body_hash
stringlengths 64
64
| body
stringlengths 23
109k
| docstring
stringlengths 1
57k
| path
stringlengths 4
198
| name
stringlengths 1
115
| repository_name
stringlengths 7
111
| repository_stars
float64 0
191k
| lang
stringclasses 1
value | body_without_docstring
stringlengths 14
108k
| unified
stringlengths 45
133k
|
---|---|---|---|---|---|---|---|---|---|
bf14931d763cc2da8061def2584cf1a3948be1dc6eb529452662c4b1d0d4b234 | def load_config(additional_paths: typing.List[str]=[]) -> typing.Dict:
"\n Searches the current working directory and `additional_paths` for a loadable\n module named `config.py`. If a file is found and has a global variable named\n 'PRESALYTICS', the dictionary contained in the 'PRESALYTICS' is returned.\n\n *Note*: A environment variable called `autodiscover_paths` is automatically\n loaded into the `additional_paths` keyword argument the the `presalytics` module\n is imported.\n\n Parameters\n ----------\n additional_paths : list of str, optional\n Additional filepaths to search for files named `config.py`\n\n Returns\n ----------\n a `dict` containing the PRESALYTICS module environment configuration\n\n "
current_path = os.getcwd()
additional_paths.append(current_path)
config_dict = None
try:
for path in additional_paths:
for name in os.listdir(path):
if (name == 'config.py'):
config_path = os.path.join(path, name)
config_spec = importlib.util.spec_from_file_location('config', config_path)
config_mod = importlib.util.module_from_spec(config_spec)
config_spec.loader.exec_module(config_mod)
config_dict = getattr(config_mod, 'PRESALYTICS', None)
if (not config_dict):
config_dict = config_mod.__dict__
if config_dict:
break
if config_dict:
break
if config_dict:
return config_dict
else:
return {}
except Exception as ex:
logger.exception(ex)
return {} | Searches the current working directory and `additional_paths` for a loadable
module named `config.py`. If a file is found and has a global variable named
'PRESALYTICS', the dictionary contained in the 'PRESALYTICS' is returned.
*Note*: A environment variable called `autodiscover_paths` is automatically
loaded into the `additional_paths` keyword argument the the `presalytics` module
is imported.
Parameters
----------
additional_paths : list of str, optional
Additional filepaths to search for files named `config.py`
Returns
----------
a `dict` containing the PRESALYTICS module environment configuration | presalytics/lib/config_loader.py | load_config | presalytics/python-client | 4 | python | def load_config(additional_paths: typing.List[str]=[]) -> typing.Dict:
"\n Searches the current working directory and `additional_paths` for a loadable\n module named `config.py`. If a file is found and has a global variable named\n 'PRESALYTICS', the dictionary contained in the 'PRESALYTICS' is returned.\n\n *Note*: A environment variable called `autodiscover_paths` is automatically\n loaded into the `additional_paths` keyword argument the the `presalytics` module\n is imported.\n\n Parameters\n ----------\n additional_paths : list of str, optional\n Additional filepaths to search for files named `config.py`\n\n Returns\n ----------\n a `dict` containing the PRESALYTICS module environment configuration\n\n "
current_path = os.getcwd()
additional_paths.append(current_path)
config_dict = None
try:
for path in additional_paths:
for name in os.listdir(path):
if (name == 'config.py'):
config_path = os.path.join(path, name)
config_spec = importlib.util.spec_from_file_location('config', config_path)
config_mod = importlib.util.module_from_spec(config_spec)
config_spec.loader.exec_module(config_mod)
config_dict = getattr(config_mod, 'PRESALYTICS', None)
if (not config_dict):
config_dict = config_mod.__dict__
if config_dict:
break
if config_dict:
break
if config_dict:
return config_dict
else:
return {}
except Exception as ex:
logger.exception(ex)
return {} | def load_config(additional_paths: typing.List[str]=[]) -> typing.Dict:
"\n Searches the current working directory and `additional_paths` for a loadable\n module named `config.py`. If a file is found and has a global variable named\n 'PRESALYTICS', the dictionary contained in the 'PRESALYTICS' is returned.\n\n *Note*: A environment variable called `autodiscover_paths` is automatically\n loaded into the `additional_paths` keyword argument the the `presalytics` module\n is imported.\n\n Parameters\n ----------\n additional_paths : list of str, optional\n Additional filepaths to search for files named `config.py`\n\n Returns\n ----------\n a `dict` containing the PRESALYTICS module environment configuration\n\n "
current_path = os.getcwd()
additional_paths.append(current_path)
config_dict = None
try:
for path in additional_paths:
for name in os.listdir(path):
if (name == 'config.py'):
config_path = os.path.join(path, name)
config_spec = importlib.util.spec_from_file_location('config', config_path)
config_mod = importlib.util.module_from_spec(config_spec)
config_spec.loader.exec_module(config_mod)
config_dict = getattr(config_mod, 'PRESALYTICS', None)
if (not config_dict):
config_dict = config_mod.__dict__
if config_dict:
break
if config_dict:
break
if config_dict:
return config_dict
else:
return {}
except Exception as ex:
logger.exception(ex)
return {}<|docstring|>Searches the current working directory and `additional_paths` for a loadable
module named `config.py`. If a file is found and has a global variable named
'PRESALYTICS', the dictionary contained in the 'PRESALYTICS' is returned.
*Note*: A environment variable called `autodiscover_paths` is automatically
loaded into the `additional_paths` keyword argument the the `presalytics` module
is imported.
Parameters
----------
additional_paths : list of str, optional
Additional filepaths to search for files named `config.py`
Returns
----------
a `dict` containing the PRESALYTICS module environment configuration<|endoftext|> |
7b9b2aa17706a687602fbd3c6f53f87d67f29c9cffd715ed425ede93d4750718 | def test_global_avg_pool_module(self):
'\n Tests the global average pool module with fixed 4-d test tensors\n '
base_tensor = torch.Tensor([[2, 1], [3, 0]])
all_init = []
for i in range((- 2), 3):
all_init.append(torch.add(base_tensor, i))
init_tensor = torch.stack(all_init, dim=2)
init_tensor = init_tensor.unsqueeze((- 1))
reference = base_tensor.unsqueeze((- 1)).unsqueeze((- 1))
encr_module = crypten.nn.GlobalAveragePool().encrypt()
self.assertTrue(encr_module.encrypted, 'module not encrypted')
for i in range(1, 10):
input = init_tensor.repeat(1, 1, i, i)
encr_input = crypten.cryptensor(input)
encr_output = encr_module(encr_input)
self._check(encr_output, reference, 'GlobalAveragePool failed') | Tests the global average pool module with fixed 4-d test tensors | test/test_nn.py | test_global_avg_pool_module | youben11/CrypTen | 2 | python | def test_global_avg_pool_module(self):
'\n \n '
base_tensor = torch.Tensor([[2, 1], [3, 0]])
all_init = []
for i in range((- 2), 3):
all_init.append(torch.add(base_tensor, i))
init_tensor = torch.stack(all_init, dim=2)
init_tensor = init_tensor.unsqueeze((- 1))
reference = base_tensor.unsqueeze((- 1)).unsqueeze((- 1))
encr_module = crypten.nn.GlobalAveragePool().encrypt()
self.assertTrue(encr_module.encrypted, 'module not encrypted')
for i in range(1, 10):
input = init_tensor.repeat(1, 1, i, i)
encr_input = crypten.cryptensor(input)
encr_output = encr_module(encr_input)
self._check(encr_output, reference, 'GlobalAveragePool failed') | def test_global_avg_pool_module(self):
'\n \n '
base_tensor = torch.Tensor([[2, 1], [3, 0]])
all_init = []
for i in range((- 2), 3):
all_init.append(torch.add(base_tensor, i))
init_tensor = torch.stack(all_init, dim=2)
init_tensor = init_tensor.unsqueeze((- 1))
reference = base_tensor.unsqueeze((- 1)).unsqueeze((- 1))
encr_module = crypten.nn.GlobalAveragePool().encrypt()
self.assertTrue(encr_module.encrypted, 'module not encrypted')
for i in range(1, 10):
input = init_tensor.repeat(1, 1, i, i)
encr_input = crypten.cryptensor(input)
encr_output = encr_module(encr_input)
self._check(encr_output, reference, 'GlobalAveragePool failed')<|docstring|>Tests the global average pool module with fixed 4-d test tensors<|endoftext|> |
38046427c74a05fc1e87859756e8ee42e5f737f95218795fdcb09b611337cf4d | def test_dropout_module(self):
'Tests the dropout module'
input_size = [3, 3, 3]
prob_list = [(0.2 * x) for x in range(1, 5)]
for module_name in ['Dropout', 'Dropout2d', 'Dropout3d']:
for prob in prob_list:
for wrap in [True, False]:
input = get_random_test_tensor(size=input_size, is_float=True, ex_zero=True)
input.requires_grad = True
encr_input = crypten.cryptensor(input)
if wrap:
encr_input = AutogradCrypTensor(encr_input)
module = getattr(torch.nn, module_name)(prob)
module.train()
encr_module = crypten.nn.from_pytorch(module, input)
for encrypted in [False, True, True, False, True]:
encr_module.encrypt(mode=encrypted)
if encrypted:
self.assertTrue(encr_module.encrypted, 'module not encrypted')
else:
self.assertFalse(encr_module.encrypted, 'module encrypted')
self.assertTrue(encr_module.training, 'training value incorrect')
encr_output = encr_module(encr_input)
plaintext_output = encr_output.get_plain_text()
scaled_tensor = (input / (1 - prob))
reference = plaintext_output.where((plaintext_output == 0), scaled_tensor)
self._check(encr_output, reference, 'Dropout forward failed')
all_ones = torch.ones(reference.size())
ref_grad = plaintext_output.where((plaintext_output == 0), all_ones)
ref_grad_input = (ref_grad / (1 - prob))
encr_output.backward()
if wrap:
self._check(encr_input.grad, ref_grad_input, 'dropout backward on input failed')
encr_module.train(mode=False)
encr_output = encr_module(encr_input)
result = encr_input.eq(encr_output)
result_plaintext = result.get_plain_text().bool()
self.assertTrue(result_plaintext.all(), 'dropout failed in test mode') | Tests the dropout module | test/test_nn.py | test_dropout_module | youben11/CrypTen | 2 | python | def test_dropout_module(self):
input_size = [3, 3, 3]
prob_list = [(0.2 * x) for x in range(1, 5)]
for module_name in ['Dropout', 'Dropout2d', 'Dropout3d']:
for prob in prob_list:
for wrap in [True, False]:
input = get_random_test_tensor(size=input_size, is_float=True, ex_zero=True)
input.requires_grad = True
encr_input = crypten.cryptensor(input)
if wrap:
encr_input = AutogradCrypTensor(encr_input)
module = getattr(torch.nn, module_name)(prob)
module.train()
encr_module = crypten.nn.from_pytorch(module, input)
for encrypted in [False, True, True, False, True]:
encr_module.encrypt(mode=encrypted)
if encrypted:
self.assertTrue(encr_module.encrypted, 'module not encrypted')
else:
self.assertFalse(encr_module.encrypted, 'module encrypted')
self.assertTrue(encr_module.training, 'training value incorrect')
encr_output = encr_module(encr_input)
plaintext_output = encr_output.get_plain_text()
scaled_tensor = (input / (1 - prob))
reference = plaintext_output.where((plaintext_output == 0), scaled_tensor)
self._check(encr_output, reference, 'Dropout forward failed')
all_ones = torch.ones(reference.size())
ref_grad = plaintext_output.where((plaintext_output == 0), all_ones)
ref_grad_input = (ref_grad / (1 - prob))
encr_output.backward()
if wrap:
self._check(encr_input.grad, ref_grad_input, 'dropout backward on input failed')
encr_module.train(mode=False)
encr_output = encr_module(encr_input)
result = encr_input.eq(encr_output)
result_plaintext = result.get_plain_text().bool()
self.assertTrue(result_plaintext.all(), 'dropout failed in test mode') | def test_dropout_module(self):
input_size = [3, 3, 3]
prob_list = [(0.2 * x) for x in range(1, 5)]
for module_name in ['Dropout', 'Dropout2d', 'Dropout3d']:
for prob in prob_list:
for wrap in [True, False]:
input = get_random_test_tensor(size=input_size, is_float=True, ex_zero=True)
input.requires_grad = True
encr_input = crypten.cryptensor(input)
if wrap:
encr_input = AutogradCrypTensor(encr_input)
module = getattr(torch.nn, module_name)(prob)
module.train()
encr_module = crypten.nn.from_pytorch(module, input)
for encrypted in [False, True, True, False, True]:
encr_module.encrypt(mode=encrypted)
if encrypted:
self.assertTrue(encr_module.encrypted, 'module not encrypted')
else:
self.assertFalse(encr_module.encrypted, 'module encrypted')
self.assertTrue(encr_module.training, 'training value incorrect')
encr_output = encr_module(encr_input)
plaintext_output = encr_output.get_plain_text()
scaled_tensor = (input / (1 - prob))
reference = plaintext_output.where((plaintext_output == 0), scaled_tensor)
self._check(encr_output, reference, 'Dropout forward failed')
all_ones = torch.ones(reference.size())
ref_grad = plaintext_output.where((plaintext_output == 0), all_ones)
ref_grad_input = (ref_grad / (1 - prob))
encr_output.backward()
if wrap:
self._check(encr_input.grad, ref_grad_input, 'dropout backward on input failed')
encr_module.train(mode=False)
encr_output = encr_module(encr_input)
result = encr_input.eq(encr_output)
result_plaintext = result.get_plain_text().bool()
self.assertTrue(result_plaintext.all(), 'dropout failed in test mode')<|docstring|>Tests the dropout module<|endoftext|> |
518467dff0d3737c61ceadb153bf7a1dc86be071543585ab0c1f216c1fe316e9 | def test_non_pytorch_modules(self):
'\n Tests all non-container Modules in crypten.nn that do not have\n equivalent modules in PyTorch.\n '
no_input_modules = ['Constant']
binary_modules = ['Add', 'Sub', 'Concat']
ex_zero_modules = []
module_args = {'Add': (), 'Concat': (0,), 'Constant': (1.2,), 'Exp': (), 'Gather': (0,), 'Reshape': (), 'ReduceSum': ([0], True), 'Shape': (), 'Sub': (), 'Squeeze': (0,), 'Unsqueeze': (0,)}
module_lambdas = {'Add': (lambda x: (x[0] + x[1])), 'Concat': (lambda x: torch.cat((x[0], x[1]))), 'Constant': (lambda _: torch.tensor(module_args['Constant'][0])), 'Exp': (lambda x: torch.exp(x)), 'Gather': (lambda x: torch.from_numpy(x[0].numpy().take(x[1], module_args['Gather'][0]))), 'ReduceSum': (lambda x: torch.sum(x, dim=module_args['ReduceSum'][0], keepdim=(module_args['ReduceSum'][1] == 1))), 'Reshape': (lambda x: x[0].reshape(x[1].tolist())), 'Shape': (lambda x: torch.tensor(x.size()).float()), 'Sub': (lambda x: (x[0] - x[1])), 'Squeeze': (lambda x: x.squeeze(module_args['Squeeze'][0])), 'Unsqueeze': (lambda x: x.unsqueeze(module_args['Unsqueeze'][0]))}
input_sizes = {'Add': (10, 12), 'Concat': (2, 2), 'Constant': (1,), 'Exp': (10, 10, 10), 'Gather': (4, 4, 4, 4), 'Reshape': (1, 4), 'ReduceSum': (3, 3, 3), 'Shape': (8, 3, 2), 'Sub': (10, 12), 'Squeeze': (1, 12, 6), 'Unsqueeze': (8, 3)}
additional_inputs = {'Gather': torch.tensor([[1, 2], [0, 3]]), 'Reshape': torch.tensor([2, 2])}
module_attributes = {'Add': [], 'Exp': [], 'Concat': [('axis', False)], 'Constant': [('value', False)], 'Gather': [('axis', False)], 'ReduceSum': [('axes', False), ('keepdims', False)], 'Reshape': [], 'Shape': [], 'Sub': [], 'Squeeze': [('axes', True)], 'Unsqueeze': [('axes', True)]}
for module_name in module_args.keys():
encr_module = getattr(crypten.nn, module_name)(*module_args[module_name])
encr_module.encrypt()
self.assertTrue(encr_module.encrypted, 'module not encrypted')
(inputs, encr_inputs) = (None, None)
ex_zero_values = (module_name in ex_zero_modules)
if (module_name in binary_modules):
inputs = [get_random_test_tensor(size=input_sizes[module_name], is_float=True, ex_zero=ex_zero_values) for _ in range(2)]
encr_inputs = [crypten.cryptensor(input) for input in inputs]
elif (module_name not in no_input_modules):
inputs = get_random_test_tensor(size=input_sizes[module_name], is_float=True, ex_zero=ex_zero_values)
encr_inputs = crypten.cryptensor(inputs)
if (module_name in additional_inputs):
if (not isinstance(inputs, (list, tuple))):
(inputs, encr_inputs) = ([inputs], [encr_inputs])
inputs.append(additional_inputs[module_name])
encr_inputs.append(crypten.cryptensor(inputs[(- 1)]))
reference = module_lambdas[module_name](inputs)
encr_output = encr_module(encr_inputs)
self._check(encr_output, reference, ('%s failed' % module_name))
local_attr = {}
for (i, attr_tuple) in enumerate(module_attributes[module_name]):
(attr_name, wrap_attr_in_list) = attr_tuple
if wrap_attr_in_list:
local_attr[attr_name] = [module_args[module_name][i]]
else:
local_attr[attr_name] = module_args[module_name][i]
if (module_name == 'ReduceSum'):
local_attr['keepdims'] = (1 if (module_args['ReduceSum'][1] is True) else 0)
module = getattr(crypten.nn, module_name).from_onnx(attributes=local_attr)
encr_module_onnx = module.encrypt()
encr_output = encr_module_onnx(encr_inputs)
self._check(encr_output, reference, ('%s failed' % module_name)) | Tests all non-container Modules in crypten.nn that do not have
equivalent modules in PyTorch. | test/test_nn.py | test_non_pytorch_modules | youben11/CrypTen | 2 | python | def test_non_pytorch_modules(self):
'\n Tests all non-container Modules in crypten.nn that do not have\n equivalent modules in PyTorch.\n '
no_input_modules = ['Constant']
binary_modules = ['Add', 'Sub', 'Concat']
ex_zero_modules = []
module_args = {'Add': (), 'Concat': (0,), 'Constant': (1.2,), 'Exp': (), 'Gather': (0,), 'Reshape': (), 'ReduceSum': ([0], True), 'Shape': (), 'Sub': (), 'Squeeze': (0,), 'Unsqueeze': (0,)}
module_lambdas = {'Add': (lambda x: (x[0] + x[1])), 'Concat': (lambda x: torch.cat((x[0], x[1]))), 'Constant': (lambda _: torch.tensor(module_args['Constant'][0])), 'Exp': (lambda x: torch.exp(x)), 'Gather': (lambda x: torch.from_numpy(x[0].numpy().take(x[1], module_args['Gather'][0]))), 'ReduceSum': (lambda x: torch.sum(x, dim=module_args['ReduceSum'][0], keepdim=(module_args['ReduceSum'][1] == 1))), 'Reshape': (lambda x: x[0].reshape(x[1].tolist())), 'Shape': (lambda x: torch.tensor(x.size()).float()), 'Sub': (lambda x: (x[0] - x[1])), 'Squeeze': (lambda x: x.squeeze(module_args['Squeeze'][0])), 'Unsqueeze': (lambda x: x.unsqueeze(module_args['Unsqueeze'][0]))}
input_sizes = {'Add': (10, 12), 'Concat': (2, 2), 'Constant': (1,), 'Exp': (10, 10, 10), 'Gather': (4, 4, 4, 4), 'Reshape': (1, 4), 'ReduceSum': (3, 3, 3), 'Shape': (8, 3, 2), 'Sub': (10, 12), 'Squeeze': (1, 12, 6), 'Unsqueeze': (8, 3)}
additional_inputs = {'Gather': torch.tensor([[1, 2], [0, 3]]), 'Reshape': torch.tensor([2, 2])}
module_attributes = {'Add': [], 'Exp': [], 'Concat': [('axis', False)], 'Constant': [('value', False)], 'Gather': [('axis', False)], 'ReduceSum': [('axes', False), ('keepdims', False)], 'Reshape': [], 'Shape': [], 'Sub': [], 'Squeeze': [('axes', True)], 'Unsqueeze': [('axes', True)]}
for module_name in module_args.keys():
encr_module = getattr(crypten.nn, module_name)(*module_args[module_name])
encr_module.encrypt()
self.assertTrue(encr_module.encrypted, 'module not encrypted')
(inputs, encr_inputs) = (None, None)
ex_zero_values = (module_name in ex_zero_modules)
if (module_name in binary_modules):
inputs = [get_random_test_tensor(size=input_sizes[module_name], is_float=True, ex_zero=ex_zero_values) for _ in range(2)]
encr_inputs = [crypten.cryptensor(input) for input in inputs]
elif (module_name not in no_input_modules):
inputs = get_random_test_tensor(size=input_sizes[module_name], is_float=True, ex_zero=ex_zero_values)
encr_inputs = crypten.cryptensor(inputs)
if (module_name in additional_inputs):
if (not isinstance(inputs, (list, tuple))):
(inputs, encr_inputs) = ([inputs], [encr_inputs])
inputs.append(additional_inputs[module_name])
encr_inputs.append(crypten.cryptensor(inputs[(- 1)]))
reference = module_lambdas[module_name](inputs)
encr_output = encr_module(encr_inputs)
self._check(encr_output, reference, ('%s failed' % module_name))
local_attr = {}
for (i, attr_tuple) in enumerate(module_attributes[module_name]):
(attr_name, wrap_attr_in_list) = attr_tuple
if wrap_attr_in_list:
local_attr[attr_name] = [module_args[module_name][i]]
else:
local_attr[attr_name] = module_args[module_name][i]
if (module_name == 'ReduceSum'):
local_attr['keepdims'] = (1 if (module_args['ReduceSum'][1] is True) else 0)
module = getattr(crypten.nn, module_name).from_onnx(attributes=local_attr)
encr_module_onnx = module.encrypt()
encr_output = encr_module_onnx(encr_inputs)
self._check(encr_output, reference, ('%s failed' % module_name)) | def test_non_pytorch_modules(self):
'\n Tests all non-container Modules in crypten.nn that do not have\n equivalent modules in PyTorch.\n '
no_input_modules = ['Constant']
binary_modules = ['Add', 'Sub', 'Concat']
ex_zero_modules = []
module_args = {'Add': (), 'Concat': (0,), 'Constant': (1.2,), 'Exp': (), 'Gather': (0,), 'Reshape': (), 'ReduceSum': ([0], True), 'Shape': (), 'Sub': (), 'Squeeze': (0,), 'Unsqueeze': (0,)}
module_lambdas = {'Add': (lambda x: (x[0] + x[1])), 'Concat': (lambda x: torch.cat((x[0], x[1]))), 'Constant': (lambda _: torch.tensor(module_args['Constant'][0])), 'Exp': (lambda x: torch.exp(x)), 'Gather': (lambda x: torch.from_numpy(x[0].numpy().take(x[1], module_args['Gather'][0]))), 'ReduceSum': (lambda x: torch.sum(x, dim=module_args['ReduceSum'][0], keepdim=(module_args['ReduceSum'][1] == 1))), 'Reshape': (lambda x: x[0].reshape(x[1].tolist())), 'Shape': (lambda x: torch.tensor(x.size()).float()), 'Sub': (lambda x: (x[0] - x[1])), 'Squeeze': (lambda x: x.squeeze(module_args['Squeeze'][0])), 'Unsqueeze': (lambda x: x.unsqueeze(module_args['Unsqueeze'][0]))}
input_sizes = {'Add': (10, 12), 'Concat': (2, 2), 'Constant': (1,), 'Exp': (10, 10, 10), 'Gather': (4, 4, 4, 4), 'Reshape': (1, 4), 'ReduceSum': (3, 3, 3), 'Shape': (8, 3, 2), 'Sub': (10, 12), 'Squeeze': (1, 12, 6), 'Unsqueeze': (8, 3)}
additional_inputs = {'Gather': torch.tensor([[1, 2], [0, 3]]), 'Reshape': torch.tensor([2, 2])}
module_attributes = {'Add': [], 'Exp': [], 'Concat': [('axis', False)], 'Constant': [('value', False)], 'Gather': [('axis', False)], 'ReduceSum': [('axes', False), ('keepdims', False)], 'Reshape': [], 'Shape': [], 'Sub': [], 'Squeeze': [('axes', True)], 'Unsqueeze': [('axes', True)]}
for module_name in module_args.keys():
encr_module = getattr(crypten.nn, module_name)(*module_args[module_name])
encr_module.encrypt()
self.assertTrue(encr_module.encrypted, 'module not encrypted')
(inputs, encr_inputs) = (None, None)
ex_zero_values = (module_name in ex_zero_modules)
if (module_name in binary_modules):
inputs = [get_random_test_tensor(size=input_sizes[module_name], is_float=True, ex_zero=ex_zero_values) for _ in range(2)]
encr_inputs = [crypten.cryptensor(input) for input in inputs]
elif (module_name not in no_input_modules):
inputs = get_random_test_tensor(size=input_sizes[module_name], is_float=True, ex_zero=ex_zero_values)
encr_inputs = crypten.cryptensor(inputs)
if (module_name in additional_inputs):
if (not isinstance(inputs, (list, tuple))):
(inputs, encr_inputs) = ([inputs], [encr_inputs])
inputs.append(additional_inputs[module_name])
encr_inputs.append(crypten.cryptensor(inputs[(- 1)]))
reference = module_lambdas[module_name](inputs)
encr_output = encr_module(encr_inputs)
self._check(encr_output, reference, ('%s failed' % module_name))
local_attr = {}
for (i, attr_tuple) in enumerate(module_attributes[module_name]):
(attr_name, wrap_attr_in_list) = attr_tuple
if wrap_attr_in_list:
local_attr[attr_name] = [module_args[module_name][i]]
else:
local_attr[attr_name] = module_args[module_name][i]
if (module_name == 'ReduceSum'):
local_attr['keepdims'] = (1 if (module_args['ReduceSum'][1] is True) else 0)
module = getattr(crypten.nn, module_name).from_onnx(attributes=local_attr)
encr_module_onnx = module.encrypt()
encr_output = encr_module_onnx(encr_inputs)
self._check(encr_output, reference, ('%s failed' % module_name))<|docstring|>Tests all non-container Modules in crypten.nn that do not have
equivalent modules in PyTorch.<|endoftext|> |
1db3c09bb6a761e1fabfff4d6937db95b49a30d5eb5ef0d6d64caa2e8bf6de5b | def test_pytorch_modules(self):
'\n Tests all non-container Modules in crypten.nn that have equivalent\n modules in PyTorch.\n '
module_args = {'AdaptiveAvgPool2d': (2,), 'AvgPool2d': (2,), 'ConstantPad1d': (3, 1.0), 'ConstantPad2d': (2, 2.0), 'ConstantPad3d': (1, 0.0), 'Conv2d': (3, 6, 5), 'Linear': (400, 120), 'MaxPool2d': (2,), 'ReLU': (), 'Softmax': (0,), 'LogSoftmax': (0,)}
input_sizes = {'AdaptiveAvgPool2d': (1, 3, 32, 32), 'AvgPool2d': (1, 3, 32, 32), 'BatchNorm1d': (8, 400), 'BatchNorm2d': (8, 3, 32, 32), 'BatchNorm3d': (8, 6, 32, 32, 4), 'ConstantPad1d': (9,), 'ConstantPad2d': (3, 6), 'ConstantPad3d': (4, 2, 7), 'Conv2d': (1, 3, 32, 32), 'Linear': (1, 400), 'MaxPool2d': (1, 2, 32, 32), 'ReLU': (1, 3, 32, 32), 'Softmax': (5, 5, 5), 'LogSoftmax': (5, 5, 5)}
for module_name in module_args.keys():
for wrap in [True, False]:
input = get_random_test_tensor(size=input_sizes[module_name], is_float=True)
input.requires_grad = True
encr_input = crypten.cryptensor(input)
if wrap:
encr_input = AutogradCrypTensor(encr_input)
module = getattr(torch.nn, module_name)(*module_args[module_name])
module.train()
encr_module = crypten.nn.from_pytorch(module, input)
for encrypted in [False, True, True, False, True]:
encr_module.encrypt(mode=encrypted)
if encrypted:
self.assertTrue(encr_module.encrypted, 'module not encrypted')
else:
self.assertFalse(encr_module.encrypted, 'module encrypted')
for key in ['weight', 'bias']:
if hasattr(module, key):
encr_param = None
if isinstance(encr_module, crypten.nn.Graph):
for encr_node in encr_module.modules():
if hasattr(encr_node, key):
encr_param = getattr(encr_node, key)
break
else:
encr_param = getattr(encr_module, key)
reference = getattr(module, key)
src_reference = comm.get().broadcast(reference, src=0)
msg = ('parameter %s in %s incorrect' % (key, module_name))
if (not encrypted):
encr_param = crypten.cryptensor(encr_param)
self._check(encr_param, src_reference, msg)
self.assertTrue(encr_module.training, 'training value incorrect')
reference = module(input)
encr_output = encr_module(encr_input)
self._check(encr_output, reference, ('%s forward failed' % module_name))
reference.backward(torch.ones(reference.size()))
encr_output.backward()
if wrap:
self._check(encr_input.grad, input.grad, ('%s backward on input failed' % module_name))
else:
self.assertFalse(hasattr(encr_input, 'grad'))
for (name, param) in module.named_parameters():
encr_param = getattr(encr_module, name)
self._check(encr_param.grad, param.grad, ('%s backward on %s failed' % (module_name, name))) | Tests all non-container Modules in crypten.nn that have equivalent
modules in PyTorch. | test/test_nn.py | test_pytorch_modules | youben11/CrypTen | 2 | python | def test_pytorch_modules(self):
'\n Tests all non-container Modules in crypten.nn that have equivalent\n modules in PyTorch.\n '
module_args = {'AdaptiveAvgPool2d': (2,), 'AvgPool2d': (2,), 'ConstantPad1d': (3, 1.0), 'ConstantPad2d': (2, 2.0), 'ConstantPad3d': (1, 0.0), 'Conv2d': (3, 6, 5), 'Linear': (400, 120), 'MaxPool2d': (2,), 'ReLU': (), 'Softmax': (0,), 'LogSoftmax': (0,)}
input_sizes = {'AdaptiveAvgPool2d': (1, 3, 32, 32), 'AvgPool2d': (1, 3, 32, 32), 'BatchNorm1d': (8, 400), 'BatchNorm2d': (8, 3, 32, 32), 'BatchNorm3d': (8, 6, 32, 32, 4), 'ConstantPad1d': (9,), 'ConstantPad2d': (3, 6), 'ConstantPad3d': (4, 2, 7), 'Conv2d': (1, 3, 32, 32), 'Linear': (1, 400), 'MaxPool2d': (1, 2, 32, 32), 'ReLU': (1, 3, 32, 32), 'Softmax': (5, 5, 5), 'LogSoftmax': (5, 5, 5)}
for module_name in module_args.keys():
for wrap in [True, False]:
input = get_random_test_tensor(size=input_sizes[module_name], is_float=True)
input.requires_grad = True
encr_input = crypten.cryptensor(input)
if wrap:
encr_input = AutogradCrypTensor(encr_input)
module = getattr(torch.nn, module_name)(*module_args[module_name])
module.train()
encr_module = crypten.nn.from_pytorch(module, input)
for encrypted in [False, True, True, False, True]:
encr_module.encrypt(mode=encrypted)
if encrypted:
self.assertTrue(encr_module.encrypted, 'module not encrypted')
else:
self.assertFalse(encr_module.encrypted, 'module encrypted')
for key in ['weight', 'bias']:
if hasattr(module, key):
encr_param = None
if isinstance(encr_module, crypten.nn.Graph):
for encr_node in encr_module.modules():
if hasattr(encr_node, key):
encr_param = getattr(encr_node, key)
break
else:
encr_param = getattr(encr_module, key)
reference = getattr(module, key)
src_reference = comm.get().broadcast(reference, src=0)
msg = ('parameter %s in %s incorrect' % (key, module_name))
if (not encrypted):
encr_param = crypten.cryptensor(encr_param)
self._check(encr_param, src_reference, msg)
self.assertTrue(encr_module.training, 'training value incorrect')
reference = module(input)
encr_output = encr_module(encr_input)
self._check(encr_output, reference, ('%s forward failed' % module_name))
reference.backward(torch.ones(reference.size()))
encr_output.backward()
if wrap:
self._check(encr_input.grad, input.grad, ('%s backward on input failed' % module_name))
else:
self.assertFalse(hasattr(encr_input, 'grad'))
for (name, param) in module.named_parameters():
encr_param = getattr(encr_module, name)
self._check(encr_param.grad, param.grad, ('%s backward on %s failed' % (module_name, name))) | def test_pytorch_modules(self):
'\n Tests all non-container Modules in crypten.nn that have equivalent\n modules in PyTorch.\n '
module_args = {'AdaptiveAvgPool2d': (2,), 'AvgPool2d': (2,), 'ConstantPad1d': (3, 1.0), 'ConstantPad2d': (2, 2.0), 'ConstantPad3d': (1, 0.0), 'Conv2d': (3, 6, 5), 'Linear': (400, 120), 'MaxPool2d': (2,), 'ReLU': (), 'Softmax': (0,), 'LogSoftmax': (0,)}
input_sizes = {'AdaptiveAvgPool2d': (1, 3, 32, 32), 'AvgPool2d': (1, 3, 32, 32), 'BatchNorm1d': (8, 400), 'BatchNorm2d': (8, 3, 32, 32), 'BatchNorm3d': (8, 6, 32, 32, 4), 'ConstantPad1d': (9,), 'ConstantPad2d': (3, 6), 'ConstantPad3d': (4, 2, 7), 'Conv2d': (1, 3, 32, 32), 'Linear': (1, 400), 'MaxPool2d': (1, 2, 32, 32), 'ReLU': (1, 3, 32, 32), 'Softmax': (5, 5, 5), 'LogSoftmax': (5, 5, 5)}
for module_name in module_args.keys():
for wrap in [True, False]:
input = get_random_test_tensor(size=input_sizes[module_name], is_float=True)
input.requires_grad = True
encr_input = crypten.cryptensor(input)
if wrap:
encr_input = AutogradCrypTensor(encr_input)
module = getattr(torch.nn, module_name)(*module_args[module_name])
module.train()
encr_module = crypten.nn.from_pytorch(module, input)
for encrypted in [False, True, True, False, True]:
encr_module.encrypt(mode=encrypted)
if encrypted:
self.assertTrue(encr_module.encrypted, 'module not encrypted')
else:
self.assertFalse(encr_module.encrypted, 'module encrypted')
for key in ['weight', 'bias']:
if hasattr(module, key):
encr_param = None
if isinstance(encr_module, crypten.nn.Graph):
for encr_node in encr_module.modules():
if hasattr(encr_node, key):
encr_param = getattr(encr_node, key)
break
else:
encr_param = getattr(encr_module, key)
reference = getattr(module, key)
src_reference = comm.get().broadcast(reference, src=0)
msg = ('parameter %s in %s incorrect' % (key, module_name))
if (not encrypted):
encr_param = crypten.cryptensor(encr_param)
self._check(encr_param, src_reference, msg)
self.assertTrue(encr_module.training, 'training value incorrect')
reference = module(input)
encr_output = encr_module(encr_input)
self._check(encr_output, reference, ('%s forward failed' % module_name))
reference.backward(torch.ones(reference.size()))
encr_output.backward()
if wrap:
self._check(encr_input.grad, input.grad, ('%s backward on input failed' % module_name))
else:
self.assertFalse(hasattr(encr_input, 'grad'))
for (name, param) in module.named_parameters():
encr_param = getattr(encr_module, name)
self._check(encr_param.grad, param.grad, ('%s backward on %s failed' % (module_name, name)))<|docstring|>Tests all non-container Modules in crypten.nn that have equivalent
modules in PyTorch.<|endoftext|> |
8c5c1804559f8471c41c82698da7939ab686e818ceb32fabfd4b050770665d32 | def test_sequential(self):
'\n Tests crypten.nn.Sequential module.\n '
for num_layers in range(1, 6):
for wrap in [True, False]:
input_size = (3, 10)
output_size = (input_size[0], (input_size[1] - num_layers))
layer_idx = range(input_size[1], output_size[1], (- 1))
module_list = [crypten.nn.Linear(num_feat, (num_feat - 1)) for num_feat in layer_idx]
sequential = crypten.nn.Sequential(module_list)
sequential.encrypt()
self.assertTrue(sequential.encrypted, 'nn.Sequential not encrypted')
for module in sequential.modules():
self.assertTrue(module.encrypted, 'module not encrypted')
assert (sum((1 for _ in sequential.modules())) == len(module_list)), 'nn.Sequential contains incorrect number of modules'
input = get_random_test_tensor(size=input_size, is_float=True)
encr_input = crypten.cryptensor(input)
if wrap:
encr_input = AutogradCrypTensor(encr_input)
encr_output = sequential(encr_input)
encr_reference = encr_input
for module in sequential.modules():
encr_reference = module(encr_reference)
reference = encr_reference.get_plain_text()
self._check(encr_output, reference, 'nn.Sequential forward failed') | Tests crypten.nn.Sequential module. | test/test_nn.py | test_sequential | youben11/CrypTen | 2 | python | def test_sequential(self):
'\n \n '
for num_layers in range(1, 6):
for wrap in [True, False]:
input_size = (3, 10)
output_size = (input_size[0], (input_size[1] - num_layers))
layer_idx = range(input_size[1], output_size[1], (- 1))
module_list = [crypten.nn.Linear(num_feat, (num_feat - 1)) for num_feat in layer_idx]
sequential = crypten.nn.Sequential(module_list)
sequential.encrypt()
self.assertTrue(sequential.encrypted, 'nn.Sequential not encrypted')
for module in sequential.modules():
self.assertTrue(module.encrypted, 'module not encrypted')
assert (sum((1 for _ in sequential.modules())) == len(module_list)), 'nn.Sequential contains incorrect number of modules'
input = get_random_test_tensor(size=input_size, is_float=True)
encr_input = crypten.cryptensor(input)
if wrap:
encr_input = AutogradCrypTensor(encr_input)
encr_output = sequential(encr_input)
encr_reference = encr_input
for module in sequential.modules():
encr_reference = module(encr_reference)
reference = encr_reference.get_plain_text()
self._check(encr_output, reference, 'nn.Sequential forward failed') | def test_sequential(self):
'\n \n '
for num_layers in range(1, 6):
for wrap in [True, False]:
input_size = (3, 10)
output_size = (input_size[0], (input_size[1] - num_layers))
layer_idx = range(input_size[1], output_size[1], (- 1))
module_list = [crypten.nn.Linear(num_feat, (num_feat - 1)) for num_feat in layer_idx]
sequential = crypten.nn.Sequential(module_list)
sequential.encrypt()
self.assertTrue(sequential.encrypted, 'nn.Sequential not encrypted')
for module in sequential.modules():
self.assertTrue(module.encrypted, 'module not encrypted')
assert (sum((1 for _ in sequential.modules())) == len(module_list)), 'nn.Sequential contains incorrect number of modules'
input = get_random_test_tensor(size=input_size, is_float=True)
encr_input = crypten.cryptensor(input)
if wrap:
encr_input = AutogradCrypTensor(encr_input)
encr_output = sequential(encr_input)
encr_reference = encr_input
for module in sequential.modules():
encr_reference = module(encr_reference)
reference = encr_reference.get_plain_text()
self._check(encr_output, reference, 'nn.Sequential forward failed')<|docstring|>Tests crypten.nn.Sequential module.<|endoftext|> |
1dc6010c88183f60029314c8bd878759172d20347ea013d15924302c92d1b4a9 | def test_graph(self):
'\n Tests crypten.nn.Graph module.\n '
for wrap in [True, False]:
input_size = (3, 10)
input = get_random_test_tensor(size=input_size, is_float=True)
encr_input = crypten.cryptensor(input)
if wrap:
encr_input = AutogradCrypTensor(encr_input)
graph = crypten.nn.Graph('input', 'output')
linear1 = get_random_linear(input_size[1], input_size[1])
linear2 = get_random_linear(input_size[1], input_size[1])
graph.add_module('linear', crypten.nn.from_pytorch(linear1, input), ['input'])
graph.add_module('residual', crypten.nn.Add(), ['input', 'linear'])
graph.add_module('output', crypten.nn.from_pytorch(linear2, input), ['residual'])
graph.encrypt()
self.assertTrue(graph.encrypted, 'nn.Graph not encrypted')
for module in graph.modules():
self.assertTrue(module.encrypted, 'module not encrypted')
assert (sum((1 for _ in graph.modules())) == 3), 'nn.Graph contains incorrect number of modules'
encr_output = graph(encr_input)
reference = linear2((linear1(input) + input))
self._check(encr_output, reference, 'nn.Graph forward failed') | Tests crypten.nn.Graph module. | test/test_nn.py | test_graph | youben11/CrypTen | 2 | python | def test_graph(self):
'\n \n '
for wrap in [True, False]:
input_size = (3, 10)
input = get_random_test_tensor(size=input_size, is_float=True)
encr_input = crypten.cryptensor(input)
if wrap:
encr_input = AutogradCrypTensor(encr_input)
graph = crypten.nn.Graph('input', 'output')
linear1 = get_random_linear(input_size[1], input_size[1])
linear2 = get_random_linear(input_size[1], input_size[1])
graph.add_module('linear', crypten.nn.from_pytorch(linear1, input), ['input'])
graph.add_module('residual', crypten.nn.Add(), ['input', 'linear'])
graph.add_module('output', crypten.nn.from_pytorch(linear2, input), ['residual'])
graph.encrypt()
self.assertTrue(graph.encrypted, 'nn.Graph not encrypted')
for module in graph.modules():
self.assertTrue(module.encrypted, 'module not encrypted')
assert (sum((1 for _ in graph.modules())) == 3), 'nn.Graph contains incorrect number of modules'
encr_output = graph(encr_input)
reference = linear2((linear1(input) + input))
self._check(encr_output, reference, 'nn.Graph forward failed') | def test_graph(self):
'\n \n '
for wrap in [True, False]:
input_size = (3, 10)
input = get_random_test_tensor(size=input_size, is_float=True)
encr_input = crypten.cryptensor(input)
if wrap:
encr_input = AutogradCrypTensor(encr_input)
graph = crypten.nn.Graph('input', 'output')
linear1 = get_random_linear(input_size[1], input_size[1])
linear2 = get_random_linear(input_size[1], input_size[1])
graph.add_module('linear', crypten.nn.from_pytorch(linear1, input), ['input'])
graph.add_module('residual', crypten.nn.Add(), ['input', 'linear'])
graph.add_module('output', crypten.nn.from_pytorch(linear2, input), ['residual'])
graph.encrypt()
self.assertTrue(graph.encrypted, 'nn.Graph not encrypted')
for module in graph.modules():
self.assertTrue(module.encrypted, 'module not encrypted')
assert (sum((1 for _ in graph.modules())) == 3), 'nn.Graph contains incorrect number of modules'
encr_output = graph(encr_input)
reference = linear2((linear1(input) + input))
self._check(encr_output, reference, 'nn.Graph forward failed')<|docstring|>Tests crypten.nn.Graph module.<|endoftext|> |
634ae4313d5ee6c554be40352037b3c350db2d9d90fc6126301fe8ad1ed884a1 | def test_losses(self):
'\n Tests all Losses implemented in crypten.nn.\n '
input = (get_random_test_tensor(max_value=0.999, is_float=True).abs() + 0.001)
target = (get_random_test_tensor(max_value=0.999, is_float=True).abs() + 0.001)
encrypted_input = crypten.cryptensor(input)
encrypted_target = crypten.cryptensor(target)
for loss_name in ['BCELoss', 'BCEWithLogitsLoss', 'L1Loss', 'MSELoss']:
for skip_forward in [False, True]:
enc_loss_object = getattr(torch.nn, loss_name)()
self.assertEqual(enc_loss_object.reduction, 'mean', "Reduction used is not 'mean'")
input.requires_grad = True
input.grad = None
loss = getattr(torch.nn, loss_name)()(input, target)
if (not skip_forward):
encrypted_loss = getattr(crypten.nn, loss_name)()(encrypted_input, encrypted_target)
self._check(encrypted_loss, loss, ('%s failed' % loss_name))
encrypted_input = AutogradCrypTensor(encrypted_input, requires_grad=True)
encrypted_loss = getattr(crypten.nn, loss_name)(skip_forward=skip_forward)(encrypted_input, AutogradCrypTensor(encrypted_target))
if (not skip_forward):
self._check(encrypted_loss, loss, ('%s failed' % loss_name))
loss.backward()
encrypted_loss.backward()
self._check(encrypted_input.grad, input.grad, ('%s grad failed' % loss_name))
(batch_size, num_targets) = (16, 5)
input = get_random_test_tensor(size=(batch_size, num_targets), is_float=True)
target = get_random_test_tensor(size=(batch_size,), max_value=(num_targets - 1)).abs()
encrypted_input = crypten.cryptensor(input)
encrypted_target = crypten.cryptensor(onehot(target, num_targets=num_targets))
enc_loss_object = crypten.nn.CrossEntropyLoss()
self.assertEqual(enc_loss_object.reduction, 'mean', "Reduction used is not 'mean'")
loss = torch.nn.CrossEntropyLoss()(input, target)
encrypted_loss = crypten.nn.CrossEntropyLoss()(encrypted_input, encrypted_target)
self._check(encrypted_loss, loss, 'cross-entropy loss failed')
encrypted_loss = crypten.nn.CrossEntropyLoss()(AutogradCrypTensor(encrypted_input), AutogradCrypTensor(encrypted_target))
self._check(encrypted_loss, loss, 'cross-entropy loss failed') | Tests all Losses implemented in crypten.nn. | test/test_nn.py | test_losses | youben11/CrypTen | 2 | python | def test_losses(self):
'\n \n '
input = (get_random_test_tensor(max_value=0.999, is_float=True).abs() + 0.001)
target = (get_random_test_tensor(max_value=0.999, is_float=True).abs() + 0.001)
encrypted_input = crypten.cryptensor(input)
encrypted_target = crypten.cryptensor(target)
for loss_name in ['BCELoss', 'BCEWithLogitsLoss', 'L1Loss', 'MSELoss']:
for skip_forward in [False, True]:
enc_loss_object = getattr(torch.nn, loss_name)()
self.assertEqual(enc_loss_object.reduction, 'mean', "Reduction used is not 'mean'")
input.requires_grad = True
input.grad = None
loss = getattr(torch.nn, loss_name)()(input, target)
if (not skip_forward):
encrypted_loss = getattr(crypten.nn, loss_name)()(encrypted_input, encrypted_target)
self._check(encrypted_loss, loss, ('%s failed' % loss_name))
encrypted_input = AutogradCrypTensor(encrypted_input, requires_grad=True)
encrypted_loss = getattr(crypten.nn, loss_name)(skip_forward=skip_forward)(encrypted_input, AutogradCrypTensor(encrypted_target))
if (not skip_forward):
self._check(encrypted_loss, loss, ('%s failed' % loss_name))
loss.backward()
encrypted_loss.backward()
self._check(encrypted_input.grad, input.grad, ('%s grad failed' % loss_name))
(batch_size, num_targets) = (16, 5)
input = get_random_test_tensor(size=(batch_size, num_targets), is_float=True)
target = get_random_test_tensor(size=(batch_size,), max_value=(num_targets - 1)).abs()
encrypted_input = crypten.cryptensor(input)
encrypted_target = crypten.cryptensor(onehot(target, num_targets=num_targets))
enc_loss_object = crypten.nn.CrossEntropyLoss()
self.assertEqual(enc_loss_object.reduction, 'mean', "Reduction used is not 'mean'")
loss = torch.nn.CrossEntropyLoss()(input, target)
encrypted_loss = crypten.nn.CrossEntropyLoss()(encrypted_input, encrypted_target)
self._check(encrypted_loss, loss, 'cross-entropy loss failed')
encrypted_loss = crypten.nn.CrossEntropyLoss()(AutogradCrypTensor(encrypted_input), AutogradCrypTensor(encrypted_target))
self._check(encrypted_loss, loss, 'cross-entropy loss failed') | def test_losses(self):
'\n \n '
input = (get_random_test_tensor(max_value=0.999, is_float=True).abs() + 0.001)
target = (get_random_test_tensor(max_value=0.999, is_float=True).abs() + 0.001)
encrypted_input = crypten.cryptensor(input)
encrypted_target = crypten.cryptensor(target)
for loss_name in ['BCELoss', 'BCEWithLogitsLoss', 'L1Loss', 'MSELoss']:
for skip_forward in [False, True]:
enc_loss_object = getattr(torch.nn, loss_name)()
self.assertEqual(enc_loss_object.reduction, 'mean', "Reduction used is not 'mean'")
input.requires_grad = True
input.grad = None
loss = getattr(torch.nn, loss_name)()(input, target)
if (not skip_forward):
encrypted_loss = getattr(crypten.nn, loss_name)()(encrypted_input, encrypted_target)
self._check(encrypted_loss, loss, ('%s failed' % loss_name))
encrypted_input = AutogradCrypTensor(encrypted_input, requires_grad=True)
encrypted_loss = getattr(crypten.nn, loss_name)(skip_forward=skip_forward)(encrypted_input, AutogradCrypTensor(encrypted_target))
if (not skip_forward):
self._check(encrypted_loss, loss, ('%s failed' % loss_name))
loss.backward()
encrypted_loss.backward()
self._check(encrypted_input.grad, input.grad, ('%s grad failed' % loss_name))
(batch_size, num_targets) = (16, 5)
input = get_random_test_tensor(size=(batch_size, num_targets), is_float=True)
target = get_random_test_tensor(size=(batch_size,), max_value=(num_targets - 1)).abs()
encrypted_input = crypten.cryptensor(input)
encrypted_target = crypten.cryptensor(onehot(target, num_targets=num_targets))
enc_loss_object = crypten.nn.CrossEntropyLoss()
self.assertEqual(enc_loss_object.reduction, 'mean', "Reduction used is not 'mean'")
loss = torch.nn.CrossEntropyLoss()(input, target)
encrypted_loss = crypten.nn.CrossEntropyLoss()(encrypted_input, encrypted_target)
self._check(encrypted_loss, loss, 'cross-entropy loss failed')
encrypted_loss = crypten.nn.CrossEntropyLoss()(AutogradCrypTensor(encrypted_input), AutogradCrypTensor(encrypted_target))
self._check(encrypted_loss, loss, 'cross-entropy loss failed')<|docstring|>Tests all Losses implemented in crypten.nn.<|endoftext|> |
7cab97b929a049564bbb96b3252321bf11f1a1f33b08549c7ce62dbe482817ef | def test_getattr_setattr(self):
'Tests the __getattr__ and __setattr__ functions'
tensor1 = get_random_test_tensor(size=(3, 3), is_float=True)
tensor2 = get_random_test_tensor(size=(3, 3), is_float=True)
class ExampleNet(crypten.nn.Module):
def __init__(self):
super(ExampleNet, self).__init__()
self.fc1 = crypten.nn.Linear(20, 1)
sample_buffer = tensor1
self.register_buffer('sample_buffer', sample_buffer)
sample_param = tensor2
self.register_parameter('sample_param', sample_param)
def forward(self, x):
out = self.fc1(x)
return out
model = ExampleNet()
model.encrypt()
self.assertTrue(('fc1' in model._modules.keys()), 'modules __setattr__ failed')
self._check(model.sample_buffer, tensor1, 'buffer __getattr__ failed')
self._check(model.sample_param, tensor2, 'parameter __getattr__ failed')
self.assertTrue(isinstance(model.fc1, crypten.nn.Linear), 'modules __getattr__ failed') | Tests the __getattr__ and __setattr__ functions | test/test_nn.py | test_getattr_setattr | youben11/CrypTen | 2 | python | def test_getattr_setattr(self):
tensor1 = get_random_test_tensor(size=(3, 3), is_float=True)
tensor2 = get_random_test_tensor(size=(3, 3), is_float=True)
class ExampleNet(crypten.nn.Module):
def __init__(self):
super(ExampleNet, self).__init__()
self.fc1 = crypten.nn.Linear(20, 1)
sample_buffer = tensor1
self.register_buffer('sample_buffer', sample_buffer)
sample_param = tensor2
self.register_parameter('sample_param', sample_param)
def forward(self, x):
out = self.fc1(x)
return out
model = ExampleNet()
model.encrypt()
self.assertTrue(('fc1' in model._modules.keys()), 'modules __setattr__ failed')
self._check(model.sample_buffer, tensor1, 'buffer __getattr__ failed')
self._check(model.sample_param, tensor2, 'parameter __getattr__ failed')
self.assertTrue(isinstance(model.fc1, crypten.nn.Linear), 'modules __getattr__ failed') | def test_getattr_setattr(self):
tensor1 = get_random_test_tensor(size=(3, 3), is_float=True)
tensor2 = get_random_test_tensor(size=(3, 3), is_float=True)
class ExampleNet(crypten.nn.Module):
def __init__(self):
super(ExampleNet, self).__init__()
self.fc1 = crypten.nn.Linear(20, 1)
sample_buffer = tensor1
self.register_buffer('sample_buffer', sample_buffer)
sample_param = tensor2
self.register_parameter('sample_param', sample_param)
def forward(self, x):
out = self.fc1(x)
return out
model = ExampleNet()
model.encrypt()
self.assertTrue(('fc1' in model._modules.keys()), 'modules __setattr__ failed')
self._check(model.sample_buffer, tensor1, 'buffer __getattr__ failed')
self._check(model.sample_param, tensor2, 'parameter __getattr__ failed')
self.assertTrue(isinstance(model.fc1, crypten.nn.Linear), 'modules __getattr__ failed')<|docstring|>Tests the __getattr__ and __setattr__ functions<|endoftext|> |
877176cfd54364a58e77f63d7064d0aaa61851442fcc6980b695e5cfde32c119 | def test_training(self):
'\n Tests training of simple model in crypten.nn.\n '
learning_rate = 0.1
(batch_size, num_inputs, num_intermediate, num_outputs) = (8, 10, 5, 1)
model = crypten.nn.Sequential([crypten.nn.Linear(num_inputs, num_intermediate), crypten.nn.ReLU(), crypten.nn.Linear(num_intermediate, num_outputs)])
model.train()
model.encrypt()
loss = crypten.nn.MSELoss()
for _ in range(10):
for wrap in [True, False]:
input = get_random_test_tensor(size=(batch_size, num_inputs), is_float=True)
target = input.mean(dim=1, keepdim=True)
input = crypten.cryptensor(input)
target = crypten.cryptensor(target)
if wrap:
input = AutogradCrypTensor(input)
target = AutogradCrypTensor(target)
output = model(input)
loss_value = loss(output, target)
model.zero_grad()
for param in model.parameters():
self.assertIsNone(param.grad, 'zero_grad did not reset gradients')
loss_value.backward()
reference = {}
reference = self._compute_reference_parameters('', reference, model, learning_rate)
model.update_parameters(learning_rate)
self._check_reference_parameters('', reference, model) | Tests training of simple model in crypten.nn. | test/test_nn.py | test_training | youben11/CrypTen | 2 | python | def test_training(self):
'\n \n '
learning_rate = 0.1
(batch_size, num_inputs, num_intermediate, num_outputs) = (8, 10, 5, 1)
model = crypten.nn.Sequential([crypten.nn.Linear(num_inputs, num_intermediate), crypten.nn.ReLU(), crypten.nn.Linear(num_intermediate, num_outputs)])
model.train()
model.encrypt()
loss = crypten.nn.MSELoss()
for _ in range(10):
for wrap in [True, False]:
input = get_random_test_tensor(size=(batch_size, num_inputs), is_float=True)
target = input.mean(dim=1, keepdim=True)
input = crypten.cryptensor(input)
target = crypten.cryptensor(target)
if wrap:
input = AutogradCrypTensor(input)
target = AutogradCrypTensor(target)
output = model(input)
loss_value = loss(output, target)
model.zero_grad()
for param in model.parameters():
self.assertIsNone(param.grad, 'zero_grad did not reset gradients')
loss_value.backward()
reference = {}
reference = self._compute_reference_parameters(, reference, model, learning_rate)
model.update_parameters(learning_rate)
self._check_reference_parameters(, reference, model) | def test_training(self):
'\n \n '
learning_rate = 0.1
(batch_size, num_inputs, num_intermediate, num_outputs) = (8, 10, 5, 1)
model = crypten.nn.Sequential([crypten.nn.Linear(num_inputs, num_intermediate), crypten.nn.ReLU(), crypten.nn.Linear(num_intermediate, num_outputs)])
model.train()
model.encrypt()
loss = crypten.nn.MSELoss()
for _ in range(10):
for wrap in [True, False]:
input = get_random_test_tensor(size=(batch_size, num_inputs), is_float=True)
target = input.mean(dim=1, keepdim=True)
input = crypten.cryptensor(input)
target = crypten.cryptensor(target)
if wrap:
input = AutogradCrypTensor(input)
target = AutogradCrypTensor(target)
output = model(input)
loss_value = loss(output, target)
model.zero_grad()
for param in model.parameters():
self.assertIsNone(param.grad, 'zero_grad did not reset gradients')
loss_value.backward()
reference = {}
reference = self._compute_reference_parameters(, reference, model, learning_rate)
model.update_parameters(learning_rate)
self._check_reference_parameters(, reference, model)<|docstring|>Tests training of simple model in crypten.nn.<|endoftext|> |
c498b1a7f55d5fa717d81f1fcda944acae461d818d5110cfeef6aa9522d73aaf | def test_custom_module_training(self):
'Tests training CrypTen models created directly using the crypten.nn.Module'
BATCH_SIZE = 32
NUM_FEATURES = 3
class ExampleNet(crypten.nn.Module):
def __init__(self):
super(ExampleNet, self).__init__()
self.fc1 = crypten.nn.Linear(NUM_FEATURES, BATCH_SIZE)
self.fc2 = crypten.nn.Linear(BATCH_SIZE, 2)
def forward(self, x):
out = self.fc1(x)
out = self.fc2(out)
return out
model = ExampleNet()
x_orig = get_random_test_tensor(size=(BATCH_SIZE, NUM_FEATURES), is_float=True)
y_orig = (2 * x_orig.mean(dim=1)).gt(0).long()
y_one_hot = onehot(y_orig, num_targets=2)
x_train = AutogradCrypTensor(crypten.cryptensor(x_orig))
y_train = crypten.cryptensor(y_one_hot)
for loss_name in ['BCELoss', 'CrossEntropyLoss', 'MSELoss']:
loss = getattr(crypten.nn, loss_name)()
model.train()
model.encrypt()
num_epochs = 3
learning_rate = 0.001
for i in range(num_epochs):
output = model(x_train)
if (loss_name == 'MSELoss'):
output_norm = output
else:
output_norm = output.softmax(1)
loss_value = loss(output_norm, y_train)
model.zero_grad()
for param in model.parameters():
self.assertIsNone(param.grad, 'zero_grad did not reset gradients')
loss_value.backward()
for param in model.parameters():
if param.requires_grad:
self.assertIsNotNone(param.grad, 'required parameter gradient not created')
(orig_parameters, upd_parameters) = ({}, {})
orig_parameters = self._compute_reference_parameters('', orig_parameters, model, 0)
model.update_parameters(learning_rate)
upd_parameters = self._compute_reference_parameters('', upd_parameters, model, learning_rate)
parameter_changed = False
for (name, value) in orig_parameters.items():
if (param.requires_grad and (param.grad is not None)):
unchanged = torch.allclose(upd_parameters[name], value)
if (unchanged is False):
parameter_changed = True
self.assertTrue(parameter_changed, 'no parameter changed in training step')
if (i == 0):
orig_loss = loss_value.get_plain_text()
curr_loss = loss_value.get_plain_text()
self.assertTrue((curr_loss.item() < orig_loss.item()), 'loss has not decreased after training') | Tests training CrypTen models created directly using the crypten.nn.Module | test/test_nn.py | test_custom_module_training | youben11/CrypTen | 2 | python | def test_custom_module_training(self):
BATCH_SIZE = 32
NUM_FEATURES = 3
class ExampleNet(crypten.nn.Module):
def __init__(self):
super(ExampleNet, self).__init__()
self.fc1 = crypten.nn.Linear(NUM_FEATURES, BATCH_SIZE)
self.fc2 = crypten.nn.Linear(BATCH_SIZE, 2)
def forward(self, x):
out = self.fc1(x)
out = self.fc2(out)
return out
model = ExampleNet()
x_orig = get_random_test_tensor(size=(BATCH_SIZE, NUM_FEATURES), is_float=True)
y_orig = (2 * x_orig.mean(dim=1)).gt(0).long()
y_one_hot = onehot(y_orig, num_targets=2)
x_train = AutogradCrypTensor(crypten.cryptensor(x_orig))
y_train = crypten.cryptensor(y_one_hot)
for loss_name in ['BCELoss', 'CrossEntropyLoss', 'MSELoss']:
loss = getattr(crypten.nn, loss_name)()
model.train()
model.encrypt()
num_epochs = 3
learning_rate = 0.001
for i in range(num_epochs):
output = model(x_train)
if (loss_name == 'MSELoss'):
output_norm = output
else:
output_norm = output.softmax(1)
loss_value = loss(output_norm, y_train)
model.zero_grad()
for param in model.parameters():
self.assertIsNone(param.grad, 'zero_grad did not reset gradients')
loss_value.backward()
for param in model.parameters():
if param.requires_grad:
self.assertIsNotNone(param.grad, 'required parameter gradient not created')
(orig_parameters, upd_parameters) = ({}, {})
orig_parameters = self._compute_reference_parameters(, orig_parameters, model, 0)
model.update_parameters(learning_rate)
upd_parameters = self._compute_reference_parameters(, upd_parameters, model, learning_rate)
parameter_changed = False
for (name, value) in orig_parameters.items():
if (param.requires_grad and (param.grad is not None)):
unchanged = torch.allclose(upd_parameters[name], value)
if (unchanged is False):
parameter_changed = True
self.assertTrue(parameter_changed, 'no parameter changed in training step')
if (i == 0):
orig_loss = loss_value.get_plain_text()
curr_loss = loss_value.get_plain_text()
self.assertTrue((curr_loss.item() < orig_loss.item()), 'loss has not decreased after training') | def test_custom_module_training(self):
BATCH_SIZE = 32
NUM_FEATURES = 3
class ExampleNet(crypten.nn.Module):
def __init__(self):
super(ExampleNet, self).__init__()
self.fc1 = crypten.nn.Linear(NUM_FEATURES, BATCH_SIZE)
self.fc2 = crypten.nn.Linear(BATCH_SIZE, 2)
def forward(self, x):
out = self.fc1(x)
out = self.fc2(out)
return out
model = ExampleNet()
x_orig = get_random_test_tensor(size=(BATCH_SIZE, NUM_FEATURES), is_float=True)
y_orig = (2 * x_orig.mean(dim=1)).gt(0).long()
y_one_hot = onehot(y_orig, num_targets=2)
x_train = AutogradCrypTensor(crypten.cryptensor(x_orig))
y_train = crypten.cryptensor(y_one_hot)
for loss_name in ['BCELoss', 'CrossEntropyLoss', 'MSELoss']:
loss = getattr(crypten.nn, loss_name)()
model.train()
model.encrypt()
num_epochs = 3
learning_rate = 0.001
for i in range(num_epochs):
output = model(x_train)
if (loss_name == 'MSELoss'):
output_norm = output
else:
output_norm = output.softmax(1)
loss_value = loss(output_norm, y_train)
model.zero_grad()
for param in model.parameters():
self.assertIsNone(param.grad, 'zero_grad did not reset gradients')
loss_value.backward()
for param in model.parameters():
if param.requires_grad:
self.assertIsNotNone(param.grad, 'required parameter gradient not created')
(orig_parameters, upd_parameters) = ({}, {})
orig_parameters = self._compute_reference_parameters(, orig_parameters, model, 0)
model.update_parameters(learning_rate)
upd_parameters = self._compute_reference_parameters(, upd_parameters, model, learning_rate)
parameter_changed = False
for (name, value) in orig_parameters.items():
if (param.requires_grad and (param.grad is not None)):
unchanged = torch.allclose(upd_parameters[name], value)
if (unchanged is False):
parameter_changed = True
self.assertTrue(parameter_changed, 'no parameter changed in training step')
if (i == 0):
orig_loss = loss_value.get_plain_text()
curr_loss = loss_value.get_plain_text()
self.assertTrue((curr_loss.item() < orig_loss.item()), 'loss has not decreased after training')<|docstring|>Tests training CrypTen models created directly using the crypten.nn.Module<|endoftext|> |
75896f2000603640a2074cb22b00d92334a0d4ef401a45db1d7c67091f4a57bb | def test_from_pytorch_training(self):
'Tests the from_pytorch code path for training CrypTen models'
import torch.nn as nn
import torch.nn.functional as F
class ExampleNet(nn.Module):
def __init__(self):
super(ExampleNet, self).__init__()
self.conv1 = nn.Conv2d(1, 16, kernel_size=5, padding=1)
self.fc1 = nn.Linear(((16 * 13) * 13), 100)
self.fc2 = nn.Linear(100, 2)
def forward(self, x):
out = self.conv1(x)
out = F.relu(out)
out = F.max_pool2d(out, 2)
out = out.view(out.size(0), (- 1))
out = self.fc1(out)
out = F.relu(out)
out = self.fc2(out)
return out
model_plaintext = ExampleNet()
batch_size = 5
x_orig = get_random_test_tensor(size=(batch_size, 1, 28, 28), is_float=True)
y_orig = get_random_test_tensor(size=(batch_size, 1), is_float=True).gt(0).long()
y_one_hot = onehot(y_orig, num_targets=2)
x_train = AutogradCrypTensor(crypten.cryptensor(x_orig))
y_train = crypten.cryptensor(y_one_hot)
dummy_input = torch.empty((1, 1, 28, 28))
for loss_name in ['BCELoss', 'CrossEntropyLoss', 'MSELoss']:
loss = getattr(crypten.nn, loss_name)()
model = crypten.nn.from_pytorch(model_plaintext, dummy_input)
model.train()
model.encrypt()
num_epochs = 3
learning_rate = 0.001
for i in range(num_epochs):
output = model(x_train)
if (loss_name == 'MSELoss'):
output_norm = output
else:
output_norm = output.softmax(1)
loss_value = loss(output_norm, y_train)
model.zero_grad()
for param in model.parameters():
self.assertIsNone(param.grad, 'zero_grad did not reset gradients')
loss_value.backward()
for param in model.parameters():
if param.requires_grad:
self.assertIsNotNone(param.grad, 'required parameter gradient not created')
(orig_parameters, upd_parameters) = ({}, {})
orig_parameters = self._compute_reference_parameters('', orig_parameters, model, 0)
model.update_parameters(learning_rate)
upd_parameters = self._compute_reference_parameters('', upd_parameters, model, learning_rate)
parameter_changed = False
for (name, value) in orig_parameters.items():
if (param.requires_grad and (param.grad is not None)):
unchanged = torch.allclose(upd_parameters[name], value)
if (unchanged is False):
parameter_changed = True
self.assertTrue(parameter_changed, 'no parameter changed in training step')
if (i == 0):
orig_loss = loss_value.get_plain_text()
curr_loss = loss_value.get_plain_text()
self.assertTrue((curr_loss.item() < orig_loss.item()), 'loss has not decreased after training') | Tests the from_pytorch code path for training CrypTen models | test/test_nn.py | test_from_pytorch_training | youben11/CrypTen | 2 | python | def test_from_pytorch_training(self):
import torch.nn as nn
import torch.nn.functional as F
class ExampleNet(nn.Module):
def __init__(self):
super(ExampleNet, self).__init__()
self.conv1 = nn.Conv2d(1, 16, kernel_size=5, padding=1)
self.fc1 = nn.Linear(((16 * 13) * 13), 100)
self.fc2 = nn.Linear(100, 2)
def forward(self, x):
out = self.conv1(x)
out = F.relu(out)
out = F.max_pool2d(out, 2)
out = out.view(out.size(0), (- 1))
out = self.fc1(out)
out = F.relu(out)
out = self.fc2(out)
return out
model_plaintext = ExampleNet()
batch_size = 5
x_orig = get_random_test_tensor(size=(batch_size, 1, 28, 28), is_float=True)
y_orig = get_random_test_tensor(size=(batch_size, 1), is_float=True).gt(0).long()
y_one_hot = onehot(y_orig, num_targets=2)
x_train = AutogradCrypTensor(crypten.cryptensor(x_orig))
y_train = crypten.cryptensor(y_one_hot)
dummy_input = torch.empty((1, 1, 28, 28))
for loss_name in ['BCELoss', 'CrossEntropyLoss', 'MSELoss']:
loss = getattr(crypten.nn, loss_name)()
model = crypten.nn.from_pytorch(model_plaintext, dummy_input)
model.train()
model.encrypt()
num_epochs = 3
learning_rate = 0.001
for i in range(num_epochs):
output = model(x_train)
if (loss_name == 'MSELoss'):
output_norm = output
else:
output_norm = output.softmax(1)
loss_value = loss(output_norm, y_train)
model.zero_grad()
for param in model.parameters():
self.assertIsNone(param.grad, 'zero_grad did not reset gradients')
loss_value.backward()
for param in model.parameters():
if param.requires_grad:
self.assertIsNotNone(param.grad, 'required parameter gradient not created')
(orig_parameters, upd_parameters) = ({}, {})
orig_parameters = self._compute_reference_parameters(, orig_parameters, model, 0)
model.update_parameters(learning_rate)
upd_parameters = self._compute_reference_parameters(, upd_parameters, model, learning_rate)
parameter_changed = False
for (name, value) in orig_parameters.items():
if (param.requires_grad and (param.grad is not None)):
unchanged = torch.allclose(upd_parameters[name], value)
if (unchanged is False):
parameter_changed = True
self.assertTrue(parameter_changed, 'no parameter changed in training step')
if (i == 0):
orig_loss = loss_value.get_plain_text()
curr_loss = loss_value.get_plain_text()
self.assertTrue((curr_loss.item() < orig_loss.item()), 'loss has not decreased after training') | def test_from_pytorch_training(self):
import torch.nn as nn
import torch.nn.functional as F
class ExampleNet(nn.Module):
def __init__(self):
super(ExampleNet, self).__init__()
self.conv1 = nn.Conv2d(1, 16, kernel_size=5, padding=1)
self.fc1 = nn.Linear(((16 * 13) * 13), 100)
self.fc2 = nn.Linear(100, 2)
def forward(self, x):
out = self.conv1(x)
out = F.relu(out)
out = F.max_pool2d(out, 2)
out = out.view(out.size(0), (- 1))
out = self.fc1(out)
out = F.relu(out)
out = self.fc2(out)
return out
model_plaintext = ExampleNet()
batch_size = 5
x_orig = get_random_test_tensor(size=(batch_size, 1, 28, 28), is_float=True)
y_orig = get_random_test_tensor(size=(batch_size, 1), is_float=True).gt(0).long()
y_one_hot = onehot(y_orig, num_targets=2)
x_train = AutogradCrypTensor(crypten.cryptensor(x_orig))
y_train = crypten.cryptensor(y_one_hot)
dummy_input = torch.empty((1, 1, 28, 28))
for loss_name in ['BCELoss', 'CrossEntropyLoss', 'MSELoss']:
loss = getattr(crypten.nn, loss_name)()
model = crypten.nn.from_pytorch(model_plaintext, dummy_input)
model.train()
model.encrypt()
num_epochs = 3
learning_rate = 0.001
for i in range(num_epochs):
output = model(x_train)
if (loss_name == 'MSELoss'):
output_norm = output
else:
output_norm = output.softmax(1)
loss_value = loss(output_norm, y_train)
model.zero_grad()
for param in model.parameters():
self.assertIsNone(param.grad, 'zero_grad did not reset gradients')
loss_value.backward()
for param in model.parameters():
if param.requires_grad:
self.assertIsNotNone(param.grad, 'required parameter gradient not created')
(orig_parameters, upd_parameters) = ({}, {})
orig_parameters = self._compute_reference_parameters(, orig_parameters, model, 0)
model.update_parameters(learning_rate)
upd_parameters = self._compute_reference_parameters(, upd_parameters, model, learning_rate)
parameter_changed = False
for (name, value) in orig_parameters.items():
if (param.requires_grad and (param.grad is not None)):
unchanged = torch.allclose(upd_parameters[name], value)
if (unchanged is False):
parameter_changed = True
self.assertTrue(parameter_changed, 'no parameter changed in training step')
if (i == 0):
orig_loss = loss_value.get_plain_text()
curr_loss = loss_value.get_plain_text()
self.assertTrue((curr_loss.item() < orig_loss.item()), 'loss has not decreased after training')<|docstring|>Tests the from_pytorch code path for training CrypTen models<|endoftext|> |
f9acb577fee3ea08965a4ce018452a89e5c706c2d5915ac22b81f048a8cd6eca | def test_batchnorm_module(self):
'Test module correctly sets and updates running stats'
batchnorm_fn_and_size = (('BatchNorm1d', (500, 10, 3)), ('BatchNorm2d', (600, 7, 4, 20)), ('BatchNorm3d', (800, 5, 4, 8, 15)))
for (batchnorm_fn, size) in batchnorm_fn_and_size:
for is_trainning in (True, False):
tensor = get_random_test_tensor(size=size, is_float=True)
tensor.requires_grad = True
encrypted_input = AutogradCrypTensor(crypten.cryptensor(tensor))
C = size[1]
weight = get_random_test_tensor(size=[C], max_value=1, is_float=True)
bias = get_random_test_tensor(size=[C], max_value=1, is_float=True)
weight.requires_grad = True
bias.requires_grad = True
stats_dimensions = list(range(tensor.dim()))
stats_dimensions.pop(1)
enc_model = getattr(crypten.nn.module, batchnorm_fn)(C).encrypt()
plain_model = getattr(torch.nn.modules, batchnorm_fn)(C)
stats = ['running_var', 'running_mean']
for stat in stats:
self._check(enc_model._buffers[stat], plain_model._buffers[stat], f'{stat} initial module value incorrect')
plain_model.training = is_trainning
enc_model.training = is_trainning
enc_model.forward(encrypted_input)
plain_model.forward(tensor)
for stat in stats:
self._check(enc_model._buffers[stat], plain_model._buffers[stat], f'{stat} momentum update in module incorrect') | Test module correctly sets and updates running stats | test/test_nn.py | test_batchnorm_module | youben11/CrypTen | 2 | python | def test_batchnorm_module(self):
batchnorm_fn_and_size = (('BatchNorm1d', (500, 10, 3)), ('BatchNorm2d', (600, 7, 4, 20)), ('BatchNorm3d', (800, 5, 4, 8, 15)))
for (batchnorm_fn, size) in batchnorm_fn_and_size:
for is_trainning in (True, False):
tensor = get_random_test_tensor(size=size, is_float=True)
tensor.requires_grad = True
encrypted_input = AutogradCrypTensor(crypten.cryptensor(tensor))
C = size[1]
weight = get_random_test_tensor(size=[C], max_value=1, is_float=True)
bias = get_random_test_tensor(size=[C], max_value=1, is_float=True)
weight.requires_grad = True
bias.requires_grad = True
stats_dimensions = list(range(tensor.dim()))
stats_dimensions.pop(1)
enc_model = getattr(crypten.nn.module, batchnorm_fn)(C).encrypt()
plain_model = getattr(torch.nn.modules, batchnorm_fn)(C)
stats = ['running_var', 'running_mean']
for stat in stats:
self._check(enc_model._buffers[stat], plain_model._buffers[stat], f'{stat} initial module value incorrect')
plain_model.training = is_trainning
enc_model.training = is_trainning
enc_model.forward(encrypted_input)
plain_model.forward(tensor)
for stat in stats:
self._check(enc_model._buffers[stat], plain_model._buffers[stat], f'{stat} momentum update in module incorrect') | def test_batchnorm_module(self):
batchnorm_fn_and_size = (('BatchNorm1d', (500, 10, 3)), ('BatchNorm2d', (600, 7, 4, 20)), ('BatchNorm3d', (800, 5, 4, 8, 15)))
for (batchnorm_fn, size) in batchnorm_fn_and_size:
for is_trainning in (True, False):
tensor = get_random_test_tensor(size=size, is_float=True)
tensor.requires_grad = True
encrypted_input = AutogradCrypTensor(crypten.cryptensor(tensor))
C = size[1]
weight = get_random_test_tensor(size=[C], max_value=1, is_float=True)
bias = get_random_test_tensor(size=[C], max_value=1, is_float=True)
weight.requires_grad = True
bias.requires_grad = True
stats_dimensions = list(range(tensor.dim()))
stats_dimensions.pop(1)
enc_model = getattr(crypten.nn.module, batchnorm_fn)(C).encrypt()
plain_model = getattr(torch.nn.modules, batchnorm_fn)(C)
stats = ['running_var', 'running_mean']
for stat in stats:
self._check(enc_model._buffers[stat], plain_model._buffers[stat], f'{stat} initial module value incorrect')
plain_model.training = is_trainning
enc_model.training = is_trainning
enc_model.forward(encrypted_input)
plain_model.forward(tensor)
for stat in stats:
self._check(enc_model._buffers[stat], plain_model._buffers[stat], f'{stat} momentum update in module incorrect')<|docstring|>Test module correctly sets and updates running stats<|endoftext|> |
5be02682d0908b0a16d18ff87abf7f4005cfcded237aa55afb9208e5510e8dcf | def __init__(self, log_level=10):
'\n Use log_level=10 for Debug and log_level=20 for info\n '
self._logger = logging.getLogger(__class__.__name__)
self._logger.setLevel(log_level) | Use log_level=10 for Debug and log_level=20 for info | cli/tools/__init__.py | __init__ | Dilshod070/mlmltool | 0 | python | def __init__(self, log_level=10):
'\n \n '
self._logger = logging.getLogger(__class__.__name__)
self._logger.setLevel(log_level) | def __init__(self, log_level=10):
'\n \n '
self._logger = logging.getLogger(__class__.__name__)
self._logger.setLevel(log_level)<|docstring|>Use log_level=10 for Debug and log_level=20 for info<|endoftext|> |
59d220bbfaf2473c7d641f61fc4ef5e50a32437735baa8f8fce6d884faf26634 | def _run_command(self, command: str, *args, wait: bool=True):
'\n Runs shell command\n :param command: shell command\n :param args: arguments for shell command\n :param wait: whether to run sync or async\n '
self._logger.info(([command] + list(args)))
proc = subprocess.Popen(([command] + list(args)))
if wait:
proc.wait() | Runs shell command
:param command: shell command
:param args: arguments for shell command
:param wait: whether to run sync or async | cli/tools/__init__.py | _run_command | Dilshod070/mlmltool | 0 | python | def _run_command(self, command: str, *args, wait: bool=True):
'\n Runs shell command\n :param command: shell command\n :param args: arguments for shell command\n :param wait: whether to run sync or async\n '
self._logger.info(([command] + list(args)))
proc = subprocess.Popen(([command] + list(args)))
if wait:
proc.wait() | def _run_command(self, command: str, *args, wait: bool=True):
'\n Runs shell command\n :param command: shell command\n :param args: arguments for shell command\n :param wait: whether to run sync or async\n '
self._logger.info(([command] + list(args)))
proc = subprocess.Popen(([command] + list(args)))
if wait:
proc.wait()<|docstring|>Runs shell command
:param command: shell command
:param args: arguments for shell command
:param wait: whether to run sync or async<|endoftext|> |
84e71010f4a7c2e66d31aa2725f877ec9c1b4e35bc7b81a3ee2464567b2d0b03 | def __init__(self, channel=None, latitude=None, longitude=None, qos=None, _configuration=None):
'CellSiteChannel - a model defined in Swagger'
if (_configuration is None):
_configuration = Configuration()
self._configuration = _configuration
self._channel = None
self._latitude = None
self._longitude = None
self._qos = None
self.discriminator = None
if (channel is not None):
self.channel = channel
if (latitude is not None):
self.latitude = latitude
if (longitude is not None):
self.longitude = longitude
if (qos is not None):
self.qos = qos | CellSiteChannel - a model defined in Swagger | Wigle/python-client/swagger_client/models/cell_site_channel.py | __init__ | BillReyor/SSIDprobeCollector | 1 | python | def __init__(self, channel=None, latitude=None, longitude=None, qos=None, _configuration=None):
if (_configuration is None):
_configuration = Configuration()
self._configuration = _configuration
self._channel = None
self._latitude = None
self._longitude = None
self._qos = None
self.discriminator = None
if (channel is not None):
self.channel = channel
if (latitude is not None):
self.latitude = latitude
if (longitude is not None):
self.longitude = longitude
if (qos is not None):
self.qos = qos | def __init__(self, channel=None, latitude=None, longitude=None, qos=None, _configuration=None):
if (_configuration is None):
_configuration = Configuration()
self._configuration = _configuration
self._channel = None
self._latitude = None
self._longitude = None
self._qos = None
self.discriminator = None
if (channel is not None):
self.channel = channel
if (latitude is not None):
self.latitude = latitude
if (longitude is not None):
self.longitude = longitude
if (qos is not None):
self.qos = qos<|docstring|>CellSiteChannel - a model defined in Swagger<|endoftext|> |
1efd083b7a06cc2b5801a5e6e02f01da757a7b7be123415a27d3c197fca94634 | @property
def channel(self):
'Gets the channel of this CellSiteChannel. # noqa: E501\n\n\n :return: The channel of this CellSiteChannel. # noqa: E501\n :rtype: int\n '
return self._channel | Gets the channel of this CellSiteChannel. # noqa: E501
:return: The channel of this CellSiteChannel. # noqa: E501
:rtype: int | Wigle/python-client/swagger_client/models/cell_site_channel.py | channel | BillReyor/SSIDprobeCollector | 1 | python | @property
def channel(self):
'Gets the channel of this CellSiteChannel. # noqa: E501\n\n\n :return: The channel of this CellSiteChannel. # noqa: E501\n :rtype: int\n '
return self._channel | @property
def channel(self):
'Gets the channel of this CellSiteChannel. # noqa: E501\n\n\n :return: The channel of this CellSiteChannel. # noqa: E501\n :rtype: int\n '
return self._channel<|docstring|>Gets the channel of this CellSiteChannel. # noqa: E501
:return: The channel of this CellSiteChannel. # noqa: E501
:rtype: int<|endoftext|> |
9eb30a3369cf6a94d04a0c92a8e4a485e9abf1a3f5c4177230e3c30bb5a3d845 | @channel.setter
def channel(self, channel):
'Sets the channel of this CellSiteChannel.\n\n\n :param channel: The channel of this CellSiteChannel. # noqa: E501\n :type: int\n '
self._channel = channel | Sets the channel of this CellSiteChannel.
:param channel: The channel of this CellSiteChannel. # noqa: E501
:type: int | Wigle/python-client/swagger_client/models/cell_site_channel.py | channel | BillReyor/SSIDprobeCollector | 1 | python | @channel.setter
def channel(self, channel):
'Sets the channel of this CellSiteChannel.\n\n\n :param channel: The channel of this CellSiteChannel. # noqa: E501\n :type: int\n '
self._channel = channel | @channel.setter
def channel(self, channel):
'Sets the channel of this CellSiteChannel.\n\n\n :param channel: The channel of this CellSiteChannel. # noqa: E501\n :type: int\n '
self._channel = channel<|docstring|>Sets the channel of this CellSiteChannel.
:param channel: The channel of this CellSiteChannel. # noqa: E501
:type: int<|endoftext|> |
0152a4d2ac029637983aad71c44ba8ed67181aeeca8df32928afd3a80b300073 | @property
def latitude(self):
'Gets the latitude of this CellSiteChannel. # noqa: E501\n\n\n :return: The latitude of this CellSiteChannel. # noqa: E501\n :rtype: float\n '
return self._latitude | Gets the latitude of this CellSiteChannel. # noqa: E501
:return: The latitude of this CellSiteChannel. # noqa: E501
:rtype: float | Wigle/python-client/swagger_client/models/cell_site_channel.py | latitude | BillReyor/SSIDprobeCollector | 1 | python | @property
def latitude(self):
'Gets the latitude of this CellSiteChannel. # noqa: E501\n\n\n :return: The latitude of this CellSiteChannel. # noqa: E501\n :rtype: float\n '
return self._latitude | @property
def latitude(self):
'Gets the latitude of this CellSiteChannel. # noqa: E501\n\n\n :return: The latitude of this CellSiteChannel. # noqa: E501\n :rtype: float\n '
return self._latitude<|docstring|>Gets the latitude of this CellSiteChannel. # noqa: E501
:return: The latitude of this CellSiteChannel. # noqa: E501
:rtype: float<|endoftext|> |
fccff7cd1ee9ba688b7f12f8b97001b3ff25322867fb42c39e41691b43904907 | @latitude.setter
def latitude(self, latitude):
'Sets the latitude of this CellSiteChannel.\n\n\n :param latitude: The latitude of this CellSiteChannel. # noqa: E501\n :type: float\n '
self._latitude = latitude | Sets the latitude of this CellSiteChannel.
:param latitude: The latitude of this CellSiteChannel. # noqa: E501
:type: float | Wigle/python-client/swagger_client/models/cell_site_channel.py | latitude | BillReyor/SSIDprobeCollector | 1 | python | @latitude.setter
def latitude(self, latitude):
'Sets the latitude of this CellSiteChannel.\n\n\n :param latitude: The latitude of this CellSiteChannel. # noqa: E501\n :type: float\n '
self._latitude = latitude | @latitude.setter
def latitude(self, latitude):
'Sets the latitude of this CellSiteChannel.\n\n\n :param latitude: The latitude of this CellSiteChannel. # noqa: E501\n :type: float\n '
self._latitude = latitude<|docstring|>Sets the latitude of this CellSiteChannel.
:param latitude: The latitude of this CellSiteChannel. # noqa: E501
:type: float<|endoftext|> |
63374f30f58bc94fb2386de19ae52b212a8ee8fad14c2b98b34f24805d653227 | @property
def longitude(self):
'Gets the longitude of this CellSiteChannel. # noqa: E501\n\n\n :return: The longitude of this CellSiteChannel. # noqa: E501\n :rtype: float\n '
return self._longitude | Gets the longitude of this CellSiteChannel. # noqa: E501
:return: The longitude of this CellSiteChannel. # noqa: E501
:rtype: float | Wigle/python-client/swagger_client/models/cell_site_channel.py | longitude | BillReyor/SSIDprobeCollector | 1 | python | @property
def longitude(self):
'Gets the longitude of this CellSiteChannel. # noqa: E501\n\n\n :return: The longitude of this CellSiteChannel. # noqa: E501\n :rtype: float\n '
return self._longitude | @property
def longitude(self):
'Gets the longitude of this CellSiteChannel. # noqa: E501\n\n\n :return: The longitude of this CellSiteChannel. # noqa: E501\n :rtype: float\n '
return self._longitude<|docstring|>Gets the longitude of this CellSiteChannel. # noqa: E501
:return: The longitude of this CellSiteChannel. # noqa: E501
:rtype: float<|endoftext|> |
8f3297441f1b239dfd51d94022960ce8ce992da623b96439c49073509096ba76 | @longitude.setter
def longitude(self, longitude):
'Sets the longitude of this CellSiteChannel.\n\n\n :param longitude: The longitude of this CellSiteChannel. # noqa: E501\n :type: float\n '
self._longitude = longitude | Sets the longitude of this CellSiteChannel.
:param longitude: The longitude of this CellSiteChannel. # noqa: E501
:type: float | Wigle/python-client/swagger_client/models/cell_site_channel.py | longitude | BillReyor/SSIDprobeCollector | 1 | python | @longitude.setter
def longitude(self, longitude):
'Sets the longitude of this CellSiteChannel.\n\n\n :param longitude: The longitude of this CellSiteChannel. # noqa: E501\n :type: float\n '
self._longitude = longitude | @longitude.setter
def longitude(self, longitude):
'Sets the longitude of this CellSiteChannel.\n\n\n :param longitude: The longitude of this CellSiteChannel. # noqa: E501\n :type: float\n '
self._longitude = longitude<|docstring|>Sets the longitude of this CellSiteChannel.
:param longitude: The longitude of this CellSiteChannel. # noqa: E501
:type: float<|endoftext|> |
a8ada354ffadb746d06cb7867a07a9945636b21b859545916b2ca1344b01de7c | @property
def qos(self):
'Gets the qos of this CellSiteChannel. # noqa: E501\n\n\n :return: The qos of this CellSiteChannel. # noqa: E501\n :rtype: int\n '
return self._qos | Gets the qos of this CellSiteChannel. # noqa: E501
:return: The qos of this CellSiteChannel. # noqa: E501
:rtype: int | Wigle/python-client/swagger_client/models/cell_site_channel.py | qos | BillReyor/SSIDprobeCollector | 1 | python | @property
def qos(self):
'Gets the qos of this CellSiteChannel. # noqa: E501\n\n\n :return: The qos of this CellSiteChannel. # noqa: E501\n :rtype: int\n '
return self._qos | @property
def qos(self):
'Gets the qos of this CellSiteChannel. # noqa: E501\n\n\n :return: The qos of this CellSiteChannel. # noqa: E501\n :rtype: int\n '
return self._qos<|docstring|>Gets the qos of this CellSiteChannel. # noqa: E501
:return: The qos of this CellSiteChannel. # noqa: E501
:rtype: int<|endoftext|> |
ad96be938a1b576cb0e1871d071cafdc1f94205ab12f90a616f6230fc122ab18 | @qos.setter
def qos(self, qos):
'Sets the qos of this CellSiteChannel.\n\n\n :param qos: The qos of this CellSiteChannel. # noqa: E501\n :type: int\n '
self._qos = qos | Sets the qos of this CellSiteChannel.
:param qos: The qos of this CellSiteChannel. # noqa: E501
:type: int | Wigle/python-client/swagger_client/models/cell_site_channel.py | qos | BillReyor/SSIDprobeCollector | 1 | python | @qos.setter
def qos(self, qos):
'Sets the qos of this CellSiteChannel.\n\n\n :param qos: The qos of this CellSiteChannel. # noqa: E501\n :type: int\n '
self._qos = qos | @qos.setter
def qos(self, qos):
'Sets the qos of this CellSiteChannel.\n\n\n :param qos: The qos of this CellSiteChannel. # noqa: E501\n :type: int\n '
self._qos = qos<|docstring|>Sets the qos of this CellSiteChannel.
:param qos: The qos of this CellSiteChannel. # noqa: E501
:type: int<|endoftext|> |
efd746c332d5a2ee3d490dffd5287a3b799d8a97580a25ccb938a65caf8b4c29 | def to_dict(self):
'Returns the model properties as a dict'
result = {}
for (attr, _) in six.iteritems(self.swagger_types):
value = getattr(self, attr)
if isinstance(value, list):
result[attr] = list(map((lambda x: (x.to_dict() if hasattr(x, 'to_dict') else x)), value))
elif hasattr(value, 'to_dict'):
result[attr] = value.to_dict()
elif isinstance(value, dict):
result[attr] = dict(map((lambda item: ((item[0], item[1].to_dict()) if hasattr(item[1], 'to_dict') else item)), value.items()))
else:
result[attr] = value
if issubclass(CellSiteChannel, dict):
for (key, value) in self.items():
result[key] = value
return result | Returns the model properties as a dict | Wigle/python-client/swagger_client/models/cell_site_channel.py | to_dict | BillReyor/SSIDprobeCollector | 1 | python | def to_dict(self):
result = {}
for (attr, _) in six.iteritems(self.swagger_types):
value = getattr(self, attr)
if isinstance(value, list):
result[attr] = list(map((lambda x: (x.to_dict() if hasattr(x, 'to_dict') else x)), value))
elif hasattr(value, 'to_dict'):
result[attr] = value.to_dict()
elif isinstance(value, dict):
result[attr] = dict(map((lambda item: ((item[0], item[1].to_dict()) if hasattr(item[1], 'to_dict') else item)), value.items()))
else:
result[attr] = value
if issubclass(CellSiteChannel, dict):
for (key, value) in self.items():
result[key] = value
return result | def to_dict(self):
result = {}
for (attr, _) in six.iteritems(self.swagger_types):
value = getattr(self, attr)
if isinstance(value, list):
result[attr] = list(map((lambda x: (x.to_dict() if hasattr(x, 'to_dict') else x)), value))
elif hasattr(value, 'to_dict'):
result[attr] = value.to_dict()
elif isinstance(value, dict):
result[attr] = dict(map((lambda item: ((item[0], item[1].to_dict()) if hasattr(item[1], 'to_dict') else item)), value.items()))
else:
result[attr] = value
if issubclass(CellSiteChannel, dict):
for (key, value) in self.items():
result[key] = value
return result<|docstring|>Returns the model properties as a dict<|endoftext|> |
cbb19eaa2fc8a113d9e32f924ef280a7e97563f8915f94f65dab438997af2e99 | def to_str(self):
'Returns the string representation of the model'
return pprint.pformat(self.to_dict()) | Returns the string representation of the model | Wigle/python-client/swagger_client/models/cell_site_channel.py | to_str | BillReyor/SSIDprobeCollector | 1 | python | def to_str(self):
return pprint.pformat(self.to_dict()) | def to_str(self):
return pprint.pformat(self.to_dict())<|docstring|>Returns the string representation of the model<|endoftext|> |
772243a2c2b3261a9b954d07aaf295e3c1242a579a495e2d6a5679c677861703 | def __repr__(self):
'For `print` and `pprint`'
return self.to_str() | For `print` and `pprint` | Wigle/python-client/swagger_client/models/cell_site_channel.py | __repr__ | BillReyor/SSIDprobeCollector | 1 | python | def __repr__(self):
return self.to_str() | def __repr__(self):
return self.to_str()<|docstring|>For `print` and `pprint`<|endoftext|> |
8065b5258c674b1f83c6aa2f6599da00cbeda3bc604db8f97ed697474982334a | def __eq__(self, other):
'Returns true if both objects are equal'
if (not isinstance(other, CellSiteChannel)):
return False
return (self.to_dict() == other.to_dict()) | Returns true if both objects are equal | Wigle/python-client/swagger_client/models/cell_site_channel.py | __eq__ | BillReyor/SSIDprobeCollector | 1 | python | def __eq__(self, other):
if (not isinstance(other, CellSiteChannel)):
return False
return (self.to_dict() == other.to_dict()) | def __eq__(self, other):
if (not isinstance(other, CellSiteChannel)):
return False
return (self.to_dict() == other.to_dict())<|docstring|>Returns true if both objects are equal<|endoftext|> |
b3f9de9f2c79ba4213a6bfcfa63588bc31e5910ea0563db072ed9185bec8f191 | def __ne__(self, other):
'Returns true if both objects are not equal'
if (not isinstance(other, CellSiteChannel)):
return True
return (self.to_dict() != other.to_dict()) | Returns true if both objects are not equal | Wigle/python-client/swagger_client/models/cell_site_channel.py | __ne__ | BillReyor/SSIDprobeCollector | 1 | python | def __ne__(self, other):
if (not isinstance(other, CellSiteChannel)):
return True
return (self.to_dict() != other.to_dict()) | def __ne__(self, other):
if (not isinstance(other, CellSiteChannel)):
return True
return (self.to_dict() != other.to_dict())<|docstring|>Returns true if both objects are not equal<|endoftext|> |
8e5bf121d375f16923a9a6322dd450088b66ed5dd3d1e8d6fc20f23016020402 | def eval_masks(args, model, dataset, root):
'Evaluate masks to produce mAP (and PSNR) scores.'
root = os.path.join(root, 'masks')
os.makedirs(root)
maskloader = MaskLoader(dataset=dataset)
image_ids = evaluation.utils.sample_linear(dataset.img_ids_test, args.masks_n_samples)[0]
results = evaluation.evaluate(dataset, model, maskloader, vis_i=1, save_dir=root, save=True, vid=args.vid, image_ids=image_ids) | Evaluate masks to produce mAP (and PSNR) scores. | evaluate.py | eval_masks | dichotomies/NeuralDiff | 5 | python | def eval_masks(args, model, dataset, root):
root = os.path.join(root, 'masks')
os.makedirs(root)
maskloader = MaskLoader(dataset=dataset)
image_ids = evaluation.utils.sample_linear(dataset.img_ids_test, args.masks_n_samples)[0]
results = evaluation.evaluate(dataset, model, maskloader, vis_i=1, save_dir=root, save=True, vid=args.vid, image_ids=image_ids) | def eval_masks(args, model, dataset, root):
root = os.path.join(root, 'masks')
os.makedirs(root)
maskloader = MaskLoader(dataset=dataset)
image_ids = evaluation.utils.sample_linear(dataset.img_ids_test, args.masks_n_samples)[0]
results = evaluation.evaluate(dataset, model, maskloader, vis_i=1, save_dir=root, save=True, vid=args.vid, image_ids=image_ids)<|docstring|>Evaluate masks to produce mAP (and PSNR) scores.<|endoftext|> |
2981229e35774246cac4bcef4b5a10e7179c2d90c626bedd56c9a791b1d70256 | def eval_masks_average(args):
'Calculate average of `eval_masks` results for all 10 scenes.'
scores = []
for vid in VIDEO_IDS:
path_metrics = os.path.join('results', args.exp, vid, 'masks', 'metrics.txt')
with open(f'results/rel/{vid}/masks/metrics.txt') as f:
lines = f.readlines()
(score_map, score_psnr) = [float(s) for s in lines[2].split('\t')[:2]]
scores.append([score_map, score_psnr])
scores = np.array(scores).mean(axis=0)
print('Average for all 10 scenes:')
print(f'mAP: {(scores[0] * 100).round(2)}, PSNR: {scores[1].round(2)}') | Calculate average of `eval_masks` results for all 10 scenes. | evaluate.py | eval_masks_average | dichotomies/NeuralDiff | 5 | python | def eval_masks_average(args):
scores = []
for vid in VIDEO_IDS:
path_metrics = os.path.join('results', args.exp, vid, 'masks', 'metrics.txt')
with open(f'results/rel/{vid}/masks/metrics.txt') as f:
lines = f.readlines()
(score_map, score_psnr) = [float(s) for s in lines[2].split('\t')[:2]]
scores.append([score_map, score_psnr])
scores = np.array(scores).mean(axis=0)
print('Average for all 10 scenes:')
print(f'mAP: {(scores[0] * 100).round(2)}, PSNR: {scores[1].round(2)}') | def eval_masks_average(args):
scores = []
for vid in VIDEO_IDS:
path_metrics = os.path.join('results', args.exp, vid, 'masks', 'metrics.txt')
with open(f'results/rel/{vid}/masks/metrics.txt') as f:
lines = f.readlines()
(score_map, score_psnr) = [float(s) for s in lines[2].split('\t')[:2]]
scores.append([score_map, score_psnr])
scores = np.array(scores).mean(axis=0)
print('Average for all 10 scenes:')
print(f'mAP: {(scores[0] * 100).round(2)}, PSNR: {scores[1].round(2)}')<|docstring|>Calculate average of `eval_masks` results for all 10 scenes.<|endoftext|> |
9025447ef7eb4f7008af3c9bdf19720d02cd0199b95689a1ffdf62ae1d81b48c | def render_video(args, model, dataset, root, save_cache=False):
'Render a summary video like shown on the project page.'
root = os.path.join(root, 'summary')
os.makedirs(root)
sid = SAMPLE_IDS[args.vid]
top = evaluation.video.render(dataset, model, n_images=args.summary_n_samples)
bot = evaluation.video.render(dataset, model, sid, n_images=args.summary_n_samples)
if save_cache:
evaluation.video.save_to_cache(args.vid, sid, root=root, top=top, bot=bot)
ims_cat = [evaluation.video.convert_rgb(evaluation.video.cat_sample(top[k], bot[k])) for k in bot.keys()]
utils.write_mp4(f'{root}/cat-{sid}-N{len(ims_cat)}', ims_cat) | Render a summary video like shown on the project page. | evaluate.py | render_video | dichotomies/NeuralDiff | 5 | python | def render_video(args, model, dataset, root, save_cache=False):
root = os.path.join(root, 'summary')
os.makedirs(root)
sid = SAMPLE_IDS[args.vid]
top = evaluation.video.render(dataset, model, n_images=args.summary_n_samples)
bot = evaluation.video.render(dataset, model, sid, n_images=args.summary_n_samples)
if save_cache:
evaluation.video.save_to_cache(args.vid, sid, root=root, top=top, bot=bot)
ims_cat = [evaluation.video.convert_rgb(evaluation.video.cat_sample(top[k], bot[k])) for k in bot.keys()]
utils.write_mp4(f'{root}/cat-{sid}-N{len(ims_cat)}', ims_cat) | def render_video(args, model, dataset, root, save_cache=False):
root = os.path.join(root, 'summary')
os.makedirs(root)
sid = SAMPLE_IDS[args.vid]
top = evaluation.video.render(dataset, model, n_images=args.summary_n_samples)
bot = evaluation.video.render(dataset, model, sid, n_images=args.summary_n_samples)
if save_cache:
evaluation.video.save_to_cache(args.vid, sid, root=root, top=top, bot=bot)
ims_cat = [evaluation.video.convert_rgb(evaluation.video.cat_sample(top[k], bot[k])) for k in bot.keys()]
utils.write_mp4(f'{root}/cat-{sid}-N{len(ims_cat)}', ims_cat)<|docstring|>Render a summary video like shown on the project page.<|endoftext|> |
38142ea211dc3abe71f7c17079765d4fd43b783e989b4e61065057d91b04ffd7 | def check_none(val, default):
'Check an input for if it is None, and if so return a default object.\n\n Parameters\n ----------\n val : collection object or None\n An object to check whether is None.\n default : collection object\n What to defaul to if `val` is None.\n\n Returns\n -------\n collection object\n Either the original input item, or the default input.\n\n Notes\n -----\n This function is used to catch unused inputs (that end up as None), before they\n are passed into subsequent functions that presume collection objects.\n '
return (val if val else default) | Check an input for if it is None, and if so return a default object.
Parameters
----------
val : collection object or None
An object to check whether is None.
default : collection object
What to defaul to if `val` is None.
Returns
-------
collection object
Either the original input item, or the default input.
Notes
-----
This function is used to catch unused inputs (that end up as None), before they
are passed into subsequent functions that presume collection objects. | lisc/urls/utils.py | check_none | ryanhammonds/lisc | 1 | python | def check_none(val, default):
'Check an input for if it is None, and if so return a default object.\n\n Parameters\n ----------\n val : collection object or None\n An object to check whether is None.\n default : collection object\n What to defaul to if `val` is None.\n\n Returns\n -------\n collection object\n Either the original input item, or the default input.\n\n Notes\n -----\n This function is used to catch unused inputs (that end up as None), before they\n are passed into subsequent functions that presume collection objects.\n '
return (val if val else default) | def check_none(val, default):
'Check an input for if it is None, and if so return a default object.\n\n Parameters\n ----------\n val : collection object or None\n An object to check whether is None.\n default : collection object\n What to defaul to if `val` is None.\n\n Returns\n -------\n collection object\n Either the original input item, or the default input.\n\n Notes\n -----\n This function is used to catch unused inputs (that end up as None), before they\n are passed into subsequent functions that presume collection objects.\n '
return (val if val else default)<|docstring|>Check an input for if it is None, and if so return a default object.
Parameters
----------
val : collection object or None
An object to check whether is None.
default : collection object
What to defaul to if `val` is None.
Returns
-------
collection object
Either the original input item, or the default input.
Notes
-----
This function is used to catch unused inputs (that end up as None), before they
are passed into subsequent functions that presume collection objects.<|endoftext|> |
8713c22df238354c48105a16406afa99ad65ff6ede3c2b86e100d571ecd90e71 | def prepend(string, prefix):
'Append something to the beginning of another string.\n\n Parameters\n ----------\n string : str\n String to prepend to.\n prefix : str\n String to add to the beginning.\n\n Returns\n -------\n str\n String with the addition to the beginning.\n\n Notes\n -----\n This function deals with empty inputs, and returns an empty string in that case.\n '
return ((prefix + string) if string else string) | Append something to the beginning of another string.
Parameters
----------
string : str
String to prepend to.
prefix : str
String to add to the beginning.
Returns
-------
str
String with the addition to the beginning.
Notes
-----
This function deals with empty inputs, and returns an empty string in that case. | lisc/urls/utils.py | prepend | ryanhammonds/lisc | 1 | python | def prepend(string, prefix):
'Append something to the beginning of another string.\n\n Parameters\n ----------\n string : str\n String to prepend to.\n prefix : str\n String to add to the beginning.\n\n Returns\n -------\n str\n String with the addition to the beginning.\n\n Notes\n -----\n This function deals with empty inputs, and returns an empty string in that case.\n '
return ((prefix + string) if string else string) | def prepend(string, prefix):
'Append something to the beginning of another string.\n\n Parameters\n ----------\n string : str\n String to prepend to.\n prefix : str\n String to add to the beginning.\n\n Returns\n -------\n str\n String with the addition to the beginning.\n\n Notes\n -----\n This function deals with empty inputs, and returns an empty string in that case.\n '
return ((prefix + string) if string else string)<|docstring|>Append something to the beginning of another string.
Parameters
----------
string : str
String to prepend to.
prefix : str
String to add to the beginning.
Returns
-------
str
String with the addition to the beginning.
Notes
-----
This function deals with empty inputs, and returns an empty string in that case.<|endoftext|> |
4a46560074a7b6218e96dc9a54010e5ef2a27f7ffdf26526966b6cc4fac82792 | def make_segments(segments):
'Make the segments portion of a URL.\n\n Parameters\n ----------\n segments : list of str\n Segments to use to create the segments string for a URL.\n\n Returns\n -------\n str\n Segments for a URL.\n '
return prepend('/'.join(segments), '/') | Make the segments portion of a URL.
Parameters
----------
segments : list of str
Segments to use to create the segments string for a URL.
Returns
-------
str
Segments for a URL. | lisc/urls/utils.py | make_segments | ryanhammonds/lisc | 1 | python | def make_segments(segments):
'Make the segments portion of a URL.\n\n Parameters\n ----------\n segments : list of str\n Segments to use to create the segments string for a URL.\n\n Returns\n -------\n str\n Segments for a URL.\n '
return prepend('/'.join(segments), '/') | def make_segments(segments):
'Make the segments portion of a URL.\n\n Parameters\n ----------\n segments : list of str\n Segments to use to create the segments string for a URL.\n\n Returns\n -------\n str\n Segments for a URL.\n '
return prepend('/'.join(segments), '/')<|docstring|>Make the segments portion of a URL.
Parameters
----------
segments : list of str
Segments to use to create the segments string for a URL.
Returns
-------
str
Segments for a URL.<|endoftext|> |
49827c99f46937d9e3e814080b27fd892ccc7a5af9e8895a8fca99c995c24e17 | def make_settings(settings, prefix='?'):
'Make the settings portion of a URL.\n\n Parameters\n ----------\n settings : dict\n Settings to use to create the settings string for a URL.\n prefix : str\n String to add to the beginning.\n\n Returns\n -------\n str\n Setting for a URL.\n '
return prepend('&'.join([((ke + '=') + va) for (ke, va) in settings.items()]), prefix) | Make the settings portion of a URL.
Parameters
----------
settings : dict
Settings to use to create the settings string for a URL.
prefix : str
String to add to the beginning.
Returns
-------
str
Setting for a URL. | lisc/urls/utils.py | make_settings | ryanhammonds/lisc | 1 | python | def make_settings(settings, prefix='?'):
'Make the settings portion of a URL.\n\n Parameters\n ----------\n settings : dict\n Settings to use to create the settings string for a URL.\n prefix : str\n String to add to the beginning.\n\n Returns\n -------\n str\n Setting for a URL.\n '
return prepend('&'.join([((ke + '=') + va) for (ke, va) in settings.items()]), prefix) | def make_settings(settings, prefix='?'):
'Make the settings portion of a URL.\n\n Parameters\n ----------\n settings : dict\n Settings to use to create the settings string for a URL.\n prefix : str\n String to add to the beginning.\n\n Returns\n -------\n str\n Setting for a URL.\n '
return prepend('&'.join([((ke + '=') + va) for (ke, va) in settings.items()]), prefix)<|docstring|>Make the settings portion of a URL.
Parameters
----------
settings : dict
Settings to use to create the settings string for a URL.
prefix : str
String to add to the beginning.
Returns
-------
str
Setting for a URL.<|endoftext|> |
af8886982bb75e97d3d125c607cbc3d8b1cfd3ea849c083223750df616e39f4a | def _compute_attention(attention_mechanism, cell_output, attention_state, attention_layer, prev_max_attentions):
'Computes the attention and alignments for a given attention_mechanism.'
(alignments, next_attention_state, max_attentions) = attention_mechanism(cell_output, state=attention_state, prev_max_attentions=prev_max_attentions)
expanded_alignments = array_ops.expand_dims(alignments, 1)
context = math_ops.matmul(expanded_alignments, attention_mechanism.values)
context = array_ops.squeeze(context, [1])
if (attention_layer is not None):
attention = attention_layer(array_ops.concat([cell_output, context], 1))
else:
attention = context
return (attention, alignments, next_attention_state, max_attentions) | Computes the attention and alignments for a given attention_mechanism. | tacotron/models/attention.py | _compute_attention | huangdou123/huangdou | 2,154 | python | def _compute_attention(attention_mechanism, cell_output, attention_state, attention_layer, prev_max_attentions):
(alignments, next_attention_state, max_attentions) = attention_mechanism(cell_output, state=attention_state, prev_max_attentions=prev_max_attentions)
expanded_alignments = array_ops.expand_dims(alignments, 1)
context = math_ops.matmul(expanded_alignments, attention_mechanism.values)
context = array_ops.squeeze(context, [1])
if (attention_layer is not None):
attention = attention_layer(array_ops.concat([cell_output, context], 1))
else:
attention = context
return (attention, alignments, next_attention_state, max_attentions) | def _compute_attention(attention_mechanism, cell_output, attention_state, attention_layer, prev_max_attentions):
(alignments, next_attention_state, max_attentions) = attention_mechanism(cell_output, state=attention_state, prev_max_attentions=prev_max_attentions)
expanded_alignments = array_ops.expand_dims(alignments, 1)
context = math_ops.matmul(expanded_alignments, attention_mechanism.values)
context = array_ops.squeeze(context, [1])
if (attention_layer is not None):
attention = attention_layer(array_ops.concat([cell_output, context], 1))
else:
attention = context
return (attention, alignments, next_attention_state, max_attentions)<|docstring|>Computes the attention and alignments for a given attention_mechanism.<|endoftext|> |
84e642753a35621d5fdf7106053b78adc012201037b3dce3666b59cbc8a9d82e | def _location_sensitive_score(W_query, W_fil, W_keys):
"Impelements Bahdanau-style (cumulative) scoring function.\n\tThis attention is described in:\n\t\tJ. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Ben-\n\t gio, “Attention-based models for speech recognition,” in Ad-\n\t vances in Neural Information Processing Systems, 2015, pp.\n\t 577–585.\n\n\t#############################################################################\n\t\t\t hybrid attention (content-based + location-based)\n\t\t\t\t\t\t\t f = F * α_{i-1}\n\t energy = dot(v_a, tanh(W_keys(h_enc) + W_query(h_dec) + W_fil(f) + b_a))\n\t#############################################################################\n\n\tArgs:\n\t\tW_query: Tensor, shape '[batch_size, 1, attention_dim]' to compare to location features.\n\t\tW_location: processed previous alignments into location features, shape '[batch_size, max_time, attention_dim]'\n\t\tW_keys: Tensor, shape '[batch_size, max_time, attention_dim]', typically the encoder outputs.\n\tReturns:\n\t\tA '[batch_size, max_time]' attention score (energy)\n\t"
dtype = W_query.dtype
num_units = (W_keys.shape[(- 1)].value or array_ops.shape(W_keys)[(- 1)])
v_a = tf.get_variable('attention_variable_projection', shape=[num_units], dtype=dtype, initializer=tf.contrib.layers.xavier_initializer())
b_a = tf.get_variable('attention_bias', shape=[num_units], dtype=dtype, initializer=tf.zeros_initializer())
return tf.reduce_sum((v_a * tf.tanh((((W_keys + W_query) + W_fil) + b_a))), [2]) | Impelements Bahdanau-style (cumulative) scoring function.
This attention is described in:
J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Ben-
gio, “Attention-based models for speech recognition,” in Ad-
vances in Neural Information Processing Systems, 2015, pp.
577–585.
#############################################################################
hybrid attention (content-based + location-based)
f = F * α_{i-1}
energy = dot(v_a, tanh(W_keys(h_enc) + W_query(h_dec) + W_fil(f) + b_a))
#############################################################################
Args:
W_query: Tensor, shape '[batch_size, 1, attention_dim]' to compare to location features.
W_location: processed previous alignments into location features, shape '[batch_size, max_time, attention_dim]'
W_keys: Tensor, shape '[batch_size, max_time, attention_dim]', typically the encoder outputs.
Returns:
A '[batch_size, max_time]' attention score (energy) | tacotron/models/attention.py | _location_sensitive_score | huangdou123/huangdou | 2,154 | python | def _location_sensitive_score(W_query, W_fil, W_keys):
"Impelements Bahdanau-style (cumulative) scoring function.\n\tThis attention is described in:\n\t\tJ. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Ben-\n\t gio, “Attention-based models for speech recognition,” in Ad-\n\t vances in Neural Information Processing Systems, 2015, pp.\n\t 577–585.\n\n\t#############################################################################\n\t\t\t hybrid attention (content-based + location-based)\n\t\t\t\t\t\t\t f = F * α_{i-1}\n\t energy = dot(v_a, tanh(W_keys(h_enc) + W_query(h_dec) + W_fil(f) + b_a))\n\t#############################################################################\n\n\tArgs:\n\t\tW_query: Tensor, shape '[batch_size, 1, attention_dim]' to compare to location features.\n\t\tW_location: processed previous alignments into location features, shape '[batch_size, max_time, attention_dim]'\n\t\tW_keys: Tensor, shape '[batch_size, max_time, attention_dim]', typically the encoder outputs.\n\tReturns:\n\t\tA '[batch_size, max_time]' attention score (energy)\n\t"
dtype = W_query.dtype
num_units = (W_keys.shape[(- 1)].value or array_ops.shape(W_keys)[(- 1)])
v_a = tf.get_variable('attention_variable_projection', shape=[num_units], dtype=dtype, initializer=tf.contrib.layers.xavier_initializer())
b_a = tf.get_variable('attention_bias', shape=[num_units], dtype=dtype, initializer=tf.zeros_initializer())
return tf.reduce_sum((v_a * tf.tanh((((W_keys + W_query) + W_fil) + b_a))), [2]) | def _location_sensitive_score(W_query, W_fil, W_keys):
"Impelements Bahdanau-style (cumulative) scoring function.\n\tThis attention is described in:\n\t\tJ. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Ben-\n\t gio, “Attention-based models for speech recognition,” in Ad-\n\t vances in Neural Information Processing Systems, 2015, pp.\n\t 577–585.\n\n\t#############################################################################\n\t\t\t hybrid attention (content-based + location-based)\n\t\t\t\t\t\t\t f = F * α_{i-1}\n\t energy = dot(v_a, tanh(W_keys(h_enc) + W_query(h_dec) + W_fil(f) + b_a))\n\t#############################################################################\n\n\tArgs:\n\t\tW_query: Tensor, shape '[batch_size, 1, attention_dim]' to compare to location features.\n\t\tW_location: processed previous alignments into location features, shape '[batch_size, max_time, attention_dim]'\n\t\tW_keys: Tensor, shape '[batch_size, max_time, attention_dim]', typically the encoder outputs.\n\tReturns:\n\t\tA '[batch_size, max_time]' attention score (energy)\n\t"
dtype = W_query.dtype
num_units = (W_keys.shape[(- 1)].value or array_ops.shape(W_keys)[(- 1)])
v_a = tf.get_variable('attention_variable_projection', shape=[num_units], dtype=dtype, initializer=tf.contrib.layers.xavier_initializer())
b_a = tf.get_variable('attention_bias', shape=[num_units], dtype=dtype, initializer=tf.zeros_initializer())
return tf.reduce_sum((v_a * tf.tanh((((W_keys + W_query) + W_fil) + b_a))), [2])<|docstring|>Impelements Bahdanau-style (cumulative) scoring function.
This attention is described in:
J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Ben-
gio, “Attention-based models for speech recognition,” in Ad-
vances in Neural Information Processing Systems, 2015, pp.
577–585.
#############################################################################
hybrid attention (content-based + location-based)
f = F * α_{i-1}
energy = dot(v_a, tanh(W_keys(h_enc) + W_query(h_dec) + W_fil(f) + b_a))
#############################################################################
Args:
W_query: Tensor, shape '[batch_size, 1, attention_dim]' to compare to location features.
W_location: processed previous alignments into location features, shape '[batch_size, max_time, attention_dim]'
W_keys: Tensor, shape '[batch_size, max_time, attention_dim]', typically the encoder outputs.
Returns:
A '[batch_size, max_time]' attention score (energy)<|endoftext|> |
01ce2e0db624b3d54e64dd3832729985860aac8cbaec07009b5d1af0bd8925a1 | def _smoothing_normalization(e):
'Applies a smoothing normalization function instead of softmax\n\tIntroduced in:\n\t\tJ. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Ben-\n\t gio, “Attention-based models for speech recognition,” in Ad-\n\t vances in Neural Information Processing Systems, 2015, pp.\n\t 577–585.\n\n\t############################################################################\n\t\t\t\t\t\tSmoothing normalization function\n\t\t\t\ta_{i, j} = sigmoid(e_{i, j}) / sum_j(sigmoid(e_{i, j}))\n\t############################################################################\n\n\tArgs:\n\t\te: matrix [batch_size, max_time(memory_time)]: expected to be energy (score)\n\t\t\tvalues of an attention mechanism\n\tReturns:\n\t\tmatrix [batch_size, max_time]: [0, 1] normalized alignments with possible\n\t\t\tattendance to multiple memory time steps.\n\t'
return (tf.nn.sigmoid(e) / tf.reduce_sum(tf.nn.sigmoid(e), axis=(- 1), keepdims=True)) | Applies a smoothing normalization function instead of softmax
Introduced in:
J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Ben-
gio, “Attention-based models for speech recognition,” in Ad-
vances in Neural Information Processing Systems, 2015, pp.
577–585.
############################################################################
Smoothing normalization function
a_{i, j} = sigmoid(e_{i, j}) / sum_j(sigmoid(e_{i, j}))
############################################################################
Args:
e: matrix [batch_size, max_time(memory_time)]: expected to be energy (score)
values of an attention mechanism
Returns:
matrix [batch_size, max_time]: [0, 1] normalized alignments with possible
attendance to multiple memory time steps. | tacotron/models/attention.py | _smoothing_normalization | huangdou123/huangdou | 2,154 | python | def _smoothing_normalization(e):
'Applies a smoothing normalization function instead of softmax\n\tIntroduced in:\n\t\tJ. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Ben-\n\t gio, “Attention-based models for speech recognition,” in Ad-\n\t vances in Neural Information Processing Systems, 2015, pp.\n\t 577–585.\n\n\t############################################################################\n\t\t\t\t\t\tSmoothing normalization function\n\t\t\t\ta_{i, j} = sigmoid(e_{i, j}) / sum_j(sigmoid(e_{i, j}))\n\t############################################################################\n\n\tArgs:\n\t\te: matrix [batch_size, max_time(memory_time)]: expected to be energy (score)\n\t\t\tvalues of an attention mechanism\n\tReturns:\n\t\tmatrix [batch_size, max_time]: [0, 1] normalized alignments with possible\n\t\t\tattendance to multiple memory time steps.\n\t'
return (tf.nn.sigmoid(e) / tf.reduce_sum(tf.nn.sigmoid(e), axis=(- 1), keepdims=True)) | def _smoothing_normalization(e):
'Applies a smoothing normalization function instead of softmax\n\tIntroduced in:\n\t\tJ. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Ben-\n\t gio, “Attention-based models for speech recognition,” in Ad-\n\t vances in Neural Information Processing Systems, 2015, pp.\n\t 577–585.\n\n\t############################################################################\n\t\t\t\t\t\tSmoothing normalization function\n\t\t\t\ta_{i, j} = sigmoid(e_{i, j}) / sum_j(sigmoid(e_{i, j}))\n\t############################################################################\n\n\tArgs:\n\t\te: matrix [batch_size, max_time(memory_time)]: expected to be energy (score)\n\t\t\tvalues of an attention mechanism\n\tReturns:\n\t\tmatrix [batch_size, max_time]: [0, 1] normalized alignments with possible\n\t\t\tattendance to multiple memory time steps.\n\t'
return (tf.nn.sigmoid(e) / tf.reduce_sum(tf.nn.sigmoid(e), axis=(- 1), keepdims=True))<|docstring|>Applies a smoothing normalization function instead of softmax
Introduced in:
J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Ben-
gio, “Attention-based models for speech recognition,” in Ad-
vances in Neural Information Processing Systems, 2015, pp.
577–585.
############################################################################
Smoothing normalization function
a_{i, j} = sigmoid(e_{i, j}) / sum_j(sigmoid(e_{i, j}))
############################################################################
Args:
e: matrix [batch_size, max_time(memory_time)]: expected to be energy (score)
values of an attention mechanism
Returns:
matrix [batch_size, max_time]: [0, 1] normalized alignments with possible
attendance to multiple memory time steps.<|endoftext|> |
b3df7a47f97f9e017dc0324cdb81a6551ac87278867448e3bba710463d753d6a | def __init__(self, num_units, memory, hparams, is_training, mask_encoder=True, memory_sequence_length=None, smoothing=False, cumulate_weights=True, name='LocationSensitiveAttention'):
"Construct the Attention mechanism.\n\t\tArgs:\n\t\t\tnum_units: The depth of the query mechanism.\n\t\t\tmemory: The memory to query; usually the output of an RNN encoder. This\n\t\t\t\ttensor should be shaped `[batch_size, max_time, ...]`.\n\t\t\tmask_encoder (optional): Boolean, whether to mask encoder paddings.\n\t\t\tmemory_sequence_length (optional): Sequence lengths for the batch entries\n\t\t\t\tin memory. If provided, the memory tensor rows are masked with zeros\n\t\t\t\tfor values past the respective sequence lengths. Only relevant if mask_encoder = True.\n\t\t\tsmoothing (optional): Boolean. Determines which normalization function to use.\n\t\t\t\tDefault normalization function (probablity_fn) is softmax. If smoothing is\n\t\t\t\tenabled, we replace softmax with:\n\t\t\t\t\t\ta_{i, j} = sigmoid(e_{i, j}) / sum_j(sigmoid(e_{i, j}))\n\t\t\t\tIntroduced in:\n\t\t\t\t\tJ. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Ben-\n\t\t\t\t gio, “Attention-based models for speech recognition,” in Ad-\n\t\t\t\t vances in Neural Information Processing Systems, 2015, pp.\n\t\t\t\t 577–585.\n\t\t\t\tThis is mainly used if the model wants to attend to multiple input parts\n\t\t\t\tat the same decoding step. We probably won't be using it since multiple sound\n\t\t\t\tframes may depend on the same character/phone, probably not the way around.\n\t\t\t\tNote:\n\t\t\t\t\tWe still keep it implemented in case we want to test it. They used it in the\n\t\t\t\t\tpaper in the context of speech recognition, where one phoneme may depend on\n\t\t\t\t\tmultiple subsequent sound frames.\n\t\t\tname: Name to use when creating ops.\n\t\t"
normalization_function = (_smoothing_normalization if (smoothing == True) else None)
memory_length = (memory_sequence_length if (mask_encoder == True) else None)
super(LocationSensitiveAttention, self).__init__(num_units=num_units, memory=memory, memory_sequence_length=memory_length, probability_fn=normalization_function, name=name)
self.location_convolution = tf.layers.Conv1D(filters=hparams.attention_filters, kernel_size=hparams.attention_kernel, padding='same', use_bias=True, bias_initializer=tf.zeros_initializer(), name='location_features_convolution')
self.location_layer = tf.layers.Dense(units=num_units, use_bias=False, dtype=tf.float32, name='location_features_layer')
self._cumulate = cumulate_weights
self.synthesis_constraint = (hparams.synthesis_constraint and (not is_training))
self.attention_win_size = tf.convert_to_tensor(hparams.attention_win_size, dtype=tf.int32)
self.constraint_type = hparams.synthesis_constraint_type | Construct the Attention mechanism.
Args:
num_units: The depth of the query mechanism.
memory: The memory to query; usually the output of an RNN encoder. This
tensor should be shaped `[batch_size, max_time, ...]`.
mask_encoder (optional): Boolean, whether to mask encoder paddings.
memory_sequence_length (optional): Sequence lengths for the batch entries
in memory. If provided, the memory tensor rows are masked with zeros
for values past the respective sequence lengths. Only relevant if mask_encoder = True.
smoothing (optional): Boolean. Determines which normalization function to use.
Default normalization function (probablity_fn) is softmax. If smoothing is
enabled, we replace softmax with:
a_{i, j} = sigmoid(e_{i, j}) / sum_j(sigmoid(e_{i, j}))
Introduced in:
J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Ben-
gio, “Attention-based models for speech recognition,” in Ad-
vances in Neural Information Processing Systems, 2015, pp.
577–585.
This is mainly used if the model wants to attend to multiple input parts
at the same decoding step. We probably won't be using it since multiple sound
frames may depend on the same character/phone, probably not the way around.
Note:
We still keep it implemented in case we want to test it. They used it in the
paper in the context of speech recognition, where one phoneme may depend on
multiple subsequent sound frames.
name: Name to use when creating ops. | tacotron/models/attention.py | __init__ | huangdou123/huangdou | 2,154 | python | def __init__(self, num_units, memory, hparams, is_training, mask_encoder=True, memory_sequence_length=None, smoothing=False, cumulate_weights=True, name='LocationSensitiveAttention'):
"Construct the Attention mechanism.\n\t\tArgs:\n\t\t\tnum_units: The depth of the query mechanism.\n\t\t\tmemory: The memory to query; usually the output of an RNN encoder. This\n\t\t\t\ttensor should be shaped `[batch_size, max_time, ...]`.\n\t\t\tmask_encoder (optional): Boolean, whether to mask encoder paddings.\n\t\t\tmemory_sequence_length (optional): Sequence lengths for the batch entries\n\t\t\t\tin memory. If provided, the memory tensor rows are masked with zeros\n\t\t\t\tfor values past the respective sequence lengths. Only relevant if mask_encoder = True.\n\t\t\tsmoothing (optional): Boolean. Determines which normalization function to use.\n\t\t\t\tDefault normalization function (probablity_fn) is softmax. If smoothing is\n\t\t\t\tenabled, we replace softmax with:\n\t\t\t\t\t\ta_{i, j} = sigmoid(e_{i, j}) / sum_j(sigmoid(e_{i, j}))\n\t\t\t\tIntroduced in:\n\t\t\t\t\tJ. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Ben-\n\t\t\t\t gio, “Attention-based models for speech recognition,” in Ad-\n\t\t\t\t vances in Neural Information Processing Systems, 2015, pp.\n\t\t\t\t 577–585.\n\t\t\t\tThis is mainly used if the model wants to attend to multiple input parts\n\t\t\t\tat the same decoding step. We probably won't be using it since multiple sound\n\t\t\t\tframes may depend on the same character/phone, probably not the way around.\n\t\t\t\tNote:\n\t\t\t\t\tWe still keep it implemented in case we want to test it. They used it in the\n\t\t\t\t\tpaper in the context of speech recognition, where one phoneme may depend on\n\t\t\t\t\tmultiple subsequent sound frames.\n\t\t\tname: Name to use when creating ops.\n\t\t"
normalization_function = (_smoothing_normalization if (smoothing == True) else None)
memory_length = (memory_sequence_length if (mask_encoder == True) else None)
super(LocationSensitiveAttention, self).__init__(num_units=num_units, memory=memory, memory_sequence_length=memory_length, probability_fn=normalization_function, name=name)
self.location_convolution = tf.layers.Conv1D(filters=hparams.attention_filters, kernel_size=hparams.attention_kernel, padding='same', use_bias=True, bias_initializer=tf.zeros_initializer(), name='location_features_convolution')
self.location_layer = tf.layers.Dense(units=num_units, use_bias=False, dtype=tf.float32, name='location_features_layer')
self._cumulate = cumulate_weights
self.synthesis_constraint = (hparams.synthesis_constraint and (not is_training))
self.attention_win_size = tf.convert_to_tensor(hparams.attention_win_size, dtype=tf.int32)
self.constraint_type = hparams.synthesis_constraint_type | def __init__(self, num_units, memory, hparams, is_training, mask_encoder=True, memory_sequence_length=None, smoothing=False, cumulate_weights=True, name='LocationSensitiveAttention'):
"Construct the Attention mechanism.\n\t\tArgs:\n\t\t\tnum_units: The depth of the query mechanism.\n\t\t\tmemory: The memory to query; usually the output of an RNN encoder. This\n\t\t\t\ttensor should be shaped `[batch_size, max_time, ...]`.\n\t\t\tmask_encoder (optional): Boolean, whether to mask encoder paddings.\n\t\t\tmemory_sequence_length (optional): Sequence lengths for the batch entries\n\t\t\t\tin memory. If provided, the memory tensor rows are masked with zeros\n\t\t\t\tfor values past the respective sequence lengths. Only relevant if mask_encoder = True.\n\t\t\tsmoothing (optional): Boolean. Determines which normalization function to use.\n\t\t\t\tDefault normalization function (probablity_fn) is softmax. If smoothing is\n\t\t\t\tenabled, we replace softmax with:\n\t\t\t\t\t\ta_{i, j} = sigmoid(e_{i, j}) / sum_j(sigmoid(e_{i, j}))\n\t\t\t\tIntroduced in:\n\t\t\t\t\tJ. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Ben-\n\t\t\t\t gio, “Attention-based models for speech recognition,” in Ad-\n\t\t\t\t vances in Neural Information Processing Systems, 2015, pp.\n\t\t\t\t 577–585.\n\t\t\t\tThis is mainly used if the model wants to attend to multiple input parts\n\t\t\t\tat the same decoding step. We probably won't be using it since multiple sound\n\t\t\t\tframes may depend on the same character/phone, probably not the way around.\n\t\t\t\tNote:\n\t\t\t\t\tWe still keep it implemented in case we want to test it. They used it in the\n\t\t\t\t\tpaper in the context of speech recognition, where one phoneme may depend on\n\t\t\t\t\tmultiple subsequent sound frames.\n\t\t\tname: Name to use when creating ops.\n\t\t"
normalization_function = (_smoothing_normalization if (smoothing == True) else None)
memory_length = (memory_sequence_length if (mask_encoder == True) else None)
super(LocationSensitiveAttention, self).__init__(num_units=num_units, memory=memory, memory_sequence_length=memory_length, probability_fn=normalization_function, name=name)
self.location_convolution = tf.layers.Conv1D(filters=hparams.attention_filters, kernel_size=hparams.attention_kernel, padding='same', use_bias=True, bias_initializer=tf.zeros_initializer(), name='location_features_convolution')
self.location_layer = tf.layers.Dense(units=num_units, use_bias=False, dtype=tf.float32, name='location_features_layer')
self._cumulate = cumulate_weights
self.synthesis_constraint = (hparams.synthesis_constraint and (not is_training))
self.attention_win_size = tf.convert_to_tensor(hparams.attention_win_size, dtype=tf.int32)
self.constraint_type = hparams.synthesis_constraint_type<|docstring|>Construct the Attention mechanism.
Args:
num_units: The depth of the query mechanism.
memory: The memory to query; usually the output of an RNN encoder. This
tensor should be shaped `[batch_size, max_time, ...]`.
mask_encoder (optional): Boolean, whether to mask encoder paddings.
memory_sequence_length (optional): Sequence lengths for the batch entries
in memory. If provided, the memory tensor rows are masked with zeros
for values past the respective sequence lengths. Only relevant if mask_encoder = True.
smoothing (optional): Boolean. Determines which normalization function to use.
Default normalization function (probablity_fn) is softmax. If smoothing is
enabled, we replace softmax with:
a_{i, j} = sigmoid(e_{i, j}) / sum_j(sigmoid(e_{i, j}))
Introduced in:
J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Ben-
gio, “Attention-based models for speech recognition,” in Ad-
vances in Neural Information Processing Systems, 2015, pp.
577–585.
This is mainly used if the model wants to attend to multiple input parts
at the same decoding step. We probably won't be using it since multiple sound
frames may depend on the same character/phone, probably not the way around.
Note:
We still keep it implemented in case we want to test it. They used it in the
paper in the context of speech recognition, where one phoneme may depend on
multiple subsequent sound frames.
name: Name to use when creating ops.<|endoftext|> |
e8e952b117bc3a20b91e545899411936232f1a088033dadb40de61f7e4b9b154 | def __call__(self, query, state, prev_max_attentions):
"Score the query based on the keys and values.\n\t\tArgs:\n\t\t\tquery: Tensor of dtype matching `self.values` and shape\n\t\t\t\t`[batch_size, query_depth]`.\n\t\t\tstate (previous alignments): Tensor of dtype matching `self.values` and shape\n\t\t\t\t`[batch_size, alignments_size]`\n\t\t\t\t(`alignments_size` is memory's `max_time`).\n\t\tReturns:\n\t\t\talignments: Tensor of dtype matching `self.values` and shape\n\t\t\t\t`[batch_size, alignments_size]` (`alignments_size` is memory's\n\t\t\t\t`max_time`).\n\t\t"
previous_alignments = state
with variable_scope.variable_scope(None, 'Location_Sensitive_Attention', [query]):
processed_query = (self.query_layer(query) if self.query_layer else query)
processed_query = tf.expand_dims(processed_query, 1)
expanded_alignments = tf.expand_dims(previous_alignments, axis=2)
f = self.location_convolution(expanded_alignments)
processed_location_features = self.location_layer(f)
energy = _location_sensitive_score(processed_query, processed_location_features, self.keys)
if self.synthesis_constraint:
Tx = tf.shape(energy)[(- 1)]
if (self.constraint_type == 'monotonic'):
key_masks = tf.sequence_mask(prev_max_attentions, Tx)
reverse_masks = tf.sequence_mask(((Tx - self.attention_win_size) - prev_max_attentions), Tx)[(:, ::(- 1))]
else:
assert (self.constraint_type == 'window')
key_masks = tf.sequence_mask((prev_max_attentions - ((self.attention_win_size // 2) + ((self.attention_win_size % 2) != 0))), Tx)
reverse_masks = tf.sequence_mask(((Tx - (self.attention_win_size // 2)) - prev_max_attentions), Tx)[(:, ::(- 1))]
masks = tf.logical_or(key_masks, reverse_masks)
paddings = (tf.ones_like(energy) * ((- (2 ** 32)) + 1))
energy = tf.where(tf.equal(masks, False), energy, paddings)
alignments = self._probability_fn(energy, previous_alignments)
max_attentions = tf.argmax(alignments, (- 1), output_type=tf.int32)
if self._cumulate:
next_state = (alignments + previous_alignments)
else:
next_state = alignments
return (alignments, next_state, max_attentions) | Score the query based on the keys and values.
Args:
query: Tensor of dtype matching `self.values` and shape
`[batch_size, query_depth]`.
state (previous alignments): Tensor of dtype matching `self.values` and shape
`[batch_size, alignments_size]`
(`alignments_size` is memory's `max_time`).
Returns:
alignments: Tensor of dtype matching `self.values` and shape
`[batch_size, alignments_size]` (`alignments_size` is memory's
`max_time`). | tacotron/models/attention.py | __call__ | huangdou123/huangdou | 2,154 | python | def __call__(self, query, state, prev_max_attentions):
"Score the query based on the keys and values.\n\t\tArgs:\n\t\t\tquery: Tensor of dtype matching `self.values` and shape\n\t\t\t\t`[batch_size, query_depth]`.\n\t\t\tstate (previous alignments): Tensor of dtype matching `self.values` and shape\n\t\t\t\t`[batch_size, alignments_size]`\n\t\t\t\t(`alignments_size` is memory's `max_time`).\n\t\tReturns:\n\t\t\talignments: Tensor of dtype matching `self.values` and shape\n\t\t\t\t`[batch_size, alignments_size]` (`alignments_size` is memory's\n\t\t\t\t`max_time`).\n\t\t"
previous_alignments = state
with variable_scope.variable_scope(None, 'Location_Sensitive_Attention', [query]):
processed_query = (self.query_layer(query) if self.query_layer else query)
processed_query = tf.expand_dims(processed_query, 1)
expanded_alignments = tf.expand_dims(previous_alignments, axis=2)
f = self.location_convolution(expanded_alignments)
processed_location_features = self.location_layer(f)
energy = _location_sensitive_score(processed_query, processed_location_features, self.keys)
if self.synthesis_constraint:
Tx = tf.shape(energy)[(- 1)]
if (self.constraint_type == 'monotonic'):
key_masks = tf.sequence_mask(prev_max_attentions, Tx)
reverse_masks = tf.sequence_mask(((Tx - self.attention_win_size) - prev_max_attentions), Tx)[(:, ::(- 1))]
else:
assert (self.constraint_type == 'window')
key_masks = tf.sequence_mask((prev_max_attentions - ((self.attention_win_size // 2) + ((self.attention_win_size % 2) != 0))), Tx)
reverse_masks = tf.sequence_mask(((Tx - (self.attention_win_size // 2)) - prev_max_attentions), Tx)[(:, ::(- 1))]
masks = tf.logical_or(key_masks, reverse_masks)
paddings = (tf.ones_like(energy) * ((- (2 ** 32)) + 1))
energy = tf.where(tf.equal(masks, False), energy, paddings)
alignments = self._probability_fn(energy, previous_alignments)
max_attentions = tf.argmax(alignments, (- 1), output_type=tf.int32)
if self._cumulate:
next_state = (alignments + previous_alignments)
else:
next_state = alignments
return (alignments, next_state, max_attentions) | def __call__(self, query, state, prev_max_attentions):
"Score the query based on the keys and values.\n\t\tArgs:\n\t\t\tquery: Tensor of dtype matching `self.values` and shape\n\t\t\t\t`[batch_size, query_depth]`.\n\t\t\tstate (previous alignments): Tensor of dtype matching `self.values` and shape\n\t\t\t\t`[batch_size, alignments_size]`\n\t\t\t\t(`alignments_size` is memory's `max_time`).\n\t\tReturns:\n\t\t\talignments: Tensor of dtype matching `self.values` and shape\n\t\t\t\t`[batch_size, alignments_size]` (`alignments_size` is memory's\n\t\t\t\t`max_time`).\n\t\t"
previous_alignments = state
with variable_scope.variable_scope(None, 'Location_Sensitive_Attention', [query]):
processed_query = (self.query_layer(query) if self.query_layer else query)
processed_query = tf.expand_dims(processed_query, 1)
expanded_alignments = tf.expand_dims(previous_alignments, axis=2)
f = self.location_convolution(expanded_alignments)
processed_location_features = self.location_layer(f)
energy = _location_sensitive_score(processed_query, processed_location_features, self.keys)
if self.synthesis_constraint:
Tx = tf.shape(energy)[(- 1)]
if (self.constraint_type == 'monotonic'):
key_masks = tf.sequence_mask(prev_max_attentions, Tx)
reverse_masks = tf.sequence_mask(((Tx - self.attention_win_size) - prev_max_attentions), Tx)[(:, ::(- 1))]
else:
assert (self.constraint_type == 'window')
key_masks = tf.sequence_mask((prev_max_attentions - ((self.attention_win_size // 2) + ((self.attention_win_size % 2) != 0))), Tx)
reverse_masks = tf.sequence_mask(((Tx - (self.attention_win_size // 2)) - prev_max_attentions), Tx)[(:, ::(- 1))]
masks = tf.logical_or(key_masks, reverse_masks)
paddings = (tf.ones_like(energy) * ((- (2 ** 32)) + 1))
energy = tf.where(tf.equal(masks, False), energy, paddings)
alignments = self._probability_fn(energy, previous_alignments)
max_attentions = tf.argmax(alignments, (- 1), output_type=tf.int32)
if self._cumulate:
next_state = (alignments + previous_alignments)
else:
next_state = alignments
return (alignments, next_state, max_attentions)<|docstring|>Score the query based on the keys and values.
Args:
query: Tensor of dtype matching `self.values` and shape
`[batch_size, query_depth]`.
state (previous alignments): Tensor of dtype matching `self.values` and shape
`[batch_size, alignments_size]`
(`alignments_size` is memory's `max_time`).
Returns:
alignments: Tensor of dtype matching `self.values` and shape
`[batch_size, alignments_size]` (`alignments_size` is memory's
`max_time`).<|endoftext|> |
402f434b1c982001ee1d2aeaf7fc7475b6df415451d56bd85e27bf5d619b01a0 | def __init__(self, *, id_: Optional[FhirId]=None, meta: Optional[Meta]=None, implicitRules: Optional[FhirUri]=None, language: Optional[CommonLanguagesCode]=None, text: Optional[Narrative]=None, contained: Optional[FhirList[ResourceContainer]]=None, extension: Optional[FhirList[ExtensionBase]]=None, modifierExtension: Optional[FhirList[ExtensionBase]]=None, url: Optional[FhirUri]=None, identifier: Optional[FhirList[Identifier]]=None, version: Optional[FhirString]=None, name: Optional[FhirString]=None, title: Optional[FhirString]=None, status: PublicationStatusCode, date: Optional[FhirDateTime]=None, publisher: Optional[FhirString]=None, contact: Optional[FhirList[ContactDetail]]=None, description: Optional[FhirMarkdown]=None, note: Optional[FhirList[Annotation]]=None, useContext: Optional[FhirList[UsageContext]]=None, jurisdiction: Optional[FhirList[CodeableConcept[JurisdictionValueSetCode]]]=None, copyright: Optional[FhirMarkdown]=None, approvalDate: Optional[FhirDate]=None, lastReviewDate: Optional[FhirDate]=None, effectivePeriod: Optional[Period]=None, topic: Optional[FhirList[CodeableConcept[DefinitionTopicCode]]]=None, author: Optional[FhirList[ContactDetail]]=None, editor: Optional[FhirList[ContactDetail]]=None, reviewer: Optional[FhirList[ContactDetail]]=None, endorser: Optional[FhirList[ContactDetail]]=None, relatedArtifact: Optional[FhirList[RelatedArtifact]]=None, synthesisType: Optional[CodeableConcept[SynthesisTypeCode]]=None, studyType: Optional[CodeableConcept[StudyTypeCode]]=None, population: Reference[EvidenceVariable], exposure: Optional[Reference[EvidenceVariable]]=None, outcome: Reference[EvidenceVariable], sampleSize: Optional[RiskEvidenceSynthesisSampleSize]=None, riskEstimate: Optional[RiskEvidenceSynthesisRiskEstimate]=None, certainty: Optional[FhirList[RiskEvidenceSynthesisCertainty]]=None) -> None:
'\n The RiskEvidenceSynthesis resource describes the likelihood of an outcome in a\n population plus exposure state where the risk estimate is derived from a\n combination of research studies.\n If the element is present, it must have either a @value, an @id, or extensions\n\n :param id_: The logical id of the resource, as used in the URL for the resource. Once\n assigned, this value never changes.\n :param meta: The metadata about the resource. This is content that is maintained by the\n infrastructure. Changes to the content might not always be associated with\n version changes to the resource.\n :param implicitRules: A reference to a set of rules that were followed when the resource was\n constructed, and which must be understood when processing the content. Often,\n this is a reference to an implementation guide that defines the special rules\n along with other profiles etc.\n :param language: The base language in which the resource is written.\n :param text: A human-readable narrative that contains a summary of the resource and can be\n used to represent the content of the resource to a human. The narrative need\n not encode all the structured data, but is required to contain sufficient\n detail to make it "clinically safe" for a human to just read the narrative.\n Resource definitions may define what content should be represented in the\n narrative to ensure clinical safety.\n :param contained: These resources do not have an independent existence apart from the resource\n that contains them - they cannot be identified independently, and nor can they\n have their own independent transaction scope.\n :param extension: May be used to represent additional information that is not part of the basic\n definition of the resource. To make the use of extensions safe and manageable,\n there is a strict set of governance applied to the definition and use of\n extensions. Though any implementer can define an extension, there is a set of\n requirements that SHALL be met as part of the definition of the extension.\n :param modifierExtension: May be used to represent additional information that is not part of the basic\n definition of the resource and that modifies the understanding of the element\n that contains it and/or the understanding of the containing element\'s\n descendants. Usually modifier elements provide negation or qualification. To\n make the use of extensions safe and manageable, there is a strict set of\n governance applied to the definition and use of extensions. Though any\n implementer is allowed to define an extension, there is a set of requirements\n that SHALL be met as part of the definition of the extension. Applications\n processing a resource are required to check for modifier extensions.\n\n Modifier extensions SHALL NOT change the meaning of any elements on Resource\n or DomainResource (including cannot change the meaning of modifierExtension\n itself).\n :param url: An absolute URI that is used to identify this risk evidence synthesis when it\n is referenced in a specification, model, design or an instance; also called\n its canonical identifier. This SHOULD be globally unique and SHOULD be a\n literal address at which at which an authoritative instance of this risk\n evidence synthesis is (or will be) published. This URL can be the target of a\n canonical reference. It SHALL remain the same when the risk evidence synthesis\n is stored on different servers.\n :param identifier: A formal identifier that is used to identify this risk evidence synthesis when\n it is represented in other formats, or referenced in a specification, model,\n design or an instance.\n :param version: The identifier that is used to identify this version of the risk evidence\n synthesis when it is referenced in a specification, model, design or instance.\n This is an arbitrary value managed by the risk evidence synthesis author and\n is not expected to be globally unique. For example, it might be a timestamp\n (e.g. yyyymmdd) if a managed version is not available. There is also no\n expectation that versions can be placed in a lexicographical sequence.\n :param name: A natural language name identifying the risk evidence synthesis. This name\n should be usable as an identifier for the module by machine processing\n applications such as code generation.\n :param title: A short, descriptive, user-friendly title for the risk evidence synthesis.\n :param status: The status of this risk evidence synthesis. Enables tracking the life-cycle of\n the content.\n :param date: The date (and optionally time) when the risk evidence synthesis was\n published. The date must change when the business version changes and it must\n change if the status code changes. In addition, it should change when the\n substantive content of the risk evidence synthesis changes.\n :param publisher: The name of the organization or individual that published the risk evidence\n synthesis.\n :param contact: Contact details to assist a user in finding and communicating with the\n publisher.\n :param description: A free text natural language description of the risk evidence synthesis from a\n consumer\'s perspective.\n :param note: A human-readable string to clarify or explain concepts about the resource.\n :param useContext: The content was developed with a focus and intent of supporting the contexts\n that are listed. These contexts may be general categories (gender, age, ...)\n or may be references to specific programs (insurance plans, studies, ...) and\n may be used to assist with indexing and searching for appropriate risk\n evidence synthesis instances.\n :param jurisdiction: A legal or geographic region in which the risk evidence synthesis is intended\n to be used.\n :param copyright: A copyright statement relating to the risk evidence synthesis and/or its\n contents. Copyright statements are generally legal restrictions on the use and\n publishing of the risk evidence synthesis.\n :param approvalDate: The date on which the resource content was approved by the publisher. Approval\n happens once when the content is officially approved for usage.\n :param lastReviewDate: The date on which the resource content was last reviewed. Review happens\n periodically after approval but does not change the original approval date.\n :param effectivePeriod: The period during which the risk evidence synthesis content was or is planned\n to be in active use.\n :param topic: Descriptive topics related to the content of the RiskEvidenceSynthesis. Topics\n provide a high-level categorization grouping types of EffectEvidenceSynthesiss\n that can be useful for filtering and searching.\n :param author: An individiual or organization primarily involved in the creation and\n maintenance of the content.\n :param editor: An individual or organization primarily responsible for internal coherence of\n the content.\n :param reviewer: An individual or organization primarily responsible for review of some aspect\n of the content.\n :param endorser: An individual or organization responsible for officially endorsing the content\n for use in some setting.\n :param relatedArtifact: Related artifacts such as additional documentation, justification, or\n bibliographic references.\n :param synthesisType: Type of synthesis eg meta-analysis.\n :param studyType: Type of study eg randomized trial.\n :param population: A reference to a EvidenceVariable resource that defines the population for the\n research.\n :param exposure: A reference to a EvidenceVariable resource that defines the exposure for the\n research.\n :param outcome: A reference to a EvidenceVariable resomece that defines the outcome for the\n research.\n :param sampleSize: A description of the size of the sample involved in the synthesis.\n :param riskEstimate: The estimated risk of the outcome.\n :param certainty: A description of the certainty of the risk estimate.\n '
super().__init__(resourceType='RiskEvidenceSynthesis', id_=id_, meta=meta, implicitRules=implicitRules, language=language, text=text, contained=contained, extension=extension, modifierExtension=modifierExtension, url=url, identifier=identifier, version=version, name=name, title=title, status=status, date=date, publisher=publisher, contact=contact, description=description, note=note, useContext=useContext, jurisdiction=jurisdiction, copyright=copyright, approvalDate=approvalDate, lastReviewDate=lastReviewDate, effectivePeriod=effectivePeriod, topic=topic, author=author, editor=editor, reviewer=reviewer, endorser=endorser, relatedArtifact=relatedArtifact, synthesisType=synthesisType, studyType=studyType, population=population, exposure=exposure, outcome=outcome, sampleSize=sampleSize, riskEstimate=riskEstimate, certainty=certainty) | The RiskEvidenceSynthesis resource describes the likelihood of an outcome in a
population plus exposure state where the risk estimate is derived from a
combination of research studies.
If the element is present, it must have either a @value, an @id, or extensions
:param id_: The logical id of the resource, as used in the URL for the resource. Once
assigned, this value never changes.
:param meta: The metadata about the resource. This is content that is maintained by the
infrastructure. Changes to the content might not always be associated with
version changes to the resource.
:param implicitRules: A reference to a set of rules that were followed when the resource was
constructed, and which must be understood when processing the content. Often,
this is a reference to an implementation guide that defines the special rules
along with other profiles etc.
:param language: The base language in which the resource is written.
:param text: A human-readable narrative that contains a summary of the resource and can be
used to represent the content of the resource to a human. The narrative need
not encode all the structured data, but is required to contain sufficient
detail to make it "clinically safe" for a human to just read the narrative.
Resource definitions may define what content should be represented in the
narrative to ensure clinical safety.
:param contained: These resources do not have an independent existence apart from the resource
that contains them - they cannot be identified independently, and nor can they
have their own independent transaction scope.
:param extension: May be used to represent additional information that is not part of the basic
definition of the resource. To make the use of extensions safe and manageable,
there is a strict set of governance applied to the definition and use of
extensions. Though any implementer can define an extension, there is a set of
requirements that SHALL be met as part of the definition of the extension.
:param modifierExtension: May be used to represent additional information that is not part of the basic
definition of the resource and that modifies the understanding of the element
that contains it and/or the understanding of the containing element's
descendants. Usually modifier elements provide negation or qualification. To
make the use of extensions safe and manageable, there is a strict set of
governance applied to the definition and use of extensions. Though any
implementer is allowed to define an extension, there is a set of requirements
that SHALL be met as part of the definition of the extension. Applications
processing a resource are required to check for modifier extensions.
Modifier extensions SHALL NOT change the meaning of any elements on Resource
or DomainResource (including cannot change the meaning of modifierExtension
itself).
:param url: An absolute URI that is used to identify this risk evidence synthesis when it
is referenced in a specification, model, design or an instance; also called
its canonical identifier. This SHOULD be globally unique and SHOULD be a
literal address at which at which an authoritative instance of this risk
evidence synthesis is (or will be) published. This URL can be the target of a
canonical reference. It SHALL remain the same when the risk evidence synthesis
is stored on different servers.
:param identifier: A formal identifier that is used to identify this risk evidence synthesis when
it is represented in other formats, or referenced in a specification, model,
design or an instance.
:param version: The identifier that is used to identify this version of the risk evidence
synthesis when it is referenced in a specification, model, design or instance.
This is an arbitrary value managed by the risk evidence synthesis author and
is not expected to be globally unique. For example, it might be a timestamp
(e.g. yyyymmdd) if a managed version is not available. There is also no
expectation that versions can be placed in a lexicographical sequence.
:param name: A natural language name identifying the risk evidence synthesis. This name
should be usable as an identifier for the module by machine processing
applications such as code generation.
:param title: A short, descriptive, user-friendly title for the risk evidence synthesis.
:param status: The status of this risk evidence synthesis. Enables tracking the life-cycle of
the content.
:param date: The date (and optionally time) when the risk evidence synthesis was
published. The date must change when the business version changes and it must
change if the status code changes. In addition, it should change when the
substantive content of the risk evidence synthesis changes.
:param publisher: The name of the organization or individual that published the risk evidence
synthesis.
:param contact: Contact details to assist a user in finding and communicating with the
publisher.
:param description: A free text natural language description of the risk evidence synthesis from a
consumer's perspective.
:param note: A human-readable string to clarify or explain concepts about the resource.
:param useContext: The content was developed with a focus and intent of supporting the contexts
that are listed. These contexts may be general categories (gender, age, ...)
or may be references to specific programs (insurance plans, studies, ...) and
may be used to assist with indexing and searching for appropriate risk
evidence synthesis instances.
:param jurisdiction: A legal or geographic region in which the risk evidence synthesis is intended
to be used.
:param copyright: A copyright statement relating to the risk evidence synthesis and/or its
contents. Copyright statements are generally legal restrictions on the use and
publishing of the risk evidence synthesis.
:param approvalDate: The date on which the resource content was approved by the publisher. Approval
happens once when the content is officially approved for usage.
:param lastReviewDate: The date on which the resource content was last reviewed. Review happens
periodically after approval but does not change the original approval date.
:param effectivePeriod: The period during which the risk evidence synthesis content was or is planned
to be in active use.
:param topic: Descriptive topics related to the content of the RiskEvidenceSynthesis. Topics
provide a high-level categorization grouping types of EffectEvidenceSynthesiss
that can be useful for filtering and searching.
:param author: An individiual or organization primarily involved in the creation and
maintenance of the content.
:param editor: An individual or organization primarily responsible for internal coherence of
the content.
:param reviewer: An individual or organization primarily responsible for review of some aspect
of the content.
:param endorser: An individual or organization responsible for officially endorsing the content
for use in some setting.
:param relatedArtifact: Related artifacts such as additional documentation, justification, or
bibliographic references.
:param synthesisType: Type of synthesis eg meta-analysis.
:param studyType: Type of study eg randomized trial.
:param population: A reference to a EvidenceVariable resource that defines the population for the
research.
:param exposure: A reference to a EvidenceVariable resource that defines the exposure for the
research.
:param outcome: A reference to a EvidenceVariable resomece that defines the outcome for the
research.
:param sampleSize: A description of the size of the sample involved in the synthesis.
:param riskEstimate: The estimated risk of the outcome.
:param certainty: A description of the certainty of the risk estimate. | spark_auto_mapper_fhir/resources/risk_evidence_synthesis.py | __init__ | icanbwell/SparkAutoMapper.FHIR | 1 | python | def __init__(self, *, id_: Optional[FhirId]=None, meta: Optional[Meta]=None, implicitRules: Optional[FhirUri]=None, language: Optional[CommonLanguagesCode]=None, text: Optional[Narrative]=None, contained: Optional[FhirList[ResourceContainer]]=None, extension: Optional[FhirList[ExtensionBase]]=None, modifierExtension: Optional[FhirList[ExtensionBase]]=None, url: Optional[FhirUri]=None, identifier: Optional[FhirList[Identifier]]=None, version: Optional[FhirString]=None, name: Optional[FhirString]=None, title: Optional[FhirString]=None, status: PublicationStatusCode, date: Optional[FhirDateTime]=None, publisher: Optional[FhirString]=None, contact: Optional[FhirList[ContactDetail]]=None, description: Optional[FhirMarkdown]=None, note: Optional[FhirList[Annotation]]=None, useContext: Optional[FhirList[UsageContext]]=None, jurisdiction: Optional[FhirList[CodeableConcept[JurisdictionValueSetCode]]]=None, copyright: Optional[FhirMarkdown]=None, approvalDate: Optional[FhirDate]=None, lastReviewDate: Optional[FhirDate]=None, effectivePeriod: Optional[Period]=None, topic: Optional[FhirList[CodeableConcept[DefinitionTopicCode]]]=None, author: Optional[FhirList[ContactDetail]]=None, editor: Optional[FhirList[ContactDetail]]=None, reviewer: Optional[FhirList[ContactDetail]]=None, endorser: Optional[FhirList[ContactDetail]]=None, relatedArtifact: Optional[FhirList[RelatedArtifact]]=None, synthesisType: Optional[CodeableConcept[SynthesisTypeCode]]=None, studyType: Optional[CodeableConcept[StudyTypeCode]]=None, population: Reference[EvidenceVariable], exposure: Optional[Reference[EvidenceVariable]]=None, outcome: Reference[EvidenceVariable], sampleSize: Optional[RiskEvidenceSynthesisSampleSize]=None, riskEstimate: Optional[RiskEvidenceSynthesisRiskEstimate]=None, certainty: Optional[FhirList[RiskEvidenceSynthesisCertainty]]=None) -> None:
'\n The RiskEvidenceSynthesis resource describes the likelihood of an outcome in a\n population plus exposure state where the risk estimate is derived from a\n combination of research studies.\n If the element is present, it must have either a @value, an @id, or extensions\n\n :param id_: The logical id of the resource, as used in the URL for the resource. Once\n assigned, this value never changes.\n :param meta: The metadata about the resource. This is content that is maintained by the\n infrastructure. Changes to the content might not always be associated with\n version changes to the resource.\n :param implicitRules: A reference to a set of rules that were followed when the resource was\n constructed, and which must be understood when processing the content. Often,\n this is a reference to an implementation guide that defines the special rules\n along with other profiles etc.\n :param language: The base language in which the resource is written.\n :param text: A human-readable narrative that contains a summary of the resource and can be\n used to represent the content of the resource to a human. The narrative need\n not encode all the structured data, but is required to contain sufficient\n detail to make it "clinically safe" for a human to just read the narrative.\n Resource definitions may define what content should be represented in the\n narrative to ensure clinical safety.\n :param contained: These resources do not have an independent existence apart from the resource\n that contains them - they cannot be identified independently, and nor can they\n have their own independent transaction scope.\n :param extension: May be used to represent additional information that is not part of the basic\n definition of the resource. To make the use of extensions safe and manageable,\n there is a strict set of governance applied to the definition and use of\n extensions. Though any implementer can define an extension, there is a set of\n requirements that SHALL be met as part of the definition of the extension.\n :param modifierExtension: May be used to represent additional information that is not part of the basic\n definition of the resource and that modifies the understanding of the element\n that contains it and/or the understanding of the containing element\'s\n descendants. Usually modifier elements provide negation or qualification. To\n make the use of extensions safe and manageable, there is a strict set of\n governance applied to the definition and use of extensions. Though any\n implementer is allowed to define an extension, there is a set of requirements\n that SHALL be met as part of the definition of the extension. Applications\n processing a resource are required to check for modifier extensions.\n\n Modifier extensions SHALL NOT change the meaning of any elements on Resource\n or DomainResource (including cannot change the meaning of modifierExtension\n itself).\n :param url: An absolute URI that is used to identify this risk evidence synthesis when it\n is referenced in a specification, model, design or an instance; also called\n its canonical identifier. This SHOULD be globally unique and SHOULD be a\n literal address at which at which an authoritative instance of this risk\n evidence synthesis is (or will be) published. This URL can be the target of a\n canonical reference. It SHALL remain the same when the risk evidence synthesis\n is stored on different servers.\n :param identifier: A formal identifier that is used to identify this risk evidence synthesis when\n it is represented in other formats, or referenced in a specification, model,\n design or an instance.\n :param version: The identifier that is used to identify this version of the risk evidence\n synthesis when it is referenced in a specification, model, design or instance.\n This is an arbitrary value managed by the risk evidence synthesis author and\n is not expected to be globally unique. For example, it might be a timestamp\n (e.g. yyyymmdd) if a managed version is not available. There is also no\n expectation that versions can be placed in a lexicographical sequence.\n :param name: A natural language name identifying the risk evidence synthesis. This name\n should be usable as an identifier for the module by machine processing\n applications such as code generation.\n :param title: A short, descriptive, user-friendly title for the risk evidence synthesis.\n :param status: The status of this risk evidence synthesis. Enables tracking the life-cycle of\n the content.\n :param date: The date (and optionally time) when the risk evidence synthesis was\n published. The date must change when the business version changes and it must\n change if the status code changes. In addition, it should change when the\n substantive content of the risk evidence synthesis changes.\n :param publisher: The name of the organization or individual that published the risk evidence\n synthesis.\n :param contact: Contact details to assist a user in finding and communicating with the\n publisher.\n :param description: A free text natural language description of the risk evidence synthesis from a\n consumer\'s perspective.\n :param note: A human-readable string to clarify or explain concepts about the resource.\n :param useContext: The content was developed with a focus and intent of supporting the contexts\n that are listed. These contexts may be general categories (gender, age, ...)\n or may be references to specific programs (insurance plans, studies, ...) and\n may be used to assist with indexing and searching for appropriate risk\n evidence synthesis instances.\n :param jurisdiction: A legal or geographic region in which the risk evidence synthesis is intended\n to be used.\n :param copyright: A copyright statement relating to the risk evidence synthesis and/or its\n contents. Copyright statements are generally legal restrictions on the use and\n publishing of the risk evidence synthesis.\n :param approvalDate: The date on which the resource content was approved by the publisher. Approval\n happens once when the content is officially approved for usage.\n :param lastReviewDate: The date on which the resource content was last reviewed. Review happens\n periodically after approval but does not change the original approval date.\n :param effectivePeriod: The period during which the risk evidence synthesis content was or is planned\n to be in active use.\n :param topic: Descriptive topics related to the content of the RiskEvidenceSynthesis. Topics\n provide a high-level categorization grouping types of EffectEvidenceSynthesiss\n that can be useful for filtering and searching.\n :param author: An individiual or organization primarily involved in the creation and\n maintenance of the content.\n :param editor: An individual or organization primarily responsible for internal coherence of\n the content.\n :param reviewer: An individual or organization primarily responsible for review of some aspect\n of the content.\n :param endorser: An individual or organization responsible for officially endorsing the content\n for use in some setting.\n :param relatedArtifact: Related artifacts such as additional documentation, justification, or\n bibliographic references.\n :param synthesisType: Type of synthesis eg meta-analysis.\n :param studyType: Type of study eg randomized trial.\n :param population: A reference to a EvidenceVariable resource that defines the population for the\n research.\n :param exposure: A reference to a EvidenceVariable resource that defines the exposure for the\n research.\n :param outcome: A reference to a EvidenceVariable resomece that defines the outcome for the\n research.\n :param sampleSize: A description of the size of the sample involved in the synthesis.\n :param riskEstimate: The estimated risk of the outcome.\n :param certainty: A description of the certainty of the risk estimate.\n '
super().__init__(resourceType='RiskEvidenceSynthesis', id_=id_, meta=meta, implicitRules=implicitRules, language=language, text=text, contained=contained, extension=extension, modifierExtension=modifierExtension, url=url, identifier=identifier, version=version, name=name, title=title, status=status, date=date, publisher=publisher, contact=contact, description=description, note=note, useContext=useContext, jurisdiction=jurisdiction, copyright=copyright, approvalDate=approvalDate, lastReviewDate=lastReviewDate, effectivePeriod=effectivePeriod, topic=topic, author=author, editor=editor, reviewer=reviewer, endorser=endorser, relatedArtifact=relatedArtifact, synthesisType=synthesisType, studyType=studyType, population=population, exposure=exposure, outcome=outcome, sampleSize=sampleSize, riskEstimate=riskEstimate, certainty=certainty) | def __init__(self, *, id_: Optional[FhirId]=None, meta: Optional[Meta]=None, implicitRules: Optional[FhirUri]=None, language: Optional[CommonLanguagesCode]=None, text: Optional[Narrative]=None, contained: Optional[FhirList[ResourceContainer]]=None, extension: Optional[FhirList[ExtensionBase]]=None, modifierExtension: Optional[FhirList[ExtensionBase]]=None, url: Optional[FhirUri]=None, identifier: Optional[FhirList[Identifier]]=None, version: Optional[FhirString]=None, name: Optional[FhirString]=None, title: Optional[FhirString]=None, status: PublicationStatusCode, date: Optional[FhirDateTime]=None, publisher: Optional[FhirString]=None, contact: Optional[FhirList[ContactDetail]]=None, description: Optional[FhirMarkdown]=None, note: Optional[FhirList[Annotation]]=None, useContext: Optional[FhirList[UsageContext]]=None, jurisdiction: Optional[FhirList[CodeableConcept[JurisdictionValueSetCode]]]=None, copyright: Optional[FhirMarkdown]=None, approvalDate: Optional[FhirDate]=None, lastReviewDate: Optional[FhirDate]=None, effectivePeriod: Optional[Period]=None, topic: Optional[FhirList[CodeableConcept[DefinitionTopicCode]]]=None, author: Optional[FhirList[ContactDetail]]=None, editor: Optional[FhirList[ContactDetail]]=None, reviewer: Optional[FhirList[ContactDetail]]=None, endorser: Optional[FhirList[ContactDetail]]=None, relatedArtifact: Optional[FhirList[RelatedArtifact]]=None, synthesisType: Optional[CodeableConcept[SynthesisTypeCode]]=None, studyType: Optional[CodeableConcept[StudyTypeCode]]=None, population: Reference[EvidenceVariable], exposure: Optional[Reference[EvidenceVariable]]=None, outcome: Reference[EvidenceVariable], sampleSize: Optional[RiskEvidenceSynthesisSampleSize]=None, riskEstimate: Optional[RiskEvidenceSynthesisRiskEstimate]=None, certainty: Optional[FhirList[RiskEvidenceSynthesisCertainty]]=None) -> None:
'\n The RiskEvidenceSynthesis resource describes the likelihood of an outcome in a\n population plus exposure state where the risk estimate is derived from a\n combination of research studies.\n If the element is present, it must have either a @value, an @id, or extensions\n\n :param id_: The logical id of the resource, as used in the URL for the resource. Once\n assigned, this value never changes.\n :param meta: The metadata about the resource. This is content that is maintained by the\n infrastructure. Changes to the content might not always be associated with\n version changes to the resource.\n :param implicitRules: A reference to a set of rules that were followed when the resource was\n constructed, and which must be understood when processing the content. Often,\n this is a reference to an implementation guide that defines the special rules\n along with other profiles etc.\n :param language: The base language in which the resource is written.\n :param text: A human-readable narrative that contains a summary of the resource and can be\n used to represent the content of the resource to a human. The narrative need\n not encode all the structured data, but is required to contain sufficient\n detail to make it "clinically safe" for a human to just read the narrative.\n Resource definitions may define what content should be represented in the\n narrative to ensure clinical safety.\n :param contained: These resources do not have an independent existence apart from the resource\n that contains them - they cannot be identified independently, and nor can they\n have their own independent transaction scope.\n :param extension: May be used to represent additional information that is not part of the basic\n definition of the resource. To make the use of extensions safe and manageable,\n there is a strict set of governance applied to the definition and use of\n extensions. Though any implementer can define an extension, there is a set of\n requirements that SHALL be met as part of the definition of the extension.\n :param modifierExtension: May be used to represent additional information that is not part of the basic\n definition of the resource and that modifies the understanding of the element\n that contains it and/or the understanding of the containing element\'s\n descendants. Usually modifier elements provide negation or qualification. To\n make the use of extensions safe and manageable, there is a strict set of\n governance applied to the definition and use of extensions. Though any\n implementer is allowed to define an extension, there is a set of requirements\n that SHALL be met as part of the definition of the extension. Applications\n processing a resource are required to check for modifier extensions.\n\n Modifier extensions SHALL NOT change the meaning of any elements on Resource\n or DomainResource (including cannot change the meaning of modifierExtension\n itself).\n :param url: An absolute URI that is used to identify this risk evidence synthesis when it\n is referenced in a specification, model, design or an instance; also called\n its canonical identifier. This SHOULD be globally unique and SHOULD be a\n literal address at which at which an authoritative instance of this risk\n evidence synthesis is (or will be) published. This URL can be the target of a\n canonical reference. It SHALL remain the same when the risk evidence synthesis\n is stored on different servers.\n :param identifier: A formal identifier that is used to identify this risk evidence synthesis when\n it is represented in other formats, or referenced in a specification, model,\n design or an instance.\n :param version: The identifier that is used to identify this version of the risk evidence\n synthesis when it is referenced in a specification, model, design or instance.\n This is an arbitrary value managed by the risk evidence synthesis author and\n is not expected to be globally unique. For example, it might be a timestamp\n (e.g. yyyymmdd) if a managed version is not available. There is also no\n expectation that versions can be placed in a lexicographical sequence.\n :param name: A natural language name identifying the risk evidence synthesis. This name\n should be usable as an identifier for the module by machine processing\n applications such as code generation.\n :param title: A short, descriptive, user-friendly title for the risk evidence synthesis.\n :param status: The status of this risk evidence synthesis. Enables tracking the life-cycle of\n the content.\n :param date: The date (and optionally time) when the risk evidence synthesis was\n published. The date must change when the business version changes and it must\n change if the status code changes. In addition, it should change when the\n substantive content of the risk evidence synthesis changes.\n :param publisher: The name of the organization or individual that published the risk evidence\n synthesis.\n :param contact: Contact details to assist a user in finding and communicating with the\n publisher.\n :param description: A free text natural language description of the risk evidence synthesis from a\n consumer\'s perspective.\n :param note: A human-readable string to clarify or explain concepts about the resource.\n :param useContext: The content was developed with a focus and intent of supporting the contexts\n that are listed. These contexts may be general categories (gender, age, ...)\n or may be references to specific programs (insurance plans, studies, ...) and\n may be used to assist with indexing and searching for appropriate risk\n evidence synthesis instances.\n :param jurisdiction: A legal or geographic region in which the risk evidence synthesis is intended\n to be used.\n :param copyright: A copyright statement relating to the risk evidence synthesis and/or its\n contents. Copyright statements are generally legal restrictions on the use and\n publishing of the risk evidence synthesis.\n :param approvalDate: The date on which the resource content was approved by the publisher. Approval\n happens once when the content is officially approved for usage.\n :param lastReviewDate: The date on which the resource content was last reviewed. Review happens\n periodically after approval but does not change the original approval date.\n :param effectivePeriod: The period during which the risk evidence synthesis content was or is planned\n to be in active use.\n :param topic: Descriptive topics related to the content of the RiskEvidenceSynthesis. Topics\n provide a high-level categorization grouping types of EffectEvidenceSynthesiss\n that can be useful for filtering and searching.\n :param author: An individiual or organization primarily involved in the creation and\n maintenance of the content.\n :param editor: An individual or organization primarily responsible for internal coherence of\n the content.\n :param reviewer: An individual or organization primarily responsible for review of some aspect\n of the content.\n :param endorser: An individual or organization responsible for officially endorsing the content\n for use in some setting.\n :param relatedArtifact: Related artifacts such as additional documentation, justification, or\n bibliographic references.\n :param synthesisType: Type of synthesis eg meta-analysis.\n :param studyType: Type of study eg randomized trial.\n :param population: A reference to a EvidenceVariable resource that defines the population for the\n research.\n :param exposure: A reference to a EvidenceVariable resource that defines the exposure for the\n research.\n :param outcome: A reference to a EvidenceVariable resomece that defines the outcome for the\n research.\n :param sampleSize: A description of the size of the sample involved in the synthesis.\n :param riskEstimate: The estimated risk of the outcome.\n :param certainty: A description of the certainty of the risk estimate.\n '
super().__init__(resourceType='RiskEvidenceSynthesis', id_=id_, meta=meta, implicitRules=implicitRules, language=language, text=text, contained=contained, extension=extension, modifierExtension=modifierExtension, url=url, identifier=identifier, version=version, name=name, title=title, status=status, date=date, publisher=publisher, contact=contact, description=description, note=note, useContext=useContext, jurisdiction=jurisdiction, copyright=copyright, approvalDate=approvalDate, lastReviewDate=lastReviewDate, effectivePeriod=effectivePeriod, topic=topic, author=author, editor=editor, reviewer=reviewer, endorser=endorser, relatedArtifact=relatedArtifact, synthesisType=synthesisType, studyType=studyType, population=population, exposure=exposure, outcome=outcome, sampleSize=sampleSize, riskEstimate=riskEstimate, certainty=certainty)<|docstring|>The RiskEvidenceSynthesis resource describes the likelihood of an outcome in a
population plus exposure state where the risk estimate is derived from a
combination of research studies.
If the element is present, it must have either a @value, an @id, or extensions
:param id_: The logical id of the resource, as used in the URL for the resource. Once
assigned, this value never changes.
:param meta: The metadata about the resource. This is content that is maintained by the
infrastructure. Changes to the content might not always be associated with
version changes to the resource.
:param implicitRules: A reference to a set of rules that were followed when the resource was
constructed, and which must be understood when processing the content. Often,
this is a reference to an implementation guide that defines the special rules
along with other profiles etc.
:param language: The base language in which the resource is written.
:param text: A human-readable narrative that contains a summary of the resource and can be
used to represent the content of the resource to a human. The narrative need
not encode all the structured data, but is required to contain sufficient
detail to make it "clinically safe" for a human to just read the narrative.
Resource definitions may define what content should be represented in the
narrative to ensure clinical safety.
:param contained: These resources do not have an independent existence apart from the resource
that contains them - they cannot be identified independently, and nor can they
have their own independent transaction scope.
:param extension: May be used to represent additional information that is not part of the basic
definition of the resource. To make the use of extensions safe and manageable,
there is a strict set of governance applied to the definition and use of
extensions. Though any implementer can define an extension, there is a set of
requirements that SHALL be met as part of the definition of the extension.
:param modifierExtension: May be used to represent additional information that is not part of the basic
definition of the resource and that modifies the understanding of the element
that contains it and/or the understanding of the containing element's
descendants. Usually modifier elements provide negation or qualification. To
make the use of extensions safe and manageable, there is a strict set of
governance applied to the definition and use of extensions. Though any
implementer is allowed to define an extension, there is a set of requirements
that SHALL be met as part of the definition of the extension. Applications
processing a resource are required to check for modifier extensions.
Modifier extensions SHALL NOT change the meaning of any elements on Resource
or DomainResource (including cannot change the meaning of modifierExtension
itself).
:param url: An absolute URI that is used to identify this risk evidence synthesis when it
is referenced in a specification, model, design or an instance; also called
its canonical identifier. This SHOULD be globally unique and SHOULD be a
literal address at which at which an authoritative instance of this risk
evidence synthesis is (or will be) published. This URL can be the target of a
canonical reference. It SHALL remain the same when the risk evidence synthesis
is stored on different servers.
:param identifier: A formal identifier that is used to identify this risk evidence synthesis when
it is represented in other formats, or referenced in a specification, model,
design or an instance.
:param version: The identifier that is used to identify this version of the risk evidence
synthesis when it is referenced in a specification, model, design or instance.
This is an arbitrary value managed by the risk evidence synthesis author and
is not expected to be globally unique. For example, it might be a timestamp
(e.g. yyyymmdd) if a managed version is not available. There is also no
expectation that versions can be placed in a lexicographical sequence.
:param name: A natural language name identifying the risk evidence synthesis. This name
should be usable as an identifier for the module by machine processing
applications such as code generation.
:param title: A short, descriptive, user-friendly title for the risk evidence synthesis.
:param status: The status of this risk evidence synthesis. Enables tracking the life-cycle of
the content.
:param date: The date (and optionally time) when the risk evidence synthesis was
published. The date must change when the business version changes and it must
change if the status code changes. In addition, it should change when the
substantive content of the risk evidence synthesis changes.
:param publisher: The name of the organization or individual that published the risk evidence
synthesis.
:param contact: Contact details to assist a user in finding and communicating with the
publisher.
:param description: A free text natural language description of the risk evidence synthesis from a
consumer's perspective.
:param note: A human-readable string to clarify or explain concepts about the resource.
:param useContext: The content was developed with a focus and intent of supporting the contexts
that are listed. These contexts may be general categories (gender, age, ...)
or may be references to specific programs (insurance plans, studies, ...) and
may be used to assist with indexing and searching for appropriate risk
evidence synthesis instances.
:param jurisdiction: A legal or geographic region in which the risk evidence synthesis is intended
to be used.
:param copyright: A copyright statement relating to the risk evidence synthesis and/or its
contents. Copyright statements are generally legal restrictions on the use and
publishing of the risk evidence synthesis.
:param approvalDate: The date on which the resource content was approved by the publisher. Approval
happens once when the content is officially approved for usage.
:param lastReviewDate: The date on which the resource content was last reviewed. Review happens
periodically after approval but does not change the original approval date.
:param effectivePeriod: The period during which the risk evidence synthesis content was or is planned
to be in active use.
:param topic: Descriptive topics related to the content of the RiskEvidenceSynthesis. Topics
provide a high-level categorization grouping types of EffectEvidenceSynthesiss
that can be useful for filtering and searching.
:param author: An individiual or organization primarily involved in the creation and
maintenance of the content.
:param editor: An individual or organization primarily responsible for internal coherence of
the content.
:param reviewer: An individual or organization primarily responsible for review of some aspect
of the content.
:param endorser: An individual or organization responsible for officially endorsing the content
for use in some setting.
:param relatedArtifact: Related artifacts such as additional documentation, justification, or
bibliographic references.
:param synthesisType: Type of synthesis eg meta-analysis.
:param studyType: Type of study eg randomized trial.
:param population: A reference to a EvidenceVariable resource that defines the population for the
research.
:param exposure: A reference to a EvidenceVariable resource that defines the exposure for the
research.
:param outcome: A reference to a EvidenceVariable resomece that defines the outcome for the
research.
:param sampleSize: A description of the size of the sample involved in the synthesis.
:param riskEstimate: The estimated risk of the outcome.
:param certainty: A description of the certainty of the risk estimate.<|endoftext|> |
93aa22867e4422b26821cbbf9a334815f6366ff45424c6a3aab9c132ab4042d9 | def key_from_ireq(ireq: InstallRequirement) -> str:
'Get a standardized key for an InstallRequirement.'
if ((ireq.req is None) and (ireq.link is not None)):
return str(ireq.link)
else:
return key_from_req(ireq.req) | Get a standardized key for an InstallRequirement. | piptools/utils.py | key_from_ireq | ssiano/pip-tools | 2 | python | def key_from_ireq(ireq: InstallRequirement) -> str:
if ((ireq.req is None) and (ireq.link is not None)):
return str(ireq.link)
else:
return key_from_req(ireq.req) | def key_from_ireq(ireq: InstallRequirement) -> str:
if ((ireq.req is None) and (ireq.link is not None)):
return str(ireq.link)
else:
return key_from_req(ireq.req)<|docstring|>Get a standardized key for an InstallRequirement.<|endoftext|> |
1c99efb7a56979e9ff6de0741d131a2b190c221949019b40103eb39bb59796bc | def key_from_req(req: InstallRequirement) -> str:
"Get an all-lowercase version of the requirement's name."
if hasattr(req, 'key'):
key = req.key
else:
key = req.name
assert isinstance(key, str)
key = key.replace('_', '-').lower()
return key | Get an all-lowercase version of the requirement's name. | piptools/utils.py | key_from_req | ssiano/pip-tools | 2 | python | def key_from_req(req: InstallRequirement) -> str:
if hasattr(req, 'key'):
key = req.key
else:
key = req.name
assert isinstance(key, str)
key = key.replace('_', '-').lower()
return key | def key_from_req(req: InstallRequirement) -> str:
if hasattr(req, 'key'):
key = req.key
else:
key = req.name
assert isinstance(key, str)
key = key.replace('_', '-').lower()
return key<|docstring|>Get an all-lowercase version of the requirement's name.<|endoftext|> |
a97405221d3298816ece024f9f8d2719ce882bd8419ae3e7dab476afc32326f4 | def is_url_requirement(ireq: InstallRequirement) -> bool:
'\n Return True if requirement was specified as a path or URL.\n ireq.original_link will have been set by InstallRequirement.__init__\n '
return bool(ireq.original_link) | Return True if requirement was specified as a path or URL.
ireq.original_link will have been set by InstallRequirement.__init__ | piptools/utils.py | is_url_requirement | ssiano/pip-tools | 2 | python | def is_url_requirement(ireq: InstallRequirement) -> bool:
'\n Return True if requirement was specified as a path or URL.\n ireq.original_link will have been set by InstallRequirement.__init__\n '
return bool(ireq.original_link) | def is_url_requirement(ireq: InstallRequirement) -> bool:
'\n Return True if requirement was specified as a path or URL.\n ireq.original_link will have been set by InstallRequirement.__init__\n '
return bool(ireq.original_link)<|docstring|>Return True if requirement was specified as a path or URL.
ireq.original_link will have been set by InstallRequirement.__init__<|endoftext|> |
90e1300d9ba7ef928759b6a6cf298446f8d36b0c3fa344eae23f1705f5d639cc | def format_requirement(ireq: InstallRequirement, marker: Optional[Marker]=None, hashes: Optional[Set[str]]=None) -> str:
'\n Generic formatter for pretty printing InstallRequirements to the terminal\n in a less verbose way than using its `__str__` method.\n '
if ireq.editable:
line = f'-e {ireq.link.url}'
elif is_url_requirement(ireq):
line = ireq.link.url
else:
line = str(ireq.req).lower()
if marker:
line = f'{line} ; {marker}'
if hashes:
for hash_ in sorted(hashes):
line += f''' \
--hash={hash_}'''
return line | Generic formatter for pretty printing InstallRequirements to the terminal
in a less verbose way than using its `__str__` method. | piptools/utils.py | format_requirement | ssiano/pip-tools | 2 | python | def format_requirement(ireq: InstallRequirement, marker: Optional[Marker]=None, hashes: Optional[Set[str]]=None) -> str:
'\n Generic formatter for pretty printing InstallRequirements to the terminal\n in a less verbose way than using its `__str__` method.\n '
if ireq.editable:
line = f'-e {ireq.link.url}'
elif is_url_requirement(ireq):
line = ireq.link.url
else:
line = str(ireq.req).lower()
if marker:
line = f'{line} ; {marker}'
if hashes:
for hash_ in sorted(hashes):
line += f' \
--hash={hash_}'
return line | def format_requirement(ireq: InstallRequirement, marker: Optional[Marker]=None, hashes: Optional[Set[str]]=None) -> str:
'\n Generic formatter for pretty printing InstallRequirements to the terminal\n in a less verbose way than using its `__str__` method.\n '
if ireq.editable:
line = f'-e {ireq.link.url}'
elif is_url_requirement(ireq):
line = ireq.link.url
else:
line = str(ireq.req).lower()
if marker:
line = f'{line} ; {marker}'
if hashes:
for hash_ in sorted(hashes):
line += f' \
--hash={hash_}'
return line<|docstring|>Generic formatter for pretty printing InstallRequirements to the terminal
in a less verbose way than using its `__str__` method.<|endoftext|> |
3081c1402b147cd0f26a025073914281fd4d53d8a49473c93af5783dce0402dd | def format_specifier(ireq: InstallRequirement) -> str:
'\n Generic formatter for pretty printing the specifier part of\n InstallRequirements to the terminal.\n '
specs = (ireq.specifier if (ireq.req is not None) else SpecifierSet())
specs = sorted(specs, key=(lambda x: x.version))
return (','.join((str(s) for s in specs)) or '<any>') | Generic formatter for pretty printing the specifier part of
InstallRequirements to the terminal. | piptools/utils.py | format_specifier | ssiano/pip-tools | 2 | python | def format_specifier(ireq: InstallRequirement) -> str:
'\n Generic formatter for pretty printing the specifier part of\n InstallRequirements to the terminal.\n '
specs = (ireq.specifier if (ireq.req is not None) else SpecifierSet())
specs = sorted(specs, key=(lambda x: x.version))
return (','.join((str(s) for s in specs)) or '<any>') | def format_specifier(ireq: InstallRequirement) -> str:
'\n Generic formatter for pretty printing the specifier part of\n InstallRequirements to the terminal.\n '
specs = (ireq.specifier if (ireq.req is not None) else SpecifierSet())
specs = sorted(specs, key=(lambda x: x.version))
return (','.join((str(s) for s in specs)) or '<any>')<|docstring|>Generic formatter for pretty printing the specifier part of
InstallRequirements to the terminal.<|endoftext|> |
d1d31a9d5ea879150e8f17aadfacde138fdbfe9afa175c8995ce299975b80141 | def is_pinned_requirement(ireq: InstallRequirement) -> bool:
'\n Returns whether an InstallRequirement is a "pinned" requirement.\n\n An InstallRequirement is considered pinned if:\n\n - Is not editable\n - It has exactly one specifier\n - That specifier is "=="\n - The version does not contain a wildcard\n\n Examples:\n django==1.8 # pinned\n django>1.8 # NOT pinned\n django~=1.8 # NOT pinned\n django==1.* # NOT pinned\n '
if ireq.editable:
return False
if ((ireq.req is None) or (len(ireq.specifier) != 1)):
return False
spec = next(iter(ireq.specifier))
return ((spec.operator in {'==', '==='}) and (not spec.version.endswith('.*'))) | Returns whether an InstallRequirement is a "pinned" requirement.
An InstallRequirement is considered pinned if:
- Is not editable
- It has exactly one specifier
- That specifier is "=="
- The version does not contain a wildcard
Examples:
django==1.8 # pinned
django>1.8 # NOT pinned
django~=1.8 # NOT pinned
django==1.* # NOT pinned | piptools/utils.py | is_pinned_requirement | ssiano/pip-tools | 2 | python | def is_pinned_requirement(ireq: InstallRequirement) -> bool:
'\n Returns whether an InstallRequirement is a "pinned" requirement.\n\n An InstallRequirement is considered pinned if:\n\n - Is not editable\n - It has exactly one specifier\n - That specifier is "=="\n - The version does not contain a wildcard\n\n Examples:\n django==1.8 # pinned\n django>1.8 # NOT pinned\n django~=1.8 # NOT pinned\n django==1.* # NOT pinned\n '
if ireq.editable:
return False
if ((ireq.req is None) or (len(ireq.specifier) != 1)):
return False
spec = next(iter(ireq.specifier))
return ((spec.operator in {'==', '==='}) and (not spec.version.endswith('.*'))) | def is_pinned_requirement(ireq: InstallRequirement) -> bool:
'\n Returns whether an InstallRequirement is a "pinned" requirement.\n\n An InstallRequirement is considered pinned if:\n\n - Is not editable\n - It has exactly one specifier\n - That specifier is "=="\n - The version does not contain a wildcard\n\n Examples:\n django==1.8 # pinned\n django>1.8 # NOT pinned\n django~=1.8 # NOT pinned\n django==1.* # NOT pinned\n '
if ireq.editable:
return False
if ((ireq.req is None) or (len(ireq.specifier) != 1)):
return False
spec = next(iter(ireq.specifier))
return ((spec.operator in {'==', '==='}) and (not spec.version.endswith('.*')))<|docstring|>Returns whether an InstallRequirement is a "pinned" requirement.
An InstallRequirement is considered pinned if:
- Is not editable
- It has exactly one specifier
- That specifier is "=="
- The version does not contain a wildcard
Examples:
django==1.8 # pinned
django>1.8 # NOT pinned
django~=1.8 # NOT pinned
django==1.* # NOT pinned<|endoftext|> |
adb22cf621ec0d1f3024bd86b08154e8f6caf84defb6f2e58f7d0398fc5523fd | def as_tuple(ireq: InstallRequirement) -> Tuple[(str, str, Tuple[(str, ...)])]:
'\n Pulls out the (name: str, version:str, extras:(str)) tuple from\n the pinned InstallRequirement.\n '
if (not is_pinned_requirement(ireq)):
raise TypeError(f'Expected a pinned InstallRequirement, got {ireq}')
name = key_from_ireq(ireq)
version = next(iter(ireq.specifier)).version
extras = tuple(sorted(ireq.extras))
return (name, version, extras) | Pulls out the (name: str, version:str, extras:(str)) tuple from
the pinned InstallRequirement. | piptools/utils.py | as_tuple | ssiano/pip-tools | 2 | python | def as_tuple(ireq: InstallRequirement) -> Tuple[(str, str, Tuple[(str, ...)])]:
'\n Pulls out the (name: str, version:str, extras:(str)) tuple from\n the pinned InstallRequirement.\n '
if (not is_pinned_requirement(ireq)):
raise TypeError(f'Expected a pinned InstallRequirement, got {ireq}')
name = key_from_ireq(ireq)
version = next(iter(ireq.specifier)).version
extras = tuple(sorted(ireq.extras))
return (name, version, extras) | def as_tuple(ireq: InstallRequirement) -> Tuple[(str, str, Tuple[(str, ...)])]:
'\n Pulls out the (name: str, version:str, extras:(str)) tuple from\n the pinned InstallRequirement.\n '
if (not is_pinned_requirement(ireq)):
raise TypeError(f'Expected a pinned InstallRequirement, got {ireq}')
name = key_from_ireq(ireq)
version = next(iter(ireq.specifier)).version
extras = tuple(sorted(ireq.extras))
return (name, version, extras)<|docstring|>Pulls out the (name: str, version:str, extras:(str)) tuple from
the pinned InstallRequirement.<|endoftext|> |
7c396ab1ad8b640b66ae76ce7bd82ce8a948aaf8a768cedd5390acf34b62c7e4 | def flat_map(fn: Callable[([_T], Iterable[_S])], collection: Iterable[_T]) -> Iterator[_S]:
'Map a function over a collection and flatten the result by one-level'
return itertools.chain.from_iterable(map(fn, collection)) | Map a function over a collection and flatten the result by one-level | piptools/utils.py | flat_map | ssiano/pip-tools | 2 | python | def flat_map(fn: Callable[([_T], Iterable[_S])], collection: Iterable[_T]) -> Iterator[_S]:
return itertools.chain.from_iterable(map(fn, collection)) | def flat_map(fn: Callable[([_T], Iterable[_S])], collection: Iterable[_T]) -> Iterator[_S]:
return itertools.chain.from_iterable(map(fn, collection))<|docstring|>Map a function over a collection and flatten the result by one-level<|endoftext|> |
ebb3df47efba3d47e0ec42559d7e4045a6a590e665fd7ab323c586d180384e2b | def lookup_table_from_tuples(values: Iterable[Tuple[(_KT, _VT)]]) -> Dict[(_KT, Set[_VT])]:
'\n Builds a dict-based lookup table (index) elegantly.\n '
lut: Dict[(_KT, Set[_VT])] = collections.defaultdict(set)
for (k, v) in values:
lut[k].add(v)
return dict(lut) | Builds a dict-based lookup table (index) elegantly. | piptools/utils.py | lookup_table_from_tuples | ssiano/pip-tools | 2 | python | def lookup_table_from_tuples(values: Iterable[Tuple[(_KT, _VT)]]) -> Dict[(_KT, Set[_VT])]:
'\n \n '
lut: Dict[(_KT, Set[_VT])] = collections.defaultdict(set)
for (k, v) in values:
lut[k].add(v)
return dict(lut) | def lookup_table_from_tuples(values: Iterable[Tuple[(_KT, _VT)]]) -> Dict[(_KT, Set[_VT])]:
'\n \n '
lut: Dict[(_KT, Set[_VT])] = collections.defaultdict(set)
for (k, v) in values:
lut[k].add(v)
return dict(lut)<|docstring|>Builds a dict-based lookup table (index) elegantly.<|endoftext|> |
51d79129fed6b69c8b90bf2a9a4c3d0de5c032e7bd499434ab842761ea368a0b | def lookup_table(values: Iterable[_VT], key: Callable[([_VT], _KT)]) -> Dict[(_KT, Set[_VT])]:
'\n Builds a dict-based lookup table (index) elegantly.\n '
return lookup_table_from_tuples(((key(v), v) for v in values)) | Builds a dict-based lookup table (index) elegantly. | piptools/utils.py | lookup_table | ssiano/pip-tools | 2 | python | def lookup_table(values: Iterable[_VT], key: Callable[([_VT], _KT)]) -> Dict[(_KT, Set[_VT])]:
'\n \n '
return lookup_table_from_tuples(((key(v), v) for v in values)) | def lookup_table(values: Iterable[_VT], key: Callable[([_VT], _KT)]) -> Dict[(_KT, Set[_VT])]:
'\n \n '
return lookup_table_from_tuples(((key(v), v) for v in values))<|docstring|>Builds a dict-based lookup table (index) elegantly.<|endoftext|> |
eb90a70998efba68ab3467a36a0275abda25e3f4c5b69970f3794f86b349c751 | def dedup(iterable: Iterable[_T]) -> Iterable[_T]:
'Deduplicate an iterable object like iter(set(iterable)) but\n order-preserved.\n '
return iter(dict.fromkeys(iterable)) | Deduplicate an iterable object like iter(set(iterable)) but
order-preserved. | piptools/utils.py | dedup | ssiano/pip-tools | 2 | python | def dedup(iterable: Iterable[_T]) -> Iterable[_T]:
'Deduplicate an iterable object like iter(set(iterable)) but\n order-preserved.\n '
return iter(dict.fromkeys(iterable)) | def dedup(iterable: Iterable[_T]) -> Iterable[_T]:
'Deduplicate an iterable object like iter(set(iterable)) but\n order-preserved.\n '
return iter(dict.fromkeys(iterable))<|docstring|>Deduplicate an iterable object like iter(set(iterable)) but
order-preserved.<|endoftext|> |
93eb8f07c9fa97dac2b18a73de9d3cdb0bfbeb522797c617f5403a680df77e42 | def drop_extras(ireq: InstallRequirement) -> None:
'Remove "extra" markers (PEP-508) from requirement.'
if (ireq.markers is None):
return
ireq.markers._markers = _drop_extras(ireq.markers._markers)
if (not ireq.markers._markers):
ireq.markers = None | Remove "extra" markers (PEP-508) from requirement. | piptools/utils.py | drop_extras | ssiano/pip-tools | 2 | python | def drop_extras(ireq: InstallRequirement) -> None:
if (ireq.markers is None):
return
ireq.markers._markers = _drop_extras(ireq.markers._markers)
if (not ireq.markers._markers):
ireq.markers = None | def drop_extras(ireq: InstallRequirement) -> None:
if (ireq.markers is None):
return
ireq.markers._markers = _drop_extras(ireq.markers._markers)
if (not ireq.markers._markers):
ireq.markers = None<|docstring|>Remove "extra" markers (PEP-508) from requirement.<|endoftext|> |
9333f707ad6b3b49bdeb91badac6cfa2103d486fe2a5d6fc990489a175cd4ddd | def get_hashes_from_ireq(ireq: InstallRequirement) -> Set[str]:
'\n Given an InstallRequirement, return a set of string hashes in the format\n "{algorithm}:{hash}". Return an empty set if there are no hashes in the\n requirement options.\n '
result = set()
for (algorithm, hexdigests) in ireq.hash_options.items():
for hash_ in hexdigests:
result.add(f'{algorithm}:{hash_}')
return result | Given an InstallRequirement, return a set of string hashes in the format
"{algorithm}:{hash}". Return an empty set if there are no hashes in the
requirement options. | piptools/utils.py | get_hashes_from_ireq | ssiano/pip-tools | 2 | python | def get_hashes_from_ireq(ireq: InstallRequirement) -> Set[str]:
'\n Given an InstallRequirement, return a set of string hashes in the format\n "{algorithm}:{hash}". Return an empty set if there are no hashes in the\n requirement options.\n '
result = set()
for (algorithm, hexdigests) in ireq.hash_options.items():
for hash_ in hexdigests:
result.add(f'{algorithm}:{hash_}')
return result | def get_hashes_from_ireq(ireq: InstallRequirement) -> Set[str]:
'\n Given an InstallRequirement, return a set of string hashes in the format\n "{algorithm}:{hash}". Return an empty set if there are no hashes in the\n requirement options.\n '
result = set()
for (algorithm, hexdigests) in ireq.hash_options.items():
for hash_ in hexdigests:
result.add(f'{algorithm}:{hash_}')
return result<|docstring|>Given an InstallRequirement, return a set of string hashes in the format
"{algorithm}:{hash}". Return an empty set if there are no hashes in the
requirement options.<|endoftext|> |
bb931e9eb0dc729b267c7d5edd26e58e71cbb63e392013aa37fc5131a464ce16 | def get_compile_command(click_ctx: click.Context) -> str:
"\n Returns a normalized compile command depending on cli context.\n\n The command will be normalized by:\n - expanding options short to long\n - removing values that are already default\n - sorting the arguments\n - removing one-off arguments like '--upgrade'\n - removing arguments that don't change build behaviour like '--verbose'\n "
from piptools.scripts.compile import cli
compile_options = {option.name: option for option in cli.params}
left_args = []
right_args = []
for (option_name, value) in click_ctx.params.items():
option = compile_options[option_name]
if (option.nargs < 0):
if any(((val.startswith('-') and (val != '-')) for val in value)):
right_args.append('--')
right_args.extend([shlex.quote(val) for val in value])
continue
assert isinstance(option, click.Option)
option_long_name = option.opts[(- 1)]
if (option_long_name in COMPILE_EXCLUDE_OPTIONS):
continue
if ((option.default is None) and (not value)):
continue
if (option.default == value):
continue
if isinstance(value, LazyFile):
value = value.name
if (not isinstance(value, (tuple, list))):
value = [value]
for val in value:
if option.is_flag:
if option.secondary_opts:
secondary_option_long_name = option.secondary_opts[(- 1)]
arg = (option_long_name if val else secondary_option_long_name)
else:
arg = option_long_name
left_args.append(shlex.quote(arg))
else:
if (isinstance(val, str) and is_url(val)):
val = redact_auth_from_url(val)
if (option.name == 'pip_args_str'):
left_args.append(f'{option_long_name}={repr(val)}')
else:
left_args.append(f'{option_long_name}={shlex.quote(str(val))}')
return ' '.join(['pip-compile', *sorted(left_args), *sorted(right_args)]) | Returns a normalized compile command depending on cli context.
The command will be normalized by:
- expanding options short to long
- removing values that are already default
- sorting the arguments
- removing one-off arguments like '--upgrade'
- removing arguments that don't change build behaviour like '--verbose' | piptools/utils.py | get_compile_command | ssiano/pip-tools | 2 | python | def get_compile_command(click_ctx: click.Context) -> str:
"\n Returns a normalized compile command depending on cli context.\n\n The command will be normalized by:\n - expanding options short to long\n - removing values that are already default\n - sorting the arguments\n - removing one-off arguments like '--upgrade'\n - removing arguments that don't change build behaviour like '--verbose'\n "
from piptools.scripts.compile import cli
compile_options = {option.name: option for option in cli.params}
left_args = []
right_args = []
for (option_name, value) in click_ctx.params.items():
option = compile_options[option_name]
if (option.nargs < 0):
if any(((val.startswith('-') and (val != '-')) for val in value)):
right_args.append('--')
right_args.extend([shlex.quote(val) for val in value])
continue
assert isinstance(option, click.Option)
option_long_name = option.opts[(- 1)]
if (option_long_name in COMPILE_EXCLUDE_OPTIONS):
continue
if ((option.default is None) and (not value)):
continue
if (option.default == value):
continue
if isinstance(value, LazyFile):
value = value.name
if (not isinstance(value, (tuple, list))):
value = [value]
for val in value:
if option.is_flag:
if option.secondary_opts:
secondary_option_long_name = option.secondary_opts[(- 1)]
arg = (option_long_name if val else secondary_option_long_name)
else:
arg = option_long_name
left_args.append(shlex.quote(arg))
else:
if (isinstance(val, str) and is_url(val)):
val = redact_auth_from_url(val)
if (option.name == 'pip_args_str'):
left_args.append(f'{option_long_name}={repr(val)}')
else:
left_args.append(f'{option_long_name}={shlex.quote(str(val))}')
return ' '.join(['pip-compile', *sorted(left_args), *sorted(right_args)]) | def get_compile_command(click_ctx: click.Context) -> str:
"\n Returns a normalized compile command depending on cli context.\n\n The command will be normalized by:\n - expanding options short to long\n - removing values that are already default\n - sorting the arguments\n - removing one-off arguments like '--upgrade'\n - removing arguments that don't change build behaviour like '--verbose'\n "
from piptools.scripts.compile import cli
compile_options = {option.name: option for option in cli.params}
left_args = []
right_args = []
for (option_name, value) in click_ctx.params.items():
option = compile_options[option_name]
if (option.nargs < 0):
if any(((val.startswith('-') and (val != '-')) for val in value)):
right_args.append('--')
right_args.extend([shlex.quote(val) for val in value])
continue
assert isinstance(option, click.Option)
option_long_name = option.opts[(- 1)]
if (option_long_name in COMPILE_EXCLUDE_OPTIONS):
continue
if ((option.default is None) and (not value)):
continue
if (option.default == value):
continue
if isinstance(value, LazyFile):
value = value.name
if (not isinstance(value, (tuple, list))):
value = [value]
for val in value:
if option.is_flag:
if option.secondary_opts:
secondary_option_long_name = option.secondary_opts[(- 1)]
arg = (option_long_name if val else secondary_option_long_name)
else:
arg = option_long_name
left_args.append(shlex.quote(arg))
else:
if (isinstance(val, str) and is_url(val)):
val = redact_auth_from_url(val)
if (option.name == 'pip_args_str'):
left_args.append(f'{option_long_name}={repr(val)}')
else:
left_args.append(f'{option_long_name}={shlex.quote(str(val))}')
return ' '.join(['pip-compile', *sorted(left_args), *sorted(right_args)])<|docstring|>Returns a normalized compile command depending on cli context.
The command will be normalized by:
- expanding options short to long
- removing values that are already default
- sorting the arguments
- removing one-off arguments like '--upgrade'
- removing arguments that don't change build behaviour like '--verbose'<|endoftext|> |
7d3cf7f7ba7f8778d823e6fcac2f6a18cd241cd616a9fd4481c32f8e25978419 | def get_required_pip_specification() -> SpecifierSet:
'\n Returns pip version specifier requested by current pip-tools installation.\n '
project_dist = get_distribution('pip-tools')
requirement = next((r for r in project_dist.requires() if (r.name == 'pip')), None)
assert (requirement is not None), "'pip' is expected to be in the list of pip-tools requirements"
return requirement.specifier | Returns pip version specifier requested by current pip-tools installation. | piptools/utils.py | get_required_pip_specification | ssiano/pip-tools | 2 | python | def get_required_pip_specification() -> SpecifierSet:
'\n \n '
project_dist = get_distribution('pip-tools')
requirement = next((r for r in project_dist.requires() if (r.name == 'pip')), None)
assert (requirement is not None), "'pip' is expected to be in the list of pip-tools requirements"
return requirement.specifier | def get_required_pip_specification() -> SpecifierSet:
'\n \n '
project_dist = get_distribution('pip-tools')
requirement = next((r for r in project_dist.requires() if (r.name == 'pip')), None)
assert (requirement is not None), "'pip' is expected to be in the list of pip-tools requirements"
return requirement.specifier<|docstring|>Returns pip version specifier requested by current pip-tools installation.<|endoftext|> |
e2ff1c72c89952e81b3a941bedd8886b3131a041d010795a11d4b913ee854014 | def get_pip_version_for_python_executable(python_executable: str) -> Version:
'\n Returns pip version for the given python executable.\n '
str_version = run_python_snippet(python_executable, 'import pip;print(pip.__version__)')
return Version(str_version) | Returns pip version for the given python executable. | piptools/utils.py | get_pip_version_for_python_executable | ssiano/pip-tools | 2 | python | def get_pip_version_for_python_executable(python_executable: str) -> Version:
'\n \n '
str_version = run_python_snippet(python_executable, 'import pip;print(pip.__version__)')
return Version(str_version) | def get_pip_version_for_python_executable(python_executable: str) -> Version:
'\n \n '
str_version = run_python_snippet(python_executable, 'import pip;print(pip.__version__)')
return Version(str_version)<|docstring|>Returns pip version for the given python executable.<|endoftext|> |
c6952a921947229508ed97fabab35845d1b74bb3cb9def8188d76d82870e0099 | def get_sys_path_for_python_executable(python_executable: str) -> List[str]:
'\n Returns sys.path list for the given python executable.\n '
result = run_python_snippet(python_executable, 'import sys;import json;print(json.dumps(sys.path))')
paths = json.loads(result)
assert isinstance(paths, list)
assert all((isinstance(i, str) for i in paths))
return [os.path.abspath(path) for path in paths] | Returns sys.path list for the given python executable. | piptools/utils.py | get_sys_path_for_python_executable | ssiano/pip-tools | 2 | python | def get_sys_path_for_python_executable(python_executable: str) -> List[str]:
'\n \n '
result = run_python_snippet(python_executable, 'import sys;import json;print(json.dumps(sys.path))')
paths = json.loads(result)
assert isinstance(paths, list)
assert all((isinstance(i, str) for i in paths))
return [os.path.abspath(path) for path in paths] | def get_sys_path_for_python_executable(python_executable: str) -> List[str]:
'\n \n '
result = run_python_snippet(python_executable, 'import sys;import json;print(json.dumps(sys.path))')
paths = json.loads(result)
assert isinstance(paths, list)
assert all((isinstance(i, str) for i in paths))
return [os.path.abspath(path) for path in paths]<|docstring|>Returns sys.path list for the given python executable.<|endoftext|> |
7729409e782a067b2dff2bfb338b9091bf86203ad8384008bb78145e56e04e3c | def update_metadata(manuscript: BnF) -> None:
'\n Update /m-k-manuscript-data/metadata/entry_metadata.csv with the current manuscript. Create a Pandas DataFrame\n indexed by entry. Create data columns, and remove the column that contains the entry objects. Save File.\n\n Input:\n manuscript -- Python object of the manuscript defined in digital_manuscript.py\n Output:\n None\n '
df = pd.DataFrame(columns=['entry'], data=manuscript.entries.values())
df['folio'] = df.entry.apply((lambda x: x.folio))
df['folio_display'] = df.entry.apply((lambda x: x.folio.lstrip('0')))
df['div_id'] = df.entry.apply((lambda x: x.identity))
df['categories'] = df.entry.apply((lambda x: ';'.join(x.categories)))
df['heading_tc'] = df.entry.apply((lambda x: x.title['tc']))
df['heading_tcn'] = df.entry.apply((lambda x: x.title['tcn']))
df['heading_tl'] = df.entry.apply((lambda x: x.title['tl']))
df['margins'] = df.entry.apply((lambda x: len(x.margins)))
df['del_tags'] = df.entry.apply((lambda x: '; '.join(x.del_tags)))
for prop in properties:
df[prop] = df.entry.apply((lambda x: '; '.join(x.get_prop(prop=prop, version='tc'))))
df.drop(columns=['entry'], inplace=True)
df.to_csv(f'{m_path}/metadata/entry_metadata.csv', index=False) | Update /m-k-manuscript-data/metadata/entry_metadata.csv with the current manuscript. Create a Pandas DataFrame
indexed by entry. Create data columns, and remove the column that contains the entry objects. Save File.
Input:
manuscript -- Python object of the manuscript defined in digital_manuscript.py
Output:
None | ronikaufman_sp21_semantic-visualizations/update.py | update_metadata | cu-mkp/sandbox-projects | 0 | python | def update_metadata(manuscript: BnF) -> None:
'\n Update /m-k-manuscript-data/metadata/entry_metadata.csv with the current manuscript. Create a Pandas DataFrame\n indexed by entry. Create data columns, and remove the column that contains the entry objects. Save File.\n\n Input:\n manuscript -- Python object of the manuscript defined in digital_manuscript.py\n Output:\n None\n '
df = pd.DataFrame(columns=['entry'], data=manuscript.entries.values())
df['folio'] = df.entry.apply((lambda x: x.folio))
df['folio_display'] = df.entry.apply((lambda x: x.folio.lstrip('0')))
df['div_id'] = df.entry.apply((lambda x: x.identity))
df['categories'] = df.entry.apply((lambda x: ';'.join(x.categories)))
df['heading_tc'] = df.entry.apply((lambda x: x.title['tc']))
df['heading_tcn'] = df.entry.apply((lambda x: x.title['tcn']))
df['heading_tl'] = df.entry.apply((lambda x: x.title['tl']))
df['margins'] = df.entry.apply((lambda x: len(x.margins)))
df['del_tags'] = df.entry.apply((lambda x: '; '.join(x.del_tags)))
for prop in properties:
df[prop] = df.entry.apply((lambda x: '; '.join(x.get_prop(prop=prop, version='tc'))))
df.drop(columns=['entry'], inplace=True)
df.to_csv(f'{m_path}/metadata/entry_metadata.csv', index=False) | def update_metadata(manuscript: BnF) -> None:
'\n Update /m-k-manuscript-data/metadata/entry_metadata.csv with the current manuscript. Create a Pandas DataFrame\n indexed by entry. Create data columns, and remove the column that contains the entry objects. Save File.\n\n Input:\n manuscript -- Python object of the manuscript defined in digital_manuscript.py\n Output:\n None\n '
df = pd.DataFrame(columns=['entry'], data=manuscript.entries.values())
df['folio'] = df.entry.apply((lambda x: x.folio))
df['folio_display'] = df.entry.apply((lambda x: x.folio.lstrip('0')))
df['div_id'] = df.entry.apply((lambda x: x.identity))
df['categories'] = df.entry.apply((lambda x: ';'.join(x.categories)))
df['heading_tc'] = df.entry.apply((lambda x: x.title['tc']))
df['heading_tcn'] = df.entry.apply((lambda x: x.title['tcn']))
df['heading_tl'] = df.entry.apply((lambda x: x.title['tl']))
df['margins'] = df.entry.apply((lambda x: len(x.margins)))
df['del_tags'] = df.entry.apply((lambda x: '; '.join(x.del_tags)))
for prop in properties:
df[prop] = df.entry.apply((lambda x: '; '.join(x.get_prop(prop=prop, version='tc'))))
df.drop(columns=['entry'], inplace=True)
df.to_csv(f'{m_path}/metadata/entry_metadata.csv', index=False)<|docstring|>Update /m-k-manuscript-data/metadata/entry_metadata.csv with the current manuscript. Create a Pandas DataFrame
indexed by entry. Create data columns, and remove the column that contains the entry objects. Save File.
Input:
manuscript -- Python object of the manuscript defined in digital_manuscript.py
Output:
None<|endoftext|> |
3bb2610ab679e9b49b7479da2610eed1cf8d83fa30352d3a44f4a8959c928ed7 | def update_entries(manuscript: BnF) -> None:
'\n Update /m-k-manuscript-data/entries/ with the current manuscript from /ms-xml/. For each version, delete all existing\n entries. Regenerate folio text entry by entry, and save the file.\n\n Input:\n manuscript -- Python object of the manuscript defined in digital_manuscript.py\n Output:\n None\n '
for path in [f'{m_path}/entries', f'{m_path}/entries/txt', f'{m_path}/entries/xml']:
if (not os.path.exists(path)):
os.mkdir(path)
for version in versions:
txt_path = f'{m_path}/entries/txt/{version}'
xml_path = f'{m_path}/entries/xml/{version}'
for path in [txt_path, xml_path]:
if (not os.path.exists(path)):
os.mkdir(path)
for (identity, entry) in manuscript.entries.items():
if identity:
filename_txt = f'{txt_path}/{version}_{entry.identity}.txt'
filename_xml = f'{xml_path}/{version}_{entry.identity}.xml'
content_txt = entry.text(version, xml=False)
content_xml = entry.text(version, xml=True)
f_txt = open(filename_txt, 'w')
f_txt.write(content_txt)
f_txt.close()
f_xml = open(filename_xml, 'w')
f_xml.write(content_xml)
f_xml.close() | Update /m-k-manuscript-data/entries/ with the current manuscript from /ms-xml/. For each version, delete all existing
entries. Regenerate folio text entry by entry, and save the file.
Input:
manuscript -- Python object of the manuscript defined in digital_manuscript.py
Output:
None | ronikaufman_sp21_semantic-visualizations/update.py | update_entries | cu-mkp/sandbox-projects | 0 | python | def update_entries(manuscript: BnF) -> None:
'\n Update /m-k-manuscript-data/entries/ with the current manuscript from /ms-xml/. For each version, delete all existing\n entries. Regenerate folio text entry by entry, and save the file.\n\n Input:\n manuscript -- Python object of the manuscript defined in digital_manuscript.py\n Output:\n None\n '
for path in [f'{m_path}/entries', f'{m_path}/entries/txt', f'{m_path}/entries/xml']:
if (not os.path.exists(path)):
os.mkdir(path)
for version in versions:
txt_path = f'{m_path}/entries/txt/{version}'
xml_path = f'{m_path}/entries/xml/{version}'
for path in [txt_path, xml_path]:
if (not os.path.exists(path)):
os.mkdir(path)
for (identity, entry) in manuscript.entries.items():
if identity:
filename_txt = f'{txt_path}/{version}_{entry.identity}.txt'
filename_xml = f'{xml_path}/{version}_{entry.identity}.xml'
content_txt = entry.text(version, xml=False)
content_xml = entry.text(version, xml=True)
f_txt = open(filename_txt, 'w')
f_txt.write(content_txt)
f_txt.close()
f_xml = open(filename_xml, 'w')
f_xml.write(content_xml)
f_xml.close() | def update_entries(manuscript: BnF) -> None:
'\n Update /m-k-manuscript-data/entries/ with the current manuscript from /ms-xml/. For each version, delete all existing\n entries. Regenerate folio text entry by entry, and save the file.\n\n Input:\n manuscript -- Python object of the manuscript defined in digital_manuscript.py\n Output:\n None\n '
for path in [f'{m_path}/entries', f'{m_path}/entries/txt', f'{m_path}/entries/xml']:
if (not os.path.exists(path)):
os.mkdir(path)
for version in versions:
txt_path = f'{m_path}/entries/txt/{version}'
xml_path = f'{m_path}/entries/xml/{version}'
for path in [txt_path, xml_path]:
if (not os.path.exists(path)):
os.mkdir(path)
for (identity, entry) in manuscript.entries.items():
if identity:
filename_txt = f'{txt_path}/{version}_{entry.identity}.txt'
filename_xml = f'{xml_path}/{version}_{entry.identity}.xml'
content_txt = entry.text(version, xml=False)
content_xml = entry.text(version, xml=True)
f_txt = open(filename_txt, 'w')
f_txt.write(content_txt)
f_txt.close()
f_xml = open(filename_xml, 'w')
f_xml.write(content_xml)
f_xml.close()<|docstring|>Update /m-k-manuscript-data/entries/ with the current manuscript from /ms-xml/. For each version, delete all existing
entries. Regenerate folio text entry by entry, and save the file.
Input:
manuscript -- Python object of the manuscript defined in digital_manuscript.py
Output:
None<|endoftext|> |
d63517e6089f147a7a846881c31bc0c68b07fd13977bc152a2c9ea97dd2aefd8 | def update_all_folios(manuscript: BnF) -> None:
'\n Update /m-k-manuscript-data/allFolios/ with the current manuscript from /ms-xml/.\n\n Input:\n manuscript -- Python object of the manuscript defined in digital_manuscript.py\n Output:\n None\n '
for b in [True, False]:
for version in versions:
text = ''
folder = ('xml' if b else 'txt')
for (identity, entry) in manuscript.entries.items():
new_text = entry.text(version, xml=b)
text = (f'''{text}
{new_text}''' if text else new_text)
f = open(f'{m_path}/allFolios/{folder}/all_{version}.{folder}', 'w')
f.write(text)
f.close() | Update /m-k-manuscript-data/allFolios/ with the current manuscript from /ms-xml/.
Input:
manuscript -- Python object of the manuscript defined in digital_manuscript.py
Output:
None | ronikaufman_sp21_semantic-visualizations/update.py | update_all_folios | cu-mkp/sandbox-projects | 0 | python | def update_all_folios(manuscript: BnF) -> None:
'\n Update /m-k-manuscript-data/allFolios/ with the current manuscript from /ms-xml/.\n\n Input:\n manuscript -- Python object of the manuscript defined in digital_manuscript.py\n Output:\n None\n '
for b in [True, False]:
for version in versions:
text =
folder = ('xml' if b else 'txt')
for (identity, entry) in manuscript.entries.items():
new_text = entry.text(version, xml=b)
text = (f'{text}
{new_text}' if text else new_text)
f = open(f'{m_path}/allFolios/{folder}/all_{version}.{folder}', 'w')
f.write(text)
f.close() | def update_all_folios(manuscript: BnF) -> None:
'\n Update /m-k-manuscript-data/allFolios/ with the current manuscript from /ms-xml/.\n\n Input:\n manuscript -- Python object of the manuscript defined in digital_manuscript.py\n Output:\n None\n '
for b in [True, False]:
for version in versions:
text =
folder = ('xml' if b else 'txt')
for (identity, entry) in manuscript.entries.items():
new_text = entry.text(version, xml=b)
text = (f'{text}
{new_text}' if text else new_text)
f = open(f'{m_path}/allFolios/{folder}/all_{version}.{folder}', 'w')
f.write(text)
f.close()<|docstring|>Update /m-k-manuscript-data/allFolios/ with the current manuscript from /ms-xml/.
Input:
manuscript -- Python object of the manuscript defined in digital_manuscript.py
Output:
None<|endoftext|> |
b9fb38fd24ca2e4955fa8ec811f1a4ab43991d058b817de663677901a5c328e6 | def update_time():
' Extract timestamp at the top of this file and update it. '
now_str = str(datetime.now()).split(' ')[0]
lines = []
with open('./update.py', 'r') as f:
lines = f.read().split('\n')
lines[0] = f'# Last Updated | {now_str}'
f = open('./update.py', 'w')
f.write('\n'.join(lines))
f.close | Extract timestamp at the top of this file and update it. | ronikaufman_sp21_semantic-visualizations/update.py | update_time | cu-mkp/sandbox-projects | 0 | python | def update_time():
' '
now_str = str(datetime.now()).split(' ')[0]
lines = []
with open('./update.py', 'r') as f:
lines = f.read().split('\n')
lines[0] = f'# Last Updated | {now_str}'
f = open('./update.py', 'w')
f.write('\n'.join(lines))
f.close | def update_time():
' '
now_str = str(datetime.now()).split(' ')[0]
lines = []
with open('./update.py', 'r') as f:
lines = f.read().split('\n')
lines[0] = f'# Last Updated | {now_str}'
f = open('./update.py', 'w')
f.write('\n'.join(lines))
f.close<|docstring|>Extract timestamp at the top of this file and update it.<|endoftext|> |
f3565e334dca84ecd02cbf305aca284b4aa7d2502129706d70cc28a0f7284878 | def main():
"\n testing to see how the assignment's datafile is organized:\n zip,eiaid,utility_name,state,service_type,ownership,comm_rate,ind_rate,res_rate\n zip = [0]\n name = [2]\n state = [3]\n comm_rate = [6]\n "
cumulative_rate_sum = 0
num_of_rates = 0
file_to_use = '/home/cs241/assign02/rates.csv'
with open(file_to_use) as open_file:
first_line = open_file.readline().strip()
next(open_file)
for line in open_file:
line = open_file.readline().strip()
data = line.split(',')
rate = float(data[6])
ult_name = data[2]
num_of_rates += 1
cumulative_rate_sum += rate
print(ult_name)
print((cumulative_rate_sum / num_of_rates))
print(first_line) | testing to see how the assignment's datafile is organized:
zip,eiaid,utility_name,state,service_type,ownership,comm_rate,ind_rate,res_rate
zip = [0]
name = [2]
state = [3]
comm_rate = [6] | test02.py | main | Millwr1ght/cs-241 | 0 | python | def main():
"\n testing to see how the assignment's datafile is organized:\n zip,eiaid,utility_name,state,service_type,ownership,comm_rate,ind_rate,res_rate\n zip = [0]\n name = [2]\n state = [3]\n comm_rate = [6]\n "
cumulative_rate_sum = 0
num_of_rates = 0
file_to_use = '/home/cs241/assign02/rates.csv'
with open(file_to_use) as open_file:
first_line = open_file.readline().strip()
next(open_file)
for line in open_file:
line = open_file.readline().strip()
data = line.split(',')
rate = float(data[6])
ult_name = data[2]
num_of_rates += 1
cumulative_rate_sum += rate
print(ult_name)
print((cumulative_rate_sum / num_of_rates))
print(first_line) | def main():
"\n testing to see how the assignment's datafile is organized:\n zip,eiaid,utility_name,state,service_type,ownership,comm_rate,ind_rate,res_rate\n zip = [0]\n name = [2]\n state = [3]\n comm_rate = [6]\n "
cumulative_rate_sum = 0
num_of_rates = 0
file_to_use = '/home/cs241/assign02/rates.csv'
with open(file_to_use) as open_file:
first_line = open_file.readline().strip()
next(open_file)
for line in open_file:
line = open_file.readline().strip()
data = line.split(',')
rate = float(data[6])
ult_name = data[2]
num_of_rates += 1
cumulative_rate_sum += rate
print(ult_name)
print((cumulative_rate_sum / num_of_rates))
print(first_line)<|docstring|>testing to see how the assignment's datafile is organized:
zip,eiaid,utility_name,state,service_type,ownership,comm_rate,ind_rate,res_rate
zip = [0]
name = [2]
state = [3]
comm_rate = [6]<|endoftext|> |
3941e7ac80fcea384bea4b1e551fedde66662e251de6c5e1d71f9fd4ebba089d | def parse_headers_and_body_with_django(headers, body):
'Parse `headers` and `body` with Django\'s :class:`MultiPartParser`.\n\n `MultiPartParser` is a curiously ugly and RFC non-compliant concoction.\n\n Amongst other things, it coerces all field names, field data, and\n filenames into Unicode strings using the "replace" error strategy, so be\n warned that your data may be silently mangled.\n\n It also, in 1.3.1 at least, does not recognise any transfer encodings at\n *all* because its header parsing code was broken.\n\n I\'m also fairly sure that it\'ll fall over on headers than span more than\n one line.\n\n In short, it\'s a piece of code that inspires little confidence, yet we\n must work with it, hence we need to round-trip test multipart handling\n with it.\n '
handler = MemoryFileUploadHandler()
meta = {'HTTP_CONTENT_TYPE': headers['Content-Type'], 'HTTP_CONTENT_LENGTH': headers['Content-Length']}
parser = MultiPartParser(META=meta, input_data=BytesIO(body), upload_handlers=[handler])
return parser.parse() | Parse `headers` and `body` with Django's :class:`MultiPartParser`.
`MultiPartParser` is a curiously ugly and RFC non-compliant concoction.
Amongst other things, it coerces all field names, field data, and
filenames into Unicode strings using the "replace" error strategy, so be
warned that your data may be silently mangled.
It also, in 1.3.1 at least, does not recognise any transfer encodings at
*all* because its header parsing code was broken.
I'm also fairly sure that it'll fall over on headers than span more than
one line.
In short, it's a piece of code that inspires little confidence, yet we
must work with it, hence we need to round-trip test multipart handling
with it. | _modules/testing/django.py | parse_headers_and_body_with_django | Perceptyx/salt-formula-maas | 6 | python | def parse_headers_and_body_with_django(headers, body):
'Parse `headers` and `body` with Django\'s :class:`MultiPartParser`.\n\n `MultiPartParser` is a curiously ugly and RFC non-compliant concoction.\n\n Amongst other things, it coerces all field names, field data, and\n filenames into Unicode strings using the "replace" error strategy, so be\n warned that your data may be silently mangled.\n\n It also, in 1.3.1 at least, does not recognise any transfer encodings at\n *all* because its header parsing code was broken.\n\n I\'m also fairly sure that it\'ll fall over on headers than span more than\n one line.\n\n In short, it\'s a piece of code that inspires little confidence, yet we\n must work with it, hence we need to round-trip test multipart handling\n with it.\n '
handler = MemoryFileUploadHandler()
meta = {'HTTP_CONTENT_TYPE': headers['Content-Type'], 'HTTP_CONTENT_LENGTH': headers['Content-Length']}
parser = MultiPartParser(META=meta, input_data=BytesIO(body), upload_handlers=[handler])
return parser.parse() | def parse_headers_and_body_with_django(headers, body):
'Parse `headers` and `body` with Django\'s :class:`MultiPartParser`.\n\n `MultiPartParser` is a curiously ugly and RFC non-compliant concoction.\n\n Amongst other things, it coerces all field names, field data, and\n filenames into Unicode strings using the "replace" error strategy, so be\n warned that your data may be silently mangled.\n\n It also, in 1.3.1 at least, does not recognise any transfer encodings at\n *all* because its header parsing code was broken.\n\n I\'m also fairly sure that it\'ll fall over on headers than span more than\n one line.\n\n In short, it\'s a piece of code that inspires little confidence, yet we\n must work with it, hence we need to round-trip test multipart handling\n with it.\n '
handler = MemoryFileUploadHandler()
meta = {'HTTP_CONTENT_TYPE': headers['Content-Type'], 'HTTP_CONTENT_LENGTH': headers['Content-Length']}
parser = MultiPartParser(META=meta, input_data=BytesIO(body), upload_handlers=[handler])
return parser.parse()<|docstring|>Parse `headers` and `body` with Django's :class:`MultiPartParser`.
`MultiPartParser` is a curiously ugly and RFC non-compliant concoction.
Amongst other things, it coerces all field names, field data, and
filenames into Unicode strings using the "replace" error strategy, so be
warned that your data may be silently mangled.
It also, in 1.3.1 at least, does not recognise any transfer encodings at
*all* because its header parsing code was broken.
I'm also fairly sure that it'll fall over on headers than span more than
one line.
In short, it's a piece of code that inspires little confidence, yet we
must work with it, hence we need to round-trip test multipart handling
with it.<|endoftext|> |
e00f12e978af185d363abfecfe940b067a128d5728e1e341d9513a5e2f5f416a | def parse_headers_and_body_with_mimer(headers, body):
"Use piston's Mimer functionality to handle the content.\n\n :return: The value of 'request.data' after using Piston's translate_mime on\n the input.\n "
from piston import emitters
ignore_unused(emitters)
from piston.utils import translate_mime
environ = {'wsgi.input': BytesIO(body)}
for (name, value) in headers.items():
environ[name.upper().replace('-', '_')] = value
environ['REQUEST_METHOD'] = 'POST'
environ['SCRIPT_NAME'] = ''
environ['PATH_INFO'] = ''
os.environ['DJANGO_SETTINGS_MODULE'] = 'maas.development'
from django.core.handlers.wsgi import WSGIRequest
request = WSGIRequest(environ)
translate_mime(request)
return request.data | Use piston's Mimer functionality to handle the content.
:return: The value of 'request.data' after using Piston's translate_mime on
the input. | _modules/testing/django.py | parse_headers_and_body_with_mimer | Perceptyx/salt-formula-maas | 6 | python | def parse_headers_and_body_with_mimer(headers, body):
"Use piston's Mimer functionality to handle the content.\n\n :return: The value of 'request.data' after using Piston's translate_mime on\n the input.\n "
from piston import emitters
ignore_unused(emitters)
from piston.utils import translate_mime
environ = {'wsgi.input': BytesIO(body)}
for (name, value) in headers.items():
environ[name.upper().replace('-', '_')] = value
environ['REQUEST_METHOD'] = 'POST'
environ['SCRIPT_NAME'] =
environ['PATH_INFO'] =
os.environ['DJANGO_SETTINGS_MODULE'] = 'maas.development'
from django.core.handlers.wsgi import WSGIRequest
request = WSGIRequest(environ)
translate_mime(request)
return request.data | def parse_headers_and_body_with_mimer(headers, body):
"Use piston's Mimer functionality to handle the content.\n\n :return: The value of 'request.data' after using Piston's translate_mime on\n the input.\n "
from piston import emitters
ignore_unused(emitters)
from piston.utils import translate_mime
environ = {'wsgi.input': BytesIO(body)}
for (name, value) in headers.items():
environ[name.upper().replace('-', '_')] = value
environ['REQUEST_METHOD'] = 'POST'
environ['SCRIPT_NAME'] =
environ['PATH_INFO'] =
os.environ['DJANGO_SETTINGS_MODULE'] = 'maas.development'
from django.core.handlers.wsgi import WSGIRequest
request = WSGIRequest(environ)
translate_mime(request)
return request.data<|docstring|>Use piston's Mimer functionality to handle the content.
:return: The value of 'request.data' after using Piston's translate_mime on
the input.<|endoftext|> |
8287130fc609ec6b9d543947c9e3b890765e558c0e2fcf63320b090e0b9815d9 | def process(self, data):
'Plot one SHM data.'
obs = json.loads(data)['result']
nrow = obs['nrow']
ncol = obs['ncols']
lat_0 = obs['lat_0']
lon_0 = obs['lon_0']
dl = obs['cellsize']
data = np.array(obs['data'])
lat = (lat_0 + (np.arange(ncol) * dl))
lon = (lon_0 + (np.arange(nrow) * dl))
(x, y) = np.meshgrid(lat, lon)
r_latlon = np.stack((x.flatten(), y.flatten()))
slm_latlon = np.array(obs['input_positions']['slm_latlon'])
source_latlon = np.array(obs['input_positions']['sources_latlon'])
wall_latlon = np.array(obs['input_positions']['walls_latlon']).T
shm_area = np.array(obs['input_positions']['shm_area'])
map_pos = source_latlon[(:, 0)]
output_file('gmap.html')
map_options = GMapOptions(lat=map_pos[0], lng=map_pos[1], zoom=18, map_type='roadmap', tilt=0)
gmap_api_key = None
if (gmap_api_key is None):
raise NotImplementedError('Add gmaps api key in source.')
p = gmap(gmap_api_key, map_options, title='Tivoli', height=700, width=1200)
allvalues = data[self.freqindx].flatten()
values = allvalues[(allvalues != None)].astype(float)
normed_values = ((values - np.min(values)) / (np.max(values) - np.min(values)))
colors = np.empty(allvalues.shape, dtype=object)
colors.fill('#000000')
colors.fill(None)
colors[(allvalues != None)] = [to_hex(c) for c in cm.viridis(normed_values)]
p.circle_cross(r_latlon[(1, :)][(allvalues != None)], r_latlon[(0, :)][(allvalues != None)], fill_color=colors[(allvalues != None)], size=10)
p.circle_cross(slm_latlon[(1, :)], slm_latlon[(0, :)], legend='SLM', size=15, fill_color='green')
if (wall_latlon.size > 0):
p.multi_line(list(wall_latlon[(:, :, 1)]), list(wall_latlon[(:, :, 0)]), legend='Walls')
p.circle_cross(source_latlon[(1, :)], source_latlon[(0, :)], legend='sources', size=15)
p.circle_cross(shm_area[(1, :)], shm_area[(0, :)], legend='SHM area', size=15, fill_color='yellow')
p.circle_cross(lon_0, lat_0, legend='reference', size=15, fill_color='black')
save(p)
webbrowser.open('gmap.html')
print('Plotted.') | Plot one SHM data. | tools/display_maps.py | process | MONICA-Project/sound-heat-map | 1 | python | def process(self, data):
obs = json.loads(data)['result']
nrow = obs['nrow']
ncol = obs['ncols']
lat_0 = obs['lat_0']
lon_0 = obs['lon_0']
dl = obs['cellsize']
data = np.array(obs['data'])
lat = (lat_0 + (np.arange(ncol) * dl))
lon = (lon_0 + (np.arange(nrow) * dl))
(x, y) = np.meshgrid(lat, lon)
r_latlon = np.stack((x.flatten(), y.flatten()))
slm_latlon = np.array(obs['input_positions']['slm_latlon'])
source_latlon = np.array(obs['input_positions']['sources_latlon'])
wall_latlon = np.array(obs['input_positions']['walls_latlon']).T
shm_area = np.array(obs['input_positions']['shm_area'])
map_pos = source_latlon[(:, 0)]
output_file('gmap.html')
map_options = GMapOptions(lat=map_pos[0], lng=map_pos[1], zoom=18, map_type='roadmap', tilt=0)
gmap_api_key = None
if (gmap_api_key is None):
raise NotImplementedError('Add gmaps api key in source.')
p = gmap(gmap_api_key, map_options, title='Tivoli', height=700, width=1200)
allvalues = data[self.freqindx].flatten()
values = allvalues[(allvalues != None)].astype(float)
normed_values = ((values - np.min(values)) / (np.max(values) - np.min(values)))
colors = np.empty(allvalues.shape, dtype=object)
colors.fill('#000000')
colors.fill(None)
colors[(allvalues != None)] = [to_hex(c) for c in cm.viridis(normed_values)]
p.circle_cross(r_latlon[(1, :)][(allvalues != None)], r_latlon[(0, :)][(allvalues != None)], fill_color=colors[(allvalues != None)], size=10)
p.circle_cross(slm_latlon[(1, :)], slm_latlon[(0, :)], legend='SLM', size=15, fill_color='green')
if (wall_latlon.size > 0):
p.multi_line(list(wall_latlon[(:, :, 1)]), list(wall_latlon[(:, :, 0)]), legend='Walls')
p.circle_cross(source_latlon[(1, :)], source_latlon[(0, :)], legend='sources', size=15)
p.circle_cross(shm_area[(1, :)], shm_area[(0, :)], legend='SHM area', size=15, fill_color='yellow')
p.circle_cross(lon_0, lat_0, legend='reference', size=15, fill_color='black')
save(p)
webbrowser.open('gmap.html')
print('Plotted.') | def process(self, data):
obs = json.loads(data)['result']
nrow = obs['nrow']
ncol = obs['ncols']
lat_0 = obs['lat_0']
lon_0 = obs['lon_0']
dl = obs['cellsize']
data = np.array(obs['data'])
lat = (lat_0 + (np.arange(ncol) * dl))
lon = (lon_0 + (np.arange(nrow) * dl))
(x, y) = np.meshgrid(lat, lon)
r_latlon = np.stack((x.flatten(), y.flatten()))
slm_latlon = np.array(obs['input_positions']['slm_latlon'])
source_latlon = np.array(obs['input_positions']['sources_latlon'])
wall_latlon = np.array(obs['input_positions']['walls_latlon']).T
shm_area = np.array(obs['input_positions']['shm_area'])
map_pos = source_latlon[(:, 0)]
output_file('gmap.html')
map_options = GMapOptions(lat=map_pos[0], lng=map_pos[1], zoom=18, map_type='roadmap', tilt=0)
gmap_api_key = None
if (gmap_api_key is None):
raise NotImplementedError('Add gmaps api key in source.')
p = gmap(gmap_api_key, map_options, title='Tivoli', height=700, width=1200)
allvalues = data[self.freqindx].flatten()
values = allvalues[(allvalues != None)].astype(float)
normed_values = ((values - np.min(values)) / (np.max(values) - np.min(values)))
colors = np.empty(allvalues.shape, dtype=object)
colors.fill('#000000')
colors.fill(None)
colors[(allvalues != None)] = [to_hex(c) for c in cm.viridis(normed_values)]
p.circle_cross(r_latlon[(1, :)][(allvalues != None)], r_latlon[(0, :)][(allvalues != None)], fill_color=colors[(allvalues != None)], size=10)
p.circle_cross(slm_latlon[(1, :)], slm_latlon[(0, :)], legend='SLM', size=15, fill_color='green')
if (wall_latlon.size > 0):
p.multi_line(list(wall_latlon[(:, :, 1)]), list(wall_latlon[(:, :, 0)]), legend='Walls')
p.circle_cross(source_latlon[(1, :)], source_latlon[(0, :)], legend='sources', size=15)
p.circle_cross(shm_area[(1, :)], shm_area[(0, :)], legend='SHM area', size=15, fill_color='yellow')
p.circle_cross(lon_0, lat_0, legend='reference', size=15, fill_color='black')
save(p)
webbrowser.open('gmap.html')
print('Plotted.')<|docstring|>Plot one SHM data.<|endoftext|> |
9affd8894602bb65f425a2806ad51ace80e2090fe27d678f73f5b2ea757112c3 | def get_files(start_path, a_type=None):
'\n Retrieves a list of directory and sub-directory files containing duplicate\n files. This function simply checks the file name and does not check the file\n size to determine if a copied file is a true copy.\n '
if isinstance(a_type, list):
if (len(a_type) > 1):
a_type = (('\\.(' + '|'.join(a_type)) + ')$')
else:
a_type = f'\.{a_type[0]}$'
else:
a_type = ''
reg_copies = re.compile('(Copy|Copy ?\\(\\d+\\)| \\(\\d+\\)){}'.format(a_type))
def _get_files(path: str):
temp_list = []
try:
files = os.scandir(path)
for file in files:
if file.is_dir():
temp_list.extend(_get_files(file.path))
elif reg_copies.search(file.name[(- 15):]):
temp_list.append(file.path)
except:
pass
return temp_list
return _get_files(os.path.normpath(start_path)) | Retrieves a list of directory and sub-directory files containing duplicate
files. This function simply checks the file name and does not check the file
size to determine if a copied file is a true copy. | deletion/functions.py | get_files | wrenzenzen/python-delete-folder-file-copies | 0 | python | def get_files(start_path, a_type=None):
'\n Retrieves a list of directory and sub-directory files containing duplicate\n files. This function simply checks the file name and does not check the file\n size to determine if a copied file is a true copy.\n '
if isinstance(a_type, list):
if (len(a_type) > 1):
a_type = (('\\.(' + '|'.join(a_type)) + ')$')
else:
a_type = f'\.{a_type[0]}$'
else:
a_type =
reg_copies = re.compile('(Copy|Copy ?\\(\\d+\\)| \\(\\d+\\)){}'.format(a_type))
def _get_files(path: str):
temp_list = []
try:
files = os.scandir(path)
for file in files:
if file.is_dir():
temp_list.extend(_get_files(file.path))
elif reg_copies.search(file.name[(- 15):]):
temp_list.append(file.path)
except:
pass
return temp_list
return _get_files(os.path.normpath(start_path)) | def get_files(start_path, a_type=None):
'\n Retrieves a list of directory and sub-directory files containing duplicate\n files. This function simply checks the file name and does not check the file\n size to determine if a copied file is a true copy.\n '
if isinstance(a_type, list):
if (len(a_type) > 1):
a_type = (('\\.(' + '|'.join(a_type)) + ')$')
else:
a_type = f'\.{a_type[0]}$'
else:
a_type =
reg_copies = re.compile('(Copy|Copy ?\\(\\d+\\)| \\(\\d+\\)){}'.format(a_type))
def _get_files(path: str):
temp_list = []
try:
files = os.scandir(path)
for file in files:
if file.is_dir():
temp_list.extend(_get_files(file.path))
elif reg_copies.search(file.name[(- 15):]):
temp_list.append(file.path)
except:
pass
return temp_list
return _get_files(os.path.normpath(start_path))<|docstring|>Retrieves a list of directory and sub-directory files containing duplicate
files. This function simply checks the file name and does not check the file
size to determine if a copied file is a true copy.<|endoftext|> |
378ced0fda82d43a6c003834391a6cb53871aebe4a95992f3190b010687bb710 | def delete_files(removal_list) -> None:
'\n Deletes a list of files with a valid path \n '
print(f'Deleting ({len(removal_list)}) files')
for a_file in removal_list:
try:
os.remove(a_file)
print(a_file, '....deleted')
except:
print(a_file, '....could not delete') | Deletes a list of files with a valid path | deletion/functions.py | delete_files | wrenzenzen/python-delete-folder-file-copies | 0 | python | def delete_files(removal_list) -> None:
'\n \n '
print(f'Deleting ({len(removal_list)}) files')
for a_file in removal_list:
try:
os.remove(a_file)
print(a_file, '....deleted')
except:
print(a_file, '....could not delete') | def delete_files(removal_list) -> None:
'\n \n '
print(f'Deleting ({len(removal_list)}) files')
for a_file in removal_list:
try:
os.remove(a_file)
print(a_file, '....deleted')
except:
print(a_file, '....could not delete')<|docstring|>Deletes a list of files with a valid path<|endoftext|> |
e39a3f8fef0fe3e6aba08683b4a48eb7e73c022e6049f9f8486e4ef793af08a2 | def test_standard_prior_generator():
'Test standard prior generator.'
from mmrotate.core.anchor import build_prior_generator
anchor_generator_cfg = dict(type='RotatedAnchorGenerator', scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8])
anchor_generator = build_prior_generator(anchor_generator_cfg)
assert (anchor_generator.num_base_priors == anchor_generator.num_base_anchors)
assert (anchor_generator.num_base_priors == [3, 3])
assert (anchor_generator is not None) | Test standard prior generator. | tests/test_utils/test_ranchor.py | test_standard_prior_generator | liufeinuaa/mmrotate | 449 | python | def test_standard_prior_generator():
from mmrotate.core.anchor import build_prior_generator
anchor_generator_cfg = dict(type='RotatedAnchorGenerator', scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8])
anchor_generator = build_prior_generator(anchor_generator_cfg)
assert (anchor_generator.num_base_priors == anchor_generator.num_base_anchors)
assert (anchor_generator.num_base_priors == [3, 3])
assert (anchor_generator is not None) | def test_standard_prior_generator():
from mmrotate.core.anchor import build_prior_generator
anchor_generator_cfg = dict(type='RotatedAnchorGenerator', scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8])
anchor_generator = build_prior_generator(anchor_generator_cfg)
assert (anchor_generator.num_base_priors == anchor_generator.num_base_anchors)
assert (anchor_generator.num_base_priors == [3, 3])
assert (anchor_generator is not None)<|docstring|>Test standard prior generator.<|endoftext|> |
95e447eccf2944bed9692cff22ee6ded19c592a7eab170b97bb7baa0f3a20c30 | def test_strides():
'Test strides.'
from mmrotate.core import RotatedAnchorGenerator
self = RotatedAnchorGenerator([10], [1.0], [1.0], [10])
anchors = self.grid_priors([(2, 2)], device='cpu')
expected_anchors = torch.tensor([[0.0, 0.0, 10.0, 10.0, 0.0], [10.0, 0.0, 10.0, 10.0, 0.0], [0.0, 10.0, 10.0, 10.0, 0.0], [10.0, 10.0, 10.0, 10.0, 0.0]])
assert torch.equal(anchors[0], expected_anchors)
self = RotatedAnchorGenerator([(10, 20)], [1.0], [1.0], [10])
anchors = self.grid_priors([(2, 2)], device='cpu')
expected_anchors = torch.tensor([[0.0, 0.0, 10.0, 10.0, 0.0], [10.0, 0.0, 10.0, 10.0, 0.0], [0.0, 20.0, 10.0, 10.0, 0.0], [10.0, 20.0, 10.0, 10.0, 0.0]])
assert torch.equal(anchors[0], expected_anchors) | Test strides. | tests/test_utils/test_ranchor.py | test_strides | liufeinuaa/mmrotate | 449 | python | def test_strides():
from mmrotate.core import RotatedAnchorGenerator
self = RotatedAnchorGenerator([10], [1.0], [1.0], [10])
anchors = self.grid_priors([(2, 2)], device='cpu')
expected_anchors = torch.tensor([[0.0, 0.0, 10.0, 10.0, 0.0], [10.0, 0.0, 10.0, 10.0, 0.0], [0.0, 10.0, 10.0, 10.0, 0.0], [10.0, 10.0, 10.0, 10.0, 0.0]])
assert torch.equal(anchors[0], expected_anchors)
self = RotatedAnchorGenerator([(10, 20)], [1.0], [1.0], [10])
anchors = self.grid_priors([(2, 2)], device='cpu')
expected_anchors = torch.tensor([[0.0, 0.0, 10.0, 10.0, 0.0], [10.0, 0.0, 10.0, 10.0, 0.0], [0.0, 20.0, 10.0, 10.0, 0.0], [10.0, 20.0, 10.0, 10.0, 0.0]])
assert torch.equal(anchors[0], expected_anchors) | def test_strides():
from mmrotate.core import RotatedAnchorGenerator
self = RotatedAnchorGenerator([10], [1.0], [1.0], [10])
anchors = self.grid_priors([(2, 2)], device='cpu')
expected_anchors = torch.tensor([[0.0, 0.0, 10.0, 10.0, 0.0], [10.0, 0.0, 10.0, 10.0, 0.0], [0.0, 10.0, 10.0, 10.0, 0.0], [10.0, 10.0, 10.0, 10.0, 0.0]])
assert torch.equal(anchors[0], expected_anchors)
self = RotatedAnchorGenerator([(10, 20)], [1.0], [1.0], [10])
anchors = self.grid_priors([(2, 2)], device='cpu')
expected_anchors = torch.tensor([[0.0, 0.0, 10.0, 10.0, 0.0], [10.0, 0.0, 10.0, 10.0, 0.0], [0.0, 20.0, 10.0, 10.0, 0.0], [10.0, 20.0, 10.0, 10.0, 0.0]])
assert torch.equal(anchors[0], expected_anchors)<|docstring|>Test strides.<|endoftext|> |
a0d60bb3c102f67aa36308e1a7d024b4935c4053ee00520bc0d6726c41cc00bd | def __init__(self, delay_mean=100, delay_std_dev=10, min_delay=1, max_delay=500, reliability=0.9):
"\n Every message sent into the channel is sent individually to all the receiving processes.\n All units are in milliseconds\n :param delay_mean: mean delay for a message to reach from in end to out end\n :param delay_std_dev: variation in delay for a message to reach fro in end to out end\n :param min_delay: guarantee that the delay won't be less than this value\n :param max_delay: guarantee that the delay won't be more than this value\n :param reliability: The reliability with which a message is delivered. [0.0, 1.0]\n "
self._in_end = None
self._out_end = None
self.delay_mean = delay_mean
self.delay_std_dev = delay_std_dev
self.started = asyncio.Queue()
self.in_transit = set()
self.reached = set()
self.min_delay = min_delay
self.max_delay = max_delay
self.reliability = reliability
self._back = None | Every message sent into the channel is sent individually to all the receiving processes.
All units are in milliseconds
:param delay_mean: mean delay for a message to reach from in end to out end
:param delay_std_dev: variation in delay for a message to reach fro in end to out end
:param min_delay: guarantee that the delay won't be less than this value
:param max_delay: guarantee that the delay won't be more than this value
:param reliability: The reliability with which a message is delivered. [0.0, 1.0] | distalg/channel.py | __init__ | abinashmeher999/Distributed-Algorithms | 4 | python | def __init__(self, delay_mean=100, delay_std_dev=10, min_delay=1, max_delay=500, reliability=0.9):
"\n Every message sent into the channel is sent individually to all the receiving processes.\n All units are in milliseconds\n :param delay_mean: mean delay for a message to reach from in end to out end\n :param delay_std_dev: variation in delay for a message to reach fro in end to out end\n :param min_delay: guarantee that the delay won't be less than this value\n :param max_delay: guarantee that the delay won't be more than this value\n :param reliability: The reliability with which a message is delivered. [0.0, 1.0]\n "
self._in_end = None
self._out_end = None
self.delay_mean = delay_mean
self.delay_std_dev = delay_std_dev
self.started = asyncio.Queue()
self.in_transit = set()
self.reached = set()
self.min_delay = min_delay
self.max_delay = max_delay
self.reliability = reliability
self._back = None | def __init__(self, delay_mean=100, delay_std_dev=10, min_delay=1, max_delay=500, reliability=0.9):
"\n Every message sent into the channel is sent individually to all the receiving processes.\n All units are in milliseconds\n :param delay_mean: mean delay for a message to reach from in end to out end\n :param delay_std_dev: variation in delay for a message to reach fro in end to out end\n :param min_delay: guarantee that the delay won't be less than this value\n :param max_delay: guarantee that the delay won't be more than this value\n :param reliability: The reliability with which a message is delivered. [0.0, 1.0]\n "
self._in_end = None
self._out_end = None
self.delay_mean = delay_mean
self.delay_std_dev = delay_std_dev
self.started = asyncio.Queue()
self.in_transit = set()
self.reached = set()
self.min_delay = min_delay
self.max_delay = max_delay
self.reliability = reliability
self._back = None<|docstring|>Every message sent into the channel is sent individually to all the receiving processes.
All units are in milliseconds
:param delay_mean: mean delay for a message to reach from in end to out end
:param delay_std_dev: variation in delay for a message to reach fro in end to out end
:param min_delay: guarantee that the delay won't be less than this value
:param max_delay: guarantee that the delay won't be more than this value
:param reliability: The reliability with which a message is delivered. [0.0, 1.0]<|endoftext|> |
ee76a7f4da05eca157a9e2dc81f4b5fa4d947e4c1bd178eed30325c76edcd2a3 | async def __deliver(self, message):
'\n :param message: The Message object to be delivered\n :return:\n '
sample = random.random()
if (sample >= self.reliability):
return
self.in_transit.add(message)
delay_time = random.gauss(self.delay_mean, self.delay_std_dev)
clamped_delay_time = min(self.max_delay, max(self.min_delay, delay_time))
(await asyncio.sleep((clamped_delay_time / 1000)))
self.in_transit.remove(message)
(await self._out_end.incoming_msgs.put(message)) | :param message: The Message object to be delivered
:return: | distalg/channel.py | __deliver | abinashmeher999/Distributed-Algorithms | 4 | python | async def __deliver(self, message):
'\n :param message: The Message object to be delivered\n :return:\n '
sample = random.random()
if (sample >= self.reliability):
return
self.in_transit.add(message)
delay_time = random.gauss(self.delay_mean, self.delay_std_dev)
clamped_delay_time = min(self.max_delay, max(self.min_delay, delay_time))
(await asyncio.sleep((clamped_delay_time / 1000)))
self.in_transit.remove(message)
(await self._out_end.incoming_msgs.put(message)) | async def __deliver(self, message):
'\n :param message: The Message object to be delivered\n :return:\n '
sample = random.random()
if (sample >= self.reliability):
return
self.in_transit.add(message)
delay_time = random.gauss(self.delay_mean, self.delay_std_dev)
clamped_delay_time = min(self.max_delay, max(self.min_delay, delay_time))
(await asyncio.sleep((clamped_delay_time / 1000)))
self.in_transit.remove(message)
(await self._out_end.incoming_msgs.put(message))<|docstring|>:param message: The Message object to be delivered
:return:<|endoftext|> |
d800211c9fbf15c2ab4454288e521ebc336a0af6fd11d9fde032700ca7173e10 | def test_expert(self):
'\n Test Expert difficulty (Tier 2)\n '
URL = 'http://127.0.0.1:8000/war/2'
war_info = requests.get(URL).json()
self.assertEqual(war_info['tier'], 2)
self.assertEqual(war_info['difficulty'], 'Expert')
self.assertEqual(war_info['tier_multiplier'], '7.0')
self.assertEqual(war_info['tier_rank'], '0.16%-0.50%')
self.assertEqual(war_info['nodes']['16'], ['Vivified - I', 'Brute Force']) | Test Expert difficulty (Tier 2) | uma/api/tests/test_war.py | test_expert | Rexians/uma | 3 | python | def test_expert(self):
'\n \n '
URL = 'http://127.0.0.1:8000/war/2'
war_info = requests.get(URL).json()
self.assertEqual(war_info['tier'], 2)
self.assertEqual(war_info['difficulty'], 'Expert')
self.assertEqual(war_info['tier_multiplier'], '7.0')
self.assertEqual(war_info['tier_rank'], '0.16%-0.50%')
self.assertEqual(war_info['nodes']['16'], ['Vivified - I', 'Brute Force']) | def test_expert(self):
'\n \n '
URL = 'http://127.0.0.1:8000/war/2'
war_info = requests.get(URL).json()
self.assertEqual(war_info['tier'], 2)
self.assertEqual(war_info['difficulty'], 'Expert')
self.assertEqual(war_info['tier_multiplier'], '7.0')
self.assertEqual(war_info['tier_rank'], '0.16%-0.50%')
self.assertEqual(war_info['nodes']['16'], ['Vivified - I', 'Brute Force'])<|docstring|>Test Expert difficulty (Tier 2)<|endoftext|> |
1a7b73ab4db8d1a5b3c283e4185f68865a3df8a4edd75becef9a8791f84e04d0 | def test_challenger(self):
'\n Test Challenger difficulty (Tier 4)\n '
URL = 'http://127.0.0.1:8000/war/4'
war_info = requests.get(URL).json()
self.assertEqual(war_info['tier'], 4)
self.assertEqual(war_info['difficulty'], 'Challenger')
self.assertEqual(war_info['tier_multiplier'], '4.5')
self.assertEqual(war_info['tier_rank'], '2%-3%')
self.assertEqual(war_info['nodes']['3'], ['COMBAT DÉJÀ VU - PROWESS', 'Prowess Puncture - 2']) | Test Challenger difficulty (Tier 4) | uma/api/tests/test_war.py | test_challenger | Rexians/uma | 3 | python | def test_challenger(self):
'\n \n '
URL = 'http://127.0.0.1:8000/war/4'
war_info = requests.get(URL).json()
self.assertEqual(war_info['tier'], 4)
self.assertEqual(war_info['difficulty'], 'Challenger')
self.assertEqual(war_info['tier_multiplier'], '4.5')
self.assertEqual(war_info['tier_rank'], '2%-3%')
self.assertEqual(war_info['nodes']['3'], ['COMBAT DÉJÀ VU - PROWESS', 'Prowess Puncture - 2']) | def test_challenger(self):
'\n \n '
URL = 'http://127.0.0.1:8000/war/4'
war_info = requests.get(URL).json()
self.assertEqual(war_info['tier'], 4)
self.assertEqual(war_info['difficulty'], 'Challenger')
self.assertEqual(war_info['tier_multiplier'], '4.5')
self.assertEqual(war_info['tier_rank'], '2%-3%')
self.assertEqual(war_info['nodes']['3'], ['COMBAT DÉJÀ VU - PROWESS', 'Prowess Puncture - 2'])<|docstring|>Test Challenger difficulty (Tier 4)<|endoftext|> |
3e3435d9b4ce87d6590cc003dbd1679f9f185911e88054eef00fda7b3deacf33 | def test_hard(self):
'\n Test Hard difficulty (Tier 2)\n '
URL = 'http://127.0.0.1:8000/war/8'
war_info = requests.get(URL).json()
self.assertEqual(war_info['tier'], 8)
self.assertEqual(war_info['difficulty'], 'Hard')
self.assertEqual(war_info['tier_multiplier'], '3.0')
self.assertEqual(war_info['tier_rank'], '10%-11%')
self.assertEqual(war_info['nodes']['48'], ['Feat of Vigilance 1', 'Power Efficiency', 'Missing in Action 1']) | Test Hard difficulty (Tier 2) | uma/api/tests/test_war.py | test_hard | Rexians/uma | 3 | python | def test_hard(self):
'\n \n '
URL = 'http://127.0.0.1:8000/war/8'
war_info = requests.get(URL).json()
self.assertEqual(war_info['tier'], 8)
self.assertEqual(war_info['difficulty'], 'Hard')
self.assertEqual(war_info['tier_multiplier'], '3.0')
self.assertEqual(war_info['tier_rank'], '10%-11%')
self.assertEqual(war_info['nodes']['48'], ['Feat of Vigilance 1', 'Power Efficiency', 'Missing in Action 1']) | def test_hard(self):
'\n \n '
URL = 'http://127.0.0.1:8000/war/8'
war_info = requests.get(URL).json()
self.assertEqual(war_info['tier'], 8)
self.assertEqual(war_info['difficulty'], 'Hard')
self.assertEqual(war_info['tier_multiplier'], '3.0')
self.assertEqual(war_info['tier_rank'], '10%-11%')
self.assertEqual(war_info['nodes']['48'], ['Feat of Vigilance 1', 'Power Efficiency', 'Missing in Action 1'])<|docstring|>Test Hard difficulty (Tier 2)<|endoftext|> |
53524ef7ae7351a976876f5ef10a07bc586034f0af2119e79c926b80cf7f2098 | def test_intermediate(self):
'\n Test Intermediate difficulty (Tier 10)\n '
URL = 'http://127.0.0.1:8000/war/10'
war_info = requests.get(URL).json()
self.assertEqual(war_info['tier'], 10)
self.assertEqual(war_info['difficulty'], 'Intermediate')
self.assertEqual(war_info['tier_multiplier'], '2.4')
self.assertEqual(war_info['tier_rank'], '14%-15%')
self.assertEqual(war_info['nodes']['23'], ['Mix Master', 'Aggression: Prowess']) | Test Intermediate difficulty (Tier 10) | uma/api/tests/test_war.py | test_intermediate | Rexians/uma | 3 | python | def test_intermediate(self):
'\n \n '
URL = 'http://127.0.0.1:8000/war/10'
war_info = requests.get(URL).json()
self.assertEqual(war_info['tier'], 10)
self.assertEqual(war_info['difficulty'], 'Intermediate')
self.assertEqual(war_info['tier_multiplier'], '2.4')
self.assertEqual(war_info['tier_rank'], '14%-15%')
self.assertEqual(war_info['nodes']['23'], ['Mix Master', 'Aggression: Prowess']) | def test_intermediate(self):
'\n \n '
URL = 'http://127.0.0.1:8000/war/10'
war_info = requests.get(URL).json()
self.assertEqual(war_info['tier'], 10)
self.assertEqual(war_info['difficulty'], 'Intermediate')
self.assertEqual(war_info['tier_multiplier'], '2.4')
self.assertEqual(war_info['tier_rank'], '14%-15%')
self.assertEqual(war_info['nodes']['23'], ['Mix Master', 'Aggression: Prowess'])<|docstring|>Test Intermediate difficulty (Tier 10)<|endoftext|> |
3f7da2cbb80747931bbffa362ce3d60d3c7a79b0b58ec39f9fb131b730334295 | def test_normal(self):
'\n Test Normal difficulty (Tier 15)\n '
URL = 'http://127.0.0.1:8000/war/15'
war_info = requests.get(URL).json()
self.assertEqual(war_info['tier'], 15)
self.assertEqual(war_info['difficulty'], 'Normal')
self.assertEqual(war_info['tier_multiplier'], '1.8')
self.assertEqual(war_info['tier_rank'], '36%-40%')
self.assertEqual(war_info['nodes']['1'], ['Cornered']) | Test Normal difficulty (Tier 15) | uma/api/tests/test_war.py | test_normal | Rexians/uma | 3 | python | def test_normal(self):
'\n \n '
URL = 'http://127.0.0.1:8000/war/15'
war_info = requests.get(URL).json()
self.assertEqual(war_info['tier'], 15)
self.assertEqual(war_info['difficulty'], 'Normal')
self.assertEqual(war_info['tier_multiplier'], '1.8')
self.assertEqual(war_info['tier_rank'], '36%-40%')
self.assertEqual(war_info['nodes']['1'], ['Cornered']) | def test_normal(self):
'\n \n '
URL = 'http://127.0.0.1:8000/war/15'
war_info = requests.get(URL).json()
self.assertEqual(war_info['tier'], 15)
self.assertEqual(war_info['difficulty'], 'Normal')
self.assertEqual(war_info['tier_multiplier'], '1.8')
self.assertEqual(war_info['tier_rank'], '36%-40%')
self.assertEqual(war_info['nodes']['1'], ['Cornered'])<|docstring|>Test Normal difficulty (Tier 15)<|endoftext|> |
d66d29735aeae889e400c74a1010f7bf2b8ce4890601de25fb25dfe8f97f5d9c | def test_easy(self):
'\n Test Easy difficulty (Tier 21)\n '
URL = 'http://127.0.0.1:8000/war/21'
war_info = requests.get(URL).json()
self.assertEqual(war_info['tier'], 21)
self.assertEqual(war_info['difficulty'], 'Easy')
self.assertEqual(war_info['tier_multiplier'], '1.1')
self.assertEqual(war_info['tier_rank'], '81%-90%')
self.assertEqual(war_info['nodes']['21'], ['Plagued Mind', 'Immunity (Bleed)']) | Test Easy difficulty (Tier 21) | uma/api/tests/test_war.py | test_easy | Rexians/uma | 3 | python | def test_easy(self):
'\n \n '
URL = 'http://127.0.0.1:8000/war/21'
war_info = requests.get(URL).json()
self.assertEqual(war_info['tier'], 21)
self.assertEqual(war_info['difficulty'], 'Easy')
self.assertEqual(war_info['tier_multiplier'], '1.1')
self.assertEqual(war_info['tier_rank'], '81%-90%')
self.assertEqual(war_info['nodes']['21'], ['Plagued Mind', 'Immunity (Bleed)']) | def test_easy(self):
'\n \n '
URL = 'http://127.0.0.1:8000/war/21'
war_info = requests.get(URL).json()
self.assertEqual(war_info['tier'], 21)
self.assertEqual(war_info['difficulty'], 'Easy')
self.assertEqual(war_info['tier_multiplier'], '1.1')
self.assertEqual(war_info['tier_rank'], '81%-90%')
self.assertEqual(war_info['nodes']['21'], ['Plagued Mind', 'Immunity (Bleed)'])<|docstring|>Test Easy difficulty (Tier 21)<|endoftext|> |
dfca7081304d9f7ee121250001c72204d546e989d91bc28b7e7fd4b20a19adea | def break_words(stuff):
'This function will break up words for us.'
words = stuff.split(' ')
return words | This function will break up words for us. | Python/Learning/Language/test.py | break_words | prynix/learning-programming | 2 | python | def break_words(stuff):
words = stuff.split(' ')
return words | def break_words(stuff):
words = stuff.split(' ')
return words<|docstring|>This function will break up words for us.<|endoftext|> |
a6e1ee4f7d1a2f1a6dd45991cc6a984c31d5a336ea5a10fcae432c4895c5e829 | def sort_words(words):
'Sorts the words.'
return sorted(words) | Sorts the words. | Python/Learning/Language/test.py | sort_words | prynix/learning-programming | 2 | python | def sort_words(words):
return sorted(words) | def sort_words(words):
return sorted(words)<|docstring|>Sorts the words.<|endoftext|> |
c44259c17df95394c6b3624ec562efd8a7e3869d24066edcaa8ff91760722b3e | def print_first_word(words):
'Prints the first word after popping it off.'
word = words.pop(0)
print(word) | Prints the first word after popping it off. | Python/Learning/Language/test.py | print_first_word | prynix/learning-programming | 2 | python | def print_first_word(words):
word = words.pop(0)
print(word) | def print_first_word(words):
word = words.pop(0)
print(word)<|docstring|>Prints the first word after popping it off.<|endoftext|> |
56a89d52660c37cf5ce3a6b9e312eabb678a633846287bed0c22eda97a363bbb | def print_last_word(words):
'Prints the last word after popping it off.'
word = words.pop((- 1))
print(word) | Prints the last word after popping it off. | Python/Learning/Language/test.py | print_last_word | prynix/learning-programming | 2 | python | def print_last_word(words):
word = words.pop((- 1))
print(word) | def print_last_word(words):
word = words.pop((- 1))
print(word)<|docstring|>Prints the last word after popping it off.<|endoftext|> |
bcad118c4dbc01cee11c53f9fc6b12d2f5d8e9c9415041869f7d759679bc5231 | def sort_sentence(sentence):
'Takes in a full sentence and returns the sorted words.'
words = break_words(sentence)
return sort_words(words) | Takes in a full sentence and returns the sorted words. | Python/Learning/Language/test.py | sort_sentence | prynix/learning-programming | 2 | python | def sort_sentence(sentence):
words = break_words(sentence)
return sort_words(words) | def sort_sentence(sentence):
words = break_words(sentence)
return sort_words(words)<|docstring|>Takes in a full sentence and returns the sorted words.<|endoftext|> |
974a419d5234409764644af9b44a70547d1c22523eb9e2299e9e4337bfa5c9d8 | def print_first_and_last(sentence):
'Prints the first and last words of the sentence.'
words = break_words(sentence)
print_first_word(words)
print_last_word(words) | Prints the first and last words of the sentence. | Python/Learning/Language/test.py | print_first_and_last | prynix/learning-programming | 2 | python | def print_first_and_last(sentence):
words = break_words(sentence)
print_first_word(words)
print_last_word(words) | def print_first_and_last(sentence):
words = break_words(sentence)
print_first_word(words)
print_last_word(words)<|docstring|>Prints the first and last words of the sentence.<|endoftext|> |
8909126637d367924b2eb58284cbc5d742bf2871da805e634e2583a50de3bb8e | def print_first_and_last_sorted(sentence):
'Sorts the words then prints the first and last one.'
words = sort_sentence(sentence)
print_first_word(words)
print_last_word(words) | Sorts the words then prints the first and last one. | Python/Learning/Language/test.py | print_first_and_last_sorted | prynix/learning-programming | 2 | python | def print_first_and_last_sorted(sentence):
words = sort_sentence(sentence)
print_first_word(words)
print_last_word(words) | def print_first_and_last_sorted(sentence):
words = sort_sentence(sentence)
print_first_word(words)
print_last_word(words)<|docstring|>Sorts the words then prints the first and last one.<|endoftext|> |
21f26e0a2de48c40cae28ddf6758ee901ef47111b098d20955b07d18adc0d723 | def __getitem__(self, key):
"\n Make class['foo'] automatically filter for the parameter 'foo'\n Makes the model code much cleaner\n\n :param key: Parameter name\n :type key: str\n :return: `array` filtered after the parameter selected\n "
return self.temp_array.sel(parameter=key) | Make class['foo'] automatically filter for the parameter 'foo'
Makes the model code much cleaner
:param key: Parameter name
:type key: str
:return: `array` filtered after the parameter selected | carculator/inventory.py | __getitem__ | rena-nong/carculator | 1 | python | def __getitem__(self, key):
"\n Make class['foo'] automatically filter for the parameter 'foo'\n Makes the model code much cleaner\n\n :param key: Parameter name\n :type key: str\n :return: `array` filtered after the parameter selected\n "
return self.temp_array.sel(parameter=key) | def __getitem__(self, key):
"\n Make class['foo'] automatically filter for the parameter 'foo'\n Makes the model code much cleaner\n\n :param key: Parameter name\n :type key: str\n :return: `array` filtered after the parameter selected\n "
return self.temp_array.sel(parameter=key)<|docstring|>Make class['foo'] automatically filter for the parameter 'foo'
Makes the model code much cleaner
:param key: Parameter name
:type key: str
:return: `array` filtered after the parameter selected<|endoftext|> |
e20b2b34cc737a0749a7432ed77839416e1318760028b61da27813ffe80ee0ad | def get_results_table(self, split, sensitivity=False):
'\n Format an xarray.DataArray array to receive the results.\n\n :param split: "components" or "impact categories". Split by impact categories only applicable when "endpoint" level is applied.\n :return: xarrray.DataArray\n '
if (split == 'components'):
cat = ['direct - exhaust', 'direct - non-exhaust', 'energy chain', 'maintenance', 'glider', 'EoL', 'powertrain', 'energy storage', 'road']
dict_impact_cat = list(self.impact_categories.keys())
sizes = self.scope['size']
if isinstance(self.fleet, xr.core.dataarray.DataArray):
sizes += ['fleet average']
if (sensitivity == False):
response = xr.DataArray(np.zeros((self.B.shape[1], len(sizes), len(self.scope['powertrain']), len(self.scope['year']), len(cat), self.iterations)), coords=[dict_impact_cat, sizes, self.scope['powertrain'], self.scope['year'], cat, np.arange(0, self.iterations)], dims=['impact_category', 'size', 'powertrain', 'year', 'impact', 'value'])
else:
params = [a for a in self.array.value.values]
response = xr.DataArray(np.zeros((self.B.shape[1], len(sizes), len(self.scope['powertrain']), len(self.scope['year']), self.iterations)), coords=[dict_impact_cat, sizes, self.scope['powertrain'], self.scope['year'], params], dims=['impact_category', 'size', 'powertrain', 'year', 'parameter'])
return response | Format an xarray.DataArray array to receive the results.
:param split: "components" or "impact categories". Split by impact categories only applicable when "endpoint" level is applied.
:return: xarrray.DataArray | carculator/inventory.py | get_results_table | rena-nong/carculator | 1 | python | def get_results_table(self, split, sensitivity=False):
'\n Format an xarray.DataArray array to receive the results.\n\n :param split: "components" or "impact categories". Split by impact categories only applicable when "endpoint" level is applied.\n :return: xarrray.DataArray\n '
if (split == 'components'):
cat = ['direct - exhaust', 'direct - non-exhaust', 'energy chain', 'maintenance', 'glider', 'EoL', 'powertrain', 'energy storage', 'road']
dict_impact_cat = list(self.impact_categories.keys())
sizes = self.scope['size']
if isinstance(self.fleet, xr.core.dataarray.DataArray):
sizes += ['fleet average']
if (sensitivity == False):
response = xr.DataArray(np.zeros((self.B.shape[1], len(sizes), len(self.scope['powertrain']), len(self.scope['year']), len(cat), self.iterations)), coords=[dict_impact_cat, sizes, self.scope['powertrain'], self.scope['year'], cat, np.arange(0, self.iterations)], dims=['impact_category', 'size', 'powertrain', 'year', 'impact', 'value'])
else:
params = [a for a in self.array.value.values]
response = xr.DataArray(np.zeros((self.B.shape[1], len(sizes), len(self.scope['powertrain']), len(self.scope['year']), self.iterations)), coords=[dict_impact_cat, sizes, self.scope['powertrain'], self.scope['year'], params], dims=['impact_category', 'size', 'powertrain', 'year', 'parameter'])
return response | def get_results_table(self, split, sensitivity=False):
'\n Format an xarray.DataArray array to receive the results.\n\n :param split: "components" or "impact categories". Split by impact categories only applicable when "endpoint" level is applied.\n :return: xarrray.DataArray\n '
if (split == 'components'):
cat = ['direct - exhaust', 'direct - non-exhaust', 'energy chain', 'maintenance', 'glider', 'EoL', 'powertrain', 'energy storage', 'road']
dict_impact_cat = list(self.impact_categories.keys())
sizes = self.scope['size']
if isinstance(self.fleet, xr.core.dataarray.DataArray):
sizes += ['fleet average']
if (sensitivity == False):
response = xr.DataArray(np.zeros((self.B.shape[1], len(sizes), len(self.scope['powertrain']), len(self.scope['year']), len(cat), self.iterations)), coords=[dict_impact_cat, sizes, self.scope['powertrain'], self.scope['year'], cat, np.arange(0, self.iterations)], dims=['impact_category', 'size', 'powertrain', 'year', 'impact', 'value'])
else:
params = [a for a in self.array.value.values]
response = xr.DataArray(np.zeros((self.B.shape[1], len(sizes), len(self.scope['powertrain']), len(self.scope['year']), self.iterations)), coords=[dict_impact_cat, sizes, self.scope['powertrain'], self.scope['year'], params], dims=['impact_category', 'size', 'powertrain', 'year', 'parameter'])
return response<|docstring|>Format an xarray.DataArray array to receive the results.
:param split: "components" or "impact categories". Split by impact categories only applicable when "endpoint" level is applied.
:return: xarrray.DataArray<|endoftext|> |
0ff7728556dd4a89237ad973a69723f3ba21f9044616f8238f7ebe919239ae6a | def get_split_indices(self):
'\n Return list of indices to split the results into categories.\n\n :return: list of indices\n :rtype: list\n '
filename = 'dict_split.csv'
filepath = (DATA_DIR / filename)
if (not filepath.is_file()):
raise FileNotFoundError('The dictionary of splits could not be found.')
with open(filepath) as f:
csv_list = [[val.strip() for val in r.split(';')] for r in f.readlines()]
((_, _, *header), *data) = csv_list
csv_dict = {}
for row in data:
(key, sub_key, *values) = row
if (key in csv_dict):
if (sub_key in csv_dict[key]):
csv_dict[key][sub_key].append({'search by': values[0], 'search for': values[1]})
else:
csv_dict[key][sub_key] = [{'search by': values[0], 'search for': values[1]}]
else:
csv_dict[key] = {sub_key: [{'search by': values[0], 'search for': values[1]}]}
flatten = itertools.chain.from_iterable
d = {}
l = []
d['direct - exhaust'] = []
d['direct - exhaust'].append(self.inputs[('Carbon dioxide, fossil', ('air',), 'kilogram')])
d['direct - exhaust'].append(self.inputs[('Carbon dioxide, from soil or biomass stock', ('air',), 'kilogram')])
d['direct - exhaust'].append(self.inputs[('Methane, fossil', ('air',), 'kilogram')])
d['direct - exhaust'].append(self.inputs[('Cadmium', ('air', 'urban air close to ground'), 'kilogram')])
d['direct - exhaust'].append(self.inputs[('Copper', ('air', 'urban air close to ground'), 'kilogram')])
d['direct - exhaust'].append(self.inputs[('Chromium', ('air', 'urban air close to ground'), 'kilogram')])
d['direct - exhaust'].append(self.inputs[('Nickel', ('air', 'urban air close to ground'), 'kilogram')])
d['direct - exhaust'].append(self.inputs[('Selenium', ('air', 'urban air close to ground'), 'kilogram')])
d['direct - exhaust'].append(self.inputs[('Zinc', ('air', 'urban air close to ground'), 'kilogram')])
d['direct - exhaust'].append(self.inputs[('Chromium VI', ('air', 'urban air close to ground'), 'kilogram')])
d['direct - exhaust'].extend(self.index_emissions)
d['direct - exhaust'].extend(self.index_noise)
l.append(d['direct - exhaust'])
for cat in csv_dict['components']:
d[cat] = list(flatten([self.get_index_of_flows([l['search for']], l['search by']) for l in csv_dict['components'][cat]]))
l.append(d[cat])
list_ind = [d[x] for x in d]
maxLen = max(map(len, list_ind))
for row in list_ind:
while (len(row) < maxLen):
row.extend([(len(self.inputs) - 1)])
return (list(d.keys()), list_ind) | Return list of indices to split the results into categories.
:return: list of indices
:rtype: list | carculator/inventory.py | get_split_indices | rena-nong/carculator | 1 | python | def get_split_indices(self):
'\n Return list of indices to split the results into categories.\n\n :return: list of indices\n :rtype: list\n '
filename = 'dict_split.csv'
filepath = (DATA_DIR / filename)
if (not filepath.is_file()):
raise FileNotFoundError('The dictionary of splits could not be found.')
with open(filepath) as f:
csv_list = [[val.strip() for val in r.split(';')] for r in f.readlines()]
((_, _, *header), *data) = csv_list
csv_dict = {}
for row in data:
(key, sub_key, *values) = row
if (key in csv_dict):
if (sub_key in csv_dict[key]):
csv_dict[key][sub_key].append({'search by': values[0], 'search for': values[1]})
else:
csv_dict[key][sub_key] = [{'search by': values[0], 'search for': values[1]}]
else:
csv_dict[key] = {sub_key: [{'search by': values[0], 'search for': values[1]}]}
flatten = itertools.chain.from_iterable
d = {}
l = []
d['direct - exhaust'] = []
d['direct - exhaust'].append(self.inputs[('Carbon dioxide, fossil', ('air',), 'kilogram')])
d['direct - exhaust'].append(self.inputs[('Carbon dioxide, from soil or biomass stock', ('air',), 'kilogram')])
d['direct - exhaust'].append(self.inputs[('Methane, fossil', ('air',), 'kilogram')])
d['direct - exhaust'].append(self.inputs[('Cadmium', ('air', 'urban air close to ground'), 'kilogram')])
d['direct - exhaust'].append(self.inputs[('Copper', ('air', 'urban air close to ground'), 'kilogram')])
d['direct - exhaust'].append(self.inputs[('Chromium', ('air', 'urban air close to ground'), 'kilogram')])
d['direct - exhaust'].append(self.inputs[('Nickel', ('air', 'urban air close to ground'), 'kilogram')])
d['direct - exhaust'].append(self.inputs[('Selenium', ('air', 'urban air close to ground'), 'kilogram')])
d['direct - exhaust'].append(self.inputs[('Zinc', ('air', 'urban air close to ground'), 'kilogram')])
d['direct - exhaust'].append(self.inputs[('Chromium VI', ('air', 'urban air close to ground'), 'kilogram')])
d['direct - exhaust'].extend(self.index_emissions)
d['direct - exhaust'].extend(self.index_noise)
l.append(d['direct - exhaust'])
for cat in csv_dict['components']:
d[cat] = list(flatten([self.get_index_of_flows([l['search for']], l['search by']) for l in csv_dict['components'][cat]]))
l.append(d[cat])
list_ind = [d[x] for x in d]
maxLen = max(map(len, list_ind))
for row in list_ind:
while (len(row) < maxLen):
row.extend([(len(self.inputs) - 1)])
return (list(d.keys()), list_ind) | def get_split_indices(self):
'\n Return list of indices to split the results into categories.\n\n :return: list of indices\n :rtype: list\n '
filename = 'dict_split.csv'
filepath = (DATA_DIR / filename)
if (not filepath.is_file()):
raise FileNotFoundError('The dictionary of splits could not be found.')
with open(filepath) as f:
csv_list = [[val.strip() for val in r.split(';')] for r in f.readlines()]
((_, _, *header), *data) = csv_list
csv_dict = {}
for row in data:
(key, sub_key, *values) = row
if (key in csv_dict):
if (sub_key in csv_dict[key]):
csv_dict[key][sub_key].append({'search by': values[0], 'search for': values[1]})
else:
csv_dict[key][sub_key] = [{'search by': values[0], 'search for': values[1]}]
else:
csv_dict[key] = {sub_key: [{'search by': values[0], 'search for': values[1]}]}
flatten = itertools.chain.from_iterable
d = {}
l = []
d['direct - exhaust'] = []
d['direct - exhaust'].append(self.inputs[('Carbon dioxide, fossil', ('air',), 'kilogram')])
d['direct - exhaust'].append(self.inputs[('Carbon dioxide, from soil or biomass stock', ('air',), 'kilogram')])
d['direct - exhaust'].append(self.inputs[('Methane, fossil', ('air',), 'kilogram')])
d['direct - exhaust'].append(self.inputs[('Cadmium', ('air', 'urban air close to ground'), 'kilogram')])
d['direct - exhaust'].append(self.inputs[('Copper', ('air', 'urban air close to ground'), 'kilogram')])
d['direct - exhaust'].append(self.inputs[('Chromium', ('air', 'urban air close to ground'), 'kilogram')])
d['direct - exhaust'].append(self.inputs[('Nickel', ('air', 'urban air close to ground'), 'kilogram')])
d['direct - exhaust'].append(self.inputs[('Selenium', ('air', 'urban air close to ground'), 'kilogram')])
d['direct - exhaust'].append(self.inputs[('Zinc', ('air', 'urban air close to ground'), 'kilogram')])
d['direct - exhaust'].append(self.inputs[('Chromium VI', ('air', 'urban air close to ground'), 'kilogram')])
d['direct - exhaust'].extend(self.index_emissions)
d['direct - exhaust'].extend(self.index_noise)
l.append(d['direct - exhaust'])
for cat in csv_dict['components']:
d[cat] = list(flatten([self.get_index_of_flows([l['search for']], l['search by']) for l in csv_dict['components'][cat]]))
l.append(d[cat])
list_ind = [d[x] for x in d]
maxLen = max(map(len, list_ind))
for row in list_ind:
while (len(row) < maxLen):
row.extend([(len(self.inputs) - 1)])
return (list(d.keys()), list_ind)<|docstring|>Return list of indices to split the results into categories.
:return: list of indices
:rtype: list<|endoftext|> |
97168e118b31e67d5710a94e3e81ec74ea9b826a3e85ba1752f684d881a388a8 | def get_A_matrix(self):
'\n Load the A matrix. The A matrix contains exchanges of products (rows) between activities (columns).\n\n :return: A matrix with three dimensions of shape (number of values, number of products, number of activities).\n :rtype: numpy.ndarray\n\n '
filename = 'A_matrix.csv'
filepath = Path(getframeinfo(currentframe()).filename).resolve().parent.joinpath(('data/' + filename))
if (not filepath.is_file()):
raise FileNotFoundError('The technology matrix could not be found.')
initial_A = np.genfromtxt(filepath, delimiter=';')
new_A = np.identity(len(self.inputs))
new_A[(0:np.shape(initial_A)[0], 0:np.shape(initial_A)[0])] = initial_A
new_A = np.resize(new_A, (self.array.shape[1], new_A.shape[0], new_A.shape[1]))
return new_A.astype('float32') | Load the A matrix. The A matrix contains exchanges of products (rows) between activities (columns).
:return: A matrix with three dimensions of shape (number of values, number of products, number of activities).
:rtype: numpy.ndarray | carculator/inventory.py | get_A_matrix | rena-nong/carculator | 1 | python | def get_A_matrix(self):
'\n Load the A matrix. The A matrix contains exchanges of products (rows) between activities (columns).\n\n :return: A matrix with three dimensions of shape (number of values, number of products, number of activities).\n :rtype: numpy.ndarray\n\n '
filename = 'A_matrix.csv'
filepath = Path(getframeinfo(currentframe()).filename).resolve().parent.joinpath(('data/' + filename))
if (not filepath.is_file()):
raise FileNotFoundError('The technology matrix could not be found.')
initial_A = np.genfromtxt(filepath, delimiter=';')
new_A = np.identity(len(self.inputs))
new_A[(0:np.shape(initial_A)[0], 0:np.shape(initial_A)[0])] = initial_A
new_A = np.resize(new_A, (self.array.shape[1], new_A.shape[0], new_A.shape[1]))
return new_A.astype('float32') | def get_A_matrix(self):
'\n Load the A matrix. The A matrix contains exchanges of products (rows) between activities (columns).\n\n :return: A matrix with three dimensions of shape (number of values, number of products, number of activities).\n :rtype: numpy.ndarray\n\n '
filename = 'A_matrix.csv'
filepath = Path(getframeinfo(currentframe()).filename).resolve().parent.joinpath(('data/' + filename))
if (not filepath.is_file()):
raise FileNotFoundError('The technology matrix could not be found.')
initial_A = np.genfromtxt(filepath, delimiter=';')
new_A = np.identity(len(self.inputs))
new_A[(0:np.shape(initial_A)[0], 0:np.shape(initial_A)[0])] = initial_A
new_A = np.resize(new_A, (self.array.shape[1], new_A.shape[0], new_A.shape[1]))
return new_A.astype('float32')<|docstring|>Load the A matrix. The A matrix contains exchanges of products (rows) between activities (columns).
:return: A matrix with three dimensions of shape (number of values, number of products, number of activities).
:rtype: numpy.ndarray<|endoftext|> |
5f108e7335838f6d700d366c9c29ad961ca5fb9583458104f8c7429245d22e49 | def get_B_matrix(self):
'\n Load the B matrix. The B matrix contains impact assessment figures for a give impact assessment method,\n per unit of activity. Its length column-wise equals the length of the A matrix row-wise.\n Its length row-wise equals the number of impact assessment methods.\n\n :param method: only "recipe" and "ilcd" available at the moment.\n :param level: only "midpoint" available at the moment.\n :return: an array with impact values per unit of activity for each method.\n :rtype: numpy.ndarray\n\n '
if (self.method == 'recipe'):
if (self.method_type == 'midpoint'):
list_file_names = glob.glob((str(REMIND_FILES_DIR) + '/*recipe_midpoint*{}*.csv'.format(self.scenario)))
list_file_names = sorted(list_file_names)
B = np.zeros((len(list_file_names), 21, len(self.inputs)))
elif (self.method_type == 'endpoint'):
list_file_names = glob.glob((str(REMIND_FILES_DIR) + '/*recipe_endpoint*{}*.csv'.format(self.scenario)))
list_file_names = sorted(list_file_names)
B = np.zeros((len(list_file_names), 4, len(self.inputs)))
else:
raise TypeError("The LCIA method type should be either 'midpoint' or 'endpoint'.")
else:
list_file_names = glob.glob((str(REMIND_FILES_DIR) + '/*ilcd*{}*.csv'.format(self.scenario)))
list_file_names = sorted(list_file_names)
B = np.zeros((len(list_file_names), 19, len(self.inputs)))
for (f, fp) in enumerate(list_file_names):
initial_B = np.genfromtxt(fp, delimiter=';')
new_B = np.zeros((np.shape(initial_B)[0], len(self.inputs)))
new_B[(0:np.shape(initial_B)[0], 0:np.shape(initial_B)[1])] = initial_B
B[(f, :, :)] = new_B
list_impact_categories = list(self.impact_categories.keys())
if (self.scenario != 'static'):
response = xr.DataArray(B, coords=[[2005, 2010, 2020, 2030, 2040, 2050], list_impact_categories, list(self.inputs.keys())], dims=['year', 'category', 'activity'])
else:
response = xr.DataArray(B, coords=[[2020], list_impact_categories, list(self.inputs.keys())], dims=['year', 'category', 'activity'])
return response | Load the B matrix. The B matrix contains impact assessment figures for a give impact assessment method,
per unit of activity. Its length column-wise equals the length of the A matrix row-wise.
Its length row-wise equals the number of impact assessment methods.
:param method: only "recipe" and "ilcd" available at the moment.
:param level: only "midpoint" available at the moment.
:return: an array with impact values per unit of activity for each method.
:rtype: numpy.ndarray | carculator/inventory.py | get_B_matrix | rena-nong/carculator | 1 | python | def get_B_matrix(self):
'\n Load the B matrix. The B matrix contains impact assessment figures for a give impact assessment method,\n per unit of activity. Its length column-wise equals the length of the A matrix row-wise.\n Its length row-wise equals the number of impact assessment methods.\n\n :param method: only "recipe" and "ilcd" available at the moment.\n :param level: only "midpoint" available at the moment.\n :return: an array with impact values per unit of activity for each method.\n :rtype: numpy.ndarray\n\n '
if (self.method == 'recipe'):
if (self.method_type == 'midpoint'):
list_file_names = glob.glob((str(REMIND_FILES_DIR) + '/*recipe_midpoint*{}*.csv'.format(self.scenario)))
list_file_names = sorted(list_file_names)
B = np.zeros((len(list_file_names), 21, len(self.inputs)))
elif (self.method_type == 'endpoint'):
list_file_names = glob.glob((str(REMIND_FILES_DIR) + '/*recipe_endpoint*{}*.csv'.format(self.scenario)))
list_file_names = sorted(list_file_names)
B = np.zeros((len(list_file_names), 4, len(self.inputs)))
else:
raise TypeError("The LCIA method type should be either 'midpoint' or 'endpoint'.")
else:
list_file_names = glob.glob((str(REMIND_FILES_DIR) + '/*ilcd*{}*.csv'.format(self.scenario)))
list_file_names = sorted(list_file_names)
B = np.zeros((len(list_file_names), 19, len(self.inputs)))
for (f, fp) in enumerate(list_file_names):
initial_B = np.genfromtxt(fp, delimiter=';')
new_B = np.zeros((np.shape(initial_B)[0], len(self.inputs)))
new_B[(0:np.shape(initial_B)[0], 0:np.shape(initial_B)[1])] = initial_B
B[(f, :, :)] = new_B
list_impact_categories = list(self.impact_categories.keys())
if (self.scenario != 'static'):
response = xr.DataArray(B, coords=[[2005, 2010, 2020, 2030, 2040, 2050], list_impact_categories, list(self.inputs.keys())], dims=['year', 'category', 'activity'])
else:
response = xr.DataArray(B, coords=[[2020], list_impact_categories, list(self.inputs.keys())], dims=['year', 'category', 'activity'])
return response | def get_B_matrix(self):
'\n Load the B matrix. The B matrix contains impact assessment figures for a give impact assessment method,\n per unit of activity. Its length column-wise equals the length of the A matrix row-wise.\n Its length row-wise equals the number of impact assessment methods.\n\n :param method: only "recipe" and "ilcd" available at the moment.\n :param level: only "midpoint" available at the moment.\n :return: an array with impact values per unit of activity for each method.\n :rtype: numpy.ndarray\n\n '
if (self.method == 'recipe'):
if (self.method_type == 'midpoint'):
list_file_names = glob.glob((str(REMIND_FILES_DIR) + '/*recipe_midpoint*{}*.csv'.format(self.scenario)))
list_file_names = sorted(list_file_names)
B = np.zeros((len(list_file_names), 21, len(self.inputs)))
elif (self.method_type == 'endpoint'):
list_file_names = glob.glob((str(REMIND_FILES_DIR) + '/*recipe_endpoint*{}*.csv'.format(self.scenario)))
list_file_names = sorted(list_file_names)
B = np.zeros((len(list_file_names), 4, len(self.inputs)))
else:
raise TypeError("The LCIA method type should be either 'midpoint' or 'endpoint'.")
else:
list_file_names = glob.glob((str(REMIND_FILES_DIR) + '/*ilcd*{}*.csv'.format(self.scenario)))
list_file_names = sorted(list_file_names)
B = np.zeros((len(list_file_names), 19, len(self.inputs)))
for (f, fp) in enumerate(list_file_names):
initial_B = np.genfromtxt(fp, delimiter=';')
new_B = np.zeros((np.shape(initial_B)[0], len(self.inputs)))
new_B[(0:np.shape(initial_B)[0], 0:np.shape(initial_B)[1])] = initial_B
B[(f, :, :)] = new_B
list_impact_categories = list(self.impact_categories.keys())
if (self.scenario != 'static'):
response = xr.DataArray(B, coords=[[2005, 2010, 2020, 2030, 2040, 2050], list_impact_categories, list(self.inputs.keys())], dims=['year', 'category', 'activity'])
else:
response = xr.DataArray(B, coords=[[2020], list_impact_categories, list(self.inputs.keys())], dims=['year', 'category', 'activity'])
return response<|docstring|>Load the B matrix. The B matrix contains impact assessment figures for a give impact assessment method,
per unit of activity. Its length column-wise equals the length of the A matrix row-wise.
Its length row-wise equals the number of impact assessment methods.
:param method: only "recipe" and "ilcd" available at the moment.
:param level: only "midpoint" available at the moment.
:return: an array with impact values per unit of activity for each method.
:rtype: numpy.ndarray<|endoftext|> |
6cd859343dcc5ace1c765037fad40ecb78e7c1aa97fd166de4736129543d5381 | def get_dict_input(self):
'\n Load a dictionary with tuple ("name of activity", "location", "unit", "reference product") as key, row/column\n indices as values.\n\n :return: dictionary with `label:index` pairs.\n :rtype: dict\n\n '
filename = 'dict_inputs_A_matrix.csv'
filepath = (DATA_DIR / filename)
if (not filepath.is_file()):
raise FileNotFoundError('The dictionary of activity labels could not be found.')
csv_dict = {}
count = 0
with open(filepath) as f:
input_dict = csv.reader(f, delimiter=';')
for row in input_dict:
if ('(' in row[1]):
new_str = row[1].replace('(', '')
new_str = new_str.replace(')', '')
new_str = [s.strip() for s in new_str.split(',') if s]
t = ()
for s in new_str:
if ('low population' in s):
s = 'low population density, long-term'
t += (s,)
break
else:
t += (s.replace("'", ''),)
csv_dict[(row[0], t, row[2])] = count
else:
csv_dict[(row[0], row[1], row[2], row[3])] = count
count += 1
return csv_dict | Load a dictionary with tuple ("name of activity", "location", "unit", "reference product") as key, row/column
indices as values.
:return: dictionary with `label:index` pairs.
:rtype: dict | carculator/inventory.py | get_dict_input | rena-nong/carculator | 1 | python | def get_dict_input(self):
'\n Load a dictionary with tuple ("name of activity", "location", "unit", "reference product") as key, row/column\n indices as values.\n\n :return: dictionary with `label:index` pairs.\n :rtype: dict\n\n '
filename = 'dict_inputs_A_matrix.csv'
filepath = (DATA_DIR / filename)
if (not filepath.is_file()):
raise FileNotFoundError('The dictionary of activity labels could not be found.')
csv_dict = {}
count = 0
with open(filepath) as f:
input_dict = csv.reader(f, delimiter=';')
for row in input_dict:
if ('(' in row[1]):
new_str = row[1].replace('(', )
new_str = new_str.replace(')', )
new_str = [s.strip() for s in new_str.split(',') if s]
t = ()
for s in new_str:
if ('low population' in s):
s = 'low population density, long-term'
t += (s,)
break
else:
t += (s.replace("'", ),)
csv_dict[(row[0], t, row[2])] = count
else:
csv_dict[(row[0], row[1], row[2], row[3])] = count
count += 1
return csv_dict | def get_dict_input(self):
'\n Load a dictionary with tuple ("name of activity", "location", "unit", "reference product") as key, row/column\n indices as values.\n\n :return: dictionary with `label:index` pairs.\n :rtype: dict\n\n '
filename = 'dict_inputs_A_matrix.csv'
filepath = (DATA_DIR / filename)
if (not filepath.is_file()):
raise FileNotFoundError('The dictionary of activity labels could not be found.')
csv_dict = {}
count = 0
with open(filepath) as f:
input_dict = csv.reader(f, delimiter=';')
for row in input_dict:
if ('(' in row[1]):
new_str = row[1].replace('(', )
new_str = new_str.replace(')', )
new_str = [s.strip() for s in new_str.split(',') if s]
t = ()
for s in new_str:
if ('low population' in s):
s = 'low population density, long-term'
t += (s,)
break
else:
t += (s.replace("'", ),)
csv_dict[(row[0], t, row[2])] = count
else:
csv_dict[(row[0], row[1], row[2], row[3])] = count
count += 1
return csv_dict<|docstring|>Load a dictionary with tuple ("name of activity", "location", "unit", "reference product") as key, row/column
indices as values.
:return: dictionary with `label:index` pairs.
:rtype: dict<|endoftext|> |
a057e576b0fd85f23d0d5ae6e23388e566ba08b7ac2a4ca06adfc80617dac5e8 | def get_dict_impact_categories(self):
"\n Load a dictionary with available impact assessment methods as keys, and assessment level and categories as values.\n\n ..code-block:: python\n\n {'recipe': {'midpoint': ['freshwater ecotoxicity',\n 'human toxicity',\n 'marine ecotoxicity',\n 'terrestrial ecotoxicity',\n 'metal depletion',\n 'agricultural land occupation',\n 'climate change',\n 'fossil depletion',\n 'freshwater eutrophication',\n 'ionising radiation',\n 'marine eutrophication',\n 'natural land transformation',\n 'ozone depletion',\n 'particulate matter formation',\n 'photochemical oxidant formation',\n 'terrestrial acidification',\n 'urban land occupation',\n 'water depletion',\n 'human noise',\n 'primary energy, non-renewable',\n 'primary energy, renewable']\n }\n }\n\n :return: dictionary\n :rtype: dict\n "
filename = 'dict_impact_categories.csv'
filepath = (DATA_DIR / filename)
if (not filepath.is_file()):
raise FileNotFoundError('The dictionary of impact categories could not be found.')
csv_dict = {}
with open(filepath) as f:
input_dict = csv.reader(f, delimiter=';')
for row in input_dict:
if ((row[0] == self.method) and (row[3] == self.method_type)):
csv_dict[row[2]] = {'method': row[1], 'category': row[2], 'type': row[3], 'abbreviation': row[4], 'unit': row[5], 'source': row[6]}
return csv_dict | Load a dictionary with available impact assessment methods as keys, and assessment level and categories as values.
..code-block:: python
{'recipe': {'midpoint': ['freshwater ecotoxicity',
'human toxicity',
'marine ecotoxicity',
'terrestrial ecotoxicity',
'metal depletion',
'agricultural land occupation',
'climate change',
'fossil depletion',
'freshwater eutrophication',
'ionising radiation',
'marine eutrophication',
'natural land transformation',
'ozone depletion',
'particulate matter formation',
'photochemical oxidant formation',
'terrestrial acidification',
'urban land occupation',
'water depletion',
'human noise',
'primary energy, non-renewable',
'primary energy, renewable']
}
}
:return: dictionary
:rtype: dict | carculator/inventory.py | get_dict_impact_categories | rena-nong/carculator | 1 | python | def get_dict_impact_categories(self):
"\n Load a dictionary with available impact assessment methods as keys, and assessment level and categories as values.\n\n ..code-block:: python\n\n {'recipe': {'midpoint': ['freshwater ecotoxicity',\n 'human toxicity',\n 'marine ecotoxicity',\n 'terrestrial ecotoxicity',\n 'metal depletion',\n 'agricultural land occupation',\n 'climate change',\n 'fossil depletion',\n 'freshwater eutrophication',\n 'ionising radiation',\n 'marine eutrophication',\n 'natural land transformation',\n 'ozone depletion',\n 'particulate matter formation',\n 'photochemical oxidant formation',\n 'terrestrial acidification',\n 'urban land occupation',\n 'water depletion',\n 'human noise',\n 'primary energy, non-renewable',\n 'primary energy, renewable']\n }\n }\n\n :return: dictionary\n :rtype: dict\n "
filename = 'dict_impact_categories.csv'
filepath = (DATA_DIR / filename)
if (not filepath.is_file()):
raise FileNotFoundError('The dictionary of impact categories could not be found.')
csv_dict = {}
with open(filepath) as f:
input_dict = csv.reader(f, delimiter=';')
for row in input_dict:
if ((row[0] == self.method) and (row[3] == self.method_type)):
csv_dict[row[2]] = {'method': row[1], 'category': row[2], 'type': row[3], 'abbreviation': row[4], 'unit': row[5], 'source': row[6]}
return csv_dict | def get_dict_impact_categories(self):
"\n Load a dictionary with available impact assessment methods as keys, and assessment level and categories as values.\n\n ..code-block:: python\n\n {'recipe': {'midpoint': ['freshwater ecotoxicity',\n 'human toxicity',\n 'marine ecotoxicity',\n 'terrestrial ecotoxicity',\n 'metal depletion',\n 'agricultural land occupation',\n 'climate change',\n 'fossil depletion',\n 'freshwater eutrophication',\n 'ionising radiation',\n 'marine eutrophication',\n 'natural land transformation',\n 'ozone depletion',\n 'particulate matter formation',\n 'photochemical oxidant formation',\n 'terrestrial acidification',\n 'urban land occupation',\n 'water depletion',\n 'human noise',\n 'primary energy, non-renewable',\n 'primary energy, renewable']\n }\n }\n\n :return: dictionary\n :rtype: dict\n "
filename = 'dict_impact_categories.csv'
filepath = (DATA_DIR / filename)
if (not filepath.is_file()):
raise FileNotFoundError('The dictionary of impact categories could not be found.')
csv_dict = {}
with open(filepath) as f:
input_dict = csv.reader(f, delimiter=';')
for row in input_dict:
if ((row[0] == self.method) and (row[3] == self.method_type)):
csv_dict[row[2]] = {'method': row[1], 'category': row[2], 'type': row[3], 'abbreviation': row[4], 'unit': row[5], 'source': row[6]}
return csv_dict<|docstring|>Load a dictionary with available impact assessment methods as keys, and assessment level and categories as values.
..code-block:: python
{'recipe': {'midpoint': ['freshwater ecotoxicity',
'human toxicity',
'marine ecotoxicity',
'terrestrial ecotoxicity',
'metal depletion',
'agricultural land occupation',
'climate change',
'fossil depletion',
'freshwater eutrophication',
'ionising radiation',
'marine eutrophication',
'natural land transformation',
'ozone depletion',
'particulate matter formation',
'photochemical oxidant formation',
'terrestrial acidification',
'urban land occupation',
'water depletion',
'human noise',
'primary energy, non-renewable',
'primary energy, renewable']
}
}
:return: dictionary
:rtype: dict<|endoftext|> |
6c9546d26806f517049e2e4412f1fbe2d5b0444fac16a5bb6dd38bb21eb660be | def get_rev_dict_input(self):
'\n Reverse the self.inputs dictionary.\n\n :return: reversed dictionary\n :rtype: dict\n '
return {v: k for (k, v) in self.inputs.items()} | Reverse the self.inputs dictionary.
:return: reversed dictionary
:rtype: dict | carculator/inventory.py | get_rev_dict_input | rena-nong/carculator | 1 | python | def get_rev_dict_input(self):
'\n Reverse the self.inputs dictionary.\n\n :return: reversed dictionary\n :rtype: dict\n '
return {v: k for (k, v) in self.inputs.items()} | def get_rev_dict_input(self):
'\n Reverse the self.inputs dictionary.\n\n :return: reversed dictionary\n :rtype: dict\n '
return {v: k for (k, v) in self.inputs.items()}<|docstring|>Reverse the self.inputs dictionary.
:return: reversed dictionary
:rtype: dict<|endoftext|> |
21fa57095c8a5deb3e505b0fdecc68b64ff09217367a59fe61b65a61ab3f640e | def get_index_vehicle_from_array(self, items_to_look_for, items_to_look_for_also=None, method='or'):
'\n Return list of row/column indices of self.array of labels that contain the string defined in `items_to_look_for`.\n\n :param items_to_look_for: string to search for\n :return: list\n '
if (not isinstance(items_to_look_for, list)):
items_to_look_for = [items_to_look_for]
if (not (items_to_look_for_also is None)):
if (not isinstance(items_to_look_for_also, list)):
items_to_look_for_also = [items_to_look_for_also]
list_vehicles = self.array.desired.values
if (method == 'or'):
return [c for (c, v) in enumerate(list_vehicles) if set(items_to_look_for).intersection(v)]
if (method == 'and'):
return [c for (c, v) in enumerate(list_vehicles) if (set(items_to_look_for).intersection(v) and set(items_to_look_for_also).intersection(v))] | Return list of row/column indices of self.array of labels that contain the string defined in `items_to_look_for`.
:param items_to_look_for: string to search for
:return: list | carculator/inventory.py | get_index_vehicle_from_array | rena-nong/carculator | 1 | python | def get_index_vehicle_from_array(self, items_to_look_for, items_to_look_for_also=None, method='or'):
'\n Return list of row/column indices of self.array of labels that contain the string defined in `items_to_look_for`.\n\n :param items_to_look_for: string to search for\n :return: list\n '
if (not isinstance(items_to_look_for, list)):
items_to_look_for = [items_to_look_for]
if (not (items_to_look_for_also is None)):
if (not isinstance(items_to_look_for_also, list)):
items_to_look_for_also = [items_to_look_for_also]
list_vehicles = self.array.desired.values
if (method == 'or'):
return [c for (c, v) in enumerate(list_vehicles) if set(items_to_look_for).intersection(v)]
if (method == 'and'):
return [c for (c, v) in enumerate(list_vehicles) if (set(items_to_look_for).intersection(v) and set(items_to_look_for_also).intersection(v))] | def get_index_vehicle_from_array(self, items_to_look_for, items_to_look_for_also=None, method='or'):
'\n Return list of row/column indices of self.array of labels that contain the string defined in `items_to_look_for`.\n\n :param items_to_look_for: string to search for\n :return: list\n '
if (not isinstance(items_to_look_for, list)):
items_to_look_for = [items_to_look_for]
if (not (items_to_look_for_also is None)):
if (not isinstance(items_to_look_for_also, list)):
items_to_look_for_also = [items_to_look_for_also]
list_vehicles = self.array.desired.values
if (method == 'or'):
return [c for (c, v) in enumerate(list_vehicles) if set(items_to_look_for).intersection(v)]
if (method == 'and'):
return [c for (c, v) in enumerate(list_vehicles) if (set(items_to_look_for).intersection(v) and set(items_to_look_for_also).intersection(v))]<|docstring|>Return list of row/column indices of self.array of labels that contain the string defined in `items_to_look_for`.
:param items_to_look_for: string to search for
:return: list<|endoftext|> |
8047bec7133f47408b2e6754e250b4241a0f59c3d55976d84ed2f128900b451a | def get_index_of_flows(self, items_to_look_for, search_by='name'):
'\n Return list of row/column indices of self.A of labels that contain the string defined in `items_to_look_for`.\n\n :param items_to_look_for: string\n :param search_by: "name" or "compartment" (for elementary flows)\n :return: list of row/column indices\n :rtype: list\n '
if (search_by == 'name'):
return [int(self.inputs[c]) for c in self.inputs if all(((ele in c[0].lower()) for ele in items_to_look_for))]
if (search_by == 'compartment'):
return [int(self.inputs[c]) for c in self.inputs if all(((ele in c[1]) for ele in items_to_look_for))] | Return list of row/column indices of self.A of labels that contain the string defined in `items_to_look_for`.
:param items_to_look_for: string
:param search_by: "name" or "compartment" (for elementary flows)
:return: list of row/column indices
:rtype: list | carculator/inventory.py | get_index_of_flows | rena-nong/carculator | 1 | python | def get_index_of_flows(self, items_to_look_for, search_by='name'):
'\n Return list of row/column indices of self.A of labels that contain the string defined in `items_to_look_for`.\n\n :param items_to_look_for: string\n :param search_by: "name" or "compartment" (for elementary flows)\n :return: list of row/column indices\n :rtype: list\n '
if (search_by == 'name'):
return [int(self.inputs[c]) for c in self.inputs if all(((ele in c[0].lower()) for ele in items_to_look_for))]
if (search_by == 'compartment'):
return [int(self.inputs[c]) for c in self.inputs if all(((ele in c[1]) for ele in items_to_look_for))] | def get_index_of_flows(self, items_to_look_for, search_by='name'):
'\n Return list of row/column indices of self.A of labels that contain the string defined in `items_to_look_for`.\n\n :param items_to_look_for: string\n :param search_by: "name" or "compartment" (for elementary flows)\n :return: list of row/column indices\n :rtype: list\n '
if (search_by == 'name'):
return [int(self.inputs[c]) for c in self.inputs if all(((ele in c[0].lower()) for ele in items_to_look_for))]
if (search_by == 'compartment'):
return [int(self.inputs[c]) for c in self.inputs if all(((ele in c[1]) for ele in items_to_look_for))]<|docstring|>Return list of row/column indices of self.A of labels that contain the string defined in `items_to_look_for`.
:param items_to_look_for: string
:param search_by: "name" or "compartment" (for elementary flows)
:return: list of row/column indices
:rtype: list<|endoftext|> |
e97092b7829916b6672548788742c53defe93ba94b53a5f68fd3747b5ae48c2d | def export_lci(self, presamples=True, ecoinvent_compatibility=True, ecoinvent_version='3.7', db_name='carculator db', forbidden_activities=None, create_vehicle_datasets=True):
'\n Export the inventory as a dictionary. Also return a list of arrays that contain pre-sampled random values if\n :meth:`stochastic` of :class:`CarModel` class has been called.\n\n :param presamples: boolean.\n :param ecoinvent_compatibility: bool. If True, compatible with ecoinvent. If False, compatible with REMIND-ecoinvent.\n :param ecoinvent_version: str. "3.5", "3.6" or "uvek"\n :param create_vehicle_datasets: bool. Whether vehicles datasets (as structured in ecoinvent) should be created too.\n :return: inventory, and optionally, list of arrays containing pre-sampled values.\n :rtype: list\n '
self.inputs = self.get_dict_input()
self.bs = BackgroundSystemModel()
self.country = self.get_country_of_use()
self.add_additional_activities()
self.rev_inputs = self.get_rev_dict_input()
self.A = self.get_A_matrix()
if create_vehicle_datasets:
self.add_additional_activities_for_export()
self.rev_inputs = self.get_rev_dict_input()
self.A = self.get_A_matrix()
self.create_electricity_market_for_fuel_prep()
self.create_electricity_market_for_battery_production()
self.fuel_blends = {}
self.fuel_dictionary = self.create_fuel_dictionary()
self.define_fuel_blends()
self.set_actual_range()
self.set_inputs_in_A_matrix_for_export(self.array.values)
else:
self.create_electricity_market_for_fuel_prep()
self.create_electricity_market_for_battery_production()
self.fuel_blends = {}
self.fuel_dictionary = self.create_fuel_dictionary()
self.define_fuel_blends()
self.set_actual_range()
self.set_inputs_in_A_matrix(self.array.values)
if isinstance(self.fleet, xr.core.dataarray.DataArray):
print('Building fleet average vehicles...')
self.build_fleet_vehicles()
self.rev_inputs = self.get_rev_dict_input()
self.number_of_cars += (len(self.scope['year']) * len(self.scope['powertrain']))
if (not ecoinvent_compatibility):
fuel_markets = [self.inputs[a] for a in self.inputs if ('fuel market for' in a[0])]
electricity_inputs = [self.inputs[a] for a in self.inputs if ('electricity market for' in a[0])]
self.A[np.ix_(range(self.A.shape[0]), electricity_inputs, fuel_markets)] = 0
if (presamples == True):
(lci, array) = ExportInventory(self.A, self.rev_inputs, db_name=db_name).write_lci(presamples=presamples, ecoinvent_compatibility=ecoinvent_compatibility, ecoinvent_version=ecoinvent_version, forbidden_activities=forbidden_activities, vehicle_specs=self.specs)
return (lci, array)
else:
lci = ExportInventory(self.A, self.rev_inputs, db_name=db_name).write_lci(presamples=presamples, ecoinvent_compatibility=ecoinvent_compatibility, ecoinvent_version=ecoinvent_version, forbidden_activities=forbidden_activities, vehicle_specs=self.specs)
return lci | Export the inventory as a dictionary. Also return a list of arrays that contain pre-sampled random values if
:meth:`stochastic` of :class:`CarModel` class has been called.
:param presamples: boolean.
:param ecoinvent_compatibility: bool. If True, compatible with ecoinvent. If False, compatible with REMIND-ecoinvent.
:param ecoinvent_version: str. "3.5", "3.6" or "uvek"
:param create_vehicle_datasets: bool. Whether vehicles datasets (as structured in ecoinvent) should be created too.
:return: inventory, and optionally, list of arrays containing pre-sampled values.
:rtype: list | carculator/inventory.py | export_lci | rena-nong/carculator | 1 | python | def export_lci(self, presamples=True, ecoinvent_compatibility=True, ecoinvent_version='3.7', db_name='carculator db', forbidden_activities=None, create_vehicle_datasets=True):
'\n Export the inventory as a dictionary. Also return a list of arrays that contain pre-sampled random values if\n :meth:`stochastic` of :class:`CarModel` class has been called.\n\n :param presamples: boolean.\n :param ecoinvent_compatibility: bool. If True, compatible with ecoinvent. If False, compatible with REMIND-ecoinvent.\n :param ecoinvent_version: str. "3.5", "3.6" or "uvek"\n :param create_vehicle_datasets: bool. Whether vehicles datasets (as structured in ecoinvent) should be created too.\n :return: inventory, and optionally, list of arrays containing pre-sampled values.\n :rtype: list\n '
self.inputs = self.get_dict_input()
self.bs = BackgroundSystemModel()
self.country = self.get_country_of_use()
self.add_additional_activities()
self.rev_inputs = self.get_rev_dict_input()
self.A = self.get_A_matrix()
if create_vehicle_datasets:
self.add_additional_activities_for_export()
self.rev_inputs = self.get_rev_dict_input()
self.A = self.get_A_matrix()
self.create_electricity_market_for_fuel_prep()
self.create_electricity_market_for_battery_production()
self.fuel_blends = {}
self.fuel_dictionary = self.create_fuel_dictionary()
self.define_fuel_blends()
self.set_actual_range()
self.set_inputs_in_A_matrix_for_export(self.array.values)
else:
self.create_electricity_market_for_fuel_prep()
self.create_electricity_market_for_battery_production()
self.fuel_blends = {}
self.fuel_dictionary = self.create_fuel_dictionary()
self.define_fuel_blends()
self.set_actual_range()
self.set_inputs_in_A_matrix(self.array.values)
if isinstance(self.fleet, xr.core.dataarray.DataArray):
print('Building fleet average vehicles...')
self.build_fleet_vehicles()
self.rev_inputs = self.get_rev_dict_input()
self.number_of_cars += (len(self.scope['year']) * len(self.scope['powertrain']))
if (not ecoinvent_compatibility):
fuel_markets = [self.inputs[a] for a in self.inputs if ('fuel market for' in a[0])]
electricity_inputs = [self.inputs[a] for a in self.inputs if ('electricity market for' in a[0])]
self.A[np.ix_(range(self.A.shape[0]), electricity_inputs, fuel_markets)] = 0
if (presamples == True):
(lci, array) = ExportInventory(self.A, self.rev_inputs, db_name=db_name).write_lci(presamples=presamples, ecoinvent_compatibility=ecoinvent_compatibility, ecoinvent_version=ecoinvent_version, forbidden_activities=forbidden_activities, vehicle_specs=self.specs)
return (lci, array)
else:
lci = ExportInventory(self.A, self.rev_inputs, db_name=db_name).write_lci(presamples=presamples, ecoinvent_compatibility=ecoinvent_compatibility, ecoinvent_version=ecoinvent_version, forbidden_activities=forbidden_activities, vehicle_specs=self.specs)
return lci | def export_lci(self, presamples=True, ecoinvent_compatibility=True, ecoinvent_version='3.7', db_name='carculator db', forbidden_activities=None, create_vehicle_datasets=True):
'\n Export the inventory as a dictionary. Also return a list of arrays that contain pre-sampled random values if\n :meth:`stochastic` of :class:`CarModel` class has been called.\n\n :param presamples: boolean.\n :param ecoinvent_compatibility: bool. If True, compatible with ecoinvent. If False, compatible with REMIND-ecoinvent.\n :param ecoinvent_version: str. "3.5", "3.6" or "uvek"\n :param create_vehicle_datasets: bool. Whether vehicles datasets (as structured in ecoinvent) should be created too.\n :return: inventory, and optionally, list of arrays containing pre-sampled values.\n :rtype: list\n '
self.inputs = self.get_dict_input()
self.bs = BackgroundSystemModel()
self.country = self.get_country_of_use()
self.add_additional_activities()
self.rev_inputs = self.get_rev_dict_input()
self.A = self.get_A_matrix()
if create_vehicle_datasets:
self.add_additional_activities_for_export()
self.rev_inputs = self.get_rev_dict_input()
self.A = self.get_A_matrix()
self.create_electricity_market_for_fuel_prep()
self.create_electricity_market_for_battery_production()
self.fuel_blends = {}
self.fuel_dictionary = self.create_fuel_dictionary()
self.define_fuel_blends()
self.set_actual_range()
self.set_inputs_in_A_matrix_for_export(self.array.values)
else:
self.create_electricity_market_for_fuel_prep()
self.create_electricity_market_for_battery_production()
self.fuel_blends = {}
self.fuel_dictionary = self.create_fuel_dictionary()
self.define_fuel_blends()
self.set_actual_range()
self.set_inputs_in_A_matrix(self.array.values)
if isinstance(self.fleet, xr.core.dataarray.DataArray):
print('Building fleet average vehicles...')
self.build_fleet_vehicles()
self.rev_inputs = self.get_rev_dict_input()
self.number_of_cars += (len(self.scope['year']) * len(self.scope['powertrain']))
if (not ecoinvent_compatibility):
fuel_markets = [self.inputs[a] for a in self.inputs if ('fuel market for' in a[0])]
electricity_inputs = [self.inputs[a] for a in self.inputs if ('electricity market for' in a[0])]
self.A[np.ix_(range(self.A.shape[0]), electricity_inputs, fuel_markets)] = 0
if (presamples == True):
(lci, array) = ExportInventory(self.A, self.rev_inputs, db_name=db_name).write_lci(presamples=presamples, ecoinvent_compatibility=ecoinvent_compatibility, ecoinvent_version=ecoinvent_version, forbidden_activities=forbidden_activities, vehicle_specs=self.specs)
return (lci, array)
else:
lci = ExportInventory(self.A, self.rev_inputs, db_name=db_name).write_lci(presamples=presamples, ecoinvent_compatibility=ecoinvent_compatibility, ecoinvent_version=ecoinvent_version, forbidden_activities=forbidden_activities, vehicle_specs=self.specs)
return lci<|docstring|>Export the inventory as a dictionary. Also return a list of arrays that contain pre-sampled random values if
:meth:`stochastic` of :class:`CarModel` class has been called.
:param presamples: boolean.
:param ecoinvent_compatibility: bool. If True, compatible with ecoinvent. If False, compatible with REMIND-ecoinvent.
:param ecoinvent_version: str. "3.5", "3.6" or "uvek"
:param create_vehicle_datasets: bool. Whether vehicles datasets (as structured in ecoinvent) should be created too.
:return: inventory, and optionally, list of arrays containing pre-sampled values.
:rtype: list<|endoftext|> |
e25e4e6d027cab003e09a09fb081d30c99910ad5ab275881d6760f1066a7fdbe | def export_lci_to_bw(self, presamples=True, ecoinvent_compatibility=True, ecoinvent_version='3.7', db_name='carculator db', forbidden_activities=None, create_vehicle_datasets=True):
'\n Export the inventory as a `brightway2` bw2io.importers.base_lci.LCIImporter object\n with the inventory in the `data` attribute.\n\n .. code-block:: python\n\n # get the inventory\n i, _ = ic.export_lci_to_bw()\n\n # import it in a Brightway2 project\n i.match_database(\'ecoinvent 3.6 cutoff\', fields=(\'name\', \'unit\', \'location\', \'reference product\'))\n i.match_database("biosphere3", fields=(\'name\', \'unit\', \'categories\'))\n i.match_database(fields=(\'name\', \'unit\', \'location\', \'reference product\'))\n i.match_database(fields=(\'name\', \'unit\', \'categories\'))\n\n # Create an additional biosphere database for the few flows that do not\n # exist in "biosphere3"\n i.create_new_biosphere("additional_biosphere", relink=True)\n\n # Check if all exchanges link\n i.statistics()\n\n # Register the database\n i.write_database()\n\n :return: LCIImport object that can be directly registered in a `brightway2` project.\n :rtype: bw2io.importers.base_lci.LCIImporter\n '
self.inputs = self.get_dict_input()
self.bs = BackgroundSystemModel()
self.country = self.get_country_of_use()
self.add_additional_activities()
self.rev_inputs = self.get_rev_dict_input()
self.A = self.get_A_matrix()
if create_vehicle_datasets:
self.add_additional_activities_for_export()
self.rev_inputs = self.get_rev_dict_input()
self.A = self.get_A_matrix()
self.create_electricity_market_for_fuel_prep()
self.create_electricity_market_for_battery_production()
self.fuel_blends = {}
self.fuel_dictionary = self.create_fuel_dictionary()
self.define_fuel_blends()
self.set_actual_range()
self.set_inputs_in_A_matrix_for_export(self.array.values)
else:
self.create_electricity_market_for_fuel_prep()
self.create_electricity_market_for_battery_production()
self.fuel_blends = {}
self.fuel_dictionary = self.create_fuel_dictionary()
self.define_fuel_blends()
self.set_actual_range()
self.set_inputs_in_A_matrix(self.array.values)
if isinstance(self.fleet, xr.core.dataarray.DataArray):
print('Building fleet average vehicles...')
self.build_fleet_vehicles()
self.rev_inputs = self.get_rev_dict_input()
self.number_of_cars += (len(self.scope['year']) * len(self.scope['powertrain']))
if (not ecoinvent_compatibility):
fuel_markets = [self.inputs[a] for a in self.inputs if ('fuel market for' in a[0])]
electricity_inputs = [self.inputs[a] for a in self.inputs if ('electricity market for' in a[0])]
self.A[np.ix_(range(self.A.shape[0]), electricity_inputs, fuel_markets)] = 0
if (presamples == True):
(lci, array) = ExportInventory(self.A, self.rev_inputs, db_name=db_name).write_lci_to_bw(presamples=presamples, ecoinvent_compatibility=ecoinvent_compatibility, ecoinvent_version=ecoinvent_version, forbidden_activities=forbidden_activities, vehicle_specs=self.specs)
return (lci, array)
else:
lci = ExportInventory(self.A, self.rev_inputs, db_name=db_name).write_lci_to_bw(presamples=presamples, ecoinvent_compatibility=ecoinvent_compatibility, ecoinvent_version=ecoinvent_version, forbidden_activities=forbidden_activities, vehicle_specs=self.specs)
return lci | Export the inventory as a `brightway2` bw2io.importers.base_lci.LCIImporter object
with the inventory in the `data` attribute.
.. code-block:: python
# get the inventory
i, _ = ic.export_lci_to_bw()
# import it in a Brightway2 project
i.match_database('ecoinvent 3.6 cutoff', fields=('name', 'unit', 'location', 'reference product'))
i.match_database("biosphere3", fields=('name', 'unit', 'categories'))
i.match_database(fields=('name', 'unit', 'location', 'reference product'))
i.match_database(fields=('name', 'unit', 'categories'))
# Create an additional biosphere database for the few flows that do not
# exist in "biosphere3"
i.create_new_biosphere("additional_biosphere", relink=True)
# Check if all exchanges link
i.statistics()
# Register the database
i.write_database()
:return: LCIImport object that can be directly registered in a `brightway2` project.
:rtype: bw2io.importers.base_lci.LCIImporter | carculator/inventory.py | export_lci_to_bw | rena-nong/carculator | 1 | python | def export_lci_to_bw(self, presamples=True, ecoinvent_compatibility=True, ecoinvent_version='3.7', db_name='carculator db', forbidden_activities=None, create_vehicle_datasets=True):
'\n Export the inventory as a `brightway2` bw2io.importers.base_lci.LCIImporter object\n with the inventory in the `data` attribute.\n\n .. code-block:: python\n\n # get the inventory\n i, _ = ic.export_lci_to_bw()\n\n # import it in a Brightway2 project\n i.match_database(\'ecoinvent 3.6 cutoff\', fields=(\'name\', \'unit\', \'location\', \'reference product\'))\n i.match_database("biosphere3", fields=(\'name\', \'unit\', \'categories\'))\n i.match_database(fields=(\'name\', \'unit\', \'location\', \'reference product\'))\n i.match_database(fields=(\'name\', \'unit\', \'categories\'))\n\n # Create an additional biosphere database for the few flows that do not\n # exist in "biosphere3"\n i.create_new_biosphere("additional_biosphere", relink=True)\n\n # Check if all exchanges link\n i.statistics()\n\n # Register the database\n i.write_database()\n\n :return: LCIImport object that can be directly registered in a `brightway2` project.\n :rtype: bw2io.importers.base_lci.LCIImporter\n '
self.inputs = self.get_dict_input()
self.bs = BackgroundSystemModel()
self.country = self.get_country_of_use()
self.add_additional_activities()
self.rev_inputs = self.get_rev_dict_input()
self.A = self.get_A_matrix()
if create_vehicle_datasets:
self.add_additional_activities_for_export()
self.rev_inputs = self.get_rev_dict_input()
self.A = self.get_A_matrix()
self.create_electricity_market_for_fuel_prep()
self.create_electricity_market_for_battery_production()
self.fuel_blends = {}
self.fuel_dictionary = self.create_fuel_dictionary()
self.define_fuel_blends()
self.set_actual_range()
self.set_inputs_in_A_matrix_for_export(self.array.values)
else:
self.create_electricity_market_for_fuel_prep()
self.create_electricity_market_for_battery_production()
self.fuel_blends = {}
self.fuel_dictionary = self.create_fuel_dictionary()
self.define_fuel_blends()
self.set_actual_range()
self.set_inputs_in_A_matrix(self.array.values)
if isinstance(self.fleet, xr.core.dataarray.DataArray):
print('Building fleet average vehicles...')
self.build_fleet_vehicles()
self.rev_inputs = self.get_rev_dict_input()
self.number_of_cars += (len(self.scope['year']) * len(self.scope['powertrain']))
if (not ecoinvent_compatibility):
fuel_markets = [self.inputs[a] for a in self.inputs if ('fuel market for' in a[0])]
electricity_inputs = [self.inputs[a] for a in self.inputs if ('electricity market for' in a[0])]
self.A[np.ix_(range(self.A.shape[0]), electricity_inputs, fuel_markets)] = 0
if (presamples == True):
(lci, array) = ExportInventory(self.A, self.rev_inputs, db_name=db_name).write_lci_to_bw(presamples=presamples, ecoinvent_compatibility=ecoinvent_compatibility, ecoinvent_version=ecoinvent_version, forbidden_activities=forbidden_activities, vehicle_specs=self.specs)
return (lci, array)
else:
lci = ExportInventory(self.A, self.rev_inputs, db_name=db_name).write_lci_to_bw(presamples=presamples, ecoinvent_compatibility=ecoinvent_compatibility, ecoinvent_version=ecoinvent_version, forbidden_activities=forbidden_activities, vehicle_specs=self.specs)
return lci | def export_lci_to_bw(self, presamples=True, ecoinvent_compatibility=True, ecoinvent_version='3.7', db_name='carculator db', forbidden_activities=None, create_vehicle_datasets=True):
'\n Export the inventory as a `brightway2` bw2io.importers.base_lci.LCIImporter object\n with the inventory in the `data` attribute.\n\n .. code-block:: python\n\n # get the inventory\n i, _ = ic.export_lci_to_bw()\n\n # import it in a Brightway2 project\n i.match_database(\'ecoinvent 3.6 cutoff\', fields=(\'name\', \'unit\', \'location\', \'reference product\'))\n i.match_database("biosphere3", fields=(\'name\', \'unit\', \'categories\'))\n i.match_database(fields=(\'name\', \'unit\', \'location\', \'reference product\'))\n i.match_database(fields=(\'name\', \'unit\', \'categories\'))\n\n # Create an additional biosphere database for the few flows that do not\n # exist in "biosphere3"\n i.create_new_biosphere("additional_biosphere", relink=True)\n\n # Check if all exchanges link\n i.statistics()\n\n # Register the database\n i.write_database()\n\n :return: LCIImport object that can be directly registered in a `brightway2` project.\n :rtype: bw2io.importers.base_lci.LCIImporter\n '
self.inputs = self.get_dict_input()
self.bs = BackgroundSystemModel()
self.country = self.get_country_of_use()
self.add_additional_activities()
self.rev_inputs = self.get_rev_dict_input()
self.A = self.get_A_matrix()
if create_vehicle_datasets:
self.add_additional_activities_for_export()
self.rev_inputs = self.get_rev_dict_input()
self.A = self.get_A_matrix()
self.create_electricity_market_for_fuel_prep()
self.create_electricity_market_for_battery_production()
self.fuel_blends = {}
self.fuel_dictionary = self.create_fuel_dictionary()
self.define_fuel_blends()
self.set_actual_range()
self.set_inputs_in_A_matrix_for_export(self.array.values)
else:
self.create_electricity_market_for_fuel_prep()
self.create_electricity_market_for_battery_production()
self.fuel_blends = {}
self.fuel_dictionary = self.create_fuel_dictionary()
self.define_fuel_blends()
self.set_actual_range()
self.set_inputs_in_A_matrix(self.array.values)
if isinstance(self.fleet, xr.core.dataarray.DataArray):
print('Building fleet average vehicles...')
self.build_fleet_vehicles()
self.rev_inputs = self.get_rev_dict_input()
self.number_of_cars += (len(self.scope['year']) * len(self.scope['powertrain']))
if (not ecoinvent_compatibility):
fuel_markets = [self.inputs[a] for a in self.inputs if ('fuel market for' in a[0])]
electricity_inputs = [self.inputs[a] for a in self.inputs if ('electricity market for' in a[0])]
self.A[np.ix_(range(self.A.shape[0]), electricity_inputs, fuel_markets)] = 0
if (presamples == True):
(lci, array) = ExportInventory(self.A, self.rev_inputs, db_name=db_name).write_lci_to_bw(presamples=presamples, ecoinvent_compatibility=ecoinvent_compatibility, ecoinvent_version=ecoinvent_version, forbidden_activities=forbidden_activities, vehicle_specs=self.specs)
return (lci, array)
else:
lci = ExportInventory(self.A, self.rev_inputs, db_name=db_name).write_lci_to_bw(presamples=presamples, ecoinvent_compatibility=ecoinvent_compatibility, ecoinvent_version=ecoinvent_version, forbidden_activities=forbidden_activities, vehicle_specs=self.specs)
return lci<|docstring|>Export the inventory as a `brightway2` bw2io.importers.base_lci.LCIImporter object
with the inventory in the `data` attribute.
.. code-block:: python
# get the inventory
i, _ = ic.export_lci_to_bw()
# import it in a Brightway2 project
i.match_database('ecoinvent 3.6 cutoff', fields=('name', 'unit', 'location', 'reference product'))
i.match_database("biosphere3", fields=('name', 'unit', 'categories'))
i.match_database(fields=('name', 'unit', 'location', 'reference product'))
i.match_database(fields=('name', 'unit', 'categories'))
# Create an additional biosphere database for the few flows that do not
# exist in "biosphere3"
i.create_new_biosphere("additional_biosphere", relink=True)
# Check if all exchanges link
i.statistics()
# Register the database
i.write_database()
:return: LCIImport object that can be directly registered in a `brightway2` project.
:rtype: bw2io.importers.base_lci.LCIImporter<|endoftext|> |
886d27c3ca7b316bf75dec46dc1667c6dc89f716996c038b10db74f52d5c65f3 | def export_lci_to_excel(self, directory=None, ecoinvent_compatibility=True, ecoinvent_version='3.7', software_compatibility='brightway2', filename=None, forbidden_activities=None, create_vehicle_datasets=True, export_format='file'):
'\n Export the inventory as an Excel file (if the destination software is Brightway2) or a CSV file (if the destination software is Simapro) file.\n Also return the file path where the file is stored.\n\n :param directory: directory where to save the file.\n :type directory: str\n :param ecoinvent_compatibility: If True, compatible with ecoinvent. If False, compatible with REMIND-ecoinvent.\n :param ecoinvent_version: "3.6", "3.5" or "uvek"\n :param software_compatibility: "brightway2" or "simapro"\n :return: file path where the file is stored.\n :rtype: str\n '
if (software_compatibility not in ('brightway2', 'simapro')):
raise NameError("The destination software argument is not valid. Choose between 'brightway2' or 'simapro'.")
if (software_compatibility == 'simapro'):
if (ecoinvent_version == '3.7'):
print('Simapro-compatible inventory export is only available for ecoinvent 3.5, 3.6 or UVEK.')
return
ecoinvent_compatibility = True
self.inputs = self.get_dict_input()
self.bs = BackgroundSystemModel()
self.country = self.get_country_of_use()
self.add_additional_activities()
self.rev_inputs = self.get_rev_dict_input()
self.A = self.get_A_matrix()
if create_vehicle_datasets:
self.add_additional_activities_for_export()
self.rev_inputs = self.get_rev_dict_input()
self.A = self.get_A_matrix()
self.create_electricity_market_for_fuel_prep()
self.fuel_blends = {}
self.fuel_dictionary = self.create_fuel_dictionary()
self.define_fuel_blends()
self.set_actual_range()
self.create_electricity_market_for_battery_production()
self.set_inputs_in_A_matrix_for_export(self.array.values)
else:
self.create_electricity_market_for_fuel_prep()
self.create_electricity_market_for_battery_production()
self.fuel_blends = {}
self.fuel_dictionary = self.create_fuel_dictionary()
self.define_fuel_blends()
self.set_actual_range()
self.set_inputs_in_A_matrix(self.array.values)
if isinstance(self.fleet, xr.core.dataarray.DataArray):
print('Building fleet average vehicles...')
self.build_fleet_vehicles()
self.rev_inputs = self.get_rev_dict_input()
self.number_of_cars += (len(self.scope['year']) * len(self.scope['powertrain']))
if (not ecoinvent_compatibility):
fuel_markets = [self.inputs[a] for a in self.inputs if ('fuel market for' in a[0])]
electricity_inputs = [self.inputs[a] for a in self.inputs if ('electricity market for' in a[0])]
self.A[np.ix_(range(self.A.shape[0]), electricity_inputs, fuel_markets)] = 0
fp = ExportInventory(self.A, self.rev_inputs, db_name=(filename or 'carculator db')).write_lci_to_excel(directory=directory, ecoinvent_compatibility=ecoinvent_compatibility, ecoinvent_version=ecoinvent_version, software_compatibility=software_compatibility, filename=filename, forbidden_activities=forbidden_activities, export_format=export_format, vehicle_specs=self.specs)
return fp | Export the inventory as an Excel file (if the destination software is Brightway2) or a CSV file (if the destination software is Simapro) file.
Also return the file path where the file is stored.
:param directory: directory where to save the file.
:type directory: str
:param ecoinvent_compatibility: If True, compatible with ecoinvent. If False, compatible with REMIND-ecoinvent.
:param ecoinvent_version: "3.6", "3.5" or "uvek"
:param software_compatibility: "brightway2" or "simapro"
:return: file path where the file is stored.
:rtype: str | carculator/inventory.py | export_lci_to_excel | rena-nong/carculator | 1 | python | def export_lci_to_excel(self, directory=None, ecoinvent_compatibility=True, ecoinvent_version='3.7', software_compatibility='brightway2', filename=None, forbidden_activities=None, create_vehicle_datasets=True, export_format='file'):
'\n Export the inventory as an Excel file (if the destination software is Brightway2) or a CSV file (if the destination software is Simapro) file.\n Also return the file path where the file is stored.\n\n :param directory: directory where to save the file.\n :type directory: str\n :param ecoinvent_compatibility: If True, compatible with ecoinvent. If False, compatible with REMIND-ecoinvent.\n :param ecoinvent_version: "3.6", "3.5" or "uvek"\n :param software_compatibility: "brightway2" or "simapro"\n :return: file path where the file is stored.\n :rtype: str\n '
if (software_compatibility not in ('brightway2', 'simapro')):
raise NameError("The destination software argument is not valid. Choose between 'brightway2' or 'simapro'.")
if (software_compatibility == 'simapro'):
if (ecoinvent_version == '3.7'):
print('Simapro-compatible inventory export is only available for ecoinvent 3.5, 3.6 or UVEK.')
return
ecoinvent_compatibility = True
self.inputs = self.get_dict_input()
self.bs = BackgroundSystemModel()
self.country = self.get_country_of_use()
self.add_additional_activities()
self.rev_inputs = self.get_rev_dict_input()
self.A = self.get_A_matrix()
if create_vehicle_datasets:
self.add_additional_activities_for_export()
self.rev_inputs = self.get_rev_dict_input()
self.A = self.get_A_matrix()
self.create_electricity_market_for_fuel_prep()
self.fuel_blends = {}
self.fuel_dictionary = self.create_fuel_dictionary()
self.define_fuel_blends()
self.set_actual_range()
self.create_electricity_market_for_battery_production()
self.set_inputs_in_A_matrix_for_export(self.array.values)
else:
self.create_electricity_market_for_fuel_prep()
self.create_electricity_market_for_battery_production()
self.fuel_blends = {}
self.fuel_dictionary = self.create_fuel_dictionary()
self.define_fuel_blends()
self.set_actual_range()
self.set_inputs_in_A_matrix(self.array.values)
if isinstance(self.fleet, xr.core.dataarray.DataArray):
print('Building fleet average vehicles...')
self.build_fleet_vehicles()
self.rev_inputs = self.get_rev_dict_input()
self.number_of_cars += (len(self.scope['year']) * len(self.scope['powertrain']))
if (not ecoinvent_compatibility):
fuel_markets = [self.inputs[a] for a in self.inputs if ('fuel market for' in a[0])]
electricity_inputs = [self.inputs[a] for a in self.inputs if ('electricity market for' in a[0])]
self.A[np.ix_(range(self.A.shape[0]), electricity_inputs, fuel_markets)] = 0
fp = ExportInventory(self.A, self.rev_inputs, db_name=(filename or 'carculator db')).write_lci_to_excel(directory=directory, ecoinvent_compatibility=ecoinvent_compatibility, ecoinvent_version=ecoinvent_version, software_compatibility=software_compatibility, filename=filename, forbidden_activities=forbidden_activities, export_format=export_format, vehicle_specs=self.specs)
return fp | def export_lci_to_excel(self, directory=None, ecoinvent_compatibility=True, ecoinvent_version='3.7', software_compatibility='brightway2', filename=None, forbidden_activities=None, create_vehicle_datasets=True, export_format='file'):
'\n Export the inventory as an Excel file (if the destination software is Brightway2) or a CSV file (if the destination software is Simapro) file.\n Also return the file path where the file is stored.\n\n :param directory: directory where to save the file.\n :type directory: str\n :param ecoinvent_compatibility: If True, compatible with ecoinvent. If False, compatible with REMIND-ecoinvent.\n :param ecoinvent_version: "3.6", "3.5" or "uvek"\n :param software_compatibility: "brightway2" or "simapro"\n :return: file path where the file is stored.\n :rtype: str\n '
if (software_compatibility not in ('brightway2', 'simapro')):
raise NameError("The destination software argument is not valid. Choose between 'brightway2' or 'simapro'.")
if (software_compatibility == 'simapro'):
if (ecoinvent_version == '3.7'):
print('Simapro-compatible inventory export is only available for ecoinvent 3.5, 3.6 or UVEK.')
return
ecoinvent_compatibility = True
self.inputs = self.get_dict_input()
self.bs = BackgroundSystemModel()
self.country = self.get_country_of_use()
self.add_additional_activities()
self.rev_inputs = self.get_rev_dict_input()
self.A = self.get_A_matrix()
if create_vehicle_datasets:
self.add_additional_activities_for_export()
self.rev_inputs = self.get_rev_dict_input()
self.A = self.get_A_matrix()
self.create_electricity_market_for_fuel_prep()
self.fuel_blends = {}
self.fuel_dictionary = self.create_fuel_dictionary()
self.define_fuel_blends()
self.set_actual_range()
self.create_electricity_market_for_battery_production()
self.set_inputs_in_A_matrix_for_export(self.array.values)
else:
self.create_electricity_market_for_fuel_prep()
self.create_electricity_market_for_battery_production()
self.fuel_blends = {}
self.fuel_dictionary = self.create_fuel_dictionary()
self.define_fuel_blends()
self.set_actual_range()
self.set_inputs_in_A_matrix(self.array.values)
if isinstance(self.fleet, xr.core.dataarray.DataArray):
print('Building fleet average vehicles...')
self.build_fleet_vehicles()
self.rev_inputs = self.get_rev_dict_input()
self.number_of_cars += (len(self.scope['year']) * len(self.scope['powertrain']))
if (not ecoinvent_compatibility):
fuel_markets = [self.inputs[a] for a in self.inputs if ('fuel market for' in a[0])]
electricity_inputs = [self.inputs[a] for a in self.inputs if ('electricity market for' in a[0])]
self.A[np.ix_(range(self.A.shape[0]), electricity_inputs, fuel_markets)] = 0
fp = ExportInventory(self.A, self.rev_inputs, db_name=(filename or 'carculator db')).write_lci_to_excel(directory=directory, ecoinvent_compatibility=ecoinvent_compatibility, ecoinvent_version=ecoinvent_version, software_compatibility=software_compatibility, filename=filename, forbidden_activities=forbidden_activities, export_format=export_format, vehicle_specs=self.specs)
return fp<|docstring|>Export the inventory as an Excel file (if the destination software is Brightway2) or a CSV file (if the destination software is Simapro) file.
Also return the file path where the file is stored.
:param directory: directory where to save the file.
:type directory: str
:param ecoinvent_compatibility: If True, compatible with ecoinvent. If False, compatible with REMIND-ecoinvent.
:param ecoinvent_version: "3.6", "3.5" or "uvek"
:param software_compatibility: "brightway2" or "simapro"
:return: file path where the file is stored.
:rtype: str<|endoftext|> |
10ecc9b143fc48af8ff7ad6d02e3916d8413a71fc9ce904479de888172ad1c65 | def define_electricity_mix_for_fuel_prep(self):
'\n This function defines a fuel mix based either on user-defined mix, or on default mixes for a given country.\n The mix is calculated as the average mix, weighted by the distribution of annually driven kilometers.\n :return:\n '
try:
losses_to_low = float(self.bs.losses[self.country]['LV'])
except KeyError:
losses_to_low = float(self.bs.losses['RER']['LV'])
if ('custom electricity mix' in self.background_configuration):
mix = self.background_configuration['custom electricity mix']
if (np.shape(mix)[0] != len(self.scope['year'])):
raise ValueError('The number of electricity mixes ({}) must match with the number of years ({}).'.format(np.shape(mix)[0], len(self.scope['year'])))
if (not np.allclose(np.sum(mix, 1), np.ones(len(self.scope['year'])))):
print('The sum of the electricity mix share does not equal to 1 for each year.')
else:
use_year = (self.array.values[self.array_inputs['lifetime kilometers']] / self.array.values[self.array_inputs['kilometers per year']]).reshape(self.iterations, len(self.scope['powertrain']), len(self.scope['size']), len(self.scope['year'])).mean(axis=(0, 1, 2))
if (self.country not in self.bs.electricity_mix.country.values):
print('The electricity mix for {} could not be found. Average European electricity mix is used instead.'.format(self.country))
country = 'RER'
else:
country = self.country
mix = [(self.bs.electricity_mix.sel(country=country, variable=['Hydro', 'Nuclear', 'Gas', 'Solar', 'Wind', 'Biomass', 'Coal', 'Oil', 'Geothermal', 'Waste', 'Biogas CCS', 'Biomass CCS', 'Coal CCS', 'Gas CCS', 'Wood CCS']).interp(year=np.arange(year, (year + use_year[y])), kwargs={'fill_value': 'extrapolate'}).mean(axis=0).values if ((y + use_year[y]) <= 2050) else self.bs.electricity_mix.sel(country=country, variable=['Hydro', 'Nuclear', 'Gas', 'Solar', 'Wind', 'Biomass', 'Coal', 'Oil', 'Geothermal', 'Waste', 'Biogas CCS', 'Biomass CCS', 'Coal CCS', 'Gas CCS', 'Wood CCS']).interp(year=np.arange(year, 2051), kwargs={'fill_value': 'extrapolate'}).mean(axis=0).values) for (y, year) in enumerate(self.scope['year'])]
return (np.clip(mix, 0, 1) / np.clip(mix, 0, 1).sum(axis=1)[(:, None)]) | This function defines a fuel mix based either on user-defined mix, or on default mixes for a given country.
The mix is calculated as the average mix, weighted by the distribution of annually driven kilometers.
:return: | carculator/inventory.py | define_electricity_mix_for_fuel_prep | rena-nong/carculator | 1 | python | def define_electricity_mix_for_fuel_prep(self):
'\n This function defines a fuel mix based either on user-defined mix, or on default mixes for a given country.\n The mix is calculated as the average mix, weighted by the distribution of annually driven kilometers.\n :return:\n '
try:
losses_to_low = float(self.bs.losses[self.country]['LV'])
except KeyError:
losses_to_low = float(self.bs.losses['RER']['LV'])
if ('custom electricity mix' in self.background_configuration):
mix = self.background_configuration['custom electricity mix']
if (np.shape(mix)[0] != len(self.scope['year'])):
raise ValueError('The number of electricity mixes ({}) must match with the number of years ({}).'.format(np.shape(mix)[0], len(self.scope['year'])))
if (not np.allclose(np.sum(mix, 1), np.ones(len(self.scope['year'])))):
print('The sum of the electricity mix share does not equal to 1 for each year.')
else:
use_year = (self.array.values[self.array_inputs['lifetime kilometers']] / self.array.values[self.array_inputs['kilometers per year']]).reshape(self.iterations, len(self.scope['powertrain']), len(self.scope['size']), len(self.scope['year'])).mean(axis=(0, 1, 2))
if (self.country not in self.bs.electricity_mix.country.values):
print('The electricity mix for {} could not be found. Average European electricity mix is used instead.'.format(self.country))
country = 'RER'
else:
country = self.country
mix = [(self.bs.electricity_mix.sel(country=country, variable=['Hydro', 'Nuclear', 'Gas', 'Solar', 'Wind', 'Biomass', 'Coal', 'Oil', 'Geothermal', 'Waste', 'Biogas CCS', 'Biomass CCS', 'Coal CCS', 'Gas CCS', 'Wood CCS']).interp(year=np.arange(year, (year + use_year[y])), kwargs={'fill_value': 'extrapolate'}).mean(axis=0).values if ((y + use_year[y]) <= 2050) else self.bs.electricity_mix.sel(country=country, variable=['Hydro', 'Nuclear', 'Gas', 'Solar', 'Wind', 'Biomass', 'Coal', 'Oil', 'Geothermal', 'Waste', 'Biogas CCS', 'Biomass CCS', 'Coal CCS', 'Gas CCS', 'Wood CCS']).interp(year=np.arange(year, 2051), kwargs={'fill_value': 'extrapolate'}).mean(axis=0).values) for (y, year) in enumerate(self.scope['year'])]
return (np.clip(mix, 0, 1) / np.clip(mix, 0, 1).sum(axis=1)[(:, None)]) | def define_electricity_mix_for_fuel_prep(self):
'\n This function defines a fuel mix based either on user-defined mix, or on default mixes for a given country.\n The mix is calculated as the average mix, weighted by the distribution of annually driven kilometers.\n :return:\n '
try:
losses_to_low = float(self.bs.losses[self.country]['LV'])
except KeyError:
losses_to_low = float(self.bs.losses['RER']['LV'])
if ('custom electricity mix' in self.background_configuration):
mix = self.background_configuration['custom electricity mix']
if (np.shape(mix)[0] != len(self.scope['year'])):
raise ValueError('The number of electricity mixes ({}) must match with the number of years ({}).'.format(np.shape(mix)[0], len(self.scope['year'])))
if (not np.allclose(np.sum(mix, 1), np.ones(len(self.scope['year'])))):
print('The sum of the electricity mix share does not equal to 1 for each year.')
else:
use_year = (self.array.values[self.array_inputs['lifetime kilometers']] / self.array.values[self.array_inputs['kilometers per year']]).reshape(self.iterations, len(self.scope['powertrain']), len(self.scope['size']), len(self.scope['year'])).mean(axis=(0, 1, 2))
if (self.country not in self.bs.electricity_mix.country.values):
print('The electricity mix for {} could not be found. Average European electricity mix is used instead.'.format(self.country))
country = 'RER'
else:
country = self.country
mix = [(self.bs.electricity_mix.sel(country=country, variable=['Hydro', 'Nuclear', 'Gas', 'Solar', 'Wind', 'Biomass', 'Coal', 'Oil', 'Geothermal', 'Waste', 'Biogas CCS', 'Biomass CCS', 'Coal CCS', 'Gas CCS', 'Wood CCS']).interp(year=np.arange(year, (year + use_year[y])), kwargs={'fill_value': 'extrapolate'}).mean(axis=0).values if ((y + use_year[y]) <= 2050) else self.bs.electricity_mix.sel(country=country, variable=['Hydro', 'Nuclear', 'Gas', 'Solar', 'Wind', 'Biomass', 'Coal', 'Oil', 'Geothermal', 'Waste', 'Biogas CCS', 'Biomass CCS', 'Coal CCS', 'Gas CCS', 'Wood CCS']).interp(year=np.arange(year, 2051), kwargs={'fill_value': 'extrapolate'}).mean(axis=0).values) for (y, year) in enumerate(self.scope['year'])]
return (np.clip(mix, 0, 1) / np.clip(mix, 0, 1).sum(axis=1)[(:, None)])<|docstring|>This function defines a fuel mix based either on user-defined mix, or on default mixes for a given country.
The mix is calculated as the average mix, weighted by the distribution of annually driven kilometers.
:return:<|endoftext|> |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.