body_hash
stringlengths
64
64
body
stringlengths
23
109k
docstring
stringlengths
1
57k
path
stringlengths
4
198
name
stringlengths
1
115
repository_name
stringlengths
7
111
repository_stars
float64
0
191k
lang
stringclasses
1 value
body_without_docstring
stringlengths
14
108k
unified
stringlengths
45
133k
3b98f559db1ea58165f30a3ac7778a52f0ef13d8e0486cd210c6e49d792bdef2
def load_roi_data(roi_trace_path): '\n load_roi_data(roi_trace_path)\n\n Returns ROI data from ROI data file. \n\n Required args:\n - roi_trace_path (Path): full path name of the ROI data file\n\n Returns:\n - roi_ids (list) : ROI IDs\n - nrois (int) : total number of ROIs\n - tot_twop_fr (int): total number of two-photon frames recorded\n ' with h5py.File(roi_trace_path, 'r') as f: dataset_name = ('data' if ('data' in f.keys()) else 'FC') roi_ids = f['roi_names'][()].tolist() nrois = f[dataset_name].shape[0] tot_twop_fr = f[dataset_name].shape[1] return (roi_ids, nrois, tot_twop_fr)
load_roi_data(roi_trace_path) Returns ROI data from ROI data file. Required args: - roi_trace_path (Path): full path name of the ROI data file Returns: - roi_ids (list) : ROI IDs - nrois (int) : total number of ROIs - tot_twop_fr (int): total number of two-photon frames recorded
sess_util/sess_trace_util.py
load_roi_data
AllenInstitute/OpenScope_CA_Analysis
0
python
def load_roi_data(roi_trace_path): '\n load_roi_data(roi_trace_path)\n\n Returns ROI data from ROI data file. \n\n Required args:\n - roi_trace_path (Path): full path name of the ROI data file\n\n Returns:\n - roi_ids (list) : ROI IDs\n - nrois (int) : total number of ROIs\n - tot_twop_fr (int): total number of two-photon frames recorded\n ' with h5py.File(roi_trace_path, 'r') as f: dataset_name = ('data' if ('data' in f.keys()) else 'FC') roi_ids = f['roi_names'][()].tolist() nrois = f[dataset_name].shape[0] tot_twop_fr = f[dataset_name].shape[1] return (roi_ids, nrois, tot_twop_fr)
def load_roi_data(roi_trace_path): '\n load_roi_data(roi_trace_path)\n\n Returns ROI data from ROI data file. \n\n Required args:\n - roi_trace_path (Path): full path name of the ROI data file\n\n Returns:\n - roi_ids (list) : ROI IDs\n - nrois (int) : total number of ROIs\n - tot_twop_fr (int): total number of two-photon frames recorded\n ' with h5py.File(roi_trace_path, 'r') as f: dataset_name = ('data' if ('data' in f.keys()) else 'FC') roi_ids = f['roi_names'][()].tolist() nrois = f[dataset_name].shape[0] tot_twop_fr = f[dataset_name].shape[1] return (roi_ids, nrois, tot_twop_fr)<|docstring|>load_roi_data(roi_trace_path) Returns ROI data from ROI data file. Required args: - roi_trace_path (Path): full path name of the ROI data file Returns: - roi_ids (list) : ROI IDs - nrois (int) : total number of ROIs - tot_twop_fr (int): total number of two-photon frames recorded<|endoftext|>
eef42d2465078e695163bd765c02d114a829b2e9c1e0f42809a5264729a689d7
def get_roi_locations(roi_extract_dict): '\n get_roi_locations(roi_extract_dict)\n\n Returns ROI locations, extracted from ROI extraction dictionary.\n\n Required args:\n - roi_extract_dict (dict): ROI extraction dictionary\n\n Returns \n - roi_locations (pd DataFrame): ROI locations dataframe\n ' if (not isinstance(roi_extract_dict, dict)): roi_extract_dict = file_util.loadfile(roi_extract_dict) rois = roi_extract_dict['rois'] roi_locations_list = [] for i in range(len(rois)): roi = rois[i] mask = roi['mask'] roi_locations_list.append([roi['id'], roi['x'], roi['y'], roi['width'], roi['height'], roi['valid'], mask]) roi_locations = pd.DataFrame(data=roi_locations_list, columns=['id', 'x', 'y', 'width', 'height', 'valid', 'mask']) return roi_locations
get_roi_locations(roi_extract_dict) Returns ROI locations, extracted from ROI extraction dictionary. Required args: - roi_extract_dict (dict): ROI extraction dictionary Returns - roi_locations (pd DataFrame): ROI locations dataframe
sess_util/sess_trace_util.py
get_roi_locations
AllenInstitute/OpenScope_CA_Analysis
0
python
def get_roi_locations(roi_extract_dict): '\n get_roi_locations(roi_extract_dict)\n\n Returns ROI locations, extracted from ROI extraction dictionary.\n\n Required args:\n - roi_extract_dict (dict): ROI extraction dictionary\n\n Returns \n - roi_locations (pd DataFrame): ROI locations dataframe\n ' if (not isinstance(roi_extract_dict, dict)): roi_extract_dict = file_util.loadfile(roi_extract_dict) rois = roi_extract_dict['rois'] roi_locations_list = [] for i in range(len(rois)): roi = rois[i] mask = roi['mask'] roi_locations_list.append([roi['id'], roi['x'], roi['y'], roi['width'], roi['height'], roi['valid'], mask]) roi_locations = pd.DataFrame(data=roi_locations_list, columns=['id', 'x', 'y', 'width', 'height', 'valid', 'mask']) return roi_locations
def get_roi_locations(roi_extract_dict): '\n get_roi_locations(roi_extract_dict)\n\n Returns ROI locations, extracted from ROI extraction dictionary.\n\n Required args:\n - roi_extract_dict (dict): ROI extraction dictionary\n\n Returns \n - roi_locations (pd DataFrame): ROI locations dataframe\n ' if (not isinstance(roi_extract_dict, dict)): roi_extract_dict = file_util.loadfile(roi_extract_dict) rois = roi_extract_dict['rois'] roi_locations_list = [] for i in range(len(rois)): roi = rois[i] mask = roi['mask'] roi_locations_list.append([roi['id'], roi['x'], roi['y'], roi['width'], roi['height'], roi['valid'], mask]) roi_locations = pd.DataFrame(data=roi_locations_list, columns=['id', 'x', 'y', 'width', 'height', 'valid', 'mask']) return roi_locations<|docstring|>get_roi_locations(roi_extract_dict) Returns ROI locations, extracted from ROI extraction dictionary. Required args: - roi_extract_dict (dict): ROI extraction dictionary Returns - roi_locations (pd DataFrame): ROI locations dataframe<|endoftext|>
1f94ad7bce4a29b4551145d5ea2c3a3fdc4bc0cfd8d3d7c6af0982246f02d825
def add_cell_specimen_ids_to_roi_metrics(roi_metrics, roi_locations): '\n Returns ROI metrics dataframe with ROI IDs added.\n\n Required args:\n - roi_metrics (pd DataFrame) : ROI metrics dataframe\n - roi_locations (pd DataFrame): ROI locations dataframe\n \n Returns:\n - roi_metrics (pd DataFrame): ROI metrics dataframe updated with \n locations information\n ' roi_metrics = roi_metrics.copy(deep=True) ids = [] for row in roi_metrics.index: minx = roi_metrics.iloc[row][' minx'] miny = roi_metrics.iloc[row][' miny'] wid = ((roi_metrics.iloc[row][' maxx'] - minx) + 1) hei = ((roi_metrics.iloc[row][' maxy'] - miny) + 1) id_vals = roi_locations[((((roi_locations.x == minx) & (roi_locations.y == miny)) & (roi_locations.width == wid)) & (roi_locations.height == hei))].id.values if (len(id_vals) != 1): if (len(id_vals) > 1): msg = f'Multiple ROI matches found ({len(id_vals)}).' else: msg = 'No ROI matches found.' raise OSError(msg) ids.append(id_vals[0]) roi_metrics['cell_specimen_id'] = ids return roi_metrics
Returns ROI metrics dataframe with ROI IDs added. Required args: - roi_metrics (pd DataFrame) : ROI metrics dataframe - roi_locations (pd DataFrame): ROI locations dataframe Returns: - roi_metrics (pd DataFrame): ROI metrics dataframe updated with locations information
sess_util/sess_trace_util.py
add_cell_specimen_ids_to_roi_metrics
AllenInstitute/OpenScope_CA_Analysis
0
python
def add_cell_specimen_ids_to_roi_metrics(roi_metrics, roi_locations): '\n Returns ROI metrics dataframe with ROI IDs added.\n\n Required args:\n - roi_metrics (pd DataFrame) : ROI metrics dataframe\n - roi_locations (pd DataFrame): ROI locations dataframe\n \n Returns:\n - roi_metrics (pd DataFrame): ROI metrics dataframe updated with \n locations information\n ' roi_metrics = roi_metrics.copy(deep=True) ids = [] for row in roi_metrics.index: minx = roi_metrics.iloc[row][' minx'] miny = roi_metrics.iloc[row][' miny'] wid = ((roi_metrics.iloc[row][' maxx'] - minx) + 1) hei = ((roi_metrics.iloc[row][' maxy'] - miny) + 1) id_vals = roi_locations[((((roi_locations.x == minx) & (roi_locations.y == miny)) & (roi_locations.width == wid)) & (roi_locations.height == hei))].id.values if (len(id_vals) != 1): if (len(id_vals) > 1): msg = f'Multiple ROI matches found ({len(id_vals)}).' else: msg = 'No ROI matches found.' raise OSError(msg) ids.append(id_vals[0]) roi_metrics['cell_specimen_id'] = ids return roi_metrics
def add_cell_specimen_ids_to_roi_metrics(roi_metrics, roi_locations): '\n Returns ROI metrics dataframe with ROI IDs added.\n\n Required args:\n - roi_metrics (pd DataFrame) : ROI metrics dataframe\n - roi_locations (pd DataFrame): ROI locations dataframe\n \n Returns:\n - roi_metrics (pd DataFrame): ROI metrics dataframe updated with \n locations information\n ' roi_metrics = roi_metrics.copy(deep=True) ids = [] for row in roi_metrics.index: minx = roi_metrics.iloc[row][' minx'] miny = roi_metrics.iloc[row][' miny'] wid = ((roi_metrics.iloc[row][' maxx'] - minx) + 1) hei = ((roi_metrics.iloc[row][' maxy'] - miny) + 1) id_vals = roi_locations[((((roi_locations.x == minx) & (roi_locations.y == miny)) & (roi_locations.width == wid)) & (roi_locations.height == hei))].id.values if (len(id_vals) != 1): if (len(id_vals) > 1): msg = f'Multiple ROI matches found ({len(id_vals)}).' else: msg = 'No ROI matches found.' raise OSError(msg) ids.append(id_vals[0]) roi_metrics['cell_specimen_id'] = ids return roi_metrics<|docstring|>Returns ROI metrics dataframe with ROI IDs added. Required args: - roi_metrics (pd DataFrame) : ROI metrics dataframe - roi_locations (pd DataFrame): ROI locations dataframe Returns: - roi_metrics (pd DataFrame): ROI metrics dataframe updated with locations information<|endoftext|>
94b2ec0ab57be35268ee6051479d751202d21615b89a3fd844f2c35006a923d1
def get_motion_border(roi_extract_dict): '\n get_motion_border(roi_extract_dict)\n\n Returns motion border for motion corrected stack.\n\n Required args:\n - roi_extract_dict (dict): ROI extraction dictionary\n\n Returns:\n - motion border (list): motion border values for [x0, x1, y1, y0]\n (right, left, down, up shifts)\n ' if (not isinstance(roi_extract_dict, dict)): roi_extract_dict = file_util.loadfile(roi_extract_dict) coords = ['x0', 'x1', 'y0', 'y1'] motion_border = [roi_extract_dict['motion_border'][coord] for coord in coords] return motion_border
get_motion_border(roi_extract_dict) Returns motion border for motion corrected stack. Required args: - roi_extract_dict (dict): ROI extraction dictionary Returns: - motion border (list): motion border values for [x0, x1, y1, y0] (right, left, down, up shifts)
sess_util/sess_trace_util.py
get_motion_border
AllenInstitute/OpenScope_CA_Analysis
0
python
def get_motion_border(roi_extract_dict): '\n get_motion_border(roi_extract_dict)\n\n Returns motion border for motion corrected stack.\n\n Required args:\n - roi_extract_dict (dict): ROI extraction dictionary\n\n Returns:\n - motion border (list): motion border values for [x0, x1, y1, y0]\n (right, left, down, up shifts)\n ' if (not isinstance(roi_extract_dict, dict)): roi_extract_dict = file_util.loadfile(roi_extract_dict) coords = ['x0', 'x1', 'y0', 'y1'] motion_border = [roi_extract_dict['motion_border'][coord] for coord in coords] return motion_border
def get_motion_border(roi_extract_dict): '\n get_motion_border(roi_extract_dict)\n\n Returns motion border for motion corrected stack.\n\n Required args:\n - roi_extract_dict (dict): ROI extraction dictionary\n\n Returns:\n - motion border (list): motion border values for [x0, x1, y1, y0]\n (right, left, down, up shifts)\n ' if (not isinstance(roi_extract_dict, dict)): roi_extract_dict = file_util.loadfile(roi_extract_dict) coords = ['x0', 'x1', 'y0', 'y1'] motion_border = [roi_extract_dict['motion_border'][coord] for coord in coords] return motion_border<|docstring|>get_motion_border(roi_extract_dict) Returns motion border for motion corrected stack. Required args: - roi_extract_dict (dict): ROI extraction dictionary Returns: - motion border (list): motion border values for [x0, x1, y1, y0] (right, left, down, up shifts)<|endoftext|>
f4c5bc7ce1d7145bc42dce668daedf8f4c2272d03a51379980455bf309f98d7e
def get_roi_metrics(roi_extract_dict, objectlist_txt): '\n get_roi_metrics(roi_extract_dict, objectlist_txt)\n\n Returns ROI metrics loaded from object list file and updated based on \n ROI extraction dictionary.\n\n Required args:\n - roi_extract_dict (dict): ROI extraction dictionary\n - objectlist_txt (Path) : path to object list containing ROI metrics\n \n Returns:\n - roi_metrics (pd DataFrame): dataframe containing ROI metrics\n ' roi_locations = get_roi_locations(roi_extract_dict) roi_metrics = pd.read_csv(objectlist_txt) roi_names = np.sort(roi_locations.id.values) roi_locations['unfiltered_cell_index'] = [np.where((roi_names == roi_id))[0][0] for roi_id in roi_locations.id.values] roi_metrics = add_cell_specimen_ids_to_roi_metrics(roi_metrics, roi_locations) roi_metrics['id'] = roi_metrics.cell_specimen_id.values roi_metrics = pd.merge(roi_metrics, roi_locations, on='id') cell_index = [np.where((np.sort(roi_metrics.cell_specimen_id.values) == roi_id))[0][0] for roi_id in roi_metrics.cell_specimen_id.values] roi_metrics['cell_index'] = cell_index return roi_metrics
get_roi_metrics(roi_extract_dict, objectlist_txt) Returns ROI metrics loaded from object list file and updated based on ROI extraction dictionary. Required args: - roi_extract_dict (dict): ROI extraction dictionary - objectlist_txt (Path) : path to object list containing ROI metrics Returns: - roi_metrics (pd DataFrame): dataframe containing ROI metrics
sess_util/sess_trace_util.py
get_roi_metrics
AllenInstitute/OpenScope_CA_Analysis
0
python
def get_roi_metrics(roi_extract_dict, objectlist_txt): '\n get_roi_metrics(roi_extract_dict, objectlist_txt)\n\n Returns ROI metrics loaded from object list file and updated based on \n ROI extraction dictionary.\n\n Required args:\n - roi_extract_dict (dict): ROI extraction dictionary\n - objectlist_txt (Path) : path to object list containing ROI metrics\n \n Returns:\n - roi_metrics (pd DataFrame): dataframe containing ROI metrics\n ' roi_locations = get_roi_locations(roi_extract_dict) roi_metrics = pd.read_csv(objectlist_txt) roi_names = np.sort(roi_locations.id.values) roi_locations['unfiltered_cell_index'] = [np.where((roi_names == roi_id))[0][0] for roi_id in roi_locations.id.values] roi_metrics = add_cell_specimen_ids_to_roi_metrics(roi_metrics, roi_locations) roi_metrics['id'] = roi_metrics.cell_specimen_id.values roi_metrics = pd.merge(roi_metrics, roi_locations, on='id') cell_index = [np.where((np.sort(roi_metrics.cell_specimen_id.values) == roi_id))[0][0] for roi_id in roi_metrics.cell_specimen_id.values] roi_metrics['cell_index'] = cell_index return roi_metrics
def get_roi_metrics(roi_extract_dict, objectlist_txt): '\n get_roi_metrics(roi_extract_dict, objectlist_txt)\n\n Returns ROI metrics loaded from object list file and updated based on \n ROI extraction dictionary.\n\n Required args:\n - roi_extract_dict (dict): ROI extraction dictionary\n - objectlist_txt (Path) : path to object list containing ROI metrics\n \n Returns:\n - roi_metrics (pd DataFrame): dataframe containing ROI metrics\n ' roi_locations = get_roi_locations(roi_extract_dict) roi_metrics = pd.read_csv(objectlist_txt) roi_names = np.sort(roi_locations.id.values) roi_locations['unfiltered_cell_index'] = [np.where((roi_names == roi_id))[0][0] for roi_id in roi_locations.id.values] roi_metrics = add_cell_specimen_ids_to_roi_metrics(roi_metrics, roi_locations) roi_metrics['id'] = roi_metrics.cell_specimen_id.values roi_metrics = pd.merge(roi_metrics, roi_locations, on='id') cell_index = [np.where((np.sort(roi_metrics.cell_specimen_id.values) == roi_id))[0][0] for roi_id in roi_metrics.cell_specimen_id.values] roi_metrics['cell_index'] = cell_index return roi_metrics<|docstring|>get_roi_metrics(roi_extract_dict, objectlist_txt) Returns ROI metrics loaded from object list file and updated based on ROI extraction dictionary. Required args: - roi_extract_dict (dict): ROI extraction dictionary - objectlist_txt (Path) : path to object list containing ROI metrics Returns: - roi_metrics (pd DataFrame): dataframe containing ROI metrics<|endoftext|>
07ec2e9a107aa62450364dc1ec7e354731b66f7cb6817e2f2f621db383d707a7
def get_tracked_rois(nway_match_path, idx_after_rem_bad=False): '\n get_tracked_rois(nway_match_path)\n\n Returns ROI tracking indices.\n\n Required args:\n - nway_match_path (Path): path to nway matching file\n \n Optional args:\n - idx_after_rem_bad (bool): if True, the ROI indices are shifted to \n as if bad ROIs did not exist\n (bad ROIs computed for dF/F only)\n default: False\n\n Returns:\n - tracked_rois (1D array): ordered indices of tracked ROIs\n ' with open(nway_match_path, 'r') as f: nway_dict = json.load(f) tracked_rois_df = pd.DataFrame().from_dict(nway_dict['rois']) tracked_rois = tracked_rois_df['dff-ordered_roi_index'].values if idx_after_rem_bad: bad_rois_df = pd.DataFrame().from_dict(nway_dict['bad_rois']) bad_rois = bad_rois_df['dff_local_bad_roi_idx'].values adj_tracked_rois = [] for n in tracked_rois: adj_tracked_rois.append((n - np.sum((bad_rois < n)))) tracked_rois = np.asarray(adj_tracked_rois) return tracked_rois
get_tracked_rois(nway_match_path) Returns ROI tracking indices. Required args: - nway_match_path (Path): path to nway matching file Optional args: - idx_after_rem_bad (bool): if True, the ROI indices are shifted to as if bad ROIs did not exist (bad ROIs computed for dF/F only) default: False Returns: - tracked_rois (1D array): ordered indices of tracked ROIs
sess_util/sess_trace_util.py
get_tracked_rois
AllenInstitute/OpenScope_CA_Analysis
0
python
def get_tracked_rois(nway_match_path, idx_after_rem_bad=False): '\n get_tracked_rois(nway_match_path)\n\n Returns ROI tracking indices.\n\n Required args:\n - nway_match_path (Path): path to nway matching file\n \n Optional args:\n - idx_after_rem_bad (bool): if True, the ROI indices are shifted to \n as if bad ROIs did not exist\n (bad ROIs computed for dF/F only)\n default: False\n\n Returns:\n - tracked_rois (1D array): ordered indices of tracked ROIs\n ' with open(nway_match_path, 'r') as f: nway_dict = json.load(f) tracked_rois_df = pd.DataFrame().from_dict(nway_dict['rois']) tracked_rois = tracked_rois_df['dff-ordered_roi_index'].values if idx_after_rem_bad: bad_rois_df = pd.DataFrame().from_dict(nway_dict['bad_rois']) bad_rois = bad_rois_df['dff_local_bad_roi_idx'].values adj_tracked_rois = [] for n in tracked_rois: adj_tracked_rois.append((n - np.sum((bad_rois < n)))) tracked_rois = np.asarray(adj_tracked_rois) return tracked_rois
def get_tracked_rois(nway_match_path, idx_after_rem_bad=False): '\n get_tracked_rois(nway_match_path)\n\n Returns ROI tracking indices.\n\n Required args:\n - nway_match_path (Path): path to nway matching file\n \n Optional args:\n - idx_after_rem_bad (bool): if True, the ROI indices are shifted to \n as if bad ROIs did not exist\n (bad ROIs computed for dF/F only)\n default: False\n\n Returns:\n - tracked_rois (1D array): ordered indices of tracked ROIs\n ' with open(nway_match_path, 'r') as f: nway_dict = json.load(f) tracked_rois_df = pd.DataFrame().from_dict(nway_dict['rois']) tracked_rois = tracked_rois_df['dff-ordered_roi_index'].values if idx_after_rem_bad: bad_rois_df = pd.DataFrame().from_dict(nway_dict['bad_rois']) bad_rois = bad_rois_df['dff_local_bad_roi_idx'].values adj_tracked_rois = [] for n in tracked_rois: adj_tracked_rois.append((n - np.sum((bad_rois < n)))) tracked_rois = np.asarray(adj_tracked_rois) return tracked_rois<|docstring|>get_tracked_rois(nway_match_path) Returns ROI tracking indices. Required args: - nway_match_path (Path): path to nway matching file Optional args: - idx_after_rem_bad (bool): if True, the ROI indices are shifted to as if bad ROIs did not exist (bad ROIs computed for dF/F only) default: False Returns: - tracked_rois (1D array): ordered indices of tracked ROIs<|endoftext|>
a60e170ecaff86cc091e4d6b4eeb764562fa1dd6932eb6ef37035e36bdffb378
def get_tracked_rois_nwb(sess_files): '\n get_tracked_rois_nwb(sess_files)\n\n Returns ROI tracking indices.\n\n Required args:\n - sess_files (list): full path names of the session files\n \n Returns:\n - tracked_rois (1D array): ordered indices of tracked ROIs\n ' ophys_file = sess_file_util.select_nwb_sess_path(sess_files, ophys=True) with pynwb.NWBHDF5IO(str(ophys_file), 'r') as f: nwbfile_in = f.read() ophys_module = nwbfile_in.get_processing_module('ophys') main_field = 'ImageSegmentation' data_field = 'PlaneSegmentation' try: plane_seg = ophys_module.get_data_interface(main_field).get_plane_segmentation(data_field) except KeyError as err: raise KeyError(f'Could not find plane segmentation data in image segmentation for {ophys_file} due to: {err}') tracking_key = 'tracking_id' if (tracking_key not in plane_seg.colnames): raise RuntimeError(f'No tracking data in {ophys_file}.') roi_tracking = np.asarray(plane_seg[tracking_key].data) tracked_idxs = np.where(np.isfinite(roi_tracking))[0] tracking_order = np.argsort(roi_tracking[tracked_idxs]) tracked_rois = tracked_idxs[tracking_order] return tracked_rois
get_tracked_rois_nwb(sess_files) Returns ROI tracking indices. Required args: - sess_files (list): full path names of the session files Returns: - tracked_rois (1D array): ordered indices of tracked ROIs
sess_util/sess_trace_util.py
get_tracked_rois_nwb
AllenInstitute/OpenScope_CA_Analysis
0
python
def get_tracked_rois_nwb(sess_files): '\n get_tracked_rois_nwb(sess_files)\n\n Returns ROI tracking indices.\n\n Required args:\n - sess_files (list): full path names of the session files\n \n Returns:\n - tracked_rois (1D array): ordered indices of tracked ROIs\n ' ophys_file = sess_file_util.select_nwb_sess_path(sess_files, ophys=True) with pynwb.NWBHDF5IO(str(ophys_file), 'r') as f: nwbfile_in = f.read() ophys_module = nwbfile_in.get_processing_module('ophys') main_field = 'ImageSegmentation' data_field = 'PlaneSegmentation' try: plane_seg = ophys_module.get_data_interface(main_field).get_plane_segmentation(data_field) except KeyError as err: raise KeyError(f'Could not find plane segmentation data in image segmentation for {ophys_file} due to: {err}') tracking_key = 'tracking_id' if (tracking_key not in plane_seg.colnames): raise RuntimeError(f'No tracking data in {ophys_file}.') roi_tracking = np.asarray(plane_seg[tracking_key].data) tracked_idxs = np.where(np.isfinite(roi_tracking))[0] tracking_order = np.argsort(roi_tracking[tracked_idxs]) tracked_rois = tracked_idxs[tracking_order] return tracked_rois
def get_tracked_rois_nwb(sess_files): '\n get_tracked_rois_nwb(sess_files)\n\n Returns ROI tracking indices.\n\n Required args:\n - sess_files (list): full path names of the session files\n \n Returns:\n - tracked_rois (1D array): ordered indices of tracked ROIs\n ' ophys_file = sess_file_util.select_nwb_sess_path(sess_files, ophys=True) with pynwb.NWBHDF5IO(str(ophys_file), 'r') as f: nwbfile_in = f.read() ophys_module = nwbfile_in.get_processing_module('ophys') main_field = 'ImageSegmentation' data_field = 'PlaneSegmentation' try: plane_seg = ophys_module.get_data_interface(main_field).get_plane_segmentation(data_field) except KeyError as err: raise KeyError(f'Could not find plane segmentation data in image segmentation for {ophys_file} due to: {err}') tracking_key = 'tracking_id' if (tracking_key not in plane_seg.colnames): raise RuntimeError(f'No tracking data in {ophys_file}.') roi_tracking = np.asarray(plane_seg[tracking_key].data) tracked_idxs = np.where(np.isfinite(roi_tracking))[0] tracking_order = np.argsort(roi_tracking[tracked_idxs]) tracked_rois = tracked_idxs[tracking_order] return tracked_rois<|docstring|>get_tracked_rois_nwb(sess_files) Returns ROI tracking indices. Required args: - sess_files (list): full path names of the session files Returns: - tracked_rois (1D array): ordered indices of tracked ROIs<|endoftext|>
cba4452201bbe7cbeab0a0a7ae1801a8444a682d9f14e6cb91e243aaadb83878
def process_roi_masks(roi_masks, mask_threshold=MASK_THRESHOLD, min_n_pix=MIN_N_PIX, make_bool=True): '\n process_roi_masks(roi_masks)\n\n Required args:\n - roi_masks (3D): ROI masks (ROI x hei x wid)\n\n Optional args:\n - mask_threshold (float): minimum value in non-boolean mask to\n retain a pixel in an ROI mask\n default: MASK_THRESHOLD\n - min_n_pix (int) : minimum number of pixels in an ROI below \n which, ROI is set to be empty\n default: MIN_N_PIX\n - make_bool (bool) : if True, ROIs are converted to boolean \n before being returned\n default: True \n\n Returns:\n - roi_masks (3D): processed ROI masks (ROI x hei x wid)\n ' roi_masks = copy.deepcopy(roi_masks) if (len(roi_masks.shape) != 3): raise ValueError('roi_masks should have 3 dimensions.') roi_masks[(roi_masks < mask_threshold)] = 0 if (min_n_pix != 0): set_empty = (np.sum(roi_masks, axis=(1, 2)) < min_n_pix) roi_masks[set_empty] = 0 if make_bool: roi_masks = roi_masks.astype(bool) return roi_masks
process_roi_masks(roi_masks) Required args: - roi_masks (3D): ROI masks (ROI x hei x wid) Optional args: - mask_threshold (float): minimum value in non-boolean mask to retain a pixel in an ROI mask default: MASK_THRESHOLD - min_n_pix (int) : minimum number of pixels in an ROI below which, ROI is set to be empty default: MIN_N_PIX - make_bool (bool) : if True, ROIs are converted to boolean before being returned default: True Returns: - roi_masks (3D): processed ROI masks (ROI x hei x wid)
sess_util/sess_trace_util.py
process_roi_masks
AllenInstitute/OpenScope_CA_Analysis
0
python
def process_roi_masks(roi_masks, mask_threshold=MASK_THRESHOLD, min_n_pix=MIN_N_PIX, make_bool=True): '\n process_roi_masks(roi_masks)\n\n Required args:\n - roi_masks (3D): ROI masks (ROI x hei x wid)\n\n Optional args:\n - mask_threshold (float): minimum value in non-boolean mask to\n retain a pixel in an ROI mask\n default: MASK_THRESHOLD\n - min_n_pix (int) : minimum number of pixels in an ROI below \n which, ROI is set to be empty\n default: MIN_N_PIX\n - make_bool (bool) : if True, ROIs are converted to boolean \n before being returned\n default: True \n\n Returns:\n - roi_masks (3D): processed ROI masks (ROI x hei x wid)\n ' roi_masks = copy.deepcopy(roi_masks) if (len(roi_masks.shape) != 3): raise ValueError('roi_masks should have 3 dimensions.') roi_masks[(roi_masks < mask_threshold)] = 0 if (min_n_pix != 0): set_empty = (np.sum(roi_masks, axis=(1, 2)) < min_n_pix) roi_masks[set_empty] = 0 if make_bool: roi_masks = roi_masks.astype(bool) return roi_masks
def process_roi_masks(roi_masks, mask_threshold=MASK_THRESHOLD, min_n_pix=MIN_N_PIX, make_bool=True): '\n process_roi_masks(roi_masks)\n\n Required args:\n - roi_masks (3D): ROI masks (ROI x hei x wid)\n\n Optional args:\n - mask_threshold (float): minimum value in non-boolean mask to\n retain a pixel in an ROI mask\n default: MASK_THRESHOLD\n - min_n_pix (int) : minimum number of pixels in an ROI below \n which, ROI is set to be empty\n default: MIN_N_PIX\n - make_bool (bool) : if True, ROIs are converted to boolean \n before being returned\n default: True \n\n Returns:\n - roi_masks (3D): processed ROI masks (ROI x hei x wid)\n ' roi_masks = copy.deepcopy(roi_masks) if (len(roi_masks.shape) != 3): raise ValueError('roi_masks should have 3 dimensions.') roi_masks[(roi_masks < mask_threshold)] = 0 if (min_n_pix != 0): set_empty = (np.sum(roi_masks, axis=(1, 2)) < min_n_pix) roi_masks[set_empty] = 0 if make_bool: roi_masks = roi_masks.astype(bool) return roi_masks<|docstring|>process_roi_masks(roi_masks) Required args: - roi_masks (3D): ROI masks (ROI x hei x wid) Optional args: - mask_threshold (float): minimum value in non-boolean mask to retain a pixel in an ROI mask default: MASK_THRESHOLD - min_n_pix (int) : minimum number of pixels in an ROI below which, ROI is set to be empty default: MIN_N_PIX - make_bool (bool) : if True, ROIs are converted to boolean before being returned default: True Returns: - roi_masks (3D): processed ROI masks (ROI x hei x wid)<|endoftext|>
1af509f9d743762f1e36f95c535fa8ca059ee48a745fcf9d83aca1311d463e7d
def get_roi_masks_nwb(sess_files, mask_threshold=MASK_THRESHOLD, min_n_pix=MIN_N_PIX, make_bool=True): '\n get_roi_masks_nwb(sess_files)\n\n Returns tracked ROIs, optionally converted to boolean.\n\n Required args:\n - sess_files (Path): full path names of the session files\n\n Optional args:\n - mask_threshold (float): minimum value in non-boolean mask to\n retain a pixel in an ROI mask\n default: MASK_THRESHOLD\n - min_n_pix (int) : minimum number of pixels in an ROI below \n which, ROI is set to be empty\n default: MIN_N_PIX\n - make_bool (bool) : if True, ROIs are converted to boolean \n before being returned\n default: True \n \n Returns:\n - roi_masks (3D array): ROI masks, structured as \n ROI x height x width\n - roi_ids (list) : ID for each ROI\n ' ophys_file = sess_file_util.select_nwb_sess_path(sess_files, ophys=True) with pynwb.NWBHDF5IO(str(ophys_file), 'r') as f: nwbfile_in = f.read() ophys_module = nwbfile_in.get_processing_module('ophys') main_field = 'ImageSegmentation' data_field = 'PlaneSegmentation' try: plane_seg = ophys_module.get_data_interface(main_field).get_plane_segmentation(data_field) except KeyError as err: raise KeyError(f'Could not find plane segmentation data in image segmentation for {ophys_file} due to: {err}') roi_masks = np.asarray(plane_seg['image_mask'].data) roi_ids = list(plane_seg['id'].data) roi_masks = process_roi_masks(roi_masks, mask_threshold=mask_threshold, min_n_pix=min_n_pix, make_bool=make_bool) return (roi_masks, roi_ids)
get_roi_masks_nwb(sess_files) Returns tracked ROIs, optionally converted to boolean. Required args: - sess_files (Path): full path names of the session files Optional args: - mask_threshold (float): minimum value in non-boolean mask to retain a pixel in an ROI mask default: MASK_THRESHOLD - min_n_pix (int) : minimum number of pixels in an ROI below which, ROI is set to be empty default: MIN_N_PIX - make_bool (bool) : if True, ROIs are converted to boolean before being returned default: True Returns: - roi_masks (3D array): ROI masks, structured as ROI x height x width - roi_ids (list) : ID for each ROI
sess_util/sess_trace_util.py
get_roi_masks_nwb
AllenInstitute/OpenScope_CA_Analysis
0
python
def get_roi_masks_nwb(sess_files, mask_threshold=MASK_THRESHOLD, min_n_pix=MIN_N_PIX, make_bool=True): '\n get_roi_masks_nwb(sess_files)\n\n Returns tracked ROIs, optionally converted to boolean.\n\n Required args:\n - sess_files (Path): full path names of the session files\n\n Optional args:\n - mask_threshold (float): minimum value in non-boolean mask to\n retain a pixel in an ROI mask\n default: MASK_THRESHOLD\n - min_n_pix (int) : minimum number of pixels in an ROI below \n which, ROI is set to be empty\n default: MIN_N_PIX\n - make_bool (bool) : if True, ROIs are converted to boolean \n before being returned\n default: True \n \n Returns:\n - roi_masks (3D array): ROI masks, structured as \n ROI x height x width\n - roi_ids (list) : ID for each ROI\n ' ophys_file = sess_file_util.select_nwb_sess_path(sess_files, ophys=True) with pynwb.NWBHDF5IO(str(ophys_file), 'r') as f: nwbfile_in = f.read() ophys_module = nwbfile_in.get_processing_module('ophys') main_field = 'ImageSegmentation' data_field = 'PlaneSegmentation' try: plane_seg = ophys_module.get_data_interface(main_field).get_plane_segmentation(data_field) except KeyError as err: raise KeyError(f'Could not find plane segmentation data in image segmentation for {ophys_file} due to: {err}') roi_masks = np.asarray(plane_seg['image_mask'].data) roi_ids = list(plane_seg['id'].data) roi_masks = process_roi_masks(roi_masks, mask_threshold=mask_threshold, min_n_pix=min_n_pix, make_bool=make_bool) return (roi_masks, roi_ids)
def get_roi_masks_nwb(sess_files, mask_threshold=MASK_THRESHOLD, min_n_pix=MIN_N_PIX, make_bool=True): '\n get_roi_masks_nwb(sess_files)\n\n Returns tracked ROIs, optionally converted to boolean.\n\n Required args:\n - sess_files (Path): full path names of the session files\n\n Optional args:\n - mask_threshold (float): minimum value in non-boolean mask to\n retain a pixel in an ROI mask\n default: MASK_THRESHOLD\n - min_n_pix (int) : minimum number of pixels in an ROI below \n which, ROI is set to be empty\n default: MIN_N_PIX\n - make_bool (bool) : if True, ROIs are converted to boolean \n before being returned\n default: True \n \n Returns:\n - roi_masks (3D array): ROI masks, structured as \n ROI x height x width\n - roi_ids (list) : ID for each ROI\n ' ophys_file = sess_file_util.select_nwb_sess_path(sess_files, ophys=True) with pynwb.NWBHDF5IO(str(ophys_file), 'r') as f: nwbfile_in = f.read() ophys_module = nwbfile_in.get_processing_module('ophys') main_field = 'ImageSegmentation' data_field = 'PlaneSegmentation' try: plane_seg = ophys_module.get_data_interface(main_field).get_plane_segmentation(data_field) except KeyError as err: raise KeyError(f'Could not find plane segmentation data in image segmentation for {ophys_file} due to: {err}') roi_masks = np.asarray(plane_seg['image_mask'].data) roi_ids = list(plane_seg['id'].data) roi_masks = process_roi_masks(roi_masks, mask_threshold=mask_threshold, min_n_pix=min_n_pix, make_bool=make_bool) return (roi_masks, roi_ids)<|docstring|>get_roi_masks_nwb(sess_files) Returns tracked ROIs, optionally converted to boolean. Required args: - sess_files (Path): full path names of the session files Optional args: - mask_threshold (float): minimum value in non-boolean mask to retain a pixel in an ROI mask default: MASK_THRESHOLD - min_n_pix (int) : minimum number of pixels in an ROI below which, ROI is set to be empty default: MIN_N_PIX - make_bool (bool) : if True, ROIs are converted to boolean before being returned default: True Returns: - roi_masks (3D array): ROI masks, structured as ROI x height x width - roi_ids (list) : ID for each ROI<|endoftext|>
759afbaf5aa541dbfa354f880241002b1186e8845f47e8b3b2f6f5bc8a756480
def get_roi_masks(mask_file=None, roi_extract_json=None, objectlist_txt=None, mask_threshold=MASK_THRESHOLD, min_n_pix=MIN_N_PIX, make_bool=True): '\n get_roi_masks()\n\n Returns ROI masks, loaded either from an h5 or json file, and optionally \n converted to boolean.\n\n NOTE: If masks are loaded from roi_extract_json, they are already boolean.\n\n Optional args:\n - mask_file (Path) : ROI mask h5. If None, roi_extract_json and\n objectlist_txt are used.\n default: None\n - roi_extract_json (Path): ROI extraction json (only needed is \n mask_file is None)\n - objectlist_txt (Path) : ROI object list txt (only needed if \n mask_file is None)\n default: None\n - mask_threshold (float) : minimum value in non-boolean mask to\n retain a pixel in an ROI mask\n default: MASK_THRESHOLD\n - min_n_pix (int) : minimum number of pixels in an ROI below \n which, ROI is set to be empty\n default: MIN_N_PIX\n - make_bool (bool) : if True, ROIs are converted to boolean \n before being returned\n default: True \n \n Returns:\n - roi_masks (3D array): ROI masks, structured as \n ROI x height x width\n - roi_ids (list) : ID for each ROI\n ' if ((mask_file is None) and ((roi_extract_json is None) or (objectlist_txt is None))): raise ValueError("Must provide 'mask_file' or both 'roi_extract_json' and 'objectlist_txt'.") if (mask_file is None): roi_extract_dict = file_util.loadfile(roi_extract_json) h = roi_extract_dict['image']['height'] w = roi_extract_dict['image']['width'] roi_metrics = get_roi_metrics(roi_extract_dict, objectlist_txt) roi_ids = np.sort(roi_metrics.cell_specimen_id.values) nrois = len(roi_ids) roi_masks = np.full([nrois, h, w], False).astype(bool) for (i, roi_id) in enumerate(roi_ids): m = roi_metrics[(roi_metrics.id == roi_id)].iloc[0] mask = np.asarray(m['mask']) binary_mask = np.zeros((h, w), dtype=np.uint8) binary_mask[(int(m.y):(int(m.y) + int(m.height)), int(m.x):(int(m.x) + int(m.width)))] = mask roi_masks[i] = binary_mask else: with h5py.File(mask_file, 'r') as f: roi_masks = f['data'][()] roi_ids = list(range(len(roi_masks))) roi_masks = process_roi_masks(roi_masks, mask_threshold=mask_threshold, min_n_pix=min_n_pix, make_bool=make_bool) return (roi_masks, roi_ids)
get_roi_masks() Returns ROI masks, loaded either from an h5 or json file, and optionally converted to boolean. NOTE: If masks are loaded from roi_extract_json, they are already boolean. Optional args: - mask_file (Path) : ROI mask h5. If None, roi_extract_json and objectlist_txt are used. default: None - roi_extract_json (Path): ROI extraction json (only needed is mask_file is None) - objectlist_txt (Path) : ROI object list txt (only needed if mask_file is None) default: None - mask_threshold (float) : minimum value in non-boolean mask to retain a pixel in an ROI mask default: MASK_THRESHOLD - min_n_pix (int) : minimum number of pixels in an ROI below which, ROI is set to be empty default: MIN_N_PIX - make_bool (bool) : if True, ROIs are converted to boolean before being returned default: True Returns: - roi_masks (3D array): ROI masks, structured as ROI x height x width - roi_ids (list) : ID for each ROI
sess_util/sess_trace_util.py
get_roi_masks
AllenInstitute/OpenScope_CA_Analysis
0
python
def get_roi_masks(mask_file=None, roi_extract_json=None, objectlist_txt=None, mask_threshold=MASK_THRESHOLD, min_n_pix=MIN_N_PIX, make_bool=True): '\n get_roi_masks()\n\n Returns ROI masks, loaded either from an h5 or json file, and optionally \n converted to boolean.\n\n NOTE: If masks are loaded from roi_extract_json, they are already boolean.\n\n Optional args:\n - mask_file (Path) : ROI mask h5. If None, roi_extract_json and\n objectlist_txt are used.\n default: None\n - roi_extract_json (Path): ROI extraction json (only needed is \n mask_file is None)\n - objectlist_txt (Path) : ROI object list txt (only needed if \n mask_file is None)\n default: None\n - mask_threshold (float) : minimum value in non-boolean mask to\n retain a pixel in an ROI mask\n default: MASK_THRESHOLD\n - min_n_pix (int) : minimum number of pixels in an ROI below \n which, ROI is set to be empty\n default: MIN_N_PIX\n - make_bool (bool) : if True, ROIs are converted to boolean \n before being returned\n default: True \n \n Returns:\n - roi_masks (3D array): ROI masks, structured as \n ROI x height x width\n - roi_ids (list) : ID for each ROI\n ' if ((mask_file is None) and ((roi_extract_json is None) or (objectlist_txt is None))): raise ValueError("Must provide 'mask_file' or both 'roi_extract_json' and 'objectlist_txt'.") if (mask_file is None): roi_extract_dict = file_util.loadfile(roi_extract_json) h = roi_extract_dict['image']['height'] w = roi_extract_dict['image']['width'] roi_metrics = get_roi_metrics(roi_extract_dict, objectlist_txt) roi_ids = np.sort(roi_metrics.cell_specimen_id.values) nrois = len(roi_ids) roi_masks = np.full([nrois, h, w], False).astype(bool) for (i, roi_id) in enumerate(roi_ids): m = roi_metrics[(roi_metrics.id == roi_id)].iloc[0] mask = np.asarray(m['mask']) binary_mask = np.zeros((h, w), dtype=np.uint8) binary_mask[(int(m.y):(int(m.y) + int(m.height)), int(m.x):(int(m.x) + int(m.width)))] = mask roi_masks[i] = binary_mask else: with h5py.File(mask_file, 'r') as f: roi_masks = f['data'][()] roi_ids = list(range(len(roi_masks))) roi_masks = process_roi_masks(roi_masks, mask_threshold=mask_threshold, min_n_pix=min_n_pix, make_bool=make_bool) return (roi_masks, roi_ids)
def get_roi_masks(mask_file=None, roi_extract_json=None, objectlist_txt=None, mask_threshold=MASK_THRESHOLD, min_n_pix=MIN_N_PIX, make_bool=True): '\n get_roi_masks()\n\n Returns ROI masks, loaded either from an h5 or json file, and optionally \n converted to boolean.\n\n NOTE: If masks are loaded from roi_extract_json, they are already boolean.\n\n Optional args:\n - mask_file (Path) : ROI mask h5. If None, roi_extract_json and\n objectlist_txt are used.\n default: None\n - roi_extract_json (Path): ROI extraction json (only needed is \n mask_file is None)\n - objectlist_txt (Path) : ROI object list txt (only needed if \n mask_file is None)\n default: None\n - mask_threshold (float) : minimum value in non-boolean mask to\n retain a pixel in an ROI mask\n default: MASK_THRESHOLD\n - min_n_pix (int) : minimum number of pixels in an ROI below \n which, ROI is set to be empty\n default: MIN_N_PIX\n - make_bool (bool) : if True, ROIs are converted to boolean \n before being returned\n default: True \n \n Returns:\n - roi_masks (3D array): ROI masks, structured as \n ROI x height x width\n - roi_ids (list) : ID for each ROI\n ' if ((mask_file is None) and ((roi_extract_json is None) or (objectlist_txt is None))): raise ValueError("Must provide 'mask_file' or both 'roi_extract_json' and 'objectlist_txt'.") if (mask_file is None): roi_extract_dict = file_util.loadfile(roi_extract_json) h = roi_extract_dict['image']['height'] w = roi_extract_dict['image']['width'] roi_metrics = get_roi_metrics(roi_extract_dict, objectlist_txt) roi_ids = np.sort(roi_metrics.cell_specimen_id.values) nrois = len(roi_ids) roi_masks = np.full([nrois, h, w], False).astype(bool) for (i, roi_id) in enumerate(roi_ids): m = roi_metrics[(roi_metrics.id == roi_id)].iloc[0] mask = np.asarray(m['mask']) binary_mask = np.zeros((h, w), dtype=np.uint8) binary_mask[(int(m.y):(int(m.y) + int(m.height)), int(m.x):(int(m.x) + int(m.width)))] = mask roi_masks[i] = binary_mask else: with h5py.File(mask_file, 'r') as f: roi_masks = f['data'][()] roi_ids = list(range(len(roi_masks))) roi_masks = process_roi_masks(roi_masks, mask_threshold=mask_threshold, min_n_pix=min_n_pix, make_bool=make_bool) return (roi_masks, roi_ids)<|docstring|>get_roi_masks() Returns ROI masks, loaded either from an h5 or json file, and optionally converted to boolean. NOTE: If masks are loaded from roi_extract_json, they are already boolean. Optional args: - mask_file (Path) : ROI mask h5. If None, roi_extract_json and objectlist_txt are used. default: None - roi_extract_json (Path): ROI extraction json (only needed is mask_file is None) - objectlist_txt (Path) : ROI object list txt (only needed if mask_file is None) default: None - mask_threshold (float) : minimum value in non-boolean mask to retain a pixel in an ROI mask default: MASK_THRESHOLD - min_n_pix (int) : minimum number of pixels in an ROI below which, ROI is set to be empty default: MIN_N_PIX - make_bool (bool) : if True, ROIs are converted to boolean before being returned default: True Returns: - roi_masks (3D array): ROI masks, structured as ROI x height x width - roi_ids (list) : ID for each ROI<|endoftext|>
fbcba9b966ba57897b0968f8cdcbf8b460e307905e0391bc4be9e6ef17eb5397
def get_valid_mask(roi_objs, neuropil_trace=None): '\n validate_masks(roi_objs)\n\n Returns a boolean mask for valid ROIs using the following exclusion \n criteria: duplicate, empty, motion_border, union, empty_neuropil (optional).\n\n Required args:\n - roi_objs (ROI objects): ROI objects\n\n Optional args:\n - neuropil_traces (list) : neuropil traces from which to infer empty\n neuropil masks. If none provided, this \n exclusion criterion is omitted.\n default: None\n \n Returns: \n - valid_mask (1D array): boolean array of valid masks\n ' excl_mask_dict = validate_masks(roi_objs, neuropil_trace) valid_mask = np.ones(len(roi_objs)).astype(bool) for (_, excl_mask) in excl_mask_dict.items(): valid_mask[np.where(excl_mask)] = False return valid_mask
validate_masks(roi_objs) Returns a boolean mask for valid ROIs using the following exclusion criteria: duplicate, empty, motion_border, union, empty_neuropil (optional). Required args: - roi_objs (ROI objects): ROI objects Optional args: - neuropil_traces (list) : neuropil traces from which to infer empty neuropil masks. If none provided, this exclusion criterion is omitted. default: None Returns: - valid_mask (1D array): boolean array of valid masks
sess_util/sess_trace_util.py
get_valid_mask
AllenInstitute/OpenScope_CA_Analysis
0
python
def get_valid_mask(roi_objs, neuropil_trace=None): '\n validate_masks(roi_objs)\n\n Returns a boolean mask for valid ROIs using the following exclusion \n criteria: duplicate, empty, motion_border, union, empty_neuropil (optional).\n\n Required args:\n - roi_objs (ROI objects): ROI objects\n\n Optional args:\n - neuropil_traces (list) : neuropil traces from which to infer empty\n neuropil masks. If none provided, this \n exclusion criterion is omitted.\n default: None\n \n Returns: \n - valid_mask (1D array): boolean array of valid masks\n ' excl_mask_dict = validate_masks(roi_objs, neuropil_trace) valid_mask = np.ones(len(roi_objs)).astype(bool) for (_, excl_mask) in excl_mask_dict.items(): valid_mask[np.where(excl_mask)] = False return valid_mask
def get_valid_mask(roi_objs, neuropil_trace=None): '\n validate_masks(roi_objs)\n\n Returns a boolean mask for valid ROIs using the following exclusion \n criteria: duplicate, empty, motion_border, union, empty_neuropil (optional).\n\n Required args:\n - roi_objs (ROI objects): ROI objects\n\n Optional args:\n - neuropil_traces (list) : neuropil traces from which to infer empty\n neuropil masks. If none provided, this \n exclusion criterion is omitted.\n default: None\n \n Returns: \n - valid_mask (1D array): boolean array of valid masks\n ' excl_mask_dict = validate_masks(roi_objs, neuropil_trace) valid_mask = np.ones(len(roi_objs)).astype(bool) for (_, excl_mask) in excl_mask_dict.items(): valid_mask[np.where(excl_mask)] = False return valid_mask<|docstring|>validate_masks(roi_objs) Returns a boolean mask for valid ROIs using the following exclusion criteria: duplicate, empty, motion_border, union, empty_neuropil (optional). Required args: - roi_objs (ROI objects): ROI objects Optional args: - neuropil_traces (list) : neuropil traces from which to infer empty neuropil masks. If none provided, this exclusion criterion is omitted. default: None Returns: - valid_mask (1D array): boolean array of valid masks<|endoftext|>
065bcc20abb6c81e28a1bd706e340d3452e0f7b8c8020afa26b952bd276c0f4c
def validate_masks(roi_objs, neuropil_traces=None): '\n validate_masks(roi_objs)\n\n Returns a dictionary with exclusion ROI masks for each exclusion criterion \n ("duplicate", "empty", "motion_border", "union", "empty_neuropil"). \n\n Required args:\n - roi_objs (ROI objects): ROI objects\n\n Optional args:\n - neuropil_traces (list) : neuropil traces from which to infer empty\n neuropil masks. If none provided, this \n exclusion label is omitted\n default: None\n\n Returns:\n - excl_mask_dict (dict): dictionary of masks for different exclusion \n criteria, where ROIs labeled by the exclusion\n criterion are marked as True, with keys:\n ["duplicate"] : mask for duplicate ROIs\n ["empty"] : mask for empty ROIs\n ["motion_border"]: mask for motion border overlapping ROIs\n ["union"] : mask for union ROIs\n ' exclusion_labels = EXCLUSION_LABELS if (('empty_neuropil' in exclusion_labels) and (neuropil_traces is None)): logger.warning('Empty_neuropil label will be omitted as neuropil_traces is None.') _ = exclusion_labels.remove('empty_neuropil') excl_mask_dict = dict() for lab in exclusion_labels: excl_mask_dict[lab] = np.zeros(len(roi_objs)).astype(bool) other_expl = [] for (r, roi_obj) in enumerate(roi_objs): if (roi_obj.mask is None): excl_mask_dict['empty'][r] = True continue if roi_obj.overlaps_motion_border: excl_mask_dict['motion_border'][r] = True other_expl.append(r) if ('union' in roi_obj.labels): excl_mask_dict['union'][r] = True other_expl.append(r) if ('duplicate' in roi_obj.labels): excl_mask_dict['duplicate'][r] = True other_expl.append(r) if ('empty_neuropil' in exclusion_labels): nan_idx = np.where(np.isnan(np.sum(neuropil_traces, axis=1)))[0] empty_inferred = np.asarray(list((set(nan_idx) - set(other_expl)))) if (len(empty_inferred) != 0): excl_mask_dict['empty_neuropil'][empty_inferred] = True return excl_mask_dict
validate_masks(roi_objs) Returns a dictionary with exclusion ROI masks for each exclusion criterion ("duplicate", "empty", "motion_border", "union", "empty_neuropil"). Required args: - roi_objs (ROI objects): ROI objects Optional args: - neuropil_traces (list) : neuropil traces from which to infer empty neuropil masks. If none provided, this exclusion label is omitted default: None Returns: - excl_mask_dict (dict): dictionary of masks for different exclusion criteria, where ROIs labeled by the exclusion criterion are marked as True, with keys: ["duplicate"] : mask for duplicate ROIs ["empty"] : mask for empty ROIs ["motion_border"]: mask for motion border overlapping ROIs ["union"] : mask for union ROIs
sess_util/sess_trace_util.py
validate_masks
AllenInstitute/OpenScope_CA_Analysis
0
python
def validate_masks(roi_objs, neuropil_traces=None): '\n validate_masks(roi_objs)\n\n Returns a dictionary with exclusion ROI masks for each exclusion criterion \n ("duplicate", "empty", "motion_border", "union", "empty_neuropil"). \n\n Required args:\n - roi_objs (ROI objects): ROI objects\n\n Optional args:\n - neuropil_traces (list) : neuropil traces from which to infer empty\n neuropil masks. If none provided, this \n exclusion label is omitted\n default: None\n\n Returns:\n - excl_mask_dict (dict): dictionary of masks for different exclusion \n criteria, where ROIs labeled by the exclusion\n criterion are marked as True, with keys:\n ["duplicate"] : mask for duplicate ROIs\n ["empty"] : mask for empty ROIs\n ["motion_border"]: mask for motion border overlapping ROIs\n ["union"] : mask for union ROIs\n ' exclusion_labels = EXCLUSION_LABELS if (('empty_neuropil' in exclusion_labels) and (neuropil_traces is None)): logger.warning('Empty_neuropil label will be omitted as neuropil_traces is None.') _ = exclusion_labels.remove('empty_neuropil') excl_mask_dict = dict() for lab in exclusion_labels: excl_mask_dict[lab] = np.zeros(len(roi_objs)).astype(bool) other_expl = [] for (r, roi_obj) in enumerate(roi_objs): if (roi_obj.mask is None): excl_mask_dict['empty'][r] = True continue if roi_obj.overlaps_motion_border: excl_mask_dict['motion_border'][r] = True other_expl.append(r) if ('union' in roi_obj.labels): excl_mask_dict['union'][r] = True other_expl.append(r) if ('duplicate' in roi_obj.labels): excl_mask_dict['duplicate'][r] = True other_expl.append(r) if ('empty_neuropil' in exclusion_labels): nan_idx = np.where(np.isnan(np.sum(neuropil_traces, axis=1)))[0] empty_inferred = np.asarray(list((set(nan_idx) - set(other_expl)))) if (len(empty_inferred) != 0): excl_mask_dict['empty_neuropil'][empty_inferred] = True return excl_mask_dict
def validate_masks(roi_objs, neuropil_traces=None): '\n validate_masks(roi_objs)\n\n Returns a dictionary with exclusion ROI masks for each exclusion criterion \n ("duplicate", "empty", "motion_border", "union", "empty_neuropil"). \n\n Required args:\n - roi_objs (ROI objects): ROI objects\n\n Optional args:\n - neuropil_traces (list) : neuropil traces from which to infer empty\n neuropil masks. If none provided, this \n exclusion label is omitted\n default: None\n\n Returns:\n - excl_mask_dict (dict): dictionary of masks for different exclusion \n criteria, where ROIs labeled by the exclusion\n criterion are marked as True, with keys:\n ["duplicate"] : mask for duplicate ROIs\n ["empty"] : mask for empty ROIs\n ["motion_border"]: mask for motion border overlapping ROIs\n ["union"] : mask for union ROIs\n ' exclusion_labels = EXCLUSION_LABELS if (('empty_neuropil' in exclusion_labels) and (neuropil_traces is None)): logger.warning('Empty_neuropil label will be omitted as neuropil_traces is None.') _ = exclusion_labels.remove('empty_neuropil') excl_mask_dict = dict() for lab in exclusion_labels: excl_mask_dict[lab] = np.zeros(len(roi_objs)).astype(bool) other_expl = [] for (r, roi_obj) in enumerate(roi_objs): if (roi_obj.mask is None): excl_mask_dict['empty'][r] = True continue if roi_obj.overlaps_motion_border: excl_mask_dict['motion_border'][r] = True other_expl.append(r) if ('union' in roi_obj.labels): excl_mask_dict['union'][r] = True other_expl.append(r) if ('duplicate' in roi_obj.labels): excl_mask_dict['duplicate'][r] = True other_expl.append(r) if ('empty_neuropil' in exclusion_labels): nan_idx = np.where(np.isnan(np.sum(neuropil_traces, axis=1)))[0] empty_inferred = np.asarray(list((set(nan_idx) - set(other_expl)))) if (len(empty_inferred) != 0): excl_mask_dict['empty_neuropil'][empty_inferred] = True return excl_mask_dict<|docstring|>validate_masks(roi_objs) Returns a dictionary with exclusion ROI masks for each exclusion criterion ("duplicate", "empty", "motion_border", "union", "empty_neuropil"). Required args: - roi_objs (ROI objects): ROI objects Optional args: - neuropil_traces (list) : neuropil traces from which to infer empty neuropil masks. If none provided, this exclusion label is omitted default: None Returns: - excl_mask_dict (dict): dictionary of masks for different exclusion criteria, where ROIs labeled by the exclusion criterion are marked as True, with keys: ["duplicate"] : mask for duplicate ROIs ["empty"] : mask for empty ROIs ["motion_border"]: mask for motion border overlapping ROIs ["union"] : mask for union ROIs<|endoftext|>
5b93d20afaa1ff790d6659941b973d5b38b4fa488781dae0811b68008f1d9b18
def label_unions_and_duplicates(roi_objs, masks=None, duplicate_threshold=0.9, union_threshold=0.7, max_dist=10, set_size=2): '\n \n Modified from allensdk.internal.brain_observatory.roi_filter.py\n \n Returns ROI objects with unions and duplicates labelled.\n\n Required args:\n - roi_objs (ROI objects): ROI objects\n\n Optional args:\n - masks (3D array) : ROI mask arrays. If None provided, they \n are recreated from the ROI objects\n default: None\n - duplicate_threshold (float): threshold for identifying ROI duplicated\n (only the first of each set is labelled \n a duplicate)\n default: 0.9\n - union_threshold (float) : threshold for identifying ROIs that are \n unions of several ROIs\n default: 0.7\n - set_size (int) : number of ROIs forming sets to be checked\n for possibly being unions\n default: 2\n - max_dist (num) : max distance between ROIs to be checked\n for possibly being unions\n default: 10\n\n Returns:\n - roi_objs (ROI objects): ROI objects labelled for union, duplicate,\n empty and border overlapping mask conditions\n\n ' roi_objs = copy.deepcopy(roi_objs) if (masks is None): masks = roi_masks.create_roi_mask_array(roi_objs) non_empty_mask = np.asarray([(roi_obj.mask is not None) for roi_obj in roi_objs]).astype(bool) non_empty_idx = np.where(non_empty_mask)[0] for idx in np.where((~ non_empty_mask))[0]: roi_objs[idx].labels.append('empty') ms = mask_set.MaskSet(masks=masks[non_empty_idx]) duplicates = ms.detect_duplicates(duplicate_threshold) for duplicate in duplicates: orig_idx = non_empty_idx[duplicate[0]] if ('duplicate' not in roi_objs[orig_idx].labels): roi_objs[orig_idx].labels.append('duplicate') unions = ms.detect_unions(set_size, max_dist, union_threshold) if unions: union_idxs = list(unions.keys()) for idx in union_idxs: orig_idx = non_empty_idx[idx] if ('union' not in roi_objs[orig_idx].labels): roi_objs[orig_idx].labels.append('union') return roi_objs
Modified from allensdk.internal.brain_observatory.roi_filter.py Returns ROI objects with unions and duplicates labelled. Required args: - roi_objs (ROI objects): ROI objects Optional args: - masks (3D array) : ROI mask arrays. If None provided, they are recreated from the ROI objects default: None - duplicate_threshold (float): threshold for identifying ROI duplicated (only the first of each set is labelled a duplicate) default: 0.9 - union_threshold (float) : threshold for identifying ROIs that are unions of several ROIs default: 0.7 - set_size (int) : number of ROIs forming sets to be checked for possibly being unions default: 2 - max_dist (num) : max distance between ROIs to be checked for possibly being unions default: 10 Returns: - roi_objs (ROI objects): ROI objects labelled for union, duplicate, empty and border overlapping mask conditions
sess_util/sess_trace_util.py
label_unions_and_duplicates
AllenInstitute/OpenScope_CA_Analysis
0
python
def label_unions_and_duplicates(roi_objs, masks=None, duplicate_threshold=0.9, union_threshold=0.7, max_dist=10, set_size=2): '\n \n Modified from allensdk.internal.brain_observatory.roi_filter.py\n \n Returns ROI objects with unions and duplicates labelled.\n\n Required args:\n - roi_objs (ROI objects): ROI objects\n\n Optional args:\n - masks (3D array) : ROI mask arrays. If None provided, they \n are recreated from the ROI objects\n default: None\n - duplicate_threshold (float): threshold for identifying ROI duplicated\n (only the first of each set is labelled \n a duplicate)\n default: 0.9\n - union_threshold (float) : threshold for identifying ROIs that are \n unions of several ROIs\n default: 0.7\n - set_size (int) : number of ROIs forming sets to be checked\n for possibly being unions\n default: 2\n - max_dist (num) : max distance between ROIs to be checked\n for possibly being unions\n default: 10\n\n Returns:\n - roi_objs (ROI objects): ROI objects labelled for union, duplicate,\n empty and border overlapping mask conditions\n\n ' roi_objs = copy.deepcopy(roi_objs) if (masks is None): masks = roi_masks.create_roi_mask_array(roi_objs) non_empty_mask = np.asarray([(roi_obj.mask is not None) for roi_obj in roi_objs]).astype(bool) non_empty_idx = np.where(non_empty_mask)[0] for idx in np.where((~ non_empty_mask))[0]: roi_objs[idx].labels.append('empty') ms = mask_set.MaskSet(masks=masks[non_empty_idx]) duplicates = ms.detect_duplicates(duplicate_threshold) for duplicate in duplicates: orig_idx = non_empty_idx[duplicate[0]] if ('duplicate' not in roi_objs[orig_idx].labels): roi_objs[orig_idx].labels.append('duplicate') unions = ms.detect_unions(set_size, max_dist, union_threshold) if unions: union_idxs = list(unions.keys()) for idx in union_idxs: orig_idx = non_empty_idx[idx] if ('union' not in roi_objs[orig_idx].labels): roi_objs[orig_idx].labels.append('union') return roi_objs
def label_unions_and_duplicates(roi_objs, masks=None, duplicate_threshold=0.9, union_threshold=0.7, max_dist=10, set_size=2): '\n \n Modified from allensdk.internal.brain_observatory.roi_filter.py\n \n Returns ROI objects with unions and duplicates labelled.\n\n Required args:\n - roi_objs (ROI objects): ROI objects\n\n Optional args:\n - masks (3D array) : ROI mask arrays. If None provided, they \n are recreated from the ROI objects\n default: None\n - duplicate_threshold (float): threshold for identifying ROI duplicated\n (only the first of each set is labelled \n a duplicate)\n default: 0.9\n - union_threshold (float) : threshold for identifying ROIs that are \n unions of several ROIs\n default: 0.7\n - set_size (int) : number of ROIs forming sets to be checked\n for possibly being unions\n default: 2\n - max_dist (num) : max distance between ROIs to be checked\n for possibly being unions\n default: 10\n\n Returns:\n - roi_objs (ROI objects): ROI objects labelled for union, duplicate,\n empty and border overlapping mask conditions\n\n ' roi_objs = copy.deepcopy(roi_objs) if (masks is None): masks = roi_masks.create_roi_mask_array(roi_objs) non_empty_mask = np.asarray([(roi_obj.mask is not None) for roi_obj in roi_objs]).astype(bool) non_empty_idx = np.where(non_empty_mask)[0] for idx in np.where((~ non_empty_mask))[0]: roi_objs[idx].labels.append('empty') ms = mask_set.MaskSet(masks=masks[non_empty_idx]) duplicates = ms.detect_duplicates(duplicate_threshold) for duplicate in duplicates: orig_idx = non_empty_idx[duplicate[0]] if ('duplicate' not in roi_objs[orig_idx].labels): roi_objs[orig_idx].labels.append('duplicate') unions = ms.detect_unions(set_size, max_dist, union_threshold) if unions: union_idxs = list(unions.keys()) for idx in union_idxs: orig_idx = non_empty_idx[idx] if ('union' not in roi_objs[orig_idx].labels): roi_objs[orig_idx].labels.append('union') return roi_objs<|docstring|>Modified from allensdk.internal.brain_observatory.roi_filter.py Returns ROI objects with unions and duplicates labelled. Required args: - roi_objs (ROI objects): ROI objects Optional args: - masks (3D array) : ROI mask arrays. If None provided, they are recreated from the ROI objects default: None - duplicate_threshold (float): threshold for identifying ROI duplicated (only the first of each set is labelled a duplicate) default: 0.9 - union_threshold (float) : threshold for identifying ROIs that are unions of several ROIs default: 0.7 - set_size (int) : number of ROIs forming sets to be checked for possibly being unions default: 2 - max_dist (num) : max distance between ROIs to be checked for possibly being unions default: 10 Returns: - roi_objs (ROI objects): ROI objects labelled for union, duplicate, empty and border overlapping mask conditions<|endoftext|>
c9ff21420a7fe966101b65cefb6f9bd9f95e4e39fec3c0c75ca2bab187f6c5e8
def create_mask_objects(masks, motion_border, roi_ids, union_threshold=0.7): '\n create_mask_objects(masks, motion_border, roi_ids)\n\n Returns mask objects, labeled for overlapping the motion border, as well\n as for labels, duplicates and being empty.\n\n Required args:\n - masks (3D array) : ROI masks, structured as ROI x height x width\n - motion border (list): motion border values for [x0, x1, y1, y0]\n (right, left, down, up shifts)\n - roi_ids (list) : ID for each ROI\n\n Returns:\n - all_mask_objs (list) : list of ROI Mask objects, with exclusion labels\n (allensdk roi_masks.py)\n ' all_mask_objs = [] (hei, wid) = masks.shape[1:] for (_, (mask, roi_id)) in enumerate(zip(masks, roi_ids)): all_mask_objs.append(roi_masks.create_roi_mask(wid, hei, motion_border, roi_mask=mask, label=str(roi_id))) all_mask_objs[(- 1)].labels = [] all_mask_objs = label_unions_and_duplicates(all_mask_objs, masks, union_threshold=0.7) return all_mask_objs
create_mask_objects(masks, motion_border, roi_ids) Returns mask objects, labeled for overlapping the motion border, as well as for labels, duplicates and being empty. Required args: - masks (3D array) : ROI masks, structured as ROI x height x width - motion border (list): motion border values for [x0, x1, y1, y0] (right, left, down, up shifts) - roi_ids (list) : ID for each ROI Returns: - all_mask_objs (list) : list of ROI Mask objects, with exclusion labels (allensdk roi_masks.py)
sess_util/sess_trace_util.py
create_mask_objects
AllenInstitute/OpenScope_CA_Analysis
0
python
def create_mask_objects(masks, motion_border, roi_ids, union_threshold=0.7): '\n create_mask_objects(masks, motion_border, roi_ids)\n\n Returns mask objects, labeled for overlapping the motion border, as well\n as for labels, duplicates and being empty.\n\n Required args:\n - masks (3D array) : ROI masks, structured as ROI x height x width\n - motion border (list): motion border values for [x0, x1, y1, y0]\n (right, left, down, up shifts)\n - roi_ids (list) : ID for each ROI\n\n Returns:\n - all_mask_objs (list) : list of ROI Mask objects, with exclusion labels\n (allensdk roi_masks.py)\n ' all_mask_objs = [] (hei, wid) = masks.shape[1:] for (_, (mask, roi_id)) in enumerate(zip(masks, roi_ids)): all_mask_objs.append(roi_masks.create_roi_mask(wid, hei, motion_border, roi_mask=mask, label=str(roi_id))) all_mask_objs[(- 1)].labels = [] all_mask_objs = label_unions_and_duplicates(all_mask_objs, masks, union_threshold=0.7) return all_mask_objs
def create_mask_objects(masks, motion_border, roi_ids, union_threshold=0.7): '\n create_mask_objects(masks, motion_border, roi_ids)\n\n Returns mask objects, labeled for overlapping the motion border, as well\n as for labels, duplicates and being empty.\n\n Required args:\n - masks (3D array) : ROI masks, structured as ROI x height x width\n - motion border (list): motion border values for [x0, x1, y1, y0]\n (right, left, down, up shifts)\n - roi_ids (list) : ID for each ROI\n\n Returns:\n - all_mask_objs (list) : list of ROI Mask objects, with exclusion labels\n (allensdk roi_masks.py)\n ' all_mask_objs = [] (hei, wid) = masks.shape[1:] for (_, (mask, roi_id)) in enumerate(zip(masks, roi_ids)): all_mask_objs.append(roi_masks.create_roi_mask(wid, hei, motion_border, roi_mask=mask, label=str(roi_id))) all_mask_objs[(- 1)].labels = [] all_mask_objs = label_unions_and_duplicates(all_mask_objs, masks, union_threshold=0.7) return all_mask_objs<|docstring|>create_mask_objects(masks, motion_border, roi_ids) Returns mask objects, labeled for overlapping the motion border, as well as for labels, duplicates and being empty. Required args: - masks (3D array) : ROI masks, structured as ROI x height x width - motion border (list): motion border values for [x0, x1, y1, y0] (right, left, down, up shifts) - roi_ids (list) : ID for each ROI Returns: - all_mask_objs (list) : list of ROI Mask objects, with exclusion labels (allensdk roi_masks.py)<|endoftext|>
78afc3173c45dbcdb6931a2a89450182e9ea37b60ed98c943a6b9134a68fd1ba
def save_roi_dataset(data, save_path, roi_names, data_name='data', excl_dict=None, replace=True, compression=None): '\n save_roi_dataset(save_path, roi_names)\n\n Saves ROI dataset.\n\n Required args:\n - data (nd array) : ROI data, where first dimension are ROIs\n - save_path (Path) : path for saving the dataset\n - roi_names (array-like): list of names for each ROI\n \n Optional args:\n - data_name (str) : main dataset name\n default: "data"\n - excl_dict (dict) : dictionary of exclusion masks for different \n criteria\n default: None\n - replace (bool) : if True, an existing file is replaced\n default: True\n - compression (str): type of compression to use when saving h5 \n file (e.g., "gzip")\n default: None\n ' if (len(data) != len(roi_names)): raise ValueError("'roi_names' must be as long as the first dimension of 'data'.") save_path = Path(save_path) if (save_path.is_file() and (not replace)): logger.info('ROI traces already exist.') return file_util.createdir(save_path.parent, log_dir=False) with h5py.File(save_path, 'w') as hf: hf.create_dataset(data_name, data=data, compression=compression) hf.create_dataset('roi_names', data=np.asarray(roi_names, dtype='S')) if (excl_dict is not None): for (key, item) in excl_dict.items(): hf.create_dataset(key, data=np.asarray(item, dtype='u1'))
save_roi_dataset(save_path, roi_names) Saves ROI dataset. Required args: - data (nd array) : ROI data, where first dimension are ROIs - save_path (Path) : path for saving the dataset - roi_names (array-like): list of names for each ROI Optional args: - data_name (str) : main dataset name default: "data" - excl_dict (dict) : dictionary of exclusion masks for different criteria default: None - replace (bool) : if True, an existing file is replaced default: True - compression (str): type of compression to use when saving h5 file (e.g., "gzip") default: None
sess_util/sess_trace_util.py
save_roi_dataset
AllenInstitute/OpenScope_CA_Analysis
0
python
def save_roi_dataset(data, save_path, roi_names, data_name='data', excl_dict=None, replace=True, compression=None): '\n save_roi_dataset(save_path, roi_names)\n\n Saves ROI dataset.\n\n Required args:\n - data (nd array) : ROI data, where first dimension are ROIs\n - save_path (Path) : path for saving the dataset\n - roi_names (array-like): list of names for each ROI\n \n Optional args:\n - data_name (str) : main dataset name\n default: "data"\n - excl_dict (dict) : dictionary of exclusion masks for different \n criteria\n default: None\n - replace (bool) : if True, an existing file is replaced\n default: True\n - compression (str): type of compression to use when saving h5 \n file (e.g., "gzip")\n default: None\n ' if (len(data) != len(roi_names)): raise ValueError("'roi_names' must be as long as the first dimension of 'data'.") save_path = Path(save_path) if (save_path.is_file() and (not replace)): logger.info('ROI traces already exist.') return file_util.createdir(save_path.parent, log_dir=False) with h5py.File(save_path, 'w') as hf: hf.create_dataset(data_name, data=data, compression=compression) hf.create_dataset('roi_names', data=np.asarray(roi_names, dtype='S')) if (excl_dict is not None): for (key, item) in excl_dict.items(): hf.create_dataset(key, data=np.asarray(item, dtype='u1'))
def save_roi_dataset(data, save_path, roi_names, data_name='data', excl_dict=None, replace=True, compression=None): '\n save_roi_dataset(save_path, roi_names)\n\n Saves ROI dataset.\n\n Required args:\n - data (nd array) : ROI data, where first dimension are ROIs\n - save_path (Path) : path for saving the dataset\n - roi_names (array-like): list of names for each ROI\n \n Optional args:\n - data_name (str) : main dataset name\n default: "data"\n - excl_dict (dict) : dictionary of exclusion masks for different \n criteria\n default: None\n - replace (bool) : if True, an existing file is replaced\n default: True\n - compression (str): type of compression to use when saving h5 \n file (e.g., "gzip")\n default: None\n ' if (len(data) != len(roi_names)): raise ValueError("'roi_names' must be as long as the first dimension of 'data'.") save_path = Path(save_path) if (save_path.is_file() and (not replace)): logger.info('ROI traces already exist.') return file_util.createdir(save_path.parent, log_dir=False) with h5py.File(save_path, 'w') as hf: hf.create_dataset(data_name, data=data, compression=compression) hf.create_dataset('roi_names', data=np.asarray(roi_names, dtype='S')) if (excl_dict is not None): for (key, item) in excl_dict.items(): hf.create_dataset(key, data=np.asarray(item, dtype='u1'))<|docstring|>save_roi_dataset(save_path, roi_names) Saves ROI dataset. Required args: - data (nd array) : ROI data, where first dimension are ROIs - save_path (Path) : path for saving the dataset - roi_names (array-like): list of names for each ROI Optional args: - data_name (str) : main dataset name default: "data" - excl_dict (dict) : dictionary of exclusion masks for different criteria default: None - replace (bool) : if True, an existing file is replaced default: True - compression (str): type of compression to use when saving h5 file (e.g., "gzip") default: None<|endoftext|>
c1632101b19836ad579cce27ce59adf72f0ee79fb46a832c818c3d9e9d3a4979
def demix_rois(raw_traces, h5path, masks, excl_dict, verbose=False): '\n demix_rois(raw_traces, h5path, masks, excl_dict)\n Returns time-dependent demixed traces (modified from allensdk, demixer.py, \n demix_time_dep_masks to allow partial loading of the stack).\n\n Required args:\n - raw_traces (2D array): extracted traces, structured as ROI x frames\n - h5path (Path) : path to full movie, structured as \n time x height x width\n - masks (3D array) : ROI mask, structured as ROI x height x width\n - excl_dict (dict) : dictionary of exclusion masks for different \n criteria\n default: None\n \n Optional args:\n - verbose (bool): if True, singular matrix warning is printed\n default: False\n\n Returns:\n - demixed_traces (2D array): demixed traces, with excluded ROIs set to \n np.nan, structured as ROI x frames \n - drop_frames (list) : list of boolean values for each frame, \n recording whether it is dropped\n ' exclusion_labels = EXCLUSION_LABELS valid_mask = np.ones(len(masks)).astype(bool) for lab in exclusion_labels: if (lab not in excl_dict.keys()): if (lab == 'empty_neuropil'): logger.warning('ROIs with empty neuropil not checked for before demixing.') else: raise KeyError(f'{lab} missing from excl_dict keys.') valid_mask *= (~ excl_dict[lab].astype(bool)) if (len(valid_mask) != len(raw_traces)): raise ValueError("'valid_mask' must be as long as the first dimension of 'raw_traces'.") raw_traces_valid = raw_traces[valid_mask.astype(bool)] masks_valid = masks[valid_mask.astype(bool)] with h5py.File(h5path, 'r') as f: stack = f['data'] (N, T) = raw_traces_valid.shape (_, x, y) = masks_valid.shape P = (x * y) num_pixels_in_mask = np.sum(masks_valid, axis=(1, 2)) F = (raw_traces_valid.T * num_pixels_in_mask) F = F.T flat_masks = masks_valid.reshape(N, P) flat_masks = sparse.csr_matrix(flat_masks) drop_frames = [] demix_traces = np.zeros((N, T)) for t in range(T): weighted_mask_sum = F[(:, t)] drop_test = (weighted_mask_sum == 0) if np.sum((drop_test == 0)): norm_mat = sparse.diags((num_pixels_in_mask / weighted_mask_sum), offsets=0) stack_t = sparse.diags(stack[t].reshape((- 1)), offsets=0) flat_weighted_masks = norm_mat.dot(flat_masks.dot(stack_t)) overlap = flat_masks.dot(flat_weighted_masks.T).toarray() try: demix_traces[(:, t)] = linalg.solve(overlap, F[(:, t)]) except linalg.LinAlgError: if verbose: logger.warning(f'Frame {t}: singular matrix, using least squares') (x, _, _, _) = linalg.lstsq(overlap, F[(:, t)]) demix_traces[(:, t)] = x drop_frames.append(False) else: drop_frames.append(True) demix_traces_all = np.full(raw_traces.shape, np.nan) demix_traces_all[valid_mask.astype(bool)] = demix_traces return (demix_traces_all, drop_frames)
demix_rois(raw_traces, h5path, masks, excl_dict) Returns time-dependent demixed traces (modified from allensdk, demixer.py, demix_time_dep_masks to allow partial loading of the stack). Required args: - raw_traces (2D array): extracted traces, structured as ROI x frames - h5path (Path) : path to full movie, structured as time x height x width - masks (3D array) : ROI mask, structured as ROI x height x width - excl_dict (dict) : dictionary of exclusion masks for different criteria default: None Optional args: - verbose (bool): if True, singular matrix warning is printed default: False Returns: - demixed_traces (2D array): demixed traces, with excluded ROIs set to np.nan, structured as ROI x frames - drop_frames (list) : list of boolean values for each frame, recording whether it is dropped
sess_util/sess_trace_util.py
demix_rois
AllenInstitute/OpenScope_CA_Analysis
0
python
def demix_rois(raw_traces, h5path, masks, excl_dict, verbose=False): '\n demix_rois(raw_traces, h5path, masks, excl_dict)\n Returns time-dependent demixed traces (modified from allensdk, demixer.py, \n demix_time_dep_masks to allow partial loading of the stack).\n\n Required args:\n - raw_traces (2D array): extracted traces, structured as ROI x frames\n - h5path (Path) : path to full movie, structured as \n time x height x width\n - masks (3D array) : ROI mask, structured as ROI x height x width\n - excl_dict (dict) : dictionary of exclusion masks for different \n criteria\n default: None\n \n Optional args:\n - verbose (bool): if True, singular matrix warning is printed\n default: False\n\n Returns:\n - demixed_traces (2D array): demixed traces, with excluded ROIs set to \n np.nan, structured as ROI x frames \n - drop_frames (list) : list of boolean values for each frame, \n recording whether it is dropped\n ' exclusion_labels = EXCLUSION_LABELS valid_mask = np.ones(len(masks)).astype(bool) for lab in exclusion_labels: if (lab not in excl_dict.keys()): if (lab == 'empty_neuropil'): logger.warning('ROIs with empty neuropil not checked for before demixing.') else: raise KeyError(f'{lab} missing from excl_dict keys.') valid_mask *= (~ excl_dict[lab].astype(bool)) if (len(valid_mask) != len(raw_traces)): raise ValueError("'valid_mask' must be as long as the first dimension of 'raw_traces'.") raw_traces_valid = raw_traces[valid_mask.astype(bool)] masks_valid = masks[valid_mask.astype(bool)] with h5py.File(h5path, 'r') as f: stack = f['data'] (N, T) = raw_traces_valid.shape (_, x, y) = masks_valid.shape P = (x * y) num_pixels_in_mask = np.sum(masks_valid, axis=(1, 2)) F = (raw_traces_valid.T * num_pixels_in_mask) F = F.T flat_masks = masks_valid.reshape(N, P) flat_masks = sparse.csr_matrix(flat_masks) drop_frames = [] demix_traces = np.zeros((N, T)) for t in range(T): weighted_mask_sum = F[(:, t)] drop_test = (weighted_mask_sum == 0) if np.sum((drop_test == 0)): norm_mat = sparse.diags((num_pixels_in_mask / weighted_mask_sum), offsets=0) stack_t = sparse.diags(stack[t].reshape((- 1)), offsets=0) flat_weighted_masks = norm_mat.dot(flat_masks.dot(stack_t)) overlap = flat_masks.dot(flat_weighted_masks.T).toarray() try: demix_traces[(:, t)] = linalg.solve(overlap, F[(:, t)]) except linalg.LinAlgError: if verbose: logger.warning(f'Frame {t}: singular matrix, using least squares') (x, _, _, _) = linalg.lstsq(overlap, F[(:, t)]) demix_traces[(:, t)] = x drop_frames.append(False) else: drop_frames.append(True) demix_traces_all = np.full(raw_traces.shape, np.nan) demix_traces_all[valid_mask.astype(bool)] = demix_traces return (demix_traces_all, drop_frames)
def demix_rois(raw_traces, h5path, masks, excl_dict, verbose=False): '\n demix_rois(raw_traces, h5path, masks, excl_dict)\n Returns time-dependent demixed traces (modified from allensdk, demixer.py, \n demix_time_dep_masks to allow partial loading of the stack).\n\n Required args:\n - raw_traces (2D array): extracted traces, structured as ROI x frames\n - h5path (Path) : path to full movie, structured as \n time x height x width\n - masks (3D array) : ROI mask, structured as ROI x height x width\n - excl_dict (dict) : dictionary of exclusion masks for different \n criteria\n default: None\n \n Optional args:\n - verbose (bool): if True, singular matrix warning is printed\n default: False\n\n Returns:\n - demixed_traces (2D array): demixed traces, with excluded ROIs set to \n np.nan, structured as ROI x frames \n - drop_frames (list) : list of boolean values for each frame, \n recording whether it is dropped\n ' exclusion_labels = EXCLUSION_LABELS valid_mask = np.ones(len(masks)).astype(bool) for lab in exclusion_labels: if (lab not in excl_dict.keys()): if (lab == 'empty_neuropil'): logger.warning('ROIs with empty neuropil not checked for before demixing.') else: raise KeyError(f'{lab} missing from excl_dict keys.') valid_mask *= (~ excl_dict[lab].astype(bool)) if (len(valid_mask) != len(raw_traces)): raise ValueError("'valid_mask' must be as long as the first dimension of 'raw_traces'.") raw_traces_valid = raw_traces[valid_mask.astype(bool)] masks_valid = masks[valid_mask.astype(bool)] with h5py.File(h5path, 'r') as f: stack = f['data'] (N, T) = raw_traces_valid.shape (_, x, y) = masks_valid.shape P = (x * y) num_pixels_in_mask = np.sum(masks_valid, axis=(1, 2)) F = (raw_traces_valid.T * num_pixels_in_mask) F = F.T flat_masks = masks_valid.reshape(N, P) flat_masks = sparse.csr_matrix(flat_masks) drop_frames = [] demix_traces = np.zeros((N, T)) for t in range(T): weighted_mask_sum = F[(:, t)] drop_test = (weighted_mask_sum == 0) if np.sum((drop_test == 0)): norm_mat = sparse.diags((num_pixels_in_mask / weighted_mask_sum), offsets=0) stack_t = sparse.diags(stack[t].reshape((- 1)), offsets=0) flat_weighted_masks = norm_mat.dot(flat_masks.dot(stack_t)) overlap = flat_masks.dot(flat_weighted_masks.T).toarray() try: demix_traces[(:, t)] = linalg.solve(overlap, F[(:, t)]) except linalg.LinAlgError: if verbose: logger.warning(f'Frame {t}: singular matrix, using least squares') (x, _, _, _) = linalg.lstsq(overlap, F[(:, t)]) demix_traces[(:, t)] = x drop_frames.append(False) else: drop_frames.append(True) demix_traces_all = np.full(raw_traces.shape, np.nan) demix_traces_all[valid_mask.astype(bool)] = demix_traces return (demix_traces_all, drop_frames)<|docstring|>demix_rois(raw_traces, h5path, masks, excl_dict) Returns time-dependent demixed traces (modified from allensdk, demixer.py, demix_time_dep_masks to allow partial loading of the stack). Required args: - raw_traces (2D array): extracted traces, structured as ROI x frames - h5path (Path) : path to full movie, structured as time x height x width - masks (3D array) : ROI mask, structured as ROI x height x width - excl_dict (dict) : dictionary of exclusion masks for different criteria default: None Optional args: - verbose (bool): if True, singular matrix warning is printed default: False Returns: - demixed_traces (2D array): demixed traces, with excluded ROIs set to np.nan, structured as ROI x frames - drop_frames (list) : list of boolean values for each frame, recording whether it is dropped<|endoftext|>
02f220288d731c52e5870697a1c3bd516399bc45378574513341df5b54cd0af9
def get_neuropil_subtracted_traces(roi_traces, neuropil_traces): '\n get_neuropil_subtracted_traces(roi_traces, neuropil_traces)\n\n Returns ROI traces with neuropil subtracted, as well as the contamination \n ratio for each ROI.\n\n Required args:\n - roi_traces (2D array) : ROI traces, structured as ROI x frame\n - neuropil_traces (2D array): neuropil traces, structured as ROI x frame\n\n Returns:\n - neuropilsub_traces (2D array): ROI traces with neuropil subtracted, \n structured as ROI x frame\n - r (1D array) : contamination ratio (0-1) for each ROI\n ' r = np.full(len(roi_traces), 0.0) for (i, (roi_trace, neuropil_trace)) in enumerate(zip(roi_traces, neuropil_traces)): if np.isfinite(roi_trace).all(): r[i] = r_neuropil.estimate_contamination_ratios(roi_trace, neuropil_trace, iterations=3)['r'] neuropilsub_traces = (roi_traces - (neuropil_traces * r[(:, np.newaxis)])) return (neuropilsub_traces, r)
get_neuropil_subtracted_traces(roi_traces, neuropil_traces) Returns ROI traces with neuropil subtracted, as well as the contamination ratio for each ROI. Required args: - roi_traces (2D array) : ROI traces, structured as ROI x frame - neuropil_traces (2D array): neuropil traces, structured as ROI x frame Returns: - neuropilsub_traces (2D array): ROI traces with neuropil subtracted, structured as ROI x frame - r (1D array) : contamination ratio (0-1) for each ROI
sess_util/sess_trace_util.py
get_neuropil_subtracted_traces
AllenInstitute/OpenScope_CA_Analysis
0
python
def get_neuropil_subtracted_traces(roi_traces, neuropil_traces): '\n get_neuropil_subtracted_traces(roi_traces, neuropil_traces)\n\n Returns ROI traces with neuropil subtracted, as well as the contamination \n ratio for each ROI.\n\n Required args:\n - roi_traces (2D array) : ROI traces, structured as ROI x frame\n - neuropil_traces (2D array): neuropil traces, structured as ROI x frame\n\n Returns:\n - neuropilsub_traces (2D array): ROI traces with neuropil subtracted, \n structured as ROI x frame\n - r (1D array) : contamination ratio (0-1) for each ROI\n ' r = np.full(len(roi_traces), 0.0) for (i, (roi_trace, neuropil_trace)) in enumerate(zip(roi_traces, neuropil_traces)): if np.isfinite(roi_trace).all(): r[i] = r_neuropil.estimate_contamination_ratios(roi_trace, neuropil_trace, iterations=3)['r'] neuropilsub_traces = (roi_traces - (neuropil_traces * r[(:, np.newaxis)])) return (neuropilsub_traces, r)
def get_neuropil_subtracted_traces(roi_traces, neuropil_traces): '\n get_neuropil_subtracted_traces(roi_traces, neuropil_traces)\n\n Returns ROI traces with neuropil subtracted, as well as the contamination \n ratio for each ROI.\n\n Required args:\n - roi_traces (2D array) : ROI traces, structured as ROI x frame\n - neuropil_traces (2D array): neuropil traces, structured as ROI x frame\n\n Returns:\n - neuropilsub_traces (2D array): ROI traces with neuropil subtracted, \n structured as ROI x frame\n - r (1D array) : contamination ratio (0-1) for each ROI\n ' r = np.full(len(roi_traces), 0.0) for (i, (roi_trace, neuropil_trace)) in enumerate(zip(roi_traces, neuropil_traces)): if np.isfinite(roi_trace).all(): r[i] = r_neuropil.estimate_contamination_ratios(roi_trace, neuropil_trace, iterations=3)['r'] neuropilsub_traces = (roi_traces - (neuropil_traces * r[(:, np.newaxis)])) return (neuropilsub_traces, r)<|docstring|>get_neuropil_subtracted_traces(roi_traces, neuropil_traces) Returns ROI traces with neuropil subtracted, as well as the contamination ratio for each ROI. Required args: - roi_traces (2D array) : ROI traces, structured as ROI x frame - neuropil_traces (2D array): neuropil traces, structured as ROI x frame Returns: - neuropilsub_traces (2D array): ROI traces with neuropil subtracted, structured as ROI x frame - r (1D array) : contamination ratio (0-1) for each ROI<|endoftext|>
ac56faaa027a28d8af7bf6ba40031caccd5d811c3448bdea4f7411546fa5b775
def create_traces_from_masks(datadir, sessid, runtype='prod', h5dir=None, savedir='trace_proc_dir', dendritic=False, mask_threshold=0.1, min_n_pix=3, compression=None): '\n create_traces_from_masks(datadir, sessid)\n\n Extracts traces from masks, applies correction (neuropil traces, demixed \n traces, corrected traces, dF/F traces) and saves them. \n \n WARNING: Will replace any existing files.\n\n Required args:\n - datadir (Path): name of the data directory\n - sessid (int) : session ID (9 digits)\n\n Optional args:\n - runtype (str) : "prod" (production) or "pilot" data\n default: "prod"\n - h5dir (Path) : path of the h5 data directory. If None, \n datadir is used.\n default: None\n - savedir (Path) : path of the directory in which to save new \n files. If None, datadir is used.\n default: "trace_proc_dir"\n - dendritic (bool) : if True, paths are changed to EXTRACT \n version dendritic\n default: False\n - mask_threshold (float): minimum value in non-boolean mask to\n retain a pixel in an ROI mask\n default: 0.1 \n - min_n_pix (int) : minimum number of pixels in an ROI\n default: 3\n - compression (str) : type of compression to use when saving data \n to h5 files (e.g., "gzip")\n default: None\n ' file_dict = sess_file_util.get_file_names_from_sessid(datadir, sessid, runtype, check=False)[1] roi_extract_json = file_dict['roi_extract_json'] objectlist_path = file_dict['roi_objectlist_txt'] h5path = file_dict['correct_data_h5'] dirnames = [datadir, h5dir, savedir] (datadir, h5dir, savedir) = [str(Path(dirname)) for dirname in dirnames] if (h5dir is not None): h5path = h5path.replace(datadir, h5dir) mask_path = None if dendritic: mask_path = sess_file_util.get_dendritic_mask_path_from_sessid(Path(datadir), sessid, runtype, check=True) roi_trace_dict = sess_file_util.get_roi_trace_paths_from_sessid(Path(datadir), sessid, runtype, dendritic=dendritic, check=False) if (savedir is not None): for (key, item) in roi_trace_dict.items(): roi_trace_dict[key] = Path(str(item).replace(datadir, savedir)) logger.info('Extracting ROI masks.') (masks_bool, roi_ids) = get_roi_masks(mask_path, roi_extract_json, objectlist_path, mask_threshold=mask_threshold, min_n_pix=min_n_pix, make_bool=True) motion_border = get_motion_border(roi_extract_json) all_mask_objs = create_mask_objects(masks_bool, motion_border, roi_ids, union_threshold=0.7) logger.info('Creating ROI and neuropil traces.') [roi_traces, neuropil_traces, _] = roi_masks.calculate_roi_and_neuropil_traces(str(h5path), all_mask_objs, motion_border=motion_border) excl_dict = validate_masks(all_mask_objs, neuropil_traces=neuropil_traces) logger.info('Saving raw ROI traces.') save_roi_dataset(roi_traces, roi_trace_dict['unproc_roi_trace_h5'], roi_ids, excl_dict=excl_dict, replace=True, compression=compression) logger.info('Saving neuropil traces.') save_roi_dataset(neuropil_traces, roi_trace_dict['neuropil_trace_h5'], roi_ids, excl_dict=excl_dict, replace=True, compression=compression) logger.info('Demixing ROI traces.') (demixed_traces, _) = demix_rois(roi_traces, h5path, masks_bool, excl_dict, verbose=False) logger.info('Saving demixed traces.') save_roi_dataset(demixed_traces, roi_trace_dict['demixed_trace_h5'], roi_ids, excl_dict=excl_dict, replace=True, compression=compression) logger.info('Subtracting neuropil from demixed ROI traces.') (raw_processed_traces, r) = get_neuropil_subtracted_traces(demixed_traces, neuropil_traces) logger.info('Saving processed traces') save_roi_dataset(raw_processed_traces, roi_trace_dict['roi_trace_h5'], roi_ids, data_name='FC', excl_dict=excl_dict, replace=True, compression=compression) with h5py.File(roi_trace_dict['roi_trace_h5'], 'r+') as hf: hf.create_dataset('r', data=r, compression=compression) logger.info('Calculating dF/F') dff_traces = dff.calculate_dff(raw_processed_traces) logger.info('Saving dF/F traces.') save_roi_dataset(dff_traces, roi_trace_dict['roi_trace_dff_h5'], roi_ids, excl_dict=excl_dict, replace=True, compression=compression) return
create_traces_from_masks(datadir, sessid) Extracts traces from masks, applies correction (neuropil traces, demixed traces, corrected traces, dF/F traces) and saves them. WARNING: Will replace any existing files. Required args: - datadir (Path): name of the data directory - sessid (int) : session ID (9 digits) Optional args: - runtype (str) : "prod" (production) or "pilot" data default: "prod" - h5dir (Path) : path of the h5 data directory. If None, datadir is used. default: None - savedir (Path) : path of the directory in which to save new files. If None, datadir is used. default: "trace_proc_dir" - dendritic (bool) : if True, paths are changed to EXTRACT version dendritic default: False - mask_threshold (float): minimum value in non-boolean mask to retain a pixel in an ROI mask default: 0.1 - min_n_pix (int) : minimum number of pixels in an ROI default: 3 - compression (str) : type of compression to use when saving data to h5 files (e.g., "gzip") default: None
sess_util/sess_trace_util.py
create_traces_from_masks
AllenInstitute/OpenScope_CA_Analysis
0
python
def create_traces_from_masks(datadir, sessid, runtype='prod', h5dir=None, savedir='trace_proc_dir', dendritic=False, mask_threshold=0.1, min_n_pix=3, compression=None): '\n create_traces_from_masks(datadir, sessid)\n\n Extracts traces from masks, applies correction (neuropil traces, demixed \n traces, corrected traces, dF/F traces) and saves them. \n \n WARNING: Will replace any existing files.\n\n Required args:\n - datadir (Path): name of the data directory\n - sessid (int) : session ID (9 digits)\n\n Optional args:\n - runtype (str) : "prod" (production) or "pilot" data\n default: "prod"\n - h5dir (Path) : path of the h5 data directory. If None, \n datadir is used.\n default: None\n - savedir (Path) : path of the directory in which to save new \n files. If None, datadir is used.\n default: "trace_proc_dir"\n - dendritic (bool) : if True, paths are changed to EXTRACT \n version dendritic\n default: False\n - mask_threshold (float): minimum value in non-boolean mask to\n retain a pixel in an ROI mask\n default: 0.1 \n - min_n_pix (int) : minimum number of pixels in an ROI\n default: 3\n - compression (str) : type of compression to use when saving data \n to h5 files (e.g., "gzip")\n default: None\n ' file_dict = sess_file_util.get_file_names_from_sessid(datadir, sessid, runtype, check=False)[1] roi_extract_json = file_dict['roi_extract_json'] objectlist_path = file_dict['roi_objectlist_txt'] h5path = file_dict['correct_data_h5'] dirnames = [datadir, h5dir, savedir] (datadir, h5dir, savedir) = [str(Path(dirname)) for dirname in dirnames] if (h5dir is not None): h5path = h5path.replace(datadir, h5dir) mask_path = None if dendritic: mask_path = sess_file_util.get_dendritic_mask_path_from_sessid(Path(datadir), sessid, runtype, check=True) roi_trace_dict = sess_file_util.get_roi_trace_paths_from_sessid(Path(datadir), sessid, runtype, dendritic=dendritic, check=False) if (savedir is not None): for (key, item) in roi_trace_dict.items(): roi_trace_dict[key] = Path(str(item).replace(datadir, savedir)) logger.info('Extracting ROI masks.') (masks_bool, roi_ids) = get_roi_masks(mask_path, roi_extract_json, objectlist_path, mask_threshold=mask_threshold, min_n_pix=min_n_pix, make_bool=True) motion_border = get_motion_border(roi_extract_json) all_mask_objs = create_mask_objects(masks_bool, motion_border, roi_ids, union_threshold=0.7) logger.info('Creating ROI and neuropil traces.') [roi_traces, neuropil_traces, _] = roi_masks.calculate_roi_and_neuropil_traces(str(h5path), all_mask_objs, motion_border=motion_border) excl_dict = validate_masks(all_mask_objs, neuropil_traces=neuropil_traces) logger.info('Saving raw ROI traces.') save_roi_dataset(roi_traces, roi_trace_dict['unproc_roi_trace_h5'], roi_ids, excl_dict=excl_dict, replace=True, compression=compression) logger.info('Saving neuropil traces.') save_roi_dataset(neuropil_traces, roi_trace_dict['neuropil_trace_h5'], roi_ids, excl_dict=excl_dict, replace=True, compression=compression) logger.info('Demixing ROI traces.') (demixed_traces, _) = demix_rois(roi_traces, h5path, masks_bool, excl_dict, verbose=False) logger.info('Saving demixed traces.') save_roi_dataset(demixed_traces, roi_trace_dict['demixed_trace_h5'], roi_ids, excl_dict=excl_dict, replace=True, compression=compression) logger.info('Subtracting neuropil from demixed ROI traces.') (raw_processed_traces, r) = get_neuropil_subtracted_traces(demixed_traces, neuropil_traces) logger.info('Saving processed traces') save_roi_dataset(raw_processed_traces, roi_trace_dict['roi_trace_h5'], roi_ids, data_name='FC', excl_dict=excl_dict, replace=True, compression=compression) with h5py.File(roi_trace_dict['roi_trace_h5'], 'r+') as hf: hf.create_dataset('r', data=r, compression=compression) logger.info('Calculating dF/F') dff_traces = dff.calculate_dff(raw_processed_traces) logger.info('Saving dF/F traces.') save_roi_dataset(dff_traces, roi_trace_dict['roi_trace_dff_h5'], roi_ids, excl_dict=excl_dict, replace=True, compression=compression) return
def create_traces_from_masks(datadir, sessid, runtype='prod', h5dir=None, savedir='trace_proc_dir', dendritic=False, mask_threshold=0.1, min_n_pix=3, compression=None): '\n create_traces_from_masks(datadir, sessid)\n\n Extracts traces from masks, applies correction (neuropil traces, demixed \n traces, corrected traces, dF/F traces) and saves them. \n \n WARNING: Will replace any existing files.\n\n Required args:\n - datadir (Path): name of the data directory\n - sessid (int) : session ID (9 digits)\n\n Optional args:\n - runtype (str) : "prod" (production) or "pilot" data\n default: "prod"\n - h5dir (Path) : path of the h5 data directory. If None, \n datadir is used.\n default: None\n - savedir (Path) : path of the directory in which to save new \n files. If None, datadir is used.\n default: "trace_proc_dir"\n - dendritic (bool) : if True, paths are changed to EXTRACT \n version dendritic\n default: False\n - mask_threshold (float): minimum value in non-boolean mask to\n retain a pixel in an ROI mask\n default: 0.1 \n - min_n_pix (int) : minimum number of pixels in an ROI\n default: 3\n - compression (str) : type of compression to use when saving data \n to h5 files (e.g., "gzip")\n default: None\n ' file_dict = sess_file_util.get_file_names_from_sessid(datadir, sessid, runtype, check=False)[1] roi_extract_json = file_dict['roi_extract_json'] objectlist_path = file_dict['roi_objectlist_txt'] h5path = file_dict['correct_data_h5'] dirnames = [datadir, h5dir, savedir] (datadir, h5dir, savedir) = [str(Path(dirname)) for dirname in dirnames] if (h5dir is not None): h5path = h5path.replace(datadir, h5dir) mask_path = None if dendritic: mask_path = sess_file_util.get_dendritic_mask_path_from_sessid(Path(datadir), sessid, runtype, check=True) roi_trace_dict = sess_file_util.get_roi_trace_paths_from_sessid(Path(datadir), sessid, runtype, dendritic=dendritic, check=False) if (savedir is not None): for (key, item) in roi_trace_dict.items(): roi_trace_dict[key] = Path(str(item).replace(datadir, savedir)) logger.info('Extracting ROI masks.') (masks_bool, roi_ids) = get_roi_masks(mask_path, roi_extract_json, objectlist_path, mask_threshold=mask_threshold, min_n_pix=min_n_pix, make_bool=True) motion_border = get_motion_border(roi_extract_json) all_mask_objs = create_mask_objects(masks_bool, motion_border, roi_ids, union_threshold=0.7) logger.info('Creating ROI and neuropil traces.') [roi_traces, neuropil_traces, _] = roi_masks.calculate_roi_and_neuropil_traces(str(h5path), all_mask_objs, motion_border=motion_border) excl_dict = validate_masks(all_mask_objs, neuropil_traces=neuropil_traces) logger.info('Saving raw ROI traces.') save_roi_dataset(roi_traces, roi_trace_dict['unproc_roi_trace_h5'], roi_ids, excl_dict=excl_dict, replace=True, compression=compression) logger.info('Saving neuropil traces.') save_roi_dataset(neuropil_traces, roi_trace_dict['neuropil_trace_h5'], roi_ids, excl_dict=excl_dict, replace=True, compression=compression) logger.info('Demixing ROI traces.') (demixed_traces, _) = demix_rois(roi_traces, h5path, masks_bool, excl_dict, verbose=False) logger.info('Saving demixed traces.') save_roi_dataset(demixed_traces, roi_trace_dict['demixed_trace_h5'], roi_ids, excl_dict=excl_dict, replace=True, compression=compression) logger.info('Subtracting neuropil from demixed ROI traces.') (raw_processed_traces, r) = get_neuropil_subtracted_traces(demixed_traces, neuropil_traces) logger.info('Saving processed traces') save_roi_dataset(raw_processed_traces, roi_trace_dict['roi_trace_h5'], roi_ids, data_name='FC', excl_dict=excl_dict, replace=True, compression=compression) with h5py.File(roi_trace_dict['roi_trace_h5'], 'r+') as hf: hf.create_dataset('r', data=r, compression=compression) logger.info('Calculating dF/F') dff_traces = dff.calculate_dff(raw_processed_traces) logger.info('Saving dF/F traces.') save_roi_dataset(dff_traces, roi_trace_dict['roi_trace_dff_h5'], roi_ids, excl_dict=excl_dict, replace=True, compression=compression) return<|docstring|>create_traces_from_masks(datadir, sessid) Extracts traces from masks, applies correction (neuropil traces, demixed traces, corrected traces, dF/F traces) and saves them. WARNING: Will replace any existing files. Required args: - datadir (Path): name of the data directory - sessid (int) : session ID (9 digits) Optional args: - runtype (str) : "prod" (production) or "pilot" data default: "prod" - h5dir (Path) : path of the h5 data directory. If None, datadir is used. default: None - savedir (Path) : path of the directory in which to save new files. If None, datadir is used. default: "trace_proc_dir" - dendritic (bool) : if True, paths are changed to EXTRACT version dendritic default: False - mask_threshold (float): minimum value in non-boolean mask to retain a pixel in an ROI mask default: 0.1 - min_n_pix (int) : minimum number of pixels in an ROI default: 3 - compression (str) : type of compression to use when saving data to h5 files (e.g., "gzip") default: None<|endoftext|>
2eef3f2fe998868ce47fd63709789d965d6be67ccaedc0989bf9968f75e843db
def differential_to_unicycle(left_motor_velocity: Real, right_motor_velocity: Real) -> Tuple[(Real, Real)]: '\n Convert differential steering commands into unicycle steering commands.\n\n :param left_motor_velocity: [cm / s]\n :param right_motor_velocity: [cm / s]\n :return: A tuple containing (linear_velocity [cm / s], angular_velocity [deg / s])\n ' linear_velocity = ((left_motor_velocity + right_motor_velocity) / 2) angular_velocity = ((180 / (pi * WHEEL_TRACK_CM)) * (right_motor_velocity - left_motor_velocity)) return (linear_velocity, angular_velocity)
Convert differential steering commands into unicycle steering commands. :param left_motor_velocity: [cm / s] :param right_motor_velocity: [cm / s] :return: A tuple containing (linear_velocity [cm / s], angular_velocity [deg / s])
src/python/drive_motor_control.py
differential_to_unicycle
SaltyHash/BWO
2
python
def differential_to_unicycle(left_motor_velocity: Real, right_motor_velocity: Real) -> Tuple[(Real, Real)]: '\n Convert differential steering commands into unicycle steering commands.\n\n :param left_motor_velocity: [cm / s]\n :param right_motor_velocity: [cm / s]\n :return: A tuple containing (linear_velocity [cm / s], angular_velocity [deg / s])\n ' linear_velocity = ((left_motor_velocity + right_motor_velocity) / 2) angular_velocity = ((180 / (pi * WHEEL_TRACK_CM)) * (right_motor_velocity - left_motor_velocity)) return (linear_velocity, angular_velocity)
def differential_to_unicycle(left_motor_velocity: Real, right_motor_velocity: Real) -> Tuple[(Real, Real)]: '\n Convert differential steering commands into unicycle steering commands.\n\n :param left_motor_velocity: [cm / s]\n :param right_motor_velocity: [cm / s]\n :return: A tuple containing (linear_velocity [cm / s], angular_velocity [deg / s])\n ' linear_velocity = ((left_motor_velocity + right_motor_velocity) / 2) angular_velocity = ((180 / (pi * WHEEL_TRACK_CM)) * (right_motor_velocity - left_motor_velocity)) return (linear_velocity, angular_velocity)<|docstring|>Convert differential steering commands into unicycle steering commands. :param left_motor_velocity: [cm / s] :param right_motor_velocity: [cm / s] :return: A tuple containing (linear_velocity [cm / s], angular_velocity [deg / s])<|endoftext|>
f85c5b8ab2a4426d89334d220f54e78b4f4bc1d2e9a3c259e4f2d7fd9605bcca
def unicycle_to_differential(linear_velocity: Real, angular_velocity: Real) -> Tuple[(Real, Real)]: '\n Convert unicycle steering commands into differential steering commands.\n\n :param linear_velocity: How fast the robot should travel [cm / s]\n :param angular_velocity: How fast the robot should rotate [deg / s]\n :return: A tuple containing (left_motor_velocity, right_motor_velocity) [cm / s]\n ' angular_velocity = ((pi * WHEEL_TRACK_CM) * (angular_velocity / 360)) left_motor_velocity = (linear_velocity - angular_velocity) right_motor_velocity = (linear_velocity + angular_velocity) return (left_motor_velocity, right_motor_velocity)
Convert unicycle steering commands into differential steering commands. :param linear_velocity: How fast the robot should travel [cm / s] :param angular_velocity: How fast the robot should rotate [deg / s] :return: A tuple containing (left_motor_velocity, right_motor_velocity) [cm / s]
src/python/drive_motor_control.py
unicycle_to_differential
SaltyHash/BWO
2
python
def unicycle_to_differential(linear_velocity: Real, angular_velocity: Real) -> Tuple[(Real, Real)]: '\n Convert unicycle steering commands into differential steering commands.\n\n :param linear_velocity: How fast the robot should travel [cm / s]\n :param angular_velocity: How fast the robot should rotate [deg / s]\n :return: A tuple containing (left_motor_velocity, right_motor_velocity) [cm / s]\n ' angular_velocity = ((pi * WHEEL_TRACK_CM) * (angular_velocity / 360)) left_motor_velocity = (linear_velocity - angular_velocity) right_motor_velocity = (linear_velocity + angular_velocity) return (left_motor_velocity, right_motor_velocity)
def unicycle_to_differential(linear_velocity: Real, angular_velocity: Real) -> Tuple[(Real, Real)]: '\n Convert unicycle steering commands into differential steering commands.\n\n :param linear_velocity: How fast the robot should travel [cm / s]\n :param angular_velocity: How fast the robot should rotate [deg / s]\n :return: A tuple containing (left_motor_velocity, right_motor_velocity) [cm / s]\n ' angular_velocity = ((pi * WHEEL_TRACK_CM) * (angular_velocity / 360)) left_motor_velocity = (linear_velocity - angular_velocity) right_motor_velocity = (linear_velocity + angular_velocity) return (left_motor_velocity, right_motor_velocity)<|docstring|>Convert unicycle steering commands into differential steering commands. :param linear_velocity: How fast the robot should travel [cm / s] :param angular_velocity: How fast the robot should rotate [deg / s] :return: A tuple containing (left_motor_velocity, right_motor_velocity) [cm / s]<|endoftext|>
0815e55d27f331a30ab6180af0513a6c627e073033672d11a849b2d5caecf1e2
def ticks_to_distance(ticks: int) -> Real: '\n Convert encoder ticks into distance [cm].\n\n :param ticks: Number of encoder ticks.\n :return: Distance that number of ticks represents [cm].\n ' return (ticks * WHEEL_CM_PER_TICK)
Convert encoder ticks into distance [cm]. :param ticks: Number of encoder ticks. :return: Distance that number of ticks represents [cm].
src/python/drive_motor_control.py
ticks_to_distance
SaltyHash/BWO
2
python
def ticks_to_distance(ticks: int) -> Real: '\n Convert encoder ticks into distance [cm].\n\n :param ticks: Number of encoder ticks.\n :return: Distance that number of ticks represents [cm].\n ' return (ticks * WHEEL_CM_PER_TICK)
def ticks_to_distance(ticks: int) -> Real: '\n Convert encoder ticks into distance [cm].\n\n :param ticks: Number of encoder ticks.\n :return: Distance that number of ticks represents [cm].\n ' return (ticks * WHEEL_CM_PER_TICK)<|docstring|>Convert encoder ticks into distance [cm]. :param ticks: Number of encoder ticks. :return: Distance that number of ticks represents [cm].<|endoftext|>
78bcf9c0a206e7e608e920b41edcc5d0357a76b2eb623549f1e9dc62fc5edd05
def distance_to_ticks(distance: Real) -> int: '\n Convert distance [cm] into encoder ticks.\n\n :param distance: [cm]\n :return: Number of encoder ticks (rounded) that distance represents.\n ' return int(round((distance * WHEEL_TICK_PER_CM)))
Convert distance [cm] into encoder ticks. :param distance: [cm] :return: Number of encoder ticks (rounded) that distance represents.
src/python/drive_motor_control.py
distance_to_ticks
SaltyHash/BWO
2
python
def distance_to_ticks(distance: Real) -> int: '\n Convert distance [cm] into encoder ticks.\n\n :param distance: [cm]\n :return: Number of encoder ticks (rounded) that distance represents.\n ' return int(round((distance * WHEEL_TICK_PER_CM)))
def distance_to_ticks(distance: Real) -> int: '\n Convert distance [cm] into encoder ticks.\n\n :param distance: [cm]\n :return: Number of encoder ticks (rounded) that distance represents.\n ' return int(round((distance * WHEEL_TICK_PER_CM)))<|docstring|>Convert distance [cm] into encoder ticks. :param distance: [cm] :return: Number of encoder ticks (rounded) that distance represents.<|endoftext|>
53cb09bc40c94822bd5d0d1bbdcaed76275daae609eae5ba209ea24075d4a1e8
def set_acceleration(self, acceleration: int=8000) -> None: '\n Sets the controller acceleration.\n\n :param acceleration: How quickly the controller should accelerate to a new velocity [ticks / s^2].\n If set to 0, acceleration is instant.\n ' if (acceleration < 0): raise ValueError(f'Acceleration must be >= 0. Given acceleration: {acceleration}') self._send_command(self._SET_ACCELERATION_SEND_STRUCT.pack(self._SET_ACCELERATION_COMMAND, acceleration))
Sets the controller acceleration. :param acceleration: How quickly the controller should accelerate to a new velocity [ticks / s^2]. If set to 0, acceleration is instant.
src/python/drive_motor_control.py
set_acceleration
SaltyHash/BWO
2
python
def set_acceleration(self, acceleration: int=8000) -> None: '\n Sets the controller acceleration.\n\n :param acceleration: How quickly the controller should accelerate to a new velocity [ticks / s^2].\n If set to 0, acceleration is instant.\n ' if (acceleration < 0): raise ValueError(f'Acceleration must be >= 0. Given acceleration: {acceleration}') self._send_command(self._SET_ACCELERATION_SEND_STRUCT.pack(self._SET_ACCELERATION_COMMAND, acceleration))
def set_acceleration(self, acceleration: int=8000) -> None: '\n Sets the controller acceleration.\n\n :param acceleration: How quickly the controller should accelerate to a new velocity [ticks / s^2].\n If set to 0, acceleration is instant.\n ' if (acceleration < 0): raise ValueError(f'Acceleration must be >= 0. Given acceleration: {acceleration}') self._send_command(self._SET_ACCELERATION_SEND_STRUCT.pack(self._SET_ACCELERATION_COMMAND, acceleration))<|docstring|>Sets the controller acceleration. :param acceleration: How quickly the controller should accelerate to a new velocity [ticks / s^2]. If set to 0, acceleration is instant.<|endoftext|>
311431f668b2568b558829ff480f9b1e85a15d913e7f4eeba69e5e0548db4abe
def set_pid_tunings(self, p: float=0.05, i: float=0.5, d: float=0.0) -> None: '\n Good default tunings: ``(0.05, 0.5, 0)``\n ' if ((p < 0) or (i < 0) or (d < 0)): raise ValueError(f'All tunings must be non-negative. Given tunings: p={p}, i={i}, d={d}') self._send_command(self._SET_PID_TUNINGS_SEND_STRUCT.pack(self._SET_PID_TUNINGS_COMMAND, p, i, d))
Good default tunings: ``(0.05, 0.5, 0)``
src/python/drive_motor_control.py
set_pid_tunings
SaltyHash/BWO
2
python
def set_pid_tunings(self, p: float=0.05, i: float=0.5, d: float=0.0) -> None: '\n \n ' if ((p < 0) or (i < 0) or (d < 0)): raise ValueError(f'All tunings must be non-negative. Given tunings: p={p}, i={i}, d={d}') self._send_command(self._SET_PID_TUNINGS_SEND_STRUCT.pack(self._SET_PID_TUNINGS_COMMAND, p, i, d))
def set_pid_tunings(self, p: float=0.05, i: float=0.5, d: float=0.0) -> None: '\n \n ' if ((p < 0) or (i < 0) or (d < 0)): raise ValueError(f'All tunings must be non-negative. Given tunings: p={p}, i={i}, d={d}') self._send_command(self._SET_PID_TUNINGS_SEND_STRUCT.pack(self._SET_PID_TUNINGS_COMMAND, p, i, d))<|docstring|>Good default tunings: ``(0.05, 0.5, 0)``<|endoftext|>
7e0e5c88882827297879596eab4734386c099ce262d1a13268748346b2999e95
def set_velocity_unicycle(self, linear_velocity: Real, angular_velocity: Real) -> DriveMotorState: '\n :param linear_velocity: How fast the robot should travel [cm / s]\n :param angular_velocity: How fast the robot should rotate [deg / s]\n ' return self.set_velocity_differential(*unicycle_to_differential(linear_velocity, angular_velocity), distance_unit='cm')
:param linear_velocity: How fast the robot should travel [cm / s] :param angular_velocity: How fast the robot should rotate [deg / s]
src/python/drive_motor_control.py
set_velocity_unicycle
SaltyHash/BWO
2
python
def set_velocity_unicycle(self, linear_velocity: Real, angular_velocity: Real) -> DriveMotorState: '\n :param linear_velocity: How fast the robot should travel [cm / s]\n :param angular_velocity: How fast the robot should rotate [deg / s]\n ' return self.set_velocity_differential(*unicycle_to_differential(linear_velocity, angular_velocity), distance_unit='cm')
def set_velocity_unicycle(self, linear_velocity: Real, angular_velocity: Real) -> DriveMotorState: '\n :param linear_velocity: How fast the robot should travel [cm / s]\n :param angular_velocity: How fast the robot should rotate [deg / s]\n ' return self.set_velocity_differential(*unicycle_to_differential(linear_velocity, angular_velocity), distance_unit='cm')<|docstring|>:param linear_velocity: How fast the robot should travel [cm / s] :param angular_velocity: How fast the robot should rotate [deg / s]<|endoftext|>
8b1d35c7398d0f0a5210eee469fd08b76b277e80be9e0c67dceb27a07f368e3e
def _send_command(self, data: bytes) -> bytes: '\n Sends the command data, receives a response packet, makes sure the 0th byte of the response is an ACK (i.e.\n that it matches the 0th byte of the data, which is the command byte), and then returns the part of the response\n that comes after the ACK (0th) byte.\n :param data: The command data to send.\n :return: The response bytes, after the ACK (0th) byte.\n :raises DriveMotorException: if timed out waiting to receive an ACK from the controller, or received ACK was not\n the expected value.\n ' if (not data): raise ValueError('data must be given') response = self._packets.write_then_read(data) expected_ack = data[0:1] if (response is None): raise DriveMotorException('Timed out waiting to receive ACK from the controller.') received_ack = response[0:1] if (received_ack != expected_ack): raise DriveMotorException(f'Did not receive expected ACK from the controller; expected: {expected_ack}; received: {received_ack}.') return response[1:]
Sends the command data, receives a response packet, makes sure the 0th byte of the response is an ACK (i.e. that it matches the 0th byte of the data, which is the command byte), and then returns the part of the response that comes after the ACK (0th) byte. :param data: The command data to send. :return: The response bytes, after the ACK (0th) byte. :raises DriveMotorException: if timed out waiting to receive an ACK from the controller, or received ACK was not the expected value.
src/python/drive_motor_control.py
_send_command
SaltyHash/BWO
2
python
def _send_command(self, data: bytes) -> bytes: '\n Sends the command data, receives a response packet, makes sure the 0th byte of the response is an ACK (i.e.\n that it matches the 0th byte of the data, which is the command byte), and then returns the part of the response\n that comes after the ACK (0th) byte.\n :param data: The command data to send.\n :return: The response bytes, after the ACK (0th) byte.\n :raises DriveMotorException: if timed out waiting to receive an ACK from the controller, or received ACK was not\n the expected value.\n ' if (not data): raise ValueError('data must be given') response = self._packets.write_then_read(data) expected_ack = data[0:1] if (response is None): raise DriveMotorException('Timed out waiting to receive ACK from the controller.') received_ack = response[0:1] if (received_ack != expected_ack): raise DriveMotorException(f'Did not receive expected ACK from the controller; expected: {expected_ack}; received: {received_ack}.') return response[1:]
def _send_command(self, data: bytes) -> bytes: '\n Sends the command data, receives a response packet, makes sure the 0th byte of the response is an ACK (i.e.\n that it matches the 0th byte of the data, which is the command byte), and then returns the part of the response\n that comes after the ACK (0th) byte.\n :param data: The command data to send.\n :return: The response bytes, after the ACK (0th) byte.\n :raises DriveMotorException: if timed out waiting to receive an ACK from the controller, or received ACK was not\n the expected value.\n ' if (not data): raise ValueError('data must be given') response = self._packets.write_then_read(data) expected_ack = data[0:1] if (response is None): raise DriveMotorException('Timed out waiting to receive ACK from the controller.') received_ack = response[0:1] if (received_ack != expected_ack): raise DriveMotorException(f'Did not receive expected ACK from the controller; expected: {expected_ack}; received: {received_ack}.') return response[1:]<|docstring|>Sends the command data, receives a response packet, makes sure the 0th byte of the response is an ACK (i.e. that it matches the 0th byte of the data, which is the command byte), and then returns the part of the response that comes after the ACK (0th) byte. :param data: The command data to send. :return: The response bytes, after the ACK (0th) byte. :raises DriveMotorException: if timed out waiting to receive an ACK from the controller, or received ACK was not the expected value.<|endoftext|>
515632bcd3e3496e68a672451acd6dc09c715628d360a5f1abfd13549fa4e6f1
def _get_task_config(product, task): 'Get the effective telstate config for a task.\n\n This also looks for nodes whose name indicates that they are parents\n (and hence whose telstate config will be picked up by\n katsdpservices.argparse).\n ' by_name = {t.logical_node.name: t for t in product.physical_graph} conf = {} name_parts = task.logical_node.name.split('.') for i in range(1, (len(name_parts) + 1)): name = '.'.join(name_parts[:i]) try: sub_conf = by_name[name].task_config except (KeyError, AttributeError): pass else: conf.update(sub_conf) return conf
Get the effective telstate config for a task. This also looks for nodes whose name indicates that they are parents (and hence whose telstate config will be picked up by katsdpservices.argparse).
katsdpcontroller/dashboard.py
_get_task_config
ska-sa/katsdpcontroller
0
python
def _get_task_config(product, task): 'Get the effective telstate config for a task.\n\n This also looks for nodes whose name indicates that they are parents\n (and hence whose telstate config will be picked up by\n katsdpservices.argparse).\n ' by_name = {t.logical_node.name: t for t in product.physical_graph} conf = {} name_parts = task.logical_node.name.split('.') for i in range(1, (len(name_parts) + 1)): name = '.'.join(name_parts[:i]) try: sub_conf = by_name[name].task_config except (KeyError, AttributeError): pass else: conf.update(sub_conf) return conf
def _get_task_config(product, task): 'Get the effective telstate config for a task.\n\n This also looks for nodes whose name indicates that they are parents\n (and hence whose telstate config will be picked up by\n katsdpservices.argparse).\n ' by_name = {t.logical_node.name: t for t in product.physical_graph} conf = {} name_parts = task.logical_node.name.split('.') for i in range(1, (len(name_parts) + 1)): name = '.'.join(name_parts[:i]) try: sub_conf = by_name[name].task_config except (KeyError, AttributeError): pass else: conf.update(sub_conf) return conf<|docstring|>Get the effective telstate config for a task. This also looks for nodes whose name indicates that they are parents (and hence whose telstate config will be picked up by katsdpservices.argparse).<|endoftext|>
433b430cdafe1749f18a608da6987db91b9a3da9be0152cb47e631f9961cc34b
@property def instance(self) -> int: 'Return Instance.' return self.data.get('Instance')
Return Instance.
openzwavemqtt/models/node_instance.py
instance
quinnhosler/python-openzwave-mqtt
0
python
@property def instance(self) -> int: return self.data.get('Instance')
@property def instance(self) -> int: return self.data.get('Instance')<|docstring|>Return Instance.<|endoftext|>
6c39e8e4e5bf5aed107e403cd4610ad64cf70ac8e132e79e1cfef9bbb1a8c29c
@property def time_stamp(self) -> int: 'Return TimeStamp.' return self.data.get('TimeStamp')
Return TimeStamp.
openzwavemqtt/models/node_instance.py
time_stamp
quinnhosler/python-openzwave-mqtt
0
python
@property def time_stamp(self) -> int: return self.data.get('TimeStamp')
@property def time_stamp(self) -> int: return self.data.get('TimeStamp')<|docstring|>Return TimeStamp.<|endoftext|>
375a1d7f6f34ea7d7745d50730c2f655a37a087fd9c1e163147391ac44c20b2f
def create_collections(self): 'Create collections that Node supports.' return {'commandclass': ItemCollection(OZWCommandClass)}
Create collections that Node supports.
openzwavemqtt/models/node_instance.py
create_collections
quinnhosler/python-openzwave-mqtt
0
python
def create_collections(self): return {'commandclass': ItemCollection(OZWCommandClass)}
def create_collections(self): return {'commandclass': ItemCollection(OZWCommandClass)}<|docstring|>Create collections that Node supports.<|endoftext|>
3b08a8b8fab04cf37e3c6c3b3444e1b439d6705b0b6814a7a12528789cf38beb
def fpicker(artist, event): '\n an artist picker that works for clicks outside the axes. ie. artist\n that are not clipped\n ' logger.debug('fpicker: {}', artist) if (event.button != 1): logger.debug('wrong button!') return (False, {}) tf = artist.contains(event) logger.debug('fpicker: artist.contains(event) {}', tf) return tf
an artist picker that works for clicks outside the axes. ie. artist that are not clipped
src/scrawl/moves/machinery.py
fpicker
astromancer/graphical
0
python
def fpicker(artist, event): '\n an artist picker that works for clicks outside the axes. ie. artist\n that are not clipped\n ' logger.debug('fpicker: {}', artist) if (event.button != 1): logger.debug('wrong button!') return (False, {}) tf = artist.contains(event) logger.debug('fpicker: artist.contains(event) {}', tf) return tf
def fpicker(artist, event): '\n an artist picker that works for clicks outside the axes. ie. artist\n that are not clipped\n ' logger.debug('fpicker: {}', artist) if (event.button != 1): logger.debug('wrong button!') return (False, {}) tf = artist.contains(event) logger.debug('fpicker: artist.contains(event) {}', tf) return tf<|docstring|>an artist picker that works for clicks outside the axes. ie. artist that are not clipped<|endoftext|>
4b22b48a36010a994befd5ad8b21d3ea96776920e8d6855b0965cd9f5949bfe4
def add(self, func, *args, **kws): '\n Add an observer function.\n\n When the artist is moved / picked, *func* will be called with the new\n coordinate position as arguments. *func* should return any artists\n that it changes. These will be drawn if blitting is enabled.\n The signature of *func* is therefor:\n\n draw_list = func(x, y, *args, **kws)`\n\n Parameters\n ----------\n func\n args\n kws\n\n Returns\n -------\n A connection id is returned which can be used to remove the method\n ' if (not callable(func)): raise TypeError('`func` should be callable') id_ = next(self.counter) self.funcs[id_] = (func, args, kws) self.active[func] = True return id_
Add an observer function. When the artist is moved / picked, *func* will be called with the new coordinate position as arguments. *func* should return any artists that it changes. These will be drawn if blitting is enabled. The signature of *func* is therefor: draw_list = func(x, y, *args, **kws)` Parameters ---------- func args kws Returns ------- A connection id is returned which can be used to remove the method
src/scrawl/moves/machinery.py
add
astromancer/graphical
0
python
def add(self, func, *args, **kws): '\n Add an observer function.\n\n When the artist is moved / picked, *func* will be called with the new\n coordinate position as arguments. *func* should return any artists\n that it changes. These will be drawn if blitting is enabled.\n The signature of *func* is therefor:\n\n draw_list = func(x, y, *args, **kws)`\n\n Parameters\n ----------\n func\n args\n kws\n\n Returns\n -------\n A connection id is returned which can be used to remove the method\n ' if (not callable(func)): raise TypeError('`func` should be callable') id_ = next(self.counter) self.funcs[id_] = (func, args, kws) self.active[func] = True return id_
def add(self, func, *args, **kws): '\n Add an observer function.\n\n When the artist is moved / picked, *func* will be called with the new\n coordinate position as arguments. *func* should return any artists\n that it changes. These will be drawn if blitting is enabled.\n The signature of *func* is therefor:\n\n draw_list = func(x, y, *args, **kws)`\n\n Parameters\n ----------\n func\n args\n kws\n\n Returns\n -------\n A connection id is returned which can be used to remove the method\n ' if (not callable(func)): raise TypeError('`func` should be callable') id_ = next(self.counter) self.funcs[id_] = (func, args, kws) self.active[func] = True return id_<|docstring|>Add an observer function. When the artist is moved / picked, *func* will be called with the new coordinate position as arguments. *func* should return any artists that it changes. These will be drawn if blitting is enabled. The signature of *func* is therefor: draw_list = func(x, y, *args, **kws)` Parameters ---------- func args kws Returns ------- A connection id is returned which can be used to remove the method<|endoftext|>
e116d120975ef21e7da7e0684a97adc59997f713fbcf4107fe5fa3ef5cc37726
def activate(self, fun_or_id): "\n Reactivate a non-active observer. This method is useful for toggling\n the active state of an observer function without removing and re-adding\n it (and it's parameters) to the dict of functions. The function will use\n parameters and keywords (if any) that were initially passed when it was\n added.\n\n Parameters\n ----------\n fun_or_id: callable, int\n The function (or its identifier) that will be activated \n " self._set_active(fun_or_id, True)
Reactivate a non-active observer. This method is useful for toggling the active state of an observer function without removing and re-adding it (and it's parameters) to the dict of functions. The function will use parameters and keywords (if any) that were initially passed when it was added. Parameters ---------- fun_or_id: callable, int The function (or its identifier) that will be activated
src/scrawl/moves/machinery.py
activate
astromancer/graphical
0
python
def activate(self, fun_or_id): "\n Reactivate a non-active observer. This method is useful for toggling\n the active state of an observer function without removing and re-adding\n it (and it's parameters) to the dict of functions. The function will use\n parameters and keywords (if any) that were initially passed when it was\n added.\n\n Parameters\n ----------\n fun_or_id: callable, int\n The function (or its identifier) that will be activated \n " self._set_active(fun_or_id, True)
def activate(self, fun_or_id): "\n Reactivate a non-active observer. This method is useful for toggling\n the active state of an observer function without removing and re-adding\n it (and it's parameters) to the dict of functions. The function will use\n parameters and keywords (if any) that were initially passed when it was\n added.\n\n Parameters\n ----------\n fun_or_id: callable, int\n The function (or its identifier) that will be activated \n " self._set_active(fun_or_id, True)<|docstring|>Reactivate a non-active observer. This method is useful for toggling the active state of an observer function without removing and re-adding it (and it's parameters) to the dict of functions. The function will use parameters and keywords (if any) that were initially passed when it was added. Parameters ---------- fun_or_id: callable, int The function (or its identifier) that will be activated<|endoftext|>
6ccfb9e9fe5bbb70d78f7cfb2eba305d7fe5dc0defde98022355ee6b665e8e0f
def deactivate(self, fun_or_id): '\n Deactivate an active observer. \n\n Parameters\n ----------\n fun_or_id: callable, int\n The function (or its identifier) that will be activated \n ' self._set_active(fun_or_id, False)
Deactivate an active observer. Parameters ---------- fun_or_id: callable, int The function (or its identifier) that will be activated
src/scrawl/moves/machinery.py
deactivate
astromancer/graphical
0
python
def deactivate(self, fun_or_id): '\n Deactivate an active observer. \n\n Parameters\n ----------\n fun_or_id: callable, int\n The function (or its identifier) that will be activated \n ' self._set_active(fun_or_id, False)
def deactivate(self, fun_or_id): '\n Deactivate an active observer. \n\n Parameters\n ----------\n fun_or_id: callable, int\n The function (or its identifier) that will be activated \n ' self._set_active(fun_or_id, False)<|docstring|>Deactivate an active observer. Parameters ---------- fun_or_id: callable, int The function (or its identifier) that will be activated<|endoftext|>
0d057793d0891883843d54ffb8669cc177552cdb1a157463242a92c85c609bff
def __call__(self, x, y): '\n Run all active observers for current data point\n\n Parameters\n ----------\n x, y\n\n Returns\n -------\n Artists that need to be drawn\n ' artists = [] for (_, (func, args, kws)) in self.funcs.items(): if (not self.active[func]): continue try: art = func(x, y, *args, **kws) self.logger.opt(lazy=True).debug('observer: {0[0]:}({0[1]:.3f}, {0[2]:.3f}): {0[3]:}', (lambda : (func.__name__, x, y, art_summary(art)))) if isinstance(art, (list, tuple)): artists.extend(art) elif (art is not None): artists.append(art) except Exception: self.logger.exception('Observers error.') return artists
Run all active observers for current data point Parameters ---------- x, y Returns ------- Artists that need to be drawn
src/scrawl/moves/machinery.py
__call__
astromancer/graphical
0
python
def __call__(self, x, y): '\n Run all active observers for current data point\n\n Parameters\n ----------\n x, y\n\n Returns\n -------\n Artists that need to be drawn\n ' artists = [] for (_, (func, args, kws)) in self.funcs.items(): if (not self.active[func]): continue try: art = func(x, y, *args, **kws) self.logger.opt(lazy=True).debug('observer: {0[0]:}({0[1]:.3f}, {0[2]:.3f}): {0[3]:}', (lambda : (func.__name__, x, y, art_summary(art)))) if isinstance(art, (list, tuple)): artists.extend(art) elif (art is not None): artists.append(art) except Exception: self.logger.exception('Observers error.') return artists
def __call__(self, x, y): '\n Run all active observers for current data point\n\n Parameters\n ----------\n x, y\n\n Returns\n -------\n Artists that need to be drawn\n ' artists = [] for (_, (func, args, kws)) in self.funcs.items(): if (not self.active[func]): continue try: art = func(x, y, *args, **kws) self.logger.opt(lazy=True).debug('observer: {0[0]:}({0[1]:.3f}, {0[2]:.3f}): {0[3]:}', (lambda : (func.__name__, x, y, art_summary(art)))) if isinstance(art, (list, tuple)): artists.extend(art) elif (art is not None): artists.append(art) except Exception: self.logger.exception('Observers error.') return artists<|docstring|>Run all active observers for current data point Parameters ---------- x, y Returns ------- Artists that need to be drawn<|endoftext|>
178ea54b772e37c97b3c0b1fd6a072ebdb7704d17a149919c57aa86f0b64959f
def __init__(self, artist, offset=(0.0, 0.0), annotate=False, haunted=False, trapped=False, **kws): '\n\n Parameters\n ----------\n artist\n offset\n annotate\n haunted\n trapped\n kws\n ' self.artist = artist self._original_transform = artist.get_transform() self.clipped = False self.trapped = trapped (self._xmin, self._xmax) = (np.nan, np.nan) (self._ymin, self._ymax) = (np.nan, np.nan) self._offset = np.array(offset) self.ref_point = np.array([artist.get_xdata()[0], artist.get_ydata()[0]]) self.annotated = annotate self.ghost = None if (not artist.get_picker()): artist.set_pickradius(10) artist.set_picker(True) self.linked = [] self.on_picked = Observers() self.on_move = Observers() self.on_release = Observers() self.on_move.add(self.move_to) self.on_release.add(self.update) ax = artist.axes if self.annotated: self.text_trans = btf(ax.transAxes, ax.transData) self.ytxt = np.mean(artist.get_ydata()) self.annotation = ax.text(1.005, self.ytxt, '') if haunted: self.haunt() self._locked_at = np.full(2, np.nan)
Parameters ---------- artist offset annotate haunted trapped kws
src/scrawl/moves/machinery.py
__init__
astromancer/graphical
0
python
def __init__(self, artist, offset=(0.0, 0.0), annotate=False, haunted=False, trapped=False, **kws): '\n\n Parameters\n ----------\n artist\n offset\n annotate\n haunted\n trapped\n kws\n ' self.artist = artist self._original_transform = artist.get_transform() self.clipped = False self.trapped = trapped (self._xmin, self._xmax) = (np.nan, np.nan) (self._ymin, self._ymax) = (np.nan, np.nan) self._offset = np.array(offset) self.ref_point = np.array([artist.get_xdata()[0], artist.get_ydata()[0]]) self.annotated = annotate self.ghost = None if (not artist.get_picker()): artist.set_pickradius(10) artist.set_picker(True) self.linked = [] self.on_picked = Observers() self.on_move = Observers() self.on_release = Observers() self.on_move.add(self.move_to) self.on_release.add(self.update) ax = artist.axes if self.annotated: self.text_trans = btf(ax.transAxes, ax.transData) self.ytxt = np.mean(artist.get_ydata()) self.annotation = ax.text(1.005, self.ytxt, ) if haunted: self.haunt() self._locked_at = np.full(2, np.nan)
def __init__(self, artist, offset=(0.0, 0.0), annotate=False, haunted=False, trapped=False, **kws): '\n\n Parameters\n ----------\n artist\n offset\n annotate\n haunted\n trapped\n kws\n ' self.artist = artist self._original_transform = artist.get_transform() self.clipped = False self.trapped = trapped (self._xmin, self._xmax) = (np.nan, np.nan) (self._ymin, self._ymax) = (np.nan, np.nan) self._offset = np.array(offset) self.ref_point = np.array([artist.get_xdata()[0], artist.get_ydata()[0]]) self.annotated = annotate self.ghost = None if (not artist.get_picker()): artist.set_pickradius(10) artist.set_picker(True) self.linked = [] self.on_picked = Observers() self.on_move = Observers() self.on_release = Observers() self.on_move.add(self.move_to) self.on_release.add(self.update) ax = artist.axes if self.annotated: self.text_trans = btf(ax.transAxes, ax.transData) self.ytxt = np.mean(artist.get_ydata()) self.annotation = ax.text(1.005, self.ytxt, ) if haunted: self.haunt() self._locked_at = np.full(2, np.nan)<|docstring|>Parameters ---------- artist offset annotate haunted trapped kws<|endoftext|>
b422ce6a024ccf778aaf4b4cafebfade9a96dcf8eb9b84c81da8d778102d96fc
def lock(self, which): 'Lock movement for x or y coordinate' ix = 'xy'.index(which.lower()) self._locked_at[ix] = self.offset[ix]
Lock movement for x or y coordinate
src/scrawl/moves/machinery.py
lock
astromancer/graphical
0
python
def lock(self, which): ix = 'xy'.index(which.lower()) self._locked_at[ix] = self.offset[ix]
def lock(self, which): ix = 'xy'.index(which.lower()) self._locked_at[ix] = self.offset[ix]<|docstring|>Lock movement for x or y coordinate<|endoftext|>
4e8cde462ed20e10b654d0bcc4068670ea3b442021a9803e3c33bb91a46c350b
def free(self, which): 'Release movement lock for x or y coordinate' ix = 'xy'.index(which.lower()) self._locked_at[ix] = None
Release movement lock for x or y coordinate
src/scrawl/moves/machinery.py
free
astromancer/graphical
0
python
def free(self, which): ix = 'xy'.index(which.lower()) self._locked_at[ix] = None
def free(self, which): ix = 'xy'.index(which.lower()) self._locked_at[ix] = None<|docstring|>Release movement lock for x or y coordinate<|endoftext|>
2c73bcb4dbe30877c6f87bdd8064c309948fcc6820da8979f9fc3cbeadc44f14
def lock_x(self): 'Lock x coordinate at current position' self.lock('x')
Lock x coordinate at current position
src/scrawl/moves/machinery.py
lock_x
astromancer/graphical
0
python
def lock_x(self): self.lock('x')
def lock_x(self): self.lock('x')<|docstring|>Lock x coordinate at current position<|endoftext|>
7a247ee9882bba03003306ec8a86912f3b6a60f1214c13038758a046f191f72e
def free_x(self): 'Release x coordinate lock' self.free('x')
Release x coordinate lock
src/scrawl/moves/machinery.py
free_x
astromancer/graphical
0
python
def free_x(self): self.free('x')
def free_x(self): self.free('x')<|docstring|>Release x coordinate lock<|endoftext|>
fd16957a1253447eed5b6d78bc8bb6dd40032c96332712ffcb9e59e79d8b359c
def lock_y(self): 'Lock y coordinate at current position' self.lock('y')
Lock y coordinate at current position
src/scrawl/moves/machinery.py
lock_y
astromancer/graphical
0
python
def lock_y(self): self.lock('y')
def lock_y(self): self.lock('y')<|docstring|>Lock y coordinate at current position<|endoftext|>
83852913dcf20b5f16512673a0d4bade61b77527de1db9df5a23cd72de81af45
def free_y(self): 'Release y coordinate lock' self.free('y')
Release y coordinate lock
src/scrawl/moves/machinery.py
free_y
astromancer/graphical
0
python
def free_y(self): self.free('y')
def free_y(self): self.free('y')<|docstring|>Release y coordinate lock<|endoftext|>
d038a84908b912d67cb42b6d468f05d45767bfda9582338f90a8fd9c653d9a9e
def limit(self, xb=None, yb=None): '\n Restrict movement of the artist to a particular interval / box\n\n Parameters\n ----------\n xb\n yb\n\n Returns\n -------\n\n ' if ((xb is None) and (yb is None)): raise ValueError('Need either x, or y limits (or both)') if (xb is not None): (self._xmin, self._xmax) = np.sort(xb) if (yb is not None): (self._ymin, self._ymax) = np.sort(yb)
Restrict movement of the artist to a particular interval / box Parameters ---------- xb yb Returns -------
src/scrawl/moves/machinery.py
limit
astromancer/graphical
0
python
def limit(self, xb=None, yb=None): '\n Restrict movement of the artist to a particular interval / box\n\n Parameters\n ----------\n xb\n yb\n\n Returns\n -------\n\n ' if ((xb is None) and (yb is None)): raise ValueError('Need either x, or y limits (or both)') if (xb is not None): (self._xmin, self._xmax) = np.sort(xb) if (yb is not None): (self._ymin, self._ymax) = np.sort(yb)
def limit(self, xb=None, yb=None): '\n Restrict movement of the artist to a particular interval / box\n\n Parameters\n ----------\n xb\n yb\n\n Returns\n -------\n\n ' if ((xb is None) and (yb is None)): raise ValueError('Need either x, or y limits (or both)') if (xb is not None): (self._xmin, self._xmax) = np.sort(xb) if (yb is not None): (self._ymin, self._ymax) = np.sort(yb)<|docstring|>Restrict movement of the artist to a particular interval / box Parameters ---------- xb yb Returns -------<|endoftext|>
866fcd7d8ca9e491212d0c22bda3653ce11fb159f2f7900313f6d9b3dab6ada3
def link(self, *artists): '\n Link another artist or artist to this one to make them co-moving\n\n Parameters\n ----------\n artists: a sequence of artists that will be linked to this one\n\n Returns\n -------\n\n ' linked = [] for drg in artists: if (not isinstance(drg, MotionInterface)): drg = MotionInterface(drg) linked.append(drg) self.linked.extend(linked) return linked
Link another artist or artist to this one to make them co-moving Parameters ---------- artists: a sequence of artists that will be linked to this one Returns -------
src/scrawl/moves/machinery.py
link
astromancer/graphical
0
python
def link(self, *artists): '\n Link another artist or artist to this one to make them co-moving\n\n Parameters\n ----------\n artists: a sequence of artists that will be linked to this one\n\n Returns\n -------\n\n ' linked = [] for drg in artists: if (not isinstance(drg, MotionInterface)): drg = MotionInterface(drg) linked.append(drg) self.linked.extend(linked) return linked
def link(self, *artists): '\n Link another artist or artist to this one to make them co-moving\n\n Parameters\n ----------\n artists: a sequence of artists that will be linked to this one\n\n Returns\n -------\n\n ' linked = [] for drg in artists: if (not isinstance(drg, MotionInterface)): drg = MotionInterface(drg) linked.append(drg) self.linked.extend(linked) return linked<|docstring|>Link another artist or artist to this one to make them co-moving Parameters ---------- artists: a sequence of artists that will be linked to this one Returns -------<|endoftext|>
f9ba109333b569a2c64cd769267913e1e71585cb093b872cda0c90a30cb50414
def move_to(self, x, y): '\n Shift the artist to the position (x, y) in data coordinates. Note\n the input position will be changed before applying the shift if the\n draggable is restricted\n\n Parameters\n ----------\n x\n y\n\n Returns\n -------\n\n ' (x, y) = self.clip(x, y) offset = np.subtract((x, y), self.ref_point) self.logger.debug('shifting {} to ({:.3f}, {:.3f})', self, x, y) self.move_by(offset) self.logger.debug('offset {} is ({:.3f}, {:.3f})', self, *self.offset) return self.artist
Shift the artist to the position (x, y) in data coordinates. Note the input position will be changed before applying the shift if the draggable is restricted Parameters ---------- x y Returns -------
src/scrawl/moves/machinery.py
move_to
astromancer/graphical
0
python
def move_to(self, x, y): '\n Shift the artist to the position (x, y) in data coordinates. Note\n the input position will be changed before applying the shift if the\n draggable is restricted\n\n Parameters\n ----------\n x\n y\n\n Returns\n -------\n\n ' (x, y) = self.clip(x, y) offset = np.subtract((x, y), self.ref_point) self.logger.debug('shifting {} to ({:.3f}, {:.3f})', self, x, y) self.move_by(offset) self.logger.debug('offset {} is ({:.3f}, {:.3f})', self, *self.offset) return self.artist
def move_to(self, x, y): '\n Shift the artist to the position (x, y) in data coordinates. Note\n the input position will be changed before applying the shift if the\n draggable is restricted\n\n Parameters\n ----------\n x\n y\n\n Returns\n -------\n\n ' (x, y) = self.clip(x, y) offset = np.subtract((x, y), self.ref_point) self.logger.debug('shifting {} to ({:.3f}, {:.3f})', self, x, y) self.move_by(offset) self.logger.debug('offset {} is ({:.3f}, {:.3f})', self, *self.offset) return self.artist<|docstring|>Shift the artist to the position (x, y) in data coordinates. Note the input position will be changed before applying the shift if the draggable is restricted Parameters ---------- x y Returns -------<|endoftext|>
9cf12c01d4ad9f7b1e73701584d09a5270bf51b7fed96ffbb2247b10661948ff
def move_by(self, offset): '\n move the artist by offsetting from initial position\n\n Parameters\n ----------\n offset\n\n Returns\n -------\n\n ' self.offset = offset self.logger.debug('moving: {} {}', self, offset) offset_trans = Affine2D().translate(*self.offset) trans = (offset_trans + self._original_transform) self.artist.set_transform(trans)
move the artist by offsetting from initial position Parameters ---------- offset Returns -------
src/scrawl/moves/machinery.py
move_by
astromancer/graphical
0
python
def move_by(self, offset): '\n move the artist by offsetting from initial position\n\n Parameters\n ----------\n offset\n\n Returns\n -------\n\n ' self.offset = offset self.logger.debug('moving: {} {}', self, offset) offset_trans = Affine2D().translate(*self.offset) trans = (offset_trans + self._original_transform) self.artist.set_transform(trans)
def move_by(self, offset): '\n move the artist by offsetting from initial position\n\n Parameters\n ----------\n offset\n\n Returns\n -------\n\n ' self.offset = offset self.logger.debug('moving: {} {}', self, offset) offset_trans = Affine2D().translate(*self.offset) trans = (offset_trans + self._original_transform) self.artist.set_transform(trans)<|docstring|>move the artist by offsetting from initial position Parameters ---------- offset Returns -------<|endoftext|>
71d07b4208bf5d11f8a076f39e215c5c3d89609fe2a264ee910a7406f233c3ba
def set_animated(self, b=None): 'set animation state for all linked artists' if (b is None): b = (not self.artist.get_animated()) self.artist.set_animated(b) for drg in self.linked: drg.set_animated(b)
set animation state for all linked artists
src/scrawl/moves/machinery.py
set_animated
astromancer/graphical
0
python
def set_animated(self, b=None): if (b is None): b = (not self.artist.get_animated()) self.artist.set_animated(b) for drg in self.linked: drg.set_animated(b)
def set_animated(self, b=None): if (b is None): b = (not self.artist.get_animated()) self.artist.set_animated(b) for drg in self.linked: drg.set_animated(b)<|docstring|>set animation state for all linked artists<|endoftext|>
91b811665ea2e78218c127deebdd37f3b616923ea3c186672987330cecf39112
def __init__(self, artists=None, offsets=None, annotate=True, haunted=False, auto_legend=True, use_blit=True, **legendkw): '\n\n\n Parameters\n ----------\n artists\n offsets\n annotate\n linked\n haunted\n auto_legend\n use_blit\n legendkw\n ' self._ax = None if (artists is None): artists = [] self.selection = None self.ref_point = None self.up = None if (offsets is None): offsets = np.zeros((len(artists), 2)) else: offsets = np.asarray(offsets) if (offsets.ndim < 2): raise ValueError self._original_offsets = offsets self.delta = np.zeros(2) self.draggable = IndexableOrderedDict() ConnectionMixin.__init__(self) self._use_blit = use_blit for (art, offset) in zip(artists, offsets): self.add_artist(art, offset, annotate, haunted) self._draw_count = 0 self.background = None
Parameters ---------- artists offsets annotate linked haunted auto_legend use_blit legendkw
src/scrawl/moves/machinery.py
__init__
astromancer/graphical
0
python
def __init__(self, artists=None, offsets=None, annotate=True, haunted=False, auto_legend=True, use_blit=True, **legendkw): '\n\n\n Parameters\n ----------\n artists\n offsets\n annotate\n linked\n haunted\n auto_legend\n use_blit\n legendkw\n ' self._ax = None if (artists is None): artists = [] self.selection = None self.ref_point = None self.up = None if (offsets is None): offsets = np.zeros((len(artists), 2)) else: offsets = np.asarray(offsets) if (offsets.ndim < 2): raise ValueError self._original_offsets = offsets self.delta = np.zeros(2) self.draggable = IndexableOrderedDict() ConnectionMixin.__init__(self) self._use_blit = use_blit for (art, offset) in zip(artists, offsets): self.add_artist(art, offset, annotate, haunted) self._draw_count = 0 self.background = None
def __init__(self, artists=None, offsets=None, annotate=True, haunted=False, auto_legend=True, use_blit=True, **legendkw): '\n\n\n Parameters\n ----------\n artists\n offsets\n annotate\n linked\n haunted\n auto_legend\n use_blit\n legendkw\n ' self._ax = None if (artists is None): artists = [] self.selection = None self.ref_point = None self.up = None if (offsets is None): offsets = np.zeros((len(artists), 2)) else: offsets = np.asarray(offsets) if (offsets.ndim < 2): raise ValueError self._original_offsets = offsets self.delta = np.zeros(2) self.draggable = IndexableOrderedDict() ConnectionMixin.__init__(self) self._use_blit = use_blit for (art, offset) in zip(artists, offsets): self.add_artist(art, offset, annotate, haunted) self._draw_count = 0 self.background = None<|docstring|>Parameters ---------- artists offsets annotate linked haunted auto_legend use_blit legendkw<|endoftext|>
13af0efe347c46900c2cb945b8e6b5ed84f378054a368a6de0c5f67367ac09d7
def __getitem__(self, key): 'hack for quick indexing' return self.draggable[key]
hack for quick indexing
src/scrawl/moves/machinery.py
__getitem__
astromancer/graphical
0
python
def __getitem__(self, key): return self.draggable[key]
def __getitem__(self, key): return self.draggable[key]<|docstring|>hack for quick indexing<|endoftext|>
f95660cf19b78a6b9d420a25f45eea07c2e46d194d3f584d9056137a7628698b
def add_artist(self, artist, offset=(0, 0), annotate=True, haunted=False, **kws): 'add a draggable artist' (key, drg) = self.artist_factory(artist, offset=offset, annotate=annotate, haunted=haunted, **kws) self.draggable[key] = drg self._original_offsets = np.r_[('0,2', self._original_offsets, offset)] return drg
add a draggable artist
src/scrawl/moves/machinery.py
add_artist
astromancer/graphical
0
python
def add_artist(self, artist, offset=(0, 0), annotate=True, haunted=False, **kws): (key, drg) = self.artist_factory(artist, offset=offset, annotate=annotate, haunted=haunted, **kws) self.draggable[key] = drg self._original_offsets = np.r_[('0,2', self._original_offsets, offset)] return drg
def add_artist(self, artist, offset=(0, 0), annotate=True, haunted=False, **kws): (key, drg) = self.artist_factory(artist, offset=offset, annotate=annotate, haunted=haunted, **kws) self.draggable[key] = drg self._original_offsets = np.r_[('0,2', self._original_offsets, offset)] return drg<|docstring|>add a draggable artist<|endoftext|>
bd055a2b78392a50949cdce7b488eac3b494d66e2c66f3766f2cb55b2d58f380
def lock(self, which): '\n Lock movement along a certain axis so the artist will online move in\n a line.\n ' for (art, drg) in self.draggable.items(): drg.lock(which)
Lock movement along a certain axis so the artist will online move in a line.
src/scrawl/moves/machinery.py
lock
astromancer/graphical
0
python
def lock(self, which): '\n Lock movement along a certain axis so the artist will online move in\n a line.\n ' for (art, drg) in self.draggable.items(): drg.lock(which)
def lock(self, which): '\n Lock movement along a certain axis so the artist will online move in\n a line.\n ' for (art, drg) in self.draggable.items(): drg.lock(which)<|docstring|>Lock movement along a certain axis so the artist will online move in a line.<|endoftext|>
969d984d0c5839d8ab947c5f515cf0fd16cdbba5f561fa0ed7124854265856de
def free(self, which): '\n Free motion along an axis for all artists.\n ' for (art, drg) in self.draggable.items(): drg.free(which)
Free motion along an axis for all artists.
src/scrawl/moves/machinery.py
free
astromancer/graphical
0
python
def free(self, which): '\n \n ' for (art, drg) in self.draggable.items(): drg.free(which)
def free(self, which): '\n \n ' for (art, drg) in self.draggable.items(): drg.free(which)<|docstring|>Free motion along an axis for all artists.<|endoftext|>
da0d81d813c45a586475e5b2b548e350bfdaa4b5ff8b7622b00c83e798c1e47f
def lock_x(self): 'Lock x position' self.lock('x')
Lock x position
src/scrawl/moves/machinery.py
lock_x
astromancer/graphical
0
python
def lock_x(self): self.lock('x')
def lock_x(self): self.lock('x')<|docstring|>Lock x position<|endoftext|>
22f4837f83bfb89616f6b70ae6a7fa84aa05d917bee954001d8e53c23cf0ca94
def free_x(self): 'Free x motion' self.free('x')
Free x motion
src/scrawl/moves/machinery.py
free_x
astromancer/graphical
0
python
def free_x(self): self.free('x')
def free_x(self): self.free('x')<|docstring|>Free x motion<|endoftext|>
cc8d248b3b9294cf1abf096ac892888cb0ae413dc61ca0405c8e6d550057424a
def lock_y(self): 'Lock y position' self.lock('y')
Lock y position
src/scrawl/moves/machinery.py
lock_y
astromancer/graphical
0
python
def lock_y(self): self.lock('y')
def lock_y(self): self.lock('y')<|docstring|>Lock y position<|endoftext|>
dc26784011bae672bf21b9644cca8d09b6a968a634e5342b635ff9919d71a60c
def free_y(self): 'Free y motion' self.free('y')
Free y motion
src/scrawl/moves/machinery.py
free_y
astromancer/graphical
0
python
def free_y(self): self.free('y')
def free_y(self): self.free('y')<|docstring|>Free y motion<|endoftext|>
e994ce10a52b74d0ea3f64faa4dda69de1ddced6f82047f34f320645865830d6
def limit(self, x=None, y=None): '\n Set x and/or y limits for all draggable artists.\n\n Parameters\n ----------\n x\n y\n\n ' self.logger.debug('limit {}, {}', x, y) for (art, drg) in self.draggable.items(): drg.limit(x, y)
Set x and/or y limits for all draggable artists. Parameters ---------- x y
src/scrawl/moves/machinery.py
limit
astromancer/graphical
0
python
def limit(self, x=None, y=None): '\n Set x and/or y limits for all draggable artists.\n\n Parameters\n ----------\n x\n y\n\n ' self.logger.debug('limit {}, {}', x, y) for (art, drg) in self.draggable.items(): drg.limit(x, y)
def limit(self, x=None, y=None): '\n Set x and/or y limits for all draggable artists.\n\n Parameters\n ----------\n x\n y\n\n ' self.logger.debug('limit {}, {}', x, y) for (art, drg) in self.draggable.items(): drg.limit(x, y)<|docstring|>Set x and/or y limits for all draggable artists. Parameters ---------- x y<|endoftext|>
5f361e6d4094e18670c2a5e5da3dc4ce03a86568fd64e9746ed95928c9d0bb4b
def reset(self): 'reset the plot positions to original' self.logger.debug('resetting!') for (draggable, off) in zip(self.draggable.values(), self._original_offsets): self.update(draggable, draggable.ref_point)
reset the plot positions to original
src/scrawl/moves/machinery.py
reset
astromancer/graphical
0
python
def reset(self): self.logger.debug('resetting!') for (draggable, off) in zip(self.draggable.values(), self._original_offsets): self.update(draggable, draggable.ref_point)
def reset(self): self.logger.debug('resetting!') for (draggable, off) in zip(self.draggable.values(), self._original_offsets): self.update(draggable, draggable.ref_point)<|docstring|>reset the plot positions to original<|endoftext|>
2766914ee7daa432b09a219250be9f54389876da32da5f0115296857f8d5ef76
@mpl_connect('button_press_event') def on_click(self, event): 'reset plot on middle mouse' if (event.button == 2): self.reset() else: return
reset plot on middle mouse
src/scrawl/moves/machinery.py
on_click
astromancer/graphical
0
python
@mpl_connect('button_press_event') def on_click(self, event): if (event.button == 2): self.reset() else: return
@mpl_connect('button_press_event') def on_click(self, event): if (event.button == 2): self.reset() else: return<|docstring|>reset plot on middle mouse<|endoftext|>
c1dcaed197ea2f3985ac2d338ad745948d3b338eb55a49d58a36884283c27c53
def _ignore_pick(self, event): 'Filter pick events' if (event.mouseevent.button != 1): return True if (event.artist not in self.draggable): return True if self.selection: self.logger.debug('Multiple picks! ignoring: {}', event.artist) return True return False
Filter pick events
src/scrawl/moves/machinery.py
_ignore_pick
astromancer/graphical
0
python
def _ignore_pick(self, event): if (event.mouseevent.button != 1): return True if (event.artist not in self.draggable): return True if self.selection: self.logger.debug('Multiple picks! ignoring: {}', event.artist) return True return False
def _ignore_pick(self, event): if (event.mouseevent.button != 1): return True if (event.artist not in self.draggable): return True if self.selection: self.logger.debug('Multiple picks! ignoring: {}', event.artist) return True return False<|docstring|>Filter pick events<|endoftext|>
8c02f61da01850c503656a809588e8e20cc22927cd809b605063040f546a165e
@mpl_connect('pick_event') def on_pick(self, event): 'Pick event handler.' if self._ignore_pick(event): return self.logger.debug('picked: {!r}: {}', event.artist, vars(event)) self.selection = event.artist draggable = self.draggable[self.selection] xy_disp = (event.mouseevent.x, event.mouseevent.y) xy_data = self.ax.transData.inverted().transform(xy_disp) self.ref_point = np.subtract(xy_data, draggable.offset) draggable.on_picked(*xy_data) self.add_connection('motion_notify_event', self.on_motion) if self.use_blit: draggable.set_animated(True) draw_list = draggable.update_offset((0, 0)) for art in filter_non_artist(draw_list): art.set_animated(True)
Pick event handler.
src/scrawl/moves/machinery.py
on_pick
astromancer/graphical
0
python
@mpl_connect('pick_event') def on_pick(self, event): if self._ignore_pick(event): return self.logger.debug('picked: {!r}: {}', event.artist, vars(event)) self.selection = event.artist draggable = self.draggable[self.selection] xy_disp = (event.mouseevent.x, event.mouseevent.y) xy_data = self.ax.transData.inverted().transform(xy_disp) self.ref_point = np.subtract(xy_data, draggable.offset) draggable.on_picked(*xy_data) self.add_connection('motion_notify_event', self.on_motion) if self.use_blit: draggable.set_animated(True) draw_list = draggable.update_offset((0, 0)) for art in filter_non_artist(draw_list): art.set_animated(True)
@mpl_connect('pick_event') def on_pick(self, event): if self._ignore_pick(event): return self.logger.debug('picked: {!r}: {}', event.artist, vars(event)) self.selection = event.artist draggable = self.draggable[self.selection] xy_disp = (event.mouseevent.x, event.mouseevent.y) xy_data = self.ax.transData.inverted().transform(xy_disp) self.ref_point = np.subtract(xy_data, draggable.offset) draggable.on_picked(*xy_data) self.add_connection('motion_notify_event', self.on_motion) if self.use_blit: draggable.set_animated(True) draw_list = draggable.update_offset((0, 0)) for art in filter_non_artist(draw_list): art.set_animated(True)<|docstring|>Pick event handler.<|endoftext|>
e3a88597832719b598bf3f7cd41f3c3d85964e5bb409ad34669391136aab2f2c
def on_motion(self, event): '\n Handle movement of the selected artist by the mouse.\n ' if (event.button != 1): return if self.selection: self.logger.debug('dragging: {}', self.selection) draggable = self.draggable[self.selection] xy_disp = (event.x, event.y) xy_data = (x, y) = self.ax.transData.inverted().transform(xy_disp) self.delta = delta = (xy_data - self.ref_point) self.logger.debug('on_motion: delta {}; ref {}', delta, self.ref_point) self.update(draggable, xy_data)
Handle movement of the selected artist by the mouse.
src/scrawl/moves/machinery.py
on_motion
astromancer/graphical
0
python
def on_motion(self, event): '\n \n ' if (event.button != 1): return if self.selection: self.logger.debug('dragging: {}', self.selection) draggable = self.draggable[self.selection] xy_disp = (event.x, event.y) xy_data = (x, y) = self.ax.transData.inverted().transform(xy_disp) self.delta = delta = (xy_data - self.ref_point) self.logger.debug('on_motion: delta {}; ref {}', delta, self.ref_point) self.update(draggable, xy_data)
def on_motion(self, event): '\n \n ' if (event.button != 1): return if self.selection: self.logger.debug('dragging: {}', self.selection) draggable = self.draggable[self.selection] xy_disp = (event.x, event.y) xy_data = (x, y) = self.ax.transData.inverted().transform(xy_disp) self.delta = delta = (xy_data - self.ref_point) self.logger.debug('on_motion: delta {}; ref {}', delta, self.ref_point) self.update(draggable, xy_data)<|docstring|>Handle movement of the selected artist by the mouse.<|endoftext|>
bb5a5f37836f4bbee822db3458d5eeaaca3ca1124645a93570ce630b2df84c2a
@mpl_connect('resize_event') def on_resize(self, event): 'Save the background for blit after canvas resize' self.save_background()
Save the background for blit after canvas resize
src/scrawl/moves/machinery.py
on_resize
astromancer/graphical
0
python
@mpl_connect('resize_event') def on_resize(self, event): self.save_background()
@mpl_connect('resize_event') def on_resize(self, event): self.save_background()<|docstring|>Save the background for blit after canvas resize<|endoftext|>
cbd4947322ea2913de2d75536d43fc93864f641d6b2d088c27d927899a38bf6b
def update(self, draggable, xy_data, draw_on=True): '\n Draw all artists that where changed by the motion\n\n Parameters\n ----------\n draggable\n xy_data\n draw_on\n\n Returns\n -------\n list of artists\n ' draw_list = draggable.update(*xy_data) if draw_on: self.draw(draw_list) return draw_list
Draw all artists that where changed by the motion Parameters ---------- draggable xy_data draw_on Returns ------- list of artists
src/scrawl/moves/machinery.py
update
astromancer/graphical
0
python
def update(self, draggable, xy_data, draw_on=True): '\n Draw all artists that where changed by the motion\n\n Parameters\n ----------\n draggable\n xy_data\n draw_on\n\n Returns\n -------\n list of artists\n ' draw_list = draggable.update(*xy_data) if draw_on: self.draw(draw_list) return draw_list
def update(self, draggable, xy_data, draw_on=True): '\n Draw all artists that where changed by the motion\n\n Parameters\n ----------\n draggable\n xy_data\n draw_on\n\n Returns\n -------\n list of artists\n ' draw_list = draggable.update(*xy_data) if draw_on: self.draw(draw_list) return draw_list<|docstring|>Draw all artists that where changed by the motion Parameters ---------- draggable xy_data draw_on Returns ------- list of artists<|endoftext|>
f39c9c1ac12829cc6af4cebd85f24b7f5b1aa6ab62a984d380a2d2129c18baad
def blit_setup(self, artists=()): '\n Setup canvas for blitting. First make all the artists in the list\n invisible, then redraw the canvas and save, then redraw all the artists.\n ' fig = self.figure artists = list(filter_non_artist(artists)) for art in artists: art.set_animated(True) art.set_visible(False) fig.canvas.draw() background = fig.canvas.copy_from_bbox(fig.bbox) for art in artists: art.draw(fig.canvas.renderer) art.set_animated(False) art.set_visible(True) fig.canvas.blit(fig.bbox) return background
Setup canvas for blitting. First make all the artists in the list invisible, then redraw the canvas and save, then redraw all the artists.
src/scrawl/moves/machinery.py
blit_setup
astromancer/graphical
0
python
def blit_setup(self, artists=()): '\n Setup canvas for blitting. First make all the artists in the list\n invisible, then redraw the canvas and save, then redraw all the artists.\n ' fig = self.figure artists = list(filter_non_artist(artists)) for art in artists: art.set_animated(True) art.set_visible(False) fig.canvas.draw() background = fig.canvas.copy_from_bbox(fig.bbox) for art in artists: art.draw(fig.canvas.renderer) art.set_animated(False) art.set_visible(True) fig.canvas.blit(fig.bbox) return background
def blit_setup(self, artists=()): '\n Setup canvas for blitting. First make all the artists in the list\n invisible, then redraw the canvas and save, then redraw all the artists.\n ' fig = self.figure artists = list(filter_non_artist(artists)) for art in artists: art.set_animated(True) art.set_visible(False) fig.canvas.draw() background = fig.canvas.copy_from_bbox(fig.bbox) for art in artists: art.draw(fig.canvas.renderer) art.set_animated(False) art.set_visible(True) fig.canvas.blit(fig.bbox) return background<|docstring|>Setup canvas for blitting. First make all the artists in the list invisible, then redraw the canvas and save, then redraw all the artists.<|endoftext|>
6636859b46ce149f57cf75be0e67ee80a3c7de8519a002eb564fc995f4f3cfda
def finalize_children(self): '\n Sort the children (if any), and set properties for easy checking\n # they are at the beginning or end of the line.\n ' self.children = {k: v for (k, v) in sorted(self._children.items(), key=self._sorting)} if self.children: keys = list(self.children.keys()) self.children[keys[0]].first = True self.children[keys[(- 1)]].last = True for child in self.children.values(): child.finalize_children()
Sort the children (if any), and set properties for easy checking # they are at the beginning or end of the line.
sanic_routing/tree.py
finalize_children
wochinge/sanic-routing
8
python
def finalize_children(self): '\n Sort the children (if any), and set properties for easy checking\n # they are at the beginning or end of the line.\n ' self.children = {k: v for (k, v) in sorted(self._children.items(), key=self._sorting)} if self.children: keys = list(self.children.keys()) self.children[keys[0]].first = True self.children[keys[(- 1)]].last = True for child in self.children.values(): child.finalize_children()
def finalize_children(self): '\n Sort the children (if any), and set properties for easy checking\n # they are at the beginning or end of the line.\n ' self.children = {k: v for (k, v) in sorted(self._children.items(), key=self._sorting)} if self.children: keys = list(self.children.keys()) self.children[keys[0]].first = True self.children[keys[(- 1)]].last = True for child in self.children.values(): child.finalize_children()<|docstring|>Sort the children (if any), and set properties for easy checking # they are at the beginning or end of the line.<|endoftext|>
0c5e93216dc2bbcfb6ecbdc460ef1b1228e88e022702929d7f305bb454af7512
def display(self) -> None: '\n Visual display of the tree of nodes\n ' logger.info((((' ' * 4) * self.level) + str(self))) for child in self.children.values(): child.display()
Visual display of the tree of nodes
sanic_routing/tree.py
display
wochinge/sanic-routing
8
python
def display(self) -> None: '\n \n ' logger.info((((' ' * 4) * self.level) + str(self))) for child in self.children.values(): child.display()
def display(self) -> None: '\n \n ' logger.info((((' ' * 4) * self.level) + str(self))) for child in self.children.values(): child.display()<|docstring|>Visual display of the tree of nodes<|endoftext|>
5718551a9e9e91c44ffa9c39f94bd078b362b460d96fa2fe35e7c68a7f8d5362
def _inject_param_check(self, location, indent, idx): '\n Try and cast relevant path segments.\n ' lines = [Line('try:', indent), Line(f"basket['__matches__'][{idx}] = {self.param.cast.__name__}(parts[{idx}])", (indent + 1)), Line('except ValueError:', indent), Line('pass', (indent + 1)), Line('else:', indent)] if self.unquote: lines.append(Line(f"basket['__matches__'][{idx}] = unquote(basket['__matches__'][{idx}])", (indent + 1))) self.base_indent += 1 location.extend(lines)
Try and cast relevant path segments.
sanic_routing/tree.py
_inject_param_check
wochinge/sanic-routing
8
python
def _inject_param_check(self, location, indent, idx): '\n \n ' lines = [Line('try:', indent), Line(f"basket['__matches__'][{idx}] = {self.param.cast.__name__}(parts[{idx}])", (indent + 1)), Line('except ValueError:', indent), Line('pass', (indent + 1)), Line('else:', indent)] if self.unquote: lines.append(Line(f"basket['__matches__'][{idx}] = unquote(basket['__matches__'][{idx}])", (indent + 1))) self.base_indent += 1 location.extend(lines)
def _inject_param_check(self, location, indent, idx): '\n \n ' lines = [Line('try:', indent), Line(f"basket['__matches__'][{idx}] = {self.param.cast.__name__}(parts[{idx}])", (indent + 1)), Line('except ValueError:', indent), Line('pass', (indent + 1)), Line('else:', indent)] if self.unquote: lines.append(Line(f"basket['__matches__'][{idx}] = unquote(basket['__matches__'][{idx}])", (indent + 1))) self.base_indent += 1 location.extend(lines)<|docstring|>Try and cast relevant path segments.<|endoftext|>
c8c8634d07f963ab3992f1d42645d891b8e515ab6dc0613bfaccb35cf49578f8
@staticmethod def _inject_method_check(location, indent, group): '\n Sometimes we need to check the routing methods inside the generated src\n ' for (i, route) in enumerate(group.routes): if_stmt = ('if' if (i == 0) else 'elif') location.extend([Line(f'{if_stmt} method in {route.methods}:', indent), Line(f'route_idx = {i}', (indent + 1))]) location.extend([Line('else:', indent), Line('raise NoMethod', (indent + 1))])
Sometimes we need to check the routing methods inside the generated src
sanic_routing/tree.py
_inject_method_check
wochinge/sanic-routing
8
python
@staticmethod def _inject_method_check(location, indent, group): '\n \n ' for (i, route) in enumerate(group.routes): if_stmt = ('if' if (i == 0) else 'elif') location.extend([Line(f'{if_stmt} method in {route.methods}:', indent), Line(f'route_idx = {i}', (indent + 1))]) location.extend([Line('else:', indent), Line('raise NoMethod', (indent + 1))])
@staticmethod def _inject_method_check(location, indent, group): '\n \n ' for (i, route) in enumerate(group.routes): if_stmt = ('if' if (i == 0) else 'elif') location.extend([Line(f'{if_stmt} method in {route.methods}:', indent), Line(f'route_idx = {i}', (indent + 1))]) location.extend([Line('else:', indent), Line('raise NoMethod', (indent + 1))])<|docstring|>Sometimes we need to check the routing methods inside the generated src<|endoftext|>
425d740d36b9b6fcc7799f7a22762558ba8c4c4b077aa27e7c6b8b40d9cc57ee
def _inject_return(self, location, indent, route_idx, group): '\n The return statement for the node if needed\n ' routes = ('regex_routes' if group.regex else 'dynamic_routes') route_return = ('' if group.router.stacking else f'[{route_idx}]') location.extend([Line(f'# Return {self.ident}', indent), Line(f'return router.{routes}[{group.segments}]{route_return}, basket', indent)])
The return statement for the node if needed
sanic_routing/tree.py
_inject_return
wochinge/sanic-routing
8
python
def _inject_return(self, location, indent, route_idx, group): '\n \n ' routes = ('regex_routes' if group.regex else 'dynamic_routes') route_return = ( if group.router.stacking else f'[{route_idx}]') location.extend([Line(f'# Return {self.ident}', indent), Line(f'return router.{routes}[{group.segments}]{route_return}, basket', indent)])
def _inject_return(self, location, indent, route_idx, group): '\n \n ' routes = ('regex_routes' if group.regex else 'dynamic_routes') route_return = ( if group.router.stacking else f'[{route_idx}]') location.extend([Line(f'# Return {self.ident}', indent), Line(f'return router.{routes}[{group.segments}]{route_return}, basket', indent)])<|docstring|>The return statement for the node if needed<|endoftext|>
ba95f5f6870ae8edd9878c3c93e750d2f271e893cf058c10b59abf901f3937ea
def _inject_requirements(self, location, indent, group): '\n Check any extra checks needed for a route. In path routing, for exampe,\n this is used for matching vhosts.\n ' for (k, route) in enumerate(group): conditional = ('if' if (k == 0) else 'elif') location.extend([Line(f'{conditional} extra == {route.requirements} and method in {route.methods}:', indent), Line(f'route_idx = {k}', (indent + 1))]) location.extend([Line('else:', indent), Line('raise NotFound', (indent + 1))])
Check any extra checks needed for a route. In path routing, for exampe, this is used for matching vhosts.
sanic_routing/tree.py
_inject_requirements
wochinge/sanic-routing
8
python
def _inject_requirements(self, location, indent, group): '\n Check any extra checks needed for a route. In path routing, for exampe,\n this is used for matching vhosts.\n ' for (k, route) in enumerate(group): conditional = ('if' if (k == 0) else 'elif') location.extend([Line(f'{conditional} extra == {route.requirements} and method in {route.methods}:', indent), Line(f'route_idx = {k}', (indent + 1))]) location.extend([Line('else:', indent), Line('raise NotFound', (indent + 1))])
def _inject_requirements(self, location, indent, group): '\n Check any extra checks needed for a route. In path routing, for exampe,\n this is used for matching vhosts.\n ' for (k, route) in enumerate(group): conditional = ('if' if (k == 0) else 'elif') location.extend([Line(f'{conditional} extra == {route.requirements} and method in {route.methods}:', indent), Line(f'route_idx = {k}', (indent + 1))]) location.extend([Line('else:', indent), Line('raise NotFound', (indent + 1))])<|docstring|>Check any extra checks needed for a route. In path routing, for exampe, this is used for matching vhosts.<|endoftext|>
ea61de95fb9b24af9e72444ee9ce0bd8008ad61040bc57a03b659f939e18f924
def _inject_regex(self, location, indent, group): '\n For any path matching that happens in the course of the tree (anything\n that has a path matching--<path:path>--or similar matching with regex\n delimiter)\n ' location.extend([Line(f'match = router.matchers[{group.pattern_idx}].match(path)', indent), Line('if match:', indent), Line("basket['__params__'] = match.groupdict()", (indent + 1))])
For any path matching that happens in the course of the tree (anything that has a path matching--<path:path>--or similar matching with regex delimiter)
sanic_routing/tree.py
_inject_regex
wochinge/sanic-routing
8
python
def _inject_regex(self, location, indent, group): '\n For any path matching that happens in the course of the tree (anything\n that has a path matching--<path:path>--or similar matching with regex\n delimiter)\n ' location.extend([Line(f'match = router.matchers[{group.pattern_idx}].match(path)', indent), Line('if match:', indent), Line("basket['__params__'] = match.groupdict()", (indent + 1))])
def _inject_regex(self, location, indent, group): '\n For any path matching that happens in the course of the tree (anything\n that has a path matching--<path:path>--or similar matching with regex\n delimiter)\n ' location.extend([Line(f'match = router.matchers[{group.pattern_idx}].match(path)', indent), Line('if match:', indent), Line("basket['__params__'] = match.groupdict()", (indent + 1))])<|docstring|>For any path matching that happens in the course of the tree (anything that has a path matching--<path:path>--or similar matching with regex delimiter)<|endoftext|>
438343ba202e5d289d91cd4e4b3ab111a8a9ca88df96c52043dc239538fe5f4a
def _sorting(self, item) -> t.Tuple[(bool, bool, int, int, int, bool, str)]: '\n Primarily use to sort nodes to determine the order of the nested tree\n ' (key, child) = item type_ = 0 if child.dynamic: type_ = child.param.priority return (bool(child.groups), child.dynamic, (type_ * (- 1)), (child.depth * (- 1)), len(child._children), (not bool((child.groups and any((group.regex for group in child.groups))))), key)
Primarily use to sort nodes to determine the order of the nested tree
sanic_routing/tree.py
_sorting
wochinge/sanic-routing
8
python
def _sorting(self, item) -> t.Tuple[(bool, bool, int, int, int, bool, str)]: '\n \n ' (key, child) = item type_ = 0 if child.dynamic: type_ = child.param.priority return (bool(child.groups), child.dynamic, (type_ * (- 1)), (child.depth * (- 1)), len(child._children), (not bool((child.groups and any((group.regex for group in child.groups))))), key)
def _sorting(self, item) -> t.Tuple[(bool, bool, int, int, int, bool, str)]: '\n \n ' (key, child) = item type_ = 0 if child.dynamic: type_ = child.param.priority return (bool(child.groups), child.dynamic, (type_ * (- 1)), (child.depth * (- 1)), len(child._children), (not bool((child.groups and any((group.regex for group in child.groups))))), key)<|docstring|>Primarily use to sort nodes to determine the order of the nested tree<|endoftext|>
9bd18b25892b462040b7998911e16006225ceda573e2c5e6ad618cdc24525dc8
def _group_sorting(self, item) -> t.Tuple[(int, ...)]: '\n When multiple RouteGroups terminate on the same node, we want to\n evaluate them based upon the priority of the param matching types\n ' def get_type(segment): type_ = 0 if segment.startswith('<'): key = segment[1:(- 1)] if (':' in key): (key, param_type) = key.split(':', 1) try: type_ = list(self.router.regex_types.keys()).index(param_type) except ValueError: type_ = len(list(self.router.regex_types.keys())) return (type_ * (- 1)) segments = tuple(map(get_type, item.parts)) return segments
When multiple RouteGroups terminate on the same node, we want to evaluate them based upon the priority of the param matching types
sanic_routing/tree.py
_group_sorting
wochinge/sanic-routing
8
python
def _group_sorting(self, item) -> t.Tuple[(int, ...)]: '\n When multiple RouteGroups terminate on the same node, we want to\n evaluate them based upon the priority of the param matching types\n ' def get_type(segment): type_ = 0 if segment.startswith('<'): key = segment[1:(- 1)] if (':' in key): (key, param_type) = key.split(':', 1) try: type_ = list(self.router.regex_types.keys()).index(param_type) except ValueError: type_ = len(list(self.router.regex_types.keys())) return (type_ * (- 1)) segments = tuple(map(get_type, item.parts)) return segments
def _group_sorting(self, item) -> t.Tuple[(int, ...)]: '\n When multiple RouteGroups terminate on the same node, we want to\n evaluate them based upon the priority of the param matching types\n ' def get_type(segment): type_ = 0 if segment.startswith('<'): key = segment[1:(- 1)] if (':' in key): (key, param_type) = key.split(':', 1) try: type_ = list(self.router.regex_types.keys()).index(param_type) except ValueError: type_ = len(list(self.router.regex_types.keys())) return (type_ * (- 1)) segments = tuple(map(get_type, item.parts)) return segments<|docstring|>When multiple RouteGroups terminate on the same node, we want to evaluate them based upon the priority of the param matching types<|endoftext|>
090ad79231c5db1504d2677adfe44f5a08c956c4de230ab3d9b21f586b4ad30c
def generate(self, groups: t.Iterable[RouteGroup]) -> None: '\n Arrange RouteGroups into hierarchical nodes and arrange them into\n a tree\n ' for group in groups: current = self.root for (level, part) in enumerate(group.parts): param = None dynamic = part.startswith('<') if dynamic: if (not REGEX_PARAM_NAME.match(part)): raise ValueError(f'Invalid declaration: {part}') part = f'__dynamic__:{group.params[level].label}' param = group.params[level] if (part not in current._children): child = Node(part=part, parent=current, router=self.router, param=param) child.dynamic = dynamic current.add_child(child) current = current._children[part] current.level = (level + 1) current.groups.append(group) current.unquote = (current.unquote or group.unquote)
Arrange RouteGroups into hierarchical nodes and arrange them into a tree
sanic_routing/tree.py
generate
wochinge/sanic-routing
8
python
def generate(self, groups: t.Iterable[RouteGroup]) -> None: '\n Arrange RouteGroups into hierarchical nodes and arrange them into\n a tree\n ' for group in groups: current = self.root for (level, part) in enumerate(group.parts): param = None dynamic = part.startswith('<') if dynamic: if (not REGEX_PARAM_NAME.match(part)): raise ValueError(f'Invalid declaration: {part}') part = f'__dynamic__:{group.params[level].label}' param = group.params[level] if (part not in current._children): child = Node(part=part, parent=current, router=self.router, param=param) child.dynamic = dynamic current.add_child(child) current = current._children[part] current.level = (level + 1) current.groups.append(group) current.unquote = (current.unquote or group.unquote)
def generate(self, groups: t.Iterable[RouteGroup]) -> None: '\n Arrange RouteGroups into hierarchical nodes and arrange them into\n a tree\n ' for group in groups: current = self.root for (level, part) in enumerate(group.parts): param = None dynamic = part.startswith('<') if dynamic: if (not REGEX_PARAM_NAME.match(part)): raise ValueError(f'Invalid declaration: {part}') part = f'__dynamic__:{group.params[level].label}' param = group.params[level] if (part not in current._children): child = Node(part=part, parent=current, router=self.router, param=param) child.dynamic = dynamic current.add_child(child) current = current._children[part] current.level = (level + 1) current.groups.append(group) current.unquote = (current.unquote or group.unquote)<|docstring|>Arrange RouteGroups into hierarchical nodes and arrange them into a tree<|endoftext|>
eb12e1a307aa17dfdd1086928786b458f75c1b9af8e32f3d6d39eaebc5c44e7a
def display(self) -> None: '\n Debug tool to output visual of the tree\n ' self.root.display()
Debug tool to output visual of the tree
sanic_routing/tree.py
display
wochinge/sanic-routing
8
python
def display(self) -> None: '\n \n ' self.root.display()
def display(self) -> None: '\n \n ' self.root.display()<|docstring|>Debug tool to output visual of the tree<|endoftext|>
1555e8df4c6a0c00436ad76741db6a2d5c5431a0a7126d7b43dce29492b36136
def summon_blocks(board): 'Place 1-8 circles in random places on the speed board' for _ in range(random.randint(1, 8)): x = random.randint(0, 4) y = random.randint(0, 4) while (board[x][y] != 'g'): x = random.randint(0, 4) y = random.randint(0, 4) board[x][y] = 'b' return board
Place 1-8 circles in random places on the speed board
src/main.py
summon_blocks
andrewthederp/Documatic-Hackathon
1
python
def summon_blocks(board): for _ in range(random.randint(1, 8)): x = random.randint(0, 4) y = random.randint(0, 4) while (board[x][y] != 'g'): x = random.randint(0, 4) y = random.randint(0, 4) board[x][y] = 'b' return board
def summon_blocks(board): for _ in range(random.randint(1, 8)): x = random.randint(0, 4) y = random.randint(0, 4) while (board[x][y] != 'g'): x = random.randint(0, 4) y = random.randint(0, 4) board[x][y] = 'b' return board<|docstring|>Place 1-8 circles in random places on the speed board<|endoftext|>
1cab39249bdcbbc794b17a55fb3dd80c1bf256dfd0194835e8e777e7496d93ac
def convert(coordinates): 'Convert the speed coordinates into x, y coordinates, this way you could do both "a1" or "1a' for coor in coordinates.split(' '): if (len(coor) != 2): continue coor = coor.lower() if coor[0].isalpha(): digit = coor[1:] letter = coor[0] else: digit = coor[:(- 1)] letter = coor[(- 1)] if (not digit.isdecimal()): continue x = (int(digit) - 1) y = (ord(letter) - ord('a')) if ((not (x in range(5))) or (not (y in range(5)))): continue (yield (x, y))
Convert the speed coordinates into x, y coordinates, this way you could do both "a1" or "1a
src/main.py
convert
andrewthederp/Documatic-Hackathon
1
python
def convert(coordinates): for coor in coordinates.split(' '): if (len(coor) != 2): continue coor = coor.lower() if coor[0].isalpha(): digit = coor[1:] letter = coor[0] else: digit = coor[:(- 1)] letter = coor[(- 1)] if (not digit.isdecimal()): continue x = (int(digit) - 1) y = (ord(letter) - ord('a')) if ((not (x in range(5))) or (not (y in range(5)))): continue (yield (x, y))
def convert(coordinates): for coor in coordinates.split(' '): if (len(coor) != 2): continue coor = coor.lower() if coor[0].isalpha(): digit = coor[1:] letter = coor[0] else: digit = coor[:(- 1)] letter = coor[(- 1)] if (not digit.isdecimal()): continue x = (int(digit) - 1) y = (ord(letter) - ord('a')) if ((not (x in range(5))) or (not (y in range(5)))): continue (yield (x, y))<|docstring|>Convert the speed coordinates into x, y coordinates, this way you could do both "a1" or "1a<|endoftext|>
3088f4669f1596894bf1a77ded1311b44b7d524a684f119a2602740048ed49d6
def format_board(board): 'A nested list formater, uses a dict to turn letters into emojis' lst = [] dct = {'g': '⬛', 'G': '🟩', 'q': '🟦', 'p': '😳', 'L': 'πŸ“', 'z': '🧟', 'e': random.choice(['🌎', '🌍', '🌏']), 'B': 'πŸ’₯', 's': 'πŸš€', 'a': 'πŸ‘Ύ', 'o': 'πŸ’£', 'w': 'πŸŸ₯', 'x': '❌', ' ': '⬛', 'u': '⏫', 'l': 'βͺ', 'r': '⏩', 'd': '⏬', 'b': 'πŸ”²'} for row in board: lst.append(''.join([dct[i] for i in row])) return '\n'.join(lst)
A nested list formater, uses a dict to turn letters into emojis
src/main.py
format_board
andrewthederp/Documatic-Hackathon
1
python
def format_board(board): lst = [] dct = {'g': '⬛', 'G': '🟩', 'q': '🟦', 'p': '😳', 'L': 'πŸ“', 'z': '🧟', 'e': random.choice(['🌎', '🌍', '🌏']), 'B': 'πŸ’₯', 's': 'πŸš€', 'a': 'πŸ‘Ύ', 'o': 'πŸ’£', 'w': 'πŸŸ₯', 'x': '❌', ' ': '⬛', 'u': '⏫', 'l': 'βͺ', 'r': '⏩', 'd': '⏬', 'b': 'πŸ”²'} for row in board: lst.append(.join([dct[i] for i in row])) return '\n'.join(lst)
def format_board(board): lst = [] dct = {'g': '⬛', 'G': '🟩', 'q': '🟦', 'p': '😳', 'L': 'πŸ“', 'z': '🧟', 'e': random.choice(['🌎', '🌍', '🌏']), 'B': 'πŸ’₯', 's': 'πŸš€', 'a': 'πŸ‘Ύ', 'o': 'πŸ’£', 'w': 'πŸŸ₯', 'x': '❌', ' ': '⬛', 'u': '⏫', 'l': 'βͺ', 'r': '⏩', 'd': '⏬', 'b': 'πŸ”²'} for row in board: lst.append(.join([dct[i] for i in row])) return '\n'.join(lst)<|docstring|>A nested list formater, uses a dict to turn letters into emojis<|endoftext|>
a3ad8a7d9d34f698f61e6a1e65522e9a5be73bcd6ad8f776d09cfc8485b0ed9f
def format_speed_board(board): 'Speed board requires coordinates a boarder so i made a different function for it' dct = {'g': '⬛', 'b': 'b'} for i in range(1, 6): dct[i] = f'{i}️⃣' lst = [f':stop_button::regional_indicator_a::regional_indicator_b::regional_indicator_c::regional_indicator_d::regional_indicator_e:'] for (num, row) in enumerate(board, start=1): lst.append((dct[num] + ''.join([(dct[column] if (column != 'b') else random.choice(['πŸ”΄', '🟠', '🟑', '🟒', 'πŸ”΅', '🟣', '🟀'])) for column in row]))) return '\n'.join(lst)
Speed board requires coordinates a boarder so i made a different function for it
src/main.py
format_speed_board
andrewthederp/Documatic-Hackathon
1
python
def format_speed_board(board): dct = {'g': '⬛', 'b': 'b'} for i in range(1, 6): dct[i] = f'{i}️⃣' lst = [f':stop_button::regional_indicator_a::regional_indicator_b::regional_indicator_c::regional_indicator_d::regional_indicator_e:'] for (num, row) in enumerate(board, start=1): lst.append((dct[num] + .join([(dct[column] if (column != 'b') else random.choice(['πŸ”΄', '🟠', '🟑', '🟒', 'πŸ”΅', '🟣', '🟀'])) for column in row]))) return '\n'.join(lst)
def format_speed_board(board): dct = {'g': '⬛', 'b': 'b'} for i in range(1, 6): dct[i] = f'{i}️⃣' lst = [f':stop_button::regional_indicator_a::regional_indicator_b::regional_indicator_c::regional_indicator_d::regional_indicator_e:'] for (num, row) in enumerate(board, start=1): lst.append((dct[num] + .join([(dct[column] if (column != 'b') else random.choice(['πŸ”΄', '🟠', '🟑', '🟒', 'πŸ”΅', '🟣', '🟀'])) for column in row]))) return '\n'.join(lst)<|docstring|>Speed board requires coordinates a boarder so i made a different function for it<|endoftext|>
1e9f510237a3f5ea9a35bacfeee7983bae5c2fc323484efac564335d927e6398
def check_zombie_collides(board, bullets, enemies, score): 'Check if a zombie collided with a bullet' for enemy in enemies: for bullet in bullets: collide = False try: if (bullet.index == enemy.index): board[bullet.index[0]][bullet.index[1]] = 'G' collide = True elif (bullet.index == [(enemy.index[0] + 1), enemy.index[1]]): board[enemy.index[0]][enemy.index[1]] = 'G' board[(enemy.index[0] + 1)][enemy.index[1]] = 'G' collide = True elif (bullet.index == [(enemy.index[0] - 1), enemy.index[1]]): board[enemy.index[0]][enemy.index[1]] = 'G' board[(enemy.index[0] - 1)][enemy.index[1]] = 'G' collide = True elif (bullet.index == [enemy.index[0], (enemy.index[1] + 1)]): board[enemy.index[0]][enemy.index[1]] = 'G' board[enemy.index[0]][(enemy.index[1] + 1)] = 'G' collide = True elif (bullet.index == [enemy.index[0], (enemy.index[1] - 1)]): board[enemy.index[0]][enemy.index[1]] = 'G' board[enemy.index[0]][(enemy.index[1] - 1)] = 'G' collide = True except IndexError: collide = True if collide: try: bullets.remove(bullet) except ValueError: pass try: enemies.remove(enemy) except ValueError: pass score += 1 return (board, bullets, enemies, score)
Check if a zombie collided with a bullet
src/main.py
check_zombie_collides
andrewthederp/Documatic-Hackathon
1
python
def check_zombie_collides(board, bullets, enemies, score): for enemy in enemies: for bullet in bullets: collide = False try: if (bullet.index == enemy.index): board[bullet.index[0]][bullet.index[1]] = 'G' collide = True elif (bullet.index == [(enemy.index[0] + 1), enemy.index[1]]): board[enemy.index[0]][enemy.index[1]] = 'G' board[(enemy.index[0] + 1)][enemy.index[1]] = 'G' collide = True elif (bullet.index == [(enemy.index[0] - 1), enemy.index[1]]): board[enemy.index[0]][enemy.index[1]] = 'G' board[(enemy.index[0] - 1)][enemy.index[1]] = 'G' collide = True elif (bullet.index == [enemy.index[0], (enemy.index[1] + 1)]): board[enemy.index[0]][enemy.index[1]] = 'G' board[enemy.index[0]][(enemy.index[1] + 1)] = 'G' collide = True elif (bullet.index == [enemy.index[0], (enemy.index[1] - 1)]): board[enemy.index[0]][enemy.index[1]] = 'G' board[enemy.index[0]][(enemy.index[1] - 1)] = 'G' collide = True except IndexError: collide = True if collide: try: bullets.remove(bullet) except ValueError: pass try: enemies.remove(enemy) except ValueError: pass score += 1 return (board, bullets, enemies, score)
def check_zombie_collides(board, bullets, enemies, score): for enemy in enemies: for bullet in bullets: collide = False try: if (bullet.index == enemy.index): board[bullet.index[0]][bullet.index[1]] = 'G' collide = True elif (bullet.index == [(enemy.index[0] + 1), enemy.index[1]]): board[enemy.index[0]][enemy.index[1]] = 'G' board[(enemy.index[0] + 1)][enemy.index[1]] = 'G' collide = True elif (bullet.index == [(enemy.index[0] - 1), enemy.index[1]]): board[enemy.index[0]][enemy.index[1]] = 'G' board[(enemy.index[0] - 1)][enemy.index[1]] = 'G' collide = True elif (bullet.index == [enemy.index[0], (enemy.index[1] + 1)]): board[enemy.index[0]][enemy.index[1]] = 'G' board[enemy.index[0]][(enemy.index[1] + 1)] = 'G' collide = True elif (bullet.index == [enemy.index[0], (enemy.index[1] - 1)]): board[enemy.index[0]][enemy.index[1]] = 'G' board[enemy.index[0]][(enemy.index[1] - 1)] = 'G' collide = True except IndexError: collide = True if collide: try: bullets.remove(bullet) except ValueError: pass try: enemies.remove(enemy) except ValueError: pass score += 1 return (board, bullets, enemies, score)<|docstring|>Check if a zombie collided with a bullet<|endoftext|>
faa05081c46625772a60a7f7f29ef16d9b3847225536704e07d904872c101ddc
async def scene_1(ctx, msg): 'Scene 1, played when you use the zombie command' embed = discord.Embed(title='Chapter 1: What happened', description=f'**???:** *WAKE UP KID*', color=discord.Color.dark_theme()) (await msg.edit(embed=embed)) (await asyncio.sleep(1)) embed.description += f''' **{ctx.author.display_name}:** *what's happening... wait Raphael? what happened?*''' (await msg.edit(embed=embed)) (await asyncio.sleep(2)) embed.description += '\n**Raphael:** *ZOMBIES ARE SURROINDING US, TAKE THIS GUN*' (await msg.edit(embed=embed)) (await asyncio.sleep(1.5)) embed.description += f''' **{ctx.author.display_name}:** *AAAAAAAAAA, THE ZOMBIES ARE EVERYWHERE!*''' (await msg.edit(embed=embed)) (await ctx.send("__**Instructions:**__\nThis is you: 😳\nThese are bullets: πŸ“\nThese are zombies: 🧟\n\n**How to play:** wait till all the reactions have been added, then react to reactions pointing in the direction you want to shoot a bullet in, make sure the zombies don't touch you and goodluck!")) (await asyncio.sleep(0.5))
Scene 1, played when you use the zombie command
src/main.py
scene_1
andrewthederp/Documatic-Hackathon
1
python
async def scene_1(ctx, msg): embed = discord.Embed(title='Chapter 1: What happened', description=f'**???:** *WAKE UP KID*', color=discord.Color.dark_theme()) (await msg.edit(embed=embed)) (await asyncio.sleep(1)) embed.description += f' **{ctx.author.display_name}:** *what's happening... wait Raphael? what happened?*' (await msg.edit(embed=embed)) (await asyncio.sleep(2)) embed.description += '\n**Raphael:** *ZOMBIES ARE SURROINDING US, TAKE THIS GUN*' (await msg.edit(embed=embed)) (await asyncio.sleep(1.5)) embed.description += f' **{ctx.author.display_name}:** *AAAAAAAAAA, THE ZOMBIES ARE EVERYWHERE!*' (await msg.edit(embed=embed)) (await ctx.send("__**Instructions:**__\nThis is you: 😳\nThese are bullets: πŸ“\nThese are zombies: 🧟\n\n**How to play:** wait till all the reactions have been added, then react to reactions pointing in the direction you want to shoot a bullet in, make sure the zombies don't touch you and goodluck!")) (await asyncio.sleep(0.5))
async def scene_1(ctx, msg): embed = discord.Embed(title='Chapter 1: What happened', description=f'**???:** *WAKE UP KID*', color=discord.Color.dark_theme()) (await msg.edit(embed=embed)) (await asyncio.sleep(1)) embed.description += f' **{ctx.author.display_name}:** *what's happening... wait Raphael? what happened?*' (await msg.edit(embed=embed)) (await asyncio.sleep(2)) embed.description += '\n**Raphael:** *ZOMBIES ARE SURROINDING US, TAKE THIS GUN*' (await msg.edit(embed=embed)) (await asyncio.sleep(1.5)) embed.description += f' **{ctx.author.display_name}:** *AAAAAAAAAA, THE ZOMBIES ARE EVERYWHERE!*' (await msg.edit(embed=embed)) (await ctx.send("__**Instructions:**__\nThis is you: 😳\nThese are bullets: πŸ“\nThese are zombies: 🧟\n\n**How to play:** wait till all the reactions have been added, then react to reactions pointing in the direction you want to shoot a bullet in, make sure the zombies don't touch you and goodluck!")) (await asyncio.sleep(0.5))<|docstring|>Scene 1, played when you use the zombie command<|endoftext|>
17eb199e9b26c8c715410e05f3c7695f15b3b809f04191cf936a12145fd991df
async def scene_2(ctx, msg): 'Scene 2, played when you use the spaceshooter command' embed = discord.Embed(title='Chapter 2: The spaceship', description='', color=discord.Color.dark_theme()) (await msg.edit(embed=embed)) (await asyncio.sleep(0.5)) embed.description = '**John:** *THERE ARE SO MANY ZOMBIES, WE NEED TO GO NOW*' (await msg.edit(embed=embed)) (await asyncio.sleep(1)) embed.description += "\n**Raphael:** *CMON, LET'S GO, ADAM PROBABLY FINISHED WORKING ON THE SPACESHIP*" (await msg.edit(embed=embed)) (await asyncio.sleep(1.5)) embed.description += f''' **{ctx.author.display_name}:** *??? WHAT SPACESHIP, CAN ANYONE PLEASE EXPLAIN TO ME WHAT'S HAPPENING*''' (await msg.edit(embed=embed)) for i in range(1, 7): (await msg.edit(embed=discord.Embed(title='Chapter 2: The spaceship', description=((embed.description + '\n') + ('.' * (i if (i < 4) else (i - 3)))), color=discord.Color.dark_theme()))) (await asyncio.sleep(0.3)) embed.description += "\n**Raphael:** *okay, we are safe **for now**, how's the ship's status Adam?*" (await msg.edit(embed=embed)) (await asyncio.sleep(1.5)) embed.description += '\n**Adam:** *I was able to fix the spaceship for the most part but the spaceship could only have 4 people onboard, someone has to be left behind...*' (await msg.edit(embed=embed)) (await asyncio.sleep(2.5)) embed.description += '\n**John:** *I will do it, it was a great run guys but this is where my story ends, goodluck!*' (await msg.edit(embed=embed)) (await asyncio.sleep(3)) bord = [(['g'] * 7) for i in range(7)] bord[3][0] = 'e' index = [3, 1] bord[index[0]][index[1]] = 's' for i in range(5): embed = discord.Embed(title='Chapter 2: The spaceship', description=format_board(bord), color=discord.Color.dark_theme()) (await msg.edit(embed=embed)) bord[index[0]][index[1]] = 'g' index[1] += 1 if (i == 2): bord[3][0] = 'B' bord[index[0]][index[1]] = 's' (await asyncio.sleep(0.5)) (await ctx.send("__**Part 2:**__ you and the rest of the group were able to leave earth just in time before it (for some reason) dramatically exploded, now that you're in space a new threat arises **aliens**\n**How to play:** The goal is to get the highest score possible, move right or left then press ⏹ to shoot a laser, the higher your score the higher you'll be on the leaderboard\n\nif you get hit by get hit by an alien you'll loose a life (you have 3 lifes), goodluck!\n\nThis is you: πŸš€\nThese are your bullets: πŸ“\nThese are aliens: πŸ‘Ύ"))
Scene 2, played when you use the spaceshooter command
src/main.py
scene_2
andrewthederp/Documatic-Hackathon
1
python
async def scene_2(ctx, msg): embed = discord.Embed(title='Chapter 2: The spaceship', description=, color=discord.Color.dark_theme()) (await msg.edit(embed=embed)) (await asyncio.sleep(0.5)) embed.description = '**John:** *THERE ARE SO MANY ZOMBIES, WE NEED TO GO NOW*' (await msg.edit(embed=embed)) (await asyncio.sleep(1)) embed.description += "\n**Raphael:** *CMON, LET'S GO, ADAM PROBABLY FINISHED WORKING ON THE SPACESHIP*" (await msg.edit(embed=embed)) (await asyncio.sleep(1.5)) embed.description += f' **{ctx.author.display_name}:** *??? WHAT SPACESHIP, CAN ANYONE PLEASE EXPLAIN TO ME WHAT'S HAPPENING*' (await msg.edit(embed=embed)) for i in range(1, 7): (await msg.edit(embed=discord.Embed(title='Chapter 2: The spaceship', description=((embed.description + '\n') + ('.' * (i if (i < 4) else (i - 3)))), color=discord.Color.dark_theme()))) (await asyncio.sleep(0.3)) embed.description += "\n**Raphael:** *okay, we are safe **for now**, how's the ship's status Adam?*" (await msg.edit(embed=embed)) (await asyncio.sleep(1.5)) embed.description += '\n**Adam:** *I was able to fix the spaceship for the most part but the spaceship could only have 4 people onboard, someone has to be left behind...*' (await msg.edit(embed=embed)) (await asyncio.sleep(2.5)) embed.description += '\n**John:** *I will do it, it was a great run guys but this is where my story ends, goodluck!*' (await msg.edit(embed=embed)) (await asyncio.sleep(3)) bord = [(['g'] * 7) for i in range(7)] bord[3][0] = 'e' index = [3, 1] bord[index[0]][index[1]] = 's' for i in range(5): embed = discord.Embed(title='Chapter 2: The spaceship', description=format_board(bord), color=discord.Color.dark_theme()) (await msg.edit(embed=embed)) bord[index[0]][index[1]] = 'g' index[1] += 1 if (i == 2): bord[3][0] = 'B' bord[index[0]][index[1]] = 's' (await asyncio.sleep(0.5)) (await ctx.send("__**Part 2:**__ you and the rest of the group were able to leave earth just in time before it (for some reason) dramatically exploded, now that you're in space a new threat arises **aliens**\n**How to play:** The goal is to get the highest score possible, move right or left then press ⏹ to shoot a laser, the higher your score the higher you'll be on the leaderboard\n\nif you get hit by get hit by an alien you'll loose a life (you have 3 lifes), goodluck!\n\nThis is you: πŸš€\nThese are your bullets: πŸ“\nThese are aliens: πŸ‘Ύ"))
async def scene_2(ctx, msg): embed = discord.Embed(title='Chapter 2: The spaceship', description=, color=discord.Color.dark_theme()) (await msg.edit(embed=embed)) (await asyncio.sleep(0.5)) embed.description = '**John:** *THERE ARE SO MANY ZOMBIES, WE NEED TO GO NOW*' (await msg.edit(embed=embed)) (await asyncio.sleep(1)) embed.description += "\n**Raphael:** *CMON, LET'S GO, ADAM PROBABLY FINISHED WORKING ON THE SPACESHIP*" (await msg.edit(embed=embed)) (await asyncio.sleep(1.5)) embed.description += f' **{ctx.author.display_name}:** *??? WHAT SPACESHIP, CAN ANYONE PLEASE EXPLAIN TO ME WHAT'S HAPPENING*' (await msg.edit(embed=embed)) for i in range(1, 7): (await msg.edit(embed=discord.Embed(title='Chapter 2: The spaceship', description=((embed.description + '\n') + ('.' * (i if (i < 4) else (i - 3)))), color=discord.Color.dark_theme()))) (await asyncio.sleep(0.3)) embed.description += "\n**Raphael:** *okay, we are safe **for now**, how's the ship's status Adam?*" (await msg.edit(embed=embed)) (await asyncio.sleep(1.5)) embed.description += '\n**Adam:** *I was able to fix the spaceship for the most part but the spaceship could only have 4 people onboard, someone has to be left behind...*' (await msg.edit(embed=embed)) (await asyncio.sleep(2.5)) embed.description += '\n**John:** *I will do it, it was a great run guys but this is where my story ends, goodluck!*' (await msg.edit(embed=embed)) (await asyncio.sleep(3)) bord = [(['g'] * 7) for i in range(7)] bord[3][0] = 'e' index = [3, 1] bord[index[0]][index[1]] = 's' for i in range(5): embed = discord.Embed(title='Chapter 2: The spaceship', description=format_board(bord), color=discord.Color.dark_theme()) (await msg.edit(embed=embed)) bord[index[0]][index[1]] = 'g' index[1] += 1 if (i == 2): bord[3][0] = 'B' bord[index[0]][index[1]] = 's' (await asyncio.sleep(0.5)) (await ctx.send("__**Part 2:**__ you and the rest of the group were able to leave earth just in time before it (for some reason) dramatically exploded, now that you're in space a new threat arises **aliens**\n**How to play:** The goal is to get the highest score possible, move right or left then press ⏹ to shoot a laser, the higher your score the higher you'll be on the leaderboard\n\nif you get hit by get hit by an alien you'll loose a life (you have 3 lifes), goodluck!\n\nThis is you: πŸš€\nThese are your bullets: πŸ“\nThese are aliens: πŸ‘Ύ"))<|docstring|>Scene 2, played when you use the spaceshooter command<|endoftext|>
386a457b944abe25ec9a65d1b7e536087d66df8c823aa056cbb5b393a43940da
async def scene_3(ctx): 'Scene 3, played when you hit 50 score in spaceshooter' embed = discord.Embed(title='Chapter 3: The Crew', description='', color=discord.Color.dark_theme()) msg = (await ctx.send(embed=embed)) embed.description += "**???**: *Hey, i didn't introduce myself*" (await msg.edit(embed=embed)) (await asyncio.sleep(1)) embed.description += "\n**Caroline:** *My name is Caroline! what's your name?*" (await msg.edit(embed=embed)) (await asyncio.sleep(1.5)) embed.description += f''' **{ctx.author.display_name}:** *Oh, hello. My name is {ctx.author.display_name}*''' (await msg.edit(embed=embed)) (await asyncio.sleep(1.5)) embed.description += f''' **Caroline:** *Very nice to meet you {ctx.author.name}*''' (await msg.edit(embed=embed)) (await asyncio.sleep(1.5)) embed.description += f''' **{ctx.author.display_name}:** *Nice to meet you too.*''' (await msg.edit(embed=embed)) (await asyncio.sleep(1.5)) emojis = ['β¬…', '🏳', '➑'] for emoji in emojis: (await msg.add_reaction(emoji)) return msg
Scene 3, played when you hit 50 score in spaceshooter
src/main.py
scene_3
andrewthederp/Documatic-Hackathon
1
python
async def scene_3(ctx): embed = discord.Embed(title='Chapter 3: The Crew', description=, color=discord.Color.dark_theme()) msg = (await ctx.send(embed=embed)) embed.description += "**???**: *Hey, i didn't introduce myself*" (await msg.edit(embed=embed)) (await asyncio.sleep(1)) embed.description += "\n**Caroline:** *My name is Caroline! what's your name?*" (await msg.edit(embed=embed)) (await asyncio.sleep(1.5)) embed.description += f' **{ctx.author.display_name}:** *Oh, hello. My name is {ctx.author.display_name}*' (await msg.edit(embed=embed)) (await asyncio.sleep(1.5)) embed.description += f' **Caroline:** *Very nice to meet you {ctx.author.name}*' (await msg.edit(embed=embed)) (await asyncio.sleep(1.5)) embed.description += f' **{ctx.author.display_name}:** *Nice to meet you too.*' (await msg.edit(embed=embed)) (await asyncio.sleep(1.5)) emojis = ['β¬…', '🏳', '➑'] for emoji in emojis: (await msg.add_reaction(emoji)) return msg
async def scene_3(ctx): embed = discord.Embed(title='Chapter 3: The Crew', description=, color=discord.Color.dark_theme()) msg = (await ctx.send(embed=embed)) embed.description += "**???**: *Hey, i didn't introduce myself*" (await msg.edit(embed=embed)) (await asyncio.sleep(1)) embed.description += "\n**Caroline:** *My name is Caroline! what's your name?*" (await msg.edit(embed=embed)) (await asyncio.sleep(1.5)) embed.description += f' **{ctx.author.display_name}:** *Oh, hello. My name is {ctx.author.display_name}*' (await msg.edit(embed=embed)) (await asyncio.sleep(1.5)) embed.description += f' **Caroline:** *Very nice to meet you {ctx.author.name}*' (await msg.edit(embed=embed)) (await asyncio.sleep(1.5)) embed.description += f' **{ctx.author.display_name}:** *Nice to meet you too.*' (await msg.edit(embed=embed)) (await asyncio.sleep(1.5)) emojis = ['β¬…', '🏳', '➑'] for emoji in emojis: (await msg.add_reaction(emoji)) return msg<|docstring|>Scene 3, played when you hit 50 score in spaceshooter<|endoftext|>
94c16e4047a54ab87c378c3852ce084c7f46493bed13f7da3337cb0670b0c0a5
async def scene_4(ctx): 'Scene 4, played when you use the maze command on storyline mode' embed = discord.Embed(title='Chapter 4: The Crash', description='', color=discord.Color.dark_theme()) msg = (await ctx.send(embed=embed)) embed.description += '*Siren noises*\n**Raphael:** *EVERYBODY WAKE UP, WE NEED TO GO NOW*' (await msg.edit(embed=embed)) (await asyncio.sleep(1.5)) embed.description += f''' **{ctx.author.display_name}:** *WHAT'S HAPPENING NOW???*''' (await msg.edit(embed=embed)) (await asyncio.sleep(2)) embed.description += f''' **Raphael:** *THE SHIP GOT BADLEY DAMAGED, HERE EVERYONE TAKE THESE SUITS*''' (await msg.edit(embed=embed)) (await asyncio.sleep(2.5)) embed.description += f''' **Caroline:** *OH NO!!!* **Adam:** *MY SHIP D:*''' (await msg.edit(embed=embed)) (await asyncio.sleep(2.5)) embed.description += '\n**Raphael:** *WE NEED TO GET ONTO THAT PLANET*' (await msg.edit(embed=embed)) (await asyncio.sleep(1.5)) embed.description += f''' **{ctx.author.display_name}:** *... okay we landed safely, what now*''' (await msg.edit(embed=embed)) (await asyncio.sleep(2)) embed.description += f''' **Raphael:** *Be careful guys, this planet's gravity is really messed up*''' (await msg.edit(embed=embed)) (await asyncio.sleep(2)) embed.description += f''' **Adam:** *crying*''' (await msg.edit(embed=embed)) (await ctx.send("__**Instructions:**__\nThis is you: :flushed:\nThese are walls: πŸŸ₯\nThis is an exit point: :x:\nThese are direction changer blocks: ⏫βͺ⏩⏬ (changes the direction of the player to the direction it's pointing at)\nthis is a breaking block: πŸ”² (it stops the player and breaks when he player touches it)\n\n**Part 3:** Now that you landed on the planet your goal is to hit the :x:, react to the reaction pointing in the direction you want to move. You will keep moving until you hit a wall be careful to not fall of the planet and as always, *goodluck!*")) (await asyncio.sleep(1.5)) return msg
Scene 4, played when you use the maze command on storyline mode
src/main.py
scene_4
andrewthederp/Documatic-Hackathon
1
python
async def scene_4(ctx): embed = discord.Embed(title='Chapter 4: The Crash', description=, color=discord.Color.dark_theme()) msg = (await ctx.send(embed=embed)) embed.description += '*Siren noises*\n**Raphael:** *EVERYBODY WAKE UP, WE NEED TO GO NOW*' (await msg.edit(embed=embed)) (await asyncio.sleep(1.5)) embed.description += f' **{ctx.author.display_name}:** *WHAT'S HAPPENING NOW???*' (await msg.edit(embed=embed)) (await asyncio.sleep(2)) embed.description += f' **Raphael:** *THE SHIP GOT BADLEY DAMAGED, HERE EVERYONE TAKE THESE SUITS*' (await msg.edit(embed=embed)) (await asyncio.sleep(2.5)) embed.description += f' **Caroline:** *OH NO!!!* **Adam:** *MY SHIP D:*' (await msg.edit(embed=embed)) (await asyncio.sleep(2.5)) embed.description += '\n**Raphael:** *WE NEED TO GET ONTO THAT PLANET*' (await msg.edit(embed=embed)) (await asyncio.sleep(1.5)) embed.description += f' **{ctx.author.display_name}:** *... okay we landed safely, what now*' (await msg.edit(embed=embed)) (await asyncio.sleep(2)) embed.description += f' **Raphael:** *Be careful guys, this planet's gravity is really messed up*' (await msg.edit(embed=embed)) (await asyncio.sleep(2)) embed.description += f' **Adam:** *crying*' (await msg.edit(embed=embed)) (await ctx.send("__**Instructions:**__\nThis is you: :flushed:\nThese are walls: πŸŸ₯\nThis is an exit point: :x:\nThese are direction changer blocks: ⏫βͺ⏩⏬ (changes the direction of the player to the direction it's pointing at)\nthis is a breaking block: πŸ”² (it stops the player and breaks when he player touches it)\n\n**Part 3:** Now that you landed on the planet your goal is to hit the :x:, react to the reaction pointing in the direction you want to move. You will keep moving until you hit a wall be careful to not fall of the planet and as always, *goodluck!*")) (await asyncio.sleep(1.5)) return msg
async def scene_4(ctx): embed = discord.Embed(title='Chapter 4: The Crash', description=, color=discord.Color.dark_theme()) msg = (await ctx.send(embed=embed)) embed.description += '*Siren noises*\n**Raphael:** *EVERYBODY WAKE UP, WE NEED TO GO NOW*' (await msg.edit(embed=embed)) (await asyncio.sleep(1.5)) embed.description += f' **{ctx.author.display_name}:** *WHAT'S HAPPENING NOW???*' (await msg.edit(embed=embed)) (await asyncio.sleep(2)) embed.description += f' **Raphael:** *THE SHIP GOT BADLEY DAMAGED, HERE EVERYONE TAKE THESE SUITS*' (await msg.edit(embed=embed)) (await asyncio.sleep(2.5)) embed.description += f' **Caroline:** *OH NO!!!* **Adam:** *MY SHIP D:*' (await msg.edit(embed=embed)) (await asyncio.sleep(2.5)) embed.description += '\n**Raphael:** *WE NEED TO GET ONTO THAT PLANET*' (await msg.edit(embed=embed)) (await asyncio.sleep(1.5)) embed.description += f' **{ctx.author.display_name}:** *... okay we landed safely, what now*' (await msg.edit(embed=embed)) (await asyncio.sleep(2)) embed.description += f' **Raphael:** *Be careful guys, this planet's gravity is really messed up*' (await msg.edit(embed=embed)) (await asyncio.sleep(2)) embed.description += f' **Adam:** *crying*' (await msg.edit(embed=embed)) (await ctx.send("__**Instructions:**__\nThis is you: :flushed:\nThese are walls: πŸŸ₯\nThis is an exit point: :x:\nThese are direction changer blocks: ⏫βͺ⏩⏬ (changes the direction of the player to the direction it's pointing at)\nthis is a breaking block: πŸ”² (it stops the player and breaks when he player touches it)\n\n**Part 3:** Now that you landed on the planet your goal is to hit the :x:, react to the reaction pointing in the direction you want to move. You will keep moving until you hit a wall be careful to not fall of the planet and as always, *goodluck!*")) (await asyncio.sleep(1.5)) return msg<|docstring|>Scene 4, played when you use the maze command on storyline mode<|endoftext|>
e920848506739e14c35db573de1e0810611dc291e8fe0a1ad4e4e0624d48432b
def get_player(lst): 'Returns the x, y coordinates of the player on the board' for (x, row) in enumerate(lst): for (y, column) in enumerate(row): if (column == 'p'): return (x, y)
Returns the x, y coordinates of the player on the board
src/main.py
get_player
andrewthederp/Documatic-Hackathon
1
python
def get_player(lst): for (x, row) in enumerate(lst): for (y, column) in enumerate(row): if (column == 'p'): return (x, y)
def get_player(lst): for (x, row) in enumerate(lst): for (y, column) in enumerate(row): if (column == 'p'): return (x, y)<|docstring|>Returns the x, y coordinates of the player on the board<|endoftext|>
d41c4aa9973a15228c8f80a34c7bc735885ee45be38d95a074a9a1065fc8c8aa
def go_direction(lst, direction, player_index): "Moves the player into a direction and makes sure the player isn't in an infinite loop/off screen" (x, y) = player_index moves = 0 while True: moves += 1 x += direction[0] y += direction[1] if ((x < 0) or (y < 0)): return (None, 'Dead') try: if (lst[x][y] == 'w'): x -= direction[0] y -= direction[1] break elif (lst[x][y] == 'u'): x -= direction[0] y -= direction[1] direction = UP elif (lst[x][y] == 'd'): x -= direction[0] y -= direction[1] direction = DOWN elif (lst[x][y] == 'l'): x -= direction[0] y -= direction[1] direction = LEFT elif (lst[x][y] == 'r'): x -= direction[0] y -= direction[1] direction = RIGHT elif (lst[x][y] == 'b'): lst[x][y] = 'g' x -= direction[0] y -= direction[1] break except IndexError: return (None, 'Dead') if (moves > 150): return ('Infinite loop', 'Dead') return (lst, x, y)
Moves the player into a direction and makes sure the player isn't in an infinite loop/off screen
src/main.py
go_direction
andrewthederp/Documatic-Hackathon
1
python
def go_direction(lst, direction, player_index): (x, y) = player_index moves = 0 while True: moves += 1 x += direction[0] y += direction[1] if ((x < 0) or (y < 0)): return (None, 'Dead') try: if (lst[x][y] == 'w'): x -= direction[0] y -= direction[1] break elif (lst[x][y] == 'u'): x -= direction[0] y -= direction[1] direction = UP elif (lst[x][y] == 'd'): x -= direction[0] y -= direction[1] direction = DOWN elif (lst[x][y] == 'l'): x -= direction[0] y -= direction[1] direction = LEFT elif (lst[x][y] == 'r'): x -= direction[0] y -= direction[1] direction = RIGHT elif (lst[x][y] == 'b'): lst[x][y] = 'g' x -= direction[0] y -= direction[1] break except IndexError: return (None, 'Dead') if (moves > 150): return ('Infinite loop', 'Dead') return (lst, x, y)
def go_direction(lst, direction, player_index): (x, y) = player_index moves = 0 while True: moves += 1 x += direction[0] y += direction[1] if ((x < 0) or (y < 0)): return (None, 'Dead') try: if (lst[x][y] == 'w'): x -= direction[0] y -= direction[1] break elif (lst[x][y] == 'u'): x -= direction[0] y -= direction[1] direction = UP elif (lst[x][y] == 'd'): x -= direction[0] y -= direction[1] direction = DOWN elif (lst[x][y] == 'l'): x -= direction[0] y -= direction[1] direction = LEFT elif (lst[x][y] == 'r'): x -= direction[0] y -= direction[1] direction = RIGHT elif (lst[x][y] == 'b'): lst[x][y] = 'g' x -= direction[0] y -= direction[1] break except IndexError: return (None, 'Dead') if (moves > 150): return ('Infinite loop', 'Dead') return (lst, x, y)<|docstring|>Moves the player into a direction and makes sure the player isn't in an infinite loop/off screen<|endoftext|>
dd72e986d01bc3bb79e1567c8f514364e872b7793a38d7eb818009e57e819deb
def save_maze(maze): 'Saves the player made maze, only saves it if the player was able to beat it to prove that the maze was actually possible' if (not ('levels.txt' in os.listdir())): f = open('levels.txt', mode='x') f.write((maze + '\n')) else: f = open('levels.txt', mode='a') f.write((maze + '\n'))
Saves the player made maze, only saves it if the player was able to beat it to prove that the maze was actually possible
src/main.py
save_maze
andrewthederp/Documatic-Hackathon
1
python
def save_maze(maze): if (not ('levels.txt' in os.listdir())): f = open('levels.txt', mode='x') f.write((maze + '\n')) else: f = open('levels.txt', mode='a') f.write((maze + '\n'))
def save_maze(maze): if (not ('levels.txt' in os.listdir())): f = open('levels.txt', mode='x') f.write((maze + '\n')) else: f = open('levels.txt', mode='a') f.write((maze + '\n'))<|docstring|>Saves the player made maze, only saves it if the player was able to beat it to prove that the maze was actually possible<|endoftext|>
0cc5dbd44e4f900110da7cd0396836d9aa15e2e24bfa75f59eed281a63e6cabf
async def score_db(): 'Creates "scores.db" which saves the scores for the leaderboard command' (await bot.wait_until_ready()) bot.db = (await aiosqlite.connect('scores.db')) (await bot.db.execute('CREATE TABLE IF NOT EXISTS scores (author_id int, score int, command_name text)'))
Creates "scores.db" which saves the scores for the leaderboard command
src/main.py
score_db
andrewthederp/Documatic-Hackathon
1
python
async def score_db(): (await bot.wait_until_ready()) bot.db = (await aiosqlite.connect('scores.db')) (await bot.db.execute('CREATE TABLE IF NOT EXISTS scores (author_id int, score int, command_name text)'))
async def score_db(): (await bot.wait_until_ready()) bot.db = (await aiosqlite.connect('scores.db')) (await bot.db.execute('CREATE TABLE IF NOT EXISTS scores (author_id int, score int, command_name text)'))<|docstring|>Creates "scores.db" which saves the scores for the leaderboard command<|endoftext|>
25a6411f56675c67c805cd4b9d4d9832c8fda8e659cd201ea9077b83763f3695
async def save_score(ctx, score): 'Adds the player score into scores.db' cursor = (await bot.db.execute('SELECT score from scores WHERE author_id = ? AND command_name = ?', (ctx.author.id, ctx.command.name))) data = (await cursor.fetchone()) if data: if (data[0] < score): (await bot.db.execute(f'UPDATE scores SET score = ? WHERE author_id = ? AND command_name = ?', (score, ctx.author.id, ctx.command.name))) else: (await bot.db.execute('INSERT OR IGNORE INTO scores (author_id, score, command_name) VALUES (?,?,?)', (ctx.author.id, score, ctx.command.name))) (await bot.db.commit())
Adds the player score into scores.db
src/main.py
save_score
andrewthederp/Documatic-Hackathon
1
python
async def save_score(ctx, score): cursor = (await bot.db.execute('SELECT score from scores WHERE author_id = ? AND command_name = ?', (ctx.author.id, ctx.command.name))) data = (await cursor.fetchone()) if data: if (data[0] < score): (await bot.db.execute(f'UPDATE scores SET score = ? WHERE author_id = ? AND command_name = ?', (score, ctx.author.id, ctx.command.name))) else: (await bot.db.execute('INSERT OR IGNORE INTO scores (author_id, score, command_name) VALUES (?,?,?)', (ctx.author.id, score, ctx.command.name))) (await bot.db.commit())
async def save_score(ctx, score): cursor = (await bot.db.execute('SELECT score from scores WHERE author_id = ? AND command_name = ?', (ctx.author.id, ctx.command.name))) data = (await cursor.fetchone()) if data: if (data[0] < score): (await bot.db.execute(f'UPDATE scores SET score = ? WHERE author_id = ? AND command_name = ?', (score, ctx.author.id, ctx.command.name))) else: (await bot.db.execute('INSERT OR IGNORE INTO scores (author_id, score, command_name) VALUES (?,?,?)', (ctx.author.id, score, ctx.command.name))) (await bot.db.commit())<|docstring|>Adds the player score into scores.db<|endoftext|>
9c55bfea8e08b34d34bb394c23eb3db92d49fa09649da0f0035f59151433ad21
@bot.event async def on_ready(): 'on_ready' print('Online!')
on_ready
src/main.py
on_ready
andrewthederp/Documatic-Hackathon
1
python
@bot.event async def (): print('Online!')
@bot.event async def (): print('Online!')<|docstring|>on_ready<|endoftext|>
8d1b29affe6e1ff83d7f75a6ad46d845f761a061076c4ffbcdab8f24708fc1b4
@bot.command() async def zombies(ctx): "You're surrounded by zombies!!! don't worry tho, you have a gun. React to the reaction pointing in the direction you want *don't miss*" board_copy = copy.deepcopy(board) update_cache(ctx) bullets = [] zombies = [] score = 0 alive = True msg = (await ctx.send(embed=discord.Embed(title='Chapter 1: What happened', color=discord.Color.dark_theme()))) (await scene_1(ctx, msg)) emojis = ['⬆', 'β¬…', '➑', '⬇', '🏳'] for emoji in emojis: (await msg.add_reaction(emoji)) while True: (await msg.edit(content=f'''Score: {score} ''', embed=discord.Embed(title='Zombies', description=format_board(board_copy), color=discord.Color.blurple()))) if (not (len(bullets) == 5)): try: (inp, _) = (await bot.wait_for('reaction_add', check=(lambda r, u: ((str(r) in emojis) and (u == ctx.author) and (r.message == msg))), timeout=3.5)) try: (await msg.remove_reaction(str(inp), ctx.author)) except discord.Forbidden: pass if (str(inp) == '🏳'): (await save_score(ctx, score)) return (await ctx.send('Ended the game!')) bullets.append(Bullet(conversion[str(inp)], [5, 5])) except asyncio.TimeoutError: pass for bullet in bullets: board_copy[bullet.index[0]][bullet.index[1]] = 'G' try: bullet.move() if (bullet.index[0] < 0): bullets.remove(bullet) continue board_copy[bullet.index[0]][bullet.index[1]] = 'L' except IndexError: bullets.remove(bullet) (board_copy, bullets, zombies, score) = check_zombie_collides(board_copy, bullets, zombies, score) for zombie in zombies: try: board_copy[zombie.index[0]][zombie.index[1]] = 'G' except IndexError: pass zombie.move() board_copy[zombie.index[0]][zombie.index[1]] = 'z' if (zombie.index == [5, 5]): (await save_score(ctx, score)) return (await ctx.send(f'''The zombie ate {ctx.author.display_name}'s brain!!! Score: {score}''')) board_copy[5][5] = 'p' if (len(zombies) < 5): zombie_number = random.choice([0, 0, 0, 0, 1, 1, 1, 2, 2, 3]) directions_copy = copy.copy(directions) for i in range(zombie_number): direction = random.choice(directions_copy) zombies.append(Zombie(direction)) directions_copy.remove(direction)
You're surrounded by zombies!!! don't worry tho, you have a gun. React to the reaction pointing in the direction you want *don't miss*
src/main.py
zombies
andrewthederp/Documatic-Hackathon
1
python
@bot.command() async def zombies(ctx): board_copy = copy.deepcopy(board) update_cache(ctx) bullets = [] zombies = [] score = 0 alive = True msg = (await ctx.send(embed=discord.Embed(title='Chapter 1: What happened', color=discord.Color.dark_theme()))) (await scene_1(ctx, msg)) emojis = ['⬆', 'β¬…', '➑', '⬇', '🏳'] for emoji in emojis: (await msg.add_reaction(emoji)) while True: (await msg.edit(content=f'Score: {score} ', embed=discord.Embed(title='Zombies', description=format_board(board_copy), color=discord.Color.blurple()))) if (not (len(bullets) == 5)): try: (inp, _) = (await bot.wait_for('reaction_add', check=(lambda r, u: ((str(r) in emojis) and (u == ctx.author) and (r.message == msg))), timeout=3.5)) try: (await msg.remove_reaction(str(inp), ctx.author)) except discord.Forbidden: pass if (str(inp) == '🏳'): (await save_score(ctx, score)) return (await ctx.send('Ended the game!')) bullets.append(Bullet(conversion[str(inp)], [5, 5])) except asyncio.TimeoutError: pass for bullet in bullets: board_copy[bullet.index[0]][bullet.index[1]] = 'G' try: bullet.move() if (bullet.index[0] < 0): bullets.remove(bullet) continue board_copy[bullet.index[0]][bullet.index[1]] = 'L' except IndexError: bullets.remove(bullet) (board_copy, bullets, zombies, score) = check_zombie_collides(board_copy, bullets, zombies, score) for zombie in zombies: try: board_copy[zombie.index[0]][zombie.index[1]] = 'G' except IndexError: pass zombie.move() board_copy[zombie.index[0]][zombie.index[1]] = 'z' if (zombie.index == [5, 5]): (await save_score(ctx, score)) return (await ctx.send(f'The zombie ate {ctx.author.display_name}'s brain!!! Score: {score}')) board_copy[5][5] = 'p' if (len(zombies) < 5): zombie_number = random.choice([0, 0, 0, 0, 1, 1, 1, 2, 2, 3]) directions_copy = copy.copy(directions) for i in range(zombie_number): direction = random.choice(directions_copy) zombies.append(Zombie(direction)) directions_copy.remove(direction)
@bot.command() async def zombies(ctx): board_copy = copy.deepcopy(board) update_cache(ctx) bullets = [] zombies = [] score = 0 alive = True msg = (await ctx.send(embed=discord.Embed(title='Chapter 1: What happened', color=discord.Color.dark_theme()))) (await scene_1(ctx, msg)) emojis = ['⬆', 'β¬…', '➑', '⬇', '🏳'] for emoji in emojis: (await msg.add_reaction(emoji)) while True: (await msg.edit(content=f'Score: {score} ', embed=discord.Embed(title='Zombies', description=format_board(board_copy), color=discord.Color.blurple()))) if (not (len(bullets) == 5)): try: (inp, _) = (await bot.wait_for('reaction_add', check=(lambda r, u: ((str(r) in emojis) and (u == ctx.author) and (r.message == msg))), timeout=3.5)) try: (await msg.remove_reaction(str(inp), ctx.author)) except discord.Forbidden: pass if (str(inp) == '🏳'): (await save_score(ctx, score)) return (await ctx.send('Ended the game!')) bullets.append(Bullet(conversion[str(inp)], [5, 5])) except asyncio.TimeoutError: pass for bullet in bullets: board_copy[bullet.index[0]][bullet.index[1]] = 'G' try: bullet.move() if (bullet.index[0] < 0): bullets.remove(bullet) continue board_copy[bullet.index[0]][bullet.index[1]] = 'L' except IndexError: bullets.remove(bullet) (board_copy, bullets, zombies, score) = check_zombie_collides(board_copy, bullets, zombies, score) for zombie in zombies: try: board_copy[zombie.index[0]][zombie.index[1]] = 'G' except IndexError: pass zombie.move() board_copy[zombie.index[0]][zombie.index[1]] = 'z' if (zombie.index == [5, 5]): (await save_score(ctx, score)) return (await ctx.send(f'The zombie ate {ctx.author.display_name}'s brain!!! Score: {score}')) board_copy[5][5] = 'p' if (len(zombies) < 5): zombie_number = random.choice([0, 0, 0, 0, 1, 1, 1, 2, 2, 3]) directions_copy = copy.copy(directions) for i in range(zombie_number): direction = random.choice(directions_copy) zombies.append(Zombie(direction)) directions_copy.remove(direction)<|docstring|>You're surrounded by zombies!!! don't worry tho, you have a gun. React to the reaction pointing in the direction you want *don't miss*<|endoftext|>
ce2434e5ac250f88865cf2dbd09c1ca894321acee1157195ece30f9e0191b5a4
@bot.command() async def spaceshooter(ctx): "You're in a spaceship now. move the spaceship to avoid and shoot at the aliens for score and make sure to net get hit" update_cache(ctx) msg = (await ctx.send(embed=discord.Embed(title='Chapter 2: The spaceship', color=discord.Color.dark_theme()))) (await scene_2(ctx, msg)) bord = [(['g'] * 5) for i in range(7)] emojis = ['β¬…', '🏳', '➑'] for emoji in emojis: (await msg.add_reaction(emoji)) index = 2 bullets = [] aliens = [] lifes = 3 bullet_limit = 5 score = 0 bord_copy = copy.deepcopy(bord) bord_copy[6][index] = 's' scene_3_done = False while True: bord_copy = copy.deepcopy(bord) if ((score >= 30) and (not scene_3_done)): msg = (await scene_3(ctx)) scene_3_done = True try: (inp, _) = (await bot.wait_for('reaction_add', check=(lambda r, u: ((str(r) in emojis) and (u == ctx.author) and (r.message == msg))), timeout=2.5)) try: (await msg.remove_reaction(str(inp), ctx.author)) except discord.Forbidden: pass if (str(inp) == 'β¬…'): if (not (len(bullets) == bullet_limit)): bullets.append(Bullet(UP, [6, index])) index -= 1 if (index < 0): index = (len(bord_copy[0]) - 1) elif (str(inp) == '➑'): if (not (len(bullets) == bullet_limit)): bullets.append(Bullet(UP, [6, index])) index += 1 if (index == len(bord_copy[0])): index = 0 elif (str(inp) == '🏳'): (await ctx.send('Ended the game!')) (await save_score(ctx, score)) return except asyncio.TimeoutError: if (not (len(bullets) == bullet_limit)): bullets.append(Bullet(UP, [6, index])) for bullet in bullets: bullet.move() if (bullet.index[0] < 0): bullets.remove(bullet) continue bord_copy[bullet.index[0]][bullet.index[1]] = 'L' if ((random.randint(1, 10) >= 5) and (len(aliens) <= 5)): for _ in range(random.randrange(1, 3)): alien = Alien() while (alien.index in [a.index for a in aliens]): alien = Alien() aliens.append(alien) for alien in aliens: continue_ = False for bullet in bullets: if ((bullet.index == alien.index) or ([(bullet.index[0] + bullet.direction[0]), (bullet.index[1] + bullet.direction[1])] == alien.index)): bord_copy[bullet.index[0]][bullet.index[1]] = 'g' bullets.remove(bullet) aliens.remove(alien) continue_ = True score += 1 break if continue_: continue alien.move() if (alien.index == [6, index]): lifes -= 1 (await ctx.send(f'You have {lifes} lifes left')) aliens.remove(alien) if (lifes <= 0): (await save_score(ctx, score)) return (await ctx.send(f'''You don't have any more lifes!!! Score: {score}''')) continue elif (alien.index[0] == len(bord_copy)): aliens.remove(alien) continue bord_copy[alien.index[0]][alien.index[1]] = 'a' bord_copy[6][index] = 's' embed = discord.Embed(title='Aliens', description=format_board(bord_copy), color=discord.Color.blurple()) (await msg.edit(content=f'Score: {score}', embed=embed))
You're in a spaceship now. move the spaceship to avoid and shoot at the aliens for score and make sure to net get hit
src/main.py
spaceshooter
andrewthederp/Documatic-Hackathon
1
python
@bot.command() async def spaceshooter(ctx): update_cache(ctx) msg = (await ctx.send(embed=discord.Embed(title='Chapter 2: The spaceship', color=discord.Color.dark_theme()))) (await scene_2(ctx, msg)) bord = [(['g'] * 5) for i in range(7)] emojis = ['β¬…', '🏳', '➑'] for emoji in emojis: (await msg.add_reaction(emoji)) index = 2 bullets = [] aliens = [] lifes = 3 bullet_limit = 5 score = 0 bord_copy = copy.deepcopy(bord) bord_copy[6][index] = 's' scene_3_done = False while True: bord_copy = copy.deepcopy(bord) if ((score >= 30) and (not scene_3_done)): msg = (await scene_3(ctx)) scene_3_done = True try: (inp, _) = (await bot.wait_for('reaction_add', check=(lambda r, u: ((str(r) in emojis) and (u == ctx.author) and (r.message == msg))), timeout=2.5)) try: (await msg.remove_reaction(str(inp), ctx.author)) except discord.Forbidden: pass if (str(inp) == 'β¬…'): if (not (len(bullets) == bullet_limit)): bullets.append(Bullet(UP, [6, index])) index -= 1 if (index < 0): index = (len(bord_copy[0]) - 1) elif (str(inp) == '➑'): if (not (len(bullets) == bullet_limit)): bullets.append(Bullet(UP, [6, index])) index += 1 if (index == len(bord_copy[0])): index = 0 elif (str(inp) == '🏳'): (await ctx.send('Ended the game!')) (await save_score(ctx, score)) return except asyncio.TimeoutError: if (not (len(bullets) == bullet_limit)): bullets.append(Bullet(UP, [6, index])) for bullet in bullets: bullet.move() if (bullet.index[0] < 0): bullets.remove(bullet) continue bord_copy[bullet.index[0]][bullet.index[1]] = 'L' if ((random.randint(1, 10) >= 5) and (len(aliens) <= 5)): for _ in range(random.randrange(1, 3)): alien = Alien() while (alien.index in [a.index for a in aliens]): alien = Alien() aliens.append(alien) for alien in aliens: continue_ = False for bullet in bullets: if ((bullet.index == alien.index) or ([(bullet.index[0] + bullet.direction[0]), (bullet.index[1] + bullet.direction[1])] == alien.index)): bord_copy[bullet.index[0]][bullet.index[1]] = 'g' bullets.remove(bullet) aliens.remove(alien) continue_ = True score += 1 break if continue_: continue alien.move() if (alien.index == [6, index]): lifes -= 1 (await ctx.send(f'You have {lifes} lifes left')) aliens.remove(alien) if (lifes <= 0): (await save_score(ctx, score)) return (await ctx.send(f'You don't have any more lifes!!! Score: {score}')) continue elif (alien.index[0] == len(bord_copy)): aliens.remove(alien) continue bord_copy[alien.index[0]][alien.index[1]] = 'a' bord_copy[6][index] = 's' embed = discord.Embed(title='Aliens', description=format_board(bord_copy), color=discord.Color.blurple()) (await msg.edit(content=f'Score: {score}', embed=embed))
@bot.command() async def spaceshooter(ctx): update_cache(ctx) msg = (await ctx.send(embed=discord.Embed(title='Chapter 2: The spaceship', color=discord.Color.dark_theme()))) (await scene_2(ctx, msg)) bord = [(['g'] * 5) for i in range(7)] emojis = ['β¬…', '🏳', '➑'] for emoji in emojis: (await msg.add_reaction(emoji)) index = 2 bullets = [] aliens = [] lifes = 3 bullet_limit = 5 score = 0 bord_copy = copy.deepcopy(bord) bord_copy[6][index] = 's' scene_3_done = False while True: bord_copy = copy.deepcopy(bord) if ((score >= 30) and (not scene_3_done)): msg = (await scene_3(ctx)) scene_3_done = True try: (inp, _) = (await bot.wait_for('reaction_add', check=(lambda r, u: ((str(r) in emojis) and (u == ctx.author) and (r.message == msg))), timeout=2.5)) try: (await msg.remove_reaction(str(inp), ctx.author)) except discord.Forbidden: pass if (str(inp) == 'β¬…'): if (not (len(bullets) == bullet_limit)): bullets.append(Bullet(UP, [6, index])) index -= 1 if (index < 0): index = (len(bord_copy[0]) - 1) elif (str(inp) == '➑'): if (not (len(bullets) == bullet_limit)): bullets.append(Bullet(UP, [6, index])) index += 1 if (index == len(bord_copy[0])): index = 0 elif (str(inp) == '🏳'): (await ctx.send('Ended the game!')) (await save_score(ctx, score)) return except asyncio.TimeoutError: if (not (len(bullets) == bullet_limit)): bullets.append(Bullet(UP, [6, index])) for bullet in bullets: bullet.move() if (bullet.index[0] < 0): bullets.remove(bullet) continue bord_copy[bullet.index[0]][bullet.index[1]] = 'L' if ((random.randint(1, 10) >= 5) and (len(aliens) <= 5)): for _ in range(random.randrange(1, 3)): alien = Alien() while (alien.index in [a.index for a in aliens]): alien = Alien() aliens.append(alien) for alien in aliens: continue_ = False for bullet in bullets: if ((bullet.index == alien.index) or ([(bullet.index[0] + bullet.direction[0]), (bullet.index[1] + bullet.direction[1])] == alien.index)): bord_copy[bullet.index[0]][bullet.index[1]] = 'g' bullets.remove(bullet) aliens.remove(alien) continue_ = True score += 1 break if continue_: continue alien.move() if (alien.index == [6, index]): lifes -= 1 (await ctx.send(f'You have {lifes} lifes left')) aliens.remove(alien) if (lifes <= 0): (await save_score(ctx, score)) return (await ctx.send(f'You don't have any more lifes!!! Score: {score}')) continue elif (alien.index[0] == len(bord_copy)): aliens.remove(alien) continue bord_copy[alien.index[0]][alien.index[1]] = 'a' bord_copy[6][index] = 's' embed = discord.Embed(title='Aliens', description=format_board(bord_copy), color=discord.Color.blurple()) (await msg.edit(content=f'Score: {score}', embed=embed))<|docstring|>You're in a spaceship now. move the spaceship to avoid and shoot at the aliens for score and make sure to net get hit<|endoftext|>
8fbbcf478fdcd2e09f94a4c01cea220d5482b19eb658d1ad4e1060b0f6429fbe
@bot.group(invoke_without_command=True) async def maze(ctx, mode='storyline'): 'good and bad news, the bad news are that the spaceship is now destroyed the good news you\'re all on a planet with your space suits, the planet\'s gravity is messed up tho. Try to get to the :x: in the storyline mode" or play user made mazes in the usermade mode' msg = None emojis = ['⬆', 'β¬…', '➑', '⬇', '🏳'] if (mode.lower() not in ['storyline', 'usermade']): return (await ctx.send(f"""{mode} isn't a valid mode, available modes: "storyline"/"usermade"""")) elif (mode.lower() == 'storyline'): mazes = ['wwwwwwwwww\nwp wx w\nw w\nwwwwwwwwww\n', 'wwwwwwwwww\nwp wx w\nw w\nw wwwwwwww\n', 'w wwwwwwww\nwpw w\nw w wwww w\nw w w w w\nw w wx w w\nw w ww w w\nw w w w\nw wwwwww w\nw w\nwwwwwwwwww\n', 'ww ww\nwp w\n \nww \n ww\n xw\n w ', 'ww www\nwp ww\n \n ww\nww wx w\nw w\nw \nw ww\nww www', 'wwwwwwww\nwp w w\nw w\nw w\nww w\nw x w\nw w w\n ', 'wwwwwww\nwp w\nw w\nwbwwwbw\nw w\nw xw\nwwwwwww', ' w \nwpw w\n wwww \n w \n \n wxw \nw www \n w ww', 'wwwwwlw\nwdd w\ndpdx w\nw www w\nw u\nwrwwwww', 'wpw wwwwwwwwwww\nw u ww \nw www ww ww w\nw ww ww w\nwwwwwwwww ww w\nww w ww w\nw lw \n www wwwwwww\nw wwx w\nwwwwwww w\n w\n wwwww w\nw \nww wwwwwwrw'] msg = (await scene_4(ctx)) for emoji in emojis: (await msg.add_reaction(emoji)) else: try: f = open('levels.txt', mode='r') except FileNotFoundError: return (await ctx.send(f'No user made mazes :pensive:. You could be the first tho, use the `{ctx.prefix}maze add` command!')) mazes = f.readlines() mazes = [maze[:(- 1)] for maze in mazes] random.shuffle(mazes) usermade = (False if (mode.lower() == 'storyline') else True) for maze in mazes: lst = [] for line in maze.split(('\\n' if usermade else '\n')): lst.append(list(line)) embed = discord.Embed(title='Maze', description=format_board(lst), color=discord.Color.blurple()) if msg: (await msg.edit(embed=embed)) else: msg = (await ctx.send(embed=embed)) for emoji in emojis: (await msg.add_reaction(emoji)) while True: (await msg.edit(embed=discord.Embed(title='Maze', description=format_board(lst), color=discord.Color.blurple()))) (inp, _) = (await bot.wait_for('reaction_add', check=(lambda r, u: ((str(r) in emojis) and (u == ctx.author) and (r.message == msg))))) try: (await msg.remove_reaction(str(inp), ctx.author)) except discord.Forbidden: pass (x, y) = get_player(lst) lst[x][y] = ' ' if (str(inp) == '🏳'): return (await ctx.send('Ended the game!')) (lst, x, y) = go_direction(lst, conversion[str(inp)], (x, y)) if (x == None): embed = discord.Embed(title='Maze', description=format_board(lst), color=discord.Color.blurple()) (await msg.edit(embed=embed)) return (await ctx.send('You died')) if (lst[x][y] == 'x'): lst[x][y] = 'p' (await ctx.send('You won!', delete_after=5)) embed = discord.Embed(title='Maze', description=format_board(lst), color=discord.Color.blurple()) (await msg.edit(embed=embed)) (await asyncio.sleep(1)) break lst[x][y] = 'p' if (not usermade): update_cache(ctx)
good and bad news, the bad news are that the spaceship is now destroyed the good news you're all on a planet with your space suits, the planet's gravity is messed up tho. Try to get to the :x: in the storyline mode" or play user made mazes in the usermade mode
src/main.py
maze
andrewthederp/Documatic-Hackathon
1
python
@bot.group(invoke_without_command=True) async def maze(ctx, mode='storyline'): 'good and bad news, the bad news are that the spaceship is now destroyed the good news you\'re all on a planet with your space suits, the planet\'s gravity is messed up tho. Try to get to the :x: in the storyline mode" or play user made mazes in the usermade mode' msg = None emojis = ['⬆', 'β¬…', '➑', '⬇', '🏳'] if (mode.lower() not in ['storyline', 'usermade']): return (await ctx.send(f"{mode} isn't a valid mode, available modes: "storyline"/"usermade)) elif (mode.lower() == 'storyline'): mazes = ['wwwwwwwwww\nwp wx w\nw w\nwwwwwwwwww\n', 'wwwwwwwwww\nwp wx w\nw w\nw wwwwwwww\n', 'w wwwwwwww\nwpw w\nw w wwww w\nw w w w w\nw w wx w w\nw w ww w w\nw w w w\nw wwwwww w\nw w\nwwwwwwwwww\n', 'ww ww\nwp w\n \nww \n ww\n xw\n w ', 'ww www\nwp ww\n \n ww\nww wx w\nw w\nw \nw ww\nww www', 'wwwwwwww\nwp w w\nw w\nw w\nww w\nw x w\nw w w\n ', 'wwwwwww\nwp w\nw w\nwbwwwbw\nw w\nw xw\nwwwwwww', ' w \nwpw w\n wwww \n w \n \n wxw \nw www \n w ww', 'wwwwwlw\nwdd w\ndpdx w\nw www w\nw u\nwrwwwww', 'wpw wwwwwwwwwww\nw u ww \nw www ww ww w\nw ww ww w\nwwwwwwwww ww w\nww w ww w\nw lw \n www wwwwwww\nw wwx w\nwwwwwww w\n w\n wwwww w\nw \nww wwwwwwrw'] msg = (await scene_4(ctx)) for emoji in emojis: (await msg.add_reaction(emoji)) else: try: f = open('levels.txt', mode='r') except FileNotFoundError: return (await ctx.send(f'No user made mazes :pensive:. You could be the first tho, use the `{ctx.prefix}maze add` command!')) mazes = f.readlines() mazes = [maze[:(- 1)] for maze in mazes] random.shuffle(mazes) usermade = (False if (mode.lower() == 'storyline') else True) for maze in mazes: lst = [] for line in maze.split(('\\n' if usermade else '\n')): lst.append(list(line)) embed = discord.Embed(title='Maze', description=format_board(lst), color=discord.Color.blurple()) if msg: (await msg.edit(embed=embed)) else: msg = (await ctx.send(embed=embed)) for emoji in emojis: (await msg.add_reaction(emoji)) while True: (await msg.edit(embed=discord.Embed(title='Maze', description=format_board(lst), color=discord.Color.blurple()))) (inp, _) = (await bot.wait_for('reaction_add', check=(lambda r, u: ((str(r) in emojis) and (u == ctx.author) and (r.message == msg))))) try: (await msg.remove_reaction(str(inp), ctx.author)) except discord.Forbidden: pass (x, y) = get_player(lst) lst[x][y] = ' ' if (str(inp) == '🏳'): return (await ctx.send('Ended the game!')) (lst, x, y) = go_direction(lst, conversion[str(inp)], (x, y)) if (x == None): embed = discord.Embed(title='Maze', description=format_board(lst), color=discord.Color.blurple()) (await msg.edit(embed=embed)) return (await ctx.send('You died')) if (lst[x][y] == 'x'): lst[x][y] = 'p' (await ctx.send('You won!', delete_after=5)) embed = discord.Embed(title='Maze', description=format_board(lst), color=discord.Color.blurple()) (await msg.edit(embed=embed)) (await asyncio.sleep(1)) break lst[x][y] = 'p' if (not usermade): update_cache(ctx)
@bot.group(invoke_without_command=True) async def maze(ctx, mode='storyline'): 'good and bad news, the bad news are that the spaceship is now destroyed the good news you\'re all on a planet with your space suits, the planet\'s gravity is messed up tho. Try to get to the :x: in the storyline mode" or play user made mazes in the usermade mode' msg = None emojis = ['⬆', 'β¬…', '➑', '⬇', '🏳'] if (mode.lower() not in ['storyline', 'usermade']): return (await ctx.send(f"{mode} isn't a valid mode, available modes: "storyline"/"usermade)) elif (mode.lower() == 'storyline'): mazes = ['wwwwwwwwww\nwp wx w\nw w\nwwwwwwwwww\n', 'wwwwwwwwww\nwp wx w\nw w\nw wwwwwwww\n', 'w wwwwwwww\nwpw w\nw w wwww w\nw w w w w\nw w wx w w\nw w ww w w\nw w w w\nw wwwwww w\nw w\nwwwwwwwwww\n', 'ww ww\nwp w\n \nww \n ww\n xw\n w ', 'ww www\nwp ww\n \n ww\nww wx w\nw w\nw \nw ww\nww www', 'wwwwwwww\nwp w w\nw w\nw w\nww w\nw x w\nw w w\n ', 'wwwwwww\nwp w\nw w\nwbwwwbw\nw w\nw xw\nwwwwwww', ' w \nwpw w\n wwww \n w \n \n wxw \nw www \n w ww', 'wwwwwlw\nwdd w\ndpdx w\nw www w\nw u\nwrwwwww', 'wpw wwwwwwwwwww\nw u ww \nw www ww ww w\nw ww ww w\nwwwwwwwww ww w\nww w ww w\nw lw \n www wwwwwww\nw wwx w\nwwwwwww w\n w\n wwwww w\nw \nww wwwwwwrw'] msg = (await scene_4(ctx)) for emoji in emojis: (await msg.add_reaction(emoji)) else: try: f = open('levels.txt', mode='r') except FileNotFoundError: return (await ctx.send(f'No user made mazes :pensive:. You could be the first tho, use the `{ctx.prefix}maze add` command!')) mazes = f.readlines() mazes = [maze[:(- 1)] for maze in mazes] random.shuffle(mazes) usermade = (False if (mode.lower() == 'storyline') else True) for maze in mazes: lst = [] for line in maze.split(('\\n' if usermade else '\n')): lst.append(list(line)) embed = discord.Embed(title='Maze', description=format_board(lst), color=discord.Color.blurple()) if msg: (await msg.edit(embed=embed)) else: msg = (await ctx.send(embed=embed)) for emoji in emojis: (await msg.add_reaction(emoji)) while True: (await msg.edit(embed=discord.Embed(title='Maze', description=format_board(lst), color=discord.Color.blurple()))) (inp, _) = (await bot.wait_for('reaction_add', check=(lambda r, u: ((str(r) in emojis) and (u == ctx.author) and (r.message == msg))))) try: (await msg.remove_reaction(str(inp), ctx.author)) except discord.Forbidden: pass (x, y) = get_player(lst) lst[x][y] = ' ' if (str(inp) == '🏳'): return (await ctx.send('Ended the game!')) (lst, x, y) = go_direction(lst, conversion[str(inp)], (x, y)) if (x == None): embed = discord.Embed(title='Maze', description=format_board(lst), color=discord.Color.blurple()) (await msg.edit(embed=embed)) return (await ctx.send('You died')) if (lst[x][y] == 'x'): lst[x][y] = 'p' (await ctx.send('You won!', delete_after=5)) embed = discord.Embed(title='Maze', description=format_board(lst), color=discord.Color.blurple()) (await msg.edit(embed=embed)) (await asyncio.sleep(1)) break lst[x][y] = 'p' if (not usermade): update_cache(ctx)<|docstring|>good and bad news, the bad news are that the spaceship is now destroyed the good news you're all on a planet with your space suits, the planet's gravity is messed up tho. Try to get to the :x: in the storyline mode" or play user made mazes in the usermade mode<|endoftext|>
d575b53abc258efdebc0bad1e19c5d78e44c981ea2e443660de312c0bb98a8f9
@maze.command() async def add(ctx, *, maze): 'A way to add your very own maze' maze = maze.lower() if (maze.startswith('```') and maze.endswith('```')): maze = '\n'.join(maze.split('\n')[1:])[:3] if ('p' not in maze): return (await ctx.send('There is no player')) elif ('x' not in maze): return (await ctx.send('There is no exit point')) elif (maze.count('p') > 1): return (await ctx.send("Can't have multiple players at the same time")) elif (maze.count('x') > 1): return (await ctx.send("Can't have multiple exit points at the same time")) lst = [] biggest_length = sorted([len(i) for i in maze.split('\n')])[(- 1)] for line in maze.split('\n'): for char in line: if (char not in ['w', ' ', 'p', 'x', 'u', 'd', 'r', 'l', 'b']): return (await ctx.send(f'Invalid syntax: unrecognized item "{char}"')) if (len(line) != biggest_length): line += (' ' * (biggest_length - len(line))) lst.append(list(line)) if ((len(lst) < 3) or (len(lst[0]) < 3)): return (await ctx.send('The maze must be atleast 3x3 big')) embed = discord.Embed(title='Maze', description=format_board(lst), color=discord.Color.blurple()) try: msg = (await ctx.send(embed=embed)) except discord.HTTPException: return (await ctx.send(f'The maze is too big ({len(embed.description)}/4096)')) emojis = ['⬆', 'β¬…', '➑', '⬇', '🏳'] for emoji in emojis: (await msg.add_reaction(emoji)) origin_lst = copy.deepcopy(lst) while True: (await msg.edit(embed=discord.Embed(title='Maze', description=format_board(lst), color=discord.Color.blurple()))) (inp, _) = (await bot.wait_for('reaction_add', check=(lambda r, u: ((str(r) in emojis) and (u == ctx.author) and (r.message == msg))))) try: (await msg.remove_reaction(str(inp), ctx.author)) except discord.Forbidden: pass (lst, x, y) = get_player(lst) lst[x][y] = ' ' if (str(inp) == '🏳'): return (await ctx.send('Ended the game!')) (x, y) = go_direction(lst, conversion[str(inp)], (x, y)) if ((x == None) or isinstance(x, str)): embed = discord.Embed(title='Maze', description=format_board(lst), color=discord.Color.blurple()) (await msg.edit(embed=embed)) return (await ctx.send('You died!')) if (lst[x][y] == 'x'): lst[x][y] = 'p' (await ctx.send('You won! *saving maze*')) save_maze('\\n'.join([''.join(i) for i in origin_lst])) embed = discord.Embed(title='Maze', description=format_board(lst), color=discord.Color.blurple()) (await msg.edit(embed=embed)) (await asyncio.sleep(1)) break lst[x][y] = 'p'
A way to add your very own maze
src/main.py
add
andrewthederp/Documatic-Hackathon
1
python
@maze.command() async def add(ctx, *, maze): maze = maze.lower() if (maze.startswith('```') and maze.endswith('```')): maze = '\n'.join(maze.split('\n')[1:])[:3] if ('p' not in maze): return (await ctx.send('There is no player')) elif ('x' not in maze): return (await ctx.send('There is no exit point')) elif (maze.count('p') > 1): return (await ctx.send("Can't have multiple players at the same time")) elif (maze.count('x') > 1): return (await ctx.send("Can't have multiple exit points at the same time")) lst = [] biggest_length = sorted([len(i) for i in maze.split('\n')])[(- 1)] for line in maze.split('\n'): for char in line: if (char not in ['w', ' ', 'p', 'x', 'u', 'd', 'r', 'l', 'b']): return (await ctx.send(f'Invalid syntax: unrecognized item "{char}"')) if (len(line) != biggest_length): line += (' ' * (biggest_length - len(line))) lst.append(list(line)) if ((len(lst) < 3) or (len(lst[0]) < 3)): return (await ctx.send('The maze must be atleast 3x3 big')) embed = discord.Embed(title='Maze', description=format_board(lst), color=discord.Color.blurple()) try: msg = (await ctx.send(embed=embed)) except discord.HTTPException: return (await ctx.send(f'The maze is too big ({len(embed.description)}/4096)')) emojis = ['⬆', 'β¬…', '➑', '⬇', '🏳'] for emoji in emojis: (await msg.add_reaction(emoji)) origin_lst = copy.deepcopy(lst) while True: (await msg.edit(embed=discord.Embed(title='Maze', description=format_board(lst), color=discord.Color.blurple()))) (inp, _) = (await bot.wait_for('reaction_add', check=(lambda r, u: ((str(r) in emojis) and (u == ctx.author) and (r.message == msg))))) try: (await msg.remove_reaction(str(inp), ctx.author)) except discord.Forbidden: pass (lst, x, y) = get_player(lst) lst[x][y] = ' ' if (str(inp) == '🏳'): return (await ctx.send('Ended the game!')) (x, y) = go_direction(lst, conversion[str(inp)], (x, y)) if ((x == None) or isinstance(x, str)): embed = discord.Embed(title='Maze', description=format_board(lst), color=discord.Color.blurple()) (await msg.edit(embed=embed)) return (await ctx.send('You died!')) if (lst[x][y] == 'x'): lst[x][y] = 'p' (await ctx.send('You won! *saving maze*')) save_maze('\\n'.join([.join(i) for i in origin_lst])) embed = discord.Embed(title='Maze', description=format_board(lst), color=discord.Color.blurple()) (await msg.edit(embed=embed)) (await asyncio.sleep(1)) break lst[x][y] = 'p'
@maze.command() async def add(ctx, *, maze): maze = maze.lower() if (maze.startswith('```') and maze.endswith('```')): maze = '\n'.join(maze.split('\n')[1:])[:3] if ('p' not in maze): return (await ctx.send('There is no player')) elif ('x' not in maze): return (await ctx.send('There is no exit point')) elif (maze.count('p') > 1): return (await ctx.send("Can't have multiple players at the same time")) elif (maze.count('x') > 1): return (await ctx.send("Can't have multiple exit points at the same time")) lst = [] biggest_length = sorted([len(i) for i in maze.split('\n')])[(- 1)] for line in maze.split('\n'): for char in line: if (char not in ['w', ' ', 'p', 'x', 'u', 'd', 'r', 'l', 'b']): return (await ctx.send(f'Invalid syntax: unrecognized item "{char}"')) if (len(line) != biggest_length): line += (' ' * (biggest_length - len(line))) lst.append(list(line)) if ((len(lst) < 3) or (len(lst[0]) < 3)): return (await ctx.send('The maze must be atleast 3x3 big')) embed = discord.Embed(title='Maze', description=format_board(lst), color=discord.Color.blurple()) try: msg = (await ctx.send(embed=embed)) except discord.HTTPException: return (await ctx.send(f'The maze is too big ({len(embed.description)}/4096)')) emojis = ['⬆', 'β¬…', '➑', '⬇', '🏳'] for emoji in emojis: (await msg.add_reaction(emoji)) origin_lst = copy.deepcopy(lst) while True: (await msg.edit(embed=discord.Embed(title='Maze', description=format_board(lst), color=discord.Color.blurple()))) (inp, _) = (await bot.wait_for('reaction_add', check=(lambda r, u: ((str(r) in emojis) and (u == ctx.author) and (r.message == msg))))) try: (await msg.remove_reaction(str(inp), ctx.author)) except discord.Forbidden: pass (lst, x, y) = get_player(lst) lst[x][y] = ' ' if (str(inp) == '🏳'): return (await ctx.send('Ended the game!')) (x, y) = go_direction(lst, conversion[str(inp)], (x, y)) if ((x == None) or isinstance(x, str)): embed = discord.Embed(title='Maze', description=format_board(lst), color=discord.Color.blurple()) (await msg.edit(embed=embed)) return (await ctx.send('You died!')) if (lst[x][y] == 'x'): lst[x][y] = 'p' (await ctx.send('You won! *saving maze*')) save_maze('\\n'.join([.join(i) for i in origin_lst])) embed = discord.Embed(title='Maze', description=format_board(lst), color=discord.Color.blurple()) (await msg.edit(embed=embed)) (await asyncio.sleep(1)) break lst[x][y] = 'p'<|docstring|>A way to add your very own maze<|endoftext|>
700e67af1653aa06d77c56c5dc0b94d007a0435333615448c330756654c167cc
@bot.command() async def speed(ctx, member: discord.Member=None): 'A simple game where you have 5 seconds to send the coordinates of the colored circles, if a member is selected it\'s a race to 30 points, otherwise it goes on until you send "end"/"stop"/"cancel"' if member: if (member.bot or (member == ctx.author)): member = None score = 0 else: scores = {ctx.author: 0, member: 0} else: score = 0 board = [(['g'] * 5) for _ in range(5)] e = discord.Embed(title='Speed', description=(((f'{ctx.author.display_name} score: {scores[ctx.author]} | {member.display_name} score: {scores[member]}' if member else f'Score: {score}') + '\n') + format_speed_board(board)), color=discord.Color.blurple()) msg = (await ctx.send(embed=e)) while True: board_copy = copy.deepcopy(board) board_copy = summon_blocks(board_copy) e = discord.Embed(title='Speed', description=(((f'{ctx.author.display_name} score: {scores[ctx.author]} | {member.display_name} score: {scores[member]}' if member else f'Score: {score}') + '\n') + format_speed_board(board_copy)), color=discord.Color.blurple()) (await msg.edit(embed=e)) try: inp = (await bot.wait_for('message', check=(lambda m: ((m.author in [ctx.author, member]) and (m.channel == ctx.channel))), timeout=5)) except asyncio.TimeoutError: pass else: if (inp.content.lower() in ['end', 'stop', 'cancel']): (await ctx.send('Stopped the game!')) return (await save_score(ctx, score)) try: (await inp.delete()) except discord.Forbidden: pass coors = convert(inp.content) for coor in coors: (x, y) = coor if (board_copy[x][y] == 'b'): if member: scores[inp.author] += 1 if (scores[inp.author] >= 30): return (await ctx.send(f'{inp.author.mention} won!!!')) else: score += 1 elif member: if (scores[inp.author] > 0): scores[inp.author] -= 1 elif (score > 0): score -= 1
A simple game where you have 5 seconds to send the coordinates of the colored circles, if a member is selected it's a race to 30 points, otherwise it goes on until you send "end"/"stop"/"cancel"
src/main.py
speed
andrewthederp/Documatic-Hackathon
1
python
@bot.command() async def speed(ctx, member: discord.Member=None): 'A simple game where you have 5 seconds to send the coordinates of the colored circles, if a member is selected it\'s a race to 30 points, otherwise it goes on until you send "end"/"stop"/"cancel"' if member: if (member.bot or (member == ctx.author)): member = None score = 0 else: scores = {ctx.author: 0, member: 0} else: score = 0 board = [(['g'] * 5) for _ in range(5)] e = discord.Embed(title='Speed', description=(((f'{ctx.author.display_name} score: {scores[ctx.author]} | {member.display_name} score: {scores[member]}' if member else f'Score: {score}') + '\n') + format_speed_board(board)), color=discord.Color.blurple()) msg = (await ctx.send(embed=e)) while True: board_copy = copy.deepcopy(board) board_copy = summon_blocks(board_copy) e = discord.Embed(title='Speed', description=(((f'{ctx.author.display_name} score: {scores[ctx.author]} | {member.display_name} score: {scores[member]}' if member else f'Score: {score}') + '\n') + format_speed_board(board_copy)), color=discord.Color.blurple()) (await msg.edit(embed=e)) try: inp = (await bot.wait_for('message', check=(lambda m: ((m.author in [ctx.author, member]) and (m.channel == ctx.channel))), timeout=5)) except asyncio.TimeoutError: pass else: if (inp.content.lower() in ['end', 'stop', 'cancel']): (await ctx.send('Stopped the game!')) return (await save_score(ctx, score)) try: (await inp.delete()) except discord.Forbidden: pass coors = convert(inp.content) for coor in coors: (x, y) = coor if (board_copy[x][y] == 'b'): if member: scores[inp.author] += 1 if (scores[inp.author] >= 30): return (await ctx.send(f'{inp.author.mention} won!!!')) else: score += 1 elif member: if (scores[inp.author] > 0): scores[inp.author] -= 1 elif (score > 0): score -= 1
@bot.command() async def speed(ctx, member: discord.Member=None): 'A simple game where you have 5 seconds to send the coordinates of the colored circles, if a member is selected it\'s a race to 30 points, otherwise it goes on until you send "end"/"stop"/"cancel"' if member: if (member.bot or (member == ctx.author)): member = None score = 0 else: scores = {ctx.author: 0, member: 0} else: score = 0 board = [(['g'] * 5) for _ in range(5)] e = discord.Embed(title='Speed', description=(((f'{ctx.author.display_name} score: {scores[ctx.author]} | {member.display_name} score: {scores[member]}' if member else f'Score: {score}') + '\n') + format_speed_board(board)), color=discord.Color.blurple()) msg = (await ctx.send(embed=e)) while True: board_copy = copy.deepcopy(board) board_copy = summon_blocks(board_copy) e = discord.Embed(title='Speed', description=(((f'{ctx.author.display_name} score: {scores[ctx.author]} | {member.display_name} score: {scores[member]}' if member else f'Score: {score}') + '\n') + format_speed_board(board_copy)), color=discord.Color.blurple()) (await msg.edit(embed=e)) try: inp = (await bot.wait_for('message', check=(lambda m: ((m.author in [ctx.author, member]) and (m.channel == ctx.channel))), timeout=5)) except asyncio.TimeoutError: pass else: if (inp.content.lower() in ['end', 'stop', 'cancel']): (await ctx.send('Stopped the game!')) return (await save_score(ctx, score)) try: (await inp.delete()) except discord.Forbidden: pass coors = convert(inp.content) for coor in coors: (x, y) = coor if (board_copy[x][y] == 'b'): if member: scores[inp.author] += 1 if (scores[inp.author] >= 30): return (await ctx.send(f'{inp.author.mention} won!!!')) else: score += 1 elif member: if (scores[inp.author] > 0): scores[inp.author] -= 1 elif (score > 0): score -= 1<|docstring|>A simple game where you have 5 seconds to send the coordinates of the colored circles, if a member is selected it's a race to 30 points, otherwise it goes on until you send "end"/"stop"/"cancel"<|endoftext|>
569952ed8765faae8185a8296c16496d391f9519643c62e6bd6f0052a6ee15c2
@bot.command(aliases=['botinfo', 'about']) async def info(ctx): 'Some generic info' embed = discord.Embed(title='Bot Info', description=f'I am a discord bot made by andreawthaderp#3031 for the documatic hackathon', color=discord.Color.dark_theme()) (await ctx.send(embed=embed))
Some generic info
src/main.py
info
andrewthederp/Documatic-Hackathon
1
python
@bot.command(aliases=['botinfo', 'about']) async def info(ctx): embed = discord.Embed(title='Bot Info', description=f'I am a discord bot made by andreawthaderp#3031 for the documatic hackathon', color=discord.Color.dark_theme()) (await ctx.send(embed=embed))
@bot.command(aliases=['botinfo', 'about']) async def info(ctx): embed = discord.Embed(title='Bot Info', description=f'I am a discord bot made by andreawthaderp#3031 for the documatic hackathon', color=discord.Color.dark_theme()) (await ctx.send(embed=embed))<|docstring|>Some generic info<|endoftext|>
cdd524b725851a64178d227b4e02f2e2d29cb2ef8749ea2a323bfabd1f92cb9a
@bot.command(aliases=['lb']) @commands.guild_only() async def leaderboard(ctx, command_name, entries=5): 'a way to see the top x scores of a certain game' cmd = bot.get_command(command_name) if (not cmd): return (await ctx.send(f'The command {command_name} does not exist')) embed = discord.Embed(title=f'Leaderboard', description=f'''Top {entries} {command_name} scores ''', colour=2416859) index = 0 async with bot.db.execute('SELECT author_id, score FROM scores WHERE command_name = ? ORDER BY score DESC LIMIT ?', (cmd.name, entries)) as cursor: async for entry in cursor: (member_id, score) = entry member = (await bot.fetch_user(member_id)) index += 1 if (index == 1): emoji = 'πŸ₯‡' elif (index == 2): emoji = 'πŸ₯ˆ' elif (index == 3): emoji = 'πŸ₯‰' else: emoji = 'πŸ”Ή' embed.description += f'''**{emoji} #{index} {member.mention}** Score: `{score}` ''' if (not index): return (await ctx.send(f'No scores in the database for {command_name}')) (await ctx.send(embed=embed))
a way to see the top x scores of a certain game
src/main.py
leaderboard
andrewthederp/Documatic-Hackathon
1
python
@bot.command(aliases=['lb']) @commands.guild_only() async def leaderboard(ctx, command_name, entries=5): cmd = bot.get_command(command_name) if (not cmd): return (await ctx.send(f'The command {command_name} does not exist')) embed = discord.Embed(title=f'Leaderboard', description=f'Top {entries} {command_name} scores ', colour=2416859) index = 0 async with bot.db.execute('SELECT author_id, score FROM scores WHERE command_name = ? ORDER BY score DESC LIMIT ?', (cmd.name, entries)) as cursor: async for entry in cursor: (member_id, score) = entry member = (await bot.fetch_user(member_id)) index += 1 if (index == 1): emoji = 'πŸ₯‡' elif (index == 2): emoji = 'πŸ₯ˆ' elif (index == 3): emoji = 'πŸ₯‰' else: emoji = 'πŸ”Ή' embed.description += f'**{emoji} #{index} {member.mention}** Score: `{score}` ' if (not index): return (await ctx.send(f'No scores in the database for {command_name}')) (await ctx.send(embed=embed))
@bot.command(aliases=['lb']) @commands.guild_only() async def leaderboard(ctx, command_name, entries=5): cmd = bot.get_command(command_name) if (not cmd): return (await ctx.send(f'The command {command_name} does not exist')) embed = discord.Embed(title=f'Leaderboard', description=f'Top {entries} {command_name} scores ', colour=2416859) index = 0 async with bot.db.execute('SELECT author_id, score FROM scores WHERE command_name = ? ORDER BY score DESC LIMIT ?', (cmd.name, entries)) as cursor: async for entry in cursor: (member_id, score) = entry member = (await bot.fetch_user(member_id)) index += 1 if (index == 1): emoji = 'πŸ₯‡' elif (index == 2): emoji = 'πŸ₯ˆ' elif (index == 3): emoji = 'πŸ₯‰' else: emoji = 'πŸ”Ή' embed.description += f'**{emoji} #{index} {member.mention}** Score: `{score}` ' if (not index): return (await ctx.send(f'No scores in the database for {command_name}')) (await ctx.send(embed=embed))<|docstring|>a way to see the top x scores of a certain game<|endoftext|>
dff94f256d13ac00c01a28270eeed576d337dbedcb2a1880b1c46ae193a5ebc7
@classmethod def create_from_document(cls, document): 'Create a Relat from a document\n\n Arguments:\n document (dict): dict used for creating the document\n\n Returns:\n a Relat instance\n\n ' story = Story(**document) instance = cls(story.title) instance.story = story return instance
Create a Relat from a document Arguments: document (dict): dict used for creating the document Returns: a Relat instance
relaty/relat.py
create_from_document
PaPablo/relaty
0
python
@classmethod def create_from_document(cls, document): 'Create a Relat from a document\n\n Arguments:\n document (dict): dict used for creating the document\n\n Returns:\n a Relat instance\n\n ' story = Story(**document) instance = cls(story.title) instance.story = story return instance
@classmethod def create_from_document(cls, document): 'Create a Relat from a document\n\n Arguments:\n document (dict): dict used for creating the document\n\n Returns:\n a Relat instance\n\n ' story = Story(**document) instance = cls(story.title) instance.story = story return instance<|docstring|>Create a Relat from a document Arguments: document (dict): dict used for creating the document Returns: a Relat instance<|endoftext|>
2f3d0d0c5789d405498f552a1131a9b490de09b32227fa00487e8f01909270e7
@property def get_number_endings(self): 'Obtain the number of endings of the story\n\n Since any story in Relaty is represented in the shape\n of a tree, and ending is just a leaf.\n\n Returns:\n number of endings in the story\n ' return self.story.get_number_endings
Obtain the number of endings of the story Since any story in Relaty is represented in the shape of a tree, and ending is just a leaf. Returns: number of endings in the story
relaty/relat.py
get_number_endings
PaPablo/relaty
0
python
@property def get_number_endings(self): 'Obtain the number of endings of the story\n\n Since any story in Relaty is represented in the shape\n of a tree, and ending is just a leaf.\n\n Returns:\n number of endings in the story\n ' return self.story.get_number_endings
@property def get_number_endings(self): 'Obtain the number of endings of the story\n\n Since any story in Relaty is represented in the shape\n of a tree, and ending is just a leaf.\n\n Returns:\n number of endings in the story\n ' return self.story.get_number_endings<|docstring|>Obtain the number of endings of the story Since any story in Relaty is represented in the shape of a tree, and ending is just a leaf. Returns: number of endings in the story<|endoftext|>