body_hash
stringlengths 64
64
| body
stringlengths 23
109k
| docstring
stringlengths 1
57k
| path
stringlengths 4
198
| name
stringlengths 1
115
| repository_name
stringlengths 7
111
| repository_stars
float64 0
191k
| lang
stringclasses 1
value | body_without_docstring
stringlengths 14
108k
| unified
stringlengths 45
133k
|
---|---|---|---|---|---|---|---|---|---|
17d739dbbe8728fb06c24aad2d1d32bee5060406583af13f2e3fa0b39ba7ecea
|
@crprofileset.command(name='verify_url', pass_context=True)
async def crprofileset_verify_url(self, ctx, url):
'Set player verification endpoint'
self.model.verify_url = url
(await self.bot.say('Verification URL updated.'))
(await self.bot.delete_message(ctx.message))
|
Set player verification endpoint
|
crprofile/crprofile.py
|
crprofileset_verify_url
|
zodpixel/SML-Cogs
| 17 |
python
|
@crprofileset.command(name='verify_url', pass_context=True)
async def crprofileset_verify_url(self, ctx, url):
self.model.verify_url = url
(await self.bot.say('Verification URL updated.'))
(await self.bot.delete_message(ctx.message))
|
@crprofileset.command(name='verify_url', pass_context=True)
async def crprofileset_verify_url(self, ctx, url):
self.model.verify_url = url
(await self.bot.say('Verification URL updated.'))
(await self.bot.delete_message(ctx.message))<|docstring|>Set player verification endpoint<|endoftext|>
|
c71772f86032381cc9d3d26b2ac1cdb4f3e50773979b05f7a23a0a2f6f3b3365
|
@crprofileset.command(name='auth', pass_context=True)
async def crprofileset_auth(self, ctx, token):
'Set auth header'
self.model.auth = token
(await self.bot.say('Auth updated.'))
(await self.bot.delete_message(ctx.message))
|
Set auth header
|
crprofile/crprofile.py
|
crprofileset_auth
|
zodpixel/SML-Cogs
| 17 |
python
|
@crprofileset.command(name='auth', pass_context=True)
async def crprofileset_auth(self, ctx, token):
self.model.auth = token
(await self.bot.say('Auth updated.'))
(await self.bot.delete_message(ctx.message))
|
@crprofileset.command(name='auth', pass_context=True)
async def crprofileset_auth(self, ctx, token):
self.model.auth = token
(await self.bot.say('Auth updated.'))
(await self.bot.delete_message(ctx.message))<|docstring|>Set auth header<|endoftext|>
|
a391ebc29b0aae59da9652089beec45936eeae7bdde6be1a3207d7c051e0aff9
|
@crprofileset.command(name='official_auth', pass_context=True)
async def crprofileset_official_auth(self, ctx, token):
'Set auth header'
self.model.official_auth = token
(await self.bot.say('Auth updated.'))
(await self.bot.delete_message(ctx.message))
|
Set auth header
|
crprofile/crprofile.py
|
crprofileset_official_auth
|
zodpixel/SML-Cogs
| 17 |
python
|
@crprofileset.command(name='official_auth', pass_context=True)
async def crprofileset_official_auth(self, ctx, token):
self.model.official_auth = token
(await self.bot.say('Auth updated.'))
(await self.bot.delete_message(ctx.message))
|
@crprofileset.command(name='official_auth', pass_context=True)
async def crprofileset_official_auth(self, ctx, token):
self.model.official_auth = token
(await self.bot.say('Auth updated.'))
(await self.bot.delete_message(ctx.message))<|docstring|>Set auth header<|endoftext|>
|
86971ccf05a0398bddc91461b2dcf40d61c4d6ca85f8625a7ca2a5535b8bdb9c
|
@crprofileset.command(name='initserver', pass_context=True)
async def crprofileset_initserver(self, ctx):
'Init CR Profile: server settings.'
server = ctx.message.server
self.model.init_server(server)
(await self.bot.say('Server settings initialized.'))
|
Init CR Profile: server settings.
|
crprofile/crprofile.py
|
crprofileset_initserver
|
zodpixel/SML-Cogs
| 17 |
python
|
@crprofileset.command(name='initserver', pass_context=True)
async def crprofileset_initserver(self, ctx):
server = ctx.message.server
self.model.init_server(server)
(await self.bot.say('Server settings initialized.'))
|
@crprofileset.command(name='initserver', pass_context=True)
async def crprofileset_initserver(self, ctx):
server = ctx.message.server
self.model.init_server(server)
(await self.bot.say('Server settings initialized.'))<|docstring|>Init CR Profile: server settings.<|endoftext|>
|
60f239d586f55da8508e28fca1af5bc704af1aab7a21600ce0710ee81554a0fe
|
@crprofileset.command(name='initplayers', pass_context=True)
async def crprofileset_initplayers(self, ctx):
'Init CR Profile: players settings.'
server = ctx.message.server
self.model.init_players(server)
(await self.bot.say('Clan settings initialized.'))
|
Init CR Profile: players settings.
|
crprofile/crprofile.py
|
crprofileset_initplayers
|
zodpixel/SML-Cogs
| 17 |
python
|
@crprofileset.command(name='initplayers', pass_context=True)
async def crprofileset_initplayers(self, ctx):
server = ctx.message.server
self.model.init_players(server)
(await self.bot.say('Clan settings initialized.'))
|
@crprofileset.command(name='initplayers', pass_context=True)
async def crprofileset_initplayers(self, ctx):
server = ctx.message.server
self.model.init_players(server)
(await self.bot.say('Clan settings initialized.'))<|docstring|>Init CR Profile: players settings.<|endoftext|>
|
c3e0f632d0ddfff7f762f5408acf5a908bd96660dd74ad501b3dafcf46931851
|
@crprofileset.command(name='badgeurl', pass_context=True)
async def crprofileset_badgeurl(self, ctx, url):
'badge URL base.\n\n Format:\n If path is hhttp://domain.com/path/LQQ\n Enter http://domain.com/path/\n '
self.model.badge_url = url
(await self.bot.say('Badge URL updated.'))
|
badge URL base.
Format:
If path is hhttp://domain.com/path/LQQ
Enter http://domain.com/path/
|
crprofile/crprofile.py
|
crprofileset_badgeurl
|
zodpixel/SML-Cogs
| 17 |
python
|
@crprofileset.command(name='badgeurl', pass_context=True)
async def crprofileset_badgeurl(self, ctx, url):
'badge URL base.\n\n Format:\n If path is hhttp://domain.com/path/LQQ\n Enter http://domain.com/path/\n '
self.model.badge_url = url
(await self.bot.say('Badge URL updated.'))
|
@crprofileset.command(name='badgeurl', pass_context=True)
async def crprofileset_badgeurl(self, ctx, url):
'badge URL base.\n\n Format:\n If path is hhttp://domain.com/path/LQQ\n Enter http://domain.com/path/\n '
self.model.badge_url = url
(await self.bot.say('Badge URL updated.'))<|docstring|>badge URL base.
Format:
If path is hhttp://domain.com/path/LQQ
Enter http://domain.com/path/<|endoftext|>
|
4b98e76512518c1b3057c3edeeb546477fd5231793e6e73cc03e752fe07fc650
|
@crprofileset.command(name='apitoken', pass_context=True)
async def crprofileset_apiauth(self, ctx, token):
'API Authentication token.'
self.model.profile_api_token = token
(await self.bot.say('API token saved.'))
|
API Authentication token.
|
crprofile/crprofile.py
|
crprofileset_apiauth
|
zodpixel/SML-Cogs
| 17 |
python
|
@crprofileset.command(name='apitoken', pass_context=True)
async def crprofileset_apiauth(self, ctx, token):
self.model.profile_api_token = token
(await self.bot.say('API token saved.'))
|
@crprofileset.command(name='apitoken', pass_context=True)
async def crprofileset_apiauth(self, ctx, token):
self.model.profile_api_token = token
(await self.bot.say('API token saved.'))<|docstring|>API Authentication token.<|endoftext|>
|
4bbc19232e68a55af4a01b248db7f04cab94fb900e00494db8f190c37956b734
|
@crprofileset.command(name='api_provider', pass_context=True)
async def crprofileset_api_provider(self, ctx, value):
'API Provider.\n\n Accepted values:\n cr-api\n official\n '
if ((value == 'cr-api') or (value == 'official')):
self.model.api_provider = value
(await self.bot.say('API provider saved.'))
else:
(await self.bot.say('Not a valid provider.'))
|
API Provider.
Accepted values:
cr-api
official
|
crprofile/crprofile.py
|
crprofileset_api_provider
|
zodpixel/SML-Cogs
| 17 |
python
|
@crprofileset.command(name='api_provider', pass_context=True)
async def crprofileset_api_provider(self, ctx, value):
'API Provider.\n\n Accepted values:\n cr-api\n official\n '
if ((value == 'cr-api') or (value == 'official')):
self.model.api_provider = value
(await self.bot.say('API provider saved.'))
else:
(await self.bot.say('Not a valid provider.'))
|
@crprofileset.command(name='api_provider', pass_context=True)
async def crprofileset_api_provider(self, ctx, value):
'API Provider.\n\n Accepted values:\n cr-api\n official\n '
if ((value == 'cr-api') or (value == 'official')):
self.model.api_provider = value
(await self.bot.say('API provider saved.'))
else:
(await self.bot.say('Not a valid provider.'))<|docstring|>API Provider.
Accepted values:
cr-api
official<|endoftext|>
|
a8aa16fac31020a284773c96e42d1ebf1b26a0510c811c8fc7a86bfe7d59477f
|
@crprofileset.command(name='rmmembertag', pass_context=True)
async def crprofileset_rm_member_tag(self, ctx, member: discord.Member):
'Remove player tag of a user.'
server = ctx.message.server
self.model.rm_player_tag(server, member=member)
(await self.bot.say('Removed player tag for {}'.format(member)))
|
Remove player tag of a user.
|
crprofile/crprofile.py
|
crprofileset_rm_member_tag
|
zodpixel/SML-Cogs
| 17 |
python
|
@crprofileset.command(name='rmmembertag', pass_context=True)
async def crprofileset_rm_member_tag(self, ctx, member: discord.Member):
server = ctx.message.server
self.model.rm_player_tag(server, member=member)
(await self.bot.say('Removed player tag for {}'.format(member)))
|
@crprofileset.command(name='rmmembertag', pass_context=True)
async def crprofileset_rm_member_tag(self, ctx, member: discord.Member):
server = ctx.message.server
self.model.rm_player_tag(server, member=member)
(await self.bot.say('Removed player tag for {}'.format(member)))<|docstring|>Remove player tag of a user.<|endoftext|>
|
e5ffb64fdae9d0de8e516b7223b9fe3026576e2ef7fc98834c2fe37c24d0c145
|
@checks.mod_or_permissions()
@crprofileset.command(name='rmtag', pass_context=True)
async def crprofileset_rm_tag(self, ctx, tag):
'Remove player tag of a user.'
server = ctx.message.server
self.model.rm_player_tag(server, tag=tag)
(await self.bot.say('Removed player tag {} from associated member'.format(tag)))
|
Remove player tag of a user.
|
crprofile/crprofile.py
|
crprofileset_rm_tag
|
zodpixel/SML-Cogs
| 17 |
python
|
@checks.mod_or_permissions()
@crprofileset.command(name='rmtag', pass_context=True)
async def crprofileset_rm_tag(self, ctx, tag):
server = ctx.message.server
self.model.rm_player_tag(server, tag=tag)
(await self.bot.say('Removed player tag {} from associated member'.format(tag)))
|
@checks.mod_or_permissions()
@crprofileset.command(name='rmtag', pass_context=True)
async def crprofileset_rm_tag(self, ctx, tag):
server = ctx.message.server
self.model.rm_player_tag(server, tag=tag)
(await self.bot.say('Removed player tag {} from associated member'.format(tag)))<|docstring|>Remove player tag of a user.<|endoftext|>
|
12814ec72dd281090bc7ad509a97ec3ee2881f34cf6415a9da283a7aa6520a3a
|
@commands.group(pass_context=True, no_pm=True)
async def crprofile(self, ctx):
'Clash Royale Player Profile.'
if (self.model.auth is None):
(await self.bot.say('You must have a cr-api.com developer key to run this command. Please visit http://docs.cr-api.com/#/authentication to learn how to obtain one, then run `!crprofileset auth insert_developer_key` to set it.'))
return
if (ctx.invoked_subcommand is None):
(await self.bot.send_cmd_help(ctx))
|
Clash Royale Player Profile.
|
crprofile/crprofile.py
|
crprofile
|
zodpixel/SML-Cogs
| 17 |
python
|
@commands.group(pass_context=True, no_pm=True)
async def crprofile(self, ctx):
if (self.model.auth is None):
(await self.bot.say('You must have a cr-api.com developer key to run this command. Please visit http://docs.cr-api.com/#/authentication to learn how to obtain one, then run `!crprofileset auth insert_developer_key` to set it.'))
return
if (ctx.invoked_subcommand is None):
(await self.bot.send_cmd_help(ctx))
|
@commands.group(pass_context=True, no_pm=True)
async def crprofile(self, ctx):
if (self.model.auth is None):
(await self.bot.say('You must have a cr-api.com developer key to run this command. Please visit http://docs.cr-api.com/#/authentication to learn how to obtain one, then run `!crprofileset auth insert_developer_key` to set it.'))
return
if (ctx.invoked_subcommand is None):
(await self.bot.send_cmd_help(ctx))<|docstring|>Clash Royale Player Profile.<|endoftext|>
|
d27cacd0865413498a9d5df45120d5bee702b1dc94e0894f5c4bd1b81c6c4690
|
@crprofile.command(name='settag', pass_context=True, no_pm=True)
async def crprofile_settag(self, ctx, playertag, member: discord.Member=None):
'Set playertag to discord member.\n\n Setting tag for yourself:\n !crprofile settag C0G20PR2\n\n Setting tag for others (requires Bot Commander role):\n !crprofile settag C0G20PR2 SML\n !crprofile settag C0G20PR2 @SML\n !crprofile settag C0G20PR2 @SML#6443\n '
server = ctx.message.server
author = ctx.message.author
sctag = SCTag(playertag)
if (not sctag.valid):
(await self.bot.say(sctag.invalid_error_msg))
return
allowed = False
if (member is None):
allowed = True
elif (member.id == author.id):
allowed = True
else:
botcommander_roles = [discord.utils.get(server.roles, name=r) for r in BOTCOMMANDER_ROLES]
botcommander_roles = set(botcommander_roles)
author_roles = set(author.roles)
if len(author_roles.intersection(botcommander_roles)):
allowed = True
if (not allowed):
(await self.bot.say('Only Bot Commanders can set tags for others.'))
return
if (member is None):
member = ctx.message.author
self.model.set_player(server, member, sctag.tag)
(await self.bot.say('Associated player tag #{} with Discord Member {}.'.format(sctag.tag, member.display_name)))
|
Set playertag to discord member.
Setting tag for yourself:
!crprofile settag C0G20PR2
Setting tag for others (requires Bot Commander role):
!crprofile settag C0G20PR2 SML
!crprofile settag C0G20PR2 @SML
!crprofile settag C0G20PR2 @SML#6443
|
crprofile/crprofile.py
|
crprofile_settag
|
zodpixel/SML-Cogs
| 17 |
python
|
@crprofile.command(name='settag', pass_context=True, no_pm=True)
async def crprofile_settag(self, ctx, playertag, member: discord.Member=None):
'Set playertag to discord member.\n\n Setting tag for yourself:\n !crprofile settag C0G20PR2\n\n Setting tag for others (requires Bot Commander role):\n !crprofile settag C0G20PR2 SML\n !crprofile settag C0G20PR2 @SML\n !crprofile settag C0G20PR2 @SML#6443\n '
server = ctx.message.server
author = ctx.message.author
sctag = SCTag(playertag)
if (not sctag.valid):
(await self.bot.say(sctag.invalid_error_msg))
return
allowed = False
if (member is None):
allowed = True
elif (member.id == author.id):
allowed = True
else:
botcommander_roles = [discord.utils.get(server.roles, name=r) for r in BOTCOMMANDER_ROLES]
botcommander_roles = set(botcommander_roles)
author_roles = set(author.roles)
if len(author_roles.intersection(botcommander_roles)):
allowed = True
if (not allowed):
(await self.bot.say('Only Bot Commanders can set tags for others.'))
return
if (member is None):
member = ctx.message.author
self.model.set_player(server, member, sctag.tag)
(await self.bot.say('Associated player tag #{} with Discord Member {}.'.format(sctag.tag, member.display_name)))
|
@crprofile.command(name='settag', pass_context=True, no_pm=True)
async def crprofile_settag(self, ctx, playertag, member: discord.Member=None):
'Set playertag to discord member.\n\n Setting tag for yourself:\n !crprofile settag C0G20PR2\n\n Setting tag for others (requires Bot Commander role):\n !crprofile settag C0G20PR2 SML\n !crprofile settag C0G20PR2 @SML\n !crprofile settag C0G20PR2 @SML#6443\n '
server = ctx.message.server
author = ctx.message.author
sctag = SCTag(playertag)
if (not sctag.valid):
(await self.bot.say(sctag.invalid_error_msg))
return
allowed = False
if (member is None):
allowed = True
elif (member.id == author.id):
allowed = True
else:
botcommander_roles = [discord.utils.get(server.roles, name=r) for r in BOTCOMMANDER_ROLES]
botcommander_roles = set(botcommander_roles)
author_roles = set(author.roles)
if len(author_roles.intersection(botcommander_roles)):
allowed = True
if (not allowed):
(await self.bot.say('Only Bot Commanders can set tags for others.'))
return
if (member is None):
member = ctx.message.author
self.model.set_player(server, member, sctag.tag)
(await self.bot.say('Associated player tag #{} with Discord Member {}.'.format(sctag.tag, member.display_name)))<|docstring|>Set playertag to discord member.
Setting tag for yourself:
!crprofile settag C0G20PR2
Setting tag for others (requires Bot Commander role):
!crprofile settag C0G20PR2 SML
!crprofile settag C0G20PR2 @SML
!crprofile settag C0G20PR2 @SML#6443<|endoftext|>
|
11c0d0981681c84872230169e98ab76a1e1ea664d16df67b7691be828c87e9e7
|
@crprofile.command(name='gettag', pass_context=True, no_pm=True)
async def crprofile_gettag(self, ctx, member: discord.Member=None):
'Get playertag from Discord member.'
server = ctx.message.server
author = ctx.message.author
if (member is None):
member = author
tag = (await self.model.member2tag(server, member))
if (tag is None):
(await self.bot.say('Cannot find associated player tag.'))
return
(await self.bot.say('Player tag for {} is #{}'.format(member.display_name, tag)))
|
Get playertag from Discord member.
|
crprofile/crprofile.py
|
crprofile_gettag
|
zodpixel/SML-Cogs
| 17 |
python
|
@crprofile.command(name='gettag', pass_context=True, no_pm=True)
async def crprofile_gettag(self, ctx, member: discord.Member=None):
server = ctx.message.server
author = ctx.message.author
if (member is None):
member = author
tag = (await self.model.member2tag(server, member))
if (tag is None):
(await self.bot.say('Cannot find associated player tag.'))
return
(await self.bot.say('Player tag for {} is #{}'.format(member.display_name, tag)))
|
@crprofile.command(name='gettag', pass_context=True, no_pm=True)
async def crprofile_gettag(self, ctx, member: discord.Member=None):
server = ctx.message.server
author = ctx.message.author
if (member is None):
member = author
tag = (await self.model.member2tag(server, member))
if (tag is None):
(await self.bot.say('Cannot find associated player tag.'))
return
(await self.bot.say('Player tag for {} is #{}'.format(member.display_name, tag)))<|docstring|>Get playertag from Discord member.<|endoftext|>
|
77490a0440a6cf932bccae82476a03820475fd9dd28e89c846dfd053fafe11c9
|
@crprofile.command(name='tag', pass_context=True, no_pm=True)
async def crprofile_tag(self, ctx, tag):
'Player profile by tag\n\n Display player info\n '
(await self.bot.type())
sctag = SCTag(tag)
if (not sctag.valid):
(await self.bot.say(sctag.invalid_error_msg))
return
(await self.display_profile(ctx, tag))
|
Player profile by tag
Display player info
|
crprofile/crprofile.py
|
crprofile_tag
|
zodpixel/SML-Cogs
| 17 |
python
|
@crprofile.command(name='tag', pass_context=True, no_pm=True)
async def crprofile_tag(self, ctx, tag):
'Player profile by tag\n\n Display player info\n '
(await self.bot.type())
sctag = SCTag(tag)
if (not sctag.valid):
(await self.bot.say(sctag.invalid_error_msg))
return
(await self.display_profile(ctx, tag))
|
@crprofile.command(name='tag', pass_context=True, no_pm=True)
async def crprofile_tag(self, ctx, tag):
'Player profile by tag\n\n Display player info\n '
(await self.bot.type())
sctag = SCTag(tag)
if (not sctag.valid):
(await self.bot.say(sctag.invalid_error_msg))
return
(await self.display_profile(ctx, tag))<|docstring|>Player profile by tag
Display player info<|endoftext|>
|
c413b38892e0085628b4f5b5414850c8b083591ab8a9903671ad75f4dc2f9563
|
async def get_profile(self, ctx, member: discord.Member=None, **kwargs):
'Logic for profile'
(await self.bot.type())
author = ctx.message.author
server = ctx.message.server
if (member is None):
member = author
tag = (await self.model.member2tag(server, member))
if (tag is None):
(await self.bot.say('{} has not set player tag with the bot yet. '.format(member.display_name)))
racf_cog = self.bot.get_cog('RACF')
if (racf_cog is None):
(await self.bot.say('Pleaes run `{}crprofile settag` to set your player tag.'.format(ctx.prefix)))
else:
(await self.bot.say('Please run `{}crsettag` to set your player tag.'.format(ctx.prefix)))
return
(await self.display_profile(ctx, tag, **kwargs))
|
Logic for profile
|
crprofile/crprofile.py
|
get_profile
|
zodpixel/SML-Cogs
| 17 |
python
|
async def get_profile(self, ctx, member: discord.Member=None, **kwargs):
(await self.bot.type())
author = ctx.message.author
server = ctx.message.server
if (member is None):
member = author
tag = (await self.model.member2tag(server, member))
if (tag is None):
(await self.bot.say('{} has not set player tag with the bot yet. '.format(member.display_name)))
racf_cog = self.bot.get_cog('RACF')
if (racf_cog is None):
(await self.bot.say('Pleaes run `{}crprofile settag` to set your player tag.'.format(ctx.prefix)))
else:
(await self.bot.say('Please run `{}crsettag` to set your player tag.'.format(ctx.prefix)))
return
(await self.display_profile(ctx, tag, **kwargs))
|
async def get_profile(self, ctx, member: discord.Member=None, **kwargs):
(await self.bot.type())
author = ctx.message.author
server = ctx.message.server
if (member is None):
member = author
tag = (await self.model.member2tag(server, member))
if (tag is None):
(await self.bot.say('{} has not set player tag with the bot yet. '.format(member.display_name)))
racf_cog = self.bot.get_cog('RACF')
if (racf_cog is None):
(await self.bot.say('Pleaes run `{}crprofile settag` to set your player tag.'.format(ctx.prefix)))
else:
(await self.bot.say('Please run `{}crsettag` to set your player tag.'.format(ctx.prefix)))
return
(await self.display_profile(ctx, tag, **kwargs))<|docstring|>Logic for profile<|endoftext|>
|
b444a0989c36550efeb363aa064d222974fe1d6e58355a607334ffaec34e41c9
|
@crprofile.command(name='get', pass_context=True, no_pm=True)
async def crprofile_get(self, ctx, member: discord.Member=None):
'Player profile\n\n if member is not entered, retrieve own profile\n '
try:
(await self.get_profile(ctx, member, sections=['overview', 'stats']))
except APIError as e:
(await self.bot.say('API Error {status} {message}'.format(status=e.status, message=e.message)))
|
Player profile
if member is not entered, retrieve own profile
|
crprofile/crprofile.py
|
crprofile_get
|
zodpixel/SML-Cogs
| 17 |
python
|
@crprofile.command(name='get', pass_context=True, no_pm=True)
async def crprofile_get(self, ctx, member: discord.Member=None):
'Player profile\n\n if member is not entered, retrieve own profile\n '
try:
(await self.get_profile(ctx, member, sections=['overview', 'stats']))
except APIError as e:
(await self.bot.say('API Error {status} {message}'.format(status=e.status, message=e.message)))
|
@crprofile.command(name='get', pass_context=True, no_pm=True)
async def crprofile_get(self, ctx, member: discord.Member=None):
'Player profile\n\n if member is not entered, retrieve own profile\n '
try:
(await self.get_profile(ctx, member, sections=['overview', 'stats']))
except APIError as e:
(await self.bot.say('API Error {status} {message}'.format(status=e.status, message=e.message)))<|docstring|>Player profile
if member is not entered, retrieve own profile<|endoftext|>
|
940ee8528da20413fd57725e095bc3c8f5ca117cc457ce0d0752a877aa18ee45
|
@crprofile.command(name='cards', pass_context=True, no_pm=True)
async def crprofile_cards(self, ctx, member: discord.Member=None):
'Card collection.'
try:
(await self.get_profile(ctx, member, sections=['cards']))
except APIError as e:
(await self.bot.say('API Error {status} {message}'.format(status=e.status, message=e.message)))
|
Card collection.
|
crprofile/crprofile.py
|
crprofile_cards
|
zodpixel/SML-Cogs
| 17 |
python
|
@crprofile.command(name='cards', pass_context=True, no_pm=True)
async def crprofile_cards(self, ctx, member: discord.Member=None):
try:
(await self.get_profile(ctx, member, sections=['cards']))
except APIError as e:
(await self.bot.say('API Error {status} {message}'.format(status=e.status, message=e.message)))
|
@crprofile.command(name='cards', pass_context=True, no_pm=True)
async def crprofile_cards(self, ctx, member: discord.Member=None):
try:
(await self.get_profile(ctx, member, sections=['cards']))
except APIError as e:
(await self.bot.say('API Error {status} {message}'.format(status=e.status, message=e.message)))<|docstring|>Card collection.<|endoftext|>
|
74a3ba387580ace7487d20b4659928eba14c0b75bea1692aae4e8ba452667067
|
@crprofile.command(name='trade', pass_context=True, no_pm=True)
async def crprofile_trade(self, ctx, member: discord.Member=None):
'Tradeable cards.'
try:
(await self.get_profile(ctx, member, sections=['trade']))
except APIError as e:
(await self.bot.say('API Error {status} {message}'.format(status=e.status, message=e.message)))
|
Tradeable cards.
|
crprofile/crprofile.py
|
crprofile_trade
|
zodpixel/SML-Cogs
| 17 |
python
|
@crprofile.command(name='trade', pass_context=True, no_pm=True)
async def crprofile_trade(self, ctx, member: discord.Member=None):
try:
(await self.get_profile(ctx, member, sections=['trade']))
except APIError as e:
(await self.bot.say('API Error {status} {message}'.format(status=e.status, message=e.message)))
|
@crprofile.command(name='trade', pass_context=True, no_pm=True)
async def crprofile_trade(self, ctx, member: discord.Member=None):
try:
(await self.get_profile(ctx, member, sections=['trade']))
except APIError as e:
(await self.bot.say('API Error {status} {message}'.format(status=e.status, message=e.message)))<|docstring|>Tradeable cards.<|endoftext|>
|
a3fe98d114cc72860be71b50b3f5c1fe95a235463d672191fda79439ad8ba2f4
|
@crprofile.command(name='tradetag', pass_context=True, no_pm=True)
async def crprofile_tradetag(self, ctx, tag):
'Tradeable cards by tag.'
tag = clean_tag(tag)
try:
(await self.display_profile(ctx, tag, sections=['trade']))
except APIError as e:
(await self.bot.say('API Error {status} {message}'.format(status=e.status, message=e.message)))
|
Tradeable cards by tag.
|
crprofile/crprofile.py
|
crprofile_tradetag
|
zodpixel/SML-Cogs
| 17 |
python
|
@crprofile.command(name='tradetag', pass_context=True, no_pm=True)
async def crprofile_tradetag(self, ctx, tag):
tag = clean_tag(tag)
try:
(await self.display_profile(ctx, tag, sections=['trade']))
except APIError as e:
(await self.bot.say('API Error {status} {message}'.format(status=e.status, message=e.message)))
|
@crprofile.command(name='tradetag', pass_context=True, no_pm=True)
async def crprofile_tradetag(self, ctx, tag):
tag = clean_tag(tag)
try:
(await self.display_profile(ctx, tag, sections=['trade']))
except APIError as e:
(await self.bot.say('API Error {status} {message}'.format(status=e.status, message=e.message)))<|docstring|>Tradeable cards by tag.<|endoftext|>
|
8f8f3c34f7fa7be9fc85af3af7351176d54aff203618c637f6e5ced05ea1d39a
|
@crprofile.command(name='chests', pass_context=True, no_pm=True)
async def crprofile_chests(self, ctx, member: discord.Member=None):
'Upcoming chests.'
try:
(await self.get_profile(ctx, member, sections=['chests']))
except APIError as e:
(await self.bot.say('API Error {status} {message}'.format(status=e.status, message=e.message)))
|
Upcoming chests.
|
crprofile/crprofile.py
|
crprofile_chests
|
zodpixel/SML-Cogs
| 17 |
python
|
@crprofile.command(name='chests', pass_context=True, no_pm=True)
async def crprofile_chests(self, ctx, member: discord.Member=None):
try:
(await self.get_profile(ctx, member, sections=['chests']))
except APIError as e:
(await self.bot.say('API Error {status} {message}'.format(status=e.status, message=e.message)))
|
@crprofile.command(name='chests', pass_context=True, no_pm=True)
async def crprofile_chests(self, ctx, member: discord.Member=None):
try:
(await self.get_profile(ctx, member, sections=['chests']))
except APIError as e:
(await self.bot.say('API Error {status} {message}'.format(status=e.status, message=e.message)))<|docstring|>Upcoming chests.<|endoftext|>
|
fe8a601d218fe97a1d75c84a66fbb8a6bcd00c974b90636751e010f15d30ee45
|
@crprofile.command(name='deck', pass_context=True, no_pm=True)
async def crprofile_deck(self, ctx, member: discord.Member=None):
'Current deck.'
try:
(await self.get_profile(ctx, member, sections=['deck']))
except APIError as e:
(await self.bot.say('API Error {status} {message}'.format(status=e.status, message=e.message)))
|
Current deck.
|
crprofile/crprofile.py
|
crprofile_deck
|
zodpixel/SML-Cogs
| 17 |
python
|
@crprofile.command(name='deck', pass_context=True, no_pm=True)
async def crprofile_deck(self, ctx, member: discord.Member=None):
try:
(await self.get_profile(ctx, member, sections=['deck']))
except APIError as e:
(await self.bot.say('API Error {status} {message}'.format(status=e.status, message=e.message)))
|
@crprofile.command(name='deck', pass_context=True, no_pm=True)
async def crprofile_deck(self, ctx, member: discord.Member=None):
try:
(await self.get_profile(ctx, member, sections=['deck']))
except APIError as e:
(await self.bot.say('API Error {status} {message}'.format(status=e.status, message=e.message)))<|docstring|>Current deck.<|endoftext|>
|
c1574c30be111726e331c01c0b9f4e707e209d3ac02fb29c77070a7220e41574
|
@crprofile.command(name='tagdeck', pass_context=True, no_pm=True)
async def crprofile_tagdeck(self, ctx, tag):
'Current deck of player tag.'
try:
(await self.display_profile(ctx, tag, sections=['deck']))
except APIError as e:
(await self.bot.say('API Error {status} {message}'.format(status=e.status, message=e.message)))
|
Current deck of player tag.
|
crprofile/crprofile.py
|
crprofile_tagdeck
|
zodpixel/SML-Cogs
| 17 |
python
|
@crprofile.command(name='tagdeck', pass_context=True, no_pm=True)
async def crprofile_tagdeck(self, ctx, tag):
try:
(await self.display_profile(ctx, tag, sections=['deck']))
except APIError as e:
(await self.bot.say('API Error {status} {message}'.format(status=e.status, message=e.message)))
|
@crprofile.command(name='tagdeck', pass_context=True, no_pm=True)
async def crprofile_tagdeck(self, ctx, tag):
try:
(await self.display_profile(ctx, tag, sections=['deck']))
except APIError as e:
(await self.bot.say('API Error {status} {message}'.format(status=e.status, message=e.message)))<|docstring|>Current deck of player tag.<|endoftext|>
|
a2435975d09dc196b33849f9725888a5d8e6c6835facb44b85ea1f56a4ee111e
|
@crprofile.command(name='mini', pass_context=True, no_pm=True)
async def crprofile_mini(self, ctx, member: discord.Member=None):
'Player profile\n\n if member is not entered, retrieve own profile\n '
try:
(await self.get_profile(ctx, member, sections=['overview']))
except APIError as e:
(await self.bot.say('API Error {status} {message}'.format(status=e.status, message=e.message)))
|
Player profile
if member is not entered, retrieve own profile
|
crprofile/crprofile.py
|
crprofile_mini
|
zodpixel/SML-Cogs
| 17 |
python
|
@crprofile.command(name='mini', pass_context=True, no_pm=True)
async def crprofile_mini(self, ctx, member: discord.Member=None):
'Player profile\n\n if member is not entered, retrieve own profile\n '
try:
(await self.get_profile(ctx, member, sections=['overview']))
except APIError as e:
(await self.bot.say('API Error {status} {message}'.format(status=e.status, message=e.message)))
|
@crprofile.command(name='mini', pass_context=True, no_pm=True)
async def crprofile_mini(self, ctx, member: discord.Member=None):
'Player profile\n\n if member is not entered, retrieve own profile\n '
try:
(await self.get_profile(ctx, member, sections=['overview']))
except APIError as e:
(await self.bot.say('API Error {status} {message}'.format(status=e.status, message=e.message)))<|docstring|>Player profile
if member is not entered, retrieve own profile<|endoftext|>
|
3feb0c6392176d9d847a270a99debe87d3d4321f70908a3974b02f0bdc86a4d6
|
@crprofile.command(name='minitag', pass_context=True, no_pm=True)
async def crprofile_mini(self, ctx, tag):
'Player profile\n\n if member is not entered, retrieve own profile\n '
(await self.bot.type())
sctag = SCTag(tag)
if (not sctag.valid):
(await self.bot.say(sctag.invalid_error_msg))
return
try:
(await self.display_profile(ctx, tag, sections=['overview']))
except APIError as e:
(await self.bot.say('API Error {status} {message}'.format(status=e.status, message=e.message)))
|
Player profile
if member is not entered, retrieve own profile
|
crprofile/crprofile.py
|
crprofile_mini
|
zodpixel/SML-Cogs
| 17 |
python
|
@crprofile.command(name='minitag', pass_context=True, no_pm=True)
async def crprofile_mini(self, ctx, tag):
'Player profile\n\n if member is not entered, retrieve own profile\n '
(await self.bot.type())
sctag = SCTag(tag)
if (not sctag.valid):
(await self.bot.say(sctag.invalid_error_msg))
return
try:
(await self.display_profile(ctx, tag, sections=['overview']))
except APIError as e:
(await self.bot.say('API Error {status} {message}'.format(status=e.status, message=e.message)))
|
@crprofile.command(name='minitag', pass_context=True, no_pm=True)
async def crprofile_mini(self, ctx, tag):
'Player profile\n\n if member is not entered, retrieve own profile\n '
(await self.bot.type())
sctag = SCTag(tag)
if (not sctag.valid):
(await self.bot.say(sctag.invalid_error_msg))
return
try:
(await self.display_profile(ctx, tag, sections=['overview']))
except APIError as e:
(await self.bot.say('API Error {status} {message}'.format(status=e.status, message=e.message)))<|docstring|>Player profile
if member is not entered, retrieve own profile<|endoftext|>
|
086ab6ad0a344e6ce38dbf67cbe2b8d70a27d7fceb4e46e5107241a43a9e2bd0
|
async def display_profile(self, ctx, tag, **kwargs):
'Display profile.'
sctag = SCTag(tag)
if (not sctag.valid):
(await self.bot.say(sctag.invalid_error_msg))
return
try:
player_data = (await self.model.player_data(sctag.tag))
except json.decoder.JSONDecodeError:
player_data = self.model.cached_player_data(tag)
except asyncio.TimeoutError:
player_data = self.model.cached_player_data(tag)
if (player_data is None):
(await self.bot.send_message(ctx.message.channel, 'Unable to load from API.'))
return
if player_data.is_cache:
(await self.bot.send_message(ctx.message.channel, 'Unable to load from API. Showing cached data from: {}.'.format(self.model.cached_player_data_timestamp(tag))))
server = ctx.message.server
for em in self.embeds_profile(player_data, server=server, **kwargs):
try:
(await self.bot.say(embed=em))
except discord.DiscordException as e:
(await self.bot.say('Discord error: {e}'.format(e=e)))
|
Display profile.
|
crprofile/crprofile.py
|
display_profile
|
zodpixel/SML-Cogs
| 17 |
python
|
async def display_profile(self, ctx, tag, **kwargs):
sctag = SCTag(tag)
if (not sctag.valid):
(await self.bot.say(sctag.invalid_error_msg))
return
try:
player_data = (await self.model.player_data(sctag.tag))
except json.decoder.JSONDecodeError:
player_data = self.model.cached_player_data(tag)
except asyncio.TimeoutError:
player_data = self.model.cached_player_data(tag)
if (player_data is None):
(await self.bot.send_message(ctx.message.channel, 'Unable to load from API.'))
return
if player_data.is_cache:
(await self.bot.send_message(ctx.message.channel, 'Unable to load from API. Showing cached data from: {}.'.format(self.model.cached_player_data_timestamp(tag))))
server = ctx.message.server
for em in self.embeds_profile(player_data, server=server, **kwargs):
try:
(await self.bot.say(embed=em))
except discord.DiscordException as e:
(await self.bot.say('Discord error: {e}'.format(e=e)))
|
async def display_profile(self, ctx, tag, **kwargs):
sctag = SCTag(tag)
if (not sctag.valid):
(await self.bot.say(sctag.invalid_error_msg))
return
try:
player_data = (await self.model.player_data(sctag.tag))
except json.decoder.JSONDecodeError:
player_data = self.model.cached_player_data(tag)
except asyncio.TimeoutError:
player_data = self.model.cached_player_data(tag)
if (player_data is None):
(await self.bot.send_message(ctx.message.channel, 'Unable to load from API.'))
return
if player_data.is_cache:
(await self.bot.send_message(ctx.message.channel, 'Unable to load from API. Showing cached data from: {}.'.format(self.model.cached_player_data_timestamp(tag))))
server = ctx.message.server
for em in self.embeds_profile(player_data, server=server, **kwargs):
try:
(await self.bot.say(embed=em))
except discord.DiscordException as e:
(await self.bot.say('Discord error: {e}'.format(e=e)))<|docstring|>Display profile.<|endoftext|>
|
65bd0a6f4fb328cc4a59f83c3ee077efd6773e7253da504622ae0ed9c038a9b5
|
def embed_profile_overview(self, player: CRPlayerModel, server=None, color=None):
'Discord Embed: profile overview.'
bem = self.bot_emoji.name
member = self.model.tag2member(server, player.tag)
mention = '_'
if (member is not None):
mention = member.mention
profile_url = 'http://RoyaleAPI.com/player/{}'.format(player.tag.lstrip('#'))
if player.clan_tag:
clan_url = 'http://RoyaleAPI.com/clan/{}'.format(player.clan_tag.lstrip('#'))
else:
clan_url = None
title = player.name
roles = {'member': 'Member', 'elder': 'Elder', 'coleader': 'Co-Leader', 'leader': 'Leader', 'n/a': 'N/A'}
clan_role = player.clan_role
description = '[{player_tag}]({profile_url})\n**[{clan_name}]({clan_url})**\n[{clan_tag}]({clan_url})\n{clan_role}'.format(player_tag=player.tag, profile_url=profile_url, clan_name=player.clan_name, clan_tag=player.clan_tag, clan_url=clan_url, clan_role=roles.get(player.clan_role.lower(), 'N/A'))
em = discord.Embed(title=title, description=description, color=color, url=profile_url)
em.set_thumbnail(url=player.arena_url)
header = {'Trophies': player.trophy_value(bem('trophy')), player.arena_text: '{} {}'.format(player.arena_subtitle, player.arena_emoji(self.bot_emoji)), 'Rank': player.rank_str(self.bot_emoji), 'Discord': mention}
for (k, v) in header.items():
em.add_field(name=k, value=v)
em.set_footer(text=profile_url, icon_url='https://smlbiobot.github.io/img/cr-api/cr-api-logo.png')
return em
|
Discord Embed: profile overview.
|
crprofile/crprofile.py
|
embed_profile_overview
|
zodpixel/SML-Cogs
| 17 |
python
|
def embed_profile_overview(self, player: CRPlayerModel, server=None, color=None):
bem = self.bot_emoji.name
member = self.model.tag2member(server, player.tag)
mention = '_'
if (member is not None):
mention = member.mention
profile_url = 'http://RoyaleAPI.com/player/{}'.format(player.tag.lstrip('#'))
if player.clan_tag:
clan_url = 'http://RoyaleAPI.com/clan/{}'.format(player.clan_tag.lstrip('#'))
else:
clan_url = None
title = player.name
roles = {'member': 'Member', 'elder': 'Elder', 'coleader': 'Co-Leader', 'leader': 'Leader', 'n/a': 'N/A'}
clan_role = player.clan_role
description = '[{player_tag}]({profile_url})\n**[{clan_name}]({clan_url})**\n[{clan_tag}]({clan_url})\n{clan_role}'.format(player_tag=player.tag, profile_url=profile_url, clan_name=player.clan_name, clan_tag=player.clan_tag, clan_url=clan_url, clan_role=roles.get(player.clan_role.lower(), 'N/A'))
em = discord.Embed(title=title, description=description, color=color, url=profile_url)
em.set_thumbnail(url=player.arena_url)
header = {'Trophies': player.trophy_value(bem('trophy')), player.arena_text: '{} {}'.format(player.arena_subtitle, player.arena_emoji(self.bot_emoji)), 'Rank': player.rank_str(self.bot_emoji), 'Discord': mention}
for (k, v) in header.items():
em.add_field(name=k, value=v)
em.set_footer(text=profile_url, icon_url='https://smlbiobot.github.io/img/cr-api/cr-api-logo.png')
return em
|
def embed_profile_overview(self, player: CRPlayerModel, server=None, color=None):
bem = self.bot_emoji.name
member = self.model.tag2member(server, player.tag)
mention = '_'
if (member is not None):
mention = member.mention
profile_url = 'http://RoyaleAPI.com/player/{}'.format(player.tag.lstrip('#'))
if player.clan_tag:
clan_url = 'http://RoyaleAPI.com/clan/{}'.format(player.clan_tag.lstrip('#'))
else:
clan_url = None
title = player.name
roles = {'member': 'Member', 'elder': 'Elder', 'coleader': 'Co-Leader', 'leader': 'Leader', 'n/a': 'N/A'}
clan_role = player.clan_role
description = '[{player_tag}]({profile_url})\n**[{clan_name}]({clan_url})**\n[{clan_tag}]({clan_url})\n{clan_role}'.format(player_tag=player.tag, profile_url=profile_url, clan_name=player.clan_name, clan_tag=player.clan_tag, clan_url=clan_url, clan_role=roles.get(player.clan_role.lower(), 'N/A'))
em = discord.Embed(title=title, description=description, color=color, url=profile_url)
em.set_thumbnail(url=player.arena_url)
header = {'Trophies': player.trophy_value(bem('trophy')), player.arena_text: '{} {}'.format(player.arena_subtitle, player.arena_emoji(self.bot_emoji)), 'Rank': player.rank_str(self.bot_emoji), 'Discord': mention}
for (k, v) in header.items():
em.add_field(name=k, value=v)
em.set_footer(text=profile_url, icon_url='https://smlbiobot.github.io/img/cr-api/cr-api-logo.png')
return em<|docstring|>Discord Embed: profile overview.<|endoftext|>
|
6b808a4c52af042074617ec6cba61df9b6ecc730852ef57b001f6b29aed5f2be
|
def embed_profile_stats(self, player: CRPlayerModel, color=None):
'Discord Embed: profile stats.'
em = discord.Embed(title=' ', color=color)
bem = self.bot_emoji.name
def fmt(num, emoji_name):
emoji = self.bot_emoji.name(emoji_name)
if (emoji is not None):
return '{:,} {}'.format(num, emoji)
if (player.tourney_cards_per_game is None):
tourney_cards_per_game = 'N/A'
else:
tourney_cards_per_game = '{:.3f}'.format(player.tourney_cards_per_game)
stats = OrderedDict([('Ladder Wins / Losses', player.win_losses(bem('battle'))), ('Ladder Win Percentage', '{:.3%} {}'.format(player.win_ratio, bem('battle'))), ('Total Games', fmt(player.total_games, 'battle')), ('Challenge Max Wins', fmt(player.challenge_max_wins, 'tournament')), ('Challenge Cards Won', fmt(player.challenge_cards_won, 'tournament')), ('Three-Crown Wins', fmt(player.three_crown_wins, 'crownblue')), ('Tourney Cards Won', fmt(player.tourney_cards_won, 'tournament')), ('Tourney Games', fmt(player.tourney_games, 'tournament')), ('Tourney Cards/Game', '{} {}'.format(tourney_cards_per_game, bem('tournament'))), ('Cards Found', fmt(player.cards_found, 'cards')), ('Total Donations', fmt(player.total_donations, 'cards')), ('Level', fmt(player.level, 'experience')), ('Favorite Card', player.fave_card(self.bot_emoji))])
for (k, v) in stats.items():
em.add_field(name=k, value=v)
em.add_field(name='Chests', value=player.chest_list(self.bot_emoji), inline=False)
em.add_field(name='Deck', value=player.deck_list(self.bot_emoji), inline=False)
return em
|
Discord Embed: profile stats.
|
crprofile/crprofile.py
|
embed_profile_stats
|
zodpixel/SML-Cogs
| 17 |
python
|
def embed_profile_stats(self, player: CRPlayerModel, color=None):
em = discord.Embed(title=' ', color=color)
bem = self.bot_emoji.name
def fmt(num, emoji_name):
emoji = self.bot_emoji.name(emoji_name)
if (emoji is not None):
return '{:,} {}'.format(num, emoji)
if (player.tourney_cards_per_game is None):
tourney_cards_per_game = 'N/A'
else:
tourney_cards_per_game = '{:.3f}'.format(player.tourney_cards_per_game)
stats = OrderedDict([('Ladder Wins / Losses', player.win_losses(bem('battle'))), ('Ladder Win Percentage', '{:.3%} {}'.format(player.win_ratio, bem('battle'))), ('Total Games', fmt(player.total_games, 'battle')), ('Challenge Max Wins', fmt(player.challenge_max_wins, 'tournament')), ('Challenge Cards Won', fmt(player.challenge_cards_won, 'tournament')), ('Three-Crown Wins', fmt(player.three_crown_wins, 'crownblue')), ('Tourney Cards Won', fmt(player.tourney_cards_won, 'tournament')), ('Tourney Games', fmt(player.tourney_games, 'tournament')), ('Tourney Cards/Game', '{} {}'.format(tourney_cards_per_game, bem('tournament'))), ('Cards Found', fmt(player.cards_found, 'cards')), ('Total Donations', fmt(player.total_donations, 'cards')), ('Level', fmt(player.level, 'experience')), ('Favorite Card', player.fave_card(self.bot_emoji))])
for (k, v) in stats.items():
em.add_field(name=k, value=v)
em.add_field(name='Chests', value=player.chest_list(self.bot_emoji), inline=False)
em.add_field(name='Deck', value=player.deck_list(self.bot_emoji), inline=False)
return em
|
def embed_profile_stats(self, player: CRPlayerModel, color=None):
em = discord.Embed(title=' ', color=color)
bem = self.bot_emoji.name
def fmt(num, emoji_name):
emoji = self.bot_emoji.name(emoji_name)
if (emoji is not None):
return '{:,} {}'.format(num, emoji)
if (player.tourney_cards_per_game is None):
tourney_cards_per_game = 'N/A'
else:
tourney_cards_per_game = '{:.3f}'.format(player.tourney_cards_per_game)
stats = OrderedDict([('Ladder Wins / Losses', player.win_losses(bem('battle'))), ('Ladder Win Percentage', '{:.3%} {}'.format(player.win_ratio, bem('battle'))), ('Total Games', fmt(player.total_games, 'battle')), ('Challenge Max Wins', fmt(player.challenge_max_wins, 'tournament')), ('Challenge Cards Won', fmt(player.challenge_cards_won, 'tournament')), ('Three-Crown Wins', fmt(player.three_crown_wins, 'crownblue')), ('Tourney Cards Won', fmt(player.tourney_cards_won, 'tournament')), ('Tourney Games', fmt(player.tourney_games, 'tournament')), ('Tourney Cards/Game', '{} {}'.format(tourney_cards_per_game, bem('tournament'))), ('Cards Found', fmt(player.cards_found, 'cards')), ('Total Donations', fmt(player.total_donations, 'cards')), ('Level', fmt(player.level, 'experience')), ('Favorite Card', player.fave_card(self.bot_emoji))])
for (k, v) in stats.items():
em.add_field(name=k, value=v)
em.add_field(name='Chests', value=player.chest_list(self.bot_emoji), inline=False)
em.add_field(name='Deck', value=player.deck_list(self.bot_emoji), inline=False)
return em<|docstring|>Discord Embed: profile stats.<|endoftext|>
|
2615bd807a442e08d8bd376f891cd2826c809f592a33ea5a12fb7e9cf5f29ec1
|
def embed_profile_cards(self, player: CRPlayerModel, color=None):
'Card Collection.'
profile_url = 'http://RoyaleAPI.com/player/{}/cards'.format(player.tag.lstrip('#'))
em = discord.Embed(title='{} #{}'.format(player.name, player.tag), color=color, url=profile_url)
cards = player.card_collection(self.bot_emoji)
cards.sort(key=(lambda x: ((- normalized_card_level(x)), x.get('type_sort', 0), (- x.get('elixir')))))
for rarity in ['Common', 'Rare', 'Epic', 'Legendary']:
value = []
for card in cards:
if (card is not None):
if (card['rarity'] == rarity):
value.append('{}{}'.format(card['emoji'], normalized_card_level(card)))
if value:
em.add_field(name=rarity, value=' '.join(value), inline=False)
else:
em.add_field(name=rarity, value='None', inline=False)
em.set_footer(text=profile_url, icon_url='https://smlbiobot.github.io/img/cr-api/cr-api-logo.png')
return em
|
Card Collection.
|
crprofile/crprofile.py
|
embed_profile_cards
|
zodpixel/SML-Cogs
| 17 |
python
|
def embed_profile_cards(self, player: CRPlayerModel, color=None):
profile_url = 'http://RoyaleAPI.com/player/{}/cards'.format(player.tag.lstrip('#'))
em = discord.Embed(title='{} #{}'.format(player.name, player.tag), color=color, url=profile_url)
cards = player.card_collection(self.bot_emoji)
cards.sort(key=(lambda x: ((- normalized_card_level(x)), x.get('type_sort', 0), (- x.get('elixir')))))
for rarity in ['Common', 'Rare', 'Epic', 'Legendary']:
value = []
for card in cards:
if (card is not None):
if (card['rarity'] == rarity):
value.append('{}{}'.format(card['emoji'], normalized_card_level(card)))
if value:
em.add_field(name=rarity, value=' '.join(value), inline=False)
else:
em.add_field(name=rarity, value='None', inline=False)
em.set_footer(text=profile_url, icon_url='https://smlbiobot.github.io/img/cr-api/cr-api-logo.png')
return em
|
def embed_profile_cards(self, player: CRPlayerModel, color=None):
profile_url = 'http://RoyaleAPI.com/player/{}/cards'.format(player.tag.lstrip('#'))
em = discord.Embed(title='{} #{}'.format(player.name, player.tag), color=color, url=profile_url)
cards = player.card_collection(self.bot_emoji)
cards.sort(key=(lambda x: ((- normalized_card_level(x)), x.get('type_sort', 0), (- x.get('elixir')))))
for rarity in ['Common', 'Rare', 'Epic', 'Legendary']:
value = []
for card in cards:
if (card is not None):
if (card['rarity'] == rarity):
value.append('{}{}'.format(card['emoji'], normalized_card_level(card)))
if value:
em.add_field(name=rarity, value=' '.join(value), inline=False)
else:
em.add_field(name=rarity, value='None', inline=False)
em.set_footer(text=profile_url, icon_url='https://smlbiobot.github.io/img/cr-api/cr-api-logo.png')
return em<|docstring|>Card Collection.<|endoftext|>
|
9aa58a6f633a868223efc154ea35590be42f22061eab36b1a9e1ff15568fc4de
|
def embed_profile_chests(self, player: CRPlayerModel, color=None):
'Upcoming chests'
profile_url = 'http://RoyaleAPI.com/player/{}'.format(player.tag.lstrip('#'))
em = discord.Embed(title='{} #{}: Chest Cycle'.format(player.name, player.tag), color=color, url=profile_url)
em.add_field(name='Chests', value=player.chest_list(self.bot_emoji), inline=False)
em.set_footer(text=profile_url, icon_url='https://smlbiobot.github.io/img/cr-api/cr-api-logo.png')
return em
|
Upcoming chests
|
crprofile/crprofile.py
|
embed_profile_chests
|
zodpixel/SML-Cogs
| 17 |
python
|
def embed_profile_chests(self, player: CRPlayerModel, color=None):
profile_url = 'http://RoyaleAPI.com/player/{}'.format(player.tag.lstrip('#'))
em = discord.Embed(title='{} #{}: Chest Cycle'.format(player.name, player.tag), color=color, url=profile_url)
em.add_field(name='Chests', value=player.chest_list(self.bot_emoji), inline=False)
em.set_footer(text=profile_url, icon_url='https://smlbiobot.github.io/img/cr-api/cr-api-logo.png')
return em
|
def embed_profile_chests(self, player: CRPlayerModel, color=None):
profile_url = 'http://RoyaleAPI.com/player/{}'.format(player.tag.lstrip('#'))
em = discord.Embed(title='{} #{}: Chest Cycle'.format(player.name, player.tag), color=color, url=profile_url)
em.add_field(name='Chests', value=player.chest_list(self.bot_emoji), inline=False)
em.set_footer(text=profile_url, icon_url='https://smlbiobot.github.io/img/cr-api/cr-api-logo.png')
return em<|docstring|>Upcoming chests<|endoftext|>
|
f91916684b8b2b819f61b6ed0abcc15962b03e0c9e80969dbbfc17e39c45f0e7
|
def embed_profile_deck(self, player: CRPlayerModel, color=None):
'Current deck.'
profile_url = 'https://RoyaleAPI.com/player/{}'.format(player.tag.lstrip('#'))
desc_copy = '[Copy deck]({url})'.format(url=player.deck_link)
desc_stats = '[Deck stats]({url})'.format(url=player.deck_stats_url)
desc_log = '[Battle Log](https://RoyaleAPI.com/player/{tag})'.format(tag=player.tag.lstrip('#'))
desc = ' • '.join([desc_copy, desc_stats, desc_log])
em = discord.Embed(title='{} #{}'.format(player.name, player.tag), description=desc, color=color)
em.add_field(name='Deck', value=player.deck_list(self.bot_emoji), inline=False)
em.set_footer(text=profile_url, icon_url='https://smlbiobot.github.io/img/cr-api/cr-api-logo.png')
return em
|
Current deck.
|
crprofile/crprofile.py
|
embed_profile_deck
|
zodpixel/SML-Cogs
| 17 |
python
|
def embed_profile_deck(self, player: CRPlayerModel, color=None):
profile_url = 'https://RoyaleAPI.com/player/{}'.format(player.tag.lstrip('#'))
desc_copy = '[Copy deck]({url})'.format(url=player.deck_link)
desc_stats = '[Deck stats]({url})'.format(url=player.deck_stats_url)
desc_log = '[Battle Log](https://RoyaleAPI.com/player/{tag})'.format(tag=player.tag.lstrip('#'))
desc = ' • '.join([desc_copy, desc_stats, desc_log])
em = discord.Embed(title='{} #{}'.format(player.name, player.tag), description=desc, color=color)
em.add_field(name='Deck', value=player.deck_list(self.bot_emoji), inline=False)
em.set_footer(text=profile_url, icon_url='https://smlbiobot.github.io/img/cr-api/cr-api-logo.png')
return em
|
def embed_profile_deck(self, player: CRPlayerModel, color=None):
profile_url = 'https://RoyaleAPI.com/player/{}'.format(player.tag.lstrip('#'))
desc_copy = '[Copy deck]({url})'.format(url=player.deck_link)
desc_stats = '[Deck stats]({url})'.format(url=player.deck_stats_url)
desc_log = '[Battle Log](https://RoyaleAPI.com/player/{tag})'.format(tag=player.tag.lstrip('#'))
desc = ' • '.join([desc_copy, desc_stats, desc_log])
em = discord.Embed(title='{} #{}'.format(player.name, player.tag), description=desc, color=color)
em.add_field(name='Deck', value=player.deck_list(self.bot_emoji), inline=False)
em.set_footer(text=profile_url, icon_url='https://smlbiobot.github.io/img/cr-api/cr-api-logo.png')
return em<|docstring|>Current deck.<|endoftext|>
|
63511c16a84801aa03086191cdab4f7b91f350f6d05866139a50be81e516246f
|
def embed_profile_trade(self, player: CRPlayerModel, color=None):
'Current deck.'
decklink_url = player.deck_link
profile_url = 'http://RoyaleAPI.com/player/{}'.format(player.tag.lstrip('#'))
em = discord.Embed(title='{} #{}'.format(player.name, player.tag), color=color, url=decklink_url)
trade_list = player.trade_list(self.bot_emoji)
for rarity in ['Legendary', 'Epic', 'Rare', 'Common']:
value = ' '.join(trade_list[rarity])
value = value.strip()
if value:
em.add_field(name='Trade: {}'.format(rarity), value=value, inline=False)
if (len(em.fields) == 0):
em.add_field(name='No tradable cards', value='N/A')
em.set_footer(text=profile_url, icon_url='https://smlbiobot.github.io/img/cr-api/cr-api-logo.png')
return em
|
Current deck.
|
crprofile/crprofile.py
|
embed_profile_trade
|
zodpixel/SML-Cogs
| 17 |
python
|
def embed_profile_trade(self, player: CRPlayerModel, color=None):
decklink_url = player.deck_link
profile_url = 'http://RoyaleAPI.com/player/{}'.format(player.tag.lstrip('#'))
em = discord.Embed(title='{} #{}'.format(player.name, player.tag), color=color, url=decklink_url)
trade_list = player.trade_list(self.bot_emoji)
for rarity in ['Legendary', 'Epic', 'Rare', 'Common']:
value = ' '.join(trade_list[rarity])
value = value.strip()
if value:
em.add_field(name='Trade: {}'.format(rarity), value=value, inline=False)
if (len(em.fields) == 0):
em.add_field(name='No tradable cards', value='N/A')
em.set_footer(text=profile_url, icon_url='https://smlbiobot.github.io/img/cr-api/cr-api-logo.png')
return em
|
def embed_profile_trade(self, player: CRPlayerModel, color=None):
decklink_url = player.deck_link
profile_url = 'http://RoyaleAPI.com/player/{}'.format(player.tag.lstrip('#'))
em = discord.Embed(title='{} #{}'.format(player.name, player.tag), color=color, url=decklink_url)
trade_list = player.trade_list(self.bot_emoji)
for rarity in ['Legendary', 'Epic', 'Rare', 'Common']:
value = ' '.join(trade_list[rarity])
value = value.strip()
if value:
em.add_field(name='Trade: {}'.format(rarity), value=value, inline=False)
if (len(em.fields) == 0):
em.add_field(name='No tradable cards', value='N/A')
em.set_footer(text=profile_url, icon_url='https://smlbiobot.github.io/img/cr-api/cr-api-logo.png')
return em<|docstring|>Current deck.<|endoftext|>
|
4bbeccb1515bf344eea3a01b8d6a73b0d4a5fb8362260d305552474b024d7660
|
def embeds_profile(self, player: CRPlayerModel, server=None, sections=('overview', 'stats')):
'Return Discord Embed of player profile.'
embeds = []
color = random_discord_color()
if ('overview' in sections):
embeds.append(self.embed_profile_overview(player, server=server, color=color))
if ('stats' in sections):
embeds.append(self.embed_profile_stats(player, color=color))
if ('cards' in sections):
embeds.append(self.embed_profile_cards(player, color=color))
if ('chests' in sections):
embeds.append(self.embed_profile_chests(player, color=color))
if ('deck' in sections):
embeds.append(self.embed_profile_deck(player, color=color))
if ('trade' in sections):
embeds.append(self.embed_profile_trade(player, color=color))
return embeds
|
Return Discord Embed of player profile.
|
crprofile/crprofile.py
|
embeds_profile
|
zodpixel/SML-Cogs
| 17 |
python
|
def embeds_profile(self, player: CRPlayerModel, server=None, sections=('overview', 'stats')):
embeds = []
color = random_discord_color()
if ('overview' in sections):
embeds.append(self.embed_profile_overview(player, server=server, color=color))
if ('stats' in sections):
embeds.append(self.embed_profile_stats(player, color=color))
if ('cards' in sections):
embeds.append(self.embed_profile_cards(player, color=color))
if ('chests' in sections):
embeds.append(self.embed_profile_chests(player, color=color))
if ('deck' in sections):
embeds.append(self.embed_profile_deck(player, color=color))
if ('trade' in sections):
embeds.append(self.embed_profile_trade(player, color=color))
return embeds
|
def embeds_profile(self, player: CRPlayerModel, server=None, sections=('overview', 'stats')):
embeds = []
color = random_discord_color()
if ('overview' in sections):
embeds.append(self.embed_profile_overview(player, server=server, color=color))
if ('stats' in sections):
embeds.append(self.embed_profile_stats(player, color=color))
if ('cards' in sections):
embeds.append(self.embed_profile_cards(player, color=color))
if ('chests' in sections):
embeds.append(self.embed_profile_chests(player, color=color))
if ('deck' in sections):
embeds.append(self.embed_profile_deck(player, color=color))
if ('trade' in sections):
embeds.append(self.embed_profile_trade(player, color=color))
return embeds<|docstring|>Return Discord Embed of player profile.<|endoftext|>
|
a7d228ac4d320a6b1e74d8b772422c7a1f1e447355aabfc2a550000c320f797c
|
async def on_message(self, msg):
'Do transforms.'
if (self.bot.user.name != 'R2.Dev'):
(await self.transform_friendlink(msg))
|
Do transforms.
|
crprofile/crprofile.py
|
on_message
|
zodpixel/SML-Cogs
| 17 |
python
|
async def on_message(self, msg):
if (self.bot.user.name != 'R2.Dev'):
(await self.transform_friendlink(msg))
|
async def on_message(self, msg):
if (self.bot.user.name != 'R2.Dev'):
(await self.transform_friendlink(msg))<|docstring|>Do transforms.<|endoftext|>
|
7eeb60676f66cea81751dd93763583be0a2f5a5bf553160b4bb85fd7c3bb56b5
|
async def transform_friendlink(self, msg):
'Convert friend invite links to embeds.\n\n https://link.clashroyale.com/invite/friend/en?tag={tag}&token={token}&platform={platform}\n '
m = re.search('https://link.clashroyale.com/invite/friend/..\\?tag=([A-Z0-9]+)&token=([a-z0-9]+)&platform=([A-Za-z0-9]+)', msg.content)
if (not m):
return
url = m.group(0)
player_tag = m.group(1)
try:
p = (await self.model.player_data(player_tag))
except APIError as e:
return
profile = 'https://royaleapi.com/player/{}'.format(p.tag)
battles = 'https://royaleapi.com/player/{}/battles'.format(p.tag)
decks = 'https://royaleapi.com/player/{}/decks'.format(p.tag)
links = '[Profile]({}) • [Battles]({}) • [Decks]({})'.format(profile, battles, decks)
misc = 'Level {} • {} total games'.format(p.level, p.total_games)
trophies = '{} / {} PB'.format(p.trophy_current, p.trophy_highest)
challenge = '{} max wins / {} cards'.format(p.challenge_max_wins, p.challenge_cards_won)
if (not p.not_in_clan):
clan = '{}, [{}]({})'.format(p.clan_role.title(), p.clan_name, 'https://royaleapi.com/clan/{}'.format(p.clan_tag))
else:
clan = 'Not in clan'
author = 'Posted by {}'.format(msg.author.mention)
em = discord.Embed(title='Friend Request - Clash Royale', description='**{name}** #{tag}\n{clan}\n{trophies}\n{misc}\n{challenge}\n{links}\n{author}'.format(name=p.name, tag=p.tag, links=links, misc=misc, trophies=trophies, clan=clan, challenge=challenge, author=author), url=url, color=discord.Color.blue())
em.add_field(name='Current Deck', value=p.deck_list(self.bot_emoji), inline=False)
em.set_footer(text=p.profile_url, icon_url='https://smlbiobot.github.io/img/cr-api/cr-api-logo.png')
(await self.bot.send_message(msg.channel, embed=em))
try:
(await self.bot.delete_message(msg))
except Exception as e:
pass
|
Convert friend invite links to embeds.
https://link.clashroyale.com/invite/friend/en?tag={tag}&token={token}&platform={platform}
|
crprofile/crprofile.py
|
transform_friendlink
|
zodpixel/SML-Cogs
| 17 |
python
|
async def transform_friendlink(self, msg):
'Convert friend invite links to embeds.\n\n https://link.clashroyale.com/invite/friend/en?tag={tag}&token={token}&platform={platform}\n '
m = re.search('https://link.clashroyale.com/invite/friend/..\\?tag=([A-Z0-9]+)&token=([a-z0-9]+)&platform=([A-Za-z0-9]+)', msg.content)
if (not m):
return
url = m.group(0)
player_tag = m.group(1)
try:
p = (await self.model.player_data(player_tag))
except APIError as e:
return
profile = 'https://royaleapi.com/player/{}'.format(p.tag)
battles = 'https://royaleapi.com/player/{}/battles'.format(p.tag)
decks = 'https://royaleapi.com/player/{}/decks'.format(p.tag)
links = '[Profile]({}) • [Battles]({}) • [Decks]({})'.format(profile, battles, decks)
misc = 'Level {} • {} total games'.format(p.level, p.total_games)
trophies = '{} / {} PB'.format(p.trophy_current, p.trophy_highest)
challenge = '{} max wins / {} cards'.format(p.challenge_max_wins, p.challenge_cards_won)
if (not p.not_in_clan):
clan = '{}, [{}]({})'.format(p.clan_role.title(), p.clan_name, 'https://royaleapi.com/clan/{}'.format(p.clan_tag))
else:
clan = 'Not in clan'
author = 'Posted by {}'.format(msg.author.mention)
em = discord.Embed(title='Friend Request - Clash Royale', description='**{name}** #{tag}\n{clan}\n{trophies}\n{misc}\n{challenge}\n{links}\n{author}'.format(name=p.name, tag=p.tag, links=links, misc=misc, trophies=trophies, clan=clan, challenge=challenge, author=author), url=url, color=discord.Color.blue())
em.add_field(name='Current Deck', value=p.deck_list(self.bot_emoji), inline=False)
em.set_footer(text=p.profile_url, icon_url='https://smlbiobot.github.io/img/cr-api/cr-api-logo.png')
(await self.bot.send_message(msg.channel, embed=em))
try:
(await self.bot.delete_message(msg))
except Exception as e:
pass
|
async def transform_friendlink(self, msg):
'Convert friend invite links to embeds.\n\n https://link.clashroyale.com/invite/friend/en?tag={tag}&token={token}&platform={platform}\n '
m = re.search('https://link.clashroyale.com/invite/friend/..\\?tag=([A-Z0-9]+)&token=([a-z0-9]+)&platform=([A-Za-z0-9]+)', msg.content)
if (not m):
return
url = m.group(0)
player_tag = m.group(1)
try:
p = (await self.model.player_data(player_tag))
except APIError as e:
return
profile = 'https://royaleapi.com/player/{}'.format(p.tag)
battles = 'https://royaleapi.com/player/{}/battles'.format(p.tag)
decks = 'https://royaleapi.com/player/{}/decks'.format(p.tag)
links = '[Profile]({}) • [Battles]({}) • [Decks]({})'.format(profile, battles, decks)
misc = 'Level {} • {} total games'.format(p.level, p.total_games)
trophies = '{} / {} PB'.format(p.trophy_current, p.trophy_highest)
challenge = '{} max wins / {} cards'.format(p.challenge_max_wins, p.challenge_cards_won)
if (not p.not_in_clan):
clan = '{}, [{}]({})'.format(p.clan_role.title(), p.clan_name, 'https://royaleapi.com/clan/{}'.format(p.clan_tag))
else:
clan = 'Not in clan'
author = 'Posted by {}'.format(msg.author.mention)
em = discord.Embed(title='Friend Request - Clash Royale', description='**{name}** #{tag}\n{clan}\n{trophies}\n{misc}\n{challenge}\n{links}\n{author}'.format(name=p.name, tag=p.tag, links=links, misc=misc, trophies=trophies, clan=clan, challenge=challenge, author=author), url=url, color=discord.Color.blue())
em.add_field(name='Current Deck', value=p.deck_list(self.bot_emoji), inline=False)
em.set_footer(text=p.profile_url, icon_url='https://smlbiobot.github.io/img/cr-api/cr-api-logo.png')
(await self.bot.send_message(msg.channel, embed=em))
try:
(await self.bot.delete_message(msg))
except Exception as e:
pass<|docstring|>Convert friend invite links to embeds.
https://link.clashroyale.com/invite/friend/en?tag={tag}&token={token}&platform={platform}<|endoftext|>
|
f621ba1c7430e34b3fc6e33a77ce3f35409b38f7dc6827f1a560a43b097a0a66
|
def _get_updated_endpoints(original_end_points):
"Adds the keys 'logits' and 'probs' to the\n end points dictionary of ResNet50-v2.\n\n Args:\n original_end_points (dict): Original dictionary of end points\n\n Returns:\n dict: Dictionary of end points with the new keys.\n "
end_points = dict(original_end_points)
end_points['logits'] = tf.squeeze(end_points['resnet_v2_50/logits'], [1, 2])
end_points['probs'] = tf.nn.softmax(end_points['logits'])
return end_points
|
Adds the keys 'logits' and 'probs' to the
end points dictionary of ResNet50-v2.
Args:
original_end_points (dict): Original dictionary of end points
Returns:
dict: Dictionary of end points with the new keys.
|
shield/models/resnet_50_v2.py
|
_get_updated_endpoints
|
yfor1008/jpeg-defense
| 0 |
python
|
def _get_updated_endpoints(original_end_points):
"Adds the keys 'logits' and 'probs' to the\n end points dictionary of ResNet50-v2.\n\n Args:\n original_end_points (dict): Original dictionary of end points\n\n Returns:\n dict: Dictionary of end points with the new keys.\n "
end_points = dict(original_end_points)
end_points['logits'] = tf.squeeze(end_points['resnet_v2_50/logits'], [1, 2])
end_points['probs'] = tf.nn.softmax(end_points['logits'])
return end_points
|
def _get_updated_endpoints(original_end_points):
"Adds the keys 'logits' and 'probs' to the\n end points dictionary of ResNet50-v2.\n\n Args:\n original_end_points (dict): Original dictionary of end points\n\n Returns:\n dict: Dictionary of end points with the new keys.\n "
end_points = dict(original_end_points)
end_points['logits'] = tf.squeeze(end_points['resnet_v2_50/logits'], [1, 2])
end_points['probs'] = tf.nn.softmax(end_points['logits'])
return end_points<|docstring|>Adds the keys 'logits' and 'probs' to the
end points dictionary of ResNet50-v2.
Args:
original_end_points (dict): Original dictionary of end points
Returns:
dict: Dictionary of end points with the new keys.<|endoftext|>
|
366c8c3b7a81da3d5dfa2eeab171251b21b42444be7eb016cb3a24384984d640
|
def __init__(self, x, num_classes=15, is_training=False):
'Initializes the tensorflow graph for the ResNet50-v2 model.\n\n Args:\n x (tf.Variable): The variable in the tensorflow graph\n that feeds into the model nodes.\n num_classes (int):\n Number of predicted classes for classification tasks.\n If 0 or None, the features before the logit layer are returned.\n is_training (bool): Whether batch_norm layers are in training mode.\n '
super(ResNet50v2, self).__init__()
self.x = x
self.num_classes = num_classes
print(type(resnet_arg_scope()))
with slim.arg_scope(resnet_arg_scope()):
(net, end_points) = resnet_v2_50(x, num_classes=num_classes, is_training=is_training, reuse=None)
self.end_points = _get_updated_endpoints(end_points)
self.variables_to_restore = slim.get_variables_to_restore(exclude=[])
|
Initializes the tensorflow graph for the ResNet50-v2 model.
Args:
x (tf.Variable): The variable in the tensorflow graph
that feeds into the model nodes.
num_classes (int):
Number of predicted classes for classification tasks.
If 0 or None, the features before the logit layer are returned.
is_training (bool): Whether batch_norm layers are in training mode.
|
shield/models/resnet_50_v2.py
|
__init__
|
yfor1008/jpeg-defense
| 0 |
python
|
def __init__(self, x, num_classes=15, is_training=False):
'Initializes the tensorflow graph for the ResNet50-v2 model.\n\n Args:\n x (tf.Variable): The variable in the tensorflow graph\n that feeds into the model nodes.\n num_classes (int):\n Number of predicted classes for classification tasks.\n If 0 or None, the features before the logit layer are returned.\n is_training (bool): Whether batch_norm layers are in training mode.\n '
super(ResNet50v2, self).__init__()
self.x = x
self.num_classes = num_classes
print(type(resnet_arg_scope()))
with slim.arg_scope(resnet_arg_scope()):
(net, end_points) = resnet_v2_50(x, num_classes=num_classes, is_training=is_training, reuse=None)
self.end_points = _get_updated_endpoints(end_points)
self.variables_to_restore = slim.get_variables_to_restore(exclude=[])
|
def __init__(self, x, num_classes=15, is_training=False):
'Initializes the tensorflow graph for the ResNet50-v2 model.\n\n Args:\n x (tf.Variable): The variable in the tensorflow graph\n that feeds into the model nodes.\n num_classes (int):\n Number of predicted classes for classification tasks.\n If 0 or None, the features before the logit layer are returned.\n is_training (bool): Whether batch_norm layers are in training mode.\n '
super(ResNet50v2, self).__init__()
self.x = x
self.num_classes = num_classes
print(type(resnet_arg_scope()))
with slim.arg_scope(resnet_arg_scope()):
(net, end_points) = resnet_v2_50(x, num_classes=num_classes, is_training=is_training, reuse=None)
self.end_points = _get_updated_endpoints(end_points)
self.variables_to_restore = slim.get_variables_to_restore(exclude=[])<|docstring|>Initializes the tensorflow graph for the ResNet50-v2 model.
Args:
x (tf.Variable): The variable in the tensorflow graph
that feeds into the model nodes.
num_classes (int):
Number of predicted classes for classification tasks.
If 0 or None, the features before the logit layer are returned.
is_training (bool): Whether batch_norm layers are in training mode.<|endoftext|>
|
6056fa0e5e01d95be165096bb123bb343087cae7f8f68dd46b75d1ecb17798fc
|
def load_weights(self, checkpoint_path, sess=None):
'Load weights from a checkpoint file into the tensorflow graph.\n\n Args:\n checkpoint_path (str): Path to the checkpoint file.\n sess (tf.Session): The tensorflow session holding the model graph.\n '
if (sess is None):
sess = tf.get_default_session()
assert (sess is not None)
saver = tf.train.Saver(self.variables_to_restore)
saver.restore(sess, checkpoint_path)
|
Load weights from a checkpoint file into the tensorflow graph.
Args:
checkpoint_path (str): Path to the checkpoint file.
sess (tf.Session): The tensorflow session holding the model graph.
|
shield/models/resnet_50_v2.py
|
load_weights
|
yfor1008/jpeg-defense
| 0 |
python
|
def load_weights(self, checkpoint_path, sess=None):
'Load weights from a checkpoint file into the tensorflow graph.\n\n Args:\n checkpoint_path (str): Path to the checkpoint file.\n sess (tf.Session): The tensorflow session holding the model graph.\n '
if (sess is None):
sess = tf.get_default_session()
assert (sess is not None)
saver = tf.train.Saver(self.variables_to_restore)
saver.restore(sess, checkpoint_path)
|
def load_weights(self, checkpoint_path, sess=None):
'Load weights from a checkpoint file into the tensorflow graph.\n\n Args:\n checkpoint_path (str): Path to the checkpoint file.\n sess (tf.Session): The tensorflow session holding the model graph.\n '
if (sess is None):
sess = tf.get_default_session()
assert (sess is not None)
saver = tf.train.Saver(self.variables_to_restore)
saver.restore(sess, checkpoint_path)<|docstring|>Load weights from a checkpoint file into the tensorflow graph.
Args:
checkpoint_path (str): Path to the checkpoint file.
sess (tf.Session): The tensorflow session holding the model graph.<|endoftext|>
|
902a93f2b2c564abcffe48695341a297121a25b140f9e92b4f973407ac341c68
|
def get_params(self):
"Lists the model's parameters.\n\n Returns:\n list: A list of the model's parameters.\n "
return None
|
Lists the model's parameters.
Returns:
list: A list of the model's parameters.
|
shield/models/resnet_50_v2.py
|
get_params
|
yfor1008/jpeg-defense
| 0 |
python
|
def get_params(self):
"Lists the model's parameters.\n\n Returns:\n list: A list of the model's parameters.\n "
return None
|
def get_params(self):
"Lists the model's parameters.\n\n Returns:\n list: A list of the model's parameters.\n "
return None<|docstring|>Lists the model's parameters.
Returns:
list: A list of the model's parameters.<|endoftext|>
|
7e60feacda828fe18c636f74784a8f15227c6611ebc46735283b1704a6f3408f
|
def fprop(self, x):
'Exposes all the layers of the model.\n\n Args:\n x (tf.Variable): Tensor which is input to the model.\n\n Returns:\n dict: A dictionary mapping layer names to the corresponding\n node in the tensorflow graph.\n '
if (x is self.x):
return self.end_points
else:
with slim.arg_scope(resnet_arg_scope()):
(net, end_points) = resnet_v2_50(x, num_classes=self.num_classes, is_training=False, reuse=tf.AUTO_REUSE)
return _get_updated_endpoints(end_points)
|
Exposes all the layers of the model.
Args:
x (tf.Variable): Tensor which is input to the model.
Returns:
dict: A dictionary mapping layer names to the corresponding
node in the tensorflow graph.
|
shield/models/resnet_50_v2.py
|
fprop
|
yfor1008/jpeg-defense
| 0 |
python
|
def fprop(self, x):
'Exposes all the layers of the model.\n\n Args:\n x (tf.Variable): Tensor which is input to the model.\n\n Returns:\n dict: A dictionary mapping layer names to the corresponding\n node in the tensorflow graph.\n '
if (x is self.x):
return self.end_points
else:
with slim.arg_scope(resnet_arg_scope()):
(net, end_points) = resnet_v2_50(x, num_classes=self.num_classes, is_training=False, reuse=tf.AUTO_REUSE)
return _get_updated_endpoints(end_points)
|
def fprop(self, x):
'Exposes all the layers of the model.\n\n Args:\n x (tf.Variable): Tensor which is input to the model.\n\n Returns:\n dict: A dictionary mapping layer names to the corresponding\n node in the tensorflow graph.\n '
if (x is self.x):
return self.end_points
else:
with slim.arg_scope(resnet_arg_scope()):
(net, end_points) = resnet_v2_50(x, num_classes=self.num_classes, is_training=False, reuse=tf.AUTO_REUSE)
return _get_updated_endpoints(end_points)<|docstring|>Exposes all the layers of the model.
Args:
x (tf.Variable): Tensor which is input to the model.
Returns:
dict: A dictionary mapping layer names to the corresponding
node in the tensorflow graph.<|endoftext|>
|
3000f1d88d18c6360fff732db5491fc9d37fa74789e57c659e3dde92e23f36bb
|
def finalize_options(self):
'Abstract method that is required to be overwritten'
|
Abstract method that is required to be overwritten
|
setup.py
|
finalize_options
|
mpavlase/nginx-config-builder
| 149 |
python
|
def finalize_options(self):
|
def finalize_options(self):
<|docstring|>Abstract method that is required to be overwritten<|endoftext|>
|
22d06d819c11bd70f87fba9923c4366111478aa18202381e277b79529f6abaf7
|
def getHint(self, secret, guess):
'\n :type secret: str\n :type guess: str\n :rtype: str\n '
cnt = defaultdict(int)
A = 0
B = 0
for c in secret:
cnt[c] += 1
for (i, v) in enumerate(guess):
if (v == secret[i]):
A += 1
cnt[v] -= 1
if (cnt[v] < 0):
assert (cnt[v] == (- 1))
B -= 1
cnt[v] = 0
elif (cnt[v] > 0):
B += 1
cnt[v] -= 1
return ('%dA%dB' % (A, B))
|
:type secret: str
:type guess: str
:rtype: str
|
299 Bulls and Cows.py
|
getHint
|
ChiFire/legend_LeetCode
| 1 |
python
|
def getHint(self, secret, guess):
'\n :type secret: str\n :type guess: str\n :rtype: str\n '
cnt = defaultdict(int)
A = 0
B = 0
for c in secret:
cnt[c] += 1
for (i, v) in enumerate(guess):
if (v == secret[i]):
A += 1
cnt[v] -= 1
if (cnt[v] < 0):
assert (cnt[v] == (- 1))
B -= 1
cnt[v] = 0
elif (cnt[v] > 0):
B += 1
cnt[v] -= 1
return ('%dA%dB' % (A, B))
|
def getHint(self, secret, guess):
'\n :type secret: str\n :type guess: str\n :rtype: str\n '
cnt = defaultdict(int)
A = 0
B = 0
for c in secret:
cnt[c] += 1
for (i, v) in enumerate(guess):
if (v == secret[i]):
A += 1
cnt[v] -= 1
if (cnt[v] < 0):
assert (cnt[v] == (- 1))
B -= 1
cnt[v] = 0
elif (cnt[v] > 0):
B += 1
cnt[v] -= 1
return ('%dA%dB' % (A, B))<|docstring|>:type secret: str
:type guess: str
:rtype: str<|endoftext|>
|
e9d100e4ca0766691773a21748317edff1e72f272b73c70493106a731b7545f8
|
def test_anbieter_mapping(self):
'\n Test that all mapping point to correct fields\n '
for field in set(Anbieter.FIELD_NAME_MAPPING.values()):
if (field is None):
continue
else:
Anbieter._meta.get_field(field)
|
Test that all mapping point to correct fields
|
anbieter/tests.py
|
test_anbieter_mapping
|
CarliJoy/RoWoOekostromDB
| 0 |
python
|
def test_anbieter_mapping(self):
'\n \n '
for field in set(Anbieter.FIELD_NAME_MAPPING.values()):
if (field is None):
continue
else:
Anbieter._meta.get_field(field)
|
def test_anbieter_mapping(self):
'\n \n '
for field in set(Anbieter.FIELD_NAME_MAPPING.values()):
if (field is None):
continue
else:
Anbieter._meta.get_field(field)<|docstring|>Test that all mapping point to correct fields<|endoftext|>
|
89bef0cb915d5b31719d8fe8042a66e020419c481c64a06c1cb88e51606573cd
|
def test_homepage_kriterium_mapping(self):
'\n Test that all mapping point to correct fields\n '
for field in set(HomepageKriterium.FIELD_NAME_MAPPING.values()):
HomepageKriterium._meta.get_field(field)
|
Test that all mapping point to correct fields
|
anbieter/tests.py
|
test_homepage_kriterium_mapping
|
CarliJoy/RoWoOekostromDB
| 0 |
python
|
def test_homepage_kriterium_mapping(self):
'\n \n '
for field in set(HomepageKriterium.FIELD_NAME_MAPPING.values()):
HomepageKriterium._meta.get_field(field)
|
def test_homepage_kriterium_mapping(self):
'\n \n '
for field in set(HomepageKriterium.FIELD_NAME_MAPPING.values()):
HomepageKriterium._meta.get_field(field)<|docstring|>Test that all mapping point to correct fields<|endoftext|>
|
0fdf527f6c7b9ba1342f660a94d40e9931a31ab34ead6dde51c5e91eac198841
|
def np_arr_to_poly(np_arr):
' Using numpy 2d array ([0]-h, [1]-w) to construct polygon.\n\n Parameters\n -------\n np_arr : np.array\n contour with standard numpy 2d array format\n\n Returns\n -------\n poly : Polygon\n contour with shapely polygon format\n\n '
np_arr = swap_wh(np_arr)
point_list = np_arr_to_point_list(np_arr)
poly = Polygon(point_list)
return poly
|
Using numpy 2d array ([0]-h, [1]-w) to construct polygon.
Parameters
-------
np_arr : np.array
contour with standard numpy 2d array format
Returns
-------
poly : Polygon
contour with shapely polygon format
|
pycontour/poly_transform.py
|
np_arr_to_poly
|
PingjunChen/pycontour
| 8 |
python
|
def np_arr_to_poly(np_arr):
' Using numpy 2d array ([0]-h, [1]-w) to construct polygon.\n\n Parameters\n -------\n np_arr : np.array\n contour with standard numpy 2d array format\n\n Returns\n -------\n poly : Polygon\n contour with shapely polygon format\n\n '
np_arr = swap_wh(np_arr)
point_list = np_arr_to_point_list(np_arr)
poly = Polygon(point_list)
return poly
|
def np_arr_to_poly(np_arr):
' Using numpy 2d array ([0]-h, [1]-w) to construct polygon.\n\n Parameters\n -------\n np_arr : np.array\n contour with standard numpy 2d array format\n\n Returns\n -------\n poly : Polygon\n contour with shapely polygon format\n\n '
np_arr = swap_wh(np_arr)
point_list = np_arr_to_point_list(np_arr)
poly = Polygon(point_list)
return poly<|docstring|>Using numpy 2d array ([0]-h, [1]-w) to construct polygon.
Parameters
-------
np_arr : np.array
contour with standard numpy 2d array format
Returns
-------
poly : Polygon
contour with shapely polygon format<|endoftext|>
|
63c70674d96ecdbab3a394e90310ec7b05b7b869b9bfed54aedafe055975310a
|
def point_list_to_poly(point_list):
' Using point list to construct polygon.\n\n Parameters\n -------\n point_list : list\n list of point set ([0]-h, [1]-w)\n\n Returns\n -------\n poly : Polygon\n contour with shapely polygon format\n\n '
wh_point_list = []
for ind in np.arange(len(point_list)):
wh_point_list.append((point_list[ind][1], point_list[ind][0]))
poly = Polygon(wh_point_list)
return poly
|
Using point list to construct polygon.
Parameters
-------
point_list : list
list of point set ([0]-h, [1]-w)
Returns
-------
poly : Polygon
contour with shapely polygon format
|
pycontour/poly_transform.py
|
point_list_to_poly
|
PingjunChen/pycontour
| 8 |
python
|
def point_list_to_poly(point_list):
' Using point list to construct polygon.\n\n Parameters\n -------\n point_list : list\n list of point set ([0]-h, [1]-w)\n\n Returns\n -------\n poly : Polygon\n contour with shapely polygon format\n\n '
wh_point_list = []
for ind in np.arange(len(point_list)):
wh_point_list.append((point_list[ind][1], point_list[ind][0]))
poly = Polygon(wh_point_list)
return poly
|
def point_list_to_poly(point_list):
' Using point list to construct polygon.\n\n Parameters\n -------\n point_list : list\n list of point set ([0]-h, [1]-w)\n\n Returns\n -------\n poly : Polygon\n contour with shapely polygon format\n\n '
wh_point_list = []
for ind in np.arange(len(point_list)):
wh_point_list.append((point_list[ind][1], point_list[ind][0]))
poly = Polygon(wh_point_list)
return poly<|docstring|>Using point list to construct polygon.
Parameters
-------
point_list : list
list of point set ([0]-h, [1]-w)
Returns
-------
poly : Polygon
contour with shapely polygon format<|endoftext|>
|
33d9cb29b3dad2f45841ce9563deb3a7d285499f027b81801afcf3cf3ecf6247
|
def bbox_to_poly(min_h, min_w, max_h, max_w):
' Using bounding box to construct polygon.\n\n Parameters\n -------\n min_h : int\n minimum y coordinate of polygon\n min_w : int\n minimum x coordinate of polygon\n max_h : int\n maximum y coordinate of polygon\n max_w : int\n maximum x coordinate of polygon\n\n Returns\n -------\n poly : Polygon\n contour with shapely polygon format\n\n '
poly = box(min_w, min_h, max_w, max_h)
return poly
|
Using bounding box to construct polygon.
Parameters
-------
min_h : int
minimum y coordinate of polygon
min_w : int
minimum x coordinate of polygon
max_h : int
maximum y coordinate of polygon
max_w : int
maximum x coordinate of polygon
Returns
-------
poly : Polygon
contour with shapely polygon format
|
pycontour/poly_transform.py
|
bbox_to_poly
|
PingjunChen/pycontour
| 8 |
python
|
def bbox_to_poly(min_h, min_w, max_h, max_w):
' Using bounding box to construct polygon.\n\n Parameters\n -------\n min_h : int\n minimum y coordinate of polygon\n min_w : int\n minimum x coordinate of polygon\n max_h : int\n maximum y coordinate of polygon\n max_w : int\n maximum x coordinate of polygon\n\n Returns\n -------\n poly : Polygon\n contour with shapely polygon format\n\n '
poly = box(min_w, min_h, max_w, max_h)
return poly
|
def bbox_to_poly(min_h, min_w, max_h, max_w):
' Using bounding box to construct polygon.\n\n Parameters\n -------\n min_h : int\n minimum y coordinate of polygon\n min_w : int\n minimum x coordinate of polygon\n max_h : int\n maximum y coordinate of polygon\n max_w : int\n maximum x coordinate of polygon\n\n Returns\n -------\n poly : Polygon\n contour with shapely polygon format\n\n '
poly = box(min_w, min_h, max_w, max_h)
return poly<|docstring|>Using bounding box to construct polygon.
Parameters
-------
min_h : int
minimum y coordinate of polygon
min_w : int
minimum x coordinate of polygon
max_h : int
maximum y coordinate of polygon
max_w : int
maximum x coordinate of polygon
Returns
-------
poly : Polygon
contour with shapely polygon format<|endoftext|>
|
4b63b3d6162334c541330e756fcfb39d3efd36b1fa65d57d77e804f356fc84a3
|
def poly_to_np_arr(poly):
' Convert shapely Polygon to numpy 2d array ([0]-h, [1]-w).\n\n Parameters\n -------\n poly : Polygon\n contour with shapely polygon format\n\n Returns\n -------\n cnt_arr : np.array\n contour with standard numpy 2d array format\n\n '
(x_coors, y_coors) = poly.exterior.coords.xy
x_coors = x_coors[:(- 1)].tolist()
y_coors = y_coors[:(- 1)].tolist()
point_list = [(y, x) for (x, y) in zip(x_coors, y_coors)]
cnt_arr = point_list_to_np_arr(point_list)
return cnt_arr
|
Convert shapely Polygon to numpy 2d array ([0]-h, [1]-w).
Parameters
-------
poly : Polygon
contour with shapely polygon format
Returns
-------
cnt_arr : np.array
contour with standard numpy 2d array format
|
pycontour/poly_transform.py
|
poly_to_np_arr
|
PingjunChen/pycontour
| 8 |
python
|
def poly_to_np_arr(poly):
' Convert shapely Polygon to numpy 2d array ([0]-h, [1]-w).\n\n Parameters\n -------\n poly : Polygon\n contour with shapely polygon format\n\n Returns\n -------\n cnt_arr : np.array\n contour with standard numpy 2d array format\n\n '
(x_coors, y_coors) = poly.exterior.coords.xy
x_coors = x_coors[:(- 1)].tolist()
y_coors = y_coors[:(- 1)].tolist()
point_list = [(y, x) for (x, y) in zip(x_coors, y_coors)]
cnt_arr = point_list_to_np_arr(point_list)
return cnt_arr
|
def poly_to_np_arr(poly):
' Convert shapely Polygon to numpy 2d array ([0]-h, [1]-w).\n\n Parameters\n -------\n poly : Polygon\n contour with shapely polygon format\n\n Returns\n -------\n cnt_arr : np.array\n contour with standard numpy 2d array format\n\n '
(x_coors, y_coors) = poly.exterior.coords.xy
x_coors = x_coors[:(- 1)].tolist()
y_coors = y_coors[:(- 1)].tolist()
point_list = [(y, x) for (x, y) in zip(x_coors, y_coors)]
cnt_arr = point_list_to_np_arr(point_list)
return cnt_arr<|docstring|>Convert shapely Polygon to numpy 2d array ([0]-h, [1]-w).
Parameters
-------
poly : Polygon
contour with shapely polygon format
Returns
-------
cnt_arr : np.array
contour with standard numpy 2d array format<|endoftext|>
|
bb9bc7de05f6be28311bc5f0dd01a4ac108a94b2e158f2448954b54b79bd6b3b
|
def reshape(a, recshape=None):
'Convert a nested, non-string iterable into a flat generator and its shape.\n Raggedly shaped data will be processed recursively by calling recshape.\n If recshape is None, then ragged data wil raise ShapeError.\n To leave ragged data unshaped, pass recshape=unshape.\n '
if (isinstance(a, Shaped) and (not isinstance(a, View))):
return (a.data, a.shape)
elif (isinstance(a, Iterable) and (not isinstance(a, str))):
data = []
shape = False
ragged = False
shapes = None
for elt in a:
(subtensor, subshape) = reshape(elt, recshape=recshape)
data.append(subtensor)
if (shape is False):
shape = subshape
elif ragged:
shapes.append(subshape)
elif (shape != subshape):
if (recshape is None):
raise ShapeError(f'array has ragged shape: expecting {shape!r}, got {subshape!r}')
ragged = True
shapes = ([shape] * (len(data) - 1))
shapes.append(subshape)
if ragged:
return (((recshape(subtensor, subshape) if subshape else subtensor) for (subtensor, subshape) in zip(data, shapes)), (len(data),))
elif shape:
return ((elt for subtensor in data for elt in subtensor), (len(data), *shape))
else:
return (data, (len(data),))
else:
return (a, ())
|
Convert a nested, non-string iterable into a flat generator and its shape.
Raggedly shaped data will be processed recursively by calling recshape.
If recshape is None, then ragged data wil raise ShapeError.
To leave ragged data unshaped, pass recshape=unshape.
|
titanfp/titanic/ndarray.py
|
reshape
|
billzorn/fpunreal
| 4 |
python
|
def reshape(a, recshape=None):
'Convert a nested, non-string iterable into a flat generator and its shape.\n Raggedly shaped data will be processed recursively by calling recshape.\n If recshape is None, then ragged data wil raise ShapeError.\n To leave ragged data unshaped, pass recshape=unshape.\n '
if (isinstance(a, Shaped) and (not isinstance(a, View))):
return (a.data, a.shape)
elif (isinstance(a, Iterable) and (not isinstance(a, str))):
data = []
shape = False
ragged = False
shapes = None
for elt in a:
(subtensor, subshape) = reshape(elt, recshape=recshape)
data.append(subtensor)
if (shape is False):
shape = subshape
elif ragged:
shapes.append(subshape)
elif (shape != subshape):
if (recshape is None):
raise ShapeError(f'array has ragged shape: expecting {shape!r}, got {subshape!r}')
ragged = True
shapes = ([shape] * (len(data) - 1))
shapes.append(subshape)
if ragged:
return (((recshape(subtensor, subshape) if subshape else subtensor) for (subtensor, subshape) in zip(data, shapes)), (len(data),))
elif shape:
return ((elt for subtensor in data for elt in subtensor), (len(data), *shape))
else:
return (data, (len(data),))
else:
return (a, ())
|
def reshape(a, recshape=None):
'Convert a nested, non-string iterable into a flat generator and its shape.\n Raggedly shaped data will be processed recursively by calling recshape.\n If recshape is None, then ragged data wil raise ShapeError.\n To leave ragged data unshaped, pass recshape=unshape.\n '
if (isinstance(a, Shaped) and (not isinstance(a, View))):
return (a.data, a.shape)
elif (isinstance(a, Iterable) and (not isinstance(a, str))):
data = []
shape = False
ragged = False
shapes = None
for elt in a:
(subtensor, subshape) = reshape(elt, recshape=recshape)
data.append(subtensor)
if (shape is False):
shape = subshape
elif ragged:
shapes.append(subshape)
elif (shape != subshape):
if (recshape is None):
raise ShapeError(f'array has ragged shape: expecting {shape!r}, got {subshape!r}')
ragged = True
shapes = ([shape] * (len(data) - 1))
shapes.append(subshape)
if ragged:
return (((recshape(subtensor, subshape) if subshape else subtensor) for (subtensor, subshape) in zip(data, shapes)), (len(data),))
elif shape:
return ((elt for subtensor in data for elt in subtensor), (len(data), *shape))
else:
return (data, (len(data),))
else:
return (a, ())<|docstring|>Convert a nested, non-string iterable into a flat generator and its shape.
Raggedly shaped data will be processed recursively by calling recshape.
If recshape is None, then ragged data wil raise ShapeError.
To leave ragged data unshaped, pass recshape=unshape.<|endoftext|>
|
1e76c5e350fc96dd064a1bb4a23e45451df67666d104a81444ddbb95a5272332
|
def unshape_tuple(data, shape):
'Expand a flat iterable and its shape into a nested tuple.\n '
a = data
for dim in reversed(shape[1:]):
a = zip(*([iter(a)] * dim))
return tuple(a)
|
Expand a flat iterable and its shape into a nested tuple.
|
titanfp/titanic/ndarray.py
|
unshape_tuple
|
billzorn/fpunreal
| 4 |
python
|
def unshape_tuple(data, shape):
'\n '
a = data
for dim in reversed(shape[1:]):
a = zip(*([iter(a)] * dim))
return tuple(a)
|
def unshape_tuple(data, shape):
'\n '
a = data
for dim in reversed(shape[1:]):
a = zip(*([iter(a)] * dim))
return tuple(a)<|docstring|>Expand a flat iterable and its shape into a nested tuple.<|endoftext|>
|
dde06d46b03b19604d824d010d787a2d5640b0da6c4759c1aac6825b3b621797
|
def unshape_list(data, shape):
'Expand a flat list and its shape into a nested list.\n '
a = data
for dim in reversed(shape[1:]):
a = [a[(chunk * dim):((chunk + 1) * dim)] for chunk in range((len(a) // dim))]
return a
|
Expand a flat list and its shape into a nested list.
|
titanfp/titanic/ndarray.py
|
unshape_list
|
billzorn/fpunreal
| 4 |
python
|
def unshape_list(data, shape):
'\n '
a = data
for dim in reversed(shape[1:]):
a = [a[(chunk * dim):((chunk + 1) * dim)] for chunk in range((len(a) // dim))]
return a
|
def unshape_list(data, shape):
'\n '
a = data
for dim in reversed(shape[1:]):
a = [a[(chunk * dim):((chunk + 1) * dim)] for chunk in range((len(a) // dim))]
return a<|docstring|>Expand a flat list and its shape into a nested list.<|endoftext|>
|
978ba36717f50178de977e87b75fb243d3be6aee795806ddcff6bd3181d6ca9c
|
def unshape_gen(data, shape):
'Expand a flat list and its shape into a nested generator.\n '
a = data
for dim in reversed(shape[1:]):
a = (a[(chunk * dim):((chunk + 1) * dim)] for chunk in range((len(a) // dim)))
return a
|
Expand a flat list and its shape into a nested generator.
|
titanfp/titanic/ndarray.py
|
unshape_gen
|
billzorn/fpunreal
| 4 |
python
|
def unshape_gen(data, shape):
'\n '
a = data
for dim in reversed(shape[1:]):
a = (a[(chunk * dim):((chunk + 1) * dim)] for chunk in range((len(a) // dim)))
return a
|
def unshape_gen(data, shape):
'\n '
a = data
for dim in reversed(shape[1:]):
a = (a[(chunk * dim):((chunk + 1) * dim)] for chunk in range((len(a) // dim)))
return a<|docstring|>Expand a flat list and its shape into a nested generator.<|endoftext|>
|
a327ba1f1f3e87d84a764dc061728171f3aed8ca83a8c08a9830691da4a84eba
|
def describe(a, descr=repr, sep=', ', lparen='(', rparen=')'):
'Convert a shaped or unshaped iterable into a one-line string,\n using the provided printing method and separators.\n '
if (isinstance(a, Iterable) and (not isinstance(a, str))):
return ''.join([lparen, sep.join((describe(elt, descr=descr, sep=sep, lparen=lparen, rparen=rparen) for elt in a)), rparen])
else:
return descr(a)
|
Convert a shaped or unshaped iterable into a one-line string,
using the provided printing method and separators.
|
titanfp/titanic/ndarray.py
|
describe
|
billzorn/fpunreal
| 4 |
python
|
def describe(a, descr=repr, sep=', ', lparen='(', rparen=')'):
'Convert a shaped or unshaped iterable into a one-line string,\n using the provided printing method and separators.\n '
if (isinstance(a, Iterable) and (not isinstance(a, str))):
return .join([lparen, sep.join((describe(elt, descr=descr, sep=sep, lparen=lparen, rparen=rparen) for elt in a)), rparen])
else:
return descr(a)
|
def describe(a, descr=repr, sep=', ', lparen='(', rparen=')'):
'Convert a shaped or unshaped iterable into a one-line string,\n using the provided printing method and separators.\n '
if (isinstance(a, Iterable) and (not isinstance(a, str))):
return .join([lparen, sep.join((describe(elt, descr=descr, sep=sep, lparen=lparen, rparen=rparen) for elt in a)), rparen])
else:
return descr(a)<|docstring|>Convert a shaped or unshaped iterable into a one-line string,
using the provided printing method and separators.<|endoftext|>
|
16ec861dc4a0c96367d3b44ad1ed28d809cd7b7a3c4860f644edbd2348e56a0a
|
def describe_nd(a, descr=repr, dimsep=dimsep_array, lparen='(', rparen=')', depth=0):
'Convert a shaped or unshaped iterable into a string and a count of dimensions,\n using the provided printing method and separators.\n dimsep is a function that computes the separator given a logical depth and height\n from the top and bottom of the data structure, and the parentheses.\n '
if (isinstance(a, Iterable) and (not isinstance(a, str))):
if a:
(rows, heights) = zip(*(describe_nd(elt, descr=descr, dimsep=dimsep, lparen=lparen, rparen=rparen, depth=(depth + 1)) for elt in a))
height = (max(heights) + 1)
sep = dimsep(depth, height, lparen, rparen)
return (''.join([lparen, sep.join(rows), rparen]), height)
else:
return ((lparen + rparen), 1)
else:
return (descr(a), 0)
|
Convert a shaped or unshaped iterable into a string and a count of dimensions,
using the provided printing method and separators.
dimsep is a function that computes the separator given a logical depth and height
from the top and bottom of the data structure, and the parentheses.
|
titanfp/titanic/ndarray.py
|
describe_nd
|
billzorn/fpunreal
| 4 |
python
|
def describe_nd(a, descr=repr, dimsep=dimsep_array, lparen='(', rparen=')', depth=0):
'Convert a shaped or unshaped iterable into a string and a count of dimensions,\n using the provided printing method and separators.\n dimsep is a function that computes the separator given a logical depth and height\n from the top and bottom of the data structure, and the parentheses.\n '
if (isinstance(a, Iterable) and (not isinstance(a, str))):
if a:
(rows, heights) = zip(*(describe_nd(elt, descr=descr, dimsep=dimsep, lparen=lparen, rparen=rparen, depth=(depth + 1)) for elt in a))
height = (max(heights) + 1)
sep = dimsep(depth, height, lparen, rparen)
return (.join([lparen, sep.join(rows), rparen]), height)
else:
return ((lparen + rparen), 1)
else:
return (descr(a), 0)
|
def describe_nd(a, descr=repr, dimsep=dimsep_array, lparen='(', rparen=')', depth=0):
'Convert a shaped or unshaped iterable into a string and a count of dimensions,\n using the provided printing method and separators.\n dimsep is a function that computes the separator given a logical depth and height\n from the top and bottom of the data structure, and the parentheses.\n '
if (isinstance(a, Iterable) and (not isinstance(a, str))):
if a:
(rows, heights) = zip(*(describe_nd(elt, descr=descr, dimsep=dimsep, lparen=lparen, rparen=rparen, depth=(depth + 1)) for elt in a))
height = (max(heights) + 1)
sep = dimsep(depth, height, lparen, rparen)
return (.join([lparen, sep.join(rows), rparen]), height)
else:
return ((lparen + rparen), 1)
else:
return (descr(a), 0)<|docstring|>Convert a shaped or unshaped iterable into a string and a count of dimensions,
using the provided printing method and separators.
dimsep is a function that computes the separator given a logical depth and height
from the top and bottom of the data structure, and the parentheses.<|endoftext|>
|
b711967069254a36e269af2ac96d111c8e0e3b0591b603401fa7328eb1e22e20
|
def locate(shape, pos):
'Given a shape and a position vector, return the index of that position in the flat array.\n '
idx = 0
scale = 1
for (dim, coord) in zip(reversed(shape), reversed(pos)):
idx += (coord * scale)
scale *= dim
return idx
|
Given a shape and a position vector, return the index of that position in the flat array.
|
titanfp/titanic/ndarray.py
|
locate
|
billzorn/fpunreal
| 4 |
python
|
def locate(shape, pos):
'\n '
idx = 0
scale = 1
for (dim, coord) in zip(reversed(shape), reversed(pos)):
idx += (coord * scale)
scale *= dim
return idx
|
def locate(shape, pos):
'\n '
idx = 0
scale = 1
for (dim, coord) in zip(reversed(shape), reversed(pos)):
idx += (coord * scale)
scale *= dim
return idx<|docstring|>Given a shape and a position vector, return the index of that position in the flat array.<|endoftext|>
|
7f060b6f522785774e35cd6a883950cd93448eacfe8bc4eca5080ad9cd72ea55
|
def position(shape, idx):
'Given a shape and a flat index, return the corresponding position vector.\n '
quot = idx
pos = []
for dim in reversed(shape):
(quot, rem) = divmod(quot, dim)
pos.append(rem)
return tuple(reversed(pos))
|
Given a shape and a flat index, return the corresponding position vector.
|
titanfp/titanic/ndarray.py
|
position
|
billzorn/fpunreal
| 4 |
python
|
def position(shape, idx):
'\n '
quot = idx
pos = []
for dim in reversed(shape):
(quot, rem) = divmod(quot, dim)
pos.append(rem)
return tuple(reversed(pos))
|
def position(shape, idx):
'\n '
quot = idx
pos = []
for dim in reversed(shape):
(quot, rem) = divmod(quot, dim)
pos.append(rem)
return tuple(reversed(pos))<|docstring|>Given a shape and a flat index, return the corresponding position vector.<|endoftext|>
|
569b0acbcc486ba568b1b9d987ab4c2d39bc113c3f20c021cc282468b4f3b76e
|
def check_bounds(shape, pos):
'Given a shape, check if a position vector is in bounds for that shape.\n Raises IndexError if the position is out of bounds.\n '
for (dim, coord) in zip(shape, pos):
if ((coord < 0) or (dim <= coord)):
raise IndexError(f'{pos!r} out of range for shape {shape!r}')
|
Given a shape, check if a position vector is in bounds for that shape.
Raises IndexError if the position is out of bounds.
|
titanfp/titanic/ndarray.py
|
check_bounds
|
billzorn/fpunreal
| 4 |
python
|
def check_bounds(shape, pos):
'Given a shape, check if a position vector is in bounds for that shape.\n Raises IndexError if the position is out of bounds.\n '
for (dim, coord) in zip(shape, pos):
if ((coord < 0) or (dim <= coord)):
raise IndexError(f'{pos!r} out of range for shape {shape!r}')
|
def check_bounds(shape, pos):
'Given a shape, check if a position vector is in bounds for that shape.\n Raises IndexError if the position is out of bounds.\n '
for (dim, coord) in zip(shape, pos):
if ((coord < 0) or (dim <= coord)):
raise IndexError(f'{pos!r} out of range for shape {shape!r}')<|docstring|>Given a shape, check if a position vector is in bounds for that shape.
Raises IndexError if the position is out of bounds.<|endoftext|>
|
7a9589bf9970c99b7df2179a92ec0082f0dba5d45ef5792b8600fcbe212fa479
|
def calc_size(shape):
'Compute the size of a shape (the len of the backing flat array).\n '
if shape:
scale = 1
for dim in shape:
scale *= dim
return scale
else:
return 0
|
Compute the size of a shape (the len of the backing flat array).
|
titanfp/titanic/ndarray.py
|
calc_size
|
billzorn/fpunreal
| 4 |
python
|
def calc_size(shape):
'\n '
if shape:
scale = 1
for dim in shape:
scale *= dim
return scale
else:
return 0
|
def calc_size(shape):
'\n '
if shape:
scale = 1
for dim in shape:
scale *= dim
return scale
else:
return 0<|docstring|>Compute the size of a shape (the len of the backing flat array).<|endoftext|>
|
3f9c2878f8db67a835460edb6bb0eafdaf380a4015fdb904a811febd67cebc49
|
def check_size(data, shape):
'Given a shape and a flat sequence, check if the sequence has the expected length.\n Raises ShapeError if the length is wrong.\n '
if shape:
scale = 1
for dim in shape:
scale *= dim
else:
scale = 0
if (len(data) != scale):
raise ShapeError(f'shape {shape!r} should have total size {scale!s}, got {len(data)!s}')
|
Given a shape and a flat sequence, check if the sequence has the expected length.
Raises ShapeError if the length is wrong.
|
titanfp/titanic/ndarray.py
|
check_size
|
billzorn/fpunreal
| 4 |
python
|
def check_size(data, shape):
'Given a shape and a flat sequence, check if the sequence has the expected length.\n Raises ShapeError if the length is wrong.\n '
if shape:
scale = 1
for dim in shape:
scale *= dim
else:
scale = 0
if (len(data) != scale):
raise ShapeError(f'shape {shape!r} should have total size {scale!s}, got {len(data)!s}')
|
def check_size(data, shape):
'Given a shape and a flat sequence, check if the sequence has the expected length.\n Raises ShapeError if the length is wrong.\n '
if shape:
scale = 1
for dim in shape:
scale *= dim
else:
scale = 0
if (len(data) != scale):
raise ShapeError(f'shape {shape!r} should have total size {scale!s}, got {len(data)!s}')<|docstring|>Given a shape and a flat sequence, check if the sequence has the expected length.
Raises ShapeError if the length is wrong.<|endoftext|>
|
bf52dc4f02b85a272299c58ce5f70f8f961532c60454187bf53123b7c477d24f
|
def calc_strides(shape):
'Calculate stride values for a shape.\n Returns the computed strides, and the overall size of the shape.\n '
if shape:
scale = 1
strides = []
for dim in reversed(shape):
strides.append(scale)
scale *= dim
return (tuple(reversed(strides)), scale)
else:
return ((), 0)
|
Calculate stride values for a shape.
Returns the computed strides, and the overall size of the shape.
|
titanfp/titanic/ndarray.py
|
calc_strides
|
billzorn/fpunreal
| 4 |
python
|
def calc_strides(shape):
'Calculate stride values for a shape.\n Returns the computed strides, and the overall size of the shape.\n '
if shape:
scale = 1
strides = []
for dim in reversed(shape):
strides.append(scale)
scale *= dim
return (tuple(reversed(strides)), scale)
else:
return ((), 0)
|
def calc_strides(shape):
'Calculate stride values for a shape.\n Returns the computed strides, and the overall size of the shape.\n '
if shape:
scale = 1
strides = []
for dim in reversed(shape):
strides.append(scale)
scale *= dim
return (tuple(reversed(strides)), scale)
else:
return ((), 0)<|docstring|>Calculate stride values for a shape.
Returns the computed strides, and the overall size of the shape.<|endoftext|>
|
a61234325afe805fce013a5a8b379c33fe5a48db64feca185f16d9b7b2cfe8e1
|
def calc_offset(shape, strides, lookup):
'Given a shape with strides and a lookup, calculate a start offset and new strides.\n Returns the start offset, the new shape, the new strides, and the rest of the lookup.\n '
new_shape = []
new_strides = []
start = 0
fused = 0
for (dim, stride, query) in zip(shape, strides, lookup):
if isinstance(query, int):
if (query < 0):
query = (dim - query)
if ((query < 0) or (dim <= query)):
raise IndexError(f'index {query!r} out of range for dimension {fused!s} of shape {shape!r}')
start += (stride * query)
elif isinstance(query, slice):
raise NotImplementedError('slicing currently not supported')
(q_start, q_stop, q_stride) = query.indices(dim)
extent = (q_stop - q_start)
new_shape.append(max(0, (extent // q_stride)))
new_strides.append((stride * q_stride))
start += (q_start * stride)
else:
raise TypeError(f'index for dimension {fused!s} must be integer or slice, got {query!r}')
fused += 1
return (start, (*new_shape, *shape[fused:]), (*new_strides, *strides[fused:]), tuple(lookup[fused:]))
|
Given a shape with strides and a lookup, calculate a start offset and new strides.
Returns the start offset, the new shape, the new strides, and the rest of the lookup.
|
titanfp/titanic/ndarray.py
|
calc_offset
|
billzorn/fpunreal
| 4 |
python
|
def calc_offset(shape, strides, lookup):
'Given a shape with strides and a lookup, calculate a start offset and new strides.\n Returns the start offset, the new shape, the new strides, and the rest of the lookup.\n '
new_shape = []
new_strides = []
start = 0
fused = 0
for (dim, stride, query) in zip(shape, strides, lookup):
if isinstance(query, int):
if (query < 0):
query = (dim - query)
if ((query < 0) or (dim <= query)):
raise IndexError(f'index {query!r} out of range for dimension {fused!s} of shape {shape!r}')
start += (stride * query)
elif isinstance(query, slice):
raise NotImplementedError('slicing currently not supported')
(q_start, q_stop, q_stride) = query.indices(dim)
extent = (q_stop - q_start)
new_shape.append(max(0, (extent // q_stride)))
new_strides.append((stride * q_stride))
start += (q_start * stride)
else:
raise TypeError(f'index for dimension {fused!s} must be integer or slice, got {query!r}')
fused += 1
return (start, (*new_shape, *shape[fused:]), (*new_strides, *strides[fused:]), tuple(lookup[fused:]))
|
def calc_offset(shape, strides, lookup):
'Given a shape with strides and a lookup, calculate a start offset and new strides.\n Returns the start offset, the new shape, the new strides, and the rest of the lookup.\n '
new_shape = []
new_strides = []
start = 0
fused = 0
for (dim, stride, query) in zip(shape, strides, lookup):
if isinstance(query, int):
if (query < 0):
query = (dim - query)
if ((query < 0) or (dim <= query)):
raise IndexError(f'index {query!r} out of range for dimension {fused!s} of shape {shape!r}')
start += (stride * query)
elif isinstance(query, slice):
raise NotImplementedError('slicing currently not supported')
(q_start, q_stop, q_stride) = query.indices(dim)
extent = (q_stop - q_start)
new_shape.append(max(0, (extent // q_stride)))
new_strides.append((stride * q_stride))
start += (q_start * stride)
else:
raise TypeError(f'index for dimension {fused!s} must be integer or slice, got {query!r}')
fused += 1
return (start, (*new_shape, *shape[fused:]), (*new_strides, *strides[fused:]), tuple(lookup[fused:]))<|docstring|>Given a shape with strides and a lookup, calculate a start offset and new strides.
Returns the start offset, the new shape, the new strides, and the rest of the lookup.<|endoftext|>
|
9611c8697ea2d4f35185dd0c1a0e3580d7c7a231859cd0142d47d1f815c4be1c
|
def check_offset(data, shape, start, strides):
'Check if a shape with a start offset and given strides is in bounds for some backing list.\n Raises ShapeError if the shape does not fit within the data.\n '
min_offset = 0
max_offset = 0
for (dim, stride) in zip(shape, strides):
offset = (max(0, (dim - 1)) * stride)
if (offset < 0):
min_offset += offset
else:
max_offset += offset
if (((start + min_offset) < 0) or (len(data) <= (start + max_offset))):
raise ShapeError(f'shape {shape!r} with strides {strides!r} extends from {(start + min_offset)!s} to {(start + max_offset)!s}, out of bounds for data with length {len(data)!s}')
|
Check if a shape with a start offset and given strides is in bounds for some backing list.
Raises ShapeError if the shape does not fit within the data.
|
titanfp/titanic/ndarray.py
|
check_offset
|
billzorn/fpunreal
| 4 |
python
|
def check_offset(data, shape, start, strides):
'Check if a shape with a start offset and given strides is in bounds for some backing list.\n Raises ShapeError if the shape does not fit within the data.\n '
min_offset = 0
max_offset = 0
for (dim, stride) in zip(shape, strides):
offset = (max(0, (dim - 1)) * stride)
if (offset < 0):
min_offset += offset
else:
max_offset += offset
if (((start + min_offset) < 0) or (len(data) <= (start + max_offset))):
raise ShapeError(f'shape {shape!r} with strides {strides!r} extends from {(start + min_offset)!s} to {(start + max_offset)!s}, out of bounds for data with length {len(data)!s}')
|
def check_offset(data, shape, start, strides):
'Check if a shape with a start offset and given strides is in bounds for some backing list.\n Raises ShapeError if the shape does not fit within the data.\n '
min_offset = 0
max_offset = 0
for (dim, stride) in zip(shape, strides):
offset = (max(0, (dim - 1)) * stride)
if (offset < 0):
min_offset += offset
else:
max_offset += offset
if (((start + min_offset) < 0) or (len(data) <= (start + max_offset))):
raise ShapeError(f'shape {shape!r} with strides {strides!r} extends from {(start + min_offset)!s} to {(start + max_offset)!s}, out of bounds for data with length {len(data)!s}')<|docstring|>Check if a shape with a start offset and given strides is in bounds for some backing list.
Raises ShapeError if the shape does not fit within the data.<|endoftext|>
|
c5c06fdf353370c38c0b5d92a14073625142b2e8ed240064b1b97c84dbe6f1df
|
def _mk_view(cls):
"Create a new view type from an existing n-dimensional sequence type.\n\n Due to the way inheritance works with assigning to __class__\n it is necessary that the derived view type inherit directly from the base sequence type\n or we won't be able to reify due to differing object layout.\n\n The only way to implement this inheritance pattern\n without duplicating the full implementation of the view type\n is to create each view type dynamically.\n "
class NewView(cls, View):
'An offset view of an n-dimensional sequence.'
@property
def data(self):
self.reify()
return self._data
@property
def shape(self):
self.reify()
return self._shape
@property
def size(self):
self.reify()
return self._size
@property
def strides(self):
self.reify()
return self._strides
@property
def start(self):
return self._start
def reify(self):
cls = self.real_type
(data_gen, shape) = reshape(self, recshape=cls)
self._data = self.backing_type(data_gen)
self._shape = shape
(self._strides, self._size) = calc_strides(self._shape)
del self._start
self.__class__ = cls
def __init__(self, data, shape, start=0, strides=None):
self._data = data
self._shape = shape
self._start = start
if strides:
self._strides = strides
self._size = calc_size(self._shape)
else:
(self._strides, self._size) = calc_strides(self._shape)
check_offset(self._data, self._shape, self._start, self._strides)
_data_size_abs_threshold = 64
_data_size_rel_threshold = 0.5
def __repr__(self):
dlen = len(self._data)
if ((dlen <= self._data_size_abs_threshold) or ((self._size / dlen) >= _data_size_rel_threshold)):
dstr = repr(self._data)
else:
dstr = f"'{type(self._data).__name__}' object of length {dlen!s}"
return f'{type(self).__name__}({dstr}, {self._shape!r}, start={self._start!s}, strides={self._strides!r})'
NewView.__name__ = (cls.__name__ + 'View')
return NewView
|
Create a new view type from an existing n-dimensional sequence type.
Due to the way inheritance works with assigning to __class__
it is necessary that the derived view type inherit directly from the base sequence type
or we won't be able to reify due to differing object layout.
The only way to implement this inheritance pattern
without duplicating the full implementation of the view type
is to create each view type dynamically.
|
titanfp/titanic/ndarray.py
|
_mk_view
|
billzorn/fpunreal
| 4 |
python
|
def _mk_view(cls):
"Create a new view type from an existing n-dimensional sequence type.\n\n Due to the way inheritance works with assigning to __class__\n it is necessary that the derived view type inherit directly from the base sequence type\n or we won't be able to reify due to differing object layout.\n\n The only way to implement this inheritance pattern\n without duplicating the full implementation of the view type\n is to create each view type dynamically.\n "
class NewView(cls, View):
'An offset view of an n-dimensional sequence.'
@property
def data(self):
self.reify()
return self._data
@property
def shape(self):
self.reify()
return self._shape
@property
def size(self):
self.reify()
return self._size
@property
def strides(self):
self.reify()
return self._strides
@property
def start(self):
return self._start
def reify(self):
cls = self.real_type
(data_gen, shape) = reshape(self, recshape=cls)
self._data = self.backing_type(data_gen)
self._shape = shape
(self._strides, self._size) = calc_strides(self._shape)
del self._start
self.__class__ = cls
def __init__(self, data, shape, start=0, strides=None):
self._data = data
self._shape = shape
self._start = start
if strides:
self._strides = strides
self._size = calc_size(self._shape)
else:
(self._strides, self._size) = calc_strides(self._shape)
check_offset(self._data, self._shape, self._start, self._strides)
_data_size_abs_threshold = 64
_data_size_rel_threshold = 0.5
def __repr__(self):
dlen = len(self._data)
if ((dlen <= self._data_size_abs_threshold) or ((self._size / dlen) >= _data_size_rel_threshold)):
dstr = repr(self._data)
else:
dstr = f"'{type(self._data).__name__}' object of length {dlen!s}"
return f'{type(self).__name__}({dstr}, {self._shape!r}, start={self._start!s}, strides={self._strides!r})'
NewView.__name__ = (cls.__name__ + 'View')
return NewView
|
def _mk_view(cls):
"Create a new view type from an existing n-dimensional sequence type.\n\n Due to the way inheritance works with assigning to __class__\n it is necessary that the derived view type inherit directly from the base sequence type\n or we won't be able to reify due to differing object layout.\n\n The only way to implement this inheritance pattern\n without duplicating the full implementation of the view type\n is to create each view type dynamically.\n "
class NewView(cls, View):
'An offset view of an n-dimensional sequence.'
@property
def data(self):
self.reify()
return self._data
@property
def shape(self):
self.reify()
return self._shape
@property
def size(self):
self.reify()
return self._size
@property
def strides(self):
self.reify()
return self._strides
@property
def start(self):
return self._start
def reify(self):
cls = self.real_type
(data_gen, shape) = reshape(self, recshape=cls)
self._data = self.backing_type(data_gen)
self._shape = shape
(self._strides, self._size) = calc_strides(self._shape)
del self._start
self.__class__ = cls
def __init__(self, data, shape, start=0, strides=None):
self._data = data
self._shape = shape
self._start = start
if strides:
self._strides = strides
self._size = calc_size(self._shape)
else:
(self._strides, self._size) = calc_strides(self._shape)
check_offset(self._data, self._shape, self._start, self._strides)
_data_size_abs_threshold = 64
_data_size_rel_threshold = 0.5
def __repr__(self):
dlen = len(self._data)
if ((dlen <= self._data_size_abs_threshold) or ((self._size / dlen) >= _data_size_rel_threshold)):
dstr = repr(self._data)
else:
dstr = f"'{type(self._data).__name__}' object of length {dlen!s}"
return f'{type(self).__name__}({dstr}, {self._shape!r}, start={self._start!s}, strides={self._strides!r})'
NewView.__name__ = (cls.__name__ + 'View')
return NewView<|docstring|>Create a new view type from an existing n-dimensional sequence type.
Due to the way inheritance works with assigning to __class__
it is necessary that the derived view type inherit directly from the base sequence type
or we won't be able to reify due to differing object layout.
The only way to implement this inheritance pattern
without duplicating the full implementation of the view type
is to create each view type dynamically.<|endoftext|>
|
7ddf55fb2fb9ae22f49e46e736a54f7764b7636e45260500b2666d50800b0963
|
def forward(self, input_ids, attention_mask):
'\n\t\tInputs:\n\t\t\t-input_ids : Tensor of shape [B, T] containing token ids of sequences\n\t\t\t-attention_mask : Tensor of shape [B, T] containing attention masks to be used to avoid contibution of PAD tokens\n\t\t\t(where B is the batch size and T is the input length)\n\t\t'
(reps, _) = self.bert(input_ids=input_ids, attention_mask=attention_mask)
cls_reps = reps[(:, 0)]
logits = self.cls_layer(cls_reps)
return logits
|
Inputs:
-input_ids : Tensor of shape [B, T] containing token ids of sequences
-attention_mask : Tensor of shape [B, T] containing attention masks to be used to avoid contibution of PAD tokens
(where B is the batch size and T is the input length)
|
language/models.py
|
forward
|
MadryLab/DebuggableDeepNetworks
| 32 |
python
|
def forward(self, input_ids, attention_mask):
'\n\t\tInputs:\n\t\t\t-input_ids : Tensor of shape [B, T] containing token ids of sequences\n\t\t\t-attention_mask : Tensor of shape [B, T] containing attention masks to be used to avoid contibution of PAD tokens\n\t\t\t(where B is the batch size and T is the input length)\n\t\t'
(reps, _) = self.bert(input_ids=input_ids, attention_mask=attention_mask)
cls_reps = reps[(:, 0)]
logits = self.cls_layer(cls_reps)
return logits
|
def forward(self, input_ids, attention_mask):
'\n\t\tInputs:\n\t\t\t-input_ids : Tensor of shape [B, T] containing token ids of sequences\n\t\t\t-attention_mask : Tensor of shape [B, T] containing attention masks to be used to avoid contibution of PAD tokens\n\t\t\t(where B is the batch size and T is the input length)\n\t\t'
(reps, _) = self.bert(input_ids=input_ids, attention_mask=attention_mask)
cls_reps = reps[(:, 0)]
logits = self.cls_layer(cls_reps)
return logits<|docstring|>Inputs:
-input_ids : Tensor of shape [B, T] containing token ids of sequences
-attention_mask : Tensor of shape [B, T] containing attention masks to be used to avoid contibution of PAD tokens
(where B is the batch size and T is the input length)<|endoftext|>
|
c13d0da99f854fbc3612926c761c086e9678a58aa41a46502dc525cd17d6308f
|
def memoized_parse_block(code):
'Memoized version of parse_block.'
try:
result = parse_block_memo[code]
except KeyError:
try:
parsed = COMPILER.parse_block(code)
except Exception as err:
result = err
else:
result = parsed
parse_block_memo[code] = result
if isinstance(result, Exception):
raise result
else:
return result
|
Memoized version of parse_block.
|
coconut/icoconut/root.py
|
memoized_parse_block
|
CS121Fresh/runner
| 0 |
python
|
def memoized_parse_block(code):
try:
result = parse_block_memo[code]
except KeyError:
try:
parsed = COMPILER.parse_block(code)
except Exception as err:
result = err
else:
result = parsed
parse_block_memo[code] = result
if isinstance(result, Exception):
raise result
else:
return result
|
def memoized_parse_block(code):
try:
result = parse_block_memo[code]
except KeyError:
try:
parsed = COMPILER.parse_block(code)
except Exception as err:
result = err
else:
result = parsed
parse_block_memo[code] = result
if isinstance(result, Exception):
raise result
else:
return result<|docstring|>Memoized version of parse_block.<|endoftext|>
|
a33334254ba87823bedf4ba1057dc0a111e0be6434295bb9eb5768e192447918
|
def memoized_parse_sys(code):
'Memoized version of parse_sys.'
return COMPILER.header_proc(memoized_parse_block(code), header='sys', initial='none')
|
Memoized version of parse_sys.
|
coconut/icoconut/root.py
|
memoized_parse_sys
|
CS121Fresh/runner
| 0 |
python
|
def memoized_parse_sys(code):
return COMPILER.header_proc(memoized_parse_block(code), header='sys', initial='none')
|
def memoized_parse_sys(code):
return COMPILER.header_proc(memoized_parse_block(code), header='sys', initial='none')<|docstring|>Memoized version of parse_sys.<|endoftext|>
|
635ebafe3bb7654d5161aa82bc527ec30a8f8af4acdf370fe2d9cfd5d59da34e
|
def ast_parse(self, source, *args, **kwargs):
'Version of ast_parse that compiles Coconut code first.'
try:
compiled = memoized_parse_sys(source)
except CoconutException as err:
raise err.syntax_err()
else:
return super(CoconutCompiler, self).ast_parse(compiled, *args, **kwargs)
|
Version of ast_parse that compiles Coconut code first.
|
coconut/icoconut/root.py
|
ast_parse
|
CS121Fresh/runner
| 0 |
python
|
def ast_parse(self, source, *args, **kwargs):
try:
compiled = memoized_parse_sys(source)
except CoconutException as err:
raise err.syntax_err()
else:
return super(CoconutCompiler, self).ast_parse(compiled, *args, **kwargs)
|
def ast_parse(self, source, *args, **kwargs):
try:
compiled = memoized_parse_sys(source)
except CoconutException as err:
raise err.syntax_err()
else:
return super(CoconutCompiler, self).ast_parse(compiled, *args, **kwargs)<|docstring|>Version of ast_parse that compiles Coconut code first.<|endoftext|>
|
f6394d331642d6000f480ff0dc1d89d8c9c6906f7125cb94e28f6f81b3254f19
|
def cache(self, code, *args, **kwargs):
'Version of cache that compiles Coconut code first.'
try:
compiled = memoized_parse_sys(code)
except CoconutException:
traceback.print_exc()
return None
else:
return super(CoconutCompiler, self).cache(compiled, *args, **kwargs)
|
Version of cache that compiles Coconut code first.
|
coconut/icoconut/root.py
|
cache
|
CS121Fresh/runner
| 0 |
python
|
def cache(self, code, *args, **kwargs):
try:
compiled = memoized_parse_sys(code)
except CoconutException:
traceback.print_exc()
return None
else:
return super(CoconutCompiler, self).cache(compiled, *args, **kwargs)
|
def cache(self, code, *args, **kwargs):
try:
compiled = memoized_parse_sys(code)
except CoconutException:
traceback.print_exc()
return None
else:
return super(CoconutCompiler, self).cache(compiled, *args, **kwargs)<|docstring|>Version of cache that compiles Coconut code first.<|endoftext|>
|
9b3df0f3d55d643327cc78f030f7493e62130a909eaf1d2f93532f96c1e944e7
|
def __init__(self, *args, **kwargs):
'Version of __init__ that sets up Coconut code compilation.'
super(CoconutSplitter, self).__init__(*args, **kwargs)
self._compile = self._coconut_compile
|
Version of __init__ that sets up Coconut code compilation.
|
coconut/icoconut/root.py
|
__init__
|
CS121Fresh/runner
| 0 |
python
|
def __init__(self, *args, **kwargs):
super(CoconutSplitter, self).__init__(*args, **kwargs)
self._compile = self._coconut_compile
|
def __init__(self, *args, **kwargs):
super(CoconutSplitter, self).__init__(*args, **kwargs)
self._compile = self._coconut_compile<|docstring|>Version of __init__ that sets up Coconut code compilation.<|endoftext|>
|
1aae8dc460325507b4d05e801c5dfec61755b35e8747c9676dd5c146db8316cb
|
def _coconut_compile(self, source, *args, **kwargs):
'Version of _compile that checks Coconut code.\n None means that the code should not be run as is.\n Any other value means that it can.'
if source.endswith('\n\n'):
return True
elif should_indent(source):
return None
else:
return True
|
Version of _compile that checks Coconut code.
None means that the code should not be run as is.
Any other value means that it can.
|
coconut/icoconut/root.py
|
_coconut_compile
|
CS121Fresh/runner
| 0 |
python
|
def _coconut_compile(self, source, *args, **kwargs):
'Version of _compile that checks Coconut code.\n None means that the code should not be run as is.\n Any other value means that it can.'
if source.endswith('\n\n'):
return True
elif should_indent(source):
return None
else:
return True
|
def _coconut_compile(self, source, *args, **kwargs):
'Version of _compile that checks Coconut code.\n None means that the code should not be run as is.\n Any other value means that it can.'
if source.endswith('\n\n'):
return True
elif should_indent(source):
return None
else:
return True<|docstring|>Version of _compile that checks Coconut code.
None means that the code should not be run as is.
Any other value means that it can.<|endoftext|>
|
e8ea3996ab99a37aa6214678ed998f803482de2751e5a79c19be75f7da1d9ba6
|
def init_instance_attrs(self):
'Version of init_instance_attrs that uses CoconutCompiler.'
super(CoconutShell, self).init_instance_attrs()
self.compile = CoconutCompiler()
|
Version of init_instance_attrs that uses CoconutCompiler.
|
coconut/icoconut/root.py
|
init_instance_attrs
|
CS121Fresh/runner
| 0 |
python
|
def init_instance_attrs(self):
super(CoconutShell, self).init_instance_attrs()
self.compile = CoconutCompiler()
|
def init_instance_attrs(self):
super(CoconutShell, self).init_instance_attrs()
self.compile = CoconutCompiler()<|docstring|>Version of init_instance_attrs that uses CoconutCompiler.<|endoftext|>
|
5a37a0170132e7deabb7d8e165acd6e0e1e785b8165197bd6e27d47f134339d3
|
def init_create_namespaces(self, *args, **kwargs):
'Version of init_create_namespaces that adds Coconut built-ins to globals.'
super(CoconutShell, self).init_create_namespaces(*args, **kwargs)
RUNNER.update_vars(self.user_global_ns)
|
Version of init_create_namespaces that adds Coconut built-ins to globals.
|
coconut/icoconut/root.py
|
init_create_namespaces
|
CS121Fresh/runner
| 0 |
python
|
def init_create_namespaces(self, *args, **kwargs):
super(CoconutShell, self).init_create_namespaces(*args, **kwargs)
RUNNER.update_vars(self.user_global_ns)
|
def init_create_namespaces(self, *args, **kwargs):
super(CoconutShell, self).init_create_namespaces(*args, **kwargs)
RUNNER.update_vars(self.user_global_ns)<|docstring|>Version of init_create_namespaces that adds Coconut built-ins to globals.<|endoftext|>
|
0ffea3c0220e52118ecaeca5c68c34c827c2e7f7a67da7cd01616ecdf321493b
|
def run_cell(self, raw_cell, store_history=False, silent=False, shell_futures=None):
'Version of run_cell that always uses shell_futures.'
return super(CoconutShell, self).run_cell(raw_cell, store_history, silent, shell_futures=True)
|
Version of run_cell that always uses shell_futures.
|
coconut/icoconut/root.py
|
run_cell
|
CS121Fresh/runner
| 0 |
python
|
def run_cell(self, raw_cell, store_history=False, silent=False, shell_futures=None):
return super(CoconutShell, self).run_cell(raw_cell, store_history, silent, shell_futures=True)
|
def run_cell(self, raw_cell, store_history=False, silent=False, shell_futures=None):
return super(CoconutShell, self).run_cell(raw_cell, store_history, silent, shell_futures=True)<|docstring|>Version of run_cell that always uses shell_futures.<|endoftext|>
|
50b6c461784b75457aff90a953924b397292eaa4c698bf9595ef6ca7d3e88ca9
|
def user_expressions(self, expressions):
'Version of user_expressions that compiles Coconut code first.'
compiled_expressions = {}
for (key, expr) in expressions.items():
try:
compiled_expressions[key] = COMPILER.parse_eval(expr)
except CoconutException:
compiled_expressions[key] = expr
return super(CoconutShell, self).user_expressions(compiled_expressions)
|
Version of user_expressions that compiles Coconut code first.
|
coconut/icoconut/root.py
|
user_expressions
|
CS121Fresh/runner
| 0 |
python
|
def user_expressions(self, expressions):
compiled_expressions = {}
for (key, expr) in expressions.items():
try:
compiled_expressions[key] = COMPILER.parse_eval(expr)
except CoconutException:
compiled_expressions[key] = expr
return super(CoconutShell, self).user_expressions(compiled_expressions)
|
def user_expressions(self, expressions):
compiled_expressions = {}
for (key, expr) in expressions.items():
try:
compiled_expressions[key] = COMPILER.parse_eval(expr)
except CoconutException:
compiled_expressions[key] = expr
return super(CoconutShell, self).user_expressions(compiled_expressions)<|docstring|>Version of user_expressions that compiles Coconut code first.<|endoftext|>
|
fba6cdc8881867e39db7354c2174658c645fac328154160e3b35e90c925739b6
|
def test_purge_old_personal_api_key_events_rejects_invalid_arguments(self):
'The purge_old_personal_api_key_events command should reject invalid arguments'
event = PersonApiKeyEventFactory(time=(datetime.datetime.now() - datetime.timedelta(days=30)))
with self.assertRaises(CommandError):
self._call_command('purge_old_personal_api_key_events')
with self.assertRaises(CommandError):
self._call_command('purge_old_personal_api_key_events', '-15')
with self.assertRaises(CommandError):
self._call_command('purge_old_personal_api_key_events', '15.3')
with self.assertRaises(CommandError):
self._call_command('purge_old_personal_api_key_events', '15', '15')
with self.assertRaises(CommandError):
self._call_command('purge_old_personal_api_key_events', 'abc', '15')
self.assertCountEqual(PersonApiKeyEvent.objects.all(), [event])
|
The purge_old_personal_api_key_events command should reject invalid arguments
|
ietf/person/management/commands/tests.py
|
test_purge_old_personal_api_key_events_rejects_invalid_arguments
|
Spectre17/datatracker
| 25 |
python
|
def test_purge_old_personal_api_key_events_rejects_invalid_arguments(self):
event = PersonApiKeyEventFactory(time=(datetime.datetime.now() - datetime.timedelta(days=30)))
with self.assertRaises(CommandError):
self._call_command('purge_old_personal_api_key_events')
with self.assertRaises(CommandError):
self._call_command('purge_old_personal_api_key_events', '-15')
with self.assertRaises(CommandError):
self._call_command('purge_old_personal_api_key_events', '15.3')
with self.assertRaises(CommandError):
self._call_command('purge_old_personal_api_key_events', '15', '15')
with self.assertRaises(CommandError):
self._call_command('purge_old_personal_api_key_events', 'abc', '15')
self.assertCountEqual(PersonApiKeyEvent.objects.all(), [event])
|
def test_purge_old_personal_api_key_events_rejects_invalid_arguments(self):
event = PersonApiKeyEventFactory(time=(datetime.datetime.now() - datetime.timedelta(days=30)))
with self.assertRaises(CommandError):
self._call_command('purge_old_personal_api_key_events')
with self.assertRaises(CommandError):
self._call_command('purge_old_personal_api_key_events', '-15')
with self.assertRaises(CommandError):
self._call_command('purge_old_personal_api_key_events', '15.3')
with self.assertRaises(CommandError):
self._call_command('purge_old_personal_api_key_events', '15', '15')
with self.assertRaises(CommandError):
self._call_command('purge_old_personal_api_key_events', 'abc', '15')
self.assertCountEqual(PersonApiKeyEvent.objects.all(), [event])<|docstring|>The purge_old_personal_api_key_events command should reject invalid arguments<|endoftext|>
|
d9495b538d491cc13f8bfc95daec225606cb90643f5e73427285d954c9265177
|
def push_monitor(model, name, transfer_experience=False, save_records=False):
'\n When you load a model in a yaml file and you want to store its\n old monitor under a different name and start a new monitor, wrap\n the model in this function call.\n\n\n Parameters\n ----------\n model : pylearn2.models.model.Model\n The model you loaded\n name : str\n Will save the old monitor to model.name\n transfer_experience : bool\n If True, the new monitor will start with its epochs seen,\n batches seen, and examples seen set to where the old monitor\n left off. This is nice for stitching together learning curves\n across multiple stages of learning.\n save_records : bool\n If True, val_record, batch_record, example_record, epoch_record,\n and time_record of the new monitor will be initialzed with the\n records of old monitor.\n\n Returns\n -------\n model : WRITEME\n Returns the model itself so you can use an !obj:push_monitor\n call as the definition of a model in a YAML file.\n '
assert hasattr(model, 'monitor')
old_monitor = model.monitor
setattr(model, name, old_monitor)
del model.monitor
if transfer_experience:
monitor = Monitor.get_monitor(model)
assert (monitor is not old_monitor)
monitor._num_batches_seen = old_monitor._num_batches_seen
monitor._examples_seen = old_monitor._examples_seen
monitor._epochs_seen = old_monitor._epochs_seen
if save_records:
monitor.on_channel_conflict = 'copy_history'
monitor.channels = copy.copy(old_monitor.channels)
for (key, value) in list(monitor.channels.items()):
value.prereqs = None
return model
|
When you load a model in a yaml file and you want to store its
old monitor under a different name and start a new monitor, wrap
the model in this function call.
Parameters
----------
model : pylearn2.models.model.Model
The model you loaded
name : str
Will save the old monitor to model.name
transfer_experience : bool
If True, the new monitor will start with its epochs seen,
batches seen, and examples seen set to where the old monitor
left off. This is nice for stitching together learning curves
across multiple stages of learning.
save_records : bool
If True, val_record, batch_record, example_record, epoch_record,
and time_record of the new monitor will be initialzed with the
records of old monitor.
Returns
-------
model : WRITEME
Returns the model itself so you can use an !obj:push_monitor
call as the definition of a model in a YAML file.
|
pylearn2/monitor.py
|
push_monitor
|
fxyu/pylearn2
| 2,045 |
python
|
def push_monitor(model, name, transfer_experience=False, save_records=False):
'\n When you load a model in a yaml file and you want to store its\n old monitor under a different name and start a new monitor, wrap\n the model in this function call.\n\n\n Parameters\n ----------\n model : pylearn2.models.model.Model\n The model you loaded\n name : str\n Will save the old monitor to model.name\n transfer_experience : bool\n If True, the new monitor will start with its epochs seen,\n batches seen, and examples seen set to where the old monitor\n left off. This is nice for stitching together learning curves\n across multiple stages of learning.\n save_records : bool\n If True, val_record, batch_record, example_record, epoch_record,\n and time_record of the new monitor will be initialzed with the\n records of old monitor.\n\n Returns\n -------\n model : WRITEME\n Returns the model itself so you can use an !obj:push_monitor\n call as the definition of a model in a YAML file.\n '
assert hasattr(model, 'monitor')
old_monitor = model.monitor
setattr(model, name, old_monitor)
del model.monitor
if transfer_experience:
monitor = Monitor.get_monitor(model)
assert (monitor is not old_monitor)
monitor._num_batches_seen = old_monitor._num_batches_seen
monitor._examples_seen = old_monitor._examples_seen
monitor._epochs_seen = old_monitor._epochs_seen
if save_records:
monitor.on_channel_conflict = 'copy_history'
monitor.channels = copy.copy(old_monitor.channels)
for (key, value) in list(monitor.channels.items()):
value.prereqs = None
return model
|
def push_monitor(model, name, transfer_experience=False, save_records=False):
'\n When you load a model in a yaml file and you want to store its\n old monitor under a different name and start a new monitor, wrap\n the model in this function call.\n\n\n Parameters\n ----------\n model : pylearn2.models.model.Model\n The model you loaded\n name : str\n Will save the old monitor to model.name\n transfer_experience : bool\n If True, the new monitor will start with its epochs seen,\n batches seen, and examples seen set to where the old monitor\n left off. This is nice for stitching together learning curves\n across multiple stages of learning.\n save_records : bool\n If True, val_record, batch_record, example_record, epoch_record,\n and time_record of the new monitor will be initialzed with the\n records of old monitor.\n\n Returns\n -------\n model : WRITEME\n Returns the model itself so you can use an !obj:push_monitor\n call as the definition of a model in a YAML file.\n '
assert hasattr(model, 'monitor')
old_monitor = model.monitor
setattr(model, name, old_monitor)
del model.monitor
if transfer_experience:
monitor = Monitor.get_monitor(model)
assert (monitor is not old_monitor)
monitor._num_batches_seen = old_monitor._num_batches_seen
monitor._examples_seen = old_monitor._examples_seen
monitor._epochs_seen = old_monitor._epochs_seen
if save_records:
monitor.on_channel_conflict = 'copy_history'
monitor.channels = copy.copy(old_monitor.channels)
for (key, value) in list(monitor.channels.items()):
value.prereqs = None
return model<|docstring|>When you load a model in a yaml file and you want to store its
old monitor under a different name and start a new monitor, wrap
the model in this function call.
Parameters
----------
model : pylearn2.models.model.Model
The model you loaded
name : str
Will save the old monitor to model.name
transfer_experience : bool
If True, the new monitor will start with its epochs seen,
batches seen, and examples seen set to where the old monitor
left off. This is nice for stitching together learning curves
across multiple stages of learning.
save_records : bool
If True, val_record, batch_record, example_record, epoch_record,
and time_record of the new monitor will be initialzed with the
records of old monitor.
Returns
-------
model : WRITEME
Returns the model itself so you can use an !obj:push_monitor
call as the definition of a model in a YAML file.<|endoftext|>
|
43600a31e18dc27fed663bc7f1de5eb152522f8bca165bcc159bd7bcada3f03c
|
def read_channel(model, channel_name, monitor_name='monitor'):
'\n Returns the last value recorded in a channel.\n\n Parameters\n ----------\n model : Model\n The model to read the channel from\n channel_name : str\n The name of the channel to read from\n monitor_name : str, optional\n The name of the Monitor to read from\n (In case you want to read from an old Monitor moved by\n `push_monitor`)\n\n Returns\n -------\n value : float\n The last value recorded in this monitoring channel\n '
return getattr(model, monitor_name).channels[channel_name].val_record[(- 1)]
|
Returns the last value recorded in a channel.
Parameters
----------
model : Model
The model to read the channel from
channel_name : str
The name of the channel to read from
monitor_name : str, optional
The name of the Monitor to read from
(In case you want to read from an old Monitor moved by
`push_monitor`)
Returns
-------
value : float
The last value recorded in this monitoring channel
|
pylearn2/monitor.py
|
read_channel
|
fxyu/pylearn2
| 2,045 |
python
|
def read_channel(model, channel_name, monitor_name='monitor'):
'\n Returns the last value recorded in a channel.\n\n Parameters\n ----------\n model : Model\n The model to read the channel from\n channel_name : str\n The name of the channel to read from\n monitor_name : str, optional\n The name of the Monitor to read from\n (In case you want to read from an old Monitor moved by\n `push_monitor`)\n\n Returns\n -------\n value : float\n The last value recorded in this monitoring channel\n '
return getattr(model, monitor_name).channels[channel_name].val_record[(- 1)]
|
def read_channel(model, channel_name, monitor_name='monitor'):
'\n Returns the last value recorded in a channel.\n\n Parameters\n ----------\n model : Model\n The model to read the channel from\n channel_name : str\n The name of the channel to read from\n monitor_name : str, optional\n The name of the Monitor to read from\n (In case you want to read from an old Monitor moved by\n `push_monitor`)\n\n Returns\n -------\n value : float\n The last value recorded in this monitoring channel\n '
return getattr(model, monitor_name).channels[channel_name].val_record[(- 1)]<|docstring|>Returns the last value recorded in a channel.
Parameters
----------
model : Model
The model to read the channel from
channel_name : str
The name of the channel to read from
monitor_name : str, optional
The name of the Monitor to read from
(In case you want to read from an old Monitor moved by
`push_monitor`)
Returns
-------
value : float
The last value recorded in this monitoring channel<|endoftext|>
|
851c2766bd9c79f35ea4853dd2377b2cd7b34b6a763cc60763a46300104fbbc6
|
def get_channel(model, dataset, channel, cost, batch_size):
"\n Make a temporary monitor and return the value of a channel in it.\n\n Parameters\n ----------\n model : pylearn2.models.model.Model\n Will evaluate the channel for this Model.\n dataset : pylearn2.datasets.Dataset\n The Dataset to run on\n channel : str\n A string identifying the channel name to evaluate\n cost : pylearn2.costs.Cost\n The Cost to setup for monitoring\n batch_size : int\n The size of the batch to use when running the monitor\n\n Returns\n -------\n value : WRITEME\n The value of the requested channel.\n\n Notes\n -----\n This doesn't modify the model (unless some of the channel prereqs do).\n In particular, it does not change model.monitor.\n "
monitor = Monitor(model)
monitor.setup(dataset=dataset, cost=cost, batch_size=batch_size)
monitor()
channels = monitor.channels
channel = channels[channel]
val_record = channel.val_record
(value,) = val_record
return value
|
Make a temporary monitor and return the value of a channel in it.
Parameters
----------
model : pylearn2.models.model.Model
Will evaluate the channel for this Model.
dataset : pylearn2.datasets.Dataset
The Dataset to run on
channel : str
A string identifying the channel name to evaluate
cost : pylearn2.costs.Cost
The Cost to setup for monitoring
batch_size : int
The size of the batch to use when running the monitor
Returns
-------
value : WRITEME
The value of the requested channel.
Notes
-----
This doesn't modify the model (unless some of the channel prereqs do).
In particular, it does not change model.monitor.
|
pylearn2/monitor.py
|
get_channel
|
fxyu/pylearn2
| 2,045 |
python
|
def get_channel(model, dataset, channel, cost, batch_size):
"\n Make a temporary monitor and return the value of a channel in it.\n\n Parameters\n ----------\n model : pylearn2.models.model.Model\n Will evaluate the channel for this Model.\n dataset : pylearn2.datasets.Dataset\n The Dataset to run on\n channel : str\n A string identifying the channel name to evaluate\n cost : pylearn2.costs.Cost\n The Cost to setup for monitoring\n batch_size : int\n The size of the batch to use when running the monitor\n\n Returns\n -------\n value : WRITEME\n The value of the requested channel.\n\n Notes\n -----\n This doesn't modify the model (unless some of the channel prereqs do).\n In particular, it does not change model.monitor.\n "
monitor = Monitor(model)
monitor.setup(dataset=dataset, cost=cost, batch_size=batch_size)
monitor()
channels = monitor.channels
channel = channels[channel]
val_record = channel.val_record
(value,) = val_record
return value
|
def get_channel(model, dataset, channel, cost, batch_size):
"\n Make a temporary monitor and return the value of a channel in it.\n\n Parameters\n ----------\n model : pylearn2.models.model.Model\n Will evaluate the channel for this Model.\n dataset : pylearn2.datasets.Dataset\n The Dataset to run on\n channel : str\n A string identifying the channel name to evaluate\n cost : pylearn2.costs.Cost\n The Cost to setup for monitoring\n batch_size : int\n The size of the batch to use when running the monitor\n\n Returns\n -------\n value : WRITEME\n The value of the requested channel.\n\n Notes\n -----\n This doesn't modify the model (unless some of the channel prereqs do).\n In particular, it does not change model.monitor.\n "
monitor = Monitor(model)
monitor.setup(dataset=dataset, cost=cost, batch_size=batch_size)
monitor()
channels = monitor.channels
channel = channels[channel]
val_record = channel.val_record
(value,) = val_record
return value<|docstring|>Make a temporary monitor and return the value of a channel in it.
Parameters
----------
model : pylearn2.models.model.Model
Will evaluate the channel for this Model.
dataset : pylearn2.datasets.Dataset
The Dataset to run on
channel : str
A string identifying the channel name to evaluate
cost : pylearn2.costs.Cost
The Cost to setup for monitoring
batch_size : int
The size of the batch to use when running the monitor
Returns
-------
value : WRITEME
The value of the requested channel.
Notes
-----
This doesn't modify the model (unless some of the channel prereqs do).
In particular, it does not change model.monitor.<|endoftext|>
|
bccbeabe18d6f6ee001b319bcec8c081b137fa402f593befed215d442b80e3cc
|
def get_monitor_doc(var):
'\n Returns the __doc__ field of var or None. This field is used on\n theano Variables to document the meaning of monitor channels.\n\n Parameters\n ----------\n var : theano.gof.Variable\n The variable to get the documentation of\n\n Returns\n -------\n doc : str or None\n var.__doc__ if var has an instance-level doc, otherwise None\n '
doc = None
if (var.__doc__ is not var.__class__.__doc__):
doc = var.__doc__
return doc
|
Returns the __doc__ field of var or None. This field is used on
theano Variables to document the meaning of monitor channels.
Parameters
----------
var : theano.gof.Variable
The variable to get the documentation of
Returns
-------
doc : str or None
var.__doc__ if var has an instance-level doc, otherwise None
|
pylearn2/monitor.py
|
get_monitor_doc
|
fxyu/pylearn2
| 2,045 |
python
|
def get_monitor_doc(var):
'\n Returns the __doc__ field of var or None. This field is used on\n theano Variables to document the meaning of monitor channels.\n\n Parameters\n ----------\n var : theano.gof.Variable\n The variable to get the documentation of\n\n Returns\n -------\n doc : str or None\n var.__doc__ if var has an instance-level doc, otherwise None\n '
doc = None
if (var.__doc__ is not var.__class__.__doc__):
doc = var.__doc__
return doc
|
def get_monitor_doc(var):
'\n Returns the __doc__ field of var or None. This field is used on\n theano Variables to document the meaning of monitor channels.\n\n Parameters\n ----------\n var : theano.gof.Variable\n The variable to get the documentation of\n\n Returns\n -------\n doc : str or None\n var.__doc__ if var has an instance-level doc, otherwise None\n '
doc = None
if (var.__doc__ is not var.__class__.__doc__):
doc = var.__doc__
return doc<|docstring|>Returns the __doc__ field of var or None. This field is used on
theano Variables to document the meaning of monitor channels.
Parameters
----------
var : theano.gof.Variable
The variable to get the documentation of
Returns
-------
doc : str or None
var.__doc__ if var has an instance-level doc, otherwise None<|endoftext|>
|
0f50bc99d8fda887284d17e123df0b8646c0fbb239d40ed413a2ad2cb0e8b106
|
def _build_data_specs(self):
'\n Computes a nested data_specs for input and all channels\n\n Also computes the mapping to flatten it. This function is\n called from redo_theano.\n '
(m_space, m_source) = self.model.get_monitoring_data_specs()
input_spaces = [m_space]
input_sources = [m_source]
for channel in self.channels.values():
space = channel.data_specs[0]
assert isinstance(space, Space)
input_spaces.append(space)
input_sources.append(channel.data_specs[1])
nested_space = CompositeSpace(input_spaces)
nested_source = tuple(input_sources)
self._nested_data_specs = (nested_space, nested_source)
self._data_specs_mapping = DataSpecsMapping(self._nested_data_specs)
flat_space = self._data_specs_mapping.flatten(nested_space, return_tuple=True)
flat_source = self._data_specs_mapping.flatten(nested_source, return_tuple=True)
self._flat_data_specs = (CompositeSpace(flat_space), flat_source)
|
Computes a nested data_specs for input and all channels
Also computes the mapping to flatten it. This function is
called from redo_theano.
|
pylearn2/monitor.py
|
_build_data_specs
|
fxyu/pylearn2
| 2,045 |
python
|
def _build_data_specs(self):
'\n Computes a nested data_specs for input and all channels\n\n Also computes the mapping to flatten it. This function is\n called from redo_theano.\n '
(m_space, m_source) = self.model.get_monitoring_data_specs()
input_spaces = [m_space]
input_sources = [m_source]
for channel in self.channels.values():
space = channel.data_specs[0]
assert isinstance(space, Space)
input_spaces.append(space)
input_sources.append(channel.data_specs[1])
nested_space = CompositeSpace(input_spaces)
nested_source = tuple(input_sources)
self._nested_data_specs = (nested_space, nested_source)
self._data_specs_mapping = DataSpecsMapping(self._nested_data_specs)
flat_space = self._data_specs_mapping.flatten(nested_space, return_tuple=True)
flat_source = self._data_specs_mapping.flatten(nested_source, return_tuple=True)
self._flat_data_specs = (CompositeSpace(flat_space), flat_source)
|
def _build_data_specs(self):
'\n Computes a nested data_specs for input and all channels\n\n Also computes the mapping to flatten it. This function is\n called from redo_theano.\n '
(m_space, m_source) = self.model.get_monitoring_data_specs()
input_spaces = [m_space]
input_sources = [m_source]
for channel in self.channels.values():
space = channel.data_specs[0]
assert isinstance(space, Space)
input_spaces.append(space)
input_sources.append(channel.data_specs[1])
nested_space = CompositeSpace(input_spaces)
nested_source = tuple(input_sources)
self._nested_data_specs = (nested_space, nested_source)
self._data_specs_mapping = DataSpecsMapping(self._nested_data_specs)
flat_space = self._data_specs_mapping.flatten(nested_space, return_tuple=True)
flat_source = self._data_specs_mapping.flatten(nested_source, return_tuple=True)
self._flat_data_specs = (CompositeSpace(flat_space), flat_source)<|docstring|>Computes a nested data_specs for input and all channels
Also computes the mapping to flatten it. This function is
called from redo_theano.<|endoftext|>
|
d175c435015a096df301f692e54598154c07fb1fba3deec2069f8efd57874cca
|
def set_theano_function_mode(self, mode):
'\n .. todo::\n\n WRITEME\n\n Parameters\n ----------\n mode : theano.compile.Mode\n Theano functions for the monitoring channels will be\n compiled and run using this mode.\n '
if (self.theano_function_mode != mode):
self._dirty = True
self.theano_function_mode = mode
|
.. todo::
WRITEME
Parameters
----------
mode : theano.compile.Mode
Theano functions for the monitoring channels will be
compiled and run using this mode.
|
pylearn2/monitor.py
|
set_theano_function_mode
|
fxyu/pylearn2
| 2,045 |
python
|
def set_theano_function_mode(self, mode):
'\n .. todo::\n\n WRITEME\n\n Parameters\n ----------\n mode : theano.compile.Mode\n Theano functions for the monitoring channels will be\n compiled and run using this mode.\n '
if (self.theano_function_mode != mode):
self._dirty = True
self.theano_function_mode = mode
|
def set_theano_function_mode(self, mode):
'\n .. todo::\n\n WRITEME\n\n Parameters\n ----------\n mode : theano.compile.Mode\n Theano functions for the monitoring channels will be\n compiled and run using this mode.\n '
if (self.theano_function_mode != mode):
self._dirty = True
self.theano_function_mode = mode<|docstring|>.. todo::
WRITEME
Parameters
----------
mode : theano.compile.Mode
Theano functions for the monitoring channels will be
compiled and run using this mode.<|endoftext|>
|
8888bee1e642db432aeb77e71edaf1a97f935736f3071e3c7ef4e00e7e5fce97
|
def add_dataset(self, dataset, mode='sequential', batch_size=None, num_batches=None, seed=None):
"\n Determines the data used to calculate the values of each channel.\n\n Parameters\n ----------\n dataset : object\n A `pylearn2.datasets.Dataset` object.\n mode : str or object, optional\n Iteration mode; see the docstring of the `iterator` method\n on `pylearn2.datasets.Dataset` for details.\n batch_size : int, optional\n The size of an individual batch. Optional if `mode` is\n 'sequential' and `num_batches` is specified (batch size\n will be calculated based on full dataset size).\n num_batches : int, optional\n The total number of batches. Unnecessary if `mode` is\n 'sequential' and `batch_size` is specified (number of\n batches will be calculated based on full dataset size).\n seed : int, optional\n Optional. The seed to be used for random iteration modes.\n "
if (not isinstance(dataset, list)):
dataset = [dataset]
if (not isinstance(mode, list)):
mode = [mode]
if (not isinstance(batch_size, list)):
batch_size = [batch_size]
if (not isinstance(num_batches, list)):
num_batches = [num_batches]
if (seed is None):
seed = ([None] * len(dataset))
if (not isinstance(seed, list)):
seed = [seed]
if (len(mode) != len(dataset)):
raise ValueError((((('Received ' + str(len(dataset))) + ' dataset but ') + str(len(mode))) + ' modes.'))
if any([(len(l) != len(dataset)) for l in [batch_size, seed]]):
raise ValueError(('make sure each dataset has its iteration ' + 'batch size and number of batches.'))
for (d, m, b, n, sd) in safe_izip(dataset, mode, batch_size, num_batches, seed):
try:
it = d.iterator(mode=m, batch_size=b, num_batches=n, data_specs=self._flat_data_specs, return_tuple=True, rng=sd)
except ValueError as exc:
reraise_as(ValueError((('invalid iteration parameters in ' + 'Monitor.add_dataset: ') + str(exc))))
if it.stochastic:
if (sd is None):
raise TypeError(('Monitor requires a seed when using ' + 'stochastic iteration modes.'))
if (not isinstance(sd, (list, tuple, int))):
raise TypeError((('Monitor requires a seed (not a random ' + 'number generator) when using ') + 'stochastic iteration modes.'))
else:
assert (sd is None)
if (d not in self._datasets):
self._datasets.append(d)
self._iteration_mode.append(m)
self._batch_size.append(b)
self._num_batches.append(n)
self._rng_seed.append(sd)
|
Determines the data used to calculate the values of each channel.
Parameters
----------
dataset : object
A `pylearn2.datasets.Dataset` object.
mode : str or object, optional
Iteration mode; see the docstring of the `iterator` method
on `pylearn2.datasets.Dataset` for details.
batch_size : int, optional
The size of an individual batch. Optional if `mode` is
'sequential' and `num_batches` is specified (batch size
will be calculated based on full dataset size).
num_batches : int, optional
The total number of batches. Unnecessary if `mode` is
'sequential' and `batch_size` is specified (number of
batches will be calculated based on full dataset size).
seed : int, optional
Optional. The seed to be used for random iteration modes.
|
pylearn2/monitor.py
|
add_dataset
|
fxyu/pylearn2
| 2,045 |
python
|
def add_dataset(self, dataset, mode='sequential', batch_size=None, num_batches=None, seed=None):
"\n Determines the data used to calculate the values of each channel.\n\n Parameters\n ----------\n dataset : object\n A `pylearn2.datasets.Dataset` object.\n mode : str or object, optional\n Iteration mode; see the docstring of the `iterator` method\n on `pylearn2.datasets.Dataset` for details.\n batch_size : int, optional\n The size of an individual batch. Optional if `mode` is\n 'sequential' and `num_batches` is specified (batch size\n will be calculated based on full dataset size).\n num_batches : int, optional\n The total number of batches. Unnecessary if `mode` is\n 'sequential' and `batch_size` is specified (number of\n batches will be calculated based on full dataset size).\n seed : int, optional\n Optional. The seed to be used for random iteration modes.\n "
if (not isinstance(dataset, list)):
dataset = [dataset]
if (not isinstance(mode, list)):
mode = [mode]
if (not isinstance(batch_size, list)):
batch_size = [batch_size]
if (not isinstance(num_batches, list)):
num_batches = [num_batches]
if (seed is None):
seed = ([None] * len(dataset))
if (not isinstance(seed, list)):
seed = [seed]
if (len(mode) != len(dataset)):
raise ValueError((((('Received ' + str(len(dataset))) + ' dataset but ') + str(len(mode))) + ' modes.'))
if any([(len(l) != len(dataset)) for l in [batch_size, seed]]):
raise ValueError(('make sure each dataset has its iteration ' + 'batch size and number of batches.'))
for (d, m, b, n, sd) in safe_izip(dataset, mode, batch_size, num_batches, seed):
try:
it = d.iterator(mode=m, batch_size=b, num_batches=n, data_specs=self._flat_data_specs, return_tuple=True, rng=sd)
except ValueError as exc:
reraise_as(ValueError((('invalid iteration parameters in ' + 'Monitor.add_dataset: ') + str(exc))))
if it.stochastic:
if (sd is None):
raise TypeError(('Monitor requires a seed when using ' + 'stochastic iteration modes.'))
if (not isinstance(sd, (list, tuple, int))):
raise TypeError((('Monitor requires a seed (not a random ' + 'number generator) when using ') + 'stochastic iteration modes.'))
else:
assert (sd is None)
if (d not in self._datasets):
self._datasets.append(d)
self._iteration_mode.append(m)
self._batch_size.append(b)
self._num_batches.append(n)
self._rng_seed.append(sd)
|
def add_dataset(self, dataset, mode='sequential', batch_size=None, num_batches=None, seed=None):
"\n Determines the data used to calculate the values of each channel.\n\n Parameters\n ----------\n dataset : object\n A `pylearn2.datasets.Dataset` object.\n mode : str or object, optional\n Iteration mode; see the docstring of the `iterator` method\n on `pylearn2.datasets.Dataset` for details.\n batch_size : int, optional\n The size of an individual batch. Optional if `mode` is\n 'sequential' and `num_batches` is specified (batch size\n will be calculated based on full dataset size).\n num_batches : int, optional\n The total number of batches. Unnecessary if `mode` is\n 'sequential' and `batch_size` is specified (number of\n batches will be calculated based on full dataset size).\n seed : int, optional\n Optional. The seed to be used for random iteration modes.\n "
if (not isinstance(dataset, list)):
dataset = [dataset]
if (not isinstance(mode, list)):
mode = [mode]
if (not isinstance(batch_size, list)):
batch_size = [batch_size]
if (not isinstance(num_batches, list)):
num_batches = [num_batches]
if (seed is None):
seed = ([None] * len(dataset))
if (not isinstance(seed, list)):
seed = [seed]
if (len(mode) != len(dataset)):
raise ValueError((((('Received ' + str(len(dataset))) + ' dataset but ') + str(len(mode))) + ' modes.'))
if any([(len(l) != len(dataset)) for l in [batch_size, seed]]):
raise ValueError(('make sure each dataset has its iteration ' + 'batch size and number of batches.'))
for (d, m, b, n, sd) in safe_izip(dataset, mode, batch_size, num_batches, seed):
try:
it = d.iterator(mode=m, batch_size=b, num_batches=n, data_specs=self._flat_data_specs, return_tuple=True, rng=sd)
except ValueError as exc:
reraise_as(ValueError((('invalid iteration parameters in ' + 'Monitor.add_dataset: ') + str(exc))))
if it.stochastic:
if (sd is None):
raise TypeError(('Monitor requires a seed when using ' + 'stochastic iteration modes.'))
if (not isinstance(sd, (list, tuple, int))):
raise TypeError((('Monitor requires a seed (not a random ' + 'number generator) when using ') + 'stochastic iteration modes.'))
else:
assert (sd is None)
if (d not in self._datasets):
self._datasets.append(d)
self._iteration_mode.append(m)
self._batch_size.append(b)
self._num_batches.append(n)
self._rng_seed.append(sd)<|docstring|>Determines the data used to calculate the values of each channel.
Parameters
----------
dataset : object
A `pylearn2.datasets.Dataset` object.
mode : str or object, optional
Iteration mode; see the docstring of the `iterator` method
on `pylearn2.datasets.Dataset` for details.
batch_size : int, optional
The size of an individual batch. Optional if `mode` is
'sequential' and `num_batches` is specified (batch size
will be calculated based on full dataset size).
num_batches : int, optional
The total number of batches. Unnecessary if `mode` is
'sequential' and `batch_size` is specified (number of
batches will be calculated based on full dataset size).
seed : int, optional
Optional. The seed to be used for random iteration modes.<|endoftext|>
|
c5b759dc09539dfe6c014add9d030cbba2d13f741f7f9e4b54b545ea1dd80298
|
def __call__(self):
'\n Runs the model on the monitoring dataset in order to add one\n data point to each of the channels.\n '
if self._dirty:
self.redo_theano()
datasets = self._datasets
self.begin_record_entry()
for (d, i, b, n, a, sd, ne) in safe_izip(datasets, self._iteration_mode, self._batch_size, self._num_batches, self.accum, self._rng_seed, self.num_examples):
if isinstance(d, six.string_types):
d = yaml_parse.load(d)
raise NotImplementedError()
myiterator = d.iterator(mode=i, batch_size=b, num_batches=n, data_specs=self._flat_data_specs, return_tuple=True, rng=sd)
if (len(self._flat_data_specs[1]) == 0):
X = ()
self.run_prereqs(X, d)
a(*X)
else:
actual_ne = 0
for X in myiterator:
self.run_prereqs(X, d)
a(*X)
actual_ne += self._flat_data_specs[0].np_batch_size(X)
if (actual_ne != ne):
raise RuntimeError(('At compile time, your iterator said it had %d examples total, but at runtime it gave us %d.' % (ne, actual_ne)))
log.info('Monitoring step:')
log.info(('\tEpochs seen: %d' % self._epochs_seen))
log.info(('\tBatches seen: %d' % self._num_batches_seen))
log.info(('\tExamples seen: %d' % self._examples_seen))
t = (time.time() - self.t0)
for channel_name in sorted(self.channels.keys(), key=number_aware_alphabetical_key):
channel = self.channels[channel_name]
channel.time_record.append(t)
channel.batch_record.append(self._num_batches_seen)
channel.example_record.append(self._examples_seen)
channel.epoch_record.append(self._epochs_seen)
val = channel.val_shared.get_value()
channel.val_record.append(val)
if (abs(val) < 10000.0):
val_str = str(val)
else:
val_str = ('%.3e' % val)
log.info(('\t%s: %s' % (channel_name, val_str)))
|
Runs the model on the monitoring dataset in order to add one
data point to each of the channels.
|
pylearn2/monitor.py
|
__call__
|
fxyu/pylearn2
| 2,045 |
python
|
def __call__(self):
'\n Runs the model on the monitoring dataset in order to add one\n data point to each of the channels.\n '
if self._dirty:
self.redo_theano()
datasets = self._datasets
self.begin_record_entry()
for (d, i, b, n, a, sd, ne) in safe_izip(datasets, self._iteration_mode, self._batch_size, self._num_batches, self.accum, self._rng_seed, self.num_examples):
if isinstance(d, six.string_types):
d = yaml_parse.load(d)
raise NotImplementedError()
myiterator = d.iterator(mode=i, batch_size=b, num_batches=n, data_specs=self._flat_data_specs, return_tuple=True, rng=sd)
if (len(self._flat_data_specs[1]) == 0):
X = ()
self.run_prereqs(X, d)
a(*X)
else:
actual_ne = 0
for X in myiterator:
self.run_prereqs(X, d)
a(*X)
actual_ne += self._flat_data_specs[0].np_batch_size(X)
if (actual_ne != ne):
raise RuntimeError(('At compile time, your iterator said it had %d examples total, but at runtime it gave us %d.' % (ne, actual_ne)))
log.info('Monitoring step:')
log.info(('\tEpochs seen: %d' % self._epochs_seen))
log.info(('\tBatches seen: %d' % self._num_batches_seen))
log.info(('\tExamples seen: %d' % self._examples_seen))
t = (time.time() - self.t0)
for channel_name in sorted(self.channels.keys(), key=number_aware_alphabetical_key):
channel = self.channels[channel_name]
channel.time_record.append(t)
channel.batch_record.append(self._num_batches_seen)
channel.example_record.append(self._examples_seen)
channel.epoch_record.append(self._epochs_seen)
val = channel.val_shared.get_value()
channel.val_record.append(val)
if (abs(val) < 10000.0):
val_str = str(val)
else:
val_str = ('%.3e' % val)
log.info(('\t%s: %s' % (channel_name, val_str)))
|
def __call__(self):
'\n Runs the model on the monitoring dataset in order to add one\n data point to each of the channels.\n '
if self._dirty:
self.redo_theano()
datasets = self._datasets
self.begin_record_entry()
for (d, i, b, n, a, sd, ne) in safe_izip(datasets, self._iteration_mode, self._batch_size, self._num_batches, self.accum, self._rng_seed, self.num_examples):
if isinstance(d, six.string_types):
d = yaml_parse.load(d)
raise NotImplementedError()
myiterator = d.iterator(mode=i, batch_size=b, num_batches=n, data_specs=self._flat_data_specs, return_tuple=True, rng=sd)
if (len(self._flat_data_specs[1]) == 0):
X = ()
self.run_prereqs(X, d)
a(*X)
else:
actual_ne = 0
for X in myiterator:
self.run_prereqs(X, d)
a(*X)
actual_ne += self._flat_data_specs[0].np_batch_size(X)
if (actual_ne != ne):
raise RuntimeError(('At compile time, your iterator said it had %d examples total, but at runtime it gave us %d.' % (ne, actual_ne)))
log.info('Monitoring step:')
log.info(('\tEpochs seen: %d' % self._epochs_seen))
log.info(('\tBatches seen: %d' % self._num_batches_seen))
log.info(('\tExamples seen: %d' % self._examples_seen))
t = (time.time() - self.t0)
for channel_name in sorted(self.channels.keys(), key=number_aware_alphabetical_key):
channel = self.channels[channel_name]
channel.time_record.append(t)
channel.batch_record.append(self._num_batches_seen)
channel.example_record.append(self._examples_seen)
channel.epoch_record.append(self._epochs_seen)
val = channel.val_shared.get_value()
channel.val_record.append(val)
if (abs(val) < 10000.0):
val_str = str(val)
else:
val_str = ('%.3e' % val)
log.info(('\t%s: %s' % (channel_name, val_str)))<|docstring|>Runs the model on the monitoring dataset in order to add one
data point to each of the channels.<|endoftext|>
|
70b9adf5bc2e2a53ef8eea7216717735bbcc2ca440e1fb5fedd8d78f9e205fc7
|
def run_prereqs(self, data, dataset):
'\n Runs all "prerequistie functions" on a batch of data. Always\n called right before computing the monitoring channels on that\n batch.\n\n Parameters\n ----------\n data : tuple or Variable\n a member of the Space used as input to the monitoring\n functions\n dataset : Dataset\n the Dataset the data was drawn from\n '
if (dataset not in self.prereqs):
return
for prereq in self.prereqs[dataset]:
prereq(*data)
|
Runs all "prerequistie functions" on a batch of data. Always
called right before computing the monitoring channels on that
batch.
Parameters
----------
data : tuple or Variable
a member of the Space used as input to the monitoring
functions
dataset : Dataset
the Dataset the data was drawn from
|
pylearn2/monitor.py
|
run_prereqs
|
fxyu/pylearn2
| 2,045 |
python
|
def run_prereqs(self, data, dataset):
'\n Runs all "prerequistie functions" on a batch of data. Always\n called right before computing the monitoring channels on that\n batch.\n\n Parameters\n ----------\n data : tuple or Variable\n a member of the Space used as input to the monitoring\n functions\n dataset : Dataset\n the Dataset the data was drawn from\n '
if (dataset not in self.prereqs):
return
for prereq in self.prereqs[dataset]:
prereq(*data)
|
def run_prereqs(self, data, dataset):
'\n Runs all "prerequistie functions" on a batch of data. Always\n called right before computing the monitoring channels on that\n batch.\n\n Parameters\n ----------\n data : tuple or Variable\n a member of the Space used as input to the monitoring\n functions\n dataset : Dataset\n the Dataset the data was drawn from\n '
if (dataset not in self.prereqs):
return
for prereq in self.prereqs[dataset]:
prereq(*data)<|docstring|>Runs all "prerequistie functions" on a batch of data. Always
called right before computing the monitoring channels on that
batch.
Parameters
----------
data : tuple or Variable
a member of the Space used as input to the monitoring
functions
dataset : Dataset
the Dataset the data was drawn from<|endoftext|>
|
9fa27de96b858fdb362bc46dabac9c8a3aa831461488aa2d2d74860315e0e469
|
def get_batches_seen(self):
'\n Returns the number of batches the model has learned on\n (assuming that the learning code has been calling\n Monitor.report_batch correctly).\n '
return self._num_batches_seen
|
Returns the number of batches the model has learned on
(assuming that the learning code has been calling
Monitor.report_batch correctly).
|
pylearn2/monitor.py
|
get_batches_seen
|
fxyu/pylearn2
| 2,045 |
python
|
def get_batches_seen(self):
'\n Returns the number of batches the model has learned on\n (assuming that the learning code has been calling\n Monitor.report_batch correctly).\n '
return self._num_batches_seen
|
def get_batches_seen(self):
'\n Returns the number of batches the model has learned on\n (assuming that the learning code has been calling\n Monitor.report_batch correctly).\n '
return self._num_batches_seen<|docstring|>Returns the number of batches the model has learned on
(assuming that the learning code has been calling
Monitor.report_batch correctly).<|endoftext|>
|
e990849ac81538ee1aea3960e995caadfa369ded69d3810aab0d56a2a40c4efc
|
def get_epochs_seen(self):
'\n .. todo::\n\n WRITEME\n\n Returns\n -------\n epochs_seen : int\n The number of epochs the model has been trained on.\n One "epoch" is one pass through Dataset.iterator.\n '
return self._epochs_seen
|
.. todo::
WRITEME
Returns
-------
epochs_seen : int
The number of epochs the model has been trained on.
One "epoch" is one pass through Dataset.iterator.
|
pylearn2/monitor.py
|
get_epochs_seen
|
fxyu/pylearn2
| 2,045 |
python
|
def get_epochs_seen(self):
'\n .. todo::\n\n WRITEME\n\n Returns\n -------\n epochs_seen : int\n The number of epochs the model has been trained on.\n One "epoch" is one pass through Dataset.iterator.\n '
return self._epochs_seen
|
def get_epochs_seen(self):
'\n .. todo::\n\n WRITEME\n\n Returns\n -------\n epochs_seen : int\n The number of epochs the model has been trained on.\n One "epoch" is one pass through Dataset.iterator.\n '
return self._epochs_seen<|docstring|>.. todo::
WRITEME
Returns
-------
epochs_seen : int
The number of epochs the model has been trained on.
One "epoch" is one pass through Dataset.iterator.<|endoftext|>
|
3bbb7d946908a296a329b60cf8798651678d7236e96aed2dc30e4322c72647b2
|
def get_examples_seen(self):
'\n .. todo::\n\n WRITEME\n\n Returns\n -------\n examples_seen : int\n The number of examples the model has learned on (assuming\n that the learning code has been calling Monitor.report_batch\n correctly)\n '
return self._examples_seen
|
.. todo::
WRITEME
Returns
-------
examples_seen : int
The number of examples the model has learned on (assuming
that the learning code has been calling Monitor.report_batch
correctly)
|
pylearn2/monitor.py
|
get_examples_seen
|
fxyu/pylearn2
| 2,045 |
python
|
def get_examples_seen(self):
'\n .. todo::\n\n WRITEME\n\n Returns\n -------\n examples_seen : int\n The number of examples the model has learned on (assuming\n that the learning code has been calling Monitor.report_batch\n correctly)\n '
return self._examples_seen
|
def get_examples_seen(self):
'\n .. todo::\n\n WRITEME\n\n Returns\n -------\n examples_seen : int\n The number of examples the model has learned on (assuming\n that the learning code has been calling Monitor.report_batch\n correctly)\n '
return self._examples_seen<|docstring|>.. todo::
WRITEME
Returns
-------
examples_seen : int
The number of examples the model has learned on (assuming
that the learning code has been calling Monitor.report_batch
correctly)<|endoftext|>
|
6e1befab375da5db76d3bfa3ec8682efcd395fbacfa95bd8e6bcb597dbc51752
|
def report_batch(self, num_examples):
'\n Call this whenever the model has learned on another batch of\n examples. Report how many examples were learned on.\n\n Parameters\n ----------\n num_examples : int\n The number of examples learned on in this minibatch.\n '
self._examples_seen += num_examples
self._num_batches_seen += 1
|
Call this whenever the model has learned on another batch of
examples. Report how many examples were learned on.
Parameters
----------
num_examples : int
The number of examples learned on in this minibatch.
|
pylearn2/monitor.py
|
report_batch
|
fxyu/pylearn2
| 2,045 |
python
|
def report_batch(self, num_examples):
'\n Call this whenever the model has learned on another batch of\n examples. Report how many examples were learned on.\n\n Parameters\n ----------\n num_examples : int\n The number of examples learned on in this minibatch.\n '
self._examples_seen += num_examples
self._num_batches_seen += 1
|
def report_batch(self, num_examples):
'\n Call this whenever the model has learned on another batch of\n examples. Report how many examples were learned on.\n\n Parameters\n ----------\n num_examples : int\n The number of examples learned on in this minibatch.\n '
self._examples_seen += num_examples
self._num_batches_seen += 1<|docstring|>Call this whenever the model has learned on another batch of
examples. Report how many examples were learned on.
Parameters
----------
num_examples : int
The number of examples learned on in this minibatch.<|endoftext|>
|
c22fc100b771bae982dd2c5a6629008476c6402395e5ea224d6c9780fa52c541
|
def report_epoch(self):
'\n Call this whenever the model has completed another "epoch" of\n learning. We regard one pass through Dataset.iterator as one\n epoch.\n '
self._epochs_seen += 1
|
Call this whenever the model has completed another "epoch" of
learning. We regard one pass through Dataset.iterator as one
epoch.
|
pylearn2/monitor.py
|
report_epoch
|
fxyu/pylearn2
| 2,045 |
python
|
def report_epoch(self):
'\n Call this whenever the model has completed another "epoch" of\n learning. We regard one pass through Dataset.iterator as one\n epoch.\n '
self._epochs_seen += 1
|
def report_epoch(self):
'\n Call this whenever the model has completed another "epoch" of\n learning. We regard one pass through Dataset.iterator as one\n epoch.\n '
self._epochs_seen += 1<|docstring|>Call this whenever the model has completed another "epoch" of
learning. We regard one pass through Dataset.iterator as one
epoch.<|endoftext|>
|
11685c2c0a79e8e40375b55b1cfc74bc005cf1ed72fcc1a01db335b6294dd611
|
def redo_theano(self):
'\n Recompiles Theano functions used by this monitor.\n\n This is called any time we need to evaluate the channels and\n the channel definitions have changed since last we called it,\n or if the theano functions are unavailable for any other reason\n (first time they are needed after construction or\n deserialization, etc.)\n\n All channels are compiled as part of the same theano function\n so that the theano optimizations can eliminate subexpressions\n that are shared between multiple channels.\n '
self._dirty = False
self._build_data_specs()
init_names = dir(self)
self.prereqs = OrderedDict()
for channel in self.channels.values():
if (channel.prereqs is not None):
dataset = channel.dataset
if (dataset not in self.prereqs):
self.prereqs[dataset] = []
prereqs = self.prereqs[dataset]
for prereq in channel.prereqs:
if (prereq not in prereqs):
prereqs.append(prereq)
updates = OrderedDict()
for channel in self.channels.values():
updates[channel.val_shared] = np.cast[config.floatX](0.0)
with log_timing(log, 'compiling begin_record_entry'):
self.begin_record_entry = function(inputs=[], updates=updates, mode=self.theano_function_mode, name='Monitor.begin_record_entry')
updates = OrderedDict()
givens = OrderedDict()
batch_names = [('monitoring_%s' % s) for s in self._flat_data_specs[1]]
theano_args = self._flat_data_specs[0].make_theano_batch(batch_names)
batch_size = self._flat_data_specs[0].batch_size(theano_args)
nested_theano_args = self._data_specs_mapping.nest(theano_args)
if (not isinstance(nested_theano_args, tuple)):
nested_theano_args = (nested_theano_args,)
assert (len(nested_theano_args) == (len(self.channels) + 1))
log.info('Monitored channels: ')
for key in sorted(self.channels.keys()):
mode = self.theano_function_mode
if ((mode is not None) and hasattr(mode, 'record')):
mode.record.handle_line(((('compiling monitor including ' + 'channel ') + key) + '\n'))
log.info(('\t%s' % key))
it = []
for (d, i, n, b) in safe_izip(self._datasets, self._iteration_mode, self._num_batches, self._batch_size):
it.append(d.iterator(mode=i, num_batches=n, batch_size=b, data_specs=self._flat_data_specs, return_tuple=True))
self.num_examples = [i.num_examples for i in it]
givens = [OrderedDict() for d in self._datasets]
updates = [OrderedDict() for d in self._datasets]
for (i, channel) in enumerate(self.channels.values()):
index = self._datasets.index(channel.dataset)
d = self._datasets[index]
g = givens[index]
cur_num_examples = self.num_examples[index]
u = updates[index]
c_mapping = DataSpecsMapping(channel.data_specs)
channel_inputs = c_mapping.flatten(channel.graph_input, return_tuple=True)
inputs = c_mapping.flatten(nested_theano_args[(i + 1)], return_tuple=True)
for (channel_X, X) in safe_izip(channel_inputs, inputs):
assert ((channel_X not in g) or (g[channel_X] is X))
assert (channel_X.type == X.type), (channel_X.type, X.type)
g[channel_X] = X
if (batch_size == 0):
assert (len(self._flat_data_specs[1]) == 0)
val = channel.val
else:
if (n == 0):
raise ValueError(('Iterating over 0 examples results in ' + 'divide by 0'))
val = T.cast(((channel.val * T.cast(batch_size, 'float64')) / cur_num_examples), config.floatX)
u[channel.val_shared] = (channel.val_shared + val)
with log_timing(log, 'Compiling accum'):
for up in updates:
for key in up:
if (key.dtype != up[key].dtype):
raise TypeError((((((('Monitoring channel shared variable ' + key.name) + ' has dtype ') + key.dtype) + ' but is driven by an expression ') + 'with type ') + up[key].dtype))
self.accum = []
for (idx, packed) in enumerate(safe_izip(givens, updates)):
(g, u) = packed
mode = self.theano_function_mode
if ((mode is not None) and hasattr(mode, 'record')):
for elem in g:
mode.record.handle_line((('g key ' + var_descriptor(elem)) + '\n'))
mode.record.handle_line((('g val ' + var_descriptor(g[elem])) + '\n'))
for elem in u:
mode.record.handle_line((('u key ' + var_descriptor(elem)) + '\n'))
mode.record.handle_line((('u val ' + var_descriptor(u[elem])) + '\n'))
function_name = ('Monitor.accum[%d]' % idx)
if ((mode is not None) and hasattr(mode, 'record')):
mode.record.handle_line('compiling supervised accum\n')
self.accum.append(function(theano_args, givens=g, updates=u, mode=self.theano_function_mode, name=function_name))
for a in self.accum:
if ((mode is not None) and hasattr(mode, 'record')):
for elem in a.maker.fgraph.outputs:
mode.record.handle_line((('accum output ' + var_descriptor(elem)) + '\n'))
log.info(('graph size: %d' % len(a.maker.fgraph.toposort())))
final_names = dir(self)
self.register_names_to_del([name for name in final_names if (name not in init_names)])
|
Recompiles Theano functions used by this monitor.
This is called any time we need to evaluate the channels and
the channel definitions have changed since last we called it,
or if the theano functions are unavailable for any other reason
(first time they are needed after construction or
deserialization, etc.)
All channels are compiled as part of the same theano function
so that the theano optimizations can eliminate subexpressions
that are shared between multiple channels.
|
pylearn2/monitor.py
|
redo_theano
|
fxyu/pylearn2
| 2,045 |
python
|
def redo_theano(self):
'\n Recompiles Theano functions used by this monitor.\n\n This is called any time we need to evaluate the channels and\n the channel definitions have changed since last we called it,\n or if the theano functions are unavailable for any other reason\n (first time they are needed after construction or\n deserialization, etc.)\n\n All channels are compiled as part of the same theano function\n so that the theano optimizations can eliminate subexpressions\n that are shared between multiple channels.\n '
self._dirty = False
self._build_data_specs()
init_names = dir(self)
self.prereqs = OrderedDict()
for channel in self.channels.values():
if (channel.prereqs is not None):
dataset = channel.dataset
if (dataset not in self.prereqs):
self.prereqs[dataset] = []
prereqs = self.prereqs[dataset]
for prereq in channel.prereqs:
if (prereq not in prereqs):
prereqs.append(prereq)
updates = OrderedDict()
for channel in self.channels.values():
updates[channel.val_shared] = np.cast[config.floatX](0.0)
with log_timing(log, 'compiling begin_record_entry'):
self.begin_record_entry = function(inputs=[], updates=updates, mode=self.theano_function_mode, name='Monitor.begin_record_entry')
updates = OrderedDict()
givens = OrderedDict()
batch_names = [('monitoring_%s' % s) for s in self._flat_data_specs[1]]
theano_args = self._flat_data_specs[0].make_theano_batch(batch_names)
batch_size = self._flat_data_specs[0].batch_size(theano_args)
nested_theano_args = self._data_specs_mapping.nest(theano_args)
if (not isinstance(nested_theano_args, tuple)):
nested_theano_args = (nested_theano_args,)
assert (len(nested_theano_args) == (len(self.channels) + 1))
log.info('Monitored channels: ')
for key in sorted(self.channels.keys()):
mode = self.theano_function_mode
if ((mode is not None) and hasattr(mode, 'record')):
mode.record.handle_line(((('compiling monitor including ' + 'channel ') + key) + '\n'))
log.info(('\t%s' % key))
it = []
for (d, i, n, b) in safe_izip(self._datasets, self._iteration_mode, self._num_batches, self._batch_size):
it.append(d.iterator(mode=i, num_batches=n, batch_size=b, data_specs=self._flat_data_specs, return_tuple=True))
self.num_examples = [i.num_examples for i in it]
givens = [OrderedDict() for d in self._datasets]
updates = [OrderedDict() for d in self._datasets]
for (i, channel) in enumerate(self.channels.values()):
index = self._datasets.index(channel.dataset)
d = self._datasets[index]
g = givens[index]
cur_num_examples = self.num_examples[index]
u = updates[index]
c_mapping = DataSpecsMapping(channel.data_specs)
channel_inputs = c_mapping.flatten(channel.graph_input, return_tuple=True)
inputs = c_mapping.flatten(nested_theano_args[(i + 1)], return_tuple=True)
for (channel_X, X) in safe_izip(channel_inputs, inputs):
assert ((channel_X not in g) or (g[channel_X] is X))
assert (channel_X.type == X.type), (channel_X.type, X.type)
g[channel_X] = X
if (batch_size == 0):
assert (len(self._flat_data_specs[1]) == 0)
val = channel.val
else:
if (n == 0):
raise ValueError(('Iterating over 0 examples results in ' + 'divide by 0'))
val = T.cast(((channel.val * T.cast(batch_size, 'float64')) / cur_num_examples), config.floatX)
u[channel.val_shared] = (channel.val_shared + val)
with log_timing(log, 'Compiling accum'):
for up in updates:
for key in up:
if (key.dtype != up[key].dtype):
raise TypeError((((((('Monitoring channel shared variable ' + key.name) + ' has dtype ') + key.dtype) + ' but is driven by an expression ') + 'with type ') + up[key].dtype))
self.accum = []
for (idx, packed) in enumerate(safe_izip(givens, updates)):
(g, u) = packed
mode = self.theano_function_mode
if ((mode is not None) and hasattr(mode, 'record')):
for elem in g:
mode.record.handle_line((('g key ' + var_descriptor(elem)) + '\n'))
mode.record.handle_line((('g val ' + var_descriptor(g[elem])) + '\n'))
for elem in u:
mode.record.handle_line((('u key ' + var_descriptor(elem)) + '\n'))
mode.record.handle_line((('u val ' + var_descriptor(u[elem])) + '\n'))
function_name = ('Monitor.accum[%d]' % idx)
if ((mode is not None) and hasattr(mode, 'record')):
mode.record.handle_line('compiling supervised accum\n')
self.accum.append(function(theano_args, givens=g, updates=u, mode=self.theano_function_mode, name=function_name))
for a in self.accum:
if ((mode is not None) and hasattr(mode, 'record')):
for elem in a.maker.fgraph.outputs:
mode.record.handle_line((('accum output ' + var_descriptor(elem)) + '\n'))
log.info(('graph size: %d' % len(a.maker.fgraph.toposort())))
final_names = dir(self)
self.register_names_to_del([name for name in final_names if (name not in init_names)])
|
def redo_theano(self):
'\n Recompiles Theano functions used by this monitor.\n\n This is called any time we need to evaluate the channels and\n the channel definitions have changed since last we called it,\n or if the theano functions are unavailable for any other reason\n (first time they are needed after construction or\n deserialization, etc.)\n\n All channels are compiled as part of the same theano function\n so that the theano optimizations can eliminate subexpressions\n that are shared between multiple channels.\n '
self._dirty = False
self._build_data_specs()
init_names = dir(self)
self.prereqs = OrderedDict()
for channel in self.channels.values():
if (channel.prereqs is not None):
dataset = channel.dataset
if (dataset not in self.prereqs):
self.prereqs[dataset] = []
prereqs = self.prereqs[dataset]
for prereq in channel.prereqs:
if (prereq not in prereqs):
prereqs.append(prereq)
updates = OrderedDict()
for channel in self.channels.values():
updates[channel.val_shared] = np.cast[config.floatX](0.0)
with log_timing(log, 'compiling begin_record_entry'):
self.begin_record_entry = function(inputs=[], updates=updates, mode=self.theano_function_mode, name='Monitor.begin_record_entry')
updates = OrderedDict()
givens = OrderedDict()
batch_names = [('monitoring_%s' % s) for s in self._flat_data_specs[1]]
theano_args = self._flat_data_specs[0].make_theano_batch(batch_names)
batch_size = self._flat_data_specs[0].batch_size(theano_args)
nested_theano_args = self._data_specs_mapping.nest(theano_args)
if (not isinstance(nested_theano_args, tuple)):
nested_theano_args = (nested_theano_args,)
assert (len(nested_theano_args) == (len(self.channels) + 1))
log.info('Monitored channels: ')
for key in sorted(self.channels.keys()):
mode = self.theano_function_mode
if ((mode is not None) and hasattr(mode, 'record')):
mode.record.handle_line(((('compiling monitor including ' + 'channel ') + key) + '\n'))
log.info(('\t%s' % key))
it = []
for (d, i, n, b) in safe_izip(self._datasets, self._iteration_mode, self._num_batches, self._batch_size):
it.append(d.iterator(mode=i, num_batches=n, batch_size=b, data_specs=self._flat_data_specs, return_tuple=True))
self.num_examples = [i.num_examples for i in it]
givens = [OrderedDict() for d in self._datasets]
updates = [OrderedDict() for d in self._datasets]
for (i, channel) in enumerate(self.channels.values()):
index = self._datasets.index(channel.dataset)
d = self._datasets[index]
g = givens[index]
cur_num_examples = self.num_examples[index]
u = updates[index]
c_mapping = DataSpecsMapping(channel.data_specs)
channel_inputs = c_mapping.flatten(channel.graph_input, return_tuple=True)
inputs = c_mapping.flatten(nested_theano_args[(i + 1)], return_tuple=True)
for (channel_X, X) in safe_izip(channel_inputs, inputs):
assert ((channel_X not in g) or (g[channel_X] is X))
assert (channel_X.type == X.type), (channel_X.type, X.type)
g[channel_X] = X
if (batch_size == 0):
assert (len(self._flat_data_specs[1]) == 0)
val = channel.val
else:
if (n == 0):
raise ValueError(('Iterating over 0 examples results in ' + 'divide by 0'))
val = T.cast(((channel.val * T.cast(batch_size, 'float64')) / cur_num_examples), config.floatX)
u[channel.val_shared] = (channel.val_shared + val)
with log_timing(log, 'Compiling accum'):
for up in updates:
for key in up:
if (key.dtype != up[key].dtype):
raise TypeError((((((('Monitoring channel shared variable ' + key.name) + ' has dtype ') + key.dtype) + ' but is driven by an expression ') + 'with type ') + up[key].dtype))
self.accum = []
for (idx, packed) in enumerate(safe_izip(givens, updates)):
(g, u) = packed
mode = self.theano_function_mode
if ((mode is not None) and hasattr(mode, 'record')):
for elem in g:
mode.record.handle_line((('g key ' + var_descriptor(elem)) + '\n'))
mode.record.handle_line((('g val ' + var_descriptor(g[elem])) + '\n'))
for elem in u:
mode.record.handle_line((('u key ' + var_descriptor(elem)) + '\n'))
mode.record.handle_line((('u val ' + var_descriptor(u[elem])) + '\n'))
function_name = ('Monitor.accum[%d]' % idx)
if ((mode is not None) and hasattr(mode, 'record')):
mode.record.handle_line('compiling supervised accum\n')
self.accum.append(function(theano_args, givens=g, updates=u, mode=self.theano_function_mode, name=function_name))
for a in self.accum:
if ((mode is not None) and hasattr(mode, 'record')):
for elem in a.maker.fgraph.outputs:
mode.record.handle_line((('accum output ' + var_descriptor(elem)) + '\n'))
log.info(('graph size: %d' % len(a.maker.fgraph.toposort())))
final_names = dir(self)
self.register_names_to_del([name for name in final_names if (name not in init_names)])<|docstring|>Recompiles Theano functions used by this monitor.
This is called any time we need to evaluate the channels and
the channel definitions have changed since last we called it,
or if the theano functions are unavailable for any other reason
(first time they are needed after construction or
deserialization, etc.)
All channels are compiled as part of the same theano function
so that the theano optimizations can eliminate subexpressions
that are shared between multiple channels.<|endoftext|>
|
b7dc7209cb1fa893730e5c7ef5f33a8603695bab1497d367b9894da52148f1c1
|
def register_names_to_del(self, names):
'\n Register names of fields that should be deleted before pickling.\n\n Parameters\n ----------\n names : list\n A list of attribute names as strings.\n '
for name in names:
if (name not in self.names_to_del):
self.names_to_del.append(name)
|
Register names of fields that should be deleted before pickling.
Parameters
----------
names : list
A list of attribute names as strings.
|
pylearn2/monitor.py
|
register_names_to_del
|
fxyu/pylearn2
| 2,045 |
python
|
def register_names_to_del(self, names):
'\n Register names of fields that should be deleted before pickling.\n\n Parameters\n ----------\n names : list\n A list of attribute names as strings.\n '
for name in names:
if (name not in self.names_to_del):
self.names_to_del.append(name)
|
def register_names_to_del(self, names):
'\n Register names of fields that should be deleted before pickling.\n\n Parameters\n ----------\n names : list\n A list of attribute names as strings.\n '
for name in names:
if (name not in self.names_to_del):
self.names_to_del.append(name)<|docstring|>Register names of fields that should be deleted before pickling.
Parameters
----------
names : list
A list of attribute names as strings.<|endoftext|>
|
00c91be01a8bb81a212b868b6f964d45f068378bfa8b721374c6abe373fdf1ec
|
def __getstate__(self):
"\n In order to avoid pickling a copy of the dataset whenever a\n monitor is saved, the __getstate__ method replaces the dataset\n field with the dataset's yaml source. This is not a perfect\n solution because it won't work with job resuming, which would\n require saving the state of the dataset's random number\n generator.\n\n Like in the Model class, we also need to avoid saving any\n Theano functions, so we delete everything that can be\n regenerated with `redo_theano` by deleting the fields in\n `self.names_to_del`\n "
if (not hasattr(self, '_datasets')):
self._datasets = [self._dataset]
del self._dataset
temp = self._datasets
if self._datasets:
self._datasets = []
for dataset in temp:
if isinstance(dataset, six.string_types):
self._datasets.append(dataset)
else:
try:
self._datasets.append(dataset.yaml_src)
except AttributeError:
warnings.warn(('Trained model saved without ' + 'indicating yaml_src'))
d = copy.copy(self.__dict__)
self._datasets = temp
for name in self.names_to_del:
if (name in d):
del d[name]
return d
|
In order to avoid pickling a copy of the dataset whenever a
monitor is saved, the __getstate__ method replaces the dataset
field with the dataset's yaml source. This is not a perfect
solution because it won't work with job resuming, which would
require saving the state of the dataset's random number
generator.
Like in the Model class, we also need to avoid saving any
Theano functions, so we delete everything that can be
regenerated with `redo_theano` by deleting the fields in
`self.names_to_del`
|
pylearn2/monitor.py
|
__getstate__
|
fxyu/pylearn2
| 2,045 |
python
|
def __getstate__(self):
"\n In order to avoid pickling a copy of the dataset whenever a\n monitor is saved, the __getstate__ method replaces the dataset\n field with the dataset's yaml source. This is not a perfect\n solution because it won't work with job resuming, which would\n require saving the state of the dataset's random number\n generator.\n\n Like in the Model class, we also need to avoid saving any\n Theano functions, so we delete everything that can be\n regenerated with `redo_theano` by deleting the fields in\n `self.names_to_del`\n "
if (not hasattr(self, '_datasets')):
self._datasets = [self._dataset]
del self._dataset
temp = self._datasets
if self._datasets:
self._datasets = []
for dataset in temp:
if isinstance(dataset, six.string_types):
self._datasets.append(dataset)
else:
try:
self._datasets.append(dataset.yaml_src)
except AttributeError:
warnings.warn(('Trained model saved without ' + 'indicating yaml_src'))
d = copy.copy(self.__dict__)
self._datasets = temp
for name in self.names_to_del:
if (name in d):
del d[name]
return d
|
def __getstate__(self):
"\n In order to avoid pickling a copy of the dataset whenever a\n monitor is saved, the __getstate__ method replaces the dataset\n field with the dataset's yaml source. This is not a perfect\n solution because it won't work with job resuming, which would\n require saving the state of the dataset's random number\n generator.\n\n Like in the Model class, we also need to avoid saving any\n Theano functions, so we delete everything that can be\n regenerated with `redo_theano` by deleting the fields in\n `self.names_to_del`\n "
if (not hasattr(self, '_datasets')):
self._datasets = [self._dataset]
del self._dataset
temp = self._datasets
if self._datasets:
self._datasets = []
for dataset in temp:
if isinstance(dataset, six.string_types):
self._datasets.append(dataset)
else:
try:
self._datasets.append(dataset.yaml_src)
except AttributeError:
warnings.warn(('Trained model saved without ' + 'indicating yaml_src'))
d = copy.copy(self.__dict__)
self._datasets = temp
for name in self.names_to_del:
if (name in d):
del d[name]
return d<|docstring|>In order to avoid pickling a copy of the dataset whenever a
monitor is saved, the __getstate__ method replaces the dataset
field with the dataset's yaml source. This is not a perfect
solution because it won't work with job resuming, which would
require saving the state of the dataset's random number
generator.
Like in the Model class, we also need to avoid saving any
Theano functions, so we delete everything that can be
regenerated with `redo_theano` by deleting the fields in
`self.names_to_del`<|endoftext|>
|
029c5904fcf1a3f3ebb0d00e953c4da3f374c7267ca411042915a314429cd5db
|
def __setstate__(self, d):
'\n Sets the object to have the state described by `d`.\n\n Parameters\n ----------\n d : dict\n A dictionary mapping string names of fields to values for\n these fields.\n '
if ('_dataset' in d):
d['_datasets'] = [d['_dataset']]
del d['_dataset']
self.__dict__.update(d)
|
Sets the object to have the state described by `d`.
Parameters
----------
d : dict
A dictionary mapping string names of fields to values for
these fields.
|
pylearn2/monitor.py
|
__setstate__
|
fxyu/pylearn2
| 2,045 |
python
|
def __setstate__(self, d):
'\n Sets the object to have the state described by `d`.\n\n Parameters\n ----------\n d : dict\n A dictionary mapping string names of fields to values for\n these fields.\n '
if ('_dataset' in d):
d['_datasets'] = [d['_dataset']]
del d['_dataset']
self.__dict__.update(d)
|
def __setstate__(self, d):
'\n Sets the object to have the state described by `d`.\n\n Parameters\n ----------\n d : dict\n A dictionary mapping string names of fields to values for\n these fields.\n '
if ('_dataset' in d):
d['_datasets'] = [d['_dataset']]
del d['_dataset']
self.__dict__.update(d)<|docstring|>Sets the object to have the state described by `d`.
Parameters
----------
d : dict
A dictionary mapping string names of fields to values for
these fields.<|endoftext|>
|
2f63dfc76cf601aa15afa52145f8c48b62e0a8a07763293a9e633adb536f9d18
|
def add_channel(self, name, ipt, val, dataset=None, prereqs=None, data_specs=None):
'\n Asks the monitor to start tracking a new value. Can be called\n even after the monitor is already in use.\n\n Parameters\n ----------\n name : str\n The display name in the monitor.\n ipt : tensor_like\n The symbolic tensor which should be clamped to the data.\n (or a list/tuple containing symbolic tensors, following the\n data_specs)\n val : tensor_like\n The value (function of `ipt`) to be tracked.\n dataset : pylearn2.datasets.Dataset\n Which dataset to compute this channel on\n prereqs : list of callables that take a list of numpy tensors\n Each prereq must be called exactly once per each new batch\n of data drawn *from dataset* before the channel value is\n computed if two channels provide a prereq with exactly the\n same id, that prereq will only be called once\n data_specs : (space, source) pair\n Identifies the order, format and semantics of ipt\n '
if six.PY3:
numeric = (float, int)
else:
numeric = (float, int, long)
if isinstance(val, numeric):
val = np.cast[theano.config.floatX](val)
val = T.as_tensor_variable(val)
if (data_specs is None):
warnings.warn(("parameter 'data_specs' should be provided when " + 'calling add_channel. We will build a default one.'), stacklevel=2)
if isinstance(ipt, list):
ipt = tuple(ipt)
if ((ipt is not None) and (not isinstance(ipt, tuple))):
ipt = (ipt,)
if (ipt is None):
data_specs = (NullSpace(), '')
elif (len(ipt) == 0):
data_specs = (CompositeSpace([]), ())
elif hasattr(dataset, 'get_data_specs'):
(dataset_space, dataset_source) = dataset.get_data_specs()
if ((len(ipt) == 1) and (dataset_source is not None) and ((not isinstance(dataset_source, tuple)) or (len(dataset_source) == 1)) and ('features' in dataset_source)):
data_specs = (dataset_space, dataset_source)
elif ((len(ipt) == 2) and (dataset_source == ('features', 'targets'))):
data_specs = (dataset_space, dataset_source)
else:
raise ValueError((('Cannot infer default data_specs for ' + 'the following input points and ') + ('dataset: ipt = %s, dataset = %s' % (ipt, dataset))))
data_specs[0].validate(ipt)
mapping = DataSpecsMapping(data_specs)
flat_ipt = mapping.flatten(ipt)
if (not isinstance(flat_ipt, tuple)):
flat_ipt = (flat_ipt,)
inputs = theano.gof.graph.inputs([val])
for elem in inputs:
if ((not hasattr(elem, 'get_value')) and (not isinstance(elem, theano.gof.graph.Constant))):
if (elem not in flat_ipt):
raise ValueError((((((('Unspecified input: ' + str(elem)) + '. This may be due to an incorrect ') + "implementation of a cost's ") + 'get_data_specs() method, or of a ') + "model's get_monitoring_data_specs() ") + 'method.'))
mode = self.theano_function_mode
if ((mode is not None) and hasattr(mode, 'record')):
mode.record.handle_line((('Adding monitor channel ' + name) + '\n'))
assert isinstance(flat_ipt, tuple)
if (len(flat_ipt) != 1):
for elem in flat_ipt:
mode.record.handle_line((('Includes input var ' + var_descriptor(elem)) + '\n'))
else:
mode.record.handle_line((((name + ' input var is ') + var_descriptor(flat_ipt[0])) + '\n'))
mode.record.handle_line((((('channel ' + name) + ' is ') + var_descriptor(val)) + '\n'))
if (dataset is None):
if (len(self._datasets) == 1):
dataset = self._datasets[0]
elif (len(self._datasets) == 0):
raise ValueError(_err_no_data)
else:
raise ValueError(_err_ambig_data)
try:
self._datasets.index(dataset)
except ValueError:
reraise_as(ValueError(('The dataset specified is not one of the ' + "monitor's datasets")))
if (self.on_channel_conflict not in ('error', 'copy_history', 'overwrite')):
raise ValueError(("on_channel_conflict should be either 'error'" + "'copy_history', or 'overwrite'"))
if ((name in self.channels) and (self.on_channel_conflict == 'error')):
raise ValueError(('Tried to create the same channel twice (%s)' % name))
elif ((name in self.channels) and (self.on_channel_conflict == 'copy_history')):
self.channels[name] = MonitorChannel(ipt, val, name, data_specs, dataset, prereqs, self.channels[name])
elif ((name not in self.channels) or (self.on_channel_conflict == 'overwrite')):
self.channels[name] = MonitorChannel(ipt, val, name, data_specs, dataset, prereqs)
self._dirty = True
|
Asks the monitor to start tracking a new value. Can be called
even after the monitor is already in use.
Parameters
----------
name : str
The display name in the monitor.
ipt : tensor_like
The symbolic tensor which should be clamped to the data.
(or a list/tuple containing symbolic tensors, following the
data_specs)
val : tensor_like
The value (function of `ipt`) to be tracked.
dataset : pylearn2.datasets.Dataset
Which dataset to compute this channel on
prereqs : list of callables that take a list of numpy tensors
Each prereq must be called exactly once per each new batch
of data drawn *from dataset* before the channel value is
computed if two channels provide a prereq with exactly the
same id, that prereq will only be called once
data_specs : (space, source) pair
Identifies the order, format and semantics of ipt
|
pylearn2/monitor.py
|
add_channel
|
fxyu/pylearn2
| 2,045 |
python
|
def add_channel(self, name, ipt, val, dataset=None, prereqs=None, data_specs=None):
'\n Asks the monitor to start tracking a new value. Can be called\n even after the monitor is already in use.\n\n Parameters\n ----------\n name : str\n The display name in the monitor.\n ipt : tensor_like\n The symbolic tensor which should be clamped to the data.\n (or a list/tuple containing symbolic tensors, following the\n data_specs)\n val : tensor_like\n The value (function of `ipt`) to be tracked.\n dataset : pylearn2.datasets.Dataset\n Which dataset to compute this channel on\n prereqs : list of callables that take a list of numpy tensors\n Each prereq must be called exactly once per each new batch\n of data drawn *from dataset* before the channel value is\n computed if two channels provide a prereq with exactly the\n same id, that prereq will only be called once\n data_specs : (space, source) pair\n Identifies the order, format and semantics of ipt\n '
if six.PY3:
numeric = (float, int)
else:
numeric = (float, int, long)
if isinstance(val, numeric):
val = np.cast[theano.config.floatX](val)
val = T.as_tensor_variable(val)
if (data_specs is None):
warnings.warn(("parameter 'data_specs' should be provided when " + 'calling add_channel. We will build a default one.'), stacklevel=2)
if isinstance(ipt, list):
ipt = tuple(ipt)
if ((ipt is not None) and (not isinstance(ipt, tuple))):
ipt = (ipt,)
if (ipt is None):
data_specs = (NullSpace(), )
elif (len(ipt) == 0):
data_specs = (CompositeSpace([]), ())
elif hasattr(dataset, 'get_data_specs'):
(dataset_space, dataset_source) = dataset.get_data_specs()
if ((len(ipt) == 1) and (dataset_source is not None) and ((not isinstance(dataset_source, tuple)) or (len(dataset_source) == 1)) and ('features' in dataset_source)):
data_specs = (dataset_space, dataset_source)
elif ((len(ipt) == 2) and (dataset_source == ('features', 'targets'))):
data_specs = (dataset_space, dataset_source)
else:
raise ValueError((('Cannot infer default data_specs for ' + 'the following input points and ') + ('dataset: ipt = %s, dataset = %s' % (ipt, dataset))))
data_specs[0].validate(ipt)
mapping = DataSpecsMapping(data_specs)
flat_ipt = mapping.flatten(ipt)
if (not isinstance(flat_ipt, tuple)):
flat_ipt = (flat_ipt,)
inputs = theano.gof.graph.inputs([val])
for elem in inputs:
if ((not hasattr(elem, 'get_value')) and (not isinstance(elem, theano.gof.graph.Constant))):
if (elem not in flat_ipt):
raise ValueError((((((('Unspecified input: ' + str(elem)) + '. This may be due to an incorrect ') + "implementation of a cost's ") + 'get_data_specs() method, or of a ') + "model's get_monitoring_data_specs() ") + 'method.'))
mode = self.theano_function_mode
if ((mode is not None) and hasattr(mode, 'record')):
mode.record.handle_line((('Adding monitor channel ' + name) + '\n'))
assert isinstance(flat_ipt, tuple)
if (len(flat_ipt) != 1):
for elem in flat_ipt:
mode.record.handle_line((('Includes input var ' + var_descriptor(elem)) + '\n'))
else:
mode.record.handle_line((((name + ' input var is ') + var_descriptor(flat_ipt[0])) + '\n'))
mode.record.handle_line((((('channel ' + name) + ' is ') + var_descriptor(val)) + '\n'))
if (dataset is None):
if (len(self._datasets) == 1):
dataset = self._datasets[0]
elif (len(self._datasets) == 0):
raise ValueError(_err_no_data)
else:
raise ValueError(_err_ambig_data)
try:
self._datasets.index(dataset)
except ValueError:
reraise_as(ValueError(('The dataset specified is not one of the ' + "monitor's datasets")))
if (self.on_channel_conflict not in ('error', 'copy_history', 'overwrite')):
raise ValueError(("on_channel_conflict should be either 'error'" + "'copy_history', or 'overwrite'"))
if ((name in self.channels) and (self.on_channel_conflict == 'error')):
raise ValueError(('Tried to create the same channel twice (%s)' % name))
elif ((name in self.channels) and (self.on_channel_conflict == 'copy_history')):
self.channels[name] = MonitorChannel(ipt, val, name, data_specs, dataset, prereqs, self.channels[name])
elif ((name not in self.channels) or (self.on_channel_conflict == 'overwrite')):
self.channels[name] = MonitorChannel(ipt, val, name, data_specs, dataset, prereqs)
self._dirty = True
|
def add_channel(self, name, ipt, val, dataset=None, prereqs=None, data_specs=None):
'\n Asks the monitor to start tracking a new value. Can be called\n even after the monitor is already in use.\n\n Parameters\n ----------\n name : str\n The display name in the monitor.\n ipt : tensor_like\n The symbolic tensor which should be clamped to the data.\n (or a list/tuple containing symbolic tensors, following the\n data_specs)\n val : tensor_like\n The value (function of `ipt`) to be tracked.\n dataset : pylearn2.datasets.Dataset\n Which dataset to compute this channel on\n prereqs : list of callables that take a list of numpy tensors\n Each prereq must be called exactly once per each new batch\n of data drawn *from dataset* before the channel value is\n computed if two channels provide a prereq with exactly the\n same id, that prereq will only be called once\n data_specs : (space, source) pair\n Identifies the order, format and semantics of ipt\n '
if six.PY3:
numeric = (float, int)
else:
numeric = (float, int, long)
if isinstance(val, numeric):
val = np.cast[theano.config.floatX](val)
val = T.as_tensor_variable(val)
if (data_specs is None):
warnings.warn(("parameter 'data_specs' should be provided when " + 'calling add_channel. We will build a default one.'), stacklevel=2)
if isinstance(ipt, list):
ipt = tuple(ipt)
if ((ipt is not None) and (not isinstance(ipt, tuple))):
ipt = (ipt,)
if (ipt is None):
data_specs = (NullSpace(), )
elif (len(ipt) == 0):
data_specs = (CompositeSpace([]), ())
elif hasattr(dataset, 'get_data_specs'):
(dataset_space, dataset_source) = dataset.get_data_specs()
if ((len(ipt) == 1) and (dataset_source is not None) and ((not isinstance(dataset_source, tuple)) or (len(dataset_source) == 1)) and ('features' in dataset_source)):
data_specs = (dataset_space, dataset_source)
elif ((len(ipt) == 2) and (dataset_source == ('features', 'targets'))):
data_specs = (dataset_space, dataset_source)
else:
raise ValueError((('Cannot infer default data_specs for ' + 'the following input points and ') + ('dataset: ipt = %s, dataset = %s' % (ipt, dataset))))
data_specs[0].validate(ipt)
mapping = DataSpecsMapping(data_specs)
flat_ipt = mapping.flatten(ipt)
if (not isinstance(flat_ipt, tuple)):
flat_ipt = (flat_ipt,)
inputs = theano.gof.graph.inputs([val])
for elem in inputs:
if ((not hasattr(elem, 'get_value')) and (not isinstance(elem, theano.gof.graph.Constant))):
if (elem not in flat_ipt):
raise ValueError((((((('Unspecified input: ' + str(elem)) + '. This may be due to an incorrect ') + "implementation of a cost's ") + 'get_data_specs() method, or of a ') + "model's get_monitoring_data_specs() ") + 'method.'))
mode = self.theano_function_mode
if ((mode is not None) and hasattr(mode, 'record')):
mode.record.handle_line((('Adding monitor channel ' + name) + '\n'))
assert isinstance(flat_ipt, tuple)
if (len(flat_ipt) != 1):
for elem in flat_ipt:
mode.record.handle_line((('Includes input var ' + var_descriptor(elem)) + '\n'))
else:
mode.record.handle_line((((name + ' input var is ') + var_descriptor(flat_ipt[0])) + '\n'))
mode.record.handle_line((((('channel ' + name) + ' is ') + var_descriptor(val)) + '\n'))
if (dataset is None):
if (len(self._datasets) == 1):
dataset = self._datasets[0]
elif (len(self._datasets) == 0):
raise ValueError(_err_no_data)
else:
raise ValueError(_err_ambig_data)
try:
self._datasets.index(dataset)
except ValueError:
reraise_as(ValueError(('The dataset specified is not one of the ' + "monitor's datasets")))
if (self.on_channel_conflict not in ('error', 'copy_history', 'overwrite')):
raise ValueError(("on_channel_conflict should be either 'error'" + "'copy_history', or 'overwrite'"))
if ((name in self.channels) and (self.on_channel_conflict == 'error')):
raise ValueError(('Tried to create the same channel twice (%s)' % name))
elif ((name in self.channels) and (self.on_channel_conflict == 'copy_history')):
self.channels[name] = MonitorChannel(ipt, val, name, data_specs, dataset, prereqs, self.channels[name])
elif ((name not in self.channels) or (self.on_channel_conflict == 'overwrite')):
self.channels[name] = MonitorChannel(ipt, val, name, data_specs, dataset, prereqs)
self._dirty = True<|docstring|>Asks the monitor to start tracking a new value. Can be called
even after the monitor is already in use.
Parameters
----------
name : str
The display name in the monitor.
ipt : tensor_like
The symbolic tensor which should be clamped to the data.
(or a list/tuple containing symbolic tensors, following the
data_specs)
val : tensor_like
The value (function of `ipt`) to be tracked.
dataset : pylearn2.datasets.Dataset
Which dataset to compute this channel on
prereqs : list of callables that take a list of numpy tensors
Each prereq must be called exactly once per each new batch
of data drawn *from dataset* before the channel value is
computed if two channels provide a prereq with exactly the
same id, that prereq will only be called once
data_specs : (space, source) pair
Identifies the order, format and semantics of ipt<|endoftext|>
|
cb38977ab1b8b42b6558358c174630fbc679a77afc9c0b0feb0d47b654a29b6d
|
def _sanity_check(self):
"\n Sometimes we serialize models and then load them somewhere else\n but still try to use their Monitor, and the Monitor is in a\n mangled state. I've added some calls to _sanity_check to try to\n catch when that happens. Not sure what to do for a long term\n fix. I think it requires making theano graphs serializable\n first.\n "
for name in self.channels:
channel = self.channels[name]
assert hasattr(channel, 'prereqs')
|
Sometimes we serialize models and then load them somewhere else
but still try to use their Monitor, and the Monitor is in a
mangled state. I've added some calls to _sanity_check to try to
catch when that happens. Not sure what to do for a long term
fix. I think it requires making theano graphs serializable
first.
|
pylearn2/monitor.py
|
_sanity_check
|
fxyu/pylearn2
| 2,045 |
python
|
def _sanity_check(self):
"\n Sometimes we serialize models and then load them somewhere else\n but still try to use their Monitor, and the Monitor is in a\n mangled state. I've added some calls to _sanity_check to try to\n catch when that happens. Not sure what to do for a long term\n fix. I think it requires making theano graphs serializable\n first.\n "
for name in self.channels:
channel = self.channels[name]
assert hasattr(channel, 'prereqs')
|
def _sanity_check(self):
"\n Sometimes we serialize models and then load them somewhere else\n but still try to use their Monitor, and the Monitor is in a\n mangled state. I've added some calls to _sanity_check to try to\n catch when that happens. Not sure what to do for a long term\n fix. I think it requires making theano graphs serializable\n first.\n "
for name in self.channels:
channel = self.channels[name]
assert hasattr(channel, 'prereqs')<|docstring|>Sometimes we serialize models and then load them somewhere else
but still try to use their Monitor, and the Monitor is in a
mangled state. I've added some calls to _sanity_check to try to
catch when that happens. Not sure what to do for a long term
fix. I think it requires making theano graphs serializable
first.<|endoftext|>
|
366455c8da314b173b276c45242495837a068addf71d1065cc167da59844afa5
|
@classmethod
def get_monitor(cls, model):
"\n Returns a model's monitor. If the model doesn't have a monitor\n yet, installs one and returns that.\n\n Parameters\n ----------\n model : object\n An object that implements the `Model` interface specified\n in `pylearn2.models`.\n "
if hasattr(model, 'monitor'):
rval = model.monitor
rval._sanity_check()
else:
rval = Monitor(model)
model.monitor = rval
return rval
|
Returns a model's monitor. If the model doesn't have a monitor
yet, installs one and returns that.
Parameters
----------
model : object
An object that implements the `Model` interface specified
in `pylearn2.models`.
|
pylearn2/monitor.py
|
get_monitor
|
fxyu/pylearn2
| 2,045 |
python
|
@classmethod
def get_monitor(cls, model):
"\n Returns a model's monitor. If the model doesn't have a monitor\n yet, installs one and returns that.\n\n Parameters\n ----------\n model : object\n An object that implements the `Model` interface specified\n in `pylearn2.models`.\n "
if hasattr(model, 'monitor'):
rval = model.monitor
rval._sanity_check()
else:
rval = Monitor(model)
model.monitor = rval
return rval
|
@classmethod
def get_monitor(cls, model):
"\n Returns a model's monitor. If the model doesn't have a monitor\n yet, installs one and returns that.\n\n Parameters\n ----------\n model : object\n An object that implements the `Model` interface specified\n in `pylearn2.models`.\n "
if hasattr(model, 'monitor'):
rval = model.monitor
rval._sanity_check()
else:
rval = Monitor(model)
model.monitor = rval
return rval<|docstring|>Returns a model's monitor. If the model doesn't have a monitor
yet, installs one and returns that.
Parameters
----------
model : object
An object that implements the `Model` interface specified
in `pylearn2.models`.<|endoftext|>
|
940b096da2fa58243757ee958283c0f9284ddd904a09a006bbcce2d397b040a2
|
@property
def batch_size(self):
'\n .. todo::\n\n WRITEME\n\n Returns\n -------\n batch_size : int\n The size of the batches used for monitoring\n '
return self._batch_size
|
.. todo::
WRITEME
Returns
-------
batch_size : int
The size of the batches used for monitoring
|
pylearn2/monitor.py
|
batch_size
|
fxyu/pylearn2
| 2,045 |
python
|
@property
def batch_size(self):
'\n .. todo::\n\n WRITEME\n\n Returns\n -------\n batch_size : int\n The size of the batches used for monitoring\n '
return self._batch_size
|
@property
def batch_size(self):
'\n .. todo::\n\n WRITEME\n\n Returns\n -------\n batch_size : int\n The size of the batches used for monitoring\n '
return self._batch_size<|docstring|>.. todo::
WRITEME
Returns
-------
batch_size : int
The size of the batches used for monitoring<|endoftext|>
|
690472128f13d949f1b900f7b8f1f1fa9dc2b1da63795658c1e59707716e7b83
|
@property
def num_batches(self):
'\n .. todo::\n\n WRITEME\n\n Returns\n -------\n num_batches : int\n The number of batches used for monitoring\n '
return self._num_batches
|
.. todo::
WRITEME
Returns
-------
num_batches : int
The number of batches used for monitoring
|
pylearn2/monitor.py
|
num_batches
|
fxyu/pylearn2
| 2,045 |
python
|
@property
def num_batches(self):
'\n .. todo::\n\n WRITEME\n\n Returns\n -------\n num_batches : int\n The number of batches used for monitoring\n '
return self._num_batches
|
@property
def num_batches(self):
'\n .. todo::\n\n WRITEME\n\n Returns\n -------\n num_batches : int\n The number of batches used for monitoring\n '
return self._num_batches<|docstring|>.. todo::
WRITEME
Returns
-------
num_batches : int
The number of batches used for monitoring<|endoftext|>
|
1ecadaadb497038af85c81640a79426e0bdae6942c2361e51efc912e3c91e4ca
|
def setup(self, dataset, cost, batch_size, num_batches=None, extra_costs=None, mode='sequential', obj_prereqs=None, cost_monitoring_args=None):
"\n Sets up the monitor for a cost minimization problem.\n Adds channels defined by both the model and the cost for\n the specified dataset(s), as well as a channel called\n 'objective' defined by the costs' __call__ method.\n\n Parameters\n ----------\n dataset : pylearn2.datasets.Dataset\n Dataset or dictionary mapping string names to Datasets.\n If string names are used, then for every dataset, each\n channel defined by the model or cost will be replicated\n with that dataset's name followed by an underscore as the\n prefix. For example, if your cost defines a channel called\n 'misclass', and datasets is\n {'train' : train_dataset, 'valid' : valid_dataset},\n you will get channels called 'train_misclass' and\n 'valid_misclass'.\n cost : pylearn2.costs.Cost\n The cost being optimized by training. The value of the cost\n will appear as the `objective` channel. Its\n `get_monitoring_channels` method will also be used to\n supply other channels.\n extra_costs : OrderedDict, optional\n A dictionary mapping channel names to Cost objects.\n Their value will appear as the specified channel name.\n They will also provide more monitoring channels via their\n `get_monitoring_channels` method.\n obj_prereqs : None, or list of functions\n Functions to pass as prerequisites to the `objective` channel.\n cost_monitoring_args : dict\n Dictionary of kwargs that will be passed to\n `cost.get_monitoring_channels()`\n (but not for the extra_costs).\n "
if (dataset is None):
return
if isinstance(dataset, Dataset):
dataset = {'': dataset}
else:
assert isinstance(dataset, dict)
assert all((isinstance(key, str) for key in dataset))
assert all((isinstance(dataset[key], Dataset) for key in dataset))
if (extra_costs is None):
costs = {}
else:
assert isinstance(extra_costs, (OrderedDict, dict))
costs = extra_costs
assert ('' not in costs)
costs[''] = cost
if (cost_monitoring_args is None):
cost_monitoring_args = {}
model = self.model
cost_names = sorted(costs.keys())
spaces = []
sources = []
for c in cost_names:
(c_space, c_source) = costs[c].get_data_specs(model)
spaces.append(c_space)
sources.append(c_source)
(m_space, m_source) = model.get_monitoring_data_specs()
spaces.append(m_space)
sources.append(m_source)
nested_space = CompositeSpace(spaces)
nested_sources = tuple(sources)
mapping = DataSpecsMapping((nested_space, nested_sources))
space_tuple = mapping.flatten(nested_space, return_tuple=True)
source_tuple = mapping.flatten(nested_sources, return_tuple=True)
ipt = tuple((space.make_theano_batch(name=('monitor_%s' % source), batch_size=None) for (space, source) in safe_zip(space_tuple, source_tuple)))
nested_ipt = mapping.nest(ipt)
custom_channels = {}
for (i, cost_name) in enumerate(cost_names):
if (cost_name == ''):
prefix = ''
else:
prefix = (cost_name + '_')
cost = costs[cost_name]
cost_ipt = nested_ipt[i]
raw_channels = cost.get_monitoring_channels(model, cost_ipt)
channels = {}
for name in raw_channels:
channels[(prefix + name)] = (raw_channels[name], cost_ipt, (spaces[i], sources[i]))
custom_channels.update(channels)
model_channels = model.get_monitoring_channels(nested_ipt[(- 1)])
channels = {}
for name in model_channels:
channels[name] = (model_channels[name], nested_ipt[(- 1)], (spaces[(- 1)], sources[(- 1)]))
custom_channels.update(channels)
if is_stochastic(mode):
seed = [[2013, 2, 22]]
else:
seed = None
for dataset_name in dataset:
cur_dataset = dataset[dataset_name]
self.add_dataset(dataset=cur_dataset, mode=mode, batch_size=batch_size, num_batches=num_batches, seed=seed)
if (dataset_name == ''):
dprefix = ''
else:
dprefix = (dataset_name + '_')
for (i, cost_name) in enumerate(cost_names):
cost = costs[cost_name]
cost_ipt = nested_ipt[i]
cost_value = cost.expr(model, cost_ipt)
if (cost_value is not None):
if (cost_name == ''):
name = (dprefix + 'objective')
prereqs = obj_prereqs
else:
name = (dprefix + cost_name)
prereqs = None
cost.get_data_specs(model)[0].validate(cost_ipt)
self.add_channel(name=name, ipt=cost_ipt, val=cost_value, data_specs=cost.get_data_specs(model), dataset=cur_dataset, prereqs=prereqs)
for key in custom_channels:
(val, ipt, data_specs) = custom_channels[key]
data_specs[0].validate(ipt)
self.add_channel(name=(dprefix + key), ipt=ipt, val=val, data_specs=data_specs, dataset=cur_dataset)
|
Sets up the monitor for a cost minimization problem.
Adds channels defined by both the model and the cost for
the specified dataset(s), as well as a channel called
'objective' defined by the costs' __call__ method.
Parameters
----------
dataset : pylearn2.datasets.Dataset
Dataset or dictionary mapping string names to Datasets.
If string names are used, then for every dataset, each
channel defined by the model or cost will be replicated
with that dataset's name followed by an underscore as the
prefix. For example, if your cost defines a channel called
'misclass', and datasets is
{'train' : train_dataset, 'valid' : valid_dataset},
you will get channels called 'train_misclass' and
'valid_misclass'.
cost : pylearn2.costs.Cost
The cost being optimized by training. The value of the cost
will appear as the `objective` channel. Its
`get_monitoring_channels` method will also be used to
supply other channels.
extra_costs : OrderedDict, optional
A dictionary mapping channel names to Cost objects.
Their value will appear as the specified channel name.
They will also provide more monitoring channels via their
`get_monitoring_channels` method.
obj_prereqs : None, or list of functions
Functions to pass as prerequisites to the `objective` channel.
cost_monitoring_args : dict
Dictionary of kwargs that will be passed to
`cost.get_monitoring_channels()`
(but not for the extra_costs).
|
pylearn2/monitor.py
|
setup
|
fxyu/pylearn2
| 2,045 |
python
|
def setup(self, dataset, cost, batch_size, num_batches=None, extra_costs=None, mode='sequential', obj_prereqs=None, cost_monitoring_args=None):
"\n Sets up the monitor for a cost minimization problem.\n Adds channels defined by both the model and the cost for\n the specified dataset(s), as well as a channel called\n 'objective' defined by the costs' __call__ method.\n\n Parameters\n ----------\n dataset : pylearn2.datasets.Dataset\n Dataset or dictionary mapping string names to Datasets.\n If string names are used, then for every dataset, each\n channel defined by the model or cost will be replicated\n with that dataset's name followed by an underscore as the\n prefix. For example, if your cost defines a channel called\n 'misclass', and datasets is\n {'train' : train_dataset, 'valid' : valid_dataset},\n you will get channels called 'train_misclass' and\n 'valid_misclass'.\n cost : pylearn2.costs.Cost\n The cost being optimized by training. The value of the cost\n will appear as the `objective` channel. Its\n `get_monitoring_channels` method will also be used to\n supply other channels.\n extra_costs : OrderedDict, optional\n A dictionary mapping channel names to Cost objects.\n Their value will appear as the specified channel name.\n They will also provide more monitoring channels via their\n `get_monitoring_channels` method.\n obj_prereqs : None, or list of functions\n Functions to pass as prerequisites to the `objective` channel.\n cost_monitoring_args : dict\n Dictionary of kwargs that will be passed to\n `cost.get_monitoring_channels()`\n (but not for the extra_costs).\n "
if (dataset is None):
return
if isinstance(dataset, Dataset):
dataset = {: dataset}
else:
assert isinstance(dataset, dict)
assert all((isinstance(key, str) for key in dataset))
assert all((isinstance(dataset[key], Dataset) for key in dataset))
if (extra_costs is None):
costs = {}
else:
assert isinstance(extra_costs, (OrderedDict, dict))
costs = extra_costs
assert ( not in costs)
costs[] = cost
if (cost_monitoring_args is None):
cost_monitoring_args = {}
model = self.model
cost_names = sorted(costs.keys())
spaces = []
sources = []
for c in cost_names:
(c_space, c_source) = costs[c].get_data_specs(model)
spaces.append(c_space)
sources.append(c_source)
(m_space, m_source) = model.get_monitoring_data_specs()
spaces.append(m_space)
sources.append(m_source)
nested_space = CompositeSpace(spaces)
nested_sources = tuple(sources)
mapping = DataSpecsMapping((nested_space, nested_sources))
space_tuple = mapping.flatten(nested_space, return_tuple=True)
source_tuple = mapping.flatten(nested_sources, return_tuple=True)
ipt = tuple((space.make_theano_batch(name=('monitor_%s' % source), batch_size=None) for (space, source) in safe_zip(space_tuple, source_tuple)))
nested_ipt = mapping.nest(ipt)
custom_channels = {}
for (i, cost_name) in enumerate(cost_names):
if (cost_name == ):
prefix =
else:
prefix = (cost_name + '_')
cost = costs[cost_name]
cost_ipt = nested_ipt[i]
raw_channels = cost.get_monitoring_channels(model, cost_ipt)
channels = {}
for name in raw_channels:
channels[(prefix + name)] = (raw_channels[name], cost_ipt, (spaces[i], sources[i]))
custom_channels.update(channels)
model_channels = model.get_monitoring_channels(nested_ipt[(- 1)])
channels = {}
for name in model_channels:
channels[name] = (model_channels[name], nested_ipt[(- 1)], (spaces[(- 1)], sources[(- 1)]))
custom_channels.update(channels)
if is_stochastic(mode):
seed = [[2013, 2, 22]]
else:
seed = None
for dataset_name in dataset:
cur_dataset = dataset[dataset_name]
self.add_dataset(dataset=cur_dataset, mode=mode, batch_size=batch_size, num_batches=num_batches, seed=seed)
if (dataset_name == ):
dprefix =
else:
dprefix = (dataset_name + '_')
for (i, cost_name) in enumerate(cost_names):
cost = costs[cost_name]
cost_ipt = nested_ipt[i]
cost_value = cost.expr(model, cost_ipt)
if (cost_value is not None):
if (cost_name == ):
name = (dprefix + 'objective')
prereqs = obj_prereqs
else:
name = (dprefix + cost_name)
prereqs = None
cost.get_data_specs(model)[0].validate(cost_ipt)
self.add_channel(name=name, ipt=cost_ipt, val=cost_value, data_specs=cost.get_data_specs(model), dataset=cur_dataset, prereqs=prereqs)
for key in custom_channels:
(val, ipt, data_specs) = custom_channels[key]
data_specs[0].validate(ipt)
self.add_channel(name=(dprefix + key), ipt=ipt, val=val, data_specs=data_specs, dataset=cur_dataset)
|
def setup(self, dataset, cost, batch_size, num_batches=None, extra_costs=None, mode='sequential', obj_prereqs=None, cost_monitoring_args=None):
"\n Sets up the monitor for a cost minimization problem.\n Adds channels defined by both the model and the cost for\n the specified dataset(s), as well as a channel called\n 'objective' defined by the costs' __call__ method.\n\n Parameters\n ----------\n dataset : pylearn2.datasets.Dataset\n Dataset or dictionary mapping string names to Datasets.\n If string names are used, then for every dataset, each\n channel defined by the model or cost will be replicated\n with that dataset's name followed by an underscore as the\n prefix. For example, if your cost defines a channel called\n 'misclass', and datasets is\n {'train' : train_dataset, 'valid' : valid_dataset},\n you will get channels called 'train_misclass' and\n 'valid_misclass'.\n cost : pylearn2.costs.Cost\n The cost being optimized by training. The value of the cost\n will appear as the `objective` channel. Its\n `get_monitoring_channels` method will also be used to\n supply other channels.\n extra_costs : OrderedDict, optional\n A dictionary mapping channel names to Cost objects.\n Their value will appear as the specified channel name.\n They will also provide more monitoring channels via their\n `get_monitoring_channels` method.\n obj_prereqs : None, or list of functions\n Functions to pass as prerequisites to the `objective` channel.\n cost_monitoring_args : dict\n Dictionary of kwargs that will be passed to\n `cost.get_monitoring_channels()`\n (but not for the extra_costs).\n "
if (dataset is None):
return
if isinstance(dataset, Dataset):
dataset = {: dataset}
else:
assert isinstance(dataset, dict)
assert all((isinstance(key, str) for key in dataset))
assert all((isinstance(dataset[key], Dataset) for key in dataset))
if (extra_costs is None):
costs = {}
else:
assert isinstance(extra_costs, (OrderedDict, dict))
costs = extra_costs
assert ( not in costs)
costs[] = cost
if (cost_monitoring_args is None):
cost_monitoring_args = {}
model = self.model
cost_names = sorted(costs.keys())
spaces = []
sources = []
for c in cost_names:
(c_space, c_source) = costs[c].get_data_specs(model)
spaces.append(c_space)
sources.append(c_source)
(m_space, m_source) = model.get_monitoring_data_specs()
spaces.append(m_space)
sources.append(m_source)
nested_space = CompositeSpace(spaces)
nested_sources = tuple(sources)
mapping = DataSpecsMapping((nested_space, nested_sources))
space_tuple = mapping.flatten(nested_space, return_tuple=True)
source_tuple = mapping.flatten(nested_sources, return_tuple=True)
ipt = tuple((space.make_theano_batch(name=('monitor_%s' % source), batch_size=None) for (space, source) in safe_zip(space_tuple, source_tuple)))
nested_ipt = mapping.nest(ipt)
custom_channels = {}
for (i, cost_name) in enumerate(cost_names):
if (cost_name == ):
prefix =
else:
prefix = (cost_name + '_')
cost = costs[cost_name]
cost_ipt = nested_ipt[i]
raw_channels = cost.get_monitoring_channels(model, cost_ipt)
channels = {}
for name in raw_channels:
channels[(prefix + name)] = (raw_channels[name], cost_ipt, (spaces[i], sources[i]))
custom_channels.update(channels)
model_channels = model.get_monitoring_channels(nested_ipt[(- 1)])
channels = {}
for name in model_channels:
channels[name] = (model_channels[name], nested_ipt[(- 1)], (spaces[(- 1)], sources[(- 1)]))
custom_channels.update(channels)
if is_stochastic(mode):
seed = [[2013, 2, 22]]
else:
seed = None
for dataset_name in dataset:
cur_dataset = dataset[dataset_name]
self.add_dataset(dataset=cur_dataset, mode=mode, batch_size=batch_size, num_batches=num_batches, seed=seed)
if (dataset_name == ):
dprefix =
else:
dprefix = (dataset_name + '_')
for (i, cost_name) in enumerate(cost_names):
cost = costs[cost_name]
cost_ipt = nested_ipt[i]
cost_value = cost.expr(model, cost_ipt)
if (cost_value is not None):
if (cost_name == ):
name = (dprefix + 'objective')
prereqs = obj_prereqs
else:
name = (dprefix + cost_name)
prereqs = None
cost.get_data_specs(model)[0].validate(cost_ipt)
self.add_channel(name=name, ipt=cost_ipt, val=cost_value, data_specs=cost.get_data_specs(model), dataset=cur_dataset, prereqs=prereqs)
for key in custom_channels:
(val, ipt, data_specs) = custom_channels[key]
data_specs[0].validate(ipt)
self.add_channel(name=(dprefix + key), ipt=ipt, val=val, data_specs=data_specs, dataset=cur_dataset)<|docstring|>Sets up the monitor for a cost minimization problem.
Adds channels defined by both the model and the cost for
the specified dataset(s), as well as a channel called
'objective' defined by the costs' __call__ method.
Parameters
----------
dataset : pylearn2.datasets.Dataset
Dataset or dictionary mapping string names to Datasets.
If string names are used, then for every dataset, each
channel defined by the model or cost will be replicated
with that dataset's name followed by an underscore as the
prefix. For example, if your cost defines a channel called
'misclass', and datasets is
{'train' : train_dataset, 'valid' : valid_dataset},
you will get channels called 'train_misclass' and
'valid_misclass'.
cost : pylearn2.costs.Cost
The cost being optimized by training. The value of the cost
will appear as the `objective` channel. Its
`get_monitoring_channels` method will also be used to
supply other channels.
extra_costs : OrderedDict, optional
A dictionary mapping channel names to Cost objects.
Their value will appear as the specified channel name.
They will also provide more monitoring channels via their
`get_monitoring_channels` method.
obj_prereqs : None, or list of functions
Functions to pass as prerequisites to the `objective` channel.
cost_monitoring_args : dict
Dictionary of kwargs that will be passed to
`cost.get_monitoring_channels()`
(but not for the extra_costs).<|endoftext|>
|
f85464a65c5c915473fbf9327ef1016bd32799829c60f8243d2ece0405bf8811
|
def __str__(self):
'\n .. todo::\n\n WRITEME\n\n Returns\n -------\n s : str\n A reasonably human-readable string representation of the object.\n '
try:
graph_input_str = str(self.graph_input)
except Exception:
graph_input_str = '<bad graph input>'
try:
val_str = str(self.val)
except Exception:
val_str = '<bad val>'
try:
name_str = str(self.name)
except Exception:
name_str = '<bad name>'
try:
prereqs_str = str(self.prereqs)
except Exception:
prereqs_str = '<bad prereqs>'
return ('MonitorChannel(%s,%s,%s,%s)' % (graph_input_str, val_str, name_str, prereqs_str))
|
.. todo::
WRITEME
Returns
-------
s : str
A reasonably human-readable string representation of the object.
|
pylearn2/monitor.py
|
__str__
|
fxyu/pylearn2
| 2,045 |
python
|
def __str__(self):
'\n .. todo::\n\n WRITEME\n\n Returns\n -------\n s : str\n A reasonably human-readable string representation of the object.\n '
try:
graph_input_str = str(self.graph_input)
except Exception:
graph_input_str = '<bad graph input>'
try:
val_str = str(self.val)
except Exception:
val_str = '<bad val>'
try:
name_str = str(self.name)
except Exception:
name_str = '<bad name>'
try:
prereqs_str = str(self.prereqs)
except Exception:
prereqs_str = '<bad prereqs>'
return ('MonitorChannel(%s,%s,%s,%s)' % (graph_input_str, val_str, name_str, prereqs_str))
|
def __str__(self):
'\n .. todo::\n\n WRITEME\n\n Returns\n -------\n s : str\n A reasonably human-readable string representation of the object.\n '
try:
graph_input_str = str(self.graph_input)
except Exception:
graph_input_str = '<bad graph input>'
try:
val_str = str(self.val)
except Exception:
val_str = '<bad val>'
try:
name_str = str(self.name)
except Exception:
name_str = '<bad name>'
try:
prereqs_str = str(self.prereqs)
except Exception:
prereqs_str = '<bad prereqs>'
return ('MonitorChannel(%s,%s,%s,%s)' % (graph_input_str, val_str, name_str, prereqs_str))<|docstring|>.. todo::
WRITEME
Returns
-------
s : str
A reasonably human-readable string representation of the object.<|endoftext|>
|
81214f28ebd419608ee4b250b304d277448185a487f14cf51aa1f31dd92408a7
|
def __getstate__(self):
'\n .. todo::\n\n WRITEME\n\n Returns\n -------\n d : dict\n A dictionary mapping the string names of the fields of the class\n to values appropriate for pickling.\n '
if hasattr(self, 'val'):
doc = get_monitor_doc(self.val)
elif hasattr(self, 'doc'):
doc = self.doc
else:
doc = None
return {'doc': doc, 'example_record': self.example_record, 'batch_record': self.batch_record, 'time_record': self.time_record, 'epoch_record': self.epoch_record, 'val_record': self.val_record}
|
.. todo::
WRITEME
Returns
-------
d : dict
A dictionary mapping the string names of the fields of the class
to values appropriate for pickling.
|
pylearn2/monitor.py
|
__getstate__
|
fxyu/pylearn2
| 2,045 |
python
|
def __getstate__(self):
'\n .. todo::\n\n WRITEME\n\n Returns\n -------\n d : dict\n A dictionary mapping the string names of the fields of the class\n to values appropriate for pickling.\n '
if hasattr(self, 'val'):
doc = get_monitor_doc(self.val)
elif hasattr(self, 'doc'):
doc = self.doc
else:
doc = None
return {'doc': doc, 'example_record': self.example_record, 'batch_record': self.batch_record, 'time_record': self.time_record, 'epoch_record': self.epoch_record, 'val_record': self.val_record}
|
def __getstate__(self):
'\n .. todo::\n\n WRITEME\n\n Returns\n -------\n d : dict\n A dictionary mapping the string names of the fields of the class\n to values appropriate for pickling.\n '
if hasattr(self, 'val'):
doc = get_monitor_doc(self.val)
elif hasattr(self, 'doc'):
doc = self.doc
else:
doc = None
return {'doc': doc, 'example_record': self.example_record, 'batch_record': self.batch_record, 'time_record': self.time_record, 'epoch_record': self.epoch_record, 'val_record': self.val_record}<|docstring|>.. todo::
WRITEME
Returns
-------
d : dict
A dictionary mapping the string names of the fields of the class
to values appropriate for pickling.<|endoftext|>
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.