body_hash
stringlengths 64
64
| body
stringlengths 23
109k
| docstring
stringlengths 1
57k
| path
stringlengths 4
198
| name
stringlengths 1
115
| repository_name
stringlengths 7
111
| repository_stars
float64 0
191k
| lang
stringclasses 1
value | body_without_docstring
stringlengths 14
108k
| unified
stringlengths 45
133k
|
---|---|---|---|---|---|---|---|---|---|
0d7f47d277ff0c9e41edef0b29ec414fa622e574188a571c35abceb76e156896
|
def loads(data, handler=None):
'Load configuration data from C{data}.\n\n @param handler: callable or C{None} that will be invoked for\n augmenting an object. The handler will be passed a term\n that was provided. The handler must return a C{dict}.\n\n @return: The configuration data\n @rtype: C{dict}\n '
if (not isinstance(data, six.text_type)):
data = six.text_type(data, 'utf-8')
return _parse(data, handler)
|
Load configuration data from C{data}.
@param handler: callable or C{None} that will be invoked for
augmenting an object. The handler will be passed a term
that was provided. The handler must return a C{dict}.
@return: The configuration data
@rtype: C{dict}
|
structprop/__init__.py
|
loads
|
edgeware/structprop
| 1 |
python
|
def loads(data, handler=None):
'Load configuration data from C{data}.\n\n @param handler: callable or C{None} that will be invoked for\n augmenting an object. The handler will be passed a term\n that was provided. The handler must return a C{dict}.\n\n @return: The configuration data\n @rtype: C{dict}\n '
if (not isinstance(data, six.text_type)):
data = six.text_type(data, 'utf-8')
return _parse(data, handler)
|
def loads(data, handler=None):
'Load configuration data from C{data}.\n\n @param handler: callable or C{None} that will be invoked for\n augmenting an object. The handler will be passed a term\n that was provided. The handler must return a C{dict}.\n\n @return: The configuration data\n @rtype: C{dict}\n '
if (not isinstance(data, six.text_type)):
data = six.text_type(data, 'utf-8')
return _parse(data, handler)<|docstring|>Load configuration data from C{data}.
@param handler: callable or C{None} that will be invoked for
augmenting an object. The handler will be passed a term
that was provided. The handler must return a C{dict}.
@return: The configuration data
@rtype: C{dict}<|endoftext|>
|
412d5dc0413bdd380380a021d83a026d6269524553d67a1dae9b23a3f9a9f70a
|
def dumps(data):
'Dump configuration data to a string.\n\n @rtype: C{str}\n '
def _dump(d, indent=0):
for (key, value) in six.iteritems(d):
if isinstance(value, dict):
(yield ('%s%s {\n' % ((' ' * indent), _escape(key))))
for subs in _dump(value, (indent + 2)):
(yield subs)
(yield ('%s}\n' % (' ' * indent)))
elif isinstance(value, list):
(yield ('%s%s = {\n' % ((' ' * indent), _escape(key))))
for subvalue in value:
if (type(subvalue) == dict):
(yield ('%s{\n' % (' ' * (indent + 2))))
for subs in _dump(subvalue, (indent + 4)):
(yield subs)
(yield ('%s}\n' % (' ' * (indent + 2))))
else:
(yield ('%s%s\n' % ((' ' * (indent + 2)), _escape(subvalue))))
(yield ('%s}\n' % (' ' * indent)))
elif (type(value) == bool):
(yield ('%s%s = %s\n' % ((' ' * indent), _escape(key), _escape(str(value).lower()))))
else:
(yield ('%s%s = %s\n' % ((' ' * indent), _escape(key), _escape(str(value)))))
return ''.join(list(_dump(data)))
|
Dump configuration data to a string.
@rtype: C{str}
|
structprop/__init__.py
|
dumps
|
edgeware/structprop
| 1 |
python
|
def dumps(data):
'Dump configuration data to a string.\n\n @rtype: C{str}\n '
def _dump(d, indent=0):
for (key, value) in six.iteritems(d):
if isinstance(value, dict):
(yield ('%s%s {\n' % ((' ' * indent), _escape(key))))
for subs in _dump(value, (indent + 2)):
(yield subs)
(yield ('%s}\n' % (' ' * indent)))
elif isinstance(value, list):
(yield ('%s%s = {\n' % ((' ' * indent), _escape(key))))
for subvalue in value:
if (type(subvalue) == dict):
(yield ('%s{\n' % (' ' * (indent + 2))))
for subs in _dump(subvalue, (indent + 4)):
(yield subs)
(yield ('%s}\n' % (' ' * (indent + 2))))
else:
(yield ('%s%s\n' % ((' ' * (indent + 2)), _escape(subvalue))))
(yield ('%s}\n' % (' ' * indent)))
elif (type(value) == bool):
(yield ('%s%s = %s\n' % ((' ' * indent), _escape(key), _escape(str(value).lower()))))
else:
(yield ('%s%s = %s\n' % ((' ' * indent), _escape(key), _escape(str(value)))))
return .join(list(_dump(data)))
|
def dumps(data):
'Dump configuration data to a string.\n\n @rtype: C{str}\n '
def _dump(d, indent=0):
for (key, value) in six.iteritems(d):
if isinstance(value, dict):
(yield ('%s%s {\n' % ((' ' * indent), _escape(key))))
for subs in _dump(value, (indent + 2)):
(yield subs)
(yield ('%s}\n' % (' ' * indent)))
elif isinstance(value, list):
(yield ('%s%s = {\n' % ((' ' * indent), _escape(key))))
for subvalue in value:
if (type(subvalue) == dict):
(yield ('%s{\n' % (' ' * (indent + 2))))
for subs in _dump(subvalue, (indent + 4)):
(yield subs)
(yield ('%s}\n' % (' ' * (indent + 2))))
else:
(yield ('%s%s\n' % ((' ' * (indent + 2)), _escape(subvalue))))
(yield ('%s}\n' % (' ' * indent)))
elif (type(value) == bool):
(yield ('%s%s = %s\n' % ((' ' * indent), _escape(key), _escape(str(value).lower()))))
else:
(yield ('%s%s = %s\n' % ((' ' * indent), _escape(key), _escape(str(value)))))
return .join(list(_dump(data)))<|docstring|>Dump configuration data to a string.
@rtype: C{str}<|endoftext|>
|
382ff1e81aa42b34538e9475235774a19248dedcd52a8a2bbc65482fe67f3d35
|
def stmts(obj, next, token):
'Process statements until EOF.'
while (token is not EOF):
token = assignlist(obj, next, token)
|
Process statements until EOF.
|
structprop/__init__.py
|
stmts
|
edgeware/structprop
| 1 |
python
|
def stmts(obj, next, token):
while (token is not EOF):
token = assignlist(obj, next, token)
|
def stmts(obj, next, token):
while (token is not EOF):
token = assignlist(obj, next, token)<|docstring|>Process statements until EOF.<|endoftext|>
|
d6ed83790a2a123df57b68f29b05fea87f8cf11e48d61c955d5e59143d1b8cdf
|
def handle_init(self):
'Initialization of plugin\n\n - set the periodic call back for the process monitoring (at loop_rate)\n - create the listening UDP socket\n '
self.period = ioloop.PeriodicCallback(self.look_after, (self.loop_rate * 1000))
self.period.start()
self._bind_socket()
|
Initialization of plugin
- set the periodic call back for the process monitoring (at loop_rate)
- create the listening UDP socket
|
circus/plugins/watchdog.py
|
handle_init
|
JetDrag/circus
| 820 |
python
|
def handle_init(self):
'Initialization of plugin\n\n - set the periodic call back for the process monitoring (at loop_rate)\n - create the listening UDP socket\n '
self.period = ioloop.PeriodicCallback(self.look_after, (self.loop_rate * 1000))
self.period.start()
self._bind_socket()
|
def handle_init(self):
'Initialization of plugin\n\n - set the periodic call back for the process monitoring (at loop_rate)\n - create the listening UDP socket\n '
self.period = ioloop.PeriodicCallback(self.look_after, (self.loop_rate * 1000))
self.period.start()
self._bind_socket()<|docstring|>Initialization of plugin
- set the periodic call back for the process monitoring (at loop_rate)
- create the listening UDP socket<|endoftext|>
|
2cba7a65a44447b8a14b9f77700836396bec2558fddb5f1329b24da0f614cbf5
|
def handle_recv(self, data):
'Handle received message from circusd\n\n We need to handle two messages:\n - spawn: add a new monitored child pid\n - reap: remove a killed child pid from monitoring\n '
(watcher_name, action, msg) = self.split_data(data)
logger.debug('received data from circusd: watcher.%s.%s, %s', watcher_name, action, msg)
if self._match_watcher_name(watcher_name):
try:
message = self.load_message(msg)
except ValueError:
logger.error('Error while decoding json for message: %s', msg)
else:
if ('process_pid' not in message):
logger.warning('no process_pid in message')
return
pid = str(message.get('process_pid'))
if (action == 'spawn'):
self.pid_status[pid] = dict(watcher=watcher_name, last_activity=time.time())
logger.info('added new monitored pid for %s:%s', watcher_name, pid)
elif ((action == 'reap') and (pid in self.pid_status)):
old_pid = self.pid_status.pop(pid)
logger.info('removed monitored pid for %s:%s', old_pid['watcher'], pid)
|
Handle received message from circusd
We need to handle two messages:
- spawn: add a new monitored child pid
- reap: remove a killed child pid from monitoring
|
circus/plugins/watchdog.py
|
handle_recv
|
JetDrag/circus
| 820 |
python
|
def handle_recv(self, data):
'Handle received message from circusd\n\n We need to handle two messages:\n - spawn: add a new monitored child pid\n - reap: remove a killed child pid from monitoring\n '
(watcher_name, action, msg) = self.split_data(data)
logger.debug('received data from circusd: watcher.%s.%s, %s', watcher_name, action, msg)
if self._match_watcher_name(watcher_name):
try:
message = self.load_message(msg)
except ValueError:
logger.error('Error while decoding json for message: %s', msg)
else:
if ('process_pid' not in message):
logger.warning('no process_pid in message')
return
pid = str(message.get('process_pid'))
if (action == 'spawn'):
self.pid_status[pid] = dict(watcher=watcher_name, last_activity=time.time())
logger.info('added new monitored pid for %s:%s', watcher_name, pid)
elif ((action == 'reap') and (pid in self.pid_status)):
old_pid = self.pid_status.pop(pid)
logger.info('removed monitored pid for %s:%s', old_pid['watcher'], pid)
|
def handle_recv(self, data):
'Handle received message from circusd\n\n We need to handle two messages:\n - spawn: add a new monitored child pid\n - reap: remove a killed child pid from monitoring\n '
(watcher_name, action, msg) = self.split_data(data)
logger.debug('received data from circusd: watcher.%s.%s, %s', watcher_name, action, msg)
if self._match_watcher_name(watcher_name):
try:
message = self.load_message(msg)
except ValueError:
logger.error('Error while decoding json for message: %s', msg)
else:
if ('process_pid' not in message):
logger.warning('no process_pid in message')
return
pid = str(message.get('process_pid'))
if (action == 'spawn'):
self.pid_status[pid] = dict(watcher=watcher_name, last_activity=time.time())
logger.info('added new monitored pid for %s:%s', watcher_name, pid)
elif ((action == 'reap') and (pid in self.pid_status)):
old_pid = self.pid_status.pop(pid)
logger.info('removed monitored pid for %s:%s', old_pid['watcher'], pid)<|docstring|>Handle received message from circusd
We need to handle two messages:
- spawn: add a new monitored child pid
- reap: remove a killed child pid from monitoring<|endoftext|>
|
8a20ed738d80408ad2c012ff73961b0c546e499b514194c420891ab64abfec33
|
def _discover_monitored_pids(self):
'Try to discover all the monitored pids.\n\n This should be done only at startup time, because if new watchers or\n pids are created in running time, we should receive the message\n from circusd which is handled by self.handle_recv\n '
self.pid_status = dict()
all_watchers = self.call('list')
for watcher_name in all_watchers['watchers']:
if self._match_watcher_name(watcher_name):
processes = self.call('list', name=watcher_name)
if ('pids' in processes):
for pid in processes['pids']:
pid = str(pid)
self.pid_status[pid] = dict(watcher=watcher_name, last_activity=time.time())
logger.info('discovered: %s, pid:%s', watcher_name, pid)
|
Try to discover all the monitored pids.
This should be done only at startup time, because if new watchers or
pids are created in running time, we should receive the message
from circusd which is handled by self.handle_recv
|
circus/plugins/watchdog.py
|
_discover_monitored_pids
|
JetDrag/circus
| 820 |
python
|
def _discover_monitored_pids(self):
'Try to discover all the monitored pids.\n\n This should be done only at startup time, because if new watchers or\n pids are created in running time, we should receive the message\n from circusd which is handled by self.handle_recv\n '
self.pid_status = dict()
all_watchers = self.call('list')
for watcher_name in all_watchers['watchers']:
if self._match_watcher_name(watcher_name):
processes = self.call('list', name=watcher_name)
if ('pids' in processes):
for pid in processes['pids']:
pid = str(pid)
self.pid_status[pid] = dict(watcher=watcher_name, last_activity=time.time())
logger.info('discovered: %s, pid:%s', watcher_name, pid)
|
def _discover_monitored_pids(self):
'Try to discover all the monitored pids.\n\n This should be done only at startup time, because if new watchers or\n pids are created in running time, we should receive the message\n from circusd which is handled by self.handle_recv\n '
self.pid_status = dict()
all_watchers = self.call('list')
for watcher_name in all_watchers['watchers']:
if self._match_watcher_name(watcher_name):
processes = self.call('list', name=watcher_name)
if ('pids' in processes):
for pid in processes['pids']:
pid = str(pid)
self.pid_status[pid] = dict(watcher=watcher_name, last_activity=time.time())
logger.info('discovered: %s, pid:%s', watcher_name, pid)<|docstring|>Try to discover all the monitored pids.
This should be done only at startup time, because if new watchers or
pids are created in running time, we should receive the message
from circusd which is handled by self.handle_recv<|endoftext|>
|
a10ef9160558db1a85ce58e243d924b9e25f8916c751f5f15425949ea58a49a7
|
def _bind_socket(self):
'bind the listening socket for watchdog udp and start an event\n handler for handling udp received messages.\n '
self.sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
try:
self.sock.bind((self.watchdog_ip, self.watchdog_port))
except socket.error as socket_error:
logger.error('Problem while binding watchdog socket on %s:%s (err %s', self.watchdog_ip, self.watchdog_port, str(socket_error))
self.sock = None
else:
self.sock.settimeout(1)
self.loop.add_handler(self.sock.fileno(), self.receive_udp_socket, ioloop.IOLoop.READ)
logger.info('Watchdog listening UDP on %s:%s', self.watchdog_ip, self.watchdog_port)
|
bind the listening socket for watchdog udp and start an event
handler for handling udp received messages.
|
circus/plugins/watchdog.py
|
_bind_socket
|
JetDrag/circus
| 820 |
python
|
def _bind_socket(self):
'bind the listening socket for watchdog udp and start an event\n handler for handling udp received messages.\n '
self.sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
try:
self.sock.bind((self.watchdog_ip, self.watchdog_port))
except socket.error as socket_error:
logger.error('Problem while binding watchdog socket on %s:%s (err %s', self.watchdog_ip, self.watchdog_port, str(socket_error))
self.sock = None
else:
self.sock.settimeout(1)
self.loop.add_handler(self.sock.fileno(), self.receive_udp_socket, ioloop.IOLoop.READ)
logger.info('Watchdog listening UDP on %s:%s', self.watchdog_ip, self.watchdog_port)
|
def _bind_socket(self):
'bind the listening socket for watchdog udp and start an event\n handler for handling udp received messages.\n '
self.sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
try:
self.sock.bind((self.watchdog_ip, self.watchdog_port))
except socket.error as socket_error:
logger.error('Problem while binding watchdog socket on %s:%s (err %s', self.watchdog_ip, self.watchdog_port, str(socket_error))
self.sock = None
else:
self.sock.settimeout(1)
self.loop.add_handler(self.sock.fileno(), self.receive_udp_socket, ioloop.IOLoop.READ)
logger.info('Watchdog listening UDP on %s:%s', self.watchdog_ip, self.watchdog_port)<|docstring|>bind the listening socket for watchdog udp and start an event
handler for handling udp received messages.<|endoftext|>
|
74901970e87f48cc0e7387e6cc46cd02b41ad2cdda0e8e141715b39c36b6b17c
|
def _match_watcher_name(self, name):
'Match the given watcher name with the watcher_regex given in config\n\n :return: re.match object or None\n '
return re.match(self.watchers_regex, name)
|
Match the given watcher name with the watcher_regex given in config
:return: re.match object or None
|
circus/plugins/watchdog.py
|
_match_watcher_name
|
JetDrag/circus
| 820 |
python
|
def _match_watcher_name(self, name):
'Match the given watcher name with the watcher_regex given in config\n\n :return: re.match object or None\n '
return re.match(self.watchers_regex, name)
|
def _match_watcher_name(self, name):
'Match the given watcher name with the watcher_regex given in config\n\n :return: re.match object or None\n '
return re.match(self.watchers_regex, name)<|docstring|>Match the given watcher name with the watcher_regex given in config
:return: re.match object or None<|endoftext|>
|
fbe2a71892e2f7b3a0a7b7fb8c1e89ed393f6e13f1056f0d181ba20042791c14
|
def _decode_received_udp_message(self, data):
'decode the received message according to the msg_regex\n\n :return: decoded message\n :rtype: dict or None\n '
result = re.match(self.msg_regex, data.decode())
if (result is not None):
return result.groupdict()
|
decode the received message according to the msg_regex
:return: decoded message
:rtype: dict or None
|
circus/plugins/watchdog.py
|
_decode_received_udp_message
|
JetDrag/circus
| 820 |
python
|
def _decode_received_udp_message(self, data):
'decode the received message according to the msg_regex\n\n :return: decoded message\n :rtype: dict or None\n '
result = re.match(self.msg_regex, data.decode())
if (result is not None):
return result.groupdict()
|
def _decode_received_udp_message(self, data):
'decode the received message according to the msg_regex\n\n :return: decoded message\n :rtype: dict or None\n '
result = re.match(self.msg_regex, data.decode())
if (result is not None):
return result.groupdict()<|docstring|>decode the received message according to the msg_regex
:return: decoded message
:rtype: dict or None<|endoftext|>
|
18be94e03a6b1421b25e51e50afa03ae2a861241226d8931a9b74ed9469387c1
|
def receive_udp_socket(self, fd, events):
'Check the socket for received UDP message.\n This method is periodically called by the ioloop.\n If messages are received and parsed, update the status of\n the corresponing pid.\n '
(data, _) = self.sock.recvfrom(1024)
heartbeat = self._decode_received_udp_message(data)
if ('pid' in heartbeat):
if (heartbeat['pid'] in self.pid_status):
self.pid_status[heartbeat['pid']]['last_activity'] = time.time()
else:
logger.warning('received watchdog for a non monitored process:%s', heartbeat)
logger.debug('watchdog message: %s', heartbeat)
|
Check the socket for received UDP message.
This method is periodically called by the ioloop.
If messages are received and parsed, update the status of
the corresponing pid.
|
circus/plugins/watchdog.py
|
receive_udp_socket
|
JetDrag/circus
| 820 |
python
|
def receive_udp_socket(self, fd, events):
'Check the socket for received UDP message.\n This method is periodically called by the ioloop.\n If messages are received and parsed, update the status of\n the corresponing pid.\n '
(data, _) = self.sock.recvfrom(1024)
heartbeat = self._decode_received_udp_message(data)
if ('pid' in heartbeat):
if (heartbeat['pid'] in self.pid_status):
self.pid_status[heartbeat['pid']]['last_activity'] = time.time()
else:
logger.warning('received watchdog for a non monitored process:%s', heartbeat)
logger.debug('watchdog message: %s', heartbeat)
|
def receive_udp_socket(self, fd, events):
'Check the socket for received UDP message.\n This method is periodically called by the ioloop.\n If messages are received and parsed, update the status of\n the corresponing pid.\n '
(data, _) = self.sock.recvfrom(1024)
heartbeat = self._decode_received_udp_message(data)
if ('pid' in heartbeat):
if (heartbeat['pid'] in self.pid_status):
self.pid_status[heartbeat['pid']]['last_activity'] = time.time()
else:
logger.warning('received watchdog for a non monitored process:%s', heartbeat)
logger.debug('watchdog message: %s', heartbeat)<|docstring|>Check the socket for received UDP message.
This method is periodically called by the ioloop.
If messages are received and parsed, update the status of
the corresponing pid.<|endoftext|>
|
f07dd19556cbdcfd710da4d13cd257d437ad8604ba0340cd7004dbf248b8ad10
|
def look_after(self):
'Checks for the watchdoged watchers and restart a process if no\n received watchdog after the loop_rate * max_count period.\n '
if self.starting:
self._discover_monitored_pids()
self.starting = False
max_timeout = (self.loop_rate * self.max_count)
too_old_time = (time.time() - max_timeout)
for (pid, detail) in self.pid_status.items():
if (detail['last_activity'] < too_old_time):
logger.info('watcher:%s, pid:%s is not responding. Kill it !', detail['watcher'], pid)
props = dict(name=detail['watcher'], pid=int(pid))
if (self.stop_signal is not None):
props['signum'] = self.stop_signal
if (self.graceful_timeout is not None):
props['graceful_timeout'] = self.graceful_timeout
self.cast('kill', **props)
del self.pid_status[pid]
|
Checks for the watchdoged watchers and restart a process if no
received watchdog after the loop_rate * max_count period.
|
circus/plugins/watchdog.py
|
look_after
|
JetDrag/circus
| 820 |
python
|
def look_after(self):
'Checks for the watchdoged watchers and restart a process if no\n received watchdog after the loop_rate * max_count period.\n '
if self.starting:
self._discover_monitored_pids()
self.starting = False
max_timeout = (self.loop_rate * self.max_count)
too_old_time = (time.time() - max_timeout)
for (pid, detail) in self.pid_status.items():
if (detail['last_activity'] < too_old_time):
logger.info('watcher:%s, pid:%s is not responding. Kill it !', detail['watcher'], pid)
props = dict(name=detail['watcher'], pid=int(pid))
if (self.stop_signal is not None):
props['signum'] = self.stop_signal
if (self.graceful_timeout is not None):
props['graceful_timeout'] = self.graceful_timeout
self.cast('kill', **props)
del self.pid_status[pid]
|
def look_after(self):
'Checks for the watchdoged watchers and restart a process if no\n received watchdog after the loop_rate * max_count period.\n '
if self.starting:
self._discover_monitored_pids()
self.starting = False
max_timeout = (self.loop_rate * self.max_count)
too_old_time = (time.time() - max_timeout)
for (pid, detail) in self.pid_status.items():
if (detail['last_activity'] < too_old_time):
logger.info('watcher:%s, pid:%s is not responding. Kill it !', detail['watcher'], pid)
props = dict(name=detail['watcher'], pid=int(pid))
if (self.stop_signal is not None):
props['signum'] = self.stop_signal
if (self.graceful_timeout is not None):
props['graceful_timeout'] = self.graceful_timeout
self.cast('kill', **props)
del self.pid_status[pid]<|docstring|>Checks for the watchdoged watchers and restart a process if no
received watchdog after the loop_rate * max_count period.<|endoftext|>
|
484e2d4d1270e4381d4472fe5f03c6afa318eef82ad974e8151240e0760323f0
|
def expire_all_unassigned_hits(self):
'\n Move through the whole hit_id list and attempt to expire the HITs\n '
for hit in view.all():
if ((not hit.complete) and (hit.hit_id in self.hit_ids)):
print(hit.hit_id)
mturk_utils.expire_hit(mturk_config['is_sandbox'], hit.hit_id)
|
Move through the whole hit_id list and attempt to expire the HITs
|
app/mturk/api.py
|
expire_all_unassigned_hits
|
yooli23/MTurk
| 0 |
python
|
def expire_all_unassigned_hits(self):
'\n \n '
for hit in view.all():
if ((not hit.complete) and (hit.hit_id in self.hit_ids)):
print(hit.hit_id)
mturk_utils.expire_hit(mturk_config['is_sandbox'], hit.hit_id)
|
def expire_all_unassigned_hits(self):
'\n \n '
for hit in view.all():
if ((not hit.complete) and (hit.hit_id in self.hit_ids)):
print(hit.hit_id)
mturk_utils.expire_hit(mturk_config['is_sandbox'], hit.hit_id)<|docstring|>Move through the whole hit_id list and attempt to expire the HITs<|endoftext|>
|
4e0aa83647d0586843605ed28b2ab30bc8bf982937d746f567bfd49dbc08c13f
|
def approve_work(self, assignment_id, override_rejection=False):
'\n approve work for a given assignment through the mturk client.\n '
client = mturk_utils.get_mturk_client(mturk_config['is_sandbox'])
assignment_status = None
approve_attempt_num = 0
if ((assignment_status != SUBMIT_STATUS) and (approve_attempt_num < APPROVE_TIME_LIMIT)):
try:
response = client.get_assignment(AssignmentId=assignment_id)
if response:
assignment_status = response['Assignment']['AssignmentStatus']
except Exception as error:
approve_attempt_num += 1
timer = Timer(10.0, self.approve_work, [assignment_id, override_rejection])
timer.start()
return
try:
client.approve_assignment(AssignmentId=assignment_id, OverrideRejection=override_rejection)
print('Assignment {} approved.'.format(assignment_id))
except Exception as error:
print(error)
client = mturk_utils.get_mturk_client(mturk_config['is_sandbox'])
|
approve work for a given assignment through the mturk client.
|
app/mturk/api.py
|
approve_work
|
yooli23/MTurk
| 0 |
python
|
def approve_work(self, assignment_id, override_rejection=False):
'\n \n '
client = mturk_utils.get_mturk_client(mturk_config['is_sandbox'])
assignment_status = None
approve_attempt_num = 0
if ((assignment_status != SUBMIT_STATUS) and (approve_attempt_num < APPROVE_TIME_LIMIT)):
try:
response = client.get_assignment(AssignmentId=assignment_id)
if response:
assignment_status = response['Assignment']['AssignmentStatus']
except Exception as error:
approve_attempt_num += 1
timer = Timer(10.0, self.approve_work, [assignment_id, override_rejection])
timer.start()
return
try:
client.approve_assignment(AssignmentId=assignment_id, OverrideRejection=override_rejection)
print('Assignment {} approved.'.format(assignment_id))
except Exception as error:
print(error)
client = mturk_utils.get_mturk_client(mturk_config['is_sandbox'])
|
def approve_work(self, assignment_id, override_rejection=False):
'\n \n '
client = mturk_utils.get_mturk_client(mturk_config['is_sandbox'])
assignment_status = None
approve_attempt_num = 0
if ((assignment_status != SUBMIT_STATUS) and (approve_attempt_num < APPROVE_TIME_LIMIT)):
try:
response = client.get_assignment(AssignmentId=assignment_id)
if response:
assignment_status = response['Assignment']['AssignmentStatus']
except Exception as error:
approve_attempt_num += 1
timer = Timer(10.0, self.approve_work, [assignment_id, override_rejection])
timer.start()
return
try:
client.approve_assignment(AssignmentId=assignment_id, OverrideRejection=override_rejection)
print('Assignment {} approved.'.format(assignment_id))
except Exception as error:
print(error)
client = mturk_utils.get_mturk_client(mturk_config['is_sandbox'])<|docstring|>approve work for a given assignment through the mturk client.<|endoftext|>
|
96983e16ce51c67dced216ed4b032b38838e83c77556a572e7b9f69c915bca3d
|
def pay_worker_bonus(self, worker_id, assignment_id):
'\n Handles paying bonus to a turker.\n\n Returns True on success and False on failure\n '
client = mturk_utils.get_mturk_client(mturk_config['is_sandbox'])
unique_request_token = str(uuid.uuid4())
try:
client.send_bonus(WorkerId=worker_id, BonusAmount=str(mturk_config['bonus']), AssignmentId=assignment_id, Reason='You complete the task successfully, thank you!', UniqueRequestToken=unique_request_token)
print('Paid ${} bonus to WorkerId: {}'.format(mturk_config['bonus'], worker_id))
except Exception as error:
print(error)
return True
|
Handles paying bonus to a turker.
Returns True on success and False on failure
|
app/mturk/api.py
|
pay_worker_bonus
|
yooli23/MTurk
| 0 |
python
|
def pay_worker_bonus(self, worker_id, assignment_id):
'\n Handles paying bonus to a turker.\n\n Returns True on success and False on failure\n '
client = mturk_utils.get_mturk_client(mturk_config['is_sandbox'])
unique_request_token = str(uuid.uuid4())
try:
client.send_bonus(WorkerId=worker_id, BonusAmount=str(mturk_config['bonus']), AssignmentId=assignment_id, Reason='You complete the task successfully, thank you!', UniqueRequestToken=unique_request_token)
print('Paid ${} bonus to WorkerId: {}'.format(mturk_config['bonus'], worker_id))
except Exception as error:
print(error)
return True
|
def pay_worker_bonus(self, worker_id, assignment_id):
'\n Handles paying bonus to a turker.\n\n Returns True on success and False on failure\n '
client = mturk_utils.get_mturk_client(mturk_config['is_sandbox'])
unique_request_token = str(uuid.uuid4())
try:
client.send_bonus(WorkerId=worker_id, BonusAmount=str(mturk_config['bonus']), AssignmentId=assignment_id, Reason='You complete the task successfully, thank you!', UniqueRequestToken=unique_request_token)
print('Paid ${} bonus to WorkerId: {}'.format(mturk_config['bonus'], worker_id))
except Exception as error:
print(error)
return True<|docstring|>Handles paying bonus to a turker.
Returns True on success and False on failure<|endoftext|>
|
f8069d53eb61341563f67eca974d20a1ccd85c04866e70f3803c6f8c648743ac
|
def give_worker_qualification(self, worker_id, qual_name, qual_value=None):
'\n Give a worker a particular qualification.\n '
qual_id = mturk_utils.find_or_create_qualification(qual_name, 'Worker has done this task', mturk_config['is_sandbox'])
if ((qual_id is False) or (qual_id is None)):
print('Could not give worker {} qualification {}, as the qualification could not be found to exist.'.format(worker_id, qual_name))
return
mturk_utils.give_worker_qualification(worker_id, qual_id, qual_value, mturk_config['is_sandbox'])
print('gave {} qualification {}'.format(worker_id, qual_name))
|
Give a worker a particular qualification.
|
app/mturk/api.py
|
give_worker_qualification
|
yooli23/MTurk
| 0 |
python
|
def give_worker_qualification(self, worker_id, qual_name, qual_value=None):
'\n \n '
qual_id = mturk_utils.find_or_create_qualification(qual_name, 'Worker has done this task', mturk_config['is_sandbox'])
if ((qual_id is False) or (qual_id is None)):
print('Could not give worker {} qualification {}, as the qualification could not be found to exist.'.format(worker_id, qual_name))
return
mturk_utils.give_worker_qualification(worker_id, qual_id, qual_value, mturk_config['is_sandbox'])
print('gave {} qualification {}'.format(worker_id, qual_name))
|
def give_worker_qualification(self, worker_id, qual_name, qual_value=None):
'\n \n '
qual_id = mturk_utils.find_or_create_qualification(qual_name, 'Worker has done this task', mturk_config['is_sandbox'])
if ((qual_id is False) or (qual_id is None)):
print('Could not give worker {} qualification {}, as the qualification could not be found to exist.'.format(worker_id, qual_name))
return
mturk_utils.give_worker_qualification(worker_id, qual_id, qual_value, mturk_config['is_sandbox'])
print('gave {} qualification {}'.format(worker_id, qual_name))<|docstring|>Give a worker a particular qualification.<|endoftext|>
|
a6d74919c3227fcd314f2d27ce197afe596c9f22a2affd66303e84523fea8af4
|
def get_dosing_regimen(self, final_time=None):
'\n Returns the dosing regimen of the compound in form of a\n :class:`pandas.DataFrame`.\n\n The dataframe has a time, a duration, and a dose column, which indicate\n the time point and duration of the dose administration in the time\n units of the mechanistic model, :meth:`MechanisticModel.time_unit`. The\n dose column specifies the amount of the compound that is being\n administered in units of the drug amount variable of the mechanistic\n model.\n\n If an indefinitely administered dosing regimen is set, i.e. a\n finite duration and undefined number of doses, see\n :meth:`set_dosing_regimen`, only the first administration of the\n dose will appear in the dataframe. Alternatively, a final dose time\n ``final_time`` can be provided, up to which the dose events are\n registered.\n\n If no dosing regimen has been set, ``None`` is returned.\n\n Parameters\n ----------\n final_time\n Time up to which dose events are registered in the dataframe. If\n ``None``, all dose events are registered, except for indefinite\n dosing regimens. Here, only the first dose event is registered.\n '
return self._predictive_model.get_dosing_regimen(final_time)
|
Returns the dosing regimen of the compound in form of a
:class:`pandas.DataFrame`.
The dataframe has a time, a duration, and a dose column, which indicate
the time point and duration of the dose administration in the time
units of the mechanistic model, :meth:`MechanisticModel.time_unit`. The
dose column specifies the amount of the compound that is being
administered in units of the drug amount variable of the mechanistic
model.
If an indefinitely administered dosing regimen is set, i.e. a
finite duration and undefined number of doses, see
:meth:`set_dosing_regimen`, only the first administration of the
dose will appear in the dataframe. Alternatively, a final dose time
``final_time`` can be provided, up to which the dose events are
registered.
If no dosing regimen has been set, ``None`` is returned.
Parameters
----------
final_time
Time up to which dose events are registered in the dataframe. If
``None``, all dose events are registered, except for indefinite
dosing regimens. Here, only the first dose event is registered.
|
chi/_predictive_models.py
|
get_dosing_regimen
|
DavAug/chi
| 2 |
python
|
def get_dosing_regimen(self, final_time=None):
'\n Returns the dosing regimen of the compound in form of a\n :class:`pandas.DataFrame`.\n\n The dataframe has a time, a duration, and a dose column, which indicate\n the time point and duration of the dose administration in the time\n units of the mechanistic model, :meth:`MechanisticModel.time_unit`. The\n dose column specifies the amount of the compound that is being\n administered in units of the drug amount variable of the mechanistic\n model.\n\n If an indefinitely administered dosing regimen is set, i.e. a\n finite duration and undefined number of doses, see\n :meth:`set_dosing_regimen`, only the first administration of the\n dose will appear in the dataframe. Alternatively, a final dose time\n ``final_time`` can be provided, up to which the dose events are\n registered.\n\n If no dosing regimen has been set, ``None`` is returned.\n\n Parameters\n ----------\n final_time\n Time up to which dose events are registered in the dataframe. If\n ``None``, all dose events are registered, except for indefinite\n dosing regimens. Here, only the first dose event is registered.\n '
return self._predictive_model.get_dosing_regimen(final_time)
|
def get_dosing_regimen(self, final_time=None):
'\n Returns the dosing regimen of the compound in form of a\n :class:`pandas.DataFrame`.\n\n The dataframe has a time, a duration, and a dose column, which indicate\n the time point and duration of the dose administration in the time\n units of the mechanistic model, :meth:`MechanisticModel.time_unit`. The\n dose column specifies the amount of the compound that is being\n administered in units of the drug amount variable of the mechanistic\n model.\n\n If an indefinitely administered dosing regimen is set, i.e. a\n finite duration and undefined number of doses, see\n :meth:`set_dosing_regimen`, only the first administration of the\n dose will appear in the dataframe. Alternatively, a final dose time\n ``final_time`` can be provided, up to which the dose events are\n registered.\n\n If no dosing regimen has been set, ``None`` is returned.\n\n Parameters\n ----------\n final_time\n Time up to which dose events are registered in the dataframe. If\n ``None``, all dose events are registered, except for indefinite\n dosing regimens. Here, only the first dose event is registered.\n '
return self._predictive_model.get_dosing_regimen(final_time)<|docstring|>Returns the dosing regimen of the compound in form of a
:class:`pandas.DataFrame`.
The dataframe has a time, a duration, and a dose column, which indicate
the time point and duration of the dose administration in the time
units of the mechanistic model, :meth:`MechanisticModel.time_unit`. The
dose column specifies the amount of the compound that is being
administered in units of the drug amount variable of the mechanistic
model.
If an indefinitely administered dosing regimen is set, i.e. a
finite duration and undefined number of doses, see
:meth:`set_dosing_regimen`, only the first administration of the
dose will appear in the dataframe. Alternatively, a final dose time
``final_time`` can be provided, up to which the dose events are
registered.
If no dosing regimen has been set, ``None`` is returned.
Parameters
----------
final_time
Time up to which dose events are registered in the dataframe. If
``None``, all dose events are registered, except for indefinite
dosing regimens. Here, only the first dose event is registered.<|endoftext|>
|
2e0b3e8f5a1959950ebf0808ee7f559f9b007c26393a16425c5a2d10b327ecc8
|
def get_n_outputs(self):
'\n Returns the number of outputs.\n '
return self._predictive_model.get_n_outputs()
|
Returns the number of outputs.
|
chi/_predictive_models.py
|
get_n_outputs
|
DavAug/chi
| 2 |
python
|
def get_n_outputs(self):
'\n \n '
return self._predictive_model.get_n_outputs()
|
def get_n_outputs(self):
'\n \n '
return self._predictive_model.get_n_outputs()<|docstring|>Returns the number of outputs.<|endoftext|>
|
321ebe265017664b599be6ba28cb5e43a74a5d27dd4b4594844dbefd5e106686
|
def get_output_names(self):
'\n Returns the output names.\n '
return self._predictive_model.get_output_names()
|
Returns the output names.
|
chi/_predictive_models.py
|
get_output_names
|
DavAug/chi
| 2 |
python
|
def get_output_names(self):
'\n \n '
return self._predictive_model.get_output_names()
|
def get_output_names(self):
'\n \n '
return self._predictive_model.get_output_names()<|docstring|>Returns the output names.<|endoftext|>
|
93c9e240dec8b495eb39eef35dc6b68e394805ff6bd6b68bbe91959e0b3f8ab4
|
def get_predictive_model(self):
'\n Returns the predictive model.\n '
return self._predictive_model
|
Returns the predictive model.
|
chi/_predictive_models.py
|
get_predictive_model
|
DavAug/chi
| 2 |
python
|
def get_predictive_model(self):
'\n \n '
return self._predictive_model
|
def get_predictive_model(self):
'\n \n '
return self._predictive_model<|docstring|>Returns the predictive model.<|endoftext|>
|
8f971cd28f9b5b88cd67e48b473880c25092bfb1753da0b6a7b715a88f1cf18d
|
def sample(self, times, n_samples=None, seed=None, include_regimen=False):
'\n Samples "measurements" of the biomarkers from the predictive model and\n returns them in form of a :class:`pandas.DataFrame`.\n '
raise NotImplementedError
|
Samples "measurements" of the biomarkers from the predictive model and
returns them in form of a :class:`pandas.DataFrame`.
|
chi/_predictive_models.py
|
sample
|
DavAug/chi
| 2 |
python
|
def sample(self, times, n_samples=None, seed=None, include_regimen=False):
'\n Samples "measurements" of the biomarkers from the predictive model and\n returns them in form of a :class:`pandas.DataFrame`.\n '
raise NotImplementedError
|
def sample(self, times, n_samples=None, seed=None, include_regimen=False):
'\n Samples "measurements" of the biomarkers from the predictive model and\n returns them in form of a :class:`pandas.DataFrame`.\n '
raise NotImplementedError<|docstring|>Samples "measurements" of the biomarkers from the predictive model and
returns them in form of a :class:`pandas.DataFrame`.<|endoftext|>
|
6dac706a67d0069e978e7b0a29d160d3ef0429bec1d558570bdb100fc530de10
|
def set_dosing_regimen(self, dose, start, duration=0.01, period=None, num=None):
'\n Sets the dosing regimen with which the compound is administered.\n\n By default the dose is administered as a bolus injection (duration on\n a time scale that is 100 fold smaller than the basic time unit). To\n model an infusion of the dose over a longer time period, the\n ``duration`` can be adjusted to the appropriate time scale.\n\n By default the dose is administered once. To apply multiple doses\n provide a dose administration period.\n\n .. note::\n This method requires a :class:`MechanisticModel` that supports\n dose administration.\n\n Parameters\n ----------\n dose\n The amount of the compound that is injected at each administration.\n start\n Start time of the treatment.\n duration\n Duration of dose administration. For a bolus injection, a dose\n duration of 1% of the time unit should suffice. By default the\n duration is set to 0.01 (bolus).\n period\n Periodicity at which doses are administered. If ``None`` the dose\n is administered only once.\n num\n Number of administered doses. If ``None`` and the periodicity of\n the administration is not ``None``, doses are administered\n indefinitely.\n '
self._predictive_model.set_dosing_regimen(dose, start, duration, period, num)
|
Sets the dosing regimen with which the compound is administered.
By default the dose is administered as a bolus injection (duration on
a time scale that is 100 fold smaller than the basic time unit). To
model an infusion of the dose over a longer time period, the
``duration`` can be adjusted to the appropriate time scale.
By default the dose is administered once. To apply multiple doses
provide a dose administration period.
.. note::
This method requires a :class:`MechanisticModel` that supports
dose administration.
Parameters
----------
dose
The amount of the compound that is injected at each administration.
start
Start time of the treatment.
duration
Duration of dose administration. For a bolus injection, a dose
duration of 1% of the time unit should suffice. By default the
duration is set to 0.01 (bolus).
period
Periodicity at which doses are administered. If ``None`` the dose
is administered only once.
num
Number of administered doses. If ``None`` and the periodicity of
the administration is not ``None``, doses are administered
indefinitely.
|
chi/_predictive_models.py
|
set_dosing_regimen
|
DavAug/chi
| 2 |
python
|
def set_dosing_regimen(self, dose, start, duration=0.01, period=None, num=None):
'\n Sets the dosing regimen with which the compound is administered.\n\n By default the dose is administered as a bolus injection (duration on\n a time scale that is 100 fold smaller than the basic time unit). To\n model an infusion of the dose over a longer time period, the\n ``duration`` can be adjusted to the appropriate time scale.\n\n By default the dose is administered once. To apply multiple doses\n provide a dose administration period.\n\n .. note::\n This method requires a :class:`MechanisticModel` that supports\n dose administration.\n\n Parameters\n ----------\n dose\n The amount of the compound that is injected at each administration.\n start\n Start time of the treatment.\n duration\n Duration of dose administration. For a bolus injection, a dose\n duration of 1% of the time unit should suffice. By default the\n duration is set to 0.01 (bolus).\n period\n Periodicity at which doses are administered. If ``None`` the dose\n is administered only once.\n num\n Number of administered doses. If ``None`` and the periodicity of\n the administration is not ``None``, doses are administered\n indefinitely.\n '
self._predictive_model.set_dosing_regimen(dose, start, duration, period, num)
|
def set_dosing_regimen(self, dose, start, duration=0.01, period=None, num=None):
'\n Sets the dosing regimen with which the compound is administered.\n\n By default the dose is administered as a bolus injection (duration on\n a time scale that is 100 fold smaller than the basic time unit). To\n model an infusion of the dose over a longer time period, the\n ``duration`` can be adjusted to the appropriate time scale.\n\n By default the dose is administered once. To apply multiple doses\n provide a dose administration period.\n\n .. note::\n This method requires a :class:`MechanisticModel` that supports\n dose administration.\n\n Parameters\n ----------\n dose\n The amount of the compound that is injected at each administration.\n start\n Start time of the treatment.\n duration\n Duration of dose administration. For a bolus injection, a dose\n duration of 1% of the time unit should suffice. By default the\n duration is set to 0.01 (bolus).\n period\n Periodicity at which doses are administered. If ``None`` the dose\n is administered only once.\n num\n Number of administered doses. If ``None`` and the periodicity of\n the administration is not ``None``, doses are administered\n indefinitely.\n '
self._predictive_model.set_dosing_regimen(dose, start, duration, period, num)<|docstring|>Sets the dosing regimen with which the compound is administered.
By default the dose is administered as a bolus injection (duration on
a time scale that is 100 fold smaller than the basic time unit). To
model an infusion of the dose over a longer time period, the
``duration`` can be adjusted to the appropriate time scale.
By default the dose is administered once. To apply multiple doses
provide a dose administration period.
.. note::
This method requires a :class:`MechanisticModel` that supports
dose administration.
Parameters
----------
dose
The amount of the compound that is injected at each administration.
start
Start time of the treatment.
duration
Duration of dose administration. For a bolus injection, a dose
duration of 1% of the time unit should suffice. By default the
duration is set to 0.01 (bolus).
period
Periodicity at which doses are administered. If ``None`` the dose
is administered only once.
num
Number of administered doses. If ``None`` and the periodicity of
the administration is not ``None``, doses are administered
indefinitely.<|endoftext|>
|
0b8b5ed89ac4250d547e423b0699b01c8a604cb7f82af269bda29f936f72962b
|
def _check_parameters(self, posterior_samples, param_map):
'\n Checks whether the parameters of the posterior exist in the dataset\n and returns them.\n '
model_names = self._predictive_model.get_parameter_names()
for (param_id, name) in enumerate(model_names):
try:
model_names[param_id] = param_map[name]
except KeyError:
pass
for parameter in model_names:
if (parameter not in posterior_samples.data_vars):
raise ValueError((('The parameter <' + str(parameter)) + '> cannot be found in the posterior.'))
return model_names
|
Checks whether the parameters of the posterior exist in the dataset
and returns them.
|
chi/_predictive_models.py
|
_check_parameters
|
DavAug/chi
| 2 |
python
|
def _check_parameters(self, posterior_samples, param_map):
'\n Checks whether the parameters of the posterior exist in the dataset\n and returns them.\n '
model_names = self._predictive_model.get_parameter_names()
for (param_id, name) in enumerate(model_names):
try:
model_names[param_id] = param_map[name]
except KeyError:
pass
for parameter in model_names:
if (parameter not in posterior_samples.data_vars):
raise ValueError((('The parameter <' + str(parameter)) + '> cannot be found in the posterior.'))
return model_names
|
def _check_parameters(self, posterior_samples, param_map):
'\n Checks whether the parameters of the posterior exist in the dataset\n and returns them.\n '
model_names = self._predictive_model.get_parameter_names()
for (param_id, name) in enumerate(model_names):
try:
model_names[param_id] = param_map[name]
except KeyError:
pass
for parameter in model_names:
if (parameter not in posterior_samples.data_vars):
raise ValueError((('The parameter <' + str(parameter)) + '> cannot be found in the posterior.'))
return model_names<|docstring|>Checks whether the parameters of the posterior exist in the dataset
and returns them.<|endoftext|>
|
2b7d6c20d236ae0c0e0eeac5d66923432d23d43db3aa2d3668823d2c6831b01f
|
def sample(self, times, n_samples=None, individual=None, seed=None, include_regimen=False, covariates=None, covariate_map=None):
'\n Samples "measurements" of the biomarkers from the posterior predictive\n model and returns them in form of a :class:`pandas.DataFrame`.\n\n For each of the ``n_samples`` a parameter set is drawn from the\n approximate posterior distribution. These paramaters are then used to\n sample from the predictive model.\n\n :param times: Times for the virtual "measurements".\n :type times: list, numpy.ndarray of shape (n,)\n :param n_samples: The number of virtual "measurements" that are\n performed at each time point. If ``None`` the biomarkers are\n measured only once at each time point.\n :type n_samples: int, optional\n :param individual: The ID of the modelled individual. If\n ``None``, either the first ID or the population is simulated.\n :type individual: str, optional\n :param seed: A seed for the pseudo-random number generator.\n :type seed: int\n :param include_regimen: A boolean flag which determines whether the\n information about the dosing regimen is included.\n :type include_regimen: bool, optional\n :param covariates: An array-like object with covariates of length c.\n Covariates are only relevant when CovariatePopulationModels are\n used.\n :type covariates: List or np.ndarray, optional\n :param covariate_map: A nested list of length n_population_models with\n indices that reference the relevant covariates for each population\n model. By default, it is assumed that all covariates are relevant\n for all population models.\n :type covariate_map: List[List[int]], optional\n '
if (n_samples is None):
n_samples = 1
n_samples = int(n_samples)
is_population_pred_model = isinstance(self._predictive_model, chi.PopulationPredictiveModel)
if is_population_pred_model:
if (individual is not None):
raise ValueError("Individual ID's cannot be selected for a chi.PopulationPredictiveModel. To model an individual create a chi.PosteriorPredictiveModel with a chi.PredictiveModel.")
else:
ids = self._posterior.individual
if (individual is None):
individual = str(ids.data[0])
if (individual not in ids):
raise ValueError((('The individual <' + str(individual)) + '> could not be found in the ID column.'))
times = np.sort(times)
rng = np.random.default_rng(seed=seed)
n_chains = len(self._posterior.chain)
n_parameters = self._predictive_model.n_parameters()
try:
n_draws = len(self._posterior.sel(individual=individual).dropna(dim='draw').draw)
except (ValueError, KeyError):
n_draws = len(self._posterior.dropna(dim='draw').draw)
posterior = np.empty(shape=((n_chains * n_draws), n_parameters))
for (param_id, parameter) in enumerate(self._parameter_names):
try:
posterior[(:, param_id)] = self._posterior[parameter].sel(individual=individual).dropna(dim='draw').values.flatten()
except (ValueError, KeyError):
samples = self._posterior[parameter].dropna(dim='draw').values.flatten()
try:
posterior[(:, param_id)] = samples
except ValueError:
target = (n_chains * n_draws)
now = len(samples)
posterior[(:, param_id)] = samples[rng.choice(now, target)]
container = pd.DataFrame(columns=['ID', 'Time', 'Observable', 'Value'])
outputs = self._predictive_model.get_output_names()
sample_ids = np.arange(start=1, stop=(n_samples + 1))
for sample_id in sample_ids:
parameters = rng.choice(posterior)
if is_population_pred_model:
sample = self._predictive_model.sample(parameters, times, n_samples, rng, return_df=False, covariates=covariates, covariate_map=covariate_map)
else:
sample = self._predictive_model.sample(parameters, times, n_samples, rng, return_df=False)
for (output_id, name) in enumerate(outputs):
container = container.append(pd.DataFrame({'ID': sample_id, 'Time': times, 'Observable': name, 'Value': sample[(output_id, :, 0)]}))
final_time = np.max(times)
regimen = self.get_dosing_regimen(final_time)
if ((regimen is not None) and (include_regimen is True)):
container = container.append(regimen)
return container
|
Samples "measurements" of the biomarkers from the posterior predictive
model and returns them in form of a :class:`pandas.DataFrame`.
For each of the ``n_samples`` a parameter set is drawn from the
approximate posterior distribution. These paramaters are then used to
sample from the predictive model.
:param times: Times for the virtual "measurements".
:type times: list, numpy.ndarray of shape (n,)
:param n_samples: The number of virtual "measurements" that are
performed at each time point. If ``None`` the biomarkers are
measured only once at each time point.
:type n_samples: int, optional
:param individual: The ID of the modelled individual. If
``None``, either the first ID or the population is simulated.
:type individual: str, optional
:param seed: A seed for the pseudo-random number generator.
:type seed: int
:param include_regimen: A boolean flag which determines whether the
information about the dosing regimen is included.
:type include_regimen: bool, optional
:param covariates: An array-like object with covariates of length c.
Covariates are only relevant when CovariatePopulationModels are
used.
:type covariates: List or np.ndarray, optional
:param covariate_map: A nested list of length n_population_models with
indices that reference the relevant covariates for each population
model. By default, it is assumed that all covariates are relevant
for all population models.
:type covariate_map: List[List[int]], optional
|
chi/_predictive_models.py
|
sample
|
DavAug/chi
| 2 |
python
|
def sample(self, times, n_samples=None, individual=None, seed=None, include_regimen=False, covariates=None, covariate_map=None):
'\n Samples "measurements" of the biomarkers from the posterior predictive\n model and returns them in form of a :class:`pandas.DataFrame`.\n\n For each of the ``n_samples`` a parameter set is drawn from the\n approximate posterior distribution. These paramaters are then used to\n sample from the predictive model.\n\n :param times: Times for the virtual "measurements".\n :type times: list, numpy.ndarray of shape (n,)\n :param n_samples: The number of virtual "measurements" that are\n performed at each time point. If ``None`` the biomarkers are\n measured only once at each time point.\n :type n_samples: int, optional\n :param individual: The ID of the modelled individual. If\n ``None``, either the first ID or the population is simulated.\n :type individual: str, optional\n :param seed: A seed for the pseudo-random number generator.\n :type seed: int\n :param include_regimen: A boolean flag which determines whether the\n information about the dosing regimen is included.\n :type include_regimen: bool, optional\n :param covariates: An array-like object with covariates of length c.\n Covariates are only relevant when CovariatePopulationModels are\n used.\n :type covariates: List or np.ndarray, optional\n :param covariate_map: A nested list of length n_population_models with\n indices that reference the relevant covariates for each population\n model. By default, it is assumed that all covariates are relevant\n for all population models.\n :type covariate_map: List[List[int]], optional\n '
if (n_samples is None):
n_samples = 1
n_samples = int(n_samples)
is_population_pred_model = isinstance(self._predictive_model, chi.PopulationPredictiveModel)
if is_population_pred_model:
if (individual is not None):
raise ValueError("Individual ID's cannot be selected for a chi.PopulationPredictiveModel. To model an individual create a chi.PosteriorPredictiveModel with a chi.PredictiveModel.")
else:
ids = self._posterior.individual
if (individual is None):
individual = str(ids.data[0])
if (individual not in ids):
raise ValueError((('The individual <' + str(individual)) + '> could not be found in the ID column.'))
times = np.sort(times)
rng = np.random.default_rng(seed=seed)
n_chains = len(self._posterior.chain)
n_parameters = self._predictive_model.n_parameters()
try:
n_draws = len(self._posterior.sel(individual=individual).dropna(dim='draw').draw)
except (ValueError, KeyError):
n_draws = len(self._posterior.dropna(dim='draw').draw)
posterior = np.empty(shape=((n_chains * n_draws), n_parameters))
for (param_id, parameter) in enumerate(self._parameter_names):
try:
posterior[(:, param_id)] = self._posterior[parameter].sel(individual=individual).dropna(dim='draw').values.flatten()
except (ValueError, KeyError):
samples = self._posterior[parameter].dropna(dim='draw').values.flatten()
try:
posterior[(:, param_id)] = samples
except ValueError:
target = (n_chains * n_draws)
now = len(samples)
posterior[(:, param_id)] = samples[rng.choice(now, target)]
container = pd.DataFrame(columns=['ID', 'Time', 'Observable', 'Value'])
outputs = self._predictive_model.get_output_names()
sample_ids = np.arange(start=1, stop=(n_samples + 1))
for sample_id in sample_ids:
parameters = rng.choice(posterior)
if is_population_pred_model:
sample = self._predictive_model.sample(parameters, times, n_samples, rng, return_df=False, covariates=covariates, covariate_map=covariate_map)
else:
sample = self._predictive_model.sample(parameters, times, n_samples, rng, return_df=False)
for (output_id, name) in enumerate(outputs):
container = container.append(pd.DataFrame({'ID': sample_id, 'Time': times, 'Observable': name, 'Value': sample[(output_id, :, 0)]}))
final_time = np.max(times)
regimen = self.get_dosing_regimen(final_time)
if ((regimen is not None) and (include_regimen is True)):
container = container.append(regimen)
return container
|
def sample(self, times, n_samples=None, individual=None, seed=None, include_regimen=False, covariates=None, covariate_map=None):
'\n Samples "measurements" of the biomarkers from the posterior predictive\n model and returns them in form of a :class:`pandas.DataFrame`.\n\n For each of the ``n_samples`` a parameter set is drawn from the\n approximate posterior distribution. These paramaters are then used to\n sample from the predictive model.\n\n :param times: Times for the virtual "measurements".\n :type times: list, numpy.ndarray of shape (n,)\n :param n_samples: The number of virtual "measurements" that are\n performed at each time point. If ``None`` the biomarkers are\n measured only once at each time point.\n :type n_samples: int, optional\n :param individual: The ID of the modelled individual. If\n ``None``, either the first ID or the population is simulated.\n :type individual: str, optional\n :param seed: A seed for the pseudo-random number generator.\n :type seed: int\n :param include_regimen: A boolean flag which determines whether the\n information about the dosing regimen is included.\n :type include_regimen: bool, optional\n :param covariates: An array-like object with covariates of length c.\n Covariates are only relevant when CovariatePopulationModels are\n used.\n :type covariates: List or np.ndarray, optional\n :param covariate_map: A nested list of length n_population_models with\n indices that reference the relevant covariates for each population\n model. By default, it is assumed that all covariates are relevant\n for all population models.\n :type covariate_map: List[List[int]], optional\n '
if (n_samples is None):
n_samples = 1
n_samples = int(n_samples)
is_population_pred_model = isinstance(self._predictive_model, chi.PopulationPredictiveModel)
if is_population_pred_model:
if (individual is not None):
raise ValueError("Individual ID's cannot be selected for a chi.PopulationPredictiveModel. To model an individual create a chi.PosteriorPredictiveModel with a chi.PredictiveModel.")
else:
ids = self._posterior.individual
if (individual is None):
individual = str(ids.data[0])
if (individual not in ids):
raise ValueError((('The individual <' + str(individual)) + '> could not be found in the ID column.'))
times = np.sort(times)
rng = np.random.default_rng(seed=seed)
n_chains = len(self._posterior.chain)
n_parameters = self._predictive_model.n_parameters()
try:
n_draws = len(self._posterior.sel(individual=individual).dropna(dim='draw').draw)
except (ValueError, KeyError):
n_draws = len(self._posterior.dropna(dim='draw').draw)
posterior = np.empty(shape=((n_chains * n_draws), n_parameters))
for (param_id, parameter) in enumerate(self._parameter_names):
try:
posterior[(:, param_id)] = self._posterior[parameter].sel(individual=individual).dropna(dim='draw').values.flatten()
except (ValueError, KeyError):
samples = self._posterior[parameter].dropna(dim='draw').values.flatten()
try:
posterior[(:, param_id)] = samples
except ValueError:
target = (n_chains * n_draws)
now = len(samples)
posterior[(:, param_id)] = samples[rng.choice(now, target)]
container = pd.DataFrame(columns=['ID', 'Time', 'Observable', 'Value'])
outputs = self._predictive_model.get_output_names()
sample_ids = np.arange(start=1, stop=(n_samples + 1))
for sample_id in sample_ids:
parameters = rng.choice(posterior)
if is_population_pred_model:
sample = self._predictive_model.sample(parameters, times, n_samples, rng, return_df=False, covariates=covariates, covariate_map=covariate_map)
else:
sample = self._predictive_model.sample(parameters, times, n_samples, rng, return_df=False)
for (output_id, name) in enumerate(outputs):
container = container.append(pd.DataFrame({'ID': sample_id, 'Time': times, 'Observable': name, 'Value': sample[(output_id, :, 0)]}))
final_time = np.max(times)
regimen = self.get_dosing_regimen(final_time)
if ((regimen is not None) and (include_regimen is True)):
container = container.append(regimen)
return container<|docstring|>Samples "measurements" of the biomarkers from the posterior predictive
model and returns them in form of a :class:`pandas.DataFrame`.
For each of the ``n_samples`` a parameter set is drawn from the
approximate posterior distribution. These paramaters are then used to
sample from the predictive model.
:param times: Times for the virtual "measurements".
:type times: list, numpy.ndarray of shape (n,)
:param n_samples: The number of virtual "measurements" that are
performed at each time point. If ``None`` the biomarkers are
measured only once at each time point.
:type n_samples: int, optional
:param individual: The ID of the modelled individual. If
``None``, either the first ID or the population is simulated.
:type individual: str, optional
:param seed: A seed for the pseudo-random number generator.
:type seed: int
:param include_regimen: A boolean flag which determines whether the
information about the dosing regimen is included.
:type include_regimen: bool, optional
:param covariates: An array-like object with covariates of length c.
Covariates are only relevant when CovariatePopulationModels are
used.
:type covariates: List or np.ndarray, optional
:param covariate_map: A nested list of length n_population_models with
indices that reference the relevant covariates for each population
model. By default, it is assumed that all covariates are relevant
for all population models.
:type covariate_map: List[List[int]], optional<|endoftext|>
|
76b0cbdeeda512316e0d91738415a428f646ece564486d249d9fc6c7ce711381
|
def _set_error_model_parameter_names(self):
'\n Resets the error model parameter names and prepends the output name\n if more than one output exists.\n '
for error_model in self._error_models:
error_model.set_parameter_names(None)
n_outputs = self._mechanistic_model.n_outputs()
if (n_outputs > 1):
outputs = self._mechanistic_model.outputs()
for (output_id, error_model) in enumerate(self._error_models):
names = error_model.get_parameter_names()
output = outputs[output_id]
names = [((output + ' ') + name) for name in names]
error_model.set_parameter_names(names)
|
Resets the error model parameter names and prepends the output name
if more than one output exists.
|
chi/_predictive_models.py
|
_set_error_model_parameter_names
|
DavAug/chi
| 2 |
python
|
def _set_error_model_parameter_names(self):
'\n Resets the error model parameter names and prepends the output name\n if more than one output exists.\n '
for error_model in self._error_models:
error_model.set_parameter_names(None)
n_outputs = self._mechanistic_model.n_outputs()
if (n_outputs > 1):
outputs = self._mechanistic_model.outputs()
for (output_id, error_model) in enumerate(self._error_models):
names = error_model.get_parameter_names()
output = outputs[output_id]
names = [((output + ' ') + name) for name in names]
error_model.set_parameter_names(names)
|
def _set_error_model_parameter_names(self):
'\n Resets the error model parameter names and prepends the output name\n if more than one output exists.\n '
for error_model in self._error_models:
error_model.set_parameter_names(None)
n_outputs = self._mechanistic_model.n_outputs()
if (n_outputs > 1):
outputs = self._mechanistic_model.outputs()
for (output_id, error_model) in enumerate(self._error_models):
names = error_model.get_parameter_names()
output = outputs[output_id]
names = [((output + ' ') + name) for name in names]
error_model.set_parameter_names(names)<|docstring|>Resets the error model parameter names and prepends the output name
if more than one output exists.<|endoftext|>
|
347dc7f1521ed92e881a356ad885d49f3a43f3578c5771a195d38a62e49caa59
|
def _set_number_and_parameter_names(self):
'\n Sets the number and names of the free model parameters.\n '
parameter_names = self._mechanistic_model.parameters()
for error_model in self._error_models:
parameter_names += error_model.get_parameter_names()
self._parameter_names = parameter_names
self._n_parameters = len(self._parameter_names)
|
Sets the number and names of the free model parameters.
|
chi/_predictive_models.py
|
_set_number_and_parameter_names
|
DavAug/chi
| 2 |
python
|
def _set_number_and_parameter_names(self):
'\n \n '
parameter_names = self._mechanistic_model.parameters()
for error_model in self._error_models:
parameter_names += error_model.get_parameter_names()
self._parameter_names = parameter_names
self._n_parameters = len(self._parameter_names)
|
def _set_number_and_parameter_names(self):
'\n \n '
parameter_names = self._mechanistic_model.parameters()
for error_model in self._error_models:
parameter_names += error_model.get_parameter_names()
self._parameter_names = parameter_names
self._n_parameters = len(self._parameter_names)<|docstring|>Sets the number and names of the free model parameters.<|endoftext|>
|
6a57bce2889315d7f79ac813f12e4f0ab652e2d705cd08c542c8f4c92431055c
|
def fix_parameters(self, name_value_dict):
'\n Fixes the value of model parameters, and effectively removes them as a\n parameter from the model. Fixing the value of a parameter at ``None``,\n sets the parameter free again.\n\n Parameters\n ----------\n name_value_dict\n A dictionary with model parameter names as keys, and parameter\n value as values.\n '
try:
name_value_dict = dict(name_value_dict)
except (TypeError, ValueError):
raise ValueError('The name-value dictionary has to be convertable to a python dictionary.')
mechanistic_model = self._mechanistic_model
error_models = self._error_models
if (not isinstance(mechanistic_model, chi.ReducedMechanisticModel)):
mechanistic_model = chi.ReducedMechanisticModel(mechanistic_model)
for (model_id, error_model) in enumerate(error_models):
if (not isinstance(error_model, chi.ReducedErrorModel)):
error_models[model_id] = chi.ReducedErrorModel(error_model)
mechanistic_model.fix_parameters(name_value_dict)
for error_model in error_models:
error_model.fix_parameters(name_value_dict)
if (mechanistic_model.n_fixed_parameters() == 0):
mechanistic_model = mechanistic_model.mechanistic_model()
for (model_id, error_model) in enumerate(error_models):
if (error_model.n_fixed_parameters() == 0):
error_model = error_model.get_error_model()
error_models[model_id] = error_model
self._mechanistic_model = mechanistic_model
self._error_models = error_models
self._set_number_and_parameter_names()
|
Fixes the value of model parameters, and effectively removes them as a
parameter from the model. Fixing the value of a parameter at ``None``,
sets the parameter free again.
Parameters
----------
name_value_dict
A dictionary with model parameter names as keys, and parameter
value as values.
|
chi/_predictive_models.py
|
fix_parameters
|
DavAug/chi
| 2 |
python
|
def fix_parameters(self, name_value_dict):
'\n Fixes the value of model parameters, and effectively removes them as a\n parameter from the model. Fixing the value of a parameter at ``None``,\n sets the parameter free again.\n\n Parameters\n ----------\n name_value_dict\n A dictionary with model parameter names as keys, and parameter\n value as values.\n '
try:
name_value_dict = dict(name_value_dict)
except (TypeError, ValueError):
raise ValueError('The name-value dictionary has to be convertable to a python dictionary.')
mechanistic_model = self._mechanistic_model
error_models = self._error_models
if (not isinstance(mechanistic_model, chi.ReducedMechanisticModel)):
mechanistic_model = chi.ReducedMechanisticModel(mechanistic_model)
for (model_id, error_model) in enumerate(error_models):
if (not isinstance(error_model, chi.ReducedErrorModel)):
error_models[model_id] = chi.ReducedErrorModel(error_model)
mechanistic_model.fix_parameters(name_value_dict)
for error_model in error_models:
error_model.fix_parameters(name_value_dict)
if (mechanistic_model.n_fixed_parameters() == 0):
mechanistic_model = mechanistic_model.mechanistic_model()
for (model_id, error_model) in enumerate(error_models):
if (error_model.n_fixed_parameters() == 0):
error_model = error_model.get_error_model()
error_models[model_id] = error_model
self._mechanistic_model = mechanistic_model
self._error_models = error_models
self._set_number_and_parameter_names()
|
def fix_parameters(self, name_value_dict):
'\n Fixes the value of model parameters, and effectively removes them as a\n parameter from the model. Fixing the value of a parameter at ``None``,\n sets the parameter free again.\n\n Parameters\n ----------\n name_value_dict\n A dictionary with model parameter names as keys, and parameter\n value as values.\n '
try:
name_value_dict = dict(name_value_dict)
except (TypeError, ValueError):
raise ValueError('The name-value dictionary has to be convertable to a python dictionary.')
mechanistic_model = self._mechanistic_model
error_models = self._error_models
if (not isinstance(mechanistic_model, chi.ReducedMechanisticModel)):
mechanistic_model = chi.ReducedMechanisticModel(mechanistic_model)
for (model_id, error_model) in enumerate(error_models):
if (not isinstance(error_model, chi.ReducedErrorModel)):
error_models[model_id] = chi.ReducedErrorModel(error_model)
mechanistic_model.fix_parameters(name_value_dict)
for error_model in error_models:
error_model.fix_parameters(name_value_dict)
if (mechanistic_model.n_fixed_parameters() == 0):
mechanistic_model = mechanistic_model.mechanistic_model()
for (model_id, error_model) in enumerate(error_models):
if (error_model.n_fixed_parameters() == 0):
error_model = error_model.get_error_model()
error_models[model_id] = error_model
self._mechanistic_model = mechanistic_model
self._error_models = error_models
self._set_number_and_parameter_names()<|docstring|>Fixes the value of model parameters, and effectively removes them as a
parameter from the model. Fixing the value of a parameter at ``None``,
sets the parameter free again.
Parameters
----------
name_value_dict
A dictionary with model parameter names as keys, and parameter
value as values.<|endoftext|>
|
ff28f4693f16e8102dbd5e3d9c762b9c2246d52503131e4db62759844a89aea7
|
def get_dosing_regimen(self, final_time=None):
'\n Returns the dosing regimen of the compound in form of a\n :class:`pandas.DataFrame`.\n\n The dataframe has a time, a duration, and a dose column, which indicate\n the time point and duration of the dose administration in the time\n units of the mechanistic model, :meth:`MechanisticModel.time_unit`. The\n dose column specifies the amount of the compound that is being\n administered in units of the drug amount variable of the mechanistic\n model.\n\n If an indefinitely administered dosing regimen is set, i.e. a\n finite duration and undefined number of doses, see\n :meth:`set_dosing_regimen`, only the first administration of the\n dose will appear in the dataframe. Alternatively, a final dose time\n ``final_time`` can be provided, up to which the dose events are\n registered.\n\n If no dosing regimen has been set, ``None`` is returned.\n\n Parameters\n ----------\n final_time\n Time up to which dose events are registered in the dataframe. If\n ``None``, all dose events are registered, except for indefinite\n dosing regimens. Here, only the first dose event is registered.\n '
try:
regimen = self._mechanistic_model.dosing_regimen()
except AttributeError:
return None
if (regimen is None):
return regimen
if (final_time is None):
final_time = np.inf
regimen_df = pd.DataFrame(columns=['Time', 'Duration', 'Dose'])
for dose_event in regimen.events():
dose_rate = dose_event.level()
dose_duration = dose_event.duration()
dose_amount = (dose_rate * dose_duration)
start_time = dose_event.start()
period = dose_event.period()
n_doses = dose_event.multiplier()
if (start_time > final_time):
continue
if (period == 0):
regimen_df = regimen_df.append(pd.DataFrame({'Time': [start_time], 'Duration': [dose_duration], 'Dose': [dose_amount]}))
continue
if (n_doses == 0):
n_doses = 1
if np.isfinite(final_time):
n_doses = int((abs(final_time) // period))
dose_times = [(start_time + (n * period)) for n in range(n_doses)]
dose_times = np.array(dose_times)
mask = (dose_times <= final_time)
dose_times = dose_times[mask]
regimen_df = regimen_df.append(pd.DataFrame({'Time': dose_times, 'Duration': dose_duration, 'Dose': dose_amount}))
if regimen_df.empty:
return None
return regimen_df
|
Returns the dosing regimen of the compound in form of a
:class:`pandas.DataFrame`.
The dataframe has a time, a duration, and a dose column, which indicate
the time point and duration of the dose administration in the time
units of the mechanistic model, :meth:`MechanisticModel.time_unit`. The
dose column specifies the amount of the compound that is being
administered in units of the drug amount variable of the mechanistic
model.
If an indefinitely administered dosing regimen is set, i.e. a
finite duration and undefined number of doses, see
:meth:`set_dosing_regimen`, only the first administration of the
dose will appear in the dataframe. Alternatively, a final dose time
``final_time`` can be provided, up to which the dose events are
registered.
If no dosing regimen has been set, ``None`` is returned.
Parameters
----------
final_time
Time up to which dose events are registered in the dataframe. If
``None``, all dose events are registered, except for indefinite
dosing regimens. Here, only the first dose event is registered.
|
chi/_predictive_models.py
|
get_dosing_regimen
|
DavAug/chi
| 2 |
python
|
def get_dosing_regimen(self, final_time=None):
'\n Returns the dosing regimen of the compound in form of a\n :class:`pandas.DataFrame`.\n\n The dataframe has a time, a duration, and a dose column, which indicate\n the time point and duration of the dose administration in the time\n units of the mechanistic model, :meth:`MechanisticModel.time_unit`. The\n dose column specifies the amount of the compound that is being\n administered in units of the drug amount variable of the mechanistic\n model.\n\n If an indefinitely administered dosing regimen is set, i.e. a\n finite duration and undefined number of doses, see\n :meth:`set_dosing_regimen`, only the first administration of the\n dose will appear in the dataframe. Alternatively, a final dose time\n ``final_time`` can be provided, up to which the dose events are\n registered.\n\n If no dosing regimen has been set, ``None`` is returned.\n\n Parameters\n ----------\n final_time\n Time up to which dose events are registered in the dataframe. If\n ``None``, all dose events are registered, except for indefinite\n dosing regimens. Here, only the first dose event is registered.\n '
try:
regimen = self._mechanistic_model.dosing_regimen()
except AttributeError:
return None
if (regimen is None):
return regimen
if (final_time is None):
final_time = np.inf
regimen_df = pd.DataFrame(columns=['Time', 'Duration', 'Dose'])
for dose_event in regimen.events():
dose_rate = dose_event.level()
dose_duration = dose_event.duration()
dose_amount = (dose_rate * dose_duration)
start_time = dose_event.start()
period = dose_event.period()
n_doses = dose_event.multiplier()
if (start_time > final_time):
continue
if (period == 0):
regimen_df = regimen_df.append(pd.DataFrame({'Time': [start_time], 'Duration': [dose_duration], 'Dose': [dose_amount]}))
continue
if (n_doses == 0):
n_doses = 1
if np.isfinite(final_time):
n_doses = int((abs(final_time) // period))
dose_times = [(start_time + (n * period)) for n in range(n_doses)]
dose_times = np.array(dose_times)
mask = (dose_times <= final_time)
dose_times = dose_times[mask]
regimen_df = regimen_df.append(pd.DataFrame({'Time': dose_times, 'Duration': dose_duration, 'Dose': dose_amount}))
if regimen_df.empty:
return None
return regimen_df
|
def get_dosing_regimen(self, final_time=None):
'\n Returns the dosing regimen of the compound in form of a\n :class:`pandas.DataFrame`.\n\n The dataframe has a time, a duration, and a dose column, which indicate\n the time point and duration of the dose administration in the time\n units of the mechanistic model, :meth:`MechanisticModel.time_unit`. The\n dose column specifies the amount of the compound that is being\n administered in units of the drug amount variable of the mechanistic\n model.\n\n If an indefinitely administered dosing regimen is set, i.e. a\n finite duration and undefined number of doses, see\n :meth:`set_dosing_regimen`, only the first administration of the\n dose will appear in the dataframe. Alternatively, a final dose time\n ``final_time`` can be provided, up to which the dose events are\n registered.\n\n If no dosing regimen has been set, ``None`` is returned.\n\n Parameters\n ----------\n final_time\n Time up to which dose events are registered in the dataframe. If\n ``None``, all dose events are registered, except for indefinite\n dosing regimens. Here, only the first dose event is registered.\n '
try:
regimen = self._mechanistic_model.dosing_regimen()
except AttributeError:
return None
if (regimen is None):
return regimen
if (final_time is None):
final_time = np.inf
regimen_df = pd.DataFrame(columns=['Time', 'Duration', 'Dose'])
for dose_event in regimen.events():
dose_rate = dose_event.level()
dose_duration = dose_event.duration()
dose_amount = (dose_rate * dose_duration)
start_time = dose_event.start()
period = dose_event.period()
n_doses = dose_event.multiplier()
if (start_time > final_time):
continue
if (period == 0):
regimen_df = regimen_df.append(pd.DataFrame({'Time': [start_time], 'Duration': [dose_duration], 'Dose': [dose_amount]}))
continue
if (n_doses == 0):
n_doses = 1
if np.isfinite(final_time):
n_doses = int((abs(final_time) // period))
dose_times = [(start_time + (n * period)) for n in range(n_doses)]
dose_times = np.array(dose_times)
mask = (dose_times <= final_time)
dose_times = dose_times[mask]
regimen_df = regimen_df.append(pd.DataFrame({'Time': dose_times, 'Duration': dose_duration, 'Dose': dose_amount}))
if regimen_df.empty:
return None
return regimen_df<|docstring|>Returns the dosing regimen of the compound in form of a
:class:`pandas.DataFrame`.
The dataframe has a time, a duration, and a dose column, which indicate
the time point and duration of the dose administration in the time
units of the mechanistic model, :meth:`MechanisticModel.time_unit`. The
dose column specifies the amount of the compound that is being
administered in units of the drug amount variable of the mechanistic
model.
If an indefinitely administered dosing regimen is set, i.e. a
finite duration and undefined number of doses, see
:meth:`set_dosing_regimen`, only the first administration of the
dose will appear in the dataframe. Alternatively, a final dose time
``final_time`` can be provided, up to which the dose events are
registered.
If no dosing regimen has been set, ``None`` is returned.
Parameters
----------
final_time
Time up to which dose events are registered in the dataframe. If
``None``, all dose events are registered, except for indefinite
dosing regimens. Here, only the first dose event is registered.<|endoftext|>
|
86db6d5dc06fa27f799e0f0ac9d7b715b5dc522063a44d3ae9c5039502471ef1
|
def get_n_outputs(self):
'\n Returns the number of outputs.\n '
return self._mechanistic_model.n_outputs()
|
Returns the number of outputs.
|
chi/_predictive_models.py
|
get_n_outputs
|
DavAug/chi
| 2 |
python
|
def get_n_outputs(self):
'\n \n '
return self._mechanistic_model.n_outputs()
|
def get_n_outputs(self):
'\n \n '
return self._mechanistic_model.n_outputs()<|docstring|>Returns the number of outputs.<|endoftext|>
|
c008830b536d1c1153d59626490a46dad6ff1dd00d38f530f2e12efb8dee03f0
|
def get_output_names(self):
'\n Returns the output names.\n '
return self._mechanistic_model.outputs()
|
Returns the output names.
|
chi/_predictive_models.py
|
get_output_names
|
DavAug/chi
| 2 |
python
|
def get_output_names(self):
'\n \n '
return self._mechanistic_model.outputs()
|
def get_output_names(self):
'\n \n '
return self._mechanistic_model.outputs()<|docstring|>Returns the output names.<|endoftext|>
|
df5549d1fb5707e9f96b2fee76838fa0f962babac4e31793c55018e393604b37
|
def get_parameter_names(self):
'\n Returns the parameter names of the predictive model.\n '
return copy.copy(self._parameter_names)
|
Returns the parameter names of the predictive model.
|
chi/_predictive_models.py
|
get_parameter_names
|
DavAug/chi
| 2 |
python
|
def get_parameter_names(self):
'\n \n '
return copy.copy(self._parameter_names)
|
def get_parameter_names(self):
'\n \n '
return copy.copy(self._parameter_names)<|docstring|>Returns the parameter names of the predictive model.<|endoftext|>
|
bc6e5d9077c88de30d36cb7b33300add11ee112fb5c46d3c3eebf50885901f0d
|
def get_submodels(self):
'\n Returns the submodels of the predictive model in form of a dictionary.\n '
mechanistic_model = self._mechanistic_model
if isinstance(mechanistic_model, chi.ReducedMechanisticModel):
mechanistic_model = mechanistic_model.mechanistic_model()
error_models = []
for error_model in self._error_models:
if isinstance(error_model, chi.ReducedErrorModel):
error_model = error_model.get_error_model()
error_models.append(error_model)
submodels = dict({'Mechanistic model': mechanistic_model, 'Error models': error_models})
return submodels
|
Returns the submodels of the predictive model in form of a dictionary.
|
chi/_predictive_models.py
|
get_submodels
|
DavAug/chi
| 2 |
python
|
def get_submodels(self):
'\n \n '
mechanistic_model = self._mechanistic_model
if isinstance(mechanistic_model, chi.ReducedMechanisticModel):
mechanistic_model = mechanistic_model.mechanistic_model()
error_models = []
for error_model in self._error_models:
if isinstance(error_model, chi.ReducedErrorModel):
error_model = error_model.get_error_model()
error_models.append(error_model)
submodels = dict({'Mechanistic model': mechanistic_model, 'Error models': error_models})
return submodels
|
def get_submodels(self):
'\n \n '
mechanistic_model = self._mechanistic_model
if isinstance(mechanistic_model, chi.ReducedMechanisticModel):
mechanistic_model = mechanistic_model.mechanistic_model()
error_models = []
for error_model in self._error_models:
if isinstance(error_model, chi.ReducedErrorModel):
error_model = error_model.get_error_model()
error_models.append(error_model)
submodels = dict({'Mechanistic model': mechanistic_model, 'Error models': error_models})
return submodels<|docstring|>Returns the submodels of the predictive model in form of a dictionary.<|endoftext|>
|
b57ff66b1bce0fc7397bac585ac4d5034fab1596f98b8a39f0f02f8826952152
|
def n_parameters(self):
'\n Returns the number of parameters of the predictive model.\n '
return self._n_parameters
|
Returns the number of parameters of the predictive model.
|
chi/_predictive_models.py
|
n_parameters
|
DavAug/chi
| 2 |
python
|
def n_parameters(self):
'\n \n '
return self._n_parameters
|
def n_parameters(self):
'\n \n '
return self._n_parameters<|docstring|>Returns the number of parameters of the predictive model.<|endoftext|>
|
5f3bf77ac1519a770c7f8c206a7419c0681222b3ee6baa1f4bd7509c14bfaaf5
|
def sample(self, parameters, times, n_samples=None, seed=None, return_df=True, include_regimen=False):
'\n Samples "measurements" of the biomarkers from the predictive model and\n returns them in form of a :class:`pandas.DataFrame` or a\n :class:`numpy.ndarray`.\n\n The mechanistic model is solved for the provided parameters and times,\n and samples around this solution are drawn from the error models for\n each time point.\n\n The number of samples for each time point can be specified with\n ``n_samples``.\n\n Parameters\n ----------\n parameters\n An array-like object with the parameter values of the predictive\n model.\n times\n An array-like object with times at which the virtual "measurements"\n are performed.\n n_samples\n The number of virtual "measurements" that are performed at each\n time point. If ``None`` the biomarkers are measured only once\n at each time point.\n seed\n A seed for the pseudo-random number generator or a\n :class:`numpy.random.Generator`.\n return_df\n A boolean flag which determines whether the output is returned as a\n :class:`pandas.DataFrame` or a :class:`numpy.ndarray`. If ``False``\n the samples are returned as a numpy array of shape\n ``(n_outputs, n_times, n_samples)``.\n include_regimen\n A boolean flag which determines whether the dosing regimen\n information is included in the output. If the samples are returned\n as a :class:`numpy.ndarray`, the dosing information is not\n included.\n '
parameters = np.asarray(parameters)
if (len(parameters) != self._n_parameters):
raise ValueError('The length of parameters does not match n_parameters.')
n_parameters = self._mechanistic_model.n_parameters()
mechanistic_params = parameters[:n_parameters]
error_params = parameters[n_parameters:]
times = np.sort(times)
outputs = self._mechanistic_model.simulate(mechanistic_params, times)
n_outputs = len(outputs)
n_times = len(times)
n_samples = (n_samples if (n_samples is not None) else 1)
container = np.empty(shape=(n_outputs, n_times, n_samples))
start_index = 0
for (output_id, error_model) in enumerate(self._error_models):
end_index = (start_index + error_model.n_parameters())
container[(output_id, ...)] = error_model.sample(parameters=error_params[start_index:end_index], model_output=outputs[output_id], n_samples=n_samples, seed=seed)
start_index = end_index
if (return_df is False):
return container
output_names = self._mechanistic_model.outputs()
sample_ids = np.arange(start=1, stop=(n_samples + 1))
samples = pd.DataFrame(columns=['ID', 'Time', 'Observable', 'Value'])
for (output_id, name) in enumerate(output_names):
for (time_id, time) in enumerate(times):
samples = samples.append(pd.DataFrame({'ID': sample_ids, 'Time': time, 'Observable': name, 'Value': container[(output_id, time_id, :)]}))
final_time = np.max(times)
regimen = self.get_dosing_regimen(final_time)
if ((regimen is not None) and (include_regimen is True)):
for _id in sample_ids:
regimen['ID'] = _id
samples = samples.append(regimen)
return samples
|
Samples "measurements" of the biomarkers from the predictive model and
returns them in form of a :class:`pandas.DataFrame` or a
:class:`numpy.ndarray`.
The mechanistic model is solved for the provided parameters and times,
and samples around this solution are drawn from the error models for
each time point.
The number of samples for each time point can be specified with
``n_samples``.
Parameters
----------
parameters
An array-like object with the parameter values of the predictive
model.
times
An array-like object with times at which the virtual "measurements"
are performed.
n_samples
The number of virtual "measurements" that are performed at each
time point. If ``None`` the biomarkers are measured only once
at each time point.
seed
A seed for the pseudo-random number generator or a
:class:`numpy.random.Generator`.
return_df
A boolean flag which determines whether the output is returned as a
:class:`pandas.DataFrame` or a :class:`numpy.ndarray`. If ``False``
the samples are returned as a numpy array of shape
``(n_outputs, n_times, n_samples)``.
include_regimen
A boolean flag which determines whether the dosing regimen
information is included in the output. If the samples are returned
as a :class:`numpy.ndarray`, the dosing information is not
included.
|
chi/_predictive_models.py
|
sample
|
DavAug/chi
| 2 |
python
|
def sample(self, parameters, times, n_samples=None, seed=None, return_df=True, include_regimen=False):
'\n Samples "measurements" of the biomarkers from the predictive model and\n returns them in form of a :class:`pandas.DataFrame` or a\n :class:`numpy.ndarray`.\n\n The mechanistic model is solved for the provided parameters and times,\n and samples around this solution are drawn from the error models for\n each time point.\n\n The number of samples for each time point can be specified with\n ``n_samples``.\n\n Parameters\n ----------\n parameters\n An array-like object with the parameter values of the predictive\n model.\n times\n An array-like object with times at which the virtual "measurements"\n are performed.\n n_samples\n The number of virtual "measurements" that are performed at each\n time point. If ``None`` the biomarkers are measured only once\n at each time point.\n seed\n A seed for the pseudo-random number generator or a\n :class:`numpy.random.Generator`.\n return_df\n A boolean flag which determines whether the output is returned as a\n :class:`pandas.DataFrame` or a :class:`numpy.ndarray`. If ``False``\n the samples are returned as a numpy array of shape\n ``(n_outputs, n_times, n_samples)``.\n include_regimen\n A boolean flag which determines whether the dosing regimen\n information is included in the output. If the samples are returned\n as a :class:`numpy.ndarray`, the dosing information is not\n included.\n '
parameters = np.asarray(parameters)
if (len(parameters) != self._n_parameters):
raise ValueError('The length of parameters does not match n_parameters.')
n_parameters = self._mechanistic_model.n_parameters()
mechanistic_params = parameters[:n_parameters]
error_params = parameters[n_parameters:]
times = np.sort(times)
outputs = self._mechanistic_model.simulate(mechanistic_params, times)
n_outputs = len(outputs)
n_times = len(times)
n_samples = (n_samples if (n_samples is not None) else 1)
container = np.empty(shape=(n_outputs, n_times, n_samples))
start_index = 0
for (output_id, error_model) in enumerate(self._error_models):
end_index = (start_index + error_model.n_parameters())
container[(output_id, ...)] = error_model.sample(parameters=error_params[start_index:end_index], model_output=outputs[output_id], n_samples=n_samples, seed=seed)
start_index = end_index
if (return_df is False):
return container
output_names = self._mechanistic_model.outputs()
sample_ids = np.arange(start=1, stop=(n_samples + 1))
samples = pd.DataFrame(columns=['ID', 'Time', 'Observable', 'Value'])
for (output_id, name) in enumerate(output_names):
for (time_id, time) in enumerate(times):
samples = samples.append(pd.DataFrame({'ID': sample_ids, 'Time': time, 'Observable': name, 'Value': container[(output_id, time_id, :)]}))
final_time = np.max(times)
regimen = self.get_dosing_regimen(final_time)
if ((regimen is not None) and (include_regimen is True)):
for _id in sample_ids:
regimen['ID'] = _id
samples = samples.append(regimen)
return samples
|
def sample(self, parameters, times, n_samples=None, seed=None, return_df=True, include_regimen=False):
'\n Samples "measurements" of the biomarkers from the predictive model and\n returns them in form of a :class:`pandas.DataFrame` or a\n :class:`numpy.ndarray`.\n\n The mechanistic model is solved for the provided parameters and times,\n and samples around this solution are drawn from the error models for\n each time point.\n\n The number of samples for each time point can be specified with\n ``n_samples``.\n\n Parameters\n ----------\n parameters\n An array-like object with the parameter values of the predictive\n model.\n times\n An array-like object with times at which the virtual "measurements"\n are performed.\n n_samples\n The number of virtual "measurements" that are performed at each\n time point. If ``None`` the biomarkers are measured only once\n at each time point.\n seed\n A seed for the pseudo-random number generator or a\n :class:`numpy.random.Generator`.\n return_df\n A boolean flag which determines whether the output is returned as a\n :class:`pandas.DataFrame` or a :class:`numpy.ndarray`. If ``False``\n the samples are returned as a numpy array of shape\n ``(n_outputs, n_times, n_samples)``.\n include_regimen\n A boolean flag which determines whether the dosing regimen\n information is included in the output. If the samples are returned\n as a :class:`numpy.ndarray`, the dosing information is not\n included.\n '
parameters = np.asarray(parameters)
if (len(parameters) != self._n_parameters):
raise ValueError('The length of parameters does not match n_parameters.')
n_parameters = self._mechanistic_model.n_parameters()
mechanistic_params = parameters[:n_parameters]
error_params = parameters[n_parameters:]
times = np.sort(times)
outputs = self._mechanistic_model.simulate(mechanistic_params, times)
n_outputs = len(outputs)
n_times = len(times)
n_samples = (n_samples if (n_samples is not None) else 1)
container = np.empty(shape=(n_outputs, n_times, n_samples))
start_index = 0
for (output_id, error_model) in enumerate(self._error_models):
end_index = (start_index + error_model.n_parameters())
container[(output_id, ...)] = error_model.sample(parameters=error_params[start_index:end_index], model_output=outputs[output_id], n_samples=n_samples, seed=seed)
start_index = end_index
if (return_df is False):
return container
output_names = self._mechanistic_model.outputs()
sample_ids = np.arange(start=1, stop=(n_samples + 1))
samples = pd.DataFrame(columns=['ID', 'Time', 'Observable', 'Value'])
for (output_id, name) in enumerate(output_names):
for (time_id, time) in enumerate(times):
samples = samples.append(pd.DataFrame({'ID': sample_ids, 'Time': time, 'Observable': name, 'Value': container[(output_id, time_id, :)]}))
final_time = np.max(times)
regimen = self.get_dosing_regimen(final_time)
if ((regimen is not None) and (include_regimen is True)):
for _id in sample_ids:
regimen['ID'] = _id
samples = samples.append(regimen)
return samples<|docstring|>Samples "measurements" of the biomarkers from the predictive model and
returns them in form of a :class:`pandas.DataFrame` or a
:class:`numpy.ndarray`.
The mechanistic model is solved for the provided parameters and times,
and samples around this solution are drawn from the error models for
each time point.
The number of samples for each time point can be specified with
``n_samples``.
Parameters
----------
parameters
An array-like object with the parameter values of the predictive
model.
times
An array-like object with times at which the virtual "measurements"
are performed.
n_samples
The number of virtual "measurements" that are performed at each
time point. If ``None`` the biomarkers are measured only once
at each time point.
seed
A seed for the pseudo-random number generator or a
:class:`numpy.random.Generator`.
return_df
A boolean flag which determines whether the output is returned as a
:class:`pandas.DataFrame` or a :class:`numpy.ndarray`. If ``False``
the samples are returned as a numpy array of shape
``(n_outputs, n_times, n_samples)``.
include_regimen
A boolean flag which determines whether the dosing regimen
information is included in the output. If the samples are returned
as a :class:`numpy.ndarray`, the dosing information is not
included.<|endoftext|>
|
f98778f98284d0955289e071b7c2ce2df0d73b102e62bc0ed07bc9ff1717eea1
|
def set_dosing_regimen(self, dose, start, duration=0.01, period=None, num=None):
'\n Sets the dosing regimen with which the compound is administered.\n\n By default the dose is administered as a bolus injection (duration on\n a time scale that is 100 fold smaller than the basic time unit). To\n model an infusion of the dose over a longer time period, the\n ``duration`` can be adjusted to the appropriate time scale.\n\n By default the dose is administered once. To apply multiple doses\n provide a dose administration period.\n\n .. note::\n This method requires a :class:`MechanisticModel` that supports\n compound administration.\n\n Parameters\n ----------\n dose\n The amount of the compound that is injected at each administration.\n start\n Start time of the treatment.\n duration\n Duration of dose administration. For a bolus injection, a dose\n duration of 1% of the time unit should suffice. By default the\n duration is set to 0.01 (bolus).\n period\n Periodicity at which doses are administered. If ``None`` the dose\n is administered only once.\n num\n Number of administered doses. If ``None`` and the periodicity of\n the administration is not ``None``, doses are administered\n indefinitely.\n '
try:
self._mechanistic_model.set_dosing_regimen(dose, start, duration, period, num)
except AttributeError:
raise AttributeError('The mechanistic model does not support to set dosing regimens. This may be because the underlying chi.MechanisticModel is a chi.PharmacodynamicModel.')
|
Sets the dosing regimen with which the compound is administered.
By default the dose is administered as a bolus injection (duration on
a time scale that is 100 fold smaller than the basic time unit). To
model an infusion of the dose over a longer time period, the
``duration`` can be adjusted to the appropriate time scale.
By default the dose is administered once. To apply multiple doses
provide a dose administration period.
.. note::
This method requires a :class:`MechanisticModel` that supports
compound administration.
Parameters
----------
dose
The amount of the compound that is injected at each administration.
start
Start time of the treatment.
duration
Duration of dose administration. For a bolus injection, a dose
duration of 1% of the time unit should suffice. By default the
duration is set to 0.01 (bolus).
period
Periodicity at which doses are administered. If ``None`` the dose
is administered only once.
num
Number of administered doses. If ``None`` and the periodicity of
the administration is not ``None``, doses are administered
indefinitely.
|
chi/_predictive_models.py
|
set_dosing_regimen
|
DavAug/chi
| 2 |
python
|
def set_dosing_regimen(self, dose, start, duration=0.01, period=None, num=None):
'\n Sets the dosing regimen with which the compound is administered.\n\n By default the dose is administered as a bolus injection (duration on\n a time scale that is 100 fold smaller than the basic time unit). To\n model an infusion of the dose over a longer time period, the\n ``duration`` can be adjusted to the appropriate time scale.\n\n By default the dose is administered once. To apply multiple doses\n provide a dose administration period.\n\n .. note::\n This method requires a :class:`MechanisticModel` that supports\n compound administration.\n\n Parameters\n ----------\n dose\n The amount of the compound that is injected at each administration.\n start\n Start time of the treatment.\n duration\n Duration of dose administration. For a bolus injection, a dose\n duration of 1% of the time unit should suffice. By default the\n duration is set to 0.01 (bolus).\n period\n Periodicity at which doses are administered. If ``None`` the dose\n is administered only once.\n num\n Number of administered doses. If ``None`` and the periodicity of\n the administration is not ``None``, doses are administered\n indefinitely.\n '
try:
self._mechanistic_model.set_dosing_regimen(dose, start, duration, period, num)
except AttributeError:
raise AttributeError('The mechanistic model does not support to set dosing regimens. This may be because the underlying chi.MechanisticModel is a chi.PharmacodynamicModel.')
|
def set_dosing_regimen(self, dose, start, duration=0.01, period=None, num=None):
'\n Sets the dosing regimen with which the compound is administered.\n\n By default the dose is administered as a bolus injection (duration on\n a time scale that is 100 fold smaller than the basic time unit). To\n model an infusion of the dose over a longer time period, the\n ``duration`` can be adjusted to the appropriate time scale.\n\n By default the dose is administered once. To apply multiple doses\n provide a dose administration period.\n\n .. note::\n This method requires a :class:`MechanisticModel` that supports\n compound administration.\n\n Parameters\n ----------\n dose\n The amount of the compound that is injected at each administration.\n start\n Start time of the treatment.\n duration\n Duration of dose administration. For a bolus injection, a dose\n duration of 1% of the time unit should suffice. By default the\n duration is set to 0.01 (bolus).\n period\n Periodicity at which doses are administered. If ``None`` the dose\n is administered only once.\n num\n Number of administered doses. If ``None`` and the periodicity of\n the administration is not ``None``, doses are administered\n indefinitely.\n '
try:
self._mechanistic_model.set_dosing_regimen(dose, start, duration, period, num)
except AttributeError:
raise AttributeError('The mechanistic model does not support to set dosing regimens. This may be because the underlying chi.MechanisticModel is a chi.PharmacodynamicModel.')<|docstring|>Sets the dosing regimen with which the compound is administered.
By default the dose is administered as a bolus injection (duration on
a time scale that is 100 fold smaller than the basic time unit). To
model an infusion of the dose over a longer time period, the
``duration`` can be adjusted to the appropriate time scale.
By default the dose is administered once. To apply multiple doses
provide a dose administration period.
.. note::
This method requires a :class:`MechanisticModel` that supports
compound administration.
Parameters
----------
dose
The amount of the compound that is injected at each administration.
start
Start time of the treatment.
duration
Duration of dose administration. For a bolus injection, a dose
duration of 1% of the time unit should suffice. By default the
duration is set to 0.01 (bolus).
period
Periodicity at which doses are administered. If ``None`` the dose
is administered only once.
num
Number of administered doses. If ``None`` and the periodicity of
the administration is not ``None``, doses are administered
indefinitely.<|endoftext|>
|
51065e24e78c11a6f1912f65688f81da67643af452f8a2044e0eec9728068b0d
|
def _check_covariate_map(self, covariates, covariate_map):
'\n Checks that the covariate map can be used mask the covariates.\n '
n_covariates = len(covariates)
n_population_models = len(self._population_models)
if (covariate_map is None):
covariate_map = ([np.arange(n_covariates)] * n_population_models)
return covariate_map
if (len(covariate_map) != n_population_models):
raise ValueError('The covariate map has to be of length n_population_models.')
max_index = np.max(np.hstack(covariate_map))
if (max_index >= n_covariates):
raise IndexError('The covariate map exceeds the length of the covariates.')
return covariate_map
|
Checks that the covariate map can be used mask the covariates.
|
chi/_predictive_models.py
|
_check_covariate_map
|
DavAug/chi
| 2 |
python
|
def _check_covariate_map(self, covariates, covariate_map):
'\n \n '
n_covariates = len(covariates)
n_population_models = len(self._population_models)
if (covariate_map is None):
covariate_map = ([np.arange(n_covariates)] * n_population_models)
return covariate_map
if (len(covariate_map) != n_population_models):
raise ValueError('The covariate map has to be of length n_population_models.')
max_index = np.max(np.hstack(covariate_map))
if (max_index >= n_covariates):
raise IndexError('The covariate map exceeds the length of the covariates.')
return covariate_map
|
def _check_covariate_map(self, covariates, covariate_map):
'\n \n '
n_covariates = len(covariates)
n_population_models = len(self._population_models)
if (covariate_map is None):
covariate_map = ([np.arange(n_covariates)] * n_population_models)
return covariate_map
if (len(covariate_map) != n_population_models):
raise ValueError('The covariate map has to be of length n_population_models.')
max_index = np.max(np.hstack(covariate_map))
if (max_index >= n_covariates):
raise IndexError('The covariate map exceeds the length of the covariates.')
return covariate_map<|docstring|>Checks that the covariate map can be used mask the covariates.<|endoftext|>
|
973d3d03f057eec4a4636bd23de3873566472d2c43516c0edcae3cfa6385e97d
|
def _set_population_parameter_names(self):
'\n Sets the names of the population model parameters.\n\n For chi.HeterogeneousModel the bottom-level parameter is used\n as model parameter name.\n '
bottom_parameter_names = self._predictive_model.get_parameter_names()
for (param_id, pop_model) in enumerate(self._population_models):
pop_model.set_parameter_names(None)
pop_params = pop_model.get_parameter_names()
bottom_name = bottom_parameter_names[param_id]
if (pop_params is not None):
names = [((name + ' ') + bottom_name) for name in pop_params]
else:
names = [bottom_name]
pop_model.set_parameter_names(names)
|
Sets the names of the population model parameters.
For chi.HeterogeneousModel the bottom-level parameter is used
as model parameter name.
|
chi/_predictive_models.py
|
_set_population_parameter_names
|
DavAug/chi
| 2 |
python
|
def _set_population_parameter_names(self):
'\n Sets the names of the population model parameters.\n\n For chi.HeterogeneousModel the bottom-level parameter is used\n as model parameter name.\n '
bottom_parameter_names = self._predictive_model.get_parameter_names()
for (param_id, pop_model) in enumerate(self._population_models):
pop_model.set_parameter_names(None)
pop_params = pop_model.get_parameter_names()
bottom_name = bottom_parameter_names[param_id]
if (pop_params is not None):
names = [((name + ' ') + bottom_name) for name in pop_params]
else:
names = [bottom_name]
pop_model.set_parameter_names(names)
|
def _set_population_parameter_names(self):
'\n Sets the names of the population model parameters.\n\n For chi.HeterogeneousModel the bottom-level parameter is used\n as model parameter name.\n '
bottom_parameter_names = self._predictive_model.get_parameter_names()
for (param_id, pop_model) in enumerate(self._population_models):
pop_model.set_parameter_names(None)
pop_params = pop_model.get_parameter_names()
bottom_name = bottom_parameter_names[param_id]
if (pop_params is not None):
names = [((name + ' ') + bottom_name) for name in pop_params]
else:
names = [bottom_name]
pop_model.set_parameter_names(names)<|docstring|>Sets the names of the population model parameters.
For chi.HeterogeneousModel the bottom-level parameter is used
as model parameter name.<|endoftext|>
|
dfa21e21b46dff44188dc2e910fdb0e79ea2254537c57b7c00bc2d5fe47e8c59
|
def _set_number_and_parameter_names(self):
'\n Updates the number and names of the free model parameters.\n '
parameter_names = []
for pop_model in self._population_models:
pop_params = pop_model.get_parameter_names()
parameter_names += pop_params
self._parameter_names = parameter_names
self._n_parameters = len(self._parameter_names)
|
Updates the number and names of the free model parameters.
|
chi/_predictive_models.py
|
_set_number_and_parameter_names
|
DavAug/chi
| 2 |
python
|
def _set_number_and_parameter_names(self):
'\n \n '
parameter_names = []
for pop_model in self._population_models:
pop_params = pop_model.get_parameter_names()
parameter_names += pop_params
self._parameter_names = parameter_names
self._n_parameters = len(self._parameter_names)
|
def _set_number_and_parameter_names(self):
'\n \n '
parameter_names = []
for pop_model in self._population_models:
pop_params = pop_model.get_parameter_names()
parameter_names += pop_params
self._parameter_names = parameter_names
self._n_parameters = len(self._parameter_names)<|docstring|>Updates the number and names of the free model parameters.<|endoftext|>
|
13d9c438a270b19832a04afe5737ac6cd43c879b67f8190c733c77ab5350d18a
|
def fix_parameters(self, name_value_dict):
'\n Fixes the value of model parameters, and effectively removes them as a\n parameter from the model. Fixing the value of a parameter at ``None``,\n sets the parameter free again.\n\n .. note:\n Parameters modelled by a :class:`HeterogeneousModel` cannot be\n fixed on the population level. If you would like to fix the\n associated parameter, fix it in the corresponding\n :class:`PredictiveModel`.\n\n Parameters\n ----------\n name_value_dict\n A dictionary with model parameter names as keys, and parameter\n values as values.\n '
try:
name_value_dict = dict(name_value_dict)
except (TypeError, ValueError):
raise ValueError('The name-value dictionary has to be convertable to a python dictionary.')
pop_models = self._population_models
for (model_id, pop_model) in enumerate(pop_models):
if (not isinstance(pop_model, chi.ReducedPopulationModel)):
pop_models[model_id] = chi.ReducedPopulationModel(pop_model)
for pop_model in pop_models:
pop_model.fix_parameters(name_value_dict)
for (model_id, pop_model) in enumerate(pop_models):
if (pop_model.n_fixed_parameters() == 0):
pop_model = pop_model.get_population_model()
pop_models[model_id] = pop_model
self._population_models = pop_models
self._set_number_and_parameter_names()
|
Fixes the value of model parameters, and effectively removes them as a
parameter from the model. Fixing the value of a parameter at ``None``,
sets the parameter free again.
.. note:
Parameters modelled by a :class:`HeterogeneousModel` cannot be
fixed on the population level. If you would like to fix the
associated parameter, fix it in the corresponding
:class:`PredictiveModel`.
Parameters
----------
name_value_dict
A dictionary with model parameter names as keys, and parameter
values as values.
|
chi/_predictive_models.py
|
fix_parameters
|
DavAug/chi
| 2 |
python
|
def fix_parameters(self, name_value_dict):
'\n Fixes the value of model parameters, and effectively removes them as a\n parameter from the model. Fixing the value of a parameter at ``None``,\n sets the parameter free again.\n\n .. note:\n Parameters modelled by a :class:`HeterogeneousModel` cannot be\n fixed on the population level. If you would like to fix the\n associated parameter, fix it in the corresponding\n :class:`PredictiveModel`.\n\n Parameters\n ----------\n name_value_dict\n A dictionary with model parameter names as keys, and parameter\n values as values.\n '
try:
name_value_dict = dict(name_value_dict)
except (TypeError, ValueError):
raise ValueError('The name-value dictionary has to be convertable to a python dictionary.')
pop_models = self._population_models
for (model_id, pop_model) in enumerate(pop_models):
if (not isinstance(pop_model, chi.ReducedPopulationModel)):
pop_models[model_id] = chi.ReducedPopulationModel(pop_model)
for pop_model in pop_models:
pop_model.fix_parameters(name_value_dict)
for (model_id, pop_model) in enumerate(pop_models):
if (pop_model.n_fixed_parameters() == 0):
pop_model = pop_model.get_population_model()
pop_models[model_id] = pop_model
self._population_models = pop_models
self._set_number_and_parameter_names()
|
def fix_parameters(self, name_value_dict):
'\n Fixes the value of model parameters, and effectively removes them as a\n parameter from the model. Fixing the value of a parameter at ``None``,\n sets the parameter free again.\n\n .. note:\n Parameters modelled by a :class:`HeterogeneousModel` cannot be\n fixed on the population level. If you would like to fix the\n associated parameter, fix it in the corresponding\n :class:`PredictiveModel`.\n\n Parameters\n ----------\n name_value_dict\n A dictionary with model parameter names as keys, and parameter\n values as values.\n '
try:
name_value_dict = dict(name_value_dict)
except (TypeError, ValueError):
raise ValueError('The name-value dictionary has to be convertable to a python dictionary.')
pop_models = self._population_models
for (model_id, pop_model) in enumerate(pop_models):
if (not isinstance(pop_model, chi.ReducedPopulationModel)):
pop_models[model_id] = chi.ReducedPopulationModel(pop_model)
for pop_model in pop_models:
pop_model.fix_parameters(name_value_dict)
for (model_id, pop_model) in enumerate(pop_models):
if (pop_model.n_fixed_parameters() == 0):
pop_model = pop_model.get_population_model()
pop_models[model_id] = pop_model
self._population_models = pop_models
self._set_number_and_parameter_names()<|docstring|>Fixes the value of model parameters, and effectively removes them as a
parameter from the model. Fixing the value of a parameter at ``None``,
sets the parameter free again.
.. note:
Parameters modelled by a :class:`HeterogeneousModel` cannot be
fixed on the population level. If you would like to fix the
associated parameter, fix it in the corresponding
:class:`PredictiveModel`.
Parameters
----------
name_value_dict
A dictionary with model parameter names as keys, and parameter
values as values.<|endoftext|>
|
a6d74919c3227fcd314f2d27ce197afe596c9f22a2affd66303e84523fea8af4
|
def get_dosing_regimen(self, final_time=None):
'\n Returns the dosing regimen of the compound in form of a\n :class:`pandas.DataFrame`.\n\n The dataframe has a time, a duration, and a dose column, which indicate\n the time point and duration of the dose administration in the time\n units of the mechanistic model, :meth:`MechanisticModel.time_unit`. The\n dose column specifies the amount of the compound that is being\n administered in units of the drug amount variable of the mechanistic\n model.\n\n If an indefinitely administered dosing regimen is set, i.e. a\n finite duration and undefined number of doses, see\n :meth:`set_dosing_regimen`, only the first administration of the\n dose will appear in the dataframe. Alternatively, a final dose time\n ``final_time`` can be provided, up to which the dose events are\n registered.\n\n If no dosing regimen has been set, ``None`` is returned.\n\n Parameters\n ----------\n final_time\n Time up to which dose events are registered in the dataframe. If\n ``None``, all dose events are registered, except for indefinite\n dosing regimens. Here, only the first dose event is registered.\n '
return self._predictive_model.get_dosing_regimen(final_time)
|
Returns the dosing regimen of the compound in form of a
:class:`pandas.DataFrame`.
The dataframe has a time, a duration, and a dose column, which indicate
the time point and duration of the dose administration in the time
units of the mechanistic model, :meth:`MechanisticModel.time_unit`. The
dose column specifies the amount of the compound that is being
administered in units of the drug amount variable of the mechanistic
model.
If an indefinitely administered dosing regimen is set, i.e. a
finite duration and undefined number of doses, see
:meth:`set_dosing_regimen`, only the first administration of the
dose will appear in the dataframe. Alternatively, a final dose time
``final_time`` can be provided, up to which the dose events are
registered.
If no dosing regimen has been set, ``None`` is returned.
Parameters
----------
final_time
Time up to which dose events are registered in the dataframe. If
``None``, all dose events are registered, except for indefinite
dosing regimens. Here, only the first dose event is registered.
|
chi/_predictive_models.py
|
get_dosing_regimen
|
DavAug/chi
| 2 |
python
|
def get_dosing_regimen(self, final_time=None):
'\n Returns the dosing regimen of the compound in form of a\n :class:`pandas.DataFrame`.\n\n The dataframe has a time, a duration, and a dose column, which indicate\n the time point and duration of the dose administration in the time\n units of the mechanistic model, :meth:`MechanisticModel.time_unit`. The\n dose column specifies the amount of the compound that is being\n administered in units of the drug amount variable of the mechanistic\n model.\n\n If an indefinitely administered dosing regimen is set, i.e. a\n finite duration and undefined number of doses, see\n :meth:`set_dosing_regimen`, only the first administration of the\n dose will appear in the dataframe. Alternatively, a final dose time\n ``final_time`` can be provided, up to which the dose events are\n registered.\n\n If no dosing regimen has been set, ``None`` is returned.\n\n Parameters\n ----------\n final_time\n Time up to which dose events are registered in the dataframe. If\n ``None``, all dose events are registered, except for indefinite\n dosing regimens. Here, only the first dose event is registered.\n '
return self._predictive_model.get_dosing_regimen(final_time)
|
def get_dosing_regimen(self, final_time=None):
'\n Returns the dosing regimen of the compound in form of a\n :class:`pandas.DataFrame`.\n\n The dataframe has a time, a duration, and a dose column, which indicate\n the time point and duration of the dose administration in the time\n units of the mechanistic model, :meth:`MechanisticModel.time_unit`. The\n dose column specifies the amount of the compound that is being\n administered in units of the drug amount variable of the mechanistic\n model.\n\n If an indefinitely administered dosing regimen is set, i.e. a\n finite duration and undefined number of doses, see\n :meth:`set_dosing_regimen`, only the first administration of the\n dose will appear in the dataframe. Alternatively, a final dose time\n ``final_time`` can be provided, up to which the dose events are\n registered.\n\n If no dosing regimen has been set, ``None`` is returned.\n\n Parameters\n ----------\n final_time\n Time up to which dose events are registered in the dataframe. If\n ``None``, all dose events are registered, except for indefinite\n dosing regimens. Here, only the first dose event is registered.\n '
return self._predictive_model.get_dosing_regimen(final_time)<|docstring|>Returns the dosing regimen of the compound in form of a
:class:`pandas.DataFrame`.
The dataframe has a time, a duration, and a dose column, which indicate
the time point and duration of the dose administration in the time
units of the mechanistic model, :meth:`MechanisticModel.time_unit`. The
dose column specifies the amount of the compound that is being
administered in units of the drug amount variable of the mechanistic
model.
If an indefinitely administered dosing regimen is set, i.e. a
finite duration and undefined number of doses, see
:meth:`set_dosing_regimen`, only the first administration of the
dose will appear in the dataframe. Alternatively, a final dose time
``final_time`` can be provided, up to which the dose events are
registered.
If no dosing regimen has been set, ``None`` is returned.
Parameters
----------
final_time
Time up to which dose events are registered in the dataframe. If
``None``, all dose events are registered, except for indefinite
dosing regimens. Here, only the first dose event is registered.<|endoftext|>
|
2e0b3e8f5a1959950ebf0808ee7f559f9b007c26393a16425c5a2d10b327ecc8
|
def get_n_outputs(self):
'\n Returns the number of outputs.\n '
return self._predictive_model.get_n_outputs()
|
Returns the number of outputs.
|
chi/_predictive_models.py
|
get_n_outputs
|
DavAug/chi
| 2 |
python
|
def get_n_outputs(self):
'\n \n '
return self._predictive_model.get_n_outputs()
|
def get_n_outputs(self):
'\n \n '
return self._predictive_model.get_n_outputs()<|docstring|>Returns the number of outputs.<|endoftext|>
|
321ebe265017664b599be6ba28cb5e43a74a5d27dd4b4594844dbefd5e106686
|
def get_output_names(self):
'\n Returns the output names.\n '
return self._predictive_model.get_output_names()
|
Returns the output names.
|
chi/_predictive_models.py
|
get_output_names
|
DavAug/chi
| 2 |
python
|
def get_output_names(self):
'\n \n '
return self._predictive_model.get_output_names()
|
def get_output_names(self):
'\n \n '
return self._predictive_model.get_output_names()<|docstring|>Returns the output names.<|endoftext|>
|
df5549d1fb5707e9f96b2fee76838fa0f962babac4e31793c55018e393604b37
|
def get_parameter_names(self):
'\n Returns the parameter names of the predictive model.\n '
return copy.copy(self._parameter_names)
|
Returns the parameter names of the predictive model.
|
chi/_predictive_models.py
|
get_parameter_names
|
DavAug/chi
| 2 |
python
|
def get_parameter_names(self):
'\n \n '
return copy.copy(self._parameter_names)
|
def get_parameter_names(self):
'\n \n '
return copy.copy(self._parameter_names)<|docstring|>Returns the parameter names of the predictive model.<|endoftext|>
|
0f7032f739b23e219d5ded1a78bab8f5def886d3a2845104cfc5608b6102d053
|
def get_submodels(self):
'\n Returns the submodels of the predictive model in form of a dictionary.\n '
submodels = self._predictive_model.get_submodels()
pop_models = []
for pop_model in self._population_models:
if isinstance(pop_model, chi.ReducedPopulationModel):
pop_model = pop_model.get_population_model()
pop_models.append(pop_model)
submodels['Population models'] = pop_models
return submodels
|
Returns the submodels of the predictive model in form of a dictionary.
|
chi/_predictive_models.py
|
get_submodels
|
DavAug/chi
| 2 |
python
|
def get_submodels(self):
'\n \n '
submodels = self._predictive_model.get_submodels()
pop_models = []
for pop_model in self._population_models:
if isinstance(pop_model, chi.ReducedPopulationModel):
pop_model = pop_model.get_population_model()
pop_models.append(pop_model)
submodels['Population models'] = pop_models
return submodels
|
def get_submodels(self):
'\n \n '
submodels = self._predictive_model.get_submodels()
pop_models = []
for pop_model in self._population_models:
if isinstance(pop_model, chi.ReducedPopulationModel):
pop_model = pop_model.get_population_model()
pop_models.append(pop_model)
submodels['Population models'] = pop_models
return submodels<|docstring|>Returns the submodels of the predictive model in form of a dictionary.<|endoftext|>
|
b57ff66b1bce0fc7397bac585ac4d5034fab1596f98b8a39f0f02f8826952152
|
def n_parameters(self):
'\n Returns the number of parameters of the predictive model.\n '
return self._n_parameters
|
Returns the number of parameters of the predictive model.
|
chi/_predictive_models.py
|
n_parameters
|
DavAug/chi
| 2 |
python
|
def n_parameters(self):
'\n \n '
return self._n_parameters
|
def n_parameters(self):
'\n \n '
return self._n_parameters<|docstring|>Returns the number of parameters of the predictive model.<|endoftext|>
|
3fb287093ce14a398ad9ae2d7840cd588126bb6ed22d96b5030b91690d89a768
|
def sample(self, parameters, times, n_samples=None, seed=None, return_df=True, include_regimen=False, covariates=None, covariate_map=None):
'\n Samples "measurements" of the biomarkers from virtual "patients" and\n returns them in form of a :class:`pandas.DataFrame` or a\n :class:`numpy.ndarray`.\n\n Virtual patients are sampled from the population models in form of\n predictive model parameters. Those parameters are then used to sample\n virtual measurements from the predictive model. For each virtual\n patient one measurement is performed at each of the provided time\n points.\n\n The number of virtual patients that is being measured can be specified\n with ``n_samples``.\n\n Parameters\n ----------\n parameters\n An array-like object with the parameter values of the predictive\n model.\n times\n An array-like object with times at which the virtual "measurements"\n are performed.\n n_samples\n The number of virtual "patients" that are measured at each\n time point. If ``None`` the biomarkers are measured only for one\n patient.\n seed\n A seed for the pseudo-random number generator or a\n :class:`numpy.random.Generator`.\n return_df\n A boolean flag which determines whether the output is returned as a\n :class:`pandas.DataFrame` or a :class:`numpy.ndarray`. If ``False``\n the samples are returned as a numpy array of shape\n ``(n_outputs, n_times, n_samples)``.\n include_regimen\n A boolean flag which determines whether the dosing regimen\n information is included in the output. If the samples are returned\n as a :class:`numpy.ndarray`, the dosing information is not\n included.\n covariates\n A list with covariates of length c. Covariates are only relevant\n when CovariatePopulationModels are used.\n covariate_map\n A nested list of length n_population_models with indices that\n reference the relevant covariates for each population model.\n By default, it is assumed that all covariates are relevant for all\n population models.\n '
parameters = np.asarray(parameters)
if (len(parameters) != self._n_parameters):
raise ValueError('The length of parameters does not match n_parameters.')
if (n_samples is None):
n_samples = 1
n_samples = int(n_samples)
if (covariates is not None):
covariates = np.array(covariates)
covariate_map = self._check_covariate_map(covariates, covariate_map)
n_parameters = self._predictive_model.n_parameters()
patients = np.empty(shape=(n_samples, n_parameters))
start = 0
for (pid, pop_model) in enumerate(self._population_models):
if isinstance(pop_model, chi.HeterogeneousModel):
patients[(:, pid)] = parameters[start]
start += 1
continue
end = (start + pop_model.n_parameters())
cov = (covariates[covariate_map[pid]] if covariate_map else None)
if pop_model.transforms_individual_parameters():
patients[(:, pid)] = pop_model.sample(parameters=parameters[start:end], n_samples=n_samples, seed=seed, covariates=cov, return_psi=True)
else:
patients[(:, pid)] = pop_model.sample(parameters=parameters[start:end], n_samples=n_samples, seed=seed)
start = end
n_outputs = self._predictive_model.get_n_outputs()
n_times = len(times)
container = np.empty(shape=(n_outputs, n_times, n_samples))
times = np.sort(times)
for (patient_id, patient) in enumerate(patients):
sample = self._predictive_model.sample(parameters=patient, times=times, seed=seed, return_df=False)
container[(..., patient_id)] = sample[(..., 0)]
if (return_df is False):
return container
output_names = self._predictive_model.get_output_names()
sample_ids = np.arange(start=1, stop=(n_samples + 1))
samples = pd.DataFrame(columns=['ID', 'Time', 'Observable', 'Value'])
for (output_id, name) in enumerate(output_names):
for (time_id, time) in enumerate(times):
samples = samples.append(pd.DataFrame({'ID': sample_ids, 'Time': time, 'Observable': name, 'Value': container[(output_id, time_id, :)]}))
if (covariates is not None):
cov_names = []
for pop_model in self._population_models:
try:
cov_names.append(pop_model.get_covariate_names())
except AttributeError:
continue
covariate_map = np.hstack(covariate_map)
cov_names = np.hstack(cov_names)
n_covariates = len(covariates)
covariate_names = []
for idc in range(n_covariates):
index = np.where((covariate_map == idc))[0][0]
name = cov_names[index]
covariate_names.append(name)
for (idc, covariate) in enumerate(covariate_names):
samples = samples.append(pd.DataFrame({'ID': sample_ids, 'Time': np.nan, 'Observable': covariate, 'Value': covariates[idc]}))
final_time = np.max(times)
regimen = self.get_dosing_regimen(final_time)
if ((regimen is not None) and (include_regimen is True)):
for _id in sample_ids:
regimen['ID'] = _id
samples = samples.append(regimen)
return samples
|
Samples "measurements" of the biomarkers from virtual "patients" and
returns them in form of a :class:`pandas.DataFrame` or a
:class:`numpy.ndarray`.
Virtual patients are sampled from the population models in form of
predictive model parameters. Those parameters are then used to sample
virtual measurements from the predictive model. For each virtual
patient one measurement is performed at each of the provided time
points.
The number of virtual patients that is being measured can be specified
with ``n_samples``.
Parameters
----------
parameters
An array-like object with the parameter values of the predictive
model.
times
An array-like object with times at which the virtual "measurements"
are performed.
n_samples
The number of virtual "patients" that are measured at each
time point. If ``None`` the biomarkers are measured only for one
patient.
seed
A seed for the pseudo-random number generator or a
:class:`numpy.random.Generator`.
return_df
A boolean flag which determines whether the output is returned as a
:class:`pandas.DataFrame` or a :class:`numpy.ndarray`. If ``False``
the samples are returned as a numpy array of shape
``(n_outputs, n_times, n_samples)``.
include_regimen
A boolean flag which determines whether the dosing regimen
information is included in the output. If the samples are returned
as a :class:`numpy.ndarray`, the dosing information is not
included.
covariates
A list with covariates of length c. Covariates are only relevant
when CovariatePopulationModels are used.
covariate_map
A nested list of length n_population_models with indices that
reference the relevant covariates for each population model.
By default, it is assumed that all covariates are relevant for all
population models.
|
chi/_predictive_models.py
|
sample
|
DavAug/chi
| 2 |
python
|
def sample(self, parameters, times, n_samples=None, seed=None, return_df=True, include_regimen=False, covariates=None, covariate_map=None):
'\n Samples "measurements" of the biomarkers from virtual "patients" and\n returns them in form of a :class:`pandas.DataFrame` or a\n :class:`numpy.ndarray`.\n\n Virtual patients are sampled from the population models in form of\n predictive model parameters. Those parameters are then used to sample\n virtual measurements from the predictive model. For each virtual\n patient one measurement is performed at each of the provided time\n points.\n\n The number of virtual patients that is being measured can be specified\n with ``n_samples``.\n\n Parameters\n ----------\n parameters\n An array-like object with the parameter values of the predictive\n model.\n times\n An array-like object with times at which the virtual "measurements"\n are performed.\n n_samples\n The number of virtual "patients" that are measured at each\n time point. If ``None`` the biomarkers are measured only for one\n patient.\n seed\n A seed for the pseudo-random number generator or a\n :class:`numpy.random.Generator`.\n return_df\n A boolean flag which determines whether the output is returned as a\n :class:`pandas.DataFrame` or a :class:`numpy.ndarray`. If ``False``\n the samples are returned as a numpy array of shape\n ``(n_outputs, n_times, n_samples)``.\n include_regimen\n A boolean flag which determines whether the dosing regimen\n information is included in the output. If the samples are returned\n as a :class:`numpy.ndarray`, the dosing information is not\n included.\n covariates\n A list with covariates of length c. Covariates are only relevant\n when CovariatePopulationModels are used.\n covariate_map\n A nested list of length n_population_models with indices that\n reference the relevant covariates for each population model.\n By default, it is assumed that all covariates are relevant for all\n population models.\n '
parameters = np.asarray(parameters)
if (len(parameters) != self._n_parameters):
raise ValueError('The length of parameters does not match n_parameters.')
if (n_samples is None):
n_samples = 1
n_samples = int(n_samples)
if (covariates is not None):
covariates = np.array(covariates)
covariate_map = self._check_covariate_map(covariates, covariate_map)
n_parameters = self._predictive_model.n_parameters()
patients = np.empty(shape=(n_samples, n_parameters))
start = 0
for (pid, pop_model) in enumerate(self._population_models):
if isinstance(pop_model, chi.HeterogeneousModel):
patients[(:, pid)] = parameters[start]
start += 1
continue
end = (start + pop_model.n_parameters())
cov = (covariates[covariate_map[pid]] if covariate_map else None)
if pop_model.transforms_individual_parameters():
patients[(:, pid)] = pop_model.sample(parameters=parameters[start:end], n_samples=n_samples, seed=seed, covariates=cov, return_psi=True)
else:
patients[(:, pid)] = pop_model.sample(parameters=parameters[start:end], n_samples=n_samples, seed=seed)
start = end
n_outputs = self._predictive_model.get_n_outputs()
n_times = len(times)
container = np.empty(shape=(n_outputs, n_times, n_samples))
times = np.sort(times)
for (patient_id, patient) in enumerate(patients):
sample = self._predictive_model.sample(parameters=patient, times=times, seed=seed, return_df=False)
container[(..., patient_id)] = sample[(..., 0)]
if (return_df is False):
return container
output_names = self._predictive_model.get_output_names()
sample_ids = np.arange(start=1, stop=(n_samples + 1))
samples = pd.DataFrame(columns=['ID', 'Time', 'Observable', 'Value'])
for (output_id, name) in enumerate(output_names):
for (time_id, time) in enumerate(times):
samples = samples.append(pd.DataFrame({'ID': sample_ids, 'Time': time, 'Observable': name, 'Value': container[(output_id, time_id, :)]}))
if (covariates is not None):
cov_names = []
for pop_model in self._population_models:
try:
cov_names.append(pop_model.get_covariate_names())
except AttributeError:
continue
covariate_map = np.hstack(covariate_map)
cov_names = np.hstack(cov_names)
n_covariates = len(covariates)
covariate_names = []
for idc in range(n_covariates):
index = np.where((covariate_map == idc))[0][0]
name = cov_names[index]
covariate_names.append(name)
for (idc, covariate) in enumerate(covariate_names):
samples = samples.append(pd.DataFrame({'ID': sample_ids, 'Time': np.nan, 'Observable': covariate, 'Value': covariates[idc]}))
final_time = np.max(times)
regimen = self.get_dosing_regimen(final_time)
if ((regimen is not None) and (include_regimen is True)):
for _id in sample_ids:
regimen['ID'] = _id
samples = samples.append(regimen)
return samples
|
def sample(self, parameters, times, n_samples=None, seed=None, return_df=True, include_regimen=False, covariates=None, covariate_map=None):
'\n Samples "measurements" of the biomarkers from virtual "patients" and\n returns them in form of a :class:`pandas.DataFrame` or a\n :class:`numpy.ndarray`.\n\n Virtual patients are sampled from the population models in form of\n predictive model parameters. Those parameters are then used to sample\n virtual measurements from the predictive model. For each virtual\n patient one measurement is performed at each of the provided time\n points.\n\n The number of virtual patients that is being measured can be specified\n with ``n_samples``.\n\n Parameters\n ----------\n parameters\n An array-like object with the parameter values of the predictive\n model.\n times\n An array-like object with times at which the virtual "measurements"\n are performed.\n n_samples\n The number of virtual "patients" that are measured at each\n time point. If ``None`` the biomarkers are measured only for one\n patient.\n seed\n A seed for the pseudo-random number generator or a\n :class:`numpy.random.Generator`.\n return_df\n A boolean flag which determines whether the output is returned as a\n :class:`pandas.DataFrame` or a :class:`numpy.ndarray`. If ``False``\n the samples are returned as a numpy array of shape\n ``(n_outputs, n_times, n_samples)``.\n include_regimen\n A boolean flag which determines whether the dosing regimen\n information is included in the output. If the samples are returned\n as a :class:`numpy.ndarray`, the dosing information is not\n included.\n covariates\n A list with covariates of length c. Covariates are only relevant\n when CovariatePopulationModels are used.\n covariate_map\n A nested list of length n_population_models with indices that\n reference the relevant covariates for each population model.\n By default, it is assumed that all covariates are relevant for all\n population models.\n '
parameters = np.asarray(parameters)
if (len(parameters) != self._n_parameters):
raise ValueError('The length of parameters does not match n_parameters.')
if (n_samples is None):
n_samples = 1
n_samples = int(n_samples)
if (covariates is not None):
covariates = np.array(covariates)
covariate_map = self._check_covariate_map(covariates, covariate_map)
n_parameters = self._predictive_model.n_parameters()
patients = np.empty(shape=(n_samples, n_parameters))
start = 0
for (pid, pop_model) in enumerate(self._population_models):
if isinstance(pop_model, chi.HeterogeneousModel):
patients[(:, pid)] = parameters[start]
start += 1
continue
end = (start + pop_model.n_parameters())
cov = (covariates[covariate_map[pid]] if covariate_map else None)
if pop_model.transforms_individual_parameters():
patients[(:, pid)] = pop_model.sample(parameters=parameters[start:end], n_samples=n_samples, seed=seed, covariates=cov, return_psi=True)
else:
patients[(:, pid)] = pop_model.sample(parameters=parameters[start:end], n_samples=n_samples, seed=seed)
start = end
n_outputs = self._predictive_model.get_n_outputs()
n_times = len(times)
container = np.empty(shape=(n_outputs, n_times, n_samples))
times = np.sort(times)
for (patient_id, patient) in enumerate(patients):
sample = self._predictive_model.sample(parameters=patient, times=times, seed=seed, return_df=False)
container[(..., patient_id)] = sample[(..., 0)]
if (return_df is False):
return container
output_names = self._predictive_model.get_output_names()
sample_ids = np.arange(start=1, stop=(n_samples + 1))
samples = pd.DataFrame(columns=['ID', 'Time', 'Observable', 'Value'])
for (output_id, name) in enumerate(output_names):
for (time_id, time) in enumerate(times):
samples = samples.append(pd.DataFrame({'ID': sample_ids, 'Time': time, 'Observable': name, 'Value': container[(output_id, time_id, :)]}))
if (covariates is not None):
cov_names = []
for pop_model in self._population_models:
try:
cov_names.append(pop_model.get_covariate_names())
except AttributeError:
continue
covariate_map = np.hstack(covariate_map)
cov_names = np.hstack(cov_names)
n_covariates = len(covariates)
covariate_names = []
for idc in range(n_covariates):
index = np.where((covariate_map == idc))[0][0]
name = cov_names[index]
covariate_names.append(name)
for (idc, covariate) in enumerate(covariate_names):
samples = samples.append(pd.DataFrame({'ID': sample_ids, 'Time': np.nan, 'Observable': covariate, 'Value': covariates[idc]}))
final_time = np.max(times)
regimen = self.get_dosing_regimen(final_time)
if ((regimen is not None) and (include_regimen is True)):
for _id in sample_ids:
regimen['ID'] = _id
samples = samples.append(regimen)
return samples<|docstring|>Samples "measurements" of the biomarkers from virtual "patients" and
returns them in form of a :class:`pandas.DataFrame` or a
:class:`numpy.ndarray`.
Virtual patients are sampled from the population models in form of
predictive model parameters. Those parameters are then used to sample
virtual measurements from the predictive model. For each virtual
patient one measurement is performed at each of the provided time
points.
The number of virtual patients that is being measured can be specified
with ``n_samples``.
Parameters
----------
parameters
An array-like object with the parameter values of the predictive
model.
times
An array-like object with times at which the virtual "measurements"
are performed.
n_samples
The number of virtual "patients" that are measured at each
time point. If ``None`` the biomarkers are measured only for one
patient.
seed
A seed for the pseudo-random number generator or a
:class:`numpy.random.Generator`.
return_df
A boolean flag which determines whether the output is returned as a
:class:`pandas.DataFrame` or a :class:`numpy.ndarray`. If ``False``
the samples are returned as a numpy array of shape
``(n_outputs, n_times, n_samples)``.
include_regimen
A boolean flag which determines whether the dosing regimen
information is included in the output. If the samples are returned
as a :class:`numpy.ndarray`, the dosing information is not
included.
covariates
A list with covariates of length c. Covariates are only relevant
when CovariatePopulationModels are used.
covariate_map
A nested list of length n_population_models with indices that
reference the relevant covariates for each population model.
By default, it is assumed that all covariates are relevant for all
population models.<|endoftext|>
|
e650fccd26289136f16da3285ab40f74de1bfcbcce786f91c05863c5eb266664
|
def set_dosing_regimen(self, dose, start, duration=0.01, period=None, num=None):
'\n Sets the dosing regimen with which the compound is administered.\n\n By default the dose is administered as a bolus injection (duration on\n a time scale that is 100 fold smaller than the basic time unit). To\n model an infusion of the dose over a longer time period, the\n ``duration`` can be adjusted to the appropriate time scale.\n\n By default the dose is administered once. To apply multiple doses\n provide a dose administration period.\n\n .. note::\n This method requires a :class:`MechanisticModel` that supports\n compound administration.\n\n Parameters\n ----------\n dose\n The amount of the compound that is injected at each administration.\n start\n Start time of the treatment.\n duration\n Duration of dose administration. For a bolus injection, a dose\n duration of 1% of the time unit should suffice. By default the\n duration is set to 0.01 (bolus).\n period\n Periodicity at which doses are administered. If ``None`` the dose\n is administered only once.\n num\n Number of administered doses. If ``None`` and the periodicity of\n the administration is not ``None``, doses are administered\n indefinitely.\n '
self._predictive_model.set_dosing_regimen(dose, start, duration, period, num)
|
Sets the dosing regimen with which the compound is administered.
By default the dose is administered as a bolus injection (duration on
a time scale that is 100 fold smaller than the basic time unit). To
model an infusion of the dose over a longer time period, the
``duration`` can be adjusted to the appropriate time scale.
By default the dose is administered once. To apply multiple doses
provide a dose administration period.
.. note::
This method requires a :class:`MechanisticModel` that supports
compound administration.
Parameters
----------
dose
The amount of the compound that is injected at each administration.
start
Start time of the treatment.
duration
Duration of dose administration. For a bolus injection, a dose
duration of 1% of the time unit should suffice. By default the
duration is set to 0.01 (bolus).
period
Periodicity at which doses are administered. If ``None`` the dose
is administered only once.
num
Number of administered doses. If ``None`` and the periodicity of
the administration is not ``None``, doses are administered
indefinitely.
|
chi/_predictive_models.py
|
set_dosing_regimen
|
DavAug/chi
| 2 |
python
|
def set_dosing_regimen(self, dose, start, duration=0.01, period=None, num=None):
'\n Sets the dosing regimen with which the compound is administered.\n\n By default the dose is administered as a bolus injection (duration on\n a time scale that is 100 fold smaller than the basic time unit). To\n model an infusion of the dose over a longer time period, the\n ``duration`` can be adjusted to the appropriate time scale.\n\n By default the dose is administered once. To apply multiple doses\n provide a dose administration period.\n\n .. note::\n This method requires a :class:`MechanisticModel` that supports\n compound administration.\n\n Parameters\n ----------\n dose\n The amount of the compound that is injected at each administration.\n start\n Start time of the treatment.\n duration\n Duration of dose administration. For a bolus injection, a dose\n duration of 1% of the time unit should suffice. By default the\n duration is set to 0.01 (bolus).\n period\n Periodicity at which doses are administered. If ``None`` the dose\n is administered only once.\n num\n Number of administered doses. If ``None`` and the periodicity of\n the administration is not ``None``, doses are administered\n indefinitely.\n '
self._predictive_model.set_dosing_regimen(dose, start, duration, period, num)
|
def set_dosing_regimen(self, dose, start, duration=0.01, period=None, num=None):
'\n Sets the dosing regimen with which the compound is administered.\n\n By default the dose is administered as a bolus injection (duration on\n a time scale that is 100 fold smaller than the basic time unit). To\n model an infusion of the dose over a longer time period, the\n ``duration`` can be adjusted to the appropriate time scale.\n\n By default the dose is administered once. To apply multiple doses\n provide a dose administration period.\n\n .. note::\n This method requires a :class:`MechanisticModel` that supports\n compound administration.\n\n Parameters\n ----------\n dose\n The amount of the compound that is injected at each administration.\n start\n Start time of the treatment.\n duration\n Duration of dose administration. For a bolus injection, a dose\n duration of 1% of the time unit should suffice. By default the\n duration is set to 0.01 (bolus).\n period\n Periodicity at which doses are administered. If ``None`` the dose\n is administered only once.\n num\n Number of administered doses. If ``None`` and the periodicity of\n the administration is not ``None``, doses are administered\n indefinitely.\n '
self._predictive_model.set_dosing_regimen(dose, start, duration, period, num)<|docstring|>Sets the dosing regimen with which the compound is administered.
By default the dose is administered as a bolus injection (duration on
a time scale that is 100 fold smaller than the basic time unit). To
model an infusion of the dose over a longer time period, the
``duration`` can be adjusted to the appropriate time scale.
By default the dose is administered once. To apply multiple doses
provide a dose administration period.
.. note::
This method requires a :class:`MechanisticModel` that supports
compound administration.
Parameters
----------
dose
The amount of the compound that is injected at each administration.
start
Start time of the treatment.
duration
Duration of dose administration. For a bolus injection, a dose
duration of 1% of the time unit should suffice. By default the
duration is set to 0.01 (bolus).
period
Periodicity at which doses are administered. If ``None`` the dose
is administered only once.
num
Number of administered doses. If ``None`` and the periodicity of
the administration is not ``None``, doses are administered
indefinitely.<|endoftext|>
|
eaff5bd152f3332ed3335dba648cb39d2d2431d7fca3f070ab83c9c7cb0f900c
|
def sample(self, times, n_samples=None, seed=None, include_regimen=False, covariates=None, covariate_map=None):
'\n Samples "measurements" of the biomarkers from the prior predictive\n model and returns them in form of a :class:`pandas.DataFrame`.\n\n For each of the ``n_samples`` a parameter set is drawn from the\n log-prior. These paramaters are then used to sample from the predictive\n model.\n\n :param times: An array-like object with times at which the virtual\n "measurements" are performed.\n :type times: List or np.ndarray.\n :param n_samples: The number of virtual "measurements" that are\n performed at each time point. If ``None`` the biomarkers are\n measured only once at each time point.\n :type n_samples: int, optional\n :param seed: A seed for the pseudo-random number generator.\n :type seed: int, optional\n :param include_regimen: A boolean flag which determines whether the\n information about the dosing regimen is included.\n :type include_regimen: bool, optional\n :param covariates: An array-like object with covariates of length c.\n Covariates are only relevant when CovariatePopulationModels are\n used.\n :type covariates: List or np.ndarray, optional\n :param covariate_map: A nested list of length n_population_models with\n indices that reference the relevant covariates for each population\n model. By default, it is assumed that all covariates are relevant\n for all population models.\n :type covariate_map: List[List[int]], optional\n '
if (n_samples is None):
n_samples = 1
n_samples = int(n_samples)
if (seed is not None):
np.random.seed(seed)
base_seed = seed
times = np.sort(times)
container = pd.DataFrame(columns=['ID', 'Time', 'Observable', 'Value'])
outputs = self._predictive_model.get_output_names()
sample_ids = np.arange(start=1, stop=(n_samples + 1))
for sample_id in sample_ids:
parameters = self._log_prior.sample().flatten()
if (seed is not None):
seed = (base_seed + sample_id)
is_pop_pred_model = isinstance(self._predictive_model, chi.PopulationPredictiveModel)
if is_pop_pred_model:
sample = self._predictive_model.sample(parameters, times, n_samples, seed, return_df=False, covariates=covariates, covariate_map=covariate_map)
else:
sample = self._predictive_model.sample(parameters, times, n_samples, seed, return_df=False)
for (output_id, name) in enumerate(outputs):
container = container.append(pd.DataFrame({'ID': sample_id, 'Time': times, 'Observable': name, 'Value': sample[(output_id, :, 0)]}))
final_time = np.max(times)
regimen = self.get_dosing_regimen(final_time)
if ((regimen is not None) and (include_regimen is True)):
container = container.append(regimen)
return container
|
Samples "measurements" of the biomarkers from the prior predictive
model and returns them in form of a :class:`pandas.DataFrame`.
For each of the ``n_samples`` a parameter set is drawn from the
log-prior. These paramaters are then used to sample from the predictive
model.
:param times: An array-like object with times at which the virtual
"measurements" are performed.
:type times: List or np.ndarray.
:param n_samples: The number of virtual "measurements" that are
performed at each time point. If ``None`` the biomarkers are
measured only once at each time point.
:type n_samples: int, optional
:param seed: A seed for the pseudo-random number generator.
:type seed: int, optional
:param include_regimen: A boolean flag which determines whether the
information about the dosing regimen is included.
:type include_regimen: bool, optional
:param covariates: An array-like object with covariates of length c.
Covariates are only relevant when CovariatePopulationModels are
used.
:type covariates: List or np.ndarray, optional
:param covariate_map: A nested list of length n_population_models with
indices that reference the relevant covariates for each population
model. By default, it is assumed that all covariates are relevant
for all population models.
:type covariate_map: List[List[int]], optional
|
chi/_predictive_models.py
|
sample
|
DavAug/chi
| 2 |
python
|
def sample(self, times, n_samples=None, seed=None, include_regimen=False, covariates=None, covariate_map=None):
'\n Samples "measurements" of the biomarkers from the prior predictive\n model and returns them in form of a :class:`pandas.DataFrame`.\n\n For each of the ``n_samples`` a parameter set is drawn from the\n log-prior. These paramaters are then used to sample from the predictive\n model.\n\n :param times: An array-like object with times at which the virtual\n "measurements" are performed.\n :type times: List or np.ndarray.\n :param n_samples: The number of virtual "measurements" that are\n performed at each time point. If ``None`` the biomarkers are\n measured only once at each time point.\n :type n_samples: int, optional\n :param seed: A seed for the pseudo-random number generator.\n :type seed: int, optional\n :param include_regimen: A boolean flag which determines whether the\n information about the dosing regimen is included.\n :type include_regimen: bool, optional\n :param covariates: An array-like object with covariates of length c.\n Covariates are only relevant when CovariatePopulationModels are\n used.\n :type covariates: List or np.ndarray, optional\n :param covariate_map: A nested list of length n_population_models with\n indices that reference the relevant covariates for each population\n model. By default, it is assumed that all covariates are relevant\n for all population models.\n :type covariate_map: List[List[int]], optional\n '
if (n_samples is None):
n_samples = 1
n_samples = int(n_samples)
if (seed is not None):
np.random.seed(seed)
base_seed = seed
times = np.sort(times)
container = pd.DataFrame(columns=['ID', 'Time', 'Observable', 'Value'])
outputs = self._predictive_model.get_output_names()
sample_ids = np.arange(start=1, stop=(n_samples + 1))
for sample_id in sample_ids:
parameters = self._log_prior.sample().flatten()
if (seed is not None):
seed = (base_seed + sample_id)
is_pop_pred_model = isinstance(self._predictive_model, chi.PopulationPredictiveModel)
if is_pop_pred_model:
sample = self._predictive_model.sample(parameters, times, n_samples, seed, return_df=False, covariates=covariates, covariate_map=covariate_map)
else:
sample = self._predictive_model.sample(parameters, times, n_samples, seed, return_df=False)
for (output_id, name) in enumerate(outputs):
container = container.append(pd.DataFrame({'ID': sample_id, 'Time': times, 'Observable': name, 'Value': sample[(output_id, :, 0)]}))
final_time = np.max(times)
regimen = self.get_dosing_regimen(final_time)
if ((regimen is not None) and (include_regimen is True)):
container = container.append(regimen)
return container
|
def sample(self, times, n_samples=None, seed=None, include_regimen=False, covariates=None, covariate_map=None):
'\n Samples "measurements" of the biomarkers from the prior predictive\n model and returns them in form of a :class:`pandas.DataFrame`.\n\n For each of the ``n_samples`` a parameter set is drawn from the\n log-prior. These paramaters are then used to sample from the predictive\n model.\n\n :param times: An array-like object with times at which the virtual\n "measurements" are performed.\n :type times: List or np.ndarray.\n :param n_samples: The number of virtual "measurements" that are\n performed at each time point. If ``None`` the biomarkers are\n measured only once at each time point.\n :type n_samples: int, optional\n :param seed: A seed for the pseudo-random number generator.\n :type seed: int, optional\n :param include_regimen: A boolean flag which determines whether the\n information about the dosing regimen is included.\n :type include_regimen: bool, optional\n :param covariates: An array-like object with covariates of length c.\n Covariates are only relevant when CovariatePopulationModels are\n used.\n :type covariates: List or np.ndarray, optional\n :param covariate_map: A nested list of length n_population_models with\n indices that reference the relevant covariates for each population\n model. By default, it is assumed that all covariates are relevant\n for all population models.\n :type covariate_map: List[List[int]], optional\n '
if (n_samples is None):
n_samples = 1
n_samples = int(n_samples)
if (seed is not None):
np.random.seed(seed)
base_seed = seed
times = np.sort(times)
container = pd.DataFrame(columns=['ID', 'Time', 'Observable', 'Value'])
outputs = self._predictive_model.get_output_names()
sample_ids = np.arange(start=1, stop=(n_samples + 1))
for sample_id in sample_ids:
parameters = self._log_prior.sample().flatten()
if (seed is not None):
seed = (base_seed + sample_id)
is_pop_pred_model = isinstance(self._predictive_model, chi.PopulationPredictiveModel)
if is_pop_pred_model:
sample = self._predictive_model.sample(parameters, times, n_samples, seed, return_df=False, covariates=covariates, covariate_map=covariate_map)
else:
sample = self._predictive_model.sample(parameters, times, n_samples, seed, return_df=False)
for (output_id, name) in enumerate(outputs):
container = container.append(pd.DataFrame({'ID': sample_id, 'Time': times, 'Observable': name, 'Value': sample[(output_id, :, 0)]}))
final_time = np.max(times)
regimen = self.get_dosing_regimen(final_time)
if ((regimen is not None) and (include_regimen is True)):
container = container.append(regimen)
return container<|docstring|>Samples "measurements" of the biomarkers from the prior predictive
model and returns them in form of a :class:`pandas.DataFrame`.
For each of the ``n_samples`` a parameter set is drawn from the
log-prior. These paramaters are then used to sample from the predictive
model.
:param times: An array-like object with times at which the virtual
"measurements" are performed.
:type times: List or np.ndarray.
:param n_samples: The number of virtual "measurements" that are
performed at each time point. If ``None`` the biomarkers are
measured only once at each time point.
:type n_samples: int, optional
:param seed: A seed for the pseudo-random number generator.
:type seed: int, optional
:param include_regimen: A boolean flag which determines whether the
information about the dosing regimen is included.
:type include_regimen: bool, optional
:param covariates: An array-like object with covariates of length c.
Covariates are only relevant when CovariatePopulationModels are
used.
:type covariates: List or np.ndarray, optional
:param covariate_map: A nested list of length n_population_models with
indices that reference the relevant covariates for each population
model. By default, it is assumed that all covariates are relevant
for all population models.
:type covariate_map: List[List[int]], optional<|endoftext|>
|
4e437c46c22cfb4abdff2e667e41d09b79d2086a8bab461b6ab38a815cd16d80
|
def get_predictive_model(self):
'\n Returns a list of the\n :class:`chi.PosteriorPredictiveModel` instances.\n '
return self._predictive_models
|
Returns a list of the
:class:`chi.PosteriorPredictiveModel` instances.
|
chi/_predictive_models.py
|
get_predictive_model
|
DavAug/chi
| 2 |
python
|
def get_predictive_model(self):
'\n Returns a list of the\n :class:`chi.PosteriorPredictiveModel` instances.\n '
return self._predictive_models
|
def get_predictive_model(self):
'\n Returns a list of the\n :class:`chi.PosteriorPredictiveModel` instances.\n '
return self._predictive_models<|docstring|>Returns a list of the
:class:`chi.PosteriorPredictiveModel` instances.<|endoftext|>
|
70baf8b28349dab8ef9b7e6201c9a7125678f08eaa995a4022dec7e0a512082b
|
def get_weights(self):
'\n Returns the weights of the individual predictive models.\n '
return copy.copy(self._weights)
|
Returns the weights of the individual predictive models.
|
chi/_predictive_models.py
|
get_weights
|
DavAug/chi
| 2 |
python
|
def get_weights(self):
'\n \n '
return copy.copy(self._weights)
|
def get_weights(self):
'\n \n '
return copy.copy(self._weights)<|docstring|>Returns the weights of the individual predictive models.<|endoftext|>
|
7b7332303b09e1916fcbfe07c8f4639ef68118306a113b8e0d85b5dea26ed740
|
def sample(self, times, n_samples=None, individual=None, seed=None, include_regimen=False):
'\n Samples "measurements" of the biomarkers from the posterior predictive\n model and returns them in form of a :class:`pandas.DataFrame`.\n\n For each of the ``n_samples`` a parameter set is drawn from the\n approximate posterior distribution. These paramaters are then used to\n sample from the predictive model.\n\n :param times: Times for the virtual "measurements".\n :type times: list, numpy.ndarray of shape (n,)\n :param n_samples: The number of virtual "measurements" that are\n performed at each time point. If ``None`` the biomarkers are\n measured only once at each time point.\n :type n_samples: int, optional\n :param individual: The ID of the modelled individual. If\n ``None``, either the first ID or the population is simulated.\n :type individual: str, optional\n :param seed: A seed for the pseudo-random number generator.\n :type seed: int\n :param include_regimen: A boolean flag which determines whether the\n information about the dosing regimen is included.\n :type include_regimen: bool, optional\n '
if (n_samples is None):
n_samples = 1
n_samples = int(n_samples)
seed = np.random.default_rng(seed=seed)
n_models = len(self._predictive_models)
model_indices = np.arange(n_models)
model_draws = np.random.choice(model_indices, p=self._weights, size=n_samples)
samples_per_model = np.zeros(n_models, dtype=int)
for (model_id, model) in enumerate(model_indices):
samples_per_model[model_id] = np.sum((model_draws == model))
samples = []
for (model_id, n_samples) in enumerate(samples_per_model):
if (n_samples == 0):
continue
model = self._predictive_models[model_id]
s = model.sample(times, n_samples, individual, seed=seed)
s['ID'] += int(np.sum(samples_per_model[:model_id]))
samples.append(s)
samples = pd.concat(samples)
final_time = np.max(times)
regimen = self.get_dosing_regimen(final_time)
if ((regimen is not None) and (include_regimen is True)):
samples = samples.append(regimen)
return samples
|
Samples "measurements" of the biomarkers from the posterior predictive
model and returns them in form of a :class:`pandas.DataFrame`.
For each of the ``n_samples`` a parameter set is drawn from the
approximate posterior distribution. These paramaters are then used to
sample from the predictive model.
:param times: Times for the virtual "measurements".
:type times: list, numpy.ndarray of shape (n,)
:param n_samples: The number of virtual "measurements" that are
performed at each time point. If ``None`` the biomarkers are
measured only once at each time point.
:type n_samples: int, optional
:param individual: The ID of the modelled individual. If
``None``, either the first ID or the population is simulated.
:type individual: str, optional
:param seed: A seed for the pseudo-random number generator.
:type seed: int
:param include_regimen: A boolean flag which determines whether the
information about the dosing regimen is included.
:type include_regimen: bool, optional
|
chi/_predictive_models.py
|
sample
|
DavAug/chi
| 2 |
python
|
def sample(self, times, n_samples=None, individual=None, seed=None, include_regimen=False):
'\n Samples "measurements" of the biomarkers from the posterior predictive\n model and returns them in form of a :class:`pandas.DataFrame`.\n\n For each of the ``n_samples`` a parameter set is drawn from the\n approximate posterior distribution. These paramaters are then used to\n sample from the predictive model.\n\n :param times: Times for the virtual "measurements".\n :type times: list, numpy.ndarray of shape (n,)\n :param n_samples: The number of virtual "measurements" that are\n performed at each time point. If ``None`` the biomarkers are\n measured only once at each time point.\n :type n_samples: int, optional\n :param individual: The ID of the modelled individual. If\n ``None``, either the first ID or the population is simulated.\n :type individual: str, optional\n :param seed: A seed for the pseudo-random number generator.\n :type seed: int\n :param include_regimen: A boolean flag which determines whether the\n information about the dosing regimen is included.\n :type include_regimen: bool, optional\n '
if (n_samples is None):
n_samples = 1
n_samples = int(n_samples)
seed = np.random.default_rng(seed=seed)
n_models = len(self._predictive_models)
model_indices = np.arange(n_models)
model_draws = np.random.choice(model_indices, p=self._weights, size=n_samples)
samples_per_model = np.zeros(n_models, dtype=int)
for (model_id, model) in enumerate(model_indices):
samples_per_model[model_id] = np.sum((model_draws == model))
samples = []
for (model_id, n_samples) in enumerate(samples_per_model):
if (n_samples == 0):
continue
model = self._predictive_models[model_id]
s = model.sample(times, n_samples, individual, seed=seed)
s['ID'] += int(np.sum(samples_per_model[:model_id]))
samples.append(s)
samples = pd.concat(samples)
final_time = np.max(times)
regimen = self.get_dosing_regimen(final_time)
if ((regimen is not None) and (include_regimen is True)):
samples = samples.append(regimen)
return samples
|
def sample(self, times, n_samples=None, individual=None, seed=None, include_regimen=False):
'\n Samples "measurements" of the biomarkers from the posterior predictive\n model and returns them in form of a :class:`pandas.DataFrame`.\n\n For each of the ``n_samples`` a parameter set is drawn from the\n approximate posterior distribution. These paramaters are then used to\n sample from the predictive model.\n\n :param times: Times for the virtual "measurements".\n :type times: list, numpy.ndarray of shape (n,)\n :param n_samples: The number of virtual "measurements" that are\n performed at each time point. If ``None`` the biomarkers are\n measured only once at each time point.\n :type n_samples: int, optional\n :param individual: The ID of the modelled individual. If\n ``None``, either the first ID or the population is simulated.\n :type individual: str, optional\n :param seed: A seed for the pseudo-random number generator.\n :type seed: int\n :param include_regimen: A boolean flag which determines whether the\n information about the dosing regimen is included.\n :type include_regimen: bool, optional\n '
if (n_samples is None):
n_samples = 1
n_samples = int(n_samples)
seed = np.random.default_rng(seed=seed)
n_models = len(self._predictive_models)
model_indices = np.arange(n_models)
model_draws = np.random.choice(model_indices, p=self._weights, size=n_samples)
samples_per_model = np.zeros(n_models, dtype=int)
for (model_id, model) in enumerate(model_indices):
samples_per_model[model_id] = np.sum((model_draws == model))
samples = []
for (model_id, n_samples) in enumerate(samples_per_model):
if (n_samples == 0):
continue
model = self._predictive_models[model_id]
s = model.sample(times, n_samples, individual, seed=seed)
s['ID'] += int(np.sum(samples_per_model[:model_id]))
samples.append(s)
samples = pd.concat(samples)
final_time = np.max(times)
regimen = self.get_dosing_regimen(final_time)
if ((regimen is not None) and (include_regimen is True)):
samples = samples.append(regimen)
return samples<|docstring|>Samples "measurements" of the biomarkers from the posterior predictive
model and returns them in form of a :class:`pandas.DataFrame`.
For each of the ``n_samples`` a parameter set is drawn from the
approximate posterior distribution. These paramaters are then used to
sample from the predictive model.
:param times: Times for the virtual "measurements".
:type times: list, numpy.ndarray of shape (n,)
:param n_samples: The number of virtual "measurements" that are
performed at each time point. If ``None`` the biomarkers are
measured only once at each time point.
:type n_samples: int, optional
:param individual: The ID of the modelled individual. If
``None``, either the first ID or the population is simulated.
:type individual: str, optional
:param seed: A seed for the pseudo-random number generator.
:type seed: int
:param include_regimen: A boolean flag which determines whether the
information about the dosing regimen is included.
:type include_regimen: bool, optional<|endoftext|>
|
4129c5a29bc123a333f49a1b81dfca2cfbd37c50963ab69037115ffcc4d09c55
|
def set_dosing_regimen(self, dose, start, duration=0.01, period=None, num=None):
'\n Sets the dosing regimen with which the compound is administered.\n\n By default the dose is administered as a bolus injection (duration on\n a time scale that is 100 fold smaller than the basic time unit). To\n model an infusion of the dose over a longer time period, the\n ``duration`` can be adjusted to the appropriate time scale.\n\n By default the dose is administered once. To apply multiple doses\n provide a dose administration period.\n\n .. note::\n This method requires a :class:`MechanisticModel` that supports\n dose administration.\n\n Parameters\n ----------\n dose\n The amount of the compound that is injected at each administration.\n start\n Start time of the treatment.\n duration\n Duration of dose administration. For a bolus injection, a dose\n duration of 1% of the time unit should suffice. By default the\n duration is set to 0.01 (bolus).\n period\n Periodicity at which doses are administered. If ``None`` the dose\n is administered only once.\n num\n Number of administered doses. If ``None`` and the periodicity of\n the administration is not ``None``, doses are administered\n indefinitely.\n '
for predictive_model in self._predictive_models:
predictive_model.set_dosing_regimen(dose, start, duration, period, num)
|
Sets the dosing regimen with which the compound is administered.
By default the dose is administered as a bolus injection (duration on
a time scale that is 100 fold smaller than the basic time unit). To
model an infusion of the dose over a longer time period, the
``duration`` can be adjusted to the appropriate time scale.
By default the dose is administered once. To apply multiple doses
provide a dose administration period.
.. note::
This method requires a :class:`MechanisticModel` that supports
dose administration.
Parameters
----------
dose
The amount of the compound that is injected at each administration.
start
Start time of the treatment.
duration
Duration of dose administration. For a bolus injection, a dose
duration of 1% of the time unit should suffice. By default the
duration is set to 0.01 (bolus).
period
Periodicity at which doses are administered. If ``None`` the dose
is administered only once.
num
Number of administered doses. If ``None`` and the periodicity of
the administration is not ``None``, doses are administered
indefinitely.
|
chi/_predictive_models.py
|
set_dosing_regimen
|
DavAug/chi
| 2 |
python
|
def set_dosing_regimen(self, dose, start, duration=0.01, period=None, num=None):
'\n Sets the dosing regimen with which the compound is administered.\n\n By default the dose is administered as a bolus injection (duration on\n a time scale that is 100 fold smaller than the basic time unit). To\n model an infusion of the dose over a longer time period, the\n ``duration`` can be adjusted to the appropriate time scale.\n\n By default the dose is administered once. To apply multiple doses\n provide a dose administration period.\n\n .. note::\n This method requires a :class:`MechanisticModel` that supports\n dose administration.\n\n Parameters\n ----------\n dose\n The amount of the compound that is injected at each administration.\n start\n Start time of the treatment.\n duration\n Duration of dose administration. For a bolus injection, a dose\n duration of 1% of the time unit should suffice. By default the\n duration is set to 0.01 (bolus).\n period\n Periodicity at which doses are administered. If ``None`` the dose\n is administered only once.\n num\n Number of administered doses. If ``None`` and the periodicity of\n the administration is not ``None``, doses are administered\n indefinitely.\n '
for predictive_model in self._predictive_models:
predictive_model.set_dosing_regimen(dose, start, duration, period, num)
|
def set_dosing_regimen(self, dose, start, duration=0.01, period=None, num=None):
'\n Sets the dosing regimen with which the compound is administered.\n\n By default the dose is administered as a bolus injection (duration on\n a time scale that is 100 fold smaller than the basic time unit). To\n model an infusion of the dose over a longer time period, the\n ``duration`` can be adjusted to the appropriate time scale.\n\n By default the dose is administered once. To apply multiple doses\n provide a dose administration period.\n\n .. note::\n This method requires a :class:`MechanisticModel` that supports\n dose administration.\n\n Parameters\n ----------\n dose\n The amount of the compound that is injected at each administration.\n start\n Start time of the treatment.\n duration\n Duration of dose administration. For a bolus injection, a dose\n duration of 1% of the time unit should suffice. By default the\n duration is set to 0.01 (bolus).\n period\n Periodicity at which doses are administered. If ``None`` the dose\n is administered only once.\n num\n Number of administered doses. If ``None`` and the periodicity of\n the administration is not ``None``, doses are administered\n indefinitely.\n '
for predictive_model in self._predictive_models:
predictive_model.set_dosing_regimen(dose, start, duration, period, num)<|docstring|>Sets the dosing regimen with which the compound is administered.
By default the dose is administered as a bolus injection (duration on
a time scale that is 100 fold smaller than the basic time unit). To
model an infusion of the dose over a longer time period, the
``duration`` can be adjusted to the appropriate time scale.
By default the dose is administered once. To apply multiple doses
provide a dose administration period.
.. note::
This method requires a :class:`MechanisticModel` that supports
dose administration.
Parameters
----------
dose
The amount of the compound that is injected at each administration.
start
Start time of the treatment.
duration
Duration of dose administration. For a bolus injection, a dose
duration of 1% of the time unit should suffice. By default the
duration is set to 0.01 (bolus).
period
Periodicity at which doses are administered. If ``None`` the dose
is administered only once.
num
Number of administered doses. If ``None`` and the periodicity of
the administration is not ``None``, doses are administered
indefinitely.<|endoftext|>
|
8da19b0f13c2df9e671f17e0948cec8fad41162a36eddc33593bd6da79e918f2
|
def _gaussian(x, height, center, fwhm, offset=0.0):
'Gaussian function with a possible offset\n \n \n Parameters\n ----------\n \n x : float array\n values to calculate Gaussian function at\n \n height : float\n height of the Gaussian at maximum\n \n center : float\n position of maximum\n \n fwhm : float\n full width at half maximum of the Gaussian function\n \n offset : float\n the value at infinity; effectively an offset on the y-axis\n \n \n '
return ((height * numpy.exp(((- ((((x - center) ** 2) * 4.0) * numpy.log(2.0))) / (fwhm ** 2)))) + offset)
|
Gaussian function with a possible offset
Parameters
----------
x : float array
values to calculate Gaussian function at
height : float
height of the Gaussian at maximum
center : float
position of maximum
fwhm : float
full width at half maximum of the Gaussian function
offset : float
the value at infinity; effectively an offset on the y-axis
|
quantarhei/spectroscopy/abs.py
|
_gaussian
|
detrin/quantarhei
| 14 |
python
|
def _gaussian(x, height, center, fwhm, offset=0.0):
'Gaussian function with a possible offset\n \n \n Parameters\n ----------\n \n x : float array\n values to calculate Gaussian function at\n \n height : float\n height of the Gaussian at maximum\n \n center : float\n position of maximum\n \n fwhm : float\n full width at half maximum of the Gaussian function\n \n offset : float\n the value at infinity; effectively an offset on the y-axis\n \n \n '
return ((height * numpy.exp(((- ((((x - center) ** 2) * 4.0) * numpy.log(2.0))) / (fwhm ** 2)))) + offset)
|
def _gaussian(x, height, center, fwhm, offset=0.0):
'Gaussian function with a possible offset\n \n \n Parameters\n ----------\n \n x : float array\n values to calculate Gaussian function at\n \n height : float\n height of the Gaussian at maximum\n \n center : float\n position of maximum\n \n fwhm : float\n full width at half maximum of the Gaussian function\n \n offset : float\n the value at infinity; effectively an offset on the y-axis\n \n \n '
return ((height * numpy.exp(((- ((((x - center) ** 2) * 4.0) * numpy.log(2.0))) / (fwhm ** 2)))) + offset)<|docstring|>Gaussian function with a possible offset
Parameters
----------
x : float array
values to calculate Gaussian function at
height : float
height of the Gaussian at maximum
center : float
position of maximum
fwhm : float
full width at half maximum of the Gaussian function
offset : float
the value at infinity; effectively an offset on the y-axis<|endoftext|>
|
c60880e107ba543d369a36ae061e7873118a4c614403f8cc00403a6989c90a6f
|
def _n_gaussians(x, N, *params):
'Sum of N Gaussian functions plus an offset from zero\n\n Parameters\n ----------\n \n x : float\n values to calculate Gaussians function at \n\n N : int\n number of Gaussians\n \n params : floats\n 3*N + 1 parameters corresponding to height, center, fwhm for each \n Gaussian and one value of offset\n \n '
n = len(params)
k = (n // 3)
if (((k * 3) == n) and (k == N)):
res = 0.0
pp = numpy.zeros(3)
for i in range(k):
pp[0:3] = params[(3 * i):((3 * i) + 3)]
arg = tuple(pp)
res += _gaussian(x, *arg)
res += params[(n - 1)]
return res
else:
raise Exception('Inconsistend number of parameters')
|
Sum of N Gaussian functions plus an offset from zero
Parameters
----------
x : float
values to calculate Gaussians function at
N : int
number of Gaussians
params : floats
3*N + 1 parameters corresponding to height, center, fwhm for each
Gaussian and one value of offset
|
quantarhei/spectroscopy/abs.py
|
_n_gaussians
|
detrin/quantarhei
| 14 |
python
|
def _n_gaussians(x, N, *params):
'Sum of N Gaussian functions plus an offset from zero\n\n Parameters\n ----------\n \n x : float\n values to calculate Gaussians function at \n\n N : int\n number of Gaussians\n \n params : floats\n 3*N + 1 parameters corresponding to height, center, fwhm for each \n Gaussian and one value of offset\n \n '
n = len(params)
k = (n // 3)
if (((k * 3) == n) and (k == N)):
res = 0.0
pp = numpy.zeros(3)
for i in range(k):
pp[0:3] = params[(3 * i):((3 * i) + 3)]
arg = tuple(pp)
res += _gaussian(x, *arg)
res += params[(n - 1)]
return res
else:
raise Exception('Inconsistend number of parameters')
|
def _n_gaussians(x, N, *params):
'Sum of N Gaussian functions plus an offset from zero\n\n Parameters\n ----------\n \n x : float\n values to calculate Gaussians function at \n\n N : int\n number of Gaussians\n \n params : floats\n 3*N + 1 parameters corresponding to height, center, fwhm for each \n Gaussian and one value of offset\n \n '
n = len(params)
k = (n // 3)
if (((k * 3) == n) and (k == N)):
res = 0.0
pp = numpy.zeros(3)
for i in range(k):
pp[0:3] = params[(3 * i):((3 * i) + 3)]
arg = tuple(pp)
res += _gaussian(x, *arg)
res += params[(n - 1)]
return res
else:
raise Exception('Inconsistend number of parameters')<|docstring|>Sum of N Gaussian functions plus an offset from zero
Parameters
----------
x : float
values to calculate Gaussians function at
N : int
number of Gaussians
params : floats
3*N + 1 parameters corresponding to height, center, fwhm for each
Gaussian and one value of offset<|endoftext|>
|
59526fe45f8712eba31d76cd8f8c3a6ce02061dfdc3d83a30612671e7e2261f6
|
def set_axis(self, axis):
'Sets axis atribute\n \n Parameters\n ----------\n \n axis : FrequencyAxis object\n Frequency axis object. This object has managed energy units\n \n '
self.axis = axis
|
Sets axis atribute
Parameters
----------
axis : FrequencyAxis object
Frequency axis object. This object has managed energy units
|
quantarhei/spectroscopy/abs.py
|
set_axis
|
detrin/quantarhei
| 14 |
python
|
def set_axis(self, axis):
'Sets axis atribute\n \n Parameters\n ----------\n \n axis : FrequencyAxis object\n Frequency axis object. This object has managed energy units\n \n '
self.axis = axis
|
def set_axis(self, axis):
'Sets axis atribute\n \n Parameters\n ----------\n \n axis : FrequencyAxis object\n Frequency axis object. This object has managed energy units\n \n '
self.axis = axis<|docstring|>Sets axis atribute
Parameters
----------
axis : FrequencyAxis object
Frequency axis object. This object has managed energy units<|endoftext|>
|
672b1033725a62ef8a573e78e32adc9bf5afe0ab53918aa0a8533f96c39e1428
|
def set_data(self, data):
'Sets data atribute\n \n Parameters\n ----------\n \n data : array like object (numpy array)\n Sets the data of the absorption spectrum\n \n '
self.data = data
|
Sets data atribute
Parameters
----------
data : array like object (numpy array)
Sets the data of the absorption spectrum
|
quantarhei/spectroscopy/abs.py
|
set_data
|
detrin/quantarhei
| 14 |
python
|
def set_data(self, data):
'Sets data atribute\n \n Parameters\n ----------\n \n data : array like object (numpy array)\n Sets the data of the absorption spectrum\n \n '
self.data = data
|
def set_data(self, data):
'Sets data atribute\n \n Parameters\n ----------\n \n data : array like object (numpy array)\n Sets the data of the absorption spectrum\n \n '
self.data = data<|docstring|>Sets data atribute
Parameters
----------
data : array like object (numpy array)
Sets the data of the absorption spectrum<|endoftext|>
|
4a5d88e6e862026cba9cca61efbd955866bae6b7ef10e2bca9f04c0455515694
|
def clear_data(self):
'Sets spectrum data to zero\n \n '
shp = self.data.shape
self.data = numpy.zeros(shp, dtype=numpy.float64)
|
Sets spectrum data to zero
|
quantarhei/spectroscopy/abs.py
|
clear_data
|
detrin/quantarhei
| 14 |
python
|
def clear_data(self):
'\n \n '
shp = self.data.shape
self.data = numpy.zeros(shp, dtype=numpy.float64)
|
def clear_data(self):
'\n \n '
shp = self.data.shape
self.data = numpy.zeros(shp, dtype=numpy.float64)<|docstring|>Sets spectrum data to zero<|endoftext|>
|
f92100f4f682544241b6b75d8f516851bfb7f8212e7ee024e673a0839f720531
|
def normalize2(self, norm=1.0):
'Normalizes spectrum to a given value\n \n '
mx = numpy.max(self.data)
self.data = ((norm * self.data) / mx)
|
Normalizes spectrum to a given value
|
quantarhei/spectroscopy/abs.py
|
normalize2
|
detrin/quantarhei
| 14 |
python
|
def normalize2(self, norm=1.0):
'\n \n '
mx = numpy.max(self.data)
self.data = ((norm * self.data) / mx)
|
def normalize2(self, norm=1.0):
'\n \n '
mx = numpy.max(self.data)
self.data = ((norm * self.data) / mx)<|docstring|>Normalizes spectrum to a given value<|endoftext|>
|
21c2933b7c8eb148ba9f6a7bba67b0870052d43eefb14684f26ef735f2c6cd02
|
def normalize(self):
'Normalization to one\n \n '
self.normalize2(norm=1.0)
|
Normalization to one
|
quantarhei/spectroscopy/abs.py
|
normalize
|
detrin/quantarhei
| 14 |
python
|
def normalize(self):
'\n \n '
self.normalize2(norm=1.0)
|
def normalize(self):
'\n \n '
self.normalize2(norm=1.0)<|docstring|>Normalization to one<|endoftext|>
|
5a9b4747edd2594a1d703155d1fcf64c4a49ac271c7191d51046082f439883ef
|
def add_to_data(self, spect):
'Performs addition on the data.\n \n Expects a compatible object holding absorption spectrum\n and adds its data to the present absorption spectrum.\n \n Parameters\n ----------\n \n spect : spectrum containing object\n This object should have a compatible axis and some data\n \n '
if (self.axis is None):
self.axis = spect.axis.copy()
if (not numpy.allclose(spect.axis.data, self.axis.data)):
numpy.savetxt('spect_data_wrong.dat', spect.axis.data)
numpy.savetxt('self_data_wrong.dat', self.axis.data)
raise Exception('Incompatible axis')
if (self.data is None):
self.data = numpy.zeros(len(spect.data), dtype=spect.axis.data.dtype)
self.data += spect.data
|
Performs addition on the data.
Expects a compatible object holding absorption spectrum
and adds its data to the present absorption spectrum.
Parameters
----------
spect : spectrum containing object
This object should have a compatible axis and some data
|
quantarhei/spectroscopy/abs.py
|
add_to_data
|
detrin/quantarhei
| 14 |
python
|
def add_to_data(self, spect):
'Performs addition on the data.\n \n Expects a compatible object holding absorption spectrum\n and adds its data to the present absorption spectrum.\n \n Parameters\n ----------\n \n spect : spectrum containing object\n This object should have a compatible axis and some data\n \n '
if (self.axis is None):
self.axis = spect.axis.copy()
if (not numpy.allclose(spect.axis.data, self.axis.data)):
numpy.savetxt('spect_data_wrong.dat', spect.axis.data)
numpy.savetxt('self_data_wrong.dat', self.axis.data)
raise Exception('Incompatible axis')
if (self.data is None):
self.data = numpy.zeros(len(spect.data), dtype=spect.axis.data.dtype)
self.data += spect.data
|
def add_to_data(self, spect):
'Performs addition on the data.\n \n Expects a compatible object holding absorption spectrum\n and adds its data to the present absorption spectrum.\n \n Parameters\n ----------\n \n spect : spectrum containing object\n This object should have a compatible axis and some data\n \n '
if (self.axis is None):
self.axis = spect.axis.copy()
if (not numpy.allclose(spect.axis.data, self.axis.data)):
numpy.savetxt('spect_data_wrong.dat', spect.axis.data)
numpy.savetxt('self_data_wrong.dat', self.axis.data)
raise Exception('Incompatible axis')
if (self.data is None):
self.data = numpy.zeros(len(spect.data), dtype=spect.axis.data.dtype)
self.data += spect.data<|docstring|>Performs addition on the data.
Expects a compatible object holding absorption spectrum
and adds its data to the present absorption spectrum.
Parameters
----------
spect : spectrum containing object
This object should have a compatible axis and some data<|endoftext|>
|
68e8bdda7fe4725231385e4f095b265111dd07b24fbb585a3b46a9031aebcc54
|
def load(self, filename, ext=None, replace=False):
"Load the spectrum from a file\n \n Uses the load method of the DFunction class to load the absorption\n spectrum from a file. It sets the axis type to 'frequency', otherwise\n no changes to the inherited method are applied.\n \n Parameters\n ----------\n \n "
super().load(filename, ext=ext, axis='frequency', replace=replace)
|
Load the spectrum from a file
Uses the load method of the DFunction class to load the absorption
spectrum from a file. It sets the axis type to 'frequency', otherwise
no changes to the inherited method are applied.
Parameters
----------
|
quantarhei/spectroscopy/abs.py
|
load
|
detrin/quantarhei
| 14 |
python
|
def load(self, filename, ext=None, replace=False):
"Load the spectrum from a file\n \n Uses the load method of the DFunction class to load the absorption\n spectrum from a file. It sets the axis type to 'frequency', otherwise\n no changes to the inherited method are applied.\n \n Parameters\n ----------\n \n "
super().load(filename, ext=ext, axis='frequency', replace=replace)
|
def load(self, filename, ext=None, replace=False):
"Load the spectrum from a file\n \n Uses the load method of the DFunction class to load the absorption\n spectrum from a file. It sets the axis type to 'frequency', otherwise\n no changes to the inherited method are applied.\n \n Parameters\n ----------\n \n "
super().load(filename, ext=ext, axis='frequency', replace=replace)<|docstring|>Load the spectrum from a file
Uses the load method of the DFunction class to load the absorption
spectrum from a file. It sets the axis type to 'frequency', otherwise
no changes to the inherited method are applied.
Parameters
----------<|endoftext|>
|
914362b7520fb7c1fb51fcb48c62b8941265fa9383d1e0886bbd9bf82814d644
|
def plot(self, **kwargs):
' Plotting absorption spectrum using the DFunction plot method\n \n '
if ('ylabel' not in kwargs):
ylabel = '$\\alpha(\\omega)$ [a.u.]'
kwargs['ylabel'] = ylabel
super().plot(**kwargs)
|
Plotting absorption spectrum using the DFunction plot method
|
quantarhei/spectroscopy/abs.py
|
plot
|
detrin/quantarhei
| 14 |
python
|
def plot(self, **kwargs):
' \n \n '
if ('ylabel' not in kwargs):
ylabel = '$\\alpha(\\omega)$ [a.u.]'
kwargs['ylabel'] = ylabel
super().plot(**kwargs)
|
def plot(self, **kwargs):
' \n \n '
if ('ylabel' not in kwargs):
ylabel = '$\\alpha(\\omega)$ [a.u.]'
kwargs['ylabel'] = ylabel
super().plot(**kwargs)<|docstring|>Plotting absorption spectrum using the DFunction plot method<|endoftext|>
|
1ca47406ae318fba028007f0c5627232690e81199204b82861eddca7cc969555
|
def difference(self, par=None):
'Calculates difference between spectra\n \n Calculates difference between the target spectrum and the spectrum\n calculated from submitted parameters\n \n Parameters\n ----------\n \n par : list or array (optional)\n parameters of the function \n \n '
target = self.target.data[self.nl:self.nu]
if self._can_minimize:
if (par is None):
raise Exception(('Function parameters must be specified ' + 'to calculate difference'))
secabs = self.optfce(par)
sdat = numpy.zeros(len(self.x), dtype=numpy.float64)
i = 0
for xi in self.x:
sdat[i] = secabs.at(xi)
i += 1
secabs = sdat
else:
secabs = self.secabs
sdat = numpy.zeros(len(self.x), dtype=numpy.float64)
i = 0
for xi in self.x:
sdat[i] = secabs.at(xi)
i += 1
secabs = sdat
if (self.difftype == 'square'):
diff = (1000.0 * numpy.sum(numpy.abs((((target - secabs) ** 2) / (self.x[(len(self.x) - 1)] - self.x[0])))))
elif (self.difftype == 'measure'):
diff = 0.0
else:
raise Exception('Unknown differene type')
print('DIFF: ', diff)
return diff
|
Calculates difference between spectra
Calculates difference between the target spectrum and the spectrum
calculated from submitted parameters
Parameters
----------
par : list or array (optional)
parameters of the function
|
quantarhei/spectroscopy/abs.py
|
difference
|
detrin/quantarhei
| 14 |
python
|
def difference(self, par=None):
'Calculates difference between spectra\n \n Calculates difference between the target spectrum and the spectrum\n calculated from submitted parameters\n \n Parameters\n ----------\n \n par : list or array (optional)\n parameters of the function \n \n '
target = self.target.data[self.nl:self.nu]
if self._can_minimize:
if (par is None):
raise Exception(('Function parameters must be specified ' + 'to calculate difference'))
secabs = self.optfce(par)
sdat = numpy.zeros(len(self.x), dtype=numpy.float64)
i = 0
for xi in self.x:
sdat[i] = secabs.at(xi)
i += 1
secabs = sdat
else:
secabs = self.secabs
sdat = numpy.zeros(len(self.x), dtype=numpy.float64)
i = 0
for xi in self.x:
sdat[i] = secabs.at(xi)
i += 1
secabs = sdat
if (self.difftype == 'square'):
diff = (1000.0 * numpy.sum(numpy.abs((((target - secabs) ** 2) / (self.x[(len(self.x) - 1)] - self.x[0])))))
elif (self.difftype == 'measure'):
diff = 0.0
else:
raise Exception('Unknown differene type')
print('DIFF: ', diff)
return diff
|
def difference(self, par=None):
'Calculates difference between spectra\n \n Calculates difference between the target spectrum and the spectrum\n calculated from submitted parameters\n \n Parameters\n ----------\n \n par : list or array (optional)\n parameters of the function \n \n '
target = self.target.data[self.nl:self.nu]
if self._can_minimize:
if (par is None):
raise Exception(('Function parameters must be specified ' + 'to calculate difference'))
secabs = self.optfce(par)
sdat = numpy.zeros(len(self.x), dtype=numpy.float64)
i = 0
for xi in self.x:
sdat[i] = secabs.at(xi)
i += 1
secabs = sdat
else:
secabs = self.secabs
sdat = numpy.zeros(len(self.x), dtype=numpy.float64)
i = 0
for xi in self.x:
sdat[i] = secabs.at(xi)
i += 1
secabs = sdat
if (self.difftype == 'square'):
diff = (1000.0 * numpy.sum(numpy.abs((((target - secabs) ** 2) / (self.x[(len(self.x) - 1)] - self.x[0])))))
elif (self.difftype == 'measure'):
diff = 0.0
else:
raise Exception('Unknown differene type')
print('DIFF: ', diff)
return diff<|docstring|>Calculates difference between spectra
Calculates difference between the target spectrum and the spectrum
calculated from submitted parameters
Parameters
----------
par : list or array (optional)
parameters of the function<|endoftext|>
|
358275cf0d5bd444503d2091703ef84c36e76c9f72a419585e2ae15d59831768
|
def minimize(self, init_params, method):
'Minimizes the submitted function and returns optimal parameters\n \n '
if self._can_minimize:
from scipy.optimize import minimize
self.opt_result = minimize(self.difference, init_params, method=method, tol=self.tol, options=dict(disp=True))
return self.opt_result.x
else:
raise Exception(('Cannot perform minimization, ' + 'no function suplied'))
|
Minimizes the submitted function and returns optimal parameters
|
quantarhei/spectroscopy/abs.py
|
minimize
|
detrin/quantarhei
| 14 |
python
|
def minimize(self, init_params, method):
'\n \n '
if self._can_minimize:
from scipy.optimize import minimize
self.opt_result = minimize(self.difference, init_params, method=method, tol=self.tol, options=dict(disp=True))
return self.opt_result.x
else:
raise Exception(('Cannot perform minimization, ' + 'no function suplied'))
|
def minimize(self, init_params, method):
'\n \n '
if self._can_minimize:
from scipy.optimize import minimize
self.opt_result = minimize(self.difference, init_params, method=method, tol=self.tol, options=dict(disp=True))
return self.opt_result.x
else:
raise Exception(('Cannot perform minimization, ' + 'no function suplied'))<|docstring|>Minimizes the submitted function and returns optimal parameters<|endoftext|>
|
c8aa61ec278af851e5e40b41130eef28be8632427b019c0465f9eb02fd7fa6b3
|
def _frequency(self, dt):
' Calculates the frequency axis corresponding to TimeAxis\n \n \n '
Nt = self.TimeAxis.length
return (numpy.pi * numpy.fft.fftshift(numpy.fft.fftfreq(Nt, d=dt)))
|
Calculates the frequency axis corresponding to TimeAxis
|
quantarhei/spectroscopy/abs.py
|
_frequency
|
detrin/quantarhei
| 14 |
python
|
def _frequency(self, dt):
' \n \n \n '
Nt = self.TimeAxis.length
return (numpy.pi * numpy.fft.fftshift(numpy.fft.fftfreq(Nt, d=dt)))
|
def _frequency(self, dt):
' \n \n \n '
Nt = self.TimeAxis.length
return (numpy.pi * numpy.fft.fftshift(numpy.fft.fftfreq(Nt, d=dt)))<|docstring|>Calculates the frequency axis corresponding to TimeAxis<|endoftext|>
|
8615e2c3b8bc1a81dbbc79449252f95d461fd3fb1d5b3975c09d6e43b6e55899
|
def plot(self, **kwargs):
' Plotting absorption spectrum using the DFunction plot method\n \n '
if ('ylabel' not in kwargs):
ylabel = '$\\alpha(\\omega)$ [a.u.]'
kwargs['ylabel'] = ylabel
super(AbsSpectContainer, self).plot(**kwargs)
|
Plotting absorption spectrum using the DFunction plot method
|
quantarhei/spectroscopy/abs.py
|
plot
|
detrin/quantarhei
| 14 |
python
|
def plot(self, **kwargs):
' \n \n '
if ('ylabel' not in kwargs):
ylabel = '$\\alpha(\\omega)$ [a.u.]'
kwargs['ylabel'] = ylabel
super(AbsSpectContainer, self).plot(**kwargs)
|
def plot(self, **kwargs):
' \n \n '
if ('ylabel' not in kwargs):
ylabel = '$\\alpha(\\omega)$ [a.u.]'
kwargs['ylabel'] = ylabel
super(AbsSpectContainer, self).plot(**kwargs)<|docstring|>Plotting absorption spectrum using the DFunction plot method<|endoftext|>
|
e36dc40c5775510b4b884f528dc55efd2c61f99950be16709d0dd96d996c2d19
|
def calculate(self, rwa=0.0):
' Calculates the absorption spectrum \n \n \n '
rwa = self.convert_2_internal_u(rwa)
with energy_units('int'):
if (self.system is not None):
if isinstance(self.system, Molecule):
self._calculate_monomer(rwa)
elif isinstance(self.system, Aggregate):
self._calculate_aggregate(rwa, relaxation_tensor=self._relaxation_tensor, rate_matrix=self._rate_matrix, relaxation_hamiltonian=self._relaxation_hamiltonian)
else:
raise Exception('System to calculate spectrum for not defined')
|
Calculates the absorption spectrum
|
quantarhei/spectroscopy/abs.py
|
calculate
|
detrin/quantarhei
| 14 |
python
|
def calculate(self, rwa=0.0):
' \n \n \n '
rwa = self.convert_2_internal_u(rwa)
with energy_units('int'):
if (self.system is not None):
if isinstance(self.system, Molecule):
self._calculate_monomer(rwa)
elif isinstance(self.system, Aggregate):
self._calculate_aggregate(rwa, relaxation_tensor=self._relaxation_tensor, rate_matrix=self._rate_matrix, relaxation_hamiltonian=self._relaxation_hamiltonian)
else:
raise Exception('System to calculate spectrum for not defined')
|
def calculate(self, rwa=0.0):
' \n \n \n '
rwa = self.convert_2_internal_u(rwa)
with energy_units('int'):
if (self.system is not None):
if isinstance(self.system, Molecule):
self._calculate_monomer(rwa)
elif isinstance(self.system, Aggregate):
self._calculate_aggregate(rwa, relaxation_tensor=self._relaxation_tensor, rate_matrix=self._rate_matrix, relaxation_hamiltonian=self._relaxation_hamiltonian)
else:
raise Exception('System to calculate spectrum for not defined')<|docstring|>Calculates the absorption spectrum<|endoftext|>
|
daf00747e0f78f17a920f8b5177c2607c36135491c86e20e6eb3e6ecb63853ea
|
def _c2g(self, timeaxis, coft):
' Converts correlation function to lineshape function\n \n Explicit numerical double integration of the correlation\n function to form a lineshape function.\n\n Parameters\n ----------\n\n timeaxis : cu.oqs.time.TimeAxis\n TimeAxis of the correlation function\n \n coft : complex numpy array\n Values of correlation function given at points specified\n in the TimeAxis object\n \n \n '
ta = timeaxis
rr = numpy.real(coft)
ri = numpy.imag(coft)
sr = scipy.interpolate.UnivariateSpline(ta.data, rr, s=0).antiderivative()(ta.data)
sr = scipy.interpolate.UnivariateSpline(ta.data, sr, s=0).antiderivative()(ta.data)
si = scipy.interpolate.UnivariateSpline(ta.data, ri, s=0).antiderivative()(ta.data)
si = scipy.interpolate.UnivariateSpline(ta.data, si, s=0).antiderivative()(ta.data)
gt = (sr + (1j * si))
return gt
|
Converts correlation function to lineshape function
Explicit numerical double integration of the correlation
function to form a lineshape function.
Parameters
----------
timeaxis : cu.oqs.time.TimeAxis
TimeAxis of the correlation function
coft : complex numpy array
Values of correlation function given at points specified
in the TimeAxis object
|
quantarhei/spectroscopy/abs.py
|
_c2g
|
detrin/quantarhei
| 14 |
python
|
def _c2g(self, timeaxis, coft):
' Converts correlation function to lineshape function\n \n Explicit numerical double integration of the correlation\n function to form a lineshape function.\n\n Parameters\n ----------\n\n timeaxis : cu.oqs.time.TimeAxis\n TimeAxis of the correlation function\n \n coft : complex numpy array\n Values of correlation function given at points specified\n in the TimeAxis object\n \n \n '
ta = timeaxis
rr = numpy.real(coft)
ri = numpy.imag(coft)
sr = scipy.interpolate.UnivariateSpline(ta.data, rr, s=0).antiderivative()(ta.data)
sr = scipy.interpolate.UnivariateSpline(ta.data, sr, s=0).antiderivative()(ta.data)
si = scipy.interpolate.UnivariateSpline(ta.data, ri, s=0).antiderivative()(ta.data)
si = scipy.interpolate.UnivariateSpline(ta.data, si, s=0).antiderivative()(ta.data)
gt = (sr + (1j * si))
return gt
|
def _c2g(self, timeaxis, coft):
' Converts correlation function to lineshape function\n \n Explicit numerical double integration of the correlation\n function to form a lineshape function.\n\n Parameters\n ----------\n\n timeaxis : cu.oqs.time.TimeAxis\n TimeAxis of the correlation function\n \n coft : complex numpy array\n Values of correlation function given at points specified\n in the TimeAxis object\n \n \n '
ta = timeaxis
rr = numpy.real(coft)
ri = numpy.imag(coft)
sr = scipy.interpolate.UnivariateSpline(ta.data, rr, s=0).antiderivative()(ta.data)
sr = scipy.interpolate.UnivariateSpline(ta.data, sr, s=0).antiderivative()(ta.data)
si = scipy.interpolate.UnivariateSpline(ta.data, ri, s=0).antiderivative()(ta.data)
si = scipy.interpolate.UnivariateSpline(ta.data, si, s=0).antiderivative()(ta.data)
gt = (sr + (1j * si))
return gt<|docstring|>Converts correlation function to lineshape function
Explicit numerical double integration of the correlation
function to form a lineshape function.
Parameters
----------
timeaxis : cu.oqs.time.TimeAxis
TimeAxis of the correlation function
coft : complex numpy array
Values of correlation function given at points specified
in the TimeAxis object<|endoftext|>
|
f9bd2af076d242b2c9a2421eef1fade0d85673dd2c6eeca1b4d35884fb53f091
|
def one_transition_spectrum(self, tr):
' Calculates spectrum of one transition\n \n \n '
ta = tr['ta']
dd = tr['dd']
om = tr['om']
gg = tr['gg']
if self.system._has_system_bath_coupling:
ct = tr['ct']
gt = self._c2g(ta, ct.data)
at = numpy.exp(((- gt) - ((1j * om) * ta.data)))
else:
at = numpy.exp((((- 1j) * om) * ta.data))
if (len(gg) == 1):
gam = gg[0]
rt = numpy.exp((gam * ta.data))
at *= rt
else:
rt = numpy.exp((gg * ta.data))
at *= rt
ft = ((dd * numpy.fft.hfft(at)) * ta.step)
ft = numpy.fft.fftshift(ft)
ft = numpy.flipud(ft)
Nt = ta.length
return ft[(Nt // 2):(Nt + (Nt // 2))]
|
Calculates spectrum of one transition
|
quantarhei/spectroscopy/abs.py
|
one_transition_spectrum
|
detrin/quantarhei
| 14 |
python
|
def one_transition_spectrum(self, tr):
' \n \n \n '
ta = tr['ta']
dd = tr['dd']
om = tr['om']
gg = tr['gg']
if self.system._has_system_bath_coupling:
ct = tr['ct']
gt = self._c2g(ta, ct.data)
at = numpy.exp(((- gt) - ((1j * om) * ta.data)))
else:
at = numpy.exp((((- 1j) * om) * ta.data))
if (len(gg) == 1):
gam = gg[0]
rt = numpy.exp((gam * ta.data))
at *= rt
else:
rt = numpy.exp((gg * ta.data))
at *= rt
ft = ((dd * numpy.fft.hfft(at)) * ta.step)
ft = numpy.fft.fftshift(ft)
ft = numpy.flipud(ft)
Nt = ta.length
return ft[(Nt // 2):(Nt + (Nt // 2))]
|
def one_transition_spectrum(self, tr):
' \n \n \n '
ta = tr['ta']
dd = tr['dd']
om = tr['om']
gg = tr['gg']
if self.system._has_system_bath_coupling:
ct = tr['ct']
gt = self._c2g(ta, ct.data)
at = numpy.exp(((- gt) - ((1j * om) * ta.data)))
else:
at = numpy.exp((((- 1j) * om) * ta.data))
if (len(gg) == 1):
gam = gg[0]
rt = numpy.exp((gam * ta.data))
at *= rt
else:
rt = numpy.exp((gg * ta.data))
at *= rt
ft = ((dd * numpy.fft.hfft(at)) * ta.step)
ft = numpy.fft.fftshift(ft)
ft = numpy.flipud(ft)
Nt = ta.length
return ft[(Nt // 2):(Nt + (Nt // 2))]<|docstring|>Calculates spectrum of one transition<|endoftext|>
|
8d9e8ea8f060f0fdd9c7c77c40c5f1abd654b10981087ab663c6a802258cf2d2
|
def _excitonic_coft(self, SS, AG, n):
' Returns energy gap correlation function data of an exciton state \n \n '
c0 = AG.monomers[0].get_egcf((0, 1))
Nt = len(c0)
sbi = AG.get_SystemBathInteraction()
cfm = sbi.CC
ct = numpy.zeros(Nt, dtype=numpy.complex128)
Na = AG.nmono
for kk in range(Na):
for ll in range(Na):
ct += (((SS[((kk + 1), (n + 1))] ** 2) * (SS[((ll + 1), (n + 1))] ** 2)) * cfm.get_coft(kk, ll))
return ct
|
Returns energy gap correlation function data of an exciton state
|
quantarhei/spectroscopy/abs.py
|
_excitonic_coft
|
detrin/quantarhei
| 14 |
python
|
def _excitonic_coft(self, SS, AG, n):
' \n \n '
c0 = AG.monomers[0].get_egcf((0, 1))
Nt = len(c0)
sbi = AG.get_SystemBathInteraction()
cfm = sbi.CC
ct = numpy.zeros(Nt, dtype=numpy.complex128)
Na = AG.nmono
for kk in range(Na):
for ll in range(Na):
ct += (((SS[((kk + 1), (n + 1))] ** 2) * (SS[((ll + 1), (n + 1))] ** 2)) * cfm.get_coft(kk, ll))
return ct
|
def _excitonic_coft(self, SS, AG, n):
' \n \n '
c0 = AG.monomers[0].get_egcf((0, 1))
Nt = len(c0)
sbi = AG.get_SystemBathInteraction()
cfm = sbi.CC
ct = numpy.zeros(Nt, dtype=numpy.complex128)
Na = AG.nmono
for kk in range(Na):
for ll in range(Na):
ct += (((SS[((kk + 1), (n + 1))] ** 2) * (SS[((ll + 1), (n + 1))] ** 2)) * cfm.get_coft(kk, ll))
return ct<|docstring|>Returns energy gap correlation function data of an exciton state<|endoftext|>
|
94022c91ad9adf857d85a8d564d33619fe0986def83974578fed4b0765c2c901
|
def _calculate_monomer(self, rwa):
' Calculates the absorption spectrum of a monomer \n \n \n '
ta = self.TimeAxis
om = (self.system.elenergies[1] - self.system.elenergies[0])
dm = self.system.dmoments[(0, 1, :)]
dd = numpy.dot(dm, dm)
gama = [((- 1.0) / self.system.get_electronic_natural_lifetime(1))]
if self.system._has_system_bath_coupling:
ct = self.system.get_egcf((0, 1))
tr = {'ta': ta, 'dd': dd, 'om': (om - rwa), 'ct': ct, 'gg': gama}
else:
tr = {'ta': ta, 'dd': dd, 'om': (om - rwa), 'gg': gama}
self.data = numpy.real(self.one_transition_spectrum(tr))
self.frequencyAxis = self.TimeAxis.get_FrequencyAxis()
self.frequencyAxis.data += rwa
Nt = (len(self.frequencyAxis.data) // 2)
do = (self.frequencyAxis.data[1] - self.frequencyAxis.data[0])
st = self.frequencyAxis.data[(Nt // 2)]
self.axis = FrequencyAxis(st, Nt, do)
self.frequency = (self._frequency(ta.step) + rwa)
|
Calculates the absorption spectrum of a monomer
|
quantarhei/spectroscopy/abs.py
|
_calculate_monomer
|
detrin/quantarhei
| 14 |
python
|
def _calculate_monomer(self, rwa):
' \n \n \n '
ta = self.TimeAxis
om = (self.system.elenergies[1] - self.system.elenergies[0])
dm = self.system.dmoments[(0, 1, :)]
dd = numpy.dot(dm, dm)
gama = [((- 1.0) / self.system.get_electronic_natural_lifetime(1))]
if self.system._has_system_bath_coupling:
ct = self.system.get_egcf((0, 1))
tr = {'ta': ta, 'dd': dd, 'om': (om - rwa), 'ct': ct, 'gg': gama}
else:
tr = {'ta': ta, 'dd': dd, 'om': (om - rwa), 'gg': gama}
self.data = numpy.real(self.one_transition_spectrum(tr))
self.frequencyAxis = self.TimeAxis.get_FrequencyAxis()
self.frequencyAxis.data += rwa
Nt = (len(self.frequencyAxis.data) // 2)
do = (self.frequencyAxis.data[1] - self.frequencyAxis.data[0])
st = self.frequencyAxis.data[(Nt // 2)]
self.axis = FrequencyAxis(st, Nt, do)
self.frequency = (self._frequency(ta.step) + rwa)
|
def _calculate_monomer(self, rwa):
' \n \n \n '
ta = self.TimeAxis
om = (self.system.elenergies[1] - self.system.elenergies[0])
dm = self.system.dmoments[(0, 1, :)]
dd = numpy.dot(dm, dm)
gama = [((- 1.0) / self.system.get_electronic_natural_lifetime(1))]
if self.system._has_system_bath_coupling:
ct = self.system.get_egcf((0, 1))
tr = {'ta': ta, 'dd': dd, 'om': (om - rwa), 'ct': ct, 'gg': gama}
else:
tr = {'ta': ta, 'dd': dd, 'om': (om - rwa), 'gg': gama}
self.data = numpy.real(self.one_transition_spectrum(tr))
self.frequencyAxis = self.TimeAxis.get_FrequencyAxis()
self.frequencyAxis.data += rwa
Nt = (len(self.frequencyAxis.data) // 2)
do = (self.frequencyAxis.data[1] - self.frequencyAxis.data[0])
st = self.frequencyAxis.data[(Nt // 2)]
self.axis = FrequencyAxis(st, Nt, do)
self.frequency = (self._frequency(ta.step) + rwa)<|docstring|>Calculates the absorption spectrum of a monomer<|endoftext|>
|
054da6133033387bbb3743cfd948b59ee89c9cfe27619bd7a76f9bd75c7fa903
|
def _calculate_aggregate(self, rwa, relaxation_tensor=None, relaxation_hamiltonian=None, rate_matrix=None):
' Calculates the absorption spectrum of a molecular aggregate\n \n \n \n '
ta = self.TimeAxis
if (relaxation_hamiltonian is None):
HH = self.system.get_Hamiltonian()
else:
HH = relaxation_hamiltonian
SS = HH.diagonalize()
DD = self.system.get_TransitionDipoleMoment()
DD.transform(SS)
tr = {'ta': ta}
if (relaxation_tensor is not None):
RR = relaxation_tensor
RR.transform(SS)
gg = []
if isinstance(RR, TimeDependent):
for ii in range(HH.dim):
gg.append(RR.data[(:, ii, ii, ii, ii)])
else:
for ii in range(HH.dim):
gg.append([RR.data[(ii, ii, ii, ii)]])
tr['gg'] = gg[1]
elif (rate_matrix is not None):
RR = rate_matrix
gg = []
if isinstance(RR, TimeDependent):
for ii in range(HH.dim):
gg.append(RR.data[(:, ii, ii)])
else:
for ii in range(HH.dim):
gg.append([RR.data[(ii, ii)]])
tr['gg'] = gg[1]
else:
tr['gg'] = [0.0]
tr['dd'] = DD.dipole_strength(0, 1)
tr['om'] = ((HH.data[(1, 1)] - HH.data[(0, 0)]) - rwa)
ct = self._excitonic_coft(SS, self.system, 0)
tr['ct'] = ct
self.system._has_system_bath_coupling = True
self.data = numpy.real(self.one_transition_spectrum(tr))
for ii in range(2, HH.dim):
if (relaxation_tensor is not None):
tr['gg'] = gg[ii]
else:
tr['gg'] = [0.0]
tr['dd'] = DD.dipole_strength(0, ii)
tr['om'] = ((HH.data[(ii, ii)] - HH.data[(0, 0)]) - rwa)
tr['ct'] = self._excitonic_coft(SS, self.system, (ii - 1))
self.data += numpy.real(self.one_transition_spectrum(tr))
self.frequencyAxis = self.TimeAxis.get_FrequencyAxis()
self.frequencyAxis.data += rwa
Nt = (len(self.frequencyAxis.data) // 2)
do = (self.frequencyAxis.data[1] - self.frequencyAxis.data[0])
st = self.frequencyAxis.data[(Nt // 2)]
self.axis = FrequencyAxis(st, Nt, do)
self.frequency = (self._frequency(ta.step) + rwa)
S1 = numpy.linalg.inv(SS)
HH.transform(S1)
DD.transform(S1)
if (relaxation_tensor is not None):
RR.transform(S1)
|
Calculates the absorption spectrum of a molecular aggregate
|
quantarhei/spectroscopy/abs.py
|
_calculate_aggregate
|
detrin/quantarhei
| 14 |
python
|
def _calculate_aggregate(self, rwa, relaxation_tensor=None, relaxation_hamiltonian=None, rate_matrix=None):
' \n \n \n \n '
ta = self.TimeAxis
if (relaxation_hamiltonian is None):
HH = self.system.get_Hamiltonian()
else:
HH = relaxation_hamiltonian
SS = HH.diagonalize()
DD = self.system.get_TransitionDipoleMoment()
DD.transform(SS)
tr = {'ta': ta}
if (relaxation_tensor is not None):
RR = relaxation_tensor
RR.transform(SS)
gg = []
if isinstance(RR, TimeDependent):
for ii in range(HH.dim):
gg.append(RR.data[(:, ii, ii, ii, ii)])
else:
for ii in range(HH.dim):
gg.append([RR.data[(ii, ii, ii, ii)]])
tr['gg'] = gg[1]
elif (rate_matrix is not None):
RR = rate_matrix
gg = []
if isinstance(RR, TimeDependent):
for ii in range(HH.dim):
gg.append(RR.data[(:, ii, ii)])
else:
for ii in range(HH.dim):
gg.append([RR.data[(ii, ii)]])
tr['gg'] = gg[1]
else:
tr['gg'] = [0.0]
tr['dd'] = DD.dipole_strength(0, 1)
tr['om'] = ((HH.data[(1, 1)] - HH.data[(0, 0)]) - rwa)
ct = self._excitonic_coft(SS, self.system, 0)
tr['ct'] = ct
self.system._has_system_bath_coupling = True
self.data = numpy.real(self.one_transition_spectrum(tr))
for ii in range(2, HH.dim):
if (relaxation_tensor is not None):
tr['gg'] = gg[ii]
else:
tr['gg'] = [0.0]
tr['dd'] = DD.dipole_strength(0, ii)
tr['om'] = ((HH.data[(ii, ii)] - HH.data[(0, 0)]) - rwa)
tr['ct'] = self._excitonic_coft(SS, self.system, (ii - 1))
self.data += numpy.real(self.one_transition_spectrum(tr))
self.frequencyAxis = self.TimeAxis.get_FrequencyAxis()
self.frequencyAxis.data += rwa
Nt = (len(self.frequencyAxis.data) // 2)
do = (self.frequencyAxis.data[1] - self.frequencyAxis.data[0])
st = self.frequencyAxis.data[(Nt // 2)]
self.axis = FrequencyAxis(st, Nt, do)
self.frequency = (self._frequency(ta.step) + rwa)
S1 = numpy.linalg.inv(SS)
HH.transform(S1)
DD.transform(S1)
if (relaxation_tensor is not None):
RR.transform(S1)
|
def _calculate_aggregate(self, rwa, relaxation_tensor=None, relaxation_hamiltonian=None, rate_matrix=None):
' \n \n \n \n '
ta = self.TimeAxis
if (relaxation_hamiltonian is None):
HH = self.system.get_Hamiltonian()
else:
HH = relaxation_hamiltonian
SS = HH.diagonalize()
DD = self.system.get_TransitionDipoleMoment()
DD.transform(SS)
tr = {'ta': ta}
if (relaxation_tensor is not None):
RR = relaxation_tensor
RR.transform(SS)
gg = []
if isinstance(RR, TimeDependent):
for ii in range(HH.dim):
gg.append(RR.data[(:, ii, ii, ii, ii)])
else:
for ii in range(HH.dim):
gg.append([RR.data[(ii, ii, ii, ii)]])
tr['gg'] = gg[1]
elif (rate_matrix is not None):
RR = rate_matrix
gg = []
if isinstance(RR, TimeDependent):
for ii in range(HH.dim):
gg.append(RR.data[(:, ii, ii)])
else:
for ii in range(HH.dim):
gg.append([RR.data[(ii, ii)]])
tr['gg'] = gg[1]
else:
tr['gg'] = [0.0]
tr['dd'] = DD.dipole_strength(0, 1)
tr['om'] = ((HH.data[(1, 1)] - HH.data[(0, 0)]) - rwa)
ct = self._excitonic_coft(SS, self.system, 0)
tr['ct'] = ct
self.system._has_system_bath_coupling = True
self.data = numpy.real(self.one_transition_spectrum(tr))
for ii in range(2, HH.dim):
if (relaxation_tensor is not None):
tr['gg'] = gg[ii]
else:
tr['gg'] = [0.0]
tr['dd'] = DD.dipole_strength(0, ii)
tr['om'] = ((HH.data[(ii, ii)] - HH.data[(0, 0)]) - rwa)
tr['ct'] = self._excitonic_coft(SS, self.system, (ii - 1))
self.data += numpy.real(self.one_transition_spectrum(tr))
self.frequencyAxis = self.TimeAxis.get_FrequencyAxis()
self.frequencyAxis.data += rwa
Nt = (len(self.frequencyAxis.data) // 2)
do = (self.frequencyAxis.data[1] - self.frequencyAxis.data[0])
st = self.frequencyAxis.data[(Nt // 2)]
self.axis = FrequencyAxis(st, Nt, do)
self.frequency = (self._frequency(ta.step) + rwa)
S1 = numpy.linalg.inv(SS)
HH.transform(S1)
DD.transform(S1)
if (relaxation_tensor is not None):
RR.transform(S1)<|docstring|>Calculates the absorption spectrum of a molecular aggregate<|endoftext|>
|
95673a167cb6ecbcd6d438a7e6a2ba65eeceb06ebd5f2ccb4bd0b3e7019b6584
|
def dfs(graph, s, visited=[]):
'\n DFS\n '
if (s not in visited):
visited += s
for v in [v for (u, v) in graph if ((u == s) and (v not in visited))]:
dfs(graph, v, visited)
return visited
|
DFS
|
02-graph-search-shortest-path-data-structures/week-01/dfs.py
|
dfs
|
tiefenauer/stanford-algorithms
| 5 |
python
|
def dfs(graph, s, visited=[]):
'\n \n '
if (s not in visited):
visited += s
for v in [v for (u, v) in graph if ((u == s) and (v not in visited))]:
dfs(graph, v, visited)
return visited
|
def dfs(graph, s, visited=[]):
'\n \n '
if (s not in visited):
visited += s
for v in [v for (u, v) in graph if ((u == s) and (v not in visited))]:
dfs(graph, v, visited)
return visited<|docstring|>DFS<|endoftext|>
|
5c0ea370161a6da73888bd5075e05c61996213ae7fd779e4797d52c7c172dc56
|
def image_names(path_to_folder, with_extension=False):
'\n Reads raster files from multiple folders and returns their names\n\n :param path_to_folder: directory path\n :param with_extension: file extension\n :return: names of the raster files\n '
name_list = []
extension = ['jpg', 'png', 'tif', 'jpeg', 'tiff']
if os.path.isdir(path_to_folder):
files = os.listdir(path_to_folder)
for f in files:
if (f.split('.')[(- 1)] in extension):
if (with_extension is True):
name_list.append(f)
else:
(title, ext) = f.split('.')
name_list.append(title)
else:
file = path_to_folder
if (file.split('.')[(- 1)] in extension):
if (with_extension is True):
name_list.append(file)
else:
(title, ext) = file.split('.')
name_list.append(title)
return name_list
|
Reads raster files from multiple folders and returns their names
:param path_to_folder: directory path
:param with_extension: file extension
:return: names of the raster files
|
imageprep/utils.py
|
image_names
|
agcopenhaver/imageprep
| 0 |
python
|
def image_names(path_to_folder, with_extension=False):
'\n Reads raster files from multiple folders and returns their names\n\n :param path_to_folder: directory path\n :param with_extension: file extension\n :return: names of the raster files\n '
name_list = []
extension = ['jpg', 'png', 'tif', 'jpeg', 'tiff']
if os.path.isdir(path_to_folder):
files = os.listdir(path_to_folder)
for f in files:
if (f.split('.')[(- 1)] in extension):
if (with_extension is True):
name_list.append(f)
else:
(title, ext) = f.split('.')
name_list.append(title)
else:
file = path_to_folder
if (file.split('.')[(- 1)] in extension):
if (with_extension is True):
name_list.append(file)
else:
(title, ext) = file.split('.')
name_list.append(title)
return name_list
|
def image_names(path_to_folder, with_extension=False):
'\n Reads raster files from multiple folders and returns their names\n\n :param path_to_folder: directory path\n :param with_extension: file extension\n :return: names of the raster files\n '
name_list = []
extension = ['jpg', 'png', 'tif', 'jpeg', 'tiff']
if os.path.isdir(path_to_folder):
files = os.listdir(path_to_folder)
for f in files:
if (f.split('.')[(- 1)] in extension):
if (with_extension is True):
name_list.append(f)
else:
(title, ext) = f.split('.')
name_list.append(title)
else:
file = path_to_folder
if (file.split('.')[(- 1)] in extension):
if (with_extension is True):
name_list.append(file)
else:
(title, ext) = file.split('.')
name_list.append(title)
return name_list<|docstring|>Reads raster files from multiple folders and returns their names
:param path_to_folder: directory path
:param with_extension: file extension
:return: names of the raster files<|endoftext|>
|
4bdd5e6fe0959f12b5c3ebb7ce9aac7c5651f7c8df5bf42679255345c3a6b50c
|
def pad_image(image_file_name, new_size=(600, 600), save=False):
'\n Pad Image with a given number of rows and columns\n\n :param image_file_name: image file\n :param new_size: now image size\n :param save: option to save output\n :return:\n '
image = Image.open(image_file_name)
(rows, cols) = image.size
if ((rows % 2) == 0):
add_left = add_right = ((new_size[0] - rows) // 2)
else:
add_left = ((new_size[0] - rows) // 2)
add_right = (((new_size[0] - rows) // 2) + 1)
if ((cols % 2) == 0):
add_top = add_bottom = ((new_size[1] - cols) // 2)
else:
add_top = ((new_size[1] - cols[1]) // 2)
add_bottom = (((new_size[1] - cols[1]) // 2) + 1)
left = (0 - add_left)
top = (0 - add_top)
right = (rows + add_right)
bottom = (cols + add_bottom)
image = image.crop((left, top, right, bottom))
if (save is True):
image.save('padded_output.png')
return image
|
Pad Image with a given number of rows and columns
:param image_file_name: image file
:param new_size: now image size
:param save: option to save output
:return:
|
imageprep/utils.py
|
pad_image
|
agcopenhaver/imageprep
| 0 |
python
|
def pad_image(image_file_name, new_size=(600, 600), save=False):
'\n Pad Image with a given number of rows and columns\n\n :param image_file_name: image file\n :param new_size: now image size\n :param save: option to save output\n :return:\n '
image = Image.open(image_file_name)
(rows, cols) = image.size
if ((rows % 2) == 0):
add_left = add_right = ((new_size[0] - rows) // 2)
else:
add_left = ((new_size[0] - rows) // 2)
add_right = (((new_size[0] - rows) // 2) + 1)
if ((cols % 2) == 0):
add_top = add_bottom = ((new_size[1] - cols) // 2)
else:
add_top = ((new_size[1] - cols[1]) // 2)
add_bottom = (((new_size[1] - cols[1]) // 2) + 1)
left = (0 - add_left)
top = (0 - add_top)
right = (rows + add_right)
bottom = (cols + add_bottom)
image = image.crop((left, top, right, bottom))
if (save is True):
image.save('padded_output.png')
return image
|
def pad_image(image_file_name, new_size=(600, 600), save=False):
'\n Pad Image with a given number of rows and columns\n\n :param image_file_name: image file\n :param new_size: now image size\n :param save: option to save output\n :return:\n '
image = Image.open(image_file_name)
(rows, cols) = image.size
if ((rows % 2) == 0):
add_left = add_right = ((new_size[0] - rows) // 2)
else:
add_left = ((new_size[0] - rows) // 2)
add_right = (((new_size[0] - rows) // 2) + 1)
if ((cols % 2) == 0):
add_top = add_bottom = ((new_size[1] - cols) // 2)
else:
add_top = ((new_size[1] - cols[1]) // 2)
add_bottom = (((new_size[1] - cols[1]) // 2) + 1)
left = (0 - add_left)
top = (0 - add_top)
right = (rows + add_right)
bottom = (cols + add_bottom)
image = image.crop((left, top, right, bottom))
if (save is True):
image.save('padded_output.png')
return image<|docstring|>Pad Image with a given number of rows and columns
:param image_file_name: image file
:param new_size: now image size
:param save: option to save output
:return:<|endoftext|>
|
53bce710f4ce0a2263d7f32693ba3dc30a7056817908cca2872b979b699558ac
|
def resize_images_in_one_folder(path, output_size=256):
'\n Re-sizes images in one folder\n\n :param path: path to the folder\n :param output_size: size of the image output\n :return: re-sized images saved in the same folder\n '
dirs = os.listdir(path)
for item in dirs:
if os.path.isfile((path + item)):
if item.endswith('.jpg'):
im = Image.open((path + item))
(f, e) = os.path.splitext((path + item))
im_resize = im.resize((output_size, output_size), Image.ANTIALIAS)
im_resize.save((f + '.jpg'), 'JPEG', quality=90)
|
Re-sizes images in one folder
:param path: path to the folder
:param output_size: size of the image output
:return: re-sized images saved in the same folder
|
imageprep/utils.py
|
resize_images_in_one_folder
|
agcopenhaver/imageprep
| 0 |
python
|
def resize_images_in_one_folder(path, output_size=256):
'\n Re-sizes images in one folder\n\n :param path: path to the folder\n :param output_size: size of the image output\n :return: re-sized images saved in the same folder\n '
dirs = os.listdir(path)
for item in dirs:
if os.path.isfile((path + item)):
if item.endswith('.jpg'):
im = Image.open((path + item))
(f, e) = os.path.splitext((path + item))
im_resize = im.resize((output_size, output_size), Image.ANTIALIAS)
im_resize.save((f + '.jpg'), 'JPEG', quality=90)
|
def resize_images_in_one_folder(path, output_size=256):
'\n Re-sizes images in one folder\n\n :param path: path to the folder\n :param output_size: size of the image output\n :return: re-sized images saved in the same folder\n '
dirs = os.listdir(path)
for item in dirs:
if os.path.isfile((path + item)):
if item.endswith('.jpg'):
im = Image.open((path + item))
(f, e) = os.path.splitext((path + item))
im_resize = im.resize((output_size, output_size), Image.ANTIALIAS)
im_resize.save((f + '.jpg'), 'JPEG', quality=90)<|docstring|>Re-sizes images in one folder
:param path: path to the folder
:param output_size: size of the image output
:return: re-sized images saved in the same folder<|endoftext|>
|
60b6f48098d1cc1c14560f2b637e1f45149feb58f17e202c232cea569110a795
|
def resize_images_from_multiple_folders(path, output_size=256):
'\n Re-sizes images in multiple folders and saves images in each respective folder\n\n :param path: path to the folder containing all folders with images\n :param output_size:\n :return: re-sized images saved in their respective folder\n '
for folders in os.listdir(path):
folder_list = os.path.join(path, folders)
for item in os.listdir(folder_list):
if item.endswith('.png'):
file = os.path.join(folder_list, item)
im = Image.open(file)
imResize = im.resize((output_size, output_size), Image.ANTIALIAS)
(f, e) = os.path.splitext(file)
imResize.save((f + '.png'), 'JPEG', quality=90)
|
Re-sizes images in multiple folders and saves images in each respective folder
:param path: path to the folder containing all folders with images
:param output_size:
:return: re-sized images saved in their respective folder
|
imageprep/utils.py
|
resize_images_from_multiple_folders
|
agcopenhaver/imageprep
| 0 |
python
|
def resize_images_from_multiple_folders(path, output_size=256):
'\n Re-sizes images in multiple folders and saves images in each respective folder\n\n :param path: path to the folder containing all folders with images\n :param output_size:\n :return: re-sized images saved in their respective folder\n '
for folders in os.listdir(path):
folder_list = os.path.join(path, folders)
for item in os.listdir(folder_list):
if item.endswith('.png'):
file = os.path.join(folder_list, item)
im = Image.open(file)
imResize = im.resize((output_size, output_size), Image.ANTIALIAS)
(f, e) = os.path.splitext(file)
imResize.save((f + '.png'), 'JPEG', quality=90)
|
def resize_images_from_multiple_folders(path, output_size=256):
'\n Re-sizes images in multiple folders and saves images in each respective folder\n\n :param path: path to the folder containing all folders with images\n :param output_size:\n :return: re-sized images saved in their respective folder\n '
for folders in os.listdir(path):
folder_list = os.path.join(path, folders)
for item in os.listdir(folder_list):
if item.endswith('.png'):
file = os.path.join(folder_list, item)
im = Image.open(file)
imResize = im.resize((output_size, output_size), Image.ANTIALIAS)
(f, e) = os.path.splitext(file)
imResize.save((f + '.png'), 'JPEG', quality=90)<|docstring|>Re-sizes images in multiple folders and saves images in each respective folder
:param path: path to the folder containing all folders with images
:param output_size:
:return: re-sized images saved in their respective folder<|endoftext|>
|
22c0126cb5213e1dc95b2bbeb511c69c115ec063db3f0c098c1676568caaa5e0
|
def list_path_to_files(path_to_folders, save=False):
'\n Saves the path to files (images or labels) in one text file\n\n :param path_to_folders: path to the folder containing images or labels\n :param output_file_name: name of output text file\n :param save: option to save list to a text file\n :return: a text file with a list of path to files\n '
extension = ['jpg', 'png', 'tif', 'jpeg', 'tiff']
files = os.listdir(path_to_folders)
counter = 0
cwd = os.getcwd()
output_file_name = 'path.txt'
txt = open(os.path.join(cwd, output_file_name), 'w')
all_files = []
for f in files:
if (f.split('.')[(- 1)] in extension):
if (save is True):
txt.write(((path_to_folders + f) + '\n'))
counter = (counter + 1)
else:
list_path = (path_to_folders + f)
all_files.append(list_path)
return all_files
|
Saves the path to files (images or labels) in one text file
:param path_to_folders: path to the folder containing images or labels
:param output_file_name: name of output text file
:param save: option to save list to a text file
:return: a text file with a list of path to files
|
imageprep/utils.py
|
list_path_to_files
|
agcopenhaver/imageprep
| 0 |
python
|
def list_path_to_files(path_to_folders, save=False):
'\n Saves the path to files (images or labels) in one text file\n\n :param path_to_folders: path to the folder containing images or labels\n :param output_file_name: name of output text file\n :param save: option to save list to a text file\n :return: a text file with a list of path to files\n '
extension = ['jpg', 'png', 'tif', 'jpeg', 'tiff']
files = os.listdir(path_to_folders)
counter = 0
cwd = os.getcwd()
output_file_name = 'path.txt'
txt = open(os.path.join(cwd, output_file_name), 'w')
all_files = []
for f in files:
if (f.split('.')[(- 1)] in extension):
if (save is True):
txt.write(((path_to_folders + f) + '\n'))
counter = (counter + 1)
else:
list_path = (path_to_folders + f)
all_files.append(list_path)
return all_files
|
def list_path_to_files(path_to_folders, save=False):
'\n Saves the path to files (images or labels) in one text file\n\n :param path_to_folders: path to the folder containing images or labels\n :param output_file_name: name of output text file\n :param save: option to save list to a text file\n :return: a text file with a list of path to files\n '
extension = ['jpg', 'png', 'tif', 'jpeg', 'tiff']
files = os.listdir(path_to_folders)
counter = 0
cwd = os.getcwd()
output_file_name = 'path.txt'
txt = open(os.path.join(cwd, output_file_name), 'w')
all_files = []
for f in files:
if (f.split('.')[(- 1)] in extension):
if (save is True):
txt.write(((path_to_folders + f) + '\n'))
counter = (counter + 1)
else:
list_path = (path_to_folders + f)
all_files.append(list_path)
return all_files<|docstring|>Saves the path to files (images or labels) in one text file
:param path_to_folders: path to the folder containing images or labels
:param output_file_name: name of output text file
:param save: option to save list to a text file
:return: a text file with a list of path to files<|endoftext|>
|
3aa623ba508cc2e666d7573857e7cedca2fb2e2fad28b1bd58d810c14e0fe3cb
|
def read_image(file, as_array=True):
'\n Reads image and returns a numpy array\n\n :param file: image file namec\n :param as_array: option to read image to array.\n :return: numpy array\n '
img = Image.open(file)
if (as_array is True):
img = np.asarray(img)
return img
|
Reads image and returns a numpy array
:param file: image file namec
:param as_array: option to read image to array.
:return: numpy array
|
imageprep/utils.py
|
read_image
|
agcopenhaver/imageprep
| 0 |
python
|
def read_image(file, as_array=True):
'\n Reads image and returns a numpy array\n\n :param file: image file namec\n :param as_array: option to read image to array.\n :return: numpy array\n '
img = Image.open(file)
if (as_array is True):
img = np.asarray(img)
return img
|
def read_image(file, as_array=True):
'\n Reads image and returns a numpy array\n\n :param file: image file namec\n :param as_array: option to read image to array.\n :return: numpy array\n '
img = Image.open(file)
if (as_array is True):
img = np.asarray(img)
return img<|docstring|>Reads image and returns a numpy array
:param file: image file namec
:param as_array: option to read image to array.
:return: numpy array<|endoftext|>
|
2ecdbd397e78e1902f5ce57fc0bf247a95610292f57743a37e931fbd3af1182c
|
def images_as_array(path, ext='.jpg'):
'\n Reads multiple images in a folder and returns a stacked numpy array\n\n :param path: path to the folder containing the images\n :param ext: file extension. defaulted to jpg\n :return: stacked numpy array of images\n '
dir = os.listdir(path)
img_arr_list = []
for item in dir:
if os.path.isfile((path + item)):
if item.endswith(ext):
img_arr = read_image((path + item))
img_arr = np.expand_dims(img_arr, axis=0)
img_arr_list.append(img_arr)
img_stack = np.vstack(img_arr_list)
return img_stack
|
Reads multiple images in a folder and returns a stacked numpy array
:param path: path to the folder containing the images
:param ext: file extension. defaulted to jpg
:return: stacked numpy array of images
|
imageprep/utils.py
|
images_as_array
|
agcopenhaver/imageprep
| 0 |
python
|
def images_as_array(path, ext='.jpg'):
'\n Reads multiple images in a folder and returns a stacked numpy array\n\n :param path: path to the folder containing the images\n :param ext: file extension. defaulted to jpg\n :return: stacked numpy array of images\n '
dir = os.listdir(path)
img_arr_list = []
for item in dir:
if os.path.isfile((path + item)):
if item.endswith(ext):
img_arr = read_image((path + item))
img_arr = np.expand_dims(img_arr, axis=0)
img_arr_list.append(img_arr)
img_stack = np.vstack(img_arr_list)
return img_stack
|
def images_as_array(path, ext='.jpg'):
'\n Reads multiple images in a folder and returns a stacked numpy array\n\n :param path: path to the folder containing the images\n :param ext: file extension. defaulted to jpg\n :return: stacked numpy array of images\n '
dir = os.listdir(path)
img_arr_list = []
for item in dir:
if os.path.isfile((path + item)):
if item.endswith(ext):
img_arr = read_image((path + item))
img_arr = np.expand_dims(img_arr, axis=0)
img_arr_list.append(img_arr)
img_stack = np.vstack(img_arr_list)
return img_stack<|docstring|>Reads multiple images in a folder and returns a stacked numpy array
:param path: path to the folder containing the images
:param ext: file extension. defaulted to jpg
:return: stacked numpy array of images<|endoftext|>
|
57c799fca1a1eed2af7564a9f797c3b26da2233d694581b27f86912c4b87611d
|
def read_labels(input_path, ext='.txt'):
'\n Read multiple label text files\n\n :param input_path: path to the folder containing the labels text files\n :param ext: name of file extension. defaulted to jpg\n :return:\n '
folder = os.listdir(input_path)
label_content = []
for item in folder:
if os.path.isfile((input_path + item)):
if item.endswith(ext):
content = []
input_file = open(os.path.join((input_path + item)))
for line in input_file.read().splitlines():
content.append([line])
if (len(content) != 1):
label_content.append([item, content])
else:
label_content.append([item, content[0]])
return label_content
|
Read multiple label text files
:param input_path: path to the folder containing the labels text files
:param ext: name of file extension. defaulted to jpg
:return:
|
imageprep/utils.py
|
read_labels
|
agcopenhaver/imageprep
| 0 |
python
|
def read_labels(input_path, ext='.txt'):
'\n Read multiple label text files\n\n :param input_path: path to the folder containing the labels text files\n :param ext: name of file extension. defaulted to jpg\n :return:\n '
folder = os.listdir(input_path)
label_content = []
for item in folder:
if os.path.isfile((input_path + item)):
if item.endswith(ext):
content = []
input_file = open(os.path.join((input_path + item)))
for line in input_file.read().splitlines():
content.append([line])
if (len(content) != 1):
label_content.append([item, content])
else:
label_content.append([item, content[0]])
return label_content
|
def read_labels(input_path, ext='.txt'):
'\n Read multiple label text files\n\n :param input_path: path to the folder containing the labels text files\n :param ext: name of file extension. defaulted to jpg\n :return:\n '
folder = os.listdir(input_path)
label_content = []
for item in folder:
if os.path.isfile((input_path + item)):
if item.endswith(ext):
content = []
input_file = open(os.path.join((input_path + item)))
for line in input_file.read().splitlines():
content.append([line])
if (len(content) != 1):
label_content.append([item, content])
else:
label_content.append([item, content[0]])
return label_content<|docstring|>Read multiple label text files
:param input_path: path to the folder containing the labels text files
:param ext: name of file extension. defaulted to jpg
:return:<|endoftext|>
|
6dddfaa5d385318984fe8830690956ba817b73fbec63c377447a9a171537b1f0
|
def read_label_as_dict(file, ext='.txt'):
'\n Reads a label file in text format as a dictionary\n\n :param file: Name of the label file\n :param ext: Name of the file extension. Defaulted to text\n :return: A dictionary of the label\n '
label_content = {}
if os.path.isfile(file):
if file.endswith(ext):
content = []
input_file = open(file)
for line in input_file.read().splitlines():
content.append([line])
if (len(content) != 1):
label_content['name'] = file
label_content['bbox'] = content
else:
label_content['name'] = file
label_content['bbox'] = content[0]
return label_content
|
Reads a label file in text format as a dictionary
:param file: Name of the label file
:param ext: Name of the file extension. Defaulted to text
:return: A dictionary of the label
|
imageprep/utils.py
|
read_label_as_dict
|
agcopenhaver/imageprep
| 0 |
python
|
def read_label_as_dict(file, ext='.txt'):
'\n Reads a label file in text format as a dictionary\n\n :param file: Name of the label file\n :param ext: Name of the file extension. Defaulted to text\n :return: A dictionary of the label\n '
label_content = {}
if os.path.isfile(file):
if file.endswith(ext):
content = []
input_file = open(file)
for line in input_file.read().splitlines():
content.append([line])
if (len(content) != 1):
label_content['name'] = file
label_content['bbox'] = content
else:
label_content['name'] = file
label_content['bbox'] = content[0]
return label_content
|
def read_label_as_dict(file, ext='.txt'):
'\n Reads a label file in text format as a dictionary\n\n :param file: Name of the label file\n :param ext: Name of the file extension. Defaulted to text\n :return: A dictionary of the label\n '
label_content = {}
if os.path.isfile(file):
if file.endswith(ext):
content = []
input_file = open(file)
for line in input_file.read().splitlines():
content.append([line])
if (len(content) != 1):
label_content['name'] = file
label_content['bbox'] = content
else:
label_content['name'] = file
label_content['bbox'] = content[0]
return label_content<|docstring|>Reads a label file in text format as a dictionary
:param file: Name of the label file
:param ext: Name of the file extension. Defaulted to text
:return: A dictionary of the label<|endoftext|>
|
135e993b413ca125c026f660e5c56dd16b3f81077dca0d0478c12f84aba2eb38
|
def read_label_as_list(file, ext='.txt'):
'\n Reads a label file in text format as a list\n\n :param file: Name of the label file\n :param ext: Name of the file extension. Defaulted to text\n :return: Label as a list\n '
label_content = []
if os.path.isfile(file):
if file.endswith(ext):
content = []
input_file = open(file)
for line in input_file.read().splitlines():
content.append([line])
if (len(content) != 1):
label_content.append([file, content])
else:
label_content.append([file, content[0]])
return label_content
|
Reads a label file in text format as a list
:param file: Name of the label file
:param ext: Name of the file extension. Defaulted to text
:return: Label as a list
|
imageprep/utils.py
|
read_label_as_list
|
agcopenhaver/imageprep
| 0 |
python
|
def read_label_as_list(file, ext='.txt'):
'\n Reads a label file in text format as a list\n\n :param file: Name of the label file\n :param ext: Name of the file extension. Defaulted to text\n :return: Label as a list\n '
label_content = []
if os.path.isfile(file):
if file.endswith(ext):
content = []
input_file = open(file)
for line in input_file.read().splitlines():
content.append([line])
if (len(content) != 1):
label_content.append([file, content])
else:
label_content.append([file, content[0]])
return label_content
|
def read_label_as_list(file, ext='.txt'):
'\n Reads a label file in text format as a list\n\n :param file: Name of the label file\n :param ext: Name of the file extension. Defaulted to text\n :return: Label as a list\n '
label_content = []
if os.path.isfile(file):
if file.endswith(ext):
content = []
input_file = open(file)
for line in input_file.read().splitlines():
content.append([line])
if (len(content) != 1):
label_content.append([file, content])
else:
label_content.append([file, content[0]])
return label_content<|docstring|>Reads a label file in text format as a list
:param file: Name of the label file
:param ext: Name of the file extension. Defaulted to text
:return: Label as a list<|endoftext|>
|
3f17c2f12615769b52c2b1727ed18b4f52957e88ebd41045df330f07c328d8fa
|
@pytest.mark.parametrize('file_path', ['tests/data/assets/labelbox_v1/tiled_image_export.json'])
def test_image(file_path):
'Tests against both Simple and non-Simple tiled image export data. \n index-0 is non-Simple, index-1 is Simple\n '
with open(file_path, 'r') as f:
payload = json.load(f)
collection = LBV1Converter.deserialize(payload)
collection_as_list = collection.as_list()
assert (len(collection_as_list) == 2)
non_simple_annotations = collection_as_list[0].annotations
assert (len(non_simple_annotations) == 6)
expected_shapes = [Polygon, Point, Point, Point, Line, Rectangle]
for idx in range(len(non_simple_annotations)):
assert isinstance(non_simple_annotations[idx].value, expected_shapes[idx])
assert (non_simple_annotations[(- 1)].value.start.x == (- 99.36567524971268))
assert (non_simple_annotations[(- 1)].value.start.y == 19.34717117508651)
assert (non_simple_annotations[(- 1)].value.end.x == (- 99.3649886680726))
assert (non_simple_annotations[(- 1)].value.end.y == 19.41999425190506)
simple_annotations = collection_as_list[1].annotations
assert (len(simple_annotations) == 8)
expected_shapes = [Polygon, Point, Point, Point, Point, Point, Line, Rectangle]
for idx in range(len(simple_annotations)):
assert isinstance(simple_annotations[idx].value, expected_shapes[idx])
|
Tests against both Simple and non-Simple tiled image export data.
index-0 is non-Simple, index-1 is Simple
|
tests/data/serialization/labelbox_v1/test_tiled_image.py
|
test_image
|
Cyniikal/labelbox-python
| 0 |
python
|
@pytest.mark.parametrize('file_path', ['tests/data/assets/labelbox_v1/tiled_image_export.json'])
def test_image(file_path):
'Tests against both Simple and non-Simple tiled image export data. \n index-0 is non-Simple, index-1 is Simple\n '
with open(file_path, 'r') as f:
payload = json.load(f)
collection = LBV1Converter.deserialize(payload)
collection_as_list = collection.as_list()
assert (len(collection_as_list) == 2)
non_simple_annotations = collection_as_list[0].annotations
assert (len(non_simple_annotations) == 6)
expected_shapes = [Polygon, Point, Point, Point, Line, Rectangle]
for idx in range(len(non_simple_annotations)):
assert isinstance(non_simple_annotations[idx].value, expected_shapes[idx])
assert (non_simple_annotations[(- 1)].value.start.x == (- 99.36567524971268))
assert (non_simple_annotations[(- 1)].value.start.y == 19.34717117508651)
assert (non_simple_annotations[(- 1)].value.end.x == (- 99.3649886680726))
assert (non_simple_annotations[(- 1)].value.end.y == 19.41999425190506)
simple_annotations = collection_as_list[1].annotations
assert (len(simple_annotations) == 8)
expected_shapes = [Polygon, Point, Point, Point, Point, Point, Line, Rectangle]
for idx in range(len(simple_annotations)):
assert isinstance(simple_annotations[idx].value, expected_shapes[idx])
|
@pytest.mark.parametrize('file_path', ['tests/data/assets/labelbox_v1/tiled_image_export.json'])
def test_image(file_path):
'Tests against both Simple and non-Simple tiled image export data. \n index-0 is non-Simple, index-1 is Simple\n '
with open(file_path, 'r') as f:
payload = json.load(f)
collection = LBV1Converter.deserialize(payload)
collection_as_list = collection.as_list()
assert (len(collection_as_list) == 2)
non_simple_annotations = collection_as_list[0].annotations
assert (len(non_simple_annotations) == 6)
expected_shapes = [Polygon, Point, Point, Point, Line, Rectangle]
for idx in range(len(non_simple_annotations)):
assert isinstance(non_simple_annotations[idx].value, expected_shapes[idx])
assert (non_simple_annotations[(- 1)].value.start.x == (- 99.36567524971268))
assert (non_simple_annotations[(- 1)].value.start.y == 19.34717117508651)
assert (non_simple_annotations[(- 1)].value.end.x == (- 99.3649886680726))
assert (non_simple_annotations[(- 1)].value.end.y == 19.41999425190506)
simple_annotations = collection_as_list[1].annotations
assert (len(simple_annotations) == 8)
expected_shapes = [Polygon, Point, Point, Point, Point, Point, Line, Rectangle]
for idx in range(len(simple_annotations)):
assert isinstance(simple_annotations[idx].value, expected_shapes[idx])<|docstring|>Tests against both Simple and non-Simple tiled image export data.
index-0 is non-Simple, index-1 is Simple<|endoftext|>
|
c9433bcd51e2ace1cf5e9d68f6f2f273f09861552ccd79ce77977d22bc5b50a3
|
def read_tolerance(folder):
'\n read the 7nth thing from a line, replace D with E (e.g. in "0.1D-1"), transform to a float\n '
with open(os.path.join(folder, 'input.cnd'), 'r') as file:
line = file.readline()
line_list = line.split()
tol_str = line_list[6]
tol_str_refined = tol_str.replace('D', 'E')
tol = float(tol_str_refined)
return tol
|
read the 7nth thing from a line, replace D with E (e.g. in "0.1D-1"), transform to a float
|
FBEM/postproc.py
|
read_tolerance
|
icemtel/stokes
| 0 |
python
|
def read_tolerance(folder):
'\n \n '
with open(os.path.join(folder, 'input.cnd'), 'r') as file:
line = file.readline()
line_list = line.split()
tol_str = line_list[6]
tol_str_refined = tol_str.replace('D', 'E')
tol = float(tol_str_refined)
return tol
|
def read_tolerance(folder):
'\n \n '
with open(os.path.join(folder, 'input.cnd'), 'r') as file:
line = file.readline()
line_list = line.split()
tol_str = line_list[6]
tol_str_refined = tol_str.replace('D', 'E')
tol = float(tol_str_refined)
return tol<|docstring|>read the 7nth thing from a line, replace D with E (e.g. in "0.1D-1"), transform to a float<|endoftext|>
|
f0db7082198680076377669896145679c105edac42a469ff71da5f662abd03e1
|
def read_viscosity(folder, infile='input.dat'):
'\n Skip two lines, read the third thing from the line, transform to a float.\n '
with open(os.path.join(folder, infile), 'r') as file:
file.readline()
file.readline()
line = file.readline()
line_list = line.split()
visc_str = line_list[2]
return float(visc_str)
|
Skip two lines, read the third thing from the line, transform to a float.
|
FBEM/postproc.py
|
read_viscosity
|
icemtel/stokes
| 0 |
python
|
def read_viscosity(folder, infile='input.dat'):
'\n \n '
with open(os.path.join(folder, infile), 'r') as file:
file.readline()
file.readline()
line = file.readline()
line_list = line.split()
visc_str = line_list[2]
return float(visc_str)
|
def read_viscosity(folder, infile='input.dat'):
'\n \n '
with open(os.path.join(folder, infile), 'r') as file:
file.readline()
file.readline()
line = file.readline()
line_list = line.split()
visc_str = line_list[2]
return float(visc_str)<|docstring|>Skip two lines, read the third thing from the line, transform to a float.<|endoftext|>
|
d75249316894ca3d4acea69cf686597bd42252f9ac9aefc80c5d34253df49139
|
def read_all_triangulation_input(filename):
'\n read points and triangulation and return it.\n Points numbers in triangulation start from 0.\n '
f = open(filename, 'r')
points = []
trias = []
pointFlag = False
triaFlag = False
for line in f:
if pointFlag:
try:
pos_line = line.split()[1:]
points.append([float(h) for h in pos_line])
except:
pointFlag = False
triaFlag = True
elif triaFlag:
tria_line = line.split()[1:4]
trias.append([(int(val) - 1) for val in tria_line])
elif ('$ Nodes' in line):
pointFlag = True
f.close()
return (np.array(points), np.array(trias, dtype=np.int))
|
read points and triangulation and return it.
Points numbers in triangulation start from 0.
|
FBEM/postproc.py
|
read_all_triangulation_input
|
icemtel/stokes
| 0 |
python
|
def read_all_triangulation_input(filename):
'\n read points and triangulation and return it.\n Points numbers in triangulation start from 0.\n '
f = open(filename, 'r')
points = []
trias = []
pointFlag = False
triaFlag = False
for line in f:
if pointFlag:
try:
pos_line = line.split()[1:]
points.append([float(h) for h in pos_line])
except:
pointFlag = False
triaFlag = True
elif triaFlag:
tria_line = line.split()[1:4]
trias.append([(int(val) - 1) for val in tria_line])
elif ('$ Nodes' in line):
pointFlag = True
f.close()
return (np.array(points), np.array(trias, dtype=np.int))
|
def read_all_triangulation_input(filename):
'\n read points and triangulation and return it.\n Points numbers in triangulation start from 0.\n '
f = open(filename, 'r')
points = []
trias = []
pointFlag = False
triaFlag = False
for line in f:
if pointFlag:
try:
pos_line = line.split()[1:]
points.append([float(h) for h in pos_line])
except:
pointFlag = False
triaFlag = True
elif triaFlag:
tria_line = line.split()[1:4]
trias.append([(int(val) - 1) for val in tria_line])
elif ('$ Nodes' in line):
pointFlag = True
f.close()
return (np.array(points), np.array(trias, dtype=np.int))<|docstring|>read points and triangulation and return it.
Points numbers in triangulation start from 0.<|endoftext|>
|
84ec1a2d0ce7b933183c669d15b30020b6c946a0e5e5db4cc6053170f3d258c2
|
def read_triangulation_by_names_input(object_names, folder, input_name='input.dat'):
"\n :return: list of coords, list of trias, corresponding to each of the input objects\n TODO: should work faster if don't iterate over the names of objects which have their data already loaded\n TODO: And load all points of object after encountering the first one?\n "
ranges = load_ranges(folder)
inputfile = os.path.join(folder, input_name)
result = {}
for name in object_names:
(posiRange, triaRange) = (ranges.coords[name], ranges.trias[name])
posi = np.zeros((((posiRange[1] - posiRange[0]) + 1), 3))
tria = np.zeros((((triaRange[1] - triaRange[0]) + 1), 3), dtype=np.int)
result[name] = (posi, tria)
triaFlag = False
posiFlag = False
with open(inputfile, 'r') as f:
for line in f:
if ('$ Nodes (Nod' in line):
posiFlag = True
if ('$ Elements and Boundary Co' in line):
triaFlag = True
posiFlag = False
if posiFlag:
try:
(a, b, c, d) = line.split()
except:
continue
for name in object_names:
(posiRange, triaRange) = (ranges.coords[name], ranges.trias[name])
if ((int(a) > posiRange[0]) and (int(a) <= (posiRange[1] + 1))):
result[name][0][((int(a) - 1) - posiRange[0])] = (float(b), float(c), float(d))
break
if triaFlag:
try:
(a, b, c, d, e, f, g, h, i, j) = line.split()
except:
continue
for name in object_names:
(posiRange, triaRange) = (ranges.coords[name], ranges.trias[name])
if ((int(a) > triaRange[0]) and (int(a) <= (triaRange[1] + 1))):
result[name][1][((int(a) - 1) - triaRange[0])] = (((int(b) - 1) - posiRange[0]), ((int(c) - 1) - posiRange[0]), ((int(d) - 1) - posiRange[0]))
break
coords_list = [result[name][0] for name in object_names]
trias_list = [result[name][1] for name in object_names]
return (coords_list, trias_list)
|
:return: list of coords, list of trias, corresponding to each of the input objects
TODO: should work faster if don't iterate over the names of objects which have their data already loaded
TODO: And load all points of object after encountering the first one?
|
FBEM/postproc.py
|
read_triangulation_by_names_input
|
icemtel/stokes
| 0 |
python
|
def read_triangulation_by_names_input(object_names, folder, input_name='input.dat'):
"\n :return: list of coords, list of trias, corresponding to each of the input objects\n TODO: should work faster if don't iterate over the names of objects which have their data already loaded\n TODO: And load all points of object after encountering the first one?\n "
ranges = load_ranges(folder)
inputfile = os.path.join(folder, input_name)
result = {}
for name in object_names:
(posiRange, triaRange) = (ranges.coords[name], ranges.trias[name])
posi = np.zeros((((posiRange[1] - posiRange[0]) + 1), 3))
tria = np.zeros((((triaRange[1] - triaRange[0]) + 1), 3), dtype=np.int)
result[name] = (posi, tria)
triaFlag = False
posiFlag = False
with open(inputfile, 'r') as f:
for line in f:
if ('$ Nodes (Nod' in line):
posiFlag = True
if ('$ Elements and Boundary Co' in line):
triaFlag = True
posiFlag = False
if posiFlag:
try:
(a, b, c, d) = line.split()
except:
continue
for name in object_names:
(posiRange, triaRange) = (ranges.coords[name], ranges.trias[name])
if ((int(a) > posiRange[0]) and (int(a) <= (posiRange[1] + 1))):
result[name][0][((int(a) - 1) - posiRange[0])] = (float(b), float(c), float(d))
break
if triaFlag:
try:
(a, b, c, d, e, f, g, h, i, j) = line.split()
except:
continue
for name in object_names:
(posiRange, triaRange) = (ranges.coords[name], ranges.trias[name])
if ((int(a) > triaRange[0]) and (int(a) <= (triaRange[1] + 1))):
result[name][1][((int(a) - 1) - triaRange[0])] = (((int(b) - 1) - posiRange[0]), ((int(c) - 1) - posiRange[0]), ((int(d) - 1) - posiRange[0]))
break
coords_list = [result[name][0] for name in object_names]
trias_list = [result[name][1] for name in object_names]
return (coords_list, trias_list)
|
def read_triangulation_by_names_input(object_names, folder, input_name='input.dat'):
"\n :return: list of coords, list of trias, corresponding to each of the input objects\n TODO: should work faster if don't iterate over the names of objects which have their data already loaded\n TODO: And load all points of object after encountering the first one?\n "
ranges = load_ranges(folder)
inputfile = os.path.join(folder, input_name)
result = {}
for name in object_names:
(posiRange, triaRange) = (ranges.coords[name], ranges.trias[name])
posi = np.zeros((((posiRange[1] - posiRange[0]) + 1), 3))
tria = np.zeros((((triaRange[1] - triaRange[0]) + 1), 3), dtype=np.int)
result[name] = (posi, tria)
triaFlag = False
posiFlag = False
with open(inputfile, 'r') as f:
for line in f:
if ('$ Nodes (Nod' in line):
posiFlag = True
if ('$ Elements and Boundary Co' in line):
triaFlag = True
posiFlag = False
if posiFlag:
try:
(a, b, c, d) = line.split()
except:
continue
for name in object_names:
(posiRange, triaRange) = (ranges.coords[name], ranges.trias[name])
if ((int(a) > posiRange[0]) and (int(a) <= (posiRange[1] + 1))):
result[name][0][((int(a) - 1) - posiRange[0])] = (float(b), float(c), float(d))
break
if triaFlag:
try:
(a, b, c, d, e, f, g, h, i, j) = line.split()
except:
continue
for name in object_names:
(posiRange, triaRange) = (ranges.coords[name], ranges.trias[name])
if ((int(a) > triaRange[0]) and (int(a) <= (triaRange[1] + 1))):
result[name][1][((int(a) - 1) - triaRange[0])] = (((int(b) - 1) - posiRange[0]), ((int(c) - 1) - posiRange[0]), ((int(d) - 1) - posiRange[0]))
break
coords_list = [result[name][0] for name in object_names]
trias_list = [result[name][1] for name in object_names]
return (coords_list, trias_list)<|docstring|>:return: list of coords, list of trias, corresponding to each of the input objects
TODO: should work faster if don't iterate over the names of objects which have their data already loaded
TODO: And load all points of object after encountering the first one?<|endoftext|>
|
0220385264109b571b8bc6d490cccdfac04a34aba2bd283496226c60451749c3
|
def read_triangulation_input(filename, posiRange, triaRange):
"\n filename is the name of the input file. (usually 'input.dat')\n posiRange: indices of coordinates.\n triaRange: indices of triangulation.\n return two numpy arrays, containing the coordinates and the triangulation\n with respect to those coordinates.\n "
tria = np.zeros((((triaRange[1] - triaRange[0]) + 1), 3), dtype=np.int)
posi = np.zeros((((posiRange[1] - posiRange[0]) + 1), 3))
triaFlag = False
posiFlag = False
with open(filename, 'r') as f:
for line in f:
if ('$ Nodes (Nod' in line):
posiFlag = True
if ('$ Elements and Boundary Co' in line):
triaFlag = True
posiFlag = False
if posiFlag:
try:
(a, b, c, d) = line.split()
except:
continue
if ((int(a) > posiRange[0]) and (int(a) <= (posiRange[1] + 1))):
posi[((int(a) - 1) - posiRange[0])] = (float(b), float(c), float(d))
if triaFlag:
try:
(a, b, c, d, e, f, g, h, i, j) = line.split()
except:
continue
if ((int(a) > triaRange[0]) and (int(a) <= (triaRange[1] + 1))):
tria[((int(a) - 1) - triaRange[0])] = (((int(b) - 1) - posiRange[0]), ((int(c) - 1) - posiRange[0]), ((int(d) - 1) - posiRange[0]))
return (posi, tria)
|
filename is the name of the input file. (usually 'input.dat')
posiRange: indices of coordinates.
triaRange: indices of triangulation.
return two numpy arrays, containing the coordinates and the triangulation
with respect to those coordinates.
|
FBEM/postproc.py
|
read_triangulation_input
|
icemtel/stokes
| 0 |
python
|
def read_triangulation_input(filename, posiRange, triaRange):
"\n filename is the name of the input file. (usually 'input.dat')\n posiRange: indices of coordinates.\n triaRange: indices of triangulation.\n return two numpy arrays, containing the coordinates and the triangulation\n with respect to those coordinates.\n "
tria = np.zeros((((triaRange[1] - triaRange[0]) + 1), 3), dtype=np.int)
posi = np.zeros((((posiRange[1] - posiRange[0]) + 1), 3))
triaFlag = False
posiFlag = False
with open(filename, 'r') as f:
for line in f:
if ('$ Nodes (Nod' in line):
posiFlag = True
if ('$ Elements and Boundary Co' in line):
triaFlag = True
posiFlag = False
if posiFlag:
try:
(a, b, c, d) = line.split()
except:
continue
if ((int(a) > posiRange[0]) and (int(a) <= (posiRange[1] + 1))):
posi[((int(a) - 1) - posiRange[0])] = (float(b), float(c), float(d))
if triaFlag:
try:
(a, b, c, d, e, f, g, h, i, j) = line.split()
except:
continue
if ((int(a) > triaRange[0]) and (int(a) <= (triaRange[1] + 1))):
tria[((int(a) - 1) - triaRange[0])] = (((int(b) - 1) - posiRange[0]), ((int(c) - 1) - posiRange[0]), ((int(d) - 1) - posiRange[0]))
return (posi, tria)
|
def read_triangulation_input(filename, posiRange, triaRange):
"\n filename is the name of the input file. (usually 'input.dat')\n posiRange: indices of coordinates.\n triaRange: indices of triangulation.\n return two numpy arrays, containing the coordinates and the triangulation\n with respect to those coordinates.\n "
tria = np.zeros((((triaRange[1] - triaRange[0]) + 1), 3), dtype=np.int)
posi = np.zeros((((posiRange[1] - posiRange[0]) + 1), 3))
triaFlag = False
posiFlag = False
with open(filename, 'r') as f:
for line in f:
if ('$ Nodes (Nod' in line):
posiFlag = True
if ('$ Elements and Boundary Co' in line):
triaFlag = True
posiFlag = False
if posiFlag:
try:
(a, b, c, d) = line.split()
except:
continue
if ((int(a) > posiRange[0]) and (int(a) <= (posiRange[1] + 1))):
posi[((int(a) - 1) - posiRange[0])] = (float(b), float(c), float(d))
if triaFlag:
try:
(a, b, c, d, e, f, g, h, i, j) = line.split()
except:
continue
if ((int(a) > triaRange[0]) and (int(a) <= (triaRange[1] + 1))):
tria[((int(a) - 1) - triaRange[0])] = (((int(b) - 1) - posiRange[0]), ((int(c) - 1) - posiRange[0]), ((int(d) - 1) - posiRange[0]))
return (posi, tria)<|docstring|>filename is the name of the input file. (usually 'input.dat')
posiRange: indices of coordinates.
triaRange: indices of triangulation.
return two numpy arrays, containing the coordinates and the triangulation
with respect to those coordinates.<|endoftext|>
|
4135276e10d4e4619d08c2cf59ecfc602df4ef56555835021b03f0de8262c404
|
def triangleArea(v1, v2, v3):
"\n given three position vectors, calculate the area of a triangle, using\n Heron's formula.\n "
[v1, v2, v3] = [np.array(v) for v in [v1, v2, v3]]
[a, b, c] = [lin.norm(d) for d in [(v1 - v2), (v2 - v3), (v3 - v1)]]
s = (((a + b) + c) / 2.0)
A = np.sqrt((((s * (s - a)) * (s - b)) * (s - c)))
return A
|
given three position vectors, calculate the area of a triangle, using
Heron's formula.
|
FBEM/postproc.py
|
triangleArea
|
icemtel/stokes
| 0 |
python
|
def triangleArea(v1, v2, v3):
"\n given three position vectors, calculate the area of a triangle, using\n Heron's formula.\n "
[v1, v2, v3] = [np.array(v) for v in [v1, v2, v3]]
[a, b, c] = [lin.norm(d) for d in [(v1 - v2), (v2 - v3), (v3 - v1)]]
s = (((a + b) + c) / 2.0)
A = np.sqrt((((s * (s - a)) * (s - b)) * (s - c)))
return A
|
def triangleArea(v1, v2, v3):
"\n given three position vectors, calculate the area of a triangle, using\n Heron's formula.\n "
[v1, v2, v3] = [np.array(v) for v in [v1, v2, v3]]
[a, b, c] = [lin.norm(d) for d in [(v1 - v2), (v2 - v3), (v3 - v1)]]
s = (((a + b) + c) / 2.0)
A = np.sqrt((((s * (s - a)) * (s - b)) * (s - c)))
return A<|docstring|>given three position vectors, calculate the area of a triangle, using
Heron's formula.<|endoftext|>
|
72467692dc3f7f72a7a862d449c33c19199355abe8aff7b8605bbb162c1b32bd
|
def read_triangle_areas_input(filename, posiRange, triaRange):
"\n filename is the path to 'input.dat'\n "
(posi, tria) = read_triangulation_input(filename, posiRange, triaRange)
areas = np.zeros(((triaRange[1] - triaRange[0]) + 1))
for (i, t) in enumerate(tria):
areas[i] = triangleArea(posi[t[0]], posi[t[1]], posi[t[2]])
return areas
|
filename is the path to 'input.dat'
|
FBEM/postproc.py
|
read_triangle_areas_input
|
icemtel/stokes
| 0 |
python
|
def read_triangle_areas_input(filename, posiRange, triaRange):
"\n \n "
(posi, tria) = read_triangulation_input(filename, posiRange, triaRange)
areas = np.zeros(((triaRange[1] - triaRange[0]) + 1))
for (i, t) in enumerate(tria):
areas[i] = triangleArea(posi[t[0]], posi[t[1]], posi[t[2]])
return areas
|
def read_triangle_areas_input(filename, posiRange, triaRange):
"\n \n "
(posi, tria) = read_triangulation_input(filename, posiRange, triaRange)
areas = np.zeros(((triaRange[1] - triaRange[0]) + 1))
for (i, t) in enumerate(tria):
areas[i] = triangleArea(posi[t[0]], posi[t[1]], posi[t[2]])
return areas<|docstring|>filename is the path to 'input.dat'<|endoftext|>
|
78bfe7de3df0ccbe60a3f64997282aaa9fdcd3140eaa9554464314abd32661b7
|
def _exctract_data(posiRange, triaRange, infile='input.dat', outfile='output.dat'):
'\n given a number range, that correspond to an object,\n read velocities, forces and positions and areas as np.arrays.\n '
areas = read_triangle_areas_input(infile, posiRange, triaRange)
num = ((triaRange[1] - triaRange[0]) + 1)
velocities = np.zeros((num, 3))
forces = np.zeros((num, 3))
positions = np.zeros((num, 3))
with open(outfile, 'r') as file:
for line in file:
try:
(a, b, c, d, e, f, g, h, i, j) = line.split()
index = int(a)
if ((index > triaRange[0]) and (index <= (triaRange[1] + 1))):
velocities[((index - triaRange[0]) - 1)] = (float(b), float(c), float(d))
forces[((index - triaRange[0]) - 1)] = (float(e), float(f), float(g))
positions[((index - triaRange[0]) - 1)] = (float(h), float(i), float(j))
if (index > triaRange[1]):
break
except:
continue
for k in range(num):
forces[k] *= areas[k]
visc = read_viscosity('.', infile)
return ResultsData(forces, velocities, positions, visc, areas)
|
given a number range, that correspond to an object,
read velocities, forces and positions and areas as np.arrays.
|
FBEM/postproc.py
|
_exctract_data
|
icemtel/stokes
| 0 |
python
|
def _exctract_data(posiRange, triaRange, infile='input.dat', outfile='output.dat'):
'\n given a number range, that correspond to an object,\n read velocities, forces and positions and areas as np.arrays.\n '
areas = read_triangle_areas_input(infile, posiRange, triaRange)
num = ((triaRange[1] - triaRange[0]) + 1)
velocities = np.zeros((num, 3))
forces = np.zeros((num, 3))
positions = np.zeros((num, 3))
with open(outfile, 'r') as file:
for line in file:
try:
(a, b, c, d, e, f, g, h, i, j) = line.split()
index = int(a)
if ((index > triaRange[0]) and (index <= (triaRange[1] + 1))):
velocities[((index - triaRange[0]) - 1)] = (float(b), float(c), float(d))
forces[((index - triaRange[0]) - 1)] = (float(e), float(f), float(g))
positions[((index - triaRange[0]) - 1)] = (float(h), float(i), float(j))
if (index > triaRange[1]):
break
except:
continue
for k in range(num):
forces[k] *= areas[k]
visc = read_viscosity('.', infile)
return ResultsData(forces, velocities, positions, visc, areas)
|
def _exctract_data(posiRange, triaRange, infile='input.dat', outfile='output.dat'):
'\n given a number range, that correspond to an object,\n read velocities, forces and positions and areas as np.arrays.\n '
areas = read_triangle_areas_input(infile, posiRange, triaRange)
num = ((triaRange[1] - triaRange[0]) + 1)
velocities = np.zeros((num, 3))
forces = np.zeros((num, 3))
positions = np.zeros((num, 3))
with open(outfile, 'r') as file:
for line in file:
try:
(a, b, c, d, e, f, g, h, i, j) = line.split()
index = int(a)
if ((index > triaRange[0]) and (index <= (triaRange[1] + 1))):
velocities[((index - triaRange[0]) - 1)] = (float(b), float(c), float(d))
forces[((index - triaRange[0]) - 1)] = (float(e), float(f), float(g))
positions[((index - triaRange[0]) - 1)] = (float(h), float(i), float(j))
if (index > triaRange[1]):
break
except:
continue
for k in range(num):
forces[k] *= areas[k]
visc = read_viscosity('.', infile)
return ResultsData(forces, velocities, positions, visc, areas)<|docstring|>given a number range, that correspond to an object,
read velocities, forces and positions and areas as np.arrays.<|endoftext|>
|
1a1449fe696392eb18f335c58ad5805cb93b3a8b7707d6d2c867926a9f948701
|
def load_ranges(folder):
'\n Create Ranges class from a ranges.csv file.\n '
ranges = Ranges()
objects_df = pd.read_csv(os.path.join(folder, 'ranges.csv'))
for (idx, row) in objects_df.iterrows():
(name, coords_start, coords_end, trias_start, trias_end) = row
ranges.names.append(name)
ranges.coords[name] = (coords_start, coords_end)
ranges.trias[name] = (trias_start, trias_end)
return ranges
|
Create Ranges class from a ranges.csv file.
|
FBEM/postproc.py
|
load_ranges
|
icemtel/stokes
| 0 |
python
|
def load_ranges(folder):
'\n \n '
ranges = Ranges()
objects_df = pd.read_csv(os.path.join(folder, 'ranges.csv'))
for (idx, row) in objects_df.iterrows():
(name, coords_start, coords_end, trias_start, trias_end) = row
ranges.names.append(name)
ranges.coords[name] = (coords_start, coords_end)
ranges.trias[name] = (trias_start, trias_end)
return ranges
|
def load_ranges(folder):
'\n \n '
ranges = Ranges()
objects_df = pd.read_csv(os.path.join(folder, 'ranges.csv'))
for (idx, row) in objects_df.iterrows():
(name, coords_start, coords_end, trias_start, trias_end) = row
ranges.names.append(name)
ranges.coords[name] = (coords_start, coords_end)
ranges.trias[name] = (trias_start, trias_end)
return ranges<|docstring|>Create Ranges class from a ranges.csv file.<|endoftext|>
|
21ce085be77e45c715a56c698653f0e9df3a758636162b66e81fc617dea96831
|
def extract_data_by_names(object_name_list, folder='.', infile='input.dat', outfile='output.dat'):
'\n Returns list of ResultsData, corresponding to each object in obejct_name_list\n '
ranges = load_ranges(folder)
res_list = []
for object_name in object_name_list:
res = _exctract_data(ranges.coords[object_name], ranges.trias[object_name], infile=os.path.join(folder, infile), outfile=os.path.join(folder, outfile))
res_list.append(res)
return res_list
|
Returns list of ResultsData, corresponding to each object in obejct_name_list
|
FBEM/postproc.py
|
extract_data_by_names
|
icemtel/stokes
| 0 |
python
|
def extract_data_by_names(object_name_list, folder='.', infile='input.dat', outfile='output.dat'):
'\n \n '
ranges = load_ranges(folder)
res_list = []
for object_name in object_name_list:
res = _exctract_data(ranges.coords[object_name], ranges.trias[object_name], infile=os.path.join(folder, infile), outfile=os.path.join(folder, outfile))
res_list.append(res)
return res_list
|
def extract_data_by_names(object_name_list, folder='.', infile='input.dat', outfile='output.dat'):
'\n \n '
ranges = load_ranges(folder)
res_list = []
for object_name in object_name_list:
res = _exctract_data(ranges.coords[object_name], ranges.trias[object_name], infile=os.path.join(folder, infile), outfile=os.path.join(folder, outfile))
res_list.append(res)
return res_list<|docstring|>Returns list of ResultsData, corresponding to each object in obejct_name_list<|endoftext|>
|
59f4809449fdd0eacbcfa2304ea3bd58124d793f9668310746443b0f86f31a04
|
def get_df_from_csv_str(csv_str):
'\n Convert str object to df. Assuming that str object has a structure of csv file.\n '
import io
csv_file = io.StringIO(csv_str)
df = pd.read_csv(csv_file)
return df
|
Convert str object to df. Assuming that str object has a structure of csv file.
|
FBEM/postproc.py
|
get_df_from_csv_str
|
icemtel/stokes
| 0 |
python
|
def get_df_from_csv_str(csv_str):
'\n \n '
import io
csv_file = io.StringIO(csv_str)
df = pd.read_csv(csv_file)
return df
|
def get_df_from_csv_str(csv_str):
'\n \n '
import io
csv_file = io.StringIO(csv_str)
df = pd.read_csv(csv_file)
return df<|docstring|>Convert str object to df. Assuming that str object has a structure of csv file.<|endoftext|>
|
46ffcb4ebe7bcc88b0b7682ec26d755aefbfad5f00bb5c44298c5bd49e7dc77b
|
def load_ranges_hdf5(file_handle, group='.'):
'\n Helper function to load ranges/remembery in one line\n '
g = file_handle[path_to_string(group)]
ranges_csv_str = g['ranges'][()]
ranges = Ranges()
objects_df = get_df_from_csv_str(ranges_csv_str)
for (idx, row) in objects_df.iterrows():
(name, coords_start, coords_end, trias_start, trias_end) = row
ranges.names.append(name)
ranges.coords[name] = (coords_start, coords_end)
ranges.trias[name] = (trias_start, trias_end)
return ranges
|
Helper function to load ranges/remembery in one line
|
FBEM/postproc.py
|
load_ranges_hdf5
|
icemtel/stokes
| 0 |
python
|
def load_ranges_hdf5(file_handle, group='.'):
'\n \n '
g = file_handle[path_to_string(group)]
ranges_csv_str = g['ranges'][()]
ranges = Ranges()
objects_df = get_df_from_csv_str(ranges_csv_str)
for (idx, row) in objects_df.iterrows():
(name, coords_start, coords_end, trias_start, trias_end) = row
ranges.names.append(name)
ranges.coords[name] = (coords_start, coords_end)
ranges.trias[name] = (trias_start, trias_end)
return ranges
|
def load_ranges_hdf5(file_handle, group='.'):
'\n \n '
g = file_handle[path_to_string(group)]
ranges_csv_str = g['ranges'][()]
ranges = Ranges()
objects_df = get_df_from_csv_str(ranges_csv_str)
for (idx, row) in objects_df.iterrows():
(name, coords_start, coords_end, trias_start, trias_end) = row
ranges.names.append(name)
ranges.coords[name] = (coords_start, coords_end)
ranges.trias[name] = (trias_start, trias_end)
return ranges<|docstring|>Helper function to load ranges/remembery in one line<|endoftext|>
|
3bca48be2ffa07bd79c4db4fc3eabac8e0dd584e608f59a879dee7e9b6402542
|
def _extract_data_hdf5(triaRange, file_handle, group='.'):
'\n - given a number range, that correspond to an object,\n read velocities, forces and positions and areas as np.arrays.\n - load from hdf5 file.\n '
g = file_handle[path_to_string(group)]
(t0, t1) = triaRange
forces = g['forces'][t0:(t1 + 1)]
velocities = g['velocities'][t0:(t1 + 1)]
positions = g['coords'][t0:(t1 + 1)]
visc = read_viscosity_hdf5(g)
node_positions = g['node_coords'][:]
trias = g['trias'][t0:(t1 + 1)]
areas = np.array([triangleArea(node_positions[t[0]], node_positions[t[1]], node_positions[t[2]]) for t in trias])
return ResultsData(forces, velocities, positions, visc, areas)
|
- given a number range, that correspond to an object,
read velocities, forces and positions and areas as np.arrays.
- load from hdf5 file.
|
FBEM/postproc.py
|
_extract_data_hdf5
|
icemtel/stokes
| 0 |
python
|
def _extract_data_hdf5(triaRange, file_handle, group='.'):
'\n - given a number range, that correspond to an object,\n read velocities, forces and positions and areas as np.arrays.\n - load from hdf5 file.\n '
g = file_handle[path_to_string(group)]
(t0, t1) = triaRange
forces = g['forces'][t0:(t1 + 1)]
velocities = g['velocities'][t0:(t1 + 1)]
positions = g['coords'][t0:(t1 + 1)]
visc = read_viscosity_hdf5(g)
node_positions = g['node_coords'][:]
trias = g['trias'][t0:(t1 + 1)]
areas = np.array([triangleArea(node_positions[t[0]], node_positions[t[1]], node_positions[t[2]]) for t in trias])
return ResultsData(forces, velocities, positions, visc, areas)
|
def _extract_data_hdf5(triaRange, file_handle, group='.'):
'\n - given a number range, that correspond to an object,\n read velocities, forces and positions and areas as np.arrays.\n - load from hdf5 file.\n '
g = file_handle[path_to_string(group)]
(t0, t1) = triaRange
forces = g['forces'][t0:(t1 + 1)]
velocities = g['velocities'][t0:(t1 + 1)]
positions = g['coords'][t0:(t1 + 1)]
visc = read_viscosity_hdf5(g)
node_positions = g['node_coords'][:]
trias = g['trias'][t0:(t1 + 1)]
areas = np.array([triangleArea(node_positions[t[0]], node_positions[t[1]], node_positions[t[2]]) for t in trias])
return ResultsData(forces, velocities, positions, visc, areas)<|docstring|>- given a number range, that correspond to an object,
read velocities, forces and positions and areas as np.arrays.
- load from hdf5 file.<|endoftext|>
|
28c1c51078c06b061575248c793e7ca4f84341f33b54b8e170e55806513770dc
|
def extract_data_by_names_hdf5(names, file, group='.'):
'\n Returns list of ResultsData, corresponding to each object in obejct_name_list\n '
ranges = load_ranges_hdf5(file, group)
g = file[path_to_string(group)]
forces_full = g['forces'][()]
velocities_full = g['velocities'][()]
positions_full = g['coords'][()]
node_positions = g['node_coords'][:]
visc = read_viscosity_hdf5(g)
res_list = []
for name in names:
(t0, t1) = ranges.trias[name]
forces = forces_full[t0:(t1 + 1)]
velocities = velocities_full[t0:(t1 + 1)]
positions = positions_full[t0:(t1 + 1)]
trias = g['trias'][t0:(t1 + 1)]
areas = np.array([triangleArea(node_positions[t[0]], node_positions[t[1]], node_positions[t[2]]) for t in trias])
res = ResultsData(forces, velocities, positions, visc, areas)
res_list.append(res)
return res_list
|
Returns list of ResultsData, corresponding to each object in obejct_name_list
|
FBEM/postproc.py
|
extract_data_by_names_hdf5
|
icemtel/stokes
| 0 |
python
|
def extract_data_by_names_hdf5(names, file, group='.'):
'\n \n '
ranges = load_ranges_hdf5(file, group)
g = file[path_to_string(group)]
forces_full = g['forces'][()]
velocities_full = g['velocities'][()]
positions_full = g['coords'][()]
node_positions = g['node_coords'][:]
visc = read_viscosity_hdf5(g)
res_list = []
for name in names:
(t0, t1) = ranges.trias[name]
forces = forces_full[t0:(t1 + 1)]
velocities = velocities_full[t0:(t1 + 1)]
positions = positions_full[t0:(t1 + 1)]
trias = g['trias'][t0:(t1 + 1)]
areas = np.array([triangleArea(node_positions[t[0]], node_positions[t[1]], node_positions[t[2]]) for t in trias])
res = ResultsData(forces, velocities, positions, visc, areas)
res_list.append(res)
return res_list
|
def extract_data_by_names_hdf5(names, file, group='.'):
'\n \n '
ranges = load_ranges_hdf5(file, group)
g = file[path_to_string(group)]
forces_full = g['forces'][()]
velocities_full = g['velocities'][()]
positions_full = g['coords'][()]
node_positions = g['node_coords'][:]
visc = read_viscosity_hdf5(g)
res_list = []
for name in names:
(t0, t1) = ranges.trias[name]
forces = forces_full[t0:(t1 + 1)]
velocities = velocities_full[t0:(t1 + 1)]
positions = positions_full[t0:(t1 + 1)]
trias = g['trias'][t0:(t1 + 1)]
areas = np.array([triangleArea(node_positions[t[0]], node_positions[t[1]], node_positions[t[2]]) for t in trias])
res = ResultsData(forces, velocities, positions, visc, areas)
res_list.append(res)
return res_list<|docstring|>Returns list of ResultsData, corresponding to each object in obejct_name_list<|endoftext|>
|
470988e0d9d37d4e9408343d68aee774738fa468bf2ef807db0d6a9a5b7af37d
|
def get_names(self):
'\n :return: object names without "all"\n '
names = self.names.copy()
names.remove('all')
return names
|
:return: object names without "all"
|
FBEM/postproc.py
|
get_names
|
icemtel/stokes
| 0 |
python
|
def get_names(self):
'\n \n '
names = self.names.copy()
names.remove('all')
return names
|
def get_names(self):
'\n \n '
names = self.names.copy()
names.remove('all')
return names<|docstring|>:return: object names without "all"<|endoftext|>
|
3063ab9b0e5f141c2464bacd639fd513ea8db83eb56f74339a8492f6c23ad2d4
|
def __init__(self, path, group='.'):
'\n :param path: either folder or hdf5 filename\n :param group: group in hdf5 file; ignored if `path` is a folder\n '
self.path = Path(path)
self.group = group
if (not self.path.exists()):
raise ValueError("Path doesn't point to a hdf5 file or directory")
if self.path.is_dir():
self.is_hdf5 = False
elif (self.path.suffix in ['.h5', '.hdf5']):
self.is_hdf5 = True
else:
raise NotImplementedError
|
:param path: either folder or hdf5 filename
:param group: group in hdf5 file; ignored if `path` is a folder
|
FBEM/postproc.py
|
__init__
|
icemtel/stokes
| 0 |
python
|
def __init__(self, path, group='.'):
'\n :param path: either folder or hdf5 filename\n :param group: group in hdf5 file; ignored if `path` is a folder\n '
self.path = Path(path)
self.group = group
if (not self.path.exists()):
raise ValueError("Path doesn't point to a hdf5 file or directory")
if self.path.is_dir():
self.is_hdf5 = False
elif (self.path.suffix in ['.h5', '.hdf5']):
self.is_hdf5 = True
else:
raise NotImplementedError
|
def __init__(self, path, group='.'):
'\n :param path: either folder or hdf5 filename\n :param group: group in hdf5 file; ignored if `path` is a folder\n '
self.path = Path(path)
self.group = group
if (not self.path.exists()):
raise ValueError("Path doesn't point to a hdf5 file or directory")
if self.path.is_dir():
self.is_hdf5 = False
elif (self.path.suffix in ['.h5', '.hdf5']):
self.is_hdf5 = True
else:
raise NotImplementedError<|docstring|>:param path: either folder or hdf5 filename
:param group: group in hdf5 file; ignored if `path` is a folder<|endoftext|>
|
198f1d620da33217d41e84b9166c3cd635efefd518dea6d5c190d42c69992322
|
def read_triangulation_list(self, names):
'\n :return: Tuple: list of coords and list of triangles\n '
if self.is_hdf5:
with h5py.File(self.path, 'r') as file:
return read_triangulation_by_names_hdf5(names, file, self.group)
else:
return read_triangulation_by_names_input(names, self.path)
|
:return: Tuple: list of coords and list of triangles
|
FBEM/postproc.py
|
read_triangulation_list
|
icemtel/stokes
| 0 |
python
|
def read_triangulation_list(self, names):
'\n \n '
if self.is_hdf5:
with h5py.File(self.path, 'r') as file:
return read_triangulation_by_names_hdf5(names, file, self.group)
else:
return read_triangulation_by_names_input(names, self.path)
|
def read_triangulation_list(self, names):
'\n \n '
if self.is_hdf5:
with h5py.File(self.path, 'r') as file:
return read_triangulation_by_names_hdf5(names, file, self.group)
else:
return read_triangulation_by_names_input(names, self.path)<|docstring|>:return: Tuple: list of coords and list of triangles<|endoftext|>
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.