body_hash
stringlengths
64
64
body
stringlengths
23
109k
docstring
stringlengths
1
57k
path
stringlengths
4
198
name
stringlengths
1
115
repository_name
stringlengths
7
111
repository_stars
float64
0
191k
lang
stringclasses
1 value
body_without_docstring
stringlengths
14
108k
unified
stringlengths
45
133k
1a18ab2e1cac0d9e7a72751c1f0aa618d9512d5265611b020ce4ab13b329224b
@property def start(self): "\n Sets the starting value for the y axis bins. Defaults to the\n minimum data value, shifted down if necessary to make nice\n round values and to remove ambiguous bin edges. For example, if\n most of the data is integers we shift the bin edges 0.5 down,\n so a `size` of 5 would have a default `start` of -0.5, so it is\n clear that 0-4 are in the first bin, 5-9 in the second, but\n continuous data gets a start of 0 and bins [0,5), [5,10) etc.\n Dates behave similarly, and `start` should be a date string.\n For category data, `start` is based on the category serial\n numbers, and defaults to -0.5. If multiple non-overlaying\n histograms share a subplot, the first explicit `start` is used\n exactly and all others are shifted down (if necessary) to\n differ from that one by an integer number of bins.\n \n The 'start' property accepts values of any type\n\n Returns\n -------\n Any\n " return self['start']
Sets the starting value for the y axis bins. Defaults to the minimum data value, shifted down if necessary to make nice round values and to remove ambiguous bin edges. For example, if most of the data is integers we shift the bin edges 0.5 down, so a `size` of 5 would have a default `start` of -0.5, so it is clear that 0-4 are in the first bin, 5-9 in the second, but continuous data gets a start of 0 and bins [0,5), [5,10) etc. Dates behave similarly, and `start` should be a date string. For category data, `start` is based on the category serial numbers, and defaults to -0.5. If multiple non-overlaying histograms share a subplot, the first explicit `start` is used exactly and all others are shifted down (if necessary) to differ from that one by an integer number of bins. The 'start' property accepts values of any type Returns ------- Any
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
start
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def start(self): "\n Sets the starting value for the y axis bins. Defaults to the\n minimum data value, shifted down if necessary to make nice\n round values and to remove ambiguous bin edges. For example, if\n most of the data is integers we shift the bin edges 0.5 down,\n so a `size` of 5 would have a default `start` of -0.5, so it is\n clear that 0-4 are in the first bin, 5-9 in the second, but\n continuous data gets a start of 0 and bins [0,5), [5,10) etc.\n Dates behave similarly, and `start` should be a date string.\n For category data, `start` is based on the category serial\n numbers, and defaults to -0.5. If multiple non-overlaying\n histograms share a subplot, the first explicit `start` is used\n exactly and all others are shifted down (if necessary) to\n differ from that one by an integer number of bins.\n \n The 'start' property accepts values of any type\n\n Returns\n -------\n Any\n " return self['start']
@property def start(self): "\n Sets the starting value for the y axis bins. Defaults to the\n minimum data value, shifted down if necessary to make nice\n round values and to remove ambiguous bin edges. For example, if\n most of the data is integers we shift the bin edges 0.5 down,\n so a `size` of 5 would have a default `start` of -0.5, so it is\n clear that 0-4 are in the first bin, 5-9 in the second, but\n continuous data gets a start of 0 and bins [0,5), [5,10) etc.\n Dates behave similarly, and `start` should be a date string.\n For category data, `start` is based on the category serial\n numbers, and defaults to -0.5. If multiple non-overlaying\n histograms share a subplot, the first explicit `start` is used\n exactly and all others are shifted down (if necessary) to\n differ from that one by an integer number of bins.\n \n The 'start' property accepts values of any type\n\n Returns\n -------\n Any\n " return self['start']<|docstring|>Sets the starting value for the y axis bins. Defaults to the minimum data value, shifted down if necessary to make nice round values and to remove ambiguous bin edges. For example, if most of the data is integers we shift the bin edges 0.5 down, so a `size` of 5 would have a default `start` of -0.5, so it is clear that 0-4 are in the first bin, 5-9 in the second, but continuous data gets a start of 0 and bins [0,5), [5,10) etc. Dates behave similarly, and `start` should be a date string. For category data, `start` is based on the category serial numbers, and defaults to -0.5. If multiple non-overlaying histograms share a subplot, the first explicit `start` is used exactly and all others are shifted down (if necessary) to differ from that one by an integer number of bins. The 'start' property accepts values of any type Returns ------- Any<|endoftext|>
dc640d3693d60c995423443fc80fc18be20050b7c1dd5d167e785c78f9e3c68f
def __init__(self, arg=None, end=None, size=None, start=None, **kwargs): '\n Construct a new YBins object\n \n Parameters\n ----------\n arg\n dict of properties compatible with this constructor or\n an instance of plotly.graph_objs.histogram.YBins\n end\n Sets the end value for the y axis bins. The last bin\n may not end exactly at this value, we increment the bin\n edge by `size` from `start` until we reach or exceed\n `end`. Defaults to the maximum data value. Like\n `start`, for dates use a date string, and for category\n data `end` is based on the category serial numbers.\n size\n Sets the size of each y axis bin. Default behavior: If\n `nbinsy` is 0 or omitted, we choose a nice round bin\n size such that the number of bins is about the same as\n the typical number of samples in each bin. If `nbinsy`\n is provided, we choose a nice round bin size giving no\n more than that many bins. For date data, use\n milliseconds or "M<n>" for months, as in `axis.dtick`.\n For category data, the number of categories to bin\n together (always defaults to 1). If multiple non-\n overlaying histograms share a subplot, the first\n explicit `size` is used and all others discarded. If no\n `size` is provided,the sample data from all traces is\n combined to determine `size` as described above.\n start\n Sets the starting value for the y axis bins. Defaults\n to the minimum data value, shifted down if necessary to\n make nice round values and to remove ambiguous bin\n edges. For example, if most of the data is integers we\n shift the bin edges 0.5 down, so a `size` of 5 would\n have a default `start` of -0.5, so it is clear that 0-4\n are in the first bin, 5-9 in the second, but continuous\n data gets a start of 0 and bins [0,5), [5,10) etc.\n Dates behave similarly, and `start` should be a date\n string. For category data, `start` is based on the\n category serial numbers, and defaults to -0.5. If\n multiple non-overlaying histograms share a subplot, the\n first explicit `start` is used exactly and all others\n are shifted down (if necessary) to differ from that one\n by an integer number of bins.\n\n Returns\n -------\n YBins\n ' super(YBins, self).__init__('ybins') if (arg is None): arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError('The first argument to the plotly.graph_objs.histogram.YBins \nconstructor must be a dict or \nan instance of plotly.graph_objs.histogram.YBins') self._skip_invalid = kwargs.pop('skip_invalid', False) from plotly.validators.histogram import ybins as v_ybins self._validators['end'] = v_ybins.EndValidator() self._validators['size'] = v_ybins.SizeValidator() self._validators['start'] = v_ybins.StartValidator() _v = arg.pop('end', None) self['end'] = (end if (end is not None) else _v) _v = arg.pop('size', None) self['size'] = (size if (size is not None) else _v) _v = arg.pop('start', None) self['start'] = (start if (start is not None) else _v) self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False
Construct a new YBins object Parameters ---------- arg dict of properties compatible with this constructor or an instance of plotly.graph_objs.histogram.YBins end Sets the end value for the y axis bins. The last bin may not end exactly at this value, we increment the bin edge by `size` from `start` until we reach or exceed `end`. Defaults to the maximum data value. Like `start`, for dates use a date string, and for category data `end` is based on the category serial numbers. size Sets the size of each y axis bin. Default behavior: If `nbinsy` is 0 or omitted, we choose a nice round bin size such that the number of bins is about the same as the typical number of samples in each bin. If `nbinsy` is provided, we choose a nice round bin size giving no more than that many bins. For date data, use milliseconds or "M<n>" for months, as in `axis.dtick`. For category data, the number of categories to bin together (always defaults to 1). If multiple non- overlaying histograms share a subplot, the first explicit `size` is used and all others discarded. If no `size` is provided,the sample data from all traces is combined to determine `size` as described above. start Sets the starting value for the y axis bins. Defaults to the minimum data value, shifted down if necessary to make nice round values and to remove ambiguous bin edges. For example, if most of the data is integers we shift the bin edges 0.5 down, so a `size` of 5 would have a default `start` of -0.5, so it is clear that 0-4 are in the first bin, 5-9 in the second, but continuous data gets a start of 0 and bins [0,5), [5,10) etc. Dates behave similarly, and `start` should be a date string. For category data, `start` is based on the category serial numbers, and defaults to -0.5. If multiple non-overlaying histograms share a subplot, the first explicit `start` is used exactly and all others are shifted down (if necessary) to differ from that one by an integer number of bins. Returns ------- YBins
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
__init__
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
def __init__(self, arg=None, end=None, size=None, start=None, **kwargs): '\n Construct a new YBins object\n \n Parameters\n ----------\n arg\n dict of properties compatible with this constructor or\n an instance of plotly.graph_objs.histogram.YBins\n end\n Sets the end value for the y axis bins. The last bin\n may not end exactly at this value, we increment the bin\n edge by `size` from `start` until we reach or exceed\n `end`. Defaults to the maximum data value. Like\n `start`, for dates use a date string, and for category\n data `end` is based on the category serial numbers.\n size\n Sets the size of each y axis bin. Default behavior: If\n `nbinsy` is 0 or omitted, we choose a nice round bin\n size such that the number of bins is about the same as\n the typical number of samples in each bin. If `nbinsy`\n is provided, we choose a nice round bin size giving no\n more than that many bins. For date data, use\n milliseconds or "M<n>" for months, as in `axis.dtick`.\n For category data, the number of categories to bin\n together (always defaults to 1). If multiple non-\n overlaying histograms share a subplot, the first\n explicit `size` is used and all others discarded. If no\n `size` is provided,the sample data from all traces is\n combined to determine `size` as described above.\n start\n Sets the starting value for the y axis bins. Defaults\n to the minimum data value, shifted down if necessary to\n make nice round values and to remove ambiguous bin\n edges. For example, if most of the data is integers we\n shift the bin edges 0.5 down, so a `size` of 5 would\n have a default `start` of -0.5, so it is clear that 0-4\n are in the first bin, 5-9 in the second, but continuous\n data gets a start of 0 and bins [0,5), [5,10) etc.\n Dates behave similarly, and `start` should be a date\n string. For category data, `start` is based on the\n category serial numbers, and defaults to -0.5. If\n multiple non-overlaying histograms share a subplot, the\n first explicit `start` is used exactly and all others\n are shifted down (if necessary) to differ from that one\n by an integer number of bins.\n\n Returns\n -------\n YBins\n ' super(YBins, self).__init__('ybins') if (arg is None): arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError('The first argument to the plotly.graph_objs.histogram.YBins \nconstructor must be a dict or \nan instance of plotly.graph_objs.histogram.YBins') self._skip_invalid = kwargs.pop('skip_invalid', False) from plotly.validators.histogram import ybins as v_ybins self._validators['end'] = v_ybins.EndValidator() self._validators['size'] = v_ybins.SizeValidator() self._validators['start'] = v_ybins.StartValidator() _v = arg.pop('end', None) self['end'] = (end if (end is not None) else _v) _v = arg.pop('size', None) self['size'] = (size if (size is not None) else _v) _v = arg.pop('start', None) self['start'] = (start if (start is not None) else _v) self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False
def __init__(self, arg=None, end=None, size=None, start=None, **kwargs): '\n Construct a new YBins object\n \n Parameters\n ----------\n arg\n dict of properties compatible with this constructor or\n an instance of plotly.graph_objs.histogram.YBins\n end\n Sets the end value for the y axis bins. The last bin\n may not end exactly at this value, we increment the bin\n edge by `size` from `start` until we reach or exceed\n `end`. Defaults to the maximum data value. Like\n `start`, for dates use a date string, and for category\n data `end` is based on the category serial numbers.\n size\n Sets the size of each y axis bin. Default behavior: If\n `nbinsy` is 0 or omitted, we choose a nice round bin\n size such that the number of bins is about the same as\n the typical number of samples in each bin. If `nbinsy`\n is provided, we choose a nice round bin size giving no\n more than that many bins. For date data, use\n milliseconds or "M<n>" for months, as in `axis.dtick`.\n For category data, the number of categories to bin\n together (always defaults to 1). If multiple non-\n overlaying histograms share a subplot, the first\n explicit `size` is used and all others discarded. If no\n `size` is provided,the sample data from all traces is\n combined to determine `size` as described above.\n start\n Sets the starting value for the y axis bins. Defaults\n to the minimum data value, shifted down if necessary to\n make nice round values and to remove ambiguous bin\n edges. For example, if most of the data is integers we\n shift the bin edges 0.5 down, so a `size` of 5 would\n have a default `start` of -0.5, so it is clear that 0-4\n are in the first bin, 5-9 in the second, but continuous\n data gets a start of 0 and bins [0,5), [5,10) etc.\n Dates behave similarly, and `start` should be a date\n string. For category data, `start` is based on the\n category serial numbers, and defaults to -0.5. If\n multiple non-overlaying histograms share a subplot, the\n first explicit `start` is used exactly and all others\n are shifted down (if necessary) to differ from that one\n by an integer number of bins.\n\n Returns\n -------\n YBins\n ' super(YBins, self).__init__('ybins') if (arg is None): arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError('The first argument to the plotly.graph_objs.histogram.YBins \nconstructor must be a dict or \nan instance of plotly.graph_objs.histogram.YBins') self._skip_invalid = kwargs.pop('skip_invalid', False) from plotly.validators.histogram import ybins as v_ybins self._validators['end'] = v_ybins.EndValidator() self._validators['size'] = v_ybins.SizeValidator() self._validators['start'] = v_ybins.StartValidator() _v = arg.pop('end', None) self['end'] = (end if (end is not None) else _v) _v = arg.pop('size', None) self['size'] = (size if (size is not None) else _v) _v = arg.pop('start', None) self['start'] = (start if (start is not None) else _v) self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False<|docstring|>Construct a new YBins object Parameters ---------- arg dict of properties compatible with this constructor or an instance of plotly.graph_objs.histogram.YBins end Sets the end value for the y axis bins. The last bin may not end exactly at this value, we increment the bin edge by `size` from `start` until we reach or exceed `end`. Defaults to the maximum data value. Like `start`, for dates use a date string, and for category data `end` is based on the category serial numbers. size Sets the size of each y axis bin. Default behavior: If `nbinsy` is 0 or omitted, we choose a nice round bin size such that the number of bins is about the same as the typical number of samples in each bin. If `nbinsy` is provided, we choose a nice round bin size giving no more than that many bins. For date data, use milliseconds or "M<n>" for months, as in `axis.dtick`. For category data, the number of categories to bin together (always defaults to 1). If multiple non- overlaying histograms share a subplot, the first explicit `size` is used and all others discarded. If no `size` is provided,the sample data from all traces is combined to determine `size` as described above. start Sets the starting value for the y axis bins. Defaults to the minimum data value, shifted down if necessary to make nice round values and to remove ambiguous bin edges. For example, if most of the data is integers we shift the bin edges 0.5 down, so a `size` of 5 would have a default `start` of -0.5, so it is clear that 0-4 are in the first bin, 5-9 in the second, but continuous data gets a start of 0 and bins [0,5), [5,10) etc. Dates behave similarly, and `start` should be a date string. For category data, `start` is based on the category serial numbers, and defaults to -0.5. If multiple non-overlaying histograms share a subplot, the first explicit `start` is used exactly and all others are shifted down (if necessary) to differ from that one by an integer number of bins. Returns ------- YBins<|endoftext|>
bda3600484c44cfba087989feb04f01688bd96ecee44bc98c7e0cbc5ecb8d6e1
@property def end(self): "\n Sets the end value for the x axis bins. The last bin may not\n end exactly at this value, we increment the bin edge by `size`\n from `start` until we reach or exceed `end`. Defaults to the\n maximum data value. Like `start`, for dates use a date string,\n and for category data `end` is based on the category serial\n numbers.\n \n The 'end' property accepts values of any type\n\n Returns\n -------\n Any\n " return self['end']
Sets the end value for the x axis bins. The last bin may not end exactly at this value, we increment the bin edge by `size` from `start` until we reach or exceed `end`. Defaults to the maximum data value. Like `start`, for dates use a date string, and for category data `end` is based on the category serial numbers. The 'end' property accepts values of any type Returns ------- Any
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
end
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def end(self): "\n Sets the end value for the x axis bins. The last bin may not\n end exactly at this value, we increment the bin edge by `size`\n from `start` until we reach or exceed `end`. Defaults to the\n maximum data value. Like `start`, for dates use a date string,\n and for category data `end` is based on the category serial\n numbers.\n \n The 'end' property accepts values of any type\n\n Returns\n -------\n Any\n " return self['end']
@property def end(self): "\n Sets the end value for the x axis bins. The last bin may not\n end exactly at this value, we increment the bin edge by `size`\n from `start` until we reach or exceed `end`. Defaults to the\n maximum data value. Like `start`, for dates use a date string,\n and for category data `end` is based on the category serial\n numbers.\n \n The 'end' property accepts values of any type\n\n Returns\n -------\n Any\n " return self['end']<|docstring|>Sets the end value for the x axis bins. The last bin may not end exactly at this value, we increment the bin edge by `size` from `start` until we reach or exceed `end`. Defaults to the maximum data value. Like `start`, for dates use a date string, and for category data `end` is based on the category serial numbers. The 'end' property accepts values of any type Returns ------- Any<|endoftext|>
4c35da1549eaeb4de19b4d8da5a7666c3e85768f5ae2a51151eebfa794cfa4f1
@property def size(self): '\n Sets the size of each x axis bin. Default behavior: If `nbinsx`\n is 0 or omitted, we choose a nice round bin size such that the\n number of bins is about the same as the typical number of\n samples in each bin. If `nbinsx` is provided, we choose a nice\n round bin size giving no more than that many bins. For date\n data, use milliseconds or "M<n>" for months, as in\n `axis.dtick`. For category data, the number of categories to\n bin together (always defaults to 1). If multiple non-overlaying\n histograms share a subplot, the first explicit `size` is used\n and all others discarded. If no `size` is provided,the sample\n data from all traces is combined to determine `size` as\n described above.\n \n The \'size\' property accepts values of any type\n\n Returns\n -------\n Any\n ' return self['size']
Sets the size of each x axis bin. Default behavior: If `nbinsx` is 0 or omitted, we choose a nice round bin size such that the number of bins is about the same as the typical number of samples in each bin. If `nbinsx` is provided, we choose a nice round bin size giving no more than that many bins. For date data, use milliseconds or "M<n>" for months, as in `axis.dtick`. For category data, the number of categories to bin together (always defaults to 1). If multiple non-overlaying histograms share a subplot, the first explicit `size` is used and all others discarded. If no `size` is provided,the sample data from all traces is combined to determine `size` as described above. The 'size' property accepts values of any type Returns ------- Any
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
size
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def size(self): '\n Sets the size of each x axis bin. Default behavior: If `nbinsx`\n is 0 or omitted, we choose a nice round bin size such that the\n number of bins is about the same as the typical number of\n samples in each bin. If `nbinsx` is provided, we choose a nice\n round bin size giving no more than that many bins. For date\n data, use milliseconds or "M<n>" for months, as in\n `axis.dtick`. For category data, the number of categories to\n bin together (always defaults to 1). If multiple non-overlaying\n histograms share a subplot, the first explicit `size` is used\n and all others discarded. If no `size` is provided,the sample\n data from all traces is combined to determine `size` as\n described above.\n \n The \'size\' property accepts values of any type\n\n Returns\n -------\n Any\n ' return self['size']
@property def size(self): '\n Sets the size of each x axis bin. Default behavior: If `nbinsx`\n is 0 or omitted, we choose a nice round bin size such that the\n number of bins is about the same as the typical number of\n samples in each bin. If `nbinsx` is provided, we choose a nice\n round bin size giving no more than that many bins. For date\n data, use milliseconds or "M<n>" for months, as in\n `axis.dtick`. For category data, the number of categories to\n bin together (always defaults to 1). If multiple non-overlaying\n histograms share a subplot, the first explicit `size` is used\n and all others discarded. If no `size` is provided,the sample\n data from all traces is combined to determine `size` as\n described above.\n \n The \'size\' property accepts values of any type\n\n Returns\n -------\n Any\n ' return self['size']<|docstring|>Sets the size of each x axis bin. Default behavior: If `nbinsx` is 0 or omitted, we choose a nice round bin size such that the number of bins is about the same as the typical number of samples in each bin. If `nbinsx` is provided, we choose a nice round bin size giving no more than that many bins. For date data, use milliseconds or "M<n>" for months, as in `axis.dtick`. For category data, the number of categories to bin together (always defaults to 1). If multiple non-overlaying histograms share a subplot, the first explicit `size` is used and all others discarded. If no `size` is provided,the sample data from all traces is combined to determine `size` as described above. The 'size' property accepts values of any type Returns ------- Any<|endoftext|>
84600b54b69156f7e5b4f2bca6eeadf8e1482f72a4f545682a185eccf4aeecef
@property def start(self): "\n Sets the starting value for the x axis bins. Defaults to the\n minimum data value, shifted down if necessary to make nice\n round values and to remove ambiguous bin edges. For example, if\n most of the data is integers we shift the bin edges 0.5 down,\n so a `size` of 5 would have a default `start` of -0.5, so it is\n clear that 0-4 are in the first bin, 5-9 in the second, but\n continuous data gets a start of 0 and bins [0,5), [5,10) etc.\n Dates behave similarly, and `start` should be a date string.\n For category data, `start` is based on the category serial\n numbers, and defaults to -0.5. If multiple non-overlaying\n histograms share a subplot, the first explicit `start` is used\n exactly and all others are shifted down (if necessary) to\n differ from that one by an integer number of bins.\n \n The 'start' property accepts values of any type\n\n Returns\n -------\n Any\n " return self['start']
Sets the starting value for the x axis bins. Defaults to the minimum data value, shifted down if necessary to make nice round values and to remove ambiguous bin edges. For example, if most of the data is integers we shift the bin edges 0.5 down, so a `size` of 5 would have a default `start` of -0.5, so it is clear that 0-4 are in the first bin, 5-9 in the second, but continuous data gets a start of 0 and bins [0,5), [5,10) etc. Dates behave similarly, and `start` should be a date string. For category data, `start` is based on the category serial numbers, and defaults to -0.5. If multiple non-overlaying histograms share a subplot, the first explicit `start` is used exactly and all others are shifted down (if necessary) to differ from that one by an integer number of bins. The 'start' property accepts values of any type Returns ------- Any
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
start
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def start(self): "\n Sets the starting value for the x axis bins. Defaults to the\n minimum data value, shifted down if necessary to make nice\n round values and to remove ambiguous bin edges. For example, if\n most of the data is integers we shift the bin edges 0.5 down,\n so a `size` of 5 would have a default `start` of -0.5, so it is\n clear that 0-4 are in the first bin, 5-9 in the second, but\n continuous data gets a start of 0 and bins [0,5), [5,10) etc.\n Dates behave similarly, and `start` should be a date string.\n For category data, `start` is based on the category serial\n numbers, and defaults to -0.5. If multiple non-overlaying\n histograms share a subplot, the first explicit `start` is used\n exactly and all others are shifted down (if necessary) to\n differ from that one by an integer number of bins.\n \n The 'start' property accepts values of any type\n\n Returns\n -------\n Any\n " return self['start']
@property def start(self): "\n Sets the starting value for the x axis bins. Defaults to the\n minimum data value, shifted down if necessary to make nice\n round values and to remove ambiguous bin edges. For example, if\n most of the data is integers we shift the bin edges 0.5 down,\n so a `size` of 5 would have a default `start` of -0.5, so it is\n clear that 0-4 are in the first bin, 5-9 in the second, but\n continuous data gets a start of 0 and bins [0,5), [5,10) etc.\n Dates behave similarly, and `start` should be a date string.\n For category data, `start` is based on the category serial\n numbers, and defaults to -0.5. If multiple non-overlaying\n histograms share a subplot, the first explicit `start` is used\n exactly and all others are shifted down (if necessary) to\n differ from that one by an integer number of bins.\n \n The 'start' property accepts values of any type\n\n Returns\n -------\n Any\n " return self['start']<|docstring|>Sets the starting value for the x axis bins. Defaults to the minimum data value, shifted down if necessary to make nice round values and to remove ambiguous bin edges. For example, if most of the data is integers we shift the bin edges 0.5 down, so a `size` of 5 would have a default `start` of -0.5, so it is clear that 0-4 are in the first bin, 5-9 in the second, but continuous data gets a start of 0 and bins [0,5), [5,10) etc. Dates behave similarly, and `start` should be a date string. For category data, `start` is based on the category serial numbers, and defaults to -0.5. If multiple non-overlaying histograms share a subplot, the first explicit `start` is used exactly and all others are shifted down (if necessary) to differ from that one by an integer number of bins. The 'start' property accepts values of any type Returns ------- Any<|endoftext|>
704054d59be3d68518108cc09648670f346134cd9e217264ddb3ea21194bd230
def __init__(self, arg=None, end=None, size=None, start=None, **kwargs): '\n Construct a new XBins object\n \n Parameters\n ----------\n arg\n dict of properties compatible with this constructor or\n an instance of plotly.graph_objs.histogram.XBins\n end\n Sets the end value for the x axis bins. The last bin\n may not end exactly at this value, we increment the bin\n edge by `size` from `start` until we reach or exceed\n `end`. Defaults to the maximum data value. Like\n `start`, for dates use a date string, and for category\n data `end` is based on the category serial numbers.\n size\n Sets the size of each x axis bin. Default behavior: If\n `nbinsx` is 0 or omitted, we choose a nice round bin\n size such that the number of bins is about the same as\n the typical number of samples in each bin. If `nbinsx`\n is provided, we choose a nice round bin size giving no\n more than that many bins. For date data, use\n milliseconds or "M<n>" for months, as in `axis.dtick`.\n For category data, the number of categories to bin\n together (always defaults to 1). If multiple non-\n overlaying histograms share a subplot, the first\n explicit `size` is used and all others discarded. If no\n `size` is provided,the sample data from all traces is\n combined to determine `size` as described above.\n start\n Sets the starting value for the x axis bins. Defaults\n to the minimum data value, shifted down if necessary to\n make nice round values and to remove ambiguous bin\n edges. For example, if most of the data is integers we\n shift the bin edges 0.5 down, so a `size` of 5 would\n have a default `start` of -0.5, so it is clear that 0-4\n are in the first bin, 5-9 in the second, but continuous\n data gets a start of 0 and bins [0,5), [5,10) etc.\n Dates behave similarly, and `start` should be a date\n string. For category data, `start` is based on the\n category serial numbers, and defaults to -0.5. If\n multiple non-overlaying histograms share a subplot, the\n first explicit `start` is used exactly and all others\n are shifted down (if necessary) to differ from that one\n by an integer number of bins.\n\n Returns\n -------\n XBins\n ' super(XBins, self).__init__('xbins') if (arg is None): arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError('The first argument to the plotly.graph_objs.histogram.XBins \nconstructor must be a dict or \nan instance of plotly.graph_objs.histogram.XBins') self._skip_invalid = kwargs.pop('skip_invalid', False) from plotly.validators.histogram import xbins as v_xbins self._validators['end'] = v_xbins.EndValidator() self._validators['size'] = v_xbins.SizeValidator() self._validators['start'] = v_xbins.StartValidator() _v = arg.pop('end', None) self['end'] = (end if (end is not None) else _v) _v = arg.pop('size', None) self['size'] = (size if (size is not None) else _v) _v = arg.pop('start', None) self['start'] = (start if (start is not None) else _v) self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False
Construct a new XBins object Parameters ---------- arg dict of properties compatible with this constructor or an instance of plotly.graph_objs.histogram.XBins end Sets the end value for the x axis bins. The last bin may not end exactly at this value, we increment the bin edge by `size` from `start` until we reach or exceed `end`. Defaults to the maximum data value. Like `start`, for dates use a date string, and for category data `end` is based on the category serial numbers. size Sets the size of each x axis bin. Default behavior: If `nbinsx` is 0 or omitted, we choose a nice round bin size such that the number of bins is about the same as the typical number of samples in each bin. If `nbinsx` is provided, we choose a nice round bin size giving no more than that many bins. For date data, use milliseconds or "M<n>" for months, as in `axis.dtick`. For category data, the number of categories to bin together (always defaults to 1). If multiple non- overlaying histograms share a subplot, the first explicit `size` is used and all others discarded. If no `size` is provided,the sample data from all traces is combined to determine `size` as described above. start Sets the starting value for the x axis bins. Defaults to the minimum data value, shifted down if necessary to make nice round values and to remove ambiguous bin edges. For example, if most of the data is integers we shift the bin edges 0.5 down, so a `size` of 5 would have a default `start` of -0.5, so it is clear that 0-4 are in the first bin, 5-9 in the second, but continuous data gets a start of 0 and bins [0,5), [5,10) etc. Dates behave similarly, and `start` should be a date string. For category data, `start` is based on the category serial numbers, and defaults to -0.5. If multiple non-overlaying histograms share a subplot, the first explicit `start` is used exactly and all others are shifted down (if necessary) to differ from that one by an integer number of bins. Returns ------- XBins
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
__init__
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
def __init__(self, arg=None, end=None, size=None, start=None, **kwargs): '\n Construct a new XBins object\n \n Parameters\n ----------\n arg\n dict of properties compatible with this constructor or\n an instance of plotly.graph_objs.histogram.XBins\n end\n Sets the end value for the x axis bins. The last bin\n may not end exactly at this value, we increment the bin\n edge by `size` from `start` until we reach or exceed\n `end`. Defaults to the maximum data value. Like\n `start`, for dates use a date string, and for category\n data `end` is based on the category serial numbers.\n size\n Sets the size of each x axis bin. Default behavior: If\n `nbinsx` is 0 or omitted, we choose a nice round bin\n size such that the number of bins is about the same as\n the typical number of samples in each bin. If `nbinsx`\n is provided, we choose a nice round bin size giving no\n more than that many bins. For date data, use\n milliseconds or "M<n>" for months, as in `axis.dtick`.\n For category data, the number of categories to bin\n together (always defaults to 1). If multiple non-\n overlaying histograms share a subplot, the first\n explicit `size` is used and all others discarded. If no\n `size` is provided,the sample data from all traces is\n combined to determine `size` as described above.\n start\n Sets the starting value for the x axis bins. Defaults\n to the minimum data value, shifted down if necessary to\n make nice round values and to remove ambiguous bin\n edges. For example, if most of the data is integers we\n shift the bin edges 0.5 down, so a `size` of 5 would\n have a default `start` of -0.5, so it is clear that 0-4\n are in the first bin, 5-9 in the second, but continuous\n data gets a start of 0 and bins [0,5), [5,10) etc.\n Dates behave similarly, and `start` should be a date\n string. For category data, `start` is based on the\n category serial numbers, and defaults to -0.5. If\n multiple non-overlaying histograms share a subplot, the\n first explicit `start` is used exactly and all others\n are shifted down (if necessary) to differ from that one\n by an integer number of bins.\n\n Returns\n -------\n XBins\n ' super(XBins, self).__init__('xbins') if (arg is None): arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError('The first argument to the plotly.graph_objs.histogram.XBins \nconstructor must be a dict or \nan instance of plotly.graph_objs.histogram.XBins') self._skip_invalid = kwargs.pop('skip_invalid', False) from plotly.validators.histogram import xbins as v_xbins self._validators['end'] = v_xbins.EndValidator() self._validators['size'] = v_xbins.SizeValidator() self._validators['start'] = v_xbins.StartValidator() _v = arg.pop('end', None) self['end'] = (end if (end is not None) else _v) _v = arg.pop('size', None) self['size'] = (size if (size is not None) else _v) _v = arg.pop('start', None) self['start'] = (start if (start is not None) else _v) self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False
def __init__(self, arg=None, end=None, size=None, start=None, **kwargs): '\n Construct a new XBins object\n \n Parameters\n ----------\n arg\n dict of properties compatible with this constructor or\n an instance of plotly.graph_objs.histogram.XBins\n end\n Sets the end value for the x axis bins. The last bin\n may not end exactly at this value, we increment the bin\n edge by `size` from `start` until we reach or exceed\n `end`. Defaults to the maximum data value. Like\n `start`, for dates use a date string, and for category\n data `end` is based on the category serial numbers.\n size\n Sets the size of each x axis bin. Default behavior: If\n `nbinsx` is 0 or omitted, we choose a nice round bin\n size such that the number of bins is about the same as\n the typical number of samples in each bin. If `nbinsx`\n is provided, we choose a nice round bin size giving no\n more than that many bins. For date data, use\n milliseconds or "M<n>" for months, as in `axis.dtick`.\n For category data, the number of categories to bin\n together (always defaults to 1). If multiple non-\n overlaying histograms share a subplot, the first\n explicit `size` is used and all others discarded. If no\n `size` is provided,the sample data from all traces is\n combined to determine `size` as described above.\n start\n Sets the starting value for the x axis bins. Defaults\n to the minimum data value, shifted down if necessary to\n make nice round values and to remove ambiguous bin\n edges. For example, if most of the data is integers we\n shift the bin edges 0.5 down, so a `size` of 5 would\n have a default `start` of -0.5, so it is clear that 0-4\n are in the first bin, 5-9 in the second, but continuous\n data gets a start of 0 and bins [0,5), [5,10) etc.\n Dates behave similarly, and `start` should be a date\n string. For category data, `start` is based on the\n category serial numbers, and defaults to -0.5. If\n multiple non-overlaying histograms share a subplot, the\n first explicit `start` is used exactly and all others\n are shifted down (if necessary) to differ from that one\n by an integer number of bins.\n\n Returns\n -------\n XBins\n ' super(XBins, self).__init__('xbins') if (arg is None): arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError('The first argument to the plotly.graph_objs.histogram.XBins \nconstructor must be a dict or \nan instance of plotly.graph_objs.histogram.XBins') self._skip_invalid = kwargs.pop('skip_invalid', False) from plotly.validators.histogram import xbins as v_xbins self._validators['end'] = v_xbins.EndValidator() self._validators['size'] = v_xbins.SizeValidator() self._validators['start'] = v_xbins.StartValidator() _v = arg.pop('end', None) self['end'] = (end if (end is not None) else _v) _v = arg.pop('size', None) self['size'] = (size if (size is not None) else _v) _v = arg.pop('start', None) self['start'] = (start if (start is not None) else _v) self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False<|docstring|>Construct a new XBins object Parameters ---------- arg dict of properties compatible with this constructor or an instance of plotly.graph_objs.histogram.XBins end Sets the end value for the x axis bins. The last bin may not end exactly at this value, we increment the bin edge by `size` from `start` until we reach or exceed `end`. Defaults to the maximum data value. Like `start`, for dates use a date string, and for category data `end` is based on the category serial numbers. size Sets the size of each x axis bin. Default behavior: If `nbinsx` is 0 or omitted, we choose a nice round bin size such that the number of bins is about the same as the typical number of samples in each bin. If `nbinsx` is provided, we choose a nice round bin size giving no more than that many bins. For date data, use milliseconds or "M<n>" for months, as in `axis.dtick`. For category data, the number of categories to bin together (always defaults to 1). If multiple non- overlaying histograms share a subplot, the first explicit `size` is used and all others discarded. If no `size` is provided,the sample data from all traces is combined to determine `size` as described above. start Sets the starting value for the x axis bins. Defaults to the minimum data value, shifted down if necessary to make nice round values and to remove ambiguous bin edges. For example, if most of the data is integers we shift the bin edges 0.5 down, so a `size` of 5 would have a default `start` of -0.5, so it is clear that 0-4 are in the first bin, 5-9 in the second, but continuous data gets a start of 0 and bins [0,5), [5,10) etc. Dates behave similarly, and `start` should be a date string. For category data, `start` is based on the category serial numbers, and defaults to -0.5. If multiple non-overlaying histograms share a subplot, the first explicit `start` is used exactly and all others are shifted down (if necessary) to differ from that one by an integer number of bins. Returns ------- XBins<|endoftext|>
7da21cbbde9b52b319127ef6ac0c65261d8033758381b4b99d74fb53bbdec6a5
@property def marker(self): "\n The 'marker' property is an instance of Marker\n that may be specified as:\n - An instance of plotly.graph_objs.histogram.unselected.Marker\n - A dict of string/value properties that will be passed\n to the Marker constructor\n \n Supported dict properties:\n \n color\n Sets the marker color of unselected points,\n applied only when a selection exists.\n opacity\n Sets the marker opacity of unselected points,\n applied only when a selection exists.\n\n Returns\n -------\n plotly.graph_objs.histogram.unselected.Marker\n " return self['marker']
The 'marker' property is an instance of Marker that may be specified as: - An instance of plotly.graph_objs.histogram.unselected.Marker - A dict of string/value properties that will be passed to the Marker constructor Supported dict properties: color Sets the marker color of unselected points, applied only when a selection exists. opacity Sets the marker opacity of unselected points, applied only when a selection exists. Returns ------- plotly.graph_objs.histogram.unselected.Marker
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
marker
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def marker(self): "\n The 'marker' property is an instance of Marker\n that may be specified as:\n - An instance of plotly.graph_objs.histogram.unselected.Marker\n - A dict of string/value properties that will be passed\n to the Marker constructor\n \n Supported dict properties:\n \n color\n Sets the marker color of unselected points,\n applied only when a selection exists.\n opacity\n Sets the marker opacity of unselected points,\n applied only when a selection exists.\n\n Returns\n -------\n plotly.graph_objs.histogram.unselected.Marker\n " return self['marker']
@property def marker(self): "\n The 'marker' property is an instance of Marker\n that may be specified as:\n - An instance of plotly.graph_objs.histogram.unselected.Marker\n - A dict of string/value properties that will be passed\n to the Marker constructor\n \n Supported dict properties:\n \n color\n Sets the marker color of unselected points,\n applied only when a selection exists.\n opacity\n Sets the marker opacity of unselected points,\n applied only when a selection exists.\n\n Returns\n -------\n plotly.graph_objs.histogram.unselected.Marker\n " return self['marker']<|docstring|>The 'marker' property is an instance of Marker that may be specified as: - An instance of plotly.graph_objs.histogram.unselected.Marker - A dict of string/value properties that will be passed to the Marker constructor Supported dict properties: color Sets the marker color of unselected points, applied only when a selection exists. opacity Sets the marker opacity of unselected points, applied only when a selection exists. Returns ------- plotly.graph_objs.histogram.unselected.Marker<|endoftext|>
d175e58247a44978a4d42e39258d2c88c1e783ada7c15d229c3a147acbe9a1dc
@property def textfont(self): "\n The 'textfont' property is an instance of Textfont\n that may be specified as:\n - An instance of plotly.graph_objs.histogram.unselected.Textfont\n - A dict of string/value properties that will be passed\n to the Textfont constructor\n \n Supported dict properties:\n \n color\n Sets the text font color of unselected points,\n applied only when a selection exists.\n\n Returns\n -------\n plotly.graph_objs.histogram.unselected.Textfont\n " return self['textfont']
The 'textfont' property is an instance of Textfont that may be specified as: - An instance of plotly.graph_objs.histogram.unselected.Textfont - A dict of string/value properties that will be passed to the Textfont constructor Supported dict properties: color Sets the text font color of unselected points, applied only when a selection exists. Returns ------- plotly.graph_objs.histogram.unselected.Textfont
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
textfont
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def textfont(self): "\n The 'textfont' property is an instance of Textfont\n that may be specified as:\n - An instance of plotly.graph_objs.histogram.unselected.Textfont\n - A dict of string/value properties that will be passed\n to the Textfont constructor\n \n Supported dict properties:\n \n color\n Sets the text font color of unselected points,\n applied only when a selection exists.\n\n Returns\n -------\n plotly.graph_objs.histogram.unselected.Textfont\n " return self['textfont']
@property def textfont(self): "\n The 'textfont' property is an instance of Textfont\n that may be specified as:\n - An instance of plotly.graph_objs.histogram.unselected.Textfont\n - A dict of string/value properties that will be passed\n to the Textfont constructor\n \n Supported dict properties:\n \n color\n Sets the text font color of unselected points,\n applied only when a selection exists.\n\n Returns\n -------\n plotly.graph_objs.histogram.unselected.Textfont\n " return self['textfont']<|docstring|>The 'textfont' property is an instance of Textfont that may be specified as: - An instance of plotly.graph_objs.histogram.unselected.Textfont - A dict of string/value properties that will be passed to the Textfont constructor Supported dict properties: color Sets the text font color of unselected points, applied only when a selection exists. Returns ------- plotly.graph_objs.histogram.unselected.Textfont<|endoftext|>
9686f86a8ca5014ea416660d662101bb86b0166df7ff43a20775c60ac978effc
def __init__(self, arg=None, marker=None, textfont=None, **kwargs): '\n Construct a new Unselected object\n \n Parameters\n ----------\n arg\n dict of properties compatible with this constructor or\n an instance of plotly.graph_objs.histogram.Unselected\n marker\n plotly.graph_objs.histogram.unselected.Marker instance\n or dict with compatible properties\n textfont\n plotly.graph_objs.histogram.unselected.Textfont\n instance or dict with compatible properties\n\n Returns\n -------\n Unselected\n ' super(Unselected, self).__init__('unselected') if (arg is None): arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError('The first argument to the plotly.graph_objs.histogram.Unselected \nconstructor must be a dict or \nan instance of plotly.graph_objs.histogram.Unselected') self._skip_invalid = kwargs.pop('skip_invalid', False) from plotly.validators.histogram import unselected as v_unselected self._validators['marker'] = v_unselected.MarkerValidator() self._validators['textfont'] = v_unselected.TextfontValidator() _v = arg.pop('marker', None) self['marker'] = (marker if (marker is not None) else _v) _v = arg.pop('textfont', None) self['textfont'] = (textfont if (textfont is not None) else _v) self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False
Construct a new Unselected object Parameters ---------- arg dict of properties compatible with this constructor or an instance of plotly.graph_objs.histogram.Unselected marker plotly.graph_objs.histogram.unselected.Marker instance or dict with compatible properties textfont plotly.graph_objs.histogram.unselected.Textfont instance or dict with compatible properties Returns ------- Unselected
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
__init__
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
def __init__(self, arg=None, marker=None, textfont=None, **kwargs): '\n Construct a new Unselected object\n \n Parameters\n ----------\n arg\n dict of properties compatible with this constructor or\n an instance of plotly.graph_objs.histogram.Unselected\n marker\n plotly.graph_objs.histogram.unselected.Marker instance\n or dict with compatible properties\n textfont\n plotly.graph_objs.histogram.unselected.Textfont\n instance or dict with compatible properties\n\n Returns\n -------\n Unselected\n ' super(Unselected, self).__init__('unselected') if (arg is None): arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError('The first argument to the plotly.graph_objs.histogram.Unselected \nconstructor must be a dict or \nan instance of plotly.graph_objs.histogram.Unselected') self._skip_invalid = kwargs.pop('skip_invalid', False) from plotly.validators.histogram import unselected as v_unselected self._validators['marker'] = v_unselected.MarkerValidator() self._validators['textfont'] = v_unselected.TextfontValidator() _v = arg.pop('marker', None) self['marker'] = (marker if (marker is not None) else _v) _v = arg.pop('textfont', None) self['textfont'] = (textfont if (textfont is not None) else _v) self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False
def __init__(self, arg=None, marker=None, textfont=None, **kwargs): '\n Construct a new Unselected object\n \n Parameters\n ----------\n arg\n dict of properties compatible with this constructor or\n an instance of plotly.graph_objs.histogram.Unselected\n marker\n plotly.graph_objs.histogram.unselected.Marker instance\n or dict with compatible properties\n textfont\n plotly.graph_objs.histogram.unselected.Textfont\n instance or dict with compatible properties\n\n Returns\n -------\n Unselected\n ' super(Unselected, self).__init__('unselected') if (arg is None): arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError('The first argument to the plotly.graph_objs.histogram.Unselected \nconstructor must be a dict or \nan instance of plotly.graph_objs.histogram.Unselected') self._skip_invalid = kwargs.pop('skip_invalid', False) from plotly.validators.histogram import unselected as v_unselected self._validators['marker'] = v_unselected.MarkerValidator() self._validators['textfont'] = v_unselected.TextfontValidator() _v = arg.pop('marker', None) self['marker'] = (marker if (marker is not None) else _v) _v = arg.pop('textfont', None) self['textfont'] = (textfont if (textfont is not None) else _v) self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False<|docstring|>Construct a new Unselected object Parameters ---------- arg dict of properties compatible with this constructor or an instance of plotly.graph_objs.histogram.Unselected marker plotly.graph_objs.histogram.unselected.Marker instance or dict with compatible properties textfont plotly.graph_objs.histogram.unselected.Textfont instance or dict with compatible properties Returns ------- Unselected<|endoftext|>
0afc1b098cd5e0a39944f88050ce745c7e9eafdf824b465bc8828ca3f96d7768
@property def maxpoints(self): "\n Sets the maximum number of points to keep on the plots from an\n incoming stream. If `maxpoints` is set to 50, only the newest\n 50 points will be displayed on the plot.\n \n The 'maxpoints' property is a number and may be specified as:\n - An int or float in the interval [0, 10000]\n\n Returns\n -------\n int|float\n " return self['maxpoints']
Sets the maximum number of points to keep on the plots from an incoming stream. If `maxpoints` is set to 50, only the newest 50 points will be displayed on the plot. The 'maxpoints' property is a number and may be specified as: - An int or float in the interval [0, 10000] Returns ------- int|float
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
maxpoints
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def maxpoints(self): "\n Sets the maximum number of points to keep on the plots from an\n incoming stream. If `maxpoints` is set to 50, only the newest\n 50 points will be displayed on the plot.\n \n The 'maxpoints' property is a number and may be specified as:\n - An int or float in the interval [0, 10000]\n\n Returns\n -------\n int|float\n " return self['maxpoints']
@property def maxpoints(self): "\n Sets the maximum number of points to keep on the plots from an\n incoming stream. If `maxpoints` is set to 50, only the newest\n 50 points will be displayed on the plot.\n \n The 'maxpoints' property is a number and may be specified as:\n - An int or float in the interval [0, 10000]\n\n Returns\n -------\n int|float\n " return self['maxpoints']<|docstring|>Sets the maximum number of points to keep on the plots from an incoming stream. If `maxpoints` is set to 50, only the newest 50 points will be displayed on the plot. The 'maxpoints' property is a number and may be specified as: - An int or float in the interval [0, 10000] Returns ------- int|float<|endoftext|>
9ee89ca0a116ef27726a38f905fa13bf1a602e8cc7ff8112e2b9958a1fbfb79e
@property def token(self): "\n The stream id number links a data trace on a plot with a\n stream. See https://plot.ly/settings for more details.\n \n The 'token' property is a string and must be specified as:\n - A non-empty string\n\n Returns\n -------\n str\n " return self['token']
The stream id number links a data trace on a plot with a stream. See https://plot.ly/settings for more details. The 'token' property is a string and must be specified as: - A non-empty string Returns ------- str
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
token
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def token(self): "\n The stream id number links a data trace on a plot with a\n stream. See https://plot.ly/settings for more details.\n \n The 'token' property is a string and must be specified as:\n - A non-empty string\n\n Returns\n -------\n str\n " return self['token']
@property def token(self): "\n The stream id number links a data trace on a plot with a\n stream. See https://plot.ly/settings for more details.\n \n The 'token' property is a string and must be specified as:\n - A non-empty string\n\n Returns\n -------\n str\n " return self['token']<|docstring|>The stream id number links a data trace on a plot with a stream. See https://plot.ly/settings for more details. The 'token' property is a string and must be specified as: - A non-empty string Returns ------- str<|endoftext|>
ac627320e19151e5f3757cee66207f0a0bfd456cc8fbf2b3382d6eec85f0d27f
def __init__(self, arg=None, maxpoints=None, token=None, **kwargs): '\n Construct a new Stream object\n \n Parameters\n ----------\n arg\n dict of properties compatible with this constructor or\n an instance of plotly.graph_objs.histogram.Stream\n maxpoints\n Sets the maximum number of points to keep on the plots\n from an incoming stream. If `maxpoints` is set to 50,\n only the newest 50 points will be displayed on the\n plot.\n token\n The stream id number links a data trace on a plot with\n a stream. See https://plot.ly/settings for more\n details.\n\n Returns\n -------\n Stream\n ' super(Stream, self).__init__('stream') if (arg is None): arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError('The first argument to the plotly.graph_objs.histogram.Stream \nconstructor must be a dict or \nan instance of plotly.graph_objs.histogram.Stream') self._skip_invalid = kwargs.pop('skip_invalid', False) from plotly.validators.histogram import stream as v_stream self._validators['maxpoints'] = v_stream.MaxpointsValidator() self._validators['token'] = v_stream.TokenValidator() _v = arg.pop('maxpoints', None) self['maxpoints'] = (maxpoints if (maxpoints is not None) else _v) _v = arg.pop('token', None) self['token'] = (token if (token is not None) else _v) self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False
Construct a new Stream object Parameters ---------- arg dict of properties compatible with this constructor or an instance of plotly.graph_objs.histogram.Stream maxpoints Sets the maximum number of points to keep on the plots from an incoming stream. If `maxpoints` is set to 50, only the newest 50 points will be displayed on the plot. token The stream id number links a data trace on a plot with a stream. See https://plot.ly/settings for more details. Returns ------- Stream
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
__init__
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
def __init__(self, arg=None, maxpoints=None, token=None, **kwargs): '\n Construct a new Stream object\n \n Parameters\n ----------\n arg\n dict of properties compatible with this constructor or\n an instance of plotly.graph_objs.histogram.Stream\n maxpoints\n Sets the maximum number of points to keep on the plots\n from an incoming stream. If `maxpoints` is set to 50,\n only the newest 50 points will be displayed on the\n plot.\n token\n The stream id number links a data trace on a plot with\n a stream. See https://plot.ly/settings for more\n details.\n\n Returns\n -------\n Stream\n ' super(Stream, self).__init__('stream') if (arg is None): arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError('The first argument to the plotly.graph_objs.histogram.Stream \nconstructor must be a dict or \nan instance of plotly.graph_objs.histogram.Stream') self._skip_invalid = kwargs.pop('skip_invalid', False) from plotly.validators.histogram import stream as v_stream self._validators['maxpoints'] = v_stream.MaxpointsValidator() self._validators['token'] = v_stream.TokenValidator() _v = arg.pop('maxpoints', None) self['maxpoints'] = (maxpoints if (maxpoints is not None) else _v) _v = arg.pop('token', None) self['token'] = (token if (token is not None) else _v) self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False
def __init__(self, arg=None, maxpoints=None, token=None, **kwargs): '\n Construct a new Stream object\n \n Parameters\n ----------\n arg\n dict of properties compatible with this constructor or\n an instance of plotly.graph_objs.histogram.Stream\n maxpoints\n Sets the maximum number of points to keep on the plots\n from an incoming stream. If `maxpoints` is set to 50,\n only the newest 50 points will be displayed on the\n plot.\n token\n The stream id number links a data trace on a plot with\n a stream. See https://plot.ly/settings for more\n details.\n\n Returns\n -------\n Stream\n ' super(Stream, self).__init__('stream') if (arg is None): arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError('The first argument to the plotly.graph_objs.histogram.Stream \nconstructor must be a dict or \nan instance of plotly.graph_objs.histogram.Stream') self._skip_invalid = kwargs.pop('skip_invalid', False) from plotly.validators.histogram import stream as v_stream self._validators['maxpoints'] = v_stream.MaxpointsValidator() self._validators['token'] = v_stream.TokenValidator() _v = arg.pop('maxpoints', None) self['maxpoints'] = (maxpoints if (maxpoints is not None) else _v) _v = arg.pop('token', None) self['token'] = (token if (token is not None) else _v) self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False<|docstring|>Construct a new Stream object Parameters ---------- arg dict of properties compatible with this constructor or an instance of plotly.graph_objs.histogram.Stream maxpoints Sets the maximum number of points to keep on the plots from an incoming stream. If `maxpoints` is set to 50, only the newest 50 points will be displayed on the plot. token The stream id number links a data trace on a plot with a stream. See https://plot.ly/settings for more details. Returns ------- Stream<|endoftext|>
502f3e9b7ea77e0be5ce6cf320f843a5a13486404ed53d93c7679f53fa07a1c2
@property def marker(self): "\n The 'marker' property is an instance of Marker\n that may be specified as:\n - An instance of plotly.graph_objs.histogram.selected.Marker\n - A dict of string/value properties that will be passed\n to the Marker constructor\n \n Supported dict properties:\n \n color\n Sets the marker color of selected points.\n opacity\n Sets the marker opacity of selected points.\n\n Returns\n -------\n plotly.graph_objs.histogram.selected.Marker\n " return self['marker']
The 'marker' property is an instance of Marker that may be specified as: - An instance of plotly.graph_objs.histogram.selected.Marker - A dict of string/value properties that will be passed to the Marker constructor Supported dict properties: color Sets the marker color of selected points. opacity Sets the marker opacity of selected points. Returns ------- plotly.graph_objs.histogram.selected.Marker
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
marker
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def marker(self): "\n The 'marker' property is an instance of Marker\n that may be specified as:\n - An instance of plotly.graph_objs.histogram.selected.Marker\n - A dict of string/value properties that will be passed\n to the Marker constructor\n \n Supported dict properties:\n \n color\n Sets the marker color of selected points.\n opacity\n Sets the marker opacity of selected points.\n\n Returns\n -------\n plotly.graph_objs.histogram.selected.Marker\n " return self['marker']
@property def marker(self): "\n The 'marker' property is an instance of Marker\n that may be specified as:\n - An instance of plotly.graph_objs.histogram.selected.Marker\n - A dict of string/value properties that will be passed\n to the Marker constructor\n \n Supported dict properties:\n \n color\n Sets the marker color of selected points.\n opacity\n Sets the marker opacity of selected points.\n\n Returns\n -------\n plotly.graph_objs.histogram.selected.Marker\n " return self['marker']<|docstring|>The 'marker' property is an instance of Marker that may be specified as: - An instance of plotly.graph_objs.histogram.selected.Marker - A dict of string/value properties that will be passed to the Marker constructor Supported dict properties: color Sets the marker color of selected points. opacity Sets the marker opacity of selected points. Returns ------- plotly.graph_objs.histogram.selected.Marker<|endoftext|>
0ac492bc1ad06aded430ea5f6b526d9bce957ede771ed25130b97234e9df879e
@property def textfont(self): "\n The 'textfont' property is an instance of Textfont\n that may be specified as:\n - An instance of plotly.graph_objs.histogram.selected.Textfont\n - A dict of string/value properties that will be passed\n to the Textfont constructor\n \n Supported dict properties:\n \n color\n Sets the text font color of selected points.\n\n Returns\n -------\n plotly.graph_objs.histogram.selected.Textfont\n " return self['textfont']
The 'textfont' property is an instance of Textfont that may be specified as: - An instance of plotly.graph_objs.histogram.selected.Textfont - A dict of string/value properties that will be passed to the Textfont constructor Supported dict properties: color Sets the text font color of selected points. Returns ------- plotly.graph_objs.histogram.selected.Textfont
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
textfont
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def textfont(self): "\n The 'textfont' property is an instance of Textfont\n that may be specified as:\n - An instance of plotly.graph_objs.histogram.selected.Textfont\n - A dict of string/value properties that will be passed\n to the Textfont constructor\n \n Supported dict properties:\n \n color\n Sets the text font color of selected points.\n\n Returns\n -------\n plotly.graph_objs.histogram.selected.Textfont\n " return self['textfont']
@property def textfont(self): "\n The 'textfont' property is an instance of Textfont\n that may be specified as:\n - An instance of plotly.graph_objs.histogram.selected.Textfont\n - A dict of string/value properties that will be passed\n to the Textfont constructor\n \n Supported dict properties:\n \n color\n Sets the text font color of selected points.\n\n Returns\n -------\n plotly.graph_objs.histogram.selected.Textfont\n " return self['textfont']<|docstring|>The 'textfont' property is an instance of Textfont that may be specified as: - An instance of plotly.graph_objs.histogram.selected.Textfont - A dict of string/value properties that will be passed to the Textfont constructor Supported dict properties: color Sets the text font color of selected points. Returns ------- plotly.graph_objs.histogram.selected.Textfont<|endoftext|>
27b4646310d26031a88954236181f5b2c300c9f64fad8e22309aa975c33c5a87
def __init__(self, arg=None, marker=None, textfont=None, **kwargs): '\n Construct a new Selected object\n \n Parameters\n ----------\n arg\n dict of properties compatible with this constructor or\n an instance of plotly.graph_objs.histogram.Selected\n marker\n plotly.graph_objs.histogram.selected.Marker instance or\n dict with compatible properties\n textfont\n plotly.graph_objs.histogram.selected.Textfont instance\n or dict with compatible properties\n\n Returns\n -------\n Selected\n ' super(Selected, self).__init__('selected') if (arg is None): arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError('The first argument to the plotly.graph_objs.histogram.Selected \nconstructor must be a dict or \nan instance of plotly.graph_objs.histogram.Selected') self._skip_invalid = kwargs.pop('skip_invalid', False) from plotly.validators.histogram import selected as v_selected self._validators['marker'] = v_selected.MarkerValidator() self._validators['textfont'] = v_selected.TextfontValidator() _v = arg.pop('marker', None) self['marker'] = (marker if (marker is not None) else _v) _v = arg.pop('textfont', None) self['textfont'] = (textfont if (textfont is not None) else _v) self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False
Construct a new Selected object Parameters ---------- arg dict of properties compatible with this constructor or an instance of plotly.graph_objs.histogram.Selected marker plotly.graph_objs.histogram.selected.Marker instance or dict with compatible properties textfont plotly.graph_objs.histogram.selected.Textfont instance or dict with compatible properties Returns ------- Selected
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
__init__
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
def __init__(self, arg=None, marker=None, textfont=None, **kwargs): '\n Construct a new Selected object\n \n Parameters\n ----------\n arg\n dict of properties compatible with this constructor or\n an instance of plotly.graph_objs.histogram.Selected\n marker\n plotly.graph_objs.histogram.selected.Marker instance or\n dict with compatible properties\n textfont\n plotly.graph_objs.histogram.selected.Textfont instance\n or dict with compatible properties\n\n Returns\n -------\n Selected\n ' super(Selected, self).__init__('selected') if (arg is None): arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError('The first argument to the plotly.graph_objs.histogram.Selected \nconstructor must be a dict or \nan instance of plotly.graph_objs.histogram.Selected') self._skip_invalid = kwargs.pop('skip_invalid', False) from plotly.validators.histogram import selected as v_selected self._validators['marker'] = v_selected.MarkerValidator() self._validators['textfont'] = v_selected.TextfontValidator() _v = arg.pop('marker', None) self['marker'] = (marker if (marker is not None) else _v) _v = arg.pop('textfont', None) self['textfont'] = (textfont if (textfont is not None) else _v) self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False
def __init__(self, arg=None, marker=None, textfont=None, **kwargs): '\n Construct a new Selected object\n \n Parameters\n ----------\n arg\n dict of properties compatible with this constructor or\n an instance of plotly.graph_objs.histogram.Selected\n marker\n plotly.graph_objs.histogram.selected.Marker instance or\n dict with compatible properties\n textfont\n plotly.graph_objs.histogram.selected.Textfont instance\n or dict with compatible properties\n\n Returns\n -------\n Selected\n ' super(Selected, self).__init__('selected') if (arg is None): arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError('The first argument to the plotly.graph_objs.histogram.Selected \nconstructor must be a dict or \nan instance of plotly.graph_objs.histogram.Selected') self._skip_invalid = kwargs.pop('skip_invalid', False) from plotly.validators.histogram import selected as v_selected self._validators['marker'] = v_selected.MarkerValidator() self._validators['textfont'] = v_selected.TextfontValidator() _v = arg.pop('marker', None) self['marker'] = (marker if (marker is not None) else _v) _v = arg.pop('textfont', None) self['textfont'] = (textfont if (textfont is not None) else _v) self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False<|docstring|>Construct a new Selected object Parameters ---------- arg dict of properties compatible with this constructor or an instance of plotly.graph_objs.histogram.Selected marker plotly.graph_objs.histogram.selected.Marker instance or dict with compatible properties textfont plotly.graph_objs.histogram.selected.Textfont instance or dict with compatible properties Returns ------- Selected<|endoftext|>
528b7d5efcf6f6c140e45c7be29ce44aea19b225de58026ced82c1bfb2a20b68
@property def autocolorscale(self): "\n Determines whether the colorscale is a default palette\n (`autocolorscale: true`) or the palette determined by\n `marker.colorscale`. Has an effect only if in `marker.color`is\n set to a numerical array. In case `colorscale` is unspecified\n or `autocolorscale` is true, the default palette will be\n chosen according to whether numbers in the `color` array are\n all positive, all negative or mixed.\n \n The 'autocolorscale' property must be specified as a bool\n (either True, or False)\n\n Returns\n -------\n bool\n " return self['autocolorscale']
Determines whether the colorscale is a default palette (`autocolorscale: true`) or the palette determined by `marker.colorscale`. Has an effect only if in `marker.color`is set to a numerical array. In case `colorscale` is unspecified or `autocolorscale` is true, the default palette will be chosen according to whether numbers in the `color` array are all positive, all negative or mixed. The 'autocolorscale' property must be specified as a bool (either True, or False) Returns ------- bool
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
autocolorscale
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def autocolorscale(self): "\n Determines whether the colorscale is a default palette\n (`autocolorscale: true`) or the palette determined by\n `marker.colorscale`. Has an effect only if in `marker.color`is\n set to a numerical array. In case `colorscale` is unspecified\n or `autocolorscale` is true, the default palette will be\n chosen according to whether numbers in the `color` array are\n all positive, all negative or mixed.\n \n The 'autocolorscale' property must be specified as a bool\n (either True, or False)\n\n Returns\n -------\n bool\n " return self['autocolorscale']
@property def autocolorscale(self): "\n Determines whether the colorscale is a default palette\n (`autocolorscale: true`) or the palette determined by\n `marker.colorscale`. Has an effect only if in `marker.color`is\n set to a numerical array. In case `colorscale` is unspecified\n or `autocolorscale` is true, the default palette will be\n chosen according to whether numbers in the `color` array are\n all positive, all negative or mixed.\n \n The 'autocolorscale' property must be specified as a bool\n (either True, or False)\n\n Returns\n -------\n bool\n " return self['autocolorscale']<|docstring|>Determines whether the colorscale is a default palette (`autocolorscale: true`) or the palette determined by `marker.colorscale`. Has an effect only if in `marker.color`is set to a numerical array. In case `colorscale` is unspecified or `autocolorscale` is true, the default palette will be chosen according to whether numbers in the `color` array are all positive, all negative or mixed. The 'autocolorscale' property must be specified as a bool (either True, or False) Returns ------- bool<|endoftext|>
4d060a21ceaeeaf82f8425d2cf7552b6158323b60b9aedccf536a2740bcdb10d
@property def cauto(self): "\n Determines whether or not the color domain is computed with\n respect to the input data (here in `marker.color`) or the\n bounds set in `marker.cmin` and `marker.cmax` Has an effect\n only if in `marker.color`is set to a numerical array. Defaults\n to `false` when `marker.cmin` and `marker.cmax` are set by the\n user.\n \n The 'cauto' property must be specified as a bool\n (either True, or False)\n\n Returns\n -------\n bool\n " return self['cauto']
Determines whether or not the color domain is computed with respect to the input data (here in `marker.color`) or the bounds set in `marker.cmin` and `marker.cmax` Has an effect only if in `marker.color`is set to a numerical array. Defaults to `false` when `marker.cmin` and `marker.cmax` are set by the user. The 'cauto' property must be specified as a bool (either True, or False) Returns ------- bool
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
cauto
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def cauto(self): "\n Determines whether or not the color domain is computed with\n respect to the input data (here in `marker.color`) or the\n bounds set in `marker.cmin` and `marker.cmax` Has an effect\n only if in `marker.color`is set to a numerical array. Defaults\n to `false` when `marker.cmin` and `marker.cmax` are set by the\n user.\n \n The 'cauto' property must be specified as a bool\n (either True, or False)\n\n Returns\n -------\n bool\n " return self['cauto']
@property def cauto(self): "\n Determines whether or not the color domain is computed with\n respect to the input data (here in `marker.color`) or the\n bounds set in `marker.cmin` and `marker.cmax` Has an effect\n only if in `marker.color`is set to a numerical array. Defaults\n to `false` when `marker.cmin` and `marker.cmax` are set by the\n user.\n \n The 'cauto' property must be specified as a bool\n (either True, or False)\n\n Returns\n -------\n bool\n " return self['cauto']<|docstring|>Determines whether or not the color domain is computed with respect to the input data (here in `marker.color`) or the bounds set in `marker.cmin` and `marker.cmax` Has an effect only if in `marker.color`is set to a numerical array. Defaults to `false` when `marker.cmin` and `marker.cmax` are set by the user. The 'cauto' property must be specified as a bool (either True, or False) Returns ------- bool<|endoftext|>
144cd7ac41bd38b674bda0821800bdbd8475ad33edbbe0dec208e07d6a0f1920
@property def cmax(self): "\n Sets the upper bound of the color domain. Has an effect only if\n in `marker.color`is set to a numerical array. Value should have\n the same units as in `marker.color` and if set, `marker.cmin`\n must be set as well.\n \n The 'cmax' property is a number and may be specified as:\n - An int or float\n\n Returns\n -------\n int|float\n " return self['cmax']
Sets the upper bound of the color domain. Has an effect only if in `marker.color`is set to a numerical array. Value should have the same units as in `marker.color` and if set, `marker.cmin` must be set as well. The 'cmax' property is a number and may be specified as: - An int or float Returns ------- int|float
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
cmax
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def cmax(self): "\n Sets the upper bound of the color domain. Has an effect only if\n in `marker.color`is set to a numerical array. Value should have\n the same units as in `marker.color` and if set, `marker.cmin`\n must be set as well.\n \n The 'cmax' property is a number and may be specified as:\n - An int or float\n\n Returns\n -------\n int|float\n " return self['cmax']
@property def cmax(self): "\n Sets the upper bound of the color domain. Has an effect only if\n in `marker.color`is set to a numerical array. Value should have\n the same units as in `marker.color` and if set, `marker.cmin`\n must be set as well.\n \n The 'cmax' property is a number and may be specified as:\n - An int or float\n\n Returns\n -------\n int|float\n " return self['cmax']<|docstring|>Sets the upper bound of the color domain. Has an effect only if in `marker.color`is set to a numerical array. Value should have the same units as in `marker.color` and if set, `marker.cmin` must be set as well. The 'cmax' property is a number and may be specified as: - An int or float Returns ------- int|float<|endoftext|>
50165e54f3c993800956554925f5a7df81bd22e9d95b72fef063a31890299ff1
@property def cmid(self): "\n Sets the mid-point of the color domain by scaling `marker.cmin`\n and/or `marker.cmax` to be equidistant to this point. Has an\n effect only if in `marker.color`is set to a numerical array.\n Value should have the same units as in `marker.color`. Has no\n effect when `marker.cauto` is `false`.\n \n The 'cmid' property is a number and may be specified as:\n - An int or float\n\n Returns\n -------\n int|float\n " return self['cmid']
Sets the mid-point of the color domain by scaling `marker.cmin` and/or `marker.cmax` to be equidistant to this point. Has an effect only if in `marker.color`is set to a numerical array. Value should have the same units as in `marker.color`. Has no effect when `marker.cauto` is `false`. The 'cmid' property is a number and may be specified as: - An int or float Returns ------- int|float
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
cmid
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def cmid(self): "\n Sets the mid-point of the color domain by scaling `marker.cmin`\n and/or `marker.cmax` to be equidistant to this point. Has an\n effect only if in `marker.color`is set to a numerical array.\n Value should have the same units as in `marker.color`. Has no\n effect when `marker.cauto` is `false`.\n \n The 'cmid' property is a number and may be specified as:\n - An int or float\n\n Returns\n -------\n int|float\n " return self['cmid']
@property def cmid(self): "\n Sets the mid-point of the color domain by scaling `marker.cmin`\n and/or `marker.cmax` to be equidistant to this point. Has an\n effect only if in `marker.color`is set to a numerical array.\n Value should have the same units as in `marker.color`. Has no\n effect when `marker.cauto` is `false`.\n \n The 'cmid' property is a number and may be specified as:\n - An int or float\n\n Returns\n -------\n int|float\n " return self['cmid']<|docstring|>Sets the mid-point of the color domain by scaling `marker.cmin` and/or `marker.cmax` to be equidistant to this point. Has an effect only if in `marker.color`is set to a numerical array. Value should have the same units as in `marker.color`. Has no effect when `marker.cauto` is `false`. The 'cmid' property is a number and may be specified as: - An int or float Returns ------- int|float<|endoftext|>
be932ffaf7dca155a73f9b5a96937c4aeb478b6e1fc49764479f5e32783184c4
@property def cmin(self): "\n Sets the lower bound of the color domain. Has an effect only if\n in `marker.color`is set to a numerical array. Value should have\n the same units as in `marker.color` and if set, `marker.cmax`\n must be set as well.\n \n The 'cmin' property is a number and may be specified as:\n - An int or float\n\n Returns\n -------\n int|float\n " return self['cmin']
Sets the lower bound of the color domain. Has an effect only if in `marker.color`is set to a numerical array. Value should have the same units as in `marker.color` and if set, `marker.cmax` must be set as well. The 'cmin' property is a number and may be specified as: - An int or float Returns ------- int|float
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
cmin
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def cmin(self): "\n Sets the lower bound of the color domain. Has an effect only if\n in `marker.color`is set to a numerical array. Value should have\n the same units as in `marker.color` and if set, `marker.cmax`\n must be set as well.\n \n The 'cmin' property is a number and may be specified as:\n - An int or float\n\n Returns\n -------\n int|float\n " return self['cmin']
@property def cmin(self): "\n Sets the lower bound of the color domain. Has an effect only if\n in `marker.color`is set to a numerical array. Value should have\n the same units as in `marker.color` and if set, `marker.cmax`\n must be set as well.\n \n The 'cmin' property is a number and may be specified as:\n - An int or float\n\n Returns\n -------\n int|float\n " return self['cmin']<|docstring|>Sets the lower bound of the color domain. Has an effect only if in `marker.color`is set to a numerical array. Value should have the same units as in `marker.color` and if set, `marker.cmax` must be set as well. The 'cmin' property is a number and may be specified as: - An int or float Returns ------- int|float<|endoftext|>
ba46b7143b0fecdf90cb3c902627448cb15a542d629161fd68e3736cd1ccdd53
@property def color(self): "\n Sets themarkercolor. It accepts either a specific color or an\n array of numbers that are mapped to the colorscale relative to\n the max and min values of the array or relative to\n `marker.cmin` and `marker.cmax` if set.\n \n The 'color' property is a color and may be specified as:\n - A hex string (e.g. '#ff0000')\n - An rgb/rgba string (e.g. 'rgb(255,0,0)')\n - An hsl/hsla string (e.g. 'hsl(0,100%,50%)')\n - An hsv/hsva string (e.g. 'hsv(0,100%,100%)')\n - A named CSS color:\n aliceblue, antiquewhite, aqua, aquamarine, azure,\n beige, bisque, black, blanchedalmond, blue,\n blueviolet, brown, burlywood, cadetblue,\n chartreuse, chocolate, coral, cornflowerblue,\n cornsilk, crimson, cyan, darkblue, darkcyan,\n darkgoldenrod, darkgray, darkgrey, darkgreen,\n darkkhaki, darkmagenta, darkolivegreen, darkorange,\n darkorchid, darkred, darksalmon, darkseagreen,\n darkslateblue, darkslategray, darkslategrey,\n darkturquoise, darkviolet, deeppink, deepskyblue,\n dimgray, dimgrey, dodgerblue, firebrick,\n floralwhite, forestgreen, fuchsia, gainsboro,\n ghostwhite, gold, goldenrod, gray, grey, green,\n greenyellow, honeydew, hotpink, indianred, indigo,\n ivory, khaki, lavender, lavenderblush, lawngreen,\n lemonchiffon, lightblue, lightcoral, lightcyan,\n lightgoldenrodyellow, lightgray, lightgrey,\n lightgreen, lightpink, lightsalmon, lightseagreen,\n lightskyblue, lightslategray, lightslategrey,\n lightsteelblue, lightyellow, lime, limegreen,\n linen, magenta, maroon, mediumaquamarine,\n mediumblue, mediumorchid, mediumpurple,\n mediumseagreen, mediumslateblue, mediumspringgreen,\n mediumturquoise, mediumvioletred, midnightblue,\n mintcream, mistyrose, moccasin, navajowhite, navy,\n oldlace, olive, olivedrab, orange, orangered,\n orchid, palegoldenrod, palegreen, paleturquoise,\n palevioletred, papayawhip, peachpuff, peru, pink,\n plum, powderblue, purple, red, rosybrown,\n royalblue, saddlebrown, salmon, sandybrown,\n seagreen, seashell, sienna, silver, skyblue,\n slateblue, slategray, slategrey, snow, springgreen,\n steelblue, tan, teal, thistle, tomato, turquoise,\n violet, wheat, white, whitesmoke, yellow,\n yellowgreen\n - A number that will be interpreted as a color\n according to histogram.marker.colorscale\n - A list or array of any of the above\n\n Returns\n -------\n str|numpy.ndarray\n " return self['color']
Sets themarkercolor. It accepts either a specific color or an array of numbers that are mapped to the colorscale relative to the max and min values of the array or relative to `marker.cmin` and `marker.cmax` if set. The 'color' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen - A number that will be interpreted as a color according to histogram.marker.colorscale - A list or array of any of the above Returns ------- str|numpy.ndarray
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
color
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def color(self): "\n Sets themarkercolor. It accepts either a specific color or an\n array of numbers that are mapped to the colorscale relative to\n the max and min values of the array or relative to\n `marker.cmin` and `marker.cmax` if set.\n \n The 'color' property is a color and may be specified as:\n - A hex string (e.g. '#ff0000')\n - An rgb/rgba string (e.g. 'rgb(255,0,0)')\n - An hsl/hsla string (e.g. 'hsl(0,100%,50%)')\n - An hsv/hsva string (e.g. 'hsv(0,100%,100%)')\n - A named CSS color:\n aliceblue, antiquewhite, aqua, aquamarine, azure,\n beige, bisque, black, blanchedalmond, blue,\n blueviolet, brown, burlywood, cadetblue,\n chartreuse, chocolate, coral, cornflowerblue,\n cornsilk, crimson, cyan, darkblue, darkcyan,\n darkgoldenrod, darkgray, darkgrey, darkgreen,\n darkkhaki, darkmagenta, darkolivegreen, darkorange,\n darkorchid, darkred, darksalmon, darkseagreen,\n darkslateblue, darkslategray, darkslategrey,\n darkturquoise, darkviolet, deeppink, deepskyblue,\n dimgray, dimgrey, dodgerblue, firebrick,\n floralwhite, forestgreen, fuchsia, gainsboro,\n ghostwhite, gold, goldenrod, gray, grey, green,\n greenyellow, honeydew, hotpink, indianred, indigo,\n ivory, khaki, lavender, lavenderblush, lawngreen,\n lemonchiffon, lightblue, lightcoral, lightcyan,\n lightgoldenrodyellow, lightgray, lightgrey,\n lightgreen, lightpink, lightsalmon, lightseagreen,\n lightskyblue, lightslategray, lightslategrey,\n lightsteelblue, lightyellow, lime, limegreen,\n linen, magenta, maroon, mediumaquamarine,\n mediumblue, mediumorchid, mediumpurple,\n mediumseagreen, mediumslateblue, mediumspringgreen,\n mediumturquoise, mediumvioletred, midnightblue,\n mintcream, mistyrose, moccasin, navajowhite, navy,\n oldlace, olive, olivedrab, orange, orangered,\n orchid, palegoldenrod, palegreen, paleturquoise,\n palevioletred, papayawhip, peachpuff, peru, pink,\n plum, powderblue, purple, red, rosybrown,\n royalblue, saddlebrown, salmon, sandybrown,\n seagreen, seashell, sienna, silver, skyblue,\n slateblue, slategray, slategrey, snow, springgreen,\n steelblue, tan, teal, thistle, tomato, turquoise,\n violet, wheat, white, whitesmoke, yellow,\n yellowgreen\n - A number that will be interpreted as a color\n according to histogram.marker.colorscale\n - A list or array of any of the above\n\n Returns\n -------\n str|numpy.ndarray\n " return self['color']
@property def color(self): "\n Sets themarkercolor. It accepts either a specific color or an\n array of numbers that are mapped to the colorscale relative to\n the max and min values of the array or relative to\n `marker.cmin` and `marker.cmax` if set.\n \n The 'color' property is a color and may be specified as:\n - A hex string (e.g. '#ff0000')\n - An rgb/rgba string (e.g. 'rgb(255,0,0)')\n - An hsl/hsla string (e.g. 'hsl(0,100%,50%)')\n - An hsv/hsva string (e.g. 'hsv(0,100%,100%)')\n - A named CSS color:\n aliceblue, antiquewhite, aqua, aquamarine, azure,\n beige, bisque, black, blanchedalmond, blue,\n blueviolet, brown, burlywood, cadetblue,\n chartreuse, chocolate, coral, cornflowerblue,\n cornsilk, crimson, cyan, darkblue, darkcyan,\n darkgoldenrod, darkgray, darkgrey, darkgreen,\n darkkhaki, darkmagenta, darkolivegreen, darkorange,\n darkorchid, darkred, darksalmon, darkseagreen,\n darkslateblue, darkslategray, darkslategrey,\n darkturquoise, darkviolet, deeppink, deepskyblue,\n dimgray, dimgrey, dodgerblue, firebrick,\n floralwhite, forestgreen, fuchsia, gainsboro,\n ghostwhite, gold, goldenrod, gray, grey, green,\n greenyellow, honeydew, hotpink, indianred, indigo,\n ivory, khaki, lavender, lavenderblush, lawngreen,\n lemonchiffon, lightblue, lightcoral, lightcyan,\n lightgoldenrodyellow, lightgray, lightgrey,\n lightgreen, lightpink, lightsalmon, lightseagreen,\n lightskyblue, lightslategray, lightslategrey,\n lightsteelblue, lightyellow, lime, limegreen,\n linen, magenta, maroon, mediumaquamarine,\n mediumblue, mediumorchid, mediumpurple,\n mediumseagreen, mediumslateblue, mediumspringgreen,\n mediumturquoise, mediumvioletred, midnightblue,\n mintcream, mistyrose, moccasin, navajowhite, navy,\n oldlace, olive, olivedrab, orange, orangered,\n orchid, palegoldenrod, palegreen, paleturquoise,\n palevioletred, papayawhip, peachpuff, peru, pink,\n plum, powderblue, purple, red, rosybrown,\n royalblue, saddlebrown, salmon, sandybrown,\n seagreen, seashell, sienna, silver, skyblue,\n slateblue, slategray, slategrey, snow, springgreen,\n steelblue, tan, teal, thistle, tomato, turquoise,\n violet, wheat, white, whitesmoke, yellow,\n yellowgreen\n - A number that will be interpreted as a color\n according to histogram.marker.colorscale\n - A list or array of any of the above\n\n Returns\n -------\n str|numpy.ndarray\n " return self['color']<|docstring|>Sets themarkercolor. It accepts either a specific color or an array of numbers that are mapped to the colorscale relative to the max and min values of the array or relative to `marker.cmin` and `marker.cmax` if set. The 'color' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen - A number that will be interpreted as a color according to histogram.marker.colorscale - A list or array of any of the above Returns ------- str|numpy.ndarray<|endoftext|>
cba16693f4c606abb0475401e33a13ed5566570fd1008770571de3b94965f81c
@property def colorbar(self): '\n The \'colorbar\' property is an instance of ColorBar\n that may be specified as:\n - An instance of plotly.graph_objs.histogram.marker.ColorBar\n - A dict of string/value properties that will be passed\n to the ColorBar constructor\n \n Supported dict properties:\n \n bgcolor\n Sets the color of padded area.\n bordercolor\n Sets the axis line color.\n borderwidth\n Sets the width (in px) or the border enclosing\n this color bar.\n dtick\n Sets the step in-between ticks on this axis.\n Use with `tick0`. Must be a positive number, or\n special strings available to "log" and "date"\n axes. If the axis `type` is "log", then ticks\n are set every 10^(n*dtick) where n is the tick\n number. For example, to set a tick mark at 1,\n 10, 100, 1000, ... set dtick to 1. To set tick\n marks at 1, 100, 10000, ... set dtick to 2. To\n set tick marks at 1, 5, 25, 125, 625, 3125, ...\n set dtick to log_10(5), or 0.69897000433. "log"\n has several special values; "L<f>", where `f`\n is a positive number, gives ticks linearly\n spaced in value (but not position). For example\n `tick0` = 0.1, `dtick` = "L0.5" will put ticks\n at 0.1, 0.6, 1.1, 1.6 etc. To show powers of 10\n plus small digits between, use "D1" (all\n digits) or "D2" (only 2 and 5). `tick0` is\n ignored for "D1" and "D2". If the axis `type`\n is "date", then you must convert the time to\n milliseconds. For example, to set the interval\n between ticks to one day, set `dtick` to\n 86400000.0. "date" also has special values\n "M<n>" gives ticks spaced by a number of\n months. `n` must be a positive integer. To set\n ticks on the 15th of every third month, set\n `tick0` to "2000-01-15" and `dtick` to "M3". To\n set ticks every 4 years, set `dtick` to "M48"\n exponentformat\n Determines a formatting rule for the tick\n exponents. For example, consider the number\n 1,000,000,000. If "none", it appears as\n 1,000,000,000. If "e", 1e+9. If "E", 1E+9. If\n "power", 1x10^9 (with 9 in a super script). If\n "SI", 1G. If "B", 1B.\n len\n Sets the length of the color bar This measure\n excludes the padding of both ends. That is, the\n color bar length is this length minus the\n padding on both ends.\n lenmode\n Determines whether this color bar\'s length\n (i.e. the measure in the color variation\n direction) is set in units of plot "fraction"\n or in *pixels. Use `len` to set the value.\n nticks\n Specifies the maximum number of ticks for the\n particular axis. The actual number of ticks\n will be chosen automatically to be less than or\n equal to `nticks`. Has an effect only if\n `tickmode` is set to "auto".\n outlinecolor\n Sets the axis line color.\n outlinewidth\n Sets the width (in px) of the axis line.\n separatethousands\n If "true", even 4-digit integers are separated\n showexponent\n If "all", all exponents are shown besides their\n significands. If "first", only the exponent of\n the first tick is shown. If "last", only the\n exponent of the last tick is shown. If "none",\n no exponents appear.\n showticklabels\n Determines whether or not the tick labels are\n drawn.\n showtickprefix\n If "all", all tick labels are displayed with a\n prefix. If "first", only the first tick is\n displayed with a prefix. If "last", only the\n last tick is displayed with a suffix. If\n "none", tick prefixes are hidden.\n showticksuffix\n Same as `showtickprefix` but for tick suffixes.\n thickness\n Sets the thickness of the color bar This\n measure excludes the size of the padding, ticks\n and labels.\n thicknessmode\n Determines whether this color bar\'s thickness\n (i.e. the measure in the constant color\n direction) is set in units of plot "fraction"\n or in "pixels". Use `thickness` to set the\n value.\n tick0\n Sets the placement of the first tick on this\n axis. Use with `dtick`. If the axis `type` is\n "log", then you must take the log of your\n starting tick (e.g. to set the starting tick to\n 100, set the `tick0` to 2) except when\n `dtick`=*L<f>* (see `dtick` for more info). If\n the axis `type` is "date", it should be a date\n string, like date data. If the axis `type` is\n "category", it should be a number, using the\n scale where each category is assigned a serial\n number from zero in the order it appears.\n tickangle\n Sets the angle of the tick labels with respect\n to the horizontal. For example, a `tickangle`\n of -90 draws the tick labels vertically.\n tickcolor\n Sets the tick color.\n tickfont\n Sets the color bar\'s tick label font\n tickformat\n Sets the tick label formatting rule using d3\n formatting mini-languages which are very\n similar to those in Python. For numbers, see: h\n ttps://github.com/d3/d3-format/blob/master/READ\n ME.md#locale_format And for dates see:\n https://github.com/d3/d3-time-\n format/blob/master/README.md#locale_format We\n add one item to d3\'s date formatter: "%{n}f"\n for fractional seconds with n digits. For\n example, *2016-10-13 09:15:23.456* with\n tickformat "%H~%M~%S.%2f" would display\n "09~15~23.46"\n tickformatstops\n plotly.graph_objs.histogram.marker.colorbar.Tic\n kformatstop instance or dict with compatible\n properties\n tickformatstopdefaults\n When used in a template (as layout.template.dat\n a.histogram.marker.colorbar.tickformatstopdefau\n lts), sets the default property values to use\n for elements of\n histogram.marker.colorbar.tickformatstops\n ticklen\n Sets the tick length (in px).\n tickmode\n Sets the tick mode for this axis. If "auto",\n the number of ticks is set via `nticks`. If\n "linear", the placement of the ticks is\n determined by a starting position `tick0` and a\n tick step `dtick` ("linear" is the default\n value if `tick0` and `dtick` are provided). If\n "array", the placement of the ticks is set via\n `tickvals` and the tick text is `ticktext`.\n ("array" is the default value if `tickvals` is\n provided).\n tickprefix\n Sets a tick label prefix.\n ticks\n Determines whether ticks are drawn or not. If\n "", this axis\' ticks are not drawn. If\n "outside" ("inside"), this axis\' are drawn\n outside (inside) the axis lines.\n ticksuffix\n Sets a tick label suffix.\n ticktext\n Sets the text displayed at the ticks position\n via `tickvals`. Only has an effect if\n `tickmode` is set to "array". Used with\n `tickvals`.\n ticktextsrc\n Sets the source reference on plot.ly for\n ticktext .\n tickvals\n Sets the values at which ticks on this axis\n appear. Only has an effect if `tickmode` is set\n to "array". Used with `ticktext`.\n tickvalssrc\n Sets the source reference on plot.ly for\n tickvals .\n tickwidth\n Sets the tick width (in px).\n title\n plotly.graph_objs.histogram.marker.colorbar.Tit\n le instance or dict with compatible properties\n titlefont\n Deprecated: Please use\n histogram.marker.colorbar.title.font instead.\n Sets this color bar\'s title font. Note that the\n title\'s font used to be set by the now\n deprecated `titlefont` attribute.\n titleside\n Deprecated: Please use\n histogram.marker.colorbar.title.side instead.\n Determines the location of color bar\'s title\n with respect to the color bar. Note that the\n title\'s location used to be set by the now\n deprecated `titleside` attribute.\n x\n Sets the x position of the color bar (in plot\n fraction).\n xanchor\n Sets this color bar\'s horizontal position\n anchor. This anchor binds the `x` position to\n the "left", "center" or "right" of the color\n bar.\n xpad\n Sets the amount of padding (in px) along the x\n direction.\n y\n Sets the y position of the color bar (in plot\n fraction).\n yanchor\n Sets this color bar\'s vertical position anchor\n This anchor binds the `y` position to the\n "top", "middle" or "bottom" of the color bar.\n ypad\n Sets the amount of padding (in px) along the y\n direction.\n\n Returns\n -------\n plotly.graph_objs.histogram.marker.ColorBar\n ' return self['colorbar']
The 'colorbar' property is an instance of ColorBar that may be specified as: - An instance of plotly.graph_objs.histogram.marker.ColorBar - A dict of string/value properties that will be passed to the ColorBar constructor Supported dict properties: bgcolor Sets the color of padded area. bordercolor Sets the axis line color. borderwidth Sets the width (in px) or the border enclosing this color bar. dtick Sets the step in-between ticks on this axis. Use with `tick0`. Must be a positive number, or special strings available to "log" and "date" axes. If the axis `type` is "log", then ticks are set every 10^(n*dtick) where n is the tick number. For example, to set a tick mark at 1, 10, 100, 1000, ... set dtick to 1. To set tick marks at 1, 100, 10000, ... set dtick to 2. To set tick marks at 1, 5, 25, 125, 625, 3125, ... set dtick to log_10(5), or 0.69897000433. "log" has several special values; "L<f>", where `f` is a positive number, gives ticks linearly spaced in value (but not position). For example `tick0` = 0.1, `dtick` = "L0.5" will put ticks at 0.1, 0.6, 1.1, 1.6 etc. To show powers of 10 plus small digits between, use "D1" (all digits) or "D2" (only 2 and 5). `tick0` is ignored for "D1" and "D2". If the axis `type` is "date", then you must convert the time to milliseconds. For example, to set the interval between ticks to one day, set `dtick` to 86400000.0. "date" also has special values "M<n>" gives ticks spaced by a number of months. `n` must be a positive integer. To set ticks on the 15th of every third month, set `tick0` to "2000-01-15" and `dtick` to "M3". To set ticks every 4 years, set `dtick` to "M48" exponentformat Determines a formatting rule for the tick exponents. For example, consider the number 1,000,000,000. If "none", it appears as 1,000,000,000. If "e", 1e+9. If "E", 1E+9. If "power", 1x10^9 (with 9 in a super script). If "SI", 1G. If "B", 1B. len Sets the length of the color bar This measure excludes the padding of both ends. That is, the color bar length is this length minus the padding on both ends. lenmode Determines whether this color bar's length (i.e. the measure in the color variation direction) is set in units of plot "fraction" or in *pixels. Use `len` to set the value. nticks Specifies the maximum number of ticks for the particular axis. The actual number of ticks will be chosen automatically to be less than or equal to `nticks`. Has an effect only if `tickmode` is set to "auto". outlinecolor Sets the axis line color. outlinewidth Sets the width (in px) of the axis line. separatethousands If "true", even 4-digit integers are separated showexponent If "all", all exponents are shown besides their significands. If "first", only the exponent of the first tick is shown. If "last", only the exponent of the last tick is shown. If "none", no exponents appear. showticklabels Determines whether or not the tick labels are drawn. showtickprefix If "all", all tick labels are displayed with a prefix. If "first", only the first tick is displayed with a prefix. If "last", only the last tick is displayed with a suffix. If "none", tick prefixes are hidden. showticksuffix Same as `showtickprefix` but for tick suffixes. thickness Sets the thickness of the color bar This measure excludes the size of the padding, ticks and labels. thicknessmode Determines whether this color bar's thickness (i.e. the measure in the constant color direction) is set in units of plot "fraction" or in "pixels". Use `thickness` to set the value. tick0 Sets the placement of the first tick on this axis. Use with `dtick`. If the axis `type` is "log", then you must take the log of your starting tick (e.g. to set the starting tick to 100, set the `tick0` to 2) except when `dtick`=*L<f>* (see `dtick` for more info). If the axis `type` is "date", it should be a date string, like date data. If the axis `type` is "category", it should be a number, using the scale where each category is assigned a serial number from zero in the order it appears. tickangle Sets the angle of the tick labels with respect to the horizontal. For example, a `tickangle` of -90 draws the tick labels vertically. tickcolor Sets the tick color. tickfont Sets the color bar's tick label font tickformat Sets the tick label formatting rule using d3 formatting mini-languages which are very similar to those in Python. For numbers, see: h ttps://github.com/d3/d3-format/blob/master/READ ME.md#locale_format And for dates see: https://github.com/d3/d3-time- format/blob/master/README.md#locale_format We add one item to d3's date formatter: "%{n}f" for fractional seconds with n digits. For example, *2016-10-13 09:15:23.456* with tickformat "%H~%M~%S.%2f" would display "09~15~23.46" tickformatstops plotly.graph_objs.histogram.marker.colorbar.Tic kformatstop instance or dict with compatible properties tickformatstopdefaults When used in a template (as layout.template.dat a.histogram.marker.colorbar.tickformatstopdefau lts), sets the default property values to use for elements of histogram.marker.colorbar.tickformatstops ticklen Sets the tick length (in px). tickmode Sets the tick mode for this axis. If "auto", the number of ticks is set via `nticks`. If "linear", the placement of the ticks is determined by a starting position `tick0` and a tick step `dtick` ("linear" is the default value if `tick0` and `dtick` are provided). If "array", the placement of the ticks is set via `tickvals` and the tick text is `ticktext`. ("array" is the default value if `tickvals` is provided). tickprefix Sets a tick label prefix. ticks Determines whether ticks are drawn or not. If "", this axis' ticks are not drawn. If "outside" ("inside"), this axis' are drawn outside (inside) the axis lines. ticksuffix Sets a tick label suffix. ticktext Sets the text displayed at the ticks position via `tickvals`. Only has an effect if `tickmode` is set to "array". Used with `tickvals`. ticktextsrc Sets the source reference on plot.ly for ticktext . tickvals Sets the values at which ticks on this axis appear. Only has an effect if `tickmode` is set to "array". Used with `ticktext`. tickvalssrc Sets the source reference on plot.ly for tickvals . tickwidth Sets the tick width (in px). title plotly.graph_objs.histogram.marker.colorbar.Tit le instance or dict with compatible properties titlefont Deprecated: Please use histogram.marker.colorbar.title.font instead. Sets this color bar's title font. Note that the title's font used to be set by the now deprecated `titlefont` attribute. titleside Deprecated: Please use histogram.marker.colorbar.title.side instead. Determines the location of color bar's title with respect to the color bar. Note that the title's location used to be set by the now deprecated `titleside` attribute. x Sets the x position of the color bar (in plot fraction). xanchor Sets this color bar's horizontal position anchor. This anchor binds the `x` position to the "left", "center" or "right" of the color bar. xpad Sets the amount of padding (in px) along the x direction. y Sets the y position of the color bar (in plot fraction). yanchor Sets this color bar's vertical position anchor This anchor binds the `y` position to the "top", "middle" or "bottom" of the color bar. ypad Sets the amount of padding (in px) along the y direction. Returns ------- plotly.graph_objs.histogram.marker.ColorBar
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
colorbar
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def colorbar(self): '\n The \'colorbar\' property is an instance of ColorBar\n that may be specified as:\n - An instance of plotly.graph_objs.histogram.marker.ColorBar\n - A dict of string/value properties that will be passed\n to the ColorBar constructor\n \n Supported dict properties:\n \n bgcolor\n Sets the color of padded area.\n bordercolor\n Sets the axis line color.\n borderwidth\n Sets the width (in px) or the border enclosing\n this color bar.\n dtick\n Sets the step in-between ticks on this axis.\n Use with `tick0`. Must be a positive number, or\n special strings available to "log" and "date"\n axes. If the axis `type` is "log", then ticks\n are set every 10^(n*dtick) where n is the tick\n number. For example, to set a tick mark at 1,\n 10, 100, 1000, ... set dtick to 1. To set tick\n marks at 1, 100, 10000, ... set dtick to 2. To\n set tick marks at 1, 5, 25, 125, 625, 3125, ...\n set dtick to log_10(5), or 0.69897000433. "log"\n has several special values; "L<f>", where `f`\n is a positive number, gives ticks linearly\n spaced in value (but not position). For example\n `tick0` = 0.1, `dtick` = "L0.5" will put ticks\n at 0.1, 0.6, 1.1, 1.6 etc. To show powers of 10\n plus small digits between, use "D1" (all\n digits) or "D2" (only 2 and 5). `tick0` is\n ignored for "D1" and "D2". If the axis `type`\n is "date", then you must convert the time to\n milliseconds. For example, to set the interval\n between ticks to one day, set `dtick` to\n 86400000.0. "date" also has special values\n "M<n>" gives ticks spaced by a number of\n months. `n` must be a positive integer. To set\n ticks on the 15th of every third month, set\n `tick0` to "2000-01-15" and `dtick` to "M3". To\n set ticks every 4 years, set `dtick` to "M48"\n exponentformat\n Determines a formatting rule for the tick\n exponents. For example, consider the number\n 1,000,000,000. If "none", it appears as\n 1,000,000,000. If "e", 1e+9. If "E", 1E+9. If\n "power", 1x10^9 (with 9 in a super script). If\n "SI", 1G. If "B", 1B.\n len\n Sets the length of the color bar This measure\n excludes the padding of both ends. That is, the\n color bar length is this length minus the\n padding on both ends.\n lenmode\n Determines whether this color bar\'s length\n (i.e. the measure in the color variation\n direction) is set in units of plot "fraction"\n or in *pixels. Use `len` to set the value.\n nticks\n Specifies the maximum number of ticks for the\n particular axis. The actual number of ticks\n will be chosen automatically to be less than or\n equal to `nticks`. Has an effect only if\n `tickmode` is set to "auto".\n outlinecolor\n Sets the axis line color.\n outlinewidth\n Sets the width (in px) of the axis line.\n separatethousands\n If "true", even 4-digit integers are separated\n showexponent\n If "all", all exponents are shown besides their\n significands. If "first", only the exponent of\n the first tick is shown. If "last", only the\n exponent of the last tick is shown. If "none",\n no exponents appear.\n showticklabels\n Determines whether or not the tick labels are\n drawn.\n showtickprefix\n If "all", all tick labels are displayed with a\n prefix. If "first", only the first tick is\n displayed with a prefix. If "last", only the\n last tick is displayed with a suffix. If\n "none", tick prefixes are hidden.\n showticksuffix\n Same as `showtickprefix` but for tick suffixes.\n thickness\n Sets the thickness of the color bar This\n measure excludes the size of the padding, ticks\n and labels.\n thicknessmode\n Determines whether this color bar\'s thickness\n (i.e. the measure in the constant color\n direction) is set in units of plot "fraction"\n or in "pixels". Use `thickness` to set the\n value.\n tick0\n Sets the placement of the first tick on this\n axis. Use with `dtick`. If the axis `type` is\n "log", then you must take the log of your\n starting tick (e.g. to set the starting tick to\n 100, set the `tick0` to 2) except when\n `dtick`=*L<f>* (see `dtick` for more info). If\n the axis `type` is "date", it should be a date\n string, like date data. If the axis `type` is\n "category", it should be a number, using the\n scale where each category is assigned a serial\n number from zero in the order it appears.\n tickangle\n Sets the angle of the tick labels with respect\n to the horizontal. For example, a `tickangle`\n of -90 draws the tick labels vertically.\n tickcolor\n Sets the tick color.\n tickfont\n Sets the color bar\'s tick label font\n tickformat\n Sets the tick label formatting rule using d3\n formatting mini-languages which are very\n similar to those in Python. For numbers, see: h\n ttps://github.com/d3/d3-format/blob/master/READ\n ME.md#locale_format And for dates see:\n https://github.com/d3/d3-time-\n format/blob/master/README.md#locale_format We\n add one item to d3\'s date formatter: "%{n}f"\n for fractional seconds with n digits. For\n example, *2016-10-13 09:15:23.456* with\n tickformat "%H~%M~%S.%2f" would display\n "09~15~23.46"\n tickformatstops\n plotly.graph_objs.histogram.marker.colorbar.Tic\n kformatstop instance or dict with compatible\n properties\n tickformatstopdefaults\n When used in a template (as layout.template.dat\n a.histogram.marker.colorbar.tickformatstopdefau\n lts), sets the default property values to use\n for elements of\n histogram.marker.colorbar.tickformatstops\n ticklen\n Sets the tick length (in px).\n tickmode\n Sets the tick mode for this axis. If "auto",\n the number of ticks is set via `nticks`. If\n "linear", the placement of the ticks is\n determined by a starting position `tick0` and a\n tick step `dtick` ("linear" is the default\n value if `tick0` and `dtick` are provided). If\n "array", the placement of the ticks is set via\n `tickvals` and the tick text is `ticktext`.\n ("array" is the default value if `tickvals` is\n provided).\n tickprefix\n Sets a tick label prefix.\n ticks\n Determines whether ticks are drawn or not. If\n , this axis\' ticks are not drawn. If\n "outside" ("inside"), this axis\' are drawn\n outside (inside) the axis lines.\n ticksuffix\n Sets a tick label suffix.\n ticktext\n Sets the text displayed at the ticks position\n via `tickvals`. Only has an effect if\n `tickmode` is set to "array". Used with\n `tickvals`.\n ticktextsrc\n Sets the source reference on plot.ly for\n ticktext .\n tickvals\n Sets the values at which ticks on this axis\n appear. Only has an effect if `tickmode` is set\n to "array". Used with `ticktext`.\n tickvalssrc\n Sets the source reference on plot.ly for\n tickvals .\n tickwidth\n Sets the tick width (in px).\n title\n plotly.graph_objs.histogram.marker.colorbar.Tit\n le instance or dict with compatible properties\n titlefont\n Deprecated: Please use\n histogram.marker.colorbar.title.font instead.\n Sets this color bar\'s title font. Note that the\n title\'s font used to be set by the now\n deprecated `titlefont` attribute.\n titleside\n Deprecated: Please use\n histogram.marker.colorbar.title.side instead.\n Determines the location of color bar\'s title\n with respect to the color bar. Note that the\n title\'s location used to be set by the now\n deprecated `titleside` attribute.\n x\n Sets the x position of the color bar (in plot\n fraction).\n xanchor\n Sets this color bar\'s horizontal position\n anchor. This anchor binds the `x` position to\n the "left", "center" or "right" of the color\n bar.\n xpad\n Sets the amount of padding (in px) along the x\n direction.\n y\n Sets the y position of the color bar (in plot\n fraction).\n yanchor\n Sets this color bar\'s vertical position anchor\n This anchor binds the `y` position to the\n "top", "middle" or "bottom" of the color bar.\n ypad\n Sets the amount of padding (in px) along the y\n direction.\n\n Returns\n -------\n plotly.graph_objs.histogram.marker.ColorBar\n ' return self['colorbar']
@property def colorbar(self): '\n The \'colorbar\' property is an instance of ColorBar\n that may be specified as:\n - An instance of plotly.graph_objs.histogram.marker.ColorBar\n - A dict of string/value properties that will be passed\n to the ColorBar constructor\n \n Supported dict properties:\n \n bgcolor\n Sets the color of padded area.\n bordercolor\n Sets the axis line color.\n borderwidth\n Sets the width (in px) or the border enclosing\n this color bar.\n dtick\n Sets the step in-between ticks on this axis.\n Use with `tick0`. Must be a positive number, or\n special strings available to "log" and "date"\n axes. If the axis `type` is "log", then ticks\n are set every 10^(n*dtick) where n is the tick\n number. For example, to set a tick mark at 1,\n 10, 100, 1000, ... set dtick to 1. To set tick\n marks at 1, 100, 10000, ... set dtick to 2. To\n set tick marks at 1, 5, 25, 125, 625, 3125, ...\n set dtick to log_10(5), or 0.69897000433. "log"\n has several special values; "L<f>", where `f`\n is a positive number, gives ticks linearly\n spaced in value (but not position). For example\n `tick0` = 0.1, `dtick` = "L0.5" will put ticks\n at 0.1, 0.6, 1.1, 1.6 etc. To show powers of 10\n plus small digits between, use "D1" (all\n digits) or "D2" (only 2 and 5). `tick0` is\n ignored for "D1" and "D2". If the axis `type`\n is "date", then you must convert the time to\n milliseconds. For example, to set the interval\n between ticks to one day, set `dtick` to\n 86400000.0. "date" also has special values\n "M<n>" gives ticks spaced by a number of\n months. `n` must be a positive integer. To set\n ticks on the 15th of every third month, set\n `tick0` to "2000-01-15" and `dtick` to "M3". To\n set ticks every 4 years, set `dtick` to "M48"\n exponentformat\n Determines a formatting rule for the tick\n exponents. For example, consider the number\n 1,000,000,000. If "none", it appears as\n 1,000,000,000. If "e", 1e+9. If "E", 1E+9. If\n "power", 1x10^9 (with 9 in a super script). If\n "SI", 1G. If "B", 1B.\n len\n Sets the length of the color bar This measure\n excludes the padding of both ends. That is, the\n color bar length is this length minus the\n padding on both ends.\n lenmode\n Determines whether this color bar\'s length\n (i.e. the measure in the color variation\n direction) is set in units of plot "fraction"\n or in *pixels. Use `len` to set the value.\n nticks\n Specifies the maximum number of ticks for the\n particular axis. The actual number of ticks\n will be chosen automatically to be less than or\n equal to `nticks`. Has an effect only if\n `tickmode` is set to "auto".\n outlinecolor\n Sets the axis line color.\n outlinewidth\n Sets the width (in px) of the axis line.\n separatethousands\n If "true", even 4-digit integers are separated\n showexponent\n If "all", all exponents are shown besides their\n significands. If "first", only the exponent of\n the first tick is shown. If "last", only the\n exponent of the last tick is shown. If "none",\n no exponents appear.\n showticklabels\n Determines whether or not the tick labels are\n drawn.\n showtickprefix\n If "all", all tick labels are displayed with a\n prefix. If "first", only the first tick is\n displayed with a prefix. If "last", only the\n last tick is displayed with a suffix. If\n "none", tick prefixes are hidden.\n showticksuffix\n Same as `showtickprefix` but for tick suffixes.\n thickness\n Sets the thickness of the color bar This\n measure excludes the size of the padding, ticks\n and labels.\n thicknessmode\n Determines whether this color bar\'s thickness\n (i.e. the measure in the constant color\n direction) is set in units of plot "fraction"\n or in "pixels". Use `thickness` to set the\n value.\n tick0\n Sets the placement of the first tick on this\n axis. Use with `dtick`. If the axis `type` is\n "log", then you must take the log of your\n starting tick (e.g. to set the starting tick to\n 100, set the `tick0` to 2) except when\n `dtick`=*L<f>* (see `dtick` for more info). If\n the axis `type` is "date", it should be a date\n string, like date data. If the axis `type` is\n "category", it should be a number, using the\n scale where each category is assigned a serial\n number from zero in the order it appears.\n tickangle\n Sets the angle of the tick labels with respect\n to the horizontal. For example, a `tickangle`\n of -90 draws the tick labels vertically.\n tickcolor\n Sets the tick color.\n tickfont\n Sets the color bar\'s tick label font\n tickformat\n Sets the tick label formatting rule using d3\n formatting mini-languages which are very\n similar to those in Python. For numbers, see: h\n ttps://github.com/d3/d3-format/blob/master/READ\n ME.md#locale_format And for dates see:\n https://github.com/d3/d3-time-\n format/blob/master/README.md#locale_format We\n add one item to d3\'s date formatter: "%{n}f"\n for fractional seconds with n digits. For\n example, *2016-10-13 09:15:23.456* with\n tickformat "%H~%M~%S.%2f" would display\n "09~15~23.46"\n tickformatstops\n plotly.graph_objs.histogram.marker.colorbar.Tic\n kformatstop instance or dict with compatible\n properties\n tickformatstopdefaults\n When used in a template (as layout.template.dat\n a.histogram.marker.colorbar.tickformatstopdefau\n lts), sets the default property values to use\n for elements of\n histogram.marker.colorbar.tickformatstops\n ticklen\n Sets the tick length (in px).\n tickmode\n Sets the tick mode for this axis. If "auto",\n the number of ticks is set via `nticks`. If\n "linear", the placement of the ticks is\n determined by a starting position `tick0` and a\n tick step `dtick` ("linear" is the default\n value if `tick0` and `dtick` are provided). If\n "array", the placement of the ticks is set via\n `tickvals` and the tick text is `ticktext`.\n ("array" is the default value if `tickvals` is\n provided).\n tickprefix\n Sets a tick label prefix.\n ticks\n Determines whether ticks are drawn or not. If\n , this axis\' ticks are not drawn. If\n "outside" ("inside"), this axis\' are drawn\n outside (inside) the axis lines.\n ticksuffix\n Sets a tick label suffix.\n ticktext\n Sets the text displayed at the ticks position\n via `tickvals`. Only has an effect if\n `tickmode` is set to "array". Used with\n `tickvals`.\n ticktextsrc\n Sets the source reference on plot.ly for\n ticktext .\n tickvals\n Sets the values at which ticks on this axis\n appear. Only has an effect if `tickmode` is set\n to "array". Used with `ticktext`.\n tickvalssrc\n Sets the source reference on plot.ly for\n tickvals .\n tickwidth\n Sets the tick width (in px).\n title\n plotly.graph_objs.histogram.marker.colorbar.Tit\n le instance or dict with compatible properties\n titlefont\n Deprecated: Please use\n histogram.marker.colorbar.title.font instead.\n Sets this color bar\'s title font. Note that the\n title\'s font used to be set by the now\n deprecated `titlefont` attribute.\n titleside\n Deprecated: Please use\n histogram.marker.colorbar.title.side instead.\n Determines the location of color bar\'s title\n with respect to the color bar. Note that the\n title\'s location used to be set by the now\n deprecated `titleside` attribute.\n x\n Sets the x position of the color bar (in plot\n fraction).\n xanchor\n Sets this color bar\'s horizontal position\n anchor. This anchor binds the `x` position to\n the "left", "center" or "right" of the color\n bar.\n xpad\n Sets the amount of padding (in px) along the x\n direction.\n y\n Sets the y position of the color bar (in plot\n fraction).\n yanchor\n Sets this color bar\'s vertical position anchor\n This anchor binds the `y` position to the\n "top", "middle" or "bottom" of the color bar.\n ypad\n Sets the amount of padding (in px) along the y\n direction.\n\n Returns\n -------\n plotly.graph_objs.histogram.marker.ColorBar\n ' return self['colorbar']<|docstring|>The 'colorbar' property is an instance of ColorBar that may be specified as: - An instance of plotly.graph_objs.histogram.marker.ColorBar - A dict of string/value properties that will be passed to the ColorBar constructor Supported dict properties: bgcolor Sets the color of padded area. bordercolor Sets the axis line color. borderwidth Sets the width (in px) or the border enclosing this color bar. dtick Sets the step in-between ticks on this axis. Use with `tick0`. Must be a positive number, or special strings available to "log" and "date" axes. If the axis `type` is "log", then ticks are set every 10^(n*dtick) where n is the tick number. For example, to set a tick mark at 1, 10, 100, 1000, ... set dtick to 1. To set tick marks at 1, 100, 10000, ... set dtick to 2. To set tick marks at 1, 5, 25, 125, 625, 3125, ... set dtick to log_10(5), or 0.69897000433. "log" has several special values; "L<f>", where `f` is a positive number, gives ticks linearly spaced in value (but not position). For example `tick0` = 0.1, `dtick` = "L0.5" will put ticks at 0.1, 0.6, 1.1, 1.6 etc. To show powers of 10 plus small digits between, use "D1" (all digits) or "D2" (only 2 and 5). `tick0` is ignored for "D1" and "D2". If the axis `type` is "date", then you must convert the time to milliseconds. For example, to set the interval between ticks to one day, set `dtick` to 86400000.0. "date" also has special values "M<n>" gives ticks spaced by a number of months. `n` must be a positive integer. To set ticks on the 15th of every third month, set `tick0` to "2000-01-15" and `dtick` to "M3". To set ticks every 4 years, set `dtick` to "M48" exponentformat Determines a formatting rule for the tick exponents. For example, consider the number 1,000,000,000. If "none", it appears as 1,000,000,000. If "e", 1e+9. If "E", 1E+9. If "power", 1x10^9 (with 9 in a super script). If "SI", 1G. If "B", 1B. len Sets the length of the color bar This measure excludes the padding of both ends. That is, the color bar length is this length minus the padding on both ends. lenmode Determines whether this color bar's length (i.e. the measure in the color variation direction) is set in units of plot "fraction" or in *pixels. Use `len` to set the value. nticks Specifies the maximum number of ticks for the particular axis. The actual number of ticks will be chosen automatically to be less than or equal to `nticks`. Has an effect only if `tickmode` is set to "auto". outlinecolor Sets the axis line color. outlinewidth Sets the width (in px) of the axis line. separatethousands If "true", even 4-digit integers are separated showexponent If "all", all exponents are shown besides their significands. If "first", only the exponent of the first tick is shown. If "last", only the exponent of the last tick is shown. If "none", no exponents appear. showticklabels Determines whether or not the tick labels are drawn. showtickprefix If "all", all tick labels are displayed with a prefix. If "first", only the first tick is displayed with a prefix. If "last", only the last tick is displayed with a suffix. If "none", tick prefixes are hidden. showticksuffix Same as `showtickprefix` but for tick suffixes. thickness Sets the thickness of the color bar This measure excludes the size of the padding, ticks and labels. thicknessmode Determines whether this color bar's thickness (i.e. the measure in the constant color direction) is set in units of plot "fraction" or in "pixels". Use `thickness` to set the value. tick0 Sets the placement of the first tick on this axis. Use with `dtick`. If the axis `type` is "log", then you must take the log of your starting tick (e.g. to set the starting tick to 100, set the `tick0` to 2) except when `dtick`=*L<f>* (see `dtick` for more info). If the axis `type` is "date", it should be a date string, like date data. If the axis `type` is "category", it should be a number, using the scale where each category is assigned a serial number from zero in the order it appears. tickangle Sets the angle of the tick labels with respect to the horizontal. For example, a `tickangle` of -90 draws the tick labels vertically. tickcolor Sets the tick color. tickfont Sets the color bar's tick label font tickformat Sets the tick label formatting rule using d3 formatting mini-languages which are very similar to those in Python. For numbers, see: h ttps://github.com/d3/d3-format/blob/master/READ ME.md#locale_format And for dates see: https://github.com/d3/d3-time- format/blob/master/README.md#locale_format We add one item to d3's date formatter: "%{n}f" for fractional seconds with n digits. For example, *2016-10-13 09:15:23.456* with tickformat "%H~%M~%S.%2f" would display "09~15~23.46" tickformatstops plotly.graph_objs.histogram.marker.colorbar.Tic kformatstop instance or dict with compatible properties tickformatstopdefaults When used in a template (as layout.template.dat a.histogram.marker.colorbar.tickformatstopdefau lts), sets the default property values to use for elements of histogram.marker.colorbar.tickformatstops ticklen Sets the tick length (in px). tickmode Sets the tick mode for this axis. If "auto", the number of ticks is set via `nticks`. If "linear", the placement of the ticks is determined by a starting position `tick0` and a tick step `dtick` ("linear" is the default value if `tick0` and `dtick` are provided). If "array", the placement of the ticks is set via `tickvals` and the tick text is `ticktext`. ("array" is the default value if `tickvals` is provided). tickprefix Sets a tick label prefix. ticks Determines whether ticks are drawn or not. If "", this axis' ticks are not drawn. If "outside" ("inside"), this axis' are drawn outside (inside) the axis lines. ticksuffix Sets a tick label suffix. ticktext Sets the text displayed at the ticks position via `tickvals`. Only has an effect if `tickmode` is set to "array". Used with `tickvals`. ticktextsrc Sets the source reference on plot.ly for ticktext . tickvals Sets the values at which ticks on this axis appear. Only has an effect if `tickmode` is set to "array". Used with `ticktext`. tickvalssrc Sets the source reference on plot.ly for tickvals . tickwidth Sets the tick width (in px). title plotly.graph_objs.histogram.marker.colorbar.Tit le instance or dict with compatible properties titlefont Deprecated: Please use histogram.marker.colorbar.title.font instead. Sets this color bar's title font. Note that the title's font used to be set by the now deprecated `titlefont` attribute. titleside Deprecated: Please use histogram.marker.colorbar.title.side instead. Determines the location of color bar's title with respect to the color bar. Note that the title's location used to be set by the now deprecated `titleside` attribute. x Sets the x position of the color bar (in plot fraction). xanchor Sets this color bar's horizontal position anchor. This anchor binds the `x` position to the "left", "center" or "right" of the color bar. xpad Sets the amount of padding (in px) along the x direction. y Sets the y position of the color bar (in plot fraction). yanchor Sets this color bar's vertical position anchor This anchor binds the `y` position to the "top", "middle" or "bottom" of the color bar. ypad Sets the amount of padding (in px) along the y direction. Returns ------- plotly.graph_objs.histogram.marker.ColorBar<|endoftext|>
e706024b0433813439c15a7ab0051bf3a99670ab62a3e4ad3ec42635c8ca904e
@property def colorscale(self): "\n Sets the colorscale. Has an effect only if in `marker.color`is\n set to a numerical array. The colorscale must be an array\n containing arrays mapping a normalized value to an rgb, rgba,\n hex, hsl, hsv, or named color string. At minimum, a mapping for\n the lowest (0) and highest (1) values are required. For\n example, `[[0, 'rgb(0,0,255)', [1, 'rgb(255,0,0)']]`. To\n control the bounds of the colorscale in color space,\n use`marker.cmin` and `marker.cmax`. Alternatively, `colorscale`\n may be a palette name string of the following list: Greys,YlGnB\n u,Greens,YlOrRd,Bluered,RdBu,Reds,Blues,Picnic,Rainbow,Portland\n ,Jet,Hot,Blackbody,Earth,Electric,Viridis,Cividis.\n \n The 'colorscale' property is a colorscale and may be\n specified as:\n - A list of 2-element lists where the first element is the\n normalized color level value (starting at 0 and ending at 1), \n and the second item is a valid color string.\n (e.g. [[0, 'green'], [0.5, 'red'], [1.0, 'rgb(0, 0, 255)']])\n - One of the following named colorscales:\n ['Greys', 'YlGnBu', 'Greens', 'YlOrRd', 'Bluered', 'RdBu',\n 'Reds', 'Blues', 'Picnic', 'Rainbow', 'Portland', 'Jet',\n 'Hot', 'Blackbody', 'Earth', 'Electric', 'Viridis', 'Cividis']\n\n Returns\n -------\n str\n " return self['colorscale']
Sets the colorscale. Has an effect only if in `marker.color`is set to a numerical array. The colorscale must be an array containing arrays mapping a normalized value to an rgb, rgba, hex, hsl, hsv, or named color string. At minimum, a mapping for the lowest (0) and highest (1) values are required. For example, `[[0, 'rgb(0,0,255)', [1, 'rgb(255,0,0)']]`. To control the bounds of the colorscale in color space, use`marker.cmin` and `marker.cmax`. Alternatively, `colorscale` may be a palette name string of the following list: Greys,YlGnB u,Greens,YlOrRd,Bluered,RdBu,Reds,Blues,Picnic,Rainbow,Portland ,Jet,Hot,Blackbody,Earth,Electric,Viridis,Cividis. The 'colorscale' property is a colorscale and may be specified as: - A list of 2-element lists where the first element is the normalized color level value (starting at 0 and ending at 1), and the second item is a valid color string. (e.g. [[0, 'green'], [0.5, 'red'], [1.0, 'rgb(0, 0, 255)']]) - One of the following named colorscales: ['Greys', 'YlGnBu', 'Greens', 'YlOrRd', 'Bluered', 'RdBu', 'Reds', 'Blues', 'Picnic', 'Rainbow', 'Portland', 'Jet', 'Hot', 'Blackbody', 'Earth', 'Electric', 'Viridis', 'Cividis'] Returns ------- str
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
colorscale
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def colorscale(self): "\n Sets the colorscale. Has an effect only if in `marker.color`is\n set to a numerical array. The colorscale must be an array\n containing arrays mapping a normalized value to an rgb, rgba,\n hex, hsl, hsv, or named color string. At minimum, a mapping for\n the lowest (0) and highest (1) values are required. For\n example, `[[0, 'rgb(0,0,255)', [1, 'rgb(255,0,0)']]`. To\n control the bounds of the colorscale in color space,\n use`marker.cmin` and `marker.cmax`. Alternatively, `colorscale`\n may be a palette name string of the following list: Greys,YlGnB\n u,Greens,YlOrRd,Bluered,RdBu,Reds,Blues,Picnic,Rainbow,Portland\n ,Jet,Hot,Blackbody,Earth,Electric,Viridis,Cividis.\n \n The 'colorscale' property is a colorscale and may be\n specified as:\n - A list of 2-element lists where the first element is the\n normalized color level value (starting at 0 and ending at 1), \n and the second item is a valid color string.\n (e.g. [[0, 'green'], [0.5, 'red'], [1.0, 'rgb(0, 0, 255)']])\n - One of the following named colorscales:\n ['Greys', 'YlGnBu', 'Greens', 'YlOrRd', 'Bluered', 'RdBu',\n 'Reds', 'Blues', 'Picnic', 'Rainbow', 'Portland', 'Jet',\n 'Hot', 'Blackbody', 'Earth', 'Electric', 'Viridis', 'Cividis']\n\n Returns\n -------\n str\n " return self['colorscale']
@property def colorscale(self): "\n Sets the colorscale. Has an effect only if in `marker.color`is\n set to a numerical array. The colorscale must be an array\n containing arrays mapping a normalized value to an rgb, rgba,\n hex, hsl, hsv, or named color string. At minimum, a mapping for\n the lowest (0) and highest (1) values are required. For\n example, `[[0, 'rgb(0,0,255)', [1, 'rgb(255,0,0)']]`. To\n control the bounds of the colorscale in color space,\n use`marker.cmin` and `marker.cmax`. Alternatively, `colorscale`\n may be a palette name string of the following list: Greys,YlGnB\n u,Greens,YlOrRd,Bluered,RdBu,Reds,Blues,Picnic,Rainbow,Portland\n ,Jet,Hot,Blackbody,Earth,Electric,Viridis,Cividis.\n \n The 'colorscale' property is a colorscale and may be\n specified as:\n - A list of 2-element lists where the first element is the\n normalized color level value (starting at 0 and ending at 1), \n and the second item is a valid color string.\n (e.g. [[0, 'green'], [0.5, 'red'], [1.0, 'rgb(0, 0, 255)']])\n - One of the following named colorscales:\n ['Greys', 'YlGnBu', 'Greens', 'YlOrRd', 'Bluered', 'RdBu',\n 'Reds', 'Blues', 'Picnic', 'Rainbow', 'Portland', 'Jet',\n 'Hot', 'Blackbody', 'Earth', 'Electric', 'Viridis', 'Cividis']\n\n Returns\n -------\n str\n " return self['colorscale']<|docstring|>Sets the colorscale. Has an effect only if in `marker.color`is set to a numerical array. The colorscale must be an array containing arrays mapping a normalized value to an rgb, rgba, hex, hsl, hsv, or named color string. At minimum, a mapping for the lowest (0) and highest (1) values are required. For example, `[[0, 'rgb(0,0,255)', [1, 'rgb(255,0,0)']]`. To control the bounds of the colorscale in color space, use`marker.cmin` and `marker.cmax`. Alternatively, `colorscale` may be a palette name string of the following list: Greys,YlGnB u,Greens,YlOrRd,Bluered,RdBu,Reds,Blues,Picnic,Rainbow,Portland ,Jet,Hot,Blackbody,Earth,Electric,Viridis,Cividis. The 'colorscale' property is a colorscale and may be specified as: - A list of 2-element lists where the first element is the normalized color level value (starting at 0 and ending at 1), and the second item is a valid color string. (e.g. [[0, 'green'], [0.5, 'red'], [1.0, 'rgb(0, 0, 255)']]) - One of the following named colorscales: ['Greys', 'YlGnBu', 'Greens', 'YlOrRd', 'Bluered', 'RdBu', 'Reds', 'Blues', 'Picnic', 'Rainbow', 'Portland', 'Jet', 'Hot', 'Blackbody', 'Earth', 'Electric', 'Viridis', 'Cividis'] Returns ------- str<|endoftext|>
634fbde503198521f74e0c543a35359ffb01371186bc082e968970fb1d8dc444
@property def colorsrc(self): "\n Sets the source reference on plot.ly for color .\n \n The 'colorsrc' property must be specified as a string or\n as a plotly.grid_objs.Column object\n\n Returns\n -------\n str\n " return self['colorsrc']
Sets the source reference on plot.ly for color . The 'colorsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
colorsrc
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def colorsrc(self): "\n Sets the source reference on plot.ly for color .\n \n The 'colorsrc' property must be specified as a string or\n as a plotly.grid_objs.Column object\n\n Returns\n -------\n str\n " return self['colorsrc']
@property def colorsrc(self): "\n Sets the source reference on plot.ly for color .\n \n The 'colorsrc' property must be specified as a string or\n as a plotly.grid_objs.Column object\n\n Returns\n -------\n str\n " return self['colorsrc']<|docstring|>Sets the source reference on plot.ly for color . The 'colorsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str<|endoftext|>
669a98332243d70ef6d982f00adcbcb2de9b467eb8bd71fbebe02f3be4c2873f
@property def line(self): "\n The 'line' property is an instance of Line\n that may be specified as:\n - An instance of plotly.graph_objs.histogram.marker.Line\n - A dict of string/value properties that will be passed\n to the Line constructor\n \n Supported dict properties:\n \n autocolorscale\n Determines whether the colorscale is a default\n palette (`autocolorscale: true`) or the palette\n determined by `marker.line.colorscale`. Has an\n effect only if in `marker.line.color`is set to\n a numerical array. In case `colorscale` is\n unspecified or `autocolorscale` is true, the\n default palette will be chosen according to\n whether numbers in the `color` array are all\n positive, all negative or mixed.\n cauto\n Determines whether or not the color domain is\n computed with respect to the input data (here\n in `marker.line.color`) or the bounds set in\n `marker.line.cmin` and `marker.line.cmax` Has\n an effect only if in `marker.line.color`is set\n to a numerical array. Defaults to `false` when\n `marker.line.cmin` and `marker.line.cmax` are\n set by the user.\n cmax\n Sets the upper bound of the color domain. Has\n an effect only if in `marker.line.color`is set\n to a numerical array. Value should have the\n same units as in `marker.line.color` and if\n set, `marker.line.cmin` must be set as well.\n cmid\n Sets the mid-point of the color domain by\n scaling `marker.line.cmin` and/or\n `marker.line.cmax` to be equidistant to this\n point. Has an effect only if in\n `marker.line.color`is set to a numerical array.\n Value should have the same units as in\n `marker.line.color`. Has no effect when\n `marker.line.cauto` is `false`.\n cmin\n Sets the lower bound of the color domain. Has\n an effect only if in `marker.line.color`is set\n to a numerical array. Value should have the\n same units as in `marker.line.color` and if\n set, `marker.line.cmax` must be set as well.\n color\n Sets themarker.linecolor. It accepts either a\n specific color or an array of numbers that are\n mapped to the colorscale relative to the max\n and min values of the array or relative to\n `marker.line.cmin` and `marker.line.cmax` if\n set.\n colorscale\n Sets the colorscale. Has an effect only if in\n `marker.line.color`is set to a numerical array.\n The colorscale must be an array containing\n arrays mapping a normalized value to an rgb,\n rgba, hex, hsl, hsv, or named color string. At\n minimum, a mapping for the lowest (0) and\n highest (1) values are required. For example,\n `[[0, 'rgb(0,0,255)', [1, 'rgb(255,0,0)']]`. To\n control the bounds of the colorscale in color\n space, use`marker.line.cmin` and\n `marker.line.cmax`. Alternatively, `colorscale`\n may be a palette name string of the following\n list: Greys,YlGnBu,Greens,YlOrRd,Bluered,RdBu,R\n eds,Blues,Picnic,Rainbow,Portland,Jet,Hot,Black\n body,Earth,Electric,Viridis,Cividis.\n colorsrc\n Sets the source reference on plot.ly for color\n .\n reversescale\n Reverses the color mapping if true. Has an\n effect only if in `marker.line.color`is set to\n a numerical array. If true, `marker.line.cmin`\n will correspond to the last color in the array\n and `marker.line.cmax` will correspond to the\n first color.\n width\n Sets the width (in px) of the lines bounding\n the marker points.\n widthsrc\n Sets the source reference on plot.ly for width\n .\n\n Returns\n -------\n plotly.graph_objs.histogram.marker.Line\n " return self['line']
The 'line' property is an instance of Line that may be specified as: - An instance of plotly.graph_objs.histogram.marker.Line - A dict of string/value properties that will be passed to the Line constructor Supported dict properties: autocolorscale Determines whether the colorscale is a default palette (`autocolorscale: true`) or the palette determined by `marker.line.colorscale`. Has an effect only if in `marker.line.color`is set to a numerical array. In case `colorscale` is unspecified or `autocolorscale` is true, the default palette will be chosen according to whether numbers in the `color` array are all positive, all negative or mixed. cauto Determines whether or not the color domain is computed with respect to the input data (here in `marker.line.color`) or the bounds set in `marker.line.cmin` and `marker.line.cmax` Has an effect only if in `marker.line.color`is set to a numerical array. Defaults to `false` when `marker.line.cmin` and `marker.line.cmax` are set by the user. cmax Sets the upper bound of the color domain. Has an effect only if in `marker.line.color`is set to a numerical array. Value should have the same units as in `marker.line.color` and if set, `marker.line.cmin` must be set as well. cmid Sets the mid-point of the color domain by scaling `marker.line.cmin` and/or `marker.line.cmax` to be equidistant to this point. Has an effect only if in `marker.line.color`is set to a numerical array. Value should have the same units as in `marker.line.color`. Has no effect when `marker.line.cauto` is `false`. cmin Sets the lower bound of the color domain. Has an effect only if in `marker.line.color`is set to a numerical array. Value should have the same units as in `marker.line.color` and if set, `marker.line.cmax` must be set as well. color Sets themarker.linecolor. It accepts either a specific color or an array of numbers that are mapped to the colorscale relative to the max and min values of the array or relative to `marker.line.cmin` and `marker.line.cmax` if set. colorscale Sets the colorscale. Has an effect only if in `marker.line.color`is set to a numerical array. The colorscale must be an array containing arrays mapping a normalized value to an rgb, rgba, hex, hsl, hsv, or named color string. At minimum, a mapping for the lowest (0) and highest (1) values are required. For example, `[[0, 'rgb(0,0,255)', [1, 'rgb(255,0,0)']]`. To control the bounds of the colorscale in color space, use`marker.line.cmin` and `marker.line.cmax`. Alternatively, `colorscale` may be a palette name string of the following list: Greys,YlGnBu,Greens,YlOrRd,Bluered,RdBu,R eds,Blues,Picnic,Rainbow,Portland,Jet,Hot,Black body,Earth,Electric,Viridis,Cividis. colorsrc Sets the source reference on plot.ly for color . reversescale Reverses the color mapping if true. Has an effect only if in `marker.line.color`is set to a numerical array. If true, `marker.line.cmin` will correspond to the last color in the array and `marker.line.cmax` will correspond to the first color. width Sets the width (in px) of the lines bounding the marker points. widthsrc Sets the source reference on plot.ly for width . Returns ------- plotly.graph_objs.histogram.marker.Line
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
line
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def line(self): "\n The 'line' property is an instance of Line\n that may be specified as:\n - An instance of plotly.graph_objs.histogram.marker.Line\n - A dict of string/value properties that will be passed\n to the Line constructor\n \n Supported dict properties:\n \n autocolorscale\n Determines whether the colorscale is a default\n palette (`autocolorscale: true`) or the palette\n determined by `marker.line.colorscale`. Has an\n effect only if in `marker.line.color`is set to\n a numerical array. In case `colorscale` is\n unspecified or `autocolorscale` is true, the\n default palette will be chosen according to\n whether numbers in the `color` array are all\n positive, all negative or mixed.\n cauto\n Determines whether or not the color domain is\n computed with respect to the input data (here\n in `marker.line.color`) or the bounds set in\n `marker.line.cmin` and `marker.line.cmax` Has\n an effect only if in `marker.line.color`is set\n to a numerical array. Defaults to `false` when\n `marker.line.cmin` and `marker.line.cmax` are\n set by the user.\n cmax\n Sets the upper bound of the color domain. Has\n an effect only if in `marker.line.color`is set\n to a numerical array. Value should have the\n same units as in `marker.line.color` and if\n set, `marker.line.cmin` must be set as well.\n cmid\n Sets the mid-point of the color domain by\n scaling `marker.line.cmin` and/or\n `marker.line.cmax` to be equidistant to this\n point. Has an effect only if in\n `marker.line.color`is set to a numerical array.\n Value should have the same units as in\n `marker.line.color`. Has no effect when\n `marker.line.cauto` is `false`.\n cmin\n Sets the lower bound of the color domain. Has\n an effect only if in `marker.line.color`is set\n to a numerical array. Value should have the\n same units as in `marker.line.color` and if\n set, `marker.line.cmax` must be set as well.\n color\n Sets themarker.linecolor. It accepts either a\n specific color or an array of numbers that are\n mapped to the colorscale relative to the max\n and min values of the array or relative to\n `marker.line.cmin` and `marker.line.cmax` if\n set.\n colorscale\n Sets the colorscale. Has an effect only if in\n `marker.line.color`is set to a numerical array.\n The colorscale must be an array containing\n arrays mapping a normalized value to an rgb,\n rgba, hex, hsl, hsv, or named color string. At\n minimum, a mapping for the lowest (0) and\n highest (1) values are required. For example,\n `[[0, 'rgb(0,0,255)', [1, 'rgb(255,0,0)']]`. To\n control the bounds of the colorscale in color\n space, use`marker.line.cmin` and\n `marker.line.cmax`. Alternatively, `colorscale`\n may be a palette name string of the following\n list: Greys,YlGnBu,Greens,YlOrRd,Bluered,RdBu,R\n eds,Blues,Picnic,Rainbow,Portland,Jet,Hot,Black\n body,Earth,Electric,Viridis,Cividis.\n colorsrc\n Sets the source reference on plot.ly for color\n .\n reversescale\n Reverses the color mapping if true. Has an\n effect only if in `marker.line.color`is set to\n a numerical array. If true, `marker.line.cmin`\n will correspond to the last color in the array\n and `marker.line.cmax` will correspond to the\n first color.\n width\n Sets the width (in px) of the lines bounding\n the marker points.\n widthsrc\n Sets the source reference on plot.ly for width\n .\n\n Returns\n -------\n plotly.graph_objs.histogram.marker.Line\n " return self['line']
@property def line(self): "\n The 'line' property is an instance of Line\n that may be specified as:\n - An instance of plotly.graph_objs.histogram.marker.Line\n - A dict of string/value properties that will be passed\n to the Line constructor\n \n Supported dict properties:\n \n autocolorscale\n Determines whether the colorscale is a default\n palette (`autocolorscale: true`) or the palette\n determined by `marker.line.colorscale`. Has an\n effect only if in `marker.line.color`is set to\n a numerical array. In case `colorscale` is\n unspecified or `autocolorscale` is true, the\n default palette will be chosen according to\n whether numbers in the `color` array are all\n positive, all negative or mixed.\n cauto\n Determines whether or not the color domain is\n computed with respect to the input data (here\n in `marker.line.color`) or the bounds set in\n `marker.line.cmin` and `marker.line.cmax` Has\n an effect only if in `marker.line.color`is set\n to a numerical array. Defaults to `false` when\n `marker.line.cmin` and `marker.line.cmax` are\n set by the user.\n cmax\n Sets the upper bound of the color domain. Has\n an effect only if in `marker.line.color`is set\n to a numerical array. Value should have the\n same units as in `marker.line.color` and if\n set, `marker.line.cmin` must be set as well.\n cmid\n Sets the mid-point of the color domain by\n scaling `marker.line.cmin` and/or\n `marker.line.cmax` to be equidistant to this\n point. Has an effect only if in\n `marker.line.color`is set to a numerical array.\n Value should have the same units as in\n `marker.line.color`. Has no effect when\n `marker.line.cauto` is `false`.\n cmin\n Sets the lower bound of the color domain. Has\n an effect only if in `marker.line.color`is set\n to a numerical array. Value should have the\n same units as in `marker.line.color` and if\n set, `marker.line.cmax` must be set as well.\n color\n Sets themarker.linecolor. It accepts either a\n specific color or an array of numbers that are\n mapped to the colorscale relative to the max\n and min values of the array or relative to\n `marker.line.cmin` and `marker.line.cmax` if\n set.\n colorscale\n Sets the colorscale. Has an effect only if in\n `marker.line.color`is set to a numerical array.\n The colorscale must be an array containing\n arrays mapping a normalized value to an rgb,\n rgba, hex, hsl, hsv, or named color string. At\n minimum, a mapping for the lowest (0) and\n highest (1) values are required. For example,\n `[[0, 'rgb(0,0,255)', [1, 'rgb(255,0,0)']]`. To\n control the bounds of the colorscale in color\n space, use`marker.line.cmin` and\n `marker.line.cmax`. Alternatively, `colorscale`\n may be a palette name string of the following\n list: Greys,YlGnBu,Greens,YlOrRd,Bluered,RdBu,R\n eds,Blues,Picnic,Rainbow,Portland,Jet,Hot,Black\n body,Earth,Electric,Viridis,Cividis.\n colorsrc\n Sets the source reference on plot.ly for color\n .\n reversescale\n Reverses the color mapping if true. Has an\n effect only if in `marker.line.color`is set to\n a numerical array. If true, `marker.line.cmin`\n will correspond to the last color in the array\n and `marker.line.cmax` will correspond to the\n first color.\n width\n Sets the width (in px) of the lines bounding\n the marker points.\n widthsrc\n Sets the source reference on plot.ly for width\n .\n\n Returns\n -------\n plotly.graph_objs.histogram.marker.Line\n " return self['line']<|docstring|>The 'line' property is an instance of Line that may be specified as: - An instance of plotly.graph_objs.histogram.marker.Line - A dict of string/value properties that will be passed to the Line constructor Supported dict properties: autocolorscale Determines whether the colorscale is a default palette (`autocolorscale: true`) or the palette determined by `marker.line.colorscale`. Has an effect only if in `marker.line.color`is set to a numerical array. In case `colorscale` is unspecified or `autocolorscale` is true, the default palette will be chosen according to whether numbers in the `color` array are all positive, all negative or mixed. cauto Determines whether or not the color domain is computed with respect to the input data (here in `marker.line.color`) or the bounds set in `marker.line.cmin` and `marker.line.cmax` Has an effect only if in `marker.line.color`is set to a numerical array. Defaults to `false` when `marker.line.cmin` and `marker.line.cmax` are set by the user. cmax Sets the upper bound of the color domain. Has an effect only if in `marker.line.color`is set to a numerical array. Value should have the same units as in `marker.line.color` and if set, `marker.line.cmin` must be set as well. cmid Sets the mid-point of the color domain by scaling `marker.line.cmin` and/or `marker.line.cmax` to be equidistant to this point. Has an effect only if in `marker.line.color`is set to a numerical array. Value should have the same units as in `marker.line.color`. Has no effect when `marker.line.cauto` is `false`. cmin Sets the lower bound of the color domain. Has an effect only if in `marker.line.color`is set to a numerical array. Value should have the same units as in `marker.line.color` and if set, `marker.line.cmax` must be set as well. color Sets themarker.linecolor. It accepts either a specific color or an array of numbers that are mapped to the colorscale relative to the max and min values of the array or relative to `marker.line.cmin` and `marker.line.cmax` if set. colorscale Sets the colorscale. Has an effect only if in `marker.line.color`is set to a numerical array. The colorscale must be an array containing arrays mapping a normalized value to an rgb, rgba, hex, hsl, hsv, or named color string. At minimum, a mapping for the lowest (0) and highest (1) values are required. For example, `[[0, 'rgb(0,0,255)', [1, 'rgb(255,0,0)']]`. To control the bounds of the colorscale in color space, use`marker.line.cmin` and `marker.line.cmax`. Alternatively, `colorscale` may be a palette name string of the following list: Greys,YlGnBu,Greens,YlOrRd,Bluered,RdBu,R eds,Blues,Picnic,Rainbow,Portland,Jet,Hot,Black body,Earth,Electric,Viridis,Cividis. colorsrc Sets the source reference on plot.ly for color . reversescale Reverses the color mapping if true. Has an effect only if in `marker.line.color`is set to a numerical array. If true, `marker.line.cmin` will correspond to the last color in the array and `marker.line.cmax` will correspond to the first color. width Sets the width (in px) of the lines bounding the marker points. widthsrc Sets the source reference on plot.ly for width . Returns ------- plotly.graph_objs.histogram.marker.Line<|endoftext|>
be61beef094d6c59fb320a4175889023d7f44da5362f3fa62905963d0390a8ec
@property def opacity(self): "\n Sets the opacity of the bars.\n \n The 'opacity' property is a number and may be specified as:\n - An int or float in the interval [0, 1]\n - A tuple, list, or one-dimensional numpy array of the above\n\n Returns\n -------\n int|float|numpy.ndarray\n " return self['opacity']
Sets the opacity of the bars. The 'opacity' property is a number and may be specified as: - An int or float in the interval [0, 1] - A tuple, list, or one-dimensional numpy array of the above Returns ------- int|float|numpy.ndarray
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
opacity
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def opacity(self): "\n Sets the opacity of the bars.\n \n The 'opacity' property is a number and may be specified as:\n - An int or float in the interval [0, 1]\n - A tuple, list, or one-dimensional numpy array of the above\n\n Returns\n -------\n int|float|numpy.ndarray\n " return self['opacity']
@property def opacity(self): "\n Sets the opacity of the bars.\n \n The 'opacity' property is a number and may be specified as:\n - An int or float in the interval [0, 1]\n - A tuple, list, or one-dimensional numpy array of the above\n\n Returns\n -------\n int|float|numpy.ndarray\n " return self['opacity']<|docstring|>Sets the opacity of the bars. The 'opacity' property is a number and may be specified as: - An int or float in the interval [0, 1] - A tuple, list, or one-dimensional numpy array of the above Returns ------- int|float|numpy.ndarray<|endoftext|>
0f025110bda981e2841ad5e7b38b4a9b33c878f05879cb69d42c996622232193
@property def opacitysrc(self): "\n Sets the source reference on plot.ly for opacity .\n \n The 'opacitysrc' property must be specified as a string or\n as a plotly.grid_objs.Column object\n\n Returns\n -------\n str\n " return self['opacitysrc']
Sets the source reference on plot.ly for opacity . The 'opacitysrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
opacitysrc
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def opacitysrc(self): "\n Sets the source reference on plot.ly for opacity .\n \n The 'opacitysrc' property must be specified as a string or\n as a plotly.grid_objs.Column object\n\n Returns\n -------\n str\n " return self['opacitysrc']
@property def opacitysrc(self): "\n Sets the source reference on plot.ly for opacity .\n \n The 'opacitysrc' property must be specified as a string or\n as a plotly.grid_objs.Column object\n\n Returns\n -------\n str\n " return self['opacitysrc']<|docstring|>Sets the source reference on plot.ly for opacity . The 'opacitysrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str<|endoftext|>
099b512cf382b93d512ce58b963a176b31cd8d2a5b54825174c8302fa07bad46
@property def reversescale(self): "\n Reverses the color mapping if true. Has an effect only if in\n `marker.color`is set to a numerical array. If true,\n `marker.cmin` will correspond to the last color in the array\n and `marker.cmax` will correspond to the first color.\n \n The 'reversescale' property must be specified as a bool\n (either True, or False)\n\n Returns\n -------\n bool\n " return self['reversescale']
Reverses the color mapping if true. Has an effect only if in `marker.color`is set to a numerical array. If true, `marker.cmin` will correspond to the last color in the array and `marker.cmax` will correspond to the first color. The 'reversescale' property must be specified as a bool (either True, or False) Returns ------- bool
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
reversescale
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def reversescale(self): "\n Reverses the color mapping if true. Has an effect only if in\n `marker.color`is set to a numerical array. If true,\n `marker.cmin` will correspond to the last color in the array\n and `marker.cmax` will correspond to the first color.\n \n The 'reversescale' property must be specified as a bool\n (either True, or False)\n\n Returns\n -------\n bool\n " return self['reversescale']
@property def reversescale(self): "\n Reverses the color mapping if true. Has an effect only if in\n `marker.color`is set to a numerical array. If true,\n `marker.cmin` will correspond to the last color in the array\n and `marker.cmax` will correspond to the first color.\n \n The 'reversescale' property must be specified as a bool\n (either True, or False)\n\n Returns\n -------\n bool\n " return self['reversescale']<|docstring|>Reverses the color mapping if true. Has an effect only if in `marker.color`is set to a numerical array. If true, `marker.cmin` will correspond to the last color in the array and `marker.cmax` will correspond to the first color. The 'reversescale' property must be specified as a bool (either True, or False) Returns ------- bool<|endoftext|>
e6c302582eba377617c2fd503022a57bb60ec0b5135af5ee97a6c7397512414a
@property def showscale(self): "\n Determines whether or not a colorbar is displayed for this\n trace. Has an effect only if in `marker.color`is set to a\n numerical array.\n \n The 'showscale' property must be specified as a bool\n (either True, or False)\n\n Returns\n -------\n bool\n " return self['showscale']
Determines whether or not a colorbar is displayed for this trace. Has an effect only if in `marker.color`is set to a numerical array. The 'showscale' property must be specified as a bool (either True, or False) Returns ------- bool
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
showscale
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def showscale(self): "\n Determines whether or not a colorbar is displayed for this\n trace. Has an effect only if in `marker.color`is set to a\n numerical array.\n \n The 'showscale' property must be specified as a bool\n (either True, or False)\n\n Returns\n -------\n bool\n " return self['showscale']
@property def showscale(self): "\n Determines whether or not a colorbar is displayed for this\n trace. Has an effect only if in `marker.color`is set to a\n numerical array.\n \n The 'showscale' property must be specified as a bool\n (either True, or False)\n\n Returns\n -------\n bool\n " return self['showscale']<|docstring|>Determines whether or not a colorbar is displayed for this trace. Has an effect only if in `marker.color`is set to a numerical array. The 'showscale' property must be specified as a bool (either True, or False) Returns ------- bool<|endoftext|>
6ded6612592195ec37c67eff1437384c2ad6ce3a8f156eab4f955489db5308c0
def __init__(self, arg=None, autocolorscale=None, cauto=None, cmax=None, cmid=None, cmin=None, color=None, colorbar=None, colorscale=None, colorsrc=None, line=None, opacity=None, opacitysrc=None, reversescale=None, showscale=None, **kwargs): "\n Construct a new Marker object\n \n Parameters\n ----------\n arg\n dict of properties compatible with this constructor or\n an instance of plotly.graph_objs.histogram.Marker\n autocolorscale\n Determines whether the colorscale is a default palette\n (`autocolorscale: true`) or the palette determined by\n `marker.colorscale`. Has an effect only if in\n `marker.color`is set to a numerical array. In case\n `colorscale` is unspecified or `autocolorscale` is\n true, the default palette will be chosen according to\n whether numbers in the `color` array are all positive,\n all negative or mixed.\n cauto\n Determines whether or not the color domain is computed\n with respect to the input data (here in `marker.color`)\n or the bounds set in `marker.cmin` and `marker.cmax`\n Has an effect only if in `marker.color`is set to a\n numerical array. Defaults to `false` when `marker.cmin`\n and `marker.cmax` are set by the user.\n cmax\n Sets the upper bound of the color domain. Has an effect\n only if in `marker.color`is set to a numerical array.\n Value should have the same units as in `marker.color`\n and if set, `marker.cmin` must be set as well.\n cmid\n Sets the mid-point of the color domain by scaling\n `marker.cmin` and/or `marker.cmax` to be equidistant to\n this point. Has an effect only if in `marker.color`is\n set to a numerical array. Value should have the same\n units as in `marker.color`. Has no effect when\n `marker.cauto` is `false`.\n cmin\n Sets the lower bound of the color domain. Has an effect\n only if in `marker.color`is set to a numerical array.\n Value should have the same units as in `marker.color`\n and if set, `marker.cmax` must be set as well.\n color\n Sets themarkercolor. It accepts either a specific color\n or an array of numbers that are mapped to the\n colorscale relative to the max and min values of the\n array or relative to `marker.cmin` and `marker.cmax` if\n set.\n colorbar\n plotly.graph_objs.histogram.marker.ColorBar instance or\n dict with compatible properties\n colorscale\n Sets the colorscale. Has an effect only if in\n `marker.color`is set to a numerical array. The\n colorscale must be an array containing arrays mapping a\n normalized value to an rgb, rgba, hex, hsl, hsv, or\n named color string. At minimum, a mapping for the\n lowest (0) and highest (1) values are required. For\n example, `[[0, 'rgb(0,0,255)', [1, 'rgb(255,0,0)']]`.\n To control the bounds of the colorscale in color space,\n use`marker.cmin` and `marker.cmax`. Alternatively,\n `colorscale` may be a palette name string of the\n following list: Greys,YlGnBu,Greens,YlOrRd,Bluered,RdBu\n ,Reds,Blues,Picnic,Rainbow,Portland,Jet,Hot,Blackbody,E\n arth,Electric,Viridis,Cividis.\n colorsrc\n Sets the source reference on plot.ly for color .\n line\n plotly.graph_objs.histogram.marker.Line instance or\n dict with compatible properties\n opacity\n Sets the opacity of the bars.\n opacitysrc\n Sets the source reference on plot.ly for opacity .\n reversescale\n Reverses the color mapping if true. Has an effect only\n if in `marker.color`is set to a numerical array. If\n true, `marker.cmin` will correspond to the last color\n in the array and `marker.cmax` will correspond to the\n first color.\n showscale\n Determines whether or not a colorbar is displayed for\n this trace. Has an effect only if in `marker.color`is\n set to a numerical array.\n\n Returns\n -------\n Marker\n " super(Marker, self).__init__('marker') if (arg is None): arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError('The first argument to the plotly.graph_objs.histogram.Marker \nconstructor must be a dict or \nan instance of plotly.graph_objs.histogram.Marker') self._skip_invalid = kwargs.pop('skip_invalid', False) from plotly.validators.histogram import marker as v_marker self._validators['autocolorscale'] = v_marker.AutocolorscaleValidator() self._validators['cauto'] = v_marker.CautoValidator() self._validators['cmax'] = v_marker.CmaxValidator() self._validators['cmid'] = v_marker.CmidValidator() self._validators['cmin'] = v_marker.CminValidator() self._validators['color'] = v_marker.ColorValidator() self._validators['colorbar'] = v_marker.ColorBarValidator() self._validators['colorscale'] = v_marker.ColorscaleValidator() self._validators['colorsrc'] = v_marker.ColorsrcValidator() self._validators['line'] = v_marker.LineValidator() self._validators['opacity'] = v_marker.OpacityValidator() self._validators['opacitysrc'] = v_marker.OpacitysrcValidator() self._validators['reversescale'] = v_marker.ReversescaleValidator() self._validators['showscale'] = v_marker.ShowscaleValidator() _v = arg.pop('autocolorscale', None) self['autocolorscale'] = (autocolorscale if (autocolorscale is not None) else _v) _v = arg.pop('cauto', None) self['cauto'] = (cauto if (cauto is not None) else _v) _v = arg.pop('cmax', None) self['cmax'] = (cmax if (cmax is not None) else _v) _v = arg.pop('cmid', None) self['cmid'] = (cmid if (cmid is not None) else _v) _v = arg.pop('cmin', None) self['cmin'] = (cmin if (cmin is not None) else _v) _v = arg.pop('color', None) self['color'] = (color if (color is not None) else _v) _v = arg.pop('colorbar', None) self['colorbar'] = (colorbar if (colorbar is not None) else _v) _v = arg.pop('colorscale', None) self['colorscale'] = (colorscale if (colorscale is not None) else _v) _v = arg.pop('colorsrc', None) self['colorsrc'] = (colorsrc if (colorsrc is not None) else _v) _v = arg.pop('line', None) self['line'] = (line if (line is not None) else _v) _v = arg.pop('opacity', None) self['opacity'] = (opacity if (opacity is not None) else _v) _v = arg.pop('opacitysrc', None) self['opacitysrc'] = (opacitysrc if (opacitysrc is not None) else _v) _v = arg.pop('reversescale', None) self['reversescale'] = (reversescale if (reversescale is not None) else _v) _v = arg.pop('showscale', None) self['showscale'] = (showscale if (showscale is not None) else _v) self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False
Construct a new Marker object Parameters ---------- arg dict of properties compatible with this constructor or an instance of plotly.graph_objs.histogram.Marker autocolorscale Determines whether the colorscale is a default palette (`autocolorscale: true`) or the palette determined by `marker.colorscale`. Has an effect only if in `marker.color`is set to a numerical array. In case `colorscale` is unspecified or `autocolorscale` is true, the default palette will be chosen according to whether numbers in the `color` array are all positive, all negative or mixed. cauto Determines whether or not the color domain is computed with respect to the input data (here in `marker.color`) or the bounds set in `marker.cmin` and `marker.cmax` Has an effect only if in `marker.color`is set to a numerical array. Defaults to `false` when `marker.cmin` and `marker.cmax` are set by the user. cmax Sets the upper bound of the color domain. Has an effect only if in `marker.color`is set to a numerical array. Value should have the same units as in `marker.color` and if set, `marker.cmin` must be set as well. cmid Sets the mid-point of the color domain by scaling `marker.cmin` and/or `marker.cmax` to be equidistant to this point. Has an effect only if in `marker.color`is set to a numerical array. Value should have the same units as in `marker.color`. Has no effect when `marker.cauto` is `false`. cmin Sets the lower bound of the color domain. Has an effect only if in `marker.color`is set to a numerical array. Value should have the same units as in `marker.color` and if set, `marker.cmax` must be set as well. color Sets themarkercolor. It accepts either a specific color or an array of numbers that are mapped to the colorscale relative to the max and min values of the array or relative to `marker.cmin` and `marker.cmax` if set. colorbar plotly.graph_objs.histogram.marker.ColorBar instance or dict with compatible properties colorscale Sets the colorscale. Has an effect only if in `marker.color`is set to a numerical array. The colorscale must be an array containing arrays mapping a normalized value to an rgb, rgba, hex, hsl, hsv, or named color string. At minimum, a mapping for the lowest (0) and highest (1) values are required. For example, `[[0, 'rgb(0,0,255)', [1, 'rgb(255,0,0)']]`. To control the bounds of the colorscale in color space, use`marker.cmin` and `marker.cmax`. Alternatively, `colorscale` may be a palette name string of the following list: Greys,YlGnBu,Greens,YlOrRd,Bluered,RdBu ,Reds,Blues,Picnic,Rainbow,Portland,Jet,Hot,Blackbody,E arth,Electric,Viridis,Cividis. colorsrc Sets the source reference on plot.ly for color . line plotly.graph_objs.histogram.marker.Line instance or dict with compatible properties opacity Sets the opacity of the bars. opacitysrc Sets the source reference on plot.ly for opacity . reversescale Reverses the color mapping if true. Has an effect only if in `marker.color`is set to a numerical array. If true, `marker.cmin` will correspond to the last color in the array and `marker.cmax` will correspond to the first color. showscale Determines whether or not a colorbar is displayed for this trace. Has an effect only if in `marker.color`is set to a numerical array. Returns ------- Marker
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
__init__
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
def __init__(self, arg=None, autocolorscale=None, cauto=None, cmax=None, cmid=None, cmin=None, color=None, colorbar=None, colorscale=None, colorsrc=None, line=None, opacity=None, opacitysrc=None, reversescale=None, showscale=None, **kwargs): "\n Construct a new Marker object\n \n Parameters\n ----------\n arg\n dict of properties compatible with this constructor or\n an instance of plotly.graph_objs.histogram.Marker\n autocolorscale\n Determines whether the colorscale is a default palette\n (`autocolorscale: true`) or the palette determined by\n `marker.colorscale`. Has an effect only if in\n `marker.color`is set to a numerical array. In case\n `colorscale` is unspecified or `autocolorscale` is\n true, the default palette will be chosen according to\n whether numbers in the `color` array are all positive,\n all negative or mixed.\n cauto\n Determines whether or not the color domain is computed\n with respect to the input data (here in `marker.color`)\n or the bounds set in `marker.cmin` and `marker.cmax`\n Has an effect only if in `marker.color`is set to a\n numerical array. Defaults to `false` when `marker.cmin`\n and `marker.cmax` are set by the user.\n cmax\n Sets the upper bound of the color domain. Has an effect\n only if in `marker.color`is set to a numerical array.\n Value should have the same units as in `marker.color`\n and if set, `marker.cmin` must be set as well.\n cmid\n Sets the mid-point of the color domain by scaling\n `marker.cmin` and/or `marker.cmax` to be equidistant to\n this point. Has an effect only if in `marker.color`is\n set to a numerical array. Value should have the same\n units as in `marker.color`. Has no effect when\n `marker.cauto` is `false`.\n cmin\n Sets the lower bound of the color domain. Has an effect\n only if in `marker.color`is set to a numerical array.\n Value should have the same units as in `marker.color`\n and if set, `marker.cmax` must be set as well.\n color\n Sets themarkercolor. It accepts either a specific color\n or an array of numbers that are mapped to the\n colorscale relative to the max and min values of the\n array or relative to `marker.cmin` and `marker.cmax` if\n set.\n colorbar\n plotly.graph_objs.histogram.marker.ColorBar instance or\n dict with compatible properties\n colorscale\n Sets the colorscale. Has an effect only if in\n `marker.color`is set to a numerical array. The\n colorscale must be an array containing arrays mapping a\n normalized value to an rgb, rgba, hex, hsl, hsv, or\n named color string. At minimum, a mapping for the\n lowest (0) and highest (1) values are required. For\n example, `[[0, 'rgb(0,0,255)', [1, 'rgb(255,0,0)']]`.\n To control the bounds of the colorscale in color space,\n use`marker.cmin` and `marker.cmax`. Alternatively,\n `colorscale` may be a palette name string of the\n following list: Greys,YlGnBu,Greens,YlOrRd,Bluered,RdBu\n ,Reds,Blues,Picnic,Rainbow,Portland,Jet,Hot,Blackbody,E\n arth,Electric,Viridis,Cividis.\n colorsrc\n Sets the source reference on plot.ly for color .\n line\n plotly.graph_objs.histogram.marker.Line instance or\n dict with compatible properties\n opacity\n Sets the opacity of the bars.\n opacitysrc\n Sets the source reference on plot.ly for opacity .\n reversescale\n Reverses the color mapping if true. Has an effect only\n if in `marker.color`is set to a numerical array. If\n true, `marker.cmin` will correspond to the last color\n in the array and `marker.cmax` will correspond to the\n first color.\n showscale\n Determines whether or not a colorbar is displayed for\n this trace. Has an effect only if in `marker.color`is\n set to a numerical array.\n\n Returns\n -------\n Marker\n " super(Marker, self).__init__('marker') if (arg is None): arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError('The first argument to the plotly.graph_objs.histogram.Marker \nconstructor must be a dict or \nan instance of plotly.graph_objs.histogram.Marker') self._skip_invalid = kwargs.pop('skip_invalid', False) from plotly.validators.histogram import marker as v_marker self._validators['autocolorscale'] = v_marker.AutocolorscaleValidator() self._validators['cauto'] = v_marker.CautoValidator() self._validators['cmax'] = v_marker.CmaxValidator() self._validators['cmid'] = v_marker.CmidValidator() self._validators['cmin'] = v_marker.CminValidator() self._validators['color'] = v_marker.ColorValidator() self._validators['colorbar'] = v_marker.ColorBarValidator() self._validators['colorscale'] = v_marker.ColorscaleValidator() self._validators['colorsrc'] = v_marker.ColorsrcValidator() self._validators['line'] = v_marker.LineValidator() self._validators['opacity'] = v_marker.OpacityValidator() self._validators['opacitysrc'] = v_marker.OpacitysrcValidator() self._validators['reversescale'] = v_marker.ReversescaleValidator() self._validators['showscale'] = v_marker.ShowscaleValidator() _v = arg.pop('autocolorscale', None) self['autocolorscale'] = (autocolorscale if (autocolorscale is not None) else _v) _v = arg.pop('cauto', None) self['cauto'] = (cauto if (cauto is not None) else _v) _v = arg.pop('cmax', None) self['cmax'] = (cmax if (cmax is not None) else _v) _v = arg.pop('cmid', None) self['cmid'] = (cmid if (cmid is not None) else _v) _v = arg.pop('cmin', None) self['cmin'] = (cmin if (cmin is not None) else _v) _v = arg.pop('color', None) self['color'] = (color if (color is not None) else _v) _v = arg.pop('colorbar', None) self['colorbar'] = (colorbar if (colorbar is not None) else _v) _v = arg.pop('colorscale', None) self['colorscale'] = (colorscale if (colorscale is not None) else _v) _v = arg.pop('colorsrc', None) self['colorsrc'] = (colorsrc if (colorsrc is not None) else _v) _v = arg.pop('line', None) self['line'] = (line if (line is not None) else _v) _v = arg.pop('opacity', None) self['opacity'] = (opacity if (opacity is not None) else _v) _v = arg.pop('opacitysrc', None) self['opacitysrc'] = (opacitysrc if (opacitysrc is not None) else _v) _v = arg.pop('reversescale', None) self['reversescale'] = (reversescale if (reversescale is not None) else _v) _v = arg.pop('showscale', None) self['showscale'] = (showscale if (showscale is not None) else _v) self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False
def __init__(self, arg=None, autocolorscale=None, cauto=None, cmax=None, cmid=None, cmin=None, color=None, colorbar=None, colorscale=None, colorsrc=None, line=None, opacity=None, opacitysrc=None, reversescale=None, showscale=None, **kwargs): "\n Construct a new Marker object\n \n Parameters\n ----------\n arg\n dict of properties compatible with this constructor or\n an instance of plotly.graph_objs.histogram.Marker\n autocolorscale\n Determines whether the colorscale is a default palette\n (`autocolorscale: true`) or the palette determined by\n `marker.colorscale`. Has an effect only if in\n `marker.color`is set to a numerical array. In case\n `colorscale` is unspecified or `autocolorscale` is\n true, the default palette will be chosen according to\n whether numbers in the `color` array are all positive,\n all negative or mixed.\n cauto\n Determines whether or not the color domain is computed\n with respect to the input data (here in `marker.color`)\n or the bounds set in `marker.cmin` and `marker.cmax`\n Has an effect only if in `marker.color`is set to a\n numerical array. Defaults to `false` when `marker.cmin`\n and `marker.cmax` are set by the user.\n cmax\n Sets the upper bound of the color domain. Has an effect\n only if in `marker.color`is set to a numerical array.\n Value should have the same units as in `marker.color`\n and if set, `marker.cmin` must be set as well.\n cmid\n Sets the mid-point of the color domain by scaling\n `marker.cmin` and/or `marker.cmax` to be equidistant to\n this point. Has an effect only if in `marker.color`is\n set to a numerical array. Value should have the same\n units as in `marker.color`. Has no effect when\n `marker.cauto` is `false`.\n cmin\n Sets the lower bound of the color domain. Has an effect\n only if in `marker.color`is set to a numerical array.\n Value should have the same units as in `marker.color`\n and if set, `marker.cmax` must be set as well.\n color\n Sets themarkercolor. It accepts either a specific color\n or an array of numbers that are mapped to the\n colorscale relative to the max and min values of the\n array or relative to `marker.cmin` and `marker.cmax` if\n set.\n colorbar\n plotly.graph_objs.histogram.marker.ColorBar instance or\n dict with compatible properties\n colorscale\n Sets the colorscale. Has an effect only if in\n `marker.color`is set to a numerical array. The\n colorscale must be an array containing arrays mapping a\n normalized value to an rgb, rgba, hex, hsl, hsv, or\n named color string. At minimum, a mapping for the\n lowest (0) and highest (1) values are required. For\n example, `[[0, 'rgb(0,0,255)', [1, 'rgb(255,0,0)']]`.\n To control the bounds of the colorscale in color space,\n use`marker.cmin` and `marker.cmax`. Alternatively,\n `colorscale` may be a palette name string of the\n following list: Greys,YlGnBu,Greens,YlOrRd,Bluered,RdBu\n ,Reds,Blues,Picnic,Rainbow,Portland,Jet,Hot,Blackbody,E\n arth,Electric,Viridis,Cividis.\n colorsrc\n Sets the source reference on plot.ly for color .\n line\n plotly.graph_objs.histogram.marker.Line instance or\n dict with compatible properties\n opacity\n Sets the opacity of the bars.\n opacitysrc\n Sets the source reference on plot.ly for opacity .\n reversescale\n Reverses the color mapping if true. Has an effect only\n if in `marker.color`is set to a numerical array. If\n true, `marker.cmin` will correspond to the last color\n in the array and `marker.cmax` will correspond to the\n first color.\n showscale\n Determines whether or not a colorbar is displayed for\n this trace. Has an effect only if in `marker.color`is\n set to a numerical array.\n\n Returns\n -------\n Marker\n " super(Marker, self).__init__('marker') if (arg is None): arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError('The first argument to the plotly.graph_objs.histogram.Marker \nconstructor must be a dict or \nan instance of plotly.graph_objs.histogram.Marker') self._skip_invalid = kwargs.pop('skip_invalid', False) from plotly.validators.histogram import marker as v_marker self._validators['autocolorscale'] = v_marker.AutocolorscaleValidator() self._validators['cauto'] = v_marker.CautoValidator() self._validators['cmax'] = v_marker.CmaxValidator() self._validators['cmid'] = v_marker.CmidValidator() self._validators['cmin'] = v_marker.CminValidator() self._validators['color'] = v_marker.ColorValidator() self._validators['colorbar'] = v_marker.ColorBarValidator() self._validators['colorscale'] = v_marker.ColorscaleValidator() self._validators['colorsrc'] = v_marker.ColorsrcValidator() self._validators['line'] = v_marker.LineValidator() self._validators['opacity'] = v_marker.OpacityValidator() self._validators['opacitysrc'] = v_marker.OpacitysrcValidator() self._validators['reversescale'] = v_marker.ReversescaleValidator() self._validators['showscale'] = v_marker.ShowscaleValidator() _v = arg.pop('autocolorscale', None) self['autocolorscale'] = (autocolorscale if (autocolorscale is not None) else _v) _v = arg.pop('cauto', None) self['cauto'] = (cauto if (cauto is not None) else _v) _v = arg.pop('cmax', None) self['cmax'] = (cmax if (cmax is not None) else _v) _v = arg.pop('cmid', None) self['cmid'] = (cmid if (cmid is not None) else _v) _v = arg.pop('cmin', None) self['cmin'] = (cmin if (cmin is not None) else _v) _v = arg.pop('color', None) self['color'] = (color if (color is not None) else _v) _v = arg.pop('colorbar', None) self['colorbar'] = (colorbar if (colorbar is not None) else _v) _v = arg.pop('colorscale', None) self['colorscale'] = (colorscale if (colorscale is not None) else _v) _v = arg.pop('colorsrc', None) self['colorsrc'] = (colorsrc if (colorsrc is not None) else _v) _v = arg.pop('line', None) self['line'] = (line if (line is not None) else _v) _v = arg.pop('opacity', None) self['opacity'] = (opacity if (opacity is not None) else _v) _v = arg.pop('opacitysrc', None) self['opacitysrc'] = (opacitysrc if (opacitysrc is not None) else _v) _v = arg.pop('reversescale', None) self['reversescale'] = (reversescale if (reversescale is not None) else _v) _v = arg.pop('showscale', None) self['showscale'] = (showscale if (showscale is not None) else _v) self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False<|docstring|>Construct a new Marker object Parameters ---------- arg dict of properties compatible with this constructor or an instance of plotly.graph_objs.histogram.Marker autocolorscale Determines whether the colorscale is a default palette (`autocolorscale: true`) or the palette determined by `marker.colorscale`. Has an effect only if in `marker.color`is set to a numerical array. In case `colorscale` is unspecified or `autocolorscale` is true, the default palette will be chosen according to whether numbers in the `color` array are all positive, all negative or mixed. cauto Determines whether or not the color domain is computed with respect to the input data (here in `marker.color`) or the bounds set in `marker.cmin` and `marker.cmax` Has an effect only if in `marker.color`is set to a numerical array. Defaults to `false` when `marker.cmin` and `marker.cmax` are set by the user. cmax Sets the upper bound of the color domain. Has an effect only if in `marker.color`is set to a numerical array. Value should have the same units as in `marker.color` and if set, `marker.cmin` must be set as well. cmid Sets the mid-point of the color domain by scaling `marker.cmin` and/or `marker.cmax` to be equidistant to this point. Has an effect only if in `marker.color`is set to a numerical array. Value should have the same units as in `marker.color`. Has no effect when `marker.cauto` is `false`. cmin Sets the lower bound of the color domain. Has an effect only if in `marker.color`is set to a numerical array. Value should have the same units as in `marker.color` and if set, `marker.cmax` must be set as well. color Sets themarkercolor. It accepts either a specific color or an array of numbers that are mapped to the colorscale relative to the max and min values of the array or relative to `marker.cmin` and `marker.cmax` if set. colorbar plotly.graph_objs.histogram.marker.ColorBar instance or dict with compatible properties colorscale Sets the colorscale. Has an effect only if in `marker.color`is set to a numerical array. The colorscale must be an array containing arrays mapping a normalized value to an rgb, rgba, hex, hsl, hsv, or named color string. At minimum, a mapping for the lowest (0) and highest (1) values are required. For example, `[[0, 'rgb(0,0,255)', [1, 'rgb(255,0,0)']]`. To control the bounds of the colorscale in color space, use`marker.cmin` and `marker.cmax`. Alternatively, `colorscale` may be a palette name string of the following list: Greys,YlGnBu,Greens,YlOrRd,Bluered,RdBu ,Reds,Blues,Picnic,Rainbow,Portland,Jet,Hot,Blackbody,E arth,Electric,Viridis,Cividis. colorsrc Sets the source reference on plot.ly for color . line plotly.graph_objs.histogram.marker.Line instance or dict with compatible properties opacity Sets the opacity of the bars. opacitysrc Sets the source reference on plot.ly for opacity . reversescale Reverses the color mapping if true. Has an effect only if in `marker.color`is set to a numerical array. If true, `marker.cmin` will correspond to the last color in the array and `marker.cmax` will correspond to the first color. showscale Determines whether or not a colorbar is displayed for this trace. Has an effect only if in `marker.color`is set to a numerical array. Returns ------- Marker<|endoftext|>
5301c30ab78e6f1ab9e86d272eddd3b60e05cb7e8fe1f029c50097b55be21da0
@property def align(self): "\n Sets the horizontal alignment of the text content within hover\n label box. Has an effect only if the hover label text spans\n more two or more lines\n \n The 'align' property is an enumeration that may be specified as:\n - One of the following enumeration values:\n ['left', 'right', 'auto']\n - A tuple, list, or one-dimensional numpy array of the above\n\n Returns\n -------\n Any|numpy.ndarray\n " return self['align']
Sets the horizontal alignment of the text content within hover label box. Has an effect only if the hover label text spans more two or more lines The 'align' property is an enumeration that may be specified as: - One of the following enumeration values: ['left', 'right', 'auto'] - A tuple, list, or one-dimensional numpy array of the above Returns ------- Any|numpy.ndarray
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
align
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def align(self): "\n Sets the horizontal alignment of the text content within hover\n label box. Has an effect only if the hover label text spans\n more two or more lines\n \n The 'align' property is an enumeration that may be specified as:\n - One of the following enumeration values:\n ['left', 'right', 'auto']\n - A tuple, list, or one-dimensional numpy array of the above\n\n Returns\n -------\n Any|numpy.ndarray\n " return self['align']
@property def align(self): "\n Sets the horizontal alignment of the text content within hover\n label box. Has an effect only if the hover label text spans\n more two or more lines\n \n The 'align' property is an enumeration that may be specified as:\n - One of the following enumeration values:\n ['left', 'right', 'auto']\n - A tuple, list, or one-dimensional numpy array of the above\n\n Returns\n -------\n Any|numpy.ndarray\n " return self['align']<|docstring|>Sets the horizontal alignment of the text content within hover label box. Has an effect only if the hover label text spans more two or more lines The 'align' property is an enumeration that may be specified as: - One of the following enumeration values: ['left', 'right', 'auto'] - A tuple, list, or one-dimensional numpy array of the above Returns ------- Any|numpy.ndarray<|endoftext|>
8bb4f058c296dead8179caeb61e31cf03ea2256a2f91f1f861e313e0c3ac601d
@property def alignsrc(self): "\n Sets the source reference on plot.ly for align .\n \n The 'alignsrc' property must be specified as a string or\n as a plotly.grid_objs.Column object\n\n Returns\n -------\n str\n " return self['alignsrc']
Sets the source reference on plot.ly for align . The 'alignsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
alignsrc
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def alignsrc(self): "\n Sets the source reference on plot.ly for align .\n \n The 'alignsrc' property must be specified as a string or\n as a plotly.grid_objs.Column object\n\n Returns\n -------\n str\n " return self['alignsrc']
@property def alignsrc(self): "\n Sets the source reference on plot.ly for align .\n \n The 'alignsrc' property must be specified as a string or\n as a plotly.grid_objs.Column object\n\n Returns\n -------\n str\n " return self['alignsrc']<|docstring|>Sets the source reference on plot.ly for align . The 'alignsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str<|endoftext|>
8eed9d5868858181967d59795b94e8b1991f40d2e49e51e585885e581309d25d
@property def bgcolor(self): "\n Sets the background color of the hover labels for this trace\n \n The 'bgcolor' property is a color and may be specified as:\n - A hex string (e.g. '#ff0000')\n - An rgb/rgba string (e.g. 'rgb(255,0,0)')\n - An hsl/hsla string (e.g. 'hsl(0,100%,50%)')\n - An hsv/hsva string (e.g. 'hsv(0,100%,100%)')\n - A named CSS color:\n aliceblue, antiquewhite, aqua, aquamarine, azure,\n beige, bisque, black, blanchedalmond, blue,\n blueviolet, brown, burlywood, cadetblue,\n chartreuse, chocolate, coral, cornflowerblue,\n cornsilk, crimson, cyan, darkblue, darkcyan,\n darkgoldenrod, darkgray, darkgrey, darkgreen,\n darkkhaki, darkmagenta, darkolivegreen, darkorange,\n darkorchid, darkred, darksalmon, darkseagreen,\n darkslateblue, darkslategray, darkslategrey,\n darkturquoise, darkviolet, deeppink, deepskyblue,\n dimgray, dimgrey, dodgerblue, firebrick,\n floralwhite, forestgreen, fuchsia, gainsboro,\n ghostwhite, gold, goldenrod, gray, grey, green,\n greenyellow, honeydew, hotpink, indianred, indigo,\n ivory, khaki, lavender, lavenderblush, lawngreen,\n lemonchiffon, lightblue, lightcoral, lightcyan,\n lightgoldenrodyellow, lightgray, lightgrey,\n lightgreen, lightpink, lightsalmon, lightseagreen,\n lightskyblue, lightslategray, lightslategrey,\n lightsteelblue, lightyellow, lime, limegreen,\n linen, magenta, maroon, mediumaquamarine,\n mediumblue, mediumorchid, mediumpurple,\n mediumseagreen, mediumslateblue, mediumspringgreen,\n mediumturquoise, mediumvioletred, midnightblue,\n mintcream, mistyrose, moccasin, navajowhite, navy,\n oldlace, olive, olivedrab, orange, orangered,\n orchid, palegoldenrod, palegreen, paleturquoise,\n palevioletred, papayawhip, peachpuff, peru, pink,\n plum, powderblue, purple, red, rosybrown,\n royalblue, saddlebrown, salmon, sandybrown,\n seagreen, seashell, sienna, silver, skyblue,\n slateblue, slategray, slategrey, snow, springgreen,\n steelblue, tan, teal, thistle, tomato, turquoise,\n violet, wheat, white, whitesmoke, yellow,\n yellowgreen\n - A list or array of any of the above\n\n Returns\n -------\n str|numpy.ndarray\n " return self['bgcolor']
Sets the background color of the hover labels for this trace The 'bgcolor' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen - A list or array of any of the above Returns ------- str|numpy.ndarray
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
bgcolor
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def bgcolor(self): "\n Sets the background color of the hover labels for this trace\n \n The 'bgcolor' property is a color and may be specified as:\n - A hex string (e.g. '#ff0000')\n - An rgb/rgba string (e.g. 'rgb(255,0,0)')\n - An hsl/hsla string (e.g. 'hsl(0,100%,50%)')\n - An hsv/hsva string (e.g. 'hsv(0,100%,100%)')\n - A named CSS color:\n aliceblue, antiquewhite, aqua, aquamarine, azure,\n beige, bisque, black, blanchedalmond, blue,\n blueviolet, brown, burlywood, cadetblue,\n chartreuse, chocolate, coral, cornflowerblue,\n cornsilk, crimson, cyan, darkblue, darkcyan,\n darkgoldenrod, darkgray, darkgrey, darkgreen,\n darkkhaki, darkmagenta, darkolivegreen, darkorange,\n darkorchid, darkred, darksalmon, darkseagreen,\n darkslateblue, darkslategray, darkslategrey,\n darkturquoise, darkviolet, deeppink, deepskyblue,\n dimgray, dimgrey, dodgerblue, firebrick,\n floralwhite, forestgreen, fuchsia, gainsboro,\n ghostwhite, gold, goldenrod, gray, grey, green,\n greenyellow, honeydew, hotpink, indianred, indigo,\n ivory, khaki, lavender, lavenderblush, lawngreen,\n lemonchiffon, lightblue, lightcoral, lightcyan,\n lightgoldenrodyellow, lightgray, lightgrey,\n lightgreen, lightpink, lightsalmon, lightseagreen,\n lightskyblue, lightslategray, lightslategrey,\n lightsteelblue, lightyellow, lime, limegreen,\n linen, magenta, maroon, mediumaquamarine,\n mediumblue, mediumorchid, mediumpurple,\n mediumseagreen, mediumslateblue, mediumspringgreen,\n mediumturquoise, mediumvioletred, midnightblue,\n mintcream, mistyrose, moccasin, navajowhite, navy,\n oldlace, olive, olivedrab, orange, orangered,\n orchid, palegoldenrod, palegreen, paleturquoise,\n palevioletred, papayawhip, peachpuff, peru, pink,\n plum, powderblue, purple, red, rosybrown,\n royalblue, saddlebrown, salmon, sandybrown,\n seagreen, seashell, sienna, silver, skyblue,\n slateblue, slategray, slategrey, snow, springgreen,\n steelblue, tan, teal, thistle, tomato, turquoise,\n violet, wheat, white, whitesmoke, yellow,\n yellowgreen\n - A list or array of any of the above\n\n Returns\n -------\n str|numpy.ndarray\n " return self['bgcolor']
@property def bgcolor(self): "\n Sets the background color of the hover labels for this trace\n \n The 'bgcolor' property is a color and may be specified as:\n - A hex string (e.g. '#ff0000')\n - An rgb/rgba string (e.g. 'rgb(255,0,0)')\n - An hsl/hsla string (e.g. 'hsl(0,100%,50%)')\n - An hsv/hsva string (e.g. 'hsv(0,100%,100%)')\n - A named CSS color:\n aliceblue, antiquewhite, aqua, aquamarine, azure,\n beige, bisque, black, blanchedalmond, blue,\n blueviolet, brown, burlywood, cadetblue,\n chartreuse, chocolate, coral, cornflowerblue,\n cornsilk, crimson, cyan, darkblue, darkcyan,\n darkgoldenrod, darkgray, darkgrey, darkgreen,\n darkkhaki, darkmagenta, darkolivegreen, darkorange,\n darkorchid, darkred, darksalmon, darkseagreen,\n darkslateblue, darkslategray, darkslategrey,\n darkturquoise, darkviolet, deeppink, deepskyblue,\n dimgray, dimgrey, dodgerblue, firebrick,\n floralwhite, forestgreen, fuchsia, gainsboro,\n ghostwhite, gold, goldenrod, gray, grey, green,\n greenyellow, honeydew, hotpink, indianred, indigo,\n ivory, khaki, lavender, lavenderblush, lawngreen,\n lemonchiffon, lightblue, lightcoral, lightcyan,\n lightgoldenrodyellow, lightgray, lightgrey,\n lightgreen, lightpink, lightsalmon, lightseagreen,\n lightskyblue, lightslategray, lightslategrey,\n lightsteelblue, lightyellow, lime, limegreen,\n linen, magenta, maroon, mediumaquamarine,\n mediumblue, mediumorchid, mediumpurple,\n mediumseagreen, mediumslateblue, mediumspringgreen,\n mediumturquoise, mediumvioletred, midnightblue,\n mintcream, mistyrose, moccasin, navajowhite, navy,\n oldlace, olive, olivedrab, orange, orangered,\n orchid, palegoldenrod, palegreen, paleturquoise,\n palevioletred, papayawhip, peachpuff, peru, pink,\n plum, powderblue, purple, red, rosybrown,\n royalblue, saddlebrown, salmon, sandybrown,\n seagreen, seashell, sienna, silver, skyblue,\n slateblue, slategray, slategrey, snow, springgreen,\n steelblue, tan, teal, thistle, tomato, turquoise,\n violet, wheat, white, whitesmoke, yellow,\n yellowgreen\n - A list or array of any of the above\n\n Returns\n -------\n str|numpy.ndarray\n " return self['bgcolor']<|docstring|>Sets the background color of the hover labels for this trace The 'bgcolor' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen - A list or array of any of the above Returns ------- str|numpy.ndarray<|endoftext|>
734645bbcd2b110057995038d6a194ed2dc34c7bb8130f6693e04452f07c63db
@property def bgcolorsrc(self): "\n Sets the source reference on plot.ly for bgcolor .\n \n The 'bgcolorsrc' property must be specified as a string or\n as a plotly.grid_objs.Column object\n\n Returns\n -------\n str\n " return self['bgcolorsrc']
Sets the source reference on plot.ly for bgcolor . The 'bgcolorsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
bgcolorsrc
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def bgcolorsrc(self): "\n Sets the source reference on plot.ly for bgcolor .\n \n The 'bgcolorsrc' property must be specified as a string or\n as a plotly.grid_objs.Column object\n\n Returns\n -------\n str\n " return self['bgcolorsrc']
@property def bgcolorsrc(self): "\n Sets the source reference on plot.ly for bgcolor .\n \n The 'bgcolorsrc' property must be specified as a string or\n as a plotly.grid_objs.Column object\n\n Returns\n -------\n str\n " return self['bgcolorsrc']<|docstring|>Sets the source reference on plot.ly for bgcolor . The 'bgcolorsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str<|endoftext|>
3b97d65abd351dea22ea2dfb5811566428a74fb01ef95a7154a0b517335380ab
@property def bordercolor(self): "\n Sets the border color of the hover labels for this trace.\n \n The 'bordercolor' property is a color and may be specified as:\n - A hex string (e.g. '#ff0000')\n - An rgb/rgba string (e.g. 'rgb(255,0,0)')\n - An hsl/hsla string (e.g. 'hsl(0,100%,50%)')\n - An hsv/hsva string (e.g. 'hsv(0,100%,100%)')\n - A named CSS color:\n aliceblue, antiquewhite, aqua, aquamarine, azure,\n beige, bisque, black, blanchedalmond, blue,\n blueviolet, brown, burlywood, cadetblue,\n chartreuse, chocolate, coral, cornflowerblue,\n cornsilk, crimson, cyan, darkblue, darkcyan,\n darkgoldenrod, darkgray, darkgrey, darkgreen,\n darkkhaki, darkmagenta, darkolivegreen, darkorange,\n darkorchid, darkred, darksalmon, darkseagreen,\n darkslateblue, darkslategray, darkslategrey,\n darkturquoise, darkviolet, deeppink, deepskyblue,\n dimgray, dimgrey, dodgerblue, firebrick,\n floralwhite, forestgreen, fuchsia, gainsboro,\n ghostwhite, gold, goldenrod, gray, grey, green,\n greenyellow, honeydew, hotpink, indianred, indigo,\n ivory, khaki, lavender, lavenderblush, lawngreen,\n lemonchiffon, lightblue, lightcoral, lightcyan,\n lightgoldenrodyellow, lightgray, lightgrey,\n lightgreen, lightpink, lightsalmon, lightseagreen,\n lightskyblue, lightslategray, lightslategrey,\n lightsteelblue, lightyellow, lime, limegreen,\n linen, magenta, maroon, mediumaquamarine,\n mediumblue, mediumorchid, mediumpurple,\n mediumseagreen, mediumslateblue, mediumspringgreen,\n mediumturquoise, mediumvioletred, midnightblue,\n mintcream, mistyrose, moccasin, navajowhite, navy,\n oldlace, olive, olivedrab, orange, orangered,\n orchid, palegoldenrod, palegreen, paleturquoise,\n palevioletred, papayawhip, peachpuff, peru, pink,\n plum, powderblue, purple, red, rosybrown,\n royalblue, saddlebrown, salmon, sandybrown,\n seagreen, seashell, sienna, silver, skyblue,\n slateblue, slategray, slategrey, snow, springgreen,\n steelblue, tan, teal, thistle, tomato, turquoise,\n violet, wheat, white, whitesmoke, yellow,\n yellowgreen\n - A list or array of any of the above\n\n Returns\n -------\n str|numpy.ndarray\n " return self['bordercolor']
Sets the border color of the hover labels for this trace. The 'bordercolor' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen - A list or array of any of the above Returns ------- str|numpy.ndarray
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
bordercolor
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def bordercolor(self): "\n Sets the border color of the hover labels for this trace.\n \n The 'bordercolor' property is a color and may be specified as:\n - A hex string (e.g. '#ff0000')\n - An rgb/rgba string (e.g. 'rgb(255,0,0)')\n - An hsl/hsla string (e.g. 'hsl(0,100%,50%)')\n - An hsv/hsva string (e.g. 'hsv(0,100%,100%)')\n - A named CSS color:\n aliceblue, antiquewhite, aqua, aquamarine, azure,\n beige, bisque, black, blanchedalmond, blue,\n blueviolet, brown, burlywood, cadetblue,\n chartreuse, chocolate, coral, cornflowerblue,\n cornsilk, crimson, cyan, darkblue, darkcyan,\n darkgoldenrod, darkgray, darkgrey, darkgreen,\n darkkhaki, darkmagenta, darkolivegreen, darkorange,\n darkorchid, darkred, darksalmon, darkseagreen,\n darkslateblue, darkslategray, darkslategrey,\n darkturquoise, darkviolet, deeppink, deepskyblue,\n dimgray, dimgrey, dodgerblue, firebrick,\n floralwhite, forestgreen, fuchsia, gainsboro,\n ghostwhite, gold, goldenrod, gray, grey, green,\n greenyellow, honeydew, hotpink, indianred, indigo,\n ivory, khaki, lavender, lavenderblush, lawngreen,\n lemonchiffon, lightblue, lightcoral, lightcyan,\n lightgoldenrodyellow, lightgray, lightgrey,\n lightgreen, lightpink, lightsalmon, lightseagreen,\n lightskyblue, lightslategray, lightslategrey,\n lightsteelblue, lightyellow, lime, limegreen,\n linen, magenta, maroon, mediumaquamarine,\n mediumblue, mediumorchid, mediumpurple,\n mediumseagreen, mediumslateblue, mediumspringgreen,\n mediumturquoise, mediumvioletred, midnightblue,\n mintcream, mistyrose, moccasin, navajowhite, navy,\n oldlace, olive, olivedrab, orange, orangered,\n orchid, palegoldenrod, palegreen, paleturquoise,\n palevioletred, papayawhip, peachpuff, peru, pink,\n plum, powderblue, purple, red, rosybrown,\n royalblue, saddlebrown, salmon, sandybrown,\n seagreen, seashell, sienna, silver, skyblue,\n slateblue, slategray, slategrey, snow, springgreen,\n steelblue, tan, teal, thistle, tomato, turquoise,\n violet, wheat, white, whitesmoke, yellow,\n yellowgreen\n - A list or array of any of the above\n\n Returns\n -------\n str|numpy.ndarray\n " return self['bordercolor']
@property def bordercolor(self): "\n Sets the border color of the hover labels for this trace.\n \n The 'bordercolor' property is a color and may be specified as:\n - A hex string (e.g. '#ff0000')\n - An rgb/rgba string (e.g. 'rgb(255,0,0)')\n - An hsl/hsla string (e.g. 'hsl(0,100%,50%)')\n - An hsv/hsva string (e.g. 'hsv(0,100%,100%)')\n - A named CSS color:\n aliceblue, antiquewhite, aqua, aquamarine, azure,\n beige, bisque, black, blanchedalmond, blue,\n blueviolet, brown, burlywood, cadetblue,\n chartreuse, chocolate, coral, cornflowerblue,\n cornsilk, crimson, cyan, darkblue, darkcyan,\n darkgoldenrod, darkgray, darkgrey, darkgreen,\n darkkhaki, darkmagenta, darkolivegreen, darkorange,\n darkorchid, darkred, darksalmon, darkseagreen,\n darkslateblue, darkslategray, darkslategrey,\n darkturquoise, darkviolet, deeppink, deepskyblue,\n dimgray, dimgrey, dodgerblue, firebrick,\n floralwhite, forestgreen, fuchsia, gainsboro,\n ghostwhite, gold, goldenrod, gray, grey, green,\n greenyellow, honeydew, hotpink, indianred, indigo,\n ivory, khaki, lavender, lavenderblush, lawngreen,\n lemonchiffon, lightblue, lightcoral, lightcyan,\n lightgoldenrodyellow, lightgray, lightgrey,\n lightgreen, lightpink, lightsalmon, lightseagreen,\n lightskyblue, lightslategray, lightslategrey,\n lightsteelblue, lightyellow, lime, limegreen,\n linen, magenta, maroon, mediumaquamarine,\n mediumblue, mediumorchid, mediumpurple,\n mediumseagreen, mediumslateblue, mediumspringgreen,\n mediumturquoise, mediumvioletred, midnightblue,\n mintcream, mistyrose, moccasin, navajowhite, navy,\n oldlace, olive, olivedrab, orange, orangered,\n orchid, palegoldenrod, palegreen, paleturquoise,\n palevioletred, papayawhip, peachpuff, peru, pink,\n plum, powderblue, purple, red, rosybrown,\n royalblue, saddlebrown, salmon, sandybrown,\n seagreen, seashell, sienna, silver, skyblue,\n slateblue, slategray, slategrey, snow, springgreen,\n steelblue, tan, teal, thistle, tomato, turquoise,\n violet, wheat, white, whitesmoke, yellow,\n yellowgreen\n - A list or array of any of the above\n\n Returns\n -------\n str|numpy.ndarray\n " return self['bordercolor']<|docstring|>Sets the border color of the hover labels for this trace. The 'bordercolor' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen - A list or array of any of the above Returns ------- str|numpy.ndarray<|endoftext|>
9a11abb94a4c3010e01ce26afaa2d33cb993e0e6a7c8c797929bda4cc941e357
@property def bordercolorsrc(self): "\n Sets the source reference on plot.ly for bordercolor .\n \n The 'bordercolorsrc' property must be specified as a string or\n as a plotly.grid_objs.Column object\n\n Returns\n -------\n str\n " return self['bordercolorsrc']
Sets the source reference on plot.ly for bordercolor . The 'bordercolorsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
bordercolorsrc
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def bordercolorsrc(self): "\n Sets the source reference on plot.ly for bordercolor .\n \n The 'bordercolorsrc' property must be specified as a string or\n as a plotly.grid_objs.Column object\n\n Returns\n -------\n str\n " return self['bordercolorsrc']
@property def bordercolorsrc(self): "\n Sets the source reference on plot.ly for bordercolor .\n \n The 'bordercolorsrc' property must be specified as a string or\n as a plotly.grid_objs.Column object\n\n Returns\n -------\n str\n " return self['bordercolorsrc']<|docstring|>Sets the source reference on plot.ly for bordercolor . The 'bordercolorsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str<|endoftext|>
bae2cddcac603a6e3a784d4bbb19c1c19493a9c339a0ca38da9f1507164370b7
@property def font(self): '\n Sets the font used in hover labels.\n \n The \'font\' property is an instance of Font\n that may be specified as:\n - An instance of plotly.graph_objs.histogram.hoverlabel.Font\n - A dict of string/value properties that will be passed\n to the Font constructor\n \n Supported dict properties:\n \n color\n \n colorsrc\n Sets the source reference on plot.ly for color\n .\n family\n HTML font family - the typeface that will be\n applied by the web browser. The web browser\n will only be able to apply a font if it is\n available on the system which it operates.\n Provide multiple font families, separated by\n commas, to indicate the preference in which to\n apply fonts if they aren\'t available on the\n system. The plotly service (at https://plot.ly\n or on-premise) generates images on a server,\n where only a select number of fonts are\n installed and supported. These include "Arial",\n "Balto", "Courier New", "Droid Sans",, "Droid\n Serif", "Droid Sans Mono", "Gravitas One", "Old\n Standard TT", "Open Sans", "Overpass", "PT Sans\n Narrow", "Raleway", "Times New Roman".\n familysrc\n Sets the source reference on plot.ly for\n family .\n size\n \n sizesrc\n Sets the source reference on plot.ly for size\n .\n\n Returns\n -------\n plotly.graph_objs.histogram.hoverlabel.Font\n ' return self['font']
Sets the font used in hover labels. The 'font' property is an instance of Font that may be specified as: - An instance of plotly.graph_objs.histogram.hoverlabel.Font - A dict of string/value properties that will be passed to the Font constructor Supported dict properties: color colorsrc Sets the source reference on plot.ly for color . family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The plotly service (at https://plot.ly or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". familysrc Sets the source reference on plot.ly for family . size sizesrc Sets the source reference on plot.ly for size . Returns ------- plotly.graph_objs.histogram.hoverlabel.Font
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
font
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def font(self): '\n Sets the font used in hover labels.\n \n The \'font\' property is an instance of Font\n that may be specified as:\n - An instance of plotly.graph_objs.histogram.hoverlabel.Font\n - A dict of string/value properties that will be passed\n to the Font constructor\n \n Supported dict properties:\n \n color\n \n colorsrc\n Sets the source reference on plot.ly for color\n .\n family\n HTML font family - the typeface that will be\n applied by the web browser. The web browser\n will only be able to apply a font if it is\n available on the system which it operates.\n Provide multiple font families, separated by\n commas, to indicate the preference in which to\n apply fonts if they aren\'t available on the\n system. The plotly service (at https://plot.ly\n or on-premise) generates images on a server,\n where only a select number of fonts are\n installed and supported. These include "Arial",\n "Balto", "Courier New", "Droid Sans",, "Droid\n Serif", "Droid Sans Mono", "Gravitas One", "Old\n Standard TT", "Open Sans", "Overpass", "PT Sans\n Narrow", "Raleway", "Times New Roman".\n familysrc\n Sets the source reference on plot.ly for\n family .\n size\n \n sizesrc\n Sets the source reference on plot.ly for size\n .\n\n Returns\n -------\n plotly.graph_objs.histogram.hoverlabel.Font\n ' return self['font']
@property def font(self): '\n Sets the font used in hover labels.\n \n The \'font\' property is an instance of Font\n that may be specified as:\n - An instance of plotly.graph_objs.histogram.hoverlabel.Font\n - A dict of string/value properties that will be passed\n to the Font constructor\n \n Supported dict properties:\n \n color\n \n colorsrc\n Sets the source reference on plot.ly for color\n .\n family\n HTML font family - the typeface that will be\n applied by the web browser. The web browser\n will only be able to apply a font if it is\n available on the system which it operates.\n Provide multiple font families, separated by\n commas, to indicate the preference in which to\n apply fonts if they aren\'t available on the\n system. The plotly service (at https://plot.ly\n or on-premise) generates images on a server,\n where only a select number of fonts are\n installed and supported. These include "Arial",\n "Balto", "Courier New", "Droid Sans",, "Droid\n Serif", "Droid Sans Mono", "Gravitas One", "Old\n Standard TT", "Open Sans", "Overpass", "PT Sans\n Narrow", "Raleway", "Times New Roman".\n familysrc\n Sets the source reference on plot.ly for\n family .\n size\n \n sizesrc\n Sets the source reference on plot.ly for size\n .\n\n Returns\n -------\n plotly.graph_objs.histogram.hoverlabel.Font\n ' return self['font']<|docstring|>Sets the font used in hover labels. The 'font' property is an instance of Font that may be specified as: - An instance of plotly.graph_objs.histogram.hoverlabel.Font - A dict of string/value properties that will be passed to the Font constructor Supported dict properties: color colorsrc Sets the source reference on plot.ly for color . family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The plotly service (at https://plot.ly or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". familysrc Sets the source reference on plot.ly for family . size sizesrc Sets the source reference on plot.ly for size . Returns ------- plotly.graph_objs.histogram.hoverlabel.Font<|endoftext|>
2f7bde1e26f505002de05329478ebeb33b5e87126b92506d5a350ae09df0303b
@property def namelength(self): "\n Sets the default length (in number of characters) of the trace\n name in the hover labels for all traces. -1 shows the whole\n name regardless of length. 0-3 shows the first 0-3 characters,\n and an integer >3 will show the whole name if it is less than\n that many characters, but if it is longer, will truncate to\n `namelength - 3` characters and add an ellipsis.\n \n The 'namelength' property is a integer and may be specified as:\n - An int (or float that will be cast to an int)\n in the interval [-1, 9223372036854775807]\n - A tuple, list, or one-dimensional numpy array of the above\n\n Returns\n -------\n int|numpy.ndarray\n " return self['namelength']
Sets the default length (in number of characters) of the trace name in the hover labels for all traces. -1 shows the whole name regardless of length. 0-3 shows the first 0-3 characters, and an integer >3 will show the whole name if it is less than that many characters, but if it is longer, will truncate to `namelength - 3` characters and add an ellipsis. The 'namelength' property is a integer and may be specified as: - An int (or float that will be cast to an int) in the interval [-1, 9223372036854775807] - A tuple, list, or one-dimensional numpy array of the above Returns ------- int|numpy.ndarray
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
namelength
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def namelength(self): "\n Sets the default length (in number of characters) of the trace\n name in the hover labels for all traces. -1 shows the whole\n name regardless of length. 0-3 shows the first 0-3 characters,\n and an integer >3 will show the whole name if it is less than\n that many characters, but if it is longer, will truncate to\n `namelength - 3` characters and add an ellipsis.\n \n The 'namelength' property is a integer and may be specified as:\n - An int (or float that will be cast to an int)\n in the interval [-1, 9223372036854775807]\n - A tuple, list, or one-dimensional numpy array of the above\n\n Returns\n -------\n int|numpy.ndarray\n " return self['namelength']
@property def namelength(self): "\n Sets the default length (in number of characters) of the trace\n name in the hover labels for all traces. -1 shows the whole\n name regardless of length. 0-3 shows the first 0-3 characters,\n and an integer >3 will show the whole name if it is less than\n that many characters, but if it is longer, will truncate to\n `namelength - 3` characters and add an ellipsis.\n \n The 'namelength' property is a integer and may be specified as:\n - An int (or float that will be cast to an int)\n in the interval [-1, 9223372036854775807]\n - A tuple, list, or one-dimensional numpy array of the above\n\n Returns\n -------\n int|numpy.ndarray\n " return self['namelength']<|docstring|>Sets the default length (in number of characters) of the trace name in the hover labels for all traces. -1 shows the whole name regardless of length. 0-3 shows the first 0-3 characters, and an integer >3 will show the whole name if it is less than that many characters, but if it is longer, will truncate to `namelength - 3` characters and add an ellipsis. The 'namelength' property is a integer and may be specified as: - An int (or float that will be cast to an int) in the interval [-1, 9223372036854775807] - A tuple, list, or one-dimensional numpy array of the above Returns ------- int|numpy.ndarray<|endoftext|>
03355f85603df3f35b986c27a5a58e1f38b29593abb1771dbc701124cbf2eea7
@property def namelengthsrc(self): "\n Sets the source reference on plot.ly for namelength .\n \n The 'namelengthsrc' property must be specified as a string or\n as a plotly.grid_objs.Column object\n\n Returns\n -------\n str\n " return self['namelengthsrc']
Sets the source reference on plot.ly for namelength . The 'namelengthsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
namelengthsrc
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def namelengthsrc(self): "\n Sets the source reference on plot.ly for namelength .\n \n The 'namelengthsrc' property must be specified as a string or\n as a plotly.grid_objs.Column object\n\n Returns\n -------\n str\n " return self['namelengthsrc']
@property def namelengthsrc(self): "\n Sets the source reference on plot.ly for namelength .\n \n The 'namelengthsrc' property must be specified as a string or\n as a plotly.grid_objs.Column object\n\n Returns\n -------\n str\n " return self['namelengthsrc']<|docstring|>Sets the source reference on plot.ly for namelength . The 'namelengthsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str<|endoftext|>
42736314e9bada41bd7eaa7cceaf16c876ff343211d8756c3f778f57010629ad
def __init__(self, arg=None, align=None, alignsrc=None, bgcolor=None, bgcolorsrc=None, bordercolor=None, bordercolorsrc=None, font=None, namelength=None, namelengthsrc=None, **kwargs): '\n Construct a new Hoverlabel object\n \n Parameters\n ----------\n arg\n dict of properties compatible with this constructor or\n an instance of plotly.graph_objs.histogram.Hoverlabel\n align\n Sets the horizontal alignment of the text content\n within hover label box. Has an effect only if the hover\n label text spans more two or more lines\n alignsrc\n Sets the source reference on plot.ly for align .\n bgcolor\n Sets the background color of the hover labels for this\n trace\n bgcolorsrc\n Sets the source reference on plot.ly for bgcolor .\n bordercolor\n Sets the border color of the hover labels for this\n trace.\n bordercolorsrc\n Sets the source reference on plot.ly for bordercolor .\n font\n Sets the font used in hover labels.\n namelength\n Sets the default length (in number of characters) of\n the trace name in the hover labels for all traces. -1\n shows the whole name regardless of length. 0-3 shows\n the first 0-3 characters, and an integer >3 will show\n the whole name if it is less than that many characters,\n but if it is longer, will truncate to `namelength - 3`\n characters and add an ellipsis.\n namelengthsrc\n Sets the source reference on plot.ly for namelength .\n\n Returns\n -------\n Hoverlabel\n ' super(Hoverlabel, self).__init__('hoverlabel') if (arg is None): arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError('The first argument to the plotly.graph_objs.histogram.Hoverlabel \nconstructor must be a dict or \nan instance of plotly.graph_objs.histogram.Hoverlabel') self._skip_invalid = kwargs.pop('skip_invalid', False) from plotly.validators.histogram import hoverlabel as v_hoverlabel self._validators['align'] = v_hoverlabel.AlignValidator() self._validators['alignsrc'] = v_hoverlabel.AlignsrcValidator() self._validators['bgcolor'] = v_hoverlabel.BgcolorValidator() self._validators['bgcolorsrc'] = v_hoverlabel.BgcolorsrcValidator() self._validators['bordercolor'] = v_hoverlabel.BordercolorValidator() self._validators['bordercolorsrc'] = v_hoverlabel.BordercolorsrcValidator() self._validators['font'] = v_hoverlabel.FontValidator() self._validators['namelength'] = v_hoverlabel.NamelengthValidator() self._validators['namelengthsrc'] = v_hoverlabel.NamelengthsrcValidator() _v = arg.pop('align', None) self['align'] = (align if (align is not None) else _v) _v = arg.pop('alignsrc', None) self['alignsrc'] = (alignsrc if (alignsrc is not None) else _v) _v = arg.pop('bgcolor', None) self['bgcolor'] = (bgcolor if (bgcolor is not None) else _v) _v = arg.pop('bgcolorsrc', None) self['bgcolorsrc'] = (bgcolorsrc if (bgcolorsrc is not None) else _v) _v = arg.pop('bordercolor', None) self['bordercolor'] = (bordercolor if (bordercolor is not None) else _v) _v = arg.pop('bordercolorsrc', None) self['bordercolorsrc'] = (bordercolorsrc if (bordercolorsrc is not None) else _v) _v = arg.pop('font', None) self['font'] = (font if (font is not None) else _v) _v = arg.pop('namelength', None) self['namelength'] = (namelength if (namelength is not None) else _v) _v = arg.pop('namelengthsrc', None) self['namelengthsrc'] = (namelengthsrc if (namelengthsrc is not None) else _v) self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False
Construct a new Hoverlabel object Parameters ---------- arg dict of properties compatible with this constructor or an instance of plotly.graph_objs.histogram.Hoverlabel align Sets the horizontal alignment of the text content within hover label box. Has an effect only if the hover label text spans more two or more lines alignsrc Sets the source reference on plot.ly for align . bgcolor Sets the background color of the hover labels for this trace bgcolorsrc Sets the source reference on plot.ly for bgcolor . bordercolor Sets the border color of the hover labels for this trace. bordercolorsrc Sets the source reference on plot.ly for bordercolor . font Sets the font used in hover labels. namelength Sets the default length (in number of characters) of the trace name in the hover labels for all traces. -1 shows the whole name regardless of length. 0-3 shows the first 0-3 characters, and an integer >3 will show the whole name if it is less than that many characters, but if it is longer, will truncate to `namelength - 3` characters and add an ellipsis. namelengthsrc Sets the source reference on plot.ly for namelength . Returns ------- Hoverlabel
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
__init__
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
def __init__(self, arg=None, align=None, alignsrc=None, bgcolor=None, bgcolorsrc=None, bordercolor=None, bordercolorsrc=None, font=None, namelength=None, namelengthsrc=None, **kwargs): '\n Construct a new Hoverlabel object\n \n Parameters\n ----------\n arg\n dict of properties compatible with this constructor or\n an instance of plotly.graph_objs.histogram.Hoverlabel\n align\n Sets the horizontal alignment of the text content\n within hover label box. Has an effect only if the hover\n label text spans more two or more lines\n alignsrc\n Sets the source reference on plot.ly for align .\n bgcolor\n Sets the background color of the hover labels for this\n trace\n bgcolorsrc\n Sets the source reference on plot.ly for bgcolor .\n bordercolor\n Sets the border color of the hover labels for this\n trace.\n bordercolorsrc\n Sets the source reference on plot.ly for bordercolor .\n font\n Sets the font used in hover labels.\n namelength\n Sets the default length (in number of characters) of\n the trace name in the hover labels for all traces. -1\n shows the whole name regardless of length. 0-3 shows\n the first 0-3 characters, and an integer >3 will show\n the whole name if it is less than that many characters,\n but if it is longer, will truncate to `namelength - 3`\n characters and add an ellipsis.\n namelengthsrc\n Sets the source reference on plot.ly for namelength .\n\n Returns\n -------\n Hoverlabel\n ' super(Hoverlabel, self).__init__('hoverlabel') if (arg is None): arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError('The first argument to the plotly.graph_objs.histogram.Hoverlabel \nconstructor must be a dict or \nan instance of plotly.graph_objs.histogram.Hoverlabel') self._skip_invalid = kwargs.pop('skip_invalid', False) from plotly.validators.histogram import hoverlabel as v_hoverlabel self._validators['align'] = v_hoverlabel.AlignValidator() self._validators['alignsrc'] = v_hoverlabel.AlignsrcValidator() self._validators['bgcolor'] = v_hoverlabel.BgcolorValidator() self._validators['bgcolorsrc'] = v_hoverlabel.BgcolorsrcValidator() self._validators['bordercolor'] = v_hoverlabel.BordercolorValidator() self._validators['bordercolorsrc'] = v_hoverlabel.BordercolorsrcValidator() self._validators['font'] = v_hoverlabel.FontValidator() self._validators['namelength'] = v_hoverlabel.NamelengthValidator() self._validators['namelengthsrc'] = v_hoverlabel.NamelengthsrcValidator() _v = arg.pop('align', None) self['align'] = (align if (align is not None) else _v) _v = arg.pop('alignsrc', None) self['alignsrc'] = (alignsrc if (alignsrc is not None) else _v) _v = arg.pop('bgcolor', None) self['bgcolor'] = (bgcolor if (bgcolor is not None) else _v) _v = arg.pop('bgcolorsrc', None) self['bgcolorsrc'] = (bgcolorsrc if (bgcolorsrc is not None) else _v) _v = arg.pop('bordercolor', None) self['bordercolor'] = (bordercolor if (bordercolor is not None) else _v) _v = arg.pop('bordercolorsrc', None) self['bordercolorsrc'] = (bordercolorsrc if (bordercolorsrc is not None) else _v) _v = arg.pop('font', None) self['font'] = (font if (font is not None) else _v) _v = arg.pop('namelength', None) self['namelength'] = (namelength if (namelength is not None) else _v) _v = arg.pop('namelengthsrc', None) self['namelengthsrc'] = (namelengthsrc if (namelengthsrc is not None) else _v) self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False
def __init__(self, arg=None, align=None, alignsrc=None, bgcolor=None, bgcolorsrc=None, bordercolor=None, bordercolorsrc=None, font=None, namelength=None, namelengthsrc=None, **kwargs): '\n Construct a new Hoverlabel object\n \n Parameters\n ----------\n arg\n dict of properties compatible with this constructor or\n an instance of plotly.graph_objs.histogram.Hoverlabel\n align\n Sets the horizontal alignment of the text content\n within hover label box. Has an effect only if the hover\n label text spans more two or more lines\n alignsrc\n Sets the source reference on plot.ly for align .\n bgcolor\n Sets the background color of the hover labels for this\n trace\n bgcolorsrc\n Sets the source reference on plot.ly for bgcolor .\n bordercolor\n Sets the border color of the hover labels for this\n trace.\n bordercolorsrc\n Sets the source reference on plot.ly for bordercolor .\n font\n Sets the font used in hover labels.\n namelength\n Sets the default length (in number of characters) of\n the trace name in the hover labels for all traces. -1\n shows the whole name regardless of length. 0-3 shows\n the first 0-3 characters, and an integer >3 will show\n the whole name if it is less than that many characters,\n but if it is longer, will truncate to `namelength - 3`\n characters and add an ellipsis.\n namelengthsrc\n Sets the source reference on plot.ly for namelength .\n\n Returns\n -------\n Hoverlabel\n ' super(Hoverlabel, self).__init__('hoverlabel') if (arg is None): arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError('The first argument to the plotly.graph_objs.histogram.Hoverlabel \nconstructor must be a dict or \nan instance of plotly.graph_objs.histogram.Hoverlabel') self._skip_invalid = kwargs.pop('skip_invalid', False) from plotly.validators.histogram import hoverlabel as v_hoverlabel self._validators['align'] = v_hoverlabel.AlignValidator() self._validators['alignsrc'] = v_hoverlabel.AlignsrcValidator() self._validators['bgcolor'] = v_hoverlabel.BgcolorValidator() self._validators['bgcolorsrc'] = v_hoverlabel.BgcolorsrcValidator() self._validators['bordercolor'] = v_hoverlabel.BordercolorValidator() self._validators['bordercolorsrc'] = v_hoverlabel.BordercolorsrcValidator() self._validators['font'] = v_hoverlabel.FontValidator() self._validators['namelength'] = v_hoverlabel.NamelengthValidator() self._validators['namelengthsrc'] = v_hoverlabel.NamelengthsrcValidator() _v = arg.pop('align', None) self['align'] = (align if (align is not None) else _v) _v = arg.pop('alignsrc', None) self['alignsrc'] = (alignsrc if (alignsrc is not None) else _v) _v = arg.pop('bgcolor', None) self['bgcolor'] = (bgcolor if (bgcolor is not None) else _v) _v = arg.pop('bgcolorsrc', None) self['bgcolorsrc'] = (bgcolorsrc if (bgcolorsrc is not None) else _v) _v = arg.pop('bordercolor', None) self['bordercolor'] = (bordercolor if (bordercolor is not None) else _v) _v = arg.pop('bordercolorsrc', None) self['bordercolorsrc'] = (bordercolorsrc if (bordercolorsrc is not None) else _v) _v = arg.pop('font', None) self['font'] = (font if (font is not None) else _v) _v = arg.pop('namelength', None) self['namelength'] = (namelength if (namelength is not None) else _v) _v = arg.pop('namelengthsrc', None) self['namelengthsrc'] = (namelengthsrc if (namelengthsrc is not None) else _v) self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False<|docstring|>Construct a new Hoverlabel object Parameters ---------- arg dict of properties compatible with this constructor or an instance of plotly.graph_objs.histogram.Hoverlabel align Sets the horizontal alignment of the text content within hover label box. Has an effect only if the hover label text spans more two or more lines alignsrc Sets the source reference on plot.ly for align . bgcolor Sets the background color of the hover labels for this trace bgcolorsrc Sets the source reference on plot.ly for bgcolor . bordercolor Sets the border color of the hover labels for this trace. bordercolorsrc Sets the source reference on plot.ly for bordercolor . font Sets the font used in hover labels. namelength Sets the default length (in number of characters) of the trace name in the hover labels for all traces. -1 shows the whole name regardless of length. 0-3 shows the first 0-3 characters, and an integer >3 will show the whole name if it is less than that many characters, but if it is longer, will truncate to `namelength - 3` characters and add an ellipsis. namelengthsrc Sets the source reference on plot.ly for namelength . Returns ------- Hoverlabel<|endoftext|>
a8b3418511a8a5a6c97e31707ad0f82dbb9209ac9cc66899b6f69a4d5cb3cb5c
@property def array(self): "\n Sets the data corresponding the length of each error bar.\n Values are plotted relative to the underlying data.\n \n The 'array' property is an array that may be specified as a tuple,\n list, numpy array, or pandas Series\n\n Returns\n -------\n numpy.ndarray\n " return self['array']
Sets the data corresponding the length of each error bar. Values are plotted relative to the underlying data. The 'array' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
array
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def array(self): "\n Sets the data corresponding the length of each error bar.\n Values are plotted relative to the underlying data.\n \n The 'array' property is an array that may be specified as a tuple,\n list, numpy array, or pandas Series\n\n Returns\n -------\n numpy.ndarray\n " return self['array']
@property def array(self): "\n Sets the data corresponding the length of each error bar.\n Values are plotted relative to the underlying data.\n \n The 'array' property is an array that may be specified as a tuple,\n list, numpy array, or pandas Series\n\n Returns\n -------\n numpy.ndarray\n " return self['array']<|docstring|>Sets the data corresponding the length of each error bar. Values are plotted relative to the underlying data. The 'array' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray<|endoftext|>
5227ac08b4dc63e1219b2315a6290375ca8d6e8eb5f13225f773ab860b1a1f89
@property def arrayminus(self): "\n Sets the data corresponding the length of each error bar in the\n bottom (left) direction for vertical (horizontal) bars Values\n are plotted relative to the underlying data.\n \n The 'arrayminus' property is an array that may be specified as a tuple,\n list, numpy array, or pandas Series\n\n Returns\n -------\n numpy.ndarray\n " return self['arrayminus']
Sets the data corresponding the length of each error bar in the bottom (left) direction for vertical (horizontal) bars Values are plotted relative to the underlying data. The 'arrayminus' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
arrayminus
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def arrayminus(self): "\n Sets the data corresponding the length of each error bar in the\n bottom (left) direction for vertical (horizontal) bars Values\n are plotted relative to the underlying data.\n \n The 'arrayminus' property is an array that may be specified as a tuple,\n list, numpy array, or pandas Series\n\n Returns\n -------\n numpy.ndarray\n " return self['arrayminus']
@property def arrayminus(self): "\n Sets the data corresponding the length of each error bar in the\n bottom (left) direction for vertical (horizontal) bars Values\n are plotted relative to the underlying data.\n \n The 'arrayminus' property is an array that may be specified as a tuple,\n list, numpy array, or pandas Series\n\n Returns\n -------\n numpy.ndarray\n " return self['arrayminus']<|docstring|>Sets the data corresponding the length of each error bar in the bottom (left) direction for vertical (horizontal) bars Values are plotted relative to the underlying data. The 'arrayminus' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray<|endoftext|>
d119ce6f009ac84f22bd443609c6f99703dd9bb616d0d437445c0fe7f4f74738
@property def arrayminussrc(self): "\n Sets the source reference on plot.ly for arrayminus .\n \n The 'arrayminussrc' property must be specified as a string or\n as a plotly.grid_objs.Column object\n\n Returns\n -------\n str\n " return self['arrayminussrc']
Sets the source reference on plot.ly for arrayminus . The 'arrayminussrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
arrayminussrc
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def arrayminussrc(self): "\n Sets the source reference on plot.ly for arrayminus .\n \n The 'arrayminussrc' property must be specified as a string or\n as a plotly.grid_objs.Column object\n\n Returns\n -------\n str\n " return self['arrayminussrc']
@property def arrayminussrc(self): "\n Sets the source reference on plot.ly for arrayminus .\n \n The 'arrayminussrc' property must be specified as a string or\n as a plotly.grid_objs.Column object\n\n Returns\n -------\n str\n " return self['arrayminussrc']<|docstring|>Sets the source reference on plot.ly for arrayminus . The 'arrayminussrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str<|endoftext|>
97b42d78e3bd868f4a134676d8c89a01781b1b4229b4e10055cdd13954798610
@property def arraysrc(self): "\n Sets the source reference on plot.ly for array .\n \n The 'arraysrc' property must be specified as a string or\n as a plotly.grid_objs.Column object\n\n Returns\n -------\n str\n " return self['arraysrc']
Sets the source reference on plot.ly for array . The 'arraysrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
arraysrc
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def arraysrc(self): "\n Sets the source reference on plot.ly for array .\n \n The 'arraysrc' property must be specified as a string or\n as a plotly.grid_objs.Column object\n\n Returns\n -------\n str\n " return self['arraysrc']
@property def arraysrc(self): "\n Sets the source reference on plot.ly for array .\n \n The 'arraysrc' property must be specified as a string or\n as a plotly.grid_objs.Column object\n\n Returns\n -------\n str\n " return self['arraysrc']<|docstring|>Sets the source reference on plot.ly for array . The 'arraysrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str<|endoftext|>
ca2c1342635b7080b021a94eef655c9569138dcfb1c3b3d16be6cb7a62563c59
@property def color(self): "\n Sets the stoke color of the error bars.\n \n The 'color' property is a color and may be specified as:\n - A hex string (e.g. '#ff0000')\n - An rgb/rgba string (e.g. 'rgb(255,0,0)')\n - An hsl/hsla string (e.g. 'hsl(0,100%,50%)')\n - An hsv/hsva string (e.g. 'hsv(0,100%,100%)')\n - A named CSS color:\n aliceblue, antiquewhite, aqua, aquamarine, azure,\n beige, bisque, black, blanchedalmond, blue,\n blueviolet, brown, burlywood, cadetblue,\n chartreuse, chocolate, coral, cornflowerblue,\n cornsilk, crimson, cyan, darkblue, darkcyan,\n darkgoldenrod, darkgray, darkgrey, darkgreen,\n darkkhaki, darkmagenta, darkolivegreen, darkorange,\n darkorchid, darkred, darksalmon, darkseagreen,\n darkslateblue, darkslategray, darkslategrey,\n darkturquoise, darkviolet, deeppink, deepskyblue,\n dimgray, dimgrey, dodgerblue, firebrick,\n floralwhite, forestgreen, fuchsia, gainsboro,\n ghostwhite, gold, goldenrod, gray, grey, green,\n greenyellow, honeydew, hotpink, indianred, indigo,\n ivory, khaki, lavender, lavenderblush, lawngreen,\n lemonchiffon, lightblue, lightcoral, lightcyan,\n lightgoldenrodyellow, lightgray, lightgrey,\n lightgreen, lightpink, lightsalmon, lightseagreen,\n lightskyblue, lightslategray, lightslategrey,\n lightsteelblue, lightyellow, lime, limegreen,\n linen, magenta, maroon, mediumaquamarine,\n mediumblue, mediumorchid, mediumpurple,\n mediumseagreen, mediumslateblue, mediumspringgreen,\n mediumturquoise, mediumvioletred, midnightblue,\n mintcream, mistyrose, moccasin, navajowhite, navy,\n oldlace, olive, olivedrab, orange, orangered,\n orchid, palegoldenrod, palegreen, paleturquoise,\n palevioletred, papayawhip, peachpuff, peru, pink,\n plum, powderblue, purple, red, rosybrown,\n royalblue, saddlebrown, salmon, sandybrown,\n seagreen, seashell, sienna, silver, skyblue,\n slateblue, slategray, slategrey, snow, springgreen,\n steelblue, tan, teal, thistle, tomato, turquoise,\n violet, wheat, white, whitesmoke, yellow,\n yellowgreen\n\n Returns\n -------\n str\n " return self['color']
Sets the stoke color of the error bars. The 'color' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen Returns ------- str
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
color
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def color(self): "\n Sets the stoke color of the error bars.\n \n The 'color' property is a color and may be specified as:\n - A hex string (e.g. '#ff0000')\n - An rgb/rgba string (e.g. 'rgb(255,0,0)')\n - An hsl/hsla string (e.g. 'hsl(0,100%,50%)')\n - An hsv/hsva string (e.g. 'hsv(0,100%,100%)')\n - A named CSS color:\n aliceblue, antiquewhite, aqua, aquamarine, azure,\n beige, bisque, black, blanchedalmond, blue,\n blueviolet, brown, burlywood, cadetblue,\n chartreuse, chocolate, coral, cornflowerblue,\n cornsilk, crimson, cyan, darkblue, darkcyan,\n darkgoldenrod, darkgray, darkgrey, darkgreen,\n darkkhaki, darkmagenta, darkolivegreen, darkorange,\n darkorchid, darkred, darksalmon, darkseagreen,\n darkslateblue, darkslategray, darkslategrey,\n darkturquoise, darkviolet, deeppink, deepskyblue,\n dimgray, dimgrey, dodgerblue, firebrick,\n floralwhite, forestgreen, fuchsia, gainsboro,\n ghostwhite, gold, goldenrod, gray, grey, green,\n greenyellow, honeydew, hotpink, indianred, indigo,\n ivory, khaki, lavender, lavenderblush, lawngreen,\n lemonchiffon, lightblue, lightcoral, lightcyan,\n lightgoldenrodyellow, lightgray, lightgrey,\n lightgreen, lightpink, lightsalmon, lightseagreen,\n lightskyblue, lightslategray, lightslategrey,\n lightsteelblue, lightyellow, lime, limegreen,\n linen, magenta, maroon, mediumaquamarine,\n mediumblue, mediumorchid, mediumpurple,\n mediumseagreen, mediumslateblue, mediumspringgreen,\n mediumturquoise, mediumvioletred, midnightblue,\n mintcream, mistyrose, moccasin, navajowhite, navy,\n oldlace, olive, olivedrab, orange, orangered,\n orchid, palegoldenrod, palegreen, paleturquoise,\n palevioletred, papayawhip, peachpuff, peru, pink,\n plum, powderblue, purple, red, rosybrown,\n royalblue, saddlebrown, salmon, sandybrown,\n seagreen, seashell, sienna, silver, skyblue,\n slateblue, slategray, slategrey, snow, springgreen,\n steelblue, tan, teal, thistle, tomato, turquoise,\n violet, wheat, white, whitesmoke, yellow,\n yellowgreen\n\n Returns\n -------\n str\n " return self['color']
@property def color(self): "\n Sets the stoke color of the error bars.\n \n The 'color' property is a color and may be specified as:\n - A hex string (e.g. '#ff0000')\n - An rgb/rgba string (e.g. 'rgb(255,0,0)')\n - An hsl/hsla string (e.g. 'hsl(0,100%,50%)')\n - An hsv/hsva string (e.g. 'hsv(0,100%,100%)')\n - A named CSS color:\n aliceblue, antiquewhite, aqua, aquamarine, azure,\n beige, bisque, black, blanchedalmond, blue,\n blueviolet, brown, burlywood, cadetblue,\n chartreuse, chocolate, coral, cornflowerblue,\n cornsilk, crimson, cyan, darkblue, darkcyan,\n darkgoldenrod, darkgray, darkgrey, darkgreen,\n darkkhaki, darkmagenta, darkolivegreen, darkorange,\n darkorchid, darkred, darksalmon, darkseagreen,\n darkslateblue, darkslategray, darkslategrey,\n darkturquoise, darkviolet, deeppink, deepskyblue,\n dimgray, dimgrey, dodgerblue, firebrick,\n floralwhite, forestgreen, fuchsia, gainsboro,\n ghostwhite, gold, goldenrod, gray, grey, green,\n greenyellow, honeydew, hotpink, indianred, indigo,\n ivory, khaki, lavender, lavenderblush, lawngreen,\n lemonchiffon, lightblue, lightcoral, lightcyan,\n lightgoldenrodyellow, lightgray, lightgrey,\n lightgreen, lightpink, lightsalmon, lightseagreen,\n lightskyblue, lightslategray, lightslategrey,\n lightsteelblue, lightyellow, lime, limegreen,\n linen, magenta, maroon, mediumaquamarine,\n mediumblue, mediumorchid, mediumpurple,\n mediumseagreen, mediumslateblue, mediumspringgreen,\n mediumturquoise, mediumvioletred, midnightblue,\n mintcream, mistyrose, moccasin, navajowhite, navy,\n oldlace, olive, olivedrab, orange, orangered,\n orchid, palegoldenrod, palegreen, paleturquoise,\n palevioletred, papayawhip, peachpuff, peru, pink,\n plum, powderblue, purple, red, rosybrown,\n royalblue, saddlebrown, salmon, sandybrown,\n seagreen, seashell, sienna, silver, skyblue,\n slateblue, slategray, slategrey, snow, springgreen,\n steelblue, tan, teal, thistle, tomato, turquoise,\n violet, wheat, white, whitesmoke, yellow,\n yellowgreen\n\n Returns\n -------\n str\n " return self['color']<|docstring|>Sets the stoke color of the error bars. The 'color' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen Returns ------- str<|endoftext|>
81a8ccbc11c7a6aff9db370d8a6e4a445526c9bd4b3e6a03e8249b1780c3645d
@property def symmetric(self): "\n Determines whether or not the error bars have the same length\n in both direction (top/bottom for vertical bars, left/right for\n horizontal bars.\n \n The 'symmetric' property must be specified as a bool\n (either True, or False)\n\n Returns\n -------\n bool\n " return self['symmetric']
Determines whether or not the error bars have the same length in both direction (top/bottom for vertical bars, left/right for horizontal bars. The 'symmetric' property must be specified as a bool (either True, or False) Returns ------- bool
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
symmetric
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def symmetric(self): "\n Determines whether or not the error bars have the same length\n in both direction (top/bottom for vertical bars, left/right for\n horizontal bars.\n \n The 'symmetric' property must be specified as a bool\n (either True, or False)\n\n Returns\n -------\n bool\n " return self['symmetric']
@property def symmetric(self): "\n Determines whether or not the error bars have the same length\n in both direction (top/bottom for vertical bars, left/right for\n horizontal bars.\n \n The 'symmetric' property must be specified as a bool\n (either True, or False)\n\n Returns\n -------\n bool\n " return self['symmetric']<|docstring|>Determines whether or not the error bars have the same length in both direction (top/bottom for vertical bars, left/right for horizontal bars. The 'symmetric' property must be specified as a bool (either True, or False) Returns ------- bool<|endoftext|>
4d66f714783437288099d4aeabba8dc0326f464f0c6a125001a37d71c0db30c3
@property def thickness(self): "\n Sets the thickness (in px) of the error bars.\n \n The 'thickness' property is a number and may be specified as:\n - An int or float in the interval [0, inf]\n\n Returns\n -------\n int|float\n " return self['thickness']
Sets the thickness (in px) of the error bars. The 'thickness' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
thickness
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def thickness(self): "\n Sets the thickness (in px) of the error bars.\n \n The 'thickness' property is a number and may be specified as:\n - An int or float in the interval [0, inf]\n\n Returns\n -------\n int|float\n " return self['thickness']
@property def thickness(self): "\n Sets the thickness (in px) of the error bars.\n \n The 'thickness' property is a number and may be specified as:\n - An int or float in the interval [0, inf]\n\n Returns\n -------\n int|float\n " return self['thickness']<|docstring|>Sets the thickness (in px) of the error bars. The 'thickness' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float<|endoftext|>
6aa02d65fb6a81195cae8507f0a14f6605e9f9c19d2d77c0a96557a9a7fa80cf
@property def traceref(self): "\n The 'traceref' property is a integer and may be specified as:\n - An int (or float that will be cast to an int)\n in the interval [0, 9223372036854775807]\n\n Returns\n -------\n int\n " return self['traceref']
The 'traceref' property is a integer and may be specified as: - An int (or float that will be cast to an int) in the interval [0, 9223372036854775807] Returns ------- int
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
traceref
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def traceref(self): "\n The 'traceref' property is a integer and may be specified as:\n - An int (or float that will be cast to an int)\n in the interval [0, 9223372036854775807]\n\n Returns\n -------\n int\n " return self['traceref']
@property def traceref(self): "\n The 'traceref' property is a integer and may be specified as:\n - An int (or float that will be cast to an int)\n in the interval [0, 9223372036854775807]\n\n Returns\n -------\n int\n " return self['traceref']<|docstring|>The 'traceref' property is a integer and may be specified as: - An int (or float that will be cast to an int) in the interval [0, 9223372036854775807] Returns ------- int<|endoftext|>
069e81462e2241c45d5f255cbb783c55a8334748e56f6809914a0e65fdf4dec6
@property def tracerefminus(self): "\n The 'tracerefminus' property is a integer and may be specified as:\n - An int (or float that will be cast to an int)\n in the interval [0, 9223372036854775807]\n\n Returns\n -------\n int\n " return self['tracerefminus']
The 'tracerefminus' property is a integer and may be specified as: - An int (or float that will be cast to an int) in the interval [0, 9223372036854775807] Returns ------- int
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
tracerefminus
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def tracerefminus(self): "\n The 'tracerefminus' property is a integer and may be specified as:\n - An int (or float that will be cast to an int)\n in the interval [0, 9223372036854775807]\n\n Returns\n -------\n int\n " return self['tracerefminus']
@property def tracerefminus(self): "\n The 'tracerefminus' property is a integer and may be specified as:\n - An int (or float that will be cast to an int)\n in the interval [0, 9223372036854775807]\n\n Returns\n -------\n int\n " return self['tracerefminus']<|docstring|>The 'tracerefminus' property is a integer and may be specified as: - An int (or float that will be cast to an int) in the interval [0, 9223372036854775807] Returns ------- int<|endoftext|>
d40f7715ff4fffb822bdb1628d39760aaec99e7656fd5aa77de9a73a4cb0c9bc
@property def type(self): '\n Determines the rule used to generate the error bars. If\n *constant`, the bar lengths are of a constant value. Set this\n constant in `value`. If "percent", the bar lengths correspond\n to a percentage of underlying data. Set this percentage in\n `value`. If "sqrt", the bar lengths correspond to the sqaure of\n the underlying data. If "array", the bar lengths are set with\n data set `array`.\n \n The \'type\' property is an enumeration that may be specified as:\n - One of the following enumeration values:\n [\'percent\', \'constant\', \'sqrt\', \'data\']\n\n Returns\n -------\n Any\n ' return self['type']
Determines the rule used to generate the error bars. If *constant`, the bar lengths are of a constant value. Set this constant in `value`. If "percent", the bar lengths correspond to a percentage of underlying data. Set this percentage in `value`. If "sqrt", the bar lengths correspond to the sqaure of the underlying data. If "array", the bar lengths are set with data set `array`. The 'type' property is an enumeration that may be specified as: - One of the following enumeration values: ['percent', 'constant', 'sqrt', 'data'] Returns ------- Any
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
type
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def type(self): '\n Determines the rule used to generate the error bars. If\n *constant`, the bar lengths are of a constant value. Set this\n constant in `value`. If "percent", the bar lengths correspond\n to a percentage of underlying data. Set this percentage in\n `value`. If "sqrt", the bar lengths correspond to the sqaure of\n the underlying data. If "array", the bar lengths are set with\n data set `array`.\n \n The \'type\' property is an enumeration that may be specified as:\n - One of the following enumeration values:\n [\'percent\', \'constant\', \'sqrt\', \'data\']\n\n Returns\n -------\n Any\n ' return self['type']
@property def type(self): '\n Determines the rule used to generate the error bars. If\n *constant`, the bar lengths are of a constant value. Set this\n constant in `value`. If "percent", the bar lengths correspond\n to a percentage of underlying data. Set this percentage in\n `value`. If "sqrt", the bar lengths correspond to the sqaure of\n the underlying data. If "array", the bar lengths are set with\n data set `array`.\n \n The \'type\' property is an enumeration that may be specified as:\n - One of the following enumeration values:\n [\'percent\', \'constant\', \'sqrt\', \'data\']\n\n Returns\n -------\n Any\n ' return self['type']<|docstring|>Determines the rule used to generate the error bars. If *constant`, the bar lengths are of a constant value. Set this constant in `value`. If "percent", the bar lengths correspond to a percentage of underlying data. Set this percentage in `value`. If "sqrt", the bar lengths correspond to the sqaure of the underlying data. If "array", the bar lengths are set with data set `array`. The 'type' property is an enumeration that may be specified as: - One of the following enumeration values: ['percent', 'constant', 'sqrt', 'data'] Returns ------- Any<|endoftext|>
6b76fa155f1fe7f1046cca507ba5530d5eab00f170bbe2cd7db74404a18e07c9
@property def value(self): '\n Sets the value of either the percentage (if `type` is set to\n "percent") or the constant (if `type` is set to "constant")\n corresponding to the lengths of the error bars.\n \n The \'value\' property is a number and may be specified as:\n - An int or float in the interval [0, inf]\n\n Returns\n -------\n int|float\n ' return self['value']
Sets the value of either the percentage (if `type` is set to "percent") or the constant (if `type` is set to "constant") corresponding to the lengths of the error bars. The 'value' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
value
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def value(self): '\n Sets the value of either the percentage (if `type` is set to\n "percent") or the constant (if `type` is set to "constant")\n corresponding to the lengths of the error bars.\n \n The \'value\' property is a number and may be specified as:\n - An int or float in the interval [0, inf]\n\n Returns\n -------\n int|float\n ' return self['value']
@property def value(self): '\n Sets the value of either the percentage (if `type` is set to\n "percent") or the constant (if `type` is set to "constant")\n corresponding to the lengths of the error bars.\n \n The \'value\' property is a number and may be specified as:\n - An int or float in the interval [0, inf]\n\n Returns\n -------\n int|float\n ' return self['value']<|docstring|>Sets the value of either the percentage (if `type` is set to "percent") or the constant (if `type` is set to "constant") corresponding to the lengths of the error bars. The 'value' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float<|endoftext|>
8575d77a31dd7c9cc4ff4c52485ded3072a6cf84852c50c2e94d9c5e686081b8
@property def valueminus(self): '\n Sets the value of either the percentage (if `type` is set to\n "percent") or the constant (if `type` is set to "constant")\n corresponding to the lengths of the error bars in the bottom\n (left) direction for vertical (horizontal) bars\n \n The \'valueminus\' property is a number and may be specified as:\n - An int or float in the interval [0, inf]\n\n Returns\n -------\n int|float\n ' return self['valueminus']
Sets the value of either the percentage (if `type` is set to "percent") or the constant (if `type` is set to "constant") corresponding to the lengths of the error bars in the bottom (left) direction for vertical (horizontal) bars The 'valueminus' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
valueminus
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def valueminus(self): '\n Sets the value of either the percentage (if `type` is set to\n "percent") or the constant (if `type` is set to "constant")\n corresponding to the lengths of the error bars in the bottom\n (left) direction for vertical (horizontal) bars\n \n The \'valueminus\' property is a number and may be specified as:\n - An int or float in the interval [0, inf]\n\n Returns\n -------\n int|float\n ' return self['valueminus']
@property def valueminus(self): '\n Sets the value of either the percentage (if `type` is set to\n "percent") or the constant (if `type` is set to "constant")\n corresponding to the lengths of the error bars in the bottom\n (left) direction for vertical (horizontal) bars\n \n The \'valueminus\' property is a number and may be specified as:\n - An int or float in the interval [0, inf]\n\n Returns\n -------\n int|float\n ' return self['valueminus']<|docstring|>Sets the value of either the percentage (if `type` is set to "percent") or the constant (if `type` is set to "constant") corresponding to the lengths of the error bars in the bottom (left) direction for vertical (horizontal) bars The 'valueminus' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float<|endoftext|>
c4628805814a732d7fa4a534a26fdddfd2a09c20c985ab6cd27b4befc676e6b7
@property def visible(self): "\n Determines whether or not this set of error bars is visible.\n \n The 'visible' property must be specified as a bool\n (either True, or False)\n\n Returns\n -------\n bool\n " return self['visible']
Determines whether or not this set of error bars is visible. The 'visible' property must be specified as a bool (either True, or False) Returns ------- bool
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
visible
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def visible(self): "\n Determines whether or not this set of error bars is visible.\n \n The 'visible' property must be specified as a bool\n (either True, or False)\n\n Returns\n -------\n bool\n " return self['visible']
@property def visible(self): "\n Determines whether or not this set of error bars is visible.\n \n The 'visible' property must be specified as a bool\n (either True, or False)\n\n Returns\n -------\n bool\n " return self['visible']<|docstring|>Determines whether or not this set of error bars is visible. The 'visible' property must be specified as a bool (either True, or False) Returns ------- bool<|endoftext|>
60e04a4534186665cbee0778238e695e1250b413efbcea1fdcff37d4e66d2bed
@property def width(self): "\n Sets the width (in px) of the cross-bar at both ends of the\n error bars.\n \n The 'width' property is a number and may be specified as:\n - An int or float in the interval [0, inf]\n\n Returns\n -------\n int|float\n " return self['width']
Sets the width (in px) of the cross-bar at both ends of the error bars. The 'width' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
width
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def width(self): "\n Sets the width (in px) of the cross-bar at both ends of the\n error bars.\n \n The 'width' property is a number and may be specified as:\n - An int or float in the interval [0, inf]\n\n Returns\n -------\n int|float\n " return self['width']
@property def width(self): "\n Sets the width (in px) of the cross-bar at both ends of the\n error bars.\n \n The 'width' property is a number and may be specified as:\n - An int or float in the interval [0, inf]\n\n Returns\n -------\n int|float\n " return self['width']<|docstring|>Sets the width (in px) of the cross-bar at both ends of the error bars. The 'width' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float<|endoftext|>
05f8d8657c3d6ca187913da83c66ee6bf26a1dfe84b4073eacaacb0aa5df9339
def __init__(self, arg=None, array=None, arrayminus=None, arrayminussrc=None, arraysrc=None, color=None, symmetric=None, thickness=None, traceref=None, tracerefminus=None, type=None, value=None, valueminus=None, visible=None, width=None, **kwargs): '\n Construct a new ErrorY object\n \n Parameters\n ----------\n arg\n dict of properties compatible with this constructor or\n an instance of plotly.graph_objs.histogram.ErrorY\n array\n Sets the data corresponding the length of each error\n bar. Values are plotted relative to the underlying\n data.\n arrayminus\n Sets the data corresponding the length of each error\n bar in the bottom (left) direction for vertical\n (horizontal) bars Values are plotted relative to the\n underlying data.\n arrayminussrc\n Sets the source reference on plot.ly for arrayminus .\n arraysrc\n Sets the source reference on plot.ly for array .\n color\n Sets the stoke color of the error bars.\n symmetric\n Determines whether or not the error bars have the same\n length in both direction (top/bottom for vertical bars,\n left/right for horizontal bars.\n thickness\n Sets the thickness (in px) of the error bars.\n traceref\n\n tracerefminus\n\n type\n Determines the rule used to generate the error bars. If\n *constant`, the bar lengths are of a constant value.\n Set this constant in `value`. If "percent", the bar\n lengths correspond to a percentage of underlying data.\n Set this percentage in `value`. If "sqrt", the bar\n lengths correspond to the sqaure of the underlying\n data. If "array", the bar lengths are set with data set\n `array`.\n value\n Sets the value of either the percentage (if `type` is\n set to "percent") or the constant (if `type` is set to\n "constant") corresponding to the lengths of the error\n bars.\n valueminus\n Sets the value of either the percentage (if `type` is\n set to "percent") or the constant (if `type` is set to\n "constant") corresponding to the lengths of the error\n bars in the bottom (left) direction for vertical\n (horizontal) bars\n visible\n Determines whether or not this set of error bars is\n visible.\n width\n Sets the width (in px) of the cross-bar at both ends of\n the error bars.\n\n Returns\n -------\n ErrorY\n ' super(ErrorY, self).__init__('error_y') if (arg is None): arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError('The first argument to the plotly.graph_objs.histogram.ErrorY \nconstructor must be a dict or \nan instance of plotly.graph_objs.histogram.ErrorY') self._skip_invalid = kwargs.pop('skip_invalid', False) from plotly.validators.histogram import error_y as v_error_y self._validators['array'] = v_error_y.ArrayValidator() self._validators['arrayminus'] = v_error_y.ArrayminusValidator() self._validators['arrayminussrc'] = v_error_y.ArrayminussrcValidator() self._validators['arraysrc'] = v_error_y.ArraysrcValidator() self._validators['color'] = v_error_y.ColorValidator() self._validators['symmetric'] = v_error_y.SymmetricValidator() self._validators['thickness'] = v_error_y.ThicknessValidator() self._validators['traceref'] = v_error_y.TracerefValidator() self._validators['tracerefminus'] = v_error_y.TracerefminusValidator() self._validators['type'] = v_error_y.TypeValidator() self._validators['value'] = v_error_y.ValueValidator() self._validators['valueminus'] = v_error_y.ValueminusValidator() self._validators['visible'] = v_error_y.VisibleValidator() self._validators['width'] = v_error_y.WidthValidator() _v = arg.pop('array', None) self['array'] = (array if (array is not None) else _v) _v = arg.pop('arrayminus', None) self['arrayminus'] = (arrayminus if (arrayminus is not None) else _v) _v = arg.pop('arrayminussrc', None) self['arrayminussrc'] = (arrayminussrc if (arrayminussrc is not None) else _v) _v = arg.pop('arraysrc', None) self['arraysrc'] = (arraysrc if (arraysrc is not None) else _v) _v = arg.pop('color', None) self['color'] = (color if (color is not None) else _v) _v = arg.pop('symmetric', None) self['symmetric'] = (symmetric if (symmetric is not None) else _v) _v = arg.pop('thickness', None) self['thickness'] = (thickness if (thickness is not None) else _v) _v = arg.pop('traceref', None) self['traceref'] = (traceref if (traceref is not None) else _v) _v = arg.pop('tracerefminus', None) self['tracerefminus'] = (tracerefminus if (tracerefminus is not None) else _v) _v = arg.pop('type', None) self['type'] = (type if (type is not None) else _v) _v = arg.pop('value', None) self['value'] = (value if (value is not None) else _v) _v = arg.pop('valueminus', None) self['valueminus'] = (valueminus if (valueminus is not None) else _v) _v = arg.pop('visible', None) self['visible'] = (visible if (visible is not None) else _v) _v = arg.pop('width', None) self['width'] = (width if (width is not None) else _v) self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False
Construct a new ErrorY object Parameters ---------- arg dict of properties compatible with this constructor or an instance of plotly.graph_objs.histogram.ErrorY array Sets the data corresponding the length of each error bar. Values are plotted relative to the underlying data. arrayminus Sets the data corresponding the length of each error bar in the bottom (left) direction for vertical (horizontal) bars Values are plotted relative to the underlying data. arrayminussrc Sets the source reference on plot.ly for arrayminus . arraysrc Sets the source reference on plot.ly for array . color Sets the stoke color of the error bars. symmetric Determines whether or not the error bars have the same length in both direction (top/bottom for vertical bars, left/right for horizontal bars. thickness Sets the thickness (in px) of the error bars. traceref tracerefminus type Determines the rule used to generate the error bars. If *constant`, the bar lengths are of a constant value. Set this constant in `value`. If "percent", the bar lengths correspond to a percentage of underlying data. Set this percentage in `value`. If "sqrt", the bar lengths correspond to the sqaure of the underlying data. If "array", the bar lengths are set with data set `array`. value Sets the value of either the percentage (if `type` is set to "percent") or the constant (if `type` is set to "constant") corresponding to the lengths of the error bars. valueminus Sets the value of either the percentage (if `type` is set to "percent") or the constant (if `type` is set to "constant") corresponding to the lengths of the error bars in the bottom (left) direction for vertical (horizontal) bars visible Determines whether or not this set of error bars is visible. width Sets the width (in px) of the cross-bar at both ends of the error bars. Returns ------- ErrorY
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
__init__
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
def __init__(self, arg=None, array=None, arrayminus=None, arrayminussrc=None, arraysrc=None, color=None, symmetric=None, thickness=None, traceref=None, tracerefminus=None, type=None, value=None, valueminus=None, visible=None, width=None, **kwargs): '\n Construct a new ErrorY object\n \n Parameters\n ----------\n arg\n dict of properties compatible with this constructor or\n an instance of plotly.graph_objs.histogram.ErrorY\n array\n Sets the data corresponding the length of each error\n bar. Values are plotted relative to the underlying\n data.\n arrayminus\n Sets the data corresponding the length of each error\n bar in the bottom (left) direction for vertical\n (horizontal) bars Values are plotted relative to the\n underlying data.\n arrayminussrc\n Sets the source reference on plot.ly for arrayminus .\n arraysrc\n Sets the source reference on plot.ly for array .\n color\n Sets the stoke color of the error bars.\n symmetric\n Determines whether or not the error bars have the same\n length in both direction (top/bottom for vertical bars,\n left/right for horizontal bars.\n thickness\n Sets the thickness (in px) of the error bars.\n traceref\n\n tracerefminus\n\n type\n Determines the rule used to generate the error bars. If\n *constant`, the bar lengths are of a constant value.\n Set this constant in `value`. If "percent", the bar\n lengths correspond to a percentage of underlying data.\n Set this percentage in `value`. If "sqrt", the bar\n lengths correspond to the sqaure of the underlying\n data. If "array", the bar lengths are set with data set\n `array`.\n value\n Sets the value of either the percentage (if `type` is\n set to "percent") or the constant (if `type` is set to\n "constant") corresponding to the lengths of the error\n bars.\n valueminus\n Sets the value of either the percentage (if `type` is\n set to "percent") or the constant (if `type` is set to\n "constant") corresponding to the lengths of the error\n bars in the bottom (left) direction for vertical\n (horizontal) bars\n visible\n Determines whether or not this set of error bars is\n visible.\n width\n Sets the width (in px) of the cross-bar at both ends of\n the error bars.\n\n Returns\n -------\n ErrorY\n ' super(ErrorY, self).__init__('error_y') if (arg is None): arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError('The first argument to the plotly.graph_objs.histogram.ErrorY \nconstructor must be a dict or \nan instance of plotly.graph_objs.histogram.ErrorY') self._skip_invalid = kwargs.pop('skip_invalid', False) from plotly.validators.histogram import error_y as v_error_y self._validators['array'] = v_error_y.ArrayValidator() self._validators['arrayminus'] = v_error_y.ArrayminusValidator() self._validators['arrayminussrc'] = v_error_y.ArrayminussrcValidator() self._validators['arraysrc'] = v_error_y.ArraysrcValidator() self._validators['color'] = v_error_y.ColorValidator() self._validators['symmetric'] = v_error_y.SymmetricValidator() self._validators['thickness'] = v_error_y.ThicknessValidator() self._validators['traceref'] = v_error_y.TracerefValidator() self._validators['tracerefminus'] = v_error_y.TracerefminusValidator() self._validators['type'] = v_error_y.TypeValidator() self._validators['value'] = v_error_y.ValueValidator() self._validators['valueminus'] = v_error_y.ValueminusValidator() self._validators['visible'] = v_error_y.VisibleValidator() self._validators['width'] = v_error_y.WidthValidator() _v = arg.pop('array', None) self['array'] = (array if (array is not None) else _v) _v = arg.pop('arrayminus', None) self['arrayminus'] = (arrayminus if (arrayminus is not None) else _v) _v = arg.pop('arrayminussrc', None) self['arrayminussrc'] = (arrayminussrc if (arrayminussrc is not None) else _v) _v = arg.pop('arraysrc', None) self['arraysrc'] = (arraysrc if (arraysrc is not None) else _v) _v = arg.pop('color', None) self['color'] = (color if (color is not None) else _v) _v = arg.pop('symmetric', None) self['symmetric'] = (symmetric if (symmetric is not None) else _v) _v = arg.pop('thickness', None) self['thickness'] = (thickness if (thickness is not None) else _v) _v = arg.pop('traceref', None) self['traceref'] = (traceref if (traceref is not None) else _v) _v = arg.pop('tracerefminus', None) self['tracerefminus'] = (tracerefminus if (tracerefminus is not None) else _v) _v = arg.pop('type', None) self['type'] = (type if (type is not None) else _v) _v = arg.pop('value', None) self['value'] = (value if (value is not None) else _v) _v = arg.pop('valueminus', None) self['valueminus'] = (valueminus if (valueminus is not None) else _v) _v = arg.pop('visible', None) self['visible'] = (visible if (visible is not None) else _v) _v = arg.pop('width', None) self['width'] = (width if (width is not None) else _v) self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False
def __init__(self, arg=None, array=None, arrayminus=None, arrayminussrc=None, arraysrc=None, color=None, symmetric=None, thickness=None, traceref=None, tracerefminus=None, type=None, value=None, valueminus=None, visible=None, width=None, **kwargs): '\n Construct a new ErrorY object\n \n Parameters\n ----------\n arg\n dict of properties compatible with this constructor or\n an instance of plotly.graph_objs.histogram.ErrorY\n array\n Sets the data corresponding the length of each error\n bar. Values are plotted relative to the underlying\n data.\n arrayminus\n Sets the data corresponding the length of each error\n bar in the bottom (left) direction for vertical\n (horizontal) bars Values are plotted relative to the\n underlying data.\n arrayminussrc\n Sets the source reference on plot.ly for arrayminus .\n arraysrc\n Sets the source reference on plot.ly for array .\n color\n Sets the stoke color of the error bars.\n symmetric\n Determines whether or not the error bars have the same\n length in both direction (top/bottom for vertical bars,\n left/right for horizontal bars.\n thickness\n Sets the thickness (in px) of the error bars.\n traceref\n\n tracerefminus\n\n type\n Determines the rule used to generate the error bars. If\n *constant`, the bar lengths are of a constant value.\n Set this constant in `value`. If "percent", the bar\n lengths correspond to a percentage of underlying data.\n Set this percentage in `value`. If "sqrt", the bar\n lengths correspond to the sqaure of the underlying\n data. If "array", the bar lengths are set with data set\n `array`.\n value\n Sets the value of either the percentage (if `type` is\n set to "percent") or the constant (if `type` is set to\n "constant") corresponding to the lengths of the error\n bars.\n valueminus\n Sets the value of either the percentage (if `type` is\n set to "percent") or the constant (if `type` is set to\n "constant") corresponding to the lengths of the error\n bars in the bottom (left) direction for vertical\n (horizontal) bars\n visible\n Determines whether or not this set of error bars is\n visible.\n width\n Sets the width (in px) of the cross-bar at both ends of\n the error bars.\n\n Returns\n -------\n ErrorY\n ' super(ErrorY, self).__init__('error_y') if (arg is None): arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError('The first argument to the plotly.graph_objs.histogram.ErrorY \nconstructor must be a dict or \nan instance of plotly.graph_objs.histogram.ErrorY') self._skip_invalid = kwargs.pop('skip_invalid', False) from plotly.validators.histogram import error_y as v_error_y self._validators['array'] = v_error_y.ArrayValidator() self._validators['arrayminus'] = v_error_y.ArrayminusValidator() self._validators['arrayminussrc'] = v_error_y.ArrayminussrcValidator() self._validators['arraysrc'] = v_error_y.ArraysrcValidator() self._validators['color'] = v_error_y.ColorValidator() self._validators['symmetric'] = v_error_y.SymmetricValidator() self._validators['thickness'] = v_error_y.ThicknessValidator() self._validators['traceref'] = v_error_y.TracerefValidator() self._validators['tracerefminus'] = v_error_y.TracerefminusValidator() self._validators['type'] = v_error_y.TypeValidator() self._validators['value'] = v_error_y.ValueValidator() self._validators['valueminus'] = v_error_y.ValueminusValidator() self._validators['visible'] = v_error_y.VisibleValidator() self._validators['width'] = v_error_y.WidthValidator() _v = arg.pop('array', None) self['array'] = (array if (array is not None) else _v) _v = arg.pop('arrayminus', None) self['arrayminus'] = (arrayminus if (arrayminus is not None) else _v) _v = arg.pop('arrayminussrc', None) self['arrayminussrc'] = (arrayminussrc if (arrayminussrc is not None) else _v) _v = arg.pop('arraysrc', None) self['arraysrc'] = (arraysrc if (arraysrc is not None) else _v) _v = arg.pop('color', None) self['color'] = (color if (color is not None) else _v) _v = arg.pop('symmetric', None) self['symmetric'] = (symmetric if (symmetric is not None) else _v) _v = arg.pop('thickness', None) self['thickness'] = (thickness if (thickness is not None) else _v) _v = arg.pop('traceref', None) self['traceref'] = (traceref if (traceref is not None) else _v) _v = arg.pop('tracerefminus', None) self['tracerefminus'] = (tracerefminus if (tracerefminus is not None) else _v) _v = arg.pop('type', None) self['type'] = (type if (type is not None) else _v) _v = arg.pop('value', None) self['value'] = (value if (value is not None) else _v) _v = arg.pop('valueminus', None) self['valueminus'] = (valueminus if (valueminus is not None) else _v) _v = arg.pop('visible', None) self['visible'] = (visible if (visible is not None) else _v) _v = arg.pop('width', None) self['width'] = (width if (width is not None) else _v) self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False<|docstring|>Construct a new ErrorY object Parameters ---------- arg dict of properties compatible with this constructor or an instance of plotly.graph_objs.histogram.ErrorY array Sets the data corresponding the length of each error bar. Values are plotted relative to the underlying data. arrayminus Sets the data corresponding the length of each error bar in the bottom (left) direction for vertical (horizontal) bars Values are plotted relative to the underlying data. arrayminussrc Sets the source reference on plot.ly for arrayminus . arraysrc Sets the source reference on plot.ly for array . color Sets the stoke color of the error bars. symmetric Determines whether or not the error bars have the same length in both direction (top/bottom for vertical bars, left/right for horizontal bars. thickness Sets the thickness (in px) of the error bars. traceref tracerefminus type Determines the rule used to generate the error bars. If *constant`, the bar lengths are of a constant value. Set this constant in `value`. If "percent", the bar lengths correspond to a percentage of underlying data. Set this percentage in `value`. If "sqrt", the bar lengths correspond to the sqaure of the underlying data. If "array", the bar lengths are set with data set `array`. value Sets the value of either the percentage (if `type` is set to "percent") or the constant (if `type` is set to "constant") corresponding to the lengths of the error bars. valueminus Sets the value of either the percentage (if `type` is set to "percent") or the constant (if `type` is set to "constant") corresponding to the lengths of the error bars in the bottom (left) direction for vertical (horizontal) bars visible Determines whether or not this set of error bars is visible. width Sets the width (in px) of the cross-bar at both ends of the error bars. Returns ------- ErrorY<|endoftext|>
a8b3418511a8a5a6c97e31707ad0f82dbb9209ac9cc66899b6f69a4d5cb3cb5c
@property def array(self): "\n Sets the data corresponding the length of each error bar.\n Values are plotted relative to the underlying data.\n \n The 'array' property is an array that may be specified as a tuple,\n list, numpy array, or pandas Series\n\n Returns\n -------\n numpy.ndarray\n " return self['array']
Sets the data corresponding the length of each error bar. Values are plotted relative to the underlying data. The 'array' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
array
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def array(self): "\n Sets the data corresponding the length of each error bar.\n Values are plotted relative to the underlying data.\n \n The 'array' property is an array that may be specified as a tuple,\n list, numpy array, or pandas Series\n\n Returns\n -------\n numpy.ndarray\n " return self['array']
@property def array(self): "\n Sets the data corresponding the length of each error bar.\n Values are plotted relative to the underlying data.\n \n The 'array' property is an array that may be specified as a tuple,\n list, numpy array, or pandas Series\n\n Returns\n -------\n numpy.ndarray\n " return self['array']<|docstring|>Sets the data corresponding the length of each error bar. Values are plotted relative to the underlying data. The 'array' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray<|endoftext|>
5227ac08b4dc63e1219b2315a6290375ca8d6e8eb5f13225f773ab860b1a1f89
@property def arrayminus(self): "\n Sets the data corresponding the length of each error bar in the\n bottom (left) direction for vertical (horizontal) bars Values\n are plotted relative to the underlying data.\n \n The 'arrayminus' property is an array that may be specified as a tuple,\n list, numpy array, or pandas Series\n\n Returns\n -------\n numpy.ndarray\n " return self['arrayminus']
Sets the data corresponding the length of each error bar in the bottom (left) direction for vertical (horizontal) bars Values are plotted relative to the underlying data. The 'arrayminus' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
arrayminus
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def arrayminus(self): "\n Sets the data corresponding the length of each error bar in the\n bottom (left) direction for vertical (horizontal) bars Values\n are plotted relative to the underlying data.\n \n The 'arrayminus' property is an array that may be specified as a tuple,\n list, numpy array, or pandas Series\n\n Returns\n -------\n numpy.ndarray\n " return self['arrayminus']
@property def arrayminus(self): "\n Sets the data corresponding the length of each error bar in the\n bottom (left) direction for vertical (horizontal) bars Values\n are plotted relative to the underlying data.\n \n The 'arrayminus' property is an array that may be specified as a tuple,\n list, numpy array, or pandas Series\n\n Returns\n -------\n numpy.ndarray\n " return self['arrayminus']<|docstring|>Sets the data corresponding the length of each error bar in the bottom (left) direction for vertical (horizontal) bars Values are plotted relative to the underlying data. The 'arrayminus' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray<|endoftext|>
d119ce6f009ac84f22bd443609c6f99703dd9bb616d0d437445c0fe7f4f74738
@property def arrayminussrc(self): "\n Sets the source reference on plot.ly for arrayminus .\n \n The 'arrayminussrc' property must be specified as a string or\n as a plotly.grid_objs.Column object\n\n Returns\n -------\n str\n " return self['arrayminussrc']
Sets the source reference on plot.ly for arrayminus . The 'arrayminussrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
arrayminussrc
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def arrayminussrc(self): "\n Sets the source reference on plot.ly for arrayminus .\n \n The 'arrayminussrc' property must be specified as a string or\n as a plotly.grid_objs.Column object\n\n Returns\n -------\n str\n " return self['arrayminussrc']
@property def arrayminussrc(self): "\n Sets the source reference on plot.ly for arrayminus .\n \n The 'arrayminussrc' property must be specified as a string or\n as a plotly.grid_objs.Column object\n\n Returns\n -------\n str\n " return self['arrayminussrc']<|docstring|>Sets the source reference on plot.ly for arrayminus . The 'arrayminussrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str<|endoftext|>
97b42d78e3bd868f4a134676d8c89a01781b1b4229b4e10055cdd13954798610
@property def arraysrc(self): "\n Sets the source reference on plot.ly for array .\n \n The 'arraysrc' property must be specified as a string or\n as a plotly.grid_objs.Column object\n\n Returns\n -------\n str\n " return self['arraysrc']
Sets the source reference on plot.ly for array . The 'arraysrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
arraysrc
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def arraysrc(self): "\n Sets the source reference on plot.ly for array .\n \n The 'arraysrc' property must be specified as a string or\n as a plotly.grid_objs.Column object\n\n Returns\n -------\n str\n " return self['arraysrc']
@property def arraysrc(self): "\n Sets the source reference on plot.ly for array .\n \n The 'arraysrc' property must be specified as a string or\n as a plotly.grid_objs.Column object\n\n Returns\n -------\n str\n " return self['arraysrc']<|docstring|>Sets the source reference on plot.ly for array . The 'arraysrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str<|endoftext|>
ca2c1342635b7080b021a94eef655c9569138dcfb1c3b3d16be6cb7a62563c59
@property def color(self): "\n Sets the stoke color of the error bars.\n \n The 'color' property is a color and may be specified as:\n - A hex string (e.g. '#ff0000')\n - An rgb/rgba string (e.g. 'rgb(255,0,0)')\n - An hsl/hsla string (e.g. 'hsl(0,100%,50%)')\n - An hsv/hsva string (e.g. 'hsv(0,100%,100%)')\n - A named CSS color:\n aliceblue, antiquewhite, aqua, aquamarine, azure,\n beige, bisque, black, blanchedalmond, blue,\n blueviolet, brown, burlywood, cadetblue,\n chartreuse, chocolate, coral, cornflowerblue,\n cornsilk, crimson, cyan, darkblue, darkcyan,\n darkgoldenrod, darkgray, darkgrey, darkgreen,\n darkkhaki, darkmagenta, darkolivegreen, darkorange,\n darkorchid, darkred, darksalmon, darkseagreen,\n darkslateblue, darkslategray, darkslategrey,\n darkturquoise, darkviolet, deeppink, deepskyblue,\n dimgray, dimgrey, dodgerblue, firebrick,\n floralwhite, forestgreen, fuchsia, gainsboro,\n ghostwhite, gold, goldenrod, gray, grey, green,\n greenyellow, honeydew, hotpink, indianred, indigo,\n ivory, khaki, lavender, lavenderblush, lawngreen,\n lemonchiffon, lightblue, lightcoral, lightcyan,\n lightgoldenrodyellow, lightgray, lightgrey,\n lightgreen, lightpink, lightsalmon, lightseagreen,\n lightskyblue, lightslategray, lightslategrey,\n lightsteelblue, lightyellow, lime, limegreen,\n linen, magenta, maroon, mediumaquamarine,\n mediumblue, mediumorchid, mediumpurple,\n mediumseagreen, mediumslateblue, mediumspringgreen,\n mediumturquoise, mediumvioletred, midnightblue,\n mintcream, mistyrose, moccasin, navajowhite, navy,\n oldlace, olive, olivedrab, orange, orangered,\n orchid, palegoldenrod, palegreen, paleturquoise,\n palevioletred, papayawhip, peachpuff, peru, pink,\n plum, powderblue, purple, red, rosybrown,\n royalblue, saddlebrown, salmon, sandybrown,\n seagreen, seashell, sienna, silver, skyblue,\n slateblue, slategray, slategrey, snow, springgreen,\n steelblue, tan, teal, thistle, tomato, turquoise,\n violet, wheat, white, whitesmoke, yellow,\n yellowgreen\n\n Returns\n -------\n str\n " return self['color']
Sets the stoke color of the error bars. The 'color' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen Returns ------- str
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
color
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def color(self): "\n Sets the stoke color of the error bars.\n \n The 'color' property is a color and may be specified as:\n - A hex string (e.g. '#ff0000')\n - An rgb/rgba string (e.g. 'rgb(255,0,0)')\n - An hsl/hsla string (e.g. 'hsl(0,100%,50%)')\n - An hsv/hsva string (e.g. 'hsv(0,100%,100%)')\n - A named CSS color:\n aliceblue, antiquewhite, aqua, aquamarine, azure,\n beige, bisque, black, blanchedalmond, blue,\n blueviolet, brown, burlywood, cadetblue,\n chartreuse, chocolate, coral, cornflowerblue,\n cornsilk, crimson, cyan, darkblue, darkcyan,\n darkgoldenrod, darkgray, darkgrey, darkgreen,\n darkkhaki, darkmagenta, darkolivegreen, darkorange,\n darkorchid, darkred, darksalmon, darkseagreen,\n darkslateblue, darkslategray, darkslategrey,\n darkturquoise, darkviolet, deeppink, deepskyblue,\n dimgray, dimgrey, dodgerblue, firebrick,\n floralwhite, forestgreen, fuchsia, gainsboro,\n ghostwhite, gold, goldenrod, gray, grey, green,\n greenyellow, honeydew, hotpink, indianred, indigo,\n ivory, khaki, lavender, lavenderblush, lawngreen,\n lemonchiffon, lightblue, lightcoral, lightcyan,\n lightgoldenrodyellow, lightgray, lightgrey,\n lightgreen, lightpink, lightsalmon, lightseagreen,\n lightskyblue, lightslategray, lightslategrey,\n lightsteelblue, lightyellow, lime, limegreen,\n linen, magenta, maroon, mediumaquamarine,\n mediumblue, mediumorchid, mediumpurple,\n mediumseagreen, mediumslateblue, mediumspringgreen,\n mediumturquoise, mediumvioletred, midnightblue,\n mintcream, mistyrose, moccasin, navajowhite, navy,\n oldlace, olive, olivedrab, orange, orangered,\n orchid, palegoldenrod, palegreen, paleturquoise,\n palevioletred, papayawhip, peachpuff, peru, pink,\n plum, powderblue, purple, red, rosybrown,\n royalblue, saddlebrown, salmon, sandybrown,\n seagreen, seashell, sienna, silver, skyblue,\n slateblue, slategray, slategrey, snow, springgreen,\n steelblue, tan, teal, thistle, tomato, turquoise,\n violet, wheat, white, whitesmoke, yellow,\n yellowgreen\n\n Returns\n -------\n str\n " return self['color']
@property def color(self): "\n Sets the stoke color of the error bars.\n \n The 'color' property is a color and may be specified as:\n - A hex string (e.g. '#ff0000')\n - An rgb/rgba string (e.g. 'rgb(255,0,0)')\n - An hsl/hsla string (e.g. 'hsl(0,100%,50%)')\n - An hsv/hsva string (e.g. 'hsv(0,100%,100%)')\n - A named CSS color:\n aliceblue, antiquewhite, aqua, aquamarine, azure,\n beige, bisque, black, blanchedalmond, blue,\n blueviolet, brown, burlywood, cadetblue,\n chartreuse, chocolate, coral, cornflowerblue,\n cornsilk, crimson, cyan, darkblue, darkcyan,\n darkgoldenrod, darkgray, darkgrey, darkgreen,\n darkkhaki, darkmagenta, darkolivegreen, darkorange,\n darkorchid, darkred, darksalmon, darkseagreen,\n darkslateblue, darkslategray, darkslategrey,\n darkturquoise, darkviolet, deeppink, deepskyblue,\n dimgray, dimgrey, dodgerblue, firebrick,\n floralwhite, forestgreen, fuchsia, gainsboro,\n ghostwhite, gold, goldenrod, gray, grey, green,\n greenyellow, honeydew, hotpink, indianred, indigo,\n ivory, khaki, lavender, lavenderblush, lawngreen,\n lemonchiffon, lightblue, lightcoral, lightcyan,\n lightgoldenrodyellow, lightgray, lightgrey,\n lightgreen, lightpink, lightsalmon, lightseagreen,\n lightskyblue, lightslategray, lightslategrey,\n lightsteelblue, lightyellow, lime, limegreen,\n linen, magenta, maroon, mediumaquamarine,\n mediumblue, mediumorchid, mediumpurple,\n mediumseagreen, mediumslateblue, mediumspringgreen,\n mediumturquoise, mediumvioletred, midnightblue,\n mintcream, mistyrose, moccasin, navajowhite, navy,\n oldlace, olive, olivedrab, orange, orangered,\n orchid, palegoldenrod, palegreen, paleturquoise,\n palevioletred, papayawhip, peachpuff, peru, pink,\n plum, powderblue, purple, red, rosybrown,\n royalblue, saddlebrown, salmon, sandybrown,\n seagreen, seashell, sienna, silver, skyblue,\n slateblue, slategray, slategrey, snow, springgreen,\n steelblue, tan, teal, thistle, tomato, turquoise,\n violet, wheat, white, whitesmoke, yellow,\n yellowgreen\n\n Returns\n -------\n str\n " return self['color']<|docstring|>Sets the stoke color of the error bars. The 'color' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen Returns ------- str<|endoftext|>
201c5498a6c962c9a5709599d741c11f2f2b87ff7e62abc0dfbbb3c1aad0acfc
@property def copy_ystyle(self): "\n The 'copy_ystyle' property must be specified as a bool\n (either True, or False)\n\n Returns\n -------\n bool\n " return self['copy_ystyle']
The 'copy_ystyle' property must be specified as a bool (either True, or False) Returns ------- bool
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
copy_ystyle
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def copy_ystyle(self): "\n The 'copy_ystyle' property must be specified as a bool\n (either True, or False)\n\n Returns\n -------\n bool\n " return self['copy_ystyle']
@property def copy_ystyle(self): "\n The 'copy_ystyle' property must be specified as a bool\n (either True, or False)\n\n Returns\n -------\n bool\n " return self['copy_ystyle']<|docstring|>The 'copy_ystyle' property must be specified as a bool (either True, or False) Returns ------- bool<|endoftext|>
81a8ccbc11c7a6aff9db370d8a6e4a445526c9bd4b3e6a03e8249b1780c3645d
@property def symmetric(self): "\n Determines whether or not the error bars have the same length\n in both direction (top/bottom for vertical bars, left/right for\n horizontal bars.\n \n The 'symmetric' property must be specified as a bool\n (either True, or False)\n\n Returns\n -------\n bool\n " return self['symmetric']
Determines whether or not the error bars have the same length in both direction (top/bottom for vertical bars, left/right for horizontal bars. The 'symmetric' property must be specified as a bool (either True, or False) Returns ------- bool
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
symmetric
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def symmetric(self): "\n Determines whether or not the error bars have the same length\n in both direction (top/bottom for vertical bars, left/right for\n horizontal bars.\n \n The 'symmetric' property must be specified as a bool\n (either True, or False)\n\n Returns\n -------\n bool\n " return self['symmetric']
@property def symmetric(self): "\n Determines whether or not the error bars have the same length\n in both direction (top/bottom for vertical bars, left/right for\n horizontal bars.\n \n The 'symmetric' property must be specified as a bool\n (either True, or False)\n\n Returns\n -------\n bool\n " return self['symmetric']<|docstring|>Determines whether or not the error bars have the same length in both direction (top/bottom for vertical bars, left/right for horizontal bars. The 'symmetric' property must be specified as a bool (either True, or False) Returns ------- bool<|endoftext|>
4d66f714783437288099d4aeabba8dc0326f464f0c6a125001a37d71c0db30c3
@property def thickness(self): "\n Sets the thickness (in px) of the error bars.\n \n The 'thickness' property is a number and may be specified as:\n - An int or float in the interval [0, inf]\n\n Returns\n -------\n int|float\n " return self['thickness']
Sets the thickness (in px) of the error bars. The 'thickness' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
thickness
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def thickness(self): "\n Sets the thickness (in px) of the error bars.\n \n The 'thickness' property is a number and may be specified as:\n - An int or float in the interval [0, inf]\n\n Returns\n -------\n int|float\n " return self['thickness']
@property def thickness(self): "\n Sets the thickness (in px) of the error bars.\n \n The 'thickness' property is a number and may be specified as:\n - An int or float in the interval [0, inf]\n\n Returns\n -------\n int|float\n " return self['thickness']<|docstring|>Sets the thickness (in px) of the error bars. The 'thickness' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float<|endoftext|>
6aa02d65fb6a81195cae8507f0a14f6605e9f9c19d2d77c0a96557a9a7fa80cf
@property def traceref(self): "\n The 'traceref' property is a integer and may be specified as:\n - An int (or float that will be cast to an int)\n in the interval [0, 9223372036854775807]\n\n Returns\n -------\n int\n " return self['traceref']
The 'traceref' property is a integer and may be specified as: - An int (or float that will be cast to an int) in the interval [0, 9223372036854775807] Returns ------- int
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
traceref
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def traceref(self): "\n The 'traceref' property is a integer and may be specified as:\n - An int (or float that will be cast to an int)\n in the interval [0, 9223372036854775807]\n\n Returns\n -------\n int\n " return self['traceref']
@property def traceref(self): "\n The 'traceref' property is a integer and may be specified as:\n - An int (or float that will be cast to an int)\n in the interval [0, 9223372036854775807]\n\n Returns\n -------\n int\n " return self['traceref']<|docstring|>The 'traceref' property is a integer and may be specified as: - An int (or float that will be cast to an int) in the interval [0, 9223372036854775807] Returns ------- int<|endoftext|>
069e81462e2241c45d5f255cbb783c55a8334748e56f6809914a0e65fdf4dec6
@property def tracerefminus(self): "\n The 'tracerefminus' property is a integer and may be specified as:\n - An int (or float that will be cast to an int)\n in the interval [0, 9223372036854775807]\n\n Returns\n -------\n int\n " return self['tracerefminus']
The 'tracerefminus' property is a integer and may be specified as: - An int (or float that will be cast to an int) in the interval [0, 9223372036854775807] Returns ------- int
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
tracerefminus
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def tracerefminus(self): "\n The 'tracerefminus' property is a integer and may be specified as:\n - An int (or float that will be cast to an int)\n in the interval [0, 9223372036854775807]\n\n Returns\n -------\n int\n " return self['tracerefminus']
@property def tracerefminus(self): "\n The 'tracerefminus' property is a integer and may be specified as:\n - An int (or float that will be cast to an int)\n in the interval [0, 9223372036854775807]\n\n Returns\n -------\n int\n " return self['tracerefminus']<|docstring|>The 'tracerefminus' property is a integer and may be specified as: - An int (or float that will be cast to an int) in the interval [0, 9223372036854775807] Returns ------- int<|endoftext|>
d40f7715ff4fffb822bdb1628d39760aaec99e7656fd5aa77de9a73a4cb0c9bc
@property def type(self): '\n Determines the rule used to generate the error bars. If\n *constant`, the bar lengths are of a constant value. Set this\n constant in `value`. If "percent", the bar lengths correspond\n to a percentage of underlying data. Set this percentage in\n `value`. If "sqrt", the bar lengths correspond to the sqaure of\n the underlying data. If "array", the bar lengths are set with\n data set `array`.\n \n The \'type\' property is an enumeration that may be specified as:\n - One of the following enumeration values:\n [\'percent\', \'constant\', \'sqrt\', \'data\']\n\n Returns\n -------\n Any\n ' return self['type']
Determines the rule used to generate the error bars. If *constant`, the bar lengths are of a constant value. Set this constant in `value`. If "percent", the bar lengths correspond to a percentage of underlying data. Set this percentage in `value`. If "sqrt", the bar lengths correspond to the sqaure of the underlying data. If "array", the bar lengths are set with data set `array`. The 'type' property is an enumeration that may be specified as: - One of the following enumeration values: ['percent', 'constant', 'sqrt', 'data'] Returns ------- Any
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
type
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def type(self): '\n Determines the rule used to generate the error bars. If\n *constant`, the bar lengths are of a constant value. Set this\n constant in `value`. If "percent", the bar lengths correspond\n to a percentage of underlying data. Set this percentage in\n `value`. If "sqrt", the bar lengths correspond to the sqaure of\n the underlying data. If "array", the bar lengths are set with\n data set `array`.\n \n The \'type\' property is an enumeration that may be specified as:\n - One of the following enumeration values:\n [\'percent\', \'constant\', \'sqrt\', \'data\']\n\n Returns\n -------\n Any\n ' return self['type']
@property def type(self): '\n Determines the rule used to generate the error bars. If\n *constant`, the bar lengths are of a constant value. Set this\n constant in `value`. If "percent", the bar lengths correspond\n to a percentage of underlying data. Set this percentage in\n `value`. If "sqrt", the bar lengths correspond to the sqaure of\n the underlying data. If "array", the bar lengths are set with\n data set `array`.\n \n The \'type\' property is an enumeration that may be specified as:\n - One of the following enumeration values:\n [\'percent\', \'constant\', \'sqrt\', \'data\']\n\n Returns\n -------\n Any\n ' return self['type']<|docstring|>Determines the rule used to generate the error bars. If *constant`, the bar lengths are of a constant value. Set this constant in `value`. If "percent", the bar lengths correspond to a percentage of underlying data. Set this percentage in `value`. If "sqrt", the bar lengths correspond to the sqaure of the underlying data. If "array", the bar lengths are set with data set `array`. The 'type' property is an enumeration that may be specified as: - One of the following enumeration values: ['percent', 'constant', 'sqrt', 'data'] Returns ------- Any<|endoftext|>
6b76fa155f1fe7f1046cca507ba5530d5eab00f170bbe2cd7db74404a18e07c9
@property def value(self): '\n Sets the value of either the percentage (if `type` is set to\n "percent") or the constant (if `type` is set to "constant")\n corresponding to the lengths of the error bars.\n \n The \'value\' property is a number and may be specified as:\n - An int or float in the interval [0, inf]\n\n Returns\n -------\n int|float\n ' return self['value']
Sets the value of either the percentage (if `type` is set to "percent") or the constant (if `type` is set to "constant") corresponding to the lengths of the error bars. The 'value' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
value
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def value(self): '\n Sets the value of either the percentage (if `type` is set to\n "percent") or the constant (if `type` is set to "constant")\n corresponding to the lengths of the error bars.\n \n The \'value\' property is a number and may be specified as:\n - An int or float in the interval [0, inf]\n\n Returns\n -------\n int|float\n ' return self['value']
@property def value(self): '\n Sets the value of either the percentage (if `type` is set to\n "percent") or the constant (if `type` is set to "constant")\n corresponding to the lengths of the error bars.\n \n The \'value\' property is a number and may be specified as:\n - An int or float in the interval [0, inf]\n\n Returns\n -------\n int|float\n ' return self['value']<|docstring|>Sets the value of either the percentage (if `type` is set to "percent") or the constant (if `type` is set to "constant") corresponding to the lengths of the error bars. The 'value' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float<|endoftext|>
8575d77a31dd7c9cc4ff4c52485ded3072a6cf84852c50c2e94d9c5e686081b8
@property def valueminus(self): '\n Sets the value of either the percentage (if `type` is set to\n "percent") or the constant (if `type` is set to "constant")\n corresponding to the lengths of the error bars in the bottom\n (left) direction for vertical (horizontal) bars\n \n The \'valueminus\' property is a number and may be specified as:\n - An int or float in the interval [0, inf]\n\n Returns\n -------\n int|float\n ' return self['valueminus']
Sets the value of either the percentage (if `type` is set to "percent") or the constant (if `type` is set to "constant") corresponding to the lengths of the error bars in the bottom (left) direction for vertical (horizontal) bars The 'valueminus' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
valueminus
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def valueminus(self): '\n Sets the value of either the percentage (if `type` is set to\n "percent") or the constant (if `type` is set to "constant")\n corresponding to the lengths of the error bars in the bottom\n (left) direction for vertical (horizontal) bars\n \n The \'valueminus\' property is a number and may be specified as:\n - An int or float in the interval [0, inf]\n\n Returns\n -------\n int|float\n ' return self['valueminus']
@property def valueminus(self): '\n Sets the value of either the percentage (if `type` is set to\n "percent") or the constant (if `type` is set to "constant")\n corresponding to the lengths of the error bars in the bottom\n (left) direction for vertical (horizontal) bars\n \n The \'valueminus\' property is a number and may be specified as:\n - An int or float in the interval [0, inf]\n\n Returns\n -------\n int|float\n ' return self['valueminus']<|docstring|>Sets the value of either the percentage (if `type` is set to "percent") or the constant (if `type` is set to "constant") corresponding to the lengths of the error bars in the bottom (left) direction for vertical (horizontal) bars The 'valueminus' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float<|endoftext|>
c4628805814a732d7fa4a534a26fdddfd2a09c20c985ab6cd27b4befc676e6b7
@property def visible(self): "\n Determines whether or not this set of error bars is visible.\n \n The 'visible' property must be specified as a bool\n (either True, or False)\n\n Returns\n -------\n bool\n " return self['visible']
Determines whether or not this set of error bars is visible. The 'visible' property must be specified as a bool (either True, or False) Returns ------- bool
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
visible
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def visible(self): "\n Determines whether or not this set of error bars is visible.\n \n The 'visible' property must be specified as a bool\n (either True, or False)\n\n Returns\n -------\n bool\n " return self['visible']
@property def visible(self): "\n Determines whether or not this set of error bars is visible.\n \n The 'visible' property must be specified as a bool\n (either True, or False)\n\n Returns\n -------\n bool\n " return self['visible']<|docstring|>Determines whether or not this set of error bars is visible. The 'visible' property must be specified as a bool (either True, or False) Returns ------- bool<|endoftext|>
60e04a4534186665cbee0778238e695e1250b413efbcea1fdcff37d4e66d2bed
@property def width(self): "\n Sets the width (in px) of the cross-bar at both ends of the\n error bars.\n \n The 'width' property is a number and may be specified as:\n - An int or float in the interval [0, inf]\n\n Returns\n -------\n int|float\n " return self['width']
Sets the width (in px) of the cross-bar at both ends of the error bars. The 'width' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
width
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def width(self): "\n Sets the width (in px) of the cross-bar at both ends of the\n error bars.\n \n The 'width' property is a number and may be specified as:\n - An int or float in the interval [0, inf]\n\n Returns\n -------\n int|float\n " return self['width']
@property def width(self): "\n Sets the width (in px) of the cross-bar at both ends of the\n error bars.\n \n The 'width' property is a number and may be specified as:\n - An int or float in the interval [0, inf]\n\n Returns\n -------\n int|float\n " return self['width']<|docstring|>Sets the width (in px) of the cross-bar at both ends of the error bars. The 'width' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float<|endoftext|>
2fca14366a52cdec1c128949d30d26f46de11b3a0e7e1216a1cde38a0d817c21
def __init__(self, arg=None, array=None, arrayminus=None, arrayminussrc=None, arraysrc=None, color=None, copy_ystyle=None, symmetric=None, thickness=None, traceref=None, tracerefminus=None, type=None, value=None, valueminus=None, visible=None, width=None, **kwargs): '\n Construct a new ErrorX object\n \n Parameters\n ----------\n arg\n dict of properties compatible with this constructor or\n an instance of plotly.graph_objs.histogram.ErrorX\n array\n Sets the data corresponding the length of each error\n bar. Values are plotted relative to the underlying\n data.\n arrayminus\n Sets the data corresponding the length of each error\n bar in the bottom (left) direction for vertical\n (horizontal) bars Values are plotted relative to the\n underlying data.\n arrayminussrc\n Sets the source reference on plot.ly for arrayminus .\n arraysrc\n Sets the source reference on plot.ly for array .\n color\n Sets the stoke color of the error bars.\n copy_ystyle\n\n symmetric\n Determines whether or not the error bars have the same\n length in both direction (top/bottom for vertical bars,\n left/right for horizontal bars.\n thickness\n Sets the thickness (in px) of the error bars.\n traceref\n\n tracerefminus\n\n type\n Determines the rule used to generate the error bars. If\n *constant`, the bar lengths are of a constant value.\n Set this constant in `value`. If "percent", the bar\n lengths correspond to a percentage of underlying data.\n Set this percentage in `value`. If "sqrt", the bar\n lengths correspond to the sqaure of the underlying\n data. If "array", the bar lengths are set with data set\n `array`.\n value\n Sets the value of either the percentage (if `type` is\n set to "percent") or the constant (if `type` is set to\n "constant") corresponding to the lengths of the error\n bars.\n valueminus\n Sets the value of either the percentage (if `type` is\n set to "percent") or the constant (if `type` is set to\n "constant") corresponding to the lengths of the error\n bars in the bottom (left) direction for vertical\n (horizontal) bars\n visible\n Determines whether or not this set of error bars is\n visible.\n width\n Sets the width (in px) of the cross-bar at both ends of\n the error bars.\n\n Returns\n -------\n ErrorX\n ' super(ErrorX, self).__init__('error_x') if (arg is None): arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError('The first argument to the plotly.graph_objs.histogram.ErrorX \nconstructor must be a dict or \nan instance of plotly.graph_objs.histogram.ErrorX') self._skip_invalid = kwargs.pop('skip_invalid', False) from plotly.validators.histogram import error_x as v_error_x self._validators['array'] = v_error_x.ArrayValidator() self._validators['arrayminus'] = v_error_x.ArrayminusValidator() self._validators['arrayminussrc'] = v_error_x.ArrayminussrcValidator() self._validators['arraysrc'] = v_error_x.ArraysrcValidator() self._validators['color'] = v_error_x.ColorValidator() self._validators['copy_ystyle'] = v_error_x.CopyYstyleValidator() self._validators['symmetric'] = v_error_x.SymmetricValidator() self._validators['thickness'] = v_error_x.ThicknessValidator() self._validators['traceref'] = v_error_x.TracerefValidator() self._validators['tracerefminus'] = v_error_x.TracerefminusValidator() self._validators['type'] = v_error_x.TypeValidator() self._validators['value'] = v_error_x.ValueValidator() self._validators['valueminus'] = v_error_x.ValueminusValidator() self._validators['visible'] = v_error_x.VisibleValidator() self._validators['width'] = v_error_x.WidthValidator() _v = arg.pop('array', None) self['array'] = (array if (array is not None) else _v) _v = arg.pop('arrayminus', None) self['arrayminus'] = (arrayminus if (arrayminus is not None) else _v) _v = arg.pop('arrayminussrc', None) self['arrayminussrc'] = (arrayminussrc if (arrayminussrc is not None) else _v) _v = arg.pop('arraysrc', None) self['arraysrc'] = (arraysrc if (arraysrc is not None) else _v) _v = arg.pop('color', None) self['color'] = (color if (color is not None) else _v) _v = arg.pop('copy_ystyle', None) self['copy_ystyle'] = (copy_ystyle if (copy_ystyle is not None) else _v) _v = arg.pop('symmetric', None) self['symmetric'] = (symmetric if (symmetric is not None) else _v) _v = arg.pop('thickness', None) self['thickness'] = (thickness if (thickness is not None) else _v) _v = arg.pop('traceref', None) self['traceref'] = (traceref if (traceref is not None) else _v) _v = arg.pop('tracerefminus', None) self['tracerefminus'] = (tracerefminus if (tracerefminus is not None) else _v) _v = arg.pop('type', None) self['type'] = (type if (type is not None) else _v) _v = arg.pop('value', None) self['value'] = (value if (value is not None) else _v) _v = arg.pop('valueminus', None) self['valueminus'] = (valueminus if (valueminus is not None) else _v) _v = arg.pop('visible', None) self['visible'] = (visible if (visible is not None) else _v) _v = arg.pop('width', None) self['width'] = (width if (width is not None) else _v) self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False
Construct a new ErrorX object Parameters ---------- arg dict of properties compatible with this constructor or an instance of plotly.graph_objs.histogram.ErrorX array Sets the data corresponding the length of each error bar. Values are plotted relative to the underlying data. arrayminus Sets the data corresponding the length of each error bar in the bottom (left) direction for vertical (horizontal) bars Values are plotted relative to the underlying data. arrayminussrc Sets the source reference on plot.ly for arrayminus . arraysrc Sets the source reference on plot.ly for array . color Sets the stoke color of the error bars. copy_ystyle symmetric Determines whether or not the error bars have the same length in both direction (top/bottom for vertical bars, left/right for horizontal bars. thickness Sets the thickness (in px) of the error bars. traceref tracerefminus type Determines the rule used to generate the error bars. If *constant`, the bar lengths are of a constant value. Set this constant in `value`. If "percent", the bar lengths correspond to a percentage of underlying data. Set this percentage in `value`. If "sqrt", the bar lengths correspond to the sqaure of the underlying data. If "array", the bar lengths are set with data set `array`. value Sets the value of either the percentage (if `type` is set to "percent") or the constant (if `type` is set to "constant") corresponding to the lengths of the error bars. valueminus Sets the value of either the percentage (if `type` is set to "percent") or the constant (if `type` is set to "constant") corresponding to the lengths of the error bars in the bottom (left) direction for vertical (horizontal) bars visible Determines whether or not this set of error bars is visible. width Sets the width (in px) of the cross-bar at both ends of the error bars. Returns ------- ErrorX
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
__init__
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
def __init__(self, arg=None, array=None, arrayminus=None, arrayminussrc=None, arraysrc=None, color=None, copy_ystyle=None, symmetric=None, thickness=None, traceref=None, tracerefminus=None, type=None, value=None, valueminus=None, visible=None, width=None, **kwargs): '\n Construct a new ErrorX object\n \n Parameters\n ----------\n arg\n dict of properties compatible with this constructor or\n an instance of plotly.graph_objs.histogram.ErrorX\n array\n Sets the data corresponding the length of each error\n bar. Values are plotted relative to the underlying\n data.\n arrayminus\n Sets the data corresponding the length of each error\n bar in the bottom (left) direction for vertical\n (horizontal) bars Values are plotted relative to the\n underlying data.\n arrayminussrc\n Sets the source reference on plot.ly for arrayminus .\n arraysrc\n Sets the source reference on plot.ly for array .\n color\n Sets the stoke color of the error bars.\n copy_ystyle\n\n symmetric\n Determines whether or not the error bars have the same\n length in both direction (top/bottom for vertical bars,\n left/right for horizontal bars.\n thickness\n Sets the thickness (in px) of the error bars.\n traceref\n\n tracerefminus\n\n type\n Determines the rule used to generate the error bars. If\n *constant`, the bar lengths are of a constant value.\n Set this constant in `value`. If "percent", the bar\n lengths correspond to a percentage of underlying data.\n Set this percentage in `value`. If "sqrt", the bar\n lengths correspond to the sqaure of the underlying\n data. If "array", the bar lengths are set with data set\n `array`.\n value\n Sets the value of either the percentage (if `type` is\n set to "percent") or the constant (if `type` is set to\n "constant") corresponding to the lengths of the error\n bars.\n valueminus\n Sets the value of either the percentage (if `type` is\n set to "percent") or the constant (if `type` is set to\n "constant") corresponding to the lengths of the error\n bars in the bottom (left) direction for vertical\n (horizontal) bars\n visible\n Determines whether or not this set of error bars is\n visible.\n width\n Sets the width (in px) of the cross-bar at both ends of\n the error bars.\n\n Returns\n -------\n ErrorX\n ' super(ErrorX, self).__init__('error_x') if (arg is None): arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError('The first argument to the plotly.graph_objs.histogram.ErrorX \nconstructor must be a dict or \nan instance of plotly.graph_objs.histogram.ErrorX') self._skip_invalid = kwargs.pop('skip_invalid', False) from plotly.validators.histogram import error_x as v_error_x self._validators['array'] = v_error_x.ArrayValidator() self._validators['arrayminus'] = v_error_x.ArrayminusValidator() self._validators['arrayminussrc'] = v_error_x.ArrayminussrcValidator() self._validators['arraysrc'] = v_error_x.ArraysrcValidator() self._validators['color'] = v_error_x.ColorValidator() self._validators['copy_ystyle'] = v_error_x.CopyYstyleValidator() self._validators['symmetric'] = v_error_x.SymmetricValidator() self._validators['thickness'] = v_error_x.ThicknessValidator() self._validators['traceref'] = v_error_x.TracerefValidator() self._validators['tracerefminus'] = v_error_x.TracerefminusValidator() self._validators['type'] = v_error_x.TypeValidator() self._validators['value'] = v_error_x.ValueValidator() self._validators['valueminus'] = v_error_x.ValueminusValidator() self._validators['visible'] = v_error_x.VisibleValidator() self._validators['width'] = v_error_x.WidthValidator() _v = arg.pop('array', None) self['array'] = (array if (array is not None) else _v) _v = arg.pop('arrayminus', None) self['arrayminus'] = (arrayminus if (arrayminus is not None) else _v) _v = arg.pop('arrayminussrc', None) self['arrayminussrc'] = (arrayminussrc if (arrayminussrc is not None) else _v) _v = arg.pop('arraysrc', None) self['arraysrc'] = (arraysrc if (arraysrc is not None) else _v) _v = arg.pop('color', None) self['color'] = (color if (color is not None) else _v) _v = arg.pop('copy_ystyle', None) self['copy_ystyle'] = (copy_ystyle if (copy_ystyle is not None) else _v) _v = arg.pop('symmetric', None) self['symmetric'] = (symmetric if (symmetric is not None) else _v) _v = arg.pop('thickness', None) self['thickness'] = (thickness if (thickness is not None) else _v) _v = arg.pop('traceref', None) self['traceref'] = (traceref if (traceref is not None) else _v) _v = arg.pop('tracerefminus', None) self['tracerefminus'] = (tracerefminus if (tracerefminus is not None) else _v) _v = arg.pop('type', None) self['type'] = (type if (type is not None) else _v) _v = arg.pop('value', None) self['value'] = (value if (value is not None) else _v) _v = arg.pop('valueminus', None) self['valueminus'] = (valueminus if (valueminus is not None) else _v) _v = arg.pop('visible', None) self['visible'] = (visible if (visible is not None) else _v) _v = arg.pop('width', None) self['width'] = (width if (width is not None) else _v) self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False
def __init__(self, arg=None, array=None, arrayminus=None, arrayminussrc=None, arraysrc=None, color=None, copy_ystyle=None, symmetric=None, thickness=None, traceref=None, tracerefminus=None, type=None, value=None, valueminus=None, visible=None, width=None, **kwargs): '\n Construct a new ErrorX object\n \n Parameters\n ----------\n arg\n dict of properties compatible with this constructor or\n an instance of plotly.graph_objs.histogram.ErrorX\n array\n Sets the data corresponding the length of each error\n bar. Values are plotted relative to the underlying\n data.\n arrayminus\n Sets the data corresponding the length of each error\n bar in the bottom (left) direction for vertical\n (horizontal) bars Values are plotted relative to the\n underlying data.\n arrayminussrc\n Sets the source reference on plot.ly for arrayminus .\n arraysrc\n Sets the source reference on plot.ly for array .\n color\n Sets the stoke color of the error bars.\n copy_ystyle\n\n symmetric\n Determines whether or not the error bars have the same\n length in both direction (top/bottom for vertical bars,\n left/right for horizontal bars.\n thickness\n Sets the thickness (in px) of the error bars.\n traceref\n\n tracerefminus\n\n type\n Determines the rule used to generate the error bars. If\n *constant`, the bar lengths are of a constant value.\n Set this constant in `value`. If "percent", the bar\n lengths correspond to a percentage of underlying data.\n Set this percentage in `value`. If "sqrt", the bar\n lengths correspond to the sqaure of the underlying\n data. If "array", the bar lengths are set with data set\n `array`.\n value\n Sets the value of either the percentage (if `type` is\n set to "percent") or the constant (if `type` is set to\n "constant") corresponding to the lengths of the error\n bars.\n valueminus\n Sets the value of either the percentage (if `type` is\n set to "percent") or the constant (if `type` is set to\n "constant") corresponding to the lengths of the error\n bars in the bottom (left) direction for vertical\n (horizontal) bars\n visible\n Determines whether or not this set of error bars is\n visible.\n width\n Sets the width (in px) of the cross-bar at both ends of\n the error bars.\n\n Returns\n -------\n ErrorX\n ' super(ErrorX, self).__init__('error_x') if (arg is None): arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError('The first argument to the plotly.graph_objs.histogram.ErrorX \nconstructor must be a dict or \nan instance of plotly.graph_objs.histogram.ErrorX') self._skip_invalid = kwargs.pop('skip_invalid', False) from plotly.validators.histogram import error_x as v_error_x self._validators['array'] = v_error_x.ArrayValidator() self._validators['arrayminus'] = v_error_x.ArrayminusValidator() self._validators['arrayminussrc'] = v_error_x.ArrayminussrcValidator() self._validators['arraysrc'] = v_error_x.ArraysrcValidator() self._validators['color'] = v_error_x.ColorValidator() self._validators['copy_ystyle'] = v_error_x.CopyYstyleValidator() self._validators['symmetric'] = v_error_x.SymmetricValidator() self._validators['thickness'] = v_error_x.ThicknessValidator() self._validators['traceref'] = v_error_x.TracerefValidator() self._validators['tracerefminus'] = v_error_x.TracerefminusValidator() self._validators['type'] = v_error_x.TypeValidator() self._validators['value'] = v_error_x.ValueValidator() self._validators['valueminus'] = v_error_x.ValueminusValidator() self._validators['visible'] = v_error_x.VisibleValidator() self._validators['width'] = v_error_x.WidthValidator() _v = arg.pop('array', None) self['array'] = (array if (array is not None) else _v) _v = arg.pop('arrayminus', None) self['arrayminus'] = (arrayminus if (arrayminus is not None) else _v) _v = arg.pop('arrayminussrc', None) self['arrayminussrc'] = (arrayminussrc if (arrayminussrc is not None) else _v) _v = arg.pop('arraysrc', None) self['arraysrc'] = (arraysrc if (arraysrc is not None) else _v) _v = arg.pop('color', None) self['color'] = (color if (color is not None) else _v) _v = arg.pop('copy_ystyle', None) self['copy_ystyle'] = (copy_ystyle if (copy_ystyle is not None) else _v) _v = arg.pop('symmetric', None) self['symmetric'] = (symmetric if (symmetric is not None) else _v) _v = arg.pop('thickness', None) self['thickness'] = (thickness if (thickness is not None) else _v) _v = arg.pop('traceref', None) self['traceref'] = (traceref if (traceref is not None) else _v) _v = arg.pop('tracerefminus', None) self['tracerefminus'] = (tracerefminus if (tracerefminus is not None) else _v) _v = arg.pop('type', None) self['type'] = (type if (type is not None) else _v) _v = arg.pop('value', None) self['value'] = (value if (value is not None) else _v) _v = arg.pop('valueminus', None) self['valueminus'] = (valueminus if (valueminus is not None) else _v) _v = arg.pop('visible', None) self['visible'] = (visible if (visible is not None) else _v) _v = arg.pop('width', None) self['width'] = (width if (width is not None) else _v) self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False<|docstring|>Construct a new ErrorX object Parameters ---------- arg dict of properties compatible with this constructor or an instance of plotly.graph_objs.histogram.ErrorX array Sets the data corresponding the length of each error bar. Values are plotted relative to the underlying data. arrayminus Sets the data corresponding the length of each error bar in the bottom (left) direction for vertical (horizontal) bars Values are plotted relative to the underlying data. arrayminussrc Sets the source reference on plot.ly for arrayminus . arraysrc Sets the source reference on plot.ly for array . color Sets the stoke color of the error bars. copy_ystyle symmetric Determines whether or not the error bars have the same length in both direction (top/bottom for vertical bars, left/right for horizontal bars. thickness Sets the thickness (in px) of the error bars. traceref tracerefminus type Determines the rule used to generate the error bars. If *constant`, the bar lengths are of a constant value. Set this constant in `value`. If "percent", the bar lengths correspond to a percentage of underlying data. Set this percentage in `value`. If "sqrt", the bar lengths correspond to the sqaure of the underlying data. If "array", the bar lengths are set with data set `array`. value Sets the value of either the percentage (if `type` is set to "percent") or the constant (if `type` is set to "constant") corresponding to the lengths of the error bars. valueminus Sets the value of either the percentage (if `type` is set to "percent") or the constant (if `type` is set to "constant") corresponding to the lengths of the error bars in the bottom (left) direction for vertical (horizontal) bars visible Determines whether or not this set of error bars is visible. width Sets the width (in px) of the cross-bar at both ends of the error bars. Returns ------- ErrorX<|endoftext|>
0d2e6a04754228c96246d11011ae63198b1403a37bcb648b13e6c560d8a71f9e
@property def currentbin(self): '\n Only applies if cumulative is enabled. Sets whether the current\n bin is included, excluded, or has half of its value included in\n the current cumulative value. "include" is the default for\n compatibility with various other tools, however it introduces a\n half-bin bias to the results. "exclude" makes the opposite\n half-bin bias, and "half" removes it.\n \n The \'currentbin\' property is an enumeration that may be specified as:\n - One of the following enumeration values:\n [\'include\', \'exclude\', \'half\']\n\n Returns\n -------\n Any\n ' return self['currentbin']
Only applies if cumulative is enabled. Sets whether the current bin is included, excluded, or has half of its value included in the current cumulative value. "include" is the default for compatibility with various other tools, however it introduces a half-bin bias to the results. "exclude" makes the opposite half-bin bias, and "half" removes it. The 'currentbin' property is an enumeration that may be specified as: - One of the following enumeration values: ['include', 'exclude', 'half'] Returns ------- Any
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
currentbin
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def currentbin(self): '\n Only applies if cumulative is enabled. Sets whether the current\n bin is included, excluded, or has half of its value included in\n the current cumulative value. "include" is the default for\n compatibility with various other tools, however it introduces a\n half-bin bias to the results. "exclude" makes the opposite\n half-bin bias, and "half" removes it.\n \n The \'currentbin\' property is an enumeration that may be specified as:\n - One of the following enumeration values:\n [\'include\', \'exclude\', \'half\']\n\n Returns\n -------\n Any\n ' return self['currentbin']
@property def currentbin(self): '\n Only applies if cumulative is enabled. Sets whether the current\n bin is included, excluded, or has half of its value included in\n the current cumulative value. "include" is the default for\n compatibility with various other tools, however it introduces a\n half-bin bias to the results. "exclude" makes the opposite\n half-bin bias, and "half" removes it.\n \n The \'currentbin\' property is an enumeration that may be specified as:\n - One of the following enumeration values:\n [\'include\', \'exclude\', \'half\']\n\n Returns\n -------\n Any\n ' return self['currentbin']<|docstring|>Only applies if cumulative is enabled. Sets whether the current bin is included, excluded, or has half of its value included in the current cumulative value. "include" is the default for compatibility with various other tools, however it introduces a half-bin bias to the results. "exclude" makes the opposite half-bin bias, and "half" removes it. The 'currentbin' property is an enumeration that may be specified as: - One of the following enumeration values: ['include', 'exclude', 'half'] Returns ------- Any<|endoftext|>
7fa397aa1553db4b130e44d215c857080ff06fced6c1932d9bae451b9c12571b
@property def direction(self): '\n Only applies if cumulative is enabled. If "increasing"\n (default) we sum all prior bins, so the result increases from\n left to right. If "decreasing" we sum later bins so the result\n decreases from left to right.\n \n The \'direction\' property is an enumeration that may be specified as:\n - One of the following enumeration values:\n [\'increasing\', \'decreasing\']\n\n Returns\n -------\n Any\n ' return self['direction']
Only applies if cumulative is enabled. If "increasing" (default) we sum all prior bins, so the result increases from left to right. If "decreasing" we sum later bins so the result decreases from left to right. The 'direction' property is an enumeration that may be specified as: - One of the following enumeration values: ['increasing', 'decreasing'] Returns ------- Any
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
direction
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def direction(self): '\n Only applies if cumulative is enabled. If "increasing"\n (default) we sum all prior bins, so the result increases from\n left to right. If "decreasing" we sum later bins so the result\n decreases from left to right.\n \n The \'direction\' property is an enumeration that may be specified as:\n - One of the following enumeration values:\n [\'increasing\', \'decreasing\']\n\n Returns\n -------\n Any\n ' return self['direction']
@property def direction(self): '\n Only applies if cumulative is enabled. If "increasing"\n (default) we sum all prior bins, so the result increases from\n left to right. If "decreasing" we sum later bins so the result\n decreases from left to right.\n \n The \'direction\' property is an enumeration that may be specified as:\n - One of the following enumeration values:\n [\'increasing\', \'decreasing\']\n\n Returns\n -------\n Any\n ' return self['direction']<|docstring|>Only applies if cumulative is enabled. If "increasing" (default) we sum all prior bins, so the result increases from left to right. If "decreasing" we sum later bins so the result decreases from left to right. The 'direction' property is an enumeration that may be specified as: - One of the following enumeration values: ['increasing', 'decreasing'] Returns ------- Any<|endoftext|>
525113d0e0cb7db860d9bcf9e1681f7eafd1cc6c07ec85bdef517a4eed798106
@property def enabled(self): '\n If true, display the cumulative distribution by summing the\n binned values. Use the `direction` and `centralbin` attributes\n to tune the accumulation method. Note: in this mode, the\n "density" `histnorm` settings behave the same as their\n equivalents without "density": "" and "density" both rise to\n the number of data points, and "probability" and *probability\n density* both rise to the number of sample points.\n \n The \'enabled\' property must be specified as a bool\n (either True, or False)\n\n Returns\n -------\n bool\n ' return self['enabled']
If true, display the cumulative distribution by summing the binned values. Use the `direction` and `centralbin` attributes to tune the accumulation method. Note: in this mode, the "density" `histnorm` settings behave the same as their equivalents without "density": "" and "density" both rise to the number of data points, and "probability" and *probability density* both rise to the number of sample points. The 'enabled' property must be specified as a bool (either True, or False) Returns ------- bool
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
enabled
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
@property def enabled(self): '\n If true, display the cumulative distribution by summing the\n binned values. Use the `direction` and `centralbin` attributes\n to tune the accumulation method. Note: in this mode, the\n "density" `histnorm` settings behave the same as their\n equivalents without "density": and "density" both rise to\n the number of data points, and "probability" and *probability\n density* both rise to the number of sample points.\n \n The \'enabled\' property must be specified as a bool\n (either True, or False)\n\n Returns\n -------\n bool\n ' return self['enabled']
@property def enabled(self): '\n If true, display the cumulative distribution by summing the\n binned values. Use the `direction` and `centralbin` attributes\n to tune the accumulation method. Note: in this mode, the\n "density" `histnorm` settings behave the same as their\n equivalents without "density": and "density" both rise to\n the number of data points, and "probability" and *probability\n density* both rise to the number of sample points.\n \n The \'enabled\' property must be specified as a bool\n (either True, or False)\n\n Returns\n -------\n bool\n ' return self['enabled']<|docstring|>If true, display the cumulative distribution by summing the binned values. Use the `direction` and `centralbin` attributes to tune the accumulation method. Note: in this mode, the "density" `histnorm` settings behave the same as their equivalents without "density": "" and "density" both rise to the number of data points, and "probability" and *probability density* both rise to the number of sample points. The 'enabled' property must be specified as a bool (either True, or False) Returns ------- bool<|endoftext|>
856a2633822178f59001e8a35ef3c4f2181fc24b0b189dbbbc92c14d004b32e6
def __init__(self, arg=None, currentbin=None, direction=None, enabled=None, **kwargs): '\n Construct a new Cumulative object\n \n Parameters\n ----------\n arg\n dict of properties compatible with this constructor or\n an instance of plotly.graph_objs.histogram.Cumulative\n currentbin\n Only applies if cumulative is enabled. Sets whether the\n current bin is included, excluded, or has half of its\n value included in the current cumulative value.\n "include" is the default for compatibility with various\n other tools, however it introduces a half-bin bias to\n the results. "exclude" makes the opposite half-bin\n bias, and "half" removes it.\n direction\n Only applies if cumulative is enabled. If "increasing"\n (default) we sum all prior bins, so the result\n increases from left to right. If "decreasing" we sum\n later bins so the result decreases from left to right.\n enabled\n If true, display the cumulative distribution by summing\n the binned values. Use the `direction` and `centralbin`\n attributes to tune the accumulation method. Note: in\n this mode, the "density" `histnorm` settings behave the\n same as their equivalents without "density": "" and\n "density" both rise to the number of data points, and\n "probability" and *probability density* both rise to\n the number of sample points.\n\n Returns\n -------\n Cumulative\n ' super(Cumulative, self).__init__('cumulative') if (arg is None): arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError('The first argument to the plotly.graph_objs.histogram.Cumulative \nconstructor must be a dict or \nan instance of plotly.graph_objs.histogram.Cumulative') self._skip_invalid = kwargs.pop('skip_invalid', False) from plotly.validators.histogram import cumulative as v_cumulative self._validators['currentbin'] = v_cumulative.CurrentbinValidator() self._validators['direction'] = v_cumulative.DirectionValidator() self._validators['enabled'] = v_cumulative.EnabledValidator() _v = arg.pop('currentbin', None) self['currentbin'] = (currentbin if (currentbin is not None) else _v) _v = arg.pop('direction', None) self['direction'] = (direction if (direction is not None) else _v) _v = arg.pop('enabled', None) self['enabled'] = (enabled if (enabled is not None) else _v) self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False
Construct a new Cumulative object Parameters ---------- arg dict of properties compatible with this constructor or an instance of plotly.graph_objs.histogram.Cumulative currentbin Only applies if cumulative is enabled. Sets whether the current bin is included, excluded, or has half of its value included in the current cumulative value. "include" is the default for compatibility with various other tools, however it introduces a half-bin bias to the results. "exclude" makes the opposite half-bin bias, and "half" removes it. direction Only applies if cumulative is enabled. If "increasing" (default) we sum all prior bins, so the result increases from left to right. If "decreasing" we sum later bins so the result decreases from left to right. enabled If true, display the cumulative distribution by summing the binned values. Use the `direction` and `centralbin` attributes to tune the accumulation method. Note: in this mode, the "density" `histnorm` settings behave the same as their equivalents without "density": "" and "density" both rise to the number of data points, and "probability" and *probability density* both rise to the number of sample points. Returns ------- Cumulative
WatchDogs_Visualisation/oldApps/tweet-map/venv2/lib/python3.7/site-packages/plotly/graph_objs/histogram/__init__.py
__init__
tnreddy09/WatchDogs_StockMarketAnalysis
6
python
def __init__(self, arg=None, currentbin=None, direction=None, enabled=None, **kwargs): '\n Construct a new Cumulative object\n \n Parameters\n ----------\n arg\n dict of properties compatible with this constructor or\n an instance of plotly.graph_objs.histogram.Cumulative\n currentbin\n Only applies if cumulative is enabled. Sets whether the\n current bin is included, excluded, or has half of its\n value included in the current cumulative value.\n "include" is the default for compatibility with various\n other tools, however it introduces a half-bin bias to\n the results. "exclude" makes the opposite half-bin\n bias, and "half" removes it.\n direction\n Only applies if cumulative is enabled. If "increasing"\n (default) we sum all prior bins, so the result\n increases from left to right. If "decreasing" we sum\n later bins so the result decreases from left to right.\n enabled\n If true, display the cumulative distribution by summing\n the binned values. Use the `direction` and `centralbin`\n attributes to tune the accumulation method. Note: in\n this mode, the "density" `histnorm` settings behave the\n same as their equivalents without "density": and\n "density" both rise to the number of data points, and\n "probability" and *probability density* both rise to\n the number of sample points.\n\n Returns\n -------\n Cumulative\n ' super(Cumulative, self).__init__('cumulative') if (arg is None): arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError('The first argument to the plotly.graph_objs.histogram.Cumulative \nconstructor must be a dict or \nan instance of plotly.graph_objs.histogram.Cumulative') self._skip_invalid = kwargs.pop('skip_invalid', False) from plotly.validators.histogram import cumulative as v_cumulative self._validators['currentbin'] = v_cumulative.CurrentbinValidator() self._validators['direction'] = v_cumulative.DirectionValidator() self._validators['enabled'] = v_cumulative.EnabledValidator() _v = arg.pop('currentbin', None) self['currentbin'] = (currentbin if (currentbin is not None) else _v) _v = arg.pop('direction', None) self['direction'] = (direction if (direction is not None) else _v) _v = arg.pop('enabled', None) self['enabled'] = (enabled if (enabled is not None) else _v) self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False
def __init__(self, arg=None, currentbin=None, direction=None, enabled=None, **kwargs): '\n Construct a new Cumulative object\n \n Parameters\n ----------\n arg\n dict of properties compatible with this constructor or\n an instance of plotly.graph_objs.histogram.Cumulative\n currentbin\n Only applies if cumulative is enabled. Sets whether the\n current bin is included, excluded, or has half of its\n value included in the current cumulative value.\n "include" is the default for compatibility with various\n other tools, however it introduces a half-bin bias to\n the results. "exclude" makes the opposite half-bin\n bias, and "half" removes it.\n direction\n Only applies if cumulative is enabled. If "increasing"\n (default) we sum all prior bins, so the result\n increases from left to right. If "decreasing" we sum\n later bins so the result decreases from left to right.\n enabled\n If true, display the cumulative distribution by summing\n the binned values. Use the `direction` and `centralbin`\n attributes to tune the accumulation method. Note: in\n this mode, the "density" `histnorm` settings behave the\n same as their equivalents without "density": and\n "density" both rise to the number of data points, and\n "probability" and *probability density* both rise to\n the number of sample points.\n\n Returns\n -------\n Cumulative\n ' super(Cumulative, self).__init__('cumulative') if (arg is None): arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError('The first argument to the plotly.graph_objs.histogram.Cumulative \nconstructor must be a dict or \nan instance of plotly.graph_objs.histogram.Cumulative') self._skip_invalid = kwargs.pop('skip_invalid', False) from plotly.validators.histogram import cumulative as v_cumulative self._validators['currentbin'] = v_cumulative.CurrentbinValidator() self._validators['direction'] = v_cumulative.DirectionValidator() self._validators['enabled'] = v_cumulative.EnabledValidator() _v = arg.pop('currentbin', None) self['currentbin'] = (currentbin if (currentbin is not None) else _v) _v = arg.pop('direction', None) self['direction'] = (direction if (direction is not None) else _v) _v = arg.pop('enabled', None) self['enabled'] = (enabled if (enabled is not None) else _v) self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False<|docstring|>Construct a new Cumulative object Parameters ---------- arg dict of properties compatible with this constructor or an instance of plotly.graph_objs.histogram.Cumulative currentbin Only applies if cumulative is enabled. Sets whether the current bin is included, excluded, or has half of its value included in the current cumulative value. "include" is the default for compatibility with various other tools, however it introduces a half-bin bias to the results. "exclude" makes the opposite half-bin bias, and "half" removes it. direction Only applies if cumulative is enabled. If "increasing" (default) we sum all prior bins, so the result increases from left to right. If "decreasing" we sum later bins so the result decreases from left to right. enabled If true, display the cumulative distribution by summing the binned values. Use the `direction` and `centralbin` attributes to tune the accumulation method. Note: in this mode, the "density" `histnorm` settings behave the same as their equivalents without "density": "" and "density" both rise to the number of data points, and "probability" and *probability density* both rise to the number of sample points. Returns ------- Cumulative<|endoftext|>
e6784566e3f121b57105776808a13c49851ac778e154b34b4089d344b83dd4ac
def play_game(min_bound=0, max_bound=11, num_trials=5, seed=False): 'Program randomly chooses a positive integer. Then prompts the user to guess the chosen number. In each wrong attempt the program will give a hint that the number is greater or smaller than the one guessed. Optionally, the user is also allowed to find out more information about the number, by querying the variable attributes.\n\nParameters:\n min_bound (int>=0): minimum bound of range the program can choose a number from. Default is 0. \n\n max_bound (int>=1): maximum bound of range the program can choose a number from. Default is 10.\n\n num_trials (int>=1): number of chances user has to guess the correct number. Default is 5.\n\nReturns:\n val (int): 1 if the user huessed correctly, 0 if not.\n ' if (max_bound <= min_bound): raise ValueError if (num_trials <= 0): raise ValueError if seed: random.seed(seed) chosen = random.randint(min_bound, max_bound) trial = num_trials while (trial >= 0): if (trial == 0): print('Game over.') else: print('You have {} goes left.'.format(trial)) guess = int(input('Please guess an integer between {} and {}: '.format(min_bound, (max_bound - 1)))) [txt, val] = utils.eval_guess(chosen, guess) print(txt) trial = (trial - 1) if (val == 1): break return val
Program randomly chooses a positive integer. Then prompts the user to guess the chosen number. In each wrong attempt the program will give a hint that the number is greater or smaller than the one guessed. Optionally, the user is also allowed to find out more information about the number, by querying the variable attributes. Parameters: min_bound (int>=0): minimum bound of range the program can choose a number from. Default is 0. max_bound (int>=1): maximum bound of range the program can choose a number from. Default is 10. num_trials (int>=1): number of chances user has to guess the correct number. Default is 5. Returns: val (int): 1 if the user huessed correctly, 0 if not.
guess_number_game/guess_number_game/guess_number.py
play_game
karinsasaki/Python_ML_projects
0
python
def play_game(min_bound=0, max_bound=11, num_trials=5, seed=False): 'Program randomly chooses a positive integer. Then prompts the user to guess the chosen number. In each wrong attempt the program will give a hint that the number is greater or smaller than the one guessed. Optionally, the user is also allowed to find out more information about the number, by querying the variable attributes.\n\nParameters:\n min_bound (int>=0): minimum bound of range the program can choose a number from. Default is 0. \n\n max_bound (int>=1): maximum bound of range the program can choose a number from. Default is 10.\n\n num_trials (int>=1): number of chances user has to guess the correct number. Default is 5.\n\nReturns:\n val (int): 1 if the user huessed correctly, 0 if not.\n ' if (max_bound <= min_bound): raise ValueError if (num_trials <= 0): raise ValueError if seed: random.seed(seed) chosen = random.randint(min_bound, max_bound) trial = num_trials while (trial >= 0): if (trial == 0): print('Game over.') else: print('You have {} goes left.'.format(trial)) guess = int(input('Please guess an integer between {} and {}: '.format(min_bound, (max_bound - 1)))) [txt, val] = utils.eval_guess(chosen, guess) print(txt) trial = (trial - 1) if (val == 1): break return val
def play_game(min_bound=0, max_bound=11, num_trials=5, seed=False): 'Program randomly chooses a positive integer. Then prompts the user to guess the chosen number. In each wrong attempt the program will give a hint that the number is greater or smaller than the one guessed. Optionally, the user is also allowed to find out more information about the number, by querying the variable attributes.\n\nParameters:\n min_bound (int>=0): minimum bound of range the program can choose a number from. Default is 0. \n\n max_bound (int>=1): maximum bound of range the program can choose a number from. Default is 10.\n\n num_trials (int>=1): number of chances user has to guess the correct number. Default is 5.\n\nReturns:\n val (int): 1 if the user huessed correctly, 0 if not.\n ' if (max_bound <= min_bound): raise ValueError if (num_trials <= 0): raise ValueError if seed: random.seed(seed) chosen = random.randint(min_bound, max_bound) trial = num_trials while (trial >= 0): if (trial == 0): print('Game over.') else: print('You have {} goes left.'.format(trial)) guess = int(input('Please guess an integer between {} and {}: '.format(min_bound, (max_bound - 1)))) [txt, val] = utils.eval_guess(chosen, guess) print(txt) trial = (trial - 1) if (val == 1): break return val<|docstring|>Program randomly chooses a positive integer. Then prompts the user to guess the chosen number. In each wrong attempt the program will give a hint that the number is greater or smaller than the one guessed. Optionally, the user is also allowed to find out more information about the number, by querying the variable attributes. Parameters: min_bound (int>=0): minimum bound of range the program can choose a number from. Default is 0. max_bound (int>=1): maximum bound of range the program can choose a number from. Default is 10. num_trials (int>=1): number of chances user has to guess the correct number. Default is 5. Returns: val (int): 1 if the user huessed correctly, 0 if not.<|endoftext|>
16b4ad3d8a5aeb052f353bf211656f066616d81bc9ddab308ade60c84b49535a
def compare_record(record_one, record_two): 'This is meant to be a strict comparison for exact agreement...' assert isinstance(record_one, SeqRecord) assert isinstance(record_two, SeqRecord) assert (record_one.seq is not None) assert (record_two.seq is not None) if (record_one.id != record_two.id): return False if (record_one.name != record_two.name): return False if (record_one.description != record_two.description): return False if (len(record_one) != len(record_two)): return False if (isinstance(record_one.seq, UnknownSeq) and isinstance(record_two.seq, UnknownSeq)): if (record_one.seq._character != record_two.seq._character): return False elif (str(record_one.seq) != str(record_two.seq)): return False for key in set(record_one.letter_annotations).intersection(record_two.letter_annotations): if (record_one.letter_annotations[key] != record_two.letter_annotations[key]): return False return True
This is meant to be a strict comparison for exact agreement...
Tests/test_SeqIO.py
compare_record
zachcp/biopython
5
python
def compare_record(record_one, record_two): assert isinstance(record_one, SeqRecord) assert isinstance(record_two, SeqRecord) assert (record_one.seq is not None) assert (record_two.seq is not None) if (record_one.id != record_two.id): return False if (record_one.name != record_two.name): return False if (record_one.description != record_two.description): return False if (len(record_one) != len(record_two)): return False if (isinstance(record_one.seq, UnknownSeq) and isinstance(record_two.seq, UnknownSeq)): if (record_one.seq._character != record_two.seq._character): return False elif (str(record_one.seq) != str(record_two.seq)): return False for key in set(record_one.letter_annotations).intersection(record_two.letter_annotations): if (record_one.letter_annotations[key] != record_two.letter_annotations[key]): return False return True
def compare_record(record_one, record_two): assert isinstance(record_one, SeqRecord) assert isinstance(record_two, SeqRecord) assert (record_one.seq is not None) assert (record_two.seq is not None) if (record_one.id != record_two.id): return False if (record_one.name != record_two.name): return False if (record_one.description != record_two.description): return False if (len(record_one) != len(record_two)): return False if (isinstance(record_one.seq, UnknownSeq) and isinstance(record_two.seq, UnknownSeq)): if (record_one.seq._character != record_two.seq._character): return False elif (str(record_one.seq) != str(record_two.seq)): return False for key in set(record_one.letter_annotations).intersection(record_two.letter_annotations): if (record_one.letter_annotations[key] != record_two.letter_annotations[key]): return False return True<|docstring|>This is meant to be a strict comparison for exact agreement...<|endoftext|>
07a8dafbce45de0cffaacabf2ea224740ad437009c45b1f8a02ec894c43664df
def record_summary(record, indent=' '): 'Returns a concise summary of a SeqRecord object as a string' if (record.id == record.name): answer = ("%sID and Name='%s',\n%sSeq='" % (indent, record.id, indent)) else: answer = ("%sID = '%s', Name='%s',\n%sSeq='" % (indent, record.id, record.name, indent)) if (record.seq is None): answer += 'None' else: if (len(record.seq) > 50): answer += ((str(record.seq[:40]) + '...') + str(record.seq[(- 7):])) else: answer += str(record.seq) answer += ("', length=%i" % len(record.seq)) return answer
Returns a concise summary of a SeqRecord object as a string
Tests/test_SeqIO.py
record_summary
zachcp/biopython
5
python
def record_summary(record, indent=' '): if (record.id == record.name): answer = ("%sID and Name='%s',\n%sSeq='" % (indent, record.id, indent)) else: answer = ("%sID = '%s', Name='%s',\n%sSeq='" % (indent, record.id, record.name, indent)) if (record.seq is None): answer += 'None' else: if (len(record.seq) > 50): answer += ((str(record.seq[:40]) + '...') + str(record.seq[(- 7):])) else: answer += str(record.seq) answer += ("', length=%i" % len(record.seq)) return answer
def record_summary(record, indent=' '): if (record.id == record.name): answer = ("%sID and Name='%s',\n%sSeq='" % (indent, record.id, indent)) else: answer = ("%sID = '%s', Name='%s',\n%sSeq='" % (indent, record.id, record.name, indent)) if (record.seq is None): answer += 'None' else: if (len(record.seq) > 50): answer += ((str(record.seq[:40]) + '...') + str(record.seq[(- 7):])) else: answer += str(record.seq) answer += ("', length=%i" % len(record.seq)) return answer<|docstring|>Returns a concise summary of a SeqRecord object as a string<|endoftext|>
ecc7ae63c8e357730587f8d1a3f9d718acfcf7138feaf40e51066dfdaf701892
def alignment_summary(alignment, index=' '): 'Returns a concise summary of an Alignment object as a string' answer = [] alignment_len = alignment.get_alignment_length() rec_count = len(alignment) for i in range(min(5, alignment_len)): answer.append(((index + col_summary(alignment.get_column(i))) + (' alignment column %i' % i))) if (alignment_len > 5): i = (alignment_len - 1) answer.append(((index + col_summary(('|' * rec_count))) + ' ...')) answer.append(((index + col_summary(alignment.get_column(i))) + (' alignment column %i' % i))) return '\n'.join(answer)
Returns a concise summary of an Alignment object as a string
Tests/test_SeqIO.py
alignment_summary
zachcp/biopython
5
python
def alignment_summary(alignment, index=' '): answer = [] alignment_len = alignment.get_alignment_length() rec_count = len(alignment) for i in range(min(5, alignment_len)): answer.append(((index + col_summary(alignment.get_column(i))) + (' alignment column %i' % i))) if (alignment_len > 5): i = (alignment_len - 1) answer.append(((index + col_summary(('|' * rec_count))) + ' ...')) answer.append(((index + col_summary(alignment.get_column(i))) + (' alignment column %i' % i))) return '\n'.join(answer)
def alignment_summary(alignment, index=' '): answer = [] alignment_len = alignment.get_alignment_length() rec_count = len(alignment) for i in range(min(5, alignment_len)): answer.append(((index + col_summary(alignment.get_column(i))) + (' alignment column %i' % i))) if (alignment_len > 5): i = (alignment_len - 1) answer.append(((index + col_summary(('|' * rec_count))) + ' ...')) answer.append(((index + col_summary(alignment.get_column(i))) + (' alignment column %i' % i))) return '\n'.join(answer)<|docstring|>Returns a concise summary of an Alignment object as a string<|endoftext|>
50b068c5a4df081a92528b442a7e88b516d08599ec6235ac07598e18588453dd
def is_valid(url): '\n Checks whether `url` is a valid URL.\n ' parsed = urlparse(url) return (bool(parsed.netloc) and bool(parsed.scheme))
Checks whether `url` is a valid URL.
api/website_info/utils.py
is_valid
gpiechnik2/senter
2
python
def is_valid(url): '\n \n ' parsed = urlparse(url) return (bool(parsed.netloc) and bool(parsed.scheme))
def is_valid(url): '\n \n ' parsed = urlparse(url) return (bool(parsed.netloc) and bool(parsed.scheme))<|docstring|>Checks whether `url` is a valid URL.<|endoftext|>
fd867bd3bfd7e34121f0b0d75f19aef1a6f8cde2d2ac980502432140b6790760
def thinning(fillmap, max_iter=100): 'Fill area of line with surrounding fill color.\n\n # Arguments\n fillmap: an image.\n max_iter: max iteration number.\n\n # Returns\n an image.\n ' line_id = 0 (h, w) = fillmap.shape[:2] result = fillmap.copy() for iterNum in range(max_iter): line_points = np.where((result == line_id)) if (not (len(line_points[0]) > 0)): break line_mask = np.full((h, w), 255, np.uint8) line_mask[line_points] = 0 line_border_mask = (cv2.morphologyEx(line_mask, cv2.MORPH_DILATE, cv2.getStructuringElement(cv2.MORPH_CROSS, (3, 3)), anchor=((- 1), (- 1)), iterations=1) - line_mask) line_border_points = np.where((line_border_mask == 255)) result_tmp = result.copy() for (i, _) in enumerate(line_border_points[0]): (x, y) = (line_border_points[1][i], line_border_points[0][i]) if (((x - 1) > 0) and (result[y][(x - 1)] != line_id)): result_tmp[y][x] = result[y][(x - 1)] continue if (((x - 1) > 0) and ((y - 1) > 0) and (result[(y - 1)][(x - 1)] != line_id)): result_tmp[y][x] = result[(y - 1)][(x - 1)] continue if (((y - 1) > 0) and (result[(y - 1)][x] != line_id)): result_tmp[y][x] = result[(y - 1)][x] continue if (((y - 1) > 0) and ((x + 1) < w) and (result[(y - 1)][(x + 1)] != line_id)): result_tmp[y][x] = result[(y - 1)][(x + 1)] continue if (((x + 1) < w) and (result[y][(x + 1)] != line_id)): result_tmp[y][x] = result[y][(x + 1)] continue if (((x + 1) < w) and ((y + 1) < h) and (result[(y + 1)][(x + 1)] != line_id)): result_tmp[y][x] = result[(y + 1)][(x + 1)] continue if (((y + 1) < h) and (result[(y + 1)][x] != line_id)): result_tmp[y][x] = result[(y + 1)][x] continue if (((y + 1) < h) and ((x - 1) > 0) and (result[(y + 1)][(x - 1)] != line_id)): result_tmp[y][x] = result[(y + 1)][(x - 1)] continue result = result_tmp.copy() return result
Fill area of line with surrounding fill color. # Arguments fillmap: an image. max_iter: max iteration number. # Returns an image.
models/sgm_model/linefiller/thinning.py
thinning
JanValJanus/AnimeInterp
245
python
def thinning(fillmap, max_iter=100): 'Fill area of line with surrounding fill color.\n\n # Arguments\n fillmap: an image.\n max_iter: max iteration number.\n\n # Returns\n an image.\n ' line_id = 0 (h, w) = fillmap.shape[:2] result = fillmap.copy() for iterNum in range(max_iter): line_points = np.where((result == line_id)) if (not (len(line_points[0]) > 0)): break line_mask = np.full((h, w), 255, np.uint8) line_mask[line_points] = 0 line_border_mask = (cv2.morphologyEx(line_mask, cv2.MORPH_DILATE, cv2.getStructuringElement(cv2.MORPH_CROSS, (3, 3)), anchor=((- 1), (- 1)), iterations=1) - line_mask) line_border_points = np.where((line_border_mask == 255)) result_tmp = result.copy() for (i, _) in enumerate(line_border_points[0]): (x, y) = (line_border_points[1][i], line_border_points[0][i]) if (((x - 1) > 0) and (result[y][(x - 1)] != line_id)): result_tmp[y][x] = result[y][(x - 1)] continue if (((x - 1) > 0) and ((y - 1) > 0) and (result[(y - 1)][(x - 1)] != line_id)): result_tmp[y][x] = result[(y - 1)][(x - 1)] continue if (((y - 1) > 0) and (result[(y - 1)][x] != line_id)): result_tmp[y][x] = result[(y - 1)][x] continue if (((y - 1) > 0) and ((x + 1) < w) and (result[(y - 1)][(x + 1)] != line_id)): result_tmp[y][x] = result[(y - 1)][(x + 1)] continue if (((x + 1) < w) and (result[y][(x + 1)] != line_id)): result_tmp[y][x] = result[y][(x + 1)] continue if (((x + 1) < w) and ((y + 1) < h) and (result[(y + 1)][(x + 1)] != line_id)): result_tmp[y][x] = result[(y + 1)][(x + 1)] continue if (((y + 1) < h) and (result[(y + 1)][x] != line_id)): result_tmp[y][x] = result[(y + 1)][x] continue if (((y + 1) < h) and ((x - 1) > 0) and (result[(y + 1)][(x - 1)] != line_id)): result_tmp[y][x] = result[(y + 1)][(x - 1)] continue result = result_tmp.copy() return result
def thinning(fillmap, max_iter=100): 'Fill area of line with surrounding fill color.\n\n # Arguments\n fillmap: an image.\n max_iter: max iteration number.\n\n # Returns\n an image.\n ' line_id = 0 (h, w) = fillmap.shape[:2] result = fillmap.copy() for iterNum in range(max_iter): line_points = np.where((result == line_id)) if (not (len(line_points[0]) > 0)): break line_mask = np.full((h, w), 255, np.uint8) line_mask[line_points] = 0 line_border_mask = (cv2.morphologyEx(line_mask, cv2.MORPH_DILATE, cv2.getStructuringElement(cv2.MORPH_CROSS, (3, 3)), anchor=((- 1), (- 1)), iterations=1) - line_mask) line_border_points = np.where((line_border_mask == 255)) result_tmp = result.copy() for (i, _) in enumerate(line_border_points[0]): (x, y) = (line_border_points[1][i], line_border_points[0][i]) if (((x - 1) > 0) and (result[y][(x - 1)] != line_id)): result_tmp[y][x] = result[y][(x - 1)] continue if (((x - 1) > 0) and ((y - 1) > 0) and (result[(y - 1)][(x - 1)] != line_id)): result_tmp[y][x] = result[(y - 1)][(x - 1)] continue if (((y - 1) > 0) and (result[(y - 1)][x] != line_id)): result_tmp[y][x] = result[(y - 1)][x] continue if (((y - 1) > 0) and ((x + 1) < w) and (result[(y - 1)][(x + 1)] != line_id)): result_tmp[y][x] = result[(y - 1)][(x + 1)] continue if (((x + 1) < w) and (result[y][(x + 1)] != line_id)): result_tmp[y][x] = result[y][(x + 1)] continue if (((x + 1) < w) and ((y + 1) < h) and (result[(y + 1)][(x + 1)] != line_id)): result_tmp[y][x] = result[(y + 1)][(x + 1)] continue if (((y + 1) < h) and (result[(y + 1)][x] != line_id)): result_tmp[y][x] = result[(y + 1)][x] continue if (((y + 1) < h) and ((x - 1) > 0) and (result[(y + 1)][(x - 1)] != line_id)): result_tmp[y][x] = result[(y + 1)][(x - 1)] continue result = result_tmp.copy() return result<|docstring|>Fill area of line with surrounding fill color. # Arguments fillmap: an image. max_iter: max iteration number. # Returns an image.<|endoftext|>
31759b3d35846480e76543e39030ed13fd2da2645e022c7e83a40600b6715ace
def osm_notification_handler(): 'Connects on OSM Kafka Bus and subscribes to NS-related topics.' consumer = KafkaConsumer(bootstrap_servers=KAFKA_SERVER, client_id=KAFKA_CLIENT_ID, enable_auto_commit=True, value_deserializer=(lambda v: yaml.safe_load(v.decode('utf-8', 'ignore'))), api_version=KAFKA_API_VERSION, group_id=KAFKA_GROUP_ID) consumer.subscribe(KAFKA_TOPICS) logger.info('Initialized Kafka Consumer & subscribed to OSM topics') for msg in consumer: operation = msg.key.decode('ascii') message = msg.value if (operation == INSTANTIATE): logger.info('Instantiation of NS with UUID {} started'.format(message['nsInstanceId'])) ns_pre_instantiation_handler(message['operationParams']) elif (operation == TERMINATE): logger.info('Termination of NS with UUID {} started'.format(message['nsInstanceId'])) ns = Instance.objects.filter(uuid=message['nsInstanceId']) if ns.exists(): ns.update(state='terminate') elif (operation == SCALE): scale_vnf_type = message['operationParams']['scaleVnfData']['scaleVnfType'] if (scale_vnf_type == SCALE_OUT): logger.info('Scaling-out VNF of NS with UUID {} started'.format(message['nsInstanceId'])) elif (scale_vnf_type == SCALE_IN): logger.info('Scaling-in VNF of NS with UUID {} started'.format(message['nsInstanceId'])) elif (operation == INSTANTIATED): ns = Instance.objects.filter(uuid=message['nsr_id']) if ns.exists(): if (message['operationState'] == 'COMPLETED'): ns.update(state='active') ns_instantiation_handler(ns[0]) logger.info('Instantiation of NS with UUID {} completed'.format(ns[0].uuid)) elif (message['operationState'] == 'FAILED'): logger.info('Instantiation of NS with UUID {} failed'.format(ns[0].uuid)) ns.delete() elif (operation == TERMINATED): ns = Instance.objects.filter(uuid=message['nsr_id']) if ns.exists(): if (message['operationState'] == 'COMPLETED'): ns.update(state='deleted') ns_termination_handler(ns[0]) logger.info('Termination of NS with UUID {} completed'.format(ns[0].uuid)) elif (message['operationState'] == 'FAILED'): ns.update(state='active') logger.info('Termination of NS with UUID {} failed'.format(ns[0].uuid)) elif (operation == SCALED): ns = Instance.objects.filter(uuid=message['nsr_id']) if ns.exists(): if (scale_vnf_type == SCALE_OUT): if (message['operationState'] == 'COMPLETED'): vnf_scaling_out_handler(ns[0]) logger.info('Scaling-out VNF of NS with UUID {} completed'.format(ns[0].uuid)) elif (message['operationState'] == 'FAILED'): logger.info('Scaling-out VNF of NS with UUID {} failed'.format(ns[0].uuid)) elif (scale_vnf_type == SCALE_IN): if (message['operationState'] == 'COMPLETED'): vnf_scaling_in_handler(ns[0]) logger.info('Scaling-in VNF of NS with UUID {} completed'.format(ns[0].uuid)) elif (message['operationState'] == 'FAILED'): logger.info('Scaling-in VNF of NS with UUID {} failed'.format(ns[0].uuid))
Connects on OSM Kafka Bus and subscribes to NS-related topics.
api/management/commands/osm_notifications.py
osm_notification_handler
5g-media/accounting-agent
0
python
def osm_notification_handler(): consumer = KafkaConsumer(bootstrap_servers=KAFKA_SERVER, client_id=KAFKA_CLIENT_ID, enable_auto_commit=True, value_deserializer=(lambda v: yaml.safe_load(v.decode('utf-8', 'ignore'))), api_version=KAFKA_API_VERSION, group_id=KAFKA_GROUP_ID) consumer.subscribe(KAFKA_TOPICS) logger.info('Initialized Kafka Consumer & subscribed to OSM topics') for msg in consumer: operation = msg.key.decode('ascii') message = msg.value if (operation == INSTANTIATE): logger.info('Instantiation of NS with UUID {} started'.format(message['nsInstanceId'])) ns_pre_instantiation_handler(message['operationParams']) elif (operation == TERMINATE): logger.info('Termination of NS with UUID {} started'.format(message['nsInstanceId'])) ns = Instance.objects.filter(uuid=message['nsInstanceId']) if ns.exists(): ns.update(state='terminate') elif (operation == SCALE): scale_vnf_type = message['operationParams']['scaleVnfData']['scaleVnfType'] if (scale_vnf_type == SCALE_OUT): logger.info('Scaling-out VNF of NS with UUID {} started'.format(message['nsInstanceId'])) elif (scale_vnf_type == SCALE_IN): logger.info('Scaling-in VNF of NS with UUID {} started'.format(message['nsInstanceId'])) elif (operation == INSTANTIATED): ns = Instance.objects.filter(uuid=message['nsr_id']) if ns.exists(): if (message['operationState'] == 'COMPLETED'): ns.update(state='active') ns_instantiation_handler(ns[0]) logger.info('Instantiation of NS with UUID {} completed'.format(ns[0].uuid)) elif (message['operationState'] == 'FAILED'): logger.info('Instantiation of NS with UUID {} failed'.format(ns[0].uuid)) ns.delete() elif (operation == TERMINATED): ns = Instance.objects.filter(uuid=message['nsr_id']) if ns.exists(): if (message['operationState'] == 'COMPLETED'): ns.update(state='deleted') ns_termination_handler(ns[0]) logger.info('Termination of NS with UUID {} completed'.format(ns[0].uuid)) elif (message['operationState'] == 'FAILED'): ns.update(state='active') logger.info('Termination of NS with UUID {} failed'.format(ns[0].uuid)) elif (operation == SCALED): ns = Instance.objects.filter(uuid=message['nsr_id']) if ns.exists(): if (scale_vnf_type == SCALE_OUT): if (message['operationState'] == 'COMPLETED'): vnf_scaling_out_handler(ns[0]) logger.info('Scaling-out VNF of NS with UUID {} completed'.format(ns[0].uuid)) elif (message['operationState'] == 'FAILED'): logger.info('Scaling-out VNF of NS with UUID {} failed'.format(ns[0].uuid)) elif (scale_vnf_type == SCALE_IN): if (message['operationState'] == 'COMPLETED'): vnf_scaling_in_handler(ns[0]) logger.info('Scaling-in VNF of NS with UUID {} completed'.format(ns[0].uuid)) elif (message['operationState'] == 'FAILED'): logger.info('Scaling-in VNF of NS with UUID {} failed'.format(ns[0].uuid))
def osm_notification_handler(): consumer = KafkaConsumer(bootstrap_servers=KAFKA_SERVER, client_id=KAFKA_CLIENT_ID, enable_auto_commit=True, value_deserializer=(lambda v: yaml.safe_load(v.decode('utf-8', 'ignore'))), api_version=KAFKA_API_VERSION, group_id=KAFKA_GROUP_ID) consumer.subscribe(KAFKA_TOPICS) logger.info('Initialized Kafka Consumer & subscribed to OSM topics') for msg in consumer: operation = msg.key.decode('ascii') message = msg.value if (operation == INSTANTIATE): logger.info('Instantiation of NS with UUID {} started'.format(message['nsInstanceId'])) ns_pre_instantiation_handler(message['operationParams']) elif (operation == TERMINATE): logger.info('Termination of NS with UUID {} started'.format(message['nsInstanceId'])) ns = Instance.objects.filter(uuid=message['nsInstanceId']) if ns.exists(): ns.update(state='terminate') elif (operation == SCALE): scale_vnf_type = message['operationParams']['scaleVnfData']['scaleVnfType'] if (scale_vnf_type == SCALE_OUT): logger.info('Scaling-out VNF of NS with UUID {} started'.format(message['nsInstanceId'])) elif (scale_vnf_type == SCALE_IN): logger.info('Scaling-in VNF of NS with UUID {} started'.format(message['nsInstanceId'])) elif (operation == INSTANTIATED): ns = Instance.objects.filter(uuid=message['nsr_id']) if ns.exists(): if (message['operationState'] == 'COMPLETED'): ns.update(state='active') ns_instantiation_handler(ns[0]) logger.info('Instantiation of NS with UUID {} completed'.format(ns[0].uuid)) elif (message['operationState'] == 'FAILED'): logger.info('Instantiation of NS with UUID {} failed'.format(ns[0].uuid)) ns.delete() elif (operation == TERMINATED): ns = Instance.objects.filter(uuid=message['nsr_id']) if ns.exists(): if (message['operationState'] == 'COMPLETED'): ns.update(state='deleted') ns_termination_handler(ns[0]) logger.info('Termination of NS with UUID {} completed'.format(ns[0].uuid)) elif (message['operationState'] == 'FAILED'): ns.update(state='active') logger.info('Termination of NS with UUID {} failed'.format(ns[0].uuid)) elif (operation == SCALED): ns = Instance.objects.filter(uuid=message['nsr_id']) if ns.exists(): if (scale_vnf_type == SCALE_OUT): if (message['operationState'] == 'COMPLETED'): vnf_scaling_out_handler(ns[0]) logger.info('Scaling-out VNF of NS with UUID {} completed'.format(ns[0].uuid)) elif (message['operationState'] == 'FAILED'): logger.info('Scaling-out VNF of NS with UUID {} failed'.format(ns[0].uuid)) elif (scale_vnf_type == SCALE_IN): if (message['operationState'] == 'COMPLETED'): vnf_scaling_in_handler(ns[0]) logger.info('Scaling-in VNF of NS with UUID {} completed'.format(ns[0].uuid)) elif (message['operationState'] == 'FAILED'): logger.info('Scaling-in VNF of NS with UUID {} failed'.format(ns[0].uuid))<|docstring|>Connects on OSM Kafka Bus and subscribes to NS-related topics.<|endoftext|>
066848554c47f4ed8441365e21100e9e8633da5bb7f9f7de43ae638d376ee799
def ApplyStorageDrsRecommendation_Task(self, key): "Applies a recommendation from the recommendation list. Each recommendation can\n be applied only once. In the case of CreateVm and CloneVm a VirtualMachine is\n returned. Other workflows don't have a return value.Applies a recommendation\n from the recommendation list. Each recommendation can be applied only once. In\n the case of CreateVm and CloneVm a VirtualMachine is returned. Other workflows\n don't have a return value.Applies a recommendation from the recommendation\n list. Each recommendation can be applied only once. In the case of CreateVm and\n CloneVm a VirtualMachine is returned. Other workflows don't have a return\n value.\n \n :param key: The key fields of the Recommendations that are applied.\n \n " return self.delegate('ApplyStorageDrsRecommendation_Task')(key)
Applies a recommendation from the recommendation list. Each recommendation can be applied only once. In the case of CreateVm and CloneVm a VirtualMachine is returned. Other workflows don't have a return value.Applies a recommendation from the recommendation list. Each recommendation can be applied only once. In the case of CreateVm and CloneVm a VirtualMachine is returned. Other workflows don't have a return value.Applies a recommendation from the recommendation list. Each recommendation can be applied only once. In the case of CreateVm and CloneVm a VirtualMachine is returned. Other workflows don't have a return value. :param key: The key fields of the Recommendations that are applied.
pyvisdk/mo/storage_resource_manager.py
ApplyStorageDrsRecommendation_Task
Infinidat/pyvisdk
0
python
def ApplyStorageDrsRecommendation_Task(self, key): "Applies a recommendation from the recommendation list. Each recommendation can\n be applied only once. In the case of CreateVm and CloneVm a VirtualMachine is\n returned. Other workflows don't have a return value.Applies a recommendation\n from the recommendation list. Each recommendation can be applied only once. In\n the case of CreateVm and CloneVm a VirtualMachine is returned. Other workflows\n don't have a return value.Applies a recommendation from the recommendation\n list. Each recommendation can be applied only once. In the case of CreateVm and\n CloneVm a VirtualMachine is returned. Other workflows don't have a return\n value.\n \n :param key: The key fields of the Recommendations that are applied.\n \n " return self.delegate('ApplyStorageDrsRecommendation_Task')(key)
def ApplyStorageDrsRecommendation_Task(self, key): "Applies a recommendation from the recommendation list. Each recommendation can\n be applied only once. In the case of CreateVm and CloneVm a VirtualMachine is\n returned. Other workflows don't have a return value.Applies a recommendation\n from the recommendation list. Each recommendation can be applied only once. In\n the case of CreateVm and CloneVm a VirtualMachine is returned. Other workflows\n don't have a return value.Applies a recommendation from the recommendation\n list. Each recommendation can be applied only once. In the case of CreateVm and\n CloneVm a VirtualMachine is returned. Other workflows don't have a return\n value.\n \n :param key: The key fields of the Recommendations that are applied.\n \n " return self.delegate('ApplyStorageDrsRecommendation_Task')(key)<|docstring|>Applies a recommendation from the recommendation list. Each recommendation can be applied only once. In the case of CreateVm and CloneVm a VirtualMachine is returned. Other workflows don't have a return value.Applies a recommendation from the recommendation list. Each recommendation can be applied only once. In the case of CreateVm and CloneVm a VirtualMachine is returned. Other workflows don't have a return value.Applies a recommendation from the recommendation list. Each recommendation can be applied only once. In the case of CreateVm and CloneVm a VirtualMachine is returned. Other workflows don't have a return value. :param key: The key fields of the Recommendations that are applied.<|endoftext|>
3893b0448087aef5613d5c1a09ef006758f99b575a7ef3cfe64a9e81964f9c55
def ApplyStorageDrsRecommendationToPod_Task(self, pod, key): 'Applies a recommendation from the recommendation list. Each recommendation can\n be applied only once.Applies a recommendation from the recommendation list.\n Each recommendation can be applied only once.\n \n :param pod: The storage pod.\n \n :param key: The key field of the Recommendation.\n \n ' return self.delegate('ApplyStorageDrsRecommendationToPod_Task')(pod, key)
Applies a recommendation from the recommendation list. Each recommendation can be applied only once.Applies a recommendation from the recommendation list. Each recommendation can be applied only once. :param pod: The storage pod. :param key: The key field of the Recommendation.
pyvisdk/mo/storage_resource_manager.py
ApplyStorageDrsRecommendationToPod_Task
Infinidat/pyvisdk
0
python
def ApplyStorageDrsRecommendationToPod_Task(self, pod, key): 'Applies a recommendation from the recommendation list. Each recommendation can\n be applied only once.Applies a recommendation from the recommendation list.\n Each recommendation can be applied only once.\n \n :param pod: The storage pod.\n \n :param key: The key field of the Recommendation.\n \n ' return self.delegate('ApplyStorageDrsRecommendationToPod_Task')(pod, key)
def ApplyStorageDrsRecommendationToPod_Task(self, pod, key): 'Applies a recommendation from the recommendation list. Each recommendation can\n be applied only once.Applies a recommendation from the recommendation list.\n Each recommendation can be applied only once.\n \n :param pod: The storage pod.\n \n :param key: The key field of the Recommendation.\n \n ' return self.delegate('ApplyStorageDrsRecommendationToPod_Task')(pod, key)<|docstring|>Applies a recommendation from the recommendation list. Each recommendation can be applied only once.Applies a recommendation from the recommendation list. Each recommendation can be applied only once. :param pod: The storage pod. :param key: The key field of the Recommendation.<|endoftext|>
587eec63d7f7f4cfa9d4cb882ccbc35508bb297c38074409a57e109a246f039a
def CancelStorageDrsRecommendation(self, key): 'Cancels a recommendation. Currently only initial placement recommendations can\n be cancelled. Migration recommendations cannot.\n \n :param key: The key field of the Recommendation.\n \n ' return self.delegate('CancelStorageDrsRecommendation')(key)
Cancels a recommendation. Currently only initial placement recommendations can be cancelled. Migration recommendations cannot. :param key: The key field of the Recommendation.
pyvisdk/mo/storage_resource_manager.py
CancelStorageDrsRecommendation
Infinidat/pyvisdk
0
python
def CancelStorageDrsRecommendation(self, key): 'Cancels a recommendation. Currently only initial placement recommendations can\n be cancelled. Migration recommendations cannot.\n \n :param key: The key field of the Recommendation.\n \n ' return self.delegate('CancelStorageDrsRecommendation')(key)
def CancelStorageDrsRecommendation(self, key): 'Cancels a recommendation. Currently only initial placement recommendations can\n be cancelled. Migration recommendations cannot.\n \n :param key: The key field of the Recommendation.\n \n ' return self.delegate('CancelStorageDrsRecommendation')(key)<|docstring|>Cancels a recommendation. Currently only initial placement recommendations can be cancelled. Migration recommendations cannot. :param key: The key field of the Recommendation.<|endoftext|>
ef64a0efefbd7283e1dc258b5959d99521bec70302c4951df2b90c3ed3d83c50
def ConfigureDatastoreIORM_Task(self, datastore, spec): 'Changes configuration of storage I/O resource management for a given datastore.\n The changes are applied to all the backing storage devices for the datastore.\n Currently we only support storage I/O resource management on VMFS volumes. In\n order to enable storage I/O resource management on a datstore, we require that\n all the hosts that are attached to the datastore support this feature.Changes\n configuration of storage I/O resource management for a given datastore. The\n changes are applied to all the backing storage devices for the datastore.\n Currently we only support storage I/O resource management on VMFS volumes. In\n order to enable storage I/O resource management on a datstore, we require that\n all the hosts that are attached to the datastore support this feature.\n \n :param datastore: The datastore to be configured.\n \n :param spec: The configuration spec.\n \n ' return self.delegate('ConfigureDatastoreIORM_Task')(datastore, spec)
Changes configuration of storage I/O resource management for a given datastore. The changes are applied to all the backing storage devices for the datastore. Currently we only support storage I/O resource management on VMFS volumes. In order to enable storage I/O resource management on a datstore, we require that all the hosts that are attached to the datastore support this feature.Changes configuration of storage I/O resource management for a given datastore. The changes are applied to all the backing storage devices for the datastore. Currently we only support storage I/O resource management on VMFS volumes. In order to enable storage I/O resource management on a datstore, we require that all the hosts that are attached to the datastore support this feature. :param datastore: The datastore to be configured. :param spec: The configuration spec.
pyvisdk/mo/storage_resource_manager.py
ConfigureDatastoreIORM_Task
Infinidat/pyvisdk
0
python
def ConfigureDatastoreIORM_Task(self, datastore, spec): 'Changes configuration of storage I/O resource management for a given datastore.\n The changes are applied to all the backing storage devices for the datastore.\n Currently we only support storage I/O resource management on VMFS volumes. In\n order to enable storage I/O resource management on a datstore, we require that\n all the hosts that are attached to the datastore support this feature.Changes\n configuration of storage I/O resource management for a given datastore. The\n changes are applied to all the backing storage devices for the datastore.\n Currently we only support storage I/O resource management on VMFS volumes. In\n order to enable storage I/O resource management on a datstore, we require that\n all the hosts that are attached to the datastore support this feature.\n \n :param datastore: The datastore to be configured.\n \n :param spec: The configuration spec.\n \n ' return self.delegate('ConfigureDatastoreIORM_Task')(datastore, spec)
def ConfigureDatastoreIORM_Task(self, datastore, spec): 'Changes configuration of storage I/O resource management for a given datastore.\n The changes are applied to all the backing storage devices for the datastore.\n Currently we only support storage I/O resource management on VMFS volumes. In\n order to enable storage I/O resource management on a datstore, we require that\n all the hosts that are attached to the datastore support this feature.Changes\n configuration of storage I/O resource management for a given datastore. The\n changes are applied to all the backing storage devices for the datastore.\n Currently we only support storage I/O resource management on VMFS volumes. In\n order to enable storage I/O resource management on a datstore, we require that\n all the hosts that are attached to the datastore support this feature.\n \n :param datastore: The datastore to be configured.\n \n :param spec: The configuration spec.\n \n ' return self.delegate('ConfigureDatastoreIORM_Task')(datastore, spec)<|docstring|>Changes configuration of storage I/O resource management for a given datastore. The changes are applied to all the backing storage devices for the datastore. Currently we only support storage I/O resource management on VMFS volumes. In order to enable storage I/O resource management on a datstore, we require that all the hosts that are attached to the datastore support this feature.Changes configuration of storage I/O resource management for a given datastore. The changes are applied to all the backing storage devices for the datastore. Currently we only support storage I/O resource management on VMFS volumes. In order to enable storage I/O resource management on a datstore, we require that all the hosts that are attached to the datastore support this feature. :param datastore: The datastore to be configured. :param spec: The configuration spec.<|endoftext|>
1589f27c7a262932b613bd33a2d5ee345eac2a8319129ea3b13786630676c0d1
def ConfigureStorageDrsForPod_Task(self, pod, spec, modify): 'Change the storage DRS configuration for a pod StoragePod.\n \n :param pod: The storage pod.\n \n :param spec: A set of storage Drs configuration changes to apply to the storage pod. The specification can be a complete set of changes or a partial set of changes, applied incrementally.\n \n :param modify: Flag to specify whether the specification ("spec") should be applied incrementally. If "modify" is false and the operation succeeds, then the configuration of the storage pod matches the specification exactly; in this case any unset portions of the specification will result in unset or default portions of the configuration.\n \n ' return self.delegate('ConfigureStorageDrsForPod_Task')(pod, spec, modify)
Change the storage DRS configuration for a pod StoragePod. :param pod: The storage pod. :param spec: A set of storage Drs configuration changes to apply to the storage pod. The specification can be a complete set of changes or a partial set of changes, applied incrementally. :param modify: Flag to specify whether the specification ("spec") should be applied incrementally. If "modify" is false and the operation succeeds, then the configuration of the storage pod matches the specification exactly; in this case any unset portions of the specification will result in unset or default portions of the configuration.
pyvisdk/mo/storage_resource_manager.py
ConfigureStorageDrsForPod_Task
Infinidat/pyvisdk
0
python
def ConfigureStorageDrsForPod_Task(self, pod, spec, modify): 'Change the storage DRS configuration for a pod StoragePod.\n \n :param pod: The storage pod.\n \n :param spec: A set of storage Drs configuration changes to apply to the storage pod. The specification can be a complete set of changes or a partial set of changes, applied incrementally.\n \n :param modify: Flag to specify whether the specification ("spec") should be applied incrementally. If "modify" is false and the operation succeeds, then the configuration of the storage pod matches the specification exactly; in this case any unset portions of the specification will result in unset or default portions of the configuration.\n \n ' return self.delegate('ConfigureStorageDrsForPod_Task')(pod, spec, modify)
def ConfigureStorageDrsForPod_Task(self, pod, spec, modify): 'Change the storage DRS configuration for a pod StoragePod.\n \n :param pod: The storage pod.\n \n :param spec: A set of storage Drs configuration changes to apply to the storage pod. The specification can be a complete set of changes or a partial set of changes, applied incrementally.\n \n :param modify: Flag to specify whether the specification ("spec") should be applied incrementally. If "modify" is false and the operation succeeds, then the configuration of the storage pod matches the specification exactly; in this case any unset portions of the specification will result in unset or default portions of the configuration.\n \n ' return self.delegate('ConfigureStorageDrsForPod_Task')(pod, spec, modify)<|docstring|>Change the storage DRS configuration for a pod StoragePod. :param pod: The storage pod. :param spec: A set of storage Drs configuration changes to apply to the storage pod. The specification can be a complete set of changes or a partial set of changes, applied incrementally. :param modify: Flag to specify whether the specification ("spec") should be applied incrementally. If "modify" is false and the operation succeeds, then the configuration of the storage pod matches the specification exactly; in this case any unset portions of the specification will result in unset or default portions of the configuration.<|endoftext|>
042dc9fe101d0ab9717b9968a1b8a71f0928a2798b501319d22172957306cce9
def QueryIORMConfigOption(self, host): 'Query configuration options for storage I/O resource management.\n \n :param host: [in] - The host VC will forward the query to. This parameter is ignored by host if this method is called on a host directly.\n \n ' return self.delegate('QueryIORMConfigOption')(host)
Query configuration options for storage I/O resource management. :param host: [in] - The host VC will forward the query to. This parameter is ignored by host if this method is called on a host directly.
pyvisdk/mo/storage_resource_manager.py
QueryIORMConfigOption
Infinidat/pyvisdk
0
python
def QueryIORMConfigOption(self, host): 'Query configuration options for storage I/O resource management.\n \n :param host: [in] - The host VC will forward the query to. This parameter is ignored by host if this method is called on a host directly.\n \n ' return self.delegate('QueryIORMConfigOption')(host)
def QueryIORMConfigOption(self, host): 'Query configuration options for storage I/O resource management.\n \n :param host: [in] - The host VC will forward the query to. This parameter is ignored by host if this method is called on a host directly.\n \n ' return self.delegate('QueryIORMConfigOption')(host)<|docstring|>Query configuration options for storage I/O resource management. :param host: [in] - The host VC will forward the query to. This parameter is ignored by host if this method is called on a host directly.<|endoftext|>
89256994dd49c3b6042d34d81fe266b644cbc402f7df726be79c4984027e770e
def RecommendDatastores(self, storageSpec): "This method returns a StoragePlacementResult object. This API is intended to\n replace the following existing APIs for SDRS-enabled pods: CreateVm:\n StoragePlacementSpec::type == create = CreateVM_Task AddDisk:\n StoragePlacementSpec::type == reconfigure = ReconfigVM_Task RelocateVm:\n StoragePlacementSpec::type == relocate = RelocateVM_Task CloneVm:\n StoragePlacementSpec::type == clone = CloneVM_Task The PodSelectionSpec\n parameter in StoragePlacementSpec is required for all workflows. It specifies\n which SDRS-enabled pod the user has selected for the VM and/or for each disk.\n For CreateVm, RelocateVm and CloneVm, PodSelectionSpec.storagePod is the user\n selected SDRS pod for the VM, i.e., its system files. For all workflows,\n PodSelectionSpec.disk.storagePod is the user selected SDRS pod for the given\n disk. Note that a DiskLocator must be specified for each disk that the user\n requests to create, migrate or clone into an SDRS pod, even if it's the same\n pod as the VM or the user has manually selected a datastore within the pod. If\n the user has manually selected a datastore, the datastore must be specified in\n the workflow specific fields as described below. For CreateVm and AddDisk, the\n manually selected datastore must be specified in ConfigSpec.files or\n ConfigSpec.deviceChange.device.backing.datastore, the fields should will be\n unset if the user wants SDRS to recommend the datastore. For RelocateVm, the\n manually selected datastore must be specified in RelocateSpec.datastore or\n RelocateSpec.disk.datastore; the fields should be unset iff the user wants SDRS\n recommendations. For CloneVm, the manually selected datastore must be specified\n in CloneSpec.location.datastore or CloneSpec.location.disk[].datastore; the\n fields should be unset iff the user wants SDRS recommendations. The remaining\n expected input parameters in StoragePlacementSpec will be the same as those for\n the existing API as determined by StoragePlacementSpec::type. If a parameter is\n optional in the existing API, it will also be optional in the new API.This\n method returns a StoragePlacementResult object. This API is intended to replace\n the following existing APIs for SDRS-enabled pods: CreateVm:\n StoragePlacementSpec::type == create = CreateVM_Task AddDisk:\n StoragePlacementSpec::type == reconfigure = ReconfigVM_Task RelocateVm:\n StoragePlacementSpec::type == relocate = RelocateVM_Task CloneVm:\n StoragePlacementSpec::type == clone = CloneVM_Task The PodSelectionSpec\n parameter in StoragePlacementSpec is required for all workflows. It specifies\n which SDRS-enabled pod the user has selected for the VM and/or for each disk.\n For CreateVm, RelocateVm and CloneVm, PodSelectionSpec.storagePod is the user\n selected SDRS pod for the VM, i.e., its system files. For all workflows,\n PodSelectionSpec.disk.storagePod is the user selected SDRS pod for the given\n disk. Note that a DiskLocator must be specified for each disk that the user\n requests to create, migrate or clone into an SDRS pod, even if it's the same\n pod as the VM or the user has manually selected a datastore within the pod. If\n the user has manually selected a datastore, the datastore must be specified in\n the workflow specific fields as described below. For CreateVm and AddDisk, the\n manually selected datastore must be specified in ConfigSpec.files or\n ConfigSpec.deviceChange.device.backing.datastore, the fields should will be\n unset if the user wants SDRS to recommend the datastore. For RelocateVm, the\n manually selected datastore must be specified in RelocateSpec.datastore or\n RelocateSpec.disk.datastore; the fields should be unset iff the user wants SDRS\n recommendations. For CloneVm, the manually selected datastore must be specified\n in CloneSpec.location.datastore or CloneSpec.location.disk[].datastore; the\n fields should be unset iff the user wants SDRS recommendations. The remaining\n expected input parameters in StoragePlacementSpec will be the same as those for\n the existing API as determined by StoragePlacementSpec::type. If a parameter is\n optional in the existing API, it will also be optional in the new API.This\n method returns a StoragePlacementResult object. This API is intended to replace\n the following existing APIs for SDRS-enabled pods: CreateVm:\n StoragePlacementSpec::type == create = CreateVM_Task AddDisk:\n StoragePlacementSpec::type == reconfigure = ReconfigVM_Task RelocateVm:\n StoragePlacementSpec::type == relocate = RelocateVM_Task CloneVm:\n StoragePlacementSpec::type == clone = CloneVM_Task The PodSelectionSpec\n parameter in StoragePlacementSpec is required for all workflows. It specifies\n which SDRS-enabled pod the user has selected for the VM and/or for each disk.\n For CreateVm, RelocateVm and CloneVm, PodSelectionSpec.storagePod is the user\n selected SDRS pod for the VM, i.e., its system files. For all workflows,\n PodSelectionSpec.disk.storagePod is the user selected SDRS pod for the given\n disk. Note that a DiskLocator must be specified for each disk that the user\n requests to create, migrate or clone into an SDRS pod, even if it's the same\n pod as the VM or the user has manually selected a datastore within the pod. If\n the user has manually selected a datastore, the datastore must be specified in\n the workflow specific fields as described below. For CreateVm and AddDisk, the\n manually selected datastore must be specified in ConfigSpec.files or\n ConfigSpec.deviceChange.device.backing.datastore, the fields should will be\n unset if the user wants SDRS to recommend the datastore. For RelocateVm, the\n manually selected datastore must be specified in RelocateSpec.datastore or\n RelocateSpec.disk.datastore; the fields should be unset iff the user wants SDRS\n recommendations. For CloneVm, the manually selected datastore must be specified\n in CloneSpec.location.datastore or CloneSpec.location.disk[].datastore; the\n fields should be unset iff the user wants SDRS recommendations. The remaining\n expected input parameters in StoragePlacementSpec will be the same as those for\n the existing API as determined by StoragePlacementSpec::type. If a parameter is\n optional in the existing API, it will also be optional in the new API.This\n method returns a StoragePlacementResult object. This API is intended to replace\n the following existing APIs for SDRS-enabled pods: CreateVm:\n StoragePlacementSpec::type == create = CreateVM_Task AddDisk:\n StoragePlacementSpec::type == reconfigure = ReconfigVM_Task RelocateVm:\n StoragePlacementSpec::type == relocate = RelocateVM_Task CloneVm:\n StoragePlacementSpec::type == clone = CloneVM_Task The PodSelectionSpec\n parameter in StoragePlacementSpec is required for all workflows. It specifies\n which SDRS-enabled pod the user has selected for the VM and/or for each disk.\n For CreateVm, RelocateVm and CloneVm, PodSelectionSpec.storagePod is the user\n selected SDRS pod for the VM, i.e., its system files. For all workflows,\n PodSelectionSpec.disk.storagePod is the user selected SDRS pod for the given\n disk. Note that a DiskLocator must be specified for each disk that the user\n requests to create, migrate or clone into an SDRS pod, even if it's the same\n pod as the VM or the user has manually selected a datastore within the pod. If\n the user has manually selected a datastore, the datastore must be specified in\n the workflow specific fields as described below. For CreateVm and AddDisk, the\n manually selected datastore must be specified in ConfigSpec.files or\n ConfigSpec.deviceChange.device.backing.datastore, the fields should will be\n unset if the user wants SDRS to recommend the datastore. For RelocateVm, the\n manually selected datastore must be specified in RelocateSpec.datastore or\n RelocateSpec.disk.datastore; the fields should be unset iff the user wants SDRS\n recommendations. For CloneVm, the manually selected datastore must be specified\n in CloneSpec.location.datastore or CloneSpec.location.disk[].datastore; the\n fields should be unset iff the user wants SDRS recommendations. The remaining\n expected input parameters in StoragePlacementSpec will be the same as those for\n the existing API as determined by StoragePlacementSpec::type. If a parameter is\n optional in the existing API, it will also be optional in the new API.\n \n :param storageSpec: \n \n " return self.delegate('RecommendDatastores')(storageSpec)
This method returns a StoragePlacementResult object. This API is intended to replace the following existing APIs for SDRS-enabled pods: CreateVm: StoragePlacementSpec::type == create = CreateVM_Task AddDisk: StoragePlacementSpec::type == reconfigure = ReconfigVM_Task RelocateVm: StoragePlacementSpec::type == relocate = RelocateVM_Task CloneVm: StoragePlacementSpec::type == clone = CloneVM_Task The PodSelectionSpec parameter in StoragePlacementSpec is required for all workflows. It specifies which SDRS-enabled pod the user has selected for the VM and/or for each disk. For CreateVm, RelocateVm and CloneVm, PodSelectionSpec.storagePod is the user selected SDRS pod for the VM, i.e., its system files. For all workflows, PodSelectionSpec.disk.storagePod is the user selected SDRS pod for the given disk. Note that a DiskLocator must be specified for each disk that the user requests to create, migrate or clone into an SDRS pod, even if it's the same pod as the VM or the user has manually selected a datastore within the pod. If the user has manually selected a datastore, the datastore must be specified in the workflow specific fields as described below. For CreateVm and AddDisk, the manually selected datastore must be specified in ConfigSpec.files or ConfigSpec.deviceChange.device.backing.datastore, the fields should will be unset if the user wants SDRS to recommend the datastore. For RelocateVm, the manually selected datastore must be specified in RelocateSpec.datastore or RelocateSpec.disk.datastore; the fields should be unset iff the user wants SDRS recommendations. For CloneVm, the manually selected datastore must be specified in CloneSpec.location.datastore or CloneSpec.location.disk[].datastore; the fields should be unset iff the user wants SDRS recommendations. The remaining expected input parameters in StoragePlacementSpec will be the same as those for the existing API as determined by StoragePlacementSpec::type. If a parameter is optional in the existing API, it will also be optional in the new API.This method returns a StoragePlacementResult object. This API is intended to replace the following existing APIs for SDRS-enabled pods: CreateVm: StoragePlacementSpec::type == create = CreateVM_Task AddDisk: StoragePlacementSpec::type == reconfigure = ReconfigVM_Task RelocateVm: StoragePlacementSpec::type == relocate = RelocateVM_Task CloneVm: StoragePlacementSpec::type == clone = CloneVM_Task The PodSelectionSpec parameter in StoragePlacementSpec is required for all workflows. It specifies which SDRS-enabled pod the user has selected for the VM and/or for each disk. For CreateVm, RelocateVm and CloneVm, PodSelectionSpec.storagePod is the user selected SDRS pod for the VM, i.e., its system files. For all workflows, PodSelectionSpec.disk.storagePod is the user selected SDRS pod for the given disk. Note that a DiskLocator must be specified for each disk that the user requests to create, migrate or clone into an SDRS pod, even if it's the same pod as the VM or the user has manually selected a datastore within the pod. If the user has manually selected a datastore, the datastore must be specified in the workflow specific fields as described below. For CreateVm and AddDisk, the manually selected datastore must be specified in ConfigSpec.files or ConfigSpec.deviceChange.device.backing.datastore, the fields should will be unset if the user wants SDRS to recommend the datastore. For RelocateVm, the manually selected datastore must be specified in RelocateSpec.datastore or RelocateSpec.disk.datastore; the fields should be unset iff the user wants SDRS recommendations. For CloneVm, the manually selected datastore must be specified in CloneSpec.location.datastore or CloneSpec.location.disk[].datastore; the fields should be unset iff the user wants SDRS recommendations. The remaining expected input parameters in StoragePlacementSpec will be the same as those for the existing API as determined by StoragePlacementSpec::type. If a parameter is optional in the existing API, it will also be optional in the new API.This method returns a StoragePlacementResult object. This API is intended to replace the following existing APIs for SDRS-enabled pods: CreateVm: StoragePlacementSpec::type == create = CreateVM_Task AddDisk: StoragePlacementSpec::type == reconfigure = ReconfigVM_Task RelocateVm: StoragePlacementSpec::type == relocate = RelocateVM_Task CloneVm: StoragePlacementSpec::type == clone = CloneVM_Task The PodSelectionSpec parameter in StoragePlacementSpec is required for all workflows. It specifies which SDRS-enabled pod the user has selected for the VM and/or for each disk. For CreateVm, RelocateVm and CloneVm, PodSelectionSpec.storagePod is the user selected SDRS pod for the VM, i.e., its system files. For all workflows, PodSelectionSpec.disk.storagePod is the user selected SDRS pod for the given disk. Note that a DiskLocator must be specified for each disk that the user requests to create, migrate or clone into an SDRS pod, even if it's the same pod as the VM or the user has manually selected a datastore within the pod. If the user has manually selected a datastore, the datastore must be specified in the workflow specific fields as described below. For CreateVm and AddDisk, the manually selected datastore must be specified in ConfigSpec.files or ConfigSpec.deviceChange.device.backing.datastore, the fields should will be unset if the user wants SDRS to recommend the datastore. For RelocateVm, the manually selected datastore must be specified in RelocateSpec.datastore or RelocateSpec.disk.datastore; the fields should be unset iff the user wants SDRS recommendations. For CloneVm, the manually selected datastore must be specified in CloneSpec.location.datastore or CloneSpec.location.disk[].datastore; the fields should be unset iff the user wants SDRS recommendations. The remaining expected input parameters in StoragePlacementSpec will be the same as those for the existing API as determined by StoragePlacementSpec::type. If a parameter is optional in the existing API, it will also be optional in the new API.This method returns a StoragePlacementResult object. This API is intended to replace the following existing APIs for SDRS-enabled pods: CreateVm: StoragePlacementSpec::type == create = CreateVM_Task AddDisk: StoragePlacementSpec::type == reconfigure = ReconfigVM_Task RelocateVm: StoragePlacementSpec::type == relocate = RelocateVM_Task CloneVm: StoragePlacementSpec::type == clone = CloneVM_Task The PodSelectionSpec parameter in StoragePlacementSpec is required for all workflows. It specifies which SDRS-enabled pod the user has selected for the VM and/or for each disk. For CreateVm, RelocateVm and CloneVm, PodSelectionSpec.storagePod is the user selected SDRS pod for the VM, i.e., its system files. For all workflows, PodSelectionSpec.disk.storagePod is the user selected SDRS pod for the given disk. Note that a DiskLocator must be specified for each disk that the user requests to create, migrate or clone into an SDRS pod, even if it's the same pod as the VM or the user has manually selected a datastore within the pod. If the user has manually selected a datastore, the datastore must be specified in the workflow specific fields as described below. For CreateVm and AddDisk, the manually selected datastore must be specified in ConfigSpec.files or ConfigSpec.deviceChange.device.backing.datastore, the fields should will be unset if the user wants SDRS to recommend the datastore. For RelocateVm, the manually selected datastore must be specified in RelocateSpec.datastore or RelocateSpec.disk.datastore; the fields should be unset iff the user wants SDRS recommendations. For CloneVm, the manually selected datastore must be specified in CloneSpec.location.datastore or CloneSpec.location.disk[].datastore; the fields should be unset iff the user wants SDRS recommendations. The remaining expected input parameters in StoragePlacementSpec will be the same as those for the existing API as determined by StoragePlacementSpec::type. If a parameter is optional in the existing API, it will also be optional in the new API. :param storageSpec:
pyvisdk/mo/storage_resource_manager.py
RecommendDatastores
Infinidat/pyvisdk
0
python
def RecommendDatastores(self, storageSpec): "This method returns a StoragePlacementResult object. This API is intended to\n replace the following existing APIs for SDRS-enabled pods: CreateVm:\n StoragePlacementSpec::type == create = CreateVM_Task AddDisk:\n StoragePlacementSpec::type == reconfigure = ReconfigVM_Task RelocateVm:\n StoragePlacementSpec::type == relocate = RelocateVM_Task CloneVm:\n StoragePlacementSpec::type == clone = CloneVM_Task The PodSelectionSpec\n parameter in StoragePlacementSpec is required for all workflows. It specifies\n which SDRS-enabled pod the user has selected for the VM and/or for each disk.\n For CreateVm, RelocateVm and CloneVm, PodSelectionSpec.storagePod is the user\n selected SDRS pod for the VM, i.e., its system files. For all workflows,\n PodSelectionSpec.disk.storagePod is the user selected SDRS pod for the given\n disk. Note that a DiskLocator must be specified for each disk that the user\n requests to create, migrate or clone into an SDRS pod, even if it's the same\n pod as the VM or the user has manually selected a datastore within the pod. If\n the user has manually selected a datastore, the datastore must be specified in\n the workflow specific fields as described below. For CreateVm and AddDisk, the\n manually selected datastore must be specified in ConfigSpec.files or\n ConfigSpec.deviceChange.device.backing.datastore, the fields should will be\n unset if the user wants SDRS to recommend the datastore. For RelocateVm, the\n manually selected datastore must be specified in RelocateSpec.datastore or\n RelocateSpec.disk.datastore; the fields should be unset iff the user wants SDRS\n recommendations. For CloneVm, the manually selected datastore must be specified\n in CloneSpec.location.datastore or CloneSpec.location.disk[].datastore; the\n fields should be unset iff the user wants SDRS recommendations. The remaining\n expected input parameters in StoragePlacementSpec will be the same as those for\n the existing API as determined by StoragePlacementSpec::type. If a parameter is\n optional in the existing API, it will also be optional in the new API.This\n method returns a StoragePlacementResult object. This API is intended to replace\n the following existing APIs for SDRS-enabled pods: CreateVm:\n StoragePlacementSpec::type == create = CreateVM_Task AddDisk:\n StoragePlacementSpec::type == reconfigure = ReconfigVM_Task RelocateVm:\n StoragePlacementSpec::type == relocate = RelocateVM_Task CloneVm:\n StoragePlacementSpec::type == clone = CloneVM_Task The PodSelectionSpec\n parameter in StoragePlacementSpec is required for all workflows. It specifies\n which SDRS-enabled pod the user has selected for the VM and/or for each disk.\n For CreateVm, RelocateVm and CloneVm, PodSelectionSpec.storagePod is the user\n selected SDRS pod for the VM, i.e., its system files. For all workflows,\n PodSelectionSpec.disk.storagePod is the user selected SDRS pod for the given\n disk. Note that a DiskLocator must be specified for each disk that the user\n requests to create, migrate or clone into an SDRS pod, even if it's the same\n pod as the VM or the user has manually selected a datastore within the pod. If\n the user has manually selected a datastore, the datastore must be specified in\n the workflow specific fields as described below. For CreateVm and AddDisk, the\n manually selected datastore must be specified in ConfigSpec.files or\n ConfigSpec.deviceChange.device.backing.datastore, the fields should will be\n unset if the user wants SDRS to recommend the datastore. For RelocateVm, the\n manually selected datastore must be specified in RelocateSpec.datastore or\n RelocateSpec.disk.datastore; the fields should be unset iff the user wants SDRS\n recommendations. For CloneVm, the manually selected datastore must be specified\n in CloneSpec.location.datastore or CloneSpec.location.disk[].datastore; the\n fields should be unset iff the user wants SDRS recommendations. The remaining\n expected input parameters in StoragePlacementSpec will be the same as those for\n the existing API as determined by StoragePlacementSpec::type. If a parameter is\n optional in the existing API, it will also be optional in the new API.This\n method returns a StoragePlacementResult object. This API is intended to replace\n the following existing APIs for SDRS-enabled pods: CreateVm:\n StoragePlacementSpec::type == create = CreateVM_Task AddDisk:\n StoragePlacementSpec::type == reconfigure = ReconfigVM_Task RelocateVm:\n StoragePlacementSpec::type == relocate = RelocateVM_Task CloneVm:\n StoragePlacementSpec::type == clone = CloneVM_Task The PodSelectionSpec\n parameter in StoragePlacementSpec is required for all workflows. It specifies\n which SDRS-enabled pod the user has selected for the VM and/or for each disk.\n For CreateVm, RelocateVm and CloneVm, PodSelectionSpec.storagePod is the user\n selected SDRS pod for the VM, i.e., its system files. For all workflows,\n PodSelectionSpec.disk.storagePod is the user selected SDRS pod for the given\n disk. Note that a DiskLocator must be specified for each disk that the user\n requests to create, migrate or clone into an SDRS pod, even if it's the same\n pod as the VM or the user has manually selected a datastore within the pod. If\n the user has manually selected a datastore, the datastore must be specified in\n the workflow specific fields as described below. For CreateVm and AddDisk, the\n manually selected datastore must be specified in ConfigSpec.files or\n ConfigSpec.deviceChange.device.backing.datastore, the fields should will be\n unset if the user wants SDRS to recommend the datastore. For RelocateVm, the\n manually selected datastore must be specified in RelocateSpec.datastore or\n RelocateSpec.disk.datastore; the fields should be unset iff the user wants SDRS\n recommendations. For CloneVm, the manually selected datastore must be specified\n in CloneSpec.location.datastore or CloneSpec.location.disk[].datastore; the\n fields should be unset iff the user wants SDRS recommendations. The remaining\n expected input parameters in StoragePlacementSpec will be the same as those for\n the existing API as determined by StoragePlacementSpec::type. If a parameter is\n optional in the existing API, it will also be optional in the new API.This\n method returns a StoragePlacementResult object. This API is intended to replace\n the following existing APIs for SDRS-enabled pods: CreateVm:\n StoragePlacementSpec::type == create = CreateVM_Task AddDisk:\n StoragePlacementSpec::type == reconfigure = ReconfigVM_Task RelocateVm:\n StoragePlacementSpec::type == relocate = RelocateVM_Task CloneVm:\n StoragePlacementSpec::type == clone = CloneVM_Task The PodSelectionSpec\n parameter in StoragePlacementSpec is required for all workflows. It specifies\n which SDRS-enabled pod the user has selected for the VM and/or for each disk.\n For CreateVm, RelocateVm and CloneVm, PodSelectionSpec.storagePod is the user\n selected SDRS pod for the VM, i.e., its system files. For all workflows,\n PodSelectionSpec.disk.storagePod is the user selected SDRS pod for the given\n disk. Note that a DiskLocator must be specified for each disk that the user\n requests to create, migrate or clone into an SDRS pod, even if it's the same\n pod as the VM or the user has manually selected a datastore within the pod. If\n the user has manually selected a datastore, the datastore must be specified in\n the workflow specific fields as described below. For CreateVm and AddDisk, the\n manually selected datastore must be specified in ConfigSpec.files or\n ConfigSpec.deviceChange.device.backing.datastore, the fields should will be\n unset if the user wants SDRS to recommend the datastore. For RelocateVm, the\n manually selected datastore must be specified in RelocateSpec.datastore or\n RelocateSpec.disk.datastore; the fields should be unset iff the user wants SDRS\n recommendations. For CloneVm, the manually selected datastore must be specified\n in CloneSpec.location.datastore or CloneSpec.location.disk[].datastore; the\n fields should be unset iff the user wants SDRS recommendations. The remaining\n expected input parameters in StoragePlacementSpec will be the same as those for\n the existing API as determined by StoragePlacementSpec::type. If a parameter is\n optional in the existing API, it will also be optional in the new API.\n \n :param storageSpec: \n \n " return self.delegate('RecommendDatastores')(storageSpec)
def RecommendDatastores(self, storageSpec): "This method returns a StoragePlacementResult object. This API is intended to\n replace the following existing APIs for SDRS-enabled pods: CreateVm:\n StoragePlacementSpec::type == create = CreateVM_Task AddDisk:\n StoragePlacementSpec::type == reconfigure = ReconfigVM_Task RelocateVm:\n StoragePlacementSpec::type == relocate = RelocateVM_Task CloneVm:\n StoragePlacementSpec::type == clone = CloneVM_Task The PodSelectionSpec\n parameter in StoragePlacementSpec is required for all workflows. It specifies\n which SDRS-enabled pod the user has selected for the VM and/or for each disk.\n For CreateVm, RelocateVm and CloneVm, PodSelectionSpec.storagePod is the user\n selected SDRS pod for the VM, i.e., its system files. For all workflows,\n PodSelectionSpec.disk.storagePod is the user selected SDRS pod for the given\n disk. Note that a DiskLocator must be specified for each disk that the user\n requests to create, migrate or clone into an SDRS pod, even if it's the same\n pod as the VM or the user has manually selected a datastore within the pod. If\n the user has manually selected a datastore, the datastore must be specified in\n the workflow specific fields as described below. For CreateVm and AddDisk, the\n manually selected datastore must be specified in ConfigSpec.files or\n ConfigSpec.deviceChange.device.backing.datastore, the fields should will be\n unset if the user wants SDRS to recommend the datastore. For RelocateVm, the\n manually selected datastore must be specified in RelocateSpec.datastore or\n RelocateSpec.disk.datastore; the fields should be unset iff the user wants SDRS\n recommendations. For CloneVm, the manually selected datastore must be specified\n in CloneSpec.location.datastore or CloneSpec.location.disk[].datastore; the\n fields should be unset iff the user wants SDRS recommendations. The remaining\n expected input parameters in StoragePlacementSpec will be the same as those for\n the existing API as determined by StoragePlacementSpec::type. If a parameter is\n optional in the existing API, it will also be optional in the new API.This\n method returns a StoragePlacementResult object. This API is intended to replace\n the following existing APIs for SDRS-enabled pods: CreateVm:\n StoragePlacementSpec::type == create = CreateVM_Task AddDisk:\n StoragePlacementSpec::type == reconfigure = ReconfigVM_Task RelocateVm:\n StoragePlacementSpec::type == relocate = RelocateVM_Task CloneVm:\n StoragePlacementSpec::type == clone = CloneVM_Task The PodSelectionSpec\n parameter in StoragePlacementSpec is required for all workflows. It specifies\n which SDRS-enabled pod the user has selected for the VM and/or for each disk.\n For CreateVm, RelocateVm and CloneVm, PodSelectionSpec.storagePod is the user\n selected SDRS pod for the VM, i.e., its system files. For all workflows,\n PodSelectionSpec.disk.storagePod is the user selected SDRS pod for the given\n disk. Note that a DiskLocator must be specified for each disk that the user\n requests to create, migrate or clone into an SDRS pod, even if it's the same\n pod as the VM or the user has manually selected a datastore within the pod. If\n the user has manually selected a datastore, the datastore must be specified in\n the workflow specific fields as described below. For CreateVm and AddDisk, the\n manually selected datastore must be specified in ConfigSpec.files or\n ConfigSpec.deviceChange.device.backing.datastore, the fields should will be\n unset if the user wants SDRS to recommend the datastore. For RelocateVm, the\n manually selected datastore must be specified in RelocateSpec.datastore or\n RelocateSpec.disk.datastore; the fields should be unset iff the user wants SDRS\n recommendations. For CloneVm, the manually selected datastore must be specified\n in CloneSpec.location.datastore or CloneSpec.location.disk[].datastore; the\n fields should be unset iff the user wants SDRS recommendations. The remaining\n expected input parameters in StoragePlacementSpec will be the same as those for\n the existing API as determined by StoragePlacementSpec::type. If a parameter is\n optional in the existing API, it will also be optional in the new API.This\n method returns a StoragePlacementResult object. This API is intended to replace\n the following existing APIs for SDRS-enabled pods: CreateVm:\n StoragePlacementSpec::type == create = CreateVM_Task AddDisk:\n StoragePlacementSpec::type == reconfigure = ReconfigVM_Task RelocateVm:\n StoragePlacementSpec::type == relocate = RelocateVM_Task CloneVm:\n StoragePlacementSpec::type == clone = CloneVM_Task The PodSelectionSpec\n parameter in StoragePlacementSpec is required for all workflows. It specifies\n which SDRS-enabled pod the user has selected for the VM and/or for each disk.\n For CreateVm, RelocateVm and CloneVm, PodSelectionSpec.storagePod is the user\n selected SDRS pod for the VM, i.e., its system files. For all workflows,\n PodSelectionSpec.disk.storagePod is the user selected SDRS pod for the given\n disk. Note that a DiskLocator must be specified for each disk that the user\n requests to create, migrate or clone into an SDRS pod, even if it's the same\n pod as the VM or the user has manually selected a datastore within the pod. If\n the user has manually selected a datastore, the datastore must be specified in\n the workflow specific fields as described below. For CreateVm and AddDisk, the\n manually selected datastore must be specified in ConfigSpec.files or\n ConfigSpec.deviceChange.device.backing.datastore, the fields should will be\n unset if the user wants SDRS to recommend the datastore. For RelocateVm, the\n manually selected datastore must be specified in RelocateSpec.datastore or\n RelocateSpec.disk.datastore; the fields should be unset iff the user wants SDRS\n recommendations. For CloneVm, the manually selected datastore must be specified\n in CloneSpec.location.datastore or CloneSpec.location.disk[].datastore; the\n fields should be unset iff the user wants SDRS recommendations. The remaining\n expected input parameters in StoragePlacementSpec will be the same as those for\n the existing API as determined by StoragePlacementSpec::type. If a parameter is\n optional in the existing API, it will also be optional in the new API.This\n method returns a StoragePlacementResult object. This API is intended to replace\n the following existing APIs for SDRS-enabled pods: CreateVm:\n StoragePlacementSpec::type == create = CreateVM_Task AddDisk:\n StoragePlacementSpec::type == reconfigure = ReconfigVM_Task RelocateVm:\n StoragePlacementSpec::type == relocate = RelocateVM_Task CloneVm:\n StoragePlacementSpec::type == clone = CloneVM_Task The PodSelectionSpec\n parameter in StoragePlacementSpec is required for all workflows. It specifies\n which SDRS-enabled pod the user has selected for the VM and/or for each disk.\n For CreateVm, RelocateVm and CloneVm, PodSelectionSpec.storagePod is the user\n selected SDRS pod for the VM, i.e., its system files. For all workflows,\n PodSelectionSpec.disk.storagePod is the user selected SDRS pod for the given\n disk. Note that a DiskLocator must be specified for each disk that the user\n requests to create, migrate or clone into an SDRS pod, even if it's the same\n pod as the VM or the user has manually selected a datastore within the pod. If\n the user has manually selected a datastore, the datastore must be specified in\n the workflow specific fields as described below. For CreateVm and AddDisk, the\n manually selected datastore must be specified in ConfigSpec.files or\n ConfigSpec.deviceChange.device.backing.datastore, the fields should will be\n unset if the user wants SDRS to recommend the datastore. For RelocateVm, the\n manually selected datastore must be specified in RelocateSpec.datastore or\n RelocateSpec.disk.datastore; the fields should be unset iff the user wants SDRS\n recommendations. For CloneVm, the manually selected datastore must be specified\n in CloneSpec.location.datastore or CloneSpec.location.disk[].datastore; the\n fields should be unset iff the user wants SDRS recommendations. The remaining\n expected input parameters in StoragePlacementSpec will be the same as those for\n the existing API as determined by StoragePlacementSpec::type. If a parameter is\n optional in the existing API, it will also be optional in the new API.\n \n :param storageSpec: \n \n " return self.delegate('RecommendDatastores')(storageSpec)<|docstring|>This method returns a StoragePlacementResult object. This API is intended to replace the following existing APIs for SDRS-enabled pods: CreateVm: StoragePlacementSpec::type == create = CreateVM_Task AddDisk: StoragePlacementSpec::type == reconfigure = ReconfigVM_Task RelocateVm: StoragePlacementSpec::type == relocate = RelocateVM_Task CloneVm: StoragePlacementSpec::type == clone = CloneVM_Task The PodSelectionSpec parameter in StoragePlacementSpec is required for all workflows. It specifies which SDRS-enabled pod the user has selected for the VM and/or for each disk. For CreateVm, RelocateVm and CloneVm, PodSelectionSpec.storagePod is the user selected SDRS pod for the VM, i.e., its system files. For all workflows, PodSelectionSpec.disk.storagePod is the user selected SDRS pod for the given disk. Note that a DiskLocator must be specified for each disk that the user requests to create, migrate or clone into an SDRS pod, even if it's the same pod as the VM or the user has manually selected a datastore within the pod. If the user has manually selected a datastore, the datastore must be specified in the workflow specific fields as described below. For CreateVm and AddDisk, the manually selected datastore must be specified in ConfigSpec.files or ConfigSpec.deviceChange.device.backing.datastore, the fields should will be unset if the user wants SDRS to recommend the datastore. For RelocateVm, the manually selected datastore must be specified in RelocateSpec.datastore or RelocateSpec.disk.datastore; the fields should be unset iff the user wants SDRS recommendations. For CloneVm, the manually selected datastore must be specified in CloneSpec.location.datastore or CloneSpec.location.disk[].datastore; the fields should be unset iff the user wants SDRS recommendations. The remaining expected input parameters in StoragePlacementSpec will be the same as those for the existing API as determined by StoragePlacementSpec::type. If a parameter is optional in the existing API, it will also be optional in the new API.This method returns a StoragePlacementResult object. This API is intended to replace the following existing APIs for SDRS-enabled pods: CreateVm: StoragePlacementSpec::type == create = CreateVM_Task AddDisk: StoragePlacementSpec::type == reconfigure = ReconfigVM_Task RelocateVm: StoragePlacementSpec::type == relocate = RelocateVM_Task CloneVm: StoragePlacementSpec::type == clone = CloneVM_Task The PodSelectionSpec parameter in StoragePlacementSpec is required for all workflows. It specifies which SDRS-enabled pod the user has selected for the VM and/or for each disk. For CreateVm, RelocateVm and CloneVm, PodSelectionSpec.storagePod is the user selected SDRS pod for the VM, i.e., its system files. For all workflows, PodSelectionSpec.disk.storagePod is the user selected SDRS pod for the given disk. Note that a DiskLocator must be specified for each disk that the user requests to create, migrate or clone into an SDRS pod, even if it's the same pod as the VM or the user has manually selected a datastore within the pod. If the user has manually selected a datastore, the datastore must be specified in the workflow specific fields as described below. For CreateVm and AddDisk, the manually selected datastore must be specified in ConfigSpec.files or ConfigSpec.deviceChange.device.backing.datastore, the fields should will be unset if the user wants SDRS to recommend the datastore. For RelocateVm, the manually selected datastore must be specified in RelocateSpec.datastore or RelocateSpec.disk.datastore; the fields should be unset iff the user wants SDRS recommendations. For CloneVm, the manually selected datastore must be specified in CloneSpec.location.datastore or CloneSpec.location.disk[].datastore; the fields should be unset iff the user wants SDRS recommendations. The remaining expected input parameters in StoragePlacementSpec will be the same as those for the existing API as determined by StoragePlacementSpec::type. If a parameter is optional in the existing API, it will also be optional in the new API.This method returns a StoragePlacementResult object. This API is intended to replace the following existing APIs for SDRS-enabled pods: CreateVm: StoragePlacementSpec::type == create = CreateVM_Task AddDisk: StoragePlacementSpec::type == reconfigure = ReconfigVM_Task RelocateVm: StoragePlacementSpec::type == relocate = RelocateVM_Task CloneVm: StoragePlacementSpec::type == clone = CloneVM_Task The PodSelectionSpec parameter in StoragePlacementSpec is required for all workflows. It specifies which SDRS-enabled pod the user has selected for the VM and/or for each disk. For CreateVm, RelocateVm and CloneVm, PodSelectionSpec.storagePod is the user selected SDRS pod for the VM, i.e., its system files. For all workflows, PodSelectionSpec.disk.storagePod is the user selected SDRS pod for the given disk. Note that a DiskLocator must be specified for each disk that the user requests to create, migrate or clone into an SDRS pod, even if it's the same pod as the VM or the user has manually selected a datastore within the pod. If the user has manually selected a datastore, the datastore must be specified in the workflow specific fields as described below. For CreateVm and AddDisk, the manually selected datastore must be specified in ConfigSpec.files or ConfigSpec.deviceChange.device.backing.datastore, the fields should will be unset if the user wants SDRS to recommend the datastore. For RelocateVm, the manually selected datastore must be specified in RelocateSpec.datastore or RelocateSpec.disk.datastore; the fields should be unset iff the user wants SDRS recommendations. For CloneVm, the manually selected datastore must be specified in CloneSpec.location.datastore or CloneSpec.location.disk[].datastore; the fields should be unset iff the user wants SDRS recommendations. The remaining expected input parameters in StoragePlacementSpec will be the same as those for the existing API as determined by StoragePlacementSpec::type. If a parameter is optional in the existing API, it will also be optional in the new API.This method returns a StoragePlacementResult object. This API is intended to replace the following existing APIs for SDRS-enabled pods: CreateVm: StoragePlacementSpec::type == create = CreateVM_Task AddDisk: StoragePlacementSpec::type == reconfigure = ReconfigVM_Task RelocateVm: StoragePlacementSpec::type == relocate = RelocateVM_Task CloneVm: StoragePlacementSpec::type == clone = CloneVM_Task The PodSelectionSpec parameter in StoragePlacementSpec is required for all workflows. It specifies which SDRS-enabled pod the user has selected for the VM and/or for each disk. For CreateVm, RelocateVm and CloneVm, PodSelectionSpec.storagePod is the user selected SDRS pod for the VM, i.e., its system files. For all workflows, PodSelectionSpec.disk.storagePod is the user selected SDRS pod for the given disk. Note that a DiskLocator must be specified for each disk that the user requests to create, migrate or clone into an SDRS pod, even if it's the same pod as the VM or the user has manually selected a datastore within the pod. If the user has manually selected a datastore, the datastore must be specified in the workflow specific fields as described below. For CreateVm and AddDisk, the manually selected datastore must be specified in ConfigSpec.files or ConfigSpec.deviceChange.device.backing.datastore, the fields should will be unset if the user wants SDRS to recommend the datastore. For RelocateVm, the manually selected datastore must be specified in RelocateSpec.datastore or RelocateSpec.disk.datastore; the fields should be unset iff the user wants SDRS recommendations. For CloneVm, the manually selected datastore must be specified in CloneSpec.location.datastore or CloneSpec.location.disk[].datastore; the fields should be unset iff the user wants SDRS recommendations. The remaining expected input parameters in StoragePlacementSpec will be the same as those for the existing API as determined by StoragePlacementSpec::type. If a parameter is optional in the existing API, it will also be optional in the new API. :param storageSpec:<|endoftext|>
70c29380fd310a7e52b60865a145a2768a1360304b659cdb2e1bf2ddcff5efff
def RefreshStorageDrsRecommendation(self, pod): 'Make Storage DRS invoke again on the specified pod StoragePod and return a new\n list of recommendations. Concurrent "refresh" requests may be combined together\n and trigger only one Storage DRS invocation.\n \n :param pod: The storage pod. The recommendations generated is stored at PodStorageDrsEntry#recommendation.\n \n ' return self.delegate('RefreshStorageDrsRecommendation')(pod)
Make Storage DRS invoke again on the specified pod StoragePod and return a new list of recommendations. Concurrent "refresh" requests may be combined together and trigger only one Storage DRS invocation. :param pod: The storage pod. The recommendations generated is stored at PodStorageDrsEntry#recommendation.
pyvisdk/mo/storage_resource_manager.py
RefreshStorageDrsRecommendation
Infinidat/pyvisdk
0
python
def RefreshStorageDrsRecommendation(self, pod): 'Make Storage DRS invoke again on the specified pod StoragePod and return a new\n list of recommendations. Concurrent "refresh" requests may be combined together\n and trigger only one Storage DRS invocation.\n \n :param pod: The storage pod. The recommendations generated is stored at PodStorageDrsEntry#recommendation.\n \n ' return self.delegate('RefreshStorageDrsRecommendation')(pod)
def RefreshStorageDrsRecommendation(self, pod): 'Make Storage DRS invoke again on the specified pod StoragePod and return a new\n list of recommendations. Concurrent "refresh" requests may be combined together\n and trigger only one Storage DRS invocation.\n \n :param pod: The storage pod. The recommendations generated is stored at PodStorageDrsEntry#recommendation.\n \n ' return self.delegate('RefreshStorageDrsRecommendation')(pod)<|docstring|>Make Storage DRS invoke again on the specified pod StoragePod and return a new list of recommendations. Concurrent "refresh" requests may be combined together and trigger only one Storage DRS invocation. :param pod: The storage pod. The recommendations generated is stored at PodStorageDrsEntry#recommendation.<|endoftext|>
61bb95f0f814ef02df56fdcbccd7796904b600f51e213d5ce96c3a009502383d
def debug(msg): 'If in debug mode, send a debug message to stdout.' if DEBUG_ENABLED: print('Debug: {}'.format(msg))
If in debug mode, send a debug message to stdout.
shopify_alexa.py
debug
johntelforduk/shopify-alexa-skill
0
python
def debug(msg): if DEBUG_ENABLED: print('Debug: {}'.format(msg))
def debug(msg): if DEBUG_ENABLED: print('Debug: {}'.format(msg))<|docstring|>If in debug mode, send a debug message to stdout.<|endoftext|>
9260269b7d7d6bc0061d541ab0f3d7d0cd15bd92a95e1ac51f2e35425aeb6cb4
def build_speech_response(title: str, ssml_output: str, plain_output: str) -> dict: 'Build a speech JSON representation of the title, output text, and end of session.' return {'outputSpeech': {'type': 'SSML', 'ssml': ssml_output}, 'card': {'type': 'Simple', 'title': title, 'content': plain_output}, 'shouldEndSession': True}
Build a speech JSON representation of the title, output text, and end of session.
shopify_alexa.py
build_speech_response
johntelforduk/shopify-alexa-skill
0
python
def build_speech_response(title: str, ssml_output: str, plain_output: str) -> dict: return {'outputSpeech': {'type': 'SSML', 'ssml': ssml_output}, 'card': {'type': 'Simple', 'title': title, 'content': plain_output}, 'shouldEndSession': True}
def build_speech_response(title: str, ssml_output: str, plain_output: str) -> dict: return {'outputSpeech': {'type': 'SSML', 'ssml': ssml_output}, 'card': {'type': 'Simple', 'title': title, 'content': plain_output}, 'shouldEndSession': True}<|docstring|>Build a speech JSON representation of the title, output text, and end of session.<|endoftext|>
3e62722f77e8eeadd2818aff19fc4d39cce85c6e437b8fde0d5828d76d43f113
def build_response(session_attributes, speech_response): 'Build the full response JSON from the speech response.' return {'version': '1.0', 'sessionAttributes': session_attributes, 'response': speech_response}
Build the full response JSON from the speech response.
shopify_alexa.py
build_response
johntelforduk/shopify-alexa-skill
0
python
def build_response(session_attributes, speech_response): return {'version': '1.0', 'sessionAttributes': session_attributes, 'response': speech_response}
def build_response(session_attributes, speech_response): return {'version': '1.0', 'sessionAttributes': session_attributes, 'response': speech_response}<|docstring|>Build the full response JSON from the speech response.<|endoftext|>
6125985538a0d4e994c3d63690842ff034fbfc623af543888d0a7e2839138a1a
def lambda_handler(event, context): 'Function called by Lambda. Output JSON returned to Alexa.' assert (event is not '') assert (context is not '') print('event =', event) print('context =', context) this_skill = Skill() this_skill.shop.get_store_info() today = this_skill.date_as_str(delta_days=0) two_days_ago = this_skill.date_as_str(delta_days=(- 2)) this_skill.shop.get_orders(from_date=two_days_ago, to_date=today) message = 'Hi, this is the Shopify Alexa skill. You can ask me things like, "How many orders have I had today?"' if (event['request']['type'] == 'IntentRequest'): intent = event['request']['intent']['name'] print('intent =', intent) if (intent == 'OrdersTodayIntent'): message = this_skill.number_orders_today() elif (intent == 'OrdersYesterdayIntent'): message = this_skill.number_orders_yesterday() elif (intent == 'GrossSalesTodayIntent'): message = this_skill.gross_sales_today() elif (intent == 'GrossSalesYesterdayIntent'): message = this_skill.gross_sales_yesterday() elif (intent == 'MostRecentOrderIntent'): message = this_skill.most_recent_order() card_title = 'Shopify Skill' speech_output = (('<speak>' + message) + '</speak>') card_output = message return build_response(session_attributes={}, speech_response=build_speech_response(title=card_title, ssml_output=speech_output, plain_output=card_output))
Function called by Lambda. Output JSON returned to Alexa.
shopify_alexa.py
lambda_handler
johntelforduk/shopify-alexa-skill
0
python
def lambda_handler(event, context): assert (event is not ) assert (context is not ) print('event =', event) print('context =', context) this_skill = Skill() this_skill.shop.get_store_info() today = this_skill.date_as_str(delta_days=0) two_days_ago = this_skill.date_as_str(delta_days=(- 2)) this_skill.shop.get_orders(from_date=two_days_ago, to_date=today) message = 'Hi, this is the Shopify Alexa skill. You can ask me things like, "How many orders have I had today?"' if (event['request']['type'] == 'IntentRequest'): intent = event['request']['intent']['name'] print('intent =', intent) if (intent == 'OrdersTodayIntent'): message = this_skill.number_orders_today() elif (intent == 'OrdersYesterdayIntent'): message = this_skill.number_orders_yesterday() elif (intent == 'GrossSalesTodayIntent'): message = this_skill.gross_sales_today() elif (intent == 'GrossSalesYesterdayIntent'): message = this_skill.gross_sales_yesterday() elif (intent == 'MostRecentOrderIntent'): message = this_skill.most_recent_order() card_title = 'Shopify Skill' speech_output = (('<speak>' + message) + '</speak>') card_output = message return build_response(session_attributes={}, speech_response=build_speech_response(title=card_title, ssml_output=speech_output, plain_output=card_output))
def lambda_handler(event, context): assert (event is not ) assert (context is not ) print('event =', event) print('context =', context) this_skill = Skill() this_skill.shop.get_store_info() today = this_skill.date_as_str(delta_days=0) two_days_ago = this_skill.date_as_str(delta_days=(- 2)) this_skill.shop.get_orders(from_date=two_days_ago, to_date=today) message = 'Hi, this is the Shopify Alexa skill. You can ask me things like, "How many orders have I had today?"' if (event['request']['type'] == 'IntentRequest'): intent = event['request']['intent']['name'] print('intent =', intent) if (intent == 'OrdersTodayIntent'): message = this_skill.number_orders_today() elif (intent == 'OrdersYesterdayIntent'): message = this_skill.number_orders_yesterday() elif (intent == 'GrossSalesTodayIntent'): message = this_skill.gross_sales_today() elif (intent == 'GrossSalesYesterdayIntent'): message = this_skill.gross_sales_yesterday() elif (intent == 'MostRecentOrderIntent'): message = this_skill.most_recent_order() card_title = 'Shopify Skill' speech_output = (('<speak>' + message) + '</speak>') card_output = message return build_response(session_attributes={}, speech_response=build_speech_response(title=card_title, ssml_output=speech_output, plain_output=card_output))<|docstring|>Function called by Lambda. Output JSON returned to Alexa.<|endoftext|>
22a5374a2f2be2e4dcefb94623238a8465270d35801d04f8e295b70f3e5a900a
def __init__(self): 'Get ready tp make calls to Shopify API.' load_dotenv(verbose=True) shop_name = getenv('SHOP_NAME') api_version = getenv('API_VERSION') api_key = getenv('API_KEY') password = getenv('PASSWORD') self.shop_url = ('https://%s:[email protected]/admin/api/%s/' % (api_key, password, shop_name, api_version)) self.orders = [] self.money_format = '' self.timezone = '' self.timezone_offset = ''
Get ready tp make calls to Shopify API.
shopify_alexa.py
__init__
johntelforduk/shopify-alexa-skill
0
python
def __init__(self): load_dotenv(verbose=True) shop_name = getenv('SHOP_NAME') api_version = getenv('API_VERSION') api_key = getenv('API_KEY') password = getenv('PASSWORD') self.shop_url = ('https://%s:[email protected]/admin/api/%s/' % (api_key, password, shop_name, api_version)) self.orders = [] self.money_format = self.timezone = self.timezone_offset =
def __init__(self): load_dotenv(verbose=True) shop_name = getenv('SHOP_NAME') api_version = getenv('API_VERSION') api_key = getenv('API_KEY') password = getenv('PASSWORD') self.shop_url = ('https://%s:[email protected]/admin/api/%s/' % (api_key, password, shop_name, api_version)) self.orders = [] self.money_format = self.timezone = self.timezone_offset = <|docstring|>Get ready tp make calls to Shopify API.<|endoftext|>
af3619a75ce66327142f96afb31ac27b5c1a67e0261183176c78687db1b144ba
def get_store_info(self): 'Obtain some reference data about the store.' url = (self.shop_url + 'shop.json') request = requests.get(url) if (request.status_code != 200): debug('Shopify.get_store_info : request.status_code = '.format(request.status_code)) else: request_dict = json.loads(s=request.text) request_shop = request_dict['shop'] self.money_format = request_shop['money_format'] self.timezone = request_shop['timezone'] self.timezone_offset = self.timezone[4:10] debug('Shopify.get_store_info : self.money_format = {}'.format(self.money_format)) debug('Shopify.get_store_info : self.timezone = {}'.format(self.timezone)) debug('Shopify.get_store_info : self.timezone_offset = {}'.format(self.timezone_offset))
Obtain some reference data about the store.
shopify_alexa.py
get_store_info
johntelforduk/shopify-alexa-skill
0
python
def get_store_info(self): url = (self.shop_url + 'shop.json') request = requests.get(url) if (request.status_code != 200): debug('Shopify.get_store_info : request.status_code = '.format(request.status_code)) else: request_dict = json.loads(s=request.text) request_shop = request_dict['shop'] self.money_format = request_shop['money_format'] self.timezone = request_shop['timezone'] self.timezone_offset = self.timezone[4:10] debug('Shopify.get_store_info : self.money_format = {}'.format(self.money_format)) debug('Shopify.get_store_info : self.timezone = {}'.format(self.timezone)) debug('Shopify.get_store_info : self.timezone_offset = {}'.format(self.timezone_offset))
def get_store_info(self): url = (self.shop_url + 'shop.json') request = requests.get(url) if (request.status_code != 200): debug('Shopify.get_store_info : request.status_code = '.format(request.status_code)) else: request_dict = json.loads(s=request.text) request_shop = request_dict['shop'] self.money_format = request_shop['money_format'] self.timezone = request_shop['timezone'] self.timezone_offset = self.timezone[4:10] debug('Shopify.get_store_info : self.money_format = {}'.format(self.money_format)) debug('Shopify.get_store_info : self.timezone = {}'.format(self.timezone)) debug('Shopify.get_store_info : self.timezone_offset = {}'.format(self.timezone_offset))<|docstring|>Obtain some reference data about the store.<|endoftext|>
ccce2c599b8fa4c708f7073ebb397cd7793d126e7a6b6562690db9d74f293367
@staticmethod def is_date(test: str) -> bool: "Return true iff the parm string is a valid date in format yyyy-mm-dd. For example '2020-04-29'." if (len(test) != 10): debug('Shopify.is_date : test = {}'.format(test)) return False year = test[0:4] month = test[5:7] day = test[8:10] if (year.isdecimal() and month.isdecimal() and day.isdecimal()): return True debug('Shopify.is_date : year = {} month = {} day = {}'.format(year, month, day)) return False
Return true iff the parm string is a valid date in format yyyy-mm-dd. For example '2020-04-29'.
shopify_alexa.py
is_date
johntelforduk/shopify-alexa-skill
0
python
@staticmethod def is_date(test: str) -> bool: if (len(test) != 10): debug('Shopify.is_date : test = {}'.format(test)) return False year = test[0:4] month = test[5:7] day = test[8:10] if (year.isdecimal() and month.isdecimal() and day.isdecimal()): return True debug('Shopify.is_date : year = {} month = {} day = {}'.format(year, month, day)) return False
@staticmethod def is_date(test: str) -> bool: if (len(test) != 10): debug('Shopify.is_date : test = {}'.format(test)) return False year = test[0:4] month = test[5:7] day = test[8:10] if (year.isdecimal() and month.isdecimal() and day.isdecimal()): return True debug('Shopify.is_date : year = {} month = {} day = {}'.format(year, month, day)) return False<|docstring|>Return true iff the parm string is a valid date in format yyyy-mm-dd. For example '2020-04-29'.<|endoftext|>
943d16355778228189cad63f3624c3bb07d33cff1680cc46824164588dd76185
@staticmethod def date_from_datetime(date_time: str) -> str: 'For parm datetime string in format yyyy-mm-ddThh:mm:ss+zz:zz, return the date part only.' date_only = date_time[0:10] return date_only
For parm datetime string in format yyyy-mm-ddThh:mm:ss+zz:zz, return the date part only.
shopify_alexa.py
date_from_datetime
johntelforduk/shopify-alexa-skill
0
python
@staticmethod def date_from_datetime(date_time: str) -> str: date_only = date_time[0:10] return date_only
@staticmethod def date_from_datetime(date_time: str) -> str: date_only = date_time[0:10] return date_only<|docstring|>For parm datetime string in format yyyy-mm-ddThh:mm:ss+zz:zz, return the date part only.<|endoftext|>
b393617810e014efc8082cca8064464bbeae817c5651a04c861eeee746a0fc7f
def get_orders(self, from_date: str, to_date: str): 'Create a list of orders between parm From and To dates.' assert self.is_date(test=from_date) assert self.is_date(test=to_date) url = ((((((((((((self.shop_url + 'orders.json') + '?created_at_min=') + from_date) + 'T00:00:00') + self.timezone_offset) + '&created_at_max=') + to_date) + 'T23:59:59') + self.timezone_offset) + '&status=any') + '&limit=250') + '&fields=id,created_at,total_price,status,financial_status') request = requests.get(url) if (request.status_code != 200): debug('Shopify.get_orders : request.status_code = '.format(request.status_code)) self.orders = None else: request_dict = json.loads(s=request.text) if DEBUG_ENABLED: print('Shopify.get_orders : request_dict =', request_dict) request_orders = request_dict['orders'] if DEBUG_ENABLED: print('Shopify.get_orders : orders =', request_orders) self.orders = request_orders
Create a list of orders between parm From and To dates.
shopify_alexa.py
get_orders
johntelforduk/shopify-alexa-skill
0
python
def get_orders(self, from_date: str, to_date: str): assert self.is_date(test=from_date) assert self.is_date(test=to_date) url = ((((((((((((self.shop_url + 'orders.json') + '?created_at_min=') + from_date) + 'T00:00:00') + self.timezone_offset) + '&created_at_max=') + to_date) + 'T23:59:59') + self.timezone_offset) + '&status=any') + '&limit=250') + '&fields=id,created_at,total_price,status,financial_status') request = requests.get(url) if (request.status_code != 200): debug('Shopify.get_orders : request.status_code = '.format(request.status_code)) self.orders = None else: request_dict = json.loads(s=request.text) if DEBUG_ENABLED: print('Shopify.get_orders : request_dict =', request_dict) request_orders = request_dict['orders'] if DEBUG_ENABLED: print('Shopify.get_orders : orders =', request_orders) self.orders = request_orders
def get_orders(self, from_date: str, to_date: str): assert self.is_date(test=from_date) assert self.is_date(test=to_date) url = ((((((((((((self.shop_url + 'orders.json') + '?created_at_min=') + from_date) + 'T00:00:00') + self.timezone_offset) + '&created_at_max=') + to_date) + 'T23:59:59') + self.timezone_offset) + '&status=any') + '&limit=250') + '&fields=id,created_at,total_price,status,financial_status') request = requests.get(url) if (request.status_code != 200): debug('Shopify.get_orders : request.status_code = '.format(request.status_code)) self.orders = None else: request_dict = json.loads(s=request.text) if DEBUG_ENABLED: print('Shopify.get_orders : request_dict =', request_dict) request_orders = request_dict['orders'] if DEBUG_ENABLED: print('Shopify.get_orders : orders =', request_orders) self.orders = request_orders<|docstring|>Create a list of orders between parm From and To dates.<|endoftext|>
1971993a294ce1f3b9d0222ecb4e3d02ee49a307aaa6a1a369422ec2ebd06bca
def orders_on_date(self, target_date: str) -> list: 'For parm date (in yyyy-mm-dd format), return a list containing the orders on that day.' assert self.is_date(target_date) output = [] for each_order in self.orders: order_date = self.date_from_datetime(each_order['created_at']) if (order_date == target_date): output.append(each_order) return output
For parm date (in yyyy-mm-dd format), return a list containing the orders on that day.
shopify_alexa.py
orders_on_date
johntelforduk/shopify-alexa-skill
0
python
def orders_on_date(self, target_date: str) -> list: assert self.is_date(target_date) output = [] for each_order in self.orders: order_date = self.date_from_datetime(each_order['created_at']) if (order_date == target_date): output.append(each_order) return output
def orders_on_date(self, target_date: str) -> list: assert self.is_date(target_date) output = [] for each_order in self.orders: order_date = self.date_from_datetime(each_order['created_at']) if (order_date == target_date): output.append(each_order) return output<|docstring|>For parm date (in yyyy-mm-dd format), return a list containing the orders on that day.<|endoftext|>