body_hash
stringlengths 64
64
| body
stringlengths 23
109k
| docstring
stringlengths 1
57k
| path
stringlengths 4
198
| name
stringlengths 1
115
| repository_name
stringlengths 7
111
| repository_stars
float64 0
191k
| lang
stringclasses 1
value | body_without_docstring
stringlengths 14
108k
| unified
stringlengths 45
133k
|
---|---|---|---|---|---|---|---|---|---|
f120e9d3bd406f7bd2c0bf04b4a12fe3e075a45eb907f3288d513bd82f913e5c
|
def test_does_not_support(self):
'Test OBJ_DOES_NOT_SUPPORT_RE.'
msgs = [("'range' object does not support item assignment", ('range', 'item assignment')), ("'str' object doesn't support item deletion", ('str', 'item deletion')), ("'set' object does not support indexing", ('set', 'indexing'))]
for (msg, groups) in msgs:
results = (groups, dict())
self.re_matches(msg, re.OBJ_DOES_NOT_SUPPORT_RE, results)
|
Test OBJ_DOES_NOT_SUPPORT_RE.
|
didyoumean/didyoumean_re_tests.py
|
test_does_not_support
|
SylvainDe/DidYouMean-Python
| 76 |
python
|
def test_does_not_support(self):
msgs = [("'range' object does not support item assignment", ('range', 'item assignment')), ("'str' object doesn't support item deletion", ('str', 'item deletion')), ("'set' object does not support indexing", ('set', 'indexing'))]
for (msg, groups) in msgs:
results = (groups, dict())
self.re_matches(msg, re.OBJ_DOES_NOT_SUPPORT_RE, results)
|
def test_does_not_support(self):
msgs = [("'range' object does not support item assignment", ('range', 'item assignment')), ("'str' object doesn't support item deletion", ('str', 'item deletion')), ("'set' object does not support indexing", ('set', 'indexing'))]
for (msg, groups) in msgs:
results = (groups, dict())
self.re_matches(msg, re.OBJ_DOES_NOT_SUPPORT_RE, results)<|docstring|>Test OBJ_DOES_NOT_SUPPORT_RE.<|endoftext|>
|
cf9ed6c1852f5082255275f7e42e46c2c63e78ee3babcfa29e09f7226b6658dc
|
def test_cant_convert(self):
'Test CANT_CONVERT_RE.'
msg = "Can't convert 'int' object to str implicitly"
groups = ('int', 'str')
results = (groups, dict())
self.re_matches(msg, re.CANT_CONVERT_RE, results)
|
Test CANT_CONVERT_RE.
|
didyoumean/didyoumean_re_tests.py
|
test_cant_convert
|
SylvainDe/DidYouMean-Python
| 76 |
python
|
def test_cant_convert(self):
msg = "Can't convert 'int' object to str implicitly"
groups = ('int', 'str')
results = (groups, dict())
self.re_matches(msg, re.CANT_CONVERT_RE, results)
|
def test_cant_convert(self):
msg = "Can't convert 'int' object to str implicitly"
groups = ('int', 'str')
results = (groups, dict())
self.re_matches(msg, re.CANT_CONVERT_RE, results)<|docstring|>Test CANT_CONVERT_RE.<|endoftext|>
|
a9254ede12363e59f5c0cb900a5819d76a71cc47bba5cd6c56b86cf35bef45e7
|
def test_must_be_type1_not_type2(self):
'Test MUST_BE_TYPE1_NOT_TYPE2_RE.'
msg = 'must be str, not int'
groups = ('str', 'int')
results = (groups, dict())
self.re_matches(msg, re.MUST_BE_TYPE1_NOT_TYPE2_RE, results)
|
Test MUST_BE_TYPE1_NOT_TYPE2_RE.
|
didyoumean/didyoumean_re_tests.py
|
test_must_be_type1_not_type2
|
SylvainDe/DidYouMean-Python
| 76 |
python
|
def test_must_be_type1_not_type2(self):
msg = 'must be str, not int'
groups = ('str', 'int')
results = (groups, dict())
self.re_matches(msg, re.MUST_BE_TYPE1_NOT_TYPE2_RE, results)
|
def test_must_be_type1_not_type2(self):
msg = 'must be str, not int'
groups = ('str', 'int')
results = (groups, dict())
self.re_matches(msg, re.MUST_BE_TYPE1_NOT_TYPE2_RE, results)<|docstring|>Test MUST_BE_TYPE1_NOT_TYPE2_RE.<|endoftext|>
|
14fbee6a2a0e9abdd9a6754ce5386df95a64ef6b2547630198b922271f82fa33
|
def test_cannot_concat(self):
'Test CANNOT_CONCAT_RE.'
msg = "cannot concatenate 'str' and 'int' objects"
groups = ('str', 'int')
results = (groups, dict())
self.re_matches(msg, re.CANNOT_CONCAT_RE, results)
|
Test CANNOT_CONCAT_RE.
|
didyoumean/didyoumean_re_tests.py
|
test_cannot_concat
|
SylvainDe/DidYouMean-Python
| 76 |
python
|
def test_cannot_concat(self):
msg = "cannot concatenate 'str' and 'int' objects"
groups = ('str', 'int')
results = (groups, dict())
self.re_matches(msg, re.CANNOT_CONCAT_RE, results)
|
def test_cannot_concat(self):
msg = "cannot concatenate 'str' and 'int' objects"
groups = ('str', 'int')
results = (groups, dict())
self.re_matches(msg, re.CANNOT_CONCAT_RE, results)<|docstring|>Test CANNOT_CONCAT_RE.<|endoftext|>
|
4939a0f2467af5973671e24f138528add8507fa6d1269aa02b42bc2d46b9b072
|
def test_only_concat(self):
'Test ONLY_CONCAT_RE.'
msg = 'can only concatenate list (not "set") to list'
self.re_matches(msg, re.ONLY_CONCAT_RE, NO_GROUP)
|
Test ONLY_CONCAT_RE.
|
didyoumean/didyoumean_re_tests.py
|
test_only_concat
|
SylvainDe/DidYouMean-Python
| 76 |
python
|
def test_only_concat(self):
msg = 'can only concatenate list (not "set") to list'
self.re_matches(msg, re.ONLY_CONCAT_RE, NO_GROUP)
|
def test_only_concat(self):
msg = 'can only concatenate list (not "set") to list'
self.re_matches(msg, re.ONLY_CONCAT_RE, NO_GROUP)<|docstring|>Test ONLY_CONCAT_RE.<|endoftext|>
|
dbc0fdf1ac339f93301ce39335c76c1a151c39a02147294722a73ca574541f2d
|
def test_unsupported_operand(self):
'Test UNSUPPORTED_OP_RE.'
msgs = [("unsupported operand type(s) for +: 'int' and 'str'", '+', 'int', 'str'), ("unsupported operand type(s) for -: 'builtin_function' and 'int'", '-', 'builtin_function', 'int')]
for (msg, op, t1, t2) in msgs:
groups = (op, t1, t2)
named_groups = {'op': op, 't1': t1, 't2': t2}
results = (groups, named_groups)
self.re_matches(msg, re.UNSUPPORTED_OP_RE, results)
|
Test UNSUPPORTED_OP_RE.
|
didyoumean/didyoumean_re_tests.py
|
test_unsupported_operand
|
SylvainDe/DidYouMean-Python
| 76 |
python
|
def test_unsupported_operand(self):
msgs = [("unsupported operand type(s) for +: 'int' and 'str'", '+', 'int', 'str'), ("unsupported operand type(s) for -: 'builtin_function' and 'int'", '-', 'builtin_function', 'int')]
for (msg, op, t1, t2) in msgs:
groups = (op, t1, t2)
named_groups = {'op': op, 't1': t1, 't2': t2}
results = (groups, named_groups)
self.re_matches(msg, re.UNSUPPORTED_OP_RE, results)
|
def test_unsupported_operand(self):
msgs = [("unsupported operand type(s) for +: 'int' and 'str'", '+', 'int', 'str'), ("unsupported operand type(s) for -: 'builtin_function' and 'int'", '-', 'builtin_function', 'int')]
for (msg, op, t1, t2) in msgs:
groups = (op, t1, t2)
named_groups = {'op': op, 't1': t1, 't2': t2}
results = (groups, named_groups)
self.re_matches(msg, re.UNSUPPORTED_OP_RE, results)<|docstring|>Test UNSUPPORTED_OP_RE.<|endoftext|>
|
a6e1af2e7298febf304f3c78b3b69d12d9c9f595c890859ffbd6fc67d4e0dd92
|
def test_unsupported_operand_sugg(self):
'Test UNSUPPORTED_OP_SUGG_RE.'
msgs = [('unsupported operand type(s) for >>: \'builtin_function_or_method\' and \'int\'. Did you mean "print(<message>, file=<output_stream>)"?', '>>', 'builtin_function_or_method', 'int', 'print(<message>, file=<output_stream>)'), ('unsupported operand type(s) for -: \'builtin_function\' and \'int\'. Did you mean "print(<-number>)"?', '-', 'builtin_function', 'int', 'print(<-number>)')]
for (msg, op, t1, t2, sugg) in msgs:
groups = (op, t1, t2, sugg)
named_groups = {'op': op, 't1': t1, 't2': t2, 'sugg': sugg}
results = (groups, named_groups)
self.re_matches(msg, re.UNSUPPORTED_OP_SUGG_RE, results)
|
Test UNSUPPORTED_OP_SUGG_RE.
|
didyoumean/didyoumean_re_tests.py
|
test_unsupported_operand_sugg
|
SylvainDe/DidYouMean-Python
| 76 |
python
|
def test_unsupported_operand_sugg(self):
msgs = [('unsupported operand type(s) for >>: \'builtin_function_or_method\' and \'int\'. Did you mean "print(<message>, file=<output_stream>)"?', '>>', 'builtin_function_or_method', 'int', 'print(<message>, file=<output_stream>)'), ('unsupported operand type(s) for -: \'builtin_function\' and \'int\'. Did you mean "print(<-number>)"?', '-', 'builtin_function', 'int', 'print(<-number>)')]
for (msg, op, t1, t2, sugg) in msgs:
groups = (op, t1, t2, sugg)
named_groups = {'op': op, 't1': t1, 't2': t2, 'sugg': sugg}
results = (groups, named_groups)
self.re_matches(msg, re.UNSUPPORTED_OP_SUGG_RE, results)
|
def test_unsupported_operand_sugg(self):
msgs = [('unsupported operand type(s) for >>: \'builtin_function_or_method\' and \'int\'. Did you mean "print(<message>, file=<output_stream>)"?', '>>', 'builtin_function_or_method', 'int', 'print(<message>, file=<output_stream>)'), ('unsupported operand type(s) for -: \'builtin_function\' and \'int\'. Did you mean "print(<-number>)"?', '-', 'builtin_function', 'int', 'print(<-number>)')]
for (msg, op, t1, t2, sugg) in msgs:
groups = (op, t1, t2, sugg)
named_groups = {'op': op, 't1': t1, 't2': t2, 'sugg': sugg}
results = (groups, named_groups)
self.re_matches(msg, re.UNSUPPORTED_OP_SUGG_RE, results)<|docstring|>Test UNSUPPORTED_OP_SUGG_RE.<|endoftext|>
|
ddb796cd1af60f3e9b2e8541a2d1eb771e883736f241c7a66d9b7e347c5c4edc
|
def test_bad_operand_unary(self):
'Test BAD_OPERAND_UNARY_RE.'
msgs = [("bad operand type for unary ~: 'set'", ('~', 'set')), ("bad operand type for abs(): 'set'", ('abs()', 'set')), ("unsupported operand type for unary neg: 'Foobar'", ('neg', 'Foobar'))]
for (msg, groups) in msgs:
results = (groups, dict())
self.re_matches(msg, re.BAD_OPERAND_UNARY_RE, results)
|
Test BAD_OPERAND_UNARY_RE.
|
didyoumean/didyoumean_re_tests.py
|
test_bad_operand_unary
|
SylvainDe/DidYouMean-Python
| 76 |
python
|
def test_bad_operand_unary(self):
msgs = [("bad operand type for unary ~: 'set'", ('~', 'set')), ("bad operand type for abs(): 'set'", ('abs()', 'set')), ("unsupported operand type for unary neg: 'Foobar'", ('neg', 'Foobar'))]
for (msg, groups) in msgs:
results = (groups, dict())
self.re_matches(msg, re.BAD_OPERAND_UNARY_RE, results)
|
def test_bad_operand_unary(self):
msgs = [("bad operand type for unary ~: 'set'", ('~', 'set')), ("bad operand type for abs(): 'set'", ('abs()', 'set')), ("unsupported operand type for unary neg: 'Foobar'", ('neg', 'Foobar'))]
for (msg, groups) in msgs:
results = (groups, dict())
self.re_matches(msg, re.BAD_OPERAND_UNARY_RE, results)<|docstring|>Test BAD_OPERAND_UNARY_RE.<|endoftext|>
|
c273f34de4208883721c635b219d3f49571f2403ea1e3cadad9a20286460b553
|
def test_not_callable(self):
'Test NOT_CALLABLE_RE.'
msg = "'list' object is not callable"
groups = ('list',)
results = (groups, dict())
self.re_matches(msg, re.NOT_CALLABLE_RE, results)
|
Test NOT_CALLABLE_RE.
|
didyoumean/didyoumean_re_tests.py
|
test_not_callable
|
SylvainDe/DidYouMean-Python
| 76 |
python
|
def test_not_callable(self):
msg = "'list' object is not callable"
groups = ('list',)
results = (groups, dict())
self.re_matches(msg, re.NOT_CALLABLE_RE, results)
|
def test_not_callable(self):
msg = "'list' object is not callable"
groups = ('list',)
results = (groups, dict())
self.re_matches(msg, re.NOT_CALLABLE_RE, results)<|docstring|>Test NOT_CALLABLE_RE.<|endoftext|>
|
bdc4f14d448cb0c59aa38dac400e0b7d60ce0dff6eca790be7f74fe3a23894bf
|
def test_descriptor_requires(self):
'Test DESCRIPT_REQUIRES_TYPE_RE.'
msgs = ["descriptor 'add' requires a 'set' object but received a 'int'", "descriptor 'add' for 'set' objects doesn't apply to 'int' object", "descriptor 'add' for 'set' objects doesn't apply to a 'int' object"]
for msg in msgs:
groups = ('add', 'set', 'int')
results = (groups, dict())
self.re_matches(msg, re.DESCRIPT_REQUIRES_TYPE_RE, results)
|
Test DESCRIPT_REQUIRES_TYPE_RE.
|
didyoumean/didyoumean_re_tests.py
|
test_descriptor_requires
|
SylvainDe/DidYouMean-Python
| 76 |
python
|
def test_descriptor_requires(self):
msgs = ["descriptor 'add' requires a 'set' object but received a 'int'", "descriptor 'add' for 'set' objects doesn't apply to 'int' object", "descriptor 'add' for 'set' objects doesn't apply to a 'int' object"]
for msg in msgs:
groups = ('add', 'set', 'int')
results = (groups, dict())
self.re_matches(msg, re.DESCRIPT_REQUIRES_TYPE_RE, results)
|
def test_descriptor_requires(self):
msgs = ["descriptor 'add' requires a 'set' object but received a 'int'", "descriptor 'add' for 'set' objects doesn't apply to 'int' object", "descriptor 'add' for 'set' objects doesn't apply to a 'int' object"]
for msg in msgs:
groups = ('add', 'set', 'int')
results = (groups, dict())
self.re_matches(msg, re.DESCRIPT_REQUIRES_TYPE_RE, results)<|docstring|>Test DESCRIPT_REQUIRES_TYPE_RE.<|endoftext|>
|
1ff23fdac0ae0d3999fb4dce8397b35fbd684a2e88b43342e42ef042f070660a
|
def test_argument_not_iterable(self):
'Test ARG_NOT_ITERABLE_RE.'
msgs = ["argument of type 'type' is not iterable", "'type' object is not iterable"]
groups = ('type',)
results = (groups, dict())
for msg in msgs:
self.re_matches(msg, re.ARG_NOT_ITERABLE_RE, results)
|
Test ARG_NOT_ITERABLE_RE.
|
didyoumean/didyoumean_re_tests.py
|
test_argument_not_iterable
|
SylvainDe/DidYouMean-Python
| 76 |
python
|
def test_argument_not_iterable(self):
msgs = ["argument of type 'type' is not iterable", "'type' object is not iterable"]
groups = ('type',)
results = (groups, dict())
for msg in msgs:
self.re_matches(msg, re.ARG_NOT_ITERABLE_RE, results)
|
def test_argument_not_iterable(self):
msgs = ["argument of type 'type' is not iterable", "'type' object is not iterable"]
groups = ('type',)
results = (groups, dict())
for msg in msgs:
self.re_matches(msg, re.ARG_NOT_ITERABLE_RE, results)<|docstring|>Test ARG_NOT_ITERABLE_RE.<|endoftext|>
|
28e885f410bcf8369303f050af5245758ba9add35105a0cbcacfd89708410dbd
|
def test_must_be_called_with_instance(self):
'Test MUST_BE_CALLED_WITH_INST_RE.'
msg = 'unbound method add() must be called with set instance as first argument (got int instance instead)'
groups = ('add', 'set', 'int')
results = (groups, dict())
self.re_matches(msg, re.MUST_BE_CALLED_WITH_INST_RE, results)
|
Test MUST_BE_CALLED_WITH_INST_RE.
|
didyoumean/didyoumean_re_tests.py
|
test_must_be_called_with_instance
|
SylvainDe/DidYouMean-Python
| 76 |
python
|
def test_must_be_called_with_instance(self):
msg = 'unbound method add() must be called with set instance as first argument (got int instance instead)'
groups = ('add', 'set', 'int')
results = (groups, dict())
self.re_matches(msg, re.MUST_BE_CALLED_WITH_INST_RE, results)
|
def test_must_be_called_with_instance(self):
msg = 'unbound method add() must be called with set instance as first argument (got int instance instead)'
groups = ('add', 'set', 'int')
results = (groups, dict())
self.re_matches(msg, re.MUST_BE_CALLED_WITH_INST_RE, results)<|docstring|>Test MUST_BE_CALLED_WITH_INST_RE.<|endoftext|>
|
f913676dae4a96161abb6143b76c35211a84cfffc7d7eefac984f21ccc5db9c1
|
def test_object_has_no(self):
'Test OBJECT_HAS_NO_FUNC_RE.'
msgs = {'len': "object of type 'generator' has no len()", 'length': "'generator' has no length"}
for (name, msg) in msgs.items():
groups = ('generator', name)
results = (groups, dict())
self.re_matches(msg, re.OBJECT_HAS_NO_FUNC_RE, results)
|
Test OBJECT_HAS_NO_FUNC_RE.
|
didyoumean/didyoumean_re_tests.py
|
test_object_has_no
|
SylvainDe/DidYouMean-Python
| 76 |
python
|
def test_object_has_no(self):
msgs = {'len': "object of type 'generator' has no len()", 'length': "'generator' has no length"}
for (name, msg) in msgs.items():
groups = ('generator', name)
results = (groups, dict())
self.re_matches(msg, re.OBJECT_HAS_NO_FUNC_RE, results)
|
def test_object_has_no(self):
msgs = {'len': "object of type 'generator' has no len()", 'length': "'generator' has no length"}
for (name, msg) in msgs.items():
groups = ('generator', name)
results = (groups, dict())
self.re_matches(msg, re.OBJECT_HAS_NO_FUNC_RE, results)<|docstring|>Test OBJECT_HAS_NO_FUNC_RE.<|endoftext|>
|
7611e00ad5bd6b826c617ac95428d564a0403545836740898b56f04c271c80f3
|
def test_instance_has_no_meth(self):
'Test INSTANCE_HAS_NO_METH_RE.'
msg = 'CustomClass instance has no __call__ method'
(class_, method) = ('CustomClass', '__call__')
groups = (class_, method)
results = (groups, dict())
self.re_matches(msg, re.INSTANCE_HAS_NO_METH_RE, results)
|
Test INSTANCE_HAS_NO_METH_RE.
|
didyoumean/didyoumean_re_tests.py
|
test_instance_has_no_meth
|
SylvainDe/DidYouMean-Python
| 76 |
python
|
def test_instance_has_no_meth(self):
msg = 'CustomClass instance has no __call__ method'
(class_, method) = ('CustomClass', '__call__')
groups = (class_, method)
results = (groups, dict())
self.re_matches(msg, re.INSTANCE_HAS_NO_METH_RE, results)
|
def test_instance_has_no_meth(self):
msg = 'CustomClass instance has no __call__ method'
(class_, method) = ('CustomClass', '__call__')
groups = (class_, method)
results = (groups, dict())
self.re_matches(msg, re.INSTANCE_HAS_NO_METH_RE, results)<|docstring|>Test INSTANCE_HAS_NO_METH_RE.<|endoftext|>
|
8806ad2ec20b426e90e86f17d5dbdaaee9d185610ba4687bbc4bd93960744950
|
def test_nobinding_nonlocal(self):
'Test NO_BINDING_NONLOCAL_RE.'
msg = "no binding for nonlocal 'foo' found"
groups = ('foo',)
results = (groups, dict())
self.re_matches(msg, re.NO_BINDING_NONLOCAL_RE, results)
|
Test NO_BINDING_NONLOCAL_RE.
|
didyoumean/didyoumean_re_tests.py
|
test_nobinding_nonlocal
|
SylvainDe/DidYouMean-Python
| 76 |
python
|
def test_nobinding_nonlocal(self):
msg = "no binding for nonlocal 'foo' found"
groups = ('foo',)
results = (groups, dict())
self.re_matches(msg, re.NO_BINDING_NONLOCAL_RE, results)
|
def test_nobinding_nonlocal(self):
msg = "no binding for nonlocal 'foo' found"
groups = ('foo',)
results = (groups, dict())
self.re_matches(msg, re.NO_BINDING_NONLOCAL_RE, results)<|docstring|>Test NO_BINDING_NONLOCAL_RE.<|endoftext|>
|
3f3c504fd84ca91e26c323f1710b4cfb9e5dc23e3873f49cf8b737da4e337c06
|
def test_nonlocal_at_module_level(self):
'Test NONLOCAL_AT_MODULE_RE.'
msg = 'nonlocal declaration not allowed at module level'
self.re_matches(msg, re.NONLOCAL_AT_MODULE_RE, NO_GROUP)
|
Test NONLOCAL_AT_MODULE_RE.
|
didyoumean/didyoumean_re_tests.py
|
test_nonlocal_at_module_level
|
SylvainDe/DidYouMean-Python
| 76 |
python
|
def test_nonlocal_at_module_level(self):
msg = 'nonlocal declaration not allowed at module level'
self.re_matches(msg, re.NONLOCAL_AT_MODULE_RE, NO_GROUP)
|
def test_nonlocal_at_module_level(self):
msg = 'nonlocal declaration not allowed at module level'
self.re_matches(msg, re.NONLOCAL_AT_MODULE_RE, NO_GROUP)<|docstring|>Test NONLOCAL_AT_MODULE_RE.<|endoftext|>
|
87d345c181f7c28646dde4059f42fef53179e7db5255b5756aafe1abbc172413
|
def test_unexpected_eof(self):
'Test UNEXPECTED_EOF_RE.'
msg = 'unexpected EOF while parsing'
self.re_matches(msg, re.UNEXPECTED_EOF_RE, NO_GROUP)
|
Test UNEXPECTED_EOF_RE.
|
didyoumean/didyoumean_re_tests.py
|
test_unexpected_eof
|
SylvainDe/DidYouMean-Python
| 76 |
python
|
def test_unexpected_eof(self):
msg = 'unexpected EOF while parsing'
self.re_matches(msg, re.UNEXPECTED_EOF_RE, NO_GROUP)
|
def test_unexpected_eof(self):
msg = 'unexpected EOF while parsing'
self.re_matches(msg, re.UNEXPECTED_EOF_RE, NO_GROUP)<|docstring|>Test UNEXPECTED_EOF_RE.<|endoftext|>
|
8529b59cd3bf8687fbd7845d25692ca64fb5af4357588bac9084b7d9cabb26ec
|
def test_nosuchfile(self):
'Test NO_SUCH_FILE_RE.'
msg = 'No such file or directory'
self.re_matches(msg, re.NO_SUCH_FILE_RE, NO_GROUP)
|
Test NO_SUCH_FILE_RE.
|
didyoumean/didyoumean_re_tests.py
|
test_nosuchfile
|
SylvainDe/DidYouMean-Python
| 76 |
python
|
def test_nosuchfile(self):
msg = 'No such file or directory'
self.re_matches(msg, re.NO_SUCH_FILE_RE, NO_GROUP)
|
def test_nosuchfile(self):
msg = 'No such file or directory'
self.re_matches(msg, re.NO_SUCH_FILE_RE, NO_GROUP)<|docstring|>Test NO_SUCH_FILE_RE.<|endoftext|>
|
2049d9c399ec2bb8f8e329042d38b6721a8719f6c1aac8ea348207d05f07b802
|
def test_timedata_does_not_match_format(self):
'Test TIME_DATA_DOES_NOT_MATCH_FORMAT_RE.'
msg = "time data '%d %b %y' does not match format '30 Nov 00'"
groups = ("'%d %b %y'", "'30 Nov 00'")
named_groups = {'format': "'30 Nov 00'", 'timedata': "'%d %b %y'"}
results = (groups, named_groups)
self.re_matches(msg, re.TIME_DATA_DOES_NOT_MATCH_FORMAT_RE, results)
|
Test TIME_DATA_DOES_NOT_MATCH_FORMAT_RE.
|
didyoumean/didyoumean_re_tests.py
|
test_timedata_does_not_match_format
|
SylvainDe/DidYouMean-Python
| 76 |
python
|
def test_timedata_does_not_match_format(self):
msg = "time data '%d %b %y' does not match format '30 Nov 00'"
groups = ("'%d %b %y'", "'30 Nov 00'")
named_groups = {'format': "'30 Nov 00'", 'timedata': "'%d %b %y'"}
results = (groups, named_groups)
self.re_matches(msg, re.TIME_DATA_DOES_NOT_MATCH_FORMAT_RE, results)
|
def test_timedata_does_not_match_format(self):
msg = "time data '%d %b %y' does not match format '30 Nov 00'"
groups = ("'%d %b %y'", "'30 Nov 00'")
named_groups = {'format': "'30 Nov 00'", 'timedata': "'%d %b %y'"}
results = (groups, named_groups)
self.re_matches(msg, re.TIME_DATA_DOES_NOT_MATCH_FORMAT_RE, results)<|docstring|>Test TIME_DATA_DOES_NOT_MATCH_FORMAT_RE.<|endoftext|>
|
b1192d38670e5117a3199854769c5d455d30eeb3ba51ee5b44b7958fea66cbc0
|
def test_invalid_token(self):
'Test INVALID_TOKEN_RE.'
msg = 'invalid token'
self.re_matches(msg, re.INVALID_TOKEN_RE, NO_GROUP)
|
Test INVALID_TOKEN_RE.
|
didyoumean/didyoumean_re_tests.py
|
test_invalid_token
|
SylvainDe/DidYouMean-Python
| 76 |
python
|
def test_invalid_token(self):
msg = 'invalid token'
self.re_matches(msg, re.INVALID_TOKEN_RE, NO_GROUP)
|
def test_invalid_token(self):
msg = 'invalid token'
self.re_matches(msg, re.INVALID_TOKEN_RE, NO_GROUP)<|docstring|>Test INVALID_TOKEN_RE.<|endoftext|>
|
80dcfce5d126b6a6d368116ca30ce4e4e6cfca4454da3f4cf42775617c19a8fd
|
def test_leading_zeros(self):
'Test LEADING_ZEROS_RE.'
msg = 'leading zeros in decimal integer literals are not permitted; use an 0o prefix for octal integers'
self.re_matches(msg, re.LEADING_ZEROS_RE, NO_GROUP)
|
Test LEADING_ZEROS_RE.
|
didyoumean/didyoumean_re_tests.py
|
test_leading_zeros
|
SylvainDe/DidYouMean-Python
| 76 |
python
|
def test_leading_zeros(self):
msg = 'leading zeros in decimal integer literals are not permitted; use an 0o prefix for octal integers'
self.re_matches(msg, re.LEADING_ZEROS_RE, NO_GROUP)
|
def test_leading_zeros(self):
msg = 'leading zeros in decimal integer literals are not permitted; use an 0o prefix for octal integers'
self.re_matches(msg, re.LEADING_ZEROS_RE, NO_GROUP)<|docstring|>Test LEADING_ZEROS_RE.<|endoftext|>
|
2636ab935238fbd0384541e85e2ba6ba8f02c66b0ee4f70de5cd1bc251ee41ba
|
def test_exception_group_parenthesized(self):
'Test EXC_GROUP_PARENTH_RE.'
msgs = ['exception group must be parenthesized', 'multiple exception types must be parenthesized']
for msg in msgs:
self.re_matches(msg, re.EXC_GROUP_PARENTH_RE, NO_GROUP)
|
Test EXC_GROUP_PARENTH_RE.
|
didyoumean/didyoumean_re_tests.py
|
test_exception_group_parenthesized
|
SylvainDe/DidYouMean-Python
| 76 |
python
|
def test_exception_group_parenthesized(self):
msgs = ['exception group must be parenthesized', 'multiple exception types must be parenthesized']
for msg in msgs:
self.re_matches(msg, re.EXC_GROUP_PARENTH_RE, NO_GROUP)
|
def test_exception_group_parenthesized(self):
msgs = ['exception group must be parenthesized', 'multiple exception types must be parenthesized']
for msg in msgs:
self.re_matches(msg, re.EXC_GROUP_PARENTH_RE, NO_GROUP)<|docstring|>Test EXC_GROUP_PARENTH_RE.<|endoftext|>
|
ccc92d107f02e3e6d5a77d2bf47c87dd08c2a3934d52a13fd062e20ff834d1e1
|
def test_exc_must_derive_from(self):
'Test EXC_MUST_DERIVE_FROM_RE.'
msgs = ['exceptions must be old-style classes or derived from BaseException, not NoneType', 'exceptions must derive from BaseException']
for msg in msgs:
self.re_matches(msg, re.EXC_MUST_DERIVE_FROM_RE, NO_GROUP)
|
Test EXC_MUST_DERIVE_FROM_RE.
|
didyoumean/didyoumean_re_tests.py
|
test_exc_must_derive_from
|
SylvainDe/DidYouMean-Python
| 76 |
python
|
def test_exc_must_derive_from(self):
msgs = ['exceptions must be old-style classes or derived from BaseException, not NoneType', 'exceptions must derive from BaseException']
for msg in msgs:
self.re_matches(msg, re.EXC_MUST_DERIVE_FROM_RE, NO_GROUP)
|
def test_exc_must_derive_from(self):
msgs = ['exceptions must be old-style classes or derived from BaseException, not NoneType', 'exceptions must derive from BaseException']
for msg in msgs:
self.re_matches(msg, re.EXC_MUST_DERIVE_FROM_RE, NO_GROUP)<|docstring|>Test EXC_MUST_DERIVE_FROM_RE.<|endoftext|>
|
1670239aa41ddf44b207fee72e12b5a5f019e76b4c3b6b96fabf86bcc95d5ceb
|
def test_unorderable_types(self):
'Test UNORDERABLE_TYPES_RE.'
msgs = ['unorderable types: str() > int()', 'unorderable types: FoobarClass() <= int()', 'unorderable types: FoobarClass > FoobarClass']
for msg in msgs:
self.re_matches(msg, re.UNORDERABLE_TYPES_RE, NO_GROUP)
|
Test UNORDERABLE_TYPES_RE.
|
didyoumean/didyoumean_re_tests.py
|
test_unorderable_types
|
SylvainDe/DidYouMean-Python
| 76 |
python
|
def test_unorderable_types(self):
msgs = ['unorderable types: str() > int()', 'unorderable types: FoobarClass() <= int()', 'unorderable types: FoobarClass > FoobarClass']
for msg in msgs:
self.re_matches(msg, re.UNORDERABLE_TYPES_RE, NO_GROUP)
|
def test_unorderable_types(self):
msgs = ['unorderable types: str() > int()', 'unorderable types: FoobarClass() <= int()', 'unorderable types: FoobarClass > FoobarClass']
for msg in msgs:
self.re_matches(msg, re.UNORDERABLE_TYPES_RE, NO_GROUP)<|docstring|>Test UNORDERABLE_TYPES_RE.<|endoftext|>
|
d16fd15b94e2b8a5ea3e7dc8ed9eca57b177105ca6619d081bbc77be48ae304e
|
def test_op_not_supported_between_instances(self):
'Test OP_NOT_SUPP_BETWEEN_INSTANCES_RE.'
msgs = ["'<' not supported between instances of 'int' and 'NoneType'", "'>' not supported between instances of 'Foo' and 'Foo'"]
for msg in msgs:
self.re_matches(msg, re.OP_NOT_SUPP_BETWEEN_INSTANCES_RE, NO_GROUP)
|
Test OP_NOT_SUPP_BETWEEN_INSTANCES_RE.
|
didyoumean/didyoumean_re_tests.py
|
test_op_not_supported_between_instances
|
SylvainDe/DidYouMean-Python
| 76 |
python
|
def test_op_not_supported_between_instances(self):
msgs = ["'<' not supported between instances of 'int' and 'NoneType'", "'>' not supported between instances of 'Foo' and 'Foo'"]
for msg in msgs:
self.re_matches(msg, re.OP_NOT_SUPP_BETWEEN_INSTANCES_RE, NO_GROUP)
|
def test_op_not_supported_between_instances(self):
msgs = ["'<' not supported between instances of 'int' and 'NoneType'", "'>' not supported between instances of 'Foo' and 'Foo'"]
for msg in msgs:
self.re_matches(msg, re.OP_NOT_SUPP_BETWEEN_INSTANCES_RE, NO_GROUP)<|docstring|>Test OP_NOT_SUPP_BETWEEN_INSTANCES_RE.<|endoftext|>
|
c6b8fcd552975b4a3d3941b89303800fcb668935b679cc1a229c375c14107b7c
|
def test_max_recursion_depth(self):
'Test MAX_RECURSION_DEPTH_RE.'
msg = 'maximum recursion depth exceeded'
self.re_matches(msg, re.MAX_RECURSION_DEPTH_RE, NO_GROUP)
|
Test MAX_RECURSION_DEPTH_RE.
|
didyoumean/didyoumean_re_tests.py
|
test_max_recursion_depth
|
SylvainDe/DidYouMean-Python
| 76 |
python
|
def test_max_recursion_depth(self):
msg = 'maximum recursion depth exceeded'
self.re_matches(msg, re.MAX_RECURSION_DEPTH_RE, NO_GROUP)
|
def test_max_recursion_depth(self):
msg = 'maximum recursion depth exceeded'
self.re_matches(msg, re.MAX_RECURSION_DEPTH_RE, NO_GROUP)<|docstring|>Test MAX_RECURSION_DEPTH_RE.<|endoftext|>
|
2d08ef40edf9bed601e3e2e4ecc28a74bc10df871ff095f67e9149974fbb7c16
|
def test_size_changed_during_iter(self):
'Test SIZE_CHANGED_DURING_ITER_RE.'
msgs = {'Set': 'Set changed size during iteration', 'dictionary': 'dictionary changed size during iteration'}
for (name, msg) in msgs.items():
groups = (name,)
results = (groups, dict())
self.re_matches(msg, re.SIZE_CHANGED_DURING_ITER_RE, results)
|
Test SIZE_CHANGED_DURING_ITER_RE.
|
didyoumean/didyoumean_re_tests.py
|
test_size_changed_during_iter
|
SylvainDe/DidYouMean-Python
| 76 |
python
|
def test_size_changed_during_iter(self):
msgs = {'Set': 'Set changed size during iteration', 'dictionary': 'dictionary changed size during iteration'}
for (name, msg) in msgs.items():
groups = (name,)
results = (groups, dict())
self.re_matches(msg, re.SIZE_CHANGED_DURING_ITER_RE, results)
|
def test_size_changed_during_iter(self):
msgs = {'Set': 'Set changed size during iteration', 'dictionary': 'dictionary changed size during iteration'}
for (name, msg) in msgs.items():
groups = (name,)
results = (groups, dict())
self.re_matches(msg, re.SIZE_CHANGED_DURING_ITER_RE, results)<|docstring|>Test SIZE_CHANGED_DURING_ITER_RE.<|endoftext|>
|
c2acb1c5a4d05978799f5e33816ab9f48a57241fb647ce82578bd3008da3f70b
|
def __init__(self, mode, sw_specification):
'Load the ShapeWorld JSON file and build config file'
if isinstance(sw_specification, str):
with open(sw_specification, 'r') as fh:
self.src_config = json.load(fh)
else:
self.src_config = sw_specification
for (k, v) in self.src_config.items():
setattr(self, k, v)
assert (mode in ['train', 'validation', 'test']), 'Mode not recognised'
self.mode = mode
self.instances_per_shard = 10000
self.num_shards = (10 if (self.mode == 'train') else 1)
self.num_epochs = (500 if (self.mode == 'train') else 1)
self.batch_size = (128 if (self.mode == 'train') else 1)
self.num_steps_per_epoch = int(((np.floor(self.instances_per_shard) * self.num_shards) / self.batch_size))
self.num_total_steps = int(np.floor((self.num_epochs * self.num_steps_per_epoch)))
self.pixel_noise_stddev = 0.1
self.noise_axis = 3
self.train_cnn = True
self.train_embeddings = True
self.cnn_checkpoint = None
self.initializer = tf.contrib.layers.xavier_initializer
self.embedding_initializer = tf.random_uniform_initializer
self.initializer_scale = 0.1
self.embedding_size = 50
self.img_embedding_size = 128
self.joint_embedding_size = (128 + 50)
self.num_lstm_units = self.joint_embedding_size
self.optimizer = 'Adam'
self.initial_learning_rate = 0.001
self.clip_gradients = 5.0
self.max_checkpoints_to_keep = 10
self.save_every_n_steps = 100
self.decode_type = 'greedy'
self.softmax_temperature = 1.5
self.beam_width = 3
self.max_decoding_seq_len = 20
|
Load the ShapeWorld JSON file and build config file
|
shape2seq/config.py
|
__init__
|
trsherborne/shape2seq
| 1 |
python
|
def __init__(self, mode, sw_specification):
if isinstance(sw_specification, str):
with open(sw_specification, 'r') as fh:
self.src_config = json.load(fh)
else:
self.src_config = sw_specification
for (k, v) in self.src_config.items():
setattr(self, k, v)
assert (mode in ['train', 'validation', 'test']), 'Mode not recognised'
self.mode = mode
self.instances_per_shard = 10000
self.num_shards = (10 if (self.mode == 'train') else 1)
self.num_epochs = (500 if (self.mode == 'train') else 1)
self.batch_size = (128 if (self.mode == 'train') else 1)
self.num_steps_per_epoch = int(((np.floor(self.instances_per_shard) * self.num_shards) / self.batch_size))
self.num_total_steps = int(np.floor((self.num_epochs * self.num_steps_per_epoch)))
self.pixel_noise_stddev = 0.1
self.noise_axis = 3
self.train_cnn = True
self.train_embeddings = True
self.cnn_checkpoint = None
self.initializer = tf.contrib.layers.xavier_initializer
self.embedding_initializer = tf.random_uniform_initializer
self.initializer_scale = 0.1
self.embedding_size = 50
self.img_embedding_size = 128
self.joint_embedding_size = (128 + 50)
self.num_lstm_units = self.joint_embedding_size
self.optimizer = 'Adam'
self.initial_learning_rate = 0.001
self.clip_gradients = 5.0
self.max_checkpoints_to_keep = 10
self.save_every_n_steps = 100
self.decode_type = 'greedy'
self.softmax_temperature = 1.5
self.beam_width = 3
self.max_decoding_seq_len = 20
|
def __init__(self, mode, sw_specification):
if isinstance(sw_specification, str):
with open(sw_specification, 'r') as fh:
self.src_config = json.load(fh)
else:
self.src_config = sw_specification
for (k, v) in self.src_config.items():
setattr(self, k, v)
assert (mode in ['train', 'validation', 'test']), 'Mode not recognised'
self.mode = mode
self.instances_per_shard = 10000
self.num_shards = (10 if (self.mode == 'train') else 1)
self.num_epochs = (500 if (self.mode == 'train') else 1)
self.batch_size = (128 if (self.mode == 'train') else 1)
self.num_steps_per_epoch = int(((np.floor(self.instances_per_shard) * self.num_shards) / self.batch_size))
self.num_total_steps = int(np.floor((self.num_epochs * self.num_steps_per_epoch)))
self.pixel_noise_stddev = 0.1
self.noise_axis = 3
self.train_cnn = True
self.train_embeddings = True
self.cnn_checkpoint = None
self.initializer = tf.contrib.layers.xavier_initializer
self.embedding_initializer = tf.random_uniform_initializer
self.initializer_scale = 0.1
self.embedding_size = 50
self.img_embedding_size = 128
self.joint_embedding_size = (128 + 50)
self.num_lstm_units = self.joint_embedding_size
self.optimizer = 'Adam'
self.initial_learning_rate = 0.001
self.clip_gradients = 5.0
self.max_checkpoints_to_keep = 10
self.save_every_n_steps = 100
self.decode_type = 'greedy'
self.softmax_temperature = 1.5
self.beam_width = 3
self.max_decoding_seq_len = 20<|docstring|>Load the ShapeWorld JSON file and build config file<|endoftext|>
|
e1212cac60d452cc99af16c7e6fd4938f0f5575e3f8a1e686aa116e557d4cc48
|
def to_dict(input_ordered_dict):
'to_dict converts an input ordered dict into a standard dict\n :param input_ordered_dict: the ordered dict\n '
return json.loads(json.dumps(input_ordered_dict))
|
to_dict converts an input ordered dict into a standard dict
:param input_ordered_dict: the ordered dict
|
expdj/apps/result/utils.py
|
to_dict
|
vsoch/expfactory-docker-dev
| 0 |
python
|
def to_dict(input_ordered_dict):
'to_dict converts an input ordered dict into a standard dict\n :param input_ordered_dict: the ordered dict\n '
return json.loads(json.dumps(input_ordered_dict))
|
def to_dict(input_ordered_dict):
'to_dict converts an input ordered dict into a standard dict\n :param input_ordered_dict: the ordered dict\n '
return json.loads(json.dumps(input_ordered_dict))<|docstring|>to_dict converts an input ordered dict into a standard dict
:param input_ordered_dict: the ordered dict<|endoftext|>
|
8c78405802082b87d7af085fa148f115b67ace77f41b97739f0279cf88046aec
|
def get_worker_experiments(worker, battery, completed=False):
'get_worker_experiments returns a list of experiment objects that\n a worker has/has not completed for a particular battery\n :param completed: boolean, default False to return uncompleted experiments\n '
battery_tags = Experiment.objects.filter(battery=battery)
worker_completed = worker.experiments_completed.all()
if (completed == False):
return [e for e in battery_tags if (e not in worker_completed)]
else:
return [e for e in worker_completed if (e in battery_tags)]
|
get_worker_experiments returns a list of experiment objects that
a worker has/has not completed for a particular battery
:param completed: boolean, default False to return uncompleted experiments
|
expdj/apps/result/utils.py
|
get_worker_experiments
|
vsoch/expfactory-docker-dev
| 0 |
python
|
def get_worker_experiments(worker, battery, completed=False):
'get_worker_experiments returns a list of experiment objects that\n a worker has/has not completed for a particular battery\n :param completed: boolean, default False to return uncompleted experiments\n '
battery_tags = Experiment.objects.filter(battery=battery)
worker_completed = worker.experiments_completed.all()
if (completed == False):
return [e for e in battery_tags if (e not in worker_completed)]
else:
return [e for e in worker_completed if (e in battery_tags)]
|
def get_worker_experiments(worker, battery, completed=False):
'get_worker_experiments returns a list of experiment objects that\n a worker has/has not completed for a particular battery\n :param completed: boolean, default False to return uncompleted experiments\n '
battery_tags = Experiment.objects.filter(battery=battery)
worker_completed = worker.experiments_completed.all()
if (completed == False):
return [e for e in battery_tags if (e not in worker_completed)]
else:
return [e for e in worker_completed if (e in battery_tags)]<|docstring|>get_worker_experiments returns a list of experiment objects that
a worker has/has not completed for a particular battery
:param completed: boolean, default False to return uncompleted experiments<|endoftext|>
|
a3323fd8f5cd51a5cc71233b80fe34c91e01c57f33ce6845f445b51e7ff52ba3
|
def get_time_difference(d1, d2, format='%Y-%m-%d %H:%M:%S'):
'calculate difference between two time strings, t1 and t2, returns minutes'
if isinstance(d1, str):
d1 = datetime.datetime.strptime(d1, format)
if isinstance(d2, str):
d2 = datetime.datetime.strptime(d2, format)
return ((d2 - d1).total_seconds() / 60)
|
calculate difference between two time strings, t1 and t2, returns minutes
|
expdj/apps/result/utils.py
|
get_time_difference
|
vsoch/expfactory-docker-dev
| 0 |
python
|
def get_time_difference(d1, d2, format='%Y-%m-%d %H:%M:%S'):
if isinstance(d1, str):
d1 = datetime.datetime.strptime(d1, format)
if isinstance(d2, str):
d2 = datetime.datetime.strptime(d2, format)
return ((d2 - d1).total_seconds() / 60)
|
def get_time_difference(d1, d2, format='%Y-%m-%d %H:%M:%S'):
if isinstance(d1, str):
d1 = datetime.datetime.strptime(d1, format)
if isinstance(d2, str):
d2 = datetime.datetime.strptime(d2, format)
return ((d2 - d1).total_seconds() / 60)<|docstring|>calculate difference between two time strings, t1 and t2, returns minutes<|endoftext|>
|
a1b1bc263d00c389f2c11981cdd4f917eed2b32ab8e564dbee555c170062058a
|
def generate_email(battery, experiment, worker, data):
'generate_email will use sendgrid API to send a result object to a user as an email attachment.\n :param battery: The expdj.apps.experiment.Battery\n :param data: the data result (json) to send\n '
if (not isinstance(data, dict)):
data = {'result': data}
data = json.dumps(to_dict(data))
to_email = battery.email
subject = ('[EXPFACTORY][RESULT][%s][%s]' % (battery.name, experiment.name))
body = ('Experiment Factory Result Data\n%s\n%s\n%s' % (battery.flat(), experiment.flat(), worker.flat()))
body = ('%s\n<pre>%s</pre>' % (body, data))
return {'personalizations': [{'to': [{'email': to_email}], 'subject': subject}], 'from': {'email': REPLY_TO}, 'content': [{'type': 'text/plain', 'value': body}]}
|
generate_email will use sendgrid API to send a result object to a user as an email attachment.
:param battery: The expdj.apps.experiment.Battery
:param data: the data result (json) to send
|
expdj/apps/result/utils.py
|
generate_email
|
vsoch/expfactory-docker-dev
| 0 |
python
|
def generate_email(battery, experiment, worker, data):
'generate_email will use sendgrid API to send a result object to a user as an email attachment.\n :param battery: The expdj.apps.experiment.Battery\n :param data: the data result (json) to send\n '
if (not isinstance(data, dict)):
data = {'result': data}
data = json.dumps(to_dict(data))
to_email = battery.email
subject = ('[EXPFACTORY][RESULT][%s][%s]' % (battery.name, experiment.name))
body = ('Experiment Factory Result Data\n%s\n%s\n%s' % (battery.flat(), experiment.flat(), worker.flat()))
body = ('%s\n<pre>%s</pre>' % (body, data))
return {'personalizations': [{'to': [{'email': to_email}], 'subject': subject}], 'from': {'email': REPLY_TO}, 'content': [{'type': 'text/plain', 'value': body}]}
|
def generate_email(battery, experiment, worker, data):
'generate_email will use sendgrid API to send a result object to a user as an email attachment.\n :param battery: The expdj.apps.experiment.Battery\n :param data: the data result (json) to send\n '
if (not isinstance(data, dict)):
data = {'result': data}
data = json.dumps(to_dict(data))
to_email = battery.email
subject = ('[EXPFACTORY][RESULT][%s][%s]' % (battery.name, experiment.name))
body = ('Experiment Factory Result Data\n%s\n%s\n%s' % (battery.flat(), experiment.flat(), worker.flat()))
body = ('%s\n<pre>%s</pre>' % (body, data))
return {'personalizations': [{'to': [{'email': to_email}], 'subject': subject}], 'from': {'email': REPLY_TO}, 'content': [{'type': 'text/plain', 'value': body}]}<|docstring|>generate_email will use sendgrid API to send a result object to a user as an email attachment.
:param battery: The expdj.apps.experiment.Battery
:param data: the data result (json) to send<|endoftext|>
|
351f5656ebf8c2d5a176ce2889c2e16b3ca2fc89a38c5705a4fe91facaa824fa
|
def complete_survey_result(experiment, taskdata):
'complete_survey_result parses the form names (question ids) and matches to a lookup table generated by expfactory-python survey module that has complete question / option information.\n :param experiment: the experiment object\n :param taskdata: the taskdata from the server, typically an ordered dict\n '
taskdata = dict(taskdata)
experiment_folder = experiment.get_install_dir()
experiment = [{'exp_id': experiment.exp_id}]
question_lookup = export_questions(experiment, experiment_folder)
final_data = {}
for (queskey, quesval) in taskdata.iteritems():
if (queskey in question_lookup):
complete_question = question_lookup[queskey]
complete_question['response'] = quesval[0]
else:
complete_question = {'response': quesval[0]}
final_data[queskey] = complete_question
return final_data
|
complete_survey_result parses the form names (question ids) and matches to a lookup table generated by expfactory-python survey module that has complete question / option information.
:param experiment: the experiment object
:param taskdata: the taskdata from the server, typically an ordered dict
|
expdj/apps/result/utils.py
|
complete_survey_result
|
vsoch/expfactory-docker-dev
| 0 |
python
|
def complete_survey_result(experiment, taskdata):
'complete_survey_result parses the form names (question ids) and matches to a lookup table generated by expfactory-python survey module that has complete question / option information.\n :param experiment: the experiment object\n :param taskdata: the taskdata from the server, typically an ordered dict\n '
taskdata = dict(taskdata)
experiment_folder = experiment.get_install_dir()
experiment = [{'exp_id': experiment.exp_id}]
question_lookup = export_questions(experiment, experiment_folder)
final_data = {}
for (queskey, quesval) in taskdata.iteritems():
if (queskey in question_lookup):
complete_question = question_lookup[queskey]
complete_question['response'] = quesval[0]
else:
complete_question = {'response': quesval[0]}
final_data[queskey] = complete_question
return final_data
|
def complete_survey_result(experiment, taskdata):
'complete_survey_result parses the form names (question ids) and matches to a lookup table generated by expfactory-python survey module that has complete question / option information.\n :param experiment: the experiment object\n :param taskdata: the taskdata from the server, typically an ordered dict\n '
taskdata = dict(taskdata)
experiment_folder = experiment.get_install_dir()
experiment = [{'exp_id': experiment.exp_id}]
question_lookup = export_questions(experiment, experiment_folder)
final_data = {}
for (queskey, quesval) in taskdata.iteritems():
if (queskey in question_lookup):
complete_question = question_lookup[queskey]
complete_question['response'] = quesval[0]
else:
complete_question = {'response': quesval[0]}
final_data[queskey] = complete_question
return final_data<|docstring|>complete_survey_result parses the form names (question ids) and matches to a lookup table generated by expfactory-python survey module that has complete question / option information.
:param experiment: the experiment object
:param taskdata: the taskdata from the server, typically an ordered dict<|endoftext|>
|
0ce1f5b21b2adc0b2c1f859f10fa332e79318451fb64539573ab14ce9b5f56fb
|
def zip_up(experiment):
'zip_up will zip up an experiment folder into a package (.zip)\n for the user to download. It is returned as a StringIO object\n :param experiment_folder: the experiment folder to zip up\n '
experiment_folder = experiment.get_install_dir()
s = StringIO.StringIO()
zf = zipfile.ZipFile(s, 'w', zipfile.ZIP_DEFLATED, allowZip64=True)
for (root, dirs, files) in os.walk(experiment_folder):
for filey in files:
subdirectory = root.split(experiment.exp_id)[(- 1)]
archive_folder = ('%s/%s' % (subdirectory, filey))
zf.write(os.path.join(root, filey), archive_folder)
zf.close()
return s
|
zip_up will zip up an experiment folder into a package (.zip)
for the user to download. It is returned as a StringIO object
:param experiment_folder: the experiment folder to zip up
|
expdj/apps/result/utils.py
|
zip_up
|
vsoch/expfactory-docker-dev
| 0 |
python
|
def zip_up(experiment):
'zip_up will zip up an experiment folder into a package (.zip)\n for the user to download. It is returned as a StringIO object\n :param experiment_folder: the experiment folder to zip up\n '
experiment_folder = experiment.get_install_dir()
s = StringIO.StringIO()
zf = zipfile.ZipFile(s, 'w', zipfile.ZIP_DEFLATED, allowZip64=True)
for (root, dirs, files) in os.walk(experiment_folder):
for filey in files:
subdirectory = root.split(experiment.exp_id)[(- 1)]
archive_folder = ('%s/%s' % (subdirectory, filey))
zf.write(os.path.join(root, filey), archive_folder)
zf.close()
return s
|
def zip_up(experiment):
'zip_up will zip up an experiment folder into a package (.zip)\n for the user to download. It is returned as a StringIO object\n :param experiment_folder: the experiment folder to zip up\n '
experiment_folder = experiment.get_install_dir()
s = StringIO.StringIO()
zf = zipfile.ZipFile(s, 'w', zipfile.ZIP_DEFLATED, allowZip64=True)
for (root, dirs, files) in os.walk(experiment_folder):
for filey in files:
subdirectory = root.split(experiment.exp_id)[(- 1)]
archive_folder = ('%s/%s' % (subdirectory, filey))
zf.write(os.path.join(root, filey), archive_folder)
zf.close()
return s<|docstring|>zip_up will zip up an experiment folder into a package (.zip)
for the user to download. It is returned as a StringIO object
:param experiment_folder: the experiment folder to zip up<|endoftext|>
|
0d8da88133d19c45da672d4d89d16bba31273fee1a5d3eb1cd29188e02b31074
|
def extractFlowerBridgeToo(item):
'\n\t# FlowerBridgeToo\n\n\t'
return None
|
# FlowerBridgeToo
|
WebMirror/management/rss_parser_funcs/feed_parse_extractFlowerBridgeToo.py
|
extractFlowerBridgeToo
|
fake-name/ReadableWebProxy
| 193 |
python
|
def extractFlowerBridgeToo(item):
'\n\t\n\n\t'
return None
|
def extractFlowerBridgeToo(item):
'\n\t\n\n\t'
return None<|docstring|># FlowerBridgeToo<|endoftext|>
|
90384d4c1eeb4da27f8eba6f652b841b3dfc470ea7ea0491a09a3fce2a2d8636
|
def get_partitions(self, current_time: Optional[datetime]=None) -> List[Partition[T]]:
'Return the set of known partitions.\n\n Arguments:\n current_time (Optional[datetime]): The evaluation time for the partition function, which\n is passed through to the ``partition_fn`` (if it accepts a parameter). Defaults to\n the current time in UTC.\n '
return self._partitions_def.get_partitions(current_time)
|
Return the set of known partitions.
Arguments:
current_time (Optional[datetime]): The evaluation time for the partition function, which
is passed through to the ``partition_fn`` (if it accepts a parameter). Defaults to
the current time in UTC.
|
python_modules/dagster/dagster/core/definitions/partition.py
|
get_partitions
|
theonlypoi/dagster
| 1 |
python
|
def get_partitions(self, current_time: Optional[datetime]=None) -> List[Partition[T]]:
'Return the set of known partitions.\n\n Arguments:\n current_time (Optional[datetime]): The evaluation time for the partition function, which\n is passed through to the ``partition_fn`` (if it accepts a parameter). Defaults to\n the current time in UTC.\n '
return self._partitions_def.get_partitions(current_time)
|
def get_partitions(self, current_time: Optional[datetime]=None) -> List[Partition[T]]:
'Return the set of known partitions.\n\n Arguments:\n current_time (Optional[datetime]): The evaluation time for the partition function, which\n is passed through to the ``partition_fn`` (if it accepts a parameter). Defaults to\n the current time in UTC.\n '
return self._partitions_def.get_partitions(current_time)<|docstring|>Return the set of known partitions.
Arguments:
current_time (Optional[datetime]): The evaluation time for the partition function, which
is passed through to the ``partition_fn`` (if it accepts a parameter). Defaults to
the current time in UTC.<|endoftext|>
|
f395063964289d150bee92d2819c9fe257b658286c441bddb73cd522f4ff6524
|
def create_schedule_definition(self, schedule_name, cron_schedule, partition_selector, should_execute=None, environment_vars=None, execution_timezone=None, description=None, decorated_fn=None, job=None):
'Create a ScheduleDefinition from a PartitionSetDefinition.\n\n Arguments:\n schedule_name (str): The name of the schedule.\n cron_schedule (str): A valid cron string for the schedule\n partition_selector (Callable[ScheduleEvaluationContext, PartitionSetDefinition], Union[Partition, List[Partition]]):\n Function that determines the partition to use at a given execution time. Can return\n either a single Partition or a list of Partitions. For time-based partition sets,\n will likely be either `identity_partition_selector` or a selector returned by\n `create_offset_partition_selector`.\n should_execute (Optional[function]): Function that runs at schedule execution time that\n determines whether a schedule should execute. Defaults to a function that always returns\n ``True``.\n environment_vars (Optional[dict]): The environment variables to set for the schedule.\n execution_timezone (Optional[str]): Timezone in which the schedule should run. Only works\n with DagsterDaemonScheduler, and must be set when using that scheduler.\n description (Optional[str]): A human-readable description of the schedule.\n\n Returns:\n PartitionScheduleDefinition: The generated PartitionScheduleDefinition for the partition\n selector\n '
check.str_param(schedule_name, 'schedule_name')
check.str_param(cron_schedule, 'cron_schedule')
check.opt_callable_param(should_execute, 'should_execute')
check.opt_dict_param(environment_vars, 'environment_vars', key_type=str, value_type=str)
check.callable_param(partition_selector, 'partition_selector')
check.opt_str_param(execution_timezone, 'execution_timezone')
check.opt_str_param(description, 'description')
def _execution_fn(context):
check.inst_param(context, 'context', ScheduleEvaluationContext)
with user_code_error_boundary(ScheduleExecutionError, (lambda : f'Error occurred during the execution of partition_selector for schedule {schedule_name}')):
selector_result = partition_selector(context, self)
if isinstance(selector_result, SkipReason):
(yield selector_result)
return
selected_partitions = (selector_result if isinstance(selector_result, (frozenlist, list)) else [selector_result])
check.is_list(selected_partitions, of_type=Partition)
if (not selected_partitions):
(yield SkipReason('Partition selector returned an empty list of partitions.'))
return
missing_partition_names = [partition.name for partition in selected_partitions if (partition.name not in self.get_partition_names(context.scheduled_execution_time))]
if missing_partition_names:
(yield SkipReason((('Partition selector returned partition' + ('s' if (len(missing_partition_names) > 1) else '')) + f" not in the partition set: {', '.join(missing_partition_names)}.")))
return
with user_code_error_boundary(ScheduleExecutionError, (lambda : f'Error occurred during the execution of should_execute for schedule {schedule_name}')):
if (should_execute and (not should_execute(context))):
(yield SkipReason('should_execute function for {schedule_name} returned false.'.format(schedule_name=schedule_name)))
return
for selected_partition in selected_partitions:
with user_code_error_boundary(ScheduleExecutionError, (lambda : f'Error occurred during the execution of run_config_fn for schedule {schedule_name}')):
run_config = self.run_config_for_partition(selected_partition)
with user_code_error_boundary(ScheduleExecutionError, (lambda : f'Error occurred during the execution of tags_fn for schedule {schedule_name}')):
tags = self.tags_for_partition(selected_partition)
(yield RunRequest(run_key=(selected_partition.name if (len(selected_partitions) > 0) else None), run_config=run_config, tags=tags))
return PartitionScheduleDefinition(name=schedule_name, cron_schedule=cron_schedule, pipeline_name=self._pipeline_name, tags_fn=None, solid_selection=self._solid_selection, mode=self._mode, should_execute=None, environment_vars=environment_vars, partition_set=self, execution_timezone=execution_timezone, execution_fn=_execution_fn, description=description, decorated_fn=decorated_fn, job=job)
|
Create a ScheduleDefinition from a PartitionSetDefinition.
Arguments:
schedule_name (str): The name of the schedule.
cron_schedule (str): A valid cron string for the schedule
partition_selector (Callable[ScheduleEvaluationContext, PartitionSetDefinition], Union[Partition, List[Partition]]):
Function that determines the partition to use at a given execution time. Can return
either a single Partition or a list of Partitions. For time-based partition sets,
will likely be either `identity_partition_selector` or a selector returned by
`create_offset_partition_selector`.
should_execute (Optional[function]): Function that runs at schedule execution time that
determines whether a schedule should execute. Defaults to a function that always returns
``True``.
environment_vars (Optional[dict]): The environment variables to set for the schedule.
execution_timezone (Optional[str]): Timezone in which the schedule should run. Only works
with DagsterDaemonScheduler, and must be set when using that scheduler.
description (Optional[str]): A human-readable description of the schedule.
Returns:
PartitionScheduleDefinition: The generated PartitionScheduleDefinition for the partition
selector
|
python_modules/dagster/dagster/core/definitions/partition.py
|
create_schedule_definition
|
theonlypoi/dagster
| 1 |
python
|
def create_schedule_definition(self, schedule_name, cron_schedule, partition_selector, should_execute=None, environment_vars=None, execution_timezone=None, description=None, decorated_fn=None, job=None):
'Create a ScheduleDefinition from a PartitionSetDefinition.\n\n Arguments:\n schedule_name (str): The name of the schedule.\n cron_schedule (str): A valid cron string for the schedule\n partition_selector (Callable[ScheduleEvaluationContext, PartitionSetDefinition], Union[Partition, List[Partition]]):\n Function that determines the partition to use at a given execution time. Can return\n either a single Partition or a list of Partitions. For time-based partition sets,\n will likely be either `identity_partition_selector` or a selector returned by\n `create_offset_partition_selector`.\n should_execute (Optional[function]): Function that runs at schedule execution time that\n determines whether a schedule should execute. Defaults to a function that always returns\n ``True``.\n environment_vars (Optional[dict]): The environment variables to set for the schedule.\n execution_timezone (Optional[str]): Timezone in which the schedule should run. Only works\n with DagsterDaemonScheduler, and must be set when using that scheduler.\n description (Optional[str]): A human-readable description of the schedule.\n\n Returns:\n PartitionScheduleDefinition: The generated PartitionScheduleDefinition for the partition\n selector\n '
check.str_param(schedule_name, 'schedule_name')
check.str_param(cron_schedule, 'cron_schedule')
check.opt_callable_param(should_execute, 'should_execute')
check.opt_dict_param(environment_vars, 'environment_vars', key_type=str, value_type=str)
check.callable_param(partition_selector, 'partition_selector')
check.opt_str_param(execution_timezone, 'execution_timezone')
check.opt_str_param(description, 'description')
def _execution_fn(context):
check.inst_param(context, 'context', ScheduleEvaluationContext)
with user_code_error_boundary(ScheduleExecutionError, (lambda : f'Error occurred during the execution of partition_selector for schedule {schedule_name}')):
selector_result = partition_selector(context, self)
if isinstance(selector_result, SkipReason):
(yield selector_result)
return
selected_partitions = (selector_result if isinstance(selector_result, (frozenlist, list)) else [selector_result])
check.is_list(selected_partitions, of_type=Partition)
if (not selected_partitions):
(yield SkipReason('Partition selector returned an empty list of partitions.'))
return
missing_partition_names = [partition.name for partition in selected_partitions if (partition.name not in self.get_partition_names(context.scheduled_execution_time))]
if missing_partition_names:
(yield SkipReason((('Partition selector returned partition' + ('s' if (len(missing_partition_names) > 1) else )) + f" not in the partition set: {', '.join(missing_partition_names)}.")))
return
with user_code_error_boundary(ScheduleExecutionError, (lambda : f'Error occurred during the execution of should_execute for schedule {schedule_name}')):
if (should_execute and (not should_execute(context))):
(yield SkipReason('should_execute function for {schedule_name} returned false.'.format(schedule_name=schedule_name)))
return
for selected_partition in selected_partitions:
with user_code_error_boundary(ScheduleExecutionError, (lambda : f'Error occurred during the execution of run_config_fn for schedule {schedule_name}')):
run_config = self.run_config_for_partition(selected_partition)
with user_code_error_boundary(ScheduleExecutionError, (lambda : f'Error occurred during the execution of tags_fn for schedule {schedule_name}')):
tags = self.tags_for_partition(selected_partition)
(yield RunRequest(run_key=(selected_partition.name if (len(selected_partitions) > 0) else None), run_config=run_config, tags=tags))
return PartitionScheduleDefinition(name=schedule_name, cron_schedule=cron_schedule, pipeline_name=self._pipeline_name, tags_fn=None, solid_selection=self._solid_selection, mode=self._mode, should_execute=None, environment_vars=environment_vars, partition_set=self, execution_timezone=execution_timezone, execution_fn=_execution_fn, description=description, decorated_fn=decorated_fn, job=job)
|
def create_schedule_definition(self, schedule_name, cron_schedule, partition_selector, should_execute=None, environment_vars=None, execution_timezone=None, description=None, decorated_fn=None, job=None):
'Create a ScheduleDefinition from a PartitionSetDefinition.\n\n Arguments:\n schedule_name (str): The name of the schedule.\n cron_schedule (str): A valid cron string for the schedule\n partition_selector (Callable[ScheduleEvaluationContext, PartitionSetDefinition], Union[Partition, List[Partition]]):\n Function that determines the partition to use at a given execution time. Can return\n either a single Partition or a list of Partitions. For time-based partition sets,\n will likely be either `identity_partition_selector` or a selector returned by\n `create_offset_partition_selector`.\n should_execute (Optional[function]): Function that runs at schedule execution time that\n determines whether a schedule should execute. Defaults to a function that always returns\n ``True``.\n environment_vars (Optional[dict]): The environment variables to set for the schedule.\n execution_timezone (Optional[str]): Timezone in which the schedule should run. Only works\n with DagsterDaemonScheduler, and must be set when using that scheduler.\n description (Optional[str]): A human-readable description of the schedule.\n\n Returns:\n PartitionScheduleDefinition: The generated PartitionScheduleDefinition for the partition\n selector\n '
check.str_param(schedule_name, 'schedule_name')
check.str_param(cron_schedule, 'cron_schedule')
check.opt_callable_param(should_execute, 'should_execute')
check.opt_dict_param(environment_vars, 'environment_vars', key_type=str, value_type=str)
check.callable_param(partition_selector, 'partition_selector')
check.opt_str_param(execution_timezone, 'execution_timezone')
check.opt_str_param(description, 'description')
def _execution_fn(context):
check.inst_param(context, 'context', ScheduleEvaluationContext)
with user_code_error_boundary(ScheduleExecutionError, (lambda : f'Error occurred during the execution of partition_selector for schedule {schedule_name}')):
selector_result = partition_selector(context, self)
if isinstance(selector_result, SkipReason):
(yield selector_result)
return
selected_partitions = (selector_result if isinstance(selector_result, (frozenlist, list)) else [selector_result])
check.is_list(selected_partitions, of_type=Partition)
if (not selected_partitions):
(yield SkipReason('Partition selector returned an empty list of partitions.'))
return
missing_partition_names = [partition.name for partition in selected_partitions if (partition.name not in self.get_partition_names(context.scheduled_execution_time))]
if missing_partition_names:
(yield SkipReason((('Partition selector returned partition' + ('s' if (len(missing_partition_names) > 1) else )) + f" not in the partition set: {', '.join(missing_partition_names)}.")))
return
with user_code_error_boundary(ScheduleExecutionError, (lambda : f'Error occurred during the execution of should_execute for schedule {schedule_name}')):
if (should_execute and (not should_execute(context))):
(yield SkipReason('should_execute function for {schedule_name} returned false.'.format(schedule_name=schedule_name)))
return
for selected_partition in selected_partitions:
with user_code_error_boundary(ScheduleExecutionError, (lambda : f'Error occurred during the execution of run_config_fn for schedule {schedule_name}')):
run_config = self.run_config_for_partition(selected_partition)
with user_code_error_boundary(ScheduleExecutionError, (lambda : f'Error occurred during the execution of tags_fn for schedule {schedule_name}')):
tags = self.tags_for_partition(selected_partition)
(yield RunRequest(run_key=(selected_partition.name if (len(selected_partitions) > 0) else None), run_config=run_config, tags=tags))
return PartitionScheduleDefinition(name=schedule_name, cron_schedule=cron_schedule, pipeline_name=self._pipeline_name, tags_fn=None, solid_selection=self._solid_selection, mode=self._mode, should_execute=None, environment_vars=environment_vars, partition_set=self, execution_timezone=execution_timezone, execution_fn=_execution_fn, description=description, decorated_fn=decorated_fn, job=job)<|docstring|>Create a ScheduleDefinition from a PartitionSetDefinition.
Arguments:
schedule_name (str): The name of the schedule.
cron_schedule (str): A valid cron string for the schedule
partition_selector (Callable[ScheduleEvaluationContext, PartitionSetDefinition], Union[Partition, List[Partition]]):
Function that determines the partition to use at a given execution time. Can return
either a single Partition or a list of Partitions. For time-based partition sets,
will likely be either `identity_partition_selector` or a selector returned by
`create_offset_partition_selector`.
should_execute (Optional[function]): Function that runs at schedule execution time that
determines whether a schedule should execute. Defaults to a function that always returns
``True``.
environment_vars (Optional[dict]): The environment variables to set for the schedule.
execution_timezone (Optional[str]): Timezone in which the schedule should run. Only works
with DagsterDaemonScheduler, and must be set when using that scheduler.
description (Optional[str]): A human-readable description of the schedule.
Returns:
PartitionScheduleDefinition: The generated PartitionScheduleDefinition for the partition
selector<|endoftext|>
|
4cd3a2898a72bf922f521d27fcfc6a96c16667f9ba7cbd2645decb0a85b8fa54
|
def _drawPair_random(self, MTracker, kA=None, randstate=np.random):
'\n Returns\n --------\n kA\n kB\n '
candidatesA = MTracker.getAvailableComps()
nA = len(candidatesA)
pA = (np.ones(nA) / nA)
if (kA is None):
kA = choice(candidatesA, ps=pA, randstate=randstate)
else:
assert (kA in candidatesA)
candidatesB = MTracker.getAvailablePartnersForComp(kA)
assert (len(candidatesB) > 0)
nB = len(candidatesB)
pB = (np.ones(nB) / nB)
kB = choice(candidatesB, ps=pB, randstate=randstate)
return (kA, kB)
|
Returns
--------
kA
kB
|
refinery/bnpy/bnpy-dev/bnpy/learnalg/MergePairSelector.py
|
_drawPair_random
|
csa0001/Refinery
| 103 |
python
|
def _drawPair_random(self, MTracker, kA=None, randstate=np.random):
'\n Returns\n --------\n kA\n kB\n '
candidatesA = MTracker.getAvailableComps()
nA = len(candidatesA)
pA = (np.ones(nA) / nA)
if (kA is None):
kA = choice(candidatesA, ps=pA, randstate=randstate)
else:
assert (kA in candidatesA)
candidatesB = MTracker.getAvailablePartnersForComp(kA)
assert (len(candidatesB) > 0)
nB = len(candidatesB)
pB = (np.ones(nB) / nB)
kB = choice(candidatesB, ps=pB, randstate=randstate)
return (kA, kB)
|
def _drawPair_random(self, MTracker, kA=None, randstate=np.random):
'\n Returns\n --------\n kA\n kB\n '
candidatesA = MTracker.getAvailableComps()
nA = len(candidatesA)
pA = (np.ones(nA) / nA)
if (kA is None):
kA = choice(candidatesA, ps=pA, randstate=randstate)
else:
assert (kA in candidatesA)
candidatesB = MTracker.getAvailablePartnersForComp(kA)
assert (len(candidatesB) > 0)
nB = len(candidatesB)
pB = (np.ones(nB) / nB)
kB = choice(candidatesB, ps=pB, randstate=randstate)
return (kA, kB)<|docstring|>Returns
--------
kA
kB<|endoftext|>
|
a83a1fb44bc90953984af544525796352bf624ade198e3170fa9156afd850029
|
def _drawPair_marglik(self, hmodel, SS, MTracker, kA=None, randstate=np.random):
'\n Returns\n --------\n kA\n kB\n '
candidatesA = MTracker.getAvailableComps()
if (kA is None):
nA = len(candidatesA)
pA = (np.ones(nA) / nA)
kA = choice(candidatesA, ps=pA, randstate=randstate)
else:
assert (kA in candidatesA)
candidatesB = MTracker.getAvailablePartnersForComp(kA)
assert (len(candidatesB) > 0)
ps = self._calcMargLikProbVector(hmodel, SS, kA, candidatesB)
kB = choice(candidatesB, ps=ps, randstate=randstate)
return (kA, kB)
|
Returns
--------
kA
kB
|
refinery/bnpy/bnpy-dev/bnpy/learnalg/MergePairSelector.py
|
_drawPair_marglik
|
csa0001/Refinery
| 103 |
python
|
def _drawPair_marglik(self, hmodel, SS, MTracker, kA=None, randstate=np.random):
'\n Returns\n --------\n kA\n kB\n '
candidatesA = MTracker.getAvailableComps()
if (kA is None):
nA = len(candidatesA)
pA = (np.ones(nA) / nA)
kA = choice(candidatesA, ps=pA, randstate=randstate)
else:
assert (kA in candidatesA)
candidatesB = MTracker.getAvailablePartnersForComp(kA)
assert (len(candidatesB) > 0)
ps = self._calcMargLikProbVector(hmodel, SS, kA, candidatesB)
kB = choice(candidatesB, ps=ps, randstate=randstate)
return (kA, kB)
|
def _drawPair_marglik(self, hmodel, SS, MTracker, kA=None, randstate=np.random):
'\n Returns\n --------\n kA\n kB\n '
candidatesA = MTracker.getAvailableComps()
if (kA is None):
nA = len(candidatesA)
pA = (np.ones(nA) / nA)
kA = choice(candidatesA, ps=pA, randstate=randstate)
else:
assert (kA in candidatesA)
candidatesB = MTracker.getAvailablePartnersForComp(kA)
assert (len(candidatesB) > 0)
ps = self._calcMargLikProbVector(hmodel, SS, kA, candidatesB)
kB = choice(candidatesB, ps=ps, randstate=randstate)
return (kA, kB)<|docstring|>Returns
--------
kA
kB<|endoftext|>
|
b17109652008b5fc18f30fa1b1cd2a344ca64e846f9f441f4adff78cded6ae43
|
@property
def is_resolved(self) -> bool:
'\n If true, all dependent placeholders are resolved\n '
if any(((isinstance(operand, Placeholder) and (not Placeholder.check_resolved(operand))) for operand in self.operands)):
return False
return True
|
If true, all dependent placeholders are resolved
|
src/graph_transpiler/webdnn/graph/placeholder.py
|
is_resolved
|
you74674/webdnn
| 1 |
python
|
@property
def is_resolved(self) -> bool:
'\n \n '
if any(((isinstance(operand, Placeholder) and (not Placeholder.check_resolved(operand))) for operand in self.operands)):
return False
return True
|
@property
def is_resolved(self) -> bool:
'\n \n '
if any(((isinstance(operand, Placeholder) and (not Placeholder.check_resolved(operand))) for operand in self.operands)):
return False
return True<|docstring|>If true, all dependent placeholders are resolved<|endoftext|>
|
b8280d204e12f1c69b42ee91f40d4a68fe7b98baeaf2f0fabc4c854a32f2970e
|
@staticmethod
def to_int(x: Union[(int, 'Placeholder')]):
'to_int(x)\n\n Convert the placeholder into concrete integer value.\n Args:\n x: the placeholder\n\n Returns:\n (int or Placeholder): If `x` is resolved, an integer is returned. Otherwise, `x` itself is returned.\n '
return (int(x) if (not isinstance(x, Placeholder)) else (int(x.value) if Placeholder.check_resolved(x) else x))
|
to_int(x)
Convert the placeholder into concrete integer value.
Args:
x: the placeholder
Returns:
(int or Placeholder): If `x` is resolved, an integer is returned. Otherwise, `x` itself is returned.
|
src/graph_transpiler/webdnn/graph/placeholder.py
|
to_int
|
you74674/webdnn
| 1 |
python
|
@staticmethod
def to_int(x: Union[(int, 'Placeholder')]):
'to_int(x)\n\n Convert the placeholder into concrete integer value.\n Args:\n x: the placeholder\n\n Returns:\n (int or Placeholder): If `x` is resolved, an integer is returned. Otherwise, `x` itself is returned.\n '
return (int(x) if (not isinstance(x, Placeholder)) else (int(x.value) if Placeholder.check_resolved(x) else x))
|
@staticmethod
def to_int(x: Union[(int, 'Placeholder')]):
'to_int(x)\n\n Convert the placeholder into concrete integer value.\n Args:\n x: the placeholder\n\n Returns:\n (int or Placeholder): If `x` is resolved, an integer is returned. Otherwise, `x` itself is returned.\n '
return (int(x) if (not isinstance(x, Placeholder)) else (int(x.value) if Placeholder.check_resolved(x) else x))<|docstring|>to_int(x)
Convert the placeholder into concrete integer value.
Args:
x: the placeholder
Returns:
(int or Placeholder): If `x` is resolved, an integer is returned. Otherwise, `x` itself is returned.<|endoftext|>
|
df904481a44ac97d4ab0a4697589ddcd44a877fea9b85b9bcab8aca987a736a7
|
@staticmethod
def force_int(x: Union[(int, 'Placeholder')]):
'force_int(x)\n\n Convert the placeholder into concrete integer value. If `x` is not resolved, an error is raised.\n Args:\n x: the placeholder\n\n Returns:\n (int): an integer\n '
if (not isinstance(x, Placeholder)):
return int(x)
elif Placeholder.check_resolved(x):
return x.value
raise ValueError(f'{x} is not resolved.')
|
force_int(x)
Convert the placeholder into concrete integer value. If `x` is not resolved, an error is raised.
Args:
x: the placeholder
Returns:
(int): an integer
|
src/graph_transpiler/webdnn/graph/placeholder.py
|
force_int
|
you74674/webdnn
| 1 |
python
|
@staticmethod
def force_int(x: Union[(int, 'Placeholder')]):
'force_int(x)\n\n Convert the placeholder into concrete integer value. If `x` is not resolved, an error is raised.\n Args:\n x: the placeholder\n\n Returns:\n (int): an integer\n '
if (not isinstance(x, Placeholder)):
return int(x)
elif Placeholder.check_resolved(x):
return x.value
raise ValueError(f'{x} is not resolved.')
|
@staticmethod
def force_int(x: Union[(int, 'Placeholder')]):
'force_int(x)\n\n Convert the placeholder into concrete integer value. If `x` is not resolved, an error is raised.\n Args:\n x: the placeholder\n\n Returns:\n (int): an integer\n '
if (not isinstance(x, Placeholder)):
return int(x)
elif Placeholder.check_resolved(x):
return x.value
raise ValueError(f'{x} is not resolved.')<|docstring|>force_int(x)
Convert the placeholder into concrete integer value. If `x` is not resolved, an error is raised.
Args:
x: the placeholder
Returns:
(int): an integer<|endoftext|>
|
a96093353dae62dac59d4f5a7d68b8f70898d9a7224310a3aa6595216c9b43ee
|
@staticmethod
def check_resolved(x: Union[(int, 'Placeholder')]):
"check_resolved(x)\n\n Check whether specified placeholder is resolved or not.\n Args:\n x: the placeholder\n\n Returns:\n (bool): If `True`, the placeholder is resolved. Otherwise, it's not resolved.\n "
if (not isinstance(x, Placeholder)):
return True
if (x._value is not None):
return True
if x.dependency:
return x.dependency.is_resolved
return False
|
check_resolved(x)
Check whether specified placeholder is resolved or not.
Args:
x: the placeholder
Returns:
(bool): If `True`, the placeholder is resolved. Otherwise, it's not resolved.
|
src/graph_transpiler/webdnn/graph/placeholder.py
|
check_resolved
|
you74674/webdnn
| 1 |
python
|
@staticmethod
def check_resolved(x: Union[(int, 'Placeholder')]):
"check_resolved(x)\n\n Check whether specified placeholder is resolved or not.\n Args:\n x: the placeholder\n\n Returns:\n (bool): If `True`, the placeholder is resolved. Otherwise, it's not resolved.\n "
if (not isinstance(x, Placeholder)):
return True
if (x._value is not None):
return True
if x.dependency:
return x.dependency.is_resolved
return False
|
@staticmethod
def check_resolved(x: Union[(int, 'Placeholder')]):
"check_resolved(x)\n\n Check whether specified placeholder is resolved or not.\n Args:\n x: the placeholder\n\n Returns:\n (bool): If `True`, the placeholder is resolved. Otherwise, it's not resolved.\n "
if (not isinstance(x, Placeholder)):
return True
if (x._value is not None):
return True
if x.dependency:
return x.dependency.is_resolved
return False<|docstring|>check_resolved(x)
Check whether specified placeholder is resolved or not.
Args:
x: the placeholder
Returns:
(bool): If `True`, the placeholder is resolved. Otherwise, it's not resolved.<|endoftext|>
|
debc7b023b591adaf5e0e17c7f1532c310e709602e30bf3ebc8f441c54c8dc5a
|
@property
def value(self) -> Union[(int, 'Placeholder')]:
"value\n\n The placeholder's value. If it's not resolved, the placeholder itself is returned.\n\n If the placeholder is already resolved, new value cannot be set, and it causes an error.\n "
if Placeholder.check_resolved(self):
if self.dependency:
if (self._value is None):
self._value = self.dependency.value
return self._value
else:
return self
|
value
The placeholder's value. If it's not resolved, the placeholder itself is returned.
If the placeholder is already resolved, new value cannot be set, and it causes an error.
|
src/graph_transpiler/webdnn/graph/placeholder.py
|
value
|
you74674/webdnn
| 1 |
python
|
@property
def value(self) -> Union[(int, 'Placeholder')]:
"value\n\n The placeholder's value. If it's not resolved, the placeholder itself is returned.\n\n If the placeholder is already resolved, new value cannot be set, and it causes an error.\n "
if Placeholder.check_resolved(self):
if self.dependency:
if (self._value is None):
self._value = self.dependency.value
return self._value
else:
return self
|
@property
def value(self) -> Union[(int, 'Placeholder')]:
"value\n\n The placeholder's value. If it's not resolved, the placeholder itself is returned.\n\n If the placeholder is already resolved, new value cannot be set, and it causes an error.\n "
if Placeholder.check_resolved(self):
if self.dependency:
if (self._value is None):
self._value = self.dependency.value
return self._value
else:
return self<|docstring|>value
The placeholder's value. If it's not resolved, the placeholder itself is returned.
If the placeholder is already resolved, new value cannot be set, and it causes an error.<|endoftext|>
|
cd65d4bf57f88faa43ba9aab01c2de1a24f4e4e4749c840c9d68f4355d942112
|
def get_depend_placeholders(self):
'get_depend_placeholders\n\n List up all dependent placeholders\n\n Returns:\n (list of Placeholder): list of all dependent placeholders\n '
if Placeholder.check_resolved(self):
return set()
if self.dependency:
res = set()
for v in self.dependency.operands:
if (not Placeholder.check_resolved(v)):
res.update(v.get_depend_placeholders())
return res
else:
return {self}
|
get_depend_placeholders
List up all dependent placeholders
Returns:
(list of Placeholder): list of all dependent placeholders
|
src/graph_transpiler/webdnn/graph/placeholder.py
|
get_depend_placeholders
|
you74674/webdnn
| 1 |
python
|
def get_depend_placeholders(self):
'get_depend_placeholders\n\n List up all dependent placeholders\n\n Returns:\n (list of Placeholder): list of all dependent placeholders\n '
if Placeholder.check_resolved(self):
return set()
if self.dependency:
res = set()
for v in self.dependency.operands:
if (not Placeholder.check_resolved(v)):
res.update(v.get_depend_placeholders())
return res
else:
return {self}
|
def get_depend_placeholders(self):
'get_depend_placeholders\n\n List up all dependent placeholders\n\n Returns:\n (list of Placeholder): list of all dependent placeholders\n '
if Placeholder.check_resolved(self):
return set()
if self.dependency:
res = set()
for v in self.dependency.operands:
if (not Placeholder.check_resolved(v)):
res.update(v.get_depend_placeholders())
return res
else:
return {self}<|docstring|>get_depend_placeholders
List up all dependent placeholders
Returns:
(list of Placeholder): list of all dependent placeholders<|endoftext|>
|
d6e03a85adb2c437a74d97c7394221482f36bdd81596d2cd4c63c39542b9127f
|
def generate_js_function(self, flag_semicolon=True):
"generate_js_function\n\n Generate javascript code to resolve this placeholder's value at runtime.\n\n Args:\n flag_semicolon(bool): If True, semicolon is appended into generated code.\n\n Returns:\n (str): generated code\n "
if Placeholder.check_resolved(self):
return (f'{self.value}' + (';' if flag_semicolon else ''))
elif self.dependency:
return self.dependency.generate_js_function()
else:
return (f"placeholders['{self.label}']" + (';' if flag_semicolon else ''))
|
generate_js_function
Generate javascript code to resolve this placeholder's value at runtime.
Args:
flag_semicolon(bool): If True, semicolon is appended into generated code.
Returns:
(str): generated code
|
src/graph_transpiler/webdnn/graph/placeholder.py
|
generate_js_function
|
you74674/webdnn
| 1 |
python
|
def generate_js_function(self, flag_semicolon=True):
"generate_js_function\n\n Generate javascript code to resolve this placeholder's value at runtime.\n\n Args:\n flag_semicolon(bool): If True, semicolon is appended into generated code.\n\n Returns:\n (str): generated code\n "
if Placeholder.check_resolved(self):
return (f'{self.value}' + (';' if flag_semicolon else ))
elif self.dependency:
return self.dependency.generate_js_function()
else:
return (f"placeholders['{self.label}']" + (';' if flag_semicolon else ))
|
def generate_js_function(self, flag_semicolon=True):
"generate_js_function\n\n Generate javascript code to resolve this placeholder's value at runtime.\n\n Args:\n flag_semicolon(bool): If True, semicolon is appended into generated code.\n\n Returns:\n (str): generated code\n "
if Placeholder.check_resolved(self):
return (f'{self.value}' + (';' if flag_semicolon else ))
elif self.dependency:
return self.dependency.generate_js_function()
else:
return (f"placeholders['{self.label}']" + (';' if flag_semicolon else ))<|docstring|>generate_js_function
Generate javascript code to resolve this placeholder's value at runtime.
Args:
flag_semicolon(bool): If True, semicolon is appended into generated code.
Returns:
(str): generated code<|endoftext|>
|
935c96ffa17bfe0e5b35e36180175401f67004fc77153b78994e3ae70db1ee8b
|
def GetParser():
'Creates the argparse parser.'
parser = commandline.ArgumentParser(description=__doc__)
parser.add_argument('--repo-path', type='path', default='.', help='Path to the repo to snapshot.')
parser.add_argument('--snapshot-ref', help='Remote ref to create for projects whose HEAD is not reachable from its current upstream branch. Projects with multiple checkouts may have a unique suffix appended to this ref.')
parser.add_argument('--output-file', type='path', help='Path to write the manifest snapshot XML to.')
parser.add_argument('--dry-run', action='store_true', help='Do not actually push to remotes.')
parser.add_argument('--jobs', type=int, default=16, help='The number of parallel processes to run for git push operations.')
return parser
|
Creates the argparse parser.
|
scripts/create_manifest_snapshot.py
|
GetParser
|
khromiumos/chromiumos-chromite
| 0 |
python
|
def GetParser():
parser = commandline.ArgumentParser(description=__doc__)
parser.add_argument('--repo-path', type='path', default='.', help='Path to the repo to snapshot.')
parser.add_argument('--snapshot-ref', help='Remote ref to create for projects whose HEAD is not reachable from its current upstream branch. Projects with multiple checkouts may have a unique suffix appended to this ref.')
parser.add_argument('--output-file', type='path', help='Path to write the manifest snapshot XML to.')
parser.add_argument('--dry-run', action='store_true', help='Do not actually push to remotes.')
parser.add_argument('--jobs', type=int, default=16, help='The number of parallel processes to run for git push operations.')
return parser
|
def GetParser():
parser = commandline.ArgumentParser(description=__doc__)
parser.add_argument('--repo-path', type='path', default='.', help='Path to the repo to snapshot.')
parser.add_argument('--snapshot-ref', help='Remote ref to create for projects whose HEAD is not reachable from its current upstream branch. Projects with multiple checkouts may have a unique suffix appended to this ref.')
parser.add_argument('--output-file', type='path', help='Path to write the manifest snapshot XML to.')
parser.add_argument('--dry-run', action='store_true', help='Do not actually push to remotes.')
parser.add_argument('--jobs', type=int, default=16, help='The number of parallel processes to run for git push operations.')
return parser<|docstring|>Creates the argparse parser.<|endoftext|>
|
82c8dec0e479965e323226f28fb09f2d0ba898cdf43755e50ac2ad5dd659147f
|
def _GetUpstreamBranch(project):
"Return a best guess at the project's upstream branch name."
branch = project.upstream
if (branch and branch.startswith(BRANCH_REF_PREFIX)):
branch = branch[len(BRANCH_REF_PREFIX):]
return branch
|
Return a best guess at the project's upstream branch name.
|
scripts/create_manifest_snapshot.py
|
_GetUpstreamBranch
|
khromiumos/chromiumos-chromite
| 0 |
python
|
def _GetUpstreamBranch(project):
branch = project.upstream
if (branch and branch.startswith(BRANCH_REF_PREFIX)):
branch = branch[len(BRANCH_REF_PREFIX):]
return branch
|
def _GetUpstreamBranch(project):
branch = project.upstream
if (branch and branch.startswith(BRANCH_REF_PREFIX)):
branch = branch[len(BRANCH_REF_PREFIX):]
return branch<|docstring|>Return a best guess at the project's upstream branch name.<|endoftext|>
|
81f619ac2d9df122a5ed6a9d33dd5dbfe7cbc26ab60dd106028296031632aa06
|
def _NeedsSnapshot(repo_root, project):
"Test if project's revision is reachable from its upstream ref."
branch = (_GetUpstreamBranch(project) or 'master')
upstream_ref = ('refs/remotes/%s/%s' % (project.Remote().GitName(), branch))
project_path = os.path.join(repo_root, project.Path())
try:
if git.IsReachable(project_path, project.revision, upstream_ref):
return False
except cros_build_lib.RunCommandError as e:
logging.debug('Reachability check failed: %s', e)
logging.info('Project %s revision %s not reachable from upstream %r.', project.name, project.revision, upstream_ref)
return True
|
Test if project's revision is reachable from its upstream ref.
|
scripts/create_manifest_snapshot.py
|
_NeedsSnapshot
|
khromiumos/chromiumos-chromite
| 0 |
python
|
def _NeedsSnapshot(repo_root, project):
branch = (_GetUpstreamBranch(project) or 'master')
upstream_ref = ('refs/remotes/%s/%s' % (project.Remote().GitName(), branch))
project_path = os.path.join(repo_root, project.Path())
try:
if git.IsReachable(project_path, project.revision, upstream_ref):
return False
except cros_build_lib.RunCommandError as e:
logging.debug('Reachability check failed: %s', e)
logging.info('Project %s revision %s not reachable from upstream %r.', project.name, project.revision, upstream_ref)
return True
|
def _NeedsSnapshot(repo_root, project):
branch = (_GetUpstreamBranch(project) or 'master')
upstream_ref = ('refs/remotes/%s/%s' % (project.Remote().GitName(), branch))
project_path = os.path.join(repo_root, project.Path())
try:
if git.IsReachable(project_path, project.revision, upstream_ref):
return False
except cros_build_lib.RunCommandError as e:
logging.debug('Reachability check failed: %s', e)
logging.info('Project %s revision %s not reachable from upstream %r.', project.name, project.revision, upstream_ref)
return True<|docstring|>Test if project's revision is reachable from its upstream ref.<|endoftext|>
|
d5261846c49aaf1ff8d94ba295e79f8b639d3d9258c60fadb4f160251eb5e495
|
def _MakeUniqueRef(project, base_ref, used_refs):
"Return a git ref for project that isn't in used_refs.\n\n Args:\n project: The Project object to create a ref for.\n base_ref: A base ref name; this may be appended to to generate a unique ref.\n used_refs: A set of ref names to uniquify against. It is updated with the\n newly generated ref.\n "
ref = base_ref
branch = _GetUpstreamBranch(project)
if (branch and (branch != 'master')):
ref = ('%s/%s' % (ref, branch))
if (ref in used_refs):
for i in range(1, (len(used_refs) + 2)):
numbered = ('%s/%d' % (ref, i))
if (numbered not in used_refs):
ref = numbered
break
else:
raise AssertionError(('failed to make unique ref (ref=%s used_refs=%r)' % (ref, used_refs)))
used_refs.add(ref)
return ref
|
Return a git ref for project that isn't in used_refs.
Args:
project: The Project object to create a ref for.
base_ref: A base ref name; this may be appended to to generate a unique ref.
used_refs: A set of ref names to uniquify against. It is updated with the
newly generated ref.
|
scripts/create_manifest_snapshot.py
|
_MakeUniqueRef
|
khromiumos/chromiumos-chromite
| 0 |
python
|
def _MakeUniqueRef(project, base_ref, used_refs):
"Return a git ref for project that isn't in used_refs.\n\n Args:\n project: The Project object to create a ref for.\n base_ref: A base ref name; this may be appended to to generate a unique ref.\n used_refs: A set of ref names to uniquify against. It is updated with the\n newly generated ref.\n "
ref = base_ref
branch = _GetUpstreamBranch(project)
if (branch and (branch != 'master')):
ref = ('%s/%s' % (ref, branch))
if (ref in used_refs):
for i in range(1, (len(used_refs) + 2)):
numbered = ('%s/%d' % (ref, i))
if (numbered not in used_refs):
ref = numbered
break
else:
raise AssertionError(('failed to make unique ref (ref=%s used_refs=%r)' % (ref, used_refs)))
used_refs.add(ref)
return ref
|
def _MakeUniqueRef(project, base_ref, used_refs):
"Return a git ref for project that isn't in used_refs.\n\n Args:\n project: The Project object to create a ref for.\n base_ref: A base ref name; this may be appended to to generate a unique ref.\n used_refs: A set of ref names to uniquify against. It is updated with the\n newly generated ref.\n "
ref = base_ref
branch = _GetUpstreamBranch(project)
if (branch and (branch != 'master')):
ref = ('%s/%s' % (ref, branch))
if (ref in used_refs):
for i in range(1, (len(used_refs) + 2)):
numbered = ('%s/%d' % (ref, i))
if (numbered not in used_refs):
ref = numbered
break
else:
raise AssertionError(('failed to make unique ref (ref=%s used_refs=%r)' % (ref, used_refs)))
used_refs.add(ref)
return ref<|docstring|>Return a git ref for project that isn't in used_refs.
Args:
project: The Project object to create a ref for.
base_ref: A base ref name; this may be appended to to generate a unique ref.
used_refs: A set of ref names to uniquify against. It is updated with the
newly generated ref.<|endoftext|>
|
7467f41c73a1bddc82fd6ac3e2a7e57b21154a5eed6c008f3ad25fc492da7cf6
|
def _GitPushProjectUpstream(repo_root, project, dry_run):
'Push the project revision to its remote upstream.'
git.GitPush(os.path.join(repo_root, project.Path()), project.revision, git.RemoteRef(project.Remote().GitName(), project.upstream), dry_run=dry_run)
|
Push the project revision to its remote upstream.
|
scripts/create_manifest_snapshot.py
|
_GitPushProjectUpstream
|
khromiumos/chromiumos-chromite
| 0 |
python
|
def _GitPushProjectUpstream(repo_root, project, dry_run):
git.GitPush(os.path.join(repo_root, project.Path()), project.revision, git.RemoteRef(project.Remote().GitName(), project.upstream), dry_run=dry_run)
|
def _GitPushProjectUpstream(repo_root, project, dry_run):
git.GitPush(os.path.join(repo_root, project.Path()), project.revision, git.RemoteRef(project.Remote().GitName(), project.upstream), dry_run=dry_run)<|docstring|>Push the project revision to its remote upstream.<|endoftext|>
|
a2fe3cd4668726f0a42cc64f172e2ad5a771c5a977ef70ad607abe66ce2f06f3
|
@classmethod
def _load(cls, name):
'\n Attemps to load the .so for a tcti given its name. Returns a subclass of\n TCTI.\n '
return type('{}TCTI'.format(name.upper()), (cls,), {'NAME': name, 'CONTEXT': type('{}TCTIContext'.format(name.upper()), (cls.CONTEXT,), {'NAME': name})})
|
Attemps to load the .so for a tcti given its name. Returns a subclass of
TCTI.
|
tpm2_pytss/tcti.py
|
_load
|
pdxjohnny/tpm2-pytss
| 0 |
python
|
@classmethod
def _load(cls, name):
'\n Attemps to load the .so for a tcti given its name. Returns a subclass of\n TCTI.\n '
return type('{}TCTI'.format(name.upper()), (cls,), {'NAME': name, 'CONTEXT': type('{}TCTIContext'.format(name.upper()), (cls.CONTEXT,), {'NAME': name})})
|
@classmethod
def _load(cls, name):
'\n Attemps to load the .so for a tcti given its name. Returns a subclass of\n TCTI.\n '
return type('{}TCTI'.format(name.upper()), (cls,), {'NAME': name, 'CONTEXT': type('{}TCTIContext'.format(name.upper()), (cls.CONTEXT,), {'NAME': name})})<|docstring|>Attemps to load the .so for a tcti given its name. Returns a subclass of
TCTI.<|endoftext|>
|
7d25bd782f32911d234db00d7bab6918ba690731294dde1e043d0bcbba20345d
|
@classmethod
def load(cls, name):
'\n Attemps to load the .so for a tcti given its name. Returns the\n instantiation of a subclass of TCTI.\n '
return cls._load(name)()
|
Attemps to load the .so for a tcti given its name. Returns the
instantiation of a subclass of TCTI.
|
tpm2_pytss/tcti.py
|
load
|
pdxjohnny/tpm2-pytss
| 0 |
python
|
@classmethod
def load(cls, name):
'\n Attemps to load the .so for a tcti given its name. Returns the\n instantiation of a subclass of TCTI.\n '
return cls._load(name)()
|
@classmethod
def load(cls, name):
'\n Attemps to load the .so for a tcti given its name. Returns the\n instantiation of a subclass of TCTI.\n '
return cls._load(name)()<|docstring|>Attemps to load the .so for a tcti given its name. Returns the
instantiation of a subclass of TCTI.<|endoftext|>
|
9faa5cd6f0fa32164ee9478e09b770c0c4f023b383061eb92ca00298bcd3f89e
|
def find_cleanup_targets(self):
"Get configured and orphaned commit templates.\n\n :return: Dictionary with keys for each branch that map to a dictionary\n with keys 'config' and 'template' (the respective branch's config\n file and configured template). If there are orphaned commit\n templates, there will also be a key 'orphans' that's mapped to a\n list of orphaned commit templates.\n "
config_expr = 'includeif\\.onbranch:(.*)\\.path'
config_matches = self.configs.call_config_command(config_expr, file=self.configs.CONFIG_PATH, get_regexp=True)
if (config_matches is not None):
config_matches = config_matches.split('\n')
else:
config_matches = []
expr = 'includeif\\.onbranch:(.*)\\.path (.*)'
targets = {}
configured_commit_templates = []
for line in config_matches:
match = re.match(expr, line)
if match:
branch_name = match.group(1)
branch_config_file = match.group(2)
branch_commit_template = self.configs.get_config('commit.template', file=os.path.join(self.repo.git_dir, branch_config_file))
targets[branch_name] = {'config': branch_config_file, 'template': branch_commit_template}
configured_commit_templates.append(branch_commit_template)
repo_root_dir = os.path.dirname(self.repo.git_dir)
all_commit_templates = [os.path.basename(path) for path in glob.glob(os.path.join(repo_root_dir, '.gitmessage_local*'))]
orphan_commit_templates = [template for template in all_commit_templates if (template not in configured_commit_templates)]
if orphan_commit_templates:
targets['orphans'] = orphan_commit_templates
return targets
|
Get configured and orphaned commit templates.
:return: Dictionary with keys for each branch that map to a dictionary
with keys 'config' and 'template' (the respective branch's config
file and configured template). If there are orphaned commit
templates, there will also be a key 'orphans' that's mapped to a
list of orphaned commit templates.
|
git_workflow/workflow/cleanup.py
|
find_cleanup_targets
|
connordelacruz/git-workflow
| 5 |
python
|
def find_cleanup_targets(self):
"Get configured and orphaned commit templates.\n\n :return: Dictionary with keys for each branch that map to a dictionary\n with keys 'config' and 'template' (the respective branch's config\n file and configured template). If there are orphaned commit\n templates, there will also be a key 'orphans' that's mapped to a\n list of orphaned commit templates.\n "
config_expr = 'includeif\\.onbranch:(.*)\\.path'
config_matches = self.configs.call_config_command(config_expr, file=self.configs.CONFIG_PATH, get_regexp=True)
if (config_matches is not None):
config_matches = config_matches.split('\n')
else:
config_matches = []
expr = 'includeif\\.onbranch:(.*)\\.path (.*)'
targets = {}
configured_commit_templates = []
for line in config_matches:
match = re.match(expr, line)
if match:
branch_name = match.group(1)
branch_config_file = match.group(2)
branch_commit_template = self.configs.get_config('commit.template', file=os.path.join(self.repo.git_dir, branch_config_file))
targets[branch_name] = {'config': branch_config_file, 'template': branch_commit_template}
configured_commit_templates.append(branch_commit_template)
repo_root_dir = os.path.dirname(self.repo.git_dir)
all_commit_templates = [os.path.basename(path) for path in glob.glob(os.path.join(repo_root_dir, '.gitmessage_local*'))]
orphan_commit_templates = [template for template in all_commit_templates if (template not in configured_commit_templates)]
if orphan_commit_templates:
targets['orphans'] = orphan_commit_templates
return targets
|
def find_cleanup_targets(self):
"Get configured and orphaned commit templates.\n\n :return: Dictionary with keys for each branch that map to a dictionary\n with keys 'config' and 'template' (the respective branch's config\n file and configured template). If there are orphaned commit\n templates, there will also be a key 'orphans' that's mapped to a\n list of orphaned commit templates.\n "
config_expr = 'includeif\\.onbranch:(.*)\\.path'
config_matches = self.configs.call_config_command(config_expr, file=self.configs.CONFIG_PATH, get_regexp=True)
if (config_matches is not None):
config_matches = config_matches.split('\n')
else:
config_matches = []
expr = 'includeif\\.onbranch:(.*)\\.path (.*)'
targets = {}
configured_commit_templates = []
for line in config_matches:
match = re.match(expr, line)
if match:
branch_name = match.group(1)
branch_config_file = match.group(2)
branch_commit_template = self.configs.get_config('commit.template', file=os.path.join(self.repo.git_dir, branch_config_file))
targets[branch_name] = {'config': branch_config_file, 'template': branch_commit_template}
configured_commit_templates.append(branch_commit_template)
repo_root_dir = os.path.dirname(self.repo.git_dir)
all_commit_templates = [os.path.basename(path) for path in glob.glob(os.path.join(repo_root_dir, '.gitmessage_local*'))]
orphan_commit_templates = [template for template in all_commit_templates if (template not in configured_commit_templates)]
if orphan_commit_templates:
targets['orphans'] = orphan_commit_templates
return targets<|docstring|>Get configured and orphaned commit templates.
:return: Dictionary with keys for each branch that map to a dictionary
with keys 'config' and 'template' (the respective branch's config
file and configured template). If there are orphaned commit
templates, there will also be a key 'orphans' that's mapped to a
list of orphaned commit templates.<|endoftext|>
|
c805c0f8b78e35f185b2329dc935c1ab406a459a0ff4ac5523c8637fbf47b80a
|
def generator(sweep: 'ParameterSweep', func: callable, **kwargs) -> np.ndarray:
'Method for computing custom data as a function of the external parameter,\n calculated via the function `func`.\n\n Parameters\n ----------\n sweep:\n ParameterSweep object containing HilbertSpace and spectral information\n func:\n signature: `func(parametersweep, [paramindex_tuple, paramvals_tuple,\n **kwargs])`, specifies how to calculate the data for a single choice of\n parameter(s)\n **kwargs:\n keyword arguments to be included in func\n\n Returns\n -------\n array of custom data\n '
reduced_parameters = sweep._parameters.create_sliced(sweep._current_param_indices, remove_fixed=False)
total_count = np.prod(reduced_parameters.counts)
def func_effective(paramindex_tuple: Tuple[int], params, **kw) -> Any:
paramvals_tuple = params[paramindex_tuple]
return func(sweep, paramindex_tuple=paramindex_tuple, paramvals_tuple=paramvals_tuple, **kw)
if hasattr(func, '__name__'):
func_name = func.__name__
else:
func_name = ''
data_array = list(tqdm(map(functools.partial(func_effective, params=reduced_parameters, **kwargs), itertools.product(*reduced_parameters.ranges)), total=total_count, desc=('sweeping ' + func_name), leave=False, disable=settings.PROGRESSBAR_DISABLED))
data_array = np.asarray(data_array)
return NamedSlotsNdarray(data_array.reshape(reduced_parameters.counts), reduced_parameters.paramvals_by_name)
|
Method for computing custom data as a function of the external parameter,
calculated via the function `func`.
Parameters
----------
sweep:
ParameterSweep object containing HilbertSpace and spectral information
func:
signature: `func(parametersweep, [paramindex_tuple, paramvals_tuple,
**kwargs])`, specifies how to calculate the data for a single choice of
parameter(s)
**kwargs:
keyword arguments to be included in func
Returns
-------
array of custom data
|
scqubits/core/sweeps.py
|
generator
|
dmtvanzanten/scqubits
| 0 |
python
|
def generator(sweep: 'ParameterSweep', func: callable, **kwargs) -> np.ndarray:
'Method for computing custom data as a function of the external parameter,\n calculated via the function `func`.\n\n Parameters\n ----------\n sweep:\n ParameterSweep object containing HilbertSpace and spectral information\n func:\n signature: `func(parametersweep, [paramindex_tuple, paramvals_tuple,\n **kwargs])`, specifies how to calculate the data for a single choice of\n parameter(s)\n **kwargs:\n keyword arguments to be included in func\n\n Returns\n -------\n array of custom data\n '
reduced_parameters = sweep._parameters.create_sliced(sweep._current_param_indices, remove_fixed=False)
total_count = np.prod(reduced_parameters.counts)
def func_effective(paramindex_tuple: Tuple[int], params, **kw) -> Any:
paramvals_tuple = params[paramindex_tuple]
return func(sweep, paramindex_tuple=paramindex_tuple, paramvals_tuple=paramvals_tuple, **kw)
if hasattr(func, '__name__'):
func_name = func.__name__
else:
func_name =
data_array = list(tqdm(map(functools.partial(func_effective, params=reduced_parameters, **kwargs), itertools.product(*reduced_parameters.ranges)), total=total_count, desc=('sweeping ' + func_name), leave=False, disable=settings.PROGRESSBAR_DISABLED))
data_array = np.asarray(data_array)
return NamedSlotsNdarray(data_array.reshape(reduced_parameters.counts), reduced_parameters.paramvals_by_name)
|
def generator(sweep: 'ParameterSweep', func: callable, **kwargs) -> np.ndarray:
'Method for computing custom data as a function of the external parameter,\n calculated via the function `func`.\n\n Parameters\n ----------\n sweep:\n ParameterSweep object containing HilbertSpace and spectral information\n func:\n signature: `func(parametersweep, [paramindex_tuple, paramvals_tuple,\n **kwargs])`, specifies how to calculate the data for a single choice of\n parameter(s)\n **kwargs:\n keyword arguments to be included in func\n\n Returns\n -------\n array of custom data\n '
reduced_parameters = sweep._parameters.create_sliced(sweep._current_param_indices, remove_fixed=False)
total_count = np.prod(reduced_parameters.counts)
def func_effective(paramindex_tuple: Tuple[int], params, **kw) -> Any:
paramvals_tuple = params[paramindex_tuple]
return func(sweep, paramindex_tuple=paramindex_tuple, paramvals_tuple=paramvals_tuple, **kw)
if hasattr(func, '__name__'):
func_name = func.__name__
else:
func_name =
data_array = list(tqdm(map(functools.partial(func_effective, params=reduced_parameters, **kwargs), itertools.product(*reduced_parameters.ranges)), total=total_count, desc=('sweeping ' + func_name), leave=False, disable=settings.PROGRESSBAR_DISABLED))
data_array = np.asarray(data_array)
return NamedSlotsNdarray(data_array.reshape(reduced_parameters.counts), reduced_parameters.paramvals_by_name)<|docstring|>Method for computing custom data as a function of the external parameter,
calculated via the function `func`.
Parameters
----------
sweep:
ParameterSweep object containing HilbertSpace and spectral information
func:
signature: `func(parametersweep, [paramindex_tuple, paramvals_tuple,
**kwargs])`, specifies how to calculate the data for a single choice of
parameter(s)
**kwargs:
keyword arguments to be included in func
Returns
-------
array of custom data<|endoftext|>
|
3012aeec5d58a16a5507fb061ee43b57a6b13dc10d77897b147dec75aa10aef0
|
def all_neighbour_nodes(chain_state: ChainState, light_client_address: Address=None) -> Set[Address]:
' Return the identifiers for all nodes accross all payment networks which\n have a channel open with this one.\n '
addresses = set()
address_to_search_neighbour = None
if (light_client_address is not None):
address_to_search_neighbour = to_canonical_address(light_client_address)
else:
address_to_search_neighbour = chain_state.our_address
for payment_network in chain_state.identifiers_to_paymentnetworks.values():
for token_network in payment_network.tokenidentifiers_to_tokennetworks.values():
if (address_to_search_neighbour in token_network.channelidentifiers_to_channels):
channel_states = token_network.channelidentifiers_to_channels[address_to_search_neighbour].values()
for channel_state in channel_states:
addresses.add(channel_state.partner_state.address)
return addresses
|
Return the identifiers for all nodes accross all payment networks which
have a channel open with this one.
|
raiden/transfer/views.py
|
all_neighbour_nodes
|
marcosmartinez7/lumino
| 8 |
python
|
def all_neighbour_nodes(chain_state: ChainState, light_client_address: Address=None) -> Set[Address]:
' Return the identifiers for all nodes accross all payment networks which\n have a channel open with this one.\n '
addresses = set()
address_to_search_neighbour = None
if (light_client_address is not None):
address_to_search_neighbour = to_canonical_address(light_client_address)
else:
address_to_search_neighbour = chain_state.our_address
for payment_network in chain_state.identifiers_to_paymentnetworks.values():
for token_network in payment_network.tokenidentifiers_to_tokennetworks.values():
if (address_to_search_neighbour in token_network.channelidentifiers_to_channels):
channel_states = token_network.channelidentifiers_to_channels[address_to_search_neighbour].values()
for channel_state in channel_states:
addresses.add(channel_state.partner_state.address)
return addresses
|
def all_neighbour_nodes(chain_state: ChainState, light_client_address: Address=None) -> Set[Address]:
' Return the identifiers for all nodes accross all payment networks which\n have a channel open with this one.\n '
addresses = set()
address_to_search_neighbour = None
if (light_client_address is not None):
address_to_search_neighbour = to_canonical_address(light_client_address)
else:
address_to_search_neighbour = chain_state.our_address
for payment_network in chain_state.identifiers_to_paymentnetworks.values():
for token_network in payment_network.tokenidentifiers_to_tokennetworks.values():
if (address_to_search_neighbour in token_network.channelidentifiers_to_channels):
channel_states = token_network.channelidentifiers_to_channels[address_to_search_neighbour].values()
for channel_state in channel_states:
addresses.add(channel_state.partner_state.address)
return addresses<|docstring|>Return the identifiers for all nodes accross all payment networks which
have a channel open with this one.<|endoftext|>
|
8faf20f65b2589bbb823874a8e494c1ea3a43977c0460c0293b6ec4fd9f6c319
|
def get_token_network_identifiers(chain_state: ChainState, payment_network_id: PaymentNetworkID) -> List[TokenNetworkID]:
' Return the list of token networks registered with the given payment network. '
payment_network = chain_state.identifiers_to_paymentnetworks.get(payment_network_id)
if (payment_network is not None):
return [token_network.address for token_network in payment_network.tokenidentifiers_to_tokennetworks.values()]
return list()
|
Return the list of token networks registered with the given payment network.
|
raiden/transfer/views.py
|
get_token_network_identifiers
|
marcosmartinez7/lumino
| 8 |
python
|
def get_token_network_identifiers(chain_state: ChainState, payment_network_id: PaymentNetworkID) -> List[TokenNetworkID]:
' '
payment_network = chain_state.identifiers_to_paymentnetworks.get(payment_network_id)
if (payment_network is not None):
return [token_network.address for token_network in payment_network.tokenidentifiers_to_tokennetworks.values()]
return list()
|
def get_token_network_identifiers(chain_state: ChainState, payment_network_id: PaymentNetworkID) -> List[TokenNetworkID]:
' '
payment_network = chain_state.identifiers_to_paymentnetworks.get(payment_network_id)
if (payment_network is not None):
return [token_network.address for token_network in payment_network.tokenidentifiers_to_tokennetworks.values()]
return list()<|docstring|>Return the list of token networks registered with the given payment network.<|endoftext|>
|
574177e5f114c1cb7156eed1869754b30655a001e37062f3322f0851944efd3a
|
def get_token_identifiers(chain_state: ChainState, payment_network_id: PaymentNetworkID) -> List[TokenAddress]:
' Return the list of tokens registered with the given payment network. '
payment_network = chain_state.identifiers_to_paymentnetworks.get(payment_network_id)
if (payment_network is not None):
return [token_address for token_address in payment_network.tokenaddresses_to_tokenidentifiers.keys()]
return list()
|
Return the list of tokens registered with the given payment network.
|
raiden/transfer/views.py
|
get_token_identifiers
|
marcosmartinez7/lumino
| 8 |
python
|
def get_token_identifiers(chain_state: ChainState, payment_network_id: PaymentNetworkID) -> List[TokenAddress]:
' '
payment_network = chain_state.identifiers_to_paymentnetworks.get(payment_network_id)
if (payment_network is not None):
return [token_address for token_address in payment_network.tokenaddresses_to_tokenidentifiers.keys()]
return list()
|
def get_token_identifiers(chain_state: ChainState, payment_network_id: PaymentNetworkID) -> List[TokenAddress]:
' '
payment_network = chain_state.identifiers_to_paymentnetworks.get(payment_network_id)
if (payment_network is not None):
return [token_address for token_address in payment_network.tokenaddresses_to_tokenidentifiers.keys()]
return list()<|docstring|>Return the list of tokens registered with the given payment network.<|endoftext|>
|
d9e9bbadc12a32d6be6f314f9e69385aef5371199d26345d40cd448fa374362d
|
def get_channelstate_for(chain_state: ChainState, payment_network_id: PaymentNetworkID, token_address: TokenAddress, creator_address: Address, partner_address: Address) -> Optional[NettingChannelState]:
' Return the NettingChannelState if it exists, None otherwise. '
token_network = get_token_network_by_token_address(chain_state, payment_network_id, token_address)
channel_state = None
address_to_get_channel_state = creator_address
channel = None
if ((token_network and (creator_address in token_network.channelidentifiers_to_channels)) or (token_network and (partner_address in token_network.channelidentifiers_to_channels))):
channels = []
for channel_id in token_network.partneraddresses_to_channelidentifiers[partner_address]:
if (creator_address in token_network.channelidentifiers_to_channels):
channel = token_network.channelidentifiers_to_channels[creator_address].get(channel_id)
if ((channel is None) and (partner_address in token_network.channelidentifiers_to_channels)):
channel = token_network.channelidentifiers_to_channels[partner_address].get(channel_id)
address_to_get_channel_state = partner_address
if (channel is not None):
if ((channel.close_transaction is None) or (channel.close_transaction.result != 'success')):
channels.append(token_network.channelidentifiers_to_channels[address_to_get_channel_state][channel_id])
channel = None
states = filter_channels_by_status(channels, [CHANNEL_STATE_UNUSABLE])
if states:
channel_state = states[(- 1)]
return channel_state
|
Return the NettingChannelState if it exists, None otherwise.
|
raiden/transfer/views.py
|
get_channelstate_for
|
marcosmartinez7/lumino
| 8 |
python
|
def get_channelstate_for(chain_state: ChainState, payment_network_id: PaymentNetworkID, token_address: TokenAddress, creator_address: Address, partner_address: Address) -> Optional[NettingChannelState]:
' '
token_network = get_token_network_by_token_address(chain_state, payment_network_id, token_address)
channel_state = None
address_to_get_channel_state = creator_address
channel = None
if ((token_network and (creator_address in token_network.channelidentifiers_to_channels)) or (token_network and (partner_address in token_network.channelidentifiers_to_channels))):
channels = []
for channel_id in token_network.partneraddresses_to_channelidentifiers[partner_address]:
if (creator_address in token_network.channelidentifiers_to_channels):
channel = token_network.channelidentifiers_to_channels[creator_address].get(channel_id)
if ((channel is None) and (partner_address in token_network.channelidentifiers_to_channels)):
channel = token_network.channelidentifiers_to_channels[partner_address].get(channel_id)
address_to_get_channel_state = partner_address
if (channel is not None):
if ((channel.close_transaction is None) or (channel.close_transaction.result != 'success')):
channels.append(token_network.channelidentifiers_to_channels[address_to_get_channel_state][channel_id])
channel = None
states = filter_channels_by_status(channels, [CHANNEL_STATE_UNUSABLE])
if states:
channel_state = states[(- 1)]
return channel_state
|
def get_channelstate_for(chain_state: ChainState, payment_network_id: PaymentNetworkID, token_address: TokenAddress, creator_address: Address, partner_address: Address) -> Optional[NettingChannelState]:
' '
token_network = get_token_network_by_token_address(chain_state, payment_network_id, token_address)
channel_state = None
address_to_get_channel_state = creator_address
channel = None
if ((token_network and (creator_address in token_network.channelidentifiers_to_channels)) or (token_network and (partner_address in token_network.channelidentifiers_to_channels))):
channels = []
for channel_id in token_network.partneraddresses_to_channelidentifiers[partner_address]:
if (creator_address in token_network.channelidentifiers_to_channels):
channel = token_network.channelidentifiers_to_channels[creator_address].get(channel_id)
if ((channel is None) and (partner_address in token_network.channelidentifiers_to_channels)):
channel = token_network.channelidentifiers_to_channels[partner_address].get(channel_id)
address_to_get_channel_state = partner_address
if (channel is not None):
if ((channel.close_transaction is None) or (channel.close_transaction.result != 'success')):
channels.append(token_network.channelidentifiers_to_channels[address_to_get_channel_state][channel_id])
channel = None
states = filter_channels_by_status(channels, [CHANNEL_STATE_UNUSABLE])
if states:
channel_state = states[(- 1)]
return channel_state<|docstring|>Return the NettingChannelState if it exists, None otherwise.<|endoftext|>
|
98f83656a0d1dab8d6560b75dc44a4f9aaa4fea1396a4d630fcbebd37fb5c27c
|
def get_channelstate_for_close_channel(chain_state: ChainState, payment_network_id: PaymentNetworkID, token_address: TokenAddress, creator_address: Address, partner_address: Address, channel_id_to_check: ChannelID=None) -> Optional[NettingChannelState]:
' Return the NettingChannelState if it exists, None otherwise. '
token_network = get_token_network_by_token_address(chain_state, payment_network_id, token_address)
channel_state = None
address_to_get_channel_state = creator_address
if (token_network and (creator_address in token_network.channelidentifiers_to_channels)):
channels = []
for channel_id in token_network.partneraddresses_to_channelidentifiers[partner_address]:
if (channel_id == channel_id_to_check):
channel = token_network.channelidentifiers_to_channels[creator_address].get(channel_id)
if (channel is None):
channel = token_network.channelidentifiers_to_channels[partner_address].get(channel_id)
address_to_get_channel_state = partner_address
if (channel is not None):
if ((channel.close_transaction is not None) and (channel.close_transaction.result == 'success')):
channels.append(token_network.channelidentifiers_to_channels[address_to_get_channel_state][channel_id])
states = filter_channels_by_status(channels, [CHANNEL_STATE_UNUSABLE])
if states:
channel_state = states[(- 1)]
return channel_state
|
Return the NettingChannelState if it exists, None otherwise.
|
raiden/transfer/views.py
|
get_channelstate_for_close_channel
|
marcosmartinez7/lumino
| 8 |
python
|
def get_channelstate_for_close_channel(chain_state: ChainState, payment_network_id: PaymentNetworkID, token_address: TokenAddress, creator_address: Address, partner_address: Address, channel_id_to_check: ChannelID=None) -> Optional[NettingChannelState]:
' '
token_network = get_token_network_by_token_address(chain_state, payment_network_id, token_address)
channel_state = None
address_to_get_channel_state = creator_address
if (token_network and (creator_address in token_network.channelidentifiers_to_channels)):
channels = []
for channel_id in token_network.partneraddresses_to_channelidentifiers[partner_address]:
if (channel_id == channel_id_to_check):
channel = token_network.channelidentifiers_to_channels[creator_address].get(channel_id)
if (channel is None):
channel = token_network.channelidentifiers_to_channels[partner_address].get(channel_id)
address_to_get_channel_state = partner_address
if (channel is not None):
if ((channel.close_transaction is not None) and (channel.close_transaction.result == 'success')):
channels.append(token_network.channelidentifiers_to_channels[address_to_get_channel_state][channel_id])
states = filter_channels_by_status(channels, [CHANNEL_STATE_UNUSABLE])
if states:
channel_state = states[(- 1)]
return channel_state
|
def get_channelstate_for_close_channel(chain_state: ChainState, payment_network_id: PaymentNetworkID, token_address: TokenAddress, creator_address: Address, partner_address: Address, channel_id_to_check: ChannelID=None) -> Optional[NettingChannelState]:
' '
token_network = get_token_network_by_token_address(chain_state, payment_network_id, token_address)
channel_state = None
address_to_get_channel_state = creator_address
if (token_network and (creator_address in token_network.channelidentifiers_to_channels)):
channels = []
for channel_id in token_network.partneraddresses_to_channelidentifiers[partner_address]:
if (channel_id == channel_id_to_check):
channel = token_network.channelidentifiers_to_channels[creator_address].get(channel_id)
if (channel is None):
channel = token_network.channelidentifiers_to_channels[partner_address].get(channel_id)
address_to_get_channel_state = partner_address
if (channel is not None):
if ((channel.close_transaction is not None) and (channel.close_transaction.result == 'success')):
channels.append(token_network.channelidentifiers_to_channels[address_to_get_channel_state][channel_id])
states = filter_channels_by_status(channels, [CHANNEL_STATE_UNUSABLE])
if states:
channel_state = states[(- 1)]
return channel_state<|docstring|>Return the NettingChannelState if it exists, None otherwise.<|endoftext|>
|
7aa53593c5ef4d02ec52b9b7333fb9f19d4226c0b4fcc6d83137e7ecd1e3b1c8
|
def get_channelstate_by_token_network_and_partner(chain_state: ChainState, token_network_id: TokenNetworkID, creator_address: Address, partner_address: Address) -> Optional[NettingChannelState]:
' Return the NettingChannelState if it exists, None otherwise. '
token_network = get_token_network_by_identifier(chain_state, token_network_id)
channel_state = None
if token_network:
channels = []
for channel_id in token_network.partneraddresses_to_channelidentifiers[partner_address]:
if (token_network.channelidentifiers_to_channels[creator_address].get(channel_id) is not None):
channels.append(token_network.channelidentifiers_to_channels[creator_address][channel_id])
states = filter_channels_by_status(channels, [CHANNEL_STATE_UNUSABLE])
if states:
channel_state = states[(- 1)]
return channel_state
|
Return the NettingChannelState if it exists, None otherwise.
|
raiden/transfer/views.py
|
get_channelstate_by_token_network_and_partner
|
marcosmartinez7/lumino
| 8 |
python
|
def get_channelstate_by_token_network_and_partner(chain_state: ChainState, token_network_id: TokenNetworkID, creator_address: Address, partner_address: Address) -> Optional[NettingChannelState]:
' '
token_network = get_token_network_by_identifier(chain_state, token_network_id)
channel_state = None
if token_network:
channels = []
for channel_id in token_network.partneraddresses_to_channelidentifiers[partner_address]:
if (token_network.channelidentifiers_to_channels[creator_address].get(channel_id) is not None):
channels.append(token_network.channelidentifiers_to_channels[creator_address][channel_id])
states = filter_channels_by_status(channels, [CHANNEL_STATE_UNUSABLE])
if states:
channel_state = states[(- 1)]
return channel_state
|
def get_channelstate_by_token_network_and_partner(chain_state: ChainState, token_network_id: TokenNetworkID, creator_address: Address, partner_address: Address) -> Optional[NettingChannelState]:
' '
token_network = get_token_network_by_identifier(chain_state, token_network_id)
channel_state = None
if token_network:
channels = []
for channel_id in token_network.partneraddresses_to_channelidentifiers[partner_address]:
if (token_network.channelidentifiers_to_channels[creator_address].get(channel_id) is not None):
channels.append(token_network.channelidentifiers_to_channels[creator_address][channel_id])
states = filter_channels_by_status(channels, [CHANNEL_STATE_UNUSABLE])
if states:
channel_state = states[(- 1)]
return channel_state<|docstring|>Return the NettingChannelState if it exists, None otherwise.<|endoftext|>
|
53315e10997006b120ad817e50a9786f603ec6beebf3a65d14dab1f0118201c5
|
def get_channelstate_by_canonical_identifier_and_address(chain_state: ChainState, canonical_identifier: CanonicalIdentifier, address: AddressHex) -> Optional[NettingChannelState]:
' Return the NettingChannelState if it exists, None otherwise. '
token_network = get_token_network_by_identifier(chain_state, TokenNetworkID(canonical_identifier.token_network_address))
channel_state = None
if (token_network and (address in token_network.channelidentifiers_to_channels)):
channel_state = token_network.channelidentifiers_to_channels[address].get(canonical_identifier.channel_identifier)
else:
lc_address = get_lc_address_by_channel_id_and_partner(token_network, address, canonical_identifier)
if (lc_address in token_network.channelidentifiers_to_channels):
channel_state = token_network.channelidentifiers_to_channels[lc_address].get(canonical_identifier.channel_identifier)
return channel_state
|
Return the NettingChannelState if it exists, None otherwise.
|
raiden/transfer/views.py
|
get_channelstate_by_canonical_identifier_and_address
|
marcosmartinez7/lumino
| 8 |
python
|
def get_channelstate_by_canonical_identifier_and_address(chain_state: ChainState, canonical_identifier: CanonicalIdentifier, address: AddressHex) -> Optional[NettingChannelState]:
' '
token_network = get_token_network_by_identifier(chain_state, TokenNetworkID(canonical_identifier.token_network_address))
channel_state = None
if (token_network and (address in token_network.channelidentifiers_to_channels)):
channel_state = token_network.channelidentifiers_to_channels[address].get(canonical_identifier.channel_identifier)
else:
lc_address = get_lc_address_by_channel_id_and_partner(token_network, address, canonical_identifier)
if (lc_address in token_network.channelidentifiers_to_channels):
channel_state = token_network.channelidentifiers_to_channels[lc_address].get(canonical_identifier.channel_identifier)
return channel_state
|
def get_channelstate_by_canonical_identifier_and_address(chain_state: ChainState, canonical_identifier: CanonicalIdentifier, address: AddressHex) -> Optional[NettingChannelState]:
' '
token_network = get_token_network_by_identifier(chain_state, TokenNetworkID(canonical_identifier.token_network_address))
channel_state = None
if (token_network and (address in token_network.channelidentifiers_to_channels)):
channel_state = token_network.channelidentifiers_to_channels[address].get(canonical_identifier.channel_identifier)
else:
lc_address = get_lc_address_by_channel_id_and_partner(token_network, address, canonical_identifier)
if (lc_address in token_network.channelidentifiers_to_channels):
channel_state = token_network.channelidentifiers_to_channels[lc_address].get(canonical_identifier.channel_identifier)
return channel_state<|docstring|>Return the NettingChannelState if it exists, None otherwise.<|endoftext|>
|
c8dc386aab50900f2e1fb8c29a201ee0c292583e84763a442e9a69667740ea97
|
def get_channelstate_filter(chain_state: ChainState, payment_network_id: PaymentNetworkID, token_address: TokenAddress, filter_fn: Callable) -> List[NettingChannelState]:
' Return the state of channels that match the condition in `filter_fn` '
token_network = get_token_network_by_token_address(chain_state, payment_network_id, token_address)
result: List[NettingChannelState] = []
if (not token_network):
return result
if (chain_state.our_address in token_network.channelidentifiers_to_channels):
for channel_state in token_network.channelidentifiers_to_channels[chain_state.our_address].values():
if filter_fn(channel_state):
result.append(channel_state)
return result
|
Return the state of channels that match the condition in `filter_fn`
|
raiden/transfer/views.py
|
get_channelstate_filter
|
marcosmartinez7/lumino
| 8 |
python
|
def get_channelstate_filter(chain_state: ChainState, payment_network_id: PaymentNetworkID, token_address: TokenAddress, filter_fn: Callable) -> List[NettingChannelState]:
' '
token_network = get_token_network_by_token_address(chain_state, payment_network_id, token_address)
result: List[NettingChannelState] = []
if (not token_network):
return result
if (chain_state.our_address in token_network.channelidentifiers_to_channels):
for channel_state in token_network.channelidentifiers_to_channels[chain_state.our_address].values():
if filter_fn(channel_state):
result.append(channel_state)
return result
|
def get_channelstate_filter(chain_state: ChainState, payment_network_id: PaymentNetworkID, token_address: TokenAddress, filter_fn: Callable) -> List[NettingChannelState]:
' '
token_network = get_token_network_by_token_address(chain_state, payment_network_id, token_address)
result: List[NettingChannelState] = []
if (not token_network):
return result
if (chain_state.our_address in token_network.channelidentifiers_to_channels):
for channel_state in token_network.channelidentifiers_to_channels[chain_state.our_address].values():
if filter_fn(channel_state):
result.append(channel_state)
return result<|docstring|>Return the state of channels that match the condition in `filter_fn`<|endoftext|>
|
8341ec5c718dd6f1453ecb10483c0397833db0db9e652d4716e5e942528e6e7d
|
def get_channelstate_open(chain_state: ChainState, payment_network_id: PaymentNetworkID, token_address: TokenAddress) -> List[NettingChannelState]:
'Return the state of open channels in a token network.'
return get_channelstate_filter(chain_state, payment_network_id, token_address, (lambda channel_state: (channel.get_status(channel_state) == CHANNEL_STATE_OPENED)))
|
Return the state of open channels in a token network.
|
raiden/transfer/views.py
|
get_channelstate_open
|
marcosmartinez7/lumino
| 8 |
python
|
def get_channelstate_open(chain_state: ChainState, payment_network_id: PaymentNetworkID, token_address: TokenAddress) -> List[NettingChannelState]:
return get_channelstate_filter(chain_state, payment_network_id, token_address, (lambda channel_state: (channel.get_status(channel_state) == CHANNEL_STATE_OPENED)))
|
def get_channelstate_open(chain_state: ChainState, payment_network_id: PaymentNetworkID, token_address: TokenAddress) -> List[NettingChannelState]:
return get_channelstate_filter(chain_state, payment_network_id, token_address, (lambda channel_state: (channel.get_status(channel_state) == CHANNEL_STATE_OPENED)))<|docstring|>Return the state of open channels in a token network.<|endoftext|>
|
c2767cd39a40533821134f65ed2a14befdba4d604759d890565e9943a1eee728
|
def get_channelstate_closing(chain_state: ChainState, payment_network_id: PaymentNetworkID, token_address: TokenAddress) -> List[NettingChannelState]:
'Return the state of closing channels in a token network.'
return get_channelstate_filter(chain_state, payment_network_id, token_address, (lambda channel_state: (channel.get_status(channel_state) == CHANNEL_STATE_CLOSING)))
|
Return the state of closing channels in a token network.
|
raiden/transfer/views.py
|
get_channelstate_closing
|
marcosmartinez7/lumino
| 8 |
python
|
def get_channelstate_closing(chain_state: ChainState, payment_network_id: PaymentNetworkID, token_address: TokenAddress) -> List[NettingChannelState]:
return get_channelstate_filter(chain_state, payment_network_id, token_address, (lambda channel_state: (channel.get_status(channel_state) == CHANNEL_STATE_CLOSING)))
|
def get_channelstate_closing(chain_state: ChainState, payment_network_id: PaymentNetworkID, token_address: TokenAddress) -> List[NettingChannelState]:
return get_channelstate_filter(chain_state, payment_network_id, token_address, (lambda channel_state: (channel.get_status(channel_state) == CHANNEL_STATE_CLOSING)))<|docstring|>Return the state of closing channels in a token network.<|endoftext|>
|
b4d2508a3f55a76cdc307f917b29753bd2b73dcab16b23eab8fc4b97ed094dbe
|
def get_channelstate_closed(chain_state: ChainState, payment_network_id: PaymentNetworkID, token_address: TokenAddress) -> List[NettingChannelState]:
'Return the state of closed channels in a token network.'
return get_channelstate_filter(chain_state, payment_network_id, token_address, (lambda channel_state: (channel.get_status(channel_state) == CHANNEL_STATE_CLOSED)))
|
Return the state of closed channels in a token network.
|
raiden/transfer/views.py
|
get_channelstate_closed
|
marcosmartinez7/lumino
| 8 |
python
|
def get_channelstate_closed(chain_state: ChainState, payment_network_id: PaymentNetworkID, token_address: TokenAddress) -> List[NettingChannelState]:
return get_channelstate_filter(chain_state, payment_network_id, token_address, (lambda channel_state: (channel.get_status(channel_state) == CHANNEL_STATE_CLOSED)))
|
def get_channelstate_closed(chain_state: ChainState, payment_network_id: PaymentNetworkID, token_address: TokenAddress) -> List[NettingChannelState]:
return get_channelstate_filter(chain_state, payment_network_id, token_address, (lambda channel_state: (channel.get_status(channel_state) == CHANNEL_STATE_CLOSED)))<|docstring|>Return the state of closed channels in a token network.<|endoftext|>
|
378bab465297f5b7a05a846bd4fc2896cc47ef3bd8d8dbd5e6ff93607494a5d5
|
def get_channelstate_settling(chain_state: ChainState, payment_network_id: PaymentNetworkID, token_address: TokenAddress) -> List[NettingChannelState]:
'Return the state of settling channels in a token network.'
return get_channelstate_filter(chain_state, payment_network_id, token_address, (lambda channel_state: (channel.get_status(channel_state) == CHANNEL_STATE_SETTLING)))
|
Return the state of settling channels in a token network.
|
raiden/transfer/views.py
|
get_channelstate_settling
|
marcosmartinez7/lumino
| 8 |
python
|
def get_channelstate_settling(chain_state: ChainState, payment_network_id: PaymentNetworkID, token_address: TokenAddress) -> List[NettingChannelState]:
return get_channelstate_filter(chain_state, payment_network_id, token_address, (lambda channel_state: (channel.get_status(channel_state) == CHANNEL_STATE_SETTLING)))
|
def get_channelstate_settling(chain_state: ChainState, payment_network_id: PaymentNetworkID, token_address: TokenAddress) -> List[NettingChannelState]:
return get_channelstate_filter(chain_state, payment_network_id, token_address, (lambda channel_state: (channel.get_status(channel_state) == CHANNEL_STATE_SETTLING)))<|docstring|>Return the state of settling channels in a token network.<|endoftext|>
|
9b05db16adab9d3ca6ac7ef1fed6b4d45ba97472fadc96a4fdcea388fbb165b1
|
def get_channelstate_settled(chain_state: ChainState, payment_network_id: PaymentNetworkID, token_address: TokenAddress) -> List[NettingChannelState]:
'Return the state of settled channels in a token network.'
return get_channelstate_filter(chain_state, payment_network_id, token_address, (lambda channel_state: (channel.get_status(channel_state) == CHANNEL_STATE_SETTLED)))
|
Return the state of settled channels in a token network.
|
raiden/transfer/views.py
|
get_channelstate_settled
|
marcosmartinez7/lumino
| 8 |
python
|
def get_channelstate_settled(chain_state: ChainState, payment_network_id: PaymentNetworkID, token_address: TokenAddress) -> List[NettingChannelState]:
return get_channelstate_filter(chain_state, payment_network_id, token_address, (lambda channel_state: (channel.get_status(channel_state) == CHANNEL_STATE_SETTLED)))
|
def get_channelstate_settled(chain_state: ChainState, payment_network_id: PaymentNetworkID, token_address: TokenAddress) -> List[NettingChannelState]:
return get_channelstate_filter(chain_state, payment_network_id, token_address, (lambda channel_state: (channel.get_status(channel_state) == CHANNEL_STATE_SETTLED)))<|docstring|>Return the state of settled channels in a token network.<|endoftext|>
|
3526f61b5c4c6f07816c9933a4384873eabddade2d504f87540ced6ade2b6103
|
def role_from_transfer_task(transfer_task: TransferTask) -> str:
'Return the role and type for the transfer. Throws an exception on error'
if isinstance(transfer_task, InitiatorTask):
return 'initiator'
if isinstance(transfer_task, MediatorTask):
return 'mediator'
if isinstance(transfer_task, TargetTask):
return 'target'
raise ValueError('Argument to role_from_transfer_task is not a TransferTask')
|
Return the role and type for the transfer. Throws an exception on error
|
raiden/transfer/views.py
|
role_from_transfer_task
|
marcosmartinez7/lumino
| 8 |
python
|
def role_from_transfer_task(transfer_task: TransferTask) -> str:
if isinstance(transfer_task, InitiatorTask):
return 'initiator'
if isinstance(transfer_task, MediatorTask):
return 'mediator'
if isinstance(transfer_task, TargetTask):
return 'target'
raise ValueError('Argument to role_from_transfer_task is not a TransferTask')
|
def role_from_transfer_task(transfer_task: TransferTask) -> str:
if isinstance(transfer_task, InitiatorTask):
return 'initiator'
if isinstance(transfer_task, MediatorTask):
return 'mediator'
if isinstance(transfer_task, TargetTask):
return 'target'
raise ValueError('Argument to role_from_transfer_task is not a TransferTask')<|docstring|>Return the role and type for the transfer. Throws an exception on error<|endoftext|>
|
8749109366d65fdd7a4f8db85fc0868357bf1f30350937cc2d9ce9e2aee5c0a2
|
def secret_from_transfer_task(transfer_task: Optional[TransferTask], secrethash: SecretHash) -> Optional[Secret]:
'Return the secret for the transfer, None on EMPTY_SECRET.'
assert isinstance(transfer_task, InitiatorTask)
transfer_state = transfer_task.manager_state.initiator_transfers[secrethash]
if (transfer_state is None):
return None
return transfer_state.transfer_description.secret
|
Return the secret for the transfer, None on EMPTY_SECRET.
|
raiden/transfer/views.py
|
secret_from_transfer_task
|
marcosmartinez7/lumino
| 8 |
python
|
def secret_from_transfer_task(transfer_task: Optional[TransferTask], secrethash: SecretHash) -> Optional[Secret]:
assert isinstance(transfer_task, InitiatorTask)
transfer_state = transfer_task.manager_state.initiator_transfers[secrethash]
if (transfer_state is None):
return None
return transfer_state.transfer_description.secret
|
def secret_from_transfer_task(transfer_task: Optional[TransferTask], secrethash: SecretHash) -> Optional[Secret]:
assert isinstance(transfer_task, InitiatorTask)
transfer_state = transfer_task.manager_state.initiator_transfers[secrethash]
if (transfer_state is None):
return None
return transfer_state.transfer_description.secret<|docstring|>Return the secret for the transfer, None on EMPTY_SECRET.<|endoftext|>
|
5ddc2968c659922a1df09c69415e00255bcf8a80467c24e71f85dabed8e85a43
|
def get_transfer_role(chain_state: ChainState, secrethash: SecretHash) -> Optional[str]:
"\n Returns 'initiator', 'mediator' or 'target' to signify the role the node has\n in a transfer. If a transfer task is not found for the secrethash then the\n function returns None\n "
task = chain_state.payment_mapping.secrethashes_to_task.get(secrethash)
if (not task):
return None
return role_from_transfer_task(task)
|
Returns 'initiator', 'mediator' or 'target' to signify the role the node has
in a transfer. If a transfer task is not found for the secrethash then the
function returns None
|
raiden/transfer/views.py
|
get_transfer_role
|
marcosmartinez7/lumino
| 8 |
python
|
def get_transfer_role(chain_state: ChainState, secrethash: SecretHash) -> Optional[str]:
"\n Returns 'initiator', 'mediator' or 'target' to signify the role the node has\n in a transfer. If a transfer task is not found for the secrethash then the\n function returns None\n "
task = chain_state.payment_mapping.secrethashes_to_task.get(secrethash)
if (not task):
return None
return role_from_transfer_task(task)
|
def get_transfer_role(chain_state: ChainState, secrethash: SecretHash) -> Optional[str]:
"\n Returns 'initiator', 'mediator' or 'target' to signify the role the node has\n in a transfer. If a transfer task is not found for the secrethash then the\n function returns None\n "
task = chain_state.payment_mapping.secrethashes_to_task.get(secrethash)
if (not task):
return None
return role_from_transfer_task(task)<|docstring|>Returns 'initiator', 'mediator' or 'target' to signify the role the node has
in a transfer. If a transfer task is not found for the secrethash then the
function returns None<|endoftext|>
|
6257ee8ee37c57610f39d1f4de9718f7d7dcceb53bd59dbad05642a9608b44ab
|
def filter_channels_by_status(channel_states: List[NettingChannelState], exclude_states: Optional[List[str]]=None) -> List[NettingChannelState]:
' Filter the list of channels by excluding ones\n for which the state exists in `exclude_states`. '
if (exclude_states is None):
exclude_states = []
states = []
for channel_state in channel_states:
if (channel.get_status(channel_state) not in exclude_states):
states.append(channel_state)
return states
|
Filter the list of channels by excluding ones
for which the state exists in `exclude_states`.
|
raiden/transfer/views.py
|
filter_channels_by_status
|
marcosmartinez7/lumino
| 8 |
python
|
def filter_channels_by_status(channel_states: List[NettingChannelState], exclude_states: Optional[List[str]]=None) -> List[NettingChannelState]:
' Filter the list of channels by excluding ones\n for which the state exists in `exclude_states`. '
if (exclude_states is None):
exclude_states = []
states = []
for channel_state in channel_states:
if (channel.get_status(channel_state) not in exclude_states):
states.append(channel_state)
return states
|
def filter_channels_by_status(channel_states: List[NettingChannelState], exclude_states: Optional[List[str]]=None) -> List[NettingChannelState]:
' Filter the list of channels by excluding ones\n for which the state exists in `exclude_states`. '
if (exclude_states is None):
exclude_states = []
states = []
for channel_state in channel_states:
if (channel.get_status(channel_state) not in exclude_states):
states.append(channel_state)
return states<|docstring|>Filter the list of channels by excluding ones
for which the state exists in `exclude_states`.<|endoftext|>
|
02037668f75bb51636b48856221867cf60679f9950e3ffcc6a4670d7a3845925
|
def detect_balance_proof_change(old_state: ChainState, current_state: ChainState) -> Iterator[Union[(BalanceProofSignedState, BalanceProofUnsignedState)]]:
' Compare two states for any received balance_proofs that are not in `old_state`. '
if (old_state == current_state):
return
for payment_network_identifier in current_state.identifiers_to_paymentnetworks:
try:
old_payment_network = old_state.identifiers_to_paymentnetworks.get(payment_network_identifier)
except AttributeError:
old_payment_network = None
current_payment_network = current_state.identifiers_to_paymentnetworks[payment_network_identifier]
if (old_payment_network == current_payment_network):
continue
for token_network_identifier in current_payment_network.tokenidentifiers_to_tokennetworks:
if old_payment_network:
old_token_network = old_payment_network.tokenidentifiers_to_tokennetworks.get(token_network_identifier)
else:
old_token_network = None
current_token_network = current_payment_network.tokenidentifiers_to_tokennetworks[token_network_identifier]
if (old_token_network == current_token_network):
continue
for channel_identifier in current_token_network.channelidentifiers_to_channels[current_state.our_address]:
if old_token_network:
old_channel = old_token_network.channelidentifiers_to_channels[current_state.our_address].get(channel_identifier)
else:
old_channel = None
current_channel = current_token_network.channelidentifiers_to_channels[current_state.our_address][channel_identifier]
if (current_channel == old_channel):
continue
else:
partner_state_updated = ((current_channel.partner_state.balance_proof is not None) and ((old_channel is None) or (old_channel.partner_state.balance_proof != current_channel.partner_state.balance_proof)))
if partner_state_updated:
assert current_channel.partner_state.balance_proof, MYPY_ANNOTATION
(yield current_channel.partner_state.balance_proof)
our_state_updated = ((current_channel.our_state.balance_proof is not None) and ((old_channel is None) or (old_channel.our_state.balance_proof != current_channel.our_state.balance_proof)))
if our_state_updated:
assert current_channel.our_state.balance_proof, MYPY_ANNOTATION
(yield current_channel.our_state.balance_proof)
|
Compare two states for any received balance_proofs that are not in `old_state`.
|
raiden/transfer/views.py
|
detect_balance_proof_change
|
marcosmartinez7/lumino
| 8 |
python
|
def detect_balance_proof_change(old_state: ChainState, current_state: ChainState) -> Iterator[Union[(BalanceProofSignedState, BalanceProofUnsignedState)]]:
' '
if (old_state == current_state):
return
for payment_network_identifier in current_state.identifiers_to_paymentnetworks:
try:
old_payment_network = old_state.identifiers_to_paymentnetworks.get(payment_network_identifier)
except AttributeError:
old_payment_network = None
current_payment_network = current_state.identifiers_to_paymentnetworks[payment_network_identifier]
if (old_payment_network == current_payment_network):
continue
for token_network_identifier in current_payment_network.tokenidentifiers_to_tokennetworks:
if old_payment_network:
old_token_network = old_payment_network.tokenidentifiers_to_tokennetworks.get(token_network_identifier)
else:
old_token_network = None
current_token_network = current_payment_network.tokenidentifiers_to_tokennetworks[token_network_identifier]
if (old_token_network == current_token_network):
continue
for channel_identifier in current_token_network.channelidentifiers_to_channels[current_state.our_address]:
if old_token_network:
old_channel = old_token_network.channelidentifiers_to_channels[current_state.our_address].get(channel_identifier)
else:
old_channel = None
current_channel = current_token_network.channelidentifiers_to_channels[current_state.our_address][channel_identifier]
if (current_channel == old_channel):
continue
else:
partner_state_updated = ((current_channel.partner_state.balance_proof is not None) and ((old_channel is None) or (old_channel.partner_state.balance_proof != current_channel.partner_state.balance_proof)))
if partner_state_updated:
assert current_channel.partner_state.balance_proof, MYPY_ANNOTATION
(yield current_channel.partner_state.balance_proof)
our_state_updated = ((current_channel.our_state.balance_proof is not None) and ((old_channel is None) or (old_channel.our_state.balance_proof != current_channel.our_state.balance_proof)))
if our_state_updated:
assert current_channel.our_state.balance_proof, MYPY_ANNOTATION
(yield current_channel.our_state.balance_proof)
|
def detect_balance_proof_change(old_state: ChainState, current_state: ChainState) -> Iterator[Union[(BalanceProofSignedState, BalanceProofUnsignedState)]]:
' '
if (old_state == current_state):
return
for payment_network_identifier in current_state.identifiers_to_paymentnetworks:
try:
old_payment_network = old_state.identifiers_to_paymentnetworks.get(payment_network_identifier)
except AttributeError:
old_payment_network = None
current_payment_network = current_state.identifiers_to_paymentnetworks[payment_network_identifier]
if (old_payment_network == current_payment_network):
continue
for token_network_identifier in current_payment_network.tokenidentifiers_to_tokennetworks:
if old_payment_network:
old_token_network = old_payment_network.tokenidentifiers_to_tokennetworks.get(token_network_identifier)
else:
old_token_network = None
current_token_network = current_payment_network.tokenidentifiers_to_tokennetworks[token_network_identifier]
if (old_token_network == current_token_network):
continue
for channel_identifier in current_token_network.channelidentifiers_to_channels[current_state.our_address]:
if old_token_network:
old_channel = old_token_network.channelidentifiers_to_channels[current_state.our_address].get(channel_identifier)
else:
old_channel = None
current_channel = current_token_network.channelidentifiers_to_channels[current_state.our_address][channel_identifier]
if (current_channel == old_channel):
continue
else:
partner_state_updated = ((current_channel.partner_state.balance_proof is not None) and ((old_channel is None) or (old_channel.partner_state.balance_proof != current_channel.partner_state.balance_proof)))
if partner_state_updated:
assert current_channel.partner_state.balance_proof, MYPY_ANNOTATION
(yield current_channel.partner_state.balance_proof)
our_state_updated = ((current_channel.our_state.balance_proof is not None) and ((old_channel is None) or (old_channel.our_state.balance_proof != current_channel.our_state.balance_proof)))
if our_state_updated:
assert current_channel.our_state.balance_proof, MYPY_ANNOTATION
(yield current_channel.our_state.balance_proof)<|docstring|>Compare two states for any received balance_proofs that are not in `old_state`.<|endoftext|>
|
1a1dc2c25f2fb6e846bd80d8f7e218ea6a7cb0e13e04e3a822c55086e5bc4cae
|
@autojit
def rotx(points, beta, mode='deg'):
'\n\tRotate points about the global X axis by the angles beta (roll). Rotation\n\tmatrices are sourced from http://mathworld.wolfram.com/RotationMatrix.html\n\t'
if (mode == 'rad'):
pass
elif (mode == 'deg'):
beta = np.deg2rad(beta)
else:
print('ERROR: Incorrect angle type specified. Assuming degrees.')
x_rot_mat = np.array([[1, 0, 0], [0, np.cos(beta), np.sin(beta)], [0, (- np.sin(beta)), np.cos(beta)]])
if (np.size(points) == 3):
rot_x = np.dot(points, x_rot_mat)
else:
rot_x = np.dot(points, x_rot_mat)
return rot_x
|
Rotate points about the global X axis by the angles beta (roll). Rotation
matrices are sourced from http://mathworld.wolfram.com/RotationMatrix.html
|
rotate_lib.py
|
rotx
|
Nate28/traj_calc
| 10 |
python
|
@autojit
def rotx(points, beta, mode='deg'):
'\n\tRotate points about the global X axis by the angles beta (roll). Rotation\n\tmatrices are sourced from http://mathworld.wolfram.com/RotationMatrix.html\n\t'
if (mode == 'rad'):
pass
elif (mode == 'deg'):
beta = np.deg2rad(beta)
else:
print('ERROR: Incorrect angle type specified. Assuming degrees.')
x_rot_mat = np.array([[1, 0, 0], [0, np.cos(beta), np.sin(beta)], [0, (- np.sin(beta)), np.cos(beta)]])
if (np.size(points) == 3):
rot_x = np.dot(points, x_rot_mat)
else:
rot_x = np.dot(points, x_rot_mat)
return rot_x
|
@autojit
def rotx(points, beta, mode='deg'):
'\n\tRotate points about the global X axis by the angles beta (roll). Rotation\n\tmatrices are sourced from http://mathworld.wolfram.com/RotationMatrix.html\n\t'
if (mode == 'rad'):
pass
elif (mode == 'deg'):
beta = np.deg2rad(beta)
else:
print('ERROR: Incorrect angle type specified. Assuming degrees.')
x_rot_mat = np.array([[1, 0, 0], [0, np.cos(beta), np.sin(beta)], [0, (- np.sin(beta)), np.cos(beta)]])
if (np.size(points) == 3):
rot_x = np.dot(points, x_rot_mat)
else:
rot_x = np.dot(points, x_rot_mat)
return rot_x<|docstring|>Rotate points about the global X axis by the angles beta (roll). Rotation
matrices are sourced from http://mathworld.wolfram.com/RotationMatrix.html<|endoftext|>
|
c81933a42ab583fe8d45b4f942062c4d2856a30833e094bb1c460a9bb6ff715a
|
@autojit
def roty(points, theta, mode='deg'):
'\n\tRotate points about the global Y axis by the angles theta (yaw). Rotation\n\tmatrices are sourced from http://mathworld.wolfram.com/RotationMatrix.html\n\t'
if (mode == 'rad'):
pass
elif (mode == 'deg'):
theta = np.deg2rad(theta)
else:
print('ERROR: Incorrect angle type specified. Assuming degrees.')
y_rot_mat = np.array([[np.cos(theta), 0, (- np.sin(theta))], [0, 1, 0], [np.sin(theta), 0, np.cos(theta)]])
if (np.size(points) == 3):
rot_y = np.dot(points, y_rot_mat)
else:
rot_y = np.dot(points, y_rot_mat)
return rot_y
|
Rotate points about the global Y axis by the angles theta (yaw). Rotation
matrices are sourced from http://mathworld.wolfram.com/RotationMatrix.html
|
rotate_lib.py
|
roty
|
Nate28/traj_calc
| 10 |
python
|
@autojit
def roty(points, theta, mode='deg'):
'\n\tRotate points about the global Y axis by the angles theta (yaw). Rotation\n\tmatrices are sourced from http://mathworld.wolfram.com/RotationMatrix.html\n\t'
if (mode == 'rad'):
pass
elif (mode == 'deg'):
theta = np.deg2rad(theta)
else:
print('ERROR: Incorrect angle type specified. Assuming degrees.')
y_rot_mat = np.array([[np.cos(theta), 0, (- np.sin(theta))], [0, 1, 0], [np.sin(theta), 0, np.cos(theta)]])
if (np.size(points) == 3):
rot_y = np.dot(points, y_rot_mat)
else:
rot_y = np.dot(points, y_rot_mat)
return rot_y
|
@autojit
def roty(points, theta, mode='deg'):
'\n\tRotate points about the global Y axis by the angles theta (yaw). Rotation\n\tmatrices are sourced from http://mathworld.wolfram.com/RotationMatrix.html\n\t'
if (mode == 'rad'):
pass
elif (mode == 'deg'):
theta = np.deg2rad(theta)
else:
print('ERROR: Incorrect angle type specified. Assuming degrees.')
y_rot_mat = np.array([[np.cos(theta), 0, (- np.sin(theta))], [0, 1, 0], [np.sin(theta), 0, np.cos(theta)]])
if (np.size(points) == 3):
rot_y = np.dot(points, y_rot_mat)
else:
rot_y = np.dot(points, y_rot_mat)
return rot_y<|docstring|>Rotate points about the global Y axis by the angles theta (yaw). Rotation
matrices are sourced from http://mathworld.wolfram.com/RotationMatrix.html<|endoftext|>
|
6e900f8466417bc288c9fc0d562ed6f7c9eb3b3224a5de49cfc2bce0bf6103c4
|
@autojit
def rotz(points, alpha, mode='deg'):
'\n\tRotate points about the global Z axis by the angles theta (pitch). Rotation\n\tmatrices are sourced from http://mathworld.wolfram.com/RotationMatrix.html\n\t'
if (mode == 'rad'):
pass
elif (mode == 'deg'):
alpha = np.deg2rad(alpha)
else:
print('ERROR: Incorrect angle type specified. Assuming degrees.')
z_rot_mat = np.array([[np.cos(alpha), np.sin(alpha), 0], [(- np.sin(alpha)), np.cos(alpha), 0], [0, 0, 1]])
if (np.size(points) == 3):
rot_z = np.dot(points, z_rot_mat)
else:
rot_z = np.dot(points, z_rot_mat)
return rot_z
|
Rotate points about the global Z axis by the angles theta (pitch). Rotation
matrices are sourced from http://mathworld.wolfram.com/RotationMatrix.html
|
rotate_lib.py
|
rotz
|
Nate28/traj_calc
| 10 |
python
|
@autojit
def rotz(points, alpha, mode='deg'):
'\n\tRotate points about the global Z axis by the angles theta (pitch). Rotation\n\tmatrices are sourced from http://mathworld.wolfram.com/RotationMatrix.html\n\t'
if (mode == 'rad'):
pass
elif (mode == 'deg'):
alpha = np.deg2rad(alpha)
else:
print('ERROR: Incorrect angle type specified. Assuming degrees.')
z_rot_mat = np.array([[np.cos(alpha), np.sin(alpha), 0], [(- np.sin(alpha)), np.cos(alpha), 0], [0, 0, 1]])
if (np.size(points) == 3):
rot_z = np.dot(points, z_rot_mat)
else:
rot_z = np.dot(points, z_rot_mat)
return rot_z
|
@autojit
def rotz(points, alpha, mode='deg'):
'\n\tRotate points about the global Z axis by the angles theta (pitch). Rotation\n\tmatrices are sourced from http://mathworld.wolfram.com/RotationMatrix.html\n\t'
if (mode == 'rad'):
pass
elif (mode == 'deg'):
alpha = np.deg2rad(alpha)
else:
print('ERROR: Incorrect angle type specified. Assuming degrees.')
z_rot_mat = np.array([[np.cos(alpha), np.sin(alpha), 0], [(- np.sin(alpha)), np.cos(alpha), 0], [0, 0, 1]])
if (np.size(points) == 3):
rot_z = np.dot(points, z_rot_mat)
else:
rot_z = np.dot(points, z_rot_mat)
return rot_z<|docstring|>Rotate points about the global Z axis by the angles theta (pitch). Rotation
matrices are sourced from http://mathworld.wolfram.com/RotationMatrix.html<|endoftext|>
|
2b07aca2d1feeaa6cba2a53986c6e9f9db0ed44050505e63d09d215abe641e72
|
@autojit
def rotxyz(points, beta, theta, alpha, mode='deg', clockwise=False):
"\n\t=== triPy.rotxyz ===\n\tRotates points about the global X, Y and Z axes by the angles beta, theta,\n\tand alpha (roll, yaw, and pitch, respectively) in that order. Rotation\n\tmatrices are sourced from http://mathworld.wolfram.com/RotationMatrix.html\n\n\t=== Inputs ===\n\t'points'\tXYZ coordinates of the points to be rotated\n\t'beta'\t\tAngle of rotation about the X axis (roll)\n\t'theta'\t\tAngle of rotation about the Y axis (yaw)\n\t'alpha'\t\tAngle of rotation about the Z axis (pitch)\n\t'mode'\t\tDefines whether angles are expressed in radians or degrees\n\t\t\t\t(degrees are the default)\n\t'clockwise' Defines direction of rotation about axes\n\t\t\t\t(may be either True or False - the default is False: anticlockwise)\n\n\t=== Usage ===\n\timport triPy\n\trot_x, rot_y, rot_z = rotMatrix(x, y, z, beta, theta, alpha)\n\t"
if (mode == 'rad'):
pass
elif (mode == 'deg'):
beta = np.deg2rad(beta)
theta = np.deg2rad(theta)
alpha = np.deg2rad(alpha)
else:
print('ERROR: Incorrect angle type specified. Assuming degrees.')
if (clockwise == False):
x_rot_mat = np.array([[1, 0, 0], [0, np.cos(beta), np.sin(beta)], [0, (- np.sin(beta)), np.cos(beta)]])
y_rot_mat = np.array([[np.cos(theta), 0, (- np.sin(theta))], [0, 1, 0], [np.sin(theta), 0, np.cos(theta)]])
z_rot_mat = np.array([[np.cos(alpha), np.sin(alpha), 0], [(- np.sin(alpha)), np.cos(alpha), 0], [0, 0, 1]])
else:
x_rot_mat = np.array([[1, 0, 0], [0, np.cos(beta), (- np.sin(beta))], [0, np.sin(beta), np.cos(beta)]])
y_rot_mat = np.array([[np.cos(theta), 0, np.sin(theta)], [0, 1, 0], [(- np.sin(theta)), 0, np.cos(theta)]])
z_rot_mat = np.array([[np.cos(alpha), (- np.sin(alpha)), 0], [np.sin(alpha), np.cos(alpha), 0], [0, 0, 1]])
if (np.size(points) == 3):
rot_x = np.dot(points, x_rot_mat)
rot_xy = np.dot(rot_x, y_rot_mat)
rot_xyz = np.dot(rot_xy, z_rot_mat)
else:
rot_x = np.dot(points, x_rot_mat)
rot_xy = np.dot(rot_x, y_rot_mat)
rot_xyz = np.dot(rot_xy, z_rot_mat)
return rot_xyz
|
=== triPy.rotxyz ===
Rotates points about the global X, Y and Z axes by the angles beta, theta,
and alpha (roll, yaw, and pitch, respectively) in that order. Rotation
matrices are sourced from http://mathworld.wolfram.com/RotationMatrix.html
=== Inputs ===
'points' XYZ coordinates of the points to be rotated
'beta' Angle of rotation about the X axis (roll)
'theta' Angle of rotation about the Y axis (yaw)
'alpha' Angle of rotation about the Z axis (pitch)
'mode' Defines whether angles are expressed in radians or degrees
(degrees are the default)
'clockwise' Defines direction of rotation about axes
(may be either True or False - the default is False: anticlockwise)
=== Usage ===
import triPy
rot_x, rot_y, rot_z = rotMatrix(x, y, z, beta, theta, alpha)
|
rotate_lib.py
|
rotxyz
|
Nate28/traj_calc
| 10 |
python
|
@autojit
def rotxyz(points, beta, theta, alpha, mode='deg', clockwise=False):
"\n\t=== triPy.rotxyz ===\n\tRotates points about the global X, Y and Z axes by the angles beta, theta,\n\tand alpha (roll, yaw, and pitch, respectively) in that order. Rotation\n\tmatrices are sourced from http://mathworld.wolfram.com/RotationMatrix.html\n\n\t=== Inputs ===\n\t'points'\tXYZ coordinates of the points to be rotated\n\t'beta'\t\tAngle of rotation about the X axis (roll)\n\t'theta'\t\tAngle of rotation about the Y axis (yaw)\n\t'alpha'\t\tAngle of rotation about the Z axis (pitch)\n\t'mode'\t\tDefines whether angles are expressed in radians or degrees\n\t\t\t\t(degrees are the default)\n\t'clockwise' Defines direction of rotation about axes\n\t\t\t\t(may be either True or False - the default is False: anticlockwise)\n\n\t=== Usage ===\n\timport triPy\n\trot_x, rot_y, rot_z = rotMatrix(x, y, z, beta, theta, alpha)\n\t"
if (mode == 'rad'):
pass
elif (mode == 'deg'):
beta = np.deg2rad(beta)
theta = np.deg2rad(theta)
alpha = np.deg2rad(alpha)
else:
print('ERROR: Incorrect angle type specified. Assuming degrees.')
if (clockwise == False):
x_rot_mat = np.array([[1, 0, 0], [0, np.cos(beta), np.sin(beta)], [0, (- np.sin(beta)), np.cos(beta)]])
y_rot_mat = np.array([[np.cos(theta), 0, (- np.sin(theta))], [0, 1, 0], [np.sin(theta), 0, np.cos(theta)]])
z_rot_mat = np.array([[np.cos(alpha), np.sin(alpha), 0], [(- np.sin(alpha)), np.cos(alpha), 0], [0, 0, 1]])
else:
x_rot_mat = np.array([[1, 0, 0], [0, np.cos(beta), (- np.sin(beta))], [0, np.sin(beta), np.cos(beta)]])
y_rot_mat = np.array([[np.cos(theta), 0, np.sin(theta)], [0, 1, 0], [(- np.sin(theta)), 0, np.cos(theta)]])
z_rot_mat = np.array([[np.cos(alpha), (- np.sin(alpha)), 0], [np.sin(alpha), np.cos(alpha), 0], [0, 0, 1]])
if (np.size(points) == 3):
rot_x = np.dot(points, x_rot_mat)
rot_xy = np.dot(rot_x, y_rot_mat)
rot_xyz = np.dot(rot_xy, z_rot_mat)
else:
rot_x = np.dot(points, x_rot_mat)
rot_xy = np.dot(rot_x, y_rot_mat)
rot_xyz = np.dot(rot_xy, z_rot_mat)
return rot_xyz
|
@autojit
def rotxyz(points, beta, theta, alpha, mode='deg', clockwise=False):
"\n\t=== triPy.rotxyz ===\n\tRotates points about the global X, Y and Z axes by the angles beta, theta,\n\tand alpha (roll, yaw, and pitch, respectively) in that order. Rotation\n\tmatrices are sourced from http://mathworld.wolfram.com/RotationMatrix.html\n\n\t=== Inputs ===\n\t'points'\tXYZ coordinates of the points to be rotated\n\t'beta'\t\tAngle of rotation about the X axis (roll)\n\t'theta'\t\tAngle of rotation about the Y axis (yaw)\n\t'alpha'\t\tAngle of rotation about the Z axis (pitch)\n\t'mode'\t\tDefines whether angles are expressed in radians or degrees\n\t\t\t\t(degrees are the default)\n\t'clockwise' Defines direction of rotation about axes\n\t\t\t\t(may be either True or False - the default is False: anticlockwise)\n\n\t=== Usage ===\n\timport triPy\n\trot_x, rot_y, rot_z = rotMatrix(x, y, z, beta, theta, alpha)\n\t"
if (mode == 'rad'):
pass
elif (mode == 'deg'):
beta = np.deg2rad(beta)
theta = np.deg2rad(theta)
alpha = np.deg2rad(alpha)
else:
print('ERROR: Incorrect angle type specified. Assuming degrees.')
if (clockwise == False):
x_rot_mat = np.array([[1, 0, 0], [0, np.cos(beta), np.sin(beta)], [0, (- np.sin(beta)), np.cos(beta)]])
y_rot_mat = np.array([[np.cos(theta), 0, (- np.sin(theta))], [0, 1, 0], [np.sin(theta), 0, np.cos(theta)]])
z_rot_mat = np.array([[np.cos(alpha), np.sin(alpha), 0], [(- np.sin(alpha)), np.cos(alpha), 0], [0, 0, 1]])
else:
x_rot_mat = np.array([[1, 0, 0], [0, np.cos(beta), (- np.sin(beta))], [0, np.sin(beta), np.cos(beta)]])
y_rot_mat = np.array([[np.cos(theta), 0, np.sin(theta)], [0, 1, 0], [(- np.sin(theta)), 0, np.cos(theta)]])
z_rot_mat = np.array([[np.cos(alpha), (- np.sin(alpha)), 0], [np.sin(alpha), np.cos(alpha), 0], [0, 0, 1]])
if (np.size(points) == 3):
rot_x = np.dot(points, x_rot_mat)
rot_xy = np.dot(rot_x, y_rot_mat)
rot_xyz = np.dot(rot_xy, z_rot_mat)
else:
rot_x = np.dot(points, x_rot_mat)
rot_xy = np.dot(rot_x, y_rot_mat)
rot_xyz = np.dot(rot_xy, z_rot_mat)
return rot_xyz<|docstring|>=== triPy.rotxyz ===
Rotates points about the global X, Y and Z axes by the angles beta, theta,
and alpha (roll, yaw, and pitch, respectively) in that order. Rotation
matrices are sourced from http://mathworld.wolfram.com/RotationMatrix.html
=== Inputs ===
'points' XYZ coordinates of the points to be rotated
'beta' Angle of rotation about the X axis (roll)
'theta' Angle of rotation about the Y axis (yaw)
'alpha' Angle of rotation about the Z axis (pitch)
'mode' Defines whether angles are expressed in radians or degrees
(degrees are the default)
'clockwise' Defines direction of rotation about axes
(may be either True or False - the default is False: anticlockwise)
=== Usage ===
import triPy
rot_x, rot_y, rot_z = rotMatrix(x, y, z, beta, theta, alpha)<|endoftext|>
|
b347ab66932413e26c3d29edb151b5e2e3d12248fb8ce70ee1979601e442cb55
|
@autojit
def rotzyx(points, beta, theta, alpha, mode='deg', clockwise=False):
"\n\t=== triPy.rotxyz ===\n\tRotates points about the global X, Y and Z axes by the angles beta, theta,\n\tand alpha (roll, yaw, and pitch, respectively) in reverse order. Rotation\n\tmatrices are sourced from http://mathworld.wolfram.com/RotationMatrix.html\n\n\t=== Inputs ===\n\t'points'\tXYZ coordinates of the points to be rotated\n\t'beta'\t\tAngle of rotation about the X axis (roll)\n\t'theta'\t\tAngle of rotation about the Y axis (pitch)\n\t'alpha'\t\tAngle of rotation about the Z axis (yaw)\n\t'mode'\t\tDefines whether angles are expressed in radians or degrees\n\t\t\t\t(degrees are the default)\n\t'clockwise' Defines direction of rotation about axes\n\t\t\t\t(may be either True or False - the default is False: anticlockwise)\n\n\t=== Usage ===\n\timport triPy\n\trot_x, rot_y, rot_z = rotMatrix(x, y, z, beta, theta, alpha)\n\t"
if (mode == 'rad'):
pass
elif (mode == 'deg'):
beta = np.deg2rad(beta)
theta = np.deg2rad(theta)
alpha = np.deg2rad(alpha)
else:
print('ERROR: Incorrect angle type specified. Assuming degrees.')
if (clockwise == False):
x_rot_mat = np.array([[1, 0, 0], [0, np.cos(beta), np.sin(beta)], [0, (- np.sin(beta)), np.cos(beta)]])
y_rot_mat = np.array([[np.cos(theta), 0, (- np.sin(theta))], [0, 1, 0], [np.sin(theta), 0, np.cos(theta)]])
z_rot_mat = np.array([[np.cos(alpha), np.sin(alpha), 0], [(- np.sin(alpha)), np.cos(alpha), 0], [0, 0, 1]])
else:
x_rot_mat = np.array([[1, 0, 0], [0, np.cos(beta), (- np.sin(beta))], [0, np.sin(beta), np.cos(beta)]])
y_rot_mat = np.array([[np.cos(theta), 0, np.sin(theta)], [0, 1, 0], [(- np.sin(theta)), 0, np.cos(theta)]])
z_rot_mat = np.array([[np.cos(alpha), (- np.sin(alpha)), 0], [np.sin(alpha), np.cos(alpha), 0], [0, 0, 1]])
if (np.size(points) == 3):
rot_z = np.dot(points, z_rot_mat)
rot_zy = np.dot(rot_z, y_rot_mat)
rot_zyx = np.dot(rot_zy, x_rot_mat)
else:
rot_z = np.dot(points, z_rot_mat)
rot_zy = np.dot(rot_z, y_rot_mat)
rot_zyx = np.dot(rot_zy, x_rot_mat)
return rot_zyx
|
=== triPy.rotxyz ===
Rotates points about the global X, Y and Z axes by the angles beta, theta,
and alpha (roll, yaw, and pitch, respectively) in reverse order. Rotation
matrices are sourced from http://mathworld.wolfram.com/RotationMatrix.html
=== Inputs ===
'points' XYZ coordinates of the points to be rotated
'beta' Angle of rotation about the X axis (roll)
'theta' Angle of rotation about the Y axis (pitch)
'alpha' Angle of rotation about the Z axis (yaw)
'mode' Defines whether angles are expressed in radians or degrees
(degrees are the default)
'clockwise' Defines direction of rotation about axes
(may be either True or False - the default is False: anticlockwise)
=== Usage ===
import triPy
rot_x, rot_y, rot_z = rotMatrix(x, y, z, beta, theta, alpha)
|
rotate_lib.py
|
rotzyx
|
Nate28/traj_calc
| 10 |
python
|
@autojit
def rotzyx(points, beta, theta, alpha, mode='deg', clockwise=False):
"\n\t=== triPy.rotxyz ===\n\tRotates points about the global X, Y and Z axes by the angles beta, theta,\n\tand alpha (roll, yaw, and pitch, respectively) in reverse order. Rotation\n\tmatrices are sourced from http://mathworld.wolfram.com/RotationMatrix.html\n\n\t=== Inputs ===\n\t'points'\tXYZ coordinates of the points to be rotated\n\t'beta'\t\tAngle of rotation about the X axis (roll)\n\t'theta'\t\tAngle of rotation about the Y axis (pitch)\n\t'alpha'\t\tAngle of rotation about the Z axis (yaw)\n\t'mode'\t\tDefines whether angles are expressed in radians or degrees\n\t\t\t\t(degrees are the default)\n\t'clockwise' Defines direction of rotation about axes\n\t\t\t\t(may be either True or False - the default is False: anticlockwise)\n\n\t=== Usage ===\n\timport triPy\n\trot_x, rot_y, rot_z = rotMatrix(x, y, z, beta, theta, alpha)\n\t"
if (mode == 'rad'):
pass
elif (mode == 'deg'):
beta = np.deg2rad(beta)
theta = np.deg2rad(theta)
alpha = np.deg2rad(alpha)
else:
print('ERROR: Incorrect angle type specified. Assuming degrees.')
if (clockwise == False):
x_rot_mat = np.array([[1, 0, 0], [0, np.cos(beta), np.sin(beta)], [0, (- np.sin(beta)), np.cos(beta)]])
y_rot_mat = np.array([[np.cos(theta), 0, (- np.sin(theta))], [0, 1, 0], [np.sin(theta), 0, np.cos(theta)]])
z_rot_mat = np.array([[np.cos(alpha), np.sin(alpha), 0], [(- np.sin(alpha)), np.cos(alpha), 0], [0, 0, 1]])
else:
x_rot_mat = np.array([[1, 0, 0], [0, np.cos(beta), (- np.sin(beta))], [0, np.sin(beta), np.cos(beta)]])
y_rot_mat = np.array([[np.cos(theta), 0, np.sin(theta)], [0, 1, 0], [(- np.sin(theta)), 0, np.cos(theta)]])
z_rot_mat = np.array([[np.cos(alpha), (- np.sin(alpha)), 0], [np.sin(alpha), np.cos(alpha), 0], [0, 0, 1]])
if (np.size(points) == 3):
rot_z = np.dot(points, z_rot_mat)
rot_zy = np.dot(rot_z, y_rot_mat)
rot_zyx = np.dot(rot_zy, x_rot_mat)
else:
rot_z = np.dot(points, z_rot_mat)
rot_zy = np.dot(rot_z, y_rot_mat)
rot_zyx = np.dot(rot_zy, x_rot_mat)
return rot_zyx
|
@autojit
def rotzyx(points, beta, theta, alpha, mode='deg', clockwise=False):
"\n\t=== triPy.rotxyz ===\n\tRotates points about the global X, Y and Z axes by the angles beta, theta,\n\tand alpha (roll, yaw, and pitch, respectively) in reverse order. Rotation\n\tmatrices are sourced from http://mathworld.wolfram.com/RotationMatrix.html\n\n\t=== Inputs ===\n\t'points'\tXYZ coordinates of the points to be rotated\n\t'beta'\t\tAngle of rotation about the X axis (roll)\n\t'theta'\t\tAngle of rotation about the Y axis (pitch)\n\t'alpha'\t\tAngle of rotation about the Z axis (yaw)\n\t'mode'\t\tDefines whether angles are expressed in radians or degrees\n\t\t\t\t(degrees are the default)\n\t'clockwise' Defines direction of rotation about axes\n\t\t\t\t(may be either True or False - the default is False: anticlockwise)\n\n\t=== Usage ===\n\timport triPy\n\trot_x, rot_y, rot_z = rotMatrix(x, y, z, beta, theta, alpha)\n\t"
if (mode == 'rad'):
pass
elif (mode == 'deg'):
beta = np.deg2rad(beta)
theta = np.deg2rad(theta)
alpha = np.deg2rad(alpha)
else:
print('ERROR: Incorrect angle type specified. Assuming degrees.')
if (clockwise == False):
x_rot_mat = np.array([[1, 0, 0], [0, np.cos(beta), np.sin(beta)], [0, (- np.sin(beta)), np.cos(beta)]])
y_rot_mat = np.array([[np.cos(theta), 0, (- np.sin(theta))], [0, 1, 0], [np.sin(theta), 0, np.cos(theta)]])
z_rot_mat = np.array([[np.cos(alpha), np.sin(alpha), 0], [(- np.sin(alpha)), np.cos(alpha), 0], [0, 0, 1]])
else:
x_rot_mat = np.array([[1, 0, 0], [0, np.cos(beta), (- np.sin(beta))], [0, np.sin(beta), np.cos(beta)]])
y_rot_mat = np.array([[np.cos(theta), 0, np.sin(theta)], [0, 1, 0], [(- np.sin(theta)), 0, np.cos(theta)]])
z_rot_mat = np.array([[np.cos(alpha), (- np.sin(alpha)), 0], [np.sin(alpha), np.cos(alpha), 0], [0, 0, 1]])
if (np.size(points) == 3):
rot_z = np.dot(points, z_rot_mat)
rot_zy = np.dot(rot_z, y_rot_mat)
rot_zyx = np.dot(rot_zy, x_rot_mat)
else:
rot_z = np.dot(points, z_rot_mat)
rot_zy = np.dot(rot_z, y_rot_mat)
rot_zyx = np.dot(rot_zy, x_rot_mat)
return rot_zyx<|docstring|>=== triPy.rotxyz ===
Rotates points about the global X, Y and Z axes by the angles beta, theta,
and alpha (roll, yaw, and pitch, respectively) in reverse order. Rotation
matrices are sourced from http://mathworld.wolfram.com/RotationMatrix.html
=== Inputs ===
'points' XYZ coordinates of the points to be rotated
'beta' Angle of rotation about the X axis (roll)
'theta' Angle of rotation about the Y axis (pitch)
'alpha' Angle of rotation about the Z axis (yaw)
'mode' Defines whether angles are expressed in radians or degrees
(degrees are the default)
'clockwise' Defines direction of rotation about axes
(may be either True or False - the default is False: anticlockwise)
=== Usage ===
import triPy
rot_x, rot_y, rot_z = rotMatrix(x, y, z, beta, theta, alpha)<|endoftext|>
|
c9c99df79d2cdc3a389fb5eb757b648c73550cf44635f3941d2e113319b17492
|
@autojit
def eulerToVector(alpha, theta):
'\n\tConvert Euler angles (pitch and yaw; alpha and theta) to vector components\n\tin XYZ reference frame.\n\t'
x = (np.sin(alpha) * np.cos(theta))
y = (np.sin(alpha) * np.sin(theta))
z = np.cos(alpha)
return [x, y, z]
|
Convert Euler angles (pitch and yaw; alpha and theta) to vector components
in XYZ reference frame.
|
rotate_lib.py
|
eulerToVector
|
Nate28/traj_calc
| 10 |
python
|
@autojit
def eulerToVector(alpha, theta):
'\n\tConvert Euler angles (pitch and yaw; alpha and theta) to vector components\n\tin XYZ reference frame.\n\t'
x = (np.sin(alpha) * np.cos(theta))
y = (np.sin(alpha) * np.sin(theta))
z = np.cos(alpha)
return [x, y, z]
|
@autojit
def eulerToVector(alpha, theta):
'\n\tConvert Euler angles (pitch and yaw; alpha and theta) to vector components\n\tin XYZ reference frame.\n\t'
x = (np.sin(alpha) * np.cos(theta))
y = (np.sin(alpha) * np.sin(theta))
z = np.cos(alpha)
return [x, y, z]<|docstring|>Convert Euler angles (pitch and yaw; alpha and theta) to vector components
in XYZ reference frame.<|endoftext|>
|
6d0173ee9c7918c6f2e9e6cbc4815ef2e7317480fe70859470610f38c988c635
|
@autojit
def vectorToEuler(x, y, z):
'\n\tConvert XYZ vector components to Euler angles (pitch and yaw; alpha and\n\ttheta)\n\t'
r = np.linalg.norm([x, y, z])
theta = np.arctan((y / x))
alpha = np.arccos((z / r))
if ((x > 0) & (y > 0)):
pass
elif ((x < 0) & (y > 0)):
theta = (np.pi - np.abs(theta))
elif ((x < 0) & (y < 0)):
theta = (np.pi + np.abs(theta))
elif ((x > 0) & (y < 0)):
theta = ((2 * np.pi) - np.abs(theta))
else:
pass
if ((x > 0) & (z > 0)):
pass
elif ((x < 0) & (z > 0)):
alpha = (np.pi - np.abs(alpha))
elif ((x < 0) & (z < 0)):
alpha = (np.pi + np.abs(alpha))
elif ((x > 0) & (z < 0)):
alpha = ((2 * np.pi) - np.abs(alpha))
else:
pass
return [alpha, theta]
|
Convert XYZ vector components to Euler angles (pitch and yaw; alpha and
theta)
|
rotate_lib.py
|
vectorToEuler
|
Nate28/traj_calc
| 10 |
python
|
@autojit
def vectorToEuler(x, y, z):
'\n\tConvert XYZ vector components to Euler angles (pitch and yaw; alpha and\n\ttheta)\n\t'
r = np.linalg.norm([x, y, z])
theta = np.arctan((y / x))
alpha = np.arccos((z / r))
if ((x > 0) & (y > 0)):
pass
elif ((x < 0) & (y > 0)):
theta = (np.pi - np.abs(theta))
elif ((x < 0) & (y < 0)):
theta = (np.pi + np.abs(theta))
elif ((x > 0) & (y < 0)):
theta = ((2 * np.pi) - np.abs(theta))
else:
pass
if ((x > 0) & (z > 0)):
pass
elif ((x < 0) & (z > 0)):
alpha = (np.pi - np.abs(alpha))
elif ((x < 0) & (z < 0)):
alpha = (np.pi + np.abs(alpha))
elif ((x > 0) & (z < 0)):
alpha = ((2 * np.pi) - np.abs(alpha))
else:
pass
return [alpha, theta]
|
@autojit
def vectorToEuler(x, y, z):
'\n\tConvert XYZ vector components to Euler angles (pitch and yaw; alpha and\n\ttheta)\n\t'
r = np.linalg.norm([x, y, z])
theta = np.arctan((y / x))
alpha = np.arccos((z / r))
if ((x > 0) & (y > 0)):
pass
elif ((x < 0) & (y > 0)):
theta = (np.pi - np.abs(theta))
elif ((x < 0) & (y < 0)):
theta = (np.pi + np.abs(theta))
elif ((x > 0) & (y < 0)):
theta = ((2 * np.pi) - np.abs(theta))
else:
pass
if ((x > 0) & (z > 0)):
pass
elif ((x < 0) & (z > 0)):
alpha = (np.pi - np.abs(alpha))
elif ((x < 0) & (z < 0)):
alpha = (np.pi + np.abs(alpha))
elif ((x > 0) & (z < 0)):
alpha = ((2 * np.pi) - np.abs(alpha))
else:
pass
return [alpha, theta]<|docstring|>Convert XYZ vector components to Euler angles (pitch and yaw; alpha and
theta)<|endoftext|>
|
48a63f778d900bea393f74226ea3e66ef76a6f3ecfb9bfffafac11b4458d90cf
|
def localPitchRoll(pitch, yaw, roll, clockwise=False):
'\n\tCalculate pitch and roll of an object in its local vetical plane\n\tNB: pitch, yaw, and roll denote rotations about the Y, Z, and X axes,\n\trespectively.\n\t'
vecX = np.array([1, 0, 0])
vecZ = np.array([0, 0, 1])
vecX1 = rotxyz(vecX, roll, pitch, yaw, mode='rad', clockwise=clockwise)
vecZ1 = rotxyz(vecZ, roll, pitch, yaw, mode='rad', clockwise=clockwise)
vecX1_proj = np.array([0, vecX1[1], vecX1[2]])
vecZ_proj = np.array([0, 0, np.linalg.norm(vecX1_proj)])
planeRoll = vectorAngle(vecX1_proj, vecZ_proj)
vecZ2 = rotxyz(vecZ1, planeRoll, 0, 0, mode='rad', clockwise=clockwise)
localPitch = vectorAngle(vecX1, vecX)
vecZ3 = rotxyz(vecZ2, 0, (- localPitch), 0, mode='rad', clockwise=clockwise)
localRoll = vectorAngle(vecZ3, vecZ)
return (localPitch, localRoll, planeRoll)
|
Calculate pitch and roll of an object in its local vetical plane
NB: pitch, yaw, and roll denote rotations about the Y, Z, and X axes,
respectively.
|
rotate_lib.py
|
localPitchRoll
|
Nate28/traj_calc
| 10 |
python
|
def localPitchRoll(pitch, yaw, roll, clockwise=False):
'\n\tCalculate pitch and roll of an object in its local vetical plane\n\tNB: pitch, yaw, and roll denote rotations about the Y, Z, and X axes,\n\trespectively.\n\t'
vecX = np.array([1, 0, 0])
vecZ = np.array([0, 0, 1])
vecX1 = rotxyz(vecX, roll, pitch, yaw, mode='rad', clockwise=clockwise)
vecZ1 = rotxyz(vecZ, roll, pitch, yaw, mode='rad', clockwise=clockwise)
vecX1_proj = np.array([0, vecX1[1], vecX1[2]])
vecZ_proj = np.array([0, 0, np.linalg.norm(vecX1_proj)])
planeRoll = vectorAngle(vecX1_proj, vecZ_proj)
vecZ2 = rotxyz(vecZ1, planeRoll, 0, 0, mode='rad', clockwise=clockwise)
localPitch = vectorAngle(vecX1, vecX)
vecZ3 = rotxyz(vecZ2, 0, (- localPitch), 0, mode='rad', clockwise=clockwise)
localRoll = vectorAngle(vecZ3, vecZ)
return (localPitch, localRoll, planeRoll)
|
def localPitchRoll(pitch, yaw, roll, clockwise=False):
'\n\tCalculate pitch and roll of an object in its local vetical plane\n\tNB: pitch, yaw, and roll denote rotations about the Y, Z, and X axes,\n\trespectively.\n\t'
vecX = np.array([1, 0, 0])
vecZ = np.array([0, 0, 1])
vecX1 = rotxyz(vecX, roll, pitch, yaw, mode='rad', clockwise=clockwise)
vecZ1 = rotxyz(vecZ, roll, pitch, yaw, mode='rad', clockwise=clockwise)
vecX1_proj = np.array([0, vecX1[1], vecX1[2]])
vecZ_proj = np.array([0, 0, np.linalg.norm(vecX1_proj)])
planeRoll = vectorAngle(vecX1_proj, vecZ_proj)
vecZ2 = rotxyz(vecZ1, planeRoll, 0, 0, mode='rad', clockwise=clockwise)
localPitch = vectorAngle(vecX1, vecX)
vecZ3 = rotxyz(vecZ2, 0, (- localPitch), 0, mode='rad', clockwise=clockwise)
localRoll = vectorAngle(vecZ3, vecZ)
return (localPitch, localRoll, planeRoll)<|docstring|>Calculate pitch and roll of an object in its local vetical plane
NB: pitch, yaw, and roll denote rotations about the Y, Z, and X axes,
respectively.<|endoftext|>
|
72d4b722f7faea02f8362b2a0cad632e45a06a570c9175bd799965ab2421c8eb
|
@autojit
def vectorAngle(a, b):
'\n\tReturn angle between two vectors\n\t'
return np.arccos((np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))))
|
Return angle between two vectors
|
rotate_lib.py
|
vectorAngle
|
Nate28/traj_calc
| 10 |
python
|
@autojit
def vectorAngle(a, b):
'\n\t\n\t'
return np.arccos((np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))))
|
@autojit
def vectorAngle(a, b):
'\n\t\n\t'
return np.arccos((np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))))<|docstring|>Return angle between two vectors<|endoftext|>
|
38bafaae85216d96d6bdee147eeb53241494e68a190a56e18e274bb4312b6f67
|
def SpiroplasmaCulicicola(directed: bool=False, verbose: int=2, cache_path: str='graphs/string', **additional_graph_kwargs: Dict) -> EnsmallenGraph:
'Return new instance of the Spiroplasma culicicola graph.\n\n The graph is automatically retrieved from the STRING repository. \n\n\t\n\n Parameters\n -------------------\n directed: bool = False,\n Wether to load the graph as directed or undirected.\n By default false.\n verbose: int = 2,\n Wether to show loading bars during the retrieval and building\n of the graph.\n cache_path: str = "graphs",\n Where to store the downloaded graphs.\n additional_graph_kwargs: Dict,\n Additional graph kwargs.\n\n Returns\n -----------------------\n Instace of Spiroplasma culicicola graph.\n\n\tReport\n\t---------------------\n\tAt the time of rendering these methods (please see datetime below), the graph\n\thad the following characteristics:\n\t\n\tDatetime: 2021-02-02 23:38:26.963703\n\t\n\tThe undirected graph Spiroplasma culicicola has 1070 nodes and 71886 weighted\n\tedges, of which none are self-loops. The graph is quite dense as it has\n\ta density of 0.12569 and has 5 connected components, where the component\n\twith most nodes has 1059 nodes and the component with the least nodes has\n\t2 nodes. The graph median node degree is 114, the mean node degree is 134.37,\n\tand the node degree mode is 9. The top 5 most central nodes are 1276246.SCULI_v1c08760\n\t(degree 508), 1276246.SCULI_v1c03710 (degree 486), 1276246.SCULI_v1c07920\n\t(degree 482), 1276246.SCULI_v1c08580 (degree 465) and 1276246.SCULI_v1c07270\n\t(degree 438).\n\t\n\n\tReferences\n\t---------------------\n\tPlease cite the following if you use the data:\n\t\n\t@article{szklarczyk2019string,\n\t title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets},\n\t author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others},\n\t journal={Nucleic acids research},\n\t volume={47},\n\t number={D1},\n\t pages={D607--D613},\n\t year={2019},\n\t publisher={Oxford University Press}\n\t}\n\t\n\n\tUsage example\n\t----------------------\n\tThe usage of this graph is relatively straightforward:\n\t\n\t.. code:: python\n\t\n\t # First import the function to retrieve the graph from the datasets\n\t from ensmallen_graph.datasets.string import SpiroplasmaCulicicola\n\t\n\t # Then load the graph\n\t graph = SpiroplasmaCulicicola()\n\t\n\t # Finally, you can do anything with it, for instance, compute its report:\n\t print(graph)\n\t\n\t # If you need to run a link prediction task with validation,\n\t # you can split the graph using a connected holdout as follows:\n\t train_graph, validation_graph = graph.connected_holdout(\n\t # You can use an 80/20 split the holdout, for example.\n\t train_size=0.8,\n\t # The random state is used to reproduce the holdout.\n\t random_state=42,\n\t # Wether to show a loading bar.\n\t verbose=True\n\t )\n\t\n\t # Remember that, if you need, you can enable the memory-time trade-offs:\n\t train_graph.enable(\n\t vector_sources=True,\n\t vector_destinations=True,\n\t vector_outbounds=True\n\t )\n\t\n\t # Consider using the methods made available in the Embiggen package\n\t # to run graph embedding or link prediction tasks.\n '
return AutomaticallyRetrievedGraph(graph_name='SpiroplasmaCulicicola', dataset='string', directed=directed, verbose=verbose, cache_path=cache_path, additional_graph_kwargs=additional_graph_kwargs)()
|
Return new instance of the Spiroplasma culicicola graph.
The graph is automatically retrieved from the STRING repository.
Parameters
-------------------
directed: bool = False,
Wether to load the graph as directed or undirected.
By default false.
verbose: int = 2,
Wether to show loading bars during the retrieval and building
of the graph.
cache_path: str = "graphs",
Where to store the downloaded graphs.
additional_graph_kwargs: Dict,
Additional graph kwargs.
Returns
-----------------------
Instace of Spiroplasma culicicola graph.
Report
---------------------
At the time of rendering these methods (please see datetime below), the graph
had the following characteristics:
Datetime: 2021-02-02 23:38:26.963703
The undirected graph Spiroplasma culicicola has 1070 nodes and 71886 weighted
edges, of which none are self-loops. The graph is quite dense as it has
a density of 0.12569 and has 5 connected components, where the component
with most nodes has 1059 nodes and the component with the least nodes has
2 nodes. The graph median node degree is 114, the mean node degree is 134.37,
and the node degree mode is 9. The top 5 most central nodes are 1276246.SCULI_v1c08760
(degree 508), 1276246.SCULI_v1c03710 (degree 486), 1276246.SCULI_v1c07920
(degree 482), 1276246.SCULI_v1c08580 (degree 465) and 1276246.SCULI_v1c07270
(degree 438).
References
---------------------
Please cite the following if you use the data:
@article{szklarczyk2019string,
title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets},
author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others},
journal={Nucleic acids research},
volume={47},
number={D1},
pages={D607--D613},
year={2019},
publisher={Oxford University Press}
}
Usage example
----------------------
The usage of this graph is relatively straightforward:
.. code:: python
# First import the function to retrieve the graph from the datasets
from ensmallen_graph.datasets.string import SpiroplasmaCulicicola
# Then load the graph
graph = SpiroplasmaCulicicola()
# Finally, you can do anything with it, for instance, compute its report:
print(graph)
# If you need to run a link prediction task with validation,
# you can split the graph using a connected holdout as follows:
train_graph, validation_graph = graph.connected_holdout(
# You can use an 80/20 split the holdout, for example.
train_size=0.8,
# The random state is used to reproduce the holdout.
random_state=42,
# Wether to show a loading bar.
verbose=True
)
# Remember that, if you need, you can enable the memory-time trade-offs:
train_graph.enable(
vector_sources=True,
vector_destinations=True,
vector_outbounds=True
)
# Consider using the methods made available in the Embiggen package
# to run graph embedding or link prediction tasks.
|
bindings/python/ensmallen_graph/datasets/string/spiroplasmaculicicola.py
|
SpiroplasmaCulicicola
|
caufieldjh/ensmallen_graph
| 0 |
python
|
def SpiroplasmaCulicicola(directed: bool=False, verbose: int=2, cache_path: str='graphs/string', **additional_graph_kwargs: Dict) -> EnsmallenGraph:
'Return new instance of the Spiroplasma culicicola graph.\n\n The graph is automatically retrieved from the STRING repository. \n\n\t\n\n Parameters\n -------------------\n directed: bool = False,\n Wether to load the graph as directed or undirected.\n By default false.\n verbose: int = 2,\n Wether to show loading bars during the retrieval and building\n of the graph.\n cache_path: str = "graphs",\n Where to store the downloaded graphs.\n additional_graph_kwargs: Dict,\n Additional graph kwargs.\n\n Returns\n -----------------------\n Instace of Spiroplasma culicicola graph.\n\n\tReport\n\t---------------------\n\tAt the time of rendering these methods (please see datetime below), the graph\n\thad the following characteristics:\n\t\n\tDatetime: 2021-02-02 23:38:26.963703\n\t\n\tThe undirected graph Spiroplasma culicicola has 1070 nodes and 71886 weighted\n\tedges, of which none are self-loops. The graph is quite dense as it has\n\ta density of 0.12569 and has 5 connected components, where the component\n\twith most nodes has 1059 nodes and the component with the least nodes has\n\t2 nodes. The graph median node degree is 114, the mean node degree is 134.37,\n\tand the node degree mode is 9. The top 5 most central nodes are 1276246.SCULI_v1c08760\n\t(degree 508), 1276246.SCULI_v1c03710 (degree 486), 1276246.SCULI_v1c07920\n\t(degree 482), 1276246.SCULI_v1c08580 (degree 465) and 1276246.SCULI_v1c07270\n\t(degree 438).\n\t\n\n\tReferences\n\t---------------------\n\tPlease cite the following if you use the data:\n\t\n\t@article{szklarczyk2019string,\n\t title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets},\n\t author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others},\n\t journal={Nucleic acids research},\n\t volume={47},\n\t number={D1},\n\t pages={D607--D613},\n\t year={2019},\n\t publisher={Oxford University Press}\n\t}\n\t\n\n\tUsage example\n\t----------------------\n\tThe usage of this graph is relatively straightforward:\n\t\n\t.. code:: python\n\t\n\t # First import the function to retrieve the graph from the datasets\n\t from ensmallen_graph.datasets.string import SpiroplasmaCulicicola\n\t\n\t # Then load the graph\n\t graph = SpiroplasmaCulicicola()\n\t\n\t # Finally, you can do anything with it, for instance, compute its report:\n\t print(graph)\n\t\n\t # If you need to run a link prediction task with validation,\n\t # you can split the graph using a connected holdout as follows:\n\t train_graph, validation_graph = graph.connected_holdout(\n\t # You can use an 80/20 split the holdout, for example.\n\t train_size=0.8,\n\t # The random state is used to reproduce the holdout.\n\t random_state=42,\n\t # Wether to show a loading bar.\n\t verbose=True\n\t )\n\t\n\t # Remember that, if you need, you can enable the memory-time trade-offs:\n\t train_graph.enable(\n\t vector_sources=True,\n\t vector_destinations=True,\n\t vector_outbounds=True\n\t )\n\t\n\t # Consider using the methods made available in the Embiggen package\n\t # to run graph embedding or link prediction tasks.\n '
return AutomaticallyRetrievedGraph(graph_name='SpiroplasmaCulicicola', dataset='string', directed=directed, verbose=verbose, cache_path=cache_path, additional_graph_kwargs=additional_graph_kwargs)()
|
def SpiroplasmaCulicicola(directed: bool=False, verbose: int=2, cache_path: str='graphs/string', **additional_graph_kwargs: Dict) -> EnsmallenGraph:
'Return new instance of the Spiroplasma culicicola graph.\n\n The graph is automatically retrieved from the STRING repository. \n\n\t\n\n Parameters\n -------------------\n directed: bool = False,\n Wether to load the graph as directed or undirected.\n By default false.\n verbose: int = 2,\n Wether to show loading bars during the retrieval and building\n of the graph.\n cache_path: str = "graphs",\n Where to store the downloaded graphs.\n additional_graph_kwargs: Dict,\n Additional graph kwargs.\n\n Returns\n -----------------------\n Instace of Spiroplasma culicicola graph.\n\n\tReport\n\t---------------------\n\tAt the time of rendering these methods (please see datetime below), the graph\n\thad the following characteristics:\n\t\n\tDatetime: 2021-02-02 23:38:26.963703\n\t\n\tThe undirected graph Spiroplasma culicicola has 1070 nodes and 71886 weighted\n\tedges, of which none are self-loops. The graph is quite dense as it has\n\ta density of 0.12569 and has 5 connected components, where the component\n\twith most nodes has 1059 nodes and the component with the least nodes has\n\t2 nodes. The graph median node degree is 114, the mean node degree is 134.37,\n\tand the node degree mode is 9. The top 5 most central nodes are 1276246.SCULI_v1c08760\n\t(degree 508), 1276246.SCULI_v1c03710 (degree 486), 1276246.SCULI_v1c07920\n\t(degree 482), 1276246.SCULI_v1c08580 (degree 465) and 1276246.SCULI_v1c07270\n\t(degree 438).\n\t\n\n\tReferences\n\t---------------------\n\tPlease cite the following if you use the data:\n\t\n\t@article{szklarczyk2019string,\n\t title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets},\n\t author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others},\n\t journal={Nucleic acids research},\n\t volume={47},\n\t number={D1},\n\t pages={D607--D613},\n\t year={2019},\n\t publisher={Oxford University Press}\n\t}\n\t\n\n\tUsage example\n\t----------------------\n\tThe usage of this graph is relatively straightforward:\n\t\n\t.. code:: python\n\t\n\t # First import the function to retrieve the graph from the datasets\n\t from ensmallen_graph.datasets.string import SpiroplasmaCulicicola\n\t\n\t # Then load the graph\n\t graph = SpiroplasmaCulicicola()\n\t\n\t # Finally, you can do anything with it, for instance, compute its report:\n\t print(graph)\n\t\n\t # If you need to run a link prediction task with validation,\n\t # you can split the graph using a connected holdout as follows:\n\t train_graph, validation_graph = graph.connected_holdout(\n\t # You can use an 80/20 split the holdout, for example.\n\t train_size=0.8,\n\t # The random state is used to reproduce the holdout.\n\t random_state=42,\n\t # Wether to show a loading bar.\n\t verbose=True\n\t )\n\t\n\t # Remember that, if you need, you can enable the memory-time trade-offs:\n\t train_graph.enable(\n\t vector_sources=True,\n\t vector_destinations=True,\n\t vector_outbounds=True\n\t )\n\t\n\t # Consider using the methods made available in the Embiggen package\n\t # to run graph embedding or link prediction tasks.\n '
return AutomaticallyRetrievedGraph(graph_name='SpiroplasmaCulicicola', dataset='string', directed=directed, verbose=verbose, cache_path=cache_path, additional_graph_kwargs=additional_graph_kwargs)()<|docstring|>Return new instance of the Spiroplasma culicicola graph.
The graph is automatically retrieved from the STRING repository.
Parameters
-------------------
directed: bool = False,
Wether to load the graph as directed or undirected.
By default false.
verbose: int = 2,
Wether to show loading bars during the retrieval and building
of the graph.
cache_path: str = "graphs",
Where to store the downloaded graphs.
additional_graph_kwargs: Dict,
Additional graph kwargs.
Returns
-----------------------
Instace of Spiroplasma culicicola graph.
Report
---------------------
At the time of rendering these methods (please see datetime below), the graph
had the following characteristics:
Datetime: 2021-02-02 23:38:26.963703
The undirected graph Spiroplasma culicicola has 1070 nodes and 71886 weighted
edges, of which none are self-loops. The graph is quite dense as it has
a density of 0.12569 and has 5 connected components, where the component
with most nodes has 1059 nodes and the component with the least nodes has
2 nodes. The graph median node degree is 114, the mean node degree is 134.37,
and the node degree mode is 9. The top 5 most central nodes are 1276246.SCULI_v1c08760
(degree 508), 1276246.SCULI_v1c03710 (degree 486), 1276246.SCULI_v1c07920
(degree 482), 1276246.SCULI_v1c08580 (degree 465) and 1276246.SCULI_v1c07270
(degree 438).
References
---------------------
Please cite the following if you use the data:
@article{szklarczyk2019string,
title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets},
author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others},
journal={Nucleic acids research},
volume={47},
number={D1},
pages={D607--D613},
year={2019},
publisher={Oxford University Press}
}
Usage example
----------------------
The usage of this graph is relatively straightforward:
.. code:: python
# First import the function to retrieve the graph from the datasets
from ensmallen_graph.datasets.string import SpiroplasmaCulicicola
# Then load the graph
graph = SpiroplasmaCulicicola()
# Finally, you can do anything with it, for instance, compute its report:
print(graph)
# If you need to run a link prediction task with validation,
# you can split the graph using a connected holdout as follows:
train_graph, validation_graph = graph.connected_holdout(
# You can use an 80/20 split the holdout, for example.
train_size=0.8,
# The random state is used to reproduce the holdout.
random_state=42,
# Wether to show a loading bar.
verbose=True
)
# Remember that, if you need, you can enable the memory-time trade-offs:
train_graph.enable(
vector_sources=True,
vector_destinations=True,
vector_outbounds=True
)
# Consider using the methods made available in the Embiggen package
# to run graph embedding or link prediction tasks.<|endoftext|>
|
d19895a6a716e09b1cad231cf61fbde0903e34c00a342a010fdd56694726e54c
|
def fill_wrfinput_ncdfpy(rootgrp_in, rootgrp_out, laimo=8):
'\n This function will populate the arrays in the WRFINPUT file based on array and\n attribute values in the input GEOGRID file.\n '
soilT = rootgrp_in.variables['SOILTEMP'][:]
hgt = rootgrp_in.variables['HGT_M'][:]
use = rootgrp_in.variables['LU_INDEX'][:]
soil_top_cat = rootgrp_in.variables['SOILCTOP'][:]
veg = (rootgrp_in.variables['GREENFRAC'][:] * 100.0)
ncatts = {key: val for (key, val) in rootgrp_out.__dict__.items()}
iswater = ncatts.get('ISWATER')
isoilwater = ncatts.get('ISOILWATER')
if fix_zero_over_water:
soilT_mask = (soilT < 100)
soilT_mask_Mean = soilT[(~ soilT_mask)].mean()
soilT[soilT_mask] = soilT_mask_Mean
if (soilT_mask.sum() > 0):
print(' Replaced {0} values in TMN with mean SOILTEMPT value ({1}).'.format(soilT_mask.sum(), soilT_mask_Mean))
print(' Performing topographic soil temperature adjustment.')
tmn = (soilT - (0.0065 * hgt))
del soilT, hgt, soilT_mask, soilT_mask_Mean
msk = use.copy()
msk[numpy.logical_and((msk >= 0), (msk != iswater))] = 1
msk[(msk == iswater)] = 2
a = numpy.ma.array(soil_top_cat[0], mask=False)
a.mask[(isoilwater - 1)] = True
dominant_value = numpy.amax(a, axis=0).data
dominant_index = (numpy.argmax(a, axis=0) + 1)
dominant_index[numpy.logical_and((dominant_value < 0.01), (msk[0] == 1))] = dom_lc_fill
if (numpy.logical_and((dominant_value < 0.01), (msk[0] == 1)).sum() > 0):
print(' Replaced {0} values in ISLTYP with {1} because no dominant land class could be determined'.format(numpy.logical_and((dominant_value < 0.01), (msk[0] == 1)).sum(), dom_lc_fill))
dominant_index[(msk[0] == 2)] = isoilwater
del a, dominant_value, soil_top_cat
soi = dominant_index[numpy.newaxis]
soi[(use == iswater)] = isoilwater
soi[numpy.logical_and((use != iswater), (soi == isoilwater))] = fillsoiltyp
if (numpy.logical_and((use != iswater), (soi == isoilwater)).sum() > 0):
print(' Replaced {0} values in ISLTYP with {1} because of a land landcover type and water soil class'.format(fillsoiltyp, numpy.logical_and((use != iswater), (soi == isoilwater)).sum()))
del dominant_index, use
smoisArr = numpy.array([0.2, 0.21, 0.25, 0.27])
smois = (smoisArr[(:, None, None)] * numpy.ones(msk.shape))
tslbArr = numpy.array([285.0, 283.0, 279.0, 277.0])
tslb = (tslbArr[(:, None, None)] * numpy.ones(msk.shape))
zs = [((item / 2) + sum(dzs[:num])) for (num, item) in enumerate(dzs)]
rootgrp_out.variables['TMN'][:] = tmn
rootgrp_out.variables['XLAND'][:] = msk
rootgrp_out.variables['SEAICE'][:] = numpy.zeros(msk.shape)
rootgrp_out.variables['ISLTYP'][:] = soi
rootgrp_out.variables['SHDMAX'][:] = veg.max(axis=1)
rootgrp_out.variables['SHDMIN'][:] = veg.min(axis=1)
rootgrp_out.variables['LAI'][:] = rootgrp_in.variables['LAI12M'][(:, (laimo - 1))]
rootgrp_out.variables['CANWAT'][:] = numpy.zeros(msk.shape)
rootgrp_out.variables['SNOW'][:] = numpy.zeros(msk.shape)
rootgrp_out.variables['TSK'][:] = (numpy.zeros(msk.shape) + 290.0)
rootgrp_out.variables['SMOIS'][:] = smois[numpy.newaxis]
rootgrp_out.variables['TSLB'][:] = tslb[numpy.newaxis]
rootgrp_out.variables['ZS'][:] = numpy.array(zs)[numpy.newaxis]
rootgrp_out.variables['DZS'][:] = numpy.array(dzs)[numpy.newaxis]
del msk, veg, ncatts, iswater, isoilwater, soi, smois, smoisArr, tslb, tslbArr, tmn, zs
return (rootgrp_in, rootgrp_out)
|
This function will populate the arrays in the WRFINPUT file based on array and
attribute values in the input GEOGRID file.
|
wrfhydro_gis/Create_wrfinput_from_Geogrid.py
|
fill_wrfinput_ncdfpy
|
andrewsoong/wrf_hydro_gis_preprocessor
| 8 |
python
|
def fill_wrfinput_ncdfpy(rootgrp_in, rootgrp_out, laimo=8):
'\n This function will populate the arrays in the WRFINPUT file based on array and\n attribute values in the input GEOGRID file.\n '
soilT = rootgrp_in.variables['SOILTEMP'][:]
hgt = rootgrp_in.variables['HGT_M'][:]
use = rootgrp_in.variables['LU_INDEX'][:]
soil_top_cat = rootgrp_in.variables['SOILCTOP'][:]
veg = (rootgrp_in.variables['GREENFRAC'][:] * 100.0)
ncatts = {key: val for (key, val) in rootgrp_out.__dict__.items()}
iswater = ncatts.get('ISWATER')
isoilwater = ncatts.get('ISOILWATER')
if fix_zero_over_water:
soilT_mask = (soilT < 100)
soilT_mask_Mean = soilT[(~ soilT_mask)].mean()
soilT[soilT_mask] = soilT_mask_Mean
if (soilT_mask.sum() > 0):
print(' Replaced {0} values in TMN with mean SOILTEMPT value ({1}).'.format(soilT_mask.sum(), soilT_mask_Mean))
print(' Performing topographic soil temperature adjustment.')
tmn = (soilT - (0.0065 * hgt))
del soilT, hgt, soilT_mask, soilT_mask_Mean
msk = use.copy()
msk[numpy.logical_and((msk >= 0), (msk != iswater))] = 1
msk[(msk == iswater)] = 2
a = numpy.ma.array(soil_top_cat[0], mask=False)
a.mask[(isoilwater - 1)] = True
dominant_value = numpy.amax(a, axis=0).data
dominant_index = (numpy.argmax(a, axis=0) + 1)
dominant_index[numpy.logical_and((dominant_value < 0.01), (msk[0] == 1))] = dom_lc_fill
if (numpy.logical_and((dominant_value < 0.01), (msk[0] == 1)).sum() > 0):
print(' Replaced {0} values in ISLTYP with {1} because no dominant land class could be determined'.format(numpy.logical_and((dominant_value < 0.01), (msk[0] == 1)).sum(), dom_lc_fill))
dominant_index[(msk[0] == 2)] = isoilwater
del a, dominant_value, soil_top_cat
soi = dominant_index[numpy.newaxis]
soi[(use == iswater)] = isoilwater
soi[numpy.logical_and((use != iswater), (soi == isoilwater))] = fillsoiltyp
if (numpy.logical_and((use != iswater), (soi == isoilwater)).sum() > 0):
print(' Replaced {0} values in ISLTYP with {1} because of a land landcover type and water soil class'.format(fillsoiltyp, numpy.logical_and((use != iswater), (soi == isoilwater)).sum()))
del dominant_index, use
smoisArr = numpy.array([0.2, 0.21, 0.25, 0.27])
smois = (smoisArr[(:, None, None)] * numpy.ones(msk.shape))
tslbArr = numpy.array([285.0, 283.0, 279.0, 277.0])
tslb = (tslbArr[(:, None, None)] * numpy.ones(msk.shape))
zs = [((item / 2) + sum(dzs[:num])) for (num, item) in enumerate(dzs)]
rootgrp_out.variables['TMN'][:] = tmn
rootgrp_out.variables['XLAND'][:] = msk
rootgrp_out.variables['SEAICE'][:] = numpy.zeros(msk.shape)
rootgrp_out.variables['ISLTYP'][:] = soi
rootgrp_out.variables['SHDMAX'][:] = veg.max(axis=1)
rootgrp_out.variables['SHDMIN'][:] = veg.min(axis=1)
rootgrp_out.variables['LAI'][:] = rootgrp_in.variables['LAI12M'][(:, (laimo - 1))]
rootgrp_out.variables['CANWAT'][:] = numpy.zeros(msk.shape)
rootgrp_out.variables['SNOW'][:] = numpy.zeros(msk.shape)
rootgrp_out.variables['TSK'][:] = (numpy.zeros(msk.shape) + 290.0)
rootgrp_out.variables['SMOIS'][:] = smois[numpy.newaxis]
rootgrp_out.variables['TSLB'][:] = tslb[numpy.newaxis]
rootgrp_out.variables['ZS'][:] = numpy.array(zs)[numpy.newaxis]
rootgrp_out.variables['DZS'][:] = numpy.array(dzs)[numpy.newaxis]
del msk, veg, ncatts, iswater, isoilwater, soi, smois, smoisArr, tslb, tslbArr, tmn, zs
return (rootgrp_in, rootgrp_out)
|
def fill_wrfinput_ncdfpy(rootgrp_in, rootgrp_out, laimo=8):
'\n This function will populate the arrays in the WRFINPUT file based on array and\n attribute values in the input GEOGRID file.\n '
soilT = rootgrp_in.variables['SOILTEMP'][:]
hgt = rootgrp_in.variables['HGT_M'][:]
use = rootgrp_in.variables['LU_INDEX'][:]
soil_top_cat = rootgrp_in.variables['SOILCTOP'][:]
veg = (rootgrp_in.variables['GREENFRAC'][:] * 100.0)
ncatts = {key: val for (key, val) in rootgrp_out.__dict__.items()}
iswater = ncatts.get('ISWATER')
isoilwater = ncatts.get('ISOILWATER')
if fix_zero_over_water:
soilT_mask = (soilT < 100)
soilT_mask_Mean = soilT[(~ soilT_mask)].mean()
soilT[soilT_mask] = soilT_mask_Mean
if (soilT_mask.sum() > 0):
print(' Replaced {0} values in TMN with mean SOILTEMPT value ({1}).'.format(soilT_mask.sum(), soilT_mask_Mean))
print(' Performing topographic soil temperature adjustment.')
tmn = (soilT - (0.0065 * hgt))
del soilT, hgt, soilT_mask, soilT_mask_Mean
msk = use.copy()
msk[numpy.logical_and((msk >= 0), (msk != iswater))] = 1
msk[(msk == iswater)] = 2
a = numpy.ma.array(soil_top_cat[0], mask=False)
a.mask[(isoilwater - 1)] = True
dominant_value = numpy.amax(a, axis=0).data
dominant_index = (numpy.argmax(a, axis=0) + 1)
dominant_index[numpy.logical_and((dominant_value < 0.01), (msk[0] == 1))] = dom_lc_fill
if (numpy.logical_and((dominant_value < 0.01), (msk[0] == 1)).sum() > 0):
print(' Replaced {0} values in ISLTYP with {1} because no dominant land class could be determined'.format(numpy.logical_and((dominant_value < 0.01), (msk[0] == 1)).sum(), dom_lc_fill))
dominant_index[(msk[0] == 2)] = isoilwater
del a, dominant_value, soil_top_cat
soi = dominant_index[numpy.newaxis]
soi[(use == iswater)] = isoilwater
soi[numpy.logical_and((use != iswater), (soi == isoilwater))] = fillsoiltyp
if (numpy.logical_and((use != iswater), (soi == isoilwater)).sum() > 0):
print(' Replaced {0} values in ISLTYP with {1} because of a land landcover type and water soil class'.format(fillsoiltyp, numpy.logical_and((use != iswater), (soi == isoilwater)).sum()))
del dominant_index, use
smoisArr = numpy.array([0.2, 0.21, 0.25, 0.27])
smois = (smoisArr[(:, None, None)] * numpy.ones(msk.shape))
tslbArr = numpy.array([285.0, 283.0, 279.0, 277.0])
tslb = (tslbArr[(:, None, None)] * numpy.ones(msk.shape))
zs = [((item / 2) + sum(dzs[:num])) for (num, item) in enumerate(dzs)]
rootgrp_out.variables['TMN'][:] = tmn
rootgrp_out.variables['XLAND'][:] = msk
rootgrp_out.variables['SEAICE'][:] = numpy.zeros(msk.shape)
rootgrp_out.variables['ISLTYP'][:] = soi
rootgrp_out.variables['SHDMAX'][:] = veg.max(axis=1)
rootgrp_out.variables['SHDMIN'][:] = veg.min(axis=1)
rootgrp_out.variables['LAI'][:] = rootgrp_in.variables['LAI12M'][(:, (laimo - 1))]
rootgrp_out.variables['CANWAT'][:] = numpy.zeros(msk.shape)
rootgrp_out.variables['SNOW'][:] = numpy.zeros(msk.shape)
rootgrp_out.variables['TSK'][:] = (numpy.zeros(msk.shape) + 290.0)
rootgrp_out.variables['SMOIS'][:] = smois[numpy.newaxis]
rootgrp_out.variables['TSLB'][:] = tslb[numpy.newaxis]
rootgrp_out.variables['ZS'][:] = numpy.array(zs)[numpy.newaxis]
rootgrp_out.variables['DZS'][:] = numpy.array(dzs)[numpy.newaxis]
del msk, veg, ncatts, iswater, isoilwater, soi, smois, smoisArr, tslb, tslbArr, tmn, zs
return (rootgrp_in, rootgrp_out)<|docstring|>This function will populate the arrays in the WRFINPUT file based on array and
attribute values in the input GEOGRID file.<|endoftext|>
|
3583c04ea44f1c436e994f760f4003b47742fc13e8fb42d77eeccb22da3e7730
|
def main_wrfinput_ncdfpy(geoFile, wrfinFile, lai=8, outNCType='NETCDF4'):
'\n This function is designed to build the wrfinput file using only the\n netCDF4-python library.\n '
tic1 = time.time()
print(' Creating wrfinput file from geogrid file.')
print(' Input geogrid file: {0}'.format(geoFile))
print(' Output wrfinput file: {0}'.format(wrfinFile))
print(' Month selected (1=Januaray, 12=December): {0}'.format(lai))
rootgrp_in = netCDF4.Dataset(geoFile, 'r')
rootgrp_out = netCDF4.Dataset(wrfinFile, 'w', format=outNCType)
for (dimname, dim) in rootgrp_in.dimensions.items():
if (dimname in keepDims):
rootgrp_out.createDimension(dimname, len(dim))
soildimension = rootgrp_out.createDimension(soildim, nsoil)
for (varname, ncvar) in rootgrp_in.variables.items():
if (varname in keepVars):
varAtts = {key: val for (key, val) in ncvar.__dict__.items()}
varDims = tuple((varDim for varDim in ncvar.dimensions))
if (varname in mapVars):
varname = mapVars[varname]
var = rootgrp_out.createVariable(varname, ncvar.dtype, varDims)
var.setncatts(varAtts)
for (varname, units, varDims, missing_value, dtype) in addVars:
var = rootgrp_out.createVariable(varname, dtype, varDims)
var.setncatts({'units': units, 'missing_value': missing_value})
ncatts = {key: val for (key, val) in rootgrp_in.__dict__.items()}
ncatts['Source_Software'] = 'WRF-Hydro {0} script (Python).'.format(sys.argv[0])
ncatts['creation_time'] = 'Created {0}'.format(time.ctime())
rootgrp_out.setncatts(ncatts)
for (varname, ncvar) in rootgrp_in.variables.items():
if (varname in keepVars):
if (varname in mapVars):
varname = mapVars[varname]
var = rootgrp_out.variables[varname]
var[:] = ncvar[:]
(rootgrp_in, rootgrp_out) = fill_wrfinput_ncdfpy(rootgrp_in, rootgrp_out, laimo=lai)
rootgrp_in.close()
rootgrp_out.close()
return
|
This function is designed to build the wrfinput file using only the
netCDF4-python library.
|
wrfhydro_gis/Create_wrfinput_from_Geogrid.py
|
main_wrfinput_ncdfpy
|
andrewsoong/wrf_hydro_gis_preprocessor
| 8 |
python
|
def main_wrfinput_ncdfpy(geoFile, wrfinFile, lai=8, outNCType='NETCDF4'):
'\n This function is designed to build the wrfinput file using only the\n netCDF4-python library.\n '
tic1 = time.time()
print(' Creating wrfinput file from geogrid file.')
print(' Input geogrid file: {0}'.format(geoFile))
print(' Output wrfinput file: {0}'.format(wrfinFile))
print(' Month selected (1=Januaray, 12=December): {0}'.format(lai))
rootgrp_in = netCDF4.Dataset(geoFile, 'r')
rootgrp_out = netCDF4.Dataset(wrfinFile, 'w', format=outNCType)
for (dimname, dim) in rootgrp_in.dimensions.items():
if (dimname in keepDims):
rootgrp_out.createDimension(dimname, len(dim))
soildimension = rootgrp_out.createDimension(soildim, nsoil)
for (varname, ncvar) in rootgrp_in.variables.items():
if (varname in keepVars):
varAtts = {key: val for (key, val) in ncvar.__dict__.items()}
varDims = tuple((varDim for varDim in ncvar.dimensions))
if (varname in mapVars):
varname = mapVars[varname]
var = rootgrp_out.createVariable(varname, ncvar.dtype, varDims)
var.setncatts(varAtts)
for (varname, units, varDims, missing_value, dtype) in addVars:
var = rootgrp_out.createVariable(varname, dtype, varDims)
var.setncatts({'units': units, 'missing_value': missing_value})
ncatts = {key: val for (key, val) in rootgrp_in.__dict__.items()}
ncatts['Source_Software'] = 'WRF-Hydro {0} script (Python).'.format(sys.argv[0])
ncatts['creation_time'] = 'Created {0}'.format(time.ctime())
rootgrp_out.setncatts(ncatts)
for (varname, ncvar) in rootgrp_in.variables.items():
if (varname in keepVars):
if (varname in mapVars):
varname = mapVars[varname]
var = rootgrp_out.variables[varname]
var[:] = ncvar[:]
(rootgrp_in, rootgrp_out) = fill_wrfinput_ncdfpy(rootgrp_in, rootgrp_out, laimo=lai)
rootgrp_in.close()
rootgrp_out.close()
return
|
def main_wrfinput_ncdfpy(geoFile, wrfinFile, lai=8, outNCType='NETCDF4'):
'\n This function is designed to build the wrfinput file using only the\n netCDF4-python library.\n '
tic1 = time.time()
print(' Creating wrfinput file from geogrid file.')
print(' Input geogrid file: {0}'.format(geoFile))
print(' Output wrfinput file: {0}'.format(wrfinFile))
print(' Month selected (1=Januaray, 12=December): {0}'.format(lai))
rootgrp_in = netCDF4.Dataset(geoFile, 'r')
rootgrp_out = netCDF4.Dataset(wrfinFile, 'w', format=outNCType)
for (dimname, dim) in rootgrp_in.dimensions.items():
if (dimname in keepDims):
rootgrp_out.createDimension(dimname, len(dim))
soildimension = rootgrp_out.createDimension(soildim, nsoil)
for (varname, ncvar) in rootgrp_in.variables.items():
if (varname in keepVars):
varAtts = {key: val for (key, val) in ncvar.__dict__.items()}
varDims = tuple((varDim for varDim in ncvar.dimensions))
if (varname in mapVars):
varname = mapVars[varname]
var = rootgrp_out.createVariable(varname, ncvar.dtype, varDims)
var.setncatts(varAtts)
for (varname, units, varDims, missing_value, dtype) in addVars:
var = rootgrp_out.createVariable(varname, dtype, varDims)
var.setncatts({'units': units, 'missing_value': missing_value})
ncatts = {key: val for (key, val) in rootgrp_in.__dict__.items()}
ncatts['Source_Software'] = 'WRF-Hydro {0} script (Python).'.format(sys.argv[0])
ncatts['creation_time'] = 'Created {0}'.format(time.ctime())
rootgrp_out.setncatts(ncatts)
for (varname, ncvar) in rootgrp_in.variables.items():
if (varname in keepVars):
if (varname in mapVars):
varname = mapVars[varname]
var = rootgrp_out.variables[varname]
var[:] = ncvar[:]
(rootgrp_in, rootgrp_out) = fill_wrfinput_ncdfpy(rootgrp_in, rootgrp_out, laimo=lai)
rootgrp_in.close()
rootgrp_out.close()
return<|docstring|>This function is designed to build the wrfinput file using only the
netCDF4-python library.<|endoftext|>
|
c055e106ccf5cd89d22d09d8be0d4946690b1100b96d6bbf0bf5563b2fd4d308
|
def fill_wrfinput_xarray(ds_in, laimo=8):
'\n This function will populate the arrays in the WRFINPUT file based on array and\n attribute values in the input GEOGRID file.\n '
iswater = ds_in.attrs.get('ISWATER')
isoilwater = ds_in.attrs.get('ISOILWATER')
hgt = ds_in['HGT'].data
if fix_zero_over_water:
soilT = ds_in['SOILTEMP'].data.copy()
soilT_mask = (soilT < 100)
soilT_mask_Mean = soilT[(~ soilT_mask)].mean()
soilT[soilT_mask] = soilT_mask_Mean
if (soilT_mask.sum() > 0):
print(' Replaced {0} values in TMN with mean SOILTEMPT value ({1}).'.format(soilT_mask.sum(), soilT_mask_Mean))
print(' Performing topographic soil temperature adjustment.')
tmn = (soilT - (0.0065 * hgt))
del soilT, hgt, soilT_mask, soilT_mask_Mean
use = ds_in['IVGTYP'].data
msk = use.copy()
msk[numpy.logical_and((msk >= 0), (msk != iswater))] = 1
msk[(msk == iswater)] = 2
soil_top_cat = ds_in['SOILCTOP'].data
a = numpy.ma.array(soil_top_cat[0], mask=False)
a.mask[(isoilwater - 1)] = True
dominant_value = numpy.amax(a, axis=0).data
dominant_index = (numpy.argmax(a, axis=0) + 1)
dominant_index[numpy.logical_and((dominant_value < 0.01), (msk[0] == 1))] = dom_lc_fill
if (numpy.logical_and((dominant_value < 0.01), (msk[0] == 1)).sum() > 0):
print(' Replaced {0} values in ISLTYP with {1} because no dominant land class could be determined'.format(numpy.logical_and((dominant_value < 0.01), (msk[0] == 1)).sum(), dom_lc_fill))
dominant_index[(msk[0] == 2)] = isoilwater
del a, dominant_value, soil_top_cat
soi = dominant_index[numpy.newaxis]
soi[(use == iswater)] = isoilwater
soi[numpy.logical_and((use != iswater), (soi == isoilwater))] = fillsoiltyp
if (numpy.logical_and((use != iswater), (soi == isoilwater)).sum() > 0):
print(' Replaced {0} values in ISLTYP with {1} because of a land landcover type and water soil class'.format(fillsoiltyp, numpy.logical_and((use != iswater), (soi == isoilwater)).sum()))
del dominant_index, use
smoisArr = numpy.array([0.2, 0.21, 0.25, 0.27])
smois = (smoisArr[(:, None, None)] * numpy.ones(msk.shape))
tslbArr = numpy.array([285.0, 283.0, 279.0, 277.0])
tslb = (tslbArr[(:, None, None)] * numpy.ones(msk.shape))
zs = [((item / 2) + sum(dzs[:num])) for (num, item) in enumerate(dzs)]
veg = (ds_in['GREENFRAC'].data * 100.0)
ds_in.variables['TMN'][:] = tmn
ds_in.variables['XLAND'][:] = msk
ds_in.variables['SEAICE'][:] = numpy.zeros(msk.shape)
ds_in.variables['ISLTYP'][:] = soi
ds_in.variables['SHDMAX'][:] = veg.max(axis=1)
ds_in.variables['SHDMIN'][:] = veg.min(axis=1)
ds_in.variables['LAI'][:] = ds_in.variables['LAI12M'][(:, (laimo - 1))]
ds_in.variables['CANWAT'][:] = numpy.zeros(msk.shape)
ds_in.variables['SNOW'][:] = numpy.zeros(msk.shape)
ds_in.variables['TSK'][:] = (numpy.zeros(msk.shape) + 290.0)
ds_in.variables['SMOIS'][:] = smois[numpy.newaxis]
ds_in.variables['TSLB'][:] = tslb[numpy.newaxis]
ds_in.variables['ZS'][:] = numpy.array(zs)[numpy.newaxis]
ds_in.variables['DZS'][:] = numpy.array(dzs)[numpy.newaxis]
del msk, veg, iswater, isoilwater, soi, smois, smoisArr, tslb, tslbArr, tmn, zs
return ds_in
|
This function will populate the arrays in the WRFINPUT file based on array and
attribute values in the input GEOGRID file.
|
wrfhydro_gis/Create_wrfinput_from_Geogrid.py
|
fill_wrfinput_xarray
|
andrewsoong/wrf_hydro_gis_preprocessor
| 8 |
python
|
def fill_wrfinput_xarray(ds_in, laimo=8):
'\n This function will populate the arrays in the WRFINPUT file based on array and\n attribute values in the input GEOGRID file.\n '
iswater = ds_in.attrs.get('ISWATER')
isoilwater = ds_in.attrs.get('ISOILWATER')
hgt = ds_in['HGT'].data
if fix_zero_over_water:
soilT = ds_in['SOILTEMP'].data.copy()
soilT_mask = (soilT < 100)
soilT_mask_Mean = soilT[(~ soilT_mask)].mean()
soilT[soilT_mask] = soilT_mask_Mean
if (soilT_mask.sum() > 0):
print(' Replaced {0} values in TMN with mean SOILTEMPT value ({1}).'.format(soilT_mask.sum(), soilT_mask_Mean))
print(' Performing topographic soil temperature adjustment.')
tmn = (soilT - (0.0065 * hgt))
del soilT, hgt, soilT_mask, soilT_mask_Mean
use = ds_in['IVGTYP'].data
msk = use.copy()
msk[numpy.logical_and((msk >= 0), (msk != iswater))] = 1
msk[(msk == iswater)] = 2
soil_top_cat = ds_in['SOILCTOP'].data
a = numpy.ma.array(soil_top_cat[0], mask=False)
a.mask[(isoilwater - 1)] = True
dominant_value = numpy.amax(a, axis=0).data
dominant_index = (numpy.argmax(a, axis=0) + 1)
dominant_index[numpy.logical_and((dominant_value < 0.01), (msk[0] == 1))] = dom_lc_fill
if (numpy.logical_and((dominant_value < 0.01), (msk[0] == 1)).sum() > 0):
print(' Replaced {0} values in ISLTYP with {1} because no dominant land class could be determined'.format(numpy.logical_and((dominant_value < 0.01), (msk[0] == 1)).sum(), dom_lc_fill))
dominant_index[(msk[0] == 2)] = isoilwater
del a, dominant_value, soil_top_cat
soi = dominant_index[numpy.newaxis]
soi[(use == iswater)] = isoilwater
soi[numpy.logical_and((use != iswater), (soi == isoilwater))] = fillsoiltyp
if (numpy.logical_and((use != iswater), (soi == isoilwater)).sum() > 0):
print(' Replaced {0} values in ISLTYP with {1} because of a land landcover type and water soil class'.format(fillsoiltyp, numpy.logical_and((use != iswater), (soi == isoilwater)).sum()))
del dominant_index, use
smoisArr = numpy.array([0.2, 0.21, 0.25, 0.27])
smois = (smoisArr[(:, None, None)] * numpy.ones(msk.shape))
tslbArr = numpy.array([285.0, 283.0, 279.0, 277.0])
tslb = (tslbArr[(:, None, None)] * numpy.ones(msk.shape))
zs = [((item / 2) + sum(dzs[:num])) for (num, item) in enumerate(dzs)]
veg = (ds_in['GREENFRAC'].data * 100.0)
ds_in.variables['TMN'][:] = tmn
ds_in.variables['XLAND'][:] = msk
ds_in.variables['SEAICE'][:] = numpy.zeros(msk.shape)
ds_in.variables['ISLTYP'][:] = soi
ds_in.variables['SHDMAX'][:] = veg.max(axis=1)
ds_in.variables['SHDMIN'][:] = veg.min(axis=1)
ds_in.variables['LAI'][:] = ds_in.variables['LAI12M'][(:, (laimo - 1))]
ds_in.variables['CANWAT'][:] = numpy.zeros(msk.shape)
ds_in.variables['SNOW'][:] = numpy.zeros(msk.shape)
ds_in.variables['TSK'][:] = (numpy.zeros(msk.shape) + 290.0)
ds_in.variables['SMOIS'][:] = smois[numpy.newaxis]
ds_in.variables['TSLB'][:] = tslb[numpy.newaxis]
ds_in.variables['ZS'][:] = numpy.array(zs)[numpy.newaxis]
ds_in.variables['DZS'][:] = numpy.array(dzs)[numpy.newaxis]
del msk, veg, iswater, isoilwater, soi, smois, smoisArr, tslb, tslbArr, tmn, zs
return ds_in
|
def fill_wrfinput_xarray(ds_in, laimo=8):
'\n This function will populate the arrays in the WRFINPUT file based on array and\n attribute values in the input GEOGRID file.\n '
iswater = ds_in.attrs.get('ISWATER')
isoilwater = ds_in.attrs.get('ISOILWATER')
hgt = ds_in['HGT'].data
if fix_zero_over_water:
soilT = ds_in['SOILTEMP'].data.copy()
soilT_mask = (soilT < 100)
soilT_mask_Mean = soilT[(~ soilT_mask)].mean()
soilT[soilT_mask] = soilT_mask_Mean
if (soilT_mask.sum() > 0):
print(' Replaced {0} values in TMN with mean SOILTEMPT value ({1}).'.format(soilT_mask.sum(), soilT_mask_Mean))
print(' Performing topographic soil temperature adjustment.')
tmn = (soilT - (0.0065 * hgt))
del soilT, hgt, soilT_mask, soilT_mask_Mean
use = ds_in['IVGTYP'].data
msk = use.copy()
msk[numpy.logical_and((msk >= 0), (msk != iswater))] = 1
msk[(msk == iswater)] = 2
soil_top_cat = ds_in['SOILCTOP'].data
a = numpy.ma.array(soil_top_cat[0], mask=False)
a.mask[(isoilwater - 1)] = True
dominant_value = numpy.amax(a, axis=0).data
dominant_index = (numpy.argmax(a, axis=0) + 1)
dominant_index[numpy.logical_and((dominant_value < 0.01), (msk[0] == 1))] = dom_lc_fill
if (numpy.logical_and((dominant_value < 0.01), (msk[0] == 1)).sum() > 0):
print(' Replaced {0} values in ISLTYP with {1} because no dominant land class could be determined'.format(numpy.logical_and((dominant_value < 0.01), (msk[0] == 1)).sum(), dom_lc_fill))
dominant_index[(msk[0] == 2)] = isoilwater
del a, dominant_value, soil_top_cat
soi = dominant_index[numpy.newaxis]
soi[(use == iswater)] = isoilwater
soi[numpy.logical_and((use != iswater), (soi == isoilwater))] = fillsoiltyp
if (numpy.logical_and((use != iswater), (soi == isoilwater)).sum() > 0):
print(' Replaced {0} values in ISLTYP with {1} because of a land landcover type and water soil class'.format(fillsoiltyp, numpy.logical_and((use != iswater), (soi == isoilwater)).sum()))
del dominant_index, use
smoisArr = numpy.array([0.2, 0.21, 0.25, 0.27])
smois = (smoisArr[(:, None, None)] * numpy.ones(msk.shape))
tslbArr = numpy.array([285.0, 283.0, 279.0, 277.0])
tslb = (tslbArr[(:, None, None)] * numpy.ones(msk.shape))
zs = [((item / 2) + sum(dzs[:num])) for (num, item) in enumerate(dzs)]
veg = (ds_in['GREENFRAC'].data * 100.0)
ds_in.variables['TMN'][:] = tmn
ds_in.variables['XLAND'][:] = msk
ds_in.variables['SEAICE'][:] = numpy.zeros(msk.shape)
ds_in.variables['ISLTYP'][:] = soi
ds_in.variables['SHDMAX'][:] = veg.max(axis=1)
ds_in.variables['SHDMIN'][:] = veg.min(axis=1)
ds_in.variables['LAI'][:] = ds_in.variables['LAI12M'][(:, (laimo - 1))]
ds_in.variables['CANWAT'][:] = numpy.zeros(msk.shape)
ds_in.variables['SNOW'][:] = numpy.zeros(msk.shape)
ds_in.variables['TSK'][:] = (numpy.zeros(msk.shape) + 290.0)
ds_in.variables['SMOIS'][:] = smois[numpy.newaxis]
ds_in.variables['TSLB'][:] = tslb[numpy.newaxis]
ds_in.variables['ZS'][:] = numpy.array(zs)[numpy.newaxis]
ds_in.variables['DZS'][:] = numpy.array(dzs)[numpy.newaxis]
del msk, veg, iswater, isoilwater, soi, smois, smoisArr, tslb, tslbArr, tmn, zs
return ds_in<|docstring|>This function will populate the arrays in the WRFINPUT file based on array and
attribute values in the input GEOGRID file.<|endoftext|>
|
5158fb283cd280384760e794b4d633aefffe46f9fe0fed556e95689c752b021f
|
def main_wrfinput_xarray(geoFile, wrfinFile, lai=8, outNCType='NETCDF4'):
'\n This function is designed to build the wrfinput file using the xarray library.\n '
tic1 = time.time()
print(' Creating wrfinput file from geogrid file.')
print(' Input geogrid file: {0}'.format(geoFile))
print(' Output wrfinput file: {0}'.format(wrfinFile))
print(' Month selected (1=Januaray, 12=December): {0}'.format(lai))
ncDS = xr.open_dataset(geoFile)
ncDS = ncDS.rename(mapVars)
dims = dict(ncDS.dims)
dims.update({soildim: nsoil})
newVars = []
for (varname, units, varDims, missing_value, dtype) in addVars:
da = xr.DataArray(data=numpy.empty(tuple([dims[dim] for dim in varDims]), dtype=dtype), dims=varDims, attrs={'units': units, 'missing_value': missing_value})
ncDS[varname] = da
newVars.append(varname)
ncDS = fill_wrfinput_xarray(ncDS, laimo=lai)
dropDims = [item for item in ncDS.dims if (item not in keepDims)]
ncDS = ncDS.drop_dims(dropDims)
keepVars2 = ([mapVars.get(item, item) for item in keepVars] + newVars)
dropVars = [item for item in ncDS.variables if (item not in keepVars2)]
ncDS = ncDS.drop(dropVars)
ncDS.attrs['Source_Software'] = 'WRF-Hydro {0} script (Python).'.format(sys.argv[0])
ncDS.attrs['creation_time'] = 'Created {0}'.format(time.ctime())
encoding = {varname: {'_FillValue': None} for varname in list(ncDS.variables.keys())}
ncDS.to_netcdf(wrfinFile, mode='w', format=outNCType, encoding=encoding)
ncDS.close()
del encoding, ncDS
return
|
This function is designed to build the wrfinput file using the xarray library.
|
wrfhydro_gis/Create_wrfinput_from_Geogrid.py
|
main_wrfinput_xarray
|
andrewsoong/wrf_hydro_gis_preprocessor
| 8 |
python
|
def main_wrfinput_xarray(geoFile, wrfinFile, lai=8, outNCType='NETCDF4'):
'\n \n '
tic1 = time.time()
print(' Creating wrfinput file from geogrid file.')
print(' Input geogrid file: {0}'.format(geoFile))
print(' Output wrfinput file: {0}'.format(wrfinFile))
print(' Month selected (1=Januaray, 12=December): {0}'.format(lai))
ncDS = xr.open_dataset(geoFile)
ncDS = ncDS.rename(mapVars)
dims = dict(ncDS.dims)
dims.update({soildim: nsoil})
newVars = []
for (varname, units, varDims, missing_value, dtype) in addVars:
da = xr.DataArray(data=numpy.empty(tuple([dims[dim] for dim in varDims]), dtype=dtype), dims=varDims, attrs={'units': units, 'missing_value': missing_value})
ncDS[varname] = da
newVars.append(varname)
ncDS = fill_wrfinput_xarray(ncDS, laimo=lai)
dropDims = [item for item in ncDS.dims if (item not in keepDims)]
ncDS = ncDS.drop_dims(dropDims)
keepVars2 = ([mapVars.get(item, item) for item in keepVars] + newVars)
dropVars = [item for item in ncDS.variables if (item not in keepVars2)]
ncDS = ncDS.drop(dropVars)
ncDS.attrs['Source_Software'] = 'WRF-Hydro {0} script (Python).'.format(sys.argv[0])
ncDS.attrs['creation_time'] = 'Created {0}'.format(time.ctime())
encoding = {varname: {'_FillValue': None} for varname in list(ncDS.variables.keys())}
ncDS.to_netcdf(wrfinFile, mode='w', format=outNCType, encoding=encoding)
ncDS.close()
del encoding, ncDS
return
|
def main_wrfinput_xarray(geoFile, wrfinFile, lai=8, outNCType='NETCDF4'):
'\n \n '
tic1 = time.time()
print(' Creating wrfinput file from geogrid file.')
print(' Input geogrid file: {0}'.format(geoFile))
print(' Output wrfinput file: {0}'.format(wrfinFile))
print(' Month selected (1=Januaray, 12=December): {0}'.format(lai))
ncDS = xr.open_dataset(geoFile)
ncDS = ncDS.rename(mapVars)
dims = dict(ncDS.dims)
dims.update({soildim: nsoil})
newVars = []
for (varname, units, varDims, missing_value, dtype) in addVars:
da = xr.DataArray(data=numpy.empty(tuple([dims[dim] for dim in varDims]), dtype=dtype), dims=varDims, attrs={'units': units, 'missing_value': missing_value})
ncDS[varname] = da
newVars.append(varname)
ncDS = fill_wrfinput_xarray(ncDS, laimo=lai)
dropDims = [item for item in ncDS.dims if (item not in keepDims)]
ncDS = ncDS.drop_dims(dropDims)
keepVars2 = ([mapVars.get(item, item) for item in keepVars] + newVars)
dropVars = [item for item in ncDS.variables if (item not in keepVars2)]
ncDS = ncDS.drop(dropVars)
ncDS.attrs['Source_Software'] = 'WRF-Hydro {0} script (Python).'.format(sys.argv[0])
ncDS.attrs['creation_time'] = 'Created {0}'.format(time.ctime())
encoding = {varname: {'_FillValue': None} for varname in list(ncDS.variables.keys())}
ncDS.to_netcdf(wrfinFile, mode='w', format=outNCType, encoding=encoding)
ncDS.close()
del encoding, ncDS
return<|docstring|>This function is designed to build the wrfinput file using the xarray library.<|endoftext|>
|
e2b327f761f829fe0c11a619939693fa26d382557573d4d493ff1fa07997d008
|
def process_info(Process, stat_time, cache, name='work'):
'\n\n :param Process: psutil.Process\n :param stat_time:\n :param cache:\n :param name:\n :return:\n '
try:
name = '{cmd}-{pid}'.format(name=name, pid=Process.pid, cmd=Process.name())
cache.setdefault(name, {})
cache[name][stat_time] = Process.memory_info().rss
except Exception:
name = 'tmp'
cache.setdefault(name, {})
cache[name][stat_time] = 0
return cache
|
:param Process: psutil.Process
:param stat_time:
:param cache:
:param name:
:return:
|
animalcourier/profile/psopen.py
|
process_info
|
btrspg/Animal-Courier
| 0 |
python
|
def process_info(Process, stat_time, cache, name='work'):
'\n\n :param Process: psutil.Process\n :param stat_time:\n :param cache:\n :param name:\n :return:\n '
try:
name = '{cmd}-{pid}'.format(name=name, pid=Process.pid, cmd=Process.name())
cache.setdefault(name, {})
cache[name][stat_time] = Process.memory_info().rss
except Exception:
name = 'tmp'
cache.setdefault(name, {})
cache[name][stat_time] = 0
return cache
|
def process_info(Process, stat_time, cache, name='work'):
'\n\n :param Process: psutil.Process\n :param stat_time:\n :param cache:\n :param name:\n :return:\n '
try:
name = '{cmd}-{pid}'.format(name=name, pid=Process.pid, cmd=Process.name())
cache.setdefault(name, {})
cache[name][stat_time] = Process.memory_info().rss
except Exception:
name = 'tmp'
cache.setdefault(name, {})
cache[name][stat_time] = 0
return cache<|docstring|>:param Process: psutil.Process
:param stat_time:
:param cache:
:param name:
:return:<|endoftext|>
|
6f7fbae7ffe04287eec138c4948acc7364f7cf319a87c664c2d39bcd90fbd14e
|
def selection_sort(collection):
'Pure implementation of the selection sort algorithm in Python\n :param collection: some mutable ordered collection with heterogeneous\n comparable items inside\n :return: the same collection ordered by ascending\n\n\n Examples:\n >>> selection_sort([0, 5, 3, 2, 2])\n [0, 2, 2, 3, 5]\n\n >>> selection_sort([])\n []\n\n >>> selection_sort([-2, -5, -45])\n [-45, -5, -2]\n '
length = len(collection)
for i in range((length - 1)):
least = i
for k in range((i + 1), length):
if (collection[k] < collection[least]):
least = k
if (least != i):
(collection[least], collection[i]) = (collection[i], collection[least])
return collection
|
Pure implementation of the selection sort algorithm in Python
:param collection: some mutable ordered collection with heterogeneous
comparable items inside
:return: the same collection ordered by ascending
Examples:
>>> selection_sort([0, 5, 3, 2, 2])
[0, 2, 2, 3, 5]
>>> selection_sort([])
[]
>>> selection_sort([-2, -5, -45])
[-45, -5, -2]
|
sorts/selection_sort.py
|
selection_sort
|
kc8055/Python
| 145,614 |
python
|
def selection_sort(collection):
'Pure implementation of the selection sort algorithm in Python\n :param collection: some mutable ordered collection with heterogeneous\n comparable items inside\n :return: the same collection ordered by ascending\n\n\n Examples:\n >>> selection_sort([0, 5, 3, 2, 2])\n [0, 2, 2, 3, 5]\n\n >>> selection_sort([])\n []\n\n >>> selection_sort([-2, -5, -45])\n [-45, -5, -2]\n '
length = len(collection)
for i in range((length - 1)):
least = i
for k in range((i + 1), length):
if (collection[k] < collection[least]):
least = k
if (least != i):
(collection[least], collection[i]) = (collection[i], collection[least])
return collection
|
def selection_sort(collection):
'Pure implementation of the selection sort algorithm in Python\n :param collection: some mutable ordered collection with heterogeneous\n comparable items inside\n :return: the same collection ordered by ascending\n\n\n Examples:\n >>> selection_sort([0, 5, 3, 2, 2])\n [0, 2, 2, 3, 5]\n\n >>> selection_sort([])\n []\n\n >>> selection_sort([-2, -5, -45])\n [-45, -5, -2]\n '
length = len(collection)
for i in range((length - 1)):
least = i
for k in range((i + 1), length):
if (collection[k] < collection[least]):
least = k
if (least != i):
(collection[least], collection[i]) = (collection[i], collection[least])
return collection<|docstring|>Pure implementation of the selection sort algorithm in Python
:param collection: some mutable ordered collection with heterogeneous
comparable items inside
:return: the same collection ordered by ascending
Examples:
>>> selection_sort([0, 5, 3, 2, 2])
[0, 2, 2, 3, 5]
>>> selection_sort([])
[]
>>> selection_sort([-2, -5, -45])
[-45, -5, -2]<|endoftext|>
|
0a403c07c949cdb4cea8a6431691ee27e11bc19652185621c613a98ffc71dfa6
|
def FrankiaSymbiont(directed: bool=False, verbose: int=2, cache_path: str='graphs/string', **additional_graph_kwargs: Dict) -> EnsmallenGraph:
'Return new instance of the Frankia symbiont graph.\n\n The graph is automatically retrieved from the STRING repository. \n\n\t\n\n Parameters\n -------------------\n directed: bool = False,\n Wether to load the graph as directed or undirected.\n By default false.\n verbose: int = 2,\n Wether to show loading bars during the retrieval and building\n of the graph.\n cache_path: str = "graphs",\n Where to store the downloaded graphs.\n additional_graph_kwargs: Dict,\n Additional graph kwargs.\n\n Returns\n -----------------------\n Instace of Frankia symbiont graph.\n\n\tReport\n\t---------------------\n\tAt the time of rendering these methods (please see datetime below), the graph\n\thad the following characteristics:\n\t\n\tDatetime: 2021-02-02 21:26:45.741765\n\t\n\tThe undirected graph Frankia symbiont has 4114 nodes and 341016 weighted\n\tedges, of which none are self-loops. The graph is dense as it has a density\n\tof 0.04031 and has 26 connected components, where the component with most\n\tnodes has 4056 nodes and the component with the least nodes has 2 nodes.\n\tThe graph median node degree is 133, the mean node degree is 165.78, and\n\tthe node degree mode is 2. The top 5 most central nodes are 656024.FsymDg_2708\n\t(degree 1562), 656024.FsymDg_0527 (degree 1546), 656024.FsymDg_2896 (degree\n\t1252), 656024.FsymDg_2135 (degree 1238) and 656024.FsymDg_3235 (degree\n\t1152).\n\t\n\n\tReferences\n\t---------------------\n\tPlease cite the following if you use the data:\n\t\n\t@article{szklarczyk2019string,\n\t title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets},\n\t author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others},\n\t journal={Nucleic acids research},\n\t volume={47},\n\t number={D1},\n\t pages={D607--D613},\n\t year={2019},\n\t publisher={Oxford University Press}\n\t}\n\t\n\n\tUsage example\n\t----------------------\n\tThe usage of this graph is relatively straightforward:\n\t\n\t.. code:: python\n\t\n\t # First import the function to retrieve the graph from the datasets\n\t from ensmallen_graph.datasets.string import FrankiaSymbiont\n\t\n\t # Then load the graph\n\t graph = FrankiaSymbiont()\n\t\n\t # Finally, you can do anything with it, for instance, compute its report:\n\t print(graph)\n\t\n\t # If you need to run a link prediction task with validation,\n\t # you can split the graph using a connected holdout as follows:\n\t train_graph, validation_graph = graph.connected_holdout(\n\t # You can use an 80/20 split the holdout, for example.\n\t train_size=0.8,\n\t # The random state is used to reproduce the holdout.\n\t random_state=42,\n\t # Wether to show a loading bar.\n\t verbose=True\n\t )\n\t\n\t # Remember that, if you need, you can enable the memory-time trade-offs:\n\t train_graph.enable(\n\t vector_sources=True,\n\t vector_destinations=True,\n\t vector_outbounds=True\n\t )\n\t\n\t # Consider using the methods made available in the Embiggen package\n\t # to run graph embedding or link prediction tasks.\n '
return AutomaticallyRetrievedGraph(graph_name='FrankiaSymbiont', dataset='string', directed=directed, verbose=verbose, cache_path=cache_path, additional_graph_kwargs=additional_graph_kwargs)()
|
Return new instance of the Frankia symbiont graph.
The graph is automatically retrieved from the STRING repository.
Parameters
-------------------
directed: bool = False,
Wether to load the graph as directed or undirected.
By default false.
verbose: int = 2,
Wether to show loading bars during the retrieval and building
of the graph.
cache_path: str = "graphs",
Where to store the downloaded graphs.
additional_graph_kwargs: Dict,
Additional graph kwargs.
Returns
-----------------------
Instace of Frankia symbiont graph.
Report
---------------------
At the time of rendering these methods (please see datetime below), the graph
had the following characteristics:
Datetime: 2021-02-02 21:26:45.741765
The undirected graph Frankia symbiont has 4114 nodes and 341016 weighted
edges, of which none are self-loops. The graph is dense as it has a density
of 0.04031 and has 26 connected components, where the component with most
nodes has 4056 nodes and the component with the least nodes has 2 nodes.
The graph median node degree is 133, the mean node degree is 165.78, and
the node degree mode is 2. The top 5 most central nodes are 656024.FsymDg_2708
(degree 1562), 656024.FsymDg_0527 (degree 1546), 656024.FsymDg_2896 (degree
1252), 656024.FsymDg_2135 (degree 1238) and 656024.FsymDg_3235 (degree
1152).
References
---------------------
Please cite the following if you use the data:
@article{szklarczyk2019string,
title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets},
author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others},
journal={Nucleic acids research},
volume={47},
number={D1},
pages={D607--D613},
year={2019},
publisher={Oxford University Press}
}
Usage example
----------------------
The usage of this graph is relatively straightforward:
.. code:: python
# First import the function to retrieve the graph from the datasets
from ensmallen_graph.datasets.string import FrankiaSymbiont
# Then load the graph
graph = FrankiaSymbiont()
# Finally, you can do anything with it, for instance, compute its report:
print(graph)
# If you need to run a link prediction task with validation,
# you can split the graph using a connected holdout as follows:
train_graph, validation_graph = graph.connected_holdout(
# You can use an 80/20 split the holdout, for example.
train_size=0.8,
# The random state is used to reproduce the holdout.
random_state=42,
# Wether to show a loading bar.
verbose=True
)
# Remember that, if you need, you can enable the memory-time trade-offs:
train_graph.enable(
vector_sources=True,
vector_destinations=True,
vector_outbounds=True
)
# Consider using the methods made available in the Embiggen package
# to run graph embedding or link prediction tasks.
|
bindings/python/ensmallen_graph/datasets/string/frankiasymbiont.py
|
FrankiaSymbiont
|
caufieldjh/ensmallen_graph
| 0 |
python
|
def FrankiaSymbiont(directed: bool=False, verbose: int=2, cache_path: str='graphs/string', **additional_graph_kwargs: Dict) -> EnsmallenGraph:
'Return new instance of the Frankia symbiont graph.\n\n The graph is automatically retrieved from the STRING repository. \n\n\t\n\n Parameters\n -------------------\n directed: bool = False,\n Wether to load the graph as directed or undirected.\n By default false.\n verbose: int = 2,\n Wether to show loading bars during the retrieval and building\n of the graph.\n cache_path: str = "graphs",\n Where to store the downloaded graphs.\n additional_graph_kwargs: Dict,\n Additional graph kwargs.\n\n Returns\n -----------------------\n Instace of Frankia symbiont graph.\n\n\tReport\n\t---------------------\n\tAt the time of rendering these methods (please see datetime below), the graph\n\thad the following characteristics:\n\t\n\tDatetime: 2021-02-02 21:26:45.741765\n\t\n\tThe undirected graph Frankia symbiont has 4114 nodes and 341016 weighted\n\tedges, of which none are self-loops. The graph is dense as it has a density\n\tof 0.04031 and has 26 connected components, where the component with most\n\tnodes has 4056 nodes and the component with the least nodes has 2 nodes.\n\tThe graph median node degree is 133, the mean node degree is 165.78, and\n\tthe node degree mode is 2. The top 5 most central nodes are 656024.FsymDg_2708\n\t(degree 1562), 656024.FsymDg_0527 (degree 1546), 656024.FsymDg_2896 (degree\n\t1252), 656024.FsymDg_2135 (degree 1238) and 656024.FsymDg_3235 (degree\n\t1152).\n\t\n\n\tReferences\n\t---------------------\n\tPlease cite the following if you use the data:\n\t\n\t@article{szklarczyk2019string,\n\t title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets},\n\t author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others},\n\t journal={Nucleic acids research},\n\t volume={47},\n\t number={D1},\n\t pages={D607--D613},\n\t year={2019},\n\t publisher={Oxford University Press}\n\t}\n\t\n\n\tUsage example\n\t----------------------\n\tThe usage of this graph is relatively straightforward:\n\t\n\t.. code:: python\n\t\n\t # First import the function to retrieve the graph from the datasets\n\t from ensmallen_graph.datasets.string import FrankiaSymbiont\n\t\n\t # Then load the graph\n\t graph = FrankiaSymbiont()\n\t\n\t # Finally, you can do anything with it, for instance, compute its report:\n\t print(graph)\n\t\n\t # If you need to run a link prediction task with validation,\n\t # you can split the graph using a connected holdout as follows:\n\t train_graph, validation_graph = graph.connected_holdout(\n\t # You can use an 80/20 split the holdout, for example.\n\t train_size=0.8,\n\t # The random state is used to reproduce the holdout.\n\t random_state=42,\n\t # Wether to show a loading bar.\n\t verbose=True\n\t )\n\t\n\t # Remember that, if you need, you can enable the memory-time trade-offs:\n\t train_graph.enable(\n\t vector_sources=True,\n\t vector_destinations=True,\n\t vector_outbounds=True\n\t )\n\t\n\t # Consider using the methods made available in the Embiggen package\n\t # to run graph embedding or link prediction tasks.\n '
return AutomaticallyRetrievedGraph(graph_name='FrankiaSymbiont', dataset='string', directed=directed, verbose=verbose, cache_path=cache_path, additional_graph_kwargs=additional_graph_kwargs)()
|
def FrankiaSymbiont(directed: bool=False, verbose: int=2, cache_path: str='graphs/string', **additional_graph_kwargs: Dict) -> EnsmallenGraph:
'Return new instance of the Frankia symbiont graph.\n\n The graph is automatically retrieved from the STRING repository. \n\n\t\n\n Parameters\n -------------------\n directed: bool = False,\n Wether to load the graph as directed or undirected.\n By default false.\n verbose: int = 2,\n Wether to show loading bars during the retrieval and building\n of the graph.\n cache_path: str = "graphs",\n Where to store the downloaded graphs.\n additional_graph_kwargs: Dict,\n Additional graph kwargs.\n\n Returns\n -----------------------\n Instace of Frankia symbiont graph.\n\n\tReport\n\t---------------------\n\tAt the time of rendering these methods (please see datetime below), the graph\n\thad the following characteristics:\n\t\n\tDatetime: 2021-02-02 21:26:45.741765\n\t\n\tThe undirected graph Frankia symbiont has 4114 nodes and 341016 weighted\n\tedges, of which none are self-loops. The graph is dense as it has a density\n\tof 0.04031 and has 26 connected components, where the component with most\n\tnodes has 4056 nodes and the component with the least nodes has 2 nodes.\n\tThe graph median node degree is 133, the mean node degree is 165.78, and\n\tthe node degree mode is 2. The top 5 most central nodes are 656024.FsymDg_2708\n\t(degree 1562), 656024.FsymDg_0527 (degree 1546), 656024.FsymDg_2896 (degree\n\t1252), 656024.FsymDg_2135 (degree 1238) and 656024.FsymDg_3235 (degree\n\t1152).\n\t\n\n\tReferences\n\t---------------------\n\tPlease cite the following if you use the data:\n\t\n\t@article{szklarczyk2019string,\n\t title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets},\n\t author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others},\n\t journal={Nucleic acids research},\n\t volume={47},\n\t number={D1},\n\t pages={D607--D613},\n\t year={2019},\n\t publisher={Oxford University Press}\n\t}\n\t\n\n\tUsage example\n\t----------------------\n\tThe usage of this graph is relatively straightforward:\n\t\n\t.. code:: python\n\t\n\t # First import the function to retrieve the graph from the datasets\n\t from ensmallen_graph.datasets.string import FrankiaSymbiont\n\t\n\t # Then load the graph\n\t graph = FrankiaSymbiont()\n\t\n\t # Finally, you can do anything with it, for instance, compute its report:\n\t print(graph)\n\t\n\t # If you need to run a link prediction task with validation,\n\t # you can split the graph using a connected holdout as follows:\n\t train_graph, validation_graph = graph.connected_holdout(\n\t # You can use an 80/20 split the holdout, for example.\n\t train_size=0.8,\n\t # The random state is used to reproduce the holdout.\n\t random_state=42,\n\t # Wether to show a loading bar.\n\t verbose=True\n\t )\n\t\n\t # Remember that, if you need, you can enable the memory-time trade-offs:\n\t train_graph.enable(\n\t vector_sources=True,\n\t vector_destinations=True,\n\t vector_outbounds=True\n\t )\n\t\n\t # Consider using the methods made available in the Embiggen package\n\t # to run graph embedding or link prediction tasks.\n '
return AutomaticallyRetrievedGraph(graph_name='FrankiaSymbiont', dataset='string', directed=directed, verbose=verbose, cache_path=cache_path, additional_graph_kwargs=additional_graph_kwargs)()<|docstring|>Return new instance of the Frankia symbiont graph.
The graph is automatically retrieved from the STRING repository.
Parameters
-------------------
directed: bool = False,
Wether to load the graph as directed or undirected.
By default false.
verbose: int = 2,
Wether to show loading bars during the retrieval and building
of the graph.
cache_path: str = "graphs",
Where to store the downloaded graphs.
additional_graph_kwargs: Dict,
Additional graph kwargs.
Returns
-----------------------
Instace of Frankia symbiont graph.
Report
---------------------
At the time of rendering these methods (please see datetime below), the graph
had the following characteristics:
Datetime: 2021-02-02 21:26:45.741765
The undirected graph Frankia symbiont has 4114 nodes and 341016 weighted
edges, of which none are self-loops. The graph is dense as it has a density
of 0.04031 and has 26 connected components, where the component with most
nodes has 4056 nodes and the component with the least nodes has 2 nodes.
The graph median node degree is 133, the mean node degree is 165.78, and
the node degree mode is 2. The top 5 most central nodes are 656024.FsymDg_2708
(degree 1562), 656024.FsymDg_0527 (degree 1546), 656024.FsymDg_2896 (degree
1252), 656024.FsymDg_2135 (degree 1238) and 656024.FsymDg_3235 (degree
1152).
References
---------------------
Please cite the following if you use the data:
@article{szklarczyk2019string,
title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets},
author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others},
journal={Nucleic acids research},
volume={47},
number={D1},
pages={D607--D613},
year={2019},
publisher={Oxford University Press}
}
Usage example
----------------------
The usage of this graph is relatively straightforward:
.. code:: python
# First import the function to retrieve the graph from the datasets
from ensmallen_graph.datasets.string import FrankiaSymbiont
# Then load the graph
graph = FrankiaSymbiont()
# Finally, you can do anything with it, for instance, compute its report:
print(graph)
# If you need to run a link prediction task with validation,
# you can split the graph using a connected holdout as follows:
train_graph, validation_graph = graph.connected_holdout(
# You can use an 80/20 split the holdout, for example.
train_size=0.8,
# The random state is used to reproduce the holdout.
random_state=42,
# Wether to show a loading bar.
verbose=True
)
# Remember that, if you need, you can enable the memory-time trade-offs:
train_graph.enable(
vector_sources=True,
vector_destinations=True,
vector_outbounds=True
)
# Consider using the methods made available in the Embiggen package
# to run graph embedding or link prediction tasks.<|endoftext|>
|
1a4bd454b1017518289741bc81694c1deb541505b050490c5b4682e6911c6562
|
def check(self):
'\n 检测是否存在漏洞\n\n :param:\n\n :return bool True or False: 是否存在漏洞\n '
try:
check_req = request.get((self.url + '/seeyon/htmlofficeservlet'), headers=self.headers)
if ((check_req.status_code == 200) and ('DBSTEP V3.0 0 21 0 htmoffice operate err' in check_req.text)):
print('存在seeyou漏洞')
return True
else:
print('不存在seeyou漏洞')
return False
except Exception as e:
print(e)
return False
finally:
pass
|
检测是否存在漏洞
:param:
:return bool True or False: 是否存在漏洞
|
python/app/plugins/http/See You/See_Yon.py
|
check
|
taomujian/linbing
| 351 |
python
|
def check(self):
'\n 检测是否存在漏洞\n\n :param:\n\n :return bool True or False: 是否存在漏洞\n '
try:
check_req = request.get((self.url + '/seeyon/htmlofficeservlet'), headers=self.headers)
if ((check_req.status_code == 200) and ('DBSTEP V3.0 0 21 0 htmoffice operate err' in check_req.text)):
print('存在seeyou漏洞')
return True
else:
print('不存在seeyou漏洞')
return False
except Exception as e:
print(e)
return False
finally:
pass
|
def check(self):
'\n 检测是否存在漏洞\n\n :param:\n\n :return bool True or False: 是否存在漏洞\n '
try:
check_req = request.get((self.url + '/seeyon/htmlofficeservlet'), headers=self.headers)
if ((check_req.status_code == 200) and ('DBSTEP V3.0 0 21 0 htmoffice operate err' in check_req.text)):
print('存在seeyou漏洞')
return True
else:
print('不存在seeyou漏洞')
return False
except Exception as e:
print(e)
return False
finally:
pass<|docstring|>检测是否存在漏洞
:param:
:return bool True or False: 是否存在漏洞<|endoftext|>
|
b2a0bd5ab215d49d783abbe3f24e1a1587b57e1461a6447791af830a74d6d6cc
|
def arthritis(path):
'Arthritis Treatment Data\n\n Data from Koch \\& Edwards (1988) from a double-blind clinical trial\n investigating a new treatment for rheumatoid arthritis.\n\n A data frame with 84 observations and 5 variables.\n\n ID\n patient ID.\n\n Treatment\n factor indicating treatment (Placebo, Treated).\n\n Sex\n factor indicating sex (Female, Male).\n\n Age\n age of patient.\n\n Improved\n ordered factor indicating treatment outcome (None, Some, Marked).\n\n Michael Friendly (2000), Visualizing Categorical Data:\n http://euclid.psych.yorku.ca/ftp/sas/vcd/catdata/arthrit.sas\n\n Args:\n\n path: str.\n Path to directory which either stores file or otherwise file will\n be downloaded and extracted there.\n Filename is `arthritis.csv`.\n\n Returns:\n\n Tuple of np.ndarray `x_train` with 84 rows and 5 columns and\n dictionary `metadata` of column headers (feature names).\n '
import pandas as pd
path = os.path.expanduser(path)
filename = 'arthritis.csv'
if (not os.path.exists(os.path.join(path, filename))):
url = 'http://dustintran.com/data/r/vcd/Arthritis.csv'
maybe_download_and_extract(path, url, save_file_name='arthritis.csv', resume=False)
data = pd.read_csv(os.path.join(path, filename), index_col=0, parse_dates=True)
x_train = data.values
metadata = {'columns': data.columns}
return (x_train, metadata)
|
Arthritis Treatment Data
Data from Koch \& Edwards (1988) from a double-blind clinical trial
investigating a new treatment for rheumatoid arthritis.
A data frame with 84 observations and 5 variables.
ID
patient ID.
Treatment
factor indicating treatment (Placebo, Treated).
Sex
factor indicating sex (Female, Male).
Age
age of patient.
Improved
ordered factor indicating treatment outcome (None, Some, Marked).
Michael Friendly (2000), Visualizing Categorical Data:
http://euclid.psych.yorku.ca/ftp/sas/vcd/catdata/arthrit.sas
Args:
path: str.
Path to directory which either stores file or otherwise file will
be downloaded and extracted there.
Filename is `arthritis.csv`.
Returns:
Tuple of np.ndarray `x_train` with 84 rows and 5 columns and
dictionary `metadata` of column headers (feature names).
|
observations/r/arthritis.py
|
arthritis
|
hajime9652/observations
| 199 |
python
|
def arthritis(path):
'Arthritis Treatment Data\n\n Data from Koch \\& Edwards (1988) from a double-blind clinical trial\n investigating a new treatment for rheumatoid arthritis.\n\n A data frame with 84 observations and 5 variables.\n\n ID\n patient ID.\n\n Treatment\n factor indicating treatment (Placebo, Treated).\n\n Sex\n factor indicating sex (Female, Male).\n\n Age\n age of patient.\n\n Improved\n ordered factor indicating treatment outcome (None, Some, Marked).\n\n Michael Friendly (2000), Visualizing Categorical Data:\n http://euclid.psych.yorku.ca/ftp/sas/vcd/catdata/arthrit.sas\n\n Args:\n\n path: str.\n Path to directory which either stores file or otherwise file will\n be downloaded and extracted there.\n Filename is `arthritis.csv`.\n\n Returns:\n\n Tuple of np.ndarray `x_train` with 84 rows and 5 columns and\n dictionary `metadata` of column headers (feature names).\n '
import pandas as pd
path = os.path.expanduser(path)
filename = 'arthritis.csv'
if (not os.path.exists(os.path.join(path, filename))):
url = 'http://dustintran.com/data/r/vcd/Arthritis.csv'
maybe_download_and_extract(path, url, save_file_name='arthritis.csv', resume=False)
data = pd.read_csv(os.path.join(path, filename), index_col=0, parse_dates=True)
x_train = data.values
metadata = {'columns': data.columns}
return (x_train, metadata)
|
def arthritis(path):
'Arthritis Treatment Data\n\n Data from Koch \\& Edwards (1988) from a double-blind clinical trial\n investigating a new treatment for rheumatoid arthritis.\n\n A data frame with 84 observations and 5 variables.\n\n ID\n patient ID.\n\n Treatment\n factor indicating treatment (Placebo, Treated).\n\n Sex\n factor indicating sex (Female, Male).\n\n Age\n age of patient.\n\n Improved\n ordered factor indicating treatment outcome (None, Some, Marked).\n\n Michael Friendly (2000), Visualizing Categorical Data:\n http://euclid.psych.yorku.ca/ftp/sas/vcd/catdata/arthrit.sas\n\n Args:\n\n path: str.\n Path to directory which either stores file or otherwise file will\n be downloaded and extracted there.\n Filename is `arthritis.csv`.\n\n Returns:\n\n Tuple of np.ndarray `x_train` with 84 rows and 5 columns and\n dictionary `metadata` of column headers (feature names).\n '
import pandas as pd
path = os.path.expanduser(path)
filename = 'arthritis.csv'
if (not os.path.exists(os.path.join(path, filename))):
url = 'http://dustintran.com/data/r/vcd/Arthritis.csv'
maybe_download_and_extract(path, url, save_file_name='arthritis.csv', resume=False)
data = pd.read_csv(os.path.join(path, filename), index_col=0, parse_dates=True)
x_train = data.values
metadata = {'columns': data.columns}
return (x_train, metadata)<|docstring|>Arthritis Treatment Data
Data from Koch \& Edwards (1988) from a double-blind clinical trial
investigating a new treatment for rheumatoid arthritis.
A data frame with 84 observations and 5 variables.
ID
patient ID.
Treatment
factor indicating treatment (Placebo, Treated).
Sex
factor indicating sex (Female, Male).
Age
age of patient.
Improved
ordered factor indicating treatment outcome (None, Some, Marked).
Michael Friendly (2000), Visualizing Categorical Data:
http://euclid.psych.yorku.ca/ftp/sas/vcd/catdata/arthrit.sas
Args:
path: str.
Path to directory which either stores file or otherwise file will
be downloaded and extracted there.
Filename is `arthritis.csv`.
Returns:
Tuple of np.ndarray `x_train` with 84 rows and 5 columns and
dictionary `metadata` of column headers (feature names).<|endoftext|>
|
f6aab136c832a0e95c666b441630b94aa2a9db3904719a5bf2cddffe22d4e929
|
def train(model, dataloader, optimizer, criterion, device):
'\n train Runs one epoch of training.\n\n @param model Model to train.\n @param dataloader Images to train with.\n @param optimizer Optimizer to update weights.\n @param criterion Loss criterion.\n @param device Use of GPU.\n '
model.to(device)
model.train()
metrics = Metrics()
for (_, inputs, labels) in Bar(dataloader):
optimizer.zero_grad()
(inputs, labels) = (inputs.to(device), labels.to(device))
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
(_, predicted) = torch.max(outputs.data, 1)
metrics.batch(labels=labels, preds=predicted, loss=loss.item())
metrics.print_one_liner()
return metrics.summary()
|
train Runs one epoch of training.
@param model Model to train.
@param dataloader Images to train with.
@param optimizer Optimizer to update weights.
@param criterion Loss criterion.
@param device Use of GPU.
|
code/training.py
|
train
|
parinitaedke/CNN-Binary-Classification
| 4 |
python
|
def train(model, dataloader, optimizer, criterion, device):
'\n train Runs one epoch of training.\n\n @param model Model to train.\n @param dataloader Images to train with.\n @param optimizer Optimizer to update weights.\n @param criterion Loss criterion.\n @param device Use of GPU.\n '
model.to(device)
model.train()
metrics = Metrics()
for (_, inputs, labels) in Bar(dataloader):
optimizer.zero_grad()
(inputs, labels) = (inputs.to(device), labels.to(device))
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
(_, predicted) = torch.max(outputs.data, 1)
metrics.batch(labels=labels, preds=predicted, loss=loss.item())
metrics.print_one_liner()
return metrics.summary()
|
def train(model, dataloader, optimizer, criterion, device):
'\n train Runs one epoch of training.\n\n @param model Model to train.\n @param dataloader Images to train with.\n @param optimizer Optimizer to update weights.\n @param criterion Loss criterion.\n @param device Use of GPU.\n '
model.to(device)
model.train()
metrics = Metrics()
for (_, inputs, labels) in Bar(dataloader):
optimizer.zero_grad()
(inputs, labels) = (inputs.to(device), labels.to(device))
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
(_, predicted) = torch.max(outputs.data, 1)
metrics.batch(labels=labels, preds=predicted, loss=loss.item())
metrics.print_one_liner()
return metrics.summary()<|docstring|>train Runs one epoch of training.
@param model Model to train.
@param dataloader Images to train with.
@param optimizer Optimizer to update weights.
@param criterion Loss criterion.
@param device Use of GPU.<|endoftext|>
|
350624c62626172016404514873323231bc996b1f20aa6d2d8c3bcd330b252d6
|
def validate(model, dataloader, criterion, device):
'\n validate Runs one epoch of validation.\n\n @param model Model to train.\n @param dataloader Images to train with.\n @param criterion Loss criterion.\n @param device Use of GPU.\n '
model.to(device)
model.eval()
metrics = Metrics()
with torch.no_grad():
for (_, inputs, labels) in Bar(dataloader):
(inputs, labels) = (inputs.to(device), labels.to(device))
outputs = model(inputs)
loss = criterion(outputs, labels)
(_, predicted) = torch.max(outputs.data, 1)
metrics.batch(labels=labels, preds=predicted, loss=loss.item())
metrics.print_one_liner(phase='Val')
return metrics.summary()
|
validate Runs one epoch of validation.
@param model Model to train.
@param dataloader Images to train with.
@param criterion Loss criterion.
@param device Use of GPU.
|
code/training.py
|
validate
|
parinitaedke/CNN-Binary-Classification
| 4 |
python
|
def validate(model, dataloader, criterion, device):
'\n validate Runs one epoch of validation.\n\n @param model Model to train.\n @param dataloader Images to train with.\n @param criterion Loss criterion.\n @param device Use of GPU.\n '
model.to(device)
model.eval()
metrics = Metrics()
with torch.no_grad():
for (_, inputs, labels) in Bar(dataloader):
(inputs, labels) = (inputs.to(device), labels.to(device))
outputs = model(inputs)
loss = criterion(outputs, labels)
(_, predicted) = torch.max(outputs.data, 1)
metrics.batch(labels=labels, preds=predicted, loss=loss.item())
metrics.print_one_liner(phase='Val')
return metrics.summary()
|
def validate(model, dataloader, criterion, device):
'\n validate Runs one epoch of validation.\n\n @param model Model to train.\n @param dataloader Images to train with.\n @param criterion Loss criterion.\n @param device Use of GPU.\n '
model.to(device)
model.eval()
metrics = Metrics()
with torch.no_grad():
for (_, inputs, labels) in Bar(dataloader):
(inputs, labels) = (inputs.to(device), labels.to(device))
outputs = model(inputs)
loss = criterion(outputs, labels)
(_, predicted) = torch.max(outputs.data, 1)
metrics.batch(labels=labels, preds=predicted, loss=loss.item())
metrics.print_one_liner(phase='Val')
return metrics.summary()<|docstring|>validate Runs one epoch of validation.
@param model Model to train.
@param dataloader Images to train with.
@param criterion Loss criterion.
@param device Use of GPU.<|endoftext|>
|
eda035efaae879eea452f52f43f97cbcd52c5526d75fed0bc2d217b3e7f319c4
|
def train_validate(model, train_loader, val_loader, optimizer, criterion, device, epochs, save_criteria, weights_path, save_name):
' \n train_validate Trains and validates a model.\n\n @param model Model to train on.\n @param train_loader Images to train with.\n @param val_loader Images to use for validation.\n @param optimizer Optimizer to update weights.\n @param criterion Loss criterion.\n @param device Use of GPU.\n @param epochs Amount of epochs to train.\n @param save_criteria What metric to use to save best weights.\n @param weights_path Path to the folder to save best weights.\n @param save_name Filename of the best weights.\n '
best_criteria = 0
best_model = {}
for epoch in range(1, (epochs + 1)):
print(f'Epoch {epoch}')
metrics = train(model, train_loader, optimizer, criterion, device)
if val_loader:
metrics = validate(model, val_loader, criterion, device)
if (save_criteria == 'Loss'):
metrics['Model Loss'][0] *= (- 1)
if ((epoch == 1) or (metrics[('Model ' + save_criteria)][0] >= best_criteria)):
best_criteria = metrics[('Model ' + save_criteria)][0]
best_model = {'epoch': epoch, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'accuracy': metrics['Model Accuracy'][0], 'loss': metrics['Model Loss'][0], 'sensitivity': metrics['Model Sensitivity'][0], 'specificity': metrics['Model Specificity'][0]}
save_path = '{}{}_{}_{:.6}.pth'.format(weights_path, save_name, save_criteria, str(best_criteria).replace('.', '_'))
torch.save(best_model, save_path)
return save_path
|
train_validate Trains and validates a model.
@param model Model to train on.
@param train_loader Images to train with.
@param val_loader Images to use for validation.
@param optimizer Optimizer to update weights.
@param criterion Loss criterion.
@param device Use of GPU.
@param epochs Amount of epochs to train.
@param save_criteria What metric to use to save best weights.
@param weights_path Path to the folder to save best weights.
@param save_name Filename of the best weights.
|
code/training.py
|
train_validate
|
parinitaedke/CNN-Binary-Classification
| 4 |
python
|
def train_validate(model, train_loader, val_loader, optimizer, criterion, device, epochs, save_criteria, weights_path, save_name):
' \n train_validate Trains and validates a model.\n\n @param model Model to train on.\n @param train_loader Images to train with.\n @param val_loader Images to use for validation.\n @param optimizer Optimizer to update weights.\n @param criterion Loss criterion.\n @param device Use of GPU.\n @param epochs Amount of epochs to train.\n @param save_criteria What metric to use to save best weights.\n @param weights_path Path to the folder to save best weights.\n @param save_name Filename of the best weights.\n '
best_criteria = 0
best_model = {}
for epoch in range(1, (epochs + 1)):
print(f'Epoch {epoch}')
metrics = train(model, train_loader, optimizer, criterion, device)
if val_loader:
metrics = validate(model, val_loader, criterion, device)
if (save_criteria == 'Loss'):
metrics['Model Loss'][0] *= (- 1)
if ((epoch == 1) or (metrics[('Model ' + save_criteria)][0] >= best_criteria)):
best_criteria = metrics[('Model ' + save_criteria)][0]
best_model = {'epoch': epoch, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'accuracy': metrics['Model Accuracy'][0], 'loss': metrics['Model Loss'][0], 'sensitivity': metrics['Model Sensitivity'][0], 'specificity': metrics['Model Specificity'][0]}
save_path = '{}{}_{}_{:.6}.pth'.format(weights_path, save_name, save_criteria, str(best_criteria).replace('.', '_'))
torch.save(best_model, save_path)
return save_path
|
def train_validate(model, train_loader, val_loader, optimizer, criterion, device, epochs, save_criteria, weights_path, save_name):
' \n train_validate Trains and validates a model.\n\n @param model Model to train on.\n @param train_loader Images to train with.\n @param val_loader Images to use for validation.\n @param optimizer Optimizer to update weights.\n @param criterion Loss criterion.\n @param device Use of GPU.\n @param epochs Amount of epochs to train.\n @param save_criteria What metric to use to save best weights.\n @param weights_path Path to the folder to save best weights.\n @param save_name Filename of the best weights.\n '
best_criteria = 0
best_model = {}
for epoch in range(1, (epochs + 1)):
print(f'Epoch {epoch}')
metrics = train(model, train_loader, optimizer, criterion, device)
if val_loader:
metrics = validate(model, val_loader, criterion, device)
if (save_criteria == 'Loss'):
metrics['Model Loss'][0] *= (- 1)
if ((epoch == 1) or (metrics[('Model ' + save_criteria)][0] >= best_criteria)):
best_criteria = metrics[('Model ' + save_criteria)][0]
best_model = {'epoch': epoch, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'accuracy': metrics['Model Accuracy'][0], 'loss': metrics['Model Loss'][0], 'sensitivity': metrics['Model Sensitivity'][0], 'specificity': metrics['Model Specificity'][0]}
save_path = '{}{}_{}_{:.6}.pth'.format(weights_path, save_name, save_criteria, str(best_criteria).replace('.', '_'))
torch.save(best_model, save_path)
return save_path<|docstring|>train_validate Trains and validates a model.
@param model Model to train on.
@param train_loader Images to train with.
@param val_loader Images to use for validation.
@param optimizer Optimizer to update weights.
@param criterion Loss criterion.
@param device Use of GPU.
@param epochs Amount of epochs to train.
@param save_criteria What metric to use to save best weights.
@param weights_path Path to the folder to save best weights.
@param save_name Filename of the best weights.<|endoftext|>
|
0288ed44f630ce68d06fdb47df3ce5abc27f2b495d286654e2ad4ede1a30f471
|
@manager.registry.add_binding(Keys.F2)
def opt_help(event):
'\n When F2 has been pressed, fill in the "help" command.\n '
event.cli.current_buffer.insert_text('help')
|
When F2 has been pressed, fill in the "help" command.
|
crutch/core/repl/keys.py
|
opt_help
|
m4yers/crutch
| 1 |
python
|
@manager.registry.add_binding(Keys.F2)
def opt_help(event):
'\n \n '
event.cli.current_buffer.insert_text('help')
|
@manager.registry.add_binding(Keys.F2)
def opt_help(event):
'\n \n '
event.cli.current_buffer.insert_text('help')<|docstring|>When F2 has been pressed, fill in the "help" command.<|endoftext|>
|
cb0fc1a5bef7df70aa104d667a355acfa4be78b24aa0817ca5eb45d54a057147
|
@manager.registry.add_binding(Keys.F3)
def opt_set_options_length(_):
'\n Enable/Disable long option name suggestion.\n '
set_long_options((not get_long_options()))
|
Enable/Disable long option name suggestion.
|
crutch/core/repl/keys.py
|
opt_set_options_length
|
m4yers/crutch
| 1 |
python
|
@manager.registry.add_binding(Keys.F3)
def opt_set_options_length(_):
'\n \n '
set_long_options((not get_long_options()))
|
@manager.registry.add_binding(Keys.F3)
def opt_set_options_length(_):
'\n \n '
set_long_options((not get_long_options()))<|docstring|>Enable/Disable long option name suggestion.<|endoftext|>
|
236a216d7a540a3c0828e9b817974ea64fb339ed5ce819e210be0237cfb56104
|
@manager.registry.add_binding(Keys.F10)
def opt_exit(_):
'\n When F10 has been pressed, quit.\n '
raise EOFError
|
When F10 has been pressed, quit.
|
crutch/core/repl/keys.py
|
opt_exit
|
m4yers/crutch
| 1 |
python
|
@manager.registry.add_binding(Keys.F10)
def opt_exit(_):
'\n \n '
raise EOFError
|
@manager.registry.add_binding(Keys.F10)
def opt_exit(_):
'\n \n '
raise EOFError<|docstring|>When F10 has been pressed, quit.<|endoftext|>
|
aa28055978769fed6f914087ec70d8c457409767637297a58c3b52464b56b924
|
@manager.registry.add_binding(Keys.ControlSpace)
def opt_auto_complete(event):
'\n Initialize autocompletion at cursor. If the autocompletion menu is not\n showing, display it with the appropriate completions for the context. If\n the menu is showing, select the next completion.\n '
buf = event.cli.current_buffer
if buf.complete_state:
buf.complete_next()
else:
event.cli.start_completion(select_first=False)
|
Initialize autocompletion at cursor. If the autocompletion menu is not
showing, display it with the appropriate completions for the context. If
the menu is showing, select the next completion.
|
crutch/core/repl/keys.py
|
opt_auto_complete
|
m4yers/crutch
| 1 |
python
|
@manager.registry.add_binding(Keys.ControlSpace)
def opt_auto_complete(event):
'\n Initialize autocompletion at cursor. If the autocompletion menu is not\n showing, display it with the appropriate completions for the context. If\n the menu is showing, select the next completion.\n '
buf = event.cli.current_buffer
if buf.complete_state:
buf.complete_next()
else:
event.cli.start_completion(select_first=False)
|
@manager.registry.add_binding(Keys.ControlSpace)
def opt_auto_complete(event):
'\n Initialize autocompletion at cursor. If the autocompletion menu is not\n showing, display it with the appropriate completions for the context. If\n the menu is showing, select the next completion.\n '
buf = event.cli.current_buffer
if buf.complete_state:
buf.complete_next()
else:
event.cli.start_completion(select_first=False)<|docstring|>Initialize autocompletion at cursor. If the autocompletion menu is not
showing, display it with the appropriate completions for the context. If
the menu is showing, select the next completion.<|endoftext|>
|
946ef790615897329fc1f8568ce14aebe6ad3c8e4bad5dd604e119c8475d472b
|
@click.command('view-files', short_help='filter search files and file ID for files user has access to')
@click.option('--name', is_flag=bool, help='provide username in whose repos are to be listed.')
@click.option('--types', is_flag=bool, help='provide username in whose repos are to be listed.')
@click.option('--pid', is_flag=bool, help='provide parent file ID or sharing link and list its child file/folders.')
def view_file(name, types, pid):
'\n view-files: Filter based list of the names and ids of the first 10 files the user has access to\n '
token = os.path.join(dirpath, 'token.json')
store = file.Storage(token)
creds = store.get()
service = build('drive', 'v3', http=creds.authorize(Http()))
page_token = None
query = ''
if name:
q_name = click.prompt('enter the search value')
query = (("name contains '" + q_name) + "' ")
if types:
mimeTypes = {'xls': 'application/vnd.ms-excel', 'xlsx': 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet', 'xml': 'text/xml', 'ods': 'application/vnd.oasis.opendocument.spreadsheet', 'csv': 'text/plain', 'tmpl': 'text/plain', 'pdf': 'application/pdf', 'php': 'application/x-httpd-php', 'jpg': 'image/jpeg', 'png': 'image/png', 'gif': 'image/gif', 'bmp': 'image/bmp', 'txt': 'text/plain', 'doc': 'application/msword', 'js': 'text/js', 'swf': 'application/x-shockwave-flash', 'mp3': 'audio/mpeg', 'zip': 'application/zip', 'rar': 'application/rar', 'tar': 'application/tar', 'arj': 'application/arj', 'cab': 'application/cab', 'html': 'text/html', 'htm': 'text/html', 'default': 'application/octet-stream', 'audio': 'application/vnd.google-apps.audio', 'Google Docs': 'application/vnd.google-apps.document', 'Google Drawing': 'application/vnd.google-apps.drawing', 'Google Drive file': 'application/vnd.google-apps.file', 'Google Forms': 'application/vnd.google-apps.form', 'Google Fusion Tables': 'application/vnd.google-apps.fusiontable', 'Google My Maps': 'application/vnd.google-apps.map', 'Google Photos': 'application/vnd.google-apps.photo', 'Google Slides': 'application/vnd.google-apps.presentation', 'Google Apps Scripts': 'application/vnd.google-apps.script', 'Google Sites': 'application/vnd.google-apps.site', 'Google Sheets': 'application/vnd.google-apps.spreadsheet', '3rd party shortcut': 'application/vnd.google-apps.drive-sdk', 'folder': 'application/vnd.google-apps.folder'}
promptMessage = 'Choose a media type to filter \n(press SPACE to mark, ENTER to continue, s to stop):'
title = promptMessage
options = [x for x in mimeTypes.keys()]
picker = Picker(options, title, multi_select=True, min_selection_count=1)
picker.register_custom_handler(ord('s'), go_back)
selected = picker.start()
if isinstance(selected, list):
query += 'and ('
for types in selected:
query += (("mimeType='" + mimeTypes[types[0]]) + "' or ")
query = query[:(- 3)]
query += ')'
if ((not name) and types):
query = query[4:]
if pid:
parent = click.prompt('enter the fid of parent or sharing link')
fid = utils.get_fid(parent)
if ((name != False) or (types != False)):
query += ' and '
query += (("'" + fid) + "' in parents")
i = 1
while True:
response = service.files().list(q=query, spaces='drive', fields='nextPageToken, files(id, name,mimeType,modifiedTime)', pageToken=page_token).execute()
templist = [response.get('files', [])[j:(j + 25)] for j in range(0, len(response.get('files', [])), 25)]
for item in templist:
t = PrettyTable(['Sr.', 'Name', 'ID', 'Type', 'Modified Time'])
for fils in item:
t.add_row([i, fils.get('name')[:25], fils.get('id'), fils.get('mimeType').replace('application/', '')[:25], fils.get('modifiedTime')])
i += 1
print(t)
click.confirm('Do you want to continue?', abort=True)
click.clear()
page_token = response.get('nextPageToken', None)
if (page_token is None):
break
|
view-files: Filter based list of the names and ids of the first 10 files the user has access to
|
drive_cli/actions.py
|
view_file
|
ahegde3/drive-cli
| 0 |
python
|
@click.command('view-files', short_help='filter search files and file ID for files user has access to')
@click.option('--name', is_flag=bool, help='provide username in whose repos are to be listed.')
@click.option('--types', is_flag=bool, help='provide username in whose repos are to be listed.')
@click.option('--pid', is_flag=bool, help='provide parent file ID or sharing link and list its child file/folders.')
def view_file(name, types, pid):
'\n \n '
token = os.path.join(dirpath, 'token.json')
store = file.Storage(token)
creds = store.get()
service = build('drive', 'v3', http=creds.authorize(Http()))
page_token = None
query =
if name:
q_name = click.prompt('enter the search value')
query = (("name contains '" + q_name) + "' ")
if types:
mimeTypes = {'xls': 'application/vnd.ms-excel', 'xlsx': 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet', 'xml': 'text/xml', 'ods': 'application/vnd.oasis.opendocument.spreadsheet', 'csv': 'text/plain', 'tmpl': 'text/plain', 'pdf': 'application/pdf', 'php': 'application/x-httpd-php', 'jpg': 'image/jpeg', 'png': 'image/png', 'gif': 'image/gif', 'bmp': 'image/bmp', 'txt': 'text/plain', 'doc': 'application/msword', 'js': 'text/js', 'swf': 'application/x-shockwave-flash', 'mp3': 'audio/mpeg', 'zip': 'application/zip', 'rar': 'application/rar', 'tar': 'application/tar', 'arj': 'application/arj', 'cab': 'application/cab', 'html': 'text/html', 'htm': 'text/html', 'default': 'application/octet-stream', 'audio': 'application/vnd.google-apps.audio', 'Google Docs': 'application/vnd.google-apps.document', 'Google Drawing': 'application/vnd.google-apps.drawing', 'Google Drive file': 'application/vnd.google-apps.file', 'Google Forms': 'application/vnd.google-apps.form', 'Google Fusion Tables': 'application/vnd.google-apps.fusiontable', 'Google My Maps': 'application/vnd.google-apps.map', 'Google Photos': 'application/vnd.google-apps.photo', 'Google Slides': 'application/vnd.google-apps.presentation', 'Google Apps Scripts': 'application/vnd.google-apps.script', 'Google Sites': 'application/vnd.google-apps.site', 'Google Sheets': 'application/vnd.google-apps.spreadsheet', '3rd party shortcut': 'application/vnd.google-apps.drive-sdk', 'folder': 'application/vnd.google-apps.folder'}
promptMessage = 'Choose a media type to filter \n(press SPACE to mark, ENTER to continue, s to stop):'
title = promptMessage
options = [x for x in mimeTypes.keys()]
picker = Picker(options, title, multi_select=True, min_selection_count=1)
picker.register_custom_handler(ord('s'), go_back)
selected = picker.start()
if isinstance(selected, list):
query += 'and ('
for types in selected:
query += (("mimeType='" + mimeTypes[types[0]]) + "' or ")
query = query[:(- 3)]
query += ')'
if ((not name) and types):
query = query[4:]
if pid:
parent = click.prompt('enter the fid of parent or sharing link')
fid = utils.get_fid(parent)
if ((name != False) or (types != False)):
query += ' and '
query += (("'" + fid) + "' in parents")
i = 1
while True:
response = service.files().list(q=query, spaces='drive', fields='nextPageToken, files(id, name,mimeType,modifiedTime)', pageToken=page_token).execute()
templist = [response.get('files', [])[j:(j + 25)] for j in range(0, len(response.get('files', [])), 25)]
for item in templist:
t = PrettyTable(['Sr.', 'Name', 'ID', 'Type', 'Modified Time'])
for fils in item:
t.add_row([i, fils.get('name')[:25], fils.get('id'), fils.get('mimeType').replace('application/', )[:25], fils.get('modifiedTime')])
i += 1
print(t)
click.confirm('Do you want to continue?', abort=True)
click.clear()
page_token = response.get('nextPageToken', None)
if (page_token is None):
break
|
@click.command('view-files', short_help='filter search files and file ID for files user has access to')
@click.option('--name', is_flag=bool, help='provide username in whose repos are to be listed.')
@click.option('--types', is_flag=bool, help='provide username in whose repos are to be listed.')
@click.option('--pid', is_flag=bool, help='provide parent file ID or sharing link and list its child file/folders.')
def view_file(name, types, pid):
'\n \n '
token = os.path.join(dirpath, 'token.json')
store = file.Storage(token)
creds = store.get()
service = build('drive', 'v3', http=creds.authorize(Http()))
page_token = None
query =
if name:
q_name = click.prompt('enter the search value')
query = (("name contains '" + q_name) + "' ")
if types:
mimeTypes = {'xls': 'application/vnd.ms-excel', 'xlsx': 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet', 'xml': 'text/xml', 'ods': 'application/vnd.oasis.opendocument.spreadsheet', 'csv': 'text/plain', 'tmpl': 'text/plain', 'pdf': 'application/pdf', 'php': 'application/x-httpd-php', 'jpg': 'image/jpeg', 'png': 'image/png', 'gif': 'image/gif', 'bmp': 'image/bmp', 'txt': 'text/plain', 'doc': 'application/msword', 'js': 'text/js', 'swf': 'application/x-shockwave-flash', 'mp3': 'audio/mpeg', 'zip': 'application/zip', 'rar': 'application/rar', 'tar': 'application/tar', 'arj': 'application/arj', 'cab': 'application/cab', 'html': 'text/html', 'htm': 'text/html', 'default': 'application/octet-stream', 'audio': 'application/vnd.google-apps.audio', 'Google Docs': 'application/vnd.google-apps.document', 'Google Drawing': 'application/vnd.google-apps.drawing', 'Google Drive file': 'application/vnd.google-apps.file', 'Google Forms': 'application/vnd.google-apps.form', 'Google Fusion Tables': 'application/vnd.google-apps.fusiontable', 'Google My Maps': 'application/vnd.google-apps.map', 'Google Photos': 'application/vnd.google-apps.photo', 'Google Slides': 'application/vnd.google-apps.presentation', 'Google Apps Scripts': 'application/vnd.google-apps.script', 'Google Sites': 'application/vnd.google-apps.site', 'Google Sheets': 'application/vnd.google-apps.spreadsheet', '3rd party shortcut': 'application/vnd.google-apps.drive-sdk', 'folder': 'application/vnd.google-apps.folder'}
promptMessage = 'Choose a media type to filter \n(press SPACE to mark, ENTER to continue, s to stop):'
title = promptMessage
options = [x for x in mimeTypes.keys()]
picker = Picker(options, title, multi_select=True, min_selection_count=1)
picker.register_custom_handler(ord('s'), go_back)
selected = picker.start()
if isinstance(selected, list):
query += 'and ('
for types in selected:
query += (("mimeType='" + mimeTypes[types[0]]) + "' or ")
query = query[:(- 3)]
query += ')'
if ((not name) and types):
query = query[4:]
if pid:
parent = click.prompt('enter the fid of parent or sharing link')
fid = utils.get_fid(parent)
if ((name != False) or (types != False)):
query += ' and '
query += (("'" + fid) + "' in parents")
i = 1
while True:
response = service.files().list(q=query, spaces='drive', fields='nextPageToken, files(id, name,mimeType,modifiedTime)', pageToken=page_token).execute()
templist = [response.get('files', [])[j:(j + 25)] for j in range(0, len(response.get('files', [])), 25)]
for item in templist:
t = PrettyTable(['Sr.', 'Name', 'ID', 'Type', 'Modified Time'])
for fils in item:
t.add_row([i, fils.get('name')[:25], fils.get('id'), fils.get('mimeType').replace('application/', )[:25], fils.get('modifiedTime')])
i += 1
print(t)
click.confirm('Do you want to continue?', abort=True)
click.clear()
page_token = response.get('nextPageToken', None)
if (page_token is None):
break<|docstring|>view-files: Filter based list of the names and ids of the first 10 files the user has access to<|endoftext|>
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.