body_hash
stringlengths
64
64
body
stringlengths
23
109k
docstring
stringlengths
1
57k
path
stringlengths
4
198
name
stringlengths
1
115
repository_name
stringlengths
7
111
repository_stars
float64
0
191k
lang
stringclasses
1 value
body_without_docstring
stringlengths
14
108k
unified
stringlengths
45
133k
1f25df9cc4ad5aef833db5d066fe61924110c6682c1c60b9709ed1fe306ec612
def _separable_approx2(h, N=1): ' returns the N first approximations to the 2d function h\n whose sum should be h\n ' return np.cumsum([np.outer(fy, fx) for (fy, fx) in _separable_series2(h, N)], 0)
returns the N first approximations to the 2d function h whose sum should be h
gputools/separable/separable_approx.py
_separable_approx2
tlambert03/gputools
89
python
def _separable_approx2(h, N=1): ' returns the N first approximations to the 2d function h\n whose sum should be h\n ' return np.cumsum([np.outer(fy, fx) for (fy, fx) in _separable_series2(h, N)], 0)
def _separable_approx2(h, N=1): ' returns the N first approximations to the 2d function h\n whose sum should be h\n ' return np.cumsum([np.outer(fy, fx) for (fy, fx) in _separable_series2(h, N)], 0)<|docstring|>returns the N first approximations to the 2d function h whose sum should be h<|endoftext|>
27fb3a8d27c5958201c98f6ea08f3e694eacaf5c7db2ad3190b12f3a6a0ca5ea
def _separable_series3(h, N=1, verbose=False): ' finds separable approximations to the 3d kernel h\n returns res = (hx,hy,hz)[N]\n s.t. h \x07pprox sum_i einsum("i,j,k",res[i,0],res[i,1],res[i,2])\n\n FIXME: This is just a naive and slow first try!\n ' (hx, hy, hz) = ([], [], []) res = h.copy() for i in range(N): (_hx, _hy, _hz, P) = _splitrank3(res, verbose=verbose) res -= P hx.append(_hx) hy.append(_hy) hz.append(_hz) return np.array(list(zip(hx, hy, hz)))
finds separable approximations to the 3d kernel h returns res = (hx,hy,hz)[N] s.t. h pprox sum_i einsum("i,j,k",res[i,0],res[i,1],res[i,2]) FIXME: This is just a naive and slow first try!
gputools/separable/separable_approx.py
_separable_series3
tlambert03/gputools
89
python
def _separable_series3(h, N=1, verbose=False): ' finds separable approximations to the 3d kernel h\n returns res = (hx,hy,hz)[N]\n s.t. h \x07pprox sum_i einsum("i,j,k",res[i,0],res[i,1],res[i,2])\n\n FIXME: This is just a naive and slow first try!\n ' (hx, hy, hz) = ([], [], []) res = h.copy() for i in range(N): (_hx, _hy, _hz, P) = _splitrank3(res, verbose=verbose) res -= P hx.append(_hx) hy.append(_hy) hz.append(_hz) return np.array(list(zip(hx, hy, hz)))
def _separable_series3(h, N=1, verbose=False): ' finds separable approximations to the 3d kernel h\n returns res = (hx,hy,hz)[N]\n s.t. h \x07pprox sum_i einsum("i,j,k",res[i,0],res[i,1],res[i,2])\n\n FIXME: This is just a naive and slow first try!\n ' (hx, hy, hz) = ([], [], []) res = h.copy() for i in range(N): (_hx, _hy, _hz, P) = _splitrank3(res, verbose=verbose) res -= P hx.append(_hx) hy.append(_hy) hz.append(_hz) return np.array(list(zip(hx, hy, hz)))<|docstring|>finds separable approximations to the 3d kernel h returns res = (hx,hy,hz)[N] s.t. h pprox sum_i einsum("i,j,k",res[i,0],res[i,1],res[i,2]) FIXME: This is just a naive and slow first try!<|endoftext|>
fdac818e7bbcd366ba8e7eb93a262dbf7656d0e0ac4973a8389c8552bd1e807e
def _separable_approx3(h, N=1): ' returns the N first approximations to the 3d function h\n ' return np.cumsum([np.einsum('i,j,k', fz, fy, fx) for (fz, fy, fx) in _separable_series3(h, N)], 0)
returns the N first approximations to the 3d function h
gputools/separable/separable_approx.py
_separable_approx3
tlambert03/gputools
89
python
def _separable_approx3(h, N=1): ' \n ' return np.cumsum([np.einsum('i,j,k', fz, fy, fx) for (fz, fy, fx) in _separable_series3(h, N)], 0)
def _separable_approx3(h, N=1): ' \n ' return np.cumsum([np.einsum('i,j,k', fz, fy, fx) for (fz, fy, fx) in _separable_series3(h, N)], 0)<|docstring|>returns the N first approximations to the 3d function h<|endoftext|>
ef72023021582cc035cc4fa3a8d81d7ba4eb4cde5faa34b151a8ba9d108ae84d
def separable_series(h, N=1): '\n finds the first N rank 1 tensors such that their sum approximates\n the tensor h (2d or 3d) best\n\n returns (e.g. for 3d case) res = (hx,hy,hz)[i]\n\n s.t.\n\n h \x07pprox sum_i einsum("i,j,k",res[i,0],res[i,1],res[i,2])\n\n Parameters\n ----------\n h: ndarray\n input array (2 or 2 dimensional)\n N: int\n order of approximation\n\n Returns\n -------\n res, the series of tensors\n res[i] = (hx,hy,hz)[i]\n\n ' if (h.ndim == 2): return _separable_series2(h, N) elif (h.ndim == 3): return _separable_series3(h, N) else: raise ValueError(('unsupported array dimension: %s (only 2d or 3d) ' % h.ndim))
finds the first N rank 1 tensors such that their sum approximates the tensor h (2d or 3d) best returns (e.g. for 3d case) res = (hx,hy,hz)[i] s.t. h pprox sum_i einsum("i,j,k",res[i,0],res[i,1],res[i,2]) Parameters ---------- h: ndarray input array (2 or 2 dimensional) N: int order of approximation Returns ------- res, the series of tensors res[i] = (hx,hy,hz)[i]
gputools/separable/separable_approx.py
separable_series
tlambert03/gputools
89
python
def separable_series(h, N=1): '\n finds the first N rank 1 tensors such that their sum approximates\n the tensor h (2d or 3d) best\n\n returns (e.g. for 3d case) res = (hx,hy,hz)[i]\n\n s.t.\n\n h \x07pprox sum_i einsum("i,j,k",res[i,0],res[i,1],res[i,2])\n\n Parameters\n ----------\n h: ndarray\n input array (2 or 2 dimensional)\n N: int\n order of approximation\n\n Returns\n -------\n res, the series of tensors\n res[i] = (hx,hy,hz)[i]\n\n ' if (h.ndim == 2): return _separable_series2(h, N) elif (h.ndim == 3): return _separable_series3(h, N) else: raise ValueError(('unsupported array dimension: %s (only 2d or 3d) ' % h.ndim))
def separable_series(h, N=1): '\n finds the first N rank 1 tensors such that their sum approximates\n the tensor h (2d or 3d) best\n\n returns (e.g. for 3d case) res = (hx,hy,hz)[i]\n\n s.t.\n\n h \x07pprox sum_i einsum("i,j,k",res[i,0],res[i,1],res[i,2])\n\n Parameters\n ----------\n h: ndarray\n input array (2 or 2 dimensional)\n N: int\n order of approximation\n\n Returns\n -------\n res, the series of tensors\n res[i] = (hx,hy,hz)[i]\n\n ' if (h.ndim == 2): return _separable_series2(h, N) elif (h.ndim == 3): return _separable_series3(h, N) else: raise ValueError(('unsupported array dimension: %s (only 2d or 3d) ' % h.ndim))<|docstring|>finds the first N rank 1 tensors such that their sum approximates the tensor h (2d or 3d) best returns (e.g. for 3d case) res = (hx,hy,hz)[i] s.t. h pprox sum_i einsum("i,j,k",res[i,0],res[i,1],res[i,2]) Parameters ---------- h: ndarray input array (2 or 2 dimensional) N: int order of approximation Returns ------- res, the series of tensors res[i] = (hx,hy,hz)[i]<|endoftext|>
b9d3ae0c656900ca787053e83aba3f79567e44d9f512817db3f79906930ceb9a
def separable_approx(h, N=1): '\n finds the k-th rank approximation to h, where k = 1..N\n\n similar to separable_series\n\n Parameters\n ----------\n h: ndarray\n input array (2 or 2 dimensional)\n N: int\n order of approximation\n\n Returns\n -------\n all N apprxoimations res[i], the i-th approximation\n\n ' if (h.ndim == 2): return _separable_approx2(h, N) elif (h.ndim == 3): return _separable_approx3(h, N) else: raise ValueError(('unsupported array dimension: %s (only 2d or 3d) ' % h.ndim))
finds the k-th rank approximation to h, where k = 1..N similar to separable_series Parameters ---------- h: ndarray input array (2 or 2 dimensional) N: int order of approximation Returns ------- all N apprxoimations res[i], the i-th approximation
gputools/separable/separable_approx.py
separable_approx
tlambert03/gputools
89
python
def separable_approx(h, N=1): '\n finds the k-th rank approximation to h, where k = 1..N\n\n similar to separable_series\n\n Parameters\n ----------\n h: ndarray\n input array (2 or 2 dimensional)\n N: int\n order of approximation\n\n Returns\n -------\n all N apprxoimations res[i], the i-th approximation\n\n ' if (h.ndim == 2): return _separable_approx2(h, N) elif (h.ndim == 3): return _separable_approx3(h, N) else: raise ValueError(('unsupported array dimension: %s (only 2d or 3d) ' % h.ndim))
def separable_approx(h, N=1): '\n finds the k-th rank approximation to h, where k = 1..N\n\n similar to separable_series\n\n Parameters\n ----------\n h: ndarray\n input array (2 or 2 dimensional)\n N: int\n order of approximation\n\n Returns\n -------\n all N apprxoimations res[i], the i-th approximation\n\n ' if (h.ndim == 2): return _separable_approx2(h, N) elif (h.ndim == 3): return _separable_approx3(h, N) else: raise ValueError(('unsupported array dimension: %s (only 2d or 3d) ' % h.ndim))<|docstring|>finds the k-th rank approximation to h, where k = 1..N similar to separable_series Parameters ---------- h: ndarray input array (2 or 2 dimensional) N: int order of approximation Returns ------- all N apprxoimations res[i], the i-th approximation<|endoftext|>
163b21ffa8db61a92f02adab8635443fa213ad8bd7eab3f6779ea1b3664bba12
def get_issues_without_due_date(connection): 'Fin Issues where we need to set due_date value' query = 'SELECT id FROM issues WHERE status IN :statuses AND due_date IS null' return connection.execute(sa.text(query), statuses=STATUSES).fetchall()
Fin Issues where we need to set due_date value
src/ggrc/migrations/versions/20190412_84c5ff059f75_set_due_date_for_fixed_and_depricated_.py
get_issues_without_due_date
MikalaiMikalalai/ggrc-core
1
python
def get_issues_without_due_date(connection): query = 'SELECT id FROM issues WHERE status IN :statuses AND due_date IS null' return connection.execute(sa.text(query), statuses=STATUSES).fetchall()
def get_issues_without_due_date(connection): query = 'SELECT id FROM issues WHERE status IN :statuses AND due_date IS null' return connection.execute(sa.text(query), statuses=STATUSES).fetchall()<|docstring|>Fin Issues where we need to set due_date value<|endoftext|>
04b9f3db00ccc73d4b28d7a5f237039ec71f5f863b763a103b6136fb19deaae6
def get_revision_due_date(con, issue_id): 'Fund due_date value in related revision' query = "SELECT content, created_at FROM revisions WHERE resource_type = 'Issue' AND resource_id = :id ORDER BY id DESC" all_revisions = con.execute(sa.text(query), id=issue_id) result = None last_status = None for rev in all_revisions: if (not result): last_status = json.loads(rev['content'])['status'] elif (json.loads(rev['content'])['status'] != last_status): break result = rev['created_at'] return result
Fund due_date value in related revision
src/ggrc/migrations/versions/20190412_84c5ff059f75_set_due_date_for_fixed_and_depricated_.py
get_revision_due_date
MikalaiMikalalai/ggrc-core
1
python
def get_revision_due_date(con, issue_id): query = "SELECT content, created_at FROM revisions WHERE resource_type = 'Issue' AND resource_id = :id ORDER BY id DESC" all_revisions = con.execute(sa.text(query), id=issue_id) result = None last_status = None for rev in all_revisions: if (not result): last_status = json.loads(rev['content'])['status'] elif (json.loads(rev['content'])['status'] != last_status): break result = rev['created_at'] return result
def get_revision_due_date(con, issue_id): query = "SELECT content, created_at FROM revisions WHERE resource_type = 'Issue' AND resource_id = :id ORDER BY id DESC" all_revisions = con.execute(sa.text(query), id=issue_id) result = None last_status = None for rev in all_revisions: if (not result): last_status = json.loads(rev['content'])['status'] elif (json.loads(rev['content'])['status'] != last_status): break result = rev['created_at'] return result<|docstring|>Fund due_date value in related revision<|endoftext|>
1622720df8bc0abf91c1e03d02865576725065783f0a57d49a15ddb10d608f12
def upgrade(): 'Upgrade database schema and/or data, creating a new revision.' connection = op.get_bind() issues_for_update = get_issues_without_due_date(connection) issues_ids = [issue['id'] for issue in issues_for_update] for issue_id in issues_ids: due_date = get_revision_due_date(connection, issue_id) set_due_date(connection, issue_id, due_date) utils.add_to_objects_without_revisions_bulk(connection, issues_ids, 'Issue', 'modified')
Upgrade database schema and/or data, creating a new revision.
src/ggrc/migrations/versions/20190412_84c5ff059f75_set_due_date_for_fixed_and_depricated_.py
upgrade
MikalaiMikalalai/ggrc-core
1
python
def upgrade(): connection = op.get_bind() issues_for_update = get_issues_without_due_date(connection) issues_ids = [issue['id'] for issue in issues_for_update] for issue_id in issues_ids: due_date = get_revision_due_date(connection, issue_id) set_due_date(connection, issue_id, due_date) utils.add_to_objects_without_revisions_bulk(connection, issues_ids, 'Issue', 'modified')
def upgrade(): connection = op.get_bind() issues_for_update = get_issues_without_due_date(connection) issues_ids = [issue['id'] for issue in issues_for_update] for issue_id in issues_ids: due_date = get_revision_due_date(connection, issue_id) set_due_date(connection, issue_id, due_date) utils.add_to_objects_without_revisions_bulk(connection, issues_ids, 'Issue', 'modified')<|docstring|>Upgrade database schema and/or data, creating a new revision.<|endoftext|>
25eb65cb2baefeaff9ce12a6638cc9c687d20f629c8691da947804dff60199e8
def downgrade(): 'Downgrade database schema and/or data back to the previous revision.' raise NotImplementedError('Downgrade is not supported')
Downgrade database schema and/or data back to the previous revision.
src/ggrc/migrations/versions/20190412_84c5ff059f75_set_due_date_for_fixed_and_depricated_.py
downgrade
MikalaiMikalalai/ggrc-core
1
python
def downgrade(): raise NotImplementedError('Downgrade is not supported')
def downgrade(): raise NotImplementedError('Downgrade is not supported')<|docstring|>Downgrade database schema and/or data back to the previous revision.<|endoftext|>
1586f3ebb7740132e8b5d4cf628a6afd1c53939eff485661daeb5c604d3b1789
def earth_distance(pos1, pos2): 'Taken from http://www.johndcook.com/python_longitude_latitude.html.' (lat1, long1) = pos1 (lat2, long2) = pos2 degrees_to_radians = (pi / 180.0) phi1 = ((90.0 - lat1) * degrees_to_radians) phi2 = ((90.0 - lat2) * degrees_to_radians) theta1 = (long1 * degrees_to_radians) theta2 = (long2 * degrees_to_radians) c = (((sin(phi1) * sin(phi2)) * cos((theta1 - theta2))) + (cos(phi1) * cos(phi2))) arc = acos(c) return (arc * 6373)
Taken from http://www.johndcook.com/python_longitude_latitude.html.
workshops/util.py
earth_distance
r-gaia-cs/swc-amy
0
python
def earth_distance(pos1, pos2): (lat1, long1) = pos1 (lat2, long2) = pos2 degrees_to_radians = (pi / 180.0) phi1 = ((90.0 - lat1) * degrees_to_radians) phi2 = ((90.0 - lat2) * degrees_to_radians) theta1 = (long1 * degrees_to_radians) theta2 = (long2 * degrees_to_radians) c = (((sin(phi1) * sin(phi2)) * cos((theta1 - theta2))) + (cos(phi1) * cos(phi2))) arc = acos(c) return (arc * 6373)
def earth_distance(pos1, pos2): (lat1, long1) = pos1 (lat2, long2) = pos2 degrees_to_radians = (pi / 180.0) phi1 = ((90.0 - lat1) * degrees_to_radians) phi2 = ((90.0 - lat2) * degrees_to_radians) theta1 = (long1 * degrees_to_radians) theta2 = (long2 * degrees_to_radians) c = (((sin(phi1) * sin(phi2)) * cos((theta1 - theta2))) + (cos(phi1) * cos(phi2))) arc = acos(c) return (arc * 6373)<|docstring|>Taken from http://www.johndcook.com/python_longitude_latitude.html.<|endoftext|>
4c1f801cc9d746c79489c4df1c8c0de47c039a917ca6db36b7b1119d33e9e17d
def upload_person_task_csv(stream): 'Read people from CSV and return a JSON-serializable list of dicts.\n\n The input `stream` should be a file-like object that returns\n Unicode data.\n\n "Serializability" is required because we put this data into session. See\n https://docs.djangoproject.com/en/1.7/topics/http/sessions/ for details.\n\n Also return a list of fields from Person.PERSON_UPLOAD_FIELDS for which\n no data was given.\n ' result = [] reader = csv.DictReader(stream) empty_fields = set() for row in reader: entry = {} for col in Person.PERSON_UPLOAD_FIELDS: if (col in row): entry[col] = row[col].strip() else: entry[col] = None empty_fields.add(col) for col in Person.PERSON_TASK_EXTRA_FIELDS: entry[col] = row.get(col, None) entry['errors'] = None result.append(entry) return (result, list(empty_fields))
Read people from CSV and return a JSON-serializable list of dicts. The input `stream` should be a file-like object that returns Unicode data. "Serializability" is required because we put this data into session. See https://docs.djangoproject.com/en/1.7/topics/http/sessions/ for details. Also return a list of fields from Person.PERSON_UPLOAD_FIELDS for which no data was given.
workshops/util.py
upload_person_task_csv
r-gaia-cs/swc-amy
0
python
def upload_person_task_csv(stream): 'Read people from CSV and return a JSON-serializable list of dicts.\n\n The input `stream` should be a file-like object that returns\n Unicode data.\n\n "Serializability" is required because we put this data into session. See\n https://docs.djangoproject.com/en/1.7/topics/http/sessions/ for details.\n\n Also return a list of fields from Person.PERSON_UPLOAD_FIELDS for which\n no data was given.\n ' result = [] reader = csv.DictReader(stream) empty_fields = set() for row in reader: entry = {} for col in Person.PERSON_UPLOAD_FIELDS: if (col in row): entry[col] = row[col].strip() else: entry[col] = None empty_fields.add(col) for col in Person.PERSON_TASK_EXTRA_FIELDS: entry[col] = row.get(col, None) entry['errors'] = None result.append(entry) return (result, list(empty_fields))
def upload_person_task_csv(stream): 'Read people from CSV and return a JSON-serializable list of dicts.\n\n The input `stream` should be a file-like object that returns\n Unicode data.\n\n "Serializability" is required because we put this data into session. See\n https://docs.djangoproject.com/en/1.7/topics/http/sessions/ for details.\n\n Also return a list of fields from Person.PERSON_UPLOAD_FIELDS for which\n no data was given.\n ' result = [] reader = csv.DictReader(stream) empty_fields = set() for row in reader: entry = {} for col in Person.PERSON_UPLOAD_FIELDS: if (col in row): entry[col] = row[col].strip() else: entry[col] = None empty_fields.add(col) for col in Person.PERSON_TASK_EXTRA_FIELDS: entry[col] = row.get(col, None) entry['errors'] = None result.append(entry) return (result, list(empty_fields))<|docstring|>Read people from CSV and return a JSON-serializable list of dicts. The input `stream` should be a file-like object that returns Unicode data. "Serializability" is required because we put this data into session. See https://docs.djangoproject.com/en/1.7/topics/http/sessions/ for details. Also return a list of fields from Person.PERSON_UPLOAD_FIELDS for which no data was given.<|endoftext|>
e7c8d42fba7cf97e28e99e3db4193ebb2056f6dbd0e290fdbb62634f761cd6eb
def verify_upload_person_task(data): '\n Verify that uploaded data is correct. Show errors by populating ``errors``\n dictionary item. This function changes ``data`` in place.\n ' errors_occur = False for item in data: errors = [] event = item.get('event', None) if event: try: Event.objects.get(slug=event) except Event.DoesNotExist: errors.append(u'Event with slug {0} does not exist.'.format(event)) role = item.get('role', None) if role: try: Role.objects.get(name=role) except Role.DoesNotExist: errors.append(u'Role with name {0} does not exist.'.format(role)) except Role.MultipleObjectsReturned: errors.append(u'More than one role named {0} exists.'.format(role)) email = item.get('email', None) personal = item.get('personal', None) middle = item.get('middle', None) family = item.get('family', None) person = None if email: try: person = Person.objects.get(email__iexact=email) assert (person.personal == personal) assert (person.middle == middle) assert (person.family == family) except Person.DoesNotExist: pass except AssertionError: errors.append("Personal, middle or family name of existing user don't match: {0} vs {1}, {2} vs {3}, {4} vs {5}".format(personal, person.personal, middle, person.middle, family, person.family)) if person: if (not any([event, role])): errors.append('User exists but no event and role to assign the user to was provided') else: try: Task.objects.get(event__slug=event, role__name=role, person=person) except Task.DoesNotExist: pass else: errors.append('Existing person {2} already has role {0} in event {1}'.format(role, event, person)) if ((event and (not role)) or (role and (not event))): errors.append('Must have both or either of event ({0}) and role ({1})'.format(event, role)) if errors: errors_occur = True item['errors'] = errors return errors_occur
Verify that uploaded data is correct. Show errors by populating ``errors`` dictionary item. This function changes ``data`` in place.
workshops/util.py
verify_upload_person_task
r-gaia-cs/swc-amy
0
python
def verify_upload_person_task(data): '\n Verify that uploaded data is correct. Show errors by populating ``errors``\n dictionary item. This function changes ``data`` in place.\n ' errors_occur = False for item in data: errors = [] event = item.get('event', None) if event: try: Event.objects.get(slug=event) except Event.DoesNotExist: errors.append(u'Event with slug {0} does not exist.'.format(event)) role = item.get('role', None) if role: try: Role.objects.get(name=role) except Role.DoesNotExist: errors.append(u'Role with name {0} does not exist.'.format(role)) except Role.MultipleObjectsReturned: errors.append(u'More than one role named {0} exists.'.format(role)) email = item.get('email', None) personal = item.get('personal', None) middle = item.get('middle', None) family = item.get('family', None) person = None if email: try: person = Person.objects.get(email__iexact=email) assert (person.personal == personal) assert (person.middle == middle) assert (person.family == family) except Person.DoesNotExist: pass except AssertionError: errors.append("Personal, middle or family name of existing user don't match: {0} vs {1}, {2} vs {3}, {4} vs {5}".format(personal, person.personal, middle, person.middle, family, person.family)) if person: if (not any([event, role])): errors.append('User exists but no event and role to assign the user to was provided') else: try: Task.objects.get(event__slug=event, role__name=role, person=person) except Task.DoesNotExist: pass else: errors.append('Existing person {2} already has role {0} in event {1}'.format(role, event, person)) if ((event and (not role)) or (role and (not event))): errors.append('Must have both or either of event ({0}) and role ({1})'.format(event, role)) if errors: errors_occur = True item['errors'] = errors return errors_occur
def verify_upload_person_task(data): '\n Verify that uploaded data is correct. Show errors by populating ``errors``\n dictionary item. This function changes ``data`` in place.\n ' errors_occur = False for item in data: errors = [] event = item.get('event', None) if event: try: Event.objects.get(slug=event) except Event.DoesNotExist: errors.append(u'Event with slug {0} does not exist.'.format(event)) role = item.get('role', None) if role: try: Role.objects.get(name=role) except Role.DoesNotExist: errors.append(u'Role with name {0} does not exist.'.format(role)) except Role.MultipleObjectsReturned: errors.append(u'More than one role named {0} exists.'.format(role)) email = item.get('email', None) personal = item.get('personal', None) middle = item.get('middle', None) family = item.get('family', None) person = None if email: try: person = Person.objects.get(email__iexact=email) assert (person.personal == personal) assert (person.middle == middle) assert (person.family == family) except Person.DoesNotExist: pass except AssertionError: errors.append("Personal, middle or family name of existing user don't match: {0} vs {1}, {2} vs {3}, {4} vs {5}".format(personal, person.personal, middle, person.middle, family, person.family)) if person: if (not any([event, role])): errors.append('User exists but no event and role to assign the user to was provided') else: try: Task.objects.get(event__slug=event, role__name=role, person=person) except Task.DoesNotExist: pass else: errors.append('Existing person {2} already has role {0} in event {1}'.format(role, event, person)) if ((event and (not role)) or (role and (not event))): errors.append('Must have both or either of event ({0}) and role ({1})'.format(event, role)) if errors: errors_occur = True item['errors'] = errors return errors_occur<|docstring|>Verify that uploaded data is correct. Show errors by populating ``errors`` dictionary item. This function changes ``data`` in place.<|endoftext|>
b292523a1dece95f277620c18638cb0d3a86154763ad6e585ff34276833b45d1
def create_uploaded_persons_tasks(data): '\n Create persons and tasks from upload data.\n ' if any([row.get('errors') for row in data]): raise InternalError('Uploaded data contains errors, cancelling upload') persons_created = [] tasks_created = [] with transaction.atomic(): for row in data: try: fields = {key: row[key] for key in Person.PERSON_UPLOAD_FIELDS} fields['username'] = create_username(row['personal'], row['family']) if fields['email']: (p, created) = Person.objects.get_or_create(email=fields['email'], defaults=fields) if created: persons_created.append(p) else: p = Person(**fields) p.save() persons_created.append(p) if (row['event'] and row['role']): e = Event.objects.get(slug=row['event']) r = Role.objects.get(name=row['role']) t = Task(person=p, event=e, role=r) t.save() tasks_created.append(t) except IntegrityError as e: raise IntegrityError('{0} (for {1})'.format(str(e), row)) except ObjectDoesNotExist as e: raise ObjectDoesNotExist('{0} (for {1})'.format(str(e), row)) return (persons_created, tasks_created)
Create persons and tasks from upload data.
workshops/util.py
create_uploaded_persons_tasks
r-gaia-cs/swc-amy
0
python
def create_uploaded_persons_tasks(data): '\n \n ' if any([row.get('errors') for row in data]): raise InternalError('Uploaded data contains errors, cancelling upload') persons_created = [] tasks_created = [] with transaction.atomic(): for row in data: try: fields = {key: row[key] for key in Person.PERSON_UPLOAD_FIELDS} fields['username'] = create_username(row['personal'], row['family']) if fields['email']: (p, created) = Person.objects.get_or_create(email=fields['email'], defaults=fields) if created: persons_created.append(p) else: p = Person(**fields) p.save() persons_created.append(p) if (row['event'] and row['role']): e = Event.objects.get(slug=row['event']) r = Role.objects.get(name=row['role']) t = Task(person=p, event=e, role=r) t.save() tasks_created.append(t) except IntegrityError as e: raise IntegrityError('{0} (for {1})'.format(str(e), row)) except ObjectDoesNotExist as e: raise ObjectDoesNotExist('{0} (for {1})'.format(str(e), row)) return (persons_created, tasks_created)
def create_uploaded_persons_tasks(data): '\n \n ' if any([row.get('errors') for row in data]): raise InternalError('Uploaded data contains errors, cancelling upload') persons_created = [] tasks_created = [] with transaction.atomic(): for row in data: try: fields = {key: row[key] for key in Person.PERSON_UPLOAD_FIELDS} fields['username'] = create_username(row['personal'], row['family']) if fields['email']: (p, created) = Person.objects.get_or_create(email=fields['email'], defaults=fields) if created: persons_created.append(p) else: p = Person(**fields) p.save() persons_created.append(p) if (row['event'] and row['role']): e = Event.objects.get(slug=row['event']) r = Role.objects.get(name=row['role']) t = Task(person=p, event=e, role=r) t.save() tasks_created.append(t) except IntegrityError as e: raise IntegrityError('{0} (for {1})'.format(str(e), row)) except ObjectDoesNotExist as e: raise ObjectDoesNotExist('{0} (for {1})'.format(str(e), row)) return (persons_created, tasks_created)<|docstring|>Create persons and tasks from upload data.<|endoftext|>
ebcee3b5878a4143c5a46fb858cf0618d35c7cc981c6740c3819361819d95afb
def create_username(personal, family): 'Generate unique username.' stem = ((normalize_name(family) + '.') + normalize_name(personal)) counter = None while True: try: if (counter is None): username = stem counter = 1 else: counter += 1 username = '{0}.{1}'.format(stem, counter) Person.objects.get(username=username) except ObjectDoesNotExist: break if any([(ord(c) >= 128) for c in username]): raise InternalError('Normalized username still contains non-normal characters "{0}"'.format(username)) return username
Generate unique username.
workshops/util.py
create_username
r-gaia-cs/swc-amy
0
python
def create_username(personal, family): stem = ((normalize_name(family) + '.') + normalize_name(personal)) counter = None while True: try: if (counter is None): username = stem counter = 1 else: counter += 1 username = '{0}.{1}'.format(stem, counter) Person.objects.get(username=username) except ObjectDoesNotExist: break if any([(ord(c) >= 128) for c in username]): raise InternalError('Normalized username still contains non-normal characters "{0}"'.format(username)) return username
def create_username(personal, family): stem = ((normalize_name(family) + '.') + normalize_name(personal)) counter = None while True: try: if (counter is None): username = stem counter = 1 else: counter += 1 username = '{0}.{1}'.format(stem, counter) Person.objects.get(username=username) except ObjectDoesNotExist: break if any([(ord(c) >= 128) for c in username]): raise InternalError('Normalized username still contains non-normal characters "{0}"'.format(username)) return username<|docstring|>Generate unique username.<|endoftext|>
03759732926be232300efc18809c48f0041b3519aeb9a6d824b3167d2ca10d81
def normalize_name(name): 'Get rid of spaces, funky characters, etc.' name = name.strip() for (accented, flat) in [(' ', '-')]: name = name.replace(accented, flat) return name.lower()
Get rid of spaces, funky characters, etc.
workshops/util.py
normalize_name
r-gaia-cs/swc-amy
0
python
def normalize_name(name): name = name.strip() for (accented, flat) in [(' ', '-')]: name = name.replace(accented, flat) return name.lower()
def normalize_name(name): name = name.strip() for (accented, flat) in [(' ', '-')]: name = name.replace(accented, flat) return name.lower()<|docstring|>Get rid of spaces, funky characters, etc.<|endoftext|>
160e9806d43c9b12f63247f5804003a93aa4907edf095fd2ee830254ef48794a
def train(train_dataloader, query_dataloader, retrieval_dataloader, arch, feature_dim, code_length, num_classes, dynamic_meta_embedding, num_prototypes, device, lr, max_iter, beta, gamma, mapping, topk, evaluate_interval): '\n Training model.\n\n Args\n train_dataloader, query_dataloader, retrieval_dataloader(torch.utils.data.dataloader.DataLoader): Data loader.\n arch(str): CNN model name.\n code_length(int): Hash code length.\n device(torch.device): GPU or CPU.\n lr(float): Learning rate.\n max_iter(int): Number of iterations.\n alpha(float): Hyper-parameters.\n topk(int): Compute top k map.\n evaluate_interval(int): Interval of evaluation.\n\n Returns\n checkpoint(dict): Checkpoint.\n ' model = load_model(arch, feature_dim, code_length, num_classes, num_prototypes).to(device) criterion = LTHNetLoss() optimizer = optim.RMSprop(model.parameters(), lr=lr, weight_decay=0.0005) scheduler = CosineAnnealingLR(optimizer, max_iter, (lr / 100)) running_loss = 0.0 best_map = 0.0 training_time = 0.0 prototypes = torch.zeros([num_prototypes, feature_dim]) prototypes = prototypes.to(device) for it in range(max_iter): prototypes = generate_prototypes(model, train_dataloader, num_prototypes, feature_dim, device, dynamic_meta_embedding, prototypes) prototypes = prototypes.to(device) model.train() tic = time.time() for (data, targets, index) in train_dataloader: (data, targets, index) = (data.to(device), targets.to(device), index.to(device)) optimizer.zero_grad() (hashcodes, assignments, _) = model(data, dynamic_meta_embedding, prototypes) loss = criterion(hashcodes, assignments, targets, device, beta, gamma, mapping, it, max_iter) running_loss = (running_loss + loss.item()) loss.backward() optimizer.step() scheduler.step() training_time = (time.time() - tic) if ((it % evaluate_interval) == (evaluate_interval - 1)): (query_code, query_assignment) = generate_code(model, query_dataloader, code_length, num_classes, device, dynamic_meta_embedding, prototypes) (retrieval_code, retrieval_assignment) = generate_code(model, retrieval_dataloader, code_length, num_classes, device, dynamic_meta_embedding, prototypes) query_targets = query_dataloader.dataset.get_onehot_targets() retrieval_targets = retrieval_dataloader.dataset.get_onehot_targets() mAP = mean_average_precision(query_code.to(device), retrieval_code.to(device), query_targets.to(device), retrieval_targets.to(device), device, topk) logger.info('[iter:{}/{}][loss:{:.2f}][map:{:.4f}][time:{:.2f}]'.format((it + 1), max_iter, (running_loss / evaluate_interval), mAP, training_time)) running_loss = 0.0 if (best_map < mAP): best_map = mAP checkpoint = {'model': model.state_dict(), 'qB': query_code.cpu(), 'rB': retrieval_code.cpu(), 'qL': query_targets.cpu(), 'rL': retrieval_targets.cpu(), 'qAssignment': query_assignment.cpu(), 'rAssignment': retrieval_assignment.cpu(), 'map': best_map, 'prototypes': prototypes.cpu(), 'beta': beta, 'gamma': gamma, 'mapping': mapping} return checkpoint
Training model. Args train_dataloader, query_dataloader, retrieval_dataloader(torch.utils.data.dataloader.DataLoader): Data loader. arch(str): CNN model name. code_length(int): Hash code length. device(torch.device): GPU or CPU. lr(float): Learning rate. max_iter(int): Number of iterations. alpha(float): Hyper-parameters. topk(int): Compute top k map. evaluate_interval(int): Interval of evaluation. Returns checkpoint(dict): Checkpoint.
lthNet.py
train
butterfly-chinese/long-tail-hashing
6
python
def train(train_dataloader, query_dataloader, retrieval_dataloader, arch, feature_dim, code_length, num_classes, dynamic_meta_embedding, num_prototypes, device, lr, max_iter, beta, gamma, mapping, topk, evaluate_interval): '\n Training model.\n\n Args\n train_dataloader, query_dataloader, retrieval_dataloader(torch.utils.data.dataloader.DataLoader): Data loader.\n arch(str): CNN model name.\n code_length(int): Hash code length.\n device(torch.device): GPU or CPU.\n lr(float): Learning rate.\n max_iter(int): Number of iterations.\n alpha(float): Hyper-parameters.\n topk(int): Compute top k map.\n evaluate_interval(int): Interval of evaluation.\n\n Returns\n checkpoint(dict): Checkpoint.\n ' model = load_model(arch, feature_dim, code_length, num_classes, num_prototypes).to(device) criterion = LTHNetLoss() optimizer = optim.RMSprop(model.parameters(), lr=lr, weight_decay=0.0005) scheduler = CosineAnnealingLR(optimizer, max_iter, (lr / 100)) running_loss = 0.0 best_map = 0.0 training_time = 0.0 prototypes = torch.zeros([num_prototypes, feature_dim]) prototypes = prototypes.to(device) for it in range(max_iter): prototypes = generate_prototypes(model, train_dataloader, num_prototypes, feature_dim, device, dynamic_meta_embedding, prototypes) prototypes = prototypes.to(device) model.train() tic = time.time() for (data, targets, index) in train_dataloader: (data, targets, index) = (data.to(device), targets.to(device), index.to(device)) optimizer.zero_grad() (hashcodes, assignments, _) = model(data, dynamic_meta_embedding, prototypes) loss = criterion(hashcodes, assignments, targets, device, beta, gamma, mapping, it, max_iter) running_loss = (running_loss + loss.item()) loss.backward() optimizer.step() scheduler.step() training_time = (time.time() - tic) if ((it % evaluate_interval) == (evaluate_interval - 1)): (query_code, query_assignment) = generate_code(model, query_dataloader, code_length, num_classes, device, dynamic_meta_embedding, prototypes) (retrieval_code, retrieval_assignment) = generate_code(model, retrieval_dataloader, code_length, num_classes, device, dynamic_meta_embedding, prototypes) query_targets = query_dataloader.dataset.get_onehot_targets() retrieval_targets = retrieval_dataloader.dataset.get_onehot_targets() mAP = mean_average_precision(query_code.to(device), retrieval_code.to(device), query_targets.to(device), retrieval_targets.to(device), device, topk) logger.info('[iter:{}/{}][loss:{:.2f}][map:{:.4f}][time:{:.2f}]'.format((it + 1), max_iter, (running_loss / evaluate_interval), mAP, training_time)) running_loss = 0.0 if (best_map < mAP): best_map = mAP checkpoint = {'model': model.state_dict(), 'qB': query_code.cpu(), 'rB': retrieval_code.cpu(), 'qL': query_targets.cpu(), 'rL': retrieval_targets.cpu(), 'qAssignment': query_assignment.cpu(), 'rAssignment': retrieval_assignment.cpu(), 'map': best_map, 'prototypes': prototypes.cpu(), 'beta': beta, 'gamma': gamma, 'mapping': mapping} return checkpoint
def train(train_dataloader, query_dataloader, retrieval_dataloader, arch, feature_dim, code_length, num_classes, dynamic_meta_embedding, num_prototypes, device, lr, max_iter, beta, gamma, mapping, topk, evaluate_interval): '\n Training model.\n\n Args\n train_dataloader, query_dataloader, retrieval_dataloader(torch.utils.data.dataloader.DataLoader): Data loader.\n arch(str): CNN model name.\n code_length(int): Hash code length.\n device(torch.device): GPU or CPU.\n lr(float): Learning rate.\n max_iter(int): Number of iterations.\n alpha(float): Hyper-parameters.\n topk(int): Compute top k map.\n evaluate_interval(int): Interval of evaluation.\n\n Returns\n checkpoint(dict): Checkpoint.\n ' model = load_model(arch, feature_dim, code_length, num_classes, num_prototypes).to(device) criterion = LTHNetLoss() optimizer = optim.RMSprop(model.parameters(), lr=lr, weight_decay=0.0005) scheduler = CosineAnnealingLR(optimizer, max_iter, (lr / 100)) running_loss = 0.0 best_map = 0.0 training_time = 0.0 prototypes = torch.zeros([num_prototypes, feature_dim]) prototypes = prototypes.to(device) for it in range(max_iter): prototypes = generate_prototypes(model, train_dataloader, num_prototypes, feature_dim, device, dynamic_meta_embedding, prototypes) prototypes = prototypes.to(device) model.train() tic = time.time() for (data, targets, index) in train_dataloader: (data, targets, index) = (data.to(device), targets.to(device), index.to(device)) optimizer.zero_grad() (hashcodes, assignments, _) = model(data, dynamic_meta_embedding, prototypes) loss = criterion(hashcodes, assignments, targets, device, beta, gamma, mapping, it, max_iter) running_loss = (running_loss + loss.item()) loss.backward() optimizer.step() scheduler.step() training_time = (time.time() - tic) if ((it % evaluate_interval) == (evaluate_interval - 1)): (query_code, query_assignment) = generate_code(model, query_dataloader, code_length, num_classes, device, dynamic_meta_embedding, prototypes) (retrieval_code, retrieval_assignment) = generate_code(model, retrieval_dataloader, code_length, num_classes, device, dynamic_meta_embedding, prototypes) query_targets = query_dataloader.dataset.get_onehot_targets() retrieval_targets = retrieval_dataloader.dataset.get_onehot_targets() mAP = mean_average_precision(query_code.to(device), retrieval_code.to(device), query_targets.to(device), retrieval_targets.to(device), device, topk) logger.info('[iter:{}/{}][loss:{:.2f}][map:{:.4f}][time:{:.2f}]'.format((it + 1), max_iter, (running_loss / evaluate_interval), mAP, training_time)) running_loss = 0.0 if (best_map < mAP): best_map = mAP checkpoint = {'model': model.state_dict(), 'qB': query_code.cpu(), 'rB': retrieval_code.cpu(), 'qL': query_targets.cpu(), 'rL': retrieval_targets.cpu(), 'qAssignment': query_assignment.cpu(), 'rAssignment': retrieval_assignment.cpu(), 'map': best_map, 'prototypes': prototypes.cpu(), 'beta': beta, 'gamma': gamma, 'mapping': mapping} return checkpoint<|docstring|>Training model. Args train_dataloader, query_dataloader, retrieval_dataloader(torch.utils.data.dataloader.DataLoader): Data loader. arch(str): CNN model name. code_length(int): Hash code length. device(torch.device): GPU or CPU. lr(float): Learning rate. max_iter(int): Number of iterations. alpha(float): Hyper-parameters. topk(int): Compute top k map. evaluate_interval(int): Interval of evaluation. Returns checkpoint(dict): Checkpoint.<|endoftext|>
cdf907274e6955859636f039b6d362fa76254762c93e3f32b0ee965af4a4bb00
def generate_code(model, dataloader, code_length, num_classes, device, dynamic_meta_embedding, prototypes): '\n Generate hash code\n\n Args\n dataloader(torch.utils.data.dataloader.DataLoader): Data loader.\n code_length(int): Hash code length.\n device(torch.device): Using gpu or cpu.\n\n Returns\n code(torch.Tensor): Hash code.\n ' model.eval() with torch.no_grad(): N = len(dataloader.dataset) code = torch.zeros([N, code_length]) assignment = torch.zeros([N, num_classes]) for (data, _, index) in dataloader: data = data.to(device) (hash_code, class_assignment, _) = model(data, dynamic_meta_embedding, prototypes) code[(index, :)] = hash_code.sign().cpu() assignment[(index, :)] = class_assignment.cpu() torch.cuda.empty_cache() return (code, assignment)
Generate hash code Args dataloader(torch.utils.data.dataloader.DataLoader): Data loader. code_length(int): Hash code length. device(torch.device): Using gpu or cpu. Returns code(torch.Tensor): Hash code.
lthNet.py
generate_code
butterfly-chinese/long-tail-hashing
6
python
def generate_code(model, dataloader, code_length, num_classes, device, dynamic_meta_embedding, prototypes): '\n Generate hash code\n\n Args\n dataloader(torch.utils.data.dataloader.DataLoader): Data loader.\n code_length(int): Hash code length.\n device(torch.device): Using gpu or cpu.\n\n Returns\n code(torch.Tensor): Hash code.\n ' model.eval() with torch.no_grad(): N = len(dataloader.dataset) code = torch.zeros([N, code_length]) assignment = torch.zeros([N, num_classes]) for (data, _, index) in dataloader: data = data.to(device) (hash_code, class_assignment, _) = model(data, dynamic_meta_embedding, prototypes) code[(index, :)] = hash_code.sign().cpu() assignment[(index, :)] = class_assignment.cpu() torch.cuda.empty_cache() return (code, assignment)
def generate_code(model, dataloader, code_length, num_classes, device, dynamic_meta_embedding, prototypes): '\n Generate hash code\n\n Args\n dataloader(torch.utils.data.dataloader.DataLoader): Data loader.\n code_length(int): Hash code length.\n device(torch.device): Using gpu or cpu.\n\n Returns\n code(torch.Tensor): Hash code.\n ' model.eval() with torch.no_grad(): N = len(dataloader.dataset) code = torch.zeros([N, code_length]) assignment = torch.zeros([N, num_classes]) for (data, _, index) in dataloader: data = data.to(device) (hash_code, class_assignment, _) = model(data, dynamic_meta_embedding, prototypes) code[(index, :)] = hash_code.sign().cpu() assignment[(index, :)] = class_assignment.cpu() torch.cuda.empty_cache() return (code, assignment)<|docstring|>Generate hash code Args dataloader(torch.utils.data.dataloader.DataLoader): Data loader. code_length(int): Hash code length. device(torch.device): Using gpu or cpu. Returns code(torch.Tensor): Hash code.<|endoftext|>
74cbb516a069aae8fac68a4016c1999022c058269a7b51e7c2377fa43129d099
def generate_prototypes(model, dataloader, num_prototypes, feature_dim, device, dynamic_meta_embedding, prototypes_placeholder): '\n Generate prototypes (visual memory)\n\n Args\n dataloader(torch.utils.data.dataloader.DataLoader): Data loader.\n code_length(int): Hash code length.\n device(torch.device): Using gpu or cpu.\n\n Returns\n code(torch.Tensor): prototypes.\n ' model.eval() with torch.no_grad(): prototypes = torch.zeros([num_prototypes, feature_dim]) counter = torch.zeros([num_prototypes]) for (data, targets, _) in dataloader: (data, targets) = (data.to(device), targets.to(device)) (_, _, direct_feature) = model(data, dynamic_meta_embedding, prototypes_placeholder) direct_feature = direct_feature.to('cpu') index = torch.nonzero(targets, as_tuple=False)[(:, 1)] index = index.to('cpu') for j in range(len(data)): prototypes[(index[j], :)] = (prototypes[(index[j], :)] + direct_feature[(j, :)]) counter[index[j]] = (counter[index[j]] + 1) for k in range(num_prototypes): prototypes[(k, :)] = (prototypes[(k, :)] / counter[k]) torch.cuda.empty_cache() return prototypes
Generate prototypes (visual memory) Args dataloader(torch.utils.data.dataloader.DataLoader): Data loader. code_length(int): Hash code length. device(torch.device): Using gpu or cpu. Returns code(torch.Tensor): prototypes.
lthNet.py
generate_prototypes
butterfly-chinese/long-tail-hashing
6
python
def generate_prototypes(model, dataloader, num_prototypes, feature_dim, device, dynamic_meta_embedding, prototypes_placeholder): '\n Generate prototypes (visual memory)\n\n Args\n dataloader(torch.utils.data.dataloader.DataLoader): Data loader.\n code_length(int): Hash code length.\n device(torch.device): Using gpu or cpu.\n\n Returns\n code(torch.Tensor): prototypes.\n ' model.eval() with torch.no_grad(): prototypes = torch.zeros([num_prototypes, feature_dim]) counter = torch.zeros([num_prototypes]) for (data, targets, _) in dataloader: (data, targets) = (data.to(device), targets.to(device)) (_, _, direct_feature) = model(data, dynamic_meta_embedding, prototypes_placeholder) direct_feature = direct_feature.to('cpu') index = torch.nonzero(targets, as_tuple=False)[(:, 1)] index = index.to('cpu') for j in range(len(data)): prototypes[(index[j], :)] = (prototypes[(index[j], :)] + direct_feature[(j, :)]) counter[index[j]] = (counter[index[j]] + 1) for k in range(num_prototypes): prototypes[(k, :)] = (prototypes[(k, :)] / counter[k]) torch.cuda.empty_cache() return prototypes
def generate_prototypes(model, dataloader, num_prototypes, feature_dim, device, dynamic_meta_embedding, prototypes_placeholder): '\n Generate prototypes (visual memory)\n\n Args\n dataloader(torch.utils.data.dataloader.DataLoader): Data loader.\n code_length(int): Hash code length.\n device(torch.device): Using gpu or cpu.\n\n Returns\n code(torch.Tensor): prototypes.\n ' model.eval() with torch.no_grad(): prototypes = torch.zeros([num_prototypes, feature_dim]) counter = torch.zeros([num_prototypes]) for (data, targets, _) in dataloader: (data, targets) = (data.to(device), targets.to(device)) (_, _, direct_feature) = model(data, dynamic_meta_embedding, prototypes_placeholder) direct_feature = direct_feature.to('cpu') index = torch.nonzero(targets, as_tuple=False)[(:, 1)] index = index.to('cpu') for j in range(len(data)): prototypes[(index[j], :)] = (prototypes[(index[j], :)] + direct_feature[(j, :)]) counter[index[j]] = (counter[index[j]] + 1) for k in range(num_prototypes): prototypes[(k, :)] = (prototypes[(k, :)] / counter[k]) torch.cuda.empty_cache() return prototypes<|docstring|>Generate prototypes (visual memory) Args dataloader(torch.utils.data.dataloader.DataLoader): Data loader. code_length(int): Hash code length. device(torch.device): Using gpu or cpu. Returns code(torch.Tensor): prototypes.<|endoftext|>
5a1385edd81fa2ea3a3fc7b2fe6d4934d11f126a3c86f6631b83e6765790f058
def roc_auc(predictions, target): '\n This methods returns the AUC Score when given the Predictions\n and Labels\n ' (fpr, tpr, thresholds) = metrics.roc_curve(target, predictions) roc_auc = metrics.auc(fpr, tpr) return roc_auc
This methods returns the AUC Score when given the Predictions and Labels
Jigsaw-Multilingual-Toxic-Comment-Classification/train-by-lstm.py
roc_auc
NCcoco/kaggle-project
0
python
def roc_auc(predictions, target): '\n This methods returns the AUC Score when given the Predictions\n and Labels\n ' (fpr, tpr, thresholds) = metrics.roc_curve(target, predictions) roc_auc = metrics.auc(fpr, tpr) return roc_auc
def roc_auc(predictions, target): '\n This methods returns the AUC Score when given the Predictions\n and Labels\n ' (fpr, tpr, thresholds) = metrics.roc_curve(target, predictions) roc_auc = metrics.auc(fpr, tpr) return roc_auc<|docstring|>This methods returns the AUC Score when given the Predictions and Labels<|endoftext|>
df06cdef78bb1d30663d76123313c03910bd17ae413b5f570b10ecedaa4af8c3
def __init__(self, exception: Exception, plugin_name: str=None, entry_point: EntryPoint=None): 'Initialize FailedToLoadPlugin exception.' self.plugin_name = plugin_name self.original_exception = exception self.entry_point = entry_point
Initialize FailedToLoadPlugin exception.
src/valiant/plugins/exceptions.py
__init__
pomes/valiant
2
python
def __init__(self, exception: Exception, plugin_name: str=None, entry_point: EntryPoint=None): self.plugin_name = plugin_name self.original_exception = exception self.entry_point = entry_point
def __init__(self, exception: Exception, plugin_name: str=None, entry_point: EntryPoint=None): self.plugin_name = plugin_name self.original_exception = exception self.entry_point = entry_point<|docstring|>Initialize FailedToLoadPlugin exception.<|endoftext|>
dcf311029fd7fe46fbdb97f49b2c90a8dfc3796c03a5bbda33045df1828108ca
def __str__(self): 'Format our exception message.' return f"Failed to load plugin '{self.plugin_name}' due to {self.original_exception}. Entry point is: {self.entry_point}. sys.path is: {sys.path}"
Format our exception message.
src/valiant/plugins/exceptions.py
__str__
pomes/valiant
2
python
def __str__(self): return f"Failed to load plugin '{self.plugin_name}' due to {self.original_exception}. Entry point is: {self.entry_point}. sys.path is: {sys.path}"
def __str__(self): return f"Failed to load plugin '{self.plugin_name}' due to {self.original_exception}. Entry point is: {self.entry_point}. sys.path is: {sys.path}"<|docstring|>Format our exception message.<|endoftext|>
1e9e36aae44db3f23d44efb0c623213e7370adf7fe66317427665a89273848d9
def __init__(self, channel): 'Constructor.\n\n Args:\n channel: A grpc.Channel.\n ' self.ProcessProposal = channel.unary_unary('/protos.Endorser/ProcessProposal', request_serializer=peer_dot_fabric__proposal__pb2.SignedProposal.SerializeToString, response_deserializer=peer_dot_fabric__proposal__response__pb2.ProposalResponse.FromString)
Constructor. Args: channel: A grpc.Channel.
bddtests/peer/fabric_service_pb2_grpc.py
__init__
memoutng/BlockchainTesteo
1
python
def __init__(self, channel): 'Constructor.\n\n Args:\n channel: A grpc.Channel.\n ' self.ProcessProposal = channel.unary_unary('/protos.Endorser/ProcessProposal', request_serializer=peer_dot_fabric__proposal__pb2.SignedProposal.SerializeToString, response_deserializer=peer_dot_fabric__proposal__response__pb2.ProposalResponse.FromString)
def __init__(self, channel): 'Constructor.\n\n Args:\n channel: A grpc.Channel.\n ' self.ProcessProposal = channel.unary_unary('/protos.Endorser/ProcessProposal', request_serializer=peer_dot_fabric__proposal__pb2.SignedProposal.SerializeToString, response_deserializer=peer_dot_fabric__proposal__response__pb2.ProposalResponse.FromString)<|docstring|>Constructor. Args: channel: A grpc.Channel.<|endoftext|>
66f1f8a224faff68eebaf153b6a47f99e84c96c92a17d722875d1c3046169b6c
@login_required(login_url='login') def profile(request: object): 'Profile function processes 1 types of request.\n\n 1. GET\n Returns the reset profile page.\n ' if (request.method == 'GET'): return render(request, template_name='alfastaff-products/profile.html', context={'user': request.user, 'avatar': request.user.profile.avatar.url})
Profile function processes 1 types of request. 1. GET Returns the reset profile page.
alfastaff_products/views.py
profile
spanickroon/Alfa-Staff
1
python
@login_required(login_url='login') def profile(request: object): 'Profile function processes 1 types of request.\n\n 1. GET\n Returns the reset profile page.\n ' if (request.method == 'GET'): return render(request, template_name='alfastaff-products/profile.html', context={'user': request.user, 'avatar': request.user.profile.avatar.url})
@login_required(login_url='login') def profile(request: object): 'Profile function processes 1 types of request.\n\n 1. GET\n Returns the reset profile page.\n ' if (request.method == 'GET'): return render(request, template_name='alfastaff-products/profile.html', context={'user': request.user, 'avatar': request.user.profile.avatar.url})<|docstring|>Profile function processes 1 types of request. 1. GET Returns the reset profile page.<|endoftext|>
23d69a37fff2f00741c13d7027e56b653b06c89506a748680cde301225a355a9
@login_required(login_url='login') def edit(request: object): 'Edit function processes 1 types of request.\n\n 1. GET\n Returns the edit page.\n ' if (request.method == 'GET'): return render(request, template_name='alfastaff-products/edit.html', context={'user': request.user, 'avatar': request.user.profile.avatar.url})
Edit function processes 1 types of request. 1. GET Returns the edit page.
alfastaff_products/views.py
edit
spanickroon/Alfa-Staff
1
python
@login_required(login_url='login') def edit(request: object): 'Edit function processes 1 types of request.\n\n 1. GET\n Returns the edit page.\n ' if (request.method == 'GET'): return render(request, template_name='alfastaff-products/edit.html', context={'user': request.user, 'avatar': request.user.profile.avatar.url})
@login_required(login_url='login') def edit(request: object): 'Edit function processes 1 types of request.\n\n 1. GET\n Returns the edit page.\n ' if (request.method == 'GET'): return render(request, template_name='alfastaff-products/edit.html', context={'user': request.user, 'avatar': request.user.profile.avatar.url})<|docstring|>Edit function processes 1 types of request. 1. GET Returns the edit page.<|endoftext|>
02246f70ead566342b1b9ce85fad8e403b304af73797c62bf2510a21ae18e002
@login_required(login_url='login') def edit_password(request: object): 'edit_password function processes 2 types of request post and get.\n\n 1. GET\n Redirect to the edit page;\n 2. POST\n Checks the validity of the data,\n checks whether the user verifies the passwords for equality;\n if everything is good, then he changes the password and redirects to the page,\n if the error returns it to the page.\n ' if (request.method == 'POST'): password_change_form = PasswordChangeForm(request.POST) if password_change_form.is_valid(): return edit_password_processing(request, password_change_form) else: return render(request, template_name='alfastaff-products/edit.html', context={'user': request.user, 'error': True, 'avatar': request.user.profile.avatar.url}) else: return redirect(to='edit')
edit_password function processes 2 types of request post and get. 1. GET Redirect to the edit page; 2. POST Checks the validity of the data, checks whether the user verifies the passwords for equality; if everything is good, then he changes the password and redirects to the page, if the error returns it to the page.
alfastaff_products/views.py
edit_password
spanickroon/Alfa-Staff
1
python
@login_required(login_url='login') def edit_password(request: object): 'edit_password function processes 2 types of request post and get.\n\n 1. GET\n Redirect to the edit page;\n 2. POST\n Checks the validity of the data,\n checks whether the user verifies the passwords for equality;\n if everything is good, then he changes the password and redirects to the page,\n if the error returns it to the page.\n ' if (request.method == 'POST'): password_change_form = PasswordChangeForm(request.POST) if password_change_form.is_valid(): return edit_password_processing(request, password_change_form) else: return render(request, template_name='alfastaff-products/edit.html', context={'user': request.user, 'error': True, 'avatar': request.user.profile.avatar.url}) else: return redirect(to='edit')
@login_required(login_url='login') def edit_password(request: object): 'edit_password function processes 2 types of request post and get.\n\n 1. GET\n Redirect to the edit page;\n 2. POST\n Checks the validity of the data,\n checks whether the user verifies the passwords for equality;\n if everything is good, then he changes the password and redirects to the page,\n if the error returns it to the page.\n ' if (request.method == 'POST'): password_change_form = PasswordChangeForm(request.POST) if password_change_form.is_valid(): return edit_password_processing(request, password_change_form) else: return render(request, template_name='alfastaff-products/edit.html', context={'user': request.user, 'error': True, 'avatar': request.user.profile.avatar.url}) else: return redirect(to='edit')<|docstring|>edit_password function processes 2 types of request post and get. 1. GET Redirect to the edit page; 2. POST Checks the validity of the data, checks whether the user verifies the passwords for equality; if everything is good, then he changes the password and redirects to the page, if the error returns it to the page.<|endoftext|>
aa5e345671ac35196ff49ff32f563c96fc4142d386949f0a0dfe0c9bdcb0d209
@login_required(login_url='login') def edit_profile(request: object): 'edit_profile function processes 2 types of request post and get.\n\n 1. GET\n Redirect to the edit page;\n 2. POST\n Checks the validity of the data,\n changes the user’s object fields and checks for the presence of a standard photo,\n saves the user and authorizes him again and then redirects to editing.\n ' if (request.method == 'POST'): profile_change_form = ProfileChangeForm(request.POST, request.FILES) if profile_change_form.is_valid(): return edit_profile_processing(request, profile_change_form) else: return render(request, template_name='alfastaff-products/edit.html', context={'user': request.user, 'error_profile': True}) else: return redirect(to='edit')
edit_profile function processes 2 types of request post and get. 1. GET Redirect to the edit page; 2. POST Checks the validity of the data, changes the user’s object fields and checks for the presence of a standard photo, saves the user and authorizes him again and then redirects to editing.
alfastaff_products/views.py
edit_profile
spanickroon/Alfa-Staff
1
python
@login_required(login_url='login') def edit_profile(request: object): 'edit_profile function processes 2 types of request post and get.\n\n 1. GET\n Redirect to the edit page;\n 2. POST\n Checks the validity of the data,\n changes the user’s object fields and checks for the presence of a standard photo,\n saves the user and authorizes him again and then redirects to editing.\n ' if (request.method == 'POST'): profile_change_form = ProfileChangeForm(request.POST, request.FILES) if profile_change_form.is_valid(): return edit_profile_processing(request, profile_change_form) else: return render(request, template_name='alfastaff-products/edit.html', context={'user': request.user, 'error_profile': True}) else: return redirect(to='edit')
@login_required(login_url='login') def edit_profile(request: object): 'edit_profile function processes 2 types of request post and get.\n\n 1. GET\n Redirect to the edit page;\n 2. POST\n Checks the validity of the data,\n changes the user’s object fields and checks for the presence of a standard photo,\n saves the user and authorizes him again and then redirects to editing.\n ' if (request.method == 'POST'): profile_change_form = ProfileChangeForm(request.POST, request.FILES) if profile_change_form.is_valid(): return edit_profile_processing(request, profile_change_form) else: return render(request, template_name='alfastaff-products/edit.html', context={'user': request.user, 'error_profile': True}) else: return redirect(to='edit')<|docstring|>edit_profile function processes 2 types of request post and get. 1. GET Redirect to the edit page; 2. POST Checks the validity of the data, changes the user’s object fields and checks for the presence of a standard photo, saves the user and authorizes him again and then redirects to editing.<|endoftext|>
2304f1884d992935a24b254b5a723218ff9f6c75cfeb9a5366f423905751cff8
@login_required(login_url='login') def logout_user(request: object): 'logout_user function processes 1 types of request.\n\n 1. GET\n Returns the login page and logout user.\n ' if (request.method == 'GET'): logout(request) return render(request, template_name='alfastaff-account/login.html', context={'user': request.user})
logout_user function processes 1 types of request. 1. GET Returns the login page and logout user.
alfastaff_products/views.py
logout_user
spanickroon/Alfa-Staff
1
python
@login_required(login_url='login') def logout_user(request: object): 'logout_user function processes 1 types of request.\n\n 1. GET\n Returns the login page and logout user.\n ' if (request.method == 'GET'): logout(request) return render(request, template_name='alfastaff-account/login.html', context={'user': request.user})
@login_required(login_url='login') def logout_user(request: object): 'logout_user function processes 1 types of request.\n\n 1. GET\n Returns the login page and logout user.\n ' if (request.method == 'GET'): logout(request) return render(request, template_name='alfastaff-account/login.html', context={'user': request.user})<|docstring|>logout_user function processes 1 types of request. 1. GET Returns the login page and logout user.<|endoftext|>
511ea99bfb567325de6cdd299195772004fb6e199c5b88d442504d8d4e99b542
@login_required(login_url='login') def purchases(request: object): 'Purchases function processes 1 types of request.\n\n 1. GET\n return number of page on purchases.html\n ' if (request.method == 'GET'): count_page = count_page_purchases(request) return render(request, template_name='alfastaff-products/purchases.html', context={'user': request.user, 'count_page': count_page})
Purchases function processes 1 types of request. 1. GET return number of page on purchases.html
alfastaff_products/views.py
purchases
spanickroon/Alfa-Staff
1
python
@login_required(login_url='login') def purchases(request: object): 'Purchases function processes 1 types of request.\n\n 1. GET\n return number of page on purchases.html\n ' if (request.method == 'GET'): count_page = count_page_purchases(request) return render(request, template_name='alfastaff-products/purchases.html', context={'user': request.user, 'count_page': count_page})
@login_required(login_url='login') def purchases(request: object): 'Purchases function processes 1 types of request.\n\n 1. GET\n return number of page on purchases.html\n ' if (request.method == 'GET'): count_page = count_page_purchases(request) return render(request, template_name='alfastaff-products/purchases.html', context={'user': request.user, 'count_page': count_page})<|docstring|>Purchases function processes 1 types of request. 1. GET return number of page on purchases.html<|endoftext|>
36622a86e4611c7a4c41817669ad8e86b209899d94b047f67313a584137ee260
@login_required(login_url='login') def purchases_page(request: object, page: int, sort: str): 'purchases_page function processes 1 types of request.\n\n 1. GET\n It takes several arguments from the query string such as the page number and sort name,\n takes out the elements according to the page and sorts them according to the sort name\n and returns to the page.\n ' if (request.method == 'GET'): purchases = get_purchases(request, page, sort) return render(request, template_name='alfastaff-products/list_purchases.html', context={'purchases': purchases})
purchases_page function processes 1 types of request. 1. GET It takes several arguments from the query string such as the page number and sort name, takes out the elements according to the page and sorts them according to the sort name and returns to the page.
alfastaff_products/views.py
purchases_page
spanickroon/Alfa-Staff
1
python
@login_required(login_url='login') def purchases_page(request: object, page: int, sort: str): 'purchases_page function processes 1 types of request.\n\n 1. GET\n It takes several arguments from the query string such as the page number and sort name,\n takes out the elements according to the page and sorts them according to the sort name\n and returns to the page.\n ' if (request.method == 'GET'): purchases = get_purchases(request, page, sort) return render(request, template_name='alfastaff-products/list_purchases.html', context={'purchases': purchases})
@login_required(login_url='login') def purchases_page(request: object, page: int, sort: str): 'purchases_page function processes 1 types of request.\n\n 1. GET\n It takes several arguments from the query string such as the page number and sort name,\n takes out the elements according to the page and sorts them according to the sort name\n and returns to the page.\n ' if (request.method == 'GET'): purchases = get_purchases(request, page, sort) return render(request, template_name='alfastaff-products/list_purchases.html', context={'purchases': purchases})<|docstring|>purchases_page function processes 1 types of request. 1. GET It takes several arguments from the query string such as the page number and sort name, takes out the elements according to the page and sorts them according to the sort name and returns to the page.<|endoftext|>
30d2312331438e6f8cb6bbe48e29caf92a7750411cae98fa5e9955378df57c6c
@login_required(login_url='login') def products(request: object): 'Product function processes 1 types of request.\n\n 1. GET\n return number of page on catalog.html\n ' if (request.method == 'GET'): count_page = count_page_products() return render(request, template_name='alfastaff-products/catalog.html', context={'user': request.user, 'count_page': count_page})
Product function processes 1 types of request. 1. GET return number of page on catalog.html
alfastaff_products/views.py
products
spanickroon/Alfa-Staff
1
python
@login_required(login_url='login') def products(request: object): 'Product function processes 1 types of request.\n\n 1. GET\n return number of page on catalog.html\n ' if (request.method == 'GET'): count_page = count_page_products() return render(request, template_name='alfastaff-products/catalog.html', context={'user': request.user, 'count_page': count_page})
@login_required(login_url='login') def products(request: object): 'Product function processes 1 types of request.\n\n 1. GET\n return number of page on catalog.html\n ' if (request.method == 'GET'): count_page = count_page_products() return render(request, template_name='alfastaff-products/catalog.html', context={'user': request.user, 'count_page': count_page})<|docstring|>Product function processes 1 types of request. 1. GET return number of page on catalog.html<|endoftext|>
24394623048df6774b6521ffa057d7c96304ea173a62ca0188a4b594df736582
@login_required(login_url='login') def products_page(request: object, page: int, sort: str): 'products_page function processes 1 types of request.\n\n 1. GET\n It takes several arguments from the query string such as the page number and sort name,\n takes out the elements according to the page and sorts them according to the sort name\n and returns to the page.\n ' if (request.method == 'GET'): products = get_products(request, page, sort) return render(request, template_name='alfastaff-products/list_products.html', context={'products': products})
products_page function processes 1 types of request. 1. GET It takes several arguments from the query string such as the page number and sort name, takes out the elements according to the page and sorts them according to the sort name and returns to the page.
alfastaff_products/views.py
products_page
spanickroon/Alfa-Staff
1
python
@login_required(login_url='login') def products_page(request: object, page: int, sort: str): 'products_page function processes 1 types of request.\n\n 1. GET\n It takes several arguments from the query string such as the page number and sort name,\n takes out the elements according to the page and sorts them according to the sort name\n and returns to the page.\n ' if (request.method == 'GET'): products = get_products(request, page, sort) return render(request, template_name='alfastaff-products/list_products.html', context={'products': products})
@login_required(login_url='login') def products_page(request: object, page: int, sort: str): 'products_page function processes 1 types of request.\n\n 1. GET\n It takes several arguments from the query string such as the page number and sort name,\n takes out the elements according to the page and sorts them according to the sort name\n and returns to the page.\n ' if (request.method == 'GET'): products = get_products(request, page, sort) return render(request, template_name='alfastaff-products/list_products.html', context={'products': products})<|docstring|>products_page function processes 1 types of request. 1. GET It takes several arguments from the query string such as the page number and sort name, takes out the elements according to the page and sorts them according to the sort name and returns to the page.<|endoftext|>
2f92e38435debbbb8def0918c5db15f92f79d756ed356558272fd52fe45974d1
@login_required(login_url='login') def buy(request: object, id: int): 'buy function processes 1 types of request.\n\n 1. GET\n We get the goods from the user’s database,\n check whether the purchase is possible and create a new purchase object,\n then save it, after which we send the message about the purchase to the administrator,\n otherwise we return an error in JSON format\n ' if (request.method == 'GET'): return buy_processing(request, id)
buy function processes 1 types of request. 1. GET We get the goods from the user’s database, check whether the purchase is possible and create a new purchase object, then save it, after which we send the message about the purchase to the administrator, otherwise we return an error in JSON format
alfastaff_products/views.py
buy
spanickroon/Alfa-Staff
1
python
@login_required(login_url='login') def buy(request: object, id: int): 'buy function processes 1 types of request.\n\n 1. GET\n We get the goods from the user’s database,\n check whether the purchase is possible and create a new purchase object,\n then save it, after which we send the message about the purchase to the administrator,\n otherwise we return an error in JSON format\n ' if (request.method == 'GET'): return buy_processing(request, id)
@login_required(login_url='login') def buy(request: object, id: int): 'buy function processes 1 types of request.\n\n 1. GET\n We get the goods from the user’s database,\n check whether the purchase is possible and create a new purchase object,\n then save it, after which we send the message about the purchase to the administrator,\n otherwise we return an error in JSON format\n ' if (request.method == 'GET'): return buy_processing(request, id)<|docstring|>buy function processes 1 types of request. 1. GET We get the goods from the user’s database, check whether the purchase is possible and create a new purchase object, then save it, after which we send the message about the purchase to the administrator, otherwise we return an error in JSON format<|endoftext|>
dbbb6748e6d5c28507e8a2212e029c75f8bbb4241e33adebdadf849fc0a0be62
@login_required(login_url='login') def top_up_account(request: object): 'top up an account function processes 1 types of request.\n\n 1. POST\n ' if (request.method == 'POST'): return top_up_account_processing(request)
top up an account function processes 1 types of request. 1. POST
alfastaff_products/views.py
top_up_account
spanickroon/Alfa-Staff
1
python
@login_required(login_url='login') def top_up_account(request: object): 'top up an account function processes 1 types of request.\n\n 1. POST\n ' if (request.method == 'POST'): return top_up_account_processing(request)
@login_required(login_url='login') def top_up_account(request: object): 'top up an account function processes 1 types of request.\n\n 1. POST\n ' if (request.method == 'POST'): return top_up_account_processing(request)<|docstring|>top up an account function processes 1 types of request. 1. POST<|endoftext|>
3f22a56aadb020be1fc28cc267f6d6c137f57bedb0f83d661bf6365fa1749217
def parse_loc(location_in: List[float], filecache=True): 'Takes location parameter and returns a list of coordinates.\n\n This function cleans the location parameter to a list of coordinates. If\n the location_in is a list it returns the list, else it uses the geopy\n interface to generatea list of coordinates from the descriptor.\n Args:\n location_in :List[float,float], str): List of latitude and longitude\n\n Returns:\n loc: List[float,float]\n ' if isinstance(location_in, str): if filecache: reqhash = md5(bytes(location_in, 'utf')).hexdigest() temp_dir = Path(tempfile.gettempdir()) fname = Path((reqhash + '.geolocator_cache')) if Path.exists(Path.joinpath(temp_dir, fname)): print("Using cached answer for '{}' as geolocator request".format(location_in)) with gzip.open(Path.joinpath(temp_dir, fname), 'rb') as f: locstring = f.readlines() loc = [float(item.decode()) for item in locstring] return loc else: geolocator = geopy.geocoders.Nominatim(user_agent='BuildingEnergySimulation') location = geolocator.geocode(location_in) loc = [location.latitude, location.longitude] with gzip.open(Path.joinpath(temp_dir, fname), 'wb') as f: for coord in loc: f.write(bytes((str(coord) + '\n'), 'ASCII')) return loc else: geolocator = geopy.geocoders.Nominatim(user_agent='BuildingEnergySimulation') location = geolocator.geocode(location_in) loc = [location.latitude, location.longitude] elif isinstance(location_in, list): loc = location_in pass return loc
Takes location parameter and returns a list of coordinates. This function cleans the location parameter to a list of coordinates. If the location_in is a list it returns the list, else it uses the geopy interface to generatea list of coordinates from the descriptor. Args: location_in :List[float,float], str): List of latitude and longitude Returns: loc: List[float,float]
BuildingEnergySimulation/construction.py
parse_loc
cbaretzky/BuiidingEnergySimulation
3
python
def parse_loc(location_in: List[float], filecache=True): 'Takes location parameter and returns a list of coordinates.\n\n This function cleans the location parameter to a list of coordinates. If\n the location_in is a list it returns the list, else it uses the geopy\n interface to generatea list of coordinates from the descriptor.\n Args:\n location_in :List[float,float], str): List of latitude and longitude\n\n Returns:\n loc: List[float,float]\n ' if isinstance(location_in, str): if filecache: reqhash = md5(bytes(location_in, 'utf')).hexdigest() temp_dir = Path(tempfile.gettempdir()) fname = Path((reqhash + '.geolocator_cache')) if Path.exists(Path.joinpath(temp_dir, fname)): print("Using cached answer for '{}' as geolocator request".format(location_in)) with gzip.open(Path.joinpath(temp_dir, fname), 'rb') as f: locstring = f.readlines() loc = [float(item.decode()) for item in locstring] return loc else: geolocator = geopy.geocoders.Nominatim(user_agent='BuildingEnergySimulation') location = geolocator.geocode(location_in) loc = [location.latitude, location.longitude] with gzip.open(Path.joinpath(temp_dir, fname), 'wb') as f: for coord in loc: f.write(bytes((str(coord) + '\n'), 'ASCII')) return loc else: geolocator = geopy.geocoders.Nominatim(user_agent='BuildingEnergySimulation') location = geolocator.geocode(location_in) loc = [location.latitude, location.longitude] elif isinstance(location_in, list): loc = location_in pass return loc
def parse_loc(location_in: List[float], filecache=True): 'Takes location parameter and returns a list of coordinates.\n\n This function cleans the location parameter to a list of coordinates. If\n the location_in is a list it returns the list, else it uses the geopy\n interface to generatea list of coordinates from the descriptor.\n Args:\n location_in :List[float,float], str): List of latitude and longitude\n\n Returns:\n loc: List[float,float]\n ' if isinstance(location_in, str): if filecache: reqhash = md5(bytes(location_in, 'utf')).hexdigest() temp_dir = Path(tempfile.gettempdir()) fname = Path((reqhash + '.geolocator_cache')) if Path.exists(Path.joinpath(temp_dir, fname)): print("Using cached answer for '{}' as geolocator request".format(location_in)) with gzip.open(Path.joinpath(temp_dir, fname), 'rb') as f: locstring = f.readlines() loc = [float(item.decode()) for item in locstring] return loc else: geolocator = geopy.geocoders.Nominatim(user_agent='BuildingEnergySimulation') location = geolocator.geocode(location_in) loc = [location.latitude, location.longitude] with gzip.open(Path.joinpath(temp_dir, fname), 'wb') as f: for coord in loc: f.write(bytes((str(coord) + '\n'), 'ASCII')) return loc else: geolocator = geopy.geocoders.Nominatim(user_agent='BuildingEnergySimulation') location = geolocator.geocode(location_in) loc = [location.latitude, location.longitude] elif isinstance(location_in, list): loc = location_in pass return loc<|docstring|>Takes location parameter and returns a list of coordinates. This function cleans the location parameter to a list of coordinates. If the location_in is a list it returns the list, else it uses the geopy interface to generatea list of coordinates from the descriptor. Args: location_in :List[float,float], str): List of latitude and longitude Returns: loc: List[float,float]<|endoftext|>
f63c56c00bf311c27028ae32a40a6142525d7de423309be64057420e5789d90e
def get_component(self, searchterm: str) -> list: 'Return all components of a specifc type.\n\n Args:\n searchterm (str): Name of component/type\n\n Returns:\n found (List): List of objects with specific name/type.\n\n ' found = [] for (name, component) in self.components.items(): if (searchterm in name): found.append(component) return found
Return all components of a specifc type. Args: searchterm (str): Name of component/type Returns: found (List): List of objects with specific name/type.
BuildingEnergySimulation/construction.py
get_component
cbaretzky/BuiidingEnergySimulation
3
python
def get_component(self, searchterm: str) -> list: 'Return all components of a specifc type.\n\n Args:\n searchterm (str): Name of component/type\n\n Returns:\n found (List): List of objects with specific name/type.\n\n ' found = [] for (name, component) in self.components.items(): if (searchterm in name): found.append(component) return found
def get_component(self, searchterm: str) -> list: 'Return all components of a specifc type.\n\n Args:\n searchterm (str): Name of component/type\n\n Returns:\n found (List): List of objects with specific name/type.\n\n ' found = [] for (name, component) in self.components.items(): if (searchterm in name): found.append(component) return found<|docstring|>Return all components of a specifc type. Args: searchterm (str): Name of component/type Returns: found (List): List of objects with specific name/type.<|endoftext|>
82f5aa039e4a8cec272d3780121be8d2b0546c2b50e1bca448e41a5de5805dc2
def reg(self, component, *args, **kwargs): 'Wrapper to register from within the building instance.\n\n instead of::\n $ bes.Component.reg(*args, **kwargs)\n\n it can be::\n $ building.reg(bes.Wall, *args, **kwargs)\n\n ' component.reg(self, *args, **kwargs)
Wrapper to register from within the building instance. instead of:: $ bes.Component.reg(*args, **kwargs) it can be:: $ building.reg(bes.Wall, *args, **kwargs)
BuildingEnergySimulation/construction.py
reg
cbaretzky/BuiidingEnergySimulation
3
python
def reg(self, component, *args, **kwargs): 'Wrapper to register from within the building instance.\n\n instead of::\n $ bes.Component.reg(*args, **kwargs)\n\n it can be::\n $ building.reg(bes.Wall, *args, **kwargs)\n\n ' component.reg(self, *args, **kwargs)
def reg(self, component, *args, **kwargs): 'Wrapper to register from within the building instance.\n\n instead of::\n $ bes.Component.reg(*args, **kwargs)\n\n it can be::\n $ building.reg(bes.Wall, *args, **kwargs)\n\n ' component.reg(self, *args, **kwargs)<|docstring|>Wrapper to register from within the building instance. instead of:: $ bes.Component.reg(*args, **kwargs) it can be:: $ building.reg(bes.Wall, *args, **kwargs)<|endoftext|>
18676f5afc1a47856415ecd26505154eae44a62041df3f6eb7e72b73a5284d53
def simulate(self, timeframe_start: datetime.datetime, timeframe_stop: datetime.datetime) -> pd.DataFrame: 'Run the simulation from timeframe_start to timeframe_stop with the\n defined timestep\n\n Args:\n timeframe_start (datetime.datetime): First date of timeframe.\n timeframe_stop (datetime.datetime): Last date of timeframe.\n ' freq = '{}s'.format(self.timestep) times = pd.date_range(timeframe_start, timeframe_stop, freq=freq) self.sim_result_list = [] for time in times: self.date = pd.to_datetime(time) self.result = {} self.result.update({'Date': self.date, 'Tamb': self.Pvgis[self.date]['Tamb']}) for (_, component) in self.components.items(): _ = component.out self.sim_result_list.append(self.result) self.sim_results = pd.DataFrame(self.sim_result_list) self.sim_results.index = self.sim_results.Date return self.sim_results
Run the simulation from timeframe_start to timeframe_stop with the defined timestep Args: timeframe_start (datetime.datetime): First date of timeframe. timeframe_stop (datetime.datetime): Last date of timeframe.
BuildingEnergySimulation/construction.py
simulate
cbaretzky/BuiidingEnergySimulation
3
python
def simulate(self, timeframe_start: datetime.datetime, timeframe_stop: datetime.datetime) -> pd.DataFrame: 'Run the simulation from timeframe_start to timeframe_stop with the\n defined timestep\n\n Args:\n timeframe_start (datetime.datetime): First date of timeframe.\n timeframe_stop (datetime.datetime): Last date of timeframe.\n ' freq = '{}s'.format(self.timestep) times = pd.date_range(timeframe_start, timeframe_stop, freq=freq) self.sim_result_list = [] for time in times: self.date = pd.to_datetime(time) self.result = {} self.result.update({'Date': self.date, 'Tamb': self.Pvgis[self.date]['Tamb']}) for (_, component) in self.components.items(): _ = component.out self.sim_result_list.append(self.result) self.sim_results = pd.DataFrame(self.sim_result_list) self.sim_results.index = self.sim_results.Date return self.sim_results
def simulate(self, timeframe_start: datetime.datetime, timeframe_stop: datetime.datetime) -> pd.DataFrame: 'Run the simulation from timeframe_start to timeframe_stop with the\n defined timestep\n\n Args:\n timeframe_start (datetime.datetime): First date of timeframe.\n timeframe_stop (datetime.datetime): Last date of timeframe.\n ' freq = '{}s'.format(self.timestep) times = pd.date_range(timeframe_start, timeframe_stop, freq=freq) self.sim_result_list = [] for time in times: self.date = pd.to_datetime(time) self.result = {} self.result.update({'Date': self.date, 'Tamb': self.Pvgis[self.date]['Tamb']}) for (_, component) in self.components.items(): _ = component.out self.sim_result_list.append(self.result) self.sim_results = pd.DataFrame(self.sim_result_list) self.sim_results.index = self.sim_results.Date return self.sim_results<|docstring|>Run the simulation from timeframe_start to timeframe_stop with the defined timestep Args: timeframe_start (datetime.datetime): First date of timeframe. timeframe_stop (datetime.datetime): Last date of timeframe.<|endoftext|>
31d164e7a3f0e844e4b9fa06fe668212f2978940c8abe4099d356cd4f43d15af
def reg(self, name, head): '\n Let Classes register new losses\n ' pass
Let Classes register new losses
BuildingEnergySimulation/construction.py
reg
cbaretzky/BuiidingEnergySimulation
3
python
def reg(self, name, head): '\n \n ' pass
def reg(self, name, head): '\n \n ' pass<|docstring|>Let Classes register new losses<|endoftext|>
6e1050a3e6f9ba171286894e0e525aecf154cd870c2fd6581ff32654ae0918a4
def update(self, name, vals): '\n Shift Timestamp forward\n Do Calculations\n ' pass
Shift Timestamp forward Do Calculations
BuildingEnergySimulation/construction.py
update
cbaretzky/BuiidingEnergySimulation
3
python
def update(self, name, vals): '\n Shift Timestamp forward\n Do Calculations\n ' pass
def update(self, name, vals): '\n Shift Timestamp forward\n Do Calculations\n ' pass<|docstring|>Shift Timestamp forward Do Calculations<|endoftext|>
984dc1603a88837ed59d6b8a23928a9d5be080c41b3fb014bad1befa9000288f
def build_BNN(data, output_condition, cd=98, mss=1, md=30, relevant_neuron_dictionary={}, with_data=1, discretization=0, cluster_means=None): '\n\tStarting from the target condition and until the conditions with respect \n\tto the first hidden layer, it extracts a DNF that explains each condition\n\tusing conditions of the next shallower layer\n\t\n\tparam data: instance of DataSet\n\tparam output_condition: condition of interest\n\tparam cd: class dominance\n\tparam mss: minimum dataset size\n\tparam md: maximum tree depth\n\tparam with_data: Avoid ==0. If == 1, the regular simplification operations are performed, if == 2, post-ppruning is performed\n\tparam discretization: method used to determine the thresholds that split the activation range of each neuron\n\t' BNN = {} deep_layer = data.output_layer target_class = [output_condition] print('deep layer: ') print(deep_layer) print('targetclass: ') print(target_class) while (deep_layer > 0): target_split_values = set(((l, n, t) for (l, n, t, u) in target_class)) print('target_split_values: ') print(target_split_values) if (not target_split_values): warnings.warn(('Warning: no split points, returning current dictionary at layer: ' + str(deep_layer))) print('Target split values', target_split_values) used_shallow_conditions = set([]) current_data = temp_data(data, (deep_layer - 1), target_class) if (discretization == 0): split_points = dis.all_features_trivial_mid_points(current_data) elif ((discretization == 1) or (discretization == 3)): split_points = dis.one_time_discretization(current_data, discretization, rnd=relevant_neuron_dictionary, tsv=list(target_split_values)) elif ((discretization == 2) or (discretization == 4)): split_points = cluster_means[(deep_layer - 1)] elif (discretization == 6): colum = [[d[c] for d in current_data] for c in range((len(current_data[0]) - 1))] split_points = [[(sum(vq.kmeans(v, 2)[0]) / 2)] for v in colum] elif (discretization == 5): if (deep_layer == 1): split_points = [[0.5] for l in range((len(current_data[0]) - 1))] else: split_points = [[0] for l in range((len(current_data[0]) - 1))] print('Split points', [len(l) for l in split_points]) print('') for i in target_split_values: print('') print('i: ', i) t = time.time() i_data = temp_data(data, (deep_layer - 1), i) tree = None if (relevant_neuron_dictionary and (discretization == 0)): pruned_split_points = [_sp(j, i, split_points, relevant_neuron_dictionary) for j in range(len(split_points))] tree = dt.buildtree(i_data, pruned_split_points, class_dominance=cd, min_set_size=mss, max_depth=md, root=True) else: tree = dt.buildtree(i_data, split_points, class_dominance=cd, min_set_size=mss, max_depth=md, root=True) if (not tree): cero_class = sum((1 for x in i_data if (x[(- 1)] == 0))) one_class = sum((1 for x in i_data if (x[(- 1)] == 1))) if (cero_class > one_class): BNN[(i[0], i[1], i[2], True)] = False BNN[(i[0], i[1], i[2], False)] = True else: BNN[(i[0], i[1], i[2], False)] = True BNN[(i[0], i[1], i[2], True)] = False break print('Tree is formed') print('Time: ', (time.time() - t)) dnfs = dt.get_dnfs((deep_layer - 1), tree) print('DNF:') print(dnfs) if ((i[0], i[1], i[2], False) in target_class): print('False case') pruned = None if isinstance(dnfs[0], list): print('Fidelity pre-pruning:', ef.accuracy_of_dnf(data, (i[0], i[1], i[2], False), dnfs[0], True, False, False, True)) print('Precision pre-pruning:', ef.precision_of_dnf(data, (i[0], i[1], i[2], False), dnfs[0], True, False, False, True)) print('Recall pre-pruning:', ef.recall_of_dnf(data, (i[0], i[1], i[2], False), dnfs[0], True, False, False, True)) data.update_dictionary([(l, n, t) for conj in dnfs[0] for (l, n, t, u) in conj]) if (with_data == 0): pruned = s.boolean_simplify_basic(dnfs[0]) elif (with_data >= 1): pruned = s.boolean_simplify_complex(dnfs[0]) if (with_data == 2): pruned = p.post_prune(pruned, (i[0], i[1], i[2], False), data.example_cond_dict, data.dict_indexes, data=None) used_shallow_conditions.update(set((c for conj in pruned for c in conj))) else: pruned = dnfs[0] print('Fidelity post-pruning:', ef.accuracy_of_dnf(data, (i[0], i[1], i[2], False), pruned, True, False, False, True)) print('Precision post-pruning:', ef.precision_of_dnf(data, (i[0], i[1], i[2], False), pruned, True, False, False, True)) print('Recall post-pruning:', ef.recall_of_dnf(data, (i[0], i[1], i[2], False), pruned, True, False, False, True)) BNN[(i[0], i[1], i[2], False)] = pruned print((i[0], i[1], i[2], False), pruned) if ((i[0], i[1], i[2], True) in target_class): print('True case') pruned = None if isinstance(dnfs[1], list): print('Fidelity pre-pruning:', ef.accuracy_of_dnf(data, (i[0], i[1], i[2], True), dnfs[1], True, False, False, True)) print('Precision pre-pruning:', ef.precision_of_dnf(data, (i[0], i[1], i[2], True), dnfs[1], True, False, False, True)) print('Recall pre-pruning:', ef.recall_of_dnf(data, (i[0], i[1], i[2], True), dnfs[1], True, False, False, True)) data.update_dictionary([(l, n, t) for conj in dnfs[1] for (l, n, t, u) in conj]) if (with_data == 0): pruned = s.boolean_simplify_basic(dnfs[1]) elif (with_data >= 1): pruned = s.boolean_simplify_complex(dnfs[1]) if (with_data == 2): pruned = p.post_prune(pruned, (i[0], i[1], i[2], True), data.example_cond_dict, data.dict_indexes, data=None) used_shallow_conditions.update(set((c for conj in pruned for c in conj))) else: pruned = dnfs[1] print('Fidelity post-pruning:', ef.accuracy_of_dnf(data, (i[0], i[1], i[2], True), pruned, True, False, False, True)) print('Precision post-pruning:', ef.precision_of_dnf(data, (i[0], i[1], i[2], True), pruned, True, False, False, True)) print('Recall post-pruning:', ef.recall_of_dnf(data, (i[0], i[1], i[2], True), pruned, True, False, False, True)) BNN[(i[0], i[1], i[2], True)] = pruned print((i[0], i[1], i[2], True), pruned) deep_layer -= 1 target_class = list(used_shallow_conditions) return BNN
Starting from the target condition and until the conditions with respect to the first hidden layer, it extracts a DNF that explains each condition using conditions of the next shallower layer param data: instance of DataSet param output_condition: condition of interest param cd: class dominance param mss: minimum dataset size param md: maximum tree depth param with_data: Avoid ==0. If == 1, the regular simplification operations are performed, if == 2, post-ppruning is performed param discretization: method used to determine the thresholds that split the activation range of each neuron
lens/models/ext_models/deep_red/decision_tree_induction.py
build_BNN
pietrobarbiero/logic_explained_networks
18
python
def build_BNN(data, output_condition, cd=98, mss=1, md=30, relevant_neuron_dictionary={}, with_data=1, discretization=0, cluster_means=None): '\n\tStarting from the target condition and until the conditions with respect \n\tto the first hidden layer, it extracts a DNF that explains each condition\n\tusing conditions of the next shallower layer\n\t\n\tparam data: instance of DataSet\n\tparam output_condition: condition of interest\n\tparam cd: class dominance\n\tparam mss: minimum dataset size\n\tparam md: maximum tree depth\n\tparam with_data: Avoid ==0. If == 1, the regular simplification operations are performed, if == 2, post-ppruning is performed\n\tparam discretization: method used to determine the thresholds that split the activation range of each neuron\n\t' BNN = {} deep_layer = data.output_layer target_class = [output_condition] print('deep layer: ') print(deep_layer) print('targetclass: ') print(target_class) while (deep_layer > 0): target_split_values = set(((l, n, t) for (l, n, t, u) in target_class)) print('target_split_values: ') print(target_split_values) if (not target_split_values): warnings.warn(('Warning: no split points, returning current dictionary at layer: ' + str(deep_layer))) print('Target split values', target_split_values) used_shallow_conditions = set([]) current_data = temp_data(data, (deep_layer - 1), target_class) if (discretization == 0): split_points = dis.all_features_trivial_mid_points(current_data) elif ((discretization == 1) or (discretization == 3)): split_points = dis.one_time_discretization(current_data, discretization, rnd=relevant_neuron_dictionary, tsv=list(target_split_values)) elif ((discretization == 2) or (discretization == 4)): split_points = cluster_means[(deep_layer - 1)] elif (discretization == 6): colum = [[d[c] for d in current_data] for c in range((len(current_data[0]) - 1))] split_points = [[(sum(vq.kmeans(v, 2)[0]) / 2)] for v in colum] elif (discretization == 5): if (deep_layer == 1): split_points = [[0.5] for l in range((len(current_data[0]) - 1))] else: split_points = [[0] for l in range((len(current_data[0]) - 1))] print('Split points', [len(l) for l in split_points]) print() for i in target_split_values: print() print('i: ', i) t = time.time() i_data = temp_data(data, (deep_layer - 1), i) tree = None if (relevant_neuron_dictionary and (discretization == 0)): pruned_split_points = [_sp(j, i, split_points, relevant_neuron_dictionary) for j in range(len(split_points))] tree = dt.buildtree(i_data, pruned_split_points, class_dominance=cd, min_set_size=mss, max_depth=md, root=True) else: tree = dt.buildtree(i_data, split_points, class_dominance=cd, min_set_size=mss, max_depth=md, root=True) if (not tree): cero_class = sum((1 for x in i_data if (x[(- 1)] == 0))) one_class = sum((1 for x in i_data if (x[(- 1)] == 1))) if (cero_class > one_class): BNN[(i[0], i[1], i[2], True)] = False BNN[(i[0], i[1], i[2], False)] = True else: BNN[(i[0], i[1], i[2], False)] = True BNN[(i[0], i[1], i[2], True)] = False break print('Tree is formed') print('Time: ', (time.time() - t)) dnfs = dt.get_dnfs((deep_layer - 1), tree) print('DNF:') print(dnfs) if ((i[0], i[1], i[2], False) in target_class): print('False case') pruned = None if isinstance(dnfs[0], list): print('Fidelity pre-pruning:', ef.accuracy_of_dnf(data, (i[0], i[1], i[2], False), dnfs[0], True, False, False, True)) print('Precision pre-pruning:', ef.precision_of_dnf(data, (i[0], i[1], i[2], False), dnfs[0], True, False, False, True)) print('Recall pre-pruning:', ef.recall_of_dnf(data, (i[0], i[1], i[2], False), dnfs[0], True, False, False, True)) data.update_dictionary([(l, n, t) for conj in dnfs[0] for (l, n, t, u) in conj]) if (with_data == 0): pruned = s.boolean_simplify_basic(dnfs[0]) elif (with_data >= 1): pruned = s.boolean_simplify_complex(dnfs[0]) if (with_data == 2): pruned = p.post_prune(pruned, (i[0], i[1], i[2], False), data.example_cond_dict, data.dict_indexes, data=None) used_shallow_conditions.update(set((c for conj in pruned for c in conj))) else: pruned = dnfs[0] print('Fidelity post-pruning:', ef.accuracy_of_dnf(data, (i[0], i[1], i[2], False), pruned, True, False, False, True)) print('Precision post-pruning:', ef.precision_of_dnf(data, (i[0], i[1], i[2], False), pruned, True, False, False, True)) print('Recall post-pruning:', ef.recall_of_dnf(data, (i[0], i[1], i[2], False), pruned, True, False, False, True)) BNN[(i[0], i[1], i[2], False)] = pruned print((i[0], i[1], i[2], False), pruned) if ((i[0], i[1], i[2], True) in target_class): print('True case') pruned = None if isinstance(dnfs[1], list): print('Fidelity pre-pruning:', ef.accuracy_of_dnf(data, (i[0], i[1], i[2], True), dnfs[1], True, False, False, True)) print('Precision pre-pruning:', ef.precision_of_dnf(data, (i[0], i[1], i[2], True), dnfs[1], True, False, False, True)) print('Recall pre-pruning:', ef.recall_of_dnf(data, (i[0], i[1], i[2], True), dnfs[1], True, False, False, True)) data.update_dictionary([(l, n, t) for conj in dnfs[1] for (l, n, t, u) in conj]) if (with_data == 0): pruned = s.boolean_simplify_basic(dnfs[1]) elif (with_data >= 1): pruned = s.boolean_simplify_complex(dnfs[1]) if (with_data == 2): pruned = p.post_prune(pruned, (i[0], i[1], i[2], True), data.example_cond_dict, data.dict_indexes, data=None) used_shallow_conditions.update(set((c for conj in pruned for c in conj))) else: pruned = dnfs[1] print('Fidelity post-pruning:', ef.accuracy_of_dnf(data, (i[0], i[1], i[2], True), pruned, True, False, False, True)) print('Precision post-pruning:', ef.precision_of_dnf(data, (i[0], i[1], i[2], True), pruned, True, False, False, True)) print('Recall post-pruning:', ef.recall_of_dnf(data, (i[0], i[1], i[2], True), pruned, True, False, False, True)) BNN[(i[0], i[1], i[2], True)] = pruned print((i[0], i[1], i[2], True), pruned) deep_layer -= 1 target_class = list(used_shallow_conditions) return BNN
def build_BNN(data, output_condition, cd=98, mss=1, md=30, relevant_neuron_dictionary={}, with_data=1, discretization=0, cluster_means=None): '\n\tStarting from the target condition and until the conditions with respect \n\tto the first hidden layer, it extracts a DNF that explains each condition\n\tusing conditions of the next shallower layer\n\t\n\tparam data: instance of DataSet\n\tparam output_condition: condition of interest\n\tparam cd: class dominance\n\tparam mss: minimum dataset size\n\tparam md: maximum tree depth\n\tparam with_data: Avoid ==0. If == 1, the regular simplification operations are performed, if == 2, post-ppruning is performed\n\tparam discretization: method used to determine the thresholds that split the activation range of each neuron\n\t' BNN = {} deep_layer = data.output_layer target_class = [output_condition] print('deep layer: ') print(deep_layer) print('targetclass: ') print(target_class) while (deep_layer > 0): target_split_values = set(((l, n, t) for (l, n, t, u) in target_class)) print('target_split_values: ') print(target_split_values) if (not target_split_values): warnings.warn(('Warning: no split points, returning current dictionary at layer: ' + str(deep_layer))) print('Target split values', target_split_values) used_shallow_conditions = set([]) current_data = temp_data(data, (deep_layer - 1), target_class) if (discretization == 0): split_points = dis.all_features_trivial_mid_points(current_data) elif ((discretization == 1) or (discretization == 3)): split_points = dis.one_time_discretization(current_data, discretization, rnd=relevant_neuron_dictionary, tsv=list(target_split_values)) elif ((discretization == 2) or (discretization == 4)): split_points = cluster_means[(deep_layer - 1)] elif (discretization == 6): colum = [[d[c] for d in current_data] for c in range((len(current_data[0]) - 1))] split_points = [[(sum(vq.kmeans(v, 2)[0]) / 2)] for v in colum] elif (discretization == 5): if (deep_layer == 1): split_points = [[0.5] for l in range((len(current_data[0]) - 1))] else: split_points = [[0] for l in range((len(current_data[0]) - 1))] print('Split points', [len(l) for l in split_points]) print() for i in target_split_values: print() print('i: ', i) t = time.time() i_data = temp_data(data, (deep_layer - 1), i) tree = None if (relevant_neuron_dictionary and (discretization == 0)): pruned_split_points = [_sp(j, i, split_points, relevant_neuron_dictionary) for j in range(len(split_points))] tree = dt.buildtree(i_data, pruned_split_points, class_dominance=cd, min_set_size=mss, max_depth=md, root=True) else: tree = dt.buildtree(i_data, split_points, class_dominance=cd, min_set_size=mss, max_depth=md, root=True) if (not tree): cero_class = sum((1 for x in i_data if (x[(- 1)] == 0))) one_class = sum((1 for x in i_data if (x[(- 1)] == 1))) if (cero_class > one_class): BNN[(i[0], i[1], i[2], True)] = False BNN[(i[0], i[1], i[2], False)] = True else: BNN[(i[0], i[1], i[2], False)] = True BNN[(i[0], i[1], i[2], True)] = False break print('Tree is formed') print('Time: ', (time.time() - t)) dnfs = dt.get_dnfs((deep_layer - 1), tree) print('DNF:') print(dnfs) if ((i[0], i[1], i[2], False) in target_class): print('False case') pruned = None if isinstance(dnfs[0], list): print('Fidelity pre-pruning:', ef.accuracy_of_dnf(data, (i[0], i[1], i[2], False), dnfs[0], True, False, False, True)) print('Precision pre-pruning:', ef.precision_of_dnf(data, (i[0], i[1], i[2], False), dnfs[0], True, False, False, True)) print('Recall pre-pruning:', ef.recall_of_dnf(data, (i[0], i[1], i[2], False), dnfs[0], True, False, False, True)) data.update_dictionary([(l, n, t) for conj in dnfs[0] for (l, n, t, u) in conj]) if (with_data == 0): pruned = s.boolean_simplify_basic(dnfs[0]) elif (with_data >= 1): pruned = s.boolean_simplify_complex(dnfs[0]) if (with_data == 2): pruned = p.post_prune(pruned, (i[0], i[1], i[2], False), data.example_cond_dict, data.dict_indexes, data=None) used_shallow_conditions.update(set((c for conj in pruned for c in conj))) else: pruned = dnfs[0] print('Fidelity post-pruning:', ef.accuracy_of_dnf(data, (i[0], i[1], i[2], False), pruned, True, False, False, True)) print('Precision post-pruning:', ef.precision_of_dnf(data, (i[0], i[1], i[2], False), pruned, True, False, False, True)) print('Recall post-pruning:', ef.recall_of_dnf(data, (i[0], i[1], i[2], False), pruned, True, False, False, True)) BNN[(i[0], i[1], i[2], False)] = pruned print((i[0], i[1], i[2], False), pruned) if ((i[0], i[1], i[2], True) in target_class): print('True case') pruned = None if isinstance(dnfs[1], list): print('Fidelity pre-pruning:', ef.accuracy_of_dnf(data, (i[0], i[1], i[2], True), dnfs[1], True, False, False, True)) print('Precision pre-pruning:', ef.precision_of_dnf(data, (i[0], i[1], i[2], True), dnfs[1], True, False, False, True)) print('Recall pre-pruning:', ef.recall_of_dnf(data, (i[0], i[1], i[2], True), dnfs[1], True, False, False, True)) data.update_dictionary([(l, n, t) for conj in dnfs[1] for (l, n, t, u) in conj]) if (with_data == 0): pruned = s.boolean_simplify_basic(dnfs[1]) elif (with_data >= 1): pruned = s.boolean_simplify_complex(dnfs[1]) if (with_data == 2): pruned = p.post_prune(pruned, (i[0], i[1], i[2], True), data.example_cond_dict, data.dict_indexes, data=None) used_shallow_conditions.update(set((c for conj in pruned for c in conj))) else: pruned = dnfs[1] print('Fidelity post-pruning:', ef.accuracy_of_dnf(data, (i[0], i[1], i[2], True), pruned, True, False, False, True)) print('Precision post-pruning:', ef.precision_of_dnf(data, (i[0], i[1], i[2], True), pruned, True, False, False, True)) print('Recall post-pruning:', ef.recall_of_dnf(data, (i[0], i[1], i[2], True), pruned, True, False, False, True)) BNN[(i[0], i[1], i[2], True)] = pruned print((i[0], i[1], i[2], True), pruned) deep_layer -= 1 target_class = list(used_shallow_conditions) return BNN<|docstring|>Starting from the target condition and until the conditions with respect to the first hidden layer, it extracts a DNF that explains each condition using conditions of the next shallower layer param data: instance of DataSet param output_condition: condition of interest param cd: class dominance param mss: minimum dataset size param md: maximum tree depth param with_data: Avoid ==0. If == 1, the regular simplification operations are performed, if == 2, post-ppruning is performed param discretization: method used to determine the thresholds that split the activation range of each neuron<|endoftext|>
f628079eb8cc10a08e5ec6354cb9b3db9a175615b978d61bab8b1fec0c015d4b
def temp_data(data, shallow, tc, deep=None): '\n\t param data: the dataset\n\t type data: DataSet\n\t param shallow: shallow layer index\n\t type shallow: int\n\t param target_class: list of split points\n\t type target_class: list of (int, int, float) tuples\n\t return: a dataset that includes all instances from the train and\n\tvaldation sets made of the attributes of the shallow layer and a class\n\tmade up of a concatenation of the target_class values\n\t rtype: list of lists\n\t' if (not deep): deep = (shallow + 1) return [(list(e.values[shallow]) + [target_class(tc, e.values[deep])]) for e in data.get_train_obs()]
param data: the dataset type data: DataSet param shallow: shallow layer index type shallow: int param target_class: list of split points type target_class: list of (int, int, float) tuples return: a dataset that includes all instances from the train and valdation sets made of the attributes of the shallow layer and a class made up of a concatenation of the target_class values rtype: list of lists
lens/models/ext_models/deep_red/decision_tree_induction.py
temp_data
pietrobarbiero/logic_explained_networks
18
python
def temp_data(data, shallow, tc, deep=None): '\n\t param data: the dataset\n\t type data: DataSet\n\t param shallow: shallow layer index\n\t type shallow: int\n\t param target_class: list of split points\n\t type target_class: list of (int, int, float) tuples\n\t return: a dataset that includes all instances from the train and\n\tvaldation sets made of the attributes of the shallow layer and a class\n\tmade up of a concatenation of the target_class values\n\t rtype: list of lists\n\t' if (not deep): deep = (shallow + 1) return [(list(e.values[shallow]) + [target_class(tc, e.values[deep])]) for e in data.get_train_obs()]
def temp_data(data, shallow, tc, deep=None): '\n\t param data: the dataset\n\t type data: DataSet\n\t param shallow: shallow layer index\n\t type shallow: int\n\t param target_class: list of split points\n\t type target_class: list of (int, int, float) tuples\n\t return: a dataset that includes all instances from the train and\n\tvaldation sets made of the attributes of the shallow layer and a class\n\tmade up of a concatenation of the target_class values\n\t rtype: list of lists\n\t' if (not deep): deep = (shallow + 1) return [(list(e.values[shallow]) + [target_class(tc, e.values[deep])]) for e in data.get_train_obs()]<|docstring|>param data: the dataset type data: DataSet param shallow: shallow layer index type shallow: int param target_class: list of split points type target_class: list of (int, int, float) tuples return: a dataset that includes all instances from the train and valdation sets made of the attributes of the shallow layer and a class made up of a concatenation of the target_class values rtype: list of lists<|endoftext|>
cdd5b47a1bdd227c764cb8ea4326c91685bd04df344670308c5bca873bf88992
def server_error_401(request, template_name='401.html'): 'A simple 401 handler so we get media.' response = render(request, template_name) response.status_code = 401 return response
A simple 401 handler so we get media.
readthedocs/docsitalia/views/core_views.py
server_error_401
italia/readthedocs.org
19
python
def server_error_401(request, template_name='401.html'): response = render(request, template_name) response.status_code = 401 return response
def server_error_401(request, template_name='401.html'): response = render(request, template_name) response.status_code = 401 return response<|docstring|>A simple 401 handler so we get media.<|endoftext|>
b3721ac6a314deb54f56677b0d7ef01bff41bac4220da39acc775878456e0d34
def search_by_tag(request, tag): 'Wrapper around readthedocs.search.views.elastic_search to search by tag.' get_data = request.GET.copy() if (get_data.get('tags') or get_data.get('q') or get_data.get('type')): real_search = ('%s?%s' % (reverse('search'), request.GET.urlencode())) return HttpResponseRedirect(real_search) if (not get_data.get('q')): get_data['q'] = '*' if (not get_data.get('type')): get_data['type'] = 'file' get_data.appendlist('tags', tag) request.GET = get_data return elastic_search(request)
Wrapper around readthedocs.search.views.elastic_search to search by tag.
readthedocs/docsitalia/views/core_views.py
search_by_tag
italia/readthedocs.org
19
python
def search_by_tag(request, tag): get_data = request.GET.copy() if (get_data.get('tags') or get_data.get('q') or get_data.get('type')): real_search = ('%s?%s' % (reverse('search'), request.GET.urlencode())) return HttpResponseRedirect(real_search) if (not get_data.get('q')): get_data['q'] = '*' if (not get_data.get('type')): get_data['type'] = 'file' get_data.appendlist('tags', tag) request.GET = get_data return elastic_search(request)
def search_by_tag(request, tag): get_data = request.GET.copy() if (get_data.get('tags') or get_data.get('q') or get_data.get('type')): real_search = ('%s?%s' % (reverse('search'), request.GET.urlencode())) return HttpResponseRedirect(real_search) if (not get_data.get('q')): get_data['q'] = '*' if (not get_data.get('type')): get_data['type'] = 'file' get_data.appendlist('tags', tag) request.GET = get_data return elastic_search(request)<|docstring|>Wrapper around readthedocs.search.views.elastic_search to search by tag.<|endoftext|>
f6bae6e311ed47222faa8e271d0bd39a40da8c004bb7a331313f6a4efe2d6845
def get_queryset(self): '\n Filter projects to show in homepage.\n\n We show in homepage projects that matches the following requirements:\n - Publisher is active\n - PublisherProject is active\n - document (Project) has a public build\n - Build is success and finished\n\n Ordering by:\n - ProjectOrder model values\n - modified_date descending\n - pub_date descending\n ' active_pub_projects = PublisherProject.objects.filter(active=True, publisher__active=True) qs = get_projects_with_builds() order_by_list = ['-modified_date', '-pub_date'] projects_priority_list = ProjectOrder.objects.all().values_list('project', flat=True) if projects_priority_list: project_priority_order = Case(*[When(id=pk, then=pos) for (pos, pk) in enumerate(projects_priority_list)]) order_by_list.insert(0, project_priority_order) return qs.filter(publisherproject__in=active_pub_projects).order_by(*order_by_list)[:24]
Filter projects to show in homepage. We show in homepage projects that matches the following requirements: - Publisher is active - PublisherProject is active - document (Project) has a public build - Build is success and finished Ordering by: - ProjectOrder model values - modified_date descending - pub_date descending
readthedocs/docsitalia/views/core_views.py
get_queryset
italia/readthedocs.org
19
python
def get_queryset(self): '\n Filter projects to show in homepage.\n\n We show in homepage projects that matches the following requirements:\n - Publisher is active\n - PublisherProject is active\n - document (Project) has a public build\n - Build is success and finished\n\n Ordering by:\n - ProjectOrder model values\n - modified_date descending\n - pub_date descending\n ' active_pub_projects = PublisherProject.objects.filter(active=True, publisher__active=True) qs = get_projects_with_builds() order_by_list = ['-modified_date', '-pub_date'] projects_priority_list = ProjectOrder.objects.all().values_list('project', flat=True) if projects_priority_list: project_priority_order = Case(*[When(id=pk, then=pos) for (pos, pk) in enumerate(projects_priority_list)]) order_by_list.insert(0, project_priority_order) return qs.filter(publisherproject__in=active_pub_projects).order_by(*order_by_list)[:24]
def get_queryset(self): '\n Filter projects to show in homepage.\n\n We show in homepage projects that matches the following requirements:\n - Publisher is active\n - PublisherProject is active\n - document (Project) has a public build\n - Build is success and finished\n\n Ordering by:\n - ProjectOrder model values\n - modified_date descending\n - pub_date descending\n ' active_pub_projects = PublisherProject.objects.filter(active=True, publisher__active=True) qs = get_projects_with_builds() order_by_list = ['-modified_date', '-pub_date'] projects_priority_list = ProjectOrder.objects.all().values_list('project', flat=True) if projects_priority_list: project_priority_order = Case(*[When(id=pk, then=pos) for (pos, pk) in enumerate(projects_priority_list)]) order_by_list.insert(0, project_priority_order) return qs.filter(publisherproject__in=active_pub_projects).order_by(*order_by_list)[:24]<|docstring|>Filter projects to show in homepage. We show in homepage projects that matches the following requirements: - Publisher is active - PublisherProject is active - document (Project) has a public build - Build is success and finished Ordering by: - ProjectOrder model values - modified_date descending - pub_date descending<|endoftext|>
b8e66b40eb2337579c1be9f13d131b6045fc56306af1b024587dcf60335856da
def get_queryset(self): '\n Filter publisher to be listed.\n\n We show publishers that matches the following requirements:\n - are active\n - have documents with successful public build\n ' active_pub_projects = PublisherProject.objects.filter(active=True, publisher__active=True) publishers_with_projects = get_projects_with_builds().filter(publisherproject__in=active_pub_projects).values_list('publisherproject__publisher', flat=True) return Publisher.objects.filter(pk__in=publishers_with_projects)
Filter publisher to be listed. We show publishers that matches the following requirements: - are active - have documents with successful public build
readthedocs/docsitalia/views/core_views.py
get_queryset
italia/readthedocs.org
19
python
def get_queryset(self): '\n Filter publisher to be listed.\n\n We show publishers that matches the following requirements:\n - are active\n - have documents with successful public build\n ' active_pub_projects = PublisherProject.objects.filter(active=True, publisher__active=True) publishers_with_projects = get_projects_with_builds().filter(publisherproject__in=active_pub_projects).values_list('publisherproject__publisher', flat=True) return Publisher.objects.filter(pk__in=publishers_with_projects)
def get_queryset(self): '\n Filter publisher to be listed.\n\n We show publishers that matches the following requirements:\n - are active\n - have documents with successful public build\n ' active_pub_projects = PublisherProject.objects.filter(active=True, publisher__active=True) publishers_with_projects = get_projects_with_builds().filter(publisherproject__in=active_pub_projects).values_list('publisherproject__publisher', flat=True) return Publisher.objects.filter(pk__in=publishers_with_projects)<|docstring|>Filter publisher to be listed. We show publishers that matches the following requirements: - are active - have documents with successful public build<|endoftext|>
7e3e0c71c1583458179e010ab98d9d2e638113250f897491fb96ab254ab47ebc
def get_queryset(self): 'Filter for active Publisher.' return Publisher.objects.filter(active=True)
Filter for active Publisher.
readthedocs/docsitalia/views/core_views.py
get_queryset
italia/readthedocs.org
19
python
def get_queryset(self): return Publisher.objects.filter(active=True)
def get_queryset(self): return Publisher.objects.filter(active=True)<|docstring|>Filter for active Publisher.<|endoftext|>
1f2d72f0c43e1a2f020174a9fc217bc5fd765b7ed3d140adc131b16264003916
def get_queryset(self): 'Filter for active PublisherProject.' return PublisherProject.objects.filter(active=True, publisher__active=True)
Filter for active PublisherProject.
readthedocs/docsitalia/views/core_views.py
get_queryset
italia/readthedocs.org
19
python
def get_queryset(self): return PublisherProject.objects.filter(active=True, publisher__active=True)
def get_queryset(self): return PublisherProject.objects.filter(active=True, publisher__active=True)<|docstring|>Filter for active PublisherProject.<|endoftext|>
30a63a0d8d8bbc1b6a5498fb6b6f46921344b8227de2431753d1c34370a712d1
def get_queryset(self): 'Filter projects based on user permissions.' return Project.objects.protected(self.request.user)
Filter projects based on user permissions.
readthedocs/docsitalia/views/core_views.py
get_queryset
italia/readthedocs.org
19
python
def get_queryset(self): return Project.objects.protected(self.request.user)
def get_queryset(self): return Project.objects.protected(self.request.user)<|docstring|>Filter projects based on user permissions.<|endoftext|>
13b5c61b3b9ffc58dd999c989d3a62ab27f5a3ee16ba31feb8f4489276f5fc10
def get(self, request, *args, **kwargs): 'Redirect to the canonical URL of the document.' try: document = self.get_queryset().get(slug=self.kwargs['slug']) return HttpResponseRedirect('{}index.html'.format(document.get_docs_url(lang_slug=self.kwargs.get('lang'), version_slug=self.kwargs.get('version')))) except Project.DoesNotExist: raise Http404()
Redirect to the canonical URL of the document.
readthedocs/docsitalia/views/core_views.py
get
italia/readthedocs.org
19
python
def get(self, request, *args, **kwargs): try: document = self.get_queryset().get(slug=self.kwargs['slug']) return HttpResponseRedirect('{}index.html'.format(document.get_docs_url(lang_slug=self.kwargs.get('lang'), version_slug=self.kwargs.get('version')))) except Project.DoesNotExist: raise Http404()
def get(self, request, *args, **kwargs): try: document = self.get_queryset().get(slug=self.kwargs['slug']) return HttpResponseRedirect('{}index.html'.format(document.get_docs_url(lang_slug=self.kwargs.get('lang'), version_slug=self.kwargs.get('version')))) except Project.DoesNotExist: raise Http404()<|docstring|>Redirect to the canonical URL of the document.<|endoftext|>
0ade71f884f4bbb8d622ed61c97aeeb9806a2079e987c1177f9bb27fd2804726
def post(self, request, *args, **kwargs): "\n Handler for Project import.\n\n We import the Project only after validating the mandatory metadata.\n We then connect a Project to its PublisherProject.\n Finally we need to update the Project model with the data we have in the\n document_settings.yml. We don't care much about what it's in the model\n and we consider the config file as source of truth.\n " form = ProjectBasicsForm(request.POST, user=request.user) if (not form.is_valid()): return render(request, 'docsitalia/import_error.html', {'error_list': form.errors}) project = form.save() try: metadata = get_metadata_for_document(project) except InvalidMetadata as exception: log.error('Failed to import document invalid metadata %s', exception) msg = _('Invalid document_settings.yml found in the repository') project.delete() return render(request, 'docsitalia/import_error.html', {'error_msg': msg}) except Exception as e: log.error('Failed to import document metadata: %s', e) msg = _('Failed to download document_settings.yml from the repository') project.delete() return render(request, 'docsitalia/import_error.html', {'error_msg': msg}) extra_fields = ProjectExtraForm.Meta.fields for (field, value) in request.POST.items(): if (field in extra_fields): setattr(project, field, value) project.save() project.users.add(request.user) try: remote = RemoteRepository.objects.get(project=project) except RemoteRepository.DoesNotExist: log.error('Missing RemoteRepository for project %s', project) else: pub_projects = PublisherProject.objects.filter(metadata__documents__contains=[{'repo_url': remote.html_url}]) for pub_proj in pub_projects: pub_proj.projects.add(project) if (not pub_projects): log.error('No PublisherProject found for repo %s', remote.html_url) update_project_from_metadata(project, metadata) project_import.send(sender=project, request=self.request) self.trigger_initial_build(project, request.user) return redirect('projects_detail', project_slug=project.slug)
Handler for Project import. We import the Project only after validating the mandatory metadata. We then connect a Project to its PublisherProject. Finally we need to update the Project model with the data we have in the document_settings.yml. We don't care much about what it's in the model and we consider the config file as source of truth.
readthedocs/docsitalia/views/core_views.py
post
italia/readthedocs.org
19
python
def post(self, request, *args, **kwargs): "\n Handler for Project import.\n\n We import the Project only after validating the mandatory metadata.\n We then connect a Project to its PublisherProject.\n Finally we need to update the Project model with the data we have in the\n document_settings.yml. We don't care much about what it's in the model\n and we consider the config file as source of truth.\n " form = ProjectBasicsForm(request.POST, user=request.user) if (not form.is_valid()): return render(request, 'docsitalia/import_error.html', {'error_list': form.errors}) project = form.save() try: metadata = get_metadata_for_document(project) except InvalidMetadata as exception: log.error('Failed to import document invalid metadata %s', exception) msg = _('Invalid document_settings.yml found in the repository') project.delete() return render(request, 'docsitalia/import_error.html', {'error_msg': msg}) except Exception as e: log.error('Failed to import document metadata: %s', e) msg = _('Failed to download document_settings.yml from the repository') project.delete() return render(request, 'docsitalia/import_error.html', {'error_msg': msg}) extra_fields = ProjectExtraForm.Meta.fields for (field, value) in request.POST.items(): if (field in extra_fields): setattr(project, field, value) project.save() project.users.add(request.user) try: remote = RemoteRepository.objects.get(project=project) except RemoteRepository.DoesNotExist: log.error('Missing RemoteRepository for project %s', project) else: pub_projects = PublisherProject.objects.filter(metadata__documents__contains=[{'repo_url': remote.html_url}]) for pub_proj in pub_projects: pub_proj.projects.add(project) if (not pub_projects): log.error('No PublisherProject found for repo %s', remote.html_url) update_project_from_metadata(project, metadata) project_import.send(sender=project, request=self.request) self.trigger_initial_build(project, request.user) return redirect('projects_detail', project_slug=project.slug)
def post(self, request, *args, **kwargs): "\n Handler for Project import.\n\n We import the Project only after validating the mandatory metadata.\n We then connect a Project to its PublisherProject.\n Finally we need to update the Project model with the data we have in the\n document_settings.yml. We don't care much about what it's in the model\n and we consider the config file as source of truth.\n " form = ProjectBasicsForm(request.POST, user=request.user) if (not form.is_valid()): return render(request, 'docsitalia/import_error.html', {'error_list': form.errors}) project = form.save() try: metadata = get_metadata_for_document(project) except InvalidMetadata as exception: log.error('Failed to import document invalid metadata %s', exception) msg = _('Invalid document_settings.yml found in the repository') project.delete() return render(request, 'docsitalia/import_error.html', {'error_msg': msg}) except Exception as e: log.error('Failed to import document metadata: %s', e) msg = _('Failed to download document_settings.yml from the repository') project.delete() return render(request, 'docsitalia/import_error.html', {'error_msg': msg}) extra_fields = ProjectExtraForm.Meta.fields for (field, value) in request.POST.items(): if (field in extra_fields): setattr(project, field, value) project.save() project.users.add(request.user) try: remote = RemoteRepository.objects.get(project=project) except RemoteRepository.DoesNotExist: log.error('Missing RemoteRepository for project %s', project) else: pub_projects = PublisherProject.objects.filter(metadata__documents__contains=[{'repo_url': remote.html_url}]) for pub_proj in pub_projects: pub_proj.projects.add(project) if (not pub_projects): log.error('No PublisherProject found for repo %s', remote.html_url) update_project_from_metadata(project, metadata) project_import.send(sender=project, request=self.request) self.trigger_initial_build(project, request.user) return redirect('projects_detail', project_slug=project.slug)<|docstring|>Handler for Project import. We import the Project only after validating the mandatory metadata. We then connect a Project to its PublisherProject. Finally we need to update the Project model with the data we have in the document_settings.yml. We don't care much about what it's in the model and we consider the config file as source of truth.<|endoftext|>
40946f53c03e4eaf11988f8faa92c9b1c490776b84c362690ee7a45f03daf0a9
@click.command(short_help='Run PhISCS (CSP version).') @click.argument('genotype_file', required=True, type=click.Path(exists=True, file_okay=True, dir_okay=False, readable=True, resolve_path=True)) @click.argument('alpha', required=True, type=float) @click.argument('beta', required=True, type=float) def phiscsb(genotype_file, alpha, beta): 'PhISCS-B.\n\n A combinatorial approach for subperfect\n tumor phylogeny reconstructionvia integrative use of\n single-cell and bulk sequencing data :cite:`PhISCS`.\n\n trisicell phiscsb input.SC 0.0001 0.1\n ' outfile = os.path.splitext(genotype_file)[0] tsc.settings.verbosity = 'info' tsc.settings.logfile = f'{outfile}.phiscsb.log' df_in = tsc.io.read(genotype_file) df_out = tsc.tl.phiscsb(df_in, alpha=alpha, beta=beta) tsc.io.write(df_out, f'{outfile}.phiscsb.CFMatrix') return None
PhISCS-B. A combinatorial approach for subperfect tumor phylogeny reconstructionvia integrative use of single-cell and bulk sequencing data :cite:`PhISCS`. trisicell phiscsb input.SC 0.0001 0.1
trisicell/commands/_phiscs.py
phiscsb
faridrashidi/trisicell
2
python
@click.command(short_help='Run PhISCS (CSP version).') @click.argument('genotype_file', required=True, type=click.Path(exists=True, file_okay=True, dir_okay=False, readable=True, resolve_path=True)) @click.argument('alpha', required=True, type=float) @click.argument('beta', required=True, type=float) def phiscsb(genotype_file, alpha, beta): 'PhISCS-B.\n\n A combinatorial approach for subperfect\n tumor phylogeny reconstructionvia integrative use of\n single-cell and bulk sequencing data :cite:`PhISCS`.\n\n trisicell phiscsb input.SC 0.0001 0.1\n ' outfile = os.path.splitext(genotype_file)[0] tsc.settings.verbosity = 'info' tsc.settings.logfile = f'{outfile}.phiscsb.log' df_in = tsc.io.read(genotype_file) df_out = tsc.tl.phiscsb(df_in, alpha=alpha, beta=beta) tsc.io.write(df_out, f'{outfile}.phiscsb.CFMatrix') return None
@click.command(short_help='Run PhISCS (CSP version).') @click.argument('genotype_file', required=True, type=click.Path(exists=True, file_okay=True, dir_okay=False, readable=True, resolve_path=True)) @click.argument('alpha', required=True, type=float) @click.argument('beta', required=True, type=float) def phiscsb(genotype_file, alpha, beta): 'PhISCS-B.\n\n A combinatorial approach for subperfect\n tumor phylogeny reconstructionvia integrative use of\n single-cell and bulk sequencing data :cite:`PhISCS`.\n\n trisicell phiscsb input.SC 0.0001 0.1\n ' outfile = os.path.splitext(genotype_file)[0] tsc.settings.verbosity = 'info' tsc.settings.logfile = f'{outfile}.phiscsb.log' df_in = tsc.io.read(genotype_file) df_out = tsc.tl.phiscsb(df_in, alpha=alpha, beta=beta) tsc.io.write(df_out, f'{outfile}.phiscsb.CFMatrix') return None<|docstring|>PhISCS-B. A combinatorial approach for subperfect tumor phylogeny reconstructionvia integrative use of single-cell and bulk sequencing data :cite:`PhISCS`. trisicell phiscsb input.SC 0.0001 0.1<|endoftext|>
bb45dbaad79c43298f446c2ff2feda7b2312c646c9650e97efcf7fab1972fa13
@click.command(short_help='Run PhISCS (ILP version).') @click.argument('genotype_file', required=True, type=click.Path(exists=True, file_okay=True, dir_okay=False, readable=True, resolve_path=True)) @click.argument('alpha', required=True, type=float) @click.argument('beta', required=True, type=float) @click.option('--time_limit', '-t', default=86400, type=int, show_default=True, help='Time limit of the program (in second).') @click.option('--n_threads', '-p', default=1, type=int, show_default=True, help='Number of threads.') def phiscsi(genotype_file, alpha, beta, time_limit, n_threads): 'PhISCS-I.\n\n A combinatorial approach for subperfect\n tumor phylogeny reconstructionvia integrative use of\n single-cell and bulk sequencing data :cite:`PhISCS`.\n\n trisicell phiscsi input.SC 0.0001 0.1 -t 3600 -p 8\n ' outfile = os.path.splitext(genotype_file)[0] tsc.settings.verbosity = 'info' tsc.settings.logfile = f'{outfile}.phiscsi.log' df_in = tsc.io.read(genotype_file) df_out = tsc.tl.phiscsi(df_in, alpha=alpha, beta=beta, time_limit=time_limit, n_threads=n_threads) tsc.io.write(df_out, f'{outfile}.phiscsi.CFMatrix') return None
PhISCS-I. A combinatorial approach for subperfect tumor phylogeny reconstructionvia integrative use of single-cell and bulk sequencing data :cite:`PhISCS`. trisicell phiscsi input.SC 0.0001 0.1 -t 3600 -p 8
trisicell/commands/_phiscs.py
phiscsi
faridrashidi/trisicell
2
python
@click.command(short_help='Run PhISCS (ILP version).') @click.argument('genotype_file', required=True, type=click.Path(exists=True, file_okay=True, dir_okay=False, readable=True, resolve_path=True)) @click.argument('alpha', required=True, type=float) @click.argument('beta', required=True, type=float) @click.option('--time_limit', '-t', default=86400, type=int, show_default=True, help='Time limit of the program (in second).') @click.option('--n_threads', '-p', default=1, type=int, show_default=True, help='Number of threads.') def phiscsi(genotype_file, alpha, beta, time_limit, n_threads): 'PhISCS-I.\n\n A combinatorial approach for subperfect\n tumor phylogeny reconstructionvia integrative use of\n single-cell and bulk sequencing data :cite:`PhISCS`.\n\n trisicell phiscsi input.SC 0.0001 0.1 -t 3600 -p 8\n ' outfile = os.path.splitext(genotype_file)[0] tsc.settings.verbosity = 'info' tsc.settings.logfile = f'{outfile}.phiscsi.log' df_in = tsc.io.read(genotype_file) df_out = tsc.tl.phiscsi(df_in, alpha=alpha, beta=beta, time_limit=time_limit, n_threads=n_threads) tsc.io.write(df_out, f'{outfile}.phiscsi.CFMatrix') return None
@click.command(short_help='Run PhISCS (ILP version).') @click.argument('genotype_file', required=True, type=click.Path(exists=True, file_okay=True, dir_okay=False, readable=True, resolve_path=True)) @click.argument('alpha', required=True, type=float) @click.argument('beta', required=True, type=float) @click.option('--time_limit', '-t', default=86400, type=int, show_default=True, help='Time limit of the program (in second).') @click.option('--n_threads', '-p', default=1, type=int, show_default=True, help='Number of threads.') def phiscsi(genotype_file, alpha, beta, time_limit, n_threads): 'PhISCS-I.\n\n A combinatorial approach for subperfect\n tumor phylogeny reconstructionvia integrative use of\n single-cell and bulk sequencing data :cite:`PhISCS`.\n\n trisicell phiscsi input.SC 0.0001 0.1 -t 3600 -p 8\n ' outfile = os.path.splitext(genotype_file)[0] tsc.settings.verbosity = 'info' tsc.settings.logfile = f'{outfile}.phiscsi.log' df_in = tsc.io.read(genotype_file) df_out = tsc.tl.phiscsi(df_in, alpha=alpha, beta=beta, time_limit=time_limit, n_threads=n_threads) tsc.io.write(df_out, f'{outfile}.phiscsi.CFMatrix') return None<|docstring|>PhISCS-I. A combinatorial approach for subperfect tumor phylogeny reconstructionvia integrative use of single-cell and bulk sequencing data :cite:`PhISCS`. trisicell phiscsi input.SC 0.0001 0.1 -t 3600 -p 8<|endoftext|>
bbe1192c8fa47142f901e2a4e8589bb3c312b5b65960e18af35a9b0fde0b2b37
def drop_out_matrices(layers_dims, m, keep_prob): '\n Initializes the dropout matrices that will be used in both forward prop\n and back-prop on each layer. We\'ll use random numbers from uniform\n distribution.\n\n Arguments\n ---------\n layers_dims : list\n input size and size of each layer, length: number of layers + 1.\n m : int\n number of training examples.\n keep_prob : list\n probabilities of keeping a neuron (unit) active for each layer on each\n iteration.\n\n Returns\n -------\n D : dict\n dropout matrices for each layer l. Each dropout matrix on each layer\n would have the same dimension as post activation output matrix "A".\n For example: "D1" shape: number of units x number of examples.\n ' np.random.seed(1) D = {} L = len(layers_dims) for l in range(L): D[str(l)] = np.random.rand(layers_dims[l], m) D[str(l)] = (D[str(l)] < keep_prob[l]) assert (D[str(l)].shape == (layers_dims[l], m)) return D
Initializes the dropout matrices that will be used in both forward prop and back-prop on each layer. We'll use random numbers from uniform distribution. Arguments --------- layers_dims : list input size and size of each layer, length: number of layers + 1. m : int number of training examples. keep_prob : list probabilities of keeping a neuron (unit) active for each layer on each iteration. Returns ------- D : dict dropout matrices for each layer l. Each dropout matrix on each layer would have the same dimension as post activation output matrix "A". For example: "D1" shape: number of units x number of examples.
scripts/dropout.py
drop_out_matrices
johntiger1/blog-posts
0
python
def drop_out_matrices(layers_dims, m, keep_prob): '\n Initializes the dropout matrices that will be used in both forward prop\n and back-prop on each layer. We\'ll use random numbers from uniform\n distribution.\n\n Arguments\n ---------\n layers_dims : list\n input size and size of each layer, length: number of layers + 1.\n m : int\n number of training examples.\n keep_prob : list\n probabilities of keeping a neuron (unit) active for each layer on each\n iteration.\n\n Returns\n -------\n D : dict\n dropout matrices for each layer l. Each dropout matrix on each layer\n would have the same dimension as post activation output matrix "A".\n For example: "D1" shape: number of units x number of examples.\n ' np.random.seed(1) D = {} L = len(layers_dims) for l in range(L): D[str(l)] = np.random.rand(layers_dims[l], m) D[str(l)] = (D[str(l)] < keep_prob[l]) assert (D[str(l)].shape == (layers_dims[l], m)) return D
def drop_out_matrices(layers_dims, m, keep_prob): '\n Initializes the dropout matrices that will be used in both forward prop\n and back-prop on each layer. We\'ll use random numbers from uniform\n distribution.\n\n Arguments\n ---------\n layers_dims : list\n input size and size of each layer, length: number of layers + 1.\n m : int\n number of training examples.\n keep_prob : list\n probabilities of keeping a neuron (unit) active for each layer on each\n iteration.\n\n Returns\n -------\n D : dict\n dropout matrices for each layer l. Each dropout matrix on each layer\n would have the same dimension as post activation output matrix "A".\n For example: "D1" shape: number of units x number of examples.\n ' np.random.seed(1) D = {} L = len(layers_dims) for l in range(L): D[str(l)] = np.random.rand(layers_dims[l], m) D[str(l)] = (D[str(l)] < keep_prob[l]) assert (D[str(l)].shape == (layers_dims[l], m)) return D<|docstring|>Initializes the dropout matrices that will be used in both forward prop and back-prop on each layer. We'll use random numbers from uniform distribution. Arguments --------- layers_dims : list input size and size of each layer, length: number of layers + 1. m : int number of training examples. keep_prob : list probabilities of keeping a neuron (unit) active for each layer on each iteration. Returns ------- D : dict dropout matrices for each layer l. Each dropout matrix on each layer would have the same dimension as post activation output matrix "A". For example: "D1" shape: number of units x number of examples.<|endoftext|>
29c108619aace1516dbb6bf6113166c96bdc76ef304c87cd1130e4862c4aa24b
def L_model_forward(X, parameters, D, keep_prob, hidden_layers_activation_fn='relu'): '\n Computes the output layer through looping over all units in topological\n order.\n\n X : 2d-array\n input matrix of shape input_size x training_examples.\n parameters : dict\n contains all the weight matrices and bias vectors for all layers.\n D : dict\n dropout matrices for each layer l.\n keep_prob : list\n probabilities of keeping a neuron (unit) active for each layer on each\n iteration.\n hidden_layers_activation_fn : str\n activation function to be used on hidden layers: "tanh","relu".\n\n\n Returns\n -------\n AL : 2d-array\n probability vector of shape 1 x training_examples.\n caches : list\n that contains L tuples where each layer has: A_prev, W, b, Z.\n ' A = X A = np.multiply(A, D[str(0)]) A /= keep_prob[l] caches = [] L = (len(parameters) // 2) for l in range(1, L): A_prev = A (A, cache) = linear_activation_forward(A_prev, parameters[('W' + str(l))], parameters[('b' + str(l))], hidden_layers_activation_fn) A = np.multiply(A, D[str(l)]) A /= keep_prob[l] caches.append(cache) (AL, cache) = linear_activation_forward(A, parameters[('W' + str(L))], parameters[('b' + str(L))], 'sigmoid') AL = np.multiply(AL, D[str(L)]) AL /= keep_prob[L] caches.append(cache) assert (AL.shape == (1, X.shape[1])) return (AL, caches)
Computes the output layer through looping over all units in topological order. X : 2d-array input matrix of shape input_size x training_examples. parameters : dict contains all the weight matrices and bias vectors for all layers. D : dict dropout matrices for each layer l. keep_prob : list probabilities of keeping a neuron (unit) active for each layer on each iteration. hidden_layers_activation_fn : str activation function to be used on hidden layers: "tanh","relu". Returns ------- AL : 2d-array probability vector of shape 1 x training_examples. caches : list that contains L tuples where each layer has: A_prev, W, b, Z.
scripts/dropout.py
L_model_forward
johntiger1/blog-posts
0
python
def L_model_forward(X, parameters, D, keep_prob, hidden_layers_activation_fn='relu'): '\n Computes the output layer through looping over all units in topological\n order.\n\n X : 2d-array\n input matrix of shape input_size x training_examples.\n parameters : dict\n contains all the weight matrices and bias vectors for all layers.\n D : dict\n dropout matrices for each layer l.\n keep_prob : list\n probabilities of keeping a neuron (unit) active for each layer on each\n iteration.\n hidden_layers_activation_fn : str\n activation function to be used on hidden layers: "tanh","relu".\n\n\n Returns\n -------\n AL : 2d-array\n probability vector of shape 1 x training_examples.\n caches : list\n that contains L tuples where each layer has: A_prev, W, b, Z.\n ' A = X A = np.multiply(A, D[str(0)]) A /= keep_prob[l] caches = [] L = (len(parameters) // 2) for l in range(1, L): A_prev = A (A, cache) = linear_activation_forward(A_prev, parameters[('W' + str(l))], parameters[('b' + str(l))], hidden_layers_activation_fn) A = np.multiply(A, D[str(l)]) A /= keep_prob[l] caches.append(cache) (AL, cache) = linear_activation_forward(A, parameters[('W' + str(L))], parameters[('b' + str(L))], 'sigmoid') AL = np.multiply(AL, D[str(L)]) AL /= keep_prob[L] caches.append(cache) assert (AL.shape == (1, X.shape[1])) return (AL, caches)
def L_model_forward(X, parameters, D, keep_prob, hidden_layers_activation_fn='relu'): '\n Computes the output layer through looping over all units in topological\n order.\n\n X : 2d-array\n input matrix of shape input_size x training_examples.\n parameters : dict\n contains all the weight matrices and bias vectors for all layers.\n D : dict\n dropout matrices for each layer l.\n keep_prob : list\n probabilities of keeping a neuron (unit) active for each layer on each\n iteration.\n hidden_layers_activation_fn : str\n activation function to be used on hidden layers: "tanh","relu".\n\n\n Returns\n -------\n AL : 2d-array\n probability vector of shape 1 x training_examples.\n caches : list\n that contains L tuples where each layer has: A_prev, W, b, Z.\n ' A = X A = np.multiply(A, D[str(0)]) A /= keep_prob[l] caches = [] L = (len(parameters) // 2) for l in range(1, L): A_prev = A (A, cache) = linear_activation_forward(A_prev, parameters[('W' + str(l))], parameters[('b' + str(l))], hidden_layers_activation_fn) A = np.multiply(A, D[str(l)]) A /= keep_prob[l] caches.append(cache) (AL, cache) = linear_activation_forward(A, parameters[('W' + str(L))], parameters[('b' + str(L))], 'sigmoid') AL = np.multiply(AL, D[str(L)]) AL /= keep_prob[L] caches.append(cache) assert (AL.shape == (1, X.shape[1])) return (AL, caches)<|docstring|>Computes the output layer through looping over all units in topological order. X : 2d-array input matrix of shape input_size x training_examples. parameters : dict contains all the weight matrices and bias vectors for all layers. D : dict dropout matrices for each layer l. keep_prob : list probabilities of keeping a neuron (unit) active for each layer on each iteration. hidden_layers_activation_fn : str activation function to be used on hidden layers: "tanh","relu". Returns ------- AL : 2d-array probability vector of shape 1 x training_examples. caches : list that contains L tuples where each layer has: A_prev, W, b, Z.<|endoftext|>
c2ad044c9f0357651b0d06ce00870ca19938de126ff095ba9d6b0286f7ec7994
def L_model_backward(AL, Y, caches, D, keep_prob, hidden_layers_activation_fn='relu'): '\n Computes the gradient of output layer w.r.t weights, biases, etc. starting\n on the output layer in reverse topological order.\n\n Arguments\n ---------\n AL : 2d-array\n probability vector, output of the forward propagation\n (L_model_forward()).\n y : 2d-array\n true "label" vector (containing 0 if non-cat, 1 if cat).\n caches : list\n list of caches for all layers.\n D : dict\n dropout matrices for each layer l.\n keep_prob : list\n probabilities of keeping a neuron (unit) active for each layer on each\n iteration.\n hidden_layers_activation_fn :\n activation function used on hidden layers: "tanh", "relu".\n\n Returns\n -------\n grads : dict\n gradients.\n ' Y = Y.reshape(AL.shape) L = len(caches) grads = {} dAL = np.divide((AL - Y), np.multiply(AL, (1 - AL))) dAL = np.multiply(dAL, D[str(L)]) dAL /= keep_prob[L] (grads[('dA' + str((L - 1)))], grads[('dW' + str(L))], grads[('db' + str(L))]) = linear_activation_backward(dAL, caches[(L - 1)], 'sigmoid') grads[('dA' + str((L - 1)))] = np.multiply(grads[('dA' + str((L - 1)))], D[str((L - 1))]) grads[('dA' + str((L - 1)))] /= keep_prob[(L - 1)] for l in range((L - 1), 0, (- 1)): current_cache = caches[(l - 1)] (grads[('dA' + str((l - 1)))], grads[('dW' + str(l))], grads[('db' + str(l))]) = linear_activation_backward(grads[('dA' + str(l))], current_cache, hidden_layers_activation_fn) grads[('dA' + str((l - 1)))] = np.multiply(grads[('dA' + str((l - 1)))], D[str((l - 1))]) grads[('dA' + str((l - 1)))] /= keep_prob[(l - 1)] return grads
Computes the gradient of output layer w.r.t weights, biases, etc. starting on the output layer in reverse topological order. Arguments --------- AL : 2d-array probability vector, output of the forward propagation (L_model_forward()). y : 2d-array true "label" vector (containing 0 if non-cat, 1 if cat). caches : list list of caches for all layers. D : dict dropout matrices for each layer l. keep_prob : list probabilities of keeping a neuron (unit) active for each layer on each iteration. hidden_layers_activation_fn : activation function used on hidden layers: "tanh", "relu". Returns ------- grads : dict gradients.
scripts/dropout.py
L_model_backward
johntiger1/blog-posts
0
python
def L_model_backward(AL, Y, caches, D, keep_prob, hidden_layers_activation_fn='relu'): '\n Computes the gradient of output layer w.r.t weights, biases, etc. starting\n on the output layer in reverse topological order.\n\n Arguments\n ---------\n AL : 2d-array\n probability vector, output of the forward propagation\n (L_model_forward()).\n y : 2d-array\n true "label" vector (containing 0 if non-cat, 1 if cat).\n caches : list\n list of caches for all layers.\n D : dict\n dropout matrices for each layer l.\n keep_prob : list\n probabilities of keeping a neuron (unit) active for each layer on each\n iteration.\n hidden_layers_activation_fn :\n activation function used on hidden layers: "tanh", "relu".\n\n Returns\n -------\n grads : dict\n gradients.\n ' Y = Y.reshape(AL.shape) L = len(caches) grads = {} dAL = np.divide((AL - Y), np.multiply(AL, (1 - AL))) dAL = np.multiply(dAL, D[str(L)]) dAL /= keep_prob[L] (grads[('dA' + str((L - 1)))], grads[('dW' + str(L))], grads[('db' + str(L))]) = linear_activation_backward(dAL, caches[(L - 1)], 'sigmoid') grads[('dA' + str((L - 1)))] = np.multiply(grads[('dA' + str((L - 1)))], D[str((L - 1))]) grads[('dA' + str((L - 1)))] /= keep_prob[(L - 1)] for l in range((L - 1), 0, (- 1)): current_cache = caches[(l - 1)] (grads[('dA' + str((l - 1)))], grads[('dW' + str(l))], grads[('db' + str(l))]) = linear_activation_backward(grads[('dA' + str(l))], current_cache, hidden_layers_activation_fn) grads[('dA' + str((l - 1)))] = np.multiply(grads[('dA' + str((l - 1)))], D[str((l - 1))]) grads[('dA' + str((l - 1)))] /= keep_prob[(l - 1)] return grads
def L_model_backward(AL, Y, caches, D, keep_prob, hidden_layers_activation_fn='relu'): '\n Computes the gradient of output layer w.r.t weights, biases, etc. starting\n on the output layer in reverse topological order.\n\n Arguments\n ---------\n AL : 2d-array\n probability vector, output of the forward propagation\n (L_model_forward()).\n y : 2d-array\n true "label" vector (containing 0 if non-cat, 1 if cat).\n caches : list\n list of caches for all layers.\n D : dict\n dropout matrices for each layer l.\n keep_prob : list\n probabilities of keeping a neuron (unit) active for each layer on each\n iteration.\n hidden_layers_activation_fn :\n activation function used on hidden layers: "tanh", "relu".\n\n Returns\n -------\n grads : dict\n gradients.\n ' Y = Y.reshape(AL.shape) L = len(caches) grads = {} dAL = np.divide((AL - Y), np.multiply(AL, (1 - AL))) dAL = np.multiply(dAL, D[str(L)]) dAL /= keep_prob[L] (grads[('dA' + str((L - 1)))], grads[('dW' + str(L))], grads[('db' + str(L))]) = linear_activation_backward(dAL, caches[(L - 1)], 'sigmoid') grads[('dA' + str((L - 1)))] = np.multiply(grads[('dA' + str((L - 1)))], D[str((L - 1))]) grads[('dA' + str((L - 1)))] /= keep_prob[(L - 1)] for l in range((L - 1), 0, (- 1)): current_cache = caches[(l - 1)] (grads[('dA' + str((l - 1)))], grads[('dW' + str(l))], grads[('db' + str(l))]) = linear_activation_backward(grads[('dA' + str(l))], current_cache, hidden_layers_activation_fn) grads[('dA' + str((l - 1)))] = np.multiply(grads[('dA' + str((l - 1)))], D[str((l - 1))]) grads[('dA' + str((l - 1)))] /= keep_prob[(l - 1)] return grads<|docstring|>Computes the gradient of output layer w.r.t weights, biases, etc. starting on the output layer in reverse topological order. Arguments --------- AL : 2d-array probability vector, output of the forward propagation (L_model_forward()). y : 2d-array true "label" vector (containing 0 if non-cat, 1 if cat). caches : list list of caches for all layers. D : dict dropout matrices for each layer l. keep_prob : list probabilities of keeping a neuron (unit) active for each layer on each iteration. hidden_layers_activation_fn : activation function used on hidden layers: "tanh", "relu". Returns ------- grads : dict gradients.<|endoftext|>
5d4c2c422d518dd4fb4db68ade7926bd3b468ba36d64375ef121533085cb363f
def model_with_dropout(X, Y, layers_dims, keep_prob, learning_rate=0.01, num_iterations=3000, print_cost=True, hidden_layers_activation_fn='relu'): '\n Implements multilayer neural network with dropout using gradient descent as the\n learning algorithm.\n\n Arguments\n ---------\n X : 2d-array\n data, shape: number of examples x num_px * num_px * 3.\n y : 2d-array\n true "label" vector, shape: 1 x number of examples.\n layers_dims : list\n input size and size of each layer, length: number of layers + 1.\n keep_prob : list\n probabilities of keeping a neuron (unit) active for each layer on each\n iteration.\n learning_rate : float\n learning rate of the gradient descent update rule.\n num_iterations : int\n number of iterations of the optimization loop.\n print_cost : bool\n if True, it prints the cost every 100 steps.\n hidden_layers_activation_fn : str\n activation function to be used on hidden layers: "tanh", "relu".\n\n Returns\n -------\n parameters : dict\n parameters learnt by the model. They can then be used to predict test\n examples.\n ' m = X.shape[1] np.random.seed(1) parameters = initialize_parameters(layers_dims) cost_list = [] for i in range(num_iterations): D = drop_out_matrices(layers_dims, m, keep_prob) (AL, caches) = L_model_forward(X, parameters, D, keep_prob, hidden_layers_activation_fn) cost = compute_cost(AL, Y) grads = L_model_backward(AL, Y, caches, D, keep_prob, hidden_layers_activation_fn) parameters = update_parameters(parameters, grads, learning_rate) if ((((i + 1) % 100) == 0) and print_cost): print('The cost after {} iterations: {}'.format((i + 1), cost)) if ((i % 100) == 0): cost_list.append(cost) plt.plot(cost_list) plt.xlabel('Iteration (per hundreds)') plt.ylabel('Cost') plt.title('Cost curve for the learning rate = {}'.format(learning_rate)) return parameters
Implements multilayer neural network with dropout using gradient descent as the learning algorithm. Arguments --------- X : 2d-array data, shape: number of examples x num_px * num_px * 3. y : 2d-array true "label" vector, shape: 1 x number of examples. layers_dims : list input size and size of each layer, length: number of layers + 1. keep_prob : list probabilities of keeping a neuron (unit) active for each layer on each iteration. learning_rate : float learning rate of the gradient descent update rule. num_iterations : int number of iterations of the optimization loop. print_cost : bool if True, it prints the cost every 100 steps. hidden_layers_activation_fn : str activation function to be used on hidden layers: "tanh", "relu". Returns ------- parameters : dict parameters learnt by the model. They can then be used to predict test examples.
scripts/dropout.py
model_with_dropout
johntiger1/blog-posts
0
python
def model_with_dropout(X, Y, layers_dims, keep_prob, learning_rate=0.01, num_iterations=3000, print_cost=True, hidden_layers_activation_fn='relu'): '\n Implements multilayer neural network with dropout using gradient descent as the\n learning algorithm.\n\n Arguments\n ---------\n X : 2d-array\n data, shape: number of examples x num_px * num_px * 3.\n y : 2d-array\n true "label" vector, shape: 1 x number of examples.\n layers_dims : list\n input size and size of each layer, length: number of layers + 1.\n keep_prob : list\n probabilities of keeping a neuron (unit) active for each layer on each\n iteration.\n learning_rate : float\n learning rate of the gradient descent update rule.\n num_iterations : int\n number of iterations of the optimization loop.\n print_cost : bool\n if True, it prints the cost every 100 steps.\n hidden_layers_activation_fn : str\n activation function to be used on hidden layers: "tanh", "relu".\n\n Returns\n -------\n parameters : dict\n parameters learnt by the model. They can then be used to predict test\n examples.\n ' m = X.shape[1] np.random.seed(1) parameters = initialize_parameters(layers_dims) cost_list = [] for i in range(num_iterations): D = drop_out_matrices(layers_dims, m, keep_prob) (AL, caches) = L_model_forward(X, parameters, D, keep_prob, hidden_layers_activation_fn) cost = compute_cost(AL, Y) grads = L_model_backward(AL, Y, caches, D, keep_prob, hidden_layers_activation_fn) parameters = update_parameters(parameters, grads, learning_rate) if ((((i + 1) % 100) == 0) and print_cost): print('The cost after {} iterations: {}'.format((i + 1), cost)) if ((i % 100) == 0): cost_list.append(cost) plt.plot(cost_list) plt.xlabel('Iteration (per hundreds)') plt.ylabel('Cost') plt.title('Cost curve for the learning rate = {}'.format(learning_rate)) return parameters
def model_with_dropout(X, Y, layers_dims, keep_prob, learning_rate=0.01, num_iterations=3000, print_cost=True, hidden_layers_activation_fn='relu'): '\n Implements multilayer neural network with dropout using gradient descent as the\n learning algorithm.\n\n Arguments\n ---------\n X : 2d-array\n data, shape: number of examples x num_px * num_px * 3.\n y : 2d-array\n true "label" vector, shape: 1 x number of examples.\n layers_dims : list\n input size and size of each layer, length: number of layers + 1.\n keep_prob : list\n probabilities of keeping a neuron (unit) active for each layer on each\n iteration.\n learning_rate : float\n learning rate of the gradient descent update rule.\n num_iterations : int\n number of iterations of the optimization loop.\n print_cost : bool\n if True, it prints the cost every 100 steps.\n hidden_layers_activation_fn : str\n activation function to be used on hidden layers: "tanh", "relu".\n\n Returns\n -------\n parameters : dict\n parameters learnt by the model. They can then be used to predict test\n examples.\n ' m = X.shape[1] np.random.seed(1) parameters = initialize_parameters(layers_dims) cost_list = [] for i in range(num_iterations): D = drop_out_matrices(layers_dims, m, keep_prob) (AL, caches) = L_model_forward(X, parameters, D, keep_prob, hidden_layers_activation_fn) cost = compute_cost(AL, Y) grads = L_model_backward(AL, Y, caches, D, keep_prob, hidden_layers_activation_fn) parameters = update_parameters(parameters, grads, learning_rate) if ((((i + 1) % 100) == 0) and print_cost): print('The cost after {} iterations: {}'.format((i + 1), cost)) if ((i % 100) == 0): cost_list.append(cost) plt.plot(cost_list) plt.xlabel('Iteration (per hundreds)') plt.ylabel('Cost') plt.title('Cost curve for the learning rate = {}'.format(learning_rate)) return parameters<|docstring|>Implements multilayer neural network with dropout using gradient descent as the learning algorithm. Arguments --------- X : 2d-array data, shape: number of examples x num_px * num_px * 3. y : 2d-array true "label" vector, shape: 1 x number of examples. layers_dims : list input size and size of each layer, length: number of layers + 1. keep_prob : list probabilities of keeping a neuron (unit) active for each layer on each iteration. learning_rate : float learning rate of the gradient descent update rule. num_iterations : int number of iterations of the optimization loop. print_cost : bool if True, it prints the cost every 100 steps. hidden_layers_activation_fn : str activation function to be used on hidden layers: "tanh", "relu". Returns ------- parameters : dict parameters learnt by the model. They can then be used to predict test examples.<|endoftext|>
1b80b6191a9a41a609549603935669b23ee243daf877999ee924191f577a4c4f
def getType(self): ' Returns the type of an entity ' return self.type
Returns the type of an entity
tasksupervisor/entities/entity.py
getType
ramp-eu/Task_Supervisor
0
python
def getType(self): ' ' return self.type
def getType(self): ' ' return self.type<|docstring|>Returns the type of an entity<|endoftext|>
c3e6b30fa4772b2bb409b6e1b4cb3d0329160f2a91954e53a20bfc537ddd4bad
def getId(self): ' Returns the unique ID of an entity ' return self.id
Returns the unique ID of an entity
tasksupervisor/entities/entity.py
getId
ramp-eu/Task_Supervisor
0
python
def getId(self): ' ' return self.id
def getId(self): ' ' return self.id<|docstring|>Returns the unique ID of an entity<|endoftext|>
cdc9acc7509be446a50c0803f2008d93867a5ac8291564221a22f2cd7bb693ee
@abstractmethod def forward(self, x_e: torch.FloatTensor, graph_ids: torch.LongTensor, entity_ids: Optional[torch.LongTensor]) -> FloatTensor: '\n Obtain graph representations by aggregating node representations.\n\n :param x_e: shape: (num_nodes, dim)\n The node representations.\n :param graph_ids: shape: (num_nodes,)\n The graph ID for each node.\n :param entity_ids: shape: (num_nodes,)\n The global entity ID for each node.\n\n :return: shape: (num_graphs, dim)\n The graph representations.\n ' raise NotImplementedError
Obtain graph representations by aggregating node representations. :param x_e: shape: (num_nodes, dim) The node representations. :param graph_ids: shape: (num_nodes,) The graph ID for each node. :param entity_ids: shape: (num_nodes,) The global entity ID for each node. :return: shape: (num_graphs, dim) The graph representations.
src/mphrqe/layer/pooling.py
forward
DimitrisAlivas/StarQE
11
python
@abstractmethod def forward(self, x_e: torch.FloatTensor, graph_ids: torch.LongTensor, entity_ids: Optional[torch.LongTensor]) -> FloatTensor: '\n Obtain graph representations by aggregating node representations.\n\n :param x_e: shape: (num_nodes, dim)\n The node representations.\n :param graph_ids: shape: (num_nodes,)\n The graph ID for each node.\n :param entity_ids: shape: (num_nodes,)\n The global entity ID for each node.\n\n :return: shape: (num_graphs, dim)\n The graph representations.\n ' raise NotImplementedError
@abstractmethod def forward(self, x_e: torch.FloatTensor, graph_ids: torch.LongTensor, entity_ids: Optional[torch.LongTensor]) -> FloatTensor: '\n Obtain graph representations by aggregating node representations.\n\n :param x_e: shape: (num_nodes, dim)\n The node representations.\n :param graph_ids: shape: (num_nodes,)\n The graph ID for each node.\n :param entity_ids: shape: (num_nodes,)\n The global entity ID for each node.\n\n :return: shape: (num_graphs, dim)\n The graph representations.\n ' raise NotImplementedError<|docstring|>Obtain graph representations by aggregating node representations. :param x_e: shape: (num_nodes, dim) The node representations. :param graph_ids: shape: (num_nodes,) The graph ID for each node. :param entity_ids: shape: (num_nodes,) The global entity ID for each node. :return: shape: (num_graphs, dim) The graph representations.<|endoftext|>
63f8416d28eab338a50873b85983828d2f3f84fb712cf82eb951b49cdbe8e173
def forward(self, x_e: torch.FloatTensor, graph_ids: torch.LongTensor, entity_ids: Optional[torch.LongTensor]=None) -> FloatTensor: '\n graph_ids: binary mask\n ' assert (entity_ids is not None) mask = (entity_ids == (get_entity_mapper().highest_entity_index + 1)) assert (mask.sum() == graph_ids.unique().shape[0]), 'There should be exactly one target node per graph.' return x_e[mask]
graph_ids: binary mask
src/mphrqe/layer/pooling.py
forward
DimitrisAlivas/StarQE
11
python
def forward(self, x_e: torch.FloatTensor, graph_ids: torch.LongTensor, entity_ids: Optional[torch.LongTensor]=None) -> FloatTensor: '\n \n ' assert (entity_ids is not None) mask = (entity_ids == (get_entity_mapper().highest_entity_index + 1)) assert (mask.sum() == graph_ids.unique().shape[0]), 'There should be exactly one target node per graph.' return x_e[mask]
def forward(self, x_e: torch.FloatTensor, graph_ids: torch.LongTensor, entity_ids: Optional[torch.LongTensor]=None) -> FloatTensor: '\n \n ' assert (entity_ids is not None) mask = (entity_ids == (get_entity_mapper().highest_entity_index + 1)) assert (mask.sum() == graph_ids.unique().shape[0]), 'There should be exactly one target node per graph.' return x_e[mask]<|docstring|>graph_ids: binary mask<|endoftext|>
b944b2e6b172a132d61b061861cafbb95226c80c63f2d69f28e5a200ce61f9e4
def init_application(): 'Main entry point for initializing the Deckhand API service.\n\n Create routes for the v1.0 API and sets up logging.\n ' config_files = _get_config_files() paste_file = config_files[(- 1)] CONF([], project='deckhand', default_config_files=config_files) setup_logging(CONF) policy.Enforcer(CONF) LOG.debug('Starting WSGI application using %s configuration file.', paste_file) db_api.drop_db() db_api.setup_db(CONF.database.connection) app = deploy.loadapp(('config:%s' % paste_file), name='deckhand_api') return app
Main entry point for initializing the Deckhand API service. Create routes for the v1.0 API and sets up logging.
deckhand/control/api.py
init_application
att-comdev/test-submit
0
python
def init_application(): 'Main entry point for initializing the Deckhand API service.\n\n Create routes for the v1.0 API and sets up logging.\n ' config_files = _get_config_files() paste_file = config_files[(- 1)] CONF([], project='deckhand', default_config_files=config_files) setup_logging(CONF) policy.Enforcer(CONF) LOG.debug('Starting WSGI application using %s configuration file.', paste_file) db_api.drop_db() db_api.setup_db(CONF.database.connection) app = deploy.loadapp(('config:%s' % paste_file), name='deckhand_api') return app
def init_application(): 'Main entry point for initializing the Deckhand API service.\n\n Create routes for the v1.0 API and sets up logging.\n ' config_files = _get_config_files() paste_file = config_files[(- 1)] CONF([], project='deckhand', default_config_files=config_files) setup_logging(CONF) policy.Enforcer(CONF) LOG.debug('Starting WSGI application using %s configuration file.', paste_file) db_api.drop_db() db_api.setup_db(CONF.database.connection) app = deploy.loadapp(('config:%s' % paste_file), name='deckhand_api') return app<|docstring|>Main entry point for initializing the Deckhand API service. Create routes for the v1.0 API and sets up logging.<|endoftext|>
3f774de91682eb63d50f7ff9ae1fa53d7c7927c9bebf8528789d8ca00756a2d3
def add_logging_level(levelName: str, levelNum: int, methodName: Optional[str]=None) -> None: 'Comprehensively adds a new logging level to the `logging` module and the currently configured logging class.\n\n `levelName` becomes an attribute of the `logging` module with the value\n `levelNum`. `methodName` becomes a convenience method for both `logging`\n itself and the class returned by `logging.getLoggerClass()` (usually just\n `logging.Logger`).\n\n To avoid accidental clobbering of existing attributes, this method will\n raise an `AttributeError` if the level name is already an attribute of the\n `logging` module or if the method name is already present\n\n Credit: https://stackoverflow.com/a/35804945\n\n Args:\n levelName (str): The name of the new logging level (in all caps).\n levelNum (int): The priority value of the logging level, lower=more verbose.\n methodName (str): The name of the method used to log using this.\n If `methodName` is not specified, `levelName.lower()` is used.\n\n Example:\n ::\n >>> add_logging_level(\'TRACE\', logging.DEBUG - 5)\n >>> logging.getLogger(__name__).setLevel("TRACE")\n >>> logging.getLogger(__name__).trace(\'that worked\')\n >>> logging.trace(\'so did this\')\n >>> logging.TRACE\n 5\n\n ' if (not methodName): methodName = levelName.lower() if hasattr(logging, levelName): raise AttributeError('{} already defined in logging module'.format(levelName)) if hasattr(logging, methodName): raise AttributeError('{} already defined in logging module'.format(methodName)) if hasattr(logging.getLoggerClass(), methodName): raise AttributeError('{} already defined in logger class'.format(methodName)) def logForLevel(self, message, *args, **kwargs): if self.isEnabledFor(levelNum): self._log(levelNum, message, args, **kwargs) def logToRoot(message, *args, **kwargs): logging.log(levelNum, message, *args, **kwargs) logging.addLevelName(levelNum, levelName) setattr(logging, levelName, levelNum) setattr(logging.getLoggerClass(), methodName, logForLevel) setattr(logging, methodName, logToRoot)
Comprehensively adds a new logging level to the `logging` module and the currently configured logging class. `levelName` becomes an attribute of the `logging` module with the value `levelNum`. `methodName` becomes a convenience method for both `logging` itself and the class returned by `logging.getLoggerClass()` (usually just `logging.Logger`). To avoid accidental clobbering of existing attributes, this method will raise an `AttributeError` if the level name is already an attribute of the `logging` module or if the method name is already present Credit: https://stackoverflow.com/a/35804945 Args: levelName (str): The name of the new logging level (in all caps). levelNum (int): The priority value of the logging level, lower=more verbose. methodName (str): The name of the method used to log using this. If `methodName` is not specified, `levelName.lower()` is used. Example: :: >>> add_logging_level('TRACE', logging.DEBUG - 5) >>> logging.getLogger(__name__).setLevel("TRACE") >>> logging.getLogger(__name__).trace('that worked') >>> logging.trace('so did this') >>> logging.TRACE 5
unifi_protect_backup/unifi_protect_backup.py
add_logging_level
roastlechon/unifi-protect-backup
0
python
def add_logging_level(levelName: str, levelNum: int, methodName: Optional[str]=None) -> None: 'Comprehensively adds a new logging level to the `logging` module and the currently configured logging class.\n\n `levelName` becomes an attribute of the `logging` module with the value\n `levelNum`. `methodName` becomes a convenience method for both `logging`\n itself and the class returned by `logging.getLoggerClass()` (usually just\n `logging.Logger`).\n\n To avoid accidental clobbering of existing attributes, this method will\n raise an `AttributeError` if the level name is already an attribute of the\n `logging` module or if the method name is already present\n\n Credit: https://stackoverflow.com/a/35804945\n\n Args:\n levelName (str): The name of the new logging level (in all caps).\n levelNum (int): The priority value of the logging level, lower=more verbose.\n methodName (str): The name of the method used to log using this.\n If `methodName` is not specified, `levelName.lower()` is used.\n\n Example:\n ::\n >>> add_logging_level(\'TRACE\', logging.DEBUG - 5)\n >>> logging.getLogger(__name__).setLevel("TRACE")\n >>> logging.getLogger(__name__).trace(\'that worked\')\n >>> logging.trace(\'so did this\')\n >>> logging.TRACE\n 5\n\n ' if (not methodName): methodName = levelName.lower() if hasattr(logging, levelName): raise AttributeError('{} already defined in logging module'.format(levelName)) if hasattr(logging, methodName): raise AttributeError('{} already defined in logging module'.format(methodName)) if hasattr(logging.getLoggerClass(), methodName): raise AttributeError('{} already defined in logger class'.format(methodName)) def logForLevel(self, message, *args, **kwargs): if self.isEnabledFor(levelNum): self._log(levelNum, message, args, **kwargs) def logToRoot(message, *args, **kwargs): logging.log(levelNum, message, *args, **kwargs) logging.addLevelName(levelNum, levelName) setattr(logging, levelName, levelNum) setattr(logging.getLoggerClass(), methodName, logForLevel) setattr(logging, methodName, logToRoot)
def add_logging_level(levelName: str, levelNum: int, methodName: Optional[str]=None) -> None: 'Comprehensively adds a new logging level to the `logging` module and the currently configured logging class.\n\n `levelName` becomes an attribute of the `logging` module with the value\n `levelNum`. `methodName` becomes a convenience method for both `logging`\n itself and the class returned by `logging.getLoggerClass()` (usually just\n `logging.Logger`).\n\n To avoid accidental clobbering of existing attributes, this method will\n raise an `AttributeError` if the level name is already an attribute of the\n `logging` module or if the method name is already present\n\n Credit: https://stackoverflow.com/a/35804945\n\n Args:\n levelName (str): The name of the new logging level (in all caps).\n levelNum (int): The priority value of the logging level, lower=more verbose.\n methodName (str): The name of the method used to log using this.\n If `methodName` is not specified, `levelName.lower()` is used.\n\n Example:\n ::\n >>> add_logging_level(\'TRACE\', logging.DEBUG - 5)\n >>> logging.getLogger(__name__).setLevel("TRACE")\n >>> logging.getLogger(__name__).trace(\'that worked\')\n >>> logging.trace(\'so did this\')\n >>> logging.TRACE\n 5\n\n ' if (not methodName): methodName = levelName.lower() if hasattr(logging, levelName): raise AttributeError('{} already defined in logging module'.format(levelName)) if hasattr(logging, methodName): raise AttributeError('{} already defined in logging module'.format(methodName)) if hasattr(logging.getLoggerClass(), methodName): raise AttributeError('{} already defined in logger class'.format(methodName)) def logForLevel(self, message, *args, **kwargs): if self.isEnabledFor(levelNum): self._log(levelNum, message, args, **kwargs) def logToRoot(message, *args, **kwargs): logging.log(levelNum, message, *args, **kwargs) logging.addLevelName(levelNum, levelName) setattr(logging, levelName, levelNum) setattr(logging.getLoggerClass(), methodName, logForLevel) setattr(logging, methodName, logToRoot)<|docstring|>Comprehensively adds a new logging level to the `logging` module and the currently configured logging class. `levelName` becomes an attribute of the `logging` module with the value `levelNum`. `methodName` becomes a convenience method for both `logging` itself and the class returned by `logging.getLoggerClass()` (usually just `logging.Logger`). To avoid accidental clobbering of existing attributes, this method will raise an `AttributeError` if the level name is already an attribute of the `logging` module or if the method name is already present Credit: https://stackoverflow.com/a/35804945 Args: levelName (str): The name of the new logging level (in all caps). levelNum (int): The priority value of the logging level, lower=more verbose. methodName (str): The name of the method used to log using this. If `methodName` is not specified, `levelName.lower()` is used. Example: :: >>> add_logging_level('TRACE', logging.DEBUG - 5) >>> logging.getLogger(__name__).setLevel("TRACE") >>> logging.getLogger(__name__).trace('that worked') >>> logging.trace('so did this') >>> logging.TRACE 5<|endoftext|>
2d439cfce5c6cf51114181c556fbab6efdbf9308c9b74fca150a7abad1088363
def setup_logging(verbosity: int) -> None: 'Configures loggers to provided the desired level of verbosity.\n\n Verbosity 0: Only log info messages created by `unifi-protect-backup`, and all warnings\n verbosity 1: Only log info & debug messages created by `unifi-protect-backup`, and all warnings\n verbosity 2: Log info & debug messages created by `unifi-protect-backup`, command output, and\n all warnings\n Verbosity 3: Log debug messages created by `unifi-protect-backup`, command output, all info\n messages, and all warnings\n Verbosity 4: Log debug messages created by `unifi-protect-backup` command output, all info\n messages, all warnings, and websocket data\n Verbosity 5: Log websocket data, command output, all debug messages, all info messages and all\n warnings\n\n Args:\n verbosity (int): The desired level of verbosity\n\n ' add_logging_level('EXTRA_DEBUG', (logging.DEBUG - 1)) add_logging_level('WEBSOCKET_DATA', (logging.DEBUG - 2)) format = '{asctime} [{levelname}]:{name: <20}:\t{message}' date_format = '%Y-%m-%d %H:%M:%S' style = '{' if (verbosity == 0): logging.basicConfig(level=logging.WARN, format=format, style=style, datefmt=date_format) logger.setLevel(logging.INFO) elif (verbosity == 1): logging.basicConfig(level=logging.WARN, format=format, style=style, datefmt=date_format) logger.setLevel(logging.DEBUG) elif (verbosity == 2): logging.basicConfig(level=logging.WARN, format=format, style=style, datefmt=date_format) logger.setLevel(logging.EXTRA_DEBUG) elif (verbosity == 3): logging.basicConfig(level=logging.INFO, format=format, style=style, datefmt=date_format) logger.setLevel(logging.EXTRA_DEBUG) elif (verbosity == 4): logging.basicConfig(level=logging.INFO, format=format, style=style, datefmt=date_format) logger.setLevel(logging.WEBSOCKET_DATA) elif (verbosity == 5): logging.basicConfig(level=logging.DEBUG, format=format, style=style, datefmt=date_format) logger.setLevel(logging.WEBSOCKET_DATA)
Configures loggers to provided the desired level of verbosity. Verbosity 0: Only log info messages created by `unifi-protect-backup`, and all warnings verbosity 1: Only log info & debug messages created by `unifi-protect-backup`, and all warnings verbosity 2: Log info & debug messages created by `unifi-protect-backup`, command output, and all warnings Verbosity 3: Log debug messages created by `unifi-protect-backup`, command output, all info messages, and all warnings Verbosity 4: Log debug messages created by `unifi-protect-backup` command output, all info messages, all warnings, and websocket data Verbosity 5: Log websocket data, command output, all debug messages, all info messages and all warnings Args: verbosity (int): The desired level of verbosity
unifi_protect_backup/unifi_protect_backup.py
setup_logging
roastlechon/unifi-protect-backup
0
python
def setup_logging(verbosity: int) -> None: 'Configures loggers to provided the desired level of verbosity.\n\n Verbosity 0: Only log info messages created by `unifi-protect-backup`, and all warnings\n verbosity 1: Only log info & debug messages created by `unifi-protect-backup`, and all warnings\n verbosity 2: Log info & debug messages created by `unifi-protect-backup`, command output, and\n all warnings\n Verbosity 3: Log debug messages created by `unifi-protect-backup`, command output, all info\n messages, and all warnings\n Verbosity 4: Log debug messages created by `unifi-protect-backup` command output, all info\n messages, all warnings, and websocket data\n Verbosity 5: Log websocket data, command output, all debug messages, all info messages and all\n warnings\n\n Args:\n verbosity (int): The desired level of verbosity\n\n ' add_logging_level('EXTRA_DEBUG', (logging.DEBUG - 1)) add_logging_level('WEBSOCKET_DATA', (logging.DEBUG - 2)) format = '{asctime} [{levelname}]:{name: <20}:\t{message}' date_format = '%Y-%m-%d %H:%M:%S' style = '{' if (verbosity == 0): logging.basicConfig(level=logging.WARN, format=format, style=style, datefmt=date_format) logger.setLevel(logging.INFO) elif (verbosity == 1): logging.basicConfig(level=logging.WARN, format=format, style=style, datefmt=date_format) logger.setLevel(logging.DEBUG) elif (verbosity == 2): logging.basicConfig(level=logging.WARN, format=format, style=style, datefmt=date_format) logger.setLevel(logging.EXTRA_DEBUG) elif (verbosity == 3): logging.basicConfig(level=logging.INFO, format=format, style=style, datefmt=date_format) logger.setLevel(logging.EXTRA_DEBUG) elif (verbosity == 4): logging.basicConfig(level=logging.INFO, format=format, style=style, datefmt=date_format) logger.setLevel(logging.WEBSOCKET_DATA) elif (verbosity == 5): logging.basicConfig(level=logging.DEBUG, format=format, style=style, datefmt=date_format) logger.setLevel(logging.WEBSOCKET_DATA)
def setup_logging(verbosity: int) -> None: 'Configures loggers to provided the desired level of verbosity.\n\n Verbosity 0: Only log info messages created by `unifi-protect-backup`, and all warnings\n verbosity 1: Only log info & debug messages created by `unifi-protect-backup`, and all warnings\n verbosity 2: Log info & debug messages created by `unifi-protect-backup`, command output, and\n all warnings\n Verbosity 3: Log debug messages created by `unifi-protect-backup`, command output, all info\n messages, and all warnings\n Verbosity 4: Log debug messages created by `unifi-protect-backup` command output, all info\n messages, all warnings, and websocket data\n Verbosity 5: Log websocket data, command output, all debug messages, all info messages and all\n warnings\n\n Args:\n verbosity (int): The desired level of verbosity\n\n ' add_logging_level('EXTRA_DEBUG', (logging.DEBUG - 1)) add_logging_level('WEBSOCKET_DATA', (logging.DEBUG - 2)) format = '{asctime} [{levelname}]:{name: <20}:\t{message}' date_format = '%Y-%m-%d %H:%M:%S' style = '{' if (verbosity == 0): logging.basicConfig(level=logging.WARN, format=format, style=style, datefmt=date_format) logger.setLevel(logging.INFO) elif (verbosity == 1): logging.basicConfig(level=logging.WARN, format=format, style=style, datefmt=date_format) logger.setLevel(logging.DEBUG) elif (verbosity == 2): logging.basicConfig(level=logging.WARN, format=format, style=style, datefmt=date_format) logger.setLevel(logging.EXTRA_DEBUG) elif (verbosity == 3): logging.basicConfig(level=logging.INFO, format=format, style=style, datefmt=date_format) logger.setLevel(logging.EXTRA_DEBUG) elif (verbosity == 4): logging.basicConfig(level=logging.INFO, format=format, style=style, datefmt=date_format) logger.setLevel(logging.WEBSOCKET_DATA) elif (verbosity == 5): logging.basicConfig(level=logging.DEBUG, format=format, style=style, datefmt=date_format) logger.setLevel(logging.WEBSOCKET_DATA)<|docstring|>Configures loggers to provided the desired level of verbosity. Verbosity 0: Only log info messages created by `unifi-protect-backup`, and all warnings verbosity 1: Only log info & debug messages created by `unifi-protect-backup`, and all warnings verbosity 2: Log info & debug messages created by `unifi-protect-backup`, command output, and all warnings Verbosity 3: Log debug messages created by `unifi-protect-backup`, command output, all info messages, and all warnings Verbosity 4: Log debug messages created by `unifi-protect-backup` command output, all info messages, all warnings, and websocket data Verbosity 5: Log websocket data, command output, all debug messages, all info messages and all warnings Args: verbosity (int): The desired level of verbosity<|endoftext|>
0d2d9eb04ff12b37c07ffdf2e3937a0f4e74dc312f5ccfc64d002d7d85b070d6
def human_readable_size(num): 'Turns a number into a human readable number with ISO/IEC 80000 binary prefixes.\n\n Based on: https://stackoverflow.com/a/1094933\n\n Args:\n num (int): The number to be converted into human readable format\n ' for unit in ['B', 'KiB', 'MiB', 'GiB', 'TiB', 'PiB', 'EiB', 'ZiB', 'YiB']: if (abs(num) < 1024.0): return f'{num:3.1f}{unit}' num /= 1024.0 raise ValueError('`num` too large, ran out of prefixes')
Turns a number into a human readable number with ISO/IEC 80000 binary prefixes. Based on: https://stackoverflow.com/a/1094933 Args: num (int): The number to be converted into human readable format
unifi_protect_backup/unifi_protect_backup.py
human_readable_size
roastlechon/unifi-protect-backup
0
python
def human_readable_size(num): 'Turns a number into a human readable number with ISO/IEC 80000 binary prefixes.\n\n Based on: https://stackoverflow.com/a/1094933\n\n Args:\n num (int): The number to be converted into human readable format\n ' for unit in ['B', 'KiB', 'MiB', 'GiB', 'TiB', 'PiB', 'EiB', 'ZiB', 'YiB']: if (abs(num) < 1024.0): return f'{num:3.1f}{unit}' num /= 1024.0 raise ValueError('`num` too large, ran out of prefixes')
def human_readable_size(num): 'Turns a number into a human readable number with ISO/IEC 80000 binary prefixes.\n\n Based on: https://stackoverflow.com/a/1094933\n\n Args:\n num (int): The number to be converted into human readable format\n ' for unit in ['B', 'KiB', 'MiB', 'GiB', 'TiB', 'PiB', 'EiB', 'ZiB', 'YiB']: if (abs(num) < 1024.0): return f'{num:3.1f}{unit}' num /= 1024.0 raise ValueError('`num` too large, ran out of prefixes')<|docstring|>Turns a number into a human readable number with ISO/IEC 80000 binary prefixes. Based on: https://stackoverflow.com/a/1094933 Args: num (int): The number to be converted into human readable format<|endoftext|>
d044ea67851c969777f0b36cf23547890c4af69895cd01ab5603c9a1882f8cfb
def __init__(self, stdout, stderr, returncode): 'Exception class for when rclone does not exit with `0`.\n\n Args:\n stdout (str): What rclone output to stdout\n stderr (str): What rclone output to stderr\n returncode (str): The return code of the rclone process\n ' super().__init__() self.stdout: str = stdout self.stderr: str = stderr self.returncode: int = returncode
Exception class for when rclone does not exit with `0`. Args: stdout (str): What rclone output to stdout stderr (str): What rclone output to stderr returncode (str): The return code of the rclone process
unifi_protect_backup/unifi_protect_backup.py
__init__
roastlechon/unifi-protect-backup
0
python
def __init__(self, stdout, stderr, returncode): 'Exception class for when rclone does not exit with `0`.\n\n Args:\n stdout (str): What rclone output to stdout\n stderr (str): What rclone output to stderr\n returncode (str): The return code of the rclone process\n ' super().__init__() self.stdout: str = stdout self.stderr: str = stderr self.returncode: int = returncode
def __init__(self, stdout, stderr, returncode): 'Exception class for when rclone does not exit with `0`.\n\n Args:\n stdout (str): What rclone output to stdout\n stderr (str): What rclone output to stderr\n returncode (str): The return code of the rclone process\n ' super().__init__() self.stdout: str = stdout self.stderr: str = stderr self.returncode: int = returncode<|docstring|>Exception class for when rclone does not exit with `0`. Args: stdout (str): What rclone output to stdout stderr (str): What rclone output to stderr returncode (str): The return code of the rclone process<|endoftext|>
8cc882511f3630b3ba4b04177f02c5d6ec9f19b1047efb757db92ebb8088329b
def __str__(self): 'Turns excpetion into a human readable form.' return f'''Return Code: {self.returncode} Stdout: {self.stdout} Stderr: {self.stderr}'''
Turns excpetion into a human readable form.
unifi_protect_backup/unifi_protect_backup.py
__str__
roastlechon/unifi-protect-backup
0
python
def __str__(self): return f'Return Code: {self.returncode} Stdout: {self.stdout} Stderr: {self.stderr}'
def __str__(self): return f'Return Code: {self.returncode} Stdout: {self.stdout} Stderr: {self.stderr}'<|docstring|>Turns excpetion into a human readable form.<|endoftext|>
78c1d81c4fd8de4f0556ae6dd96ecc7e44bf0b1afc5149b737f15750a93746c6
def __init__(self, address: str, username: str, password: str, verify_ssl: bool, rclone_destination: str, retention: str, rclone_args: str, ignore_cameras: List[str], verbose: int, port: int=443): 'Will configure logging settings and the Unifi Protect API (but not actually connect).\n\n Args:\n address (str): Base address of the Unifi Protect instance\n port (int): Post of the Unifi Protect instance, usually 443\n username (str): Username to log into Unifi Protect instance\n password (str): Password for Unifi Protect user\n verify_ssl (bool): Flag for if SSL certificates should be validated\n rclone_destination (str): `rclone` destination path in the format\n {rclone remote}:{path on remote}. E.g.\n `gdrive:/backups/unifi_protect`\n retention (str): How long should event clips be backed up for. Format as per the\n `--max-age` argument of `rclone`\n (https://rclone.org/filtering/#max-age-don-t-transfer-any-file-older-than-this)\n rclone_args (str): A bandwidth limit which is passed to the `--bwlimit` argument of\n `rclone` (https://rclone.org/docs/#bwlimit-bandwidth-spec)\n ignore_cameras (List[str]): List of camera IDs for which to not backup events\n verbose (int): How verbose to setup logging, see :func:`setup_logging` for details.\n ' setup_logging(verbose) logger.debug('Config:') logger.debug(f' address={address!r}') logger.debug(f' port={port!r}') logger.debug(f' username={username!r}') if (verbose < 5): logger.debug(' password=REDACTED') else: logger.debug(f' password={password!r}') logger.debug(f' verify_ssl={verify_ssl!r}') logger.debug(f' rclone_destination={rclone_destination!r}') logger.debug(f' retention={retention!r}') logger.debug(f' rclone_args={rclone_args!r}') logger.debug(f' ignore_cameras={ignore_cameras!r}') logger.debug(f' verbose={verbose!r}') self.rclone_destination = rclone_destination self.retention = retention self.rclone_args = rclone_args self.address = address self.port = port self.username = username self.password = password self.verify_ssl = verify_ssl self._protect = ProtectApiClient(self.address, self.port, self.username, self.password, verify_ssl=self.verify_ssl, subscribed_models={ModelType.EVENT}) self.ignore_cameras = ignore_cameras self._download_queue: asyncio.Queue = asyncio.Queue() self._unsub: Callable[([], None)] self._has_ffprobe = False
Will configure logging settings and the Unifi Protect API (but not actually connect). Args: address (str): Base address of the Unifi Protect instance port (int): Post of the Unifi Protect instance, usually 443 username (str): Username to log into Unifi Protect instance password (str): Password for Unifi Protect user verify_ssl (bool): Flag for if SSL certificates should be validated rclone_destination (str): `rclone` destination path in the format {rclone remote}:{path on remote}. E.g. `gdrive:/backups/unifi_protect` retention (str): How long should event clips be backed up for. Format as per the `--max-age` argument of `rclone` (https://rclone.org/filtering/#max-age-don-t-transfer-any-file-older-than-this) rclone_args (str): A bandwidth limit which is passed to the `--bwlimit` argument of `rclone` (https://rclone.org/docs/#bwlimit-bandwidth-spec) ignore_cameras (List[str]): List of camera IDs for which to not backup events verbose (int): How verbose to setup logging, see :func:`setup_logging` for details.
unifi_protect_backup/unifi_protect_backup.py
__init__
roastlechon/unifi-protect-backup
0
python
def __init__(self, address: str, username: str, password: str, verify_ssl: bool, rclone_destination: str, retention: str, rclone_args: str, ignore_cameras: List[str], verbose: int, port: int=443): 'Will configure logging settings and the Unifi Protect API (but not actually connect).\n\n Args:\n address (str): Base address of the Unifi Protect instance\n port (int): Post of the Unifi Protect instance, usually 443\n username (str): Username to log into Unifi Protect instance\n password (str): Password for Unifi Protect user\n verify_ssl (bool): Flag for if SSL certificates should be validated\n rclone_destination (str): `rclone` destination path in the format\n {rclone remote}:{path on remote}. E.g.\n `gdrive:/backups/unifi_protect`\n retention (str): How long should event clips be backed up for. Format as per the\n `--max-age` argument of `rclone`\n (https://rclone.org/filtering/#max-age-don-t-transfer-any-file-older-than-this)\n rclone_args (str): A bandwidth limit which is passed to the `--bwlimit` argument of\n `rclone` (https://rclone.org/docs/#bwlimit-bandwidth-spec)\n ignore_cameras (List[str]): List of camera IDs for which to not backup events\n verbose (int): How verbose to setup logging, see :func:`setup_logging` for details.\n ' setup_logging(verbose) logger.debug('Config:') logger.debug(f' address={address!r}') logger.debug(f' port={port!r}') logger.debug(f' username={username!r}') if (verbose < 5): logger.debug(' password=REDACTED') else: logger.debug(f' password={password!r}') logger.debug(f' verify_ssl={verify_ssl!r}') logger.debug(f' rclone_destination={rclone_destination!r}') logger.debug(f' retention={retention!r}') logger.debug(f' rclone_args={rclone_args!r}') logger.debug(f' ignore_cameras={ignore_cameras!r}') logger.debug(f' verbose={verbose!r}') self.rclone_destination = rclone_destination self.retention = retention self.rclone_args = rclone_args self.address = address self.port = port self.username = username self.password = password self.verify_ssl = verify_ssl self._protect = ProtectApiClient(self.address, self.port, self.username, self.password, verify_ssl=self.verify_ssl, subscribed_models={ModelType.EVENT}) self.ignore_cameras = ignore_cameras self._download_queue: asyncio.Queue = asyncio.Queue() self._unsub: Callable[([], None)] self._has_ffprobe = False
def __init__(self, address: str, username: str, password: str, verify_ssl: bool, rclone_destination: str, retention: str, rclone_args: str, ignore_cameras: List[str], verbose: int, port: int=443): 'Will configure logging settings and the Unifi Protect API (but not actually connect).\n\n Args:\n address (str): Base address of the Unifi Protect instance\n port (int): Post of the Unifi Protect instance, usually 443\n username (str): Username to log into Unifi Protect instance\n password (str): Password for Unifi Protect user\n verify_ssl (bool): Flag for if SSL certificates should be validated\n rclone_destination (str): `rclone` destination path in the format\n {rclone remote}:{path on remote}. E.g.\n `gdrive:/backups/unifi_protect`\n retention (str): How long should event clips be backed up for. Format as per the\n `--max-age` argument of `rclone`\n (https://rclone.org/filtering/#max-age-don-t-transfer-any-file-older-than-this)\n rclone_args (str): A bandwidth limit which is passed to the `--bwlimit` argument of\n `rclone` (https://rclone.org/docs/#bwlimit-bandwidth-spec)\n ignore_cameras (List[str]): List of camera IDs for which to not backup events\n verbose (int): How verbose to setup logging, see :func:`setup_logging` for details.\n ' setup_logging(verbose) logger.debug('Config:') logger.debug(f' address={address!r}') logger.debug(f' port={port!r}') logger.debug(f' username={username!r}') if (verbose < 5): logger.debug(' password=REDACTED') else: logger.debug(f' password={password!r}') logger.debug(f' verify_ssl={verify_ssl!r}') logger.debug(f' rclone_destination={rclone_destination!r}') logger.debug(f' retention={retention!r}') logger.debug(f' rclone_args={rclone_args!r}') logger.debug(f' ignore_cameras={ignore_cameras!r}') logger.debug(f' verbose={verbose!r}') self.rclone_destination = rclone_destination self.retention = retention self.rclone_args = rclone_args self.address = address self.port = port self.username = username self.password = password self.verify_ssl = verify_ssl self._protect = ProtectApiClient(self.address, self.port, self.username, self.password, verify_ssl=self.verify_ssl, subscribed_models={ModelType.EVENT}) self.ignore_cameras = ignore_cameras self._download_queue: asyncio.Queue = asyncio.Queue() self._unsub: Callable[([], None)] self._has_ffprobe = False<|docstring|>Will configure logging settings and the Unifi Protect API (but not actually connect). Args: address (str): Base address of the Unifi Protect instance port (int): Post of the Unifi Protect instance, usually 443 username (str): Username to log into Unifi Protect instance password (str): Password for Unifi Protect user verify_ssl (bool): Flag for if SSL certificates should be validated rclone_destination (str): `rclone` destination path in the format {rclone remote}:{path on remote}. E.g. `gdrive:/backups/unifi_protect` retention (str): How long should event clips be backed up for. Format as per the `--max-age` argument of `rclone` (https://rclone.org/filtering/#max-age-don-t-transfer-any-file-older-than-this) rclone_args (str): A bandwidth limit which is passed to the `--bwlimit` argument of `rclone` (https://rclone.org/docs/#bwlimit-bandwidth-spec) ignore_cameras (List[str]): List of camera IDs for which to not backup events verbose (int): How verbose to setup logging, see :func:`setup_logging` for details.<|endoftext|>
2dfc50cb2f99104f5746b7ef1848d8db46593968fa467e9d753919655eb5ae44
async def start(self): 'Bootstrap the backup process and kick off the main loop.\n\n You should run this to start the realtime backup of Unifi Protect clips as they are created\n\n ' logger.info('Starting...') logger.info('Checking rclone configuration...') (await self._check_rclone()) ffprobe = shutil.which('ffprobe') if (ffprobe is not None): logger.debug(f'ffprobe found: {ffprobe}') self._has_ffprobe = True logger.info('Connecting to Unifi Protect...') (await self._protect.update()) logger.info('Found cameras:') for camera in self._protect.bootstrap.cameras.values(): logger.info(f' - {camera.id}: {camera.name}') self._unsub = self._protect.subscribe_websocket(self._websocket_callback) logger.info('Setting up purge task...') @aiocron.crontab('0 0 * * *') async def rclone_purge_old(): logger.info('Deleting old files...') cmd = f"rclone delete -vv --min-age {self.retention} '{self.rclone_destination}'" cmd += f" && rclone rmdirs -vv --leave-root '{self.rclone_destination}'" proc = (await asyncio.create_subprocess_shell(cmd, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE)) (stdout, stderr) = (await proc.communicate()) if (proc.returncode == 0): logger.extra_debug(f'''stdout: {stdout.decode()}''') logger.extra_debug(f'''stderr: {stderr.decode()}''') logger.info('Successfully deleted old files') else: logger.warn('Failed to purge old files') logger.warn(f'''stdout: {stdout.decode()}''') logger.warn(f'''stderr: {stderr.decode()}''') @aiocron.crontab('* * * * *') async def check_websocket_and_reconnect(): logger.extra_debug('Checking the status of the websocket...') if self._protect.check_ws(): logger.extra_debug('Websocket is connected.') else: logger.warn('Lost connection to Unifi Protect.') self._unsub() (await self._protect.close_session()) while True: logger.warn('Attempting reconnect...') try: replacement_protect = ProtectApiClient(self.address, self.port, self.username, self.password, verify_ssl=self.verify_ssl, subscribed_models={ModelType.EVENT}) (await replacement_protect.update()) if replacement_protect.check_ws(): self._protect = replacement_protect self._unsub = self._protect.subscribe_websocket(self._websocket_callback) break else: logger.warn('Unable to establish connection to Unifi Protect') except Exception as e: logger.warn('Unexpected exception occurred while trying to reconnect:') logger.exception(e) finally: (await replacement_protect.close_session()) (await asyncio.sleep(10)) logger.info('Re-established connection to Unifi Protect and to the websocket.') logger.info('Listening for events...') (await self._backup_events()) logger.info('Stopping...') self._unsub()
Bootstrap the backup process and kick off the main loop. You should run this to start the realtime backup of Unifi Protect clips as they are created
unifi_protect_backup/unifi_protect_backup.py
start
roastlechon/unifi-protect-backup
0
python
async def start(self): 'Bootstrap the backup process and kick off the main loop.\n\n You should run this to start the realtime backup of Unifi Protect clips as they are created\n\n ' logger.info('Starting...') logger.info('Checking rclone configuration...') (await self._check_rclone()) ffprobe = shutil.which('ffprobe') if (ffprobe is not None): logger.debug(f'ffprobe found: {ffprobe}') self._has_ffprobe = True logger.info('Connecting to Unifi Protect...') (await self._protect.update()) logger.info('Found cameras:') for camera in self._protect.bootstrap.cameras.values(): logger.info(f' - {camera.id}: {camera.name}') self._unsub = self._protect.subscribe_websocket(self._websocket_callback) logger.info('Setting up purge task...') @aiocron.crontab('0 0 * * *') async def rclone_purge_old(): logger.info('Deleting old files...') cmd = f"rclone delete -vv --min-age {self.retention} '{self.rclone_destination}'" cmd += f" && rclone rmdirs -vv --leave-root '{self.rclone_destination}'" proc = (await asyncio.create_subprocess_shell(cmd, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE)) (stdout, stderr) = (await proc.communicate()) if (proc.returncode == 0): logger.extra_debug(f'stdout: {stdout.decode()}') logger.extra_debug(f'stderr: {stderr.decode()}') logger.info('Successfully deleted old files') else: logger.warn('Failed to purge old files') logger.warn(f'stdout: {stdout.decode()}') logger.warn(f'stderr: {stderr.decode()}') @aiocron.crontab('* * * * *') async def check_websocket_and_reconnect(): logger.extra_debug('Checking the status of the websocket...') if self._protect.check_ws(): logger.extra_debug('Websocket is connected.') else: logger.warn('Lost connection to Unifi Protect.') self._unsub() (await self._protect.close_session()) while True: logger.warn('Attempting reconnect...') try: replacement_protect = ProtectApiClient(self.address, self.port, self.username, self.password, verify_ssl=self.verify_ssl, subscribed_models={ModelType.EVENT}) (await replacement_protect.update()) if replacement_protect.check_ws(): self._protect = replacement_protect self._unsub = self._protect.subscribe_websocket(self._websocket_callback) break else: logger.warn('Unable to establish connection to Unifi Protect') except Exception as e: logger.warn('Unexpected exception occurred while trying to reconnect:') logger.exception(e) finally: (await replacement_protect.close_session()) (await asyncio.sleep(10)) logger.info('Re-established connection to Unifi Protect and to the websocket.') logger.info('Listening for events...') (await self._backup_events()) logger.info('Stopping...') self._unsub()
async def start(self): 'Bootstrap the backup process and kick off the main loop.\n\n You should run this to start the realtime backup of Unifi Protect clips as they are created\n\n ' logger.info('Starting...') logger.info('Checking rclone configuration...') (await self._check_rclone()) ffprobe = shutil.which('ffprobe') if (ffprobe is not None): logger.debug(f'ffprobe found: {ffprobe}') self._has_ffprobe = True logger.info('Connecting to Unifi Protect...') (await self._protect.update()) logger.info('Found cameras:') for camera in self._protect.bootstrap.cameras.values(): logger.info(f' - {camera.id}: {camera.name}') self._unsub = self._protect.subscribe_websocket(self._websocket_callback) logger.info('Setting up purge task...') @aiocron.crontab('0 0 * * *') async def rclone_purge_old(): logger.info('Deleting old files...') cmd = f"rclone delete -vv --min-age {self.retention} '{self.rclone_destination}'" cmd += f" && rclone rmdirs -vv --leave-root '{self.rclone_destination}'" proc = (await asyncio.create_subprocess_shell(cmd, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE)) (stdout, stderr) = (await proc.communicate()) if (proc.returncode == 0): logger.extra_debug(f'stdout: {stdout.decode()}') logger.extra_debug(f'stderr: {stderr.decode()}') logger.info('Successfully deleted old files') else: logger.warn('Failed to purge old files') logger.warn(f'stdout: {stdout.decode()}') logger.warn(f'stderr: {stderr.decode()}') @aiocron.crontab('* * * * *') async def check_websocket_and_reconnect(): logger.extra_debug('Checking the status of the websocket...') if self._protect.check_ws(): logger.extra_debug('Websocket is connected.') else: logger.warn('Lost connection to Unifi Protect.') self._unsub() (await self._protect.close_session()) while True: logger.warn('Attempting reconnect...') try: replacement_protect = ProtectApiClient(self.address, self.port, self.username, self.password, verify_ssl=self.verify_ssl, subscribed_models={ModelType.EVENT}) (await replacement_protect.update()) if replacement_protect.check_ws(): self._protect = replacement_protect self._unsub = self._protect.subscribe_websocket(self._websocket_callback) break else: logger.warn('Unable to establish connection to Unifi Protect') except Exception as e: logger.warn('Unexpected exception occurred while trying to reconnect:') logger.exception(e) finally: (await replacement_protect.close_session()) (await asyncio.sleep(10)) logger.info('Re-established connection to Unifi Protect and to the websocket.') logger.info('Listening for events...') (await self._backup_events()) logger.info('Stopping...') self._unsub()<|docstring|>Bootstrap the backup process and kick off the main loop. You should run this to start the realtime backup of Unifi Protect clips as they are created<|endoftext|>
4e581efdf88b0e357b2b4d0732c6e5ebfb742416975ab2a5da6bb436e9c12b47
async def _check_rclone(self) -> None: 'Check if rclone is installed and the specified remote is configured.\n\n Raises:\n SubprocessException: If rclone is not installed or it failed to list remotes\n ValueError: The given rclone destination is for a remote that is not configured\n\n ' rclone = shutil.which('rclone') if (not rclone): raise RuntimeError('`rclone` is not installed on this system') logger.debug(f'rclone found: {rclone}') cmd = 'rclone listremotes -vv' proc = (await asyncio.create_subprocess_shell(cmd, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE)) (stdout, stderr) = (await proc.communicate()) logger.extra_debug(f'''stdout: {stdout.decode()}''') logger.extra_debug(f'''stderr: {stderr.decode()}''') if (proc.returncode != 0): raise SubprocessException(stdout.decode(), stderr.decode(), proc.returncode) for line in stdout.splitlines(): if self.rclone_destination.startswith(line.decode()): break else: remote = self.rclone_destination.split(':')[0] raise ValueError(f'rclone does not have a remote called `{remote}`')
Check if rclone is installed and the specified remote is configured. Raises: SubprocessException: If rclone is not installed or it failed to list remotes ValueError: The given rclone destination is for a remote that is not configured
unifi_protect_backup/unifi_protect_backup.py
_check_rclone
roastlechon/unifi-protect-backup
0
python
async def _check_rclone(self) -> None: 'Check if rclone is installed and the specified remote is configured.\n\n Raises:\n SubprocessException: If rclone is not installed or it failed to list remotes\n ValueError: The given rclone destination is for a remote that is not configured\n\n ' rclone = shutil.which('rclone') if (not rclone): raise RuntimeError('`rclone` is not installed on this system') logger.debug(f'rclone found: {rclone}') cmd = 'rclone listremotes -vv' proc = (await asyncio.create_subprocess_shell(cmd, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE)) (stdout, stderr) = (await proc.communicate()) logger.extra_debug(f'stdout: {stdout.decode()}') logger.extra_debug(f'stderr: {stderr.decode()}') if (proc.returncode != 0): raise SubprocessException(stdout.decode(), stderr.decode(), proc.returncode) for line in stdout.splitlines(): if self.rclone_destination.startswith(line.decode()): break else: remote = self.rclone_destination.split(':')[0] raise ValueError(f'rclone does not have a remote called `{remote}`')
async def _check_rclone(self) -> None: 'Check if rclone is installed and the specified remote is configured.\n\n Raises:\n SubprocessException: If rclone is not installed or it failed to list remotes\n ValueError: The given rclone destination is for a remote that is not configured\n\n ' rclone = shutil.which('rclone') if (not rclone): raise RuntimeError('`rclone` is not installed on this system') logger.debug(f'rclone found: {rclone}') cmd = 'rclone listremotes -vv' proc = (await asyncio.create_subprocess_shell(cmd, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE)) (stdout, stderr) = (await proc.communicate()) logger.extra_debug(f'stdout: {stdout.decode()}') logger.extra_debug(f'stderr: {stderr.decode()}') if (proc.returncode != 0): raise SubprocessException(stdout.decode(), stderr.decode(), proc.returncode) for line in stdout.splitlines(): if self.rclone_destination.startswith(line.decode()): break else: remote = self.rclone_destination.split(':')[0] raise ValueError(f'rclone does not have a remote called `{remote}`')<|docstring|>Check if rclone is installed and the specified remote is configured. Raises: SubprocessException: If rclone is not installed or it failed to list remotes ValueError: The given rclone destination is for a remote that is not configured<|endoftext|>
885ae6a498b94fcd3bc87f9c43d3fb38192da9610cde71587d7b57392949601f
def _websocket_callback(self, msg: WSSubscriptionMessage) -> None: 'Callback for "EVENT" websocket messages.\n\n Filters the incoming events, and puts completed events onto the download queue\n\n Args:\n msg (Event): Incoming event data\n ' logger.websocket_data(msg) assert isinstance(msg.new_obj, Event) if (msg.action != WSAction.UPDATE): return if (msg.new_obj.camera_id in self.ignore_cameras): return if (msg.new_obj.end is None): return if (msg.new_obj.type not in {EventType.MOTION, EventType.SMART_DETECT}): return self._download_queue.put_nowait(msg.new_obj) logger.debug(f'Adding event {msg.new_obj.id} to queue (Current queue={self._download_queue.qsize()})')
Callback for "EVENT" websocket messages. Filters the incoming events, and puts completed events onto the download queue Args: msg (Event): Incoming event data
unifi_protect_backup/unifi_protect_backup.py
_websocket_callback
roastlechon/unifi-protect-backup
0
python
def _websocket_callback(self, msg: WSSubscriptionMessage) -> None: 'Callback for "EVENT" websocket messages.\n\n Filters the incoming events, and puts completed events onto the download queue\n\n Args:\n msg (Event): Incoming event data\n ' logger.websocket_data(msg) assert isinstance(msg.new_obj, Event) if (msg.action != WSAction.UPDATE): return if (msg.new_obj.camera_id in self.ignore_cameras): return if (msg.new_obj.end is None): return if (msg.new_obj.type not in {EventType.MOTION, EventType.SMART_DETECT}): return self._download_queue.put_nowait(msg.new_obj) logger.debug(f'Adding event {msg.new_obj.id} to queue (Current queue={self._download_queue.qsize()})')
def _websocket_callback(self, msg: WSSubscriptionMessage) -> None: 'Callback for "EVENT" websocket messages.\n\n Filters the incoming events, and puts completed events onto the download queue\n\n Args:\n msg (Event): Incoming event data\n ' logger.websocket_data(msg) assert isinstance(msg.new_obj, Event) if (msg.action != WSAction.UPDATE): return if (msg.new_obj.camera_id in self.ignore_cameras): return if (msg.new_obj.end is None): return if (msg.new_obj.type not in {EventType.MOTION, EventType.SMART_DETECT}): return self._download_queue.put_nowait(msg.new_obj) logger.debug(f'Adding event {msg.new_obj.id} to queue (Current queue={self._download_queue.qsize()})')<|docstring|>Callback for "EVENT" websocket messages. Filters the incoming events, and puts completed events onto the download queue Args: msg (Event): Incoming event data<|endoftext|>
52775b06d7a72d1d75df7ab4ff2ed962a13271ffe12cb4703d08fac3615093d4
async def _backup_events(self) -> None: 'Main loop for backing up events.\n\n Waits for an event in the queue, then downloads the corresponding clip and uploads it using rclone.\n If errors occur it will simply log the errors and wait for the next event. In a future release,\n retries will be added.\n\n ' while True: try: event = (await self._download_queue.get()) logger.info(f'Backing up event: {event.id}') logger.debug(f'Remaining Queue: {self._download_queue.qsize()}') logger.debug(f' Camera: {(await self._get_camera_name(event.camera_id))}') logger.debug(f' Type: {event.type}') logger.debug(f" Start: {event.start.strftime('%Y-%m-%dT%H-%M-%S')} ({event.start.timestamp()})") logger.debug(f" End: {event.end.strftime('%Y-%m-%dT%H-%M-%S')} ({event.end.timestamp()})") duration = (event.end - event.start).total_seconds() logger.debug(f' Duration: {duration}') time_since_event_ended = (datetime.utcnow().replace(tzinfo=timezone.utc) - event.end) sleep_time = (timedelta(seconds=(5 * 1.5)) - time_since_event_ended).total_seconds() if (sleep_time > 0): logger.debug(f' Sleeping ({sleep_time}s) to ensure clip is ready to download...') (await asyncio.sleep(sleep_time)) logger.debug(' Downloading video...') for x in range(5): try: video = (await self._protect.get_camera_video(event.camera_id, event.start, event.end)) assert isinstance(video, bytes) break except (AssertionError, ClientPayloadError, TimeoutError) as e: logger.warn(f' Failed download attempt {(x + 1)}, retying in 1s') logger.exception(e) (await asyncio.sleep(1)) else: logger.warn(f'Download failed after 5 attempts, abandoning event {event.id}:') continue destination = (await self.generate_file_path(event)) if self._has_ffprobe: try: downloaded_duration = (await self._get_video_length(video)) msg = f' Downloaded video length: {downloaded_duration:.3f}s({(downloaded_duration - duration):+.3f}s)' if (downloaded_duration < duration): logger.warning(msg) else: logger.debug(msg) except SubprocessException as e: logger.warn(' `ffprobe` failed') logger.exception(e) logger.debug(' Uploading video via rclone...') logger.debug(f' To: {destination}') logger.debug(f' Size: {human_readable_size(len(video))}') for x in range(5): try: (await self._upload_video(video, destination, self.rclone_args)) break except SubprocessException as e: logger.warn(f' Failed upload attempt {(x + 1)}, retying in 1s') logger.exception(e) (await asyncio.sleep(1)) else: logger.warn(f'Upload failed after 5 attempts, abandoning event {event.id}:') continue logger.info('Backed up successfully!') except Exception as e: logger.warn(f'Unexpected exception occurred, abandoning event {event.id}:') logger.exception(e)
Main loop for backing up events. Waits for an event in the queue, then downloads the corresponding clip and uploads it using rclone. If errors occur it will simply log the errors and wait for the next event. In a future release, retries will be added.
unifi_protect_backup/unifi_protect_backup.py
_backup_events
roastlechon/unifi-protect-backup
0
python
async def _backup_events(self) -> None: 'Main loop for backing up events.\n\n Waits for an event in the queue, then downloads the corresponding clip and uploads it using rclone.\n If errors occur it will simply log the errors and wait for the next event. In a future release,\n retries will be added.\n\n ' while True: try: event = (await self._download_queue.get()) logger.info(f'Backing up event: {event.id}') logger.debug(f'Remaining Queue: {self._download_queue.qsize()}') logger.debug(f' Camera: {(await self._get_camera_name(event.camera_id))}') logger.debug(f' Type: {event.type}') logger.debug(f" Start: {event.start.strftime('%Y-%m-%dT%H-%M-%S')} ({event.start.timestamp()})") logger.debug(f" End: {event.end.strftime('%Y-%m-%dT%H-%M-%S')} ({event.end.timestamp()})") duration = (event.end - event.start).total_seconds() logger.debug(f' Duration: {duration}') time_since_event_ended = (datetime.utcnow().replace(tzinfo=timezone.utc) - event.end) sleep_time = (timedelta(seconds=(5 * 1.5)) - time_since_event_ended).total_seconds() if (sleep_time > 0): logger.debug(f' Sleeping ({sleep_time}s) to ensure clip is ready to download...') (await asyncio.sleep(sleep_time)) logger.debug(' Downloading video...') for x in range(5): try: video = (await self._protect.get_camera_video(event.camera_id, event.start, event.end)) assert isinstance(video, bytes) break except (AssertionError, ClientPayloadError, TimeoutError) as e: logger.warn(f' Failed download attempt {(x + 1)}, retying in 1s') logger.exception(e) (await asyncio.sleep(1)) else: logger.warn(f'Download failed after 5 attempts, abandoning event {event.id}:') continue destination = (await self.generate_file_path(event)) if self._has_ffprobe: try: downloaded_duration = (await self._get_video_length(video)) msg = f' Downloaded video length: {downloaded_duration:.3f}s({(downloaded_duration - duration):+.3f}s)' if (downloaded_duration < duration): logger.warning(msg) else: logger.debug(msg) except SubprocessException as e: logger.warn(' `ffprobe` failed') logger.exception(e) logger.debug(' Uploading video via rclone...') logger.debug(f' To: {destination}') logger.debug(f' Size: {human_readable_size(len(video))}') for x in range(5): try: (await self._upload_video(video, destination, self.rclone_args)) break except SubprocessException as e: logger.warn(f' Failed upload attempt {(x + 1)}, retying in 1s') logger.exception(e) (await asyncio.sleep(1)) else: logger.warn(f'Upload failed after 5 attempts, abandoning event {event.id}:') continue logger.info('Backed up successfully!') except Exception as e: logger.warn(f'Unexpected exception occurred, abandoning event {event.id}:') logger.exception(e)
async def _backup_events(self) -> None: 'Main loop for backing up events.\n\n Waits for an event in the queue, then downloads the corresponding clip and uploads it using rclone.\n If errors occur it will simply log the errors and wait for the next event. In a future release,\n retries will be added.\n\n ' while True: try: event = (await self._download_queue.get()) logger.info(f'Backing up event: {event.id}') logger.debug(f'Remaining Queue: {self._download_queue.qsize()}') logger.debug(f' Camera: {(await self._get_camera_name(event.camera_id))}') logger.debug(f' Type: {event.type}') logger.debug(f" Start: {event.start.strftime('%Y-%m-%dT%H-%M-%S')} ({event.start.timestamp()})") logger.debug(f" End: {event.end.strftime('%Y-%m-%dT%H-%M-%S')} ({event.end.timestamp()})") duration = (event.end - event.start).total_seconds() logger.debug(f' Duration: {duration}') time_since_event_ended = (datetime.utcnow().replace(tzinfo=timezone.utc) - event.end) sleep_time = (timedelta(seconds=(5 * 1.5)) - time_since_event_ended).total_seconds() if (sleep_time > 0): logger.debug(f' Sleeping ({sleep_time}s) to ensure clip is ready to download...') (await asyncio.sleep(sleep_time)) logger.debug(' Downloading video...') for x in range(5): try: video = (await self._protect.get_camera_video(event.camera_id, event.start, event.end)) assert isinstance(video, bytes) break except (AssertionError, ClientPayloadError, TimeoutError) as e: logger.warn(f' Failed download attempt {(x + 1)}, retying in 1s') logger.exception(e) (await asyncio.sleep(1)) else: logger.warn(f'Download failed after 5 attempts, abandoning event {event.id}:') continue destination = (await self.generate_file_path(event)) if self._has_ffprobe: try: downloaded_duration = (await self._get_video_length(video)) msg = f' Downloaded video length: {downloaded_duration:.3f}s({(downloaded_duration - duration):+.3f}s)' if (downloaded_duration < duration): logger.warning(msg) else: logger.debug(msg) except SubprocessException as e: logger.warn(' `ffprobe` failed') logger.exception(e) logger.debug(' Uploading video via rclone...') logger.debug(f' To: {destination}') logger.debug(f' Size: {human_readable_size(len(video))}') for x in range(5): try: (await self._upload_video(video, destination, self.rclone_args)) break except SubprocessException as e: logger.warn(f' Failed upload attempt {(x + 1)}, retying in 1s') logger.exception(e) (await asyncio.sleep(1)) else: logger.warn(f'Upload failed after 5 attempts, abandoning event {event.id}:') continue logger.info('Backed up successfully!') except Exception as e: logger.warn(f'Unexpected exception occurred, abandoning event {event.id}:') logger.exception(e)<|docstring|>Main loop for backing up events. Waits for an event in the queue, then downloads the corresponding clip and uploads it using rclone. If errors occur it will simply log the errors and wait for the next event. In a future release, retries will be added.<|endoftext|>
2eeb84df8b4dfbf502034ac9440aaba5ef5896c30000b0f6fa347eecba6fb807
async def _upload_video(self, video: bytes, destination: pathlib.Path, rclone_args: str): 'Upload video using rclone.\n\n In order to avoid writing to disk, the video file data is piped directly\n to the rclone process and uploaded using the `rcat` function of rclone.\n\n Args:\n video (bytes): The data to be written to the file\n destination (pathlib.Path): Where rclone should write the file\n rclone_args (str): Optional extra arguments to pass to `rclone`\n\n Raises:\n RuntimeError: If rclone returns a non-zero exit code\n ' cmd = f"rclone rcat -vv {rclone_args} '{destination}'" proc = (await asyncio.create_subprocess_shell(cmd, stdin=asyncio.subprocess.PIPE, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE)) (stdout, stderr) = (await proc.communicate(video)) if (proc.returncode == 0): logger.extra_debug(f'''stdout: {stdout.decode()}''') logger.extra_debug(f'''stderr: {stderr.decode()}''') else: raise SubprocessException(stdout.decode(), stderr.decode(), proc.returncode)
Upload video using rclone. In order to avoid writing to disk, the video file data is piped directly to the rclone process and uploaded using the `rcat` function of rclone. Args: video (bytes): The data to be written to the file destination (pathlib.Path): Where rclone should write the file rclone_args (str): Optional extra arguments to pass to `rclone` Raises: RuntimeError: If rclone returns a non-zero exit code
unifi_protect_backup/unifi_protect_backup.py
_upload_video
roastlechon/unifi-protect-backup
0
python
async def _upload_video(self, video: bytes, destination: pathlib.Path, rclone_args: str): 'Upload video using rclone.\n\n In order to avoid writing to disk, the video file data is piped directly\n to the rclone process and uploaded using the `rcat` function of rclone.\n\n Args:\n video (bytes): The data to be written to the file\n destination (pathlib.Path): Where rclone should write the file\n rclone_args (str): Optional extra arguments to pass to `rclone`\n\n Raises:\n RuntimeError: If rclone returns a non-zero exit code\n ' cmd = f"rclone rcat -vv {rclone_args} '{destination}'" proc = (await asyncio.create_subprocess_shell(cmd, stdin=asyncio.subprocess.PIPE, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE)) (stdout, stderr) = (await proc.communicate(video)) if (proc.returncode == 0): logger.extra_debug(f'stdout: {stdout.decode()}') logger.extra_debug(f'stderr: {stderr.decode()}') else: raise SubprocessException(stdout.decode(), stderr.decode(), proc.returncode)
async def _upload_video(self, video: bytes, destination: pathlib.Path, rclone_args: str): 'Upload video using rclone.\n\n In order to avoid writing to disk, the video file data is piped directly\n to the rclone process and uploaded using the `rcat` function of rclone.\n\n Args:\n video (bytes): The data to be written to the file\n destination (pathlib.Path): Where rclone should write the file\n rclone_args (str): Optional extra arguments to pass to `rclone`\n\n Raises:\n RuntimeError: If rclone returns a non-zero exit code\n ' cmd = f"rclone rcat -vv {rclone_args} '{destination}'" proc = (await asyncio.create_subprocess_shell(cmd, stdin=asyncio.subprocess.PIPE, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE)) (stdout, stderr) = (await proc.communicate(video)) if (proc.returncode == 0): logger.extra_debug(f'stdout: {stdout.decode()}') logger.extra_debug(f'stderr: {stderr.decode()}') else: raise SubprocessException(stdout.decode(), stderr.decode(), proc.returncode)<|docstring|>Upload video using rclone. In order to avoid writing to disk, the video file data is piped directly to the rclone process and uploaded using the `rcat` function of rclone. Args: video (bytes): The data to be written to the file destination (pathlib.Path): Where rclone should write the file rclone_args (str): Optional extra arguments to pass to `rclone` Raises: RuntimeError: If rclone returns a non-zero exit code<|endoftext|>
fe280a857498bb6055d85d772d26084049a4fbf0210cce3f9f83053034dbec46
async def generate_file_path(self, event: Event) -> pathlib.Path: 'Generates the rclone destination path for the provided event.\n\n Generates paths in the following structure:\n ::\n rclone_destination\n |- Camera Name\n |- {Date}\n |- {start timestamp} {event type} ({detections}).mp4\n\n Args:\n event: The event for which to create an output path\n\n Returns:\n pathlib.Path: The rclone path the event should be backed up to\n\n ' path = pathlib.Path(self.rclone_destination) assert isinstance(event.camera_id, str) path /= (await self._get_camera_name(event.camera_id)) path /= event.start.strftime('%Y-%m-%d') file_name = f"{event.start.strftime('%Y-%m-%dT%H-%M-%S')} {event.type}" if event.smart_detect_types: detections = ' '.join(event.smart_detect_types) file_name += f' ({detections})' file_name += '.mp4' path /= file_name return path
Generates the rclone destination path for the provided event. Generates paths in the following structure: :: rclone_destination |- Camera Name |- {Date} |- {start timestamp} {event type} ({detections}).mp4 Args: event: The event for which to create an output path Returns: pathlib.Path: The rclone path the event should be backed up to
unifi_protect_backup/unifi_protect_backup.py
generate_file_path
roastlechon/unifi-protect-backup
0
python
async def generate_file_path(self, event: Event) -> pathlib.Path: 'Generates the rclone destination path for the provided event.\n\n Generates paths in the following structure:\n ::\n rclone_destination\n |- Camera Name\n |- {Date}\n |- {start timestamp} {event type} ({detections}).mp4\n\n Args:\n event: The event for which to create an output path\n\n Returns:\n pathlib.Path: The rclone path the event should be backed up to\n\n ' path = pathlib.Path(self.rclone_destination) assert isinstance(event.camera_id, str) path /= (await self._get_camera_name(event.camera_id)) path /= event.start.strftime('%Y-%m-%d') file_name = f"{event.start.strftime('%Y-%m-%dT%H-%M-%S')} {event.type}" if event.smart_detect_types: detections = ' '.join(event.smart_detect_types) file_name += f' ({detections})' file_name += '.mp4' path /= file_name return path
async def generate_file_path(self, event: Event) -> pathlib.Path: 'Generates the rclone destination path for the provided event.\n\n Generates paths in the following structure:\n ::\n rclone_destination\n |- Camera Name\n |- {Date}\n |- {start timestamp} {event type} ({detections}).mp4\n\n Args:\n event: The event for which to create an output path\n\n Returns:\n pathlib.Path: The rclone path the event should be backed up to\n\n ' path = pathlib.Path(self.rclone_destination) assert isinstance(event.camera_id, str) path /= (await self._get_camera_name(event.camera_id)) path /= event.start.strftime('%Y-%m-%d') file_name = f"{event.start.strftime('%Y-%m-%dT%H-%M-%S')} {event.type}" if event.smart_detect_types: detections = ' '.join(event.smart_detect_types) file_name += f' ({detections})' file_name += '.mp4' path /= file_name return path<|docstring|>Generates the rclone destination path for the provided event. Generates paths in the following structure: :: rclone_destination |- Camera Name |- {Date} |- {start timestamp} {event type} ({detections}).mp4 Args: event: The event for which to create an output path Returns: pathlib.Path: The rclone path the event should be backed up to<|endoftext|>
08d134c5817bbf67da4b6d18c4bacb5b6262741adf2679b064f4327d40a0de49
def setup_filepaths(): 'Setup full file paths for functional net and BIOGRID' if (organism == 'cerevisiae'): biogridpath = os.path.join('..', 'data', 'BIOGRID-3.4.130-yeast-post2006.txt') fnetpath = os.path.join('..', 'data', 'YeastNetDataFrame.pkl') elif (organism == 'sapiens'): biogridpath = os.path.join('..', '..', 'DataDownload', 'BIOGRID', 'BIOGRID-ORGANISM-3.4.130.tab2', 'BIOGRID-ORGANISM-Homo_sapiens-3.4.130.tab2.txt') fnetpath = os.path.join('..', 'data', 'HumanNetDataFrame.pkl') elif (organism == 'melanogaster'): biogridpath = os.path.join('..', '..', 'DataDownload', 'BIOGRID', 'BIOGRID-ORGANISM-3.4.130.tab2', 'BIOGRID-ORGANISM-Drosophila_melanogaster-3.4.130.tab2.txt') fnetpath = os.path.join('..', 'data', 'FlyNetDataFrame.pkl') else: print('ORGANISM NOT FOUND! Exiting...') sys.exit() return (biogridpath, fnetpath)
Setup full file paths for functional net and BIOGRID
src/explorenet.py
setup_filepaths
jon-young/genetic_interact
0
python
def setup_filepaths(): if (organism == 'cerevisiae'): biogridpath = os.path.join('..', 'data', 'BIOGRID-3.4.130-yeast-post2006.txt') fnetpath = os.path.join('..', 'data', 'YeastNetDataFrame.pkl') elif (organism == 'sapiens'): biogridpath = os.path.join('..', '..', 'DataDownload', 'BIOGRID', 'BIOGRID-ORGANISM-3.4.130.tab2', 'BIOGRID-ORGANISM-Homo_sapiens-3.4.130.tab2.txt') fnetpath = os.path.join('..', 'data', 'HumanNetDataFrame.pkl') elif (organism == 'melanogaster'): biogridpath = os.path.join('..', '..', 'DataDownload', 'BIOGRID', 'BIOGRID-ORGANISM-3.4.130.tab2', 'BIOGRID-ORGANISM-Drosophila_melanogaster-3.4.130.tab2.txt') fnetpath = os.path.join('..', 'data', 'FlyNetDataFrame.pkl') else: print('ORGANISM NOT FOUND! Exiting...') sys.exit() return (biogridpath, fnetpath)
def setup_filepaths(): if (organism == 'cerevisiae'): biogridpath = os.path.join('..', 'data', 'BIOGRID-3.4.130-yeast-post2006.txt') fnetpath = os.path.join('..', 'data', 'YeastNetDataFrame.pkl') elif (organism == 'sapiens'): biogridpath = os.path.join('..', '..', 'DataDownload', 'BIOGRID', 'BIOGRID-ORGANISM-3.4.130.tab2', 'BIOGRID-ORGANISM-Homo_sapiens-3.4.130.tab2.txt') fnetpath = os.path.join('..', 'data', 'HumanNetDataFrame.pkl') elif (organism == 'melanogaster'): biogridpath = os.path.join('..', '..', 'DataDownload', 'BIOGRID', 'BIOGRID-ORGANISM-3.4.130.tab2', 'BIOGRID-ORGANISM-Drosophila_melanogaster-3.4.130.tab2.txt') fnetpath = os.path.join('..', 'data', 'FlyNetDataFrame.pkl') else: print('ORGANISM NOT FOUND! Exiting...') sys.exit() return (biogridpath, fnetpath)<|docstring|>Setup full file paths for functional net and BIOGRID<|endoftext|>
a9a6bd6ab1445866bb77781be3a52d9d8f19b9fd59b6a153e5ca2605bc894923
def determine_col(): 'Determine which gene column in the BIOGRID file to read' entrezRegEx = re.compile('\\d+') if (organism == 'cerevisiae'): sysNameRegEx = re.compile('Y[A-Z][A-Z]\\d+') ofcSymRegEx = re.compile('[A-Z]+') elif (organism == 'sapiens'): sysNameRegEx = re.compile('\\w+') ofcSymRegEx = re.compile('[A-Za-z]+.') else: sysNameRegEx = re.compile('Dmel.') ofcSymRegEx = re.compile('\\w+') if (entrezRegEx.match(geneExample) is not None): colName = 'Entrez Gene Interactor A' elif (sysNameRegEx.match(geneExample) is not None): colName = 'Systematic Name Interactor A' elif (ofcSymRegEx.match(geneExample) is not None): colName = 'Official Symbol Interactor A' else: print('ERROR: Unable to match ID type! Exiting...') sys.exit() return colName
Determine which gene column in the BIOGRID file to read
src/explorenet.py
determine_col
jon-young/genetic_interact
0
python
def determine_col(): entrezRegEx = re.compile('\\d+') if (organism == 'cerevisiae'): sysNameRegEx = re.compile('Y[A-Z][A-Z]\\d+') ofcSymRegEx = re.compile('[A-Z]+') elif (organism == 'sapiens'): sysNameRegEx = re.compile('\\w+') ofcSymRegEx = re.compile('[A-Za-z]+.') else: sysNameRegEx = re.compile('Dmel.') ofcSymRegEx = re.compile('\\w+') if (entrezRegEx.match(geneExample) is not None): colName = 'Entrez Gene Interactor A' elif (sysNameRegEx.match(geneExample) is not None): colName = 'Systematic Name Interactor A' elif (ofcSymRegEx.match(geneExample) is not None): colName = 'Official Symbol Interactor A' else: print('ERROR: Unable to match ID type! Exiting...') sys.exit() return colName
def determine_col(): entrezRegEx = re.compile('\\d+') if (organism == 'cerevisiae'): sysNameRegEx = re.compile('Y[A-Z][A-Z]\\d+') ofcSymRegEx = re.compile('[A-Z]+') elif (organism == 'sapiens'): sysNameRegEx = re.compile('\\w+') ofcSymRegEx = re.compile('[A-Za-z]+.') else: sysNameRegEx = re.compile('Dmel.') ofcSymRegEx = re.compile('\\w+') if (entrezRegEx.match(geneExample) is not None): colName = 'Entrez Gene Interactor A' elif (sysNameRegEx.match(geneExample) is not None): colName = 'Systematic Name Interactor A' elif (ofcSymRegEx.match(geneExample) is not None): colName = 'Official Symbol Interactor A' else: print('ERROR: Unable to match ID type! Exiting...') sys.exit() return colName<|docstring|>Determine which gene column in the BIOGRID file to read<|endoftext|>
83a617657c8e37796e99b46861221c4294aa4577b5008479ddec6dafef8b9a36
def get_path(self, path, *, relative_to, package=None): "Return *path* relative to *relative_to* location.\n\n :param pathlike path:\n A path relative to bundle source root.\n\n :param str relative_to:\n Location name. Can be one of:\n - ``'sourceroot'``: bundle source root\n - ``'pkgsource'``: package source directory\n - ``'pkgbuild'``: package build directory\n - ``None``: filesystem root (makes path absolute)\n\n :return:\n Path relative to the specified location.\n " if (relative_to == 'sourceroot'): return pathlib.Path(path) elif (relative_to == 'buildroot'): return (pathlib.Path('..') / path) elif (relative_to == 'pkgsource'): if ((package is not None) and (package.name == self.root_package.name_slot)): return pathlib.Path(path) else: return ((pathlib.Path('..') / '..') / path) elif (relative_to == 'pkgbuild'): return (((pathlib.Path('..') / '..') / '..') / path) elif (relative_to is None): return (self.get_source_abspath() / path).resolve() else: raise ValueError(f'invalid relative_to argument: {relative_to}')
Return *path* relative to *relative_to* location. :param pathlike path: A path relative to bundle source root. :param str relative_to: Location name. Can be one of: - ``'sourceroot'``: bundle source root - ``'pkgsource'``: package source directory - ``'pkgbuild'``: package build directory - ``None``: filesystem root (makes path absolute) :return: Path relative to the specified location.
metapkg/targets/generic/build.py
get_path
fantix/metapkg
0
python
def get_path(self, path, *, relative_to, package=None): "Return *path* relative to *relative_to* location.\n\n :param pathlike path:\n A path relative to bundle source root.\n\n :param str relative_to:\n Location name. Can be one of:\n - ``'sourceroot'``: bundle source root\n - ``'pkgsource'``: package source directory\n - ``'pkgbuild'``: package build directory\n - ``None``: filesystem root (makes path absolute)\n\n :return:\n Path relative to the specified location.\n " if (relative_to == 'sourceroot'): return pathlib.Path(path) elif (relative_to == 'buildroot'): return (pathlib.Path('..') / path) elif (relative_to == 'pkgsource'): if ((package is not None) and (package.name == self.root_package.name_slot)): return pathlib.Path(path) else: return ((pathlib.Path('..') / '..') / path) elif (relative_to == 'pkgbuild'): return (((pathlib.Path('..') / '..') / '..') / path) elif (relative_to is None): return (self.get_source_abspath() / path).resolve() else: raise ValueError(f'invalid relative_to argument: {relative_to}')
def get_path(self, path, *, relative_to, package=None): "Return *path* relative to *relative_to* location.\n\n :param pathlike path:\n A path relative to bundle source root.\n\n :param str relative_to:\n Location name. Can be one of:\n - ``'sourceroot'``: bundle source root\n - ``'pkgsource'``: package source directory\n - ``'pkgbuild'``: package build directory\n - ``None``: filesystem root (makes path absolute)\n\n :return:\n Path relative to the specified location.\n " if (relative_to == 'sourceroot'): return pathlib.Path(path) elif (relative_to == 'buildroot'): return (pathlib.Path('..') / path) elif (relative_to == 'pkgsource'): if ((package is not None) and (package.name == self.root_package.name_slot)): return pathlib.Path(path) else: return ((pathlib.Path('..') / '..') / path) elif (relative_to == 'pkgbuild'): return (((pathlib.Path('..') / '..') / '..') / path) elif (relative_to is None): return (self.get_source_abspath() / path).resolve() else: raise ValueError(f'invalid relative_to argument: {relative_to}')<|docstring|>Return *path* relative to *relative_to* location. :param pathlike path: A path relative to bundle source root. :param str relative_to: Location name. Can be one of: - ``'sourceroot'``: bundle source root - ``'pkgsource'``: package source directory - ``'pkgbuild'``: package build directory - ``None``: filesystem root (makes path absolute) :return: Path relative to the specified location.<|endoftext|>
7f2bff1f697e8cd9eda30a2c0b79b0238ced2c97f30ba8a0b75c3874aca70529
@authentication_classes([IsAuthenticated]) @permission_classes([IsAuthenticated]) @api_view(['POST']) def accept_ride(request): '\n Creating trip object and setting passenger is_searching to false\n :param request:\n :return:\n ' data = request.data driver_obj = request.user.driver passenger_obj = Passenger.objects.get(pk=data['passenger_id']) trip_obj = Trip.objects.create(passenger=passenger_obj, driver=driver_obj, start_location=passenger_obj.current_location, end_location=passenger_obj.destination_location, status='IS_ACTIVE') passenger_obj.is_searching = False passenger_obj.save() response = {'response': {'success': True, 'msg': 'Trip started'}} return Response(response, status=HTTP_200_OK)
Creating trip object and setting passenger is_searching to false :param request: :return:
bookingapp/views.py
accept_ride
bhargava-kush/dj_uber
0
python
@authentication_classes([IsAuthenticated]) @permission_classes([IsAuthenticated]) @api_view(['POST']) def accept_ride(request): '\n Creating trip object and setting passenger is_searching to false\n :param request:\n :return:\n ' data = request.data driver_obj = request.user.driver passenger_obj = Passenger.objects.get(pk=data['passenger_id']) trip_obj = Trip.objects.create(passenger=passenger_obj, driver=driver_obj, start_location=passenger_obj.current_location, end_location=passenger_obj.destination_location, status='IS_ACTIVE') passenger_obj.is_searching = False passenger_obj.save() response = {'response': {'success': True, 'msg': 'Trip started'}} return Response(response, status=HTTP_200_OK)
@authentication_classes([IsAuthenticated]) @permission_classes([IsAuthenticated]) @api_view(['POST']) def accept_ride(request): '\n Creating trip object and setting passenger is_searching to false\n :param request:\n :return:\n ' data = request.data driver_obj = request.user.driver passenger_obj = Passenger.objects.get(pk=data['passenger_id']) trip_obj = Trip.objects.create(passenger=passenger_obj, driver=driver_obj, start_location=passenger_obj.current_location, end_location=passenger_obj.destination_location, status='IS_ACTIVE') passenger_obj.is_searching = False passenger_obj.save() response = {'response': {'success': True, 'msg': 'Trip started'}} return Response(response, status=HTTP_200_OK)<|docstring|>Creating trip object and setting passenger is_searching to false :param request: :return:<|endoftext|>
f49a9cc62b5dc983b3343d7314710c37dc8feae5516ee7c90a32b6f037e7f674
@authentication_classes([IsAuthenticated]) @permission_classes([IsAuthenticated]) @api_view(['GET']) def request_ride(request): '\n Passenger requesting for ride by setting is_searching to true\n :param request:\n :return:\n ' passenger_obj = request.user.passenger last_trip = Trip.objects.filter(passenger=passenger_obj).last() if last_trip: if (last_trip.status == 'IS_ACTIVE'): response = {'response': {'success': False, 'msg': 'Currently ride in process'}} return Response(response, status=HTTP_400_BAD_REQUEST) passenger_obj.is_searching = True passenger_obj.save() response = {'response': {'success': True, 'msg': 'Requesting ride'}} return Response(response, status=HTTP_200_OK)
Passenger requesting for ride by setting is_searching to true :param request: :return:
bookingapp/views.py
request_ride
bhargava-kush/dj_uber
0
python
@authentication_classes([IsAuthenticated]) @permission_classes([IsAuthenticated]) @api_view(['GET']) def request_ride(request): '\n Passenger requesting for ride by setting is_searching to true\n :param request:\n :return:\n ' passenger_obj = request.user.passenger last_trip = Trip.objects.filter(passenger=passenger_obj).last() if last_trip: if (last_trip.status == 'IS_ACTIVE'): response = {'response': {'success': False, 'msg': 'Currently ride in process'}} return Response(response, status=HTTP_400_BAD_REQUEST) passenger_obj.is_searching = True passenger_obj.save() response = {'response': {'success': True, 'msg': 'Requesting ride'}} return Response(response, status=HTTP_200_OK)
@authentication_classes([IsAuthenticated]) @permission_classes([IsAuthenticated]) @api_view(['GET']) def request_ride(request): '\n Passenger requesting for ride by setting is_searching to true\n :param request:\n :return:\n ' passenger_obj = request.user.passenger last_trip = Trip.objects.filter(passenger=passenger_obj).last() if last_trip: if (last_trip.status == 'IS_ACTIVE'): response = {'response': {'success': False, 'msg': 'Currently ride in process'}} return Response(response, status=HTTP_400_BAD_REQUEST) passenger_obj.is_searching = True passenger_obj.save() response = {'response': {'success': True, 'msg': 'Requesting ride'}} return Response(response, status=HTTP_200_OK)<|docstring|>Passenger requesting for ride by setting is_searching to true :param request: :return:<|endoftext|>
32d4d3d42dd734188384359f522ba09c1b21adc6f78bec1bbd5f4eedd38cd60d
@authentication_classes([IsAuthenticated]) @permission_classes([IsAuthenticated]) @api_view(['GET']) def is_ride_accepted(request): '\n Checking if ride is accepted or not\n :param request:\n :return:\n ' passenger_obj = request.user.passenger last_trip = Trip.objects.filter(passenger=passenger_obj).last() if (last_trip and (last_trip.status == 'IS_ACTIVE')): response = {'response': {'success': True, 'msg': 'Ride is in progress'}} return Response(response, status=HTTP_200_OK) elif passenger_obj.is_searching: response = {'response': {'success': True, 'msg': 'Searching'}} return Response(response, status=HTTP_200_OK) else: response = {'response': {'success': True, 'msg': 'No ongoing trip nor searching.'}} return Response(response, status=HTTP_200_OK)
Checking if ride is accepted or not :param request: :return:
bookingapp/views.py
is_ride_accepted
bhargava-kush/dj_uber
0
python
@authentication_classes([IsAuthenticated]) @permission_classes([IsAuthenticated]) @api_view(['GET']) def is_ride_accepted(request): '\n Checking if ride is accepted or not\n :param request:\n :return:\n ' passenger_obj = request.user.passenger last_trip = Trip.objects.filter(passenger=passenger_obj).last() if (last_trip and (last_trip.status == 'IS_ACTIVE')): response = {'response': {'success': True, 'msg': 'Ride is in progress'}} return Response(response, status=HTTP_200_OK) elif passenger_obj.is_searching: response = {'response': {'success': True, 'msg': 'Searching'}} return Response(response, status=HTTP_200_OK) else: response = {'response': {'success': True, 'msg': 'No ongoing trip nor searching.'}} return Response(response, status=HTTP_200_OK)
@authentication_classes([IsAuthenticated]) @permission_classes([IsAuthenticated]) @api_view(['GET']) def is_ride_accepted(request): '\n Checking if ride is accepted or not\n :param request:\n :return:\n ' passenger_obj = request.user.passenger last_trip = Trip.objects.filter(passenger=passenger_obj).last() if (last_trip and (last_trip.status == 'IS_ACTIVE')): response = {'response': {'success': True, 'msg': 'Ride is in progress'}} return Response(response, status=HTTP_200_OK) elif passenger_obj.is_searching: response = {'response': {'success': True, 'msg': 'Searching'}} return Response(response, status=HTTP_200_OK) else: response = {'response': {'success': True, 'msg': 'No ongoing trip nor searching.'}} return Response(response, status=HTTP_200_OK)<|docstring|>Checking if ride is accepted or not :param request: :return:<|endoftext|>
220aa3d6ab6e3762bd40d59a41ae1566b2bbeb70ce8eda34513c7aded125d4d2
def __call__(self, input, target, mask=None): ' Args:\n input [batch_num, class_num]:\n The direct prediction of classification fc layer.\n target [batch_num, class_num]:\n Binary target (0 or 1) for each sample each class. The value is -1\n when the sample is ignored.\n\n return: a scalar loss\n ' edges = self.edges mmt = self.momentum weights = tf.zeros_like(input, dtype=tf.float32) if (mask is None): mask = tf.ones_like(input, dtype=tf.float32) def func1(weights, n): if (mmt > 0): tf.assign(self.acc_sum[i], ((mmt * self.acc_sum[i]) + ((1 - mmt) * num_in_bin))) weights = (weights + ((weights * tf.cast(inds, tf.float32)) * (tot / self.acc_sum[i]))) else: weights = (weights + ((weights * tf.cast(inds, tf.float32)) * (tot / num_in_bin))) n += 1 return (weights, n) g = tf.abs((tf.nn.sigmoid(input) - target)) valid = (mask > 0) tot = tf.maximum(tf.reduce_sum(tf.cast(valid, tf.float32)), 1.0) n = tf.Variable(0, trainable=False, dtype=tf.float32) for i in range(self.bins): inds = (((g >= edges[i]) & (g < edges[(i + 1)])) & valid) num_in_bin = tf.reduce_sum(tf.cast(inds, tf.float32)) (weights, n) = tf.cond((num_in_bin > 0), (lambda : func1(weights, n)), (lambda : (weights, n))) weights = tf.cond((n > 0), (lambda : (weights / n)), (lambda : weights)) loss = (tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(logits=(input * weights), labels=target)) / tot) return loss
Args: input [batch_num, class_num]: The direct prediction of classification fc layer. target [batch_num, class_num]: Binary target (0 or 1) for each sample each class. The value is -1 when the sample is ignored. return: a scalar loss
MRC/Hybrid/loss.py
__call__
xiaolinpeter/Question_Answering_Models
159
python
def __call__(self, input, target, mask=None): ' Args:\n input [batch_num, class_num]:\n The direct prediction of classification fc layer.\n target [batch_num, class_num]:\n Binary target (0 or 1) for each sample each class. The value is -1\n when the sample is ignored.\n\n return: a scalar loss\n ' edges = self.edges mmt = self.momentum weights = tf.zeros_like(input, dtype=tf.float32) if (mask is None): mask = tf.ones_like(input, dtype=tf.float32) def func1(weights, n): if (mmt > 0): tf.assign(self.acc_sum[i], ((mmt * self.acc_sum[i]) + ((1 - mmt) * num_in_bin))) weights = (weights + ((weights * tf.cast(inds, tf.float32)) * (tot / self.acc_sum[i]))) else: weights = (weights + ((weights * tf.cast(inds, tf.float32)) * (tot / num_in_bin))) n += 1 return (weights, n) g = tf.abs((tf.nn.sigmoid(input) - target)) valid = (mask > 0) tot = tf.maximum(tf.reduce_sum(tf.cast(valid, tf.float32)), 1.0) n = tf.Variable(0, trainable=False, dtype=tf.float32) for i in range(self.bins): inds = (((g >= edges[i]) & (g < edges[(i + 1)])) & valid) num_in_bin = tf.reduce_sum(tf.cast(inds, tf.float32)) (weights, n) = tf.cond((num_in_bin > 0), (lambda : func1(weights, n)), (lambda : (weights, n))) weights = tf.cond((n > 0), (lambda : (weights / n)), (lambda : weights)) loss = (tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(logits=(input * weights), labels=target)) / tot) return loss
def __call__(self, input, target, mask=None): ' Args:\n input [batch_num, class_num]:\n The direct prediction of classification fc layer.\n target [batch_num, class_num]:\n Binary target (0 or 1) for each sample each class. The value is -1\n when the sample is ignored.\n\n return: a scalar loss\n ' edges = self.edges mmt = self.momentum weights = tf.zeros_like(input, dtype=tf.float32) if (mask is None): mask = tf.ones_like(input, dtype=tf.float32) def func1(weights, n): if (mmt > 0): tf.assign(self.acc_sum[i], ((mmt * self.acc_sum[i]) + ((1 - mmt) * num_in_bin))) weights = (weights + ((weights * tf.cast(inds, tf.float32)) * (tot / self.acc_sum[i]))) else: weights = (weights + ((weights * tf.cast(inds, tf.float32)) * (tot / num_in_bin))) n += 1 return (weights, n) g = tf.abs((tf.nn.sigmoid(input) - target)) valid = (mask > 0) tot = tf.maximum(tf.reduce_sum(tf.cast(valid, tf.float32)), 1.0) n = tf.Variable(0, trainable=False, dtype=tf.float32) for i in range(self.bins): inds = (((g >= edges[i]) & (g < edges[(i + 1)])) & valid) num_in_bin = tf.reduce_sum(tf.cast(inds, tf.float32)) (weights, n) = tf.cond((num_in_bin > 0), (lambda : func1(weights, n)), (lambda : (weights, n))) weights = tf.cond((n > 0), (lambda : (weights / n)), (lambda : weights)) loss = (tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(logits=(input * weights), labels=target)) / tot) return loss<|docstring|>Args: input [batch_num, class_num]: The direct prediction of classification fc layer. target [batch_num, class_num]: Binary target (0 or 1) for each sample each class. The value is -1 when the sample is ignored. return: a scalar loss<|endoftext|>
116f5faba01852c220843391b9157356b6598e720b5d562fe9541e052804bf99
def __call__(self, input, target, mask=None): ' Args:\n input [batch_num, 4 (* class_num)]:\n The prediction of box regression layer. Channel number can be 4 or\n (4 * class_num) depending on whether it is class-agnostic.\n target [batch_num, 4 (* class_num)]:\n The target regression values with the same size of input.\n ' mu = self.mu edges = self.edges mmt = self.momentum diff = (input - target) loss = (tf.sqrt(((diff * diff) + (mu * mu))) - mu) g = tf.abs((diff / tf.sqrt(((mu * mu) + (diff * diff))))) weights = tf.zeros_like(g, dtype=tf.float32) if (mask is None): mask = tf.ones_like(input, dtype=tf.float32) def func1(weights, n): if (mmt > 0): tf.assign(self.acc_sum[i], ((mmt * self.acc_sum[i]) + ((1 - mmt) * num_in_bin))) weights = (weights + ((weights * tf.cast(inds, tf.float32)) * (tot / self.acc_sum[i]))) else: weights = (weights + ((weights * tf.cast(inds, tf.float32)) * (tot / num_in_bin))) n += 1 return (weights, n) valid = (mask > 0) tot = tf.maximum(tf.reduce_sum(tf.cast(valid, tf.float32)), 1.0) n = tf.Variable(0, trainable=False, dtype=tf.float32) for i in range(self.bins): inds = (((g >= edges[i]) & (g < edges[(i + 1)])) & valid) num_in_bin = tf.reduce_sum(tf.cast(inds, tf.float32)) (weights, n) = tf.cond((num_in_bin > 0), (lambda : func1(weights, n)), (lambda : (weights, n))) weights = tf.cond((n > 0), (lambda : (weights / n)), (lambda : weights)) loss = (loss * weights) loss = (tf.reduce_sum(loss) / tot) return loss
Args: input [batch_num, 4 (* class_num)]: The prediction of box regression layer. Channel number can be 4 or (4 * class_num) depending on whether it is class-agnostic. target [batch_num, 4 (* class_num)]: The target regression values with the same size of input.
MRC/Hybrid/loss.py
__call__
xiaolinpeter/Question_Answering_Models
159
python
def __call__(self, input, target, mask=None): ' Args:\n input [batch_num, 4 (* class_num)]:\n The prediction of box regression layer. Channel number can be 4 or\n (4 * class_num) depending on whether it is class-agnostic.\n target [batch_num, 4 (* class_num)]:\n The target regression values with the same size of input.\n ' mu = self.mu edges = self.edges mmt = self.momentum diff = (input - target) loss = (tf.sqrt(((diff * diff) + (mu * mu))) - mu) g = tf.abs((diff / tf.sqrt(((mu * mu) + (diff * diff))))) weights = tf.zeros_like(g, dtype=tf.float32) if (mask is None): mask = tf.ones_like(input, dtype=tf.float32) def func1(weights, n): if (mmt > 0): tf.assign(self.acc_sum[i], ((mmt * self.acc_sum[i]) + ((1 - mmt) * num_in_bin))) weights = (weights + ((weights * tf.cast(inds, tf.float32)) * (tot / self.acc_sum[i]))) else: weights = (weights + ((weights * tf.cast(inds, tf.float32)) * (tot / num_in_bin))) n += 1 return (weights, n) valid = (mask > 0) tot = tf.maximum(tf.reduce_sum(tf.cast(valid, tf.float32)), 1.0) n = tf.Variable(0, trainable=False, dtype=tf.float32) for i in range(self.bins): inds = (((g >= edges[i]) & (g < edges[(i + 1)])) & valid) num_in_bin = tf.reduce_sum(tf.cast(inds, tf.float32)) (weights, n) = tf.cond((num_in_bin > 0), (lambda : func1(weights, n)), (lambda : (weights, n))) weights = tf.cond((n > 0), (lambda : (weights / n)), (lambda : weights)) loss = (loss * weights) loss = (tf.reduce_sum(loss) / tot) return loss
def __call__(self, input, target, mask=None): ' Args:\n input [batch_num, 4 (* class_num)]:\n The prediction of box regression layer. Channel number can be 4 or\n (4 * class_num) depending on whether it is class-agnostic.\n target [batch_num, 4 (* class_num)]:\n The target regression values with the same size of input.\n ' mu = self.mu edges = self.edges mmt = self.momentum diff = (input - target) loss = (tf.sqrt(((diff * diff) + (mu * mu))) - mu) g = tf.abs((diff / tf.sqrt(((mu * mu) + (diff * diff))))) weights = tf.zeros_like(g, dtype=tf.float32) if (mask is None): mask = tf.ones_like(input, dtype=tf.float32) def func1(weights, n): if (mmt > 0): tf.assign(self.acc_sum[i], ((mmt * self.acc_sum[i]) + ((1 - mmt) * num_in_bin))) weights = (weights + ((weights * tf.cast(inds, tf.float32)) * (tot / self.acc_sum[i]))) else: weights = (weights + ((weights * tf.cast(inds, tf.float32)) * (tot / num_in_bin))) n += 1 return (weights, n) valid = (mask > 0) tot = tf.maximum(tf.reduce_sum(tf.cast(valid, tf.float32)), 1.0) n = tf.Variable(0, trainable=False, dtype=tf.float32) for i in range(self.bins): inds = (((g >= edges[i]) & (g < edges[(i + 1)])) & valid) num_in_bin = tf.reduce_sum(tf.cast(inds, tf.float32)) (weights, n) = tf.cond((num_in_bin > 0), (lambda : func1(weights, n)), (lambda : (weights, n))) weights = tf.cond((n > 0), (lambda : (weights / n)), (lambda : weights)) loss = (loss * weights) loss = (tf.reduce_sum(loss) / tot) return loss<|docstring|>Args: input [batch_num, 4 (* class_num)]: The prediction of box regression layer. Channel number can be 4 or (4 * class_num) depending on whether it is class-agnostic. target [batch_num, 4 (* class_num)]: The target regression values with the same size of input.<|endoftext|>
83cd3759b40012c15b8ebfd0cb96558682af4a20845909280821d8ef4f1bc035
def calc(self, input, target, mask=None, is_mask=False): ' Args:\n input [batch_num, class_num]:\n The direct prediction of classification fc layer.\n target [batch_num, class_num]:\n Binary target (0 or 1) for each sample each class. The value is -1\n when the sample is ignored.\n mask [batch_num, class_num]\n ' (edges_left, edges_right) = (self.edges_left, self.edges_right) mmt = self.momentum self.g = tf.abs((tf.sigmoid(input) - target)) g = tf.expand_dims(self.g, axis=0) g_greater_equal_edges_left = tf.greater_equal(g, edges_left) g_less_edges_right = tf.less(g, edges_right) zero_matrix = tf.cast(tf.zeros_like(g_greater_equal_edges_left), dtype=tf.float32) if is_mask: mask_greater_zero = tf.greater(mask, 0) inds = tf.cast(tf.logical_and(tf.logical_and(g_greater_equal_edges_left, g_less_edges_right), mask_greater_zero), dtype=tf.float32) tot = tf.maximum(tf.reduce_sum(tf.cast(mask_greater_zero, dtype=tf.float32)), 1.0) else: inds = tf.cast(tf.logical_and(g_greater_equal_edges_left, g_less_edges_right), dtype=tf.float32) input_shape = tf.shape(input) tot = tf.maximum(tf.cast((input_shape[0] * input_shape[1]), dtype=tf.float32), 1.0) num_in_bin = tf.reduce_sum(inds, axis=[1, 2]) num_in_bin_greater_zero = tf.greater(num_in_bin, 0) num_valid_bin = tf.reduce_sum(tf.cast(num_in_bin_greater_zero, dtype=tf.float32)) if (mmt > 0): update = tf.assign(self.acc_sum, tf.where(num_in_bin_greater_zero, ((mmt * self.acc_sum) + ((1 - mmt) * num_in_bin)), self.acc_sum)) with tf.control_dependencies([update]): self.acc_sum_tmp = tf.identity(self.acc_sum, name='updated_accsum') acc_sum = tf.expand_dims(self.acc_sum_tmp, (- 1)) acc_sum = tf.expand_dims(acc_sum, (- 1)) acc_sum = (acc_sum + zero_matrix) weights = tf.where(tf.equal(inds, 1), (tot / acc_sum), zero_matrix) weights = tf.reduce_sum(weights, axis=0) else: num_in_bin = tf.expand_dims(num_in_bin, (- 1)) num_in_bin = tf.expand_dims(num_in_bin, (- 1)) num_in_bin = (num_in_bin + zero_matrix) weights = tf.where(tf.equal(inds, 1), (tot / num_in_bin), zero_matrix) weights = tf.reduce_sum(weights, axis=0) weights = (weights / num_valid_bin) loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=target, logits=input) loss = (tf.reduce_sum((loss * weights)) / tot) return loss
Args: input [batch_num, class_num]: The direct prediction of classification fc layer. target [batch_num, class_num]: Binary target (0 or 1) for each sample each class. The value is -1 when the sample is ignored. mask [batch_num, class_num]
MRC/Hybrid/loss.py
calc
xiaolinpeter/Question_Answering_Models
159
python
def calc(self, input, target, mask=None, is_mask=False): ' Args:\n input [batch_num, class_num]:\n The direct prediction of classification fc layer.\n target [batch_num, class_num]:\n Binary target (0 or 1) for each sample each class. The value is -1\n when the sample is ignored.\n mask [batch_num, class_num]\n ' (edges_left, edges_right) = (self.edges_left, self.edges_right) mmt = self.momentum self.g = tf.abs((tf.sigmoid(input) - target)) g = tf.expand_dims(self.g, axis=0) g_greater_equal_edges_left = tf.greater_equal(g, edges_left) g_less_edges_right = tf.less(g, edges_right) zero_matrix = tf.cast(tf.zeros_like(g_greater_equal_edges_left), dtype=tf.float32) if is_mask: mask_greater_zero = tf.greater(mask, 0) inds = tf.cast(tf.logical_and(tf.logical_and(g_greater_equal_edges_left, g_less_edges_right), mask_greater_zero), dtype=tf.float32) tot = tf.maximum(tf.reduce_sum(tf.cast(mask_greater_zero, dtype=tf.float32)), 1.0) else: inds = tf.cast(tf.logical_and(g_greater_equal_edges_left, g_less_edges_right), dtype=tf.float32) input_shape = tf.shape(input) tot = tf.maximum(tf.cast((input_shape[0] * input_shape[1]), dtype=tf.float32), 1.0) num_in_bin = tf.reduce_sum(inds, axis=[1, 2]) num_in_bin_greater_zero = tf.greater(num_in_bin, 0) num_valid_bin = tf.reduce_sum(tf.cast(num_in_bin_greater_zero, dtype=tf.float32)) if (mmt > 0): update = tf.assign(self.acc_sum, tf.where(num_in_bin_greater_zero, ((mmt * self.acc_sum) + ((1 - mmt) * num_in_bin)), self.acc_sum)) with tf.control_dependencies([update]): self.acc_sum_tmp = tf.identity(self.acc_sum, name='updated_accsum') acc_sum = tf.expand_dims(self.acc_sum_tmp, (- 1)) acc_sum = tf.expand_dims(acc_sum, (- 1)) acc_sum = (acc_sum + zero_matrix) weights = tf.where(tf.equal(inds, 1), (tot / acc_sum), zero_matrix) weights = tf.reduce_sum(weights, axis=0) else: num_in_bin = tf.expand_dims(num_in_bin, (- 1)) num_in_bin = tf.expand_dims(num_in_bin, (- 1)) num_in_bin = (num_in_bin + zero_matrix) weights = tf.where(tf.equal(inds, 1), (tot / num_in_bin), zero_matrix) weights = tf.reduce_sum(weights, axis=0) weights = (weights / num_valid_bin) loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=target, logits=input) loss = (tf.reduce_sum((loss * weights)) / tot) return loss
def calc(self, input, target, mask=None, is_mask=False): ' Args:\n input [batch_num, class_num]:\n The direct prediction of classification fc layer.\n target [batch_num, class_num]:\n Binary target (0 or 1) for each sample each class. The value is -1\n when the sample is ignored.\n mask [batch_num, class_num]\n ' (edges_left, edges_right) = (self.edges_left, self.edges_right) mmt = self.momentum self.g = tf.abs((tf.sigmoid(input) - target)) g = tf.expand_dims(self.g, axis=0) g_greater_equal_edges_left = tf.greater_equal(g, edges_left) g_less_edges_right = tf.less(g, edges_right) zero_matrix = tf.cast(tf.zeros_like(g_greater_equal_edges_left), dtype=tf.float32) if is_mask: mask_greater_zero = tf.greater(mask, 0) inds = tf.cast(tf.logical_and(tf.logical_and(g_greater_equal_edges_left, g_less_edges_right), mask_greater_zero), dtype=tf.float32) tot = tf.maximum(tf.reduce_sum(tf.cast(mask_greater_zero, dtype=tf.float32)), 1.0) else: inds = tf.cast(tf.logical_and(g_greater_equal_edges_left, g_less_edges_right), dtype=tf.float32) input_shape = tf.shape(input) tot = tf.maximum(tf.cast((input_shape[0] * input_shape[1]), dtype=tf.float32), 1.0) num_in_bin = tf.reduce_sum(inds, axis=[1, 2]) num_in_bin_greater_zero = tf.greater(num_in_bin, 0) num_valid_bin = tf.reduce_sum(tf.cast(num_in_bin_greater_zero, dtype=tf.float32)) if (mmt > 0): update = tf.assign(self.acc_sum, tf.where(num_in_bin_greater_zero, ((mmt * self.acc_sum) + ((1 - mmt) * num_in_bin)), self.acc_sum)) with tf.control_dependencies([update]): self.acc_sum_tmp = tf.identity(self.acc_sum, name='updated_accsum') acc_sum = tf.expand_dims(self.acc_sum_tmp, (- 1)) acc_sum = tf.expand_dims(acc_sum, (- 1)) acc_sum = (acc_sum + zero_matrix) weights = tf.where(tf.equal(inds, 1), (tot / acc_sum), zero_matrix) weights = tf.reduce_sum(weights, axis=0) else: num_in_bin = tf.expand_dims(num_in_bin, (- 1)) num_in_bin = tf.expand_dims(num_in_bin, (- 1)) num_in_bin = (num_in_bin + zero_matrix) weights = tf.where(tf.equal(inds, 1), (tot / num_in_bin), zero_matrix) weights = tf.reduce_sum(weights, axis=0) weights = (weights / num_valid_bin) loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=target, logits=input) loss = (tf.reduce_sum((loss * weights)) / tot) return loss<|docstring|>Args: input [batch_num, class_num]: The direct prediction of classification fc layer. target [batch_num, class_num]: Binary target (0 or 1) for each sample each class. The value is -1 when the sample is ignored. mask [batch_num, class_num]<|endoftext|>
a51b8e20db10555647b2be8b6d937e6b2ef65d29e4bc274b465d07cffa391127
def enlist(lines_iter): '\n arrange lines in a recursive list of tuples (item, [sub-items-touples])\n ' result = list() list_stack = [result, None] indent = 0 for line in lines_iter: l = [] t = (line, l) line_indent = _get_indent(line) if (line_indent > indent): list_stack.append(l) list_stack[(- 2)].append(t) elif (line_indent == indent): list_stack[(- 1)] = l list_stack[(- 2)].append(t) else: list_stack = list_stack[:((line_indent - indent) - 1)] list_stack.append(l) list_stack[(- 2)].append(t) indent = line_indent return result
arrange lines in a recursive list of tuples (item, [sub-items-touples])
nu.py
enlist
fbtd/notes_utilities
0
python
def enlist(lines_iter): '\n \n ' result = list() list_stack = [result, None] indent = 0 for line in lines_iter: l = [] t = (line, l) line_indent = _get_indent(line) if (line_indent > indent): list_stack.append(l) list_stack[(- 2)].append(t) elif (line_indent == indent): list_stack[(- 1)] = l list_stack[(- 2)].append(t) else: list_stack = list_stack[:((line_indent - indent) - 1)] list_stack.append(l) list_stack[(- 2)].append(t) indent = line_indent return result
def enlist(lines_iter): '\n \n ' result = list() list_stack = [result, None] indent = 0 for line in lines_iter: l = [] t = (line, l) line_indent = _get_indent(line) if (line_indent > indent): list_stack.append(l) list_stack[(- 2)].append(t) elif (line_indent == indent): list_stack[(- 1)] = l list_stack[(- 2)].append(t) else: list_stack = list_stack[:((line_indent - indent) - 1)] list_stack.append(l) list_stack[(- 2)].append(t) indent = line_indent return result<|docstring|>arrange lines in a recursive list of tuples (item, [sub-items-touples])<|endoftext|>
8a8988db754bd79a19b6153200e0ab4a0b1c20cc1aa9b1bbed6d606bcc711ede
def deepsort(l): '\n Recursively sort in place each list\n ' l.sort(key=(lambda e: e[0])) for elem in l: deepsort(elem[1])
Recursively sort in place each list
nu.py
deepsort
fbtd/notes_utilities
0
python
def deepsort(l): '\n \n ' l.sort(key=(lambda e: e[0])) for elem in l: deepsort(elem[1])
def deepsort(l): '\n \n ' l.sort(key=(lambda e: e[0])) for elem in l: deepsort(elem[1])<|docstring|>Recursively sort in place each list<|endoftext|>
cc60d63408191a67d80a1d4ff7022f13f8b2791bae368e492b6b59e183c080ca
def delist(l, result=None): '\n returns touple of lines from the recursive list of tuples (item, [sub-items-touples])\n ' if (not result): result = [] for (line, sub) in l: result.append(line) delist(sub, result=result) return tuple(result)
returns touple of lines from the recursive list of tuples (item, [sub-items-touples])
nu.py
delist
fbtd/notes_utilities
0
python
def delist(l, result=None): '\n \n ' if (not result): result = [] for (line, sub) in l: result.append(line) delist(sub, result=result) return tuple(result)
def delist(l, result=None): '\n \n ' if (not result): result = [] for (line, sub) in l: result.append(line) delist(sub, result=result) return tuple(result)<|docstring|>returns touple of lines from the recursive list of tuples (item, [sub-items-touples])<|endoftext|>
43312aece65aa86954aeab0ee6cb0145773e689edb47b7f5e6535f134e0d3f7f
@pytest.fixture(name='mock_setup') def mock_setups(): 'Prevent setup.' with patch('homeassistant.components.flipr.async_setup_entry', return_value=True): (yield)
Prevent setup.
tests/components/flipr/test_config_flow.py
mock_setups
GrandMoff100/homeassistant-core
30,023
python
@pytest.fixture(name='mock_setup') def mock_setups(): with patch('homeassistant.components.flipr.async_setup_entry', return_value=True): (yield)
@pytest.fixture(name='mock_setup') def mock_setups(): with patch('homeassistant.components.flipr.async_setup_entry', return_value=True): (yield)<|docstring|>Prevent setup.<|endoftext|>
288fd7ac4e5fffda6a0b6c557be14405fb3f11a46d0198b0ad049820f9cf53bb
async def test_show_form(hass): 'Test we get the form.' result = (await hass.config_entries.flow.async_init(DOMAIN, context={'source': config_entries.SOURCE_USER})) assert (result['type'] == data_entry_flow.RESULT_TYPE_FORM) assert (result['step_id'] == config_entries.SOURCE_USER)
Test we get the form.
tests/components/flipr/test_config_flow.py
test_show_form
GrandMoff100/homeassistant-core
30,023
python
async def test_show_form(hass): result = (await hass.config_entries.flow.async_init(DOMAIN, context={'source': config_entries.SOURCE_USER})) assert (result['type'] == data_entry_flow.RESULT_TYPE_FORM) assert (result['step_id'] == config_entries.SOURCE_USER)
async def test_show_form(hass): result = (await hass.config_entries.flow.async_init(DOMAIN, context={'source': config_entries.SOURCE_USER})) assert (result['type'] == data_entry_flow.RESULT_TYPE_FORM) assert (result['step_id'] == config_entries.SOURCE_USER)<|docstring|>Test we get the form.<|endoftext|>
6f892a17508ebdfd0efa9a5f1c75c7c93d727d91d84c18b290e9641d136a45a6
async def test_invalid_credential(hass, mock_setup): 'Test invalid credential.' with patch('flipr_api.FliprAPIRestClient.search_flipr_ids', side_effect=HTTPError()): result = (await hass.config_entries.flow.async_init(DOMAIN, context={'source': config_entries.SOURCE_USER}, data={CONF_EMAIL: 'bad_login', CONF_PASSWORD: 'bad_pass', CONF_FLIPR_ID: ''})) assert (result['type'] == 'form') assert (result['errors'] == {'base': 'invalid_auth'})
Test invalid credential.
tests/components/flipr/test_config_flow.py
test_invalid_credential
GrandMoff100/homeassistant-core
30,023
python
async def test_invalid_credential(hass, mock_setup): with patch('flipr_api.FliprAPIRestClient.search_flipr_ids', side_effect=HTTPError()): result = (await hass.config_entries.flow.async_init(DOMAIN, context={'source': config_entries.SOURCE_USER}, data={CONF_EMAIL: 'bad_login', CONF_PASSWORD: 'bad_pass', CONF_FLIPR_ID: })) assert (result['type'] == 'form') assert (result['errors'] == {'base': 'invalid_auth'})
async def test_invalid_credential(hass, mock_setup): with patch('flipr_api.FliprAPIRestClient.search_flipr_ids', side_effect=HTTPError()): result = (await hass.config_entries.flow.async_init(DOMAIN, context={'source': config_entries.SOURCE_USER}, data={CONF_EMAIL: 'bad_login', CONF_PASSWORD: 'bad_pass', CONF_FLIPR_ID: })) assert (result['type'] == 'form') assert (result['errors'] == {'base': 'invalid_auth'})<|docstring|>Test invalid credential.<|endoftext|>
866b94646de93b1d751f07744149836622fa8f94ccb9d32d5d8870b5ed309726
async def test_nominal_case(hass, mock_setup): 'Test valid login form.' with patch('flipr_api.FliprAPIRestClient.search_flipr_ids', return_value=['flipid']) as mock_flipr_client: result = (await hass.config_entries.flow.async_init(DOMAIN, context={'source': config_entries.SOURCE_USER}, data={CONF_EMAIL: 'dummylogin', CONF_PASSWORD: 'dummypass', CONF_FLIPR_ID: 'flipid'})) (await hass.async_block_till_done()) assert (len(mock_flipr_client.mock_calls) == 1) assert (result['type'] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY) assert (result['title'] == 'flipid') assert (result['data'] == {CONF_EMAIL: 'dummylogin', CONF_PASSWORD: 'dummypass', CONF_FLIPR_ID: 'flipid'})
Test valid login form.
tests/components/flipr/test_config_flow.py
test_nominal_case
GrandMoff100/homeassistant-core
30,023
python
async def test_nominal_case(hass, mock_setup): with patch('flipr_api.FliprAPIRestClient.search_flipr_ids', return_value=['flipid']) as mock_flipr_client: result = (await hass.config_entries.flow.async_init(DOMAIN, context={'source': config_entries.SOURCE_USER}, data={CONF_EMAIL: 'dummylogin', CONF_PASSWORD: 'dummypass', CONF_FLIPR_ID: 'flipid'})) (await hass.async_block_till_done()) assert (len(mock_flipr_client.mock_calls) == 1) assert (result['type'] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY) assert (result['title'] == 'flipid') assert (result['data'] == {CONF_EMAIL: 'dummylogin', CONF_PASSWORD: 'dummypass', CONF_FLIPR_ID: 'flipid'})
async def test_nominal_case(hass, mock_setup): with patch('flipr_api.FliprAPIRestClient.search_flipr_ids', return_value=['flipid']) as mock_flipr_client: result = (await hass.config_entries.flow.async_init(DOMAIN, context={'source': config_entries.SOURCE_USER}, data={CONF_EMAIL: 'dummylogin', CONF_PASSWORD: 'dummypass', CONF_FLIPR_ID: 'flipid'})) (await hass.async_block_till_done()) assert (len(mock_flipr_client.mock_calls) == 1) assert (result['type'] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY) assert (result['title'] == 'flipid') assert (result['data'] == {CONF_EMAIL: 'dummylogin', CONF_PASSWORD: 'dummypass', CONF_FLIPR_ID: 'flipid'})<|docstring|>Test valid login form.<|endoftext|>
d727571876a2f8a3c0a3b6dbfea0b1a992a5fc897501d2564aef07c5d590ca7c
async def test_multiple_flip_id(hass, mock_setup): 'Test multiple flipr id adding a config step.' with patch('flipr_api.FliprAPIRestClient.search_flipr_ids', return_value=['FLIP1', 'FLIP2']) as mock_flipr_client: result = (await hass.config_entries.flow.async_init(DOMAIN, context={'source': config_entries.SOURCE_USER}, data={CONF_EMAIL: 'dummylogin', CONF_PASSWORD: 'dummypass'})) assert (result['type'] == data_entry_flow.RESULT_TYPE_FORM) assert (result['step_id'] == 'flipr_id') result = (await hass.config_entries.flow.async_configure(result['flow_id'], user_input={CONF_FLIPR_ID: 'FLIP2'})) assert (len(mock_flipr_client.mock_calls) == 1) assert (result['type'] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY) assert (result['title'] == 'FLIP2') assert (result['data'] == {CONF_EMAIL: 'dummylogin', CONF_PASSWORD: 'dummypass', CONF_FLIPR_ID: 'FLIP2'})
Test multiple flipr id adding a config step.
tests/components/flipr/test_config_flow.py
test_multiple_flip_id
GrandMoff100/homeassistant-core
30,023
python
async def test_multiple_flip_id(hass, mock_setup): with patch('flipr_api.FliprAPIRestClient.search_flipr_ids', return_value=['FLIP1', 'FLIP2']) as mock_flipr_client: result = (await hass.config_entries.flow.async_init(DOMAIN, context={'source': config_entries.SOURCE_USER}, data={CONF_EMAIL: 'dummylogin', CONF_PASSWORD: 'dummypass'})) assert (result['type'] == data_entry_flow.RESULT_TYPE_FORM) assert (result['step_id'] == 'flipr_id') result = (await hass.config_entries.flow.async_configure(result['flow_id'], user_input={CONF_FLIPR_ID: 'FLIP2'})) assert (len(mock_flipr_client.mock_calls) == 1) assert (result['type'] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY) assert (result['title'] == 'FLIP2') assert (result['data'] == {CONF_EMAIL: 'dummylogin', CONF_PASSWORD: 'dummypass', CONF_FLIPR_ID: 'FLIP2'})
async def test_multiple_flip_id(hass, mock_setup): with patch('flipr_api.FliprAPIRestClient.search_flipr_ids', return_value=['FLIP1', 'FLIP2']) as mock_flipr_client: result = (await hass.config_entries.flow.async_init(DOMAIN, context={'source': config_entries.SOURCE_USER}, data={CONF_EMAIL: 'dummylogin', CONF_PASSWORD: 'dummypass'})) assert (result['type'] == data_entry_flow.RESULT_TYPE_FORM) assert (result['step_id'] == 'flipr_id') result = (await hass.config_entries.flow.async_configure(result['flow_id'], user_input={CONF_FLIPR_ID: 'FLIP2'})) assert (len(mock_flipr_client.mock_calls) == 1) assert (result['type'] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY) assert (result['title'] == 'FLIP2') assert (result['data'] == {CONF_EMAIL: 'dummylogin', CONF_PASSWORD: 'dummypass', CONF_FLIPR_ID: 'FLIP2'})<|docstring|>Test multiple flipr id adding a config step.<|endoftext|>
2453b085f2e72dc499263b92b3dae24b69debf89fdde92a559caa85841acbcb0
async def test_no_flip_id(hass, mock_setup): 'Test no flipr id found.' with patch('flipr_api.FliprAPIRestClient.search_flipr_ids', return_value=[]) as mock_flipr_client: result = (await hass.config_entries.flow.async_init(DOMAIN, context={'source': config_entries.SOURCE_USER}, data={CONF_EMAIL: 'dummylogin', CONF_PASSWORD: 'dummypass'})) assert (result['step_id'] == 'user') assert (result['type'] == 'form') assert (result['errors'] == {'base': 'no_flipr_id_found'}) assert (len(mock_flipr_client.mock_calls) == 1)
Test no flipr id found.
tests/components/flipr/test_config_flow.py
test_no_flip_id
GrandMoff100/homeassistant-core
30,023
python
async def test_no_flip_id(hass, mock_setup): with patch('flipr_api.FliprAPIRestClient.search_flipr_ids', return_value=[]) as mock_flipr_client: result = (await hass.config_entries.flow.async_init(DOMAIN, context={'source': config_entries.SOURCE_USER}, data={CONF_EMAIL: 'dummylogin', CONF_PASSWORD: 'dummypass'})) assert (result['step_id'] == 'user') assert (result['type'] == 'form') assert (result['errors'] == {'base': 'no_flipr_id_found'}) assert (len(mock_flipr_client.mock_calls) == 1)
async def test_no_flip_id(hass, mock_setup): with patch('flipr_api.FliprAPIRestClient.search_flipr_ids', return_value=[]) as mock_flipr_client: result = (await hass.config_entries.flow.async_init(DOMAIN, context={'source': config_entries.SOURCE_USER}, data={CONF_EMAIL: 'dummylogin', CONF_PASSWORD: 'dummypass'})) assert (result['step_id'] == 'user') assert (result['type'] == 'form') assert (result['errors'] == {'base': 'no_flipr_id_found'}) assert (len(mock_flipr_client.mock_calls) == 1)<|docstring|>Test no flipr id found.<|endoftext|>
3d33c2ef43e36701d154ba88f8baa04969032a927b34451b2c6b69fa0ad75a2a
async def test_http_errors(hass, mock_setup): 'Test HTTP Errors.' with patch('flipr_api.FliprAPIRestClient.search_flipr_ids', side_effect=Timeout()): result = (await hass.config_entries.flow.async_init(DOMAIN, context={'source': config_entries.SOURCE_USER}, data={CONF_EMAIL: 'nada', CONF_PASSWORD: 'nada', CONF_FLIPR_ID: ''})) assert (result['type'] == 'form') assert (result['errors'] == {'base': 'cannot_connect'}) with patch('flipr_api.FliprAPIRestClient.search_flipr_ids', side_effect=Exception('Bad request Boy :) --')): result = (await hass.config_entries.flow.async_init(DOMAIN, context={'source': config_entries.SOURCE_USER}, data={CONF_EMAIL: 'nada', CONF_PASSWORD: 'nada', CONF_FLIPR_ID: ''})) assert (result['type'] == 'form') assert (result['errors'] == {'base': 'unknown'})
Test HTTP Errors.
tests/components/flipr/test_config_flow.py
test_http_errors
GrandMoff100/homeassistant-core
30,023
python
async def test_http_errors(hass, mock_setup): with patch('flipr_api.FliprAPIRestClient.search_flipr_ids', side_effect=Timeout()): result = (await hass.config_entries.flow.async_init(DOMAIN, context={'source': config_entries.SOURCE_USER}, data={CONF_EMAIL: 'nada', CONF_PASSWORD: 'nada', CONF_FLIPR_ID: })) assert (result['type'] == 'form') assert (result['errors'] == {'base': 'cannot_connect'}) with patch('flipr_api.FliprAPIRestClient.search_flipr_ids', side_effect=Exception('Bad request Boy :) --')): result = (await hass.config_entries.flow.async_init(DOMAIN, context={'source': config_entries.SOURCE_USER}, data={CONF_EMAIL: 'nada', CONF_PASSWORD: 'nada', CONF_FLIPR_ID: })) assert (result['type'] == 'form') assert (result['errors'] == {'base': 'unknown'})
async def test_http_errors(hass, mock_setup): with patch('flipr_api.FliprAPIRestClient.search_flipr_ids', side_effect=Timeout()): result = (await hass.config_entries.flow.async_init(DOMAIN, context={'source': config_entries.SOURCE_USER}, data={CONF_EMAIL: 'nada', CONF_PASSWORD: 'nada', CONF_FLIPR_ID: })) assert (result['type'] == 'form') assert (result['errors'] == {'base': 'cannot_connect'}) with patch('flipr_api.FliprAPIRestClient.search_flipr_ids', side_effect=Exception('Bad request Boy :) --')): result = (await hass.config_entries.flow.async_init(DOMAIN, context={'source': config_entries.SOURCE_USER}, data={CONF_EMAIL: 'nada', CONF_PASSWORD: 'nada', CONF_FLIPR_ID: })) assert (result['type'] == 'form') assert (result['errors'] == {'base': 'unknown'})<|docstring|>Test HTTP Errors.<|endoftext|>
0bdb7e271177f64661475fd600a922e29cbbe3a57b36505f8bd37be6d4af965a
def __init__(self, hidden_size, kernels=[2, 3, 4]): '1DCNN layer with max pooling\n\n Args:\n hidden_size (int): embedding dimension\n kernels (list, optional): kernel sizes for convolution. Defaults to [2, 3, 4].\n ' super().__init__() self.pool = nn.AdaptiveMaxPool1d(1) self.convs = nn.ModuleList() for k in kernels: cv = nn.Conv1d(hidden_size, hidden_size, kernel_size=k, bias=False) self.convs.append(cv)
1DCNN layer with max pooling Args: hidden_size (int): embedding dimension kernels (list, optional): kernel sizes for convolution. Defaults to [2, 3, 4].
src/byte_search/cnn.py
__init__
urchade/urchade-byte_search
0
python
def __init__(self, hidden_size, kernels=[2, 3, 4]): '1DCNN layer with max pooling\n\n Args:\n hidden_size (int): embedding dimension\n kernels (list, optional): kernel sizes for convolution. Defaults to [2, 3, 4].\n ' super().__init__() self.pool = nn.AdaptiveMaxPool1d(1) self.convs = nn.ModuleList() for k in kernels: cv = nn.Conv1d(hidden_size, hidden_size, kernel_size=k, bias=False) self.convs.append(cv)
def __init__(self, hidden_size, kernels=[2, 3, 4]): '1DCNN layer with max pooling\n\n Args:\n hidden_size (int): embedding dimension\n kernels (list, optional): kernel sizes for convolution. Defaults to [2, 3, 4].\n ' super().__init__() self.pool = nn.AdaptiveMaxPool1d(1) self.convs = nn.ModuleList() for k in kernels: cv = nn.Conv1d(hidden_size, hidden_size, kernel_size=k, bias=False) self.convs.append(cv)<|docstring|>1DCNN layer with max pooling Args: hidden_size (int): embedding dimension kernels (list, optional): kernel sizes for convolution. Defaults to [2, 3, 4].<|endoftext|>
4b5a0a89375849020c3a6517b06a4db435a40ea1909fa79909c875776e9ae853
def forward(self, x): 'Forward function\n\n Args:\n x (torch.Tensor): [batch_size, length, hidden_size]\n\n Returns:\n torch.Tensor: [batch_size, hidden_size]\n ' x = x.transpose(1, 2) convs = [] for conv in self.convs: convolved = conv(x) convolved = self.pool(convolved).squeeze((- 1)) convs.append(convolved) convs = torch.stack(convs, dim=0) return convs.max(0).values
Forward function Args: x (torch.Tensor): [batch_size, length, hidden_size] Returns: torch.Tensor: [batch_size, hidden_size]
src/byte_search/cnn.py
forward
urchade/urchade-byte_search
0
python
def forward(self, x): 'Forward function\n\n Args:\n x (torch.Tensor): [batch_size, length, hidden_size]\n\n Returns:\n torch.Tensor: [batch_size, hidden_size]\n ' x = x.transpose(1, 2) convs = [] for conv in self.convs: convolved = conv(x) convolved = self.pool(convolved).squeeze((- 1)) convs.append(convolved) convs = torch.stack(convs, dim=0) return convs.max(0).values
def forward(self, x): 'Forward function\n\n Args:\n x (torch.Tensor): [batch_size, length, hidden_size]\n\n Returns:\n torch.Tensor: [batch_size, hidden_size]\n ' x = x.transpose(1, 2) convs = [] for conv in self.convs: convolved = conv(x) convolved = self.pool(convolved).squeeze((- 1)) convs.append(convolved) convs = torch.stack(convs, dim=0) return convs.max(0).values<|docstring|>Forward function Args: x (torch.Tensor): [batch_size, length, hidden_size] Returns: torch.Tensor: [batch_size, hidden_size]<|endoftext|>
4f55876b4f7564d12385e3a79098cfcefce2229473cf9f35c42fdc9b89059635
def smooth_mesh(mesh, n_iter=4, lam=0.6307, mu=(- 0.6347), weights=None, bconstr=True, volume_corr=False): '\n FE mesh smoothing.\n\n Based on:\n\n [1] Steven K. Boyd, Ralph Muller, Smooth surface meshing for automated\n finite element model generation from 3D image data, Journal of\n Biomechanics, Volume 39, Issue 7, 2006, Pages 1287-1295,\n ISSN 0021-9290, 10.1016/j.jbiomech.2005.03.006.\n (http://www.sciencedirect.com/science/article/pii/S0021929005001442)\n\n Parameters\n ----------\n mesh : mesh\n FE mesh.\n n_iter : integer, optional\n Number of iteration steps.\n lam : float, optional\n Smoothing factor, see [1].\n mu : float, optional\n Unshrinking factor, see [1].\n weights : array, optional\n Edge weights, see [1].\n bconstr: logical, optional\n Boundary constraints, if True only surface smoothing performed.\n volume_corr: logical, optional\n Correct volume after smoothing process.\n\n Returns\n -------\n coors : array\n Coordinates of mesh nodes.\n ' def laplacian(coors, weights): n_nod = coors.shape[0] displ = ((weights - sps.identity(n_nod)) * coors) return displ def taubin(coors0, weights, lam, mu, n_iter): coors = coors0.copy() for ii in range(n_iter): displ = laplacian(coors, weights) if (nm.mod(ii, 2) == 0): coors += (lam * displ) else: coors += (mu * displ) return coors def get_volume(el, nd): dim = nd.shape[1] nnd = el.shape[1] etype = ('%d_%d' % (dim, nnd)) if ((etype == 'quad') or (etype == 'hexahedron')): el = elems_q2t(el) nel = el.shape[0] mul = (1.0 / factorial(dim)) if (dim == 3): mul *= (- 1.0) mtx = nm.ones((nel, (dim + 1), (dim + 1)), dtype=nm.double) mtx[(:, :, :(- 1))] = nd[(el, :)] vols = (mul * nm.linalg.det(mtx)) vol = vols.sum() bc = nm.dot(vols, (mtx.sum(1)[(:, :(- 1))] / nnd)) bc /= vol return (vol, bc) n_nod = mesh.points.shape[0] cells = mesh.cells[0] if (weights is None): node_group = (nm.ones((n_nod,), dtype=nm.int8) * 2) (sndi, edges) = get_snodes_uedges(cells.data, my_types[cells.type]) if bconstr: node_group[sndi] = 4 end1 = edges[(:, 0)] end2 = edges[(:, 1)] idxs = nm.where((node_group[end2] >= node_group[end1])) rows1 = end1[idxs] cols1 = end2[idxs] idxs = nm.where((node_group[end1] >= node_group[end2])) rows2 = end2[idxs] cols2 = end1[idxs] crows = nm.concatenate((rows1, rows2)) ccols = nm.concatenate((cols1, cols2)) costs = sps.coo_matrix((nm.ones_like(crows), (crows, ccols)), shape=(n_nod, n_nod), dtype=nm.double) idxs = range(n_nod) aux = sps.coo_matrix(((1.0 / nm.asarray(costs.sum(1)).squeeze()), (idxs, idxs)), shape=(n_nod, n_nod), dtype=nm.double) weights = (aux.tocsc() * costs.tocsc()).tocsr() coors = taubin(mesh.points, weights, lam, mu, n_iter) if volume_corr: (volume0, bc) = get_volume(cells.data, mesh.points) (volume, _) = get_volume(cells.data, coors) scale = (volume0 / volume) coors = (((coors - bc) * scale) + bc) return coors
FE mesh smoothing. Based on: [1] Steven K. Boyd, Ralph Muller, Smooth surface meshing for automated finite element model generation from 3D image data, Journal of Biomechanics, Volume 39, Issue 7, 2006, Pages 1287-1295, ISSN 0021-9290, 10.1016/j.jbiomech.2005.03.006. (http://www.sciencedirect.com/science/article/pii/S0021929005001442) Parameters ---------- mesh : mesh FE mesh. n_iter : integer, optional Number of iteration steps. lam : float, optional Smoothing factor, see [1]. mu : float, optional Unshrinking factor, see [1]. weights : array, optional Edge weights, see [1]. bconstr: logical, optional Boundary constraints, if True only surface smoothing performed. volume_corr: logical, optional Correct volume after smoothing process. Returns ------- coors : array Coordinates of mesh nodes.
dicom2fem/seg2fem.py
smooth_mesh
vlukes/dicom2fem
8
python
def smooth_mesh(mesh, n_iter=4, lam=0.6307, mu=(- 0.6347), weights=None, bconstr=True, volume_corr=False): '\n FE mesh smoothing.\n\n Based on:\n\n [1] Steven K. Boyd, Ralph Muller, Smooth surface meshing for automated\n finite element model generation from 3D image data, Journal of\n Biomechanics, Volume 39, Issue 7, 2006, Pages 1287-1295,\n ISSN 0021-9290, 10.1016/j.jbiomech.2005.03.006.\n (http://www.sciencedirect.com/science/article/pii/S0021929005001442)\n\n Parameters\n ----------\n mesh : mesh\n FE mesh.\n n_iter : integer, optional\n Number of iteration steps.\n lam : float, optional\n Smoothing factor, see [1].\n mu : float, optional\n Unshrinking factor, see [1].\n weights : array, optional\n Edge weights, see [1].\n bconstr: logical, optional\n Boundary constraints, if True only surface smoothing performed.\n volume_corr: logical, optional\n Correct volume after smoothing process.\n\n Returns\n -------\n coors : array\n Coordinates of mesh nodes.\n ' def laplacian(coors, weights): n_nod = coors.shape[0] displ = ((weights - sps.identity(n_nod)) * coors) return displ def taubin(coors0, weights, lam, mu, n_iter): coors = coors0.copy() for ii in range(n_iter): displ = laplacian(coors, weights) if (nm.mod(ii, 2) == 0): coors += (lam * displ) else: coors += (mu * displ) return coors def get_volume(el, nd): dim = nd.shape[1] nnd = el.shape[1] etype = ('%d_%d' % (dim, nnd)) if ((etype == 'quad') or (etype == 'hexahedron')): el = elems_q2t(el) nel = el.shape[0] mul = (1.0 / factorial(dim)) if (dim == 3): mul *= (- 1.0) mtx = nm.ones((nel, (dim + 1), (dim + 1)), dtype=nm.double) mtx[(:, :, :(- 1))] = nd[(el, :)] vols = (mul * nm.linalg.det(mtx)) vol = vols.sum() bc = nm.dot(vols, (mtx.sum(1)[(:, :(- 1))] / nnd)) bc /= vol return (vol, bc) n_nod = mesh.points.shape[0] cells = mesh.cells[0] if (weights is None): node_group = (nm.ones((n_nod,), dtype=nm.int8) * 2) (sndi, edges) = get_snodes_uedges(cells.data, my_types[cells.type]) if bconstr: node_group[sndi] = 4 end1 = edges[(:, 0)] end2 = edges[(:, 1)] idxs = nm.where((node_group[end2] >= node_group[end1])) rows1 = end1[idxs] cols1 = end2[idxs] idxs = nm.where((node_group[end1] >= node_group[end2])) rows2 = end2[idxs] cols2 = end1[idxs] crows = nm.concatenate((rows1, rows2)) ccols = nm.concatenate((cols1, cols2)) costs = sps.coo_matrix((nm.ones_like(crows), (crows, ccols)), shape=(n_nod, n_nod), dtype=nm.double) idxs = range(n_nod) aux = sps.coo_matrix(((1.0 / nm.asarray(costs.sum(1)).squeeze()), (idxs, idxs)), shape=(n_nod, n_nod), dtype=nm.double) weights = (aux.tocsc() * costs.tocsc()).tocsr() coors = taubin(mesh.points, weights, lam, mu, n_iter) if volume_corr: (volume0, bc) = get_volume(cells.data, mesh.points) (volume, _) = get_volume(cells.data, coors) scale = (volume0 / volume) coors = (((coors - bc) * scale) + bc) return coors
def smooth_mesh(mesh, n_iter=4, lam=0.6307, mu=(- 0.6347), weights=None, bconstr=True, volume_corr=False): '\n FE mesh smoothing.\n\n Based on:\n\n [1] Steven K. Boyd, Ralph Muller, Smooth surface meshing for automated\n finite element model generation from 3D image data, Journal of\n Biomechanics, Volume 39, Issue 7, 2006, Pages 1287-1295,\n ISSN 0021-9290, 10.1016/j.jbiomech.2005.03.006.\n (http://www.sciencedirect.com/science/article/pii/S0021929005001442)\n\n Parameters\n ----------\n mesh : mesh\n FE mesh.\n n_iter : integer, optional\n Number of iteration steps.\n lam : float, optional\n Smoothing factor, see [1].\n mu : float, optional\n Unshrinking factor, see [1].\n weights : array, optional\n Edge weights, see [1].\n bconstr: logical, optional\n Boundary constraints, if True only surface smoothing performed.\n volume_corr: logical, optional\n Correct volume after smoothing process.\n\n Returns\n -------\n coors : array\n Coordinates of mesh nodes.\n ' def laplacian(coors, weights): n_nod = coors.shape[0] displ = ((weights - sps.identity(n_nod)) * coors) return displ def taubin(coors0, weights, lam, mu, n_iter): coors = coors0.copy() for ii in range(n_iter): displ = laplacian(coors, weights) if (nm.mod(ii, 2) == 0): coors += (lam * displ) else: coors += (mu * displ) return coors def get_volume(el, nd): dim = nd.shape[1] nnd = el.shape[1] etype = ('%d_%d' % (dim, nnd)) if ((etype == 'quad') or (etype == 'hexahedron')): el = elems_q2t(el) nel = el.shape[0] mul = (1.0 / factorial(dim)) if (dim == 3): mul *= (- 1.0) mtx = nm.ones((nel, (dim + 1), (dim + 1)), dtype=nm.double) mtx[(:, :, :(- 1))] = nd[(el, :)] vols = (mul * nm.linalg.det(mtx)) vol = vols.sum() bc = nm.dot(vols, (mtx.sum(1)[(:, :(- 1))] / nnd)) bc /= vol return (vol, bc) n_nod = mesh.points.shape[0] cells = mesh.cells[0] if (weights is None): node_group = (nm.ones((n_nod,), dtype=nm.int8) * 2) (sndi, edges) = get_snodes_uedges(cells.data, my_types[cells.type]) if bconstr: node_group[sndi] = 4 end1 = edges[(:, 0)] end2 = edges[(:, 1)] idxs = nm.where((node_group[end2] >= node_group[end1])) rows1 = end1[idxs] cols1 = end2[idxs] idxs = nm.where((node_group[end1] >= node_group[end2])) rows2 = end2[idxs] cols2 = end1[idxs] crows = nm.concatenate((rows1, rows2)) ccols = nm.concatenate((cols1, cols2)) costs = sps.coo_matrix((nm.ones_like(crows), (crows, ccols)), shape=(n_nod, n_nod), dtype=nm.double) idxs = range(n_nod) aux = sps.coo_matrix(((1.0 / nm.asarray(costs.sum(1)).squeeze()), (idxs, idxs)), shape=(n_nod, n_nod), dtype=nm.double) weights = (aux.tocsc() * costs.tocsc()).tocsr() coors = taubin(mesh.points, weights, lam, mu, n_iter) if volume_corr: (volume0, bc) = get_volume(cells.data, mesh.points) (volume, _) = get_volume(cells.data, coors) scale = (volume0 / volume) coors = (((coors - bc) * scale) + bc) return coors<|docstring|>FE mesh smoothing. Based on: [1] Steven K. Boyd, Ralph Muller, Smooth surface meshing for automated finite element model generation from 3D image data, Journal of Biomechanics, Volume 39, Issue 7, 2006, Pages 1287-1295, ISSN 0021-9290, 10.1016/j.jbiomech.2005.03.006. (http://www.sciencedirect.com/science/article/pii/S0021929005001442) Parameters ---------- mesh : mesh FE mesh. n_iter : integer, optional Number of iteration steps. lam : float, optional Smoothing factor, see [1]. mu : float, optional Unshrinking factor, see [1]. weights : array, optional Edge weights, see [1]. bconstr: logical, optional Boundary constraints, if True only surface smoothing performed. volume_corr: logical, optional Correct volume after smoothing process. Returns ------- coors : array Coordinates of mesh nodes.<|endoftext|>
85cf4cc76a7ff9422dd966614015be52f4f77967019eb36650cbaa74ca82c9f0
def gen_mesh_from_voxels(voxels, dims, etype='q', mtype='v'): "\n Generate FE mesh from voxels (volumetric data).\n\n Parameters\n ----------\n voxels : array\n Voxel matrix, 1=material.\n dims : array\n Size of one voxel.\n etype : integer, optional\n 'q' - quadrilateral or hexahedral elements\n 't' - triangular or tetrahedral elements\n mtype : integer, optional\n 'v' - volumetric mesh\n 's' - surface mesh\n\n Returns\n -------\n mesh : Mesh instance\n Finite element mesh.\n " dims = dims.squeeze() dim = len(dims) nddims = (nm.array(voxels.shape) + 2) nodemtx = nm.zeros(nddims, dtype=nm.int8) vxidxs = nm.where(voxels) set_nodemtx(nodemtx, vxidxs, etype) ndidx = nm.where(nodemtx) del nodemtx coors = (nm.array(ndidx).transpose() * dims) nnod = coors.shape[0] nodeid = (- nm.ones(nddims, dtype=nm.int32)) nodeid[ndidx] = nm.arange(nnod) if (mtype == 's'): felems = [] nn = nm.zeros(nddims, dtype=nm.int8) if (dim == 2): (ix, iy) = vxidxs if (mtype == 'v'): elems = nm.array([nodeid[(ix, iy)], nodeid[((ix + 1), iy)], nodeid[((ix + 1), (iy + 1))], nodeid[(ix, (iy + 1))]]).transpose() edim = 2 else: fc = nm.zeros((nddims + (2,)), dtype=nm.int32) fc[(ix, iy, :)] = nm.array([nodeid[(ix, (iy + 1))], nodeid[(ix, iy)]]).transpose() fc[((ix + 1), iy, :)] = nm.array([nodeid[((ix + 1), iy)], nodeid[((ix + 1), (iy + 1))]]).transpose() nn[(ix, iy)] = 1 nn[((ix + 1), iy)] += 1 idx = nm.where((nn == 1)) felems.append(fc[idx]) fc.fill(0) nn.fill(0) fc[(ix, iy, :)] = nm.array([nodeid[(ix, iy)], nodeid[((ix + 1), iy)]]).transpose() fc[(ix, (iy + 1), :)] = nm.array([nodeid[((ix + 1), (iy + 1))], nodeid[(ix, (iy + 1))]]).transpose() nn[(ix, iy)] = 1 nn[(ix, (iy + 1))] += 1 idx = nm.where((nn == 1)) felems.append(fc[idx]) elems = nm.concatenate(felems) edim = 1 elif (dim == 3): (ix, iy, iz) = vxidxs if (mtype == 'v'): elems = nm.array([nodeid[(ix, iy, iz)], nodeid[((ix + 1), iy, iz)], nodeid[((ix + 1), (iy + 1), iz)], nodeid[(ix, (iy + 1), iz)], nodeid[(ix, iy, (iz + 1))], nodeid[((ix + 1), iy, (iz + 1))], nodeid[((ix + 1), (iy + 1), (iz + 1))], nodeid[(ix, (iy + 1), (iz + 1))]]).transpose() edim = 3 else: fc = nm.zeros((tuple(nddims) + (4,)), dtype=nm.int32) fc[(ix, iy, iz, :)] = nm.array([nodeid[(ix, iy, iz)], nodeid[(ix, iy, (iz + 1))], nodeid[(ix, (iy + 1), (iz + 1))], nodeid[(ix, (iy + 1), iz)]]).transpose() fc[((ix + 1), iy, iz, :)] = nm.array([nodeid[((ix + 1), iy, iz)], nodeid[((ix + 1), (iy + 1), iz)], nodeid[((ix + 1), (iy + 1), (iz + 1))], nodeid[((ix + 1), iy, (iz + 1))]]).transpose() nn[(ix, iy, iz)] = 1 nn[((ix + 1), iy, iz)] += 1 idx = nm.where((nn == 1)) felems.append(fc[idx]) fc.fill(0) nn.fill(0) fc[(ix, iy, iz, :)] = nm.array([nodeid[(ix, iy, iz)], nodeid[((ix + 1), iy, iz)], nodeid[((ix + 1), iy, (iz + 1))], nodeid[(ix, iy, (iz + 1))]]).transpose() fc[(ix, (iy + 1), iz, :)] = nm.array([nodeid[(ix, (iy + 1), iz)], nodeid[(ix, (iy + 1), (iz + 1))], nodeid[((ix + 1), (iy + 1), (iz + 1))], nodeid[((ix + 1), (iy + 1), iz)]]).transpose() nn[(ix, iy, iz)] = 1 nn[(ix, (iy + 1), iz)] += 1 idx = nm.where((nn == 1)) felems.append(fc[idx]) fc.fill(0) nn.fill(0) fc[(ix, iy, iz, :)] = nm.array([nodeid[(ix, iy, iz)], nodeid[(ix, (iy + 1), iz)], nodeid[((ix + 1), (iy + 1), iz)], nodeid[((ix + 1), iy, iz)]]).transpose() fc[(ix, iy, (iz + 1), :)] = nm.array([nodeid[(ix, iy, (iz + 1))], nodeid[((ix + 1), iy, (iz + 1))], nodeid[((ix + 1), (iy + 1), (iz + 1))], nodeid[(ix, (iy + 1), (iz + 1))]]).transpose() nn[(ix, iy, iz)] = 1 nn[(ix, iy, (iz + 1))] += 1 idx = nm.where((nn == 1)) felems.append(fc[idx]) elems = nm.concatenate(felems) edim = 2 if (mtype == 's'): aux = nm.zeros((nnod,), dtype=nm.int32) for ii in elems.T: aux[ii] = 1 idx = nm.where(aux) aux.fill(0) nnod = idx[0].shape[0] aux[idx] = range(nnod) coors = coors[idx] for ii in range(elems.shape[1]): elems[(:, ii)] = aux[elems[(:, ii)]] if (etype == 't'): elems = elems_q2t(elems) nelnd = elems.shape[1] mesh = meshio.Mesh(coors, [(meshio_types[('%d_%d' % (edim, nelnd))], nm.ascontiguousarray(elems))]) return mesh
Generate FE mesh from voxels (volumetric data). Parameters ---------- voxels : array Voxel matrix, 1=material. dims : array Size of one voxel. etype : integer, optional 'q' - quadrilateral or hexahedral elements 't' - triangular or tetrahedral elements mtype : integer, optional 'v' - volumetric mesh 's' - surface mesh Returns ------- mesh : Mesh instance Finite element mesh.
dicom2fem/seg2fem.py
gen_mesh_from_voxels
vlukes/dicom2fem
8
python
def gen_mesh_from_voxels(voxels, dims, etype='q', mtype='v'): "\n Generate FE mesh from voxels (volumetric data).\n\n Parameters\n ----------\n voxels : array\n Voxel matrix, 1=material.\n dims : array\n Size of one voxel.\n etype : integer, optional\n 'q' - quadrilateral or hexahedral elements\n 't' - triangular or tetrahedral elements\n mtype : integer, optional\n 'v' - volumetric mesh\n 's' - surface mesh\n\n Returns\n -------\n mesh : Mesh instance\n Finite element mesh.\n " dims = dims.squeeze() dim = len(dims) nddims = (nm.array(voxels.shape) + 2) nodemtx = nm.zeros(nddims, dtype=nm.int8) vxidxs = nm.where(voxels) set_nodemtx(nodemtx, vxidxs, etype) ndidx = nm.where(nodemtx) del nodemtx coors = (nm.array(ndidx).transpose() * dims) nnod = coors.shape[0] nodeid = (- nm.ones(nddims, dtype=nm.int32)) nodeid[ndidx] = nm.arange(nnod) if (mtype == 's'): felems = [] nn = nm.zeros(nddims, dtype=nm.int8) if (dim == 2): (ix, iy) = vxidxs if (mtype == 'v'): elems = nm.array([nodeid[(ix, iy)], nodeid[((ix + 1), iy)], nodeid[((ix + 1), (iy + 1))], nodeid[(ix, (iy + 1))]]).transpose() edim = 2 else: fc = nm.zeros((nddims + (2,)), dtype=nm.int32) fc[(ix, iy, :)] = nm.array([nodeid[(ix, (iy + 1))], nodeid[(ix, iy)]]).transpose() fc[((ix + 1), iy, :)] = nm.array([nodeid[((ix + 1), iy)], nodeid[((ix + 1), (iy + 1))]]).transpose() nn[(ix, iy)] = 1 nn[((ix + 1), iy)] += 1 idx = nm.where((nn == 1)) felems.append(fc[idx]) fc.fill(0) nn.fill(0) fc[(ix, iy, :)] = nm.array([nodeid[(ix, iy)], nodeid[((ix + 1), iy)]]).transpose() fc[(ix, (iy + 1), :)] = nm.array([nodeid[((ix + 1), (iy + 1))], nodeid[(ix, (iy + 1))]]).transpose() nn[(ix, iy)] = 1 nn[(ix, (iy + 1))] += 1 idx = nm.where((nn == 1)) felems.append(fc[idx]) elems = nm.concatenate(felems) edim = 1 elif (dim == 3): (ix, iy, iz) = vxidxs if (mtype == 'v'): elems = nm.array([nodeid[(ix, iy, iz)], nodeid[((ix + 1), iy, iz)], nodeid[((ix + 1), (iy + 1), iz)], nodeid[(ix, (iy + 1), iz)], nodeid[(ix, iy, (iz + 1))], nodeid[((ix + 1), iy, (iz + 1))], nodeid[((ix + 1), (iy + 1), (iz + 1))], nodeid[(ix, (iy + 1), (iz + 1))]]).transpose() edim = 3 else: fc = nm.zeros((tuple(nddims) + (4,)), dtype=nm.int32) fc[(ix, iy, iz, :)] = nm.array([nodeid[(ix, iy, iz)], nodeid[(ix, iy, (iz + 1))], nodeid[(ix, (iy + 1), (iz + 1))], nodeid[(ix, (iy + 1), iz)]]).transpose() fc[((ix + 1), iy, iz, :)] = nm.array([nodeid[((ix + 1), iy, iz)], nodeid[((ix + 1), (iy + 1), iz)], nodeid[((ix + 1), (iy + 1), (iz + 1))], nodeid[((ix + 1), iy, (iz + 1))]]).transpose() nn[(ix, iy, iz)] = 1 nn[((ix + 1), iy, iz)] += 1 idx = nm.where((nn == 1)) felems.append(fc[idx]) fc.fill(0) nn.fill(0) fc[(ix, iy, iz, :)] = nm.array([nodeid[(ix, iy, iz)], nodeid[((ix + 1), iy, iz)], nodeid[((ix + 1), iy, (iz + 1))], nodeid[(ix, iy, (iz + 1))]]).transpose() fc[(ix, (iy + 1), iz, :)] = nm.array([nodeid[(ix, (iy + 1), iz)], nodeid[(ix, (iy + 1), (iz + 1))], nodeid[((ix + 1), (iy + 1), (iz + 1))], nodeid[((ix + 1), (iy + 1), iz)]]).transpose() nn[(ix, iy, iz)] = 1 nn[(ix, (iy + 1), iz)] += 1 idx = nm.where((nn == 1)) felems.append(fc[idx]) fc.fill(0) nn.fill(0) fc[(ix, iy, iz, :)] = nm.array([nodeid[(ix, iy, iz)], nodeid[(ix, (iy + 1), iz)], nodeid[((ix + 1), (iy + 1), iz)], nodeid[((ix + 1), iy, iz)]]).transpose() fc[(ix, iy, (iz + 1), :)] = nm.array([nodeid[(ix, iy, (iz + 1))], nodeid[((ix + 1), iy, (iz + 1))], nodeid[((ix + 1), (iy + 1), (iz + 1))], nodeid[(ix, (iy + 1), (iz + 1))]]).transpose() nn[(ix, iy, iz)] = 1 nn[(ix, iy, (iz + 1))] += 1 idx = nm.where((nn == 1)) felems.append(fc[idx]) elems = nm.concatenate(felems) edim = 2 if (mtype == 's'): aux = nm.zeros((nnod,), dtype=nm.int32) for ii in elems.T: aux[ii] = 1 idx = nm.where(aux) aux.fill(0) nnod = idx[0].shape[0] aux[idx] = range(nnod) coors = coors[idx] for ii in range(elems.shape[1]): elems[(:, ii)] = aux[elems[(:, ii)]] if (etype == 't'): elems = elems_q2t(elems) nelnd = elems.shape[1] mesh = meshio.Mesh(coors, [(meshio_types[('%d_%d' % (edim, nelnd))], nm.ascontiguousarray(elems))]) return mesh
def gen_mesh_from_voxels(voxels, dims, etype='q', mtype='v'): "\n Generate FE mesh from voxels (volumetric data).\n\n Parameters\n ----------\n voxels : array\n Voxel matrix, 1=material.\n dims : array\n Size of one voxel.\n etype : integer, optional\n 'q' - quadrilateral or hexahedral elements\n 't' - triangular or tetrahedral elements\n mtype : integer, optional\n 'v' - volumetric mesh\n 's' - surface mesh\n\n Returns\n -------\n mesh : Mesh instance\n Finite element mesh.\n " dims = dims.squeeze() dim = len(dims) nddims = (nm.array(voxels.shape) + 2) nodemtx = nm.zeros(nddims, dtype=nm.int8) vxidxs = nm.where(voxels) set_nodemtx(nodemtx, vxidxs, etype) ndidx = nm.where(nodemtx) del nodemtx coors = (nm.array(ndidx).transpose() * dims) nnod = coors.shape[0] nodeid = (- nm.ones(nddims, dtype=nm.int32)) nodeid[ndidx] = nm.arange(nnod) if (mtype == 's'): felems = [] nn = nm.zeros(nddims, dtype=nm.int8) if (dim == 2): (ix, iy) = vxidxs if (mtype == 'v'): elems = nm.array([nodeid[(ix, iy)], nodeid[((ix + 1), iy)], nodeid[((ix + 1), (iy + 1))], nodeid[(ix, (iy + 1))]]).transpose() edim = 2 else: fc = nm.zeros((nddims + (2,)), dtype=nm.int32) fc[(ix, iy, :)] = nm.array([nodeid[(ix, (iy + 1))], nodeid[(ix, iy)]]).transpose() fc[((ix + 1), iy, :)] = nm.array([nodeid[((ix + 1), iy)], nodeid[((ix + 1), (iy + 1))]]).transpose() nn[(ix, iy)] = 1 nn[((ix + 1), iy)] += 1 idx = nm.where((nn == 1)) felems.append(fc[idx]) fc.fill(0) nn.fill(0) fc[(ix, iy, :)] = nm.array([nodeid[(ix, iy)], nodeid[((ix + 1), iy)]]).transpose() fc[(ix, (iy + 1), :)] = nm.array([nodeid[((ix + 1), (iy + 1))], nodeid[(ix, (iy + 1))]]).transpose() nn[(ix, iy)] = 1 nn[(ix, (iy + 1))] += 1 idx = nm.where((nn == 1)) felems.append(fc[idx]) elems = nm.concatenate(felems) edim = 1 elif (dim == 3): (ix, iy, iz) = vxidxs if (mtype == 'v'): elems = nm.array([nodeid[(ix, iy, iz)], nodeid[((ix + 1), iy, iz)], nodeid[((ix + 1), (iy + 1), iz)], nodeid[(ix, (iy + 1), iz)], nodeid[(ix, iy, (iz + 1))], nodeid[((ix + 1), iy, (iz + 1))], nodeid[((ix + 1), (iy + 1), (iz + 1))], nodeid[(ix, (iy + 1), (iz + 1))]]).transpose() edim = 3 else: fc = nm.zeros((tuple(nddims) + (4,)), dtype=nm.int32) fc[(ix, iy, iz, :)] = nm.array([nodeid[(ix, iy, iz)], nodeid[(ix, iy, (iz + 1))], nodeid[(ix, (iy + 1), (iz + 1))], nodeid[(ix, (iy + 1), iz)]]).transpose() fc[((ix + 1), iy, iz, :)] = nm.array([nodeid[((ix + 1), iy, iz)], nodeid[((ix + 1), (iy + 1), iz)], nodeid[((ix + 1), (iy + 1), (iz + 1))], nodeid[((ix + 1), iy, (iz + 1))]]).transpose() nn[(ix, iy, iz)] = 1 nn[((ix + 1), iy, iz)] += 1 idx = nm.where((nn == 1)) felems.append(fc[idx]) fc.fill(0) nn.fill(0) fc[(ix, iy, iz, :)] = nm.array([nodeid[(ix, iy, iz)], nodeid[((ix + 1), iy, iz)], nodeid[((ix + 1), iy, (iz + 1))], nodeid[(ix, iy, (iz + 1))]]).transpose() fc[(ix, (iy + 1), iz, :)] = nm.array([nodeid[(ix, (iy + 1), iz)], nodeid[(ix, (iy + 1), (iz + 1))], nodeid[((ix + 1), (iy + 1), (iz + 1))], nodeid[((ix + 1), (iy + 1), iz)]]).transpose() nn[(ix, iy, iz)] = 1 nn[(ix, (iy + 1), iz)] += 1 idx = nm.where((nn == 1)) felems.append(fc[idx]) fc.fill(0) nn.fill(0) fc[(ix, iy, iz, :)] = nm.array([nodeid[(ix, iy, iz)], nodeid[(ix, (iy + 1), iz)], nodeid[((ix + 1), (iy + 1), iz)], nodeid[((ix + 1), iy, iz)]]).transpose() fc[(ix, iy, (iz + 1), :)] = nm.array([nodeid[(ix, iy, (iz + 1))], nodeid[((ix + 1), iy, (iz + 1))], nodeid[((ix + 1), (iy + 1), (iz + 1))], nodeid[(ix, (iy + 1), (iz + 1))]]).transpose() nn[(ix, iy, iz)] = 1 nn[(ix, iy, (iz + 1))] += 1 idx = nm.where((nn == 1)) felems.append(fc[idx]) elems = nm.concatenate(felems) edim = 2 if (mtype == 's'): aux = nm.zeros((nnod,), dtype=nm.int32) for ii in elems.T: aux[ii] = 1 idx = nm.where(aux) aux.fill(0) nnod = idx[0].shape[0] aux[idx] = range(nnod) coors = coors[idx] for ii in range(elems.shape[1]): elems[(:, ii)] = aux[elems[(:, ii)]] if (etype == 't'): elems = elems_q2t(elems) nelnd = elems.shape[1] mesh = meshio.Mesh(coors, [(meshio_types[('%d_%d' % (edim, nelnd))], nm.ascontiguousarray(elems))]) return mesh<|docstring|>Generate FE mesh from voxels (volumetric data). Parameters ---------- voxels : array Voxel matrix, 1=material. dims : array Size of one voxel. etype : integer, optional 'q' - quadrilateral or hexahedral elements 't' - triangular or tetrahedral elements mtype : integer, optional 'v' - volumetric mesh 's' - surface mesh Returns ------- mesh : Mesh instance Finite element mesh.<|endoftext|>
31d171a2e3f029f94d4393114e258afe049dc087f6a093104276010362ed45cc
def find_patches_from_slide(slide_path, base_truth_dir=BASE_TRUTH_DIR, filter_non_tissue=True): 'Returns a dataframe of all patches in slide\n input: slide_path: path to WSI file\n output: samples: dataframe with the following columns:\n slide_path: path of slide\n is_tissue: sample contains tissue\n is_tumor: truth status of sample\n tile_loc: coordinates of samples in slide\n \n \n option: base_truth_dir: directory of truth slides\n option: filter_non_tissue: Remove samples no tissue detected\n ' base_truth_dir = Path(base_truth_dir) slide_contains_tumor = osp.basename(slide_path).startswith('tumor_') with openslide.open_slide(slide_path) as slide: thumbnail = slide.get_thumbnail(((slide.dimensions[0] / 256), (slide.dimensions[1] / 256))) thumbnail_grey = np.array(thumbnail.convert('L')) thresh = threshold_otsu(thumbnail_grey) binary = (thumbnail_grey > thresh) patches = pd.DataFrame(pd.DataFrame(binary).stack()) patches['is_tissue'] = (~ patches[0]) patches.drop(0, axis=1, inplace=True) patches['slide_path'] = slide_path if slide_contains_tumor: truth_slide_path = (base_truth_dir / osp.basename(slide_path).replace('.tif', '_Mask.tif')) with openslide.open_slide(str(truth_slide_path)) as truth: thumbnail_truth = truth.get_thumbnail(((truth.dimensions[0] / 256), (truth.dimensions[1] / 256))) patches_y = pd.DataFrame(pd.DataFrame(np.array(thumbnail_truth.convert('L'))).stack()) patches_y['is_tumor'] = (patches_y[0] > 0) patches_y.drop(0, axis=1, inplace=True) samples = pd.concat([patches, patches_y], axis=1) else: samples = patches samples['is_tumor'] = False if filter_non_tissue: samples = samples[(samples.is_tissue == True)] samples['tile_loc'] = list(samples.index) samples.reset_index(inplace=True, drop=True) return samples
Returns a dataframe of all patches in slide input: slide_path: path to WSI file output: samples: dataframe with the following columns: slide_path: path of slide is_tissue: sample contains tissue is_tumor: truth status of sample tile_loc: coordinates of samples in slide option: base_truth_dir: directory of truth slides option: filter_non_tissue: Remove samples no tissue detected
4 - Prediction and Evaluation/Prediction_fcn_unet.py
find_patches_from_slide
raktim-mondol/DeepLearningCamelyon
70
python
def find_patches_from_slide(slide_path, base_truth_dir=BASE_TRUTH_DIR, filter_non_tissue=True): 'Returns a dataframe of all patches in slide\n input: slide_path: path to WSI file\n output: samples: dataframe with the following columns:\n slide_path: path of slide\n is_tissue: sample contains tissue\n is_tumor: truth status of sample\n tile_loc: coordinates of samples in slide\n \n \n option: base_truth_dir: directory of truth slides\n option: filter_non_tissue: Remove samples no tissue detected\n ' base_truth_dir = Path(base_truth_dir) slide_contains_tumor = osp.basename(slide_path).startswith('tumor_') with openslide.open_slide(slide_path) as slide: thumbnail = slide.get_thumbnail(((slide.dimensions[0] / 256), (slide.dimensions[1] / 256))) thumbnail_grey = np.array(thumbnail.convert('L')) thresh = threshold_otsu(thumbnail_grey) binary = (thumbnail_grey > thresh) patches = pd.DataFrame(pd.DataFrame(binary).stack()) patches['is_tissue'] = (~ patches[0]) patches.drop(0, axis=1, inplace=True) patches['slide_path'] = slide_path if slide_contains_tumor: truth_slide_path = (base_truth_dir / osp.basename(slide_path).replace('.tif', '_Mask.tif')) with openslide.open_slide(str(truth_slide_path)) as truth: thumbnail_truth = truth.get_thumbnail(((truth.dimensions[0] / 256), (truth.dimensions[1] / 256))) patches_y = pd.DataFrame(pd.DataFrame(np.array(thumbnail_truth.convert('L'))).stack()) patches_y['is_tumor'] = (patches_y[0] > 0) patches_y.drop(0, axis=1, inplace=True) samples = pd.concat([patches, patches_y], axis=1) else: samples = patches samples['is_tumor'] = False if filter_non_tissue: samples = samples[(samples.is_tissue == True)] samples['tile_loc'] = list(samples.index) samples.reset_index(inplace=True, drop=True) return samples
def find_patches_from_slide(slide_path, base_truth_dir=BASE_TRUTH_DIR, filter_non_tissue=True): 'Returns a dataframe of all patches in slide\n input: slide_path: path to WSI file\n output: samples: dataframe with the following columns:\n slide_path: path of slide\n is_tissue: sample contains tissue\n is_tumor: truth status of sample\n tile_loc: coordinates of samples in slide\n \n \n option: base_truth_dir: directory of truth slides\n option: filter_non_tissue: Remove samples no tissue detected\n ' base_truth_dir = Path(base_truth_dir) slide_contains_tumor = osp.basename(slide_path).startswith('tumor_') with openslide.open_slide(slide_path) as slide: thumbnail = slide.get_thumbnail(((slide.dimensions[0] / 256), (slide.dimensions[1] / 256))) thumbnail_grey = np.array(thumbnail.convert('L')) thresh = threshold_otsu(thumbnail_grey) binary = (thumbnail_grey > thresh) patches = pd.DataFrame(pd.DataFrame(binary).stack()) patches['is_tissue'] = (~ patches[0]) patches.drop(0, axis=1, inplace=True) patches['slide_path'] = slide_path if slide_contains_tumor: truth_slide_path = (base_truth_dir / osp.basename(slide_path).replace('.tif', '_Mask.tif')) with openslide.open_slide(str(truth_slide_path)) as truth: thumbnail_truth = truth.get_thumbnail(((truth.dimensions[0] / 256), (truth.dimensions[1] / 256))) patches_y = pd.DataFrame(pd.DataFrame(np.array(thumbnail_truth.convert('L'))).stack()) patches_y['is_tumor'] = (patches_y[0] > 0) patches_y.drop(0, axis=1, inplace=True) samples = pd.concat([patches, patches_y], axis=1) else: samples = patches samples['is_tumor'] = False if filter_non_tissue: samples = samples[(samples.is_tissue == True)] samples['tile_loc'] = list(samples.index) samples.reset_index(inplace=True, drop=True) return samples<|docstring|>Returns a dataframe of all patches in slide input: slide_path: path to WSI file output: samples: dataframe with the following columns: slide_path: path of slide is_tissue: sample contains tissue is_tumor: truth status of sample tile_loc: coordinates of samples in slide option: base_truth_dir: directory of truth slides option: filter_non_tissue: Remove samples no tissue detected<|endoftext|>
b3d3120d68de8289f6357c527c783e3ef779791c6a0585c07c23a943bbd120ec
def gen_imgs(samples, batch_size, base_truth_dir=BASE_TRUTH_DIR, shuffle=False): 'This function returns a generator that \n yields tuples of (\n X: tensor, float - [batch_size, 256, 256, 3]\n y: tensor, int32 - [batch_size, 256, 256, NUM_CLASSES]\n )\n \n \n input: samples: samples dataframe\n input: batch_size: The number of images to return for each pull\n output: yield (X_train, y_train): generator of X, y tensors\n \n option: base_truth_dir: path, directory of truth slides\n option: shuffle: bool, if True shuffle samples\n ' num_samples = len(samples) while 1: if shuffle: samples = samples.sample(frac=1) for offset in range(0, num_samples, batch_size): batch_samples = samples.iloc[offset:(offset + batch_size)] images = [] masks = [] for (_, batch_sample) in batch_samples.iterrows(): slide_contains_tumor = osp.basename(batch_sample.slide_path).startswith('tumor_') with openslide.open_slide(batch_sample.slide_path) as slide: tiles = DeepZoomGenerator(slide, tile_size=256, overlap=0, limit_bounds=False) img = tiles.get_tile((tiles.level_count - 1), batch_sample.tile_loc[::(- 1)]) if slide_contains_tumor: truth_slide_path = (base_truth_dir / osp.basename(slide_path).replace('.tif', '_Mask.tif')) with openslide.open_slide(str(truth_slide_path)) as truth: truth_tiles = DeepZoomGenerator(truth, tile_size=256, overlap=0, limit_bounds=False) mask = truth_tiles.get_tile((truth_tiles.level_count - 1), batch_sample.tile_loc[::(- 1)]) mask = (cv2.cvtColor(np.array(mask), cv2.COLOR_RGB2GRAY) > 0).astype(int) else: mask = np.zeros((256, 256)) images.append(np.array(img)) masks.append(mask) X_train = np.array(images) y_train = np.array(masks) y_train = to_categorical(y_train, num_classes=2).reshape(y_train.shape[0], 256, 256, 2) (yield (X_train, y_train))
This function returns a generator that yields tuples of ( X: tensor, float - [batch_size, 256, 256, 3] y: tensor, int32 - [batch_size, 256, 256, NUM_CLASSES] ) input: samples: samples dataframe input: batch_size: The number of images to return for each pull output: yield (X_train, y_train): generator of X, y tensors option: base_truth_dir: path, directory of truth slides option: shuffle: bool, if True shuffle samples
4 - Prediction and Evaluation/Prediction_fcn_unet.py
gen_imgs
raktim-mondol/DeepLearningCamelyon
70
python
def gen_imgs(samples, batch_size, base_truth_dir=BASE_TRUTH_DIR, shuffle=False): 'This function returns a generator that \n yields tuples of (\n X: tensor, float - [batch_size, 256, 256, 3]\n y: tensor, int32 - [batch_size, 256, 256, NUM_CLASSES]\n )\n \n \n input: samples: samples dataframe\n input: batch_size: The number of images to return for each pull\n output: yield (X_train, y_train): generator of X, y tensors\n \n option: base_truth_dir: path, directory of truth slides\n option: shuffle: bool, if True shuffle samples\n ' num_samples = len(samples) while 1: if shuffle: samples = samples.sample(frac=1) for offset in range(0, num_samples, batch_size): batch_samples = samples.iloc[offset:(offset + batch_size)] images = [] masks = [] for (_, batch_sample) in batch_samples.iterrows(): slide_contains_tumor = osp.basename(batch_sample.slide_path).startswith('tumor_') with openslide.open_slide(batch_sample.slide_path) as slide: tiles = DeepZoomGenerator(slide, tile_size=256, overlap=0, limit_bounds=False) img = tiles.get_tile((tiles.level_count - 1), batch_sample.tile_loc[::(- 1)]) if slide_contains_tumor: truth_slide_path = (base_truth_dir / osp.basename(slide_path).replace('.tif', '_Mask.tif')) with openslide.open_slide(str(truth_slide_path)) as truth: truth_tiles = DeepZoomGenerator(truth, tile_size=256, overlap=0, limit_bounds=False) mask = truth_tiles.get_tile((truth_tiles.level_count - 1), batch_sample.tile_loc[::(- 1)]) mask = (cv2.cvtColor(np.array(mask), cv2.COLOR_RGB2GRAY) > 0).astype(int) else: mask = np.zeros((256, 256)) images.append(np.array(img)) masks.append(mask) X_train = np.array(images) y_train = np.array(masks) y_train = to_categorical(y_train, num_classes=2).reshape(y_train.shape[0], 256, 256, 2) (yield (X_train, y_train))
def gen_imgs(samples, batch_size, base_truth_dir=BASE_TRUTH_DIR, shuffle=False): 'This function returns a generator that \n yields tuples of (\n X: tensor, float - [batch_size, 256, 256, 3]\n y: tensor, int32 - [batch_size, 256, 256, NUM_CLASSES]\n )\n \n \n input: samples: samples dataframe\n input: batch_size: The number of images to return for each pull\n output: yield (X_train, y_train): generator of X, y tensors\n \n option: base_truth_dir: path, directory of truth slides\n option: shuffle: bool, if True shuffle samples\n ' num_samples = len(samples) while 1: if shuffle: samples = samples.sample(frac=1) for offset in range(0, num_samples, batch_size): batch_samples = samples.iloc[offset:(offset + batch_size)] images = [] masks = [] for (_, batch_sample) in batch_samples.iterrows(): slide_contains_tumor = osp.basename(batch_sample.slide_path).startswith('tumor_') with openslide.open_slide(batch_sample.slide_path) as slide: tiles = DeepZoomGenerator(slide, tile_size=256, overlap=0, limit_bounds=False) img = tiles.get_tile((tiles.level_count - 1), batch_sample.tile_loc[::(- 1)]) if slide_contains_tumor: truth_slide_path = (base_truth_dir / osp.basename(slide_path).replace('.tif', '_Mask.tif')) with openslide.open_slide(str(truth_slide_path)) as truth: truth_tiles = DeepZoomGenerator(truth, tile_size=256, overlap=0, limit_bounds=False) mask = truth_tiles.get_tile((truth_tiles.level_count - 1), batch_sample.tile_loc[::(- 1)]) mask = (cv2.cvtColor(np.array(mask), cv2.COLOR_RGB2GRAY) > 0).astype(int) else: mask = np.zeros((256, 256)) images.append(np.array(img)) masks.append(mask) X_train = np.array(images) y_train = np.array(masks) y_train = to_categorical(y_train, num_classes=2).reshape(y_train.shape[0], 256, 256, 2) (yield (X_train, y_train))<|docstring|>This function returns a generator that yields tuples of ( X: tensor, float - [batch_size, 256, 256, 3] y: tensor, int32 - [batch_size, 256, 256, NUM_CLASSES] ) input: samples: samples dataframe input: batch_size: The number of images to return for each pull output: yield (X_train, y_train): generator of X, y tensors option: base_truth_dir: path, directory of truth slides option: shuffle: bool, if True shuffle samples<|endoftext|>
50bf78de16f994efe389efd8e37c87126eaf6a400cea7b62a2d9a36c39df6206
@property def end(self): "\n Sets the end value for the y axis bins. The last bin may not\n end exactly at this value, we increment the bin edge by `size`\n from `start` until we reach or exceed `end`. Defaults to the\n maximum data value. Like `start`, for dates use a date string,\n and for category data `end` is based on the category serial\n numbers.\n \n The 'end' property accepts values of any type\n\n Returns\n -------\n Any\n " return self['end']
Sets the end value for the y axis bins. The last bin may not end exactly at this value, we increment the bin edge by `size` from `start` until we reach or exceed `end`. Defaults to the maximum data value. Like `start`, for dates use a date string, and for category data `end` is based on the category serial numbers. The 'end' property accepts values of any type Returns ------- Any
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
end
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def end(self): "\n Sets the end value for the y axis bins. The last bin may not\n end exactly at this value, we increment the bin edge by `size`\n from `start` until we reach or exceed `end`. Defaults to the\n maximum data value. Like `start`, for dates use a date string,\n and for category data `end` is based on the category serial\n numbers.\n \n The 'end' property accepts values of any type\n\n Returns\n -------\n Any\n " return self['end']
@property def end(self): "\n Sets the end value for the y axis bins. The last bin may not\n end exactly at this value, we increment the bin edge by `size`\n from `start` until we reach or exceed `end`. Defaults to the\n maximum data value. Like `start`, for dates use a date string,\n and for category data `end` is based on the category serial\n numbers.\n \n The 'end' property accepts values of any type\n\n Returns\n -------\n Any\n " return self['end']<|docstring|>Sets the end value for the y axis bins. The last bin may not end exactly at this value, we increment the bin edge by `size` from `start` until we reach or exceed `end`. Defaults to the maximum data value. Like `start`, for dates use a date string, and for category data `end` is based on the category serial numbers. The 'end' property accepts values of any type Returns ------- Any<|endoftext|>
0e691e6e2369226b7116d9ec17cc203cca570656d6f1f9b6be188c52c91a32db
@property def size(self): '\n Sets the size of each y axis bin. Default behavior: If `nbinsy`\n is 0 or omitted, we choose a nice round bin size such that the\n number of bins is about the same as the typical number of\n samples in each bin. If `nbinsy` is provided, we choose a nice\n round bin size giving no more than that many bins. For date\n data, use milliseconds or "M<n>" for months, as in\n `axis.dtick`. For category data, the number of categories to\n bin together (always defaults to 1). If multiple non-overlaying\n histograms share a subplot, the first explicit `size` is used\n and all others discarded. If no `size` is provided,the sample\n data from all traces is combined to determine `size` as\n described above.\n \n The \'size\' property accepts values of any type\n\n Returns\n -------\n Any\n ' return self['size']
Sets the size of each y axis bin. Default behavior: If `nbinsy` is 0 or omitted, we choose a nice round bin size such that the number of bins is about the same as the typical number of samples in each bin. If `nbinsy` is provided, we choose a nice round bin size giving no more than that many bins. For date data, use milliseconds or "M<n>" for months, as in `axis.dtick`. For category data, the number of categories to bin together (always defaults to 1). If multiple non-overlaying histograms share a subplot, the first explicit `size` is used and all others discarded. If no `size` is provided,the sample data from all traces is combined to determine `size` as described above. The 'size' property accepts values of any type Returns ------- Any
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
size
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def size(self): '\n Sets the size of each y axis bin. Default behavior: If `nbinsy`\n is 0 or omitted, we choose a nice round bin size such that the\n number of bins is about the same as the typical number of\n samples in each bin. If `nbinsy` is provided, we choose a nice\n round bin size giving no more than that many bins. For date\n data, use milliseconds or "M<n>" for months, as in\n `axis.dtick`. For category data, the number of categories to\n bin together (always defaults to 1). If multiple non-overlaying\n histograms share a subplot, the first explicit `size` is used\n and all others discarded. If no `size` is provided,the sample\n data from all traces is combined to determine `size` as\n described above.\n \n The \'size\' property accepts values of any type\n\n Returns\n -------\n Any\n ' return self['size']
@property def size(self): '\n Sets the size of each y axis bin. Default behavior: If `nbinsy`\n is 0 or omitted, we choose a nice round bin size such that the\n number of bins is about the same as the typical number of\n samples in each bin. If `nbinsy` is provided, we choose a nice\n round bin size giving no more than that many bins. For date\n data, use milliseconds or "M<n>" for months, as in\n `axis.dtick`. For category data, the number of categories to\n bin together (always defaults to 1). If multiple non-overlaying\n histograms share a subplot, the first explicit `size` is used\n and all others discarded. If no `size` is provided,the sample\n data from all traces is combined to determine `size` as\n described above.\n \n The \'size\' property accepts values of any type\n\n Returns\n -------\n Any\n ' return self['size']<|docstring|>Sets the size of each y axis bin. Default behavior: If `nbinsy` is 0 or omitted, we choose a nice round bin size such that the number of bins is about the same as the typical number of samples in each bin. If `nbinsy` is provided, we choose a nice round bin size giving no more than that many bins. For date data, use milliseconds or "M<n>" for months, as in `axis.dtick`. For category data, the number of categories to bin together (always defaults to 1). If multiple non-overlaying histograms share a subplot, the first explicit `size` is used and all others discarded. If no `size` is provided,the sample data from all traces is combined to determine `size` as described above. The 'size' property accepts values of any type Returns ------- Any<|endoftext|>