'mr': {'path_to_search': IMAGE_PATH_3D_1, 'filename_contains': 'x_y_z_1_1', 'pixdim': (4, 3, 4), 'axcodes': 'RAS'}, 'ct': {'path_to_search': IMAGE_PATH_3D_1, 'filename_contains': 'x_y_z_1_1', 'pixdim': (4, 3, 4), 'axcodes': 'RAS'}} grouping_param = {'image': ('mr', 'ct')} reader = ImageReader().initialise(data_param, grouping_param) self.assertDictEqual(reader.spatial_ranks, {'image': 3}) self.assertEqual(reader.output_list[0]['image'].output_pixdim, (((4.0, 3.0, 4.0),) * 2)) self.assertEqual(reader.output_list[0]['image'].output_axcodes, ((('R', 'A', 'S'),) * 2)) (idx, data, interp) = reader() self.assertTrue(('image' in data)) self.assertTrue((idx in range(len(reader.output_list)))) self.assertDictEqual(interp, {'image': (1, 1)}) self.assertAllClose(data['image'].shape[:3], (12, 8, 10), atol=1) self.assertAllClose(data['image'].shape[3:], (1, 2))
def test_3d_concat_properties(self): '\n \n ' data_param = {'mr': {'path_to_search': IMAGE_PATH_3D_1, 'filename_contains': 'x_y_z_1_1', 'pixdim': (4, 3, 4), 'axcodes': 'RAS'}, 'ct': {'path_to_search': IMAGE_PATH_3D_1, 'filename_contains': 'x_y_z_1_1', 'pixdim': (4, 3, 4), 'axcodes': 'RAS'}} grouping_param = {'image': ('mr', 'ct')} reader = ImageReader().initialise(data_param, grouping_param) self.assertDictEqual(reader.spatial_ranks, {'image': 3}) self.assertEqual(reader.output_list[0]['image'].output_pixdim, (((4.0, 3.0, 4.0),) * 2)) self.assertEqual(reader.output_list[0]['image'].output_axcodes, ((('R', 'A', 'S'),) * 2)) (idx, data, interp) = reader() self.assertTrue(('image' in data)) self.assertTrue((idx in range(len(reader.output_list)))) self.assertDictEqual(interp, {'image': (1, 1)}) self.assertAllClose(data['image'].shape[:3], (12, 8, 10), atol=1) self.assertAllClose(data['image'].shape[3:], (1, 2))<|docstring|>loading two modalities, grouping subject names only<|endoftext|>
f3ebec341da49512032eb86e9bb4b3c12ec238245826f11e26e6f1f6ed4ee14c
def _parse_args(): '\n Parses arguments for the main script.\n ' parser = ArgumentParser(description='utility script for converting a midi file in csv format into a text', prog='python csv_to_text.py') parser.add_argument('-t', '--ticks', help='Ticks per each time step (default: 25). Make sure to remember its value when converting the text back to a csv.', type=int, default=25) parser.add_argument('-v', '--verbose', help='make the process more verbose.', action='store_true') parser.add_argument('csv', type=str, help='File path for the csv file to convert or path to the directory which contains one or more csv files to convert.') parser.add_argument('text', nargs='?', type=str, help='File path for the resulting text file (Optional). By default, the text file will be generated in the same directory as the source csv file. If `csv` is a directory, this will be the resulting directory.') if (len(sys.argv) == 1): parser.print_help(sys.stderr) sys.exit(1) args = parser.parse_args() if (not (args.ticks > 0)): parser.error('The value for ticks per time step must be at least 1.') csv_is_dir = osp.isdir(args.csv) if ((not osp.isfile(args.csv)) and (not csv_is_dir)): parser.error('The input csv file or directory does not exist. Please, check the path and try again.\n{}'.format(args.csv)) if (args.text and (not osp.isdir((args.text if csv_is_dir else osp.dirname(args.text))))): parser.error('The result path does not exist. Please, use an existing directory.\n{}'.format((args.text if csv_is_dir else osp.dirname(args.text)))) return (args, csv_is_dir)
Parses arguments for the main script.
utils/csv_to_text.py
_parse_args
dragonoken/undertale_deltarune_soundtrack_generator
4
python
def _parse_args(): '\n \n ' parser = ArgumentParser(description='utility script for converting a midi file in csv format into a text', prog='python csv_to_text.py') parser.add_argument('-t', '--ticks', help='Ticks per each time step (default: 25). Make sure to remember its value when converting the text back to a csv.', type=int, default=25) parser.add_argument('-v', '--verbose', help='make the process more verbose.', action='store_true') parser.add_argument('csv', type=str, help='File path for the csv file to convert or path to the directory which contains one or more csv files to convert.') parser.add_argument('text', nargs='?', type=str, help='File path for the resulting text file (Optional). By default, the text file will be generated in the same directory as the source csv file. If `csv` is a directory, this will be the resulting directory.') if (len(sys.argv) == 1): parser.print_help(sys.stderr) sys.exit(1) args = parser.parse_args() if (not (args.ticks > 0)): parser.error('The value for ticks per time step must be at least 1.') csv_is_dir = osp.isdir(args.csv) if ((not osp.isfile(args.csv)) and (not csv_is_dir)): parser.error('The input csv file or directory does not exist. Please, check the path and try again.\n{}'.format(args.csv)) if (args.text and (not osp.isdir((args.text if csv_is_dir else osp.dirname(args.text))))): parser.error('The result path does not exist. Please, use an existing directory.\n{}'.format((args.text if csv_is_dir else osp.dirname(args.text)))) return (args, csv_is_dir)
def _parse_args(): '\n \n ' parser = ArgumentParser(description='utility script for converting a midi file in csv format into a text', prog='python csv_to_text.py') parser.add_argument('-t', '--ticks', help='Ticks per each time step (default: 25). Make sure to remember its value when converting the text back to a csv.', type=int, default=25) parser.add_argument('-v', '--verbose', help='make the process more verbose.', action='store_true') parser.add_argument('csv', type=str, help='File path for the csv file to convert or path to the directory which contains one or more csv files to convert.') parser.add_argument('text', nargs='?', type=str, help='File path for the resulting text file (Optional). By default, the text file will be generated in the same directory as the source csv file. If `csv` is a directory, this will be the resulting directory.') if (len(sys.argv) == 1): parser.print_help(sys.stderr) sys.exit(1) args = parser.parse_args() if (not (args.ticks > 0)): parser.error('The value for ticks per time step must be at least 1.') csv_is_dir = osp.isdir(args.csv) if ((not osp.isfile(args.csv)) and (not csv_is_dir)): parser.error('The input csv file or directory does not exist. Please, check the path and try again.\n{}'.format(args.csv)) if (args.text and (not osp.isdir((args.text if csv_is_dir else osp.dirname(args.text))))): parser.error('The result path does not exist. Please, use an existing directory.\n{}'.format((args.text if csv_is_dir else osp.dirname(args.text)))) return (args, csv_is_dir)<|docstring|>Parses arguments for the main script.<|endoftext|>
3effd058d868bbffc85ceee73ec3fbe236342d49ad989647fa7c602b57d0d9ab
def read_midi_csv(midi_file_path): '\n Given the file path of a converted midi csv file, reads and returns the data as a pandas DataFrame.\n Also, during the process, removes double quotes in the 5th column (e.g. "major")\n so that it can be processed later without much problem.\n ' midi = pd.read_csv(midi_file_path, names=['Track', 'Time', 'Type', 'Val1', 'Val2', 'Val3', 'Val4']) midi.iloc[(:, 4)] = midi.iloc[(:, 4)].apply((lambda val: (val.replace('"', '') if isinstance(val, str) else val))) return midi
Given the file path of a converted midi csv file, reads and returns the data as a pandas DataFrame. Also, during the process, removes double quotes in the 5th column (e.g. "major") so that it can be processed later without much problem.
utils/csv_to_text.py
read_midi_csv
dragonoken/undertale_deltarune_soundtrack_generator
4
python
def read_midi_csv(midi_file_path): '\n Given the file path of a converted midi csv file, reads and returns the data as a pandas DataFrame.\n Also, during the process, removes double quotes in the 5th column (e.g. "major")\n so that it can be processed later without much problem.\n ' midi = pd.read_csv(midi_file_path, names=['Track', 'Time', 'Type', 'Val1', 'Val2', 'Val3', 'Val4']) midi.iloc[(:, 4)] = midi.iloc[(:, 4)].apply((lambda val: (val.replace('"', ) if isinstance(val, str) else val))) return midi
def read_midi_csv(midi_file_path): '\n Given the file path of a converted midi csv file, reads and returns the data as a pandas DataFrame.\n Also, during the process, removes double quotes in the 5th column (e.g. "major")\n so that it can be processed later without much problem.\n ' midi = pd.read_csv(midi_file_path, names=['Track', 'Time', 'Type', 'Val1', 'Val2', 'Val3', 'Val4']) midi.iloc[(:, 4)] = midi.iloc[(:, 4)].apply((lambda val: (val.replace('"', ) if isinstance(val, str) else val))) return midi<|docstring|>Given the file path of a converted midi csv file, reads and returns the data as a pandas DataFrame. Also, during the process, removes double quotes in the 5th column (e.g. "major") so that it can be processed later without much problem.<|endoftext|>
a8ebe48c39f5c09a433d0cd87051d8a0141ea41cb681336cce82a247de74332a
def drop_nonessentials(midi_dataframe): '\n Drops all items except for those that are essential for the music.\n The resulting dataframe is returned.\n ' non_essential_list = ['header', 'end_of_file', 'start_track', 'end_track', 'tempo', 'note_on_c', 'note_off_c'] non_essentials = midi_dataframe.iloc[(:, 2)].apply((lambda str: (str.strip().lower() not in non_essential_list))) return midi_dataframe.drop(index=midi_dataframe.loc[non_essentials].index).reset_index(drop=True)
Drops all items except for those that are essential for the music. The resulting dataframe is returned.
utils/csv_to_text.py
drop_nonessentials
dragonoken/undertale_deltarune_soundtrack_generator
4
python
def drop_nonessentials(midi_dataframe): '\n Drops all items except for those that are essential for the music.\n The resulting dataframe is returned.\n ' non_essential_list = ['header', 'end_of_file', 'start_track', 'end_track', 'tempo', 'note_on_c', 'note_off_c'] non_essentials = midi_dataframe.iloc[(:, 2)].apply((lambda str: (str.strip().lower() not in non_essential_list))) return midi_dataframe.drop(index=midi_dataframe.loc[non_essentials].index).reset_index(drop=True)
def drop_nonessentials(midi_dataframe): '\n Drops all items except for those that are essential for the music.\n The resulting dataframe is returned.\n ' non_essential_list = ['header', 'end_of_file', 'start_track', 'end_track', 'tempo', 'note_on_c', 'note_off_c'] non_essentials = midi_dataframe.iloc[(:, 2)].apply((lambda str: (str.strip().lower() not in non_essential_list))) return midi_dataframe.drop(index=midi_dataframe.loc[non_essentials].index).reset_index(drop=True)<|docstring|>Drops all items except for those that are essential for the music. The resulting dataframe is returned.<|endoftext|>
7361ba53c1fd5764986cf2a4932f33f341d2dd477fd03b13ee8b9fe697c8de7d
def time_adjustment(midi_dataframe): "\n Drops 'Tempo' items and changes the time values accordingly.\n The resulting dataframe is returned.\n " base_midi = midi_dataframe.copy() base_midi.loc[(:, 'index')] = base_midi.index modified_midi = midi_dataframe.copy() DEFAULT_TEMPO = 500000 tempos = base_midi[base_midi.iloc[(:, 2)].apply((lambda str: (str.strip().lower() == 'tempo')))].sort_values([base_midi.columns[1], 'index']) tempo_change_time_points = tempos.iloc[(:, 1)].values.tolist() tempo_change_time_points.insert(0, 0) tempo_change_time_points.append((base_midi.iloc[(:, 1)].max() + 1)) interval_multipliers = (tempos.iloc[(:, 3)] / DEFAULT_TEMPO).values.tolist() interval_multipliers.insert(0, 1.0) last_time_point = tempo_change_time_points[0] for tempo_idx in range((len(tempo_change_time_points) - 1)): selecting_condition = ((base_midi.iloc[(:, 1)] > tempo_change_time_points[tempo_idx]) & (base_midi.iloc[(:, 1)] <= tempo_change_time_points[(tempo_idx + 1)])) if (selecting_condition.sum() > 0): multiplier = interval_multipliers[tempo_idx] times_since_tempo = (base_midi.loc[(selecting_condition, base_midi.columns[1])] - tempo_change_time_points[tempo_idx]) scaled_times = (times_since_tempo * multiplier) adjusted_times = (scaled_times + last_time_point).values modified_midi.loc[(selecting_condition, base_midi.columns[1])] = adjusted_times last_time_point = adjusted_times.max() modified_midi.iloc[(:, 1)] = modified_midi.iloc[(:, 1)].round() modified_midi.drop(index=modified_midi.loc[modified_midi.iloc[(:, 2)].apply((lambda str: (str.strip().lower() == 'tempo')))].index, inplace=True) modified_midi.reset_index(drop=True, inplace=True) return modified_midi
Drops 'Tempo' items and changes the time values accordingly. The resulting dataframe is returned.
utils/csv_to_text.py
time_adjustment
dragonoken/undertale_deltarune_soundtrack_generator
4
python
def time_adjustment(midi_dataframe): "\n Drops 'Tempo' items and changes the time values accordingly.\n The resulting dataframe is returned.\n " base_midi = midi_dataframe.copy() base_midi.loc[(:, 'index')] = base_midi.index modified_midi = midi_dataframe.copy() DEFAULT_TEMPO = 500000 tempos = base_midi[base_midi.iloc[(:, 2)].apply((lambda str: (str.strip().lower() == 'tempo')))].sort_values([base_midi.columns[1], 'index']) tempo_change_time_points = tempos.iloc[(:, 1)].values.tolist() tempo_change_time_points.insert(0, 0) tempo_change_time_points.append((base_midi.iloc[(:, 1)].max() + 1)) interval_multipliers = (tempos.iloc[(:, 3)] / DEFAULT_TEMPO).values.tolist() interval_multipliers.insert(0, 1.0) last_time_point = tempo_change_time_points[0] for tempo_idx in range((len(tempo_change_time_points) - 1)): selecting_condition = ((base_midi.iloc[(:, 1)] > tempo_change_time_points[tempo_idx]) & (base_midi.iloc[(:, 1)] <= tempo_change_time_points[(tempo_idx + 1)])) if (selecting_condition.sum() > 0): multiplier = interval_multipliers[tempo_idx] times_since_tempo = (base_midi.loc[(selecting_condition, base_midi.columns[1])] - tempo_change_time_points[tempo_idx]) scaled_times = (times_since_tempo * multiplier) adjusted_times = (scaled_times + last_time_point).values modified_midi.loc[(selecting_condition, base_midi.columns[1])] = adjusted_times last_time_point = adjusted_times.max() modified_midi.iloc[(:, 1)] = modified_midi.iloc[(:, 1)].round() modified_midi.drop(index=modified_midi.loc[modified_midi.iloc[(:, 2)].apply((lambda str: (str.strip().lower() == 'tempo')))].index, inplace=True) modified_midi.reset_index(drop=True, inplace=True) return modified_midi
def time_adjustment(midi_dataframe): "\n Drops 'Tempo' items and changes the time values accordingly.\n The resulting dataframe is returned.\n " base_midi = midi_dataframe.copy() base_midi.loc[(:, 'index')] = base_midi.index modified_midi = midi_dataframe.copy() DEFAULT_TEMPO = 500000 tempos = base_midi[base_midi.iloc[(:, 2)].apply((lambda str: (str.strip().lower() == 'tempo')))].sort_values([base_midi.columns[1], 'index']) tempo_change_time_points = tempos.iloc[(:, 1)].values.tolist() tempo_change_time_points.insert(0, 0) tempo_change_time_points.append((base_midi.iloc[(:, 1)].max() + 1)) interval_multipliers = (tempos.iloc[(:, 3)] / DEFAULT_TEMPO).values.tolist() interval_multipliers.insert(0, 1.0) last_time_point = tempo_change_time_points[0] for tempo_idx in range((len(tempo_change_time_points) - 1)): selecting_condition = ((base_midi.iloc[(:, 1)] > tempo_change_time_points[tempo_idx]) & (base_midi.iloc[(:, 1)] <= tempo_change_time_points[(tempo_idx + 1)])) if (selecting_condition.sum() > 0): multiplier = interval_multipliers[tempo_idx] times_since_tempo = (base_midi.loc[(selecting_condition, base_midi.columns[1])] - tempo_change_time_points[tempo_idx]) scaled_times = (times_since_tempo * multiplier) adjusted_times = (scaled_times + last_time_point).values modified_midi.loc[(selecting_condition, base_midi.columns[1])] = adjusted_times last_time_point = adjusted_times.max() modified_midi.iloc[(:, 1)] = modified_midi.iloc[(:, 1)].round() modified_midi.drop(index=modified_midi.loc[modified_midi.iloc[(:, 2)].apply((lambda str: (str.strip().lower() == 'tempo')))].index, inplace=True) modified_midi.reset_index(drop=True, inplace=True) return modified_midi<|docstring|>Drops 'Tempo' items and changes the time values accordingly. The resulting dataframe is returned.<|endoftext|>
d56801875d4738177dfd9077e5b98112ee10a3583ba1bc211f920cf49e8d37c4
def merge_tracks(midi_dataframe): '\n Combines multiple tracks into one track (track 1), then sorts the items by the time values.\n Returns the resulting dataframe.\n ' midi = midi_dataframe.copy() midi.loc[(midi.iloc[(:, 2)].apply((lambda str: (str.strip().lower() == 'header'))), midi.columns[4])] = 1 start_indices = midi.loc[midi.iloc[(:, 2)].apply((lambda str: (str.strip().lower() == 'start_track')))].index end_indices = midi.loc[midi.iloc[(:, 2)].apply((lambda str: (str.strip().lower() == 'end_track')))].index min_start_idx = midi.loc[(start_indices, midi.columns[1])].idxmin() max_end_idx = midi.loc[(end_indices, midi.columns[1])].idxmax() midi.drop(index=start_indices[(start_indices != min_start_idx)], inplace=True) midi.drop(index=end_indices[(end_indices != max_end_idx)], inplace=True) midi.loc[((midi.iloc[(:, 0)] > 1), midi.columns[0])] = 1 midi.loc[(midi.iloc[(:, 0)] == 1)] = midi.loc[(midi.iloc[(:, 0)] == 1)].sort_values(midi.columns[1], axis=0, ascending=True).values midi.reset_index(drop=True, inplace=True) return midi
Combines multiple tracks into one track (track 1), then sorts the items by the time values. Returns the resulting dataframe.
utils/csv_to_text.py
merge_tracks
dragonoken/undertale_deltarune_soundtrack_generator
4
python
def merge_tracks(midi_dataframe): '\n Combines multiple tracks into one track (track 1), then sorts the items by the time values.\n Returns the resulting dataframe.\n ' midi = midi_dataframe.copy() midi.loc[(midi.iloc[(:, 2)].apply((lambda str: (str.strip().lower() == 'header'))), midi.columns[4])] = 1 start_indices = midi.loc[midi.iloc[(:, 2)].apply((lambda str: (str.strip().lower() == 'start_track')))].index end_indices = midi.loc[midi.iloc[(:, 2)].apply((lambda str: (str.strip().lower() == 'end_track')))].index min_start_idx = midi.loc[(start_indices, midi.columns[1])].idxmin() max_end_idx = midi.loc[(end_indices, midi.columns[1])].idxmax() midi.drop(index=start_indices[(start_indices != min_start_idx)], inplace=True) midi.drop(index=end_indices[(end_indices != max_end_idx)], inplace=True) midi.loc[((midi.iloc[(:, 0)] > 1), midi.columns[0])] = 1 midi.loc[(midi.iloc[(:, 0)] == 1)] = midi.loc[(midi.iloc[(:, 0)] == 1)].sort_values(midi.columns[1], axis=0, ascending=True).values midi.reset_index(drop=True, inplace=True) return midi
def merge_tracks(midi_dataframe): '\n Combines multiple tracks into one track (track 1), then sorts the items by the time values.\n Returns the resulting dataframe.\n ' midi = midi_dataframe.copy() midi.loc[(midi.iloc[(:, 2)].apply((lambda str: (str.strip().lower() == 'header'))), midi.columns[4])] = 1 start_indices = midi.loc[midi.iloc[(:, 2)].apply((lambda str: (str.strip().lower() == 'start_track')))].index end_indices = midi.loc[midi.iloc[(:, 2)].apply((lambda str: (str.strip().lower() == 'end_track')))].index min_start_idx = midi.loc[(start_indices, midi.columns[1])].idxmin() max_end_idx = midi.loc[(end_indices, midi.columns[1])].idxmax() midi.drop(index=start_indices[(start_indices != min_start_idx)], inplace=True) midi.drop(index=end_indices[(end_indices != max_end_idx)], inplace=True) midi.loc[((midi.iloc[(:, 0)] > 1), midi.columns[0])] = 1 midi.loc[(midi.iloc[(:, 0)] == 1)] = midi.loc[(midi.iloc[(:, 0)] == 1)].sort_values(midi.columns[1], axis=0, ascending=True).values midi.reset_index(drop=True, inplace=True) return midi<|docstring|>Combines multiple tracks into one track (track 1), then sorts the items by the time values. Returns the resulting dataframe.<|endoftext|>
d34fd94f6009822cbb97ed6c704bc5872e7374f3251efa291d3b93f4f2ce2226
def constantize_velocities(midi_dataframe, velocity=80): '\n Fixes all Note_on velocity values to a constant.\n Returns the resulting dataframe.\n Though it is not necessary, it can give you some sence as to how the machine generated musics would be.\n ' midi = midi_dataframe.copy() note_on = midi.loc[midi.iloc[(:, 2)].apply((lambda str: (str.strip().lower() in ['note_on_c', 'note_off_c'])))] nonzero_vel_idx = note_on.loc[note_on.iloc[(:, 5)].apply((lambda vel: (vel > 0)))].index midi.loc[(nonzero_vel_idx, midi.columns[5])] = velocity return midi
Fixes all Note_on velocity values to a constant. Returns the resulting dataframe. Though it is not necessary, it can give you some sence as to how the machine generated musics would be.
utils/csv_to_text.py
constantize_velocities
dragonoken/undertale_deltarune_soundtrack_generator
4
python
def constantize_velocities(midi_dataframe, velocity=80): '\n Fixes all Note_on velocity values to a constant.\n Returns the resulting dataframe.\n Though it is not necessary, it can give you some sence as to how the machine generated musics would be.\n ' midi = midi_dataframe.copy() note_on = midi.loc[midi.iloc[(:, 2)].apply((lambda str: (str.strip().lower() in ['note_on_c', 'note_off_c'])))] nonzero_vel_idx = note_on.loc[note_on.iloc[(:, 5)].apply((lambda vel: (vel > 0)))].index midi.loc[(nonzero_vel_idx, midi.columns[5])] = velocity return midi
def constantize_velocities(midi_dataframe, velocity=80): '\n Fixes all Note_on velocity values to a constant.\n Returns the resulting dataframe.\n Though it is not necessary, it can give you some sence as to how the machine generated musics would be.\n ' midi = midi_dataframe.copy() note_on = midi.loc[midi.iloc[(:, 2)].apply((lambda str: (str.strip().lower() in ['note_on_c', 'note_off_c'])))] nonzero_vel_idx = note_on.loc[note_on.iloc[(:, 5)].apply((lambda vel: (vel > 0)))].index midi.loc[(nonzero_vel_idx, midi.columns[5])] = velocity return midi<|docstring|>Fixes all Note_on velocity values to a constant. Returns the resulting dataframe. Though it is not necessary, it can give you some sence as to how the machine generated musics would be.<|endoftext|>
1cc04a935d899c8f31fbdfbe40ba2e08bc964d4340583ddaf4ad91c61ba95650
def midicsv_to_text(midi_dataframe, ticks_per_step=25): '\n Converts the given midi dataframe into a string form, where each line represents\n the notes that are pressed / being hold at that time step.\n Ticks per time step determines the length of each time step.\n The smaller the value is, the longer and more accurate the result will be.\n However, when putting it into a machine learning algorithm, consider how\n much the algorithm should take. Longer string will give the algorithm a hard time\n maintaining its memory.\n\n Returns the resulting string text.\n ' NUMBER_OF_PITCH = 128 TRACK_COL = 0 TIME_COL = 1 TYPE_COL = 2 CH_COL = 3 PITCH_COL = 4 VEL_COL = 5 base_midi = midi_dataframe.copy() col_names = base_midi.columns note_midi = base_midi.loc[base_midi.iloc[(:, TYPE_COL)].apply((lambda str: (str.strip().lower() in ['note_on_c', 'note_off_c'])))].copy() note_midi.sort_values(col_names[TIME_COL], inplace=True) note_midi.reset_index(drop=True, inplace=True) note_midi = note_midi.append({col_names[TRACK_COL]: 1, col_names[TIME_COL]: (note_midi.iloc[(:, 1)].max() + 1920), col_names[TYPE_COL]: 'END', col_names[CH_COL]: 0, col_names[PITCH_COL]: 0, col_names[VEL_COL]: 0}, ignore_index=True) note_midi.iloc[(:, TIME_COL)] = (note_midi.iloc[(:, TIME_COL)] / ticks_per_step).round() n_steps = int(note_midi.iloc[(:, TIME_COL)].max()) note_time_matrix = np.zeros((NUMBER_OF_PITCH, n_steps), dtype=np.uint8) for pitch in range(128): note_pitch_match = note_midi.loc[(note_midi.iloc[(:, PITCH_COL)].astype(int) == pitch)] if (len(note_pitch_match) > 0): for note_idx in range((len(note_pitch_match) - 1)): if (note_pitch_match.iloc[(note_idx, VEL_COL)] > 0): start_from = int(note_pitch_match.iloc[(note_idx, TIME_COL)]) end_before = int(note_pitch_match.iloc[((note_idx + 1), TIME_COL)]) note_time_matrix[(pitch, start_from:end_before)] = 1 if (note_time_matrix[(pitch, (start_from - 2):start_from)].sum() == 2): note_time_matrix[(pitch, (start_from - 1))] = 0 text_list = [] for time_step in range(n_steps): for pitch in note_time_matrix[(:, time_step)].nonzero()[0]: text_list.append(str((pitch + 1))) text_list.append('0') midi_text = ' '.join(text_list) return midi_text
Converts the given midi dataframe into a string form, where each line represents the notes that are pressed / being hold at that time step. Ticks per time step determines the length of each time step. The smaller the value is, the longer and more accurate the result will be. However, when putting it into a machine learning algorithm, consider how much the algorithm should take. Longer string will give the algorithm a hard time maintaining its memory. Returns the resulting string text.
utils/csv_to_text.py
midicsv_to_text
dragonoken/undertale_deltarune_soundtrack_generator
4
python
def midicsv_to_text(midi_dataframe, ticks_per_step=25): '\n Converts the given midi dataframe into a string form, where each line represents\n the notes that are pressed / being hold at that time step.\n Ticks per time step determines the length of each time step.\n The smaller the value is, the longer and more accurate the result will be.\n However, when putting it into a machine learning algorithm, consider how\n much the algorithm should take. Longer string will give the algorithm a hard time\n maintaining its memory.\n\n Returns the resulting string text.\n ' NUMBER_OF_PITCH = 128 TRACK_COL = 0 TIME_COL = 1 TYPE_COL = 2 CH_COL = 3 PITCH_COL = 4 VEL_COL = 5 base_midi = midi_dataframe.copy() col_names = base_midi.columns note_midi = base_midi.loc[base_midi.iloc[(:, TYPE_COL)].apply((lambda str: (str.strip().lower() in ['note_on_c', 'note_off_c'])))].copy() note_midi.sort_values(col_names[TIME_COL], inplace=True) note_midi.reset_index(drop=True, inplace=True) note_midi = note_midi.append({col_names[TRACK_COL]: 1, col_names[TIME_COL]: (note_midi.iloc[(:, 1)].max() + 1920), col_names[TYPE_COL]: 'END', col_names[CH_COL]: 0, col_names[PITCH_COL]: 0, col_names[VEL_COL]: 0}, ignore_index=True) note_midi.iloc[(:, TIME_COL)] = (note_midi.iloc[(:, TIME_COL)] / ticks_per_step).round() n_steps = int(note_midi.iloc[(:, TIME_COL)].max()) note_time_matrix = np.zeros((NUMBER_OF_PITCH, n_steps), dtype=np.uint8) for pitch in range(128): note_pitch_match = note_midi.loc[(note_midi.iloc[(:, PITCH_COL)].astype(int) == pitch)] if (len(note_pitch_match) > 0): for note_idx in range((len(note_pitch_match) - 1)): if (note_pitch_match.iloc[(note_idx, VEL_COL)] > 0): start_from = int(note_pitch_match.iloc[(note_idx, TIME_COL)]) end_before = int(note_pitch_match.iloc[((note_idx + 1), TIME_COL)]) note_time_matrix[(pitch, start_from:end_before)] = 1 if (note_time_matrix[(pitch, (start_from - 2):start_from)].sum() == 2): note_time_matrix[(pitch, (start_from - 1))] = 0 text_list = [] for time_step in range(n_steps): for pitch in note_time_matrix[(:, time_step)].nonzero()[0]: text_list.append(str((pitch + 1))) text_list.append('0') midi_text = ' '.join(text_list) return midi_text
def midicsv_to_text(midi_dataframe, ticks_per_step=25): '\n Converts the given midi dataframe into a string form, where each line represents\n the notes that are pressed / being hold at that time step.\n Ticks per time step determines the length of each time step.\n The smaller the value is, the longer and more accurate the result will be.\n However, when putting it into a machine learning algorithm, consider how\n much the algorithm should take. Longer string will give the algorithm a hard time\n maintaining its memory.\n\n Returns the resulting string text.\n ' NUMBER_OF_PITCH = 128 TRACK_COL = 0 TIME_COL = 1 TYPE_COL = 2 CH_COL = 3 PITCH_COL = 4 VEL_COL = 5 base_midi = midi_dataframe.copy() col_names = base_midi.columns note_midi = base_midi.loc[base_midi.iloc[(:, TYPE_COL)].apply((lambda str: (str.strip().lower() in ['note_on_c', 'note_off_c'])))].copy() note_midi.sort_values(col_names[TIME_COL], inplace=True) note_midi.reset_index(drop=True, inplace=True) note_midi = note_midi.append({col_names[TRACK_COL]: 1, col_names[TIME_COL]: (note_midi.iloc[(:, 1)].max() + 1920), col_names[TYPE_COL]: 'END', col_names[CH_COL]: 0, col_names[PITCH_COL]: 0, col_names[VEL_COL]: 0}, ignore_index=True) note_midi.iloc[(:, TIME_COL)] = (note_midi.iloc[(:, TIME_COL)] / ticks_per_step).round() n_steps = int(note_midi.iloc[(:, TIME_COL)].max()) note_time_matrix = np.zeros((NUMBER_OF_PITCH, n_steps), dtype=np.uint8) for pitch in range(128): note_pitch_match = note_midi.loc[(note_midi.iloc[(:, PITCH_COL)].astype(int) == pitch)] if (len(note_pitch_match) > 0): for note_idx in range((len(note_pitch_match) - 1)): if (note_pitch_match.iloc[(note_idx, VEL_COL)] > 0): start_from = int(note_pitch_match.iloc[(note_idx, TIME_COL)]) end_before = int(note_pitch_match.iloc[((note_idx + 1), TIME_COL)]) note_time_matrix[(pitch, start_from:end_before)] = 1 if (note_time_matrix[(pitch, (start_from - 2):start_from)].sum() == 2): note_time_matrix[(pitch, (start_from - 1))] = 0 text_list = [] for time_step in range(n_steps): for pitch in note_time_matrix[(:, time_step)].nonzero()[0]: text_list.append(str((pitch + 1))) text_list.append('0') midi_text = ' '.join(text_list) return midi_text<|docstring|>Converts the given midi dataframe into a string form, where each line represents the notes that are pressed / being hold at that time step. Ticks per time step determines the length of each time step. The smaller the value is, the longer and more accurate the result will be. However, when putting it into a machine learning algorithm, consider how much the algorithm should take. Longer string will give the algorithm a hard time maintaining its memory. Returns the resulting string text.<|endoftext|>
2cfe26a139ca68f129f79a2c0fd407f3b90c5a022603f3050cdd6e0edfead3da
def all_columns(table, alias=None): 'alias all columns with a table name for Select.' alias = (alias or table) return ', '.join((('%s.%s AS "%s.%s"' % (alias, col, alias, col)) for col in columns(table)))
alias all columns with a table name for Select.
app/gbd/core/db.py
all_columns
gbd-consult/qwebgisapp
0
python
def all_columns(table, alias=None): alias = (alias or table) return ', '.join((('%s.%s AS "%s.%s"' % (alias, col, alias, col)) for col in columns(table)))
def all_columns(table, alias=None): alias = (alias or table) return ', '.join((('%s.%s AS "%s.%s"' % (alias, col, alias, col)) for col in columns(table)))<|docstring|>alias all columns with a table name for Select.<|endoftext|>
a68bdceddacc83073b0ac6e61090930158bb49b1d2f547232e2ed9ddbe512bf9
def star_like(key, value): 'Replace the meta-char * with %.' value = value.replace('%', '').replace('_', '').replace('*', '%') if ('%' in value): return [(key + ' LIKE %s'), value] return [(key + '=%s'), value]
Replace the meta-char * with %.
app/gbd/core/db.py
star_like
gbd-consult/qwebgisapp
0
python
def star_like(key, value): value = value.replace('%', ).replace('_', ).replace('*', '%') if ('%' in value): return [(key + ' LIKE %s'), value] return [(key + '=%s'), value]
def star_like(key, value): value = value.replace('%', ).replace('_', ).replace('*', '%') if ('%' in value): return [(key + ' LIKE %s'), value] return [(key + '=%s'), value]<|docstring|>Replace the meta-char * with %.<|endoftext|>
39f4e603d680d9e7be74010777bcf6d0469433b53be0b5b8d8ab395235f99871
def combine_fastqs(fps_in, fp_out): 'Combine multiple FASTQs into a single FASTQ.' assert (len(fps_in) > 0) if (len(fps_in) == 1): assert os.path.exists(fps_in[0]) logging.info('Making a symlink: {} -> {}'.format(fps_in[0], fp_out)) os.symlink(fps_in[0], fp_out) else: logging.info('Combining {:,} FASTQ files'.format(len(fps_in))) logging.info('Writing all inputs to {}'.format(fp_out)) with open(fp_out, 'wt') as fo: for (fp_ix, f) in enumerate(fps_in): logging.info('Adding {} to {}'.format(f, fp_out)) with open(f, 'rt') as fi: for (line_ix, line) in enumerate(fi): mod = (line_ix % 4) if ((mod == 0) or (mod == 2)): line = line.rstrip('\n') fo.write('{}-{}\n'.format(line, fp_ix)) else: fo.write(line)
Combine multiple FASTQs into a single FASTQ.
famli/fastq_helpers.py
combine_fastqs
FredHutch/FAMLI
14
python
def combine_fastqs(fps_in, fp_out): assert (len(fps_in) > 0) if (len(fps_in) == 1): assert os.path.exists(fps_in[0]) logging.info('Making a symlink: {} -> {}'.format(fps_in[0], fp_out)) os.symlink(fps_in[0], fp_out) else: logging.info('Combining {:,} FASTQ files'.format(len(fps_in))) logging.info('Writing all inputs to {}'.format(fp_out)) with open(fp_out, 'wt') as fo: for (fp_ix, f) in enumerate(fps_in): logging.info('Adding {} to {}'.format(f, fp_out)) with open(f, 'rt') as fi: for (line_ix, line) in enumerate(fi): mod = (line_ix % 4) if ((mod == 0) or (mod == 2)): line = line.rstrip('\n') fo.write('{}-{}\n'.format(line, fp_ix)) else: fo.write(line)
def combine_fastqs(fps_in, fp_out): assert (len(fps_in) > 0) if (len(fps_in) == 1): assert os.path.exists(fps_in[0]) logging.info('Making a symlink: {} -> {}'.format(fps_in[0], fp_out)) os.symlink(fps_in[0], fp_out) else: logging.info('Combining {:,} FASTQ files'.format(len(fps_in))) logging.info('Writing all inputs to {}'.format(fp_out)) with open(fp_out, 'wt') as fo: for (fp_ix, f) in enumerate(fps_in): logging.info('Adding {} to {}'.format(f, fp_out)) with open(f, 'rt') as fi: for (line_ix, line) in enumerate(fi): mod = (line_ix % 4) if ((mod == 0) or (mod == 2)): line = line.rstrip('\n') fo.write('{}-{}\n'.format(line, fp_ix)) else: fo.write(line)<|docstring|>Combine multiple FASTQs into a single FASTQ.<|endoftext|>
a12250dbac9ca62ecb69dc3800c0d40ef7e0362a877a40ba65b8a2deadb416a4
def set_up_sra_cache_folder(temp_folder): 'Set up the fastq-dump cache folder within the temp folder.' logging.info('Setting up fastq-dump cache within {}'.format(temp_folder)) for path in ['/root/ncbi', '/root/ncbi/public']: if (os.path.exists(path) is False): os.mkdir(path) if os.path.exists('/root/ncbi/public/sra'): shutil.rmtree('/root/ncbi/public/sra') temp_cache = os.path.join(temp_folder, 'sra') assert (os.path.exists(temp_cache) is False) os.mkdir(temp_cache) run_cmds(['ln', '-s', '-f', temp_cache, '/root/ncbi/public/sra']) assert os.path.exists('/root/ncbi/public/sra')
Set up the fastq-dump cache folder within the temp folder.
famli/fastq_helpers.py
set_up_sra_cache_folder
FredHutch/FAMLI
14
python
def set_up_sra_cache_folder(temp_folder): logging.info('Setting up fastq-dump cache within {}'.format(temp_folder)) for path in ['/root/ncbi', '/root/ncbi/public']: if (os.path.exists(path) is False): os.mkdir(path) if os.path.exists('/root/ncbi/public/sra'): shutil.rmtree('/root/ncbi/public/sra') temp_cache = os.path.join(temp_folder, 'sra') assert (os.path.exists(temp_cache) is False) os.mkdir(temp_cache) run_cmds(['ln', '-s', '-f', temp_cache, '/root/ncbi/public/sra']) assert os.path.exists('/root/ncbi/public/sra')
def set_up_sra_cache_folder(temp_folder): logging.info('Setting up fastq-dump cache within {}'.format(temp_folder)) for path in ['/root/ncbi', '/root/ncbi/public']: if (os.path.exists(path) is False): os.mkdir(path) if os.path.exists('/root/ncbi/public/sra'): shutil.rmtree('/root/ncbi/public/sra') temp_cache = os.path.join(temp_folder, 'sra') assert (os.path.exists(temp_cache) is False) os.mkdir(temp_cache) run_cmds(['ln', '-s', '-f', temp_cache, '/root/ncbi/public/sra']) assert os.path.exists('/root/ncbi/public/sra')<|docstring|>Set up the fastq-dump cache folder within the temp folder.<|endoftext|>
cba9799e0c7881574ad54de3a953778d1f14b9c6bffb54f41c766a396cc8d55a
def get_reads_from_url(input_str, temp_folder, random_string=str(uuid.uuid4())[:8], min_qual=None): 'Get a set of reads from a URL -- return the downloaded filepath.' fetched_reads_folder = os.path.join(temp_folder, 'fetched_reads') cleaned_reads_folder = os.path.join(temp_folder, 'cleaned_reads') trimmed_reads_folder = os.path.join(temp_folder, 'trimmed_reads') for folder in [fetched_reads_folder, cleaned_reads_folder, trimmed_reads_folder]: if (not os.path.exists(folder)): logging.info('Making new folder {}'.format(folder)) os.mkdir(folder) logging.info('Getting reads from {}'.format(input_str)) filename = input_str.split('/')[(- 1)] local_path = os.path.join(fetched_reads_folder, filename) logging.info(('Filename: ' + filename)) logging.info(('Local path: ' + local_path)) if (not input_str.startswith(('s3://', 'sra://', 'ftp://'))): logging.info('Treating as local path') msg = 'Input file does not exist ({})'.format(input_str) assert os.path.exists(input_str), msg logging.info('Making a symlink to temporary folder') os.symlink(input_str, local_path) elif input_str.startswith('s3://'): logging.info('Getting reads from S3') run_cmds(['aws', 's3', 'cp', '--quiet', '--sse', 'AES256', input_str, fetched_reads_folder]) elif input_str.startswith('ftp://'): logging.info('Getting reads from FTP') run_cmds(['wget', '-P', fetched_reads_folder, input_str]) elif input_str.startswith('sra://'): accession = filename logging.info(('Getting reads from SRA: ' + accession)) local_path = get_sra(accession, fetched_reads_folder) else: raise Exception(('Did not recognize prefix for input: ' + input_str)) logging.info('Cleaning up FASTQ headers') cleaned_path = clean_fastq_headers(local_path, cleaned_reads_folder) logging.info('Made new cleaned FASTQ file: {}'.format(cleaned_path)) logging.info('Deleting old file: {}'.format(local_path)) os.unlink(local_path) if (min_qual is None): return cleaned_path else: logging.info('Quality trimming the FASTQ (Q{})'.format(min_qual)) trimmed_path = quality_trim(cleaned_path, trimmed_reads_folder, min_qual) logging.info('Made new quality trimmed FASTQ: {}'.format(trimmed_path)) logging.info('Deleting old file: {}'.format(cleaned_path)) os.unlink(cleaned_path) return trimmed_path
Get a set of reads from a URL -- return the downloaded filepath.
famli/fastq_helpers.py
get_reads_from_url
FredHutch/FAMLI
14
python
def get_reads_from_url(input_str, temp_folder, random_string=str(uuid.uuid4())[:8], min_qual=None): fetched_reads_folder = os.path.join(temp_folder, 'fetched_reads') cleaned_reads_folder = os.path.join(temp_folder, 'cleaned_reads') trimmed_reads_folder = os.path.join(temp_folder, 'trimmed_reads') for folder in [fetched_reads_folder, cleaned_reads_folder, trimmed_reads_folder]: if (not os.path.exists(folder)): logging.info('Making new folder {}'.format(folder)) os.mkdir(folder) logging.info('Getting reads from {}'.format(input_str)) filename = input_str.split('/')[(- 1)] local_path = os.path.join(fetched_reads_folder, filename) logging.info(('Filename: ' + filename)) logging.info(('Local path: ' + local_path)) if (not input_str.startswith(('s3://', 'sra://', 'ftp://'))): logging.info('Treating as local path') msg = 'Input file does not exist ({})'.format(input_str) assert os.path.exists(input_str), msg logging.info('Making a symlink to temporary folder') os.symlink(input_str, local_path) elif input_str.startswith('s3://'): logging.info('Getting reads from S3') run_cmds(['aws', 's3', 'cp', '--quiet', '--sse', 'AES256', input_str, fetched_reads_folder]) elif input_str.startswith('ftp://'): logging.info('Getting reads from FTP') run_cmds(['wget', '-P', fetched_reads_folder, input_str]) elif input_str.startswith('sra://'): accession = filename logging.info(('Getting reads from SRA: ' + accession)) local_path = get_sra(accession, fetched_reads_folder) else: raise Exception(('Did not recognize prefix for input: ' + input_str)) logging.info('Cleaning up FASTQ headers') cleaned_path = clean_fastq_headers(local_path, cleaned_reads_folder) logging.info('Made new cleaned FASTQ file: {}'.format(cleaned_path)) logging.info('Deleting old file: {}'.format(local_path)) os.unlink(local_path) if (min_qual is None): return cleaned_path else: logging.info('Quality trimming the FASTQ (Q{})'.format(min_qual)) trimmed_path = quality_trim(cleaned_path, trimmed_reads_folder, min_qual) logging.info('Made new quality trimmed FASTQ: {}'.format(trimmed_path)) logging.info('Deleting old file: {}'.format(cleaned_path)) os.unlink(cleaned_path) return trimmed_path
def get_reads_from_url(input_str, temp_folder, random_string=str(uuid.uuid4())[:8], min_qual=None): fetched_reads_folder = os.path.join(temp_folder, 'fetched_reads') cleaned_reads_folder = os.path.join(temp_folder, 'cleaned_reads') trimmed_reads_folder = os.path.join(temp_folder, 'trimmed_reads') for folder in [fetched_reads_folder, cleaned_reads_folder, trimmed_reads_folder]: if (not os.path.exists(folder)): logging.info('Making new folder {}'.format(folder)) os.mkdir(folder) logging.info('Getting reads from {}'.format(input_str)) filename = input_str.split('/')[(- 1)] local_path = os.path.join(fetched_reads_folder, filename) logging.info(('Filename: ' + filename)) logging.info(('Local path: ' + local_path)) if (not input_str.startswith(('s3://', 'sra://', 'ftp://'))): logging.info('Treating as local path') msg = 'Input file does not exist ({})'.format(input_str) assert os.path.exists(input_str), msg logging.info('Making a symlink to temporary folder') os.symlink(input_str, local_path) elif input_str.startswith('s3://'): logging.info('Getting reads from S3') run_cmds(['aws', 's3', 'cp', '--quiet', '--sse', 'AES256', input_str, fetched_reads_folder]) elif input_str.startswith('ftp://'): logging.info('Getting reads from FTP') run_cmds(['wget', '-P', fetched_reads_folder, input_str]) elif input_str.startswith('sra://'): accession = filename logging.info(('Getting reads from SRA: ' + accession)) local_path = get_sra(accession, fetched_reads_folder) else: raise Exception(('Did not recognize prefix for input: ' + input_str)) logging.info('Cleaning up FASTQ headers') cleaned_path = clean_fastq_headers(local_path, cleaned_reads_folder) logging.info('Made new cleaned FASTQ file: {}'.format(cleaned_path)) logging.info('Deleting old file: {}'.format(local_path)) os.unlink(local_path) if (min_qual is None): return cleaned_path else: logging.info('Quality trimming the FASTQ (Q{})'.format(min_qual)) trimmed_path = quality_trim(cleaned_path, trimmed_reads_folder, min_qual) logging.info('Made new quality trimmed FASTQ: {}'.format(trimmed_path)) logging.info('Deleting old file: {}'.format(cleaned_path)) os.unlink(cleaned_path) return trimmed_path<|docstring|>Get a set of reads from a URL -- return the downloaded filepath.<|endoftext|>
562e95aa0a1ab7216fd5e3e8fc6a6df6d63e3945269baa8d416438131b30c319
def quality_trim(fp_in, folder_out, min_qual, min_len=30): 'Trim a FASTQ to a minimum quality score.' assert os.path.exists(fp_in) assert (fp_in.endswith('.gz') is False) assert os.path.exists(folder_out) assert isinstance(min_qual, int) fp_out = os.path.join(folder_out, fp_in.split('/')[(- 1)]) run_cmds(['fastq_quality_trimmer', '-Q', '33', '-t', str(min_qual), '-i', fp_in, '-o', fp_out, '-l', str(min_len), '-v']) assert os.path.exists(fp_out) return fp_out
Trim a FASTQ to a minimum quality score.
famli/fastq_helpers.py
quality_trim
FredHutch/FAMLI
14
python
def quality_trim(fp_in, folder_out, min_qual, min_len=30): assert os.path.exists(fp_in) assert (fp_in.endswith('.gz') is False) assert os.path.exists(folder_out) assert isinstance(min_qual, int) fp_out = os.path.join(folder_out, fp_in.split('/')[(- 1)]) run_cmds(['fastq_quality_trimmer', '-Q', '33', '-t', str(min_qual), '-i', fp_in, '-o', fp_out, '-l', str(min_len), '-v']) assert os.path.exists(fp_out) return fp_out
def quality_trim(fp_in, folder_out, min_qual, min_len=30): assert os.path.exists(fp_in) assert (fp_in.endswith('.gz') is False) assert os.path.exists(folder_out) assert isinstance(min_qual, int) fp_out = os.path.join(folder_out, fp_in.split('/')[(- 1)]) run_cmds(['fastq_quality_trimmer', '-Q', '33', '-t', str(min_qual), '-i', fp_in, '-o', fp_out, '-l', str(min_len), '-v']) assert os.path.exists(fp_out) return fp_out<|docstring|>Trim a FASTQ to a minimum quality score.<|endoftext|>
e3a96ee6521321caf1db555ddc768fe885c6ff24225d69432acf9ad649281cd3
def get_sra(accession, temp_folder): 'Get the FASTQ for an SRA accession.' logging.info('Downloading {} from SRA'.format(accession)) local_path = os.path.join(temp_folder, (accession + '.fastq')) logging.info('Local path: {}'.format(local_path)) logging.info('Downloading via fastq-dump') run_cmds(['prefetch', accession]) run_cmds(['fastq-dump', '--split-files', '--outdir', temp_folder, accession]) msg = 'File could not be downloaded from SRA: {}'.format(accession) assert any([(fp.startswith(accession) and fp.endswith('fastq')) for fp in os.listdir(temp_folder)]), msg logging.info('Concatenating output files') with open((local_path + '.temp'), 'wt') as fo: cmd = 'cat {}/{}*fastq'.format(temp_folder, accession) cat = subprocess.Popen(cmd, shell=True, stdout=fo) cat.wait() for fp in os.listdir(temp_folder): if (fp.startswith(accession) and fp.endswith('fastq')): fp = os.path.join(temp_folder, fp) logging.info('Removing {}'.format(fp)) os.unlink(fp) cache_fp = '/root/ncbi/public/sra/{}.sra'.format(accession) if os.path.exists(cache_fp): logging.info('Removing {}'.format(cache_fp)) os.unlink(cache_fp) run_cmds(['mv', (local_path + '.temp'), local_path]) logging.info(('Done fetching ' + accession)) return local_path
Get the FASTQ for an SRA accession.
famli/fastq_helpers.py
get_sra
FredHutch/FAMLI
14
python
def get_sra(accession, temp_folder): logging.info('Downloading {} from SRA'.format(accession)) local_path = os.path.join(temp_folder, (accession + '.fastq')) logging.info('Local path: {}'.format(local_path)) logging.info('Downloading via fastq-dump') run_cmds(['prefetch', accession]) run_cmds(['fastq-dump', '--split-files', '--outdir', temp_folder, accession]) msg = 'File could not be downloaded from SRA: {}'.format(accession) assert any([(fp.startswith(accession) and fp.endswith('fastq')) for fp in os.listdir(temp_folder)]), msg logging.info('Concatenating output files') with open((local_path + '.temp'), 'wt') as fo: cmd = 'cat {}/{}*fastq'.format(temp_folder, accession) cat = subprocess.Popen(cmd, shell=True, stdout=fo) cat.wait() for fp in os.listdir(temp_folder): if (fp.startswith(accession) and fp.endswith('fastq')): fp = os.path.join(temp_folder, fp) logging.info('Removing {}'.format(fp)) os.unlink(fp) cache_fp = '/root/ncbi/public/sra/{}.sra'.format(accession) if os.path.exists(cache_fp): logging.info('Removing {}'.format(cache_fp)) os.unlink(cache_fp) run_cmds(['mv', (local_path + '.temp'), local_path]) logging.info(('Done fetching ' + accession)) return local_path
def get_sra(accession, temp_folder): logging.info('Downloading {} from SRA'.format(accession)) local_path = os.path.join(temp_folder, (accession + '.fastq')) logging.info('Local path: {}'.format(local_path)) logging.info('Downloading via fastq-dump') run_cmds(['prefetch', accession]) run_cmds(['fastq-dump', '--split-files', '--outdir', temp_folder, accession]) msg = 'File could not be downloaded from SRA: {}'.format(accession) assert any([(fp.startswith(accession) and fp.endswith('fastq')) for fp in os.listdir(temp_folder)]), msg logging.info('Concatenating output files') with open((local_path + '.temp'), 'wt') as fo: cmd = 'cat {}/{}*fastq'.format(temp_folder, accession) cat = subprocess.Popen(cmd, shell=True, stdout=fo) cat.wait() for fp in os.listdir(temp_folder): if (fp.startswith(accession) and fp.endswith('fastq')): fp = os.path.join(temp_folder, fp) logging.info('Removing {}'.format(fp)) os.unlink(fp) cache_fp = '/root/ncbi/public/sra/{}.sra'.format(accession) if os.path.exists(cache_fp): logging.info('Removing {}'.format(cache_fp)) os.unlink(cache_fp) run_cmds(['mv', (local_path + '.temp'), local_path]) logging.info(('Done fetching ' + accession)) return local_path<|docstring|>Get the FASTQ for an SRA accession.<|endoftext|>
8268dbccf57ee6dba503f00d5f785ab866ecdc594aac24d13cb3da415f7e6a2b
def clean_fastq_headers(fp_in, folder_out): 'Read in a FASTQ file and write out a copy with unique headers.' fp_out = os.path.join(folder_out, fp_in.split('/')[(- 1)]) if fp_out.endswith('.gz'): fp_out = fp_out[:(- 3)] if fp_in.endswith('.gz'): f_in = gzip.open(fp_in, 'rt') else: f_in = open(fp_in, 'rt') f_out = open(fp_out, 'wt') atcg = re.compile('[^ATCG\n]') for (ix, line) in enumerate(f_in): mod = (ix % 4) if (mod == 0): if (len(line) == 1): continue assert (line[0] == '@'), "Header lacks '@' ({})".format(line) line = line.rstrip('\n').split(' ')[0].split('\t')[0] line = '{}-r{}\n'.format(line, (1 + (ix / 4))) header = line[1:] elif (mod == 1): assert (len(line) > 1) line = atcg.sub('N', line) elif (mod == 2): assert (line[0] == '+') line = ('+' + header) elif (mod == 3): assert (len(line) > 1) f_out.write(line) f_in.close() f_out.close() return fp_out
Read in a FASTQ file and write out a copy with unique headers.
famli/fastq_helpers.py
clean_fastq_headers
FredHutch/FAMLI
14
python
def clean_fastq_headers(fp_in, folder_out): fp_out = os.path.join(folder_out, fp_in.split('/')[(- 1)]) if fp_out.endswith('.gz'): fp_out = fp_out[:(- 3)] if fp_in.endswith('.gz'): f_in = gzip.open(fp_in, 'rt') else: f_in = open(fp_in, 'rt') f_out = open(fp_out, 'wt') atcg = re.compile('[^ATCG\n]') for (ix, line) in enumerate(f_in): mod = (ix % 4) if (mod == 0): if (len(line) == 1): continue assert (line[0] == '@'), "Header lacks '@' ({})".format(line) line = line.rstrip('\n').split(' ')[0].split('\t')[0] line = '{}-r{}\n'.format(line, (1 + (ix / 4))) header = line[1:] elif (mod == 1): assert (len(line) > 1) line = atcg.sub('N', line) elif (mod == 2): assert (line[0] == '+') line = ('+' + header) elif (mod == 3): assert (len(line) > 1) f_out.write(line) f_in.close() f_out.close() return fp_out
def clean_fastq_headers(fp_in, folder_out): fp_out = os.path.join(folder_out, fp_in.split('/')[(- 1)]) if fp_out.endswith('.gz'): fp_out = fp_out[:(- 3)] if fp_in.endswith('.gz'): f_in = gzip.open(fp_in, 'rt') else: f_in = open(fp_in, 'rt') f_out = open(fp_out, 'wt') atcg = re.compile('[^ATCG\n]') for (ix, line) in enumerate(f_in): mod = (ix % 4) if (mod == 0): if (len(line) == 1): continue assert (line[0] == '@'), "Header lacks '@' ({})".format(line) line = line.rstrip('\n').split(' ')[0].split('\t')[0] line = '{}-r{}\n'.format(line, (1 + (ix / 4))) header = line[1:] elif (mod == 1): assert (len(line) > 1) line = atcg.sub('N', line) elif (mod == 2): assert (line[0] == '+') line = ('+' + header) elif (mod == 3): assert (len(line) > 1) f_out.write(line) f_in.close() f_out.close() return fp_out<|docstring|>Read in a FASTQ file and write out a copy with unique headers.<|endoftext|>
b4adc2c19a2717f14592720431b88b9bcce7ea9fe96f5a1738b500edd55c521d
@register(outgoing=True, pattern='^.sticker') async def kang(args): ' For .kang command, kangs stickers or creates new ones. ' user = (await bot.get_me()) if (not user.username): user.username = user.first_name message = (await args.get_reply_message()) photo = None emojibypass = False is_anim = False emoji = '' (await args.edit('**🔁 Caricamento..**')) if (message and message.media): if isinstance(message.media, MessageMediaPhoto): photo = io.BytesIO() photo = (await bot.download_media(message.photo, photo)) elif ('image' in message.media.document.mime_type.split('/')): photo = io.BytesIO() (await bot.download_file(message.media.document, photo)) if (DocumentAttributeFilename(file_name='sticker.webp') in message.media.document.attributes): emoji = message.media.document.attributes[1].alt emojibypass = True elif (DocumentAttributeFilename(file_name='AnimatedSticker.tgs') in message.media.document.attributes): emoji = message.media.document.attributes[0].alt emojibypass = True is_anim = True photo = 1 else: (await args.edit('**❌ Errore:** `File non supportato!`')) return else: (await args.edit('**❌ Errore:** `Rispondi ad uno sticker/media.`')) return if photo: splat = args.text.split() if (not emojibypass): emoji = '🤔' pack = 1 if (len(splat) == 3): pack = splat[2] emoji = splat[1] elif (len(splat) == 2): if splat[1].isnumeric(): pack = int(splat[1]) else: emoji = splat[1] packname = f'a{user.id}_by_{user.username}_{pack}' packnick = f"@{user.username}'s pack {pack}" cmd = '/newpack' file = io.BytesIO() if (not is_anim): image = (await resize_photo(photo)) file.name = 'sticker.png' image.save(file, 'PNG') else: packname += '_anim' packnick += ' animated' cmd = '/newanimated' response = urllib.request.urlopen(urllib.request.Request(f'http://t.me/addstickers/{packname}')) htmlstr = response.read().decode('utf8').split('\n') if (' A <strong>Telegram</strong> user has created the <strong>Sticker&nbsp;Set</strong>.' not in htmlstr): async with bot.conversation('Stickers') as conv: (await conv.send_message('/addsticker')) (await conv.get_response()) (await bot.send_read_acknowledge(conv.chat_id)) (await conv.send_message(packname)) x = (await conv.get_response()) while (x.text == PACK_FULL): pack += 1 packname = f'a{user.id}_by_{user.username}_{pack}' packnick = f"@{user.username}'s pack {pack}" (await args.edit((('`Spostando su ' + str(pack)) + " perchè non c'è più spazio.`"))) (await conv.send_message(packname)) x = (await conv.get_response()) if (x.text == '**Pack selezionato non valido.**'): (await conv.send_message(cmd)) (await conv.get_response()) (await bot.send_read_acknowledge(conv.chat_id)) (await conv.send_message(packnick)) (await conv.get_response()) (await bot.send_read_acknowledge(conv.chat_id)) if is_anim: (await bot.forward_messages('Stickers', [message.id], args.chat_id)) else: file.seek(0) (await conv.send_file(file, force_document=True)) (await conv.get_response()) (await conv.send_message(emoji)) (await bot.send_read_acknowledge(conv.chat_id)) (await conv.get_response()) (await conv.send_message('/publish')) if is_anim: (await conv.get_response()) (await conv.send_message(f'<{packnick}>')) (await conv.get_response()) (await bot.send_read_acknowledge(conv.chat_id)) (await conv.send_message('/skip')) (await bot.send_read_acknowledge(conv.chat_id)) (await conv.get_response()) (await conv.send_message(packname)) (await bot.send_read_acknowledge(conv.chat_id)) (await conv.get_response()) (await bot.send_read_acknowledge(conv.chat_id)) (await args.edit(f'''**📚 Sticker aggiunto!** **➡️ Per vederlo premi** [qui.](t.me/addstickers/{packname}).''', parse_mode='md')) return if is_anim: (await bot.forward_messages('Stickers', [message.id], args.chat_id)) else: file.seek(0) (await conv.send_file(file, force_document=True)) (await conv.get_response()) (await conv.send_message(emoji)) (await bot.send_read_acknowledge(conv.chat_id)) (await conv.get_response()) (await conv.send_message('/done')) (await conv.get_response()) (await bot.send_read_acknowledge(conv.chat_id)) else: (await args.edit('**🔁 Pack non trovato, ne sto creando uno nuovo...**')) async with bot.conversation('Stickers') as conv: (await conv.send_message(cmd)) (await conv.get_response()) (await bot.send_read_acknowledge(conv.chat_id)) (await conv.send_message(packnick)) (await conv.get_response()) (await bot.send_read_acknowledge(conv.chat_id)) if is_anim: (await bot.forward_messages('Stickers', [message.id], args.chat_id)) else: file.seek(0) (await conv.send_file(file, force_document=True)) (await conv.get_response()) (await conv.send_message(emoji)) (await bot.send_read_acknowledge(conv.chat_id)) (await conv.get_response()) (await conv.send_message('/publish')) if is_anim: (await conv.get_response()) (await conv.send_message(f'<{packnick}>')) (await conv.get_response()) (await bot.send_read_acknowledge(conv.chat_id)) (await conv.send_message('/skip')) (await bot.send_read_acknowledge(conv.chat_id)) (await conv.get_response()) (await conv.send_message(packname)) (await bot.send_read_acknowledge(conv.chat_id)) (await conv.get_response()) (await bot.send_read_acknowledge(conv.chat_id)) (await args.edit(f'''**📚 Sticker aggiunto!** **➡️ Per vederlo premi** [qui.](t.me/addstickers/{packname})''', parse_mode='md'))
For .kang command, kangs stickers or creates new ones.
userbot/plugins/stickers.py
kang
znotash/X-tra-Telegram
2
python
@register(outgoing=True, pattern='^.sticker') async def kang(args): ' ' user = (await bot.get_me()) if (not user.username): user.username = user.first_name message = (await args.get_reply_message()) photo = None emojibypass = False is_anim = False emoji = (await args.edit('**🔁 Caricamento..**')) if (message and message.media): if isinstance(message.media, MessageMediaPhoto): photo = io.BytesIO() photo = (await bot.download_media(message.photo, photo)) elif ('image' in message.media.document.mime_type.split('/')): photo = io.BytesIO() (await bot.download_file(message.media.document, photo)) if (DocumentAttributeFilename(file_name='sticker.webp') in message.media.document.attributes): emoji = message.media.document.attributes[1].alt emojibypass = True elif (DocumentAttributeFilename(file_name='AnimatedSticker.tgs') in message.media.document.attributes): emoji = message.media.document.attributes[0].alt emojibypass = True is_anim = True photo = 1 else: (await args.edit('**❌ Errore:** `File non supportato!`')) return else: (await args.edit('**❌ Errore:** `Rispondi ad uno sticker/media.`')) return if photo: splat = args.text.split() if (not emojibypass): emoji = '🤔' pack = 1 if (len(splat) == 3): pack = splat[2] emoji = splat[1] elif (len(splat) == 2): if splat[1].isnumeric(): pack = int(splat[1]) else: emoji = splat[1] packname = f'a{user.id}_by_{user.username}_{pack}' packnick = f"@{user.username}'s pack {pack}" cmd = '/newpack' file = io.BytesIO() if (not is_anim): image = (await resize_photo(photo)) file.name = 'sticker.png' image.save(file, 'PNG') else: packname += '_anim' packnick += ' animated' cmd = '/newanimated' response = urllib.request.urlopen(urllib.request.Request(f'http://t.me/addstickers/{packname}')) htmlstr = response.read().decode('utf8').split('\n') if (' A <strong>Telegram</strong> user has created the <strong>Sticker&nbsp;Set</strong>.' not in htmlstr): async with bot.conversation('Stickers') as conv: (await conv.send_message('/addsticker')) (await conv.get_response()) (await bot.send_read_acknowledge(conv.chat_id)) (await conv.send_message(packname)) x = (await conv.get_response()) while (x.text == PACK_FULL): pack += 1 packname = f'a{user.id}_by_{user.username}_{pack}' packnick = f"@{user.username}'s pack {pack}" (await args.edit((('`Spostando su ' + str(pack)) + " perchè non c'è più spazio.`"))) (await conv.send_message(packname)) x = (await conv.get_response()) if (x.text == '**Pack selezionato non valido.**'): (await conv.send_message(cmd)) (await conv.get_response()) (await bot.send_read_acknowledge(conv.chat_id)) (await conv.send_message(packnick)) (await conv.get_response()) (await bot.send_read_acknowledge(conv.chat_id)) if is_anim: (await bot.forward_messages('Stickers', [message.id], args.chat_id)) else: file.seek(0) (await conv.send_file(file, force_document=True)) (await conv.get_response()) (await conv.send_message(emoji)) (await bot.send_read_acknowledge(conv.chat_id)) (await conv.get_response()) (await conv.send_message('/publish')) if is_anim: (await conv.get_response()) (await conv.send_message(f'<{packnick}>')) (await conv.get_response()) (await bot.send_read_acknowledge(conv.chat_id)) (await conv.send_message('/skip')) (await bot.send_read_acknowledge(conv.chat_id)) (await conv.get_response()) (await conv.send_message(packname)) (await bot.send_read_acknowledge(conv.chat_id)) (await conv.get_response()) (await bot.send_read_acknowledge(conv.chat_id)) (await args.edit(f'**📚 Sticker aggiunto!** **➡️ Per vederlo premi** [qui.](t.me/addstickers/{packname}).', parse_mode='md')) return if is_anim: (await bot.forward_messages('Stickers', [message.id], args.chat_id)) else: file.seek(0) (await conv.send_file(file, force_document=True)) (await conv.get_response()) (await conv.send_message(emoji)) (await bot.send_read_acknowledge(conv.chat_id)) (await conv.get_response()) (await conv.send_message('/done')) (await conv.get_response()) (await bot.send_read_acknowledge(conv.chat_id)) else: (await args.edit('**🔁 Pack non trovato, ne sto creando uno nuovo...**')) async with bot.conversation('Stickers') as conv: (await conv.send_message(cmd)) (await conv.get_response()) (await bot.send_read_acknowledge(conv.chat_id)) (await conv.send_message(packnick)) (await conv.get_response()) (await bot.send_read_acknowledge(conv.chat_id)) if is_anim: (await bot.forward_messages('Stickers', [message.id], args.chat_id)) else: file.seek(0) (await conv.send_file(file, force_document=True)) (await conv.get_response()) (await conv.send_message(emoji)) (await bot.send_read_acknowledge(conv.chat_id)) (await conv.get_response()) (await conv.send_message('/publish')) if is_anim: (await conv.get_response()) (await conv.send_message(f'<{packnick}>')) (await conv.get_response()) (await bot.send_read_acknowledge(conv.chat_id)) (await conv.send_message('/skip')) (await bot.send_read_acknowledge(conv.chat_id)) (await conv.get_response()) (await conv.send_message(packname)) (await bot.send_read_acknowledge(conv.chat_id)) (await conv.get_response()) (await bot.send_read_acknowledge(conv.chat_id)) (await args.edit(f'**📚 Sticker aggiunto!** **➡️ Per vederlo premi** [qui.](t.me/addstickers/{packname})', parse_mode='md'))
@register(outgoing=True, pattern='^.sticker') async def kang(args): ' ' user = (await bot.get_me()) if (not user.username): user.username = user.first_name message = (await args.get_reply_message()) photo = None emojibypass = False is_anim = False emoji = (await args.edit('**🔁 Caricamento..**')) if (message and message.media): if isinstance(message.media, MessageMediaPhoto): photo = io.BytesIO() photo = (await bot.download_media(message.photo, photo)) elif ('image' in message.media.document.mime_type.split('/')): photo = io.BytesIO() (await bot.download_file(message.media.document, photo)) if (DocumentAttributeFilename(file_name='sticker.webp') in message.media.document.attributes): emoji = message.media.document.attributes[1].alt emojibypass = True elif (DocumentAttributeFilename(file_name='AnimatedSticker.tgs') in message.media.document.attributes): emoji = message.media.document.attributes[0].alt emojibypass = True is_anim = True photo = 1 else: (await args.edit('**❌ Errore:** `File non supportato!`')) return else: (await args.edit('**❌ Errore:** `Rispondi ad uno sticker/media.`')) return if photo: splat = args.text.split() if (not emojibypass): emoji = '🤔' pack = 1 if (len(splat) == 3): pack = splat[2] emoji = splat[1] elif (len(splat) == 2): if splat[1].isnumeric(): pack = int(splat[1]) else: emoji = splat[1] packname = f'a{user.id}_by_{user.username}_{pack}' packnick = f"@{user.username}'s pack {pack}" cmd = '/newpack' file = io.BytesIO() if (not is_anim): image = (await resize_photo(photo)) file.name = 'sticker.png' image.save(file, 'PNG') else: packname += '_anim' packnick += ' animated' cmd = '/newanimated' response = urllib.request.urlopen(urllib.request.Request(f'http://t.me/addstickers/{packname}')) htmlstr = response.read().decode('utf8').split('\n') if (' A <strong>Telegram</strong> user has created the <strong>Sticker&nbsp;Set</strong>.' not in htmlstr): async with bot.conversation('Stickers') as conv: (await conv.send_message('/addsticker')) (await conv.get_response()) (await bot.send_read_acknowledge(conv.chat_id)) (await conv.send_message(packname)) x = (await conv.get_response()) while (x.text == PACK_FULL): pack += 1 packname = f'a{user.id}_by_{user.username}_{pack}' packnick = f"@{user.username}'s pack {pack}" (await args.edit((('`Spostando su ' + str(pack)) + " perchè non c'è più spazio.`"))) (await conv.send_message(packname)) x = (await conv.get_response()) if (x.text == '**Pack selezionato non valido.**'): (await conv.send_message(cmd)) (await conv.get_response()) (await bot.send_read_acknowledge(conv.chat_id)) (await conv.send_message(packnick)) (await conv.get_response()) (await bot.send_read_acknowledge(conv.chat_id)) if is_anim: (await bot.forward_messages('Stickers', [message.id], args.chat_id)) else: file.seek(0) (await conv.send_file(file, force_document=True)) (await conv.get_response()) (await conv.send_message(emoji)) (await bot.send_read_acknowledge(conv.chat_id)) (await conv.get_response()) (await conv.send_message('/publish')) if is_anim: (await conv.get_response()) (await conv.send_message(f'<{packnick}>')) (await conv.get_response()) (await bot.send_read_acknowledge(conv.chat_id)) (await conv.send_message('/skip')) (await bot.send_read_acknowledge(conv.chat_id)) (await conv.get_response()) (await conv.send_message(packname)) (await bot.send_read_acknowledge(conv.chat_id)) (await conv.get_response()) (await bot.send_read_acknowledge(conv.chat_id)) (await args.edit(f'**📚 Sticker aggiunto!** **➡️ Per vederlo premi** [qui.](t.me/addstickers/{packname}).', parse_mode='md')) return if is_anim: (await bot.forward_messages('Stickers', [message.id], args.chat_id)) else: file.seek(0) (await conv.send_file(file, force_document=True)) (await conv.get_response()) (await conv.send_message(emoji)) (await bot.send_read_acknowledge(conv.chat_id)) (await conv.get_response()) (await conv.send_message('/done')) (await conv.get_response()) (await bot.send_read_acknowledge(conv.chat_id)) else: (await args.edit('**🔁 Pack non trovato, ne sto creando uno nuovo...**')) async with bot.conversation('Stickers') as conv: (await conv.send_message(cmd)) (await conv.get_response()) (await bot.send_read_acknowledge(conv.chat_id)) (await conv.send_message(packnick)) (await conv.get_response()) (await bot.send_read_acknowledge(conv.chat_id)) if is_anim: (await bot.forward_messages('Stickers', [message.id], args.chat_id)) else: file.seek(0) (await conv.send_file(file, force_document=True)) (await conv.get_response()) (await conv.send_message(emoji)) (await bot.send_read_acknowledge(conv.chat_id)) (await conv.get_response()) (await conv.send_message('/publish')) if is_anim: (await conv.get_response()) (await conv.send_message(f'<{packnick}>')) (await conv.get_response()) (await bot.send_read_acknowledge(conv.chat_id)) (await conv.send_message('/skip')) (await bot.send_read_acknowledge(conv.chat_id)) (await conv.get_response()) (await conv.send_message(packname)) (await bot.send_read_acknowledge(conv.chat_id)) (await conv.get_response()) (await bot.send_read_acknowledge(conv.chat_id)) (await args.edit(f'**📚 Sticker aggiunto!** **➡️ Per vederlo premi** [qui.](t.me/addstickers/{packname})', parse_mode='md'))<|docstring|>For .kang command, kangs stickers or creates new ones.<|endoftext|>
c380082369a2aa4a85b0a2226ee470008892e8151e1705d9e83a8f4e719b07d6
async def resize_photo(photo): ' Resize the given photo to 512x512 ' image = Image.open(photo) maxsize = (512, 512) if ((image.width and image.height) < 512): size1 = image.width size2 = image.height if (image.width > image.height): scale = (512 / size1) size1new = 512 size2new = (size2 * scale) else: scale = (512 / size2) size1new = (size1 * scale) size2new = 512 size1new = math.floor(size1new) size2new = math.floor(size2new) sizenew = (size1new, size2new) image = image.resize(sizenew) else: image.thumbnail(maxsize) return image
Resize the given photo to 512x512
userbot/plugins/stickers.py
resize_photo
znotash/X-tra-Telegram
2
python
async def resize_photo(photo): ' ' image = Image.open(photo) maxsize = (512, 512) if ((image.width and image.height) < 512): size1 = image.width size2 = image.height if (image.width > image.height): scale = (512 / size1) size1new = 512 size2new = (size2 * scale) else: scale = (512 / size2) size1new = (size1 * scale) size2new = 512 size1new = math.floor(size1new) size2new = math.floor(size2new) sizenew = (size1new, size2new) image = image.resize(sizenew) else: image.thumbnail(maxsize) return image
async def resize_photo(photo): ' ' image = Image.open(photo) maxsize = (512, 512) if ((image.width and image.height) < 512): size1 = image.width size2 = image.height if (image.width > image.height): scale = (512 / size1) size1new = 512 size2new = (size2 * scale) else: scale = (512 / size2) size1new = (size1 * scale) size2new = 512 size1new = math.floor(size1new) size2new = math.floor(size2new) sizenew = (size1new, size2new) image = image.resize(sizenew) else: image.thumbnail(maxsize) return image<|docstring|>Resize the given photo to 512x512<|endoftext|>
5839f7f474154064491d6909f604d289e06dbd79dd0a8669d59165b2ed31eb0e
def parse_service_provider_opt(): 'Parse service definition opts and returns result.' def validate_name(name): if (len(name) > 255): raise n_exc.Invalid((_('Provider name is limited by 255 characters: %s') % name)) svc_providers_opt = cfg.CONF.service_providers.service_provider res = [] for prov_def in svc_providers_opt: split = prov_def.split(':') try: (svc_type, name, driver) = split[:3] except ValueError: raise n_exc.Invalid(_('Invalid service provider format')) validate_name(name) name = normalize_provider_name(name) default = False if ((len(split) == 4) and split[3]): if (split[3] == 'default'): default = True else: msg = (_("Invalid provider format. Last part should be 'default' or empty: %s") % prov_def) LOG.error(msg) raise n_exc.Invalid(msg) if (svc_type not in constants.ALLOWED_SERVICES): msg = (_("Service type '%(svc_type)s' is not allowed, allowed types: %(allowed)s") % {'svc_type': svc_type, 'allowed': constants.ALLOWED_SERVICES}) LOG.error(msg) raise n_exc.Invalid(msg) res.append({'service_type': svc_type, 'name': name, 'driver': driver, 'default': default}) return res
Parse service definition opts and returns result.
neutron/services/provider_configuration.py
parse_service_provider_opt
leenheer/neutron
3
python
def parse_service_provider_opt(): def validate_name(name): if (len(name) > 255): raise n_exc.Invalid((_('Provider name is limited by 255 characters: %s') % name)) svc_providers_opt = cfg.CONF.service_providers.service_provider res = [] for prov_def in svc_providers_opt: split = prov_def.split(':') try: (svc_type, name, driver) = split[:3] except ValueError: raise n_exc.Invalid(_('Invalid service provider format')) validate_name(name) name = normalize_provider_name(name) default = False if ((len(split) == 4) and split[3]): if (split[3] == 'default'): default = True else: msg = (_("Invalid provider format. Last part should be 'default' or empty: %s") % prov_def) LOG.error(msg) raise n_exc.Invalid(msg) if (svc_type not in constants.ALLOWED_SERVICES): msg = (_("Service type '%(svc_type)s' is not allowed, allowed types: %(allowed)s") % {'svc_type': svc_type, 'allowed': constants.ALLOWED_SERVICES}) LOG.error(msg) raise n_exc.Invalid(msg) res.append({'service_type': svc_type, 'name': name, 'driver': driver, 'default': default}) return res
def parse_service_provider_opt(): def validate_name(name): if (len(name) > 255): raise n_exc.Invalid((_('Provider name is limited by 255 characters: %s') % name)) svc_providers_opt = cfg.CONF.service_providers.service_provider res = [] for prov_def in svc_providers_opt: split = prov_def.split(':') try: (svc_type, name, driver) = split[:3] except ValueError: raise n_exc.Invalid(_('Invalid service provider format')) validate_name(name) name = normalize_provider_name(name) default = False if ((len(split) == 4) and split[3]): if (split[3] == 'default'): default = True else: msg = (_("Invalid provider format. Last part should be 'default' or empty: %s") % prov_def) LOG.error(msg) raise n_exc.Invalid(msg) if (svc_type not in constants.ALLOWED_SERVICES): msg = (_("Service type '%(svc_type)s' is not allowed, allowed types: %(allowed)s") % {'svc_type': svc_type, 'allowed': constants.ALLOWED_SERVICES}) LOG.error(msg) raise n_exc.Invalid(msg) res.append({'service_type': svc_type, 'name': name, 'driver': driver, 'default': default}) return res<|docstring|>Parse service definition opts and returns result.<|endoftext|>
7dfe7a29da5d9471d4daea1303bcdbc12d7b29e39abc49863f7d325c82788cf4
def main(): ' Main ' table = PrettyTable(['Task', 'Optimistic', 'Nominal', 'Pessimistic', 'Expected Duration', 'Standard Deviation']) add_task = True while add_task: task_name = input('Task name: ') optimistic_estimate = utils.get_user_input_number('Optimistic estimate: ') nominal_estimate = utils.get_user_input_number('Nominal estimate: ') pessimistic_estimate = utils.get_user_input_number('Pessimistic estimate: ') add_task = utils.get_user_input_boolean('Add task? (Y/N): ') print('\n') expected_duration = utils.calculate_expected_duration(optimistic_estimate, nominal_estimate, pessimistic_estimate) standard_deviation = utils.calculate_standard_deviation(pessimistic_estimate, optimistic_estimate) table.add_row([task_name, optimistic_estimate, nominal_estimate, pessimistic_estimate, expected_duration, standard_deviation]) print(table)
Main
pert_estimator/__main__.py
main
andrewdieken/pert_estimator
0
python
def main(): ' ' table = PrettyTable(['Task', 'Optimistic', 'Nominal', 'Pessimistic', 'Expected Duration', 'Standard Deviation']) add_task = True while add_task: task_name = input('Task name: ') optimistic_estimate = utils.get_user_input_number('Optimistic estimate: ') nominal_estimate = utils.get_user_input_number('Nominal estimate: ') pessimistic_estimate = utils.get_user_input_number('Pessimistic estimate: ') add_task = utils.get_user_input_boolean('Add task? (Y/N): ') print('\n') expected_duration = utils.calculate_expected_duration(optimistic_estimate, nominal_estimate, pessimistic_estimate) standard_deviation = utils.calculate_standard_deviation(pessimistic_estimate, optimistic_estimate) table.add_row([task_name, optimistic_estimate, nominal_estimate, pessimistic_estimate, expected_duration, standard_deviation]) print(table)
def main(): ' ' table = PrettyTable(['Task', 'Optimistic', 'Nominal', 'Pessimistic', 'Expected Duration', 'Standard Deviation']) add_task = True while add_task: task_name = input('Task name: ') optimistic_estimate = utils.get_user_input_number('Optimistic estimate: ') nominal_estimate = utils.get_user_input_number('Nominal estimate: ') pessimistic_estimate = utils.get_user_input_number('Pessimistic estimate: ') add_task = utils.get_user_input_boolean('Add task? (Y/N): ') print('\n') expected_duration = utils.calculate_expected_duration(optimistic_estimate, nominal_estimate, pessimistic_estimate) standard_deviation = utils.calculate_standard_deviation(pessimistic_estimate, optimistic_estimate) table.add_row([task_name, optimistic_estimate, nominal_estimate, pessimistic_estimate, expected_duration, standard_deviation]) print(table)<|docstring|>Main<|endoftext|>
8bc5a965138f8e94977bc059a4f8b41ef6f7c10aa1735ec5a864cc8c7d5515c2
def __init__(self, metamap_home): ' Interface to MetaMap using subprocess. This creates a\n command line call to a specified metamap process.\n ' MetaMapLite.__init__(self, metamap_home=metamap_home)
Interface to MetaMap using subprocess. This creates a command line call to a specified metamap process.
pymetamap/SubprocessBackendLite.py
__init__
liquet-ai/pymetamap
151
python
def __init__(self, metamap_home): ' Interface to MetaMap using subprocess. This creates a\n command line call to a specified metamap process.\n ' MetaMapLite.__init__(self, metamap_home=metamap_home)
def __init__(self, metamap_home): ' Interface to MetaMap using subprocess. This creates a\n command line call to a specified metamap process.\n ' MetaMapLite.__init__(self, metamap_home=metamap_home)<|docstring|>Interface to MetaMap using subprocess. This creates a command line call to a specified metamap process.<|endoftext|>
15436ff0d77b32b618523e96c842c36c8ac7aeadee2767a543d49d1e8086b049
def extract_concepts(self, sentences=None, ids=None, filename=None, restrict_to_sts=None, restrict_to_sources=None): ' extract_concepts takes a list of sentences and ids(optional)\n then returns a list of Concept objects extracted via\n MetaMapLite.\n\n Supported Options:\n Restrict to Semantic Types --restrict_to_sts\n Restrict to Sources --restrict_to_sources\n\n For information about the available options visit\n http://metamap.nlm.nih.gov/.\n\n Note: If an error is encountered the process will be closed\n and whatever was processed, if anything, will be\n returned along with the error found.\n ' if (((sentences is not None) and (filename is not None)) or ((sentences is None) and (filename is None))): raise ValueError('You must either pass a list of sentences OR a filename.') input_file = None if (sentences is not None): input_file = tempfile.NamedTemporaryFile(mode='wb', delete=False, suffix='.mmi') else: input_file = open(filename, 'r') output_file_name = None error = None try: if (sentences is not None): if (ids is not None): for (identifier, sentence) in zip(ids, sentences): input_file.write('{0!r}|{1}\n'.format(identifier, sentence).encode('utf8')) else: for sentence in sentences: input_file.write('{0!r}\n'.format(sentence).encode('utf8')) input_file.flush() input_file.close() command = ['bash', os.path.join(self.metamap_home, 'metamaplite.sh')] if restrict_to_sts: if isinstance(restrict_to_sts, str): restrict_to_sts = [restrict_to_sts] if (len(restrict_to_sts) > 0): command.append('--restrict_to_sts={}'.format(str(','.join(restrict_to_sts)))) if restrict_to_sources: if isinstance(restrict_to_sources, str): restrict_to_sources = [restrict_to_sources] if (len(restrict_to_sources) > 0): command.append('--restrict_to_sources') command.append(str(','.join(restrict_to_sources))) if (ids is not None): command.append('--inputformat=sldiwi') command.append(input_file.name) command.append('--overwrite') (output_file_name, file_extension) = os.path.splitext(input_file.name) output_file_name += ('.' + 'mmi') (output_file_name, file_extension) = os.path.splitext(input_file.name) output_file_name += ('.' + 'mmi') metamap_process = subprocess.Popen(command, stdout=subprocess.PIPE) while (metamap_process.poll() is None): stdout = str(metamap_process.stdout.readline()) if ('ERROR' in stdout): metamap_process.terminate() error = stdout.rstrip() (output_file_name, file_extension) = os.path.splitext(input_file.name) output_file_name += ('.' + 'mmi') with open(output_file_name) as fd: output = fd.read() except: pass concepts = CorpusLite.load(output.splitlines()) return (concepts, error)
extract_concepts takes a list of sentences and ids(optional) then returns a list of Concept objects extracted via MetaMapLite. Supported Options: Restrict to Semantic Types --restrict_to_sts Restrict to Sources --restrict_to_sources For information about the available options visit http://metamap.nlm.nih.gov/. Note: If an error is encountered the process will be closed and whatever was processed, if anything, will be returned along with the error found.
pymetamap/SubprocessBackendLite.py
extract_concepts
liquet-ai/pymetamap
151
python
def extract_concepts(self, sentences=None, ids=None, filename=None, restrict_to_sts=None, restrict_to_sources=None): ' extract_concepts takes a list of sentences and ids(optional)\n then returns a list of Concept objects extracted via\n MetaMapLite.\n\n Supported Options:\n Restrict to Semantic Types --restrict_to_sts\n Restrict to Sources --restrict_to_sources\n\n For information about the available options visit\n http://metamap.nlm.nih.gov/.\n\n Note: If an error is encountered the process will be closed\n and whatever was processed, if anything, will be\n returned along with the error found.\n ' if (((sentences is not None) and (filename is not None)) or ((sentences is None) and (filename is None))): raise ValueError('You must either pass a list of sentences OR a filename.') input_file = None if (sentences is not None): input_file = tempfile.NamedTemporaryFile(mode='wb', delete=False, suffix='.mmi') else: input_file = open(filename, 'r') output_file_name = None error = None try: if (sentences is not None): if (ids is not None): for (identifier, sentence) in zip(ids, sentences): input_file.write('{0!r}|{1}\n'.format(identifier, sentence).encode('utf8')) else: for sentence in sentences: input_file.write('{0!r}\n'.format(sentence).encode('utf8')) input_file.flush() input_file.close() command = ['bash', os.path.join(self.metamap_home, 'metamaplite.sh')] if restrict_to_sts: if isinstance(restrict_to_sts, str): restrict_to_sts = [restrict_to_sts] if (len(restrict_to_sts) > 0): command.append('--restrict_to_sts={}'.format(str(','.join(restrict_to_sts)))) if restrict_to_sources: if isinstance(restrict_to_sources, str): restrict_to_sources = [restrict_to_sources] if (len(restrict_to_sources) > 0): command.append('--restrict_to_sources') command.append(str(','.join(restrict_to_sources))) if (ids is not None): command.append('--inputformat=sldiwi') command.append(input_file.name) command.append('--overwrite') (output_file_name, file_extension) = os.path.splitext(input_file.name) output_file_name += ('.' + 'mmi') (output_file_name, file_extension) = os.path.splitext(input_file.name) output_file_name += ('.' + 'mmi') metamap_process = subprocess.Popen(command, stdout=subprocess.PIPE) while (metamap_process.poll() is None): stdout = str(metamap_process.stdout.readline()) if ('ERROR' in stdout): metamap_process.terminate() error = stdout.rstrip() (output_file_name, file_extension) = os.path.splitext(input_file.name) output_file_name += ('.' + 'mmi') with open(output_file_name) as fd: output = fd.read() except: pass concepts = CorpusLite.load(output.splitlines()) return (concepts, error)
def extract_concepts(self, sentences=None, ids=None, filename=None, restrict_to_sts=None, restrict_to_sources=None): ' extract_concepts takes a list of sentences and ids(optional)\n then returns a list of Concept objects extracted via\n MetaMapLite.\n\n Supported Options:\n Restrict to Semantic Types --restrict_to_sts\n Restrict to Sources --restrict_to_sources\n\n For information about the available options visit\n http://metamap.nlm.nih.gov/.\n\n Note: If an error is encountered the process will be closed\n and whatever was processed, if anything, will be\n returned along with the error found.\n ' if (((sentences is not None) and (filename is not None)) or ((sentences is None) and (filename is None))): raise ValueError('You must either pass a list of sentences OR a filename.') input_file = None if (sentences is not None): input_file = tempfile.NamedTemporaryFile(mode='wb', delete=False, suffix='.mmi') else: input_file = open(filename, 'r') output_file_name = None error = None try: if (sentences is not None): if (ids is not None): for (identifier, sentence) in zip(ids, sentences): input_file.write('{0!r}|{1}\n'.format(identifier, sentence).encode('utf8')) else: for sentence in sentences: input_file.write('{0!r}\n'.format(sentence).encode('utf8')) input_file.flush() input_file.close() command = ['bash', os.path.join(self.metamap_home, 'metamaplite.sh')] if restrict_to_sts: if isinstance(restrict_to_sts, str): restrict_to_sts = [restrict_to_sts] if (len(restrict_to_sts) > 0): command.append('--restrict_to_sts={}'.format(str(','.join(restrict_to_sts)))) if restrict_to_sources: if isinstance(restrict_to_sources, str): restrict_to_sources = [restrict_to_sources] if (len(restrict_to_sources) > 0): command.append('--restrict_to_sources') command.append(str(','.join(restrict_to_sources))) if (ids is not None): command.append('--inputformat=sldiwi') command.append(input_file.name) command.append('--overwrite') (output_file_name, file_extension) = os.path.splitext(input_file.name) output_file_name += ('.' + 'mmi') (output_file_name, file_extension) = os.path.splitext(input_file.name) output_file_name += ('.' + 'mmi') metamap_process = subprocess.Popen(command, stdout=subprocess.PIPE) while (metamap_process.poll() is None): stdout = str(metamap_process.stdout.readline()) if ('ERROR' in stdout): metamap_process.terminate() error = stdout.rstrip() (output_file_name, file_extension) = os.path.splitext(input_file.name) output_file_name += ('.' + 'mmi') with open(output_file_name) as fd: output = fd.read() except: pass concepts = CorpusLite.load(output.splitlines()) return (concepts, error)<|docstring|>extract_concepts takes a list of sentences and ids(optional) then returns a list of Concept objects extracted via MetaMapLite. Supported Options: Restrict to Semantic Types --restrict_to_sts Restrict to Sources --restrict_to_sources For information about the available options visit http://metamap.nlm.nih.gov/. Note: If an error is encountered the process will be closed and whatever was processed, if anything, will be returned along with the error found.<|endoftext|>
8ddb91d12175aee5d9d255a0c20326bd3b08f838eb1216646186946b4c641290
def subdict_by_prefix(flat, prefix, key=None): "\n Put key-value pairs in `flat` dict prefixed by `prefix` in a sub-dict.\n\n >>> flat = dict(\n ... prefix_alpha=1,\n ... prefix_beta=2,\n ... gamma=3,\n ... )\n >>> assert subdict_by_prefix(flat, 'prefix_') == dict(\n ... prefix=dict(alpha=1, beta=2),\n ... gamma=3,\n ... )\n\n Key of the sub-dictionary can be explicitly specified:\n\n >>> assert subdict_by_prefix(flat, 'prefix_', 'delta') == dict(\n ... delta=dict(alpha=1, beta=2),\n ... gamma=3,\n ... )\n\n If the sub-dictionary already exists, it is copied and then\n extended:\n\n >>> flat['prefix'] = dict(theta=4)\n >>> assert subdict_by_prefix(flat, 'prefix_') == dict(\n ... prefix=dict(alpha=1, beta=2, theta=4),\n ... gamma=3,\n ... )\n >>> assert flat['prefix'] == dict(theta=4) # i.e., not modified\n\n " if (key is None): key = prefix.rstrip('_') nested = {} nested[key] = subdict = flat.get(key, {}).copy() assert isinstance(subdict, dict) for (k, v) in flat.items(): if (k == key): pass elif k.startswith(prefix): subdict[k[len(prefix):]] = v else: nested[k] = v return nested
Put key-value pairs in `flat` dict prefixed by `prefix` in a sub-dict. >>> flat = dict( ... prefix_alpha=1, ... prefix_beta=2, ... gamma=3, ... ) >>> assert subdict_by_prefix(flat, 'prefix_') == dict( ... prefix=dict(alpha=1, beta=2), ... gamma=3, ... ) Key of the sub-dictionary can be explicitly specified: >>> assert subdict_by_prefix(flat, 'prefix_', 'delta') == dict( ... delta=dict(alpha=1, beta=2), ... gamma=3, ... ) If the sub-dictionary already exists, it is copied and then extended: >>> flat['prefix'] = dict(theta=4) >>> assert subdict_by_prefix(flat, 'prefix_') == dict( ... prefix=dict(alpha=1, beta=2, theta=4), ... gamma=3, ... ) >>> assert flat['prefix'] == dict(theta=4) # i.e., not modified
tc_gan/utils/dicts.py
subdict_by_prefix
ahmadianlab/tc-gan
4
python
def subdict_by_prefix(flat, prefix, key=None): "\n Put key-value pairs in `flat` dict prefixed by `prefix` in a sub-dict.\n\n >>> flat = dict(\n ... prefix_alpha=1,\n ... prefix_beta=2,\n ... gamma=3,\n ... )\n >>> assert subdict_by_prefix(flat, 'prefix_') == dict(\n ... prefix=dict(alpha=1, beta=2),\n ... gamma=3,\n ... )\n\n Key of the sub-dictionary can be explicitly specified:\n\n >>> assert subdict_by_prefix(flat, 'prefix_', 'delta') == dict(\n ... delta=dict(alpha=1, beta=2),\n ... gamma=3,\n ... )\n\n If the sub-dictionary already exists, it is copied and then\n extended:\n\n >>> flat['prefix'] = dict(theta=4)\n >>> assert subdict_by_prefix(flat, 'prefix_') == dict(\n ... prefix=dict(alpha=1, beta=2, theta=4),\n ... gamma=3,\n ... )\n >>> assert flat['prefix'] == dict(theta=4) # i.e., not modified\n\n " if (key is None): key = prefix.rstrip('_') nested = {} nested[key] = subdict = flat.get(key, {}).copy() assert isinstance(subdict, dict) for (k, v) in flat.items(): if (k == key): pass elif k.startswith(prefix): subdict[k[len(prefix):]] = v else: nested[k] = v return nested
def subdict_by_prefix(flat, prefix, key=None): "\n Put key-value pairs in `flat` dict prefixed by `prefix` in a sub-dict.\n\n >>> flat = dict(\n ... prefix_alpha=1,\n ... prefix_beta=2,\n ... gamma=3,\n ... )\n >>> assert subdict_by_prefix(flat, 'prefix_') == dict(\n ... prefix=dict(alpha=1, beta=2),\n ... gamma=3,\n ... )\n\n Key of the sub-dictionary can be explicitly specified:\n\n >>> assert subdict_by_prefix(flat, 'prefix_', 'delta') == dict(\n ... delta=dict(alpha=1, beta=2),\n ... gamma=3,\n ... )\n\n If the sub-dictionary already exists, it is copied and then\n extended:\n\n >>> flat['prefix'] = dict(theta=4)\n >>> assert subdict_by_prefix(flat, 'prefix_') == dict(\n ... prefix=dict(alpha=1, beta=2, theta=4),\n ... gamma=3,\n ... )\n >>> assert flat['prefix'] == dict(theta=4) # i.e., not modified\n\n " if (key is None): key = prefix.rstrip('_') nested = {} nested[key] = subdict = flat.get(key, {}).copy() assert isinstance(subdict, dict) for (k, v) in flat.items(): if (k == key): pass elif k.startswith(prefix): subdict[k[len(prefix):]] = v else: nested[k] = v return nested<|docstring|>Put key-value pairs in `flat` dict prefixed by `prefix` in a sub-dict. >>> flat = dict( ... prefix_alpha=1, ... prefix_beta=2, ... gamma=3, ... ) >>> assert subdict_by_prefix(flat, 'prefix_') == dict( ... prefix=dict(alpha=1, beta=2), ... gamma=3, ... ) Key of the sub-dictionary can be explicitly specified: >>> assert subdict_by_prefix(flat, 'prefix_', 'delta') == dict( ... delta=dict(alpha=1, beta=2), ... gamma=3, ... ) If the sub-dictionary already exists, it is copied and then extended: >>> flat['prefix'] = dict(theta=4) >>> assert subdict_by_prefix(flat, 'prefix_') == dict( ... prefix=dict(alpha=1, beta=2, theta=4), ... gamma=3, ... ) >>> assert flat['prefix'] == dict(theta=4) # i.e., not modified<|endoftext|>
2d743c6724ba054b5f6cc9aadda787b74263dab49d258539768c7ba5f494af0d
def iteritemsdeep(dct): "\n Works like ``dict.iteritems`` but iterate over all descendant items\n\n >>> dct = dict(a=1, b=2, c=dict(d=3, e=4))\n >>> sorted(iteritemsdeep(dct))\n [(('a',), 1), (('b',), 2), (('c', 'd'), 3), (('c', 'e'), 4)]\n\n " for (key, val) in dct.items(): if isinstance(val, dict): for (key_child, val_child) in iteritemsdeep(val): (yield (((key,) + key_child), val_child)) else: (yield ((key,), val))
Works like ``dict.iteritems`` but iterate over all descendant items >>> dct = dict(a=1, b=2, c=dict(d=3, e=4)) >>> sorted(iteritemsdeep(dct)) [(('a',), 1), (('b',), 2), (('c', 'd'), 3), (('c', 'e'), 4)]
tc_gan/utils/dicts.py
iteritemsdeep
ahmadianlab/tc-gan
4
python
def iteritemsdeep(dct): "\n Works like ``dict.iteritems`` but iterate over all descendant items\n\n >>> dct = dict(a=1, b=2, c=dict(d=3, e=4))\n >>> sorted(iteritemsdeep(dct))\n [(('a',), 1), (('b',), 2), (('c', 'd'), 3), (('c', 'e'), 4)]\n\n " for (key, val) in dct.items(): if isinstance(val, dict): for (key_child, val_child) in iteritemsdeep(val): (yield (((key,) + key_child), val_child)) else: (yield ((key,), val))
def iteritemsdeep(dct): "\n Works like ``dict.iteritems`` but iterate over all descendant items\n\n >>> dct = dict(a=1, b=2, c=dict(d=3, e=4))\n >>> sorted(iteritemsdeep(dct))\n [(('a',), 1), (('b',), 2), (('c', 'd'), 3), (('c', 'e'), 4)]\n\n " for (key, val) in dct.items(): if isinstance(val, dict): for (key_child, val_child) in iteritemsdeep(val): (yield (((key,) + key_child), val_child)) else: (yield ((key,), val))<|docstring|>Works like ``dict.iteritems`` but iterate over all descendant items >>> dct = dict(a=1, b=2, c=dict(d=3, e=4)) >>> sorted(iteritemsdeep(dct)) [(('a',), 1), (('b',), 2), (('c', 'd'), 3), (('c', 'e'), 4)]<|endoftext|>
1e593a67c974ab801b6d770b598bcb2a41021c377f74ca999cfc5c512dbcbeb1
def getdeep(dct, key): "\n Get deeply nested value of a dict-like object `dct`.\n\n >>> dct = {'a': {'b': {'c': 1}}}\n >>> getdeep(dct, 'a.b.c')\n 1\n >>> getdeep(dct, 'a.b.d')\n Traceback (most recent call last):\n ...\n KeyError: 'd'\n\n " if (not isinstance(key, tuple)): key = key.split('.') for k in key[:(- 1)]: dct = dct[k] return dct[key[(- 1)]]
Get deeply nested value of a dict-like object `dct`. >>> dct = {'a': {'b': {'c': 1}}} >>> getdeep(dct, 'a.b.c') 1 >>> getdeep(dct, 'a.b.d') Traceback (most recent call last): ... KeyError: 'd'
tc_gan/utils/dicts.py
getdeep
ahmadianlab/tc-gan
4
python
def getdeep(dct, key): "\n Get deeply nested value of a dict-like object `dct`.\n\n >>> dct = {'a': {'b': {'c': 1}}}\n >>> getdeep(dct, 'a.b.c')\n 1\n >>> getdeep(dct, 'a.b.d')\n Traceback (most recent call last):\n ...\n KeyError: 'd'\n\n " if (not isinstance(key, tuple)): key = key.split('.') for k in key[:(- 1)]: dct = dct[k] return dct[key[(- 1)]]
def getdeep(dct, key): "\n Get deeply nested value of a dict-like object `dct`.\n\n >>> dct = {'a': {'b': {'c': 1}}}\n >>> getdeep(dct, 'a.b.c')\n 1\n >>> getdeep(dct, 'a.b.d')\n Traceback (most recent call last):\n ...\n KeyError: 'd'\n\n " if (not isinstance(key, tuple)): key = key.split('.') for k in key[:(- 1)]: dct = dct[k] return dct[key[(- 1)]]<|docstring|>Get deeply nested value of a dict-like object `dct`. >>> dct = {'a': {'b': {'c': 1}}} >>> getdeep(dct, 'a.b.c') 1 >>> getdeep(dct, 'a.b.d') Traceback (most recent call last): ... KeyError: 'd'<|endoftext|>
1a25bc2d93cb27a9a14272531da45e7cbcf762533599ffae7fbd70a12eeabd69
def transform_entity_synonyms(synonyms, known_synonyms: Optional[Dict[(Text, Any)]]=None) -> Dict[(Text, Any)]: 'Transforms the entity synonyms into a text->value dictionary' entity_synonyms = (known_synonyms if known_synonyms else {}) for s in synonyms: if (('value' in s) and ('synonyms' in s)): for synonym in s['synonyms']: entity_synonyms[synonym] = s['value'] return entity_synonyms
Transforms the entity synonyms into a text->value dictionary
rasa/shared/nlu/training_data/util.py
transform_entity_synonyms
pranavdurai10/rasa
0
python
def transform_entity_synonyms(synonyms, known_synonyms: Optional[Dict[(Text, Any)]]=None) -> Dict[(Text, Any)]: entity_synonyms = (known_synonyms if known_synonyms else {}) for s in synonyms: if (('value' in s) and ('synonyms' in s)): for synonym in s['synonyms']: entity_synonyms[synonym] = s['value'] return entity_synonyms
def transform_entity_synonyms(synonyms, known_synonyms: Optional[Dict[(Text, Any)]]=None) -> Dict[(Text, Any)]: entity_synonyms = (known_synonyms if known_synonyms else {}) for s in synonyms: if (('value' in s) and ('synonyms' in s)): for synonym in s['synonyms']: entity_synonyms[synonym] = s['value'] return entity_synonyms<|docstring|>Transforms the entity synonyms into a text->value dictionary<|endoftext|>
f52976017f1ccc7a024070ec9ce9be666ff1588020ed7b9c8b9c8ed6d4fd448f
def remove_untrainable_entities_from(example: Dict[(Text, Any)]) -> None: 'Remove untrainable entities from serialised training example `example`.\n\n Entities with an untrainable extractor will be removed. Untrainable extractors\n are defined in `rasa.nlu.constants.PRETRAINED_EXTRACTORS`.\n\n Args:\n example: Serialised training example to inspect.\n ' example_entities = example.get(ENTITIES) if (not example_entities): return None trainable_entities = [] for entity in example_entities: if (entity.get(EXTRACTOR) in PRETRAINED_EXTRACTORS): logger.debug(f"Excluding entity '{json.dumps(entity)}' from training data. Entity examples extracted by the following classes are not dumped to training data in markdown format: `{'`, `'.join(sorted(PRETRAINED_EXTRACTORS))}`.") else: trainable_entities.append(entity) example[ENTITIES] = trainable_entities
Remove untrainable entities from serialised training example `example`. Entities with an untrainable extractor will be removed. Untrainable extractors are defined in `rasa.nlu.constants.PRETRAINED_EXTRACTORS`. Args: example: Serialised training example to inspect.
rasa/shared/nlu/training_data/util.py
remove_untrainable_entities_from
pranavdurai10/rasa
0
python
def remove_untrainable_entities_from(example: Dict[(Text, Any)]) -> None: 'Remove untrainable entities from serialised training example `example`.\n\n Entities with an untrainable extractor will be removed. Untrainable extractors\n are defined in `rasa.nlu.constants.PRETRAINED_EXTRACTORS`.\n\n Args:\n example: Serialised training example to inspect.\n ' example_entities = example.get(ENTITIES) if (not example_entities): return None trainable_entities = [] for entity in example_entities: if (entity.get(EXTRACTOR) in PRETRAINED_EXTRACTORS): logger.debug(f"Excluding entity '{json.dumps(entity)}' from training data. Entity examples extracted by the following classes are not dumped to training data in markdown format: `{'`, `'.join(sorted(PRETRAINED_EXTRACTORS))}`.") else: trainable_entities.append(entity) example[ENTITIES] = trainable_entities
def remove_untrainable_entities_from(example: Dict[(Text, Any)]) -> None: 'Remove untrainable entities from serialised training example `example`.\n\n Entities with an untrainable extractor will be removed. Untrainable extractors\n are defined in `rasa.nlu.constants.PRETRAINED_EXTRACTORS`.\n\n Args:\n example: Serialised training example to inspect.\n ' example_entities = example.get(ENTITIES) if (not example_entities): return None trainable_entities = [] for entity in example_entities: if (entity.get(EXTRACTOR) in PRETRAINED_EXTRACTORS): logger.debug(f"Excluding entity '{json.dumps(entity)}' from training data. Entity examples extracted by the following classes are not dumped to training data in markdown format: `{'`, `'.join(sorted(PRETRAINED_EXTRACTORS))}`.") else: trainable_entities.append(entity) example[ENTITIES] = trainable_entities<|docstring|>Remove untrainable entities from serialised training example `example`. Entities with an untrainable extractor will be removed. Untrainable extractors are defined in `rasa.nlu.constants.PRETRAINED_EXTRACTORS`. Args: example: Serialised training example to inspect.<|endoftext|>
ce20e87749f4c973724b42ecfefdd228205dc7e05e4e9e7eeda319f1e2200f19
def encode_string(s: Text) -> Text: 'Return an encoded python string.' def replace(match: Match) -> Text: return ESCAPE_DCT[match.group(GROUP_COMPLETE_MATCH)] return ESCAPE.sub(replace, s)
Return an encoded python string.
rasa/shared/nlu/training_data/util.py
encode_string
pranavdurai10/rasa
0
python
def encode_string(s: Text) -> Text: def replace(match: Match) -> Text: return ESCAPE_DCT[match.group(GROUP_COMPLETE_MATCH)] return ESCAPE.sub(replace, s)
def encode_string(s: Text) -> Text: def replace(match: Match) -> Text: return ESCAPE_DCT[match.group(GROUP_COMPLETE_MATCH)] return ESCAPE.sub(replace, s)<|docstring|>Return an encoded python string.<|endoftext|>
f2ff3bf5ab14fc7dc0e5846ff1b4fb76a837cfabfc4b0c049aa7e1743b62af9d
def decode_string(s: Text) -> Text: 'Return a decoded python string.' def replace(match: Match) -> Text: return UNESCAPE_DCT[match.group(GROUP_COMPLETE_MATCH)] return UNESCAPE.sub(replace, s)
Return a decoded python string.
rasa/shared/nlu/training_data/util.py
decode_string
pranavdurai10/rasa
0
python
def decode_string(s: Text) -> Text: def replace(match: Match) -> Text: return UNESCAPE_DCT[match.group(GROUP_COMPLETE_MATCH)] return UNESCAPE.sub(replace, s)
def decode_string(s: Text) -> Text: def replace(match: Match) -> Text: return UNESCAPE_DCT[match.group(GROUP_COMPLETE_MATCH)] return UNESCAPE.sub(replace, s)<|docstring|>Return a decoded python string.<|endoftext|>
4a30e974a370ef57fd2395a29b2e50c05f9b35b4d2564a37ad014fc56da4f6ed
def build_entity(start: int, end: int, value: Text, entity_type: Text, role: Optional[Text]=None, group: Optional[Text]=None, **kwargs: Any) -> Dict[(Text, Any)]: 'Builds a standard entity dictionary.\n\n Adds additional keyword parameters.\n\n Args:\n start: start position of entity\n end: end position of entity\n value: text value of the entity\n entity_type: name of the entity type\n role: role of the entity\n group: group of the entity\n **kwargs: additional parameters\n\n Returns:\n an entity dictionary\n ' entity = {ENTITY_ATTRIBUTE_START: start, ENTITY_ATTRIBUTE_END: end, ENTITY_ATTRIBUTE_VALUE: value, ENTITY_ATTRIBUTE_TYPE: entity_type} if role: entity[ENTITY_ATTRIBUTE_ROLE] = role if group: entity[ENTITY_ATTRIBUTE_GROUP] = group entity.update(kwargs) return entity
Builds a standard entity dictionary. Adds additional keyword parameters. Args: start: start position of entity end: end position of entity value: text value of the entity entity_type: name of the entity type role: role of the entity group: group of the entity **kwargs: additional parameters Returns: an entity dictionary
rasa/shared/nlu/training_data/util.py
build_entity
pranavdurai10/rasa
0
python
def build_entity(start: int, end: int, value: Text, entity_type: Text, role: Optional[Text]=None, group: Optional[Text]=None, **kwargs: Any) -> Dict[(Text, Any)]: 'Builds a standard entity dictionary.\n\n Adds additional keyword parameters.\n\n Args:\n start: start position of entity\n end: end position of entity\n value: text value of the entity\n entity_type: name of the entity type\n role: role of the entity\n group: group of the entity\n **kwargs: additional parameters\n\n Returns:\n an entity dictionary\n ' entity = {ENTITY_ATTRIBUTE_START: start, ENTITY_ATTRIBUTE_END: end, ENTITY_ATTRIBUTE_VALUE: value, ENTITY_ATTRIBUTE_TYPE: entity_type} if role: entity[ENTITY_ATTRIBUTE_ROLE] = role if group: entity[ENTITY_ATTRIBUTE_GROUP] = group entity.update(kwargs) return entity
def build_entity(start: int, end: int, value: Text, entity_type: Text, role: Optional[Text]=None, group: Optional[Text]=None, **kwargs: Any) -> Dict[(Text, Any)]: 'Builds a standard entity dictionary.\n\n Adds additional keyword parameters.\n\n Args:\n start: start position of entity\n end: end position of entity\n value: text value of the entity\n entity_type: name of the entity type\n role: role of the entity\n group: group of the entity\n **kwargs: additional parameters\n\n Returns:\n an entity dictionary\n ' entity = {ENTITY_ATTRIBUTE_START: start, ENTITY_ATTRIBUTE_END: end, ENTITY_ATTRIBUTE_VALUE: value, ENTITY_ATTRIBUTE_TYPE: entity_type} if role: entity[ENTITY_ATTRIBUTE_ROLE] = role if group: entity[ENTITY_ATTRIBUTE_GROUP] = group entity.update(kwargs) return entity<|docstring|>Builds a standard entity dictionary. Adds additional keyword parameters. Args: start: start position of entity end: end position of entity value: text value of the entity entity_type: name of the entity type role: role of the entity group: group of the entity **kwargs: additional parameters Returns: an entity dictionary<|endoftext|>
2c8d45b6f9054f524c6ad6b619623e0e0f38a982a373a3584c5ba682464974be
def load_dict(path): 'Load JSON files at given path into a dictionary.\n\n Dynamically load all the json files at the root of this module into a\n dictionary attribute "schema".\n\n The Key is the name of the json file (without extension)\n The Value is the json object\n\n E.g.::\n\n from core_schemas import core2\n user_schema = core2.schema["user"]\n ' def load(_path): try: with open(_path) as f: module_name = os.path.splitext(os.path.basename(_path))[0] scim_logger.debug('Loading {module_name:s} by {__module__:s}.{__name__:s}'.format(module_name=module_name, __module__=Model.load.__module__, __name__=Model.load.__name__)) return Model.load(f) except JSONDecodeError as jde: assert (jde is None), 'Failed to load example: {} from {}'.format(_path, __package__) return {schema.id: schema for schema in (load(path) for path in glob.glob(os.path.join(path, '*.json')))}
Load JSON files at given path into a dictionary. Dynamically load all the json files at the root of this module into a dictionary attribute "schema". The Key is the name of the json file (without extension) The Value is the json object E.g.:: from core_schemas import core2 user_schema = core2.schema["user"]
src/scimschema/core_schemas/__init__.py
load_dict
datakurre/scimschema
1
python
def load_dict(path): 'Load JSON files at given path into a dictionary.\n\n Dynamically load all the json files at the root of this module into a\n dictionary attribute "schema".\n\n The Key is the name of the json file (without extension)\n The Value is the json object\n\n E.g.::\n\n from core_schemas import core2\n user_schema = core2.schema["user"]\n ' def load(_path): try: with open(_path) as f: module_name = os.path.splitext(os.path.basename(_path))[0] scim_logger.debug('Loading {module_name:s} by {__module__:s}.{__name__:s}'.format(module_name=module_name, __module__=Model.load.__module__, __name__=Model.load.__name__)) return Model.load(f) except JSONDecodeError as jde: assert (jde is None), 'Failed to load example: {} from {}'.format(_path, __package__) return {schema.id: schema for schema in (load(path) for path in glob.glob(os.path.join(path, '*.json')))}
def load_dict(path): 'Load JSON files at given path into a dictionary.\n\n Dynamically load all the json files at the root of this module into a\n dictionary attribute "schema".\n\n The Key is the name of the json file (without extension)\n The Value is the json object\n\n E.g.::\n\n from core_schemas import core2\n user_schema = core2.schema["user"]\n ' def load(_path): try: with open(_path) as f: module_name = os.path.splitext(os.path.basename(_path))[0] scim_logger.debug('Loading {module_name:s} by {__module__:s}.{__name__:s}'.format(module_name=module_name, __module__=Model.load.__module__, __name__=Model.load.__name__)) return Model.load(f) except JSONDecodeError as jde: assert (jde is None), 'Failed to load example: {} from {}'.format(_path, __package__) return {schema.id: schema for schema in (load(path) for path in glob.glob(os.path.join(path, '*.json')))}<|docstring|>Load JSON files at given path into a dictionary. Dynamically load all the json files at the root of this module into a dictionary attribute "schema". The Key is the name of the json file (without extension) The Value is the json object E.g.:: from core_schemas import core2 user_schema = core2.schema["user"]<|endoftext|>
b67b9400af5a1e93b7cd1df7ca184b29193645fb38114540da2c8639203d83a2
def __init__(self, original_error: Exception) -> None: 'Initialize an UnexpectedProtocolError with an original error.' super().__init__(str(original_error)) self.original_error: Exception = original_error
Initialize an UnexpectedProtocolError with an original error.
api/src/opentrons/protocol_engine/errors/exceptions.py
__init__
Opentrons/labware
2
python
def __init__(self, original_error: Exception) -> None: super().__init__(str(original_error)) self.original_error: Exception = original_error
def __init__(self, original_error: Exception) -> None: super().__init__(str(original_error)) self.original_error: Exception = original_error<|docstring|>Initialize an UnexpectedProtocolError with an original error.<|endoftext|>
29b2aac840252c160436c97fd724135da9011a4d44ff8dcf0c0c12eedef37757
def closed(self, reason: str) -> None: 'Close the writer when the spider closes.\n\n This function is called automatically by Scrapy upon closing the spider.\n ' self.writer.close()
Close the writer when the spider closes. This function is called automatically by Scrapy upon closing the spider.
clicha_scrapy/clicha_scrapy/spiders/un.py
closed
aksh-n/CliChA
0
python
def closed(self, reason: str) -> None: 'Close the writer when the spider closes.\n\n This function is called automatically by Scrapy upon closing the spider.\n ' self.writer.close()
def closed(self, reason: str) -> None: 'Close the writer when the spider closes.\n\n This function is called automatically by Scrapy upon closing the spider.\n ' self.writer.close()<|docstring|>Close the writer when the spider closes. This function is called automatically by Scrapy upon closing the spider.<|endoftext|>
0ca2b56752c8d54a719e5bd3ad46b5794ef793972d33b007876de42f0987ab7c
def start_requests(self) -> Iterator[Request]: 'Initiate the scraping process by yielding requests to each page containing\n links to articles to be crawled.\n\n This function is called automatically by Scrapy when scraping starts.\n ' base_url = 'https://news.un.org/en/news/topic/climate-change' for page_num in range(1, 52): (yield Request(((base_url + '?page=') + str(page_num)), callback=self.parse))
Initiate the scraping process by yielding requests to each page containing links to articles to be crawled. This function is called automatically by Scrapy when scraping starts.
clicha_scrapy/clicha_scrapy/spiders/un.py
start_requests
aksh-n/CliChA
0
python
def start_requests(self) -> Iterator[Request]: 'Initiate the scraping process by yielding requests to each page containing\n links to articles to be crawled.\n\n This function is called automatically by Scrapy when scraping starts.\n ' base_url = 'https://news.un.org/en/news/topic/climate-change' for page_num in range(1, 52): (yield Request(((base_url + '?page=') + str(page_num)), callback=self.parse))
def start_requests(self) -> Iterator[Request]: 'Initiate the scraping process by yielding requests to each page containing\n links to articles to be crawled.\n\n This function is called automatically by Scrapy when scraping starts.\n ' base_url = 'https://news.un.org/en/news/topic/climate-change' for page_num in range(1, 52): (yield Request(((base_url + '?page=') + str(page_num)), callback=self.parse))<|docstring|>Initiate the scraping process by yielding requests to each page containing links to articles to be crawled. This function is called automatically by Scrapy when scraping starts.<|endoftext|>
a2a5cfec6aab25e2b2c99153ce86930434e528f59b33ec4a8612fa6e8a808383
def parse(self, response: TextResponse) -> Iterator[Request]: 'Parse each catalog page and extract article links.' for each in response.xpath('//div[@class="view-content"]//h1/a/@href').getall(): (yield response.follow(each, callback=self.parse_article))
Parse each catalog page and extract article links.
clicha_scrapy/clicha_scrapy/spiders/un.py
parse
aksh-n/CliChA
0
python
def parse(self, response: TextResponse) -> Iterator[Request]: for each in response.xpath('//div[@class="view-content"]//h1/a/@href').getall(): (yield response.follow(each, callback=self.parse_article))
def parse(self, response: TextResponse) -> Iterator[Request]: for each in response.xpath('//div[@class="view-content"]//h1/a/@href').getall(): (yield response.follow(each, callback=self.parse_article))<|docstring|>Parse each catalog page and extract article links.<|endoftext|>
1c34cc1de1aa7246ee669d669c834a6ca8a6a7b4e45197c5de3b60a1d0fc0b99
def parse_article(self, response: TextResponse) -> None: 'Parse each article to extract its content.' title = response.xpath('//h1/text()').get().strip() body_path = '(//div[@class="content"]//p | //div[@class="content"]//h3)/text()' body = str.join(' ', (each.strip() for each in response.xpath(body_path).getall())) if ((not body) or body.isspace()): return self.writer.append_article(((title + '\n') + body))
Parse each article to extract its content.
clicha_scrapy/clicha_scrapy/spiders/un.py
parse_article
aksh-n/CliChA
0
python
def parse_article(self, response: TextResponse) -> None: title = response.xpath('//h1/text()').get().strip() body_path = '(//div[@class="content"]//p | //div[@class="content"]//h3)/text()' body = str.join(' ', (each.strip() for each in response.xpath(body_path).getall())) if ((not body) or body.isspace()): return self.writer.append_article(((title + '\n') + body))
def parse_article(self, response: TextResponse) -> None: title = response.xpath('//h1/text()').get().strip() body_path = '(//div[@class="content"]//p | //div[@class="content"]//h3)/text()' body = str.join(' ', (each.strip() for each in response.xpath(body_path).getall())) if ((not body) or body.isspace()): return self.writer.append_article(((title + '\n') + body))<|docstring|>Parse each article to extract its content.<|endoftext|>
5b9cca462f8466b14ee320c123d1ff452fbbe62fd6abd165d2654aa5da857ae0
def get_key_for_purpose_and_type(self, purpose, key_type): '\n Gets a list of keys that match the purpose and key_type, and returns the first key in that list\n Note, if there are many keys that match the criteria, the one you get back will be random from that list\n :returns: A key object that matches the criteria\n ' key = [key for key in self.keys.values() if ((key.purpose == purpose) and (key.key_type == key_type))] try: return key[0] except IndexError: return None
Gets a list of keys that match the purpose and key_type, and returns the first key in that list Note, if there are many keys that match the criteria, the one you get back will be random from that list :returns: A key object that matches the criteria
sdc/crypto/key_store.py
get_key_for_purpose_and_type
uk-gov-mirror/ONSdigital.sdc-cryptography
3
python
def get_key_for_purpose_and_type(self, purpose, key_type): '\n Gets a list of keys that match the purpose and key_type, and returns the first key in that list\n Note, if there are many keys that match the criteria, the one you get back will be random from that list\n :returns: A key object that matches the criteria\n ' key = [key for key in self.keys.values() if ((key.purpose == purpose) and (key.key_type == key_type))] try: return key[0] except IndexError: return None
def get_key_for_purpose_and_type(self, purpose, key_type): '\n Gets a list of keys that match the purpose and key_type, and returns the first key in that list\n Note, if there are many keys that match the criteria, the one you get back will be random from that list\n :returns: A key object that matches the criteria\n ' key = [key for key in self.keys.values() if ((key.purpose == purpose) and (key.key_type == key_type))] try: return key[0] except IndexError: return None<|docstring|>Gets a list of keys that match the purpose and key_type, and returns the first key in that list Note, if there are many keys that match the criteria, the one you get back will be random from that list :returns: A key object that matches the criteria<|endoftext|>
bcb697ea11fcaefab78031c02a3e616c70cbc42288a268a149fb3e537b2bee9e
def load_annotations(self): 'Load annoations for REDS dataset.\n\n Returns:\n dict: Returned dict for LQ and GT pairs.\n ' with open(self.ann_file, 'r') as fin: keys = [v.strip().split('.')[0] for v in fin] if (self.val_partition == 'REDS4'): val_partition = [f'{v:03d}' for v in range(180, 184)] elif (self.val_partition == 'official'): val_partition = [f'{v:03d}' for v in range(180, 200)] elif (self.val_partition == 'test'): val_partition = [f'{v:03d}' for v in range(1, 11)] elif (self.val_partition == 'test_extra_3'): val_partition = [f'{v:03d}' for v in range(1, 8)] elif (self.val_partition == 'test_extra_1'): val_partition = [f'{v:03d}' for v in range(1, 5)] elif (self.val_partition == 'test_extra'): val_partition = [f'{v:03d}' for v in range(1, 18)] elif (self.val_partition == 'val_1'): val_partition = ['000'] elif (self.val_partition == 'test_1'): val_partition = ['002'] elif (self.val_partition == 'train_1'): val_partition = ['001'] elif (self.val_partition == 'train_s'): val_partition = [f'{v:03d}' for v in range(1, 6)] elif (self.val_partition == 'test_s'): val_partition = [f'{v:03d}' for v in range(180, 184)] elif (self.val_partition == 'train'): val_partition = [f'{v:03d}' for v in range(1, 201)] elif (self.val_partition == 'finetune'): val_partition = [f'{v:03d}' for v in [35, 36, 60, 55, 19, 20, 27, 45, 1, 5, 117, 56]] else: raise ValueError(f'Wrong validation partition {self.val_partition}.Supported ones are ["official", "REDS4"]') if self.test_mode: keys = [v for v in keys if (v.split('/')[0] in val_partition)] else: keys = [v for v in keys if (v.split('/')[0] not in val_partition)] data_infos = [] for key in keys: data_infos.append(dict(lq_path=self.lq_folder, gt_path=self.gt_folder, key=key, max_frame_num=100, num_input_frames=self.num_input_frames)) return data_infos
Load annoations for REDS dataset. Returns: dict: Returned dict for LQ and GT pairs.
mmedit/datasets/sr_reds_dataset.py
load_annotations
chaowentao/ntire2021_compress
0
python
def load_annotations(self): 'Load annoations for REDS dataset.\n\n Returns:\n dict: Returned dict for LQ and GT pairs.\n ' with open(self.ann_file, 'r') as fin: keys = [v.strip().split('.')[0] for v in fin] if (self.val_partition == 'REDS4'): val_partition = [f'{v:03d}' for v in range(180, 184)] elif (self.val_partition == 'official'): val_partition = [f'{v:03d}' for v in range(180, 200)] elif (self.val_partition == 'test'): val_partition = [f'{v:03d}' for v in range(1, 11)] elif (self.val_partition == 'test_extra_3'): val_partition = [f'{v:03d}' for v in range(1, 8)] elif (self.val_partition == 'test_extra_1'): val_partition = [f'{v:03d}' for v in range(1, 5)] elif (self.val_partition == 'test_extra'): val_partition = [f'{v:03d}' for v in range(1, 18)] elif (self.val_partition == 'val_1'): val_partition = ['000'] elif (self.val_partition == 'test_1'): val_partition = ['002'] elif (self.val_partition == 'train_1'): val_partition = ['001'] elif (self.val_partition == 'train_s'): val_partition = [f'{v:03d}' for v in range(1, 6)] elif (self.val_partition == 'test_s'): val_partition = [f'{v:03d}' for v in range(180, 184)] elif (self.val_partition == 'train'): val_partition = [f'{v:03d}' for v in range(1, 201)] elif (self.val_partition == 'finetune'): val_partition = [f'{v:03d}' for v in [35, 36, 60, 55, 19, 20, 27, 45, 1, 5, 117, 56]] else: raise ValueError(f'Wrong validation partition {self.val_partition}.Supported ones are ["official", "REDS4"]') if self.test_mode: keys = [v for v in keys if (v.split('/')[0] in val_partition)] else: keys = [v for v in keys if (v.split('/')[0] not in val_partition)] data_infos = [] for key in keys: data_infos.append(dict(lq_path=self.lq_folder, gt_path=self.gt_folder, key=key, max_frame_num=100, num_input_frames=self.num_input_frames)) return data_infos
def load_annotations(self): 'Load annoations for REDS dataset.\n\n Returns:\n dict: Returned dict for LQ and GT pairs.\n ' with open(self.ann_file, 'r') as fin: keys = [v.strip().split('.')[0] for v in fin] if (self.val_partition == 'REDS4'): val_partition = [f'{v:03d}' for v in range(180, 184)] elif (self.val_partition == 'official'): val_partition = [f'{v:03d}' for v in range(180, 200)] elif (self.val_partition == 'test'): val_partition = [f'{v:03d}' for v in range(1, 11)] elif (self.val_partition == 'test_extra_3'): val_partition = [f'{v:03d}' for v in range(1, 8)] elif (self.val_partition == 'test_extra_1'): val_partition = [f'{v:03d}' for v in range(1, 5)] elif (self.val_partition == 'test_extra'): val_partition = [f'{v:03d}' for v in range(1, 18)] elif (self.val_partition == 'val_1'): val_partition = ['000'] elif (self.val_partition == 'test_1'): val_partition = ['002'] elif (self.val_partition == 'train_1'): val_partition = ['001'] elif (self.val_partition == 'train_s'): val_partition = [f'{v:03d}' for v in range(1, 6)] elif (self.val_partition == 'test_s'): val_partition = [f'{v:03d}' for v in range(180, 184)] elif (self.val_partition == 'train'): val_partition = [f'{v:03d}' for v in range(1, 201)] elif (self.val_partition == 'finetune'): val_partition = [f'{v:03d}' for v in [35, 36, 60, 55, 19, 20, 27, 45, 1, 5, 117, 56]] else: raise ValueError(f'Wrong validation partition {self.val_partition}.Supported ones are ["official", "REDS4"]') if self.test_mode: keys = [v for v in keys if (v.split('/')[0] in val_partition)] else: keys = [v for v in keys if (v.split('/')[0] not in val_partition)] data_infos = [] for key in keys: data_infos.append(dict(lq_path=self.lq_folder, gt_path=self.gt_folder, key=key, max_frame_num=100, num_input_frames=self.num_input_frames)) return data_infos<|docstring|>Load annoations for REDS dataset. Returns: dict: Returned dict for LQ and GT pairs.<|endoftext|>
eab7e89f2fe930c252e9307491f0ec2151c09527a93d9f6ec70b92f42f2ffad3
def precision_recall(prediction, actual, include_f1=False, mode='total'): "Calculate the precision and recall for a prediction on a dataset.\n\n Optionally calculate the f1 score as well.\n\n Args:\n prediction: A binary matrix representing the predictions on the\n dataset.\n actual: A binary matrix representing the actual true positives\n of the dataset.\n include_f1: Whether or not to include f1 in the return values.\n mode: One of 'total' or 'class'.\n In 'total' mode, the entire set is considered.\n In 'class' mode, the precision and recall is calculated\n for each class individually.\n Returns:\n A tuple containing (precision, recall).\n If include_f1 is True, the tuple contains (precision, recall, f1).\n " if (mode == 'total'): axis = None elif (mode == 'class'): axis = 0 else: raise ValueError('The mode has to be either "total" or "class"') truepos = np.logical_and(prediction, actual) false = np.subtract(actual, prediction) falsepos = (false < 0) falseneg = (false > 0) truepos = np.sum(truepos, axis=axis) falsepos = np.sum(falsepos, axis=axis) falseneg = np.sum(falseneg, axis=axis) with np.errstate(divide='ignore', invalid='ignore'): precision = (truepos / (truepos + falsepos)) recall = (truepos / (truepos + falseneg)) if (not np.isscalar(precision)): precision[(~ np.isfinite(precision))] = 0 recall[(~ np.isfinite(recall))] = 0 if include_f1: f1_score = ((2 * (precision * recall)) / (precision + recall)) if include_f1: return (precision, recall, f1_score) return (precision, recall)
Calculate the precision and recall for a prediction on a dataset. Optionally calculate the f1 score as well. Args: prediction: A binary matrix representing the predictions on the dataset. actual: A binary matrix representing the actual true positives of the dataset. include_f1: Whether or not to include f1 in the return values. mode: One of 'total' or 'class'. In 'total' mode, the entire set is considered. In 'class' mode, the precision and recall is calculated for each class individually. Returns: A tuple containing (precision, recall). If include_f1 is True, the tuple contains (precision, recall, f1).
testchallenge/scoring.py
precision_recall
CellProfiling/test-challenge
0
python
def precision_recall(prediction, actual, include_f1=False, mode='total'): "Calculate the precision and recall for a prediction on a dataset.\n\n Optionally calculate the f1 score as well.\n\n Args:\n prediction: A binary matrix representing the predictions on the\n dataset.\n actual: A binary matrix representing the actual true positives\n of the dataset.\n include_f1: Whether or not to include f1 in the return values.\n mode: One of 'total' or 'class'.\n In 'total' mode, the entire set is considered.\n In 'class' mode, the precision and recall is calculated\n for each class individually.\n Returns:\n A tuple containing (precision, recall).\n If include_f1 is True, the tuple contains (precision, recall, f1).\n " if (mode == 'total'): axis = None elif (mode == 'class'): axis = 0 else: raise ValueError('The mode has to be either "total" or "class"') truepos = np.logical_and(prediction, actual) false = np.subtract(actual, prediction) falsepos = (false < 0) falseneg = (false > 0) truepos = np.sum(truepos, axis=axis) falsepos = np.sum(falsepos, axis=axis) falseneg = np.sum(falseneg, axis=axis) with np.errstate(divide='ignore', invalid='ignore'): precision = (truepos / (truepos + falsepos)) recall = (truepos / (truepos + falseneg)) if (not np.isscalar(precision)): precision[(~ np.isfinite(precision))] = 0 recall[(~ np.isfinite(recall))] = 0 if include_f1: f1_score = ((2 * (precision * recall)) / (precision + recall)) if include_f1: return (precision, recall, f1_score) return (precision, recall)
def precision_recall(prediction, actual, include_f1=False, mode='total'): "Calculate the precision and recall for a prediction on a dataset.\n\n Optionally calculate the f1 score as well.\n\n Args:\n prediction: A binary matrix representing the predictions on the\n dataset.\n actual: A binary matrix representing the actual true positives\n of the dataset.\n include_f1: Whether or not to include f1 in the return values.\n mode: One of 'total' or 'class'.\n In 'total' mode, the entire set is considered.\n In 'class' mode, the precision and recall is calculated\n for each class individually.\n Returns:\n A tuple containing (precision, recall).\n If include_f1 is True, the tuple contains (precision, recall, f1).\n " if (mode == 'total'): axis = None elif (mode == 'class'): axis = 0 else: raise ValueError('The mode has to be either "total" or "class"') truepos = np.logical_and(prediction, actual) false = np.subtract(actual, prediction) falsepos = (false < 0) falseneg = (false > 0) truepos = np.sum(truepos, axis=axis) falsepos = np.sum(falsepos, axis=axis) falseneg = np.sum(falseneg, axis=axis) with np.errstate(divide='ignore', invalid='ignore'): precision = (truepos / (truepos + falsepos)) recall = (truepos / (truepos + falseneg)) if (not np.isscalar(precision)): precision[(~ np.isfinite(precision))] = 0 recall[(~ np.isfinite(recall))] = 0 if include_f1: f1_score = ((2 * (precision * recall)) / (precision + recall)) if include_f1: return (precision, recall, f1_score) return (precision, recall)<|docstring|>Calculate the precision and recall for a prediction on a dataset. Optionally calculate the f1 score as well. Args: prediction: A binary matrix representing the predictions on the dataset. actual: A binary matrix representing the actual true positives of the dataset. include_f1: Whether or not to include f1 in the return values. mode: One of 'total' or 'class'. In 'total' mode, the entire set is considered. In 'class' mode, the precision and recall is calculated for each class individually. Returns: A tuple containing (precision, recall). If include_f1 is True, the tuple contains (precision, recall, f1).<|endoftext|>
64a3f3e84bc6ee4fd6f4922d4e66bc36c7917fc994ae584e74cf2b909cbb875b
def jaccard_index(y_true, y_predict): 'Calculate the Jaccard index of the predictions on the true values.\n\n Also known as Jaccard similarity, Hamming score, or multi-label accuracy.\n\n Defined as:\n Let y_true=T, and y_predict=S.\n The Jaccard index is calculated as\n |intersection(T,S)|/|union(T,S)|\n\n Args:\n y_true: A list of binary vectors.\n The list should consist of the target vectors.\n\n y_predict: A list of binary vectors.\n The list should consist of the prediction vectors.\n Returns:\n The Jaccard index (jaccard similarity) of the predictions\n on the true labels.\n ' numerator = 0 denominator = 0 for (true_item, pred_item) in zip(y_true, y_predict): if (len(true_item) != len(pred_item)): raise ValueError('Array lengths do not agree') true = set(np.where(true_item)[0]) pred = set(np.where(pred_item)[0]) intersection = true.intersection(pred) union = true.union(pred) numerator += len(intersection) denominator += len(union) return (numerator / denominator)
Calculate the Jaccard index of the predictions on the true values. Also known as Jaccard similarity, Hamming score, or multi-label accuracy. Defined as: Let y_true=T, and y_predict=S. The Jaccard index is calculated as |intersection(T,S)|/|union(T,S)| Args: y_true: A list of binary vectors. The list should consist of the target vectors. y_predict: A list of binary vectors. The list should consist of the prediction vectors. Returns: The Jaccard index (jaccard similarity) of the predictions on the true labels.
testchallenge/scoring.py
jaccard_index
CellProfiling/test-challenge
0
python
def jaccard_index(y_true, y_predict): 'Calculate the Jaccard index of the predictions on the true values.\n\n Also known as Jaccard similarity, Hamming score, or multi-label accuracy.\n\n Defined as:\n Let y_true=T, and y_predict=S.\n The Jaccard index is calculated as\n |intersection(T,S)|/|union(T,S)|\n\n Args:\n y_true: A list of binary vectors.\n The list should consist of the target vectors.\n\n y_predict: A list of binary vectors.\n The list should consist of the prediction vectors.\n Returns:\n The Jaccard index (jaccard similarity) of the predictions\n on the true labels.\n ' numerator = 0 denominator = 0 for (true_item, pred_item) in zip(y_true, y_predict): if (len(true_item) != len(pred_item)): raise ValueError('Array lengths do not agree') true = set(np.where(true_item)[0]) pred = set(np.where(pred_item)[0]) intersection = true.intersection(pred) union = true.union(pred) numerator += len(intersection) denominator += len(union) return (numerator / denominator)
def jaccard_index(y_true, y_predict): 'Calculate the Jaccard index of the predictions on the true values.\n\n Also known as Jaccard similarity, Hamming score, or multi-label accuracy.\n\n Defined as:\n Let y_true=T, and y_predict=S.\n The Jaccard index is calculated as\n |intersection(T,S)|/|union(T,S)|\n\n Args:\n y_true: A list of binary vectors.\n The list should consist of the target vectors.\n\n y_predict: A list of binary vectors.\n The list should consist of the prediction vectors.\n Returns:\n The Jaccard index (jaccard similarity) of the predictions\n on the true labels.\n ' numerator = 0 denominator = 0 for (true_item, pred_item) in zip(y_true, y_predict): if (len(true_item) != len(pred_item)): raise ValueError('Array lengths do not agree') true = set(np.where(true_item)[0]) pred = set(np.where(pred_item)[0]) intersection = true.intersection(pred) union = true.union(pred) numerator += len(intersection) denominator += len(union) return (numerator / denominator)<|docstring|>Calculate the Jaccard index of the predictions on the true values. Also known as Jaccard similarity, Hamming score, or multi-label accuracy. Defined as: Let y_true=T, and y_predict=S. The Jaccard index is calculated as |intersection(T,S)|/|union(T,S)| Args: y_true: A list of binary vectors. The list should consist of the target vectors. y_predict: A list of binary vectors. The list should consist of the prediction vectors. Returns: The Jaccard index (jaccard similarity) of the predictions on the true labels.<|endoftext|>
fe2335db708dda3fdbac5115110bd83d43308be67baaf3c9f45c998babb36bf7
def parse_solution_file(solution_file): 'Parse a solution file.' ids = [] classes = [] with open(solution_file) as file_handle: solution_reader = csv.reader(file_handle) header = next(solution_reader, None) if (header != HEADER): raise ValueError('Incorrect header found: {}, should be: {}'.format(header, HEADER)) solution = sorted(list(solution_reader), key=(lambda x: x[0])) for row in solution: if (len(row) < 2): raise ValueError('Bad row length: {}, should be at least {} for row {}'.format(len(row), len(HEADER), row)) row_classes = row[1:] if any(((class_ not in POSSIBLE_CLASSES) for class_ in row_classes)): raise ValueError('Unknown class found among: {}'.format(row_classes)) ids.append(row[0]) classes.append(row_classes) return (ids, classes)
Parse a solution file.
testchallenge/scoring.py
parse_solution_file
CellProfiling/test-challenge
0
python
def parse_solution_file(solution_file): ids = [] classes = [] with open(solution_file) as file_handle: solution_reader = csv.reader(file_handle) header = next(solution_reader, None) if (header != HEADER): raise ValueError('Incorrect header found: {}, should be: {}'.format(header, HEADER)) solution = sorted(list(solution_reader), key=(lambda x: x[0])) for row in solution: if (len(row) < 2): raise ValueError('Bad row length: {}, should be at least {} for row {}'.format(len(row), len(HEADER), row)) row_classes = row[1:] if any(((class_ not in POSSIBLE_CLASSES) for class_ in row_classes)): raise ValueError('Unknown class found among: {}'.format(row_classes)) ids.append(row[0]) classes.append(row_classes) return (ids, classes)
def parse_solution_file(solution_file): ids = [] classes = [] with open(solution_file) as file_handle: solution_reader = csv.reader(file_handle) header = next(solution_reader, None) if (header != HEADER): raise ValueError('Incorrect header found: {}, should be: {}'.format(header, HEADER)) solution = sorted(list(solution_reader), key=(lambda x: x[0])) for row in solution: if (len(row) < 2): raise ValueError('Bad row length: {}, should be at least {} for row {}'.format(len(row), len(HEADER), row)) row_classes = row[1:] if any(((class_ not in POSSIBLE_CLASSES) for class_ in row_classes)): raise ValueError('Unknown class found among: {}'.format(row_classes)) ids.append(row[0]) classes.append(row_classes) return (ids, classes)<|docstring|>Parse a solution file.<|endoftext|>
67bf8a6dde05017567521ea3b7f881ac5308c0fcad5f7bfb572f77a9712433f6
def score(): 'Run script.' parser = argparse.ArgumentParser(description='Scores precision, recall, and f1 score for a simple classification challenge.\r\nBoth solution files and prediction files should follow the general format of:\n\nfilename,cell_line\nID1,ANSWER1\nID2,ANSWER2\n...\n\nNote that it is required that all IDs are present in both files.', formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('solution', help='The gold standard solutions') parser.add_argument('predictions', help='Predictions from the challenger') parser.add_argument('-O', '--output-file', type=str, default=None, help='Saves output to the specified file in csv format.\nDefault behaviour is to print to stdout using spaces as separator characters') args = parser.parse_args() binarizer = Binarizer(POSSIBLE_CLASSES) (solution_ids, solution_classes) = parse_solution_file(args.solution) bin_solution = binarizer(solution_classes) (prediction_ids, prediction_classes) = parse_solution_file(args.predictions) if (solution_ids != prediction_ids): print('The IDs in the two files are unordered or non-equal.') print('IDs only in solution:', (set(solution_ids) - set(prediction_ids))) print('IDs only in prediction:', (set(prediction_ids) - set(solution_ids))) sys.exit((- 1)) bin_prediction = binarizer(prediction_classes) overall_result = precision_recall(bin_prediction, bin_solution, True) result = precision_recall(bin_prediction, bin_solution, True, 'class') output_file = args.output_file if output_file: json_result = {'data': list(overall_result), 'additionalData': [[result[0][idx], result[1][idx], result[2][idx]] for (idx, _) in enumerate(binarizer.classes)]} with open(args.output_file, 'w') as json_file: simplejson.dump(json_result, json_file, ignore_nan=True, indent=2) print(simplejson.dumps(json_result, ignore_nan=True, indent=2)) else: print('class', 'pre', 'rec', 'f1') for (i, class_) in enumerate(binarizer.classes): print(class_, result[0][i], result[1][i], result[2][i]) print('Overall', overall_result[0], overall_result[1], overall_result[2])
Run script.
testchallenge/scoring.py
score
CellProfiling/test-challenge
0
python
def score(): parser = argparse.ArgumentParser(description='Scores precision, recall, and f1 score for a simple classification challenge.\r\nBoth solution files and prediction files should follow the general format of:\n\nfilename,cell_line\nID1,ANSWER1\nID2,ANSWER2\n...\n\nNote that it is required that all IDs are present in both files.', formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('solution', help='The gold standard solutions') parser.add_argument('predictions', help='Predictions from the challenger') parser.add_argument('-O', '--output-file', type=str, default=None, help='Saves output to the specified file in csv format.\nDefault behaviour is to print to stdout using spaces as separator characters') args = parser.parse_args() binarizer = Binarizer(POSSIBLE_CLASSES) (solution_ids, solution_classes) = parse_solution_file(args.solution) bin_solution = binarizer(solution_classes) (prediction_ids, prediction_classes) = parse_solution_file(args.predictions) if (solution_ids != prediction_ids): print('The IDs in the two files are unordered or non-equal.') print('IDs only in solution:', (set(solution_ids) - set(prediction_ids))) print('IDs only in prediction:', (set(prediction_ids) - set(solution_ids))) sys.exit((- 1)) bin_prediction = binarizer(prediction_classes) overall_result = precision_recall(bin_prediction, bin_solution, True) result = precision_recall(bin_prediction, bin_solution, True, 'class') output_file = args.output_file if output_file: json_result = {'data': list(overall_result), 'additionalData': [[result[0][idx], result[1][idx], result[2][idx]] for (idx, _) in enumerate(binarizer.classes)]} with open(args.output_file, 'w') as json_file: simplejson.dump(json_result, json_file, ignore_nan=True, indent=2) print(simplejson.dumps(json_result, ignore_nan=True, indent=2)) else: print('class', 'pre', 'rec', 'f1') for (i, class_) in enumerate(binarizer.classes): print(class_, result[0][i], result[1][i], result[2][i]) print('Overall', overall_result[0], overall_result[1], overall_result[2])
def score(): parser = argparse.ArgumentParser(description='Scores precision, recall, and f1 score for a simple classification challenge.\r\nBoth solution files and prediction files should follow the general format of:\n\nfilename,cell_line\nID1,ANSWER1\nID2,ANSWER2\n...\n\nNote that it is required that all IDs are present in both files.', formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('solution', help='The gold standard solutions') parser.add_argument('predictions', help='Predictions from the challenger') parser.add_argument('-O', '--output-file', type=str, default=None, help='Saves output to the specified file in csv format.\nDefault behaviour is to print to stdout using spaces as separator characters') args = parser.parse_args() binarizer = Binarizer(POSSIBLE_CLASSES) (solution_ids, solution_classes) = parse_solution_file(args.solution) bin_solution = binarizer(solution_classes) (prediction_ids, prediction_classes) = parse_solution_file(args.predictions) if (solution_ids != prediction_ids): print('The IDs in the two files are unordered or non-equal.') print('IDs only in solution:', (set(solution_ids) - set(prediction_ids))) print('IDs only in prediction:', (set(prediction_ids) - set(solution_ids))) sys.exit((- 1)) bin_prediction = binarizer(prediction_classes) overall_result = precision_recall(bin_prediction, bin_solution, True) result = precision_recall(bin_prediction, bin_solution, True, 'class') output_file = args.output_file if output_file: json_result = {'data': list(overall_result), 'additionalData': [[result[0][idx], result[1][idx], result[2][idx]] for (idx, _) in enumerate(binarizer.classes)]} with open(args.output_file, 'w') as json_file: simplejson.dump(json_result, json_file, ignore_nan=True, indent=2) print(simplejson.dumps(json_result, ignore_nan=True, indent=2)) else: print('class', 'pre', 'rec', 'f1') for (i, class_) in enumerate(binarizer.classes): print(class_, result[0][i], result[1][i], result[2][i]) print('Overall', overall_result[0], overall_result[1], overall_result[2])<|docstring|>Run script.<|endoftext|>
6664248d38ed8e05e11ec960e89d97ef79d1b5955255561ebc0012e37df48020
def __init__(self, classes): 'Args:\n classes: A list of the classes that can be binarized.\n ' self.classes = sorted(set(classes)) self._index = dict(zip(self.classes, range(len(self.classes)))) self._reverse_index = dict(zip(range(len(self.classes)), self.classes))
Args: classes: A list of the classes that can be binarized.
testchallenge/scoring.py
__init__
CellProfiling/test-challenge
0
python
def __init__(self, classes): 'Args:\n classes: A list of the classes that can be binarized.\n ' self.classes = sorted(set(classes)) self._index = dict(zip(self.classes, range(len(self.classes)))) self._reverse_index = dict(zip(range(len(self.classes)), self.classes))
def __init__(self, classes): 'Args:\n classes: A list of the classes that can be binarized.\n ' self.classes = sorted(set(classes)) self._index = dict(zip(self.classes, range(len(self.classes)))) self._reverse_index = dict(zip(range(len(self.classes)), self.classes))<|docstring|>Args: classes: A list of the classes that can be binarized.<|endoftext|>
d332685635e75501a41c098aebf650d634a31a93f39a5d6973b54bc38fe13f05
def bin_label(self, item): 'Binarize a single item.\n\n If the item is iterable and is not a string, the item will be\n binarized as a multi-label item.\n ' bin_ = ([0] * len(self.classes)) if (isinstance(item, collections.Iterable) and (not isinstance(item, str))): for class_ in item: bin_[self._index[class_]] = 1 else: bin_[self._index[item]] = 1 return bin_
Binarize a single item. If the item is iterable and is not a string, the item will be binarized as a multi-label item.
testchallenge/scoring.py
bin_label
CellProfiling/test-challenge
0
python
def bin_label(self, item): 'Binarize a single item.\n\n If the item is iterable and is not a string, the item will be\n binarized as a multi-label item.\n ' bin_ = ([0] * len(self.classes)) if (isinstance(item, collections.Iterable) and (not isinstance(item, str))): for class_ in item: bin_[self._index[class_]] = 1 else: bin_[self._index[item]] = 1 return bin_
def bin_label(self, item): 'Binarize a single item.\n\n If the item is iterable and is not a string, the item will be\n binarized as a multi-label item.\n ' bin_ = ([0] * len(self.classes)) if (isinstance(item, collections.Iterable) and (not isinstance(item, str))): for class_ in item: bin_[self._index[class_]] = 1 else: bin_[self._index[item]] = 1 return bin_<|docstring|>Binarize a single item. If the item is iterable and is not a string, the item will be binarized as a multi-label item.<|endoftext|>
f9d542eb16df9ba91bcb490d98ce6db5b1347f7d24f27562b6f5c6a8a5c8c637
def binarize(self, to_bin): 'Binarize a list of labels.\n\n Args:\n to_bin: A list of of labels to be binarized.\n Items in `to_bin` that are iterable (except strings)\n will be binarized as a multi-label item. All other items\n will be binarized as a single-label item.\n Returns:\n A list of binarized label lists.\n ' binarized = [] for item in to_bin: bin_ = self.bin_label(item) binarized.append(bin_) return binarized
Binarize a list of labels. Args: to_bin: A list of of labels to be binarized. Items in `to_bin` that are iterable (except strings) will be binarized as a multi-label item. All other items will be binarized as a single-label item. Returns: A list of binarized label lists.
testchallenge/scoring.py
binarize
CellProfiling/test-challenge
0
python
def binarize(self, to_bin): 'Binarize a list of labels.\n\n Args:\n to_bin: A list of of labels to be binarized.\n Items in `to_bin` that are iterable (except strings)\n will be binarized as a multi-label item. All other items\n will be binarized as a single-label item.\n Returns:\n A list of binarized label lists.\n ' binarized = [] for item in to_bin: bin_ = self.bin_label(item) binarized.append(bin_) return binarized
def binarize(self, to_bin): 'Binarize a list of labels.\n\n Args:\n to_bin: A list of of labels to be binarized.\n Items in `to_bin` that are iterable (except strings)\n will be binarized as a multi-label item. All other items\n will be binarized as a single-label item.\n Returns:\n A list of binarized label lists.\n ' binarized = [] for item in to_bin: bin_ = self.bin_label(item) binarized.append(bin_) return binarized<|docstring|>Binarize a list of labels. Args: to_bin: A list of of labels to be binarized. Items in `to_bin` that are iterable (except strings) will be binarized as a multi-label item. All other items will be binarized as a single-label item. Returns: A list of binarized label lists.<|endoftext|>
0e4a2dc7b979f5eebf45ed5051783bcba3a4d01c9ebef9b29fc6402c024666cd
def unbin_label(self, item): 'Unbinarize a single item.' unbin = [] for idx in item: if idx: unbin.append(self._reverse_index[idx]) return unbin
Unbinarize a single item.
testchallenge/scoring.py
unbin_label
CellProfiling/test-challenge
0
python
def unbin_label(self, item): unbin = [] for idx in item: if idx: unbin.append(self._reverse_index[idx]) return unbin
def unbin_label(self, item): unbin = [] for idx in item: if idx: unbin.append(self._reverse_index[idx]) return unbin<|docstring|>Unbinarize a single item.<|endoftext|>
66b9d12f43d17decd7cc7cb583000559486b17f2cd6d29064e3a922204ffdac7
def unbinarize(self, from_bin): 'Unbinarize a list of binarized labels.' unbinarized = [] for item in from_bin: unbinarized.append(self.unbin_label(item)) return unbinarized
Unbinarize a list of binarized labels.
testchallenge/scoring.py
unbinarize
CellProfiling/test-challenge
0
python
def unbinarize(self, from_bin): unbinarized = [] for item in from_bin: unbinarized.append(self.unbin_label(item)) return unbinarized
def unbinarize(self, from_bin): unbinarized = [] for item in from_bin: unbinarized.append(self.unbin_label(item)) return unbinarized<|docstring|>Unbinarize a list of binarized labels.<|endoftext|>
7de3ae014922140cd4bcff84e7f9b529ad644fe39bb81fc72deec79777a5a606
def grouper(n, iterable, fillvalue=None): "Group lists into lists of items.\n\n grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx" args = ([iter(iterable)] * n) return itertools.zip_longest(*args, fillvalue=fillvalue)
Group lists into lists of items. grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx
crprofile/crprofile.py
grouper
zodpixel/SML-Cogs
17
python
def grouper(n, iterable, fillvalue=None): "Group lists into lists of items.\n\n grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx" args = ([iter(iterable)] * n) return itertools.zip_longest(*args, fillvalue=fillvalue)
def grouper(n, iterable, fillvalue=None): "Group lists into lists of items.\n\n grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx" args = ([iter(iterable)] * n) return itertools.zip_longest(*args, fillvalue=fillvalue)<|docstring|>Group lists into lists of items. grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx<|endoftext|>
0b108e36ce627a8974345699153c3760d08da37a707cdb8f44a401431b5ffc60
def nested_dict(): 'Recursively nested defaultdict.' return defaultdict(nested_dict)
Recursively nested defaultdict.
crprofile/crprofile.py
nested_dict
zodpixel/SML-Cogs
17
python
def nested_dict(): return defaultdict(nested_dict)
def nested_dict(): return defaultdict(nested_dict)<|docstring|>Recursively nested defaultdict.<|endoftext|>
de3c19298e9479dde6a00fd0df213ba83cce37b1ec013af714e859e295de0b7d
def random_discord_color(): 'Return random color as an integer.' color = ''.join([choice('0123456789ABCDEF') for x in range(6)]) color = int(color, 16) return discord.Color(value=color)
Return random color as an integer.
crprofile/crprofile.py
random_discord_color
zodpixel/SML-Cogs
17
python
def random_discord_color(): color = .join([choice('0123456789ABCDEF') for x in range(6)]) color = int(color, 16) return discord.Color(value=color)
def random_discord_color(): color = .join([choice('0123456789ABCDEF') for x in range(6)]) color = int(color, 16) return discord.Color(value=color)<|docstring|>Return random color as an integer.<|endoftext|>