body_hash
stringlengths
64
64
body
stringlengths
23
109k
docstring
stringlengths
1
57k
path
stringlengths
4
198
name
stringlengths
1
115
repository_name
stringlengths
7
111
repository_stars
float64
0
191k
lang
stringclasses
1 value
body_without_docstring
stringlengths
14
108k
unified
stringlengths
45
133k
5b2e6ca4bad42ba6d909e275476222b77b358c67dd88f639419d0acc31d2884d
def hyperpar_optimization(self, init_points, n_iter, n_jobs, model_run_name, overwrite): ' Applies bayesian hyperparameter optimization for XGBoost parameters ' if (os.path.isfile((('models/' + model_run_name) + '_optimized_parameter.txt')) and (not overwrite)): print('Model was already optimized. Choose different model_run_name or load previous optimization results') else: random.seed(42) xgboost_opt = optimize_xgboost(self.x_train, self.y_train, init_points, n_iter, n_jobs) with open((('models/' + model_run_name) + '_optimized_parameter.txt'), 'w') as json_file: json.dump(xgboost_opt.max, json_file) print((('Optimized model parameters are saved in models/' + model_run_name) + '_optimized_parameter.txt')) hyperpar_opt_results = list() for (i, iteration) in enumerate(xgboost_opt.res): iteration_results_unformated = pd.DataFrame(iteration).transpose() iteration_results = iteration_results_unformated.iloc[1] iteration_results['RMSE'] = (- iteration_results_unformated.iloc[(0, 0)]) hyperpar_opt_results.append(iteration_results.to_dict()) pd.DataFrame(hyperpar_opt_results).to_csv((('models/' + model_run_name) + '_hyperpar_search.csv')) print((('Fully hyperparameter search results are saved in models/' + model_run_name) + '_hyperpar_search.csv'))
Applies bayesian hyperparameter optimization for XGBoost parameters
src/models.py
hyperpar_optimization
MoritzFeigl/Learning-from-mistakes
0
python
def hyperpar_optimization(self, init_points, n_iter, n_jobs, model_run_name, overwrite): ' ' if (os.path.isfile((('models/' + model_run_name) + '_optimized_parameter.txt')) and (not overwrite)): print('Model was already optimized. Choose different model_run_name or load previous optimization results') else: random.seed(42) xgboost_opt = optimize_xgboost(self.x_train, self.y_train, init_points, n_iter, n_jobs) with open((('models/' + model_run_name) + '_optimized_parameter.txt'), 'w') as json_file: json.dump(xgboost_opt.max, json_file) print((('Optimized model parameters are saved in models/' + model_run_name) + '_optimized_parameter.txt')) hyperpar_opt_results = list() for (i, iteration) in enumerate(xgboost_opt.res): iteration_results_unformated = pd.DataFrame(iteration).transpose() iteration_results = iteration_results_unformated.iloc[1] iteration_results['RMSE'] = (- iteration_results_unformated.iloc[(0, 0)]) hyperpar_opt_results.append(iteration_results.to_dict()) pd.DataFrame(hyperpar_opt_results).to_csv((('models/' + model_run_name) + '_hyperpar_search.csv')) print((('Fully hyperparameter search results are saved in models/' + model_run_name) + '_hyperpar_search.csv'))
def hyperpar_optimization(self, init_points, n_iter, n_jobs, model_run_name, overwrite): ' ' if (os.path.isfile((('models/' + model_run_name) + '_optimized_parameter.txt')) and (not overwrite)): print('Model was already optimized. Choose different model_run_name or load previous optimization results') else: random.seed(42) xgboost_opt = optimize_xgboost(self.x_train, self.y_train, init_points, n_iter, n_jobs) with open((('models/' + model_run_name) + '_optimized_parameter.txt'), 'w') as json_file: json.dump(xgboost_opt.max, json_file) print((('Optimized model parameters are saved in models/' + model_run_name) + '_optimized_parameter.txt')) hyperpar_opt_results = list() for (i, iteration) in enumerate(xgboost_opt.res): iteration_results_unformated = pd.DataFrame(iteration).transpose() iteration_results = iteration_results_unformated.iloc[1] iteration_results['RMSE'] = (- iteration_results_unformated.iloc[(0, 0)]) hyperpar_opt_results.append(iteration_results.to_dict()) pd.DataFrame(hyperpar_opt_results).to_csv((('models/' + model_run_name) + '_hyperpar_search.csv')) print((('Fully hyperparameter search results are saved in models/' + model_run_name) + '_hyperpar_search.csv'))<|docstring|>Applies bayesian hyperparameter optimization for XGBoost parameters<|endoftext|>
abc45f8d7deadfd6790ff7f52083adcbfbf14d42e6f0b59869fccffdc2d48b34
def fit(self, model_run_name): ' Fit XGBoost model with previously derived optimal hyperparameters ' with open((('models/' + model_run_name) + '_optimized_parameter.txt')) as f: optimized_parameters = json.load(f) parameters = {'objective': 'reg:squarederror', 'n_estimators': int(optimized_parameters['params']['n_estimators']), 'learning_rate': optimized_parameters['params']['learning_rate'], 'max_depth': int(optimized_parameters['params']['max_depth']), 'gamma': optimized_parameters['params']['gamma'], 'min_child_weight': optimized_parameters['params']['min_child_weight'], 'max_delta_step': int(optimized_parameters['params']['max_delta_step']), 'subsample': optimized_parameters['params']['subsample'], 'colsample_bytree': optimized_parameters['params']['colsample_bytree'], 'scale_pos_weight': optimized_parameters['params']['scale_pos_weight'], 'reg_alpha': optimized_parameters['params']['reg_alpha'], 'reg_lambda': optimized_parameters['params']['reg_lambda']} print('Optimized parameters:') pprint.pprint(parameters) self.model = XGBRegressor(**parameters) random.seed(42) self.model.fit(self.x_train, self.y_train) prediction = self.model.predict(self.x_test) self.test_rmse = np.sqrt(metrics.mean_squared_error(self.y_test, prediction)) print(('Optimized model RMSE in test set: %f' % self.test_rmse)) feature_important = self.model.get_booster().get_score(importance_type='gain') keys = list(feature_important.keys()) values = list(feature_important.values()) feature_data = pd.DataFrame(data=values, index=keys, columns=['score']).sort_values(by='score', ascending=True) sns.set(rc={'figure.figsize': (17, 6)}) feature_data.plot(kind='barh', title='XGBoost feature importance') print('Saved XGBoost feature importance in results/figures/06_xgboost_feature_importance') plt.savefig('results/figures/06_xgboost_feature_importance')
Fit XGBoost model with previously derived optimal hyperparameters
src/models.py
fit
MoritzFeigl/Learning-from-mistakes
0
python
def fit(self, model_run_name): ' ' with open((('models/' + model_run_name) + '_optimized_parameter.txt')) as f: optimized_parameters = json.load(f) parameters = {'objective': 'reg:squarederror', 'n_estimators': int(optimized_parameters['params']['n_estimators']), 'learning_rate': optimized_parameters['params']['learning_rate'], 'max_depth': int(optimized_parameters['params']['max_depth']), 'gamma': optimized_parameters['params']['gamma'], 'min_child_weight': optimized_parameters['params']['min_child_weight'], 'max_delta_step': int(optimized_parameters['params']['max_delta_step']), 'subsample': optimized_parameters['params']['subsample'], 'colsample_bytree': optimized_parameters['params']['colsample_bytree'], 'scale_pos_weight': optimized_parameters['params']['scale_pos_weight'], 'reg_alpha': optimized_parameters['params']['reg_alpha'], 'reg_lambda': optimized_parameters['params']['reg_lambda']} print('Optimized parameters:') pprint.pprint(parameters) self.model = XGBRegressor(**parameters) random.seed(42) self.model.fit(self.x_train, self.y_train) prediction = self.model.predict(self.x_test) self.test_rmse = np.sqrt(metrics.mean_squared_error(self.y_test, prediction)) print(('Optimized model RMSE in test set: %f' % self.test_rmse)) feature_important = self.model.get_booster().get_score(importance_type='gain') keys = list(feature_important.keys()) values = list(feature_important.values()) feature_data = pd.DataFrame(data=values, index=keys, columns=['score']).sort_values(by='score', ascending=True) sns.set(rc={'figure.figsize': (17, 6)}) feature_data.plot(kind='barh', title='XGBoost feature importance') print('Saved XGBoost feature importance in results/figures/06_xgboost_feature_importance') plt.savefig('results/figures/06_xgboost_feature_importance')
def fit(self, model_run_name): ' ' with open((('models/' + model_run_name) + '_optimized_parameter.txt')) as f: optimized_parameters = json.load(f) parameters = {'objective': 'reg:squarederror', 'n_estimators': int(optimized_parameters['params']['n_estimators']), 'learning_rate': optimized_parameters['params']['learning_rate'], 'max_depth': int(optimized_parameters['params']['max_depth']), 'gamma': optimized_parameters['params']['gamma'], 'min_child_weight': optimized_parameters['params']['min_child_weight'], 'max_delta_step': int(optimized_parameters['params']['max_delta_step']), 'subsample': optimized_parameters['params']['subsample'], 'colsample_bytree': optimized_parameters['params']['colsample_bytree'], 'scale_pos_weight': optimized_parameters['params']['scale_pos_weight'], 'reg_alpha': optimized_parameters['params']['reg_alpha'], 'reg_lambda': optimized_parameters['params']['reg_lambda']} print('Optimized parameters:') pprint.pprint(parameters) self.model = XGBRegressor(**parameters) random.seed(42) self.model.fit(self.x_train, self.y_train) prediction = self.model.predict(self.x_test) self.test_rmse = np.sqrt(metrics.mean_squared_error(self.y_test, prediction)) print(('Optimized model RMSE in test set: %f' % self.test_rmse)) feature_important = self.model.get_booster().get_score(importance_type='gain') keys = list(feature_important.keys()) values = list(feature_important.values()) feature_data = pd.DataFrame(data=values, index=keys, columns=['score']).sort_values(by='score', ascending=True) sns.set(rc={'figure.figsize': (17, 6)}) feature_data.plot(kind='barh', title='XGBoost feature importance') print('Saved XGBoost feature importance in results/figures/06_xgboost_feature_importance') plt.savefig('results/figures/06_xgboost_feature_importance')<|docstring|>Fit XGBoost model with previously derived optimal hyperparameters<|endoftext|>
b2e156a2a2637813373ba2be8c9862ad93818f428a7162d2f206f52e8f84be22
def compute_shap_values(self, loadings: pd.DataFrame): 'SHAP and PCA SHAP value computations\n\n Method to compute SHAP and PCA SHAP values for the given XGBoost model.\n\n Parameters\n ----------\n loadings: pd.DataFrame\n Data frame with PCA loadings used to compute PCA SHAP values.\n ' explainer = shap.Explainer(self.model) shap_array = explainer.shap_values(self.x) self.shap_values = pd.DataFrame(shap_array) self.shap_values.columns = self.x.columns self.shap_values.index = self.data.index aggregated_shap_loadings = pd.DataFrame(0, index=self.shap_values.index, columns=loadings.index) for pca_col in self.shap_values.columns: col_shap = self.shap_values[pca_col] col_loading = loadings[pca_col] shap_loadings = [] for (i, loading) in enumerate(col_loading): shap_loadings.append((col_shap * loading)) shap_loadings = pd.concat(shap_loadings, axis=1) shap_loadings.columns = col_loading.index aggregated_shap_loadings = aggregated_shap_loadings.add(shap_loadings, fill_value=0) var_names = list(map((lambda v: re.split('_', v)[0]), self.model_variables)) lag_variables = [x for x in var_names if (x not in ['sin', 'cos'])] self.model_variables_clean = list(map((lambda v: re.split(' \\(', v)[0]), lag_variables)) nlags = len(aggregated_shap_loadings.filter(regex=(self.model_variables_clean[0] + '*')).columns) self.aggregated_shap_values = pd.DataFrame({'hour': ((aggregated_shap_loadings[['sin_hour', 'cos_hour']].sum(axis=1) * nlags) / 2)}) for variable in self.model_variables_clean: self.aggregated_shap_values[variable] = aggregated_shap_loadings.filter(regex=(variable + '*')).sum(axis=1)
SHAP and PCA SHAP value computations Method to compute SHAP and PCA SHAP values for the given XGBoost model. Parameters ---------- loadings: pd.DataFrame Data frame with PCA loadings used to compute PCA SHAP values.
src/models.py
compute_shap_values
MoritzFeigl/Learning-from-mistakes
0
python
def compute_shap_values(self, loadings: pd.DataFrame): 'SHAP and PCA SHAP value computations\n\n Method to compute SHAP and PCA SHAP values for the given XGBoost model.\n\n Parameters\n ----------\n loadings: pd.DataFrame\n Data frame with PCA loadings used to compute PCA SHAP values.\n ' explainer = shap.Explainer(self.model) shap_array = explainer.shap_values(self.x) self.shap_values = pd.DataFrame(shap_array) self.shap_values.columns = self.x.columns self.shap_values.index = self.data.index aggregated_shap_loadings = pd.DataFrame(0, index=self.shap_values.index, columns=loadings.index) for pca_col in self.shap_values.columns: col_shap = self.shap_values[pca_col] col_loading = loadings[pca_col] shap_loadings = [] for (i, loading) in enumerate(col_loading): shap_loadings.append((col_shap * loading)) shap_loadings = pd.concat(shap_loadings, axis=1) shap_loadings.columns = col_loading.index aggregated_shap_loadings = aggregated_shap_loadings.add(shap_loadings, fill_value=0) var_names = list(map((lambda v: re.split('_', v)[0]), self.model_variables)) lag_variables = [x for x in var_names if (x not in ['sin', 'cos'])] self.model_variables_clean = list(map((lambda v: re.split(' \\(', v)[0]), lag_variables)) nlags = len(aggregated_shap_loadings.filter(regex=(self.model_variables_clean[0] + '*')).columns) self.aggregated_shap_values = pd.DataFrame({'hour': ((aggregated_shap_loadings[['sin_hour', 'cos_hour']].sum(axis=1) * nlags) / 2)}) for variable in self.model_variables_clean: self.aggregated_shap_values[variable] = aggregated_shap_loadings.filter(regex=(variable + '*')).sum(axis=1)
def compute_shap_values(self, loadings: pd.DataFrame): 'SHAP and PCA SHAP value computations\n\n Method to compute SHAP and PCA SHAP values for the given XGBoost model.\n\n Parameters\n ----------\n loadings: pd.DataFrame\n Data frame with PCA loadings used to compute PCA SHAP values.\n ' explainer = shap.Explainer(self.model) shap_array = explainer.shap_values(self.x) self.shap_values = pd.DataFrame(shap_array) self.shap_values.columns = self.x.columns self.shap_values.index = self.data.index aggregated_shap_loadings = pd.DataFrame(0, index=self.shap_values.index, columns=loadings.index) for pca_col in self.shap_values.columns: col_shap = self.shap_values[pca_col] col_loading = loadings[pca_col] shap_loadings = [] for (i, loading) in enumerate(col_loading): shap_loadings.append((col_shap * loading)) shap_loadings = pd.concat(shap_loadings, axis=1) shap_loadings.columns = col_loading.index aggregated_shap_loadings = aggregated_shap_loadings.add(shap_loadings, fill_value=0) var_names = list(map((lambda v: re.split('_', v)[0]), self.model_variables)) lag_variables = [x for x in var_names if (x not in ['sin', 'cos'])] self.model_variables_clean = list(map((lambda v: re.split(' \\(', v)[0]), lag_variables)) nlags = len(aggregated_shap_loadings.filter(regex=(self.model_variables_clean[0] + '*')).columns) self.aggregated_shap_values = pd.DataFrame({'hour': ((aggregated_shap_loadings[['sin_hour', 'cos_hour']].sum(axis=1) * nlags) / 2)}) for variable in self.model_variables_clean: self.aggregated_shap_values[variable] = aggregated_shap_loadings.filter(regex=(variable + '*')).sum(axis=1)<|docstring|>SHAP and PCA SHAP value computations Method to compute SHAP and PCA SHAP values for the given XGBoost model. Parameters ---------- loadings: pd.DataFrame Data frame with PCA loadings used to compute PCA SHAP values.<|endoftext|>
ccbe6f18b8bcc998b4a9d672c36beeb4e407761897bee537923225e91ca4ce9a
def cluster_shap_values(self, chosen_algorithm: str, chosen_n_cluster: int, max_clusters: int=10, min_clusters: int=3, kmeans_seed: int=10): ' Cluster PCA SHAP values\n\n Method to Cluster the PCA SHAP values of the model with three type of clustering algorithms. The\n "chosen_algorithm" and "chosen_n_cluster" are the final values that will be stored in the model class.\n\n Parameters\n ----------\n chosen_algorithm: str\n Chosen cluster algorithm. Can be one of the following: "kmean", "hierarchical_ward", "hierarchical_complete"\n chosen_n_cluster: int\n Chosen number of clusters.\n max_clusters: int\n Maximum number of clusters that will be used for all clustering algorithms.\n min_clusters: int\n Minimum number of clusters that will be used for all clustering algorithms.\n kmeans_seed: int\n Random seed used for kmeans.\n ' range_n_clusters = range(min_clusters, (max_clusters + 1)) silhouette_scores = {'kmean': dict(), 'hierarchical_ward': dict(), 'hierarchical_complete': dict()} print('Cluster results for number of clusters in 3-10 are saved under results/figures/07_clusterinf') for n_clusters in range_n_clusters: cluster_algorithms = [['kmean', KMeans(n_clusters=n_clusters, random_state=kmeans_seed, n_init=20)], ['hierarchical_ward', AgglomerativeClustering(n_clusters=n_clusters)], ['hierarchical_complete', AgglomerativeClustering(n_clusters=n_clusters, linkage='complete')]] for cluster_alg in cluster_algorithms: (fig, (ax1, ax2)) = plt.subplots(1, 2) fig.set_size_inches(18, 7) ax1.set_xlim([(- 0.1), 1]) ax1.set_ylim([0, (len(self.shap_values) + ((n_clusters + 1) * 10))]) clusterer = cluster_alg[1] cluster_labels = clusterer.fit_predict(self.shap_values) silhouette_avg = silhouette_score(self.shap_values, cluster_labels) print('For n_clusters =', n_clusters, cluster_alg[0], 'The average silhouette_score is :', round(silhouette_avg, 3)) silhouette_scores[cluster_alg[0]][n_clusters] = silhouette_avg sample_silhouette_values = silhouette_samples(self.shap_values, cluster_labels) pca = PCA(n_components=2, svd_solver='full') pca.fit(self.shap_values) pca_X = pca.transform(self.shap_values) y_lower = 10 colors = plt.cm.get_cmap('Set1', n_clusters) for i in range(n_clusters): ith_cluster_silhouette_values = sample_silhouette_values[(cluster_labels == i)] ith_cluster_silhouette_values.sort() size_cluster_i = ith_cluster_silhouette_values.shape[0] y_upper = (y_lower + size_cluster_i) color = tuple(colors.colors[i]) ax1.fill_betweenx(np.arange(y_lower, y_upper), 0, ith_cluster_silhouette_values, facecolor=color, edgecolor=color, alpha=0.7) ax1.text((- 0.05), (y_lower + (0.5 * size_cluster_i)), str((i + 1))) y_lower = (y_upper + 10) ax1.set_title('Silhouette plot') ax1.set_xlabel('Silhouette coefficient values') ax1.set_ylabel('Cluster') ax1.axvline(x=silhouette_avg, color='red', linestyle='--') ax1.set_yticks([]) ax1.set_xticks([(- 0.1), 0, 0.2, 0.4, 0.6, 0.8, 1]) color_array = np.array(list(map(tuple, colors.colors))) point_col_array = np.empty(shape=(cluster_labels.shape[0], 4)) for row in range(cluster_labels.shape[0]): point_col_array[(row, :)] = color_array[cluster_labels[row]] ax2.scatter(pca_X[(:, 0)], pca_X[(:, 1)], marker='.', s=30, lw=0, alpha=0.7, c=point_col_array, edgecolor='k') ax2.set_title('Clusters shown in Principal components of data') ax2.set_xlabel(f'1st Principal Component ({(100 * pca.explained_variance_ratio_[0]):.3}%)') ax2.set_ylabel(f'2st Principal Component ({(100 * pca.explained_variance_ratio_[1]):.3}%)') plt.suptitle(f'Silhouette analysis for {cluster_alg[0]} clustering with {n_clusters} clusters', fontsize=14, fontweight='bold') os.makedirs('results/figures/07_clustering', exist_ok=True) plt.savefig(f'results/figures/07_clustering/cluster_shillouette_{cluster_alg[0]}_ncluster_{n_clusters}', dpi=600, bbox_inches='tight') plt.close() cluster_algorithms_ = [KMeans(n_clusters=chosen_n_cluster, random_state=kmeans_seed), AgglomerativeClustering(n_clusters=chosen_n_cluster), AgglomerativeClustering(n_clusters=chosen_n_cluster, linkage='complete')] cluster_algorithms_names = ['kmean', 'hierarchical_ward', 'hierarchical_complete'] cluster_alg_id = cluster_algorithms_names.index(chosen_algorithm) self.optimal_n_clusters = chosen_n_cluster self.cluster_model = cluster_algorithms_[cluster_alg_id] self.cluster_labels = self.cluster_model.fit_predict(self.shap_values) print(f'Estimated clusters with {chosen_algorithm} with {self.optimal_n_clusters} clusters.')
Cluster PCA SHAP values Method to Cluster the PCA SHAP values of the model with three type of clustering algorithms. The "chosen_algorithm" and "chosen_n_cluster" are the final values that will be stored in the model class. Parameters ---------- chosen_algorithm: str Chosen cluster algorithm. Can be one of the following: "kmean", "hierarchical_ward", "hierarchical_complete" chosen_n_cluster: int Chosen number of clusters. max_clusters: int Maximum number of clusters that will be used for all clustering algorithms. min_clusters: int Minimum number of clusters that will be used for all clustering algorithms. kmeans_seed: int Random seed used for kmeans.
src/models.py
cluster_shap_values
MoritzFeigl/Learning-from-mistakes
0
python
def cluster_shap_values(self, chosen_algorithm: str, chosen_n_cluster: int, max_clusters: int=10, min_clusters: int=3, kmeans_seed: int=10): ' Cluster PCA SHAP values\n\n Method to Cluster the PCA SHAP values of the model with three type of clustering algorithms. The\n "chosen_algorithm" and "chosen_n_cluster" are the final values that will be stored in the model class.\n\n Parameters\n ----------\n chosen_algorithm: str\n Chosen cluster algorithm. Can be one of the following: "kmean", "hierarchical_ward", "hierarchical_complete"\n chosen_n_cluster: int\n Chosen number of clusters.\n max_clusters: int\n Maximum number of clusters that will be used for all clustering algorithms.\n min_clusters: int\n Minimum number of clusters that will be used for all clustering algorithms.\n kmeans_seed: int\n Random seed used for kmeans.\n ' range_n_clusters = range(min_clusters, (max_clusters + 1)) silhouette_scores = {'kmean': dict(), 'hierarchical_ward': dict(), 'hierarchical_complete': dict()} print('Cluster results for number of clusters in 3-10 are saved under results/figures/07_clusterinf') for n_clusters in range_n_clusters: cluster_algorithms = [['kmean', KMeans(n_clusters=n_clusters, random_state=kmeans_seed, n_init=20)], ['hierarchical_ward', AgglomerativeClustering(n_clusters=n_clusters)], ['hierarchical_complete', AgglomerativeClustering(n_clusters=n_clusters, linkage='complete')]] for cluster_alg in cluster_algorithms: (fig, (ax1, ax2)) = plt.subplots(1, 2) fig.set_size_inches(18, 7) ax1.set_xlim([(- 0.1), 1]) ax1.set_ylim([0, (len(self.shap_values) + ((n_clusters + 1) * 10))]) clusterer = cluster_alg[1] cluster_labels = clusterer.fit_predict(self.shap_values) silhouette_avg = silhouette_score(self.shap_values, cluster_labels) print('For n_clusters =', n_clusters, cluster_alg[0], 'The average silhouette_score is :', round(silhouette_avg, 3)) silhouette_scores[cluster_alg[0]][n_clusters] = silhouette_avg sample_silhouette_values = silhouette_samples(self.shap_values, cluster_labels) pca = PCA(n_components=2, svd_solver='full') pca.fit(self.shap_values) pca_X = pca.transform(self.shap_values) y_lower = 10 colors = plt.cm.get_cmap('Set1', n_clusters) for i in range(n_clusters): ith_cluster_silhouette_values = sample_silhouette_values[(cluster_labels == i)] ith_cluster_silhouette_values.sort() size_cluster_i = ith_cluster_silhouette_values.shape[0] y_upper = (y_lower + size_cluster_i) color = tuple(colors.colors[i]) ax1.fill_betweenx(np.arange(y_lower, y_upper), 0, ith_cluster_silhouette_values, facecolor=color, edgecolor=color, alpha=0.7) ax1.text((- 0.05), (y_lower + (0.5 * size_cluster_i)), str((i + 1))) y_lower = (y_upper + 10) ax1.set_title('Silhouette plot') ax1.set_xlabel('Silhouette coefficient values') ax1.set_ylabel('Cluster') ax1.axvline(x=silhouette_avg, color='red', linestyle='--') ax1.set_yticks([]) ax1.set_xticks([(- 0.1), 0, 0.2, 0.4, 0.6, 0.8, 1]) color_array = np.array(list(map(tuple, colors.colors))) point_col_array = np.empty(shape=(cluster_labels.shape[0], 4)) for row in range(cluster_labels.shape[0]): point_col_array[(row, :)] = color_array[cluster_labels[row]] ax2.scatter(pca_X[(:, 0)], pca_X[(:, 1)], marker='.', s=30, lw=0, alpha=0.7, c=point_col_array, edgecolor='k') ax2.set_title('Clusters shown in Principal components of data') ax2.set_xlabel(f'1st Principal Component ({(100 * pca.explained_variance_ratio_[0]):.3}%)') ax2.set_ylabel(f'2st Principal Component ({(100 * pca.explained_variance_ratio_[1]):.3}%)') plt.suptitle(f'Silhouette analysis for {cluster_alg[0]} clustering with {n_clusters} clusters', fontsize=14, fontweight='bold') os.makedirs('results/figures/07_clustering', exist_ok=True) plt.savefig(f'results/figures/07_clustering/cluster_shillouette_{cluster_alg[0]}_ncluster_{n_clusters}', dpi=600, bbox_inches='tight') plt.close() cluster_algorithms_ = [KMeans(n_clusters=chosen_n_cluster, random_state=kmeans_seed), AgglomerativeClustering(n_clusters=chosen_n_cluster), AgglomerativeClustering(n_clusters=chosen_n_cluster, linkage='complete')] cluster_algorithms_names = ['kmean', 'hierarchical_ward', 'hierarchical_complete'] cluster_alg_id = cluster_algorithms_names.index(chosen_algorithm) self.optimal_n_clusters = chosen_n_cluster self.cluster_model = cluster_algorithms_[cluster_alg_id] self.cluster_labels = self.cluster_model.fit_predict(self.shap_values) print(f'Estimated clusters with {chosen_algorithm} with {self.optimal_n_clusters} clusters.')
def cluster_shap_values(self, chosen_algorithm: str, chosen_n_cluster: int, max_clusters: int=10, min_clusters: int=3, kmeans_seed: int=10): ' Cluster PCA SHAP values\n\n Method to Cluster the PCA SHAP values of the model with three type of clustering algorithms. The\n "chosen_algorithm" and "chosen_n_cluster" are the final values that will be stored in the model class.\n\n Parameters\n ----------\n chosen_algorithm: str\n Chosen cluster algorithm. Can be one of the following: "kmean", "hierarchical_ward", "hierarchical_complete"\n chosen_n_cluster: int\n Chosen number of clusters.\n max_clusters: int\n Maximum number of clusters that will be used for all clustering algorithms.\n min_clusters: int\n Minimum number of clusters that will be used for all clustering algorithms.\n kmeans_seed: int\n Random seed used for kmeans.\n ' range_n_clusters = range(min_clusters, (max_clusters + 1)) silhouette_scores = {'kmean': dict(), 'hierarchical_ward': dict(), 'hierarchical_complete': dict()} print('Cluster results for number of clusters in 3-10 are saved under results/figures/07_clusterinf') for n_clusters in range_n_clusters: cluster_algorithms = [['kmean', KMeans(n_clusters=n_clusters, random_state=kmeans_seed, n_init=20)], ['hierarchical_ward', AgglomerativeClustering(n_clusters=n_clusters)], ['hierarchical_complete', AgglomerativeClustering(n_clusters=n_clusters, linkage='complete')]] for cluster_alg in cluster_algorithms: (fig, (ax1, ax2)) = plt.subplots(1, 2) fig.set_size_inches(18, 7) ax1.set_xlim([(- 0.1), 1]) ax1.set_ylim([0, (len(self.shap_values) + ((n_clusters + 1) * 10))]) clusterer = cluster_alg[1] cluster_labels = clusterer.fit_predict(self.shap_values) silhouette_avg = silhouette_score(self.shap_values, cluster_labels) print('For n_clusters =', n_clusters, cluster_alg[0], 'The average silhouette_score is :', round(silhouette_avg, 3)) silhouette_scores[cluster_alg[0]][n_clusters] = silhouette_avg sample_silhouette_values = silhouette_samples(self.shap_values, cluster_labels) pca = PCA(n_components=2, svd_solver='full') pca.fit(self.shap_values) pca_X = pca.transform(self.shap_values) y_lower = 10 colors = plt.cm.get_cmap('Set1', n_clusters) for i in range(n_clusters): ith_cluster_silhouette_values = sample_silhouette_values[(cluster_labels == i)] ith_cluster_silhouette_values.sort() size_cluster_i = ith_cluster_silhouette_values.shape[0] y_upper = (y_lower + size_cluster_i) color = tuple(colors.colors[i]) ax1.fill_betweenx(np.arange(y_lower, y_upper), 0, ith_cluster_silhouette_values, facecolor=color, edgecolor=color, alpha=0.7) ax1.text((- 0.05), (y_lower + (0.5 * size_cluster_i)), str((i + 1))) y_lower = (y_upper + 10) ax1.set_title('Silhouette plot') ax1.set_xlabel('Silhouette coefficient values') ax1.set_ylabel('Cluster') ax1.axvline(x=silhouette_avg, color='red', linestyle='--') ax1.set_yticks([]) ax1.set_xticks([(- 0.1), 0, 0.2, 0.4, 0.6, 0.8, 1]) color_array = np.array(list(map(tuple, colors.colors))) point_col_array = np.empty(shape=(cluster_labels.shape[0], 4)) for row in range(cluster_labels.shape[0]): point_col_array[(row, :)] = color_array[cluster_labels[row]] ax2.scatter(pca_X[(:, 0)], pca_X[(:, 1)], marker='.', s=30, lw=0, alpha=0.7, c=point_col_array, edgecolor='k') ax2.set_title('Clusters shown in Principal components of data') ax2.set_xlabel(f'1st Principal Component ({(100 * pca.explained_variance_ratio_[0]):.3}%)') ax2.set_ylabel(f'2st Principal Component ({(100 * pca.explained_variance_ratio_[1]):.3}%)') plt.suptitle(f'Silhouette analysis for {cluster_alg[0]} clustering with {n_clusters} clusters', fontsize=14, fontweight='bold') os.makedirs('results/figures/07_clustering', exist_ok=True) plt.savefig(f'results/figures/07_clustering/cluster_shillouette_{cluster_alg[0]}_ncluster_{n_clusters}', dpi=600, bbox_inches='tight') plt.close() cluster_algorithms_ = [KMeans(n_clusters=chosen_n_cluster, random_state=kmeans_seed), AgglomerativeClustering(n_clusters=chosen_n_cluster), AgglomerativeClustering(n_clusters=chosen_n_cluster, linkage='complete')] cluster_algorithms_names = ['kmean', 'hierarchical_ward', 'hierarchical_complete'] cluster_alg_id = cluster_algorithms_names.index(chosen_algorithm) self.optimal_n_clusters = chosen_n_cluster self.cluster_model = cluster_algorithms_[cluster_alg_id] self.cluster_labels = self.cluster_model.fit_predict(self.shap_values) print(f'Estimated clusters with {chosen_algorithm} with {self.optimal_n_clusters} clusters.')<|docstring|>Cluster PCA SHAP values Method to Cluster the PCA SHAP values of the model with three type of clustering algorithms. The "chosen_algorithm" and "chosen_n_cluster" are the final values that will be stored in the model class. Parameters ---------- chosen_algorithm: str Chosen cluster algorithm. Can be one of the following: "kmean", "hierarchical_ward", "hierarchical_complete" chosen_n_cluster: int Chosen number of clusters. max_clusters: int Maximum number of clusters that will be used for all clustering algorithms. min_clusters: int Minimum number of clusters that will be used for all clustering algorithms. kmeans_seed: int Random seed used for kmeans.<|endoftext|>
af2688808fec7bd169d45fde51d4bec5fef94c2aa45f4a6166efd253f7d76da6
def __init__(self, *, id_: Optional[FhirString]=None, extension: Optional[FhirList[ExtensionBase]]=None, modifierExtension: Optional[FhirList[ExtensionBase]]=None, valueBoolean: Optional[FhirBoolean]=None, valueDecimal: Optional[FhirDecimal]=None, valueInteger: Optional[FhirInteger]=None, valueDate: Optional[FhirDate]=None, valueDateTime: Optional[FhirDateTime]=None, valueTime: Optional[FhirTime]=None, valueString: Optional[FhirString]=None, valueUri: Optional[FhirUri]=None, valueAttachment: Optional[Attachment]=None, valueCoding: Optional[Coding[GenericTypeCode]]=None, valueQuantity: Optional[Quantity]=None, valueReference: Optional[Reference[Resource]]=None, item: Optional[FhirList[QuestionnaireResponseItem]]=None) -> None: "\n A structured set of questions and their answers. The questions are ordered and\n grouped into coherent subsets, corresponding to the structure of the grouping\n of the questionnaire being responded to.\n\n :param id_: None\n :param extension: May be used to represent additional information that is not part of the basic\n definition of the element. To make the use of extensions safe and manageable,\n there is a strict set of governance applied to the definition and use of\n extensions. Though any implementer can define an extension, there is a set of\n requirements that SHALL be met as part of the definition of the extension.\n :param modifierExtension: May be used to represent additional information that is not part of the basic\n definition of the element and that modifies the understanding of the element\n in which it is contained and/or the understanding of the containing element's\n descendants. Usually modifier elements provide negation or qualification. To\n make the use of extensions safe and manageable, there is a strict set of\n governance applied to the definition and use of extensions. Though any\n implementer can define an extension, there is a set of requirements that SHALL\n be met as part of the definition of the extension. Applications processing a\n resource are required to check for modifier extensions.\n\n Modifier extensions SHALL NOT change the meaning of any elements on Resource\n or DomainResource (including cannot change the meaning of modifierExtension\n itself).\n :param valueBoolean: None\n :param valueDecimal: None\n :param valueInteger: None\n :param valueDate: None\n :param valueDateTime: None\n :param valueTime: None\n :param valueString: None\n :param valueUri: None\n :param valueAttachment: None\n :param valueCoding: None\n :param valueQuantity: None\n :param valueReference: None\n :param item: Nested groups and/or questions found within this particular answer.\n " super().__init__(id_=id_, extension=extension, modifierExtension=modifierExtension, valueBoolean=valueBoolean, valueDecimal=valueDecimal, valueInteger=valueInteger, valueDate=valueDate, valueDateTime=valueDateTime, valueTime=valueTime, valueString=valueString, valueUri=valueUri, valueAttachment=valueAttachment, valueCoding=valueCoding, valueQuantity=valueQuantity, valueReference=valueReference, item=item)
A structured set of questions and their answers. The questions are ordered and grouped into coherent subsets, corresponding to the structure of the grouping of the questionnaire being responded to. :param id_: None :param extension: May be used to represent additional information that is not part of the basic definition of the element. To make the use of extensions safe and manageable, there is a strict set of governance applied to the definition and use of extensions. Though any implementer can define an extension, there is a set of requirements that SHALL be met as part of the definition of the extension. :param modifierExtension: May be used to represent additional information that is not part of the basic definition of the element and that modifies the understanding of the element in which it is contained and/or the understanding of the containing element's descendants. Usually modifier elements provide negation or qualification. To make the use of extensions safe and manageable, there is a strict set of governance applied to the definition and use of extensions. Though any implementer can define an extension, there is a set of requirements that SHALL be met as part of the definition of the extension. Applications processing a resource are required to check for modifier extensions. Modifier extensions SHALL NOT change the meaning of any elements on Resource or DomainResource (including cannot change the meaning of modifierExtension itself). :param valueBoolean: None :param valueDecimal: None :param valueInteger: None :param valueDate: None :param valueDateTime: None :param valueTime: None :param valueString: None :param valueUri: None :param valueAttachment: None :param valueCoding: None :param valueQuantity: None :param valueReference: None :param item: Nested groups and/or questions found within this particular answer.
spark_auto_mapper_fhir/backbone_elements/questionnaire_response_answer.py
__init__
icanbwell/SparkAutoMapper.FHIR
1
python
def __init__(self, *, id_: Optional[FhirString]=None, extension: Optional[FhirList[ExtensionBase]]=None, modifierExtension: Optional[FhirList[ExtensionBase]]=None, valueBoolean: Optional[FhirBoolean]=None, valueDecimal: Optional[FhirDecimal]=None, valueInteger: Optional[FhirInteger]=None, valueDate: Optional[FhirDate]=None, valueDateTime: Optional[FhirDateTime]=None, valueTime: Optional[FhirTime]=None, valueString: Optional[FhirString]=None, valueUri: Optional[FhirUri]=None, valueAttachment: Optional[Attachment]=None, valueCoding: Optional[Coding[GenericTypeCode]]=None, valueQuantity: Optional[Quantity]=None, valueReference: Optional[Reference[Resource]]=None, item: Optional[FhirList[QuestionnaireResponseItem]]=None) -> None: "\n A structured set of questions and their answers. The questions are ordered and\n grouped into coherent subsets, corresponding to the structure of the grouping\n of the questionnaire being responded to.\n\n :param id_: None\n :param extension: May be used to represent additional information that is not part of the basic\n definition of the element. To make the use of extensions safe and manageable,\n there is a strict set of governance applied to the definition and use of\n extensions. Though any implementer can define an extension, there is a set of\n requirements that SHALL be met as part of the definition of the extension.\n :param modifierExtension: May be used to represent additional information that is not part of the basic\n definition of the element and that modifies the understanding of the element\n in which it is contained and/or the understanding of the containing element's\n descendants. Usually modifier elements provide negation or qualification. To\n make the use of extensions safe and manageable, there is a strict set of\n governance applied to the definition and use of extensions. Though any\n implementer can define an extension, there is a set of requirements that SHALL\n be met as part of the definition of the extension. Applications processing a\n resource are required to check for modifier extensions.\n\n Modifier extensions SHALL NOT change the meaning of any elements on Resource\n or DomainResource (including cannot change the meaning of modifierExtension\n itself).\n :param valueBoolean: None\n :param valueDecimal: None\n :param valueInteger: None\n :param valueDate: None\n :param valueDateTime: None\n :param valueTime: None\n :param valueString: None\n :param valueUri: None\n :param valueAttachment: None\n :param valueCoding: None\n :param valueQuantity: None\n :param valueReference: None\n :param item: Nested groups and/or questions found within this particular answer.\n " super().__init__(id_=id_, extension=extension, modifierExtension=modifierExtension, valueBoolean=valueBoolean, valueDecimal=valueDecimal, valueInteger=valueInteger, valueDate=valueDate, valueDateTime=valueDateTime, valueTime=valueTime, valueString=valueString, valueUri=valueUri, valueAttachment=valueAttachment, valueCoding=valueCoding, valueQuantity=valueQuantity, valueReference=valueReference, item=item)
def __init__(self, *, id_: Optional[FhirString]=None, extension: Optional[FhirList[ExtensionBase]]=None, modifierExtension: Optional[FhirList[ExtensionBase]]=None, valueBoolean: Optional[FhirBoolean]=None, valueDecimal: Optional[FhirDecimal]=None, valueInteger: Optional[FhirInteger]=None, valueDate: Optional[FhirDate]=None, valueDateTime: Optional[FhirDateTime]=None, valueTime: Optional[FhirTime]=None, valueString: Optional[FhirString]=None, valueUri: Optional[FhirUri]=None, valueAttachment: Optional[Attachment]=None, valueCoding: Optional[Coding[GenericTypeCode]]=None, valueQuantity: Optional[Quantity]=None, valueReference: Optional[Reference[Resource]]=None, item: Optional[FhirList[QuestionnaireResponseItem]]=None) -> None: "\n A structured set of questions and their answers. The questions are ordered and\n grouped into coherent subsets, corresponding to the structure of the grouping\n of the questionnaire being responded to.\n\n :param id_: None\n :param extension: May be used to represent additional information that is not part of the basic\n definition of the element. To make the use of extensions safe and manageable,\n there is a strict set of governance applied to the definition and use of\n extensions. Though any implementer can define an extension, there is a set of\n requirements that SHALL be met as part of the definition of the extension.\n :param modifierExtension: May be used to represent additional information that is not part of the basic\n definition of the element and that modifies the understanding of the element\n in which it is contained and/or the understanding of the containing element's\n descendants. Usually modifier elements provide negation or qualification. To\n make the use of extensions safe and manageable, there is a strict set of\n governance applied to the definition and use of extensions. Though any\n implementer can define an extension, there is a set of requirements that SHALL\n be met as part of the definition of the extension. Applications processing a\n resource are required to check for modifier extensions.\n\n Modifier extensions SHALL NOT change the meaning of any elements on Resource\n or DomainResource (including cannot change the meaning of modifierExtension\n itself).\n :param valueBoolean: None\n :param valueDecimal: None\n :param valueInteger: None\n :param valueDate: None\n :param valueDateTime: None\n :param valueTime: None\n :param valueString: None\n :param valueUri: None\n :param valueAttachment: None\n :param valueCoding: None\n :param valueQuantity: None\n :param valueReference: None\n :param item: Nested groups and/or questions found within this particular answer.\n " super().__init__(id_=id_, extension=extension, modifierExtension=modifierExtension, valueBoolean=valueBoolean, valueDecimal=valueDecimal, valueInteger=valueInteger, valueDate=valueDate, valueDateTime=valueDateTime, valueTime=valueTime, valueString=valueString, valueUri=valueUri, valueAttachment=valueAttachment, valueCoding=valueCoding, valueQuantity=valueQuantity, valueReference=valueReference, item=item)<|docstring|>A structured set of questions and their answers. The questions are ordered and grouped into coherent subsets, corresponding to the structure of the grouping of the questionnaire being responded to. :param id_: None :param extension: May be used to represent additional information that is not part of the basic definition of the element. To make the use of extensions safe and manageable, there is a strict set of governance applied to the definition and use of extensions. Though any implementer can define an extension, there is a set of requirements that SHALL be met as part of the definition of the extension. :param modifierExtension: May be used to represent additional information that is not part of the basic definition of the element and that modifies the understanding of the element in which it is contained and/or the understanding of the containing element's descendants. Usually modifier elements provide negation or qualification. To make the use of extensions safe and manageable, there is a strict set of governance applied to the definition and use of extensions. Though any implementer can define an extension, there is a set of requirements that SHALL be met as part of the definition of the extension. Applications processing a resource are required to check for modifier extensions. Modifier extensions SHALL NOT change the meaning of any elements on Resource or DomainResource (including cannot change the meaning of modifierExtension itself). :param valueBoolean: None :param valueDecimal: None :param valueInteger: None :param valueDate: None :param valueDateTime: None :param valueTime: None :param valueString: None :param valueUri: None :param valueAttachment: None :param valueCoding: None :param valueQuantity: None :param valueReference: None :param item: Nested groups and/or questions found within this particular answer.<|endoftext|>
34ba660f3c30ea62768c70ce1244787c358e042e9c0ff0848f7c96b56c9a2e09
def find_index(text, pattern, breadth=0, depth=0): 'Return the starting index of the first occurrence of pattern in text,\n or None if not found.\n O(n) T*P time complexity \n where T is length of text and P pattern length' assert isinstance(text, str), 'text is not a string: {}'.format(text) assert isinstance(pattern, str), 'pattern is not a string: {}'.format(text) if ((breadth + len(pattern)) > len(text)): return None pchar = None try: pchar = pattern[depth] except: return breadth if (not (text[(breadth + depth)] == pchar)): if (depth == 0): return find_index(text, pattern, (breadth + 1)) else: return find_index(text, pattern, (breadth + 1), 0) else: if (depth == (len(pattern) - 1)): return breadth return find_index(text, pattern, breadth, (depth + 1))
Return the starting index of the first occurrence of pattern in text, or None if not found. O(n) T*P time complexity where T is length of text and P pattern length
Code/strings.py
find_index
type9/CS-1.3-Core-Data-Structures
0
python
def find_index(text, pattern, breadth=0, depth=0): 'Return the starting index of the first occurrence of pattern in text,\n or None if not found.\n O(n) T*P time complexity \n where T is length of text and P pattern length' assert isinstance(text, str), 'text is not a string: {}'.format(text) assert isinstance(pattern, str), 'pattern is not a string: {}'.format(text) if ((breadth + len(pattern)) > len(text)): return None pchar = None try: pchar = pattern[depth] except: return breadth if (not (text[(breadth + depth)] == pchar)): if (depth == 0): return find_index(text, pattern, (breadth + 1)) else: return find_index(text, pattern, (breadth + 1), 0) else: if (depth == (len(pattern) - 1)): return breadth return find_index(text, pattern, breadth, (depth + 1))
def find_index(text, pattern, breadth=0, depth=0): 'Return the starting index of the first occurrence of pattern in text,\n or None if not found.\n O(n) T*P time complexity \n where T is length of text and P pattern length' assert isinstance(text, str), 'text is not a string: {}'.format(text) assert isinstance(pattern, str), 'pattern is not a string: {}'.format(text) if ((breadth + len(pattern)) > len(text)): return None pchar = None try: pchar = pattern[depth] except: return breadth if (not (text[(breadth + depth)] == pchar)): if (depth == 0): return find_index(text, pattern, (breadth + 1)) else: return find_index(text, pattern, (breadth + 1), 0) else: if (depth == (len(pattern) - 1)): return breadth return find_index(text, pattern, breadth, (depth + 1))<|docstring|>Return the starting index of the first occurrence of pattern in text, or None if not found. O(n) T*P time complexity where T is length of text and P pattern length<|endoftext|>
15789443adae5da5cb10caa3f92ef286f67da574a2e1c7dd54f2d1130def6813
def contains(text, pattern): 'Return a boolean indicating whether pattern occurs in text.\n O(n) T*P time complexity \n where T is length of text and P pattern length' assert isinstance(text, str), 'text is not a string: {}'.format(text) assert isinstance(pattern, str), 'pattern is not a string: {}'.format(text) index = find_index(text, pattern) if (index or (index == 0)): return True return False
Return a boolean indicating whether pattern occurs in text. O(n) T*P time complexity where T is length of text and P pattern length
Code/strings.py
contains
type9/CS-1.3-Core-Data-Structures
0
python
def contains(text, pattern): 'Return a boolean indicating whether pattern occurs in text.\n O(n) T*P time complexity \n where T is length of text and P pattern length' assert isinstance(text, str), 'text is not a string: {}'.format(text) assert isinstance(pattern, str), 'pattern is not a string: {}'.format(text) index = find_index(text, pattern) if (index or (index == 0)): return True return False
def contains(text, pattern): 'Return a boolean indicating whether pattern occurs in text.\n O(n) T*P time complexity \n where T is length of text and P pattern length' assert isinstance(text, str), 'text is not a string: {}'.format(text) assert isinstance(pattern, str), 'pattern is not a string: {}'.format(text) index = find_index(text, pattern) if (index or (index == 0)): return True return False<|docstring|>Return a boolean indicating whether pattern occurs in text. O(n) T*P time complexity where T is length of text and P pattern length<|endoftext|>
09c924f139681763d4b3fc04d7e84f8d6072f9c249c351b3c7929f63792ed964
def find_all_indexes(text, pattern): 'Return a list of starting indexes of all occurrences of pattern in text,\n or an empty list if not found.\n O(n) T*P time complexity \n where T is length of text and P pattern length' assert isinstance(text, str), 'text is not a string: {}'.format(text) assert isinstance(pattern, str), 'pattern is not a string: {}'.format(text) indexes = [] last_breadth = 0 while ((last_breadth + len(pattern)) <= len(text)): index = find_index(text, pattern, breadth=last_breadth) if (index == None): break indexes.append(index) last_breadth = (index + 1) if (pattern == ''): indexes.pop((- 1)) return indexes return indexes
Return a list of starting indexes of all occurrences of pattern in text, or an empty list if not found. O(n) T*P time complexity where T is length of text and P pattern length
Code/strings.py
find_all_indexes
type9/CS-1.3-Core-Data-Structures
0
python
def find_all_indexes(text, pattern): 'Return a list of starting indexes of all occurrences of pattern in text,\n or an empty list if not found.\n O(n) T*P time complexity \n where T is length of text and P pattern length' assert isinstance(text, str), 'text is not a string: {}'.format(text) assert isinstance(pattern, str), 'pattern is not a string: {}'.format(text) indexes = [] last_breadth = 0 while ((last_breadth + len(pattern)) <= len(text)): index = find_index(text, pattern, breadth=last_breadth) if (index == None): break indexes.append(index) last_breadth = (index + 1) if (pattern == ): indexes.pop((- 1)) return indexes return indexes
def find_all_indexes(text, pattern): 'Return a list of starting indexes of all occurrences of pattern in text,\n or an empty list if not found.\n O(n) T*P time complexity \n where T is length of text and P pattern length' assert isinstance(text, str), 'text is not a string: {}'.format(text) assert isinstance(pattern, str), 'pattern is not a string: {}'.format(text) indexes = [] last_breadth = 0 while ((last_breadth + len(pattern)) <= len(text)): index = find_index(text, pattern, breadth=last_breadth) if (index == None): break indexes.append(index) last_breadth = (index + 1) if (pattern == ): indexes.pop((- 1)) return indexes return indexes<|docstring|>Return a list of starting indexes of all occurrences of pattern in text, or an empty list if not found. O(n) T*P time complexity where T is length of text and P pattern length<|endoftext|>
6bab6217eef5936db693ebf9a1437fc487371b47717cf5b86b6f427e381f086d
def main(): 'Read command-line arguments and test string searching algorithms.' import sys args = sys.argv[1:] if (len(args) == 2): text = args[0] pattern = args[1] test_string_algorithms(text, pattern) else: script = sys.argv[0] print('Usage: {} text pattern'.format(script)) print('Searches for occurrences of pattern in text') print("\nExample: {} 'abra cadabra' 'abra'".format(script)) print("contains('abra cadabra', 'abra') => True") print("find_index('abra cadabra', 'abra') => 0") print("find_all_indexes('abra cadabra', 'abra') => [0, 8]")
Read command-line arguments and test string searching algorithms.
Code/strings.py
main
type9/CS-1.3-Core-Data-Structures
0
python
def main(): import sys args = sys.argv[1:] if (len(args) == 2): text = args[0] pattern = args[1] test_string_algorithms(text, pattern) else: script = sys.argv[0] print('Usage: {} text pattern'.format(script)) print('Searches for occurrences of pattern in text') print("\nExample: {} 'abra cadabra' 'abra'".format(script)) print("contains('abra cadabra', 'abra') => True") print("find_index('abra cadabra', 'abra') => 0") print("find_all_indexes('abra cadabra', 'abra') => [0, 8]")
def main(): import sys args = sys.argv[1:] if (len(args) == 2): text = args[0] pattern = args[1] test_string_algorithms(text, pattern) else: script = sys.argv[0] print('Usage: {} text pattern'.format(script)) print('Searches for occurrences of pattern in text') print("\nExample: {} 'abra cadabra' 'abra'".format(script)) print("contains('abra cadabra', 'abra') => True") print("find_index('abra cadabra', 'abra') => 0") print("find_all_indexes('abra cadabra', 'abra') => [0, 8]")<|docstring|>Read command-line arguments and test string searching algorithms.<|endoftext|>
0c9883723941f5d0f1b0b7046f830e3b88c40cbef3ad3603e4fbfec8d2f897de
def testSimple(self): '\n def (var var var):\n return "hello"\n ' stream = TokenStream([defkw, startFunction, identifier, identifier, identifier, endFunction, endSignature, newline, indent, returnkw, string, endFile]) expected = FunctionDefinition(FunctionSignature(identifier, [VariableReference(identifier), VariableReference(identifier)]), Body([Return(String(string))])) actual = parseFunctionDefinition(stream) self.assertEqual(actual, expected) stream = TokenStream([defkw, startFunction, identifier, identifier, identifier, endFunction, endSignature, newline, indent, returnkw, string, newline, unindent]) expected = FunctionDefinition(FunctionSignature(identifier, [VariableReference(identifier), VariableReference(identifier)]), Body([Return(String(string))])) actual = parseFunctionDefinition(stream) self.assertEqual(actual, expected)
def (var var var): return "hello"
language/testParser.py
testSimple
quasarbright/Subduce
1
python
def testSimple(self): '\n def (var var var):\n return "hello"\n ' stream = TokenStream([defkw, startFunction, identifier, identifier, identifier, endFunction, endSignature, newline, indent, returnkw, string, endFile]) expected = FunctionDefinition(FunctionSignature(identifier, [VariableReference(identifier), VariableReference(identifier)]), Body([Return(String(string))])) actual = parseFunctionDefinition(stream) self.assertEqual(actual, expected) stream = TokenStream([defkw, startFunction, identifier, identifier, identifier, endFunction, endSignature, newline, indent, returnkw, string, newline, unindent]) expected = FunctionDefinition(FunctionSignature(identifier, [VariableReference(identifier), VariableReference(identifier)]), Body([Return(String(string))])) actual = parseFunctionDefinition(stream) self.assertEqual(actual, expected)
def testSimple(self): '\n def (var var var):\n return "hello"\n ' stream = TokenStream([defkw, startFunction, identifier, identifier, identifier, endFunction, endSignature, newline, indent, returnkw, string, endFile]) expected = FunctionDefinition(FunctionSignature(identifier, [VariableReference(identifier), VariableReference(identifier)]), Body([Return(String(string))])) actual = parseFunctionDefinition(stream) self.assertEqual(actual, expected) stream = TokenStream([defkw, startFunction, identifier, identifier, identifier, endFunction, endSignature, newline, indent, returnkw, string, newline, unindent]) expected = FunctionDefinition(FunctionSignature(identifier, [VariableReference(identifier), VariableReference(identifier)]), Body([Return(String(string))])) actual = parseFunctionDefinition(stream) self.assertEqual(actual, expected)<|docstring|>def (var var var): return "hello"<|endoftext|>
1e1e6ae4af9658ec884eb4dbc355a132a6c39c49dead5dfd6087e8ea70bcdf7a
def testComplex(self): '\n def (var var):\n print var\n var = "hello"\n return 123\n ' stream = TokenStream([defkw, startFunction, identifier, identifier, endFunction, endSignature, newline, indent, printkw, identifier, newline, identifier, equals, string, newline, returnkw, number]) signature = FunctionSignature(identifier, [VariableReference(identifier)]) body = Body([Print(VariableReference(identifier)), Assignment(identifier, String(string)), Return(Number(number))]) expected = FunctionDefinition(signature, body) actual = parseFunctionDefinition(stream) self.assertEqual(actual, expected)
def (var var): print var var = "hello" return 123
language/testParser.py
testComplex
quasarbright/Subduce
1
python
def testComplex(self): '\n def (var var):\n print var\n var = "hello"\n return 123\n ' stream = TokenStream([defkw, startFunction, identifier, identifier, endFunction, endSignature, newline, indent, printkw, identifier, newline, identifier, equals, string, newline, returnkw, number]) signature = FunctionSignature(identifier, [VariableReference(identifier)]) body = Body([Print(VariableReference(identifier)), Assignment(identifier, String(string)), Return(Number(number))]) expected = FunctionDefinition(signature, body) actual = parseFunctionDefinition(stream) self.assertEqual(actual, expected)
def testComplex(self): '\n def (var var):\n print var\n var = "hello"\n return 123\n ' stream = TokenStream([defkw, startFunction, identifier, identifier, endFunction, endSignature, newline, indent, printkw, identifier, newline, identifier, equals, string, newline, returnkw, number]) signature = FunctionSignature(identifier, [VariableReference(identifier)]) body = Body([Print(VariableReference(identifier)), Assignment(identifier, String(string)), Return(Number(number))]) expected = FunctionDefinition(signature, body) actual = parseFunctionDefinition(stream) self.assertEqual(actual, expected)<|docstring|>def (var var): print var var = "hello" return 123<|endoftext|>
8391a262b418794dbb5ef178fb4b2eed950fdab26983fb9cb9a68c9c63babac8
def testFunctionInFunction(self): '\n def (var var):\n def (var var):\n return 123\n return "hello"\n ' stream = TokenStream([defkw, startFunction, identifier, identifier, endFunction, endSignature, newline, indent, defkw, startFunction, identifier, identifier, endFunction, endSignature, newline, indent, returnkw, number, newline, unindent, returnkw, string, newline, unindent]) signature = FunctionSignature(identifier, [VariableReference(identifier)]) body = Body([FunctionDefinition(signature, Body([Return(Number(number))])), Return(String(string))]) expected = FunctionDefinition(signature, body) actual = parseFunctionDefinition(stream) self.assertEqual(actual, expected)
def (var var): def (var var): return 123 return "hello"
language/testParser.py
testFunctionInFunction
quasarbright/Subduce
1
python
def testFunctionInFunction(self): '\n def (var var):\n def (var var):\n return 123\n return "hello"\n ' stream = TokenStream([defkw, startFunction, identifier, identifier, endFunction, endSignature, newline, indent, defkw, startFunction, identifier, identifier, endFunction, endSignature, newline, indent, returnkw, number, newline, unindent, returnkw, string, newline, unindent]) signature = FunctionSignature(identifier, [VariableReference(identifier)]) body = Body([FunctionDefinition(signature, Body([Return(Number(number))])), Return(String(string))]) expected = FunctionDefinition(signature, body) actual = parseFunctionDefinition(stream) self.assertEqual(actual, expected)
def testFunctionInFunction(self): '\n def (var var):\n def (var var):\n return 123\n return "hello"\n ' stream = TokenStream([defkw, startFunction, identifier, identifier, endFunction, endSignature, newline, indent, defkw, startFunction, identifier, identifier, endFunction, endSignature, newline, indent, returnkw, number, newline, unindent, returnkw, string, newline, unindent]) signature = FunctionSignature(identifier, [VariableReference(identifier)]) body = Body([FunctionDefinition(signature, Body([Return(Number(number))])), Return(String(string))]) expected = FunctionDefinition(signature, body) actual = parseFunctionDefinition(stream) self.assertEqual(actual, expected)<|docstring|>def (var var): def (var var): return 123 return "hello"<|endoftext|>
d8dd81714a5198631501e78c8f76bfbe7245b1719916676b1ccc8046cb62dc44
def testMultilineFunctionCall(self): '\n (var\n 123\n "hello")\n ' stream = TokenStream([startFunction, identifier, newline, indent, number, string, endFunction, unindent]) expected = FunctionCall(VariableReference(identifier), [Number(number), String(string)]) actual = parseFunctionCall(stream) self.assertEqual(actual, expected)
(var 123 "hello")
language/testParser.py
testMultilineFunctionCall
quasarbright/Subduce
1
python
def testMultilineFunctionCall(self): '\n (var\n 123\n "hello")\n ' stream = TokenStream([startFunction, identifier, newline, indent, number, string, endFunction, unindent]) expected = FunctionCall(VariableReference(identifier), [Number(number), String(string)]) actual = parseFunctionCall(stream) self.assertEqual(actual, expected)
def testMultilineFunctionCall(self): '\n (var\n 123\n "hello")\n ' stream = TokenStream([startFunction, identifier, newline, indent, number, string, endFunction, unindent]) expected = FunctionCall(VariableReference(identifier), [Number(number), String(string)]) actual = parseFunctionCall(stream) self.assertEqual(actual, expected)<|docstring|>(var 123 "hello")<|endoftext|>
2fe8b006ccca5d5f2b9b9a4cafc43b9bf4bff23e2747b6a76a96d9b3dffa4f74
def testBig(self): '\n def (var var):\n var = (var\n var)\n return var\n print var\n ' tokens = [defkw, startFunction, identifier, identifier, endFunction, endSignature, newline, indent, identifier, equals, startFunction, identifier, newline, indent, identifier, endFunction, newline, unindent, returnkw, identifier, newline, unindent, printkw, identifier] signature = FunctionSignature(identifier, [VariableReference(identifier), VariableReference(identifier)]) body = Body([Assignment(identifier, VariableReference(identifier)), Return(VariableReference(identifier))]) expected = MainBody([FunctionDefinition(signature, body), Print(VariableReference(identifier))]) actual = parseTokens(tokens) self.assertEqual(actual, expected)
def (var var): var = (var var) return var print var
language/testParser.py
testBig
quasarbright/Subduce
1
python
def testBig(self): '\n def (var var):\n var = (var\n var)\n return var\n print var\n ' tokens = [defkw, startFunction, identifier, identifier, endFunction, endSignature, newline, indent, identifier, equals, startFunction, identifier, newline, indent, identifier, endFunction, newline, unindent, returnkw, identifier, newline, unindent, printkw, identifier] signature = FunctionSignature(identifier, [VariableReference(identifier), VariableReference(identifier)]) body = Body([Assignment(identifier, VariableReference(identifier)), Return(VariableReference(identifier))]) expected = MainBody([FunctionDefinition(signature, body), Print(VariableReference(identifier))]) actual = parseTokens(tokens) self.assertEqual(actual, expected)
def testBig(self): '\n def (var var):\n var = (var\n var)\n return var\n print var\n ' tokens = [defkw, startFunction, identifier, identifier, endFunction, endSignature, newline, indent, identifier, equals, startFunction, identifier, newline, indent, identifier, endFunction, newline, unindent, returnkw, identifier, newline, unindent, printkw, identifier] signature = FunctionSignature(identifier, [VariableReference(identifier), VariableReference(identifier)]) body = Body([Assignment(identifier, VariableReference(identifier)), Return(VariableReference(identifier))]) expected = MainBody([FunctionDefinition(signature, body), Print(VariableReference(identifier))]) actual = parseTokens(tokens) self.assertEqual(actual, expected)<|docstring|>def (var var): var = (var var) return var print var<|endoftext|>
3aa6cd674457904a83119984a414bfc87b1a09cf0f3cb6867f00a5104c17ee51
def testList(self): '\n [\n 123\n 123\n ]\n ' stream = TokenStream([startList, newline, indent, number, newline, number, newline, unindent, endList]) expected = ListExpression([Number(number), Number(number)]) actual = parseList(stream) self.assertEqual(actual, expected)
[ 123 123 ]
language/testParser.py
testList
quasarbright/Subduce
1
python
def testList(self): '\n [\n 123\n 123\n ]\n ' stream = TokenStream([startList, newline, indent, number, newline, number, newline, unindent, endList]) expected = ListExpression([Number(number), Number(number)]) actual = parseList(stream) self.assertEqual(actual, expected)
def testList(self): '\n [\n 123\n 123\n ]\n ' stream = TokenStream([startList, newline, indent, number, newline, number, newline, unindent, endList]) expected = ListExpression([Number(number), Number(number)]) actual = parseList(stream) self.assertEqual(actual, expected)<|docstring|>[ 123 123 ]<|endoftext|>
a6094880645ea69a5cdce258f9c1677cffd2a8fec8f8d219128c23eb0305ad9c
def testAssignment(self): '\n var = \n 123\n ' stream = TokenStream([identifier, equals, newline, indent, number]) expected = Assignment(identifier, Number(number)) actual = parseAssignment(stream) self.assertEqual(actual, expected)
var = 123
language/testParser.py
testAssignment
quasarbright/Subduce
1
python
def testAssignment(self): '\n var = \n 123\n ' stream = TokenStream([identifier, equals, newline, indent, number]) expected = Assignment(identifier, Number(number)) actual = parseAssignment(stream) self.assertEqual(actual, expected)
def testAssignment(self): '\n var = \n 123\n ' stream = TokenStream([identifier, equals, newline, indent, number]) expected = Assignment(identifier, Number(number)) actual = parseAssignment(stream) self.assertEqual(actual, expected)<|docstring|>var = 123<|endoftext|>
28087c90de444df2d6d1b7c593f06cd6a561caf1379604a645573bcb8627ba25
def testFirstLineInFuncEmpty(self): '\n def (var var):\n\n return var\n ' stream = TokenStream([defkw, startFunction, identifier, identifier, endFunction, endSignature, newline, newline, indent, returnkw, identifier]) expected = FunctionDefinition(FunctionSignature(identifier, [VariableReference(identifier)]), Body([Return(VariableReference(identifier))])) actual = parseFunctionDefinition(stream) self.assertEqual(actual, expected)
def (var var): return var
language/testParser.py
testFirstLineInFuncEmpty
quasarbright/Subduce
1
python
def testFirstLineInFuncEmpty(self): '\n def (var var):\n\n return var\n ' stream = TokenStream([defkw, startFunction, identifier, identifier, endFunction, endSignature, newline, newline, indent, returnkw, identifier]) expected = FunctionDefinition(FunctionSignature(identifier, [VariableReference(identifier)]), Body([Return(VariableReference(identifier))])) actual = parseFunctionDefinition(stream) self.assertEqual(actual, expected)
def testFirstLineInFuncEmpty(self): '\n def (var var):\n\n return var\n ' stream = TokenStream([defkw, startFunction, identifier, identifier, endFunction, endSignature, newline, newline, indent, returnkw, identifier]) expected = FunctionDefinition(FunctionSignature(identifier, [VariableReference(identifier)]), Body([Return(VariableReference(identifier))])) actual = parseFunctionDefinition(stream) self.assertEqual(actual, expected)<|docstring|>def (var var): return var<|endoftext|>
46c1177c0b7031c23bf89785d17561b223432c461e63db1ad163dbf1e6723fe5
def __init__(self, text: Text, token_weights: List[float], top_k_ratio: float=TOP_K_AVG_RATIO): "Initializes with a text and a list of token weights.\n\n Args:\n text: A full-text input to a classifier with tokens separated with ' '.\n token_weights: A list of token weights (in the token position order).\n top_k_ratio: Rationale size in tokens is defined proportional to the input\n length (in tokens). The percentages are given for the ERASER datasets\n and are 10% on average.\n " self.text = text self.tokens = str.split(text) assert (len(self.tokens) == len(token_weights)), 'Token count does not match.' self.token_weights = token_weights top_k_value = math.ceil((len(self.tokens) * top_k_ratio)) self.top_k_ids = np.argsort(token_weights)[(- top_k_value):] self.top_k_ids = list(reversed(self.top_k_ids)) self.top_k_ids_set = set(self.top_k_ids)
Initializes with a text and a list of token weights. Args: text: A full-text input to a classifier with tokens separated with ' '. token_weights: A list of token weights (in the token position order). top_k_ratio: Rationale size in tokens is defined proportional to the input length (in tokens). The percentages are given for the ERASER datasets and are 10% on average.
lit_nlp/components/citrus/helpers.py
__init__
eichinflo/lit
2,854
python
def __init__(self, text: Text, token_weights: List[float], top_k_ratio: float=TOP_K_AVG_RATIO): "Initializes with a text and a list of token weights.\n\n Args:\n text: A full-text input to a classifier with tokens separated with ' '.\n token_weights: A list of token weights (in the token position order).\n top_k_ratio: Rationale size in tokens is defined proportional to the input\n length (in tokens). The percentages are given for the ERASER datasets\n and are 10% on average.\n " self.text = text self.tokens = str.split(text) assert (len(self.tokens) == len(token_weights)), 'Token count does not match.' self.token_weights = token_weights top_k_value = math.ceil((len(self.tokens) * top_k_ratio)) self.top_k_ids = np.argsort(token_weights)[(- top_k_value):] self.top_k_ids = list(reversed(self.top_k_ids)) self.top_k_ids_set = set(self.top_k_ids)
def __init__(self, text: Text, token_weights: List[float], top_k_ratio: float=TOP_K_AVG_RATIO): "Initializes with a text and a list of token weights.\n\n Args:\n text: A full-text input to a classifier with tokens separated with ' '.\n token_weights: A list of token weights (in the token position order).\n top_k_ratio: Rationale size in tokens is defined proportional to the input\n length (in tokens). The percentages are given for the ERASER datasets\n and are 10% on average.\n " self.text = text self.tokens = str.split(text) assert (len(self.tokens) == len(token_weights)), 'Token count does not match.' self.token_weights = token_weights top_k_value = math.ceil((len(self.tokens) * top_k_ratio)) self.top_k_ids = np.argsort(token_weights)[(- top_k_value):] self.top_k_ids = list(reversed(self.top_k_ids)) self.top_k_ids_set = set(self.top_k_ids)<|docstring|>Initializes with a text and a list of token weights. Args: text: A full-text input to a classifier with tokens separated with ' '. token_weights: A list of token weights (in the token position order). top_k_ratio: Rationale size in tokens is defined proportional to the input length (in tokens). The percentages are given for the ERASER datasets and are 10% on average.<|endoftext|>
61c6c324df31421486765501882357b9db316fd0cf148fd8e3347daa9d1c28ff
def get_rationale_text(self, mask_token: Optional[Text]=None) -> str: 'Returns the text covering only the rationale.\n\n Args:\n mask_token: Token to use for all the tokens not in the rationale.\n Returns: A string representing the source text with everything but rationale\n masked.\n ' result = [] for (i, token) in enumerate(self.tokens): if (i in self.top_k_ids_set): result.append(token) elif mask_token: result.append(mask_token) return ' '.join(result)
Returns the text covering only the rationale. Args: mask_token: Token to use for all the tokens not in the rationale. Returns: A string representing the source text with everything but rationale masked.
lit_nlp/components/citrus/helpers.py
get_rationale_text
eichinflo/lit
2,854
python
def get_rationale_text(self, mask_token: Optional[Text]=None) -> str: 'Returns the text covering only the rationale.\n\n Args:\n mask_token: Token to use for all the tokens not in the rationale.\n Returns: A string representing the source text with everything but rationale\n masked.\n ' result = [] for (i, token) in enumerate(self.tokens): if (i in self.top_k_ids_set): result.append(token) elif mask_token: result.append(mask_token) return ' '.join(result)
def get_rationale_text(self, mask_token: Optional[Text]=None) -> str: 'Returns the text covering only the rationale.\n\n Args:\n mask_token: Token to use for all the tokens not in the rationale.\n Returns: A string representing the source text with everything but rationale\n masked.\n ' result = [] for (i, token) in enumerate(self.tokens): if (i in self.top_k_ids_set): result.append(token) elif mask_token: result.append(mask_token) return ' '.join(result)<|docstring|>Returns the text covering only the rationale. Args: mask_token: Token to use for all the tokens not in the rationale. Returns: A string representing the source text with everything but rationale masked.<|endoftext|>
6e9eba76808da76fa266151afe7314158546a66de298abe935407ed0fb104170
def get_text_wo_rationale(self, mask_token: Optional[Text]=None) -> str: 'Returns the text without the rationale.\n\n Args:\n mask_token: Token to use for all the tokens in the rationale.\n Returns: A string representing the source text with the rationale masked.\n ' result = [] for (i, token) in enumerate(self.tokens): if (i not in self.top_k_ids_set): result.append(token) elif mask_token: result.append(mask_token) return ' '.join(result)
Returns the text without the rationale. Args: mask_token: Token to use for all the tokens in the rationale. Returns: A string representing the source text with the rationale masked.
lit_nlp/components/citrus/helpers.py
get_text_wo_rationale
eichinflo/lit
2,854
python
def get_text_wo_rationale(self, mask_token: Optional[Text]=None) -> str: 'Returns the text without the rationale.\n\n Args:\n mask_token: Token to use for all the tokens in the rationale.\n Returns: A string representing the source text with the rationale masked.\n ' result = [] for (i, token) in enumerate(self.tokens): if (i not in self.top_k_ids_set): result.append(token) elif mask_token: result.append(mask_token) return ' '.join(result)
def get_text_wo_rationale(self, mask_token: Optional[Text]=None) -> str: 'Returns the text without the rationale.\n\n Args:\n mask_token: Token to use for all the tokens in the rationale.\n Returns: A string representing the source text with the rationale masked.\n ' result = [] for (i, token) in enumerate(self.tokens): if (i not in self.top_k_ids_set): result.append(token) elif mask_token: result.append(mask_token) return ' '.join(result)<|docstring|>Returns the text without the rationale. Args: mask_token: Token to use for all the tokens in the rationale. Returns: A string representing the source text with the rationale masked.<|endoftext|>
25d62a8aee0dc38c4ea675e8ed0a2f4947ad8fd18af7f29520d6454625792a18
@contextmanager def fake_security_scanner(hostname='fakesecurityscanner', incompatible=False): '\n Context manager which yields a fake security scanner.\n\n All requests made to the given hostname (default: fakesecurityscanner) will be handled by the\n fake. If `incompatible is True`, returns malformed responses to test if a client can handle\n version skew.\n ' scanner = FakeSecurityScanner(hostname) if (not incompatible): with HTTMock(*scanner.endpoints): (yield scanner) else: with HTTMock(*scanner.incompatible_endpoints): (yield scanner)
Context manager which yields a fake security scanner. All requests made to the given hostname (default: fakesecurityscanner) will be handled by the fake. If `incompatible is True`, returns malformed responses to test if a client can handle version skew.
util/secscan/v4/fake.py
fake_security_scanner
andykrohg/quay
0
python
@contextmanager def fake_security_scanner(hostname='fakesecurityscanner', incompatible=False): '\n Context manager which yields a fake security scanner.\n\n All requests made to the given hostname (default: fakesecurityscanner) will be handled by the\n fake. If `incompatible is True`, returns malformed responses to test if a client can handle\n version skew.\n ' scanner = FakeSecurityScanner(hostname) if (not incompatible): with HTTMock(*scanner.endpoints): (yield scanner) else: with HTTMock(*scanner.incompatible_endpoints): (yield scanner)
@contextmanager def fake_security_scanner(hostname='fakesecurityscanner', incompatible=False): '\n Context manager which yields a fake security scanner.\n\n All requests made to the given hostname (default: fakesecurityscanner) will be handled by the\n fake. If `incompatible is True`, returns malformed responses to test if a client can handle\n version skew.\n ' scanner = FakeSecurityScanner(hostname) if (not incompatible): with HTTMock(*scanner.endpoints): (yield scanner) else: with HTTMock(*scanner.incompatible_endpoints): (yield scanner)<|docstring|>Context manager which yields a fake security scanner. All requests made to the given hostname (default: fakesecurityscanner) will be handled by the fake. If `incompatible is True`, returns malformed responses to test if a client can handle version skew.<|endoftext|>
af47e937500a2015ebb9be3addf32dece081bd374c23618325b9f87786b4f7dd
@property def endpoints(self): '\n The HTTMock endpoint definitions for the fake security scanner.\n ' @urlmatch(netloc=('(.*\\.)?' + self.hostname), path='/api/v1/index_state', method='GET') def state(url, request): return {'status_code': 200, 'content': json.dumps({'state': self.indexer_state})} @urlmatch(netloc=('(.*\\.)?' + self.hostname), path='/api/v1/index_report', method='POST') def index(url, request): body = json.loads(request.body) if ((not ('hash' in body)) or (not ('layers' in body))): return {'status_code': 400, 'content': json.dumps({'code': 'bad-request', 'message': 'failed to deserialize manifest'})} report = {'manifest_hash': body['hash'], 'state': 'IndexFinished', 'packages': {}, 'distributions': {}, 'repository': {}, 'environments': {}, 'success': True, 'err': ''} self.index_reports[body['hash']] = report self.vulnerability_reports[body['hash']] = {'manifest_hash': body['hash'], 'packages': {}, 'distributions': {}, 'environments': {}, 'vulnerabilities': {}, 'package_vulnerabilities': {}} self.manifests[body['hash']] = body return {'status_code': 201, 'content': json.dumps(report), 'headers': {'etag': self.indexer_state}} @urlmatch(netloc=('(.*\\.)?' + self.hostname), path='/api/v1/index_report/(.+)', method='GET') def index_report(url, request): manifest_hash = url.path[len('/api/v1/index_report/'):] if (manifest_hash not in self.index_reports): return {'status_code': 404, 'content': json.dumps({'code': 'not-found', 'message': (('index report for manifest "' + manifest_hash) + '" not found')})} return {'status_code': 200, 'content': json.dumps(self.index_reports[manifest_hash]), 'headers': {'etag': self.indexer_state}} @urlmatch(netloc=('(.*\\.)?' + self.hostname), path='/api/v1/vulnerability_report/(.+)', method='GET') def vulnerability_report(url, request): manifest_hash = url.path[len('/api/v1/vulnerability_report/'):] if (manifest_hash not in self.index_reports): return {'status_code': 404, 'content': json.dumps({'code': 'not-found', 'message': (('index report for manifest "' + manifest_hash) + '" not found')})} return {'status_code': 200, 'content': json.dumps(self.vulnerability_reports[manifest_hash]), 'headers': {'etag': self.indexer_state}} @all_requests def response_content(url, _): return {'status_code': 404, 'content': '404 page not found'} return [state, index, index_report, vulnerability_report, response_content]
The HTTMock endpoint definitions for the fake security scanner.
util/secscan/v4/fake.py
endpoints
andykrohg/quay
0
python
@property def endpoints(self): '\n \n ' @urlmatch(netloc=('(.*\\.)?' + self.hostname), path='/api/v1/index_state', method='GET') def state(url, request): return {'status_code': 200, 'content': json.dumps({'state': self.indexer_state})} @urlmatch(netloc=('(.*\\.)?' + self.hostname), path='/api/v1/index_report', method='POST') def index(url, request): body = json.loads(request.body) if ((not ('hash' in body)) or (not ('layers' in body))): return {'status_code': 400, 'content': json.dumps({'code': 'bad-request', 'message': 'failed to deserialize manifest'})} report = {'manifest_hash': body['hash'], 'state': 'IndexFinished', 'packages': {}, 'distributions': {}, 'repository': {}, 'environments': {}, 'success': True, 'err': } self.index_reports[body['hash']] = report self.vulnerability_reports[body['hash']] = {'manifest_hash': body['hash'], 'packages': {}, 'distributions': {}, 'environments': {}, 'vulnerabilities': {}, 'package_vulnerabilities': {}} self.manifests[body['hash']] = body return {'status_code': 201, 'content': json.dumps(report), 'headers': {'etag': self.indexer_state}} @urlmatch(netloc=('(.*\\.)?' + self.hostname), path='/api/v1/index_report/(.+)', method='GET') def index_report(url, request): manifest_hash = url.path[len('/api/v1/index_report/'):] if (manifest_hash not in self.index_reports): return {'status_code': 404, 'content': json.dumps({'code': 'not-found', 'message': (('index report for manifest "' + manifest_hash) + '" not found')})} return {'status_code': 200, 'content': json.dumps(self.index_reports[manifest_hash]), 'headers': {'etag': self.indexer_state}} @urlmatch(netloc=('(.*\\.)?' + self.hostname), path='/api/v1/vulnerability_report/(.+)', method='GET') def vulnerability_report(url, request): manifest_hash = url.path[len('/api/v1/vulnerability_report/'):] if (manifest_hash not in self.index_reports): return {'status_code': 404, 'content': json.dumps({'code': 'not-found', 'message': (('index report for manifest "' + manifest_hash) + '" not found')})} return {'status_code': 200, 'content': json.dumps(self.vulnerability_reports[manifest_hash]), 'headers': {'etag': self.indexer_state}} @all_requests def response_content(url, _): return {'status_code': 404, 'content': '404 page not found'} return [state, index, index_report, vulnerability_report, response_content]
@property def endpoints(self): '\n \n ' @urlmatch(netloc=('(.*\\.)?' + self.hostname), path='/api/v1/index_state', method='GET') def state(url, request): return {'status_code': 200, 'content': json.dumps({'state': self.indexer_state})} @urlmatch(netloc=('(.*\\.)?' + self.hostname), path='/api/v1/index_report', method='POST') def index(url, request): body = json.loads(request.body) if ((not ('hash' in body)) or (not ('layers' in body))): return {'status_code': 400, 'content': json.dumps({'code': 'bad-request', 'message': 'failed to deserialize manifest'})} report = {'manifest_hash': body['hash'], 'state': 'IndexFinished', 'packages': {}, 'distributions': {}, 'repository': {}, 'environments': {}, 'success': True, 'err': } self.index_reports[body['hash']] = report self.vulnerability_reports[body['hash']] = {'manifest_hash': body['hash'], 'packages': {}, 'distributions': {}, 'environments': {}, 'vulnerabilities': {}, 'package_vulnerabilities': {}} self.manifests[body['hash']] = body return {'status_code': 201, 'content': json.dumps(report), 'headers': {'etag': self.indexer_state}} @urlmatch(netloc=('(.*\\.)?' + self.hostname), path='/api/v1/index_report/(.+)', method='GET') def index_report(url, request): manifest_hash = url.path[len('/api/v1/index_report/'):] if (manifest_hash not in self.index_reports): return {'status_code': 404, 'content': json.dumps({'code': 'not-found', 'message': (('index report for manifest "' + manifest_hash) + '" not found')})} return {'status_code': 200, 'content': json.dumps(self.index_reports[manifest_hash]), 'headers': {'etag': self.indexer_state}} @urlmatch(netloc=('(.*\\.)?' + self.hostname), path='/api/v1/vulnerability_report/(.+)', method='GET') def vulnerability_report(url, request): manifest_hash = url.path[len('/api/v1/vulnerability_report/'):] if (manifest_hash not in self.index_reports): return {'status_code': 404, 'content': json.dumps({'code': 'not-found', 'message': (('index report for manifest "' + manifest_hash) + '" not found')})} return {'status_code': 200, 'content': json.dumps(self.vulnerability_reports[manifest_hash]), 'headers': {'etag': self.indexer_state}} @all_requests def response_content(url, _): return {'status_code': 404, 'content': '404 page not found'} return [state, index, index_report, vulnerability_report, response_content]<|docstring|>The HTTMock endpoint definitions for the fake security scanner.<|endoftext|>
d391a127e905aec99ecc708788eaa033598f1039134ab4ac1e5657c49cdbb9df
@property def incompatible_endpoints(self): '\n The HTTMock endpoint definitions for the fake security scanner which returns incompatible responses.\n ' @all_requests def response_content(url, _): return {'status_code': 200, 'content': json.dumps({'foo': 'bar'})} return [response_content]
The HTTMock endpoint definitions for the fake security scanner which returns incompatible responses.
util/secscan/v4/fake.py
incompatible_endpoints
andykrohg/quay
0
python
@property def incompatible_endpoints(self): '\n \n ' @all_requests def response_content(url, _): return {'status_code': 200, 'content': json.dumps({'foo': 'bar'})} return [response_content]
@property def incompatible_endpoints(self): '\n \n ' @all_requests def response_content(url, _): return {'status_code': 200, 'content': json.dumps({'foo': 'bar'})} return [response_content]<|docstring|>The HTTMock endpoint definitions for the fake security scanner which returns incompatible responses.<|endoftext|>
316e317dee8a446dcd11169c7f29a96f36eac507d270df689c74b39dbaba0191
def get_runtype(self): "\n Returns runtype. For example, for MP2 single points, the line `energy('mp2')` is used. \n This method returns the string 'energy'.\n " for line in self.read(): if re.search("[A-z]*\\('[A-z0-9]*'(.?\\s*[A-z]*='[A-z]*')*\\)", line): if re.search("[A-z]*\\('[A-z0-9]*'\\)", line): return line.split('(')[0] else: return line.split('(')[0]
Returns runtype. For example, for MP2 single points, the line `energy('mp2')` is used. This method returns the string 'energy'.
autochem/interfaces/psi_results.py
get_runtype
tommason14/monash_automation
7
python
def get_runtype(self): "\n Returns runtype. For example, for MP2 single points, the line `energy('mp2')` is used. \n This method returns the string 'energy'.\n " for line in self.read(): if re.search("[A-z]*\\('[A-z0-9]*'(.?\\s*[A-z]*='[A-z]*')*\\)", line): if re.search("[A-z]*\\('[A-z0-9]*'\\)", line): return line.split('(')[0] else: return line.split('(')[0]
def get_runtype(self): "\n Returns runtype. For example, for MP2 single points, the line `energy('mp2')` is used. \n This method returns the string 'energy'.\n " for line in self.read(): if re.search("[A-z]*\\('[A-z0-9]*'(.?\\s*[A-z]*='[A-z]*')*\\)", line): if re.search("[A-z]*\\('[A-z0-9]*'\\)", line): return line.split('(')[0] else: return line.split('(')[0]<|docstring|>Returns runtype. For example, for MP2 single points, the line `energy('mp2')` is used. This method returns the string 'energy'.<|endoftext|>
5e0e6d4afe87d82e9036147ae9fa0375a4a05ddfc08437892dcf253ab53283d4
@property def method(self): "\n Returns energy type. For example, for MP2 single points, the line `energy('mp2')` is used. \n This method returns the string 'mp2'.\n " for line in self.read(): if re.search("[A-z]*\\('[A-z0-9]*'(.?\\s*[A-z]*='[A-z]*')*\\)", line): if re.search("[A-z]*\\('[A-z0-9]*'\\)", line): return re.search("[A-z]*\\('([A-z0-9]*)'\\)", line).group(1)
Returns energy type. For example, for MP2 single points, the line `energy('mp2')` is used. This method returns the string 'mp2'.
autochem/interfaces/psi_results.py
method
tommason14/monash_automation
7
python
@property def method(self): "\n Returns energy type. For example, for MP2 single points, the line `energy('mp2')` is used. \n This method returns the string 'mp2'.\n " for line in self.read(): if re.search("[A-z]*\\('[A-z0-9]*'(.?\\s*[A-z]*='[A-z]*')*\\)", line): if re.search("[A-z]*\\('[A-z0-9]*'\\)", line): return re.search("[A-z]*\\('([A-z0-9]*)'\\)", line).group(1)
@property def method(self): "\n Returns energy type. For example, for MP2 single points, the line `energy('mp2')` is used. \n This method returns the string 'mp2'.\n " for line in self.read(): if re.search("[A-z]*\\('[A-z0-9]*'(.?\\s*[A-z]*='[A-z]*')*\\)", line): if re.search("[A-z]*\\('[A-z0-9]*'\\)", line): return re.search("[A-z]*\\('([A-z0-9]*)'\\)", line).group(1)<|docstring|>Returns energy type. For example, for MP2 single points, the line `energy('mp2')` is used. This method returns the string 'mp2'.<|endoftext|>
e070c65dde00d278bfaeaee3953a256e6d0d26213243c5effcc9a46b3dff2964
def _neutral_homo_lumo(self): '\n Finds HOMO-LUMO gap for jobs of singlet multiplicity\n ' found_region = False energies = [] for line in self.read(): if ('Orbital Energies' in line): found_region = True if ('Final Occupation' in line): found_region = False if (found_region and (line.strip() != '')): energies.append(line) for (index, line) in enumerate(energies): if ('Virtual' in line): homo_lumo = energies[(index - 1):(index + 2)] homo = float(homo_lumo[0].split()[(- 1)]) lumo = float(homo_lumo[(- 1)].split()[1]) return (homo, lumo)
Finds HOMO-LUMO gap for jobs of singlet multiplicity
autochem/interfaces/psi_results.py
_neutral_homo_lumo
tommason14/monash_automation
7
python
def _neutral_homo_lumo(self): '\n \n ' found_region = False energies = [] for line in self.read(): if ('Orbital Energies' in line): found_region = True if ('Final Occupation' in line): found_region = False if (found_region and (line.strip() != )): energies.append(line) for (index, line) in enumerate(energies): if ('Virtual' in line): homo_lumo = energies[(index - 1):(index + 2)] homo = float(homo_lumo[0].split()[(- 1)]) lumo = float(homo_lumo[(- 1)].split()[1]) return (homo, lumo)
def _neutral_homo_lumo(self): '\n \n ' found_region = False energies = [] for line in self.read(): if ('Orbital Energies' in line): found_region = True if ('Final Occupation' in line): found_region = False if (found_region and (line.strip() != )): energies.append(line) for (index, line) in enumerate(energies): if ('Virtual' in line): homo_lumo = energies[(index - 1):(index + 2)] homo = float(homo_lumo[0].split()[(- 1)]) lumo = float(homo_lumo[(- 1)].split()[1]) return (homo, lumo)<|docstring|>Finds HOMO-LUMO gap for jobs of singlet multiplicity<|endoftext|>
e5f1e1ea536a14dbd56d0ab97737e04b63b430a1396bc6caee9a9fbb3cd07c4f
def _reduced_homo_lumo(self): '\n Finds SOMO-LUMO gap for jobs of doublet multiplicity\n ' found_singly_occupied = False found_virtual = False singly = [] virtual = [] for line in self.read(): if ('Singly Occupied' in line): found_singly_occupied = True if ('Virtual' in line): found_singly_occupied = False found_virtual = True if ('Final Occupation' in line): found_virtual = False if (found_singly_occupied and (line.strip() != '')): singly.append(line) if (found_virtual and (line.strip() != '')): virtual.append(line) if (len(virtual) > 3): break somo = float(singly[(- 1)].split()[(- 1)]) lumo = float(virtual[1].split()[1]) return (somo, lumo)
Finds SOMO-LUMO gap for jobs of doublet multiplicity
autochem/interfaces/psi_results.py
_reduced_homo_lumo
tommason14/monash_automation
7
python
def _reduced_homo_lumo(self): '\n \n ' found_singly_occupied = False found_virtual = False singly = [] virtual = [] for line in self.read(): if ('Singly Occupied' in line): found_singly_occupied = True if ('Virtual' in line): found_singly_occupied = False found_virtual = True if ('Final Occupation' in line): found_virtual = False if (found_singly_occupied and (line.strip() != )): singly.append(line) if (found_virtual and (line.strip() != )): virtual.append(line) if (len(virtual) > 3): break somo = float(singly[(- 1)].split()[(- 1)]) lumo = float(virtual[1].split()[1]) return (somo, lumo)
def _reduced_homo_lumo(self): '\n \n ' found_singly_occupied = False found_virtual = False singly = [] virtual = [] for line in self.read(): if ('Singly Occupied' in line): found_singly_occupied = True if ('Virtual' in line): found_singly_occupied = False found_virtual = True if ('Final Occupation' in line): found_virtual = False if (found_singly_occupied and (line.strip() != )): singly.append(line) if (found_virtual and (line.strip() != )): virtual.append(line) if (len(virtual) > 3): break somo = float(singly[(- 1)].split()[(- 1)]) lumo = float(virtual[1].split()[1]) return (somo, lumo)<|docstring|>Finds SOMO-LUMO gap for jobs of doublet multiplicity<|endoftext|>
2ea27e1a525ac936db54765d2fb225d7ff835fe1eb9e7424314b76d292b506d5
@property def homo_lumo_info(self): '\n Prints the HOMO-LUMO gap. Finds SOMO-LUMO if multiplicity is 2.\n Returns `self.multiplicity`, SOMO/HOMO (eV), LUMO (eV) and the gap (eV).\n ' if (self.multiplicity == 1): transition = 'HOMO-LUMO' else: transition = 'SOMO-LUMO' (homo, lumo, gap) = self._homo_lumo_gap() return {'File': self.file, 'Path': self.path, 'Multiplicity': self.multiplicity, 'Transition': transition, 'HOMO/SOMO (eV)': homo, 'LUMO (eV)': lumo, 'Gap (eV)': gap}
Prints the HOMO-LUMO gap. Finds SOMO-LUMO if multiplicity is 2. Returns `self.multiplicity`, SOMO/HOMO (eV), LUMO (eV) and the gap (eV).
autochem/interfaces/psi_results.py
homo_lumo_info
tommason14/monash_automation
7
python
@property def homo_lumo_info(self): '\n Prints the HOMO-LUMO gap. Finds SOMO-LUMO if multiplicity is 2.\n Returns `self.multiplicity`, SOMO/HOMO (eV), LUMO (eV) and the gap (eV).\n ' if (self.multiplicity == 1): transition = 'HOMO-LUMO' else: transition = 'SOMO-LUMO' (homo, lumo, gap) = self._homo_lumo_gap() return {'File': self.file, 'Path': self.path, 'Multiplicity': self.multiplicity, 'Transition': transition, 'HOMO/SOMO (eV)': homo, 'LUMO (eV)': lumo, 'Gap (eV)': gap}
@property def homo_lumo_info(self): '\n Prints the HOMO-LUMO gap. Finds SOMO-LUMO if multiplicity is 2.\n Returns `self.multiplicity`, SOMO/HOMO (eV), LUMO (eV) and the gap (eV).\n ' if (self.multiplicity == 1): transition = 'HOMO-LUMO' else: transition = 'SOMO-LUMO' (homo, lumo, gap) = self._homo_lumo_gap() return {'File': self.file, 'Path': self.path, 'Multiplicity': self.multiplicity, 'Transition': transition, 'HOMO/SOMO (eV)': homo, 'LUMO (eV)': lumo, 'Gap (eV)': gap}<|docstring|>Prints the HOMO-LUMO gap. Finds SOMO-LUMO if multiplicity is 2. Returns `self.multiplicity`, SOMO/HOMO (eV), LUMO (eV) and the gap (eV).<|endoftext|>
36b3609edff168ae93a42b220b5a38952ef65eb80216d3347b2671e8d341f34a
def get_data(self): '\n Returns job data: filename, filepath, basis set, HF/DFT energy, and MP2 opposite\n and same spin parameters if relevant.\n ' if (self.method == 'scf'): return self._scf_data() elif (self.method == 'mp2'): return self._mp2_data()
Returns job data: filename, filepath, basis set, HF/DFT energy, and MP2 opposite and same spin parameters if relevant.
autochem/interfaces/psi_results.py
get_data
tommason14/monash_automation
7
python
def get_data(self): '\n Returns job data: filename, filepath, basis set, HF/DFT energy, and MP2 opposite\n and same spin parameters if relevant.\n ' if (self.method == 'scf'): return self._scf_data() elif (self.method == 'mp2'): return self._mp2_data()
def get_data(self): '\n Returns job data: filename, filepath, basis set, HF/DFT energy, and MP2 opposite\n and same spin parameters if relevant.\n ' if (self.method == 'scf'): return self._scf_data() elif (self.method == 'mp2'): return self._mp2_data()<|docstring|>Returns job data: filename, filepath, basis set, HF/DFT energy, and MP2 opposite and same spin parameters if relevant.<|endoftext|>
0e8b39f66da9b93f5b5b9ec8a8be487bb6ce22c79bf2c4078f52c182bccdb6a7
@property def basis(self): '\n Returns basis set.\n ' for line in self.read(): if re.search('basis\\s\\w*(\\-?\\w*){1,2}$', line): return line.split()[(- 1)]
Returns basis set.
autochem/interfaces/psi_results.py
basis
tommason14/monash_automation
7
python
@property def basis(self): '\n \n ' for line in self.read(): if re.search('basis\\s\\w*(\\-?\\w*){1,2}$', line): return line.split()[(- 1)]
@property def basis(self): '\n \n ' for line in self.read(): if re.search('basis\\s\\w*(\\-?\\w*){1,2}$', line): return line.split()[(- 1)]<|docstring|>Returns basis set.<|endoftext|>
be2cc4689dc7052b1d46012e397768a6a8935fb5de8c51868ce9b50b9ef247e3
@property def total_energy(self): '\n Returns total energy, printed for scf calculations.\n ' total = '' for line in self.read(): if ('Total Energy =' in line): total = float(line.split('=')[1].strip()) return total
Returns total energy, printed for scf calculations.
autochem/interfaces/psi_results.py
total_energy
tommason14/monash_automation
7
python
@property def total_energy(self): '\n \n ' total = for line in self.read(): if ('Total Energy =' in line): total = float(line.split('=')[1].strip()) return total
@property def total_energy(self): '\n \n ' total = for line in self.read(): if ('Total Energy =' in line): total = float(line.split('=')[1].strip()) return total<|docstring|>Returns total energy, printed for scf calculations.<|endoftext|>
0a89bc78d4950886c1390f999e1e52083ae0f29b01e2654f51ad1eaeb848cc03
def _scf_data(self): '\n Return data for scf calculations. \n Note the NAs returned are because of no MP2 data.\n ' return (self.file, self.path, self.method, self.basis, self.total_energy, 'NA', 'NA', 'NA')
Return data for scf calculations. Note the NAs returned are because of no MP2 data.
autochem/interfaces/psi_results.py
_scf_data
tommason14/monash_automation
7
python
def _scf_data(self): '\n Return data for scf calculations. \n Note the NAs returned are because of no MP2 data.\n ' return (self.file, self.path, self.method, self.basis, self.total_energy, 'NA', 'NA', 'NA')
def _scf_data(self): '\n Return data for scf calculations. \n Note the NAs returned are because of no MP2 data.\n ' return (self.file, self.path, self.method, self.basis, self.total_energy, 'NA', 'NA', 'NA')<|docstring|>Return data for scf calculations. Note the NAs returned are because of no MP2 data.<|endoftext|>
e7f31e208af7ec500b23de8dbb7b62cf4a10ce7fd851f52b5e9308e39926ab9e
@property def hf_energy_for_mp2(self): "\n Returns 'reference energy' from MP2 calculations.\n " HF = '' for line in self.read(): if ('Reference Energy =' in line): HF = float(line.split('=')[1].split()[0].strip()) return HF
Returns 'reference energy' from MP2 calculations.
autochem/interfaces/psi_results.py
hf_energy_for_mp2
tommason14/monash_automation
7
python
@property def hf_energy_for_mp2(self): "\n \n " HF = for line in self.read(): if ('Reference Energy =' in line): HF = float(line.split('=')[1].split()[0].strip()) return HF
@property def hf_energy_for_mp2(self): "\n \n " HF = for line in self.read(): if ('Reference Energy =' in line): HF = float(line.split('=')[1].split()[0].strip()) return HF<|docstring|>Returns 'reference energy' from MP2 calculations.<|endoftext|>
8e8ae5a6da30fd7f0cfd39bd1f94e2243735e5e07f6d5b1fe74844f4be4843d3
@property def mp2_opp(self): '\n Returns MP2 opposite spin energy.\n ' opp = '' for line in self.read(): if ('Opposite-Spin Energy =' in line): opp = float(line.split('=')[1].split()[0].strip()) return opp
Returns MP2 opposite spin energy.
autochem/interfaces/psi_results.py
mp2_opp
tommason14/monash_automation
7
python
@property def mp2_opp(self): '\n \n ' opp = for line in self.read(): if ('Opposite-Spin Energy =' in line): opp = float(line.split('=')[1].split()[0].strip()) return opp
@property def mp2_opp(self): '\n \n ' opp = for line in self.read(): if ('Opposite-Spin Energy =' in line): opp = float(line.split('=')[1].split()[0].strip()) return opp<|docstring|>Returns MP2 opposite spin energy.<|endoftext|>
77275cf96c8dee5b2813c9789d5f7da40c499154227acb84b915fe0b42fc1c08
@property def mp2_same(self): '\n Returns MP2 same spin energy.\n ' same = '' for line in self.read(): if ('Same-Spin Energy =' in line): same = float(line.split('=')[1].split()[0].strip()) return same
Returns MP2 same spin energy.
autochem/interfaces/psi_results.py
mp2_same
tommason14/monash_automation
7
python
@property def mp2_same(self): '\n \n ' same = for line in self.read(): if ('Same-Spin Energy =' in line): same = float(line.split('=')[1].split()[0].strip()) return same
@property def mp2_same(self): '\n \n ' same = for line in self.read(): if ('Same-Spin Energy =' in line): same = float(line.split('=')[1].split()[0].strip()) return same<|docstring|>Returns MP2 same spin energy.<|endoftext|>
ef5c6d2d39118ace939c23e846fc572d8b07399cdf86a2b7a7c1a348846b1789
def _mp2_data(self): '\n Returns data for MP2 calculations: filename, filepath, \n basis set, hf energy, opp spin energy, same spin energy.\n No MP2 data is returned, but should be calculated instead from the \n HF and MP2 correlation energies by the user, as coefficients of \n each spin component will vary depending on the basis set.\n ' return (self.file, self.path, self.method, self.basis, self.hf_energy_for_mp2, 'NA', self.mp2_opp, self.mp2_same)
Returns data for MP2 calculations: filename, filepath, basis set, hf energy, opp spin energy, same spin energy. No MP2 data is returned, but should be calculated instead from the HF and MP2 correlation energies by the user, as coefficients of each spin component will vary depending on the basis set.
autochem/interfaces/psi_results.py
_mp2_data
tommason14/monash_automation
7
python
def _mp2_data(self): '\n Returns data for MP2 calculations: filename, filepath, \n basis set, hf energy, opp spin energy, same spin energy.\n No MP2 data is returned, but should be calculated instead from the \n HF and MP2 correlation energies by the user, as coefficients of \n each spin component will vary depending on the basis set.\n ' return (self.file, self.path, self.method, self.basis, self.hf_energy_for_mp2, 'NA', self.mp2_opp, self.mp2_same)
def _mp2_data(self): '\n Returns data for MP2 calculations: filename, filepath, \n basis set, hf energy, opp spin energy, same spin energy.\n No MP2 data is returned, but should be calculated instead from the \n HF and MP2 correlation energies by the user, as coefficients of \n each spin component will vary depending on the basis set.\n ' return (self.file, self.path, self.method, self.basis, self.hf_energy_for_mp2, 'NA', self.mp2_opp, self.mp2_same)<|docstring|>Returns data for MP2 calculations: filename, filepath, basis set, hf energy, opp spin energy, same spin energy. No MP2 data is returned, but should be calculated instead from the HF and MP2 correlation energies by the user, as coefficients of each spin component will vary depending on the basis set.<|endoftext|>
40ccf9666dc3c71af165776ace437ab2d832019e1191ca408033518a58752953
def at_cmdset_creation(self): '\n Populates the cmdset\n ' super().at_cmdset_creation()
Populates the cmdset
CoC/CoC_Default_CmdSets.py
at_cmdset_creation
macorvalan/MyGame
0
python
def at_cmdset_creation(self): '\n \n ' super().at_cmdset_creation()
def at_cmdset_creation(self): '\n \n ' super().at_cmdset_creation()<|docstring|>Populates the cmdset<|endoftext|>
40ccf9666dc3c71af165776ace437ab2d832019e1191ca408033518a58752953
def at_cmdset_creation(self): '\n Populates the cmdset\n ' super().at_cmdset_creation()
Populates the cmdset
CoC/CoC_Default_CmdSets.py
at_cmdset_creation
macorvalan/MyGame
0
python
def at_cmdset_creation(self): '\n \n ' super().at_cmdset_creation()
def at_cmdset_creation(self): '\n \n ' super().at_cmdset_creation()<|docstring|>Populates the cmdset<|endoftext|>
40ccf9666dc3c71af165776ace437ab2d832019e1191ca408033518a58752953
def at_cmdset_creation(self): '\n Populates the cmdset\n ' super().at_cmdset_creation()
Populates the cmdset
CoC/CoC_Default_CmdSets.py
at_cmdset_creation
macorvalan/MyGame
0
python
def at_cmdset_creation(self): '\n \n ' super().at_cmdset_creation()
def at_cmdset_creation(self): '\n \n ' super().at_cmdset_creation()<|docstring|>Populates the cmdset<|endoftext|>
dc6b17e1f171c6710371c9a1ef7212dec226ab6c6d99f175fbc8591bac7a64b1
def at_cmdset_creation(self): '\n This is the only method defined in a cmdset, called during\n its creation. It should populate the set with command instances.\n\n As and example we just add the empty base `Command` object.\n It prints some info.\n ' super().at_cmdset_creation()
This is the only method defined in a cmdset, called during its creation. It should populate the set with command instances. As and example we just add the empty base `Command` object. It prints some info.
CoC/CoC_Default_CmdSets.py
at_cmdset_creation
macorvalan/MyGame
0
python
def at_cmdset_creation(self): '\n This is the only method defined in a cmdset, called during\n its creation. It should populate the set with command instances.\n\n As and example we just add the empty base `Command` object.\n It prints some info.\n ' super().at_cmdset_creation()
def at_cmdset_creation(self): '\n This is the only method defined in a cmdset, called during\n its creation. It should populate the set with command instances.\n\n As and example we just add the empty base `Command` object.\n It prints some info.\n ' super().at_cmdset_creation()<|docstring|>This is the only method defined in a cmdset, called during its creation. It should populate the set with command instances. As and example we just add the empty base `Command` object. It prints some info.<|endoftext|>
764a96d4e4b9f28028d596aa1dd5648e431162e273e268b267dcf3f94f0b63ad
def __init__(self, str_in, error_level='M'): ' Init for QRCode\n\n Calls all methods (steps) required to generate a QR code.\n After all steps, the QR code will be stored as a data matrix.\n To generate an output from the matrix,\n call any method prefixed with "out_".\n ' if (error_level.upper() not in list('LMQH')): raise ValueError('Invalid error level, use L, M (default), Q or H') self.err_lvl = error_level.upper() self.generate_data(str_in) self.static_matrix = [] for i in range(0, self.width): self.static_matrix.append([]) for _ in range(0, self.width): self.static_matrix[i].append(None) self.add_finder_patterns() self.add_alignment_patterns() self.add_timer_patterns() self.static_matrix[(self.width - 8)][8] = 1 self.add_version_information() self.generate_data_matrix() self.merge_matrixes() self.apply_mask_and_finish_format()
Init for QRCode Calls all methods (steps) required to generate a QR code. After all steps, the QR code will be stored as a data matrix. To generate an output from the matrix, call any method prefixed with "out_".
NoLQR/__init__.py
__init__
Jelmerro/NoLQR
2
python
def __init__(self, str_in, error_level='M'): ' Init for QRCode\n\n Calls all methods (steps) required to generate a QR code.\n After all steps, the QR code will be stored as a data matrix.\n To generate an output from the matrix,\n call any method prefixed with "out_".\n ' if (error_level.upper() not in list('LMQH')): raise ValueError('Invalid error level, use L, M (default), Q or H') self.err_lvl = error_level.upper() self.generate_data(str_in) self.static_matrix = [] for i in range(0, self.width): self.static_matrix.append([]) for _ in range(0, self.width): self.static_matrix[i].append(None) self.add_finder_patterns() self.add_alignment_patterns() self.add_timer_patterns() self.static_matrix[(self.width - 8)][8] = 1 self.add_version_information() self.generate_data_matrix() self.merge_matrixes() self.apply_mask_and_finish_format()
def __init__(self, str_in, error_level='M'): ' Init for QRCode\n\n Calls all methods (steps) required to generate a QR code.\n After all steps, the QR code will be stored as a data matrix.\n To generate an output from the matrix,\n call any method prefixed with "out_".\n ' if (error_level.upper() not in list('LMQH')): raise ValueError('Invalid error level, use L, M (default), Q or H') self.err_lvl = error_level.upper() self.generate_data(str_in) self.static_matrix = [] for i in range(0, self.width): self.static_matrix.append([]) for _ in range(0, self.width): self.static_matrix[i].append(None) self.add_finder_patterns() self.add_alignment_patterns() self.add_timer_patterns() self.static_matrix[(self.width - 8)][8] = 1 self.add_version_information() self.generate_data_matrix() self.merge_matrixes() self.apply_mask_and_finish_format()<|docstring|>Init for QRCode Calls all methods (steps) required to generate a QR code. After all steps, the QR code will be stored as a data matrix. To generate an output from the matrix, call any method prefixed with "out_".<|endoftext|>
322d6b9dd63c8cff12ac362d208865cd912876474d7799473273cdb420da4a37
def encode_input(self, str_in): ' Encodes the input string using different modes\n\n Depending on the result of util.best_mode,\n The input string is encoded with either:\n numeric, alphanumeric, binary or kanji.\n Each of these modes has a different way to encode the data,\n and all of them are implemented below.\n The mode indicator and the character count indicator,\n are added before data, to form the data string.\n ' out = '' data_length = 0 if (self.mode == 'numeric'): for group in [str_in[i:(i + 3)] for i in range(0, len(str_in), 3)]: if (len(group) == 3): out += '{:010b}'.format(int(group)) if (len(group) == 2): out += '{:07b}'.format(int(group)) if (len(group) == 1): out += '{:04b}'.format(int(group)) data_length += len(group) if (self.mode == 'alphanumeric'): alpha_codes = [] for group in [str_in[i:(i + 2)] for i in range(0, len(str_in), 2)]: for character in group: alpha_codes.append(constants.ALPHA_TABLE[character]) for i in range(0, len(alpha_codes), 2): if ((i + 1) < len(alpha_codes)): number = ((alpha_codes[i] * 45) + alpha_codes[(i + 1)]) out += '{:011b}'.format(number) data_length += 2 else: out += '{:06b}'.format(alpha_codes[i]) data_length += 1 if (self.mode == 'binary'): for character in str_in.encode(constants.ENCODING): out += '{:08b}'.format(character) data_length += 1 if (self.mode == 'kanji'): characters = [] for item in str_in: characters.append(item.encode('shift-jis')) bytes = '' for character in characters: if (len(character.hex()) == 4): bytes += character.hex() else: self.mode = 'binary' return self.encode_input(str_in) for group in [bytes[i:(i + 4)] for i in range(0, len(bytes), 4)]: hex_code = int(group, 16) subtractor = '' if ((hex_code > int('8140', 16)) and (hex_code < int('9ffc', 16))): subtractor = '8140' elif ((hex_code > int('e040', 16)) and (hex_code < int('ebbf', 16))): subtractor = 'c140' else: self.mode = 'binary' return self.encode_input(str_in) hex_code = '{:04x}'.format((hex_code - int(subtractor, 16))) sig_bit = int(hex_code[:2], 16) ins_bit = int(hex_code[2:], 16) hex_code = ((sig_bit * int('c0', 16)) + ins_bit) out += '{:013b}'.format(hex_code) data_length += 1 self.version = util.version(self.mode, data_length, self.err_lvl) return '{}{}{}'.format(constants.MODES[self.mode]['mode_indicator'], util.character_count_indicator(self.mode, data_length, self.version), out)
Encodes the input string using different modes Depending on the result of util.best_mode, The input string is encoded with either: numeric, alphanumeric, binary or kanji. Each of these modes has a different way to encode the data, and all of them are implemented below. The mode indicator and the character count indicator, are added before data, to form the data string.
NoLQR/__init__.py
encode_input
Jelmerro/NoLQR
2
python
def encode_input(self, str_in): ' Encodes the input string using different modes\n\n Depending on the result of util.best_mode,\n The input string is encoded with either:\n numeric, alphanumeric, binary or kanji.\n Each of these modes has a different way to encode the data,\n and all of them are implemented below.\n The mode indicator and the character count indicator,\n are added before data, to form the data string.\n ' out = data_length = 0 if (self.mode == 'numeric'): for group in [str_in[i:(i + 3)] for i in range(0, len(str_in), 3)]: if (len(group) == 3): out += '{:010b}'.format(int(group)) if (len(group) == 2): out += '{:07b}'.format(int(group)) if (len(group) == 1): out += '{:04b}'.format(int(group)) data_length += len(group) if (self.mode == 'alphanumeric'): alpha_codes = [] for group in [str_in[i:(i + 2)] for i in range(0, len(str_in), 2)]: for character in group: alpha_codes.append(constants.ALPHA_TABLE[character]) for i in range(0, len(alpha_codes), 2): if ((i + 1) < len(alpha_codes)): number = ((alpha_codes[i] * 45) + alpha_codes[(i + 1)]) out += '{:011b}'.format(number) data_length += 2 else: out += '{:06b}'.format(alpha_codes[i]) data_length += 1 if (self.mode == 'binary'): for character in str_in.encode(constants.ENCODING): out += '{:08b}'.format(character) data_length += 1 if (self.mode == 'kanji'): characters = [] for item in str_in: characters.append(item.encode('shift-jis')) bytes = for character in characters: if (len(character.hex()) == 4): bytes += character.hex() else: self.mode = 'binary' return self.encode_input(str_in) for group in [bytes[i:(i + 4)] for i in range(0, len(bytes), 4)]: hex_code = int(group, 16) subtractor = if ((hex_code > int('8140', 16)) and (hex_code < int('9ffc', 16))): subtractor = '8140' elif ((hex_code > int('e040', 16)) and (hex_code < int('ebbf', 16))): subtractor = 'c140' else: self.mode = 'binary' return self.encode_input(str_in) hex_code = '{:04x}'.format((hex_code - int(subtractor, 16))) sig_bit = int(hex_code[:2], 16) ins_bit = int(hex_code[2:], 16) hex_code = ((sig_bit * int('c0', 16)) + ins_bit) out += '{:013b}'.format(hex_code) data_length += 1 self.version = util.version(self.mode, data_length, self.err_lvl) return '{}{}{}'.format(constants.MODES[self.mode]['mode_indicator'], util.character_count_indicator(self.mode, data_length, self.version), out)
def encode_input(self, str_in): ' Encodes the input string using different modes\n\n Depending on the result of util.best_mode,\n The input string is encoded with either:\n numeric, alphanumeric, binary or kanji.\n Each of these modes has a different way to encode the data,\n and all of them are implemented below.\n The mode indicator and the character count indicator,\n are added before data, to form the data string.\n ' out = data_length = 0 if (self.mode == 'numeric'): for group in [str_in[i:(i + 3)] for i in range(0, len(str_in), 3)]: if (len(group) == 3): out += '{:010b}'.format(int(group)) if (len(group) == 2): out += '{:07b}'.format(int(group)) if (len(group) == 1): out += '{:04b}'.format(int(group)) data_length += len(group) if (self.mode == 'alphanumeric'): alpha_codes = [] for group in [str_in[i:(i + 2)] for i in range(0, len(str_in), 2)]: for character in group: alpha_codes.append(constants.ALPHA_TABLE[character]) for i in range(0, len(alpha_codes), 2): if ((i + 1) < len(alpha_codes)): number = ((alpha_codes[i] * 45) + alpha_codes[(i + 1)]) out += '{:011b}'.format(number) data_length += 2 else: out += '{:06b}'.format(alpha_codes[i]) data_length += 1 if (self.mode == 'binary'): for character in str_in.encode(constants.ENCODING): out += '{:08b}'.format(character) data_length += 1 if (self.mode == 'kanji'): characters = [] for item in str_in: characters.append(item.encode('shift-jis')) bytes = for character in characters: if (len(character.hex()) == 4): bytes += character.hex() else: self.mode = 'binary' return self.encode_input(str_in) for group in [bytes[i:(i + 4)] for i in range(0, len(bytes), 4)]: hex_code = int(group, 16) subtractor = if ((hex_code > int('8140', 16)) and (hex_code < int('9ffc', 16))): subtractor = '8140' elif ((hex_code > int('e040', 16)) and (hex_code < int('ebbf', 16))): subtractor = 'c140' else: self.mode = 'binary' return self.encode_input(str_in) hex_code = '{:04x}'.format((hex_code - int(subtractor, 16))) sig_bit = int(hex_code[:2], 16) ins_bit = int(hex_code[2:], 16) hex_code = ((sig_bit * int('c0', 16)) + ins_bit) out += '{:013b}'.format(hex_code) data_length += 1 self.version = util.version(self.mode, data_length, self.err_lvl) return '{}{}{}'.format(constants.MODES[self.mode]['mode_indicator'], util.character_count_indicator(self.mode, data_length, self.version), out)<|docstring|>Encodes the input string using different modes Depending on the result of util.best_mode, The input string is encoded with either: numeric, alphanumeric, binary or kanji. Each of these modes has a different way to encode the data, and all of them are implemented below. The mode indicator and the character count indicator, are added before data, to form the data string.<|endoftext|>
af7d256324ecbbe740e95681c12f1e13a8b0e0caa7524c92a8f9087da431d03a
def generate_data(self, str_in): " Generates the data from the input string\n\n First picks the best mode and calls encode_input.\n After that, zeros are padded as explained in util.pad_zeros.\n Next the data is split in codewords (each containing 8 bits).\n These are used to generate the data blocks and error blocks.\n The result will be interleaved,\n and some remainer bits are added.\n The amount is always between 0 and 8,\n so 8 are added (overflow bits won't be added anyway).\n " self.mode = util.best_mode(str_in) data = self.encode_input(str_in) self.width = util.width(self.version) max_bytes = constants.VERSIONS[self.version][self.err_lvl] data = util.pad_zeros(data, max_bytes) codewords = [data[i:(i + 8)] for i in range(0, len(data), 8)] info = constants.ERROR_CORRECTION_BLOCKS[self.version][self.err_lvl] (data_blocks, error_blocks) = util.generate_blocks(codewords, info) result = util.interleave_codewords(data_blocks, error_blocks) self.data = (result + ('0' * 8))
Generates the data from the input string First picks the best mode and calls encode_input. After that, zeros are padded as explained in util.pad_zeros. Next the data is split in codewords (each containing 8 bits). These are used to generate the data blocks and error blocks. The result will be interleaved, and some remainer bits are added. The amount is always between 0 and 8, so 8 are added (overflow bits won't be added anyway).
NoLQR/__init__.py
generate_data
Jelmerro/NoLQR
2
python
def generate_data(self, str_in): " Generates the data from the input string\n\n First picks the best mode and calls encode_input.\n After that, zeros are padded as explained in util.pad_zeros.\n Next the data is split in codewords (each containing 8 bits).\n These are used to generate the data blocks and error blocks.\n The result will be interleaved,\n and some remainer bits are added.\n The amount is always between 0 and 8,\n so 8 are added (overflow bits won't be added anyway).\n " self.mode = util.best_mode(str_in) data = self.encode_input(str_in) self.width = util.width(self.version) max_bytes = constants.VERSIONS[self.version][self.err_lvl] data = util.pad_zeros(data, max_bytes) codewords = [data[i:(i + 8)] for i in range(0, len(data), 8)] info = constants.ERROR_CORRECTION_BLOCKS[self.version][self.err_lvl] (data_blocks, error_blocks) = util.generate_blocks(codewords, info) result = util.interleave_codewords(data_blocks, error_blocks) self.data = (result + ('0' * 8))
def generate_data(self, str_in): " Generates the data from the input string\n\n First picks the best mode and calls encode_input.\n After that, zeros are padded as explained in util.pad_zeros.\n Next the data is split in codewords (each containing 8 bits).\n These are used to generate the data blocks and error blocks.\n The result will be interleaved,\n and some remainer bits are added.\n The amount is always between 0 and 8,\n so 8 are added (overflow bits won't be added anyway).\n " self.mode = util.best_mode(str_in) data = self.encode_input(str_in) self.width = util.width(self.version) max_bytes = constants.VERSIONS[self.version][self.err_lvl] data = util.pad_zeros(data, max_bytes) codewords = [data[i:(i + 8)] for i in range(0, len(data), 8)] info = constants.ERROR_CORRECTION_BLOCKS[self.version][self.err_lvl] (data_blocks, error_blocks) = util.generate_blocks(codewords, info) result = util.interleave_codewords(data_blocks, error_blocks) self.data = (result + ('0' * 8))<|docstring|>Generates the data from the input string First picks the best mode and calls encode_input. After that, zeros are padded as explained in util.pad_zeros. Next the data is split in codewords (each containing 8 bits). These are used to generate the data blocks and error blocks. The result will be interleaved, and some remainer bits are added. The amount is always between 0 and 8, so 8 are added (overflow bits won't be added anyway).<|endoftext|>
01f9eb7561c51aeb5c8eee594170d73cb01cb2cfbc8f2c52240feda82c58b40a
def add_finder_patterns(self): ' Adds the finder patterns to the matrix\n\n In the top-left, top-right and bottom-left corner,\n a finder pattern is needed.\n This consists of a black 3x3 square,\n with a white border around that,\n with another black border around that.\n This 7x7 pattern has a white line between the data.\n The ranges in the loops below are even bigger,\n because they also reserve space for the format string.\n ' for y in range(0, 9): for x in range(0, 9): self.static_matrix[y][x] = 0 for y in range((self.width - 8), self.width): for x in range(0, 9): self.static_matrix[y][x] = 0 for y in range(0, 9): for x in range((self.width - 8), self.width): self.static_matrix[y][x] = 0 for (base_x, base_y) in [[0, 0], [(self.width - 7), 0], [0, (self.width - 7)]]: for x in range(base_x, (base_x + 7)): self.static_matrix[base_y][x] = 1 self.static_matrix[(base_y + 6)][x] = 1 for y in range(base_y, (base_y + 7)): self.static_matrix[y][base_x] = 1 self.static_matrix[y][(base_x + 6)] = 1 for y in range((base_y + 2), (base_y + 5)): for x in range((base_x + 2), (base_x + 5)): self.static_matrix[y][x] = 1
Adds the finder patterns to the matrix In the top-left, top-right and bottom-left corner, a finder pattern is needed. This consists of a black 3x3 square, with a white border around that, with another black border around that. This 7x7 pattern has a white line between the data. The ranges in the loops below are even bigger, because they also reserve space for the format string.
NoLQR/__init__.py
add_finder_patterns
Jelmerro/NoLQR
2
python
def add_finder_patterns(self): ' Adds the finder patterns to the matrix\n\n In the top-left, top-right and bottom-left corner,\n a finder pattern is needed.\n This consists of a black 3x3 square,\n with a white border around that,\n with another black border around that.\n This 7x7 pattern has a white line between the data.\n The ranges in the loops below are even bigger,\n because they also reserve space for the format string.\n ' for y in range(0, 9): for x in range(0, 9): self.static_matrix[y][x] = 0 for y in range((self.width - 8), self.width): for x in range(0, 9): self.static_matrix[y][x] = 0 for y in range(0, 9): for x in range((self.width - 8), self.width): self.static_matrix[y][x] = 0 for (base_x, base_y) in [[0, 0], [(self.width - 7), 0], [0, (self.width - 7)]]: for x in range(base_x, (base_x + 7)): self.static_matrix[base_y][x] = 1 self.static_matrix[(base_y + 6)][x] = 1 for y in range(base_y, (base_y + 7)): self.static_matrix[y][base_x] = 1 self.static_matrix[y][(base_x + 6)] = 1 for y in range((base_y + 2), (base_y + 5)): for x in range((base_x + 2), (base_x + 5)): self.static_matrix[y][x] = 1
def add_finder_patterns(self): ' Adds the finder patterns to the matrix\n\n In the top-left, top-right and bottom-left corner,\n a finder pattern is needed.\n This consists of a black 3x3 square,\n with a white border around that,\n with another black border around that.\n This 7x7 pattern has a white line between the data.\n The ranges in the loops below are even bigger,\n because they also reserve space for the format string.\n ' for y in range(0, 9): for x in range(0, 9): self.static_matrix[y][x] = 0 for y in range((self.width - 8), self.width): for x in range(0, 9): self.static_matrix[y][x] = 0 for y in range(0, 9): for x in range((self.width - 8), self.width): self.static_matrix[y][x] = 0 for (base_x, base_y) in [[0, 0], [(self.width - 7), 0], [0, (self.width - 7)]]: for x in range(base_x, (base_x + 7)): self.static_matrix[base_y][x] = 1 self.static_matrix[(base_y + 6)][x] = 1 for y in range(base_y, (base_y + 7)): self.static_matrix[y][base_x] = 1 self.static_matrix[y][(base_x + 6)] = 1 for y in range((base_y + 2), (base_y + 5)): for x in range((base_x + 2), (base_x + 5)): self.static_matrix[y][x] = 1<|docstring|>Adds the finder patterns to the matrix In the top-left, top-right and bottom-left corner, a finder pattern is needed. This consists of a black 3x3 square, with a white border around that, with another black border around that. This 7x7 pattern has a white line between the data. The ranges in the loops below are even bigger, because they also reserve space for the format string.<|endoftext|>
f7c33663db4ff1f5dadb02df5eb7f30254f5f0af93143eeb63ca043f0136d086
def add_alignment_patterns(self): " Adds the alignment patterns to the matrix\n\n The alignment patterns are added in different locations,\n depending on the version of the qr code.'\n It consists of a black pixel,\n with a white border around that,\n with another black border around that.\n The result is a 5x5 square pattern.\n In constants, a list of numbers is stored.\n This is a list of x/y positions,\n as each number can be either x or y,\n and all combination will receive an alignment pattern.\n The patterns are not added however,\n in any place which would overlap a reserved area.\n " patterns = constants.VERSIONS[self.version]['alignment'] for base_x in patterns: for base_y in patterns: if (not self.static_matrix[base_y][base_x]): for y in range((base_y - 2), (base_y + 3)): for x in range((base_x - 2), (base_x + 3)): self.static_matrix[y][x] = 0 for y in range((base_y - 2), (base_y + 3)): self.static_matrix[y][(base_x - 2)] = 1 for x in range((base_x - 2), (base_x + 3)): self.static_matrix[(base_y - 2)][x] = 1 for y in range((base_y - 2), (base_y + 3)): self.static_matrix[y][(base_x + 2)] = 1 for x in range((base_x - 2), (base_x + 3)): self.static_matrix[(base_y + 2)][x] = 1 self.static_matrix[base_y][base_x] = 1
Adds the alignment patterns to the matrix The alignment patterns are added in different locations, depending on the version of the qr code.' It consists of a black pixel, with a white border around that, with another black border around that. The result is a 5x5 square pattern. In constants, a list of numbers is stored. This is a list of x/y positions, as each number can be either x or y, and all combination will receive an alignment pattern. The patterns are not added however, in any place which would overlap a reserved area.
NoLQR/__init__.py
add_alignment_patterns
Jelmerro/NoLQR
2
python
def add_alignment_patterns(self): " Adds the alignment patterns to the matrix\n\n The alignment patterns are added in different locations,\n depending on the version of the qr code.'\n It consists of a black pixel,\n with a white border around that,\n with another black border around that.\n The result is a 5x5 square pattern.\n In constants, a list of numbers is stored.\n This is a list of x/y positions,\n as each number can be either x or y,\n and all combination will receive an alignment pattern.\n The patterns are not added however,\n in any place which would overlap a reserved area.\n " patterns = constants.VERSIONS[self.version]['alignment'] for base_x in patterns: for base_y in patterns: if (not self.static_matrix[base_y][base_x]): for y in range((base_y - 2), (base_y + 3)): for x in range((base_x - 2), (base_x + 3)): self.static_matrix[y][x] = 0 for y in range((base_y - 2), (base_y + 3)): self.static_matrix[y][(base_x - 2)] = 1 for x in range((base_x - 2), (base_x + 3)): self.static_matrix[(base_y - 2)][x] = 1 for y in range((base_y - 2), (base_y + 3)): self.static_matrix[y][(base_x + 2)] = 1 for x in range((base_x - 2), (base_x + 3)): self.static_matrix[(base_y + 2)][x] = 1 self.static_matrix[base_y][base_x] = 1
def add_alignment_patterns(self): " Adds the alignment patterns to the matrix\n\n The alignment patterns are added in different locations,\n depending on the version of the qr code.'\n It consists of a black pixel,\n with a white border around that,\n with another black border around that.\n The result is a 5x5 square pattern.\n In constants, a list of numbers is stored.\n This is a list of x/y positions,\n as each number can be either x or y,\n and all combination will receive an alignment pattern.\n The patterns are not added however,\n in any place which would overlap a reserved area.\n " patterns = constants.VERSIONS[self.version]['alignment'] for base_x in patterns: for base_y in patterns: if (not self.static_matrix[base_y][base_x]): for y in range((base_y - 2), (base_y + 3)): for x in range((base_x - 2), (base_x + 3)): self.static_matrix[y][x] = 0 for y in range((base_y - 2), (base_y + 3)): self.static_matrix[y][(base_x - 2)] = 1 for x in range((base_x - 2), (base_x + 3)): self.static_matrix[(base_y - 2)][x] = 1 for y in range((base_y - 2), (base_y + 3)): self.static_matrix[y][(base_x + 2)] = 1 for x in range((base_x - 2), (base_x + 3)): self.static_matrix[(base_y + 2)][x] = 1 self.static_matrix[base_y][base_x] = 1<|docstring|>Adds the alignment patterns to the matrix The alignment patterns are added in different locations, depending on the version of the qr code.' It consists of a black pixel, with a white border around that, with another black border around that. The result is a 5x5 square pattern. In constants, a list of numbers is stored. This is a list of x/y positions, as each number can be either x or y, and all combination will receive an alignment pattern. The patterns are not added however, in any place which would overlap a reserved area.<|endoftext|>
f23f8f677f56fa73304f8e524051eedefcd4d21ad765efeba2a27b3adc0d3d85
def add_timer_patterns(self): ' Adds the timer pattern to the matrix\n\n The timer pattern is a dotted line,\n which is added between the finder patterns.\n No conflict calculation with the alignment patterns is done,\n because this dotted line is part of the pattern.\n ' for x in range(6, (self.width - 8), 2): self.static_matrix[6][x] = 1 self.static_matrix[6][(x + 1)] = 0 for y in range(6, (self.width - 8), 2): self.static_matrix[y][6] = 1 self.static_matrix[(y + 1)][6] = 0
Adds the timer pattern to the matrix The timer pattern is a dotted line, which is added between the finder patterns. No conflict calculation with the alignment patterns is done, because this dotted line is part of the pattern.
NoLQR/__init__.py
add_timer_patterns
Jelmerro/NoLQR
2
python
def add_timer_patterns(self): ' Adds the timer pattern to the matrix\n\n The timer pattern is a dotted line,\n which is added between the finder patterns.\n No conflict calculation with the alignment patterns is done,\n because this dotted line is part of the pattern.\n ' for x in range(6, (self.width - 8), 2): self.static_matrix[6][x] = 1 self.static_matrix[6][(x + 1)] = 0 for y in range(6, (self.width - 8), 2): self.static_matrix[y][6] = 1 self.static_matrix[(y + 1)][6] = 0
def add_timer_patterns(self): ' Adds the timer pattern to the matrix\n\n The timer pattern is a dotted line,\n which is added between the finder patterns.\n No conflict calculation with the alignment patterns is done,\n because this dotted line is part of the pattern.\n ' for x in range(6, (self.width - 8), 2): self.static_matrix[6][x] = 1 self.static_matrix[6][(x + 1)] = 0 for y in range(6, (self.width - 8), 2): self.static_matrix[y][6] = 1 self.static_matrix[(y + 1)][6] = 0<|docstring|>Adds the timer pattern to the matrix The timer pattern is a dotted line, which is added between the finder patterns. No conflict calculation with the alignment patterns is done, because this dotted line is part of the pattern.<|endoftext|>
de6d22025d802a50efe505c4e0c25a7a00365f3082f6c1eb49b6ed51ca4c5313
def add_version_information(self): ' Adds the version information to the matrix\n\n This is only needed for version 7 and up,\n and consists of a 3x6 area near the finder patterns.\n The bits are added from most significant to least,\n so the index starts at 17 and goes down from there.\n ' if (self.version > 6): pattern = constants.VERSIONS[self.version]['pattern'] index = 17 for y in range(0, 6): for x in range((self.width - 11), (self.width - 8)): self.static_matrix[y][x] = int(pattern[index]) index -= 1 index = 17 for x in range(0, 6): for y in range((self.width - 11), (self.width - 8)): self.static_matrix[y][x] = int(pattern[index]) index -= 1
Adds the version information to the matrix This is only needed for version 7 and up, and consists of a 3x6 area near the finder patterns. The bits are added from most significant to least, so the index starts at 17 and goes down from there.
NoLQR/__init__.py
add_version_information
Jelmerro/NoLQR
2
python
def add_version_information(self): ' Adds the version information to the matrix\n\n This is only needed for version 7 and up,\n and consists of a 3x6 area near the finder patterns.\n The bits are added from most significant to least,\n so the index starts at 17 and goes down from there.\n ' if (self.version > 6): pattern = constants.VERSIONS[self.version]['pattern'] index = 17 for y in range(0, 6): for x in range((self.width - 11), (self.width - 8)): self.static_matrix[y][x] = int(pattern[index]) index -= 1 index = 17 for x in range(0, 6): for y in range((self.width - 11), (self.width - 8)): self.static_matrix[y][x] = int(pattern[index]) index -= 1
def add_version_information(self): ' Adds the version information to the matrix\n\n This is only needed for version 7 and up,\n and consists of a 3x6 area near the finder patterns.\n The bits are added from most significant to least,\n so the index starts at 17 and goes down from there.\n ' if (self.version > 6): pattern = constants.VERSIONS[self.version]['pattern'] index = 17 for y in range(0, 6): for x in range((self.width - 11), (self.width - 8)): self.static_matrix[y][x] = int(pattern[index]) index -= 1 index = 17 for x in range(0, 6): for y in range((self.width - 11), (self.width - 8)): self.static_matrix[y][x] = int(pattern[index]) index -= 1<|docstring|>Adds the version information to the matrix This is only needed for version 7 and up, and consists of a 3x6 area near the finder patterns. The bits are added from most significant to least, so the index starts at 17 and goes down from there.<|endoftext|>
ea8efe92c7c605ac08782dae19ebe0d29794ae4c7d1150130d7d720066de2dd1
def generate_data_matrix(self): ' Generates the data matrix\n\n The data is added in a zig-zag pattern,\n starting in the bottom right corner.\n Each zig-zag is two bits/pixels wide.\n Once the top is reached, move two to the left,\n and add the data in a zig-zag going down.\n If a reserved bit is found,\n skip it, and add the data bit in the next suitable location.\n This is done for all the data and the entire matrix,\n with one exception for the vertical timing pattern.\n This column is skipped altogether,\n and the zig-zag pattern will continue one bit to the left.\n ' self.data_matrix = [] for i in range(0, self.width): self.data_matrix.append([]) for _ in range(0, self.width): self.data_matrix[i].append(None) for base_x in range((self.width - 1), 0, (- 2)): for base_y in range((self.width - 1), (- 1), (- 1)): if (base_x < 8): x = (base_x - 1) else: x = base_x if ((base_x % 4) == 2): y = ((self.width - base_y) - 1) else: y = base_y if (self.data and (self.static_matrix[y][x] is None)): self.data_matrix[y][x] = int(self.data[:1]) self.data = self.data[1:] if ((x > 0) and self.data and (self.static_matrix[y][(x - 1)] is None)): self.data_matrix[y][(x - 1)] = int(self.data[:1]) self.data = self.data[1:]
Generates the data matrix The data is added in a zig-zag pattern, starting in the bottom right corner. Each zig-zag is two bits/pixels wide. Once the top is reached, move two to the left, and add the data in a zig-zag going down. If a reserved bit is found, skip it, and add the data bit in the next suitable location. This is done for all the data and the entire matrix, with one exception for the vertical timing pattern. This column is skipped altogether, and the zig-zag pattern will continue one bit to the left.
NoLQR/__init__.py
generate_data_matrix
Jelmerro/NoLQR
2
python
def generate_data_matrix(self): ' Generates the data matrix\n\n The data is added in a zig-zag pattern,\n starting in the bottom right corner.\n Each zig-zag is two bits/pixels wide.\n Once the top is reached, move two to the left,\n and add the data in a zig-zag going down.\n If a reserved bit is found,\n skip it, and add the data bit in the next suitable location.\n This is done for all the data and the entire matrix,\n with one exception for the vertical timing pattern.\n This column is skipped altogether,\n and the zig-zag pattern will continue one bit to the left.\n ' self.data_matrix = [] for i in range(0, self.width): self.data_matrix.append([]) for _ in range(0, self.width): self.data_matrix[i].append(None) for base_x in range((self.width - 1), 0, (- 2)): for base_y in range((self.width - 1), (- 1), (- 1)): if (base_x < 8): x = (base_x - 1) else: x = base_x if ((base_x % 4) == 2): y = ((self.width - base_y) - 1) else: y = base_y if (self.data and (self.static_matrix[y][x] is None)): self.data_matrix[y][x] = int(self.data[:1]) self.data = self.data[1:] if ((x > 0) and self.data and (self.static_matrix[y][(x - 1)] is None)): self.data_matrix[y][(x - 1)] = int(self.data[:1]) self.data = self.data[1:]
def generate_data_matrix(self): ' Generates the data matrix\n\n The data is added in a zig-zag pattern,\n starting in the bottom right corner.\n Each zig-zag is two bits/pixels wide.\n Once the top is reached, move two to the left,\n and add the data in a zig-zag going down.\n If a reserved bit is found,\n skip it, and add the data bit in the next suitable location.\n This is done for all the data and the entire matrix,\n with one exception for the vertical timing pattern.\n This column is skipped altogether,\n and the zig-zag pattern will continue one bit to the left.\n ' self.data_matrix = [] for i in range(0, self.width): self.data_matrix.append([]) for _ in range(0, self.width): self.data_matrix[i].append(None) for base_x in range((self.width - 1), 0, (- 2)): for base_y in range((self.width - 1), (- 1), (- 1)): if (base_x < 8): x = (base_x - 1) else: x = base_x if ((base_x % 4) == 2): y = ((self.width - base_y) - 1) else: y = base_y if (self.data and (self.static_matrix[y][x] is None)): self.data_matrix[y][x] = int(self.data[:1]) self.data = self.data[1:] if ((x > 0) and self.data and (self.static_matrix[y][(x - 1)] is None)): self.data_matrix[y][(x - 1)] = int(self.data[:1]) self.data = self.data[1:]<|docstring|>Generates the data matrix The data is added in a zig-zag pattern, starting in the bottom right corner. Each zig-zag is two bits/pixels wide. Once the top is reached, move two to the left, and add the data in a zig-zag going down. If a reserved bit is found, skip it, and add the data bit in the next suitable location. This is done for all the data and the entire matrix, with one exception for the vertical timing pattern. This column is skipped altogether, and the zig-zag pattern will continue one bit to the left.<|endoftext|>
ee7d7fd588592bd2050ef9de5c2ca6bd58697e978694ee6e789de985b72c9d33
def merge_matrixes(self): ' Merge the data and the static matrix\n\n When this method is called,\n all patterns are in the static matrix,\n and all data is in the data matrix.\n This method simply merges the two matrixes,\n into a single matrix.\n ' self.matrix = [] for i in range(0, self.width): self.matrix.append([]) for j in range(0, self.width): self.matrix[i].append(self.static_matrix[i][j]) for x in range(0, self.width): for y in range(0, self.width): if (self.matrix[y][x] is None): self.matrix[y][x] = self.data_matrix[y][x]
Merge the data and the static matrix When this method is called, all patterns are in the static matrix, and all data is in the data matrix. This method simply merges the two matrixes, into a single matrix.
NoLQR/__init__.py
merge_matrixes
Jelmerro/NoLQR
2
python
def merge_matrixes(self): ' Merge the data and the static matrix\n\n When this method is called,\n all patterns are in the static matrix,\n and all data is in the data matrix.\n This method simply merges the two matrixes,\n into a single matrix.\n ' self.matrix = [] for i in range(0, self.width): self.matrix.append([]) for j in range(0, self.width): self.matrix[i].append(self.static_matrix[i][j]) for x in range(0, self.width): for y in range(0, self.width): if (self.matrix[y][x] is None): self.matrix[y][x] = self.data_matrix[y][x]
def merge_matrixes(self): ' Merge the data and the static matrix\n\n When this method is called,\n all patterns are in the static matrix,\n and all data is in the data matrix.\n This method simply merges the two matrixes,\n into a single matrix.\n ' self.matrix = [] for i in range(0, self.width): self.matrix.append([]) for j in range(0, self.width): self.matrix[i].append(self.static_matrix[i][j]) for x in range(0, self.width): for y in range(0, self.width): if (self.matrix[y][x] is None): self.matrix[y][x] = self.data_matrix[y][x]<|docstring|>Merge the data and the static matrix When this method is called, all patterns are in the static matrix, and all data is in the data matrix. This method simply merges the two matrixes, into a single matrix.<|endoftext|>
6d1483b3487ead8e21e6fda760ee76848693a6f3ae314d8293d11df6ad849c99
def apply_mask_and_finish_format(self): ' Apply mask and finish overall formatting\n\n Each masking pattern is applied separately,\n and the best one is picked.\n This is done by calculating a score,\n for each of the different mask patterns.\n There are four penalty rules for that:\n - Single line with same colored bits (column or row)\n This gives a penalty for each group of 5 or more.\n The penalty is 3 for a group of 5,\n and 1 more for every next same colored bit.\n This is tested for horizontal and vertical lines.\n - 2x2 area of same colored bits\n This gives a penalty for ALL 2x2 groups,\n even if they are part of another group.\n Every 2x2 square has a penalty of 3.\n - Similar bits to a finder pattern (column or row)\n This gives a penalty for all 10111010000 or 00001011101.\n Each time these bits are found, add 40 to the penalty.\n This is tested for horizontal and vertical lines.\n - A large amount of dark or light bits\n If the percentage of dark modules is not near 50,\n add a penalty of 10 for every 5 percent (rounded down).\n This means, 4.9 percent results in 0, but 5.0 in 10.\n\n After calculating the score for all different mask patterns,\n the mask pattern with the lowest score is used.\n The format string was already added in the process,\n because the penalty rules also apply to the format bits.\n ' matrixes = [] scores = [] for m in range(0, 8): matrixes.append([]) scores.append(0) for i in range(0, self.width): matrixes[m].append([]) for j in range(0, self.width): matrixes[m][i].append(self.matrix[i][j]) masks = [(lambda x, y: (((x + y) % 2) == 0)), (lambda x, y: ((y % 2) == 0)), (lambda x, y: ((x % 3) == 0)), (lambda x, y: (((x + y) % 3) == 0)), (lambda x, y: (((int((y / 2)) + int((x / 3))) % 2) == 0)), (lambda x, y: ((((x * y) % 2) + ((x * y) % 3)) == 0)), (lambda x, y: (((((x * y) % 3) + (x * y)) % 2) == 0)), (lambda x, y: ((((((x * y) % 3) + x) + y) % 2) == 0))] for m in range(0, 8): for x in range(0, self.width): for y in range(0, self.width): if ((self.data_matrix[y][x] is not None) and masks[m](x, y)): matrixes[m][y][x] = ((self.data_matrix[y][x] + 1) % 2) matrixes[m] = util.add_format_info(matrixes[m], self.width, constants.FORMAT_STRING[self.err_lvl][m]) for direction in [0, 1]: total_black = 0 counter_white = 0 counter_black = 0 ss1 = '' ss2 = '' for x_or_y1 in range(0, self.width): for x_or_y2 in range(0, self.width): if direction: current_position = matrixes[m][x_or_y1][x_or_y2] else: current_position = matrixes[m][x_or_y2][x_or_y1] if (current_position == 1): counter_white = 0 counter_black += 1 total_black += 1 else: counter_white += 1 counter_black = 0 if ((counter_white == 5) or (counter_black == 5)): scores[m] += 3 elif ((counter_white > 5) or (counter_black > 5)): scores[m] += 1 if (current_position == int('10111010000'[len(ss1)])): ss1 += str(current_position) if (len(ss1) == 11): scores[m] += 40 ss1 = '' else: ss1 = '' if (current_position == int('00001011101'[len(ss2)])): ss2 += str(current_position) if (len(ss2) == 11): scores[m] += 40 ss2 = '' else: ss2 = '' for x in range(0, (self.width - 1)): for y in range(0, (self.width - 1)): if ((matrixes[m][(y + 1)][x] == 1) and (matrixes[m][(y + 1)][(x + 1)] == 1)): if ((matrixes[m][y][x] == 1) and (matrixes[m][y][(x + 1)] == 1)): scores[m] += 3 if ((matrixes[m][(y + 1)][x] == 0) and (matrixes[m][(y + 1)][(x + 1)] == 0)): if ((matrixes[m][y][x] == 0) and (matrixes[m][y][(x + 1)] == 0)): scores[m] += 3 percentage = ((total_black / (self.width * self.width)) * 100) if (percentage > 50): scores[m] += (int(((percentage - 50) / 5)) * 10) elif (percentage < 50): scores[m] += (int(((50 - percentage) / 5)) * 10) self.matrix = matrixes[scores.index(min(scores))]
Apply mask and finish overall formatting Each masking pattern is applied separately, and the best one is picked. This is done by calculating a score, for each of the different mask patterns. There are four penalty rules for that: - Single line with same colored bits (column or row) This gives a penalty for each group of 5 or more. The penalty is 3 for a group of 5, and 1 more for every next same colored bit. This is tested for horizontal and vertical lines. - 2x2 area of same colored bits This gives a penalty for ALL 2x2 groups, even if they are part of another group. Every 2x2 square has a penalty of 3. - Similar bits to a finder pattern (column or row) This gives a penalty for all 10111010000 or 00001011101. Each time these bits are found, add 40 to the penalty. This is tested for horizontal and vertical lines. - A large amount of dark or light bits If the percentage of dark modules is not near 50, add a penalty of 10 for every 5 percent (rounded down). This means, 4.9 percent results in 0, but 5.0 in 10. After calculating the score for all different mask patterns, the mask pattern with the lowest score is used. The format string was already added in the process, because the penalty rules also apply to the format bits.
NoLQR/__init__.py
apply_mask_and_finish_format
Jelmerro/NoLQR
2
python
def apply_mask_and_finish_format(self): ' Apply mask and finish overall formatting\n\n Each masking pattern is applied separately,\n and the best one is picked.\n This is done by calculating a score,\n for each of the different mask patterns.\n There are four penalty rules for that:\n - Single line with same colored bits (column or row)\n This gives a penalty for each group of 5 or more.\n The penalty is 3 for a group of 5,\n and 1 more for every next same colored bit.\n This is tested for horizontal and vertical lines.\n - 2x2 area of same colored bits\n This gives a penalty for ALL 2x2 groups,\n even if they are part of another group.\n Every 2x2 square has a penalty of 3.\n - Similar bits to a finder pattern (column or row)\n This gives a penalty for all 10111010000 or 00001011101.\n Each time these bits are found, add 40 to the penalty.\n This is tested for horizontal and vertical lines.\n - A large amount of dark or light bits\n If the percentage of dark modules is not near 50,\n add a penalty of 10 for every 5 percent (rounded down).\n This means, 4.9 percent results in 0, but 5.0 in 10.\n\n After calculating the score for all different mask patterns,\n the mask pattern with the lowest score is used.\n The format string was already added in the process,\n because the penalty rules also apply to the format bits.\n ' matrixes = [] scores = [] for m in range(0, 8): matrixes.append([]) scores.append(0) for i in range(0, self.width): matrixes[m].append([]) for j in range(0, self.width): matrixes[m][i].append(self.matrix[i][j]) masks = [(lambda x, y: (((x + y) % 2) == 0)), (lambda x, y: ((y % 2) == 0)), (lambda x, y: ((x % 3) == 0)), (lambda x, y: (((x + y) % 3) == 0)), (lambda x, y: (((int((y / 2)) + int((x / 3))) % 2) == 0)), (lambda x, y: ((((x * y) % 2) + ((x * y) % 3)) == 0)), (lambda x, y: (((((x * y) % 3) + (x * y)) % 2) == 0)), (lambda x, y: ((((((x * y) % 3) + x) + y) % 2) == 0))] for m in range(0, 8): for x in range(0, self.width): for y in range(0, self.width): if ((self.data_matrix[y][x] is not None) and masks[m](x, y)): matrixes[m][y][x] = ((self.data_matrix[y][x] + 1) % 2) matrixes[m] = util.add_format_info(matrixes[m], self.width, constants.FORMAT_STRING[self.err_lvl][m]) for direction in [0, 1]: total_black = 0 counter_white = 0 counter_black = 0 ss1 = ss2 = for x_or_y1 in range(0, self.width): for x_or_y2 in range(0, self.width): if direction: current_position = matrixes[m][x_or_y1][x_or_y2] else: current_position = matrixes[m][x_or_y2][x_or_y1] if (current_position == 1): counter_white = 0 counter_black += 1 total_black += 1 else: counter_white += 1 counter_black = 0 if ((counter_white == 5) or (counter_black == 5)): scores[m] += 3 elif ((counter_white > 5) or (counter_black > 5)): scores[m] += 1 if (current_position == int('10111010000'[len(ss1)])): ss1 += str(current_position) if (len(ss1) == 11): scores[m] += 40 ss1 = else: ss1 = if (current_position == int('00001011101'[len(ss2)])): ss2 += str(current_position) if (len(ss2) == 11): scores[m] += 40 ss2 = else: ss2 = for x in range(0, (self.width - 1)): for y in range(0, (self.width - 1)): if ((matrixes[m][(y + 1)][x] == 1) and (matrixes[m][(y + 1)][(x + 1)] == 1)): if ((matrixes[m][y][x] == 1) and (matrixes[m][y][(x + 1)] == 1)): scores[m] += 3 if ((matrixes[m][(y + 1)][x] == 0) and (matrixes[m][(y + 1)][(x + 1)] == 0)): if ((matrixes[m][y][x] == 0) and (matrixes[m][y][(x + 1)] == 0)): scores[m] += 3 percentage = ((total_black / (self.width * self.width)) * 100) if (percentage > 50): scores[m] += (int(((percentage - 50) / 5)) * 10) elif (percentage < 50): scores[m] += (int(((50 - percentage) / 5)) * 10) self.matrix = matrixes[scores.index(min(scores))]
def apply_mask_and_finish_format(self): ' Apply mask and finish overall formatting\n\n Each masking pattern is applied separately,\n and the best one is picked.\n This is done by calculating a score,\n for each of the different mask patterns.\n There are four penalty rules for that:\n - Single line with same colored bits (column or row)\n This gives a penalty for each group of 5 or more.\n The penalty is 3 for a group of 5,\n and 1 more for every next same colored bit.\n This is tested for horizontal and vertical lines.\n - 2x2 area of same colored bits\n This gives a penalty for ALL 2x2 groups,\n even if they are part of another group.\n Every 2x2 square has a penalty of 3.\n - Similar bits to a finder pattern (column or row)\n This gives a penalty for all 10111010000 or 00001011101.\n Each time these bits are found, add 40 to the penalty.\n This is tested for horizontal and vertical lines.\n - A large amount of dark or light bits\n If the percentage of dark modules is not near 50,\n add a penalty of 10 for every 5 percent (rounded down).\n This means, 4.9 percent results in 0, but 5.0 in 10.\n\n After calculating the score for all different mask patterns,\n the mask pattern with the lowest score is used.\n The format string was already added in the process,\n because the penalty rules also apply to the format bits.\n ' matrixes = [] scores = [] for m in range(0, 8): matrixes.append([]) scores.append(0) for i in range(0, self.width): matrixes[m].append([]) for j in range(0, self.width): matrixes[m][i].append(self.matrix[i][j]) masks = [(lambda x, y: (((x + y) % 2) == 0)), (lambda x, y: ((y % 2) == 0)), (lambda x, y: ((x % 3) == 0)), (lambda x, y: (((x + y) % 3) == 0)), (lambda x, y: (((int((y / 2)) + int((x / 3))) % 2) == 0)), (lambda x, y: ((((x * y) % 2) + ((x * y) % 3)) == 0)), (lambda x, y: (((((x * y) % 3) + (x * y)) % 2) == 0)), (lambda x, y: ((((((x * y) % 3) + x) + y) % 2) == 0))] for m in range(0, 8): for x in range(0, self.width): for y in range(0, self.width): if ((self.data_matrix[y][x] is not None) and masks[m](x, y)): matrixes[m][y][x] = ((self.data_matrix[y][x] + 1) % 2) matrixes[m] = util.add_format_info(matrixes[m], self.width, constants.FORMAT_STRING[self.err_lvl][m]) for direction in [0, 1]: total_black = 0 counter_white = 0 counter_black = 0 ss1 = ss2 = for x_or_y1 in range(0, self.width): for x_or_y2 in range(0, self.width): if direction: current_position = matrixes[m][x_or_y1][x_or_y2] else: current_position = matrixes[m][x_or_y2][x_or_y1] if (current_position == 1): counter_white = 0 counter_black += 1 total_black += 1 else: counter_white += 1 counter_black = 0 if ((counter_white == 5) or (counter_black == 5)): scores[m] += 3 elif ((counter_white > 5) or (counter_black > 5)): scores[m] += 1 if (current_position == int('10111010000'[len(ss1)])): ss1 += str(current_position) if (len(ss1) == 11): scores[m] += 40 ss1 = else: ss1 = if (current_position == int('00001011101'[len(ss2)])): ss2 += str(current_position) if (len(ss2) == 11): scores[m] += 40 ss2 = else: ss2 = for x in range(0, (self.width - 1)): for y in range(0, (self.width - 1)): if ((matrixes[m][(y + 1)][x] == 1) and (matrixes[m][(y + 1)][(x + 1)] == 1)): if ((matrixes[m][y][x] == 1) and (matrixes[m][y][(x + 1)] == 1)): scores[m] += 3 if ((matrixes[m][(y + 1)][x] == 0) and (matrixes[m][(y + 1)][(x + 1)] == 0)): if ((matrixes[m][y][x] == 0) and (matrixes[m][y][(x + 1)] == 0)): scores[m] += 3 percentage = ((total_black / (self.width * self.width)) * 100) if (percentage > 50): scores[m] += (int(((percentage - 50) / 5)) * 10) elif (percentage < 50): scores[m] += (int(((50 - percentage) / 5)) * 10) self.matrix = matrixes[scores.index(min(scores))]<|docstring|>Apply mask and finish overall formatting Each masking pattern is applied separately, and the best one is picked. This is done by calculating a score, for each of the different mask patterns. There are four penalty rules for that: - Single line with same colored bits (column or row) This gives a penalty for each group of 5 or more. The penalty is 3 for a group of 5, and 1 more for every next same colored bit. This is tested for horizontal and vertical lines. - 2x2 area of same colored bits This gives a penalty for ALL 2x2 groups, even if they are part of another group. Every 2x2 square has a penalty of 3. - Similar bits to a finder pattern (column or row) This gives a penalty for all 10111010000 or 00001011101. Each time these bits are found, add 40 to the penalty. This is tested for horizontal and vertical lines. - A large amount of dark or light bits If the percentage of dark modules is not near 50, add a penalty of 10 for every 5 percent (rounded down). This means, 4.9 percent results in 0, but 5.0 in 10. After calculating the score for all different mask patterns, the mask pattern with the lowest score is used. The format string was already added in the process, because the penalty rules also apply to the format bits.<|endoftext|>
869e40bfbbb7626b071246ad7bc0229f49ecb6a87b0aced8e3f7dbe46a7f0a7b
def out_terminal(self, inverted=True): ' Output to terminal\n\n Output the QR Code to the terminal.\n Simply loops over the matrix two lines at the time,\n and prints the suitable character (█, ▄, ▀ or a space).\n ' if inverted: EMPTY = '█' TOP = '▄' BOTTOM = '▀' FULL = ' ' else: EMPTY = ' ' TOP = '▀' BOTTOM = '▄' FULL = '█' print((EMPTY * (self.width + 4))) for row in range(0, self.width, 2): out = (EMPTY * 2) for p in range(0, self.width): if ((row + 1) == self.width): if self.matrix[row][p]: out += TOP else: out += EMPTY elif (self.matrix[row][p] and self.matrix[(row + 1)][p]): out += FULL elif self.matrix[row][p]: out += TOP elif self.matrix[(row + 1)][p]: out += BOTTOM else: out += EMPTY out += (EMPTY * 2) print(out) print((EMPTY * (len(self.matrix) + 4)))
Output to terminal Output the QR Code to the terminal. Simply loops over the matrix two lines at the time, and prints the suitable character (█, ▄, ▀ or a space).
NoLQR/__init__.py
out_terminal
Jelmerro/NoLQR
2
python
def out_terminal(self, inverted=True): ' Output to terminal\n\n Output the QR Code to the terminal.\n Simply loops over the matrix two lines at the time,\n and prints the suitable character (█, ▄, ▀ or a space).\n ' if inverted: EMPTY = '█' TOP = '▄' BOTTOM = '▀' FULL = ' ' else: EMPTY = ' ' TOP = '▀' BOTTOM = '▄' FULL = '█' print((EMPTY * (self.width + 4))) for row in range(0, self.width, 2): out = (EMPTY * 2) for p in range(0, self.width): if ((row + 1) == self.width): if self.matrix[row][p]: out += TOP else: out += EMPTY elif (self.matrix[row][p] and self.matrix[(row + 1)][p]): out += FULL elif self.matrix[row][p]: out += TOP elif self.matrix[(row + 1)][p]: out += BOTTOM else: out += EMPTY out += (EMPTY * 2) print(out) print((EMPTY * (len(self.matrix) + 4)))
def out_terminal(self, inverted=True): ' Output to terminal\n\n Output the QR Code to the terminal.\n Simply loops over the matrix two lines at the time,\n and prints the suitable character (█, ▄, ▀ or a space).\n ' if inverted: EMPTY = '█' TOP = '▄' BOTTOM = '▀' FULL = ' ' else: EMPTY = ' ' TOP = '▀' BOTTOM = '▄' FULL = '█' print((EMPTY * (self.width + 4))) for row in range(0, self.width, 2): out = (EMPTY * 2) for p in range(0, self.width): if ((row + 1) == self.width): if self.matrix[row][p]: out += TOP else: out += EMPTY elif (self.matrix[row][p] and self.matrix[(row + 1)][p]): out += FULL elif self.matrix[row][p]: out += TOP elif self.matrix[(row + 1)][p]: out += BOTTOM else: out += EMPTY out += (EMPTY * 2) print(out) print((EMPTY * (len(self.matrix) + 4)))<|docstring|>Output to terminal Output the QR Code to the terminal. Simply loops over the matrix two lines at the time, and prints the suitable character (█, ▄, ▀ or a space).<|endoftext|>
bcc80184e6bd7098a03404eab3e55d7cfcb7f49168f3db320b20cff225ca354a
def out_svg(self, filename, dark='black', light='white', background='white'): ' Output as an svg\n\n Output the QR Code to an svg file.\n Loops over the matrix, and makes a rect for each square.\n Also makes a colored background.\n Custom colors and sizes can be provided as arguments.\n ' filename = filename.rstrip() if (not filename.endswith('.svg')): filename = '{}.svg'.format(filename) rect = ' <rect x="{}" y="{}" height="{}" width="{}" fill="{}" />\n' out = '<?xml version="1.0" encoding="UTF-8" ?>\n' out += '<!-- Generated with NoLQR, QR code generation lighter than an unladen swallow -->\n' out += '<!-- Visit https://github.com/Jelmerro/NoLQR for updates and details -->\n' out += '<svg height="{}" width="{}" xmlns="http://www.w3.org/2000/svg" version="1.1">\n'.format((self.width + 4), (self.width + 4)) out += rect.format(0, 0, (self.width + 4), (self.width + 4), background) for row in range(0, self.width): for col in range(0, self.width): out += rect.format((2 + row), (2 + col), 1, 1, (dark if self.matrix[col][row] else light)) with open(filename, 'w') as f: f.write((out + '</svg>'))
Output as an svg Output the QR Code to an svg file. Loops over the matrix, and makes a rect for each square. Also makes a colored background. Custom colors and sizes can be provided as arguments.
NoLQR/__init__.py
out_svg
Jelmerro/NoLQR
2
python
def out_svg(self, filename, dark='black', light='white', background='white'): ' Output as an svg\n\n Output the QR Code to an svg file.\n Loops over the matrix, and makes a rect for each square.\n Also makes a colored background.\n Custom colors and sizes can be provided as arguments.\n ' filename = filename.rstrip() if (not filename.endswith('.svg')): filename = '{}.svg'.format(filename) rect = ' <rect x="{}" y="{}" height="{}" width="{}" fill="{}" />\n' out = '<?xml version="1.0" encoding="UTF-8" ?>\n' out += '<!-- Generated with NoLQR, QR code generation lighter than an unladen swallow -->\n' out += '<!-- Visit https://github.com/Jelmerro/NoLQR for updates and details -->\n' out += '<svg height="{}" width="{}" xmlns="http://www.w3.org/2000/svg" version="1.1">\n'.format((self.width + 4), (self.width + 4)) out += rect.format(0, 0, (self.width + 4), (self.width + 4), background) for row in range(0, self.width): for col in range(0, self.width): out += rect.format((2 + row), (2 + col), 1, 1, (dark if self.matrix[col][row] else light)) with open(filename, 'w') as f: f.write((out + '</svg>'))
def out_svg(self, filename, dark='black', light='white', background='white'): ' Output as an svg\n\n Output the QR Code to an svg file.\n Loops over the matrix, and makes a rect for each square.\n Also makes a colored background.\n Custom colors and sizes can be provided as arguments.\n ' filename = filename.rstrip() if (not filename.endswith('.svg')): filename = '{}.svg'.format(filename) rect = ' <rect x="{}" y="{}" height="{}" width="{}" fill="{}" />\n' out = '<?xml version="1.0" encoding="UTF-8" ?>\n' out += '<!-- Generated with NoLQR, QR code generation lighter than an unladen swallow -->\n' out += '<!-- Visit https://github.com/Jelmerro/NoLQR for updates and details -->\n' out += '<svg height="{}" width="{}" xmlns="http://www.w3.org/2000/svg" version="1.1">\n'.format((self.width + 4), (self.width + 4)) out += rect.format(0, 0, (self.width + 4), (self.width + 4), background) for row in range(0, self.width): for col in range(0, self.width): out += rect.format((2 + row), (2 + col), 1, 1, (dark if self.matrix[col][row] else light)) with open(filename, 'w') as f: f.write((out + '</svg>'))<|docstring|>Output as an svg Output the QR Code to an svg file. Loops over the matrix, and makes a rect for each square. Also makes a colored background. Custom colors and sizes can be provided as arguments.<|endoftext|>
2b184b5ff2a9b8c33b3d0528b8c99751e206312a6e78ed28b2c1489c0de79e6e
def merge(file1, file2, res='result.csv', k=1): '\n file1 准确率高 第一个位置的准确个数多\n file2 召回率高 所有位置的准确的个数多\n ' with open(file1) as f: lines1 = f.readlines() with open(file2) as f: lines2 = f.readlines() d1 = {_.split(',')[0]: _.strip().split(',')[1:] for _ in lines1} d2 = {_.split(',')[0]: _.strip().split(',')[1:] for _ in lines2} d = {} for key in d1: i1 = d1[key][:k] i2 = [_ for _ in d2[key] if (_ not in i1)][:(5 - k)] d[key] = (i1 + i2) lines = [([_] + _2) for (_, _2) in d.iteritems()] write_csv(res, lines)
file1 准确率高 第一个位置的准确个数多 file2 召回率高 所有位置的准确的个数多
scripts/mer_csv.py
merge
ZhouLigao/PyTorchText
1,136
python
def merge(file1, file2, res='result.csv', k=1): '\n file1 准确率高 第一个位置的准确个数多\n file2 召回率高 所有位置的准确的个数多\n ' with open(file1) as f: lines1 = f.readlines() with open(file2) as f: lines2 = f.readlines() d1 = {_.split(',')[0]: _.strip().split(',')[1:] for _ in lines1} d2 = {_.split(',')[0]: _.strip().split(',')[1:] for _ in lines2} d = {} for key in d1: i1 = d1[key][:k] i2 = [_ for _ in d2[key] if (_ not in i1)][:(5 - k)] d[key] = (i1 + i2) lines = [([_] + _2) for (_, _2) in d.iteritems()] write_csv(res, lines)
def merge(file1, file2, res='result.csv', k=1): '\n file1 准确率高 第一个位置的准确个数多\n file2 召回率高 所有位置的准确的个数多\n ' with open(file1) as f: lines1 = f.readlines() with open(file2) as f: lines2 = f.readlines() d1 = {_.split(',')[0]: _.strip().split(',')[1:] for _ in lines1} d2 = {_.split(',')[0]: _.strip().split(',')[1:] for _ in lines2} d = {} for key in d1: i1 = d1[key][:k] i2 = [_ for _ in d2[key] if (_ not in i1)][:(5 - k)] d[key] = (i1 + i2) lines = [([_] + _2) for (_, _2) in d.iteritems()] write_csv(res, lines)<|docstring|>file1 准确率高 第一个位置的准确个数多 file2 召回率高 所有位置的准确的个数多<|endoftext|>
7054e4f9601b5595613dea7e3b79957e37925e551432c83995fe2720c0adbef0
def merge2(file1, file2, res='result.csv', k=1): '\n file1 准确率高\n file2 召回率高\n ' with open(file1) as f: lines1 = f.readlines() with open(file2) as f: lines2 = f.readlines() d1 = {_.split(',')[0]: _.strip().split(',')[1:] for _ in lines1} d2 = {_.split(',')[0]: _.strip().split(',')[1:] for _ in lines2} d = {} for key in d1: _c1 = d1[key] _c2 = d2[key] i1 = d1[key][:k] i2 = [_ for _ in d2[key] if (_ not in i1)][:(5 - k)] d[key] = (i1 + i2) lines = [([_] + _2) for (_, _2) in d.iteritems()] write_csv(res, lines)
file1 准确率高 file2 召回率高
scripts/mer_csv.py
merge2
ZhouLigao/PyTorchText
1,136
python
def merge2(file1, file2, res='result.csv', k=1): '\n file1 准确率高\n file2 召回率高\n ' with open(file1) as f: lines1 = f.readlines() with open(file2) as f: lines2 = f.readlines() d1 = {_.split(',')[0]: _.strip().split(',')[1:] for _ in lines1} d2 = {_.split(',')[0]: _.strip().split(',')[1:] for _ in lines2} d = {} for key in d1: _c1 = d1[key] _c2 = d2[key] i1 = d1[key][:k] i2 = [_ for _ in d2[key] if (_ not in i1)][:(5 - k)] d[key] = (i1 + i2) lines = [([_] + _2) for (_, _2) in d.iteritems()] write_csv(res, lines)
def merge2(file1, file2, res='result.csv', k=1): '\n file1 准确率高\n file2 召回率高\n ' with open(file1) as f: lines1 = f.readlines() with open(file2) as f: lines2 = f.readlines() d1 = {_.split(',')[0]: _.strip().split(',')[1:] for _ in lines1} d2 = {_.split(',')[0]: _.strip().split(',')[1:] for _ in lines2} d = {} for key in d1: _c1 = d1[key] _c2 = d2[key] i1 = d1[key][:k] i2 = [_ for _ in d2[key] if (_ not in i1)][:(5 - k)] d[key] = (i1 + i2) lines = [([_] + _2) for (_, _2) in d.iteritems()] write_csv(res, lines)<|docstring|>file1 准确率高 file2 召回率高<|endoftext|>
be90cec0c3fd52b401543b618b761b4d8b42cb70f3d99384e632fa73e122e876
def assignText(self, accessible, text): "\n set the accessible's text\n " procedurelogger.action(('set %s text to "%s"' % (accessible, text))) try: accessible.text = text except NotImplementedError: pass
set the accessible's text
test/testers/winforms/trackbar/trackbarframe.py
assignText
terrajobst/uia2atk
1
python
def assignText(self, accessible, text): "\n \n " procedurelogger.action(('set %s text to "%s"' % (accessible, text))) try: accessible.text = text except NotImplementedError: pass
def assignText(self, accessible, text): "\n \n " procedurelogger.action(('set %s text to "%s"' % (accessible, text))) try: accessible.text = text except NotImplementedError: pass<|docstring|>set the accessible's text<|endoftext|>
13c95a14be5d2429a7297d6c10aa4799dbb699189bdb1d80d0344173e3b00864
def assignValue(self, accessible, value): "\n set the accessible's value\n " procedurelogger.action(('set %s\'s value to "%s"' % (accessible, value))) accessible.value = value
set the accessible's value
test/testers/winforms/trackbar/trackbarframe.py
assignValue
terrajobst/uia2atk
1
python
def assignValue(self, accessible, value): "\n \n " procedurelogger.action(('set %s\'s value to "%s"' % (accessible, value))) accessible.value = value
def assignValue(self, accessible, value): "\n \n " procedurelogger.action(('set %s\'s value to "%s"' % (accessible, value))) accessible.value = value<|docstring|>set the accessible's value<|endoftext|>
89ce2c4f2e12690760d1ddb9bc640eae46ab361468e7337c8741d32e32bd753e
def assertValue(self, accessible, expected_value): 'assert that the actual value ' procedurelogger.action(('Assert that the value of %s is what we expect' % accessible)) actual_value = accessible.value procedurelogger.expectedResult(('%s value is %s' % (accessible, expected_value))) assert (actual_value == expected_value), ('Value was %s, expected %s' % (actual_value, expected_value))
assert that the actual value
test/testers/winforms/trackbar/trackbarframe.py
assertValue
terrajobst/uia2atk
1
python
def assertValue(self, accessible, expected_value): ' ' procedurelogger.action(('Assert that the value of %s is what we expect' % accessible)) actual_value = accessible.value procedurelogger.expectedResult(('%s value is %s' % (accessible, expected_value))) assert (actual_value == expected_value), ('Value was %s, expected %s' % (actual_value, expected_value))
def assertValue(self, accessible, expected_value): ' ' procedurelogger.action(('Assert that the value of %s is what we expect' % accessible)) actual_value = accessible.value procedurelogger.expectedResult(('%s value is %s' % (accessible, expected_value))) assert (actual_value == expected_value), ('Value was %s, expected %s' % (actual_value, expected_value))<|docstring|>assert that the actual value<|endoftext|>
a9d625b1c9a311c497f77244508a850a923da5f8d399e5fdc9b5fb21c4aa6412
def assertText(self, accessible, expected_text): 'assert that the actual text ' procedurelogger.action(('Assert that the text of %s is what we expect' % accessible)) actual_text = accessible.text procedurelogger.expectedResult(('%s text is "%s"' % (accessible, expected_text))) assert (actual_text == expected_text), ('Text was "%s", expected "%s"' % (actual_text, expected_text))
assert that the actual text
test/testers/winforms/trackbar/trackbarframe.py
assertText
terrajobst/uia2atk
1
python
def assertText(self, accessible, expected_text): ' ' procedurelogger.action(('Assert that the text of %s is what we expect' % accessible)) actual_text = accessible.text procedurelogger.expectedResult(('%s text is "%s"' % (accessible, expected_text))) assert (actual_text == expected_text), ('Text was "%s", expected "%s"' % (actual_text, expected_text))
def assertText(self, accessible, expected_text): ' ' procedurelogger.action(('Assert that the text of %s is what we expect' % accessible)) actual_text = accessible.text procedurelogger.expectedResult(('%s text is "%s"' % (accessible, expected_text))) assert (actual_text == expected_text), ('Text was "%s", expected "%s"' % (actual_text, expected_text))<|docstring|>assert that the actual text<|endoftext|>
5ba5a08fbe2ab01ac0a3260a645eb2861076ed752cc3e3c8652c901be31f2636
@views.route('/static/user.css') @cache.cached(timeout=300) def custom_css(): '\n Custom CSS Handler route\n :return:\n ' return Response(get_config('css'), mimetype='text/css')
Custom CSS Handler route :return:
CTFd/views.py
custom_css
mayoneko/CTFd
2
python
@views.route('/static/user.css') @cache.cached(timeout=300) def custom_css(): '\n Custom CSS Handler route\n :return:\n ' return Response(get_config('css'), mimetype='text/css')
@views.route('/static/user.css') @cache.cached(timeout=300) def custom_css(): '\n Custom CSS Handler route\n :return:\n ' return Response(get_config('css'), mimetype='text/css')<|docstring|>Custom CSS Handler route :return:<|endoftext|>
7811d8895cb7587dfbf8c8aa79b3f44a69bb7333bba0c94406577d28ad3f5bbb
@views.route('/', defaults={'route': 'index'}) @views.route('/<path:route>') def static_html(route): '\n Route in charge of routing users to Pages.\n :param route:\n :return:\n ' page = get_page(route) if (page is None): abort(404) else: if (page.auth_required and (authed() is False)): return redirect(url_for('auth.login', next=request.path)) return render_template('page.html', content=markdown(page.content))
Route in charge of routing users to Pages. :param route: :return:
CTFd/views.py
static_html
mayoneko/CTFd
2
python
@views.route('/', defaults={'route': 'index'}) @views.route('/<path:route>') def static_html(route): '\n Route in charge of routing users to Pages.\n :param route:\n :return:\n ' page = get_page(route) if (page is None): abort(404) else: if (page.auth_required and (authed() is False)): return redirect(url_for('auth.login', next=request.path)) return render_template('page.html', content=markdown(page.content))
@views.route('/', defaults={'route': 'index'}) @views.route('/<path:route>') def static_html(route): '\n Route in charge of routing users to Pages.\n :param route:\n :return:\n ' page = get_page(route) if (page is None): abort(404) else: if (page.auth_required and (authed() is False)): return redirect(url_for('auth.login', next=request.path)) return render_template('page.html', content=markdown(page.content))<|docstring|>Route in charge of routing users to Pages. :param route: :return:<|endoftext|>
53636adc9069d9b91d9c7563a00831bca367424bdbe6a62b21c6197a8438e7f8
@views.route('/files', defaults={'path': ''}) @views.route('/files/<path:path>') def files(path): '\n Route in charge of dealing with making sure that CTF challenges are only accessible during the competition.\n :param path:\n :return:\n ' f = Files.query.filter_by(location=path).first_or_404() if (f.type == 'challenge'): if current_user.authed(): if (current_user.is_admin() is False): if (not ctftime()): abort(403) else: abort(403) uploader = get_uploader() try: return uploader.download(f.location) except IOError: abort(404)
Route in charge of dealing with making sure that CTF challenges are only accessible during the competition. :param path: :return:
CTFd/views.py
files
mayoneko/CTFd
2
python
@views.route('/files', defaults={'path': }) @views.route('/files/<path:path>') def files(path): '\n Route in charge of dealing with making sure that CTF challenges are only accessible during the competition.\n :param path:\n :return:\n ' f = Files.query.filter_by(location=path).first_or_404() if (f.type == 'challenge'): if current_user.authed(): if (current_user.is_admin() is False): if (not ctftime()): abort(403) else: abort(403) uploader = get_uploader() try: return uploader.download(f.location) except IOError: abort(404)
@views.route('/files', defaults={'path': }) @views.route('/files/<path:path>') def files(path): '\n Route in charge of dealing with making sure that CTF challenges are only accessible during the competition.\n :param path:\n :return:\n ' f = Files.query.filter_by(location=path).first_or_404() if (f.type == 'challenge'): if current_user.authed(): if (current_user.is_admin() is False): if (not ctftime()): abort(403) else: abort(403) uploader = get_uploader() try: return uploader.download(f.location) except IOError: abort(404)<|docstring|>Route in charge of dealing with making sure that CTF challenges are only accessible during the competition. :param path: :return:<|endoftext|>
cbe19811d3186f2d30a2bd9cacbddc67e6b748d35c457b95bee3c4b9518c8c4e
@views.route('/themes/<theme>/static/<path:path>') def themes(theme, path): '\n General static file handler\n :param theme:\n :param path:\n :return:\n ' filename = safe_join(app.root_path, 'themes', theme, 'static', path) if os.path.isfile(filename): return send_file(filename) else: abort(404)
General static file handler :param theme: :param path: :return:
CTFd/views.py
themes
mayoneko/CTFd
2
python
@views.route('/themes/<theme>/static/<path:path>') def themes(theme, path): '\n General static file handler\n :param theme:\n :param path:\n :return:\n ' filename = safe_join(app.root_path, 'themes', theme, 'static', path) if os.path.isfile(filename): return send_file(filename) else: abort(404)
@views.route('/themes/<theme>/static/<path:path>') def themes(theme, path): '\n General static file handler\n :param theme:\n :param path:\n :return:\n ' filename = safe_join(app.root_path, 'themes', theme, 'static', path) if os.path.isfile(filename): return send_file(filename) else: abort(404)<|docstring|>General static file handler :param theme: :param path: :return:<|endoftext|>
df042cbe8934fba84149e33c040e62b840b2b008a061e47eac006f1f8e53eeec
def psql_insert_copy(table, conn, keys, data_iter): 'Uses postgres insert method to convert a dataframe to a csv and\n copy directly into a sql table. Refs:\n https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-sql-method\n https://www.postgresql.org/docs/current/static/sql-copy.html\n ' dbapi_conn = conn.connection with dbapi_conn.cursor() as cur: s_buf = StringIO() writer = csv.writer(s_buf) writer.writerows(data_iter) s_buf.seek(0) columns = ', '.join(('"{}"'.format(k) for k in keys)) if table.schema: table_name = '{}.{}'.format(table.schema, table.name) else: table_name = table.name sql = 'COPY {} ({}) FROM STDIN WITH CSV'.format(table_name, columns) cur.copy_expert(sql=sql, file=s_buf)
Uses postgres insert method to convert a dataframe to a csv and copy directly into a sql table. Refs: https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-sql-method https://www.postgresql.org/docs/current/static/sql-copy.html
341_build_week_rapid_bq_to_pg.py
psql_insert_copy
Nburkhal/DS-work
0
python
def psql_insert_copy(table, conn, keys, data_iter): 'Uses postgres insert method to convert a dataframe to a csv and\n copy directly into a sql table. Refs:\n https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-sql-method\n https://www.postgresql.org/docs/current/static/sql-copy.html\n ' dbapi_conn = conn.connection with dbapi_conn.cursor() as cur: s_buf = StringIO() writer = csv.writer(s_buf) writer.writerows(data_iter) s_buf.seek(0) columns = ', '.join(('"{}"'.format(k) for k in keys)) if table.schema: table_name = '{}.{}'.format(table.schema, table.name) else: table_name = table.name sql = 'COPY {} ({}) FROM STDIN WITH CSV'.format(table_name, columns) cur.copy_expert(sql=sql, file=s_buf)
def psql_insert_copy(table, conn, keys, data_iter): 'Uses postgres insert method to convert a dataframe to a csv and\n copy directly into a sql table. Refs:\n https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-sql-method\n https://www.postgresql.org/docs/current/static/sql-copy.html\n ' dbapi_conn = conn.connection with dbapi_conn.cursor() as cur: s_buf = StringIO() writer = csv.writer(s_buf) writer.writerows(data_iter) s_buf.seek(0) columns = ', '.join(('"{}"'.format(k) for k in keys)) if table.schema: table_name = '{}.{}'.format(table.schema, table.name) else: table_name = table.name sql = 'COPY {} ({}) FROM STDIN WITH CSV'.format(table_name, columns) cur.copy_expert(sql=sql, file=s_buf)<|docstring|>Uses postgres insert method to convert a dataframe to a csv and copy directly into a sql table. Refs: https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-sql-method https://www.postgresql.org/docs/current/static/sql-copy.html<|endoftext|>
b53c6aa1b0eba8e153f982bda3263c5243578c8cb3076c5bf69bfa098abcfe04
def __call__(self, xi, order=0): 'Evaluate the path at given position.' ret = [poly.derivative(order)(xi) for poly in self._polys] return np.array(ret).T
Evaluate the path at given position.
toppra/simplepath.py
__call__
johnwason/toppra
342
python
def __call__(self, xi, order=0): ret = [poly.derivative(order)(xi) for poly in self._polys] return np.array(ret).T
def __call__(self, xi, order=0): ret = [poly.derivative(order)(xi) for poly in self._polys] return np.array(ret).T<|docstring|>Evaluate the path at given position.<|endoftext|>
31245b8657574939986e18bcb3abb90ec810ab078d5140f44708a47c6681b5e2
def test_EncodeInteractionEffectsTransformer_unexpected_values(self): "\n this test makes sure that any unexpected values raises an assertion error\n (that's what `possible_values` is supposed to solve, so the user should never see new values\n " titanic_data = TestHelper.get_titanic_data() transformer = EncodeInteractionEffectsTransformer(columns=['Pclass', 'Sex']) transformer.fit_transform(data_x=titanic_data) titanic_data.loc[(0, 'Pclass')] = 4 self.assertRaises(AssertionError, (lambda : transformer.transform(data_x=titanic_data)))
this test makes sure that any unexpected values raises an assertion error (that's what `possible_values` is supposed to solve, so the user should never see new values
tests/test_Transformers.py
test_EncodeInteractionEffectsTransformer_unexpected_values
shane-kercheval/oo-learning
1
python
def test_EncodeInteractionEffectsTransformer_unexpected_values(self): "\n this test makes sure that any unexpected values raises an assertion error\n (that's what `possible_values` is supposed to solve, so the user should never see new values\n " titanic_data = TestHelper.get_titanic_data() transformer = EncodeInteractionEffectsTransformer(columns=['Pclass', 'Sex']) transformer.fit_transform(data_x=titanic_data) titanic_data.loc[(0, 'Pclass')] = 4 self.assertRaises(AssertionError, (lambda : transformer.transform(data_x=titanic_data)))
def test_EncodeInteractionEffectsTransformer_unexpected_values(self): "\n this test makes sure that any unexpected values raises an assertion error\n (that's what `possible_values` is supposed to solve, so the user should never see new values\n " titanic_data = TestHelper.get_titanic_data() transformer = EncodeInteractionEffectsTransformer(columns=['Pclass', 'Sex']) transformer.fit_transform(data_x=titanic_data) titanic_data.loc[(0, 'Pclass')] = 4 self.assertRaises(AssertionError, (lambda : transformer.transform(data_x=titanic_data)))<|docstring|>this test makes sure that any unexpected values raises an assertion error (that's what `possible_values` is supposed to solve, so the user should never see new values<|endoftext|>
301eda1c995273450711f513baa840246c8fb5e503bacf05badd12bca5079262
def test_transformations_TitanicDataset_test_various_conditions(self): '\n Test:\n - At times there will be numeric columns that are actually categorical (e.g. 0/1)\n that we will need to specify\n - Categoric imputation\n - Test imputing only categoric, or only numeric\n - test full pipeline\n ' data = TestHelper.get_titanic_data() test_splitter = ClassificationStratifiedDataSplitter(holdout_ratio=0.05) (training_indexes, test_indexes) = test_splitter.split(target_values=data.Survived) train_data = data.iloc[training_indexes] test_data = data.iloc[test_indexes] indexes_of_null_train = {column: train_data[column].isnull().values for column in data.columns.values} indexes_of_null_test = {column: test_data[column].isnull().values for column in data.columns.values} pipeline = TransformerPipeline(transformations=[RemoveColumnsTransformer(['PassengerId', 'Name', 'Ticket', 'Cabin']), CategoricConverterTransformer(['Pclass', 'SibSp', 'Parch']), ImputationTransformer(), DummyEncodeTransformer(CategoricalEncoding.ONE_HOT)]) transformed_training = pipeline.fit_transform(data_x=train_data) assert (transformed_training.columns.values.tolist() == ['Survived', 'Age', 'Fare', 'Pclass_1', 'Pclass_2', 'Pclass_3', 'Sex_female', 'Sex_male', 'SibSp_0', 'SibSp_1', 'SibSp_2', 'SibSp_3', 'SibSp_4', 'SibSp_5', 'SibSp_8', 'Parch_0', 'Parch_1', 'Parch_2', 'Parch_3', 'Parch_4', 'Parch_5', 'Parch_6', 'Embarked_C', 'Embarked_Q', 'Embarked_S']) assert (train_data.isnull().sum().sum() > 0) assert (transformed_training.isnull().sum().sum() == 0) expected_imputed_age = train_data.Age.median() assert all((transformed_training[indexes_of_null_train['Age']]['Age'] == expected_imputed_age)) assert all((transformed_training[indexes_of_null_train['Embarked']]['Embarked_S'] == 1)) assert all((transformed_training[indexes_of_null_train['Embarked']]['Embarked_C'] == 0)) assert all((transformed_training[indexes_of_null_train['Embarked']]['Embarked_Q'] == 0)) transformed_test = pipeline.transform(data_x=test_data) assert (transformed_test.columns.values.tolist() == transformed_training.columns.values.tolist()) assert (test_data.isnull().sum().sum() > 0) assert (transformed_test.isnull().sum().sum() == 0) assert all((transformed_test[indexes_of_null_test['Age']]['Age'] == expected_imputed_age))
Test: - At times there will be numeric columns that are actually categorical (e.g. 0/1) that we will need to specify - Categoric imputation - Test imputing only categoric, or only numeric - test full pipeline
tests/test_Transformers.py
test_transformations_TitanicDataset_test_various_conditions
shane-kercheval/oo-learning
1
python
def test_transformations_TitanicDataset_test_various_conditions(self): '\n Test:\n - At times there will be numeric columns that are actually categorical (e.g. 0/1)\n that we will need to specify\n - Categoric imputation\n - Test imputing only categoric, or only numeric\n - test full pipeline\n ' data = TestHelper.get_titanic_data() test_splitter = ClassificationStratifiedDataSplitter(holdout_ratio=0.05) (training_indexes, test_indexes) = test_splitter.split(target_values=data.Survived) train_data = data.iloc[training_indexes] test_data = data.iloc[test_indexes] indexes_of_null_train = {column: train_data[column].isnull().values for column in data.columns.values} indexes_of_null_test = {column: test_data[column].isnull().values for column in data.columns.values} pipeline = TransformerPipeline(transformations=[RemoveColumnsTransformer(['PassengerId', 'Name', 'Ticket', 'Cabin']), CategoricConverterTransformer(['Pclass', 'SibSp', 'Parch']), ImputationTransformer(), DummyEncodeTransformer(CategoricalEncoding.ONE_HOT)]) transformed_training = pipeline.fit_transform(data_x=train_data) assert (transformed_training.columns.values.tolist() == ['Survived', 'Age', 'Fare', 'Pclass_1', 'Pclass_2', 'Pclass_3', 'Sex_female', 'Sex_male', 'SibSp_0', 'SibSp_1', 'SibSp_2', 'SibSp_3', 'SibSp_4', 'SibSp_5', 'SibSp_8', 'Parch_0', 'Parch_1', 'Parch_2', 'Parch_3', 'Parch_4', 'Parch_5', 'Parch_6', 'Embarked_C', 'Embarked_Q', 'Embarked_S']) assert (train_data.isnull().sum().sum() > 0) assert (transformed_training.isnull().sum().sum() == 0) expected_imputed_age = train_data.Age.median() assert all((transformed_training[indexes_of_null_train['Age']]['Age'] == expected_imputed_age)) assert all((transformed_training[indexes_of_null_train['Embarked']]['Embarked_S'] == 1)) assert all((transformed_training[indexes_of_null_train['Embarked']]['Embarked_C'] == 0)) assert all((transformed_training[indexes_of_null_train['Embarked']]['Embarked_Q'] == 0)) transformed_test = pipeline.transform(data_x=test_data) assert (transformed_test.columns.values.tolist() == transformed_training.columns.values.tolist()) assert (test_data.isnull().sum().sum() > 0) assert (transformed_test.isnull().sum().sum() == 0) assert all((transformed_test[indexes_of_null_test['Age']]['Age'] == expected_imputed_age))
def test_transformations_TitanicDataset_test_various_conditions(self): '\n Test:\n - At times there will be numeric columns that are actually categorical (e.g. 0/1)\n that we will need to specify\n - Categoric imputation\n - Test imputing only categoric, or only numeric\n - test full pipeline\n ' data = TestHelper.get_titanic_data() test_splitter = ClassificationStratifiedDataSplitter(holdout_ratio=0.05) (training_indexes, test_indexes) = test_splitter.split(target_values=data.Survived) train_data = data.iloc[training_indexes] test_data = data.iloc[test_indexes] indexes_of_null_train = {column: train_data[column].isnull().values for column in data.columns.values} indexes_of_null_test = {column: test_data[column].isnull().values for column in data.columns.values} pipeline = TransformerPipeline(transformations=[RemoveColumnsTransformer(['PassengerId', 'Name', 'Ticket', 'Cabin']), CategoricConverterTransformer(['Pclass', 'SibSp', 'Parch']), ImputationTransformer(), DummyEncodeTransformer(CategoricalEncoding.ONE_HOT)]) transformed_training = pipeline.fit_transform(data_x=train_data) assert (transformed_training.columns.values.tolist() == ['Survived', 'Age', 'Fare', 'Pclass_1', 'Pclass_2', 'Pclass_3', 'Sex_female', 'Sex_male', 'SibSp_0', 'SibSp_1', 'SibSp_2', 'SibSp_3', 'SibSp_4', 'SibSp_5', 'SibSp_8', 'Parch_0', 'Parch_1', 'Parch_2', 'Parch_3', 'Parch_4', 'Parch_5', 'Parch_6', 'Embarked_C', 'Embarked_Q', 'Embarked_S']) assert (train_data.isnull().sum().sum() > 0) assert (transformed_training.isnull().sum().sum() == 0) expected_imputed_age = train_data.Age.median() assert all((transformed_training[indexes_of_null_train['Age']]['Age'] == expected_imputed_age)) assert all((transformed_training[indexes_of_null_train['Embarked']]['Embarked_S'] == 1)) assert all((transformed_training[indexes_of_null_train['Embarked']]['Embarked_C'] == 0)) assert all((transformed_training[indexes_of_null_train['Embarked']]['Embarked_Q'] == 0)) transformed_test = pipeline.transform(data_x=test_data) assert (transformed_test.columns.values.tolist() == transformed_training.columns.values.tolist()) assert (test_data.isnull().sum().sum() > 0) assert (transformed_test.isnull().sum().sum() == 0) assert all((transformed_test[indexes_of_null_test['Age']]['Age'] == expected_imputed_age))<|docstring|>Test: - At times there will be numeric columns that are actually categorical (e.g. 0/1) that we will need to specify - Categoric imputation - Test imputing only categoric, or only numeric - test full pipeline<|endoftext|>
95519e6eabb240c82a49604725f141bae8733041b9c6164c2bb5a93be2c69b4e
def test_StatelessTransformer(self): '\n Create a StatelessTransformer that does the same thing as RemoveColumnsTransformer so that we can\n duplicate the test and ensure we get the same values. i.e. we should be indifferent towards methods\n ' data = TestHelper.get_insurance_data() def test_remove_columns(columns_to_remove): def remove_columns_helper(data_to_transform: pd.DataFrame): return data_to_transform.drop(columns=columns_to_remove) remove_column_transformer = StatelessTransformer(custom_function=remove_columns_helper) new_data = remove_column_transformer.fit_transform(data_x=data) assert all((new_data.columns.values == [column for column in data.columns.values if (column not in columns_to_remove)])) self.assertRaises(BaseException, (lambda : test_remove_columns(columns_to_remove=['expensess']))) for x in data.columns.values: test_remove_columns(columns_to_remove=[x]) for index in range(1, len(data.columns.values)): test_remove_columns(columns_to_remove=list(data.columns.values[0:(index + 1)]))
Create a StatelessTransformer that does the same thing as RemoveColumnsTransformer so that we can duplicate the test and ensure we get the same values. i.e. we should be indifferent towards methods
tests/test_Transformers.py
test_StatelessTransformer
shane-kercheval/oo-learning
1
python
def test_StatelessTransformer(self): '\n Create a StatelessTransformer that does the same thing as RemoveColumnsTransformer so that we can\n duplicate the test and ensure we get the same values. i.e. we should be indifferent towards methods\n ' data = TestHelper.get_insurance_data() def test_remove_columns(columns_to_remove): def remove_columns_helper(data_to_transform: pd.DataFrame): return data_to_transform.drop(columns=columns_to_remove) remove_column_transformer = StatelessTransformer(custom_function=remove_columns_helper) new_data = remove_column_transformer.fit_transform(data_x=data) assert all((new_data.columns.values == [column for column in data.columns.values if (column not in columns_to_remove)])) self.assertRaises(BaseException, (lambda : test_remove_columns(columns_to_remove=['expensess']))) for x in data.columns.values: test_remove_columns(columns_to_remove=[x]) for index in range(1, len(data.columns.values)): test_remove_columns(columns_to_remove=list(data.columns.values[0:(index + 1)]))
def test_StatelessTransformer(self): '\n Create a StatelessTransformer that does the same thing as RemoveColumnsTransformer so that we can\n duplicate the test and ensure we get the same values. i.e. we should be indifferent towards methods\n ' data = TestHelper.get_insurance_data() def test_remove_columns(columns_to_remove): def remove_columns_helper(data_to_transform: pd.DataFrame): return data_to_transform.drop(columns=columns_to_remove) remove_column_transformer = StatelessTransformer(custom_function=remove_columns_helper) new_data = remove_column_transformer.fit_transform(data_x=data) assert all((new_data.columns.values == [column for column in data.columns.values if (column not in columns_to_remove)])) self.assertRaises(BaseException, (lambda : test_remove_columns(columns_to_remove=['expensess']))) for x in data.columns.values: test_remove_columns(columns_to_remove=[x]) for index in range(1, len(data.columns.values)): test_remove_columns(columns_to_remove=list(data.columns.values[0:(index + 1)]))<|docstring|>Create a StatelessTransformer that does the same thing as RemoveColumnsTransformer so that we can duplicate the test and ensure we get the same values. i.e. we should be indifferent towards methods<|endoftext|>
564c45b1df4297551229d883a97c9999dff39f27305bfc734796adb0d189d218
def test_CenterScaleTransformer_column_all_same_values(self): '\n the standard deviation of a column containing all of the same number is 0, which creates a problem\n because we divide by the standard deviation (i.e. 0) which gives NaN values.\n in this case, if there is no standard deviation, all of the valuse should simply be 0 for\n Center/Scaling around a mean of 0\n ' data = TestHelper.get_housing_data() data['longitude'] = ([1] * len(data)) assert all((data.longitude.values == 1)) assert (data.drop(columns='total_bedrooms').isna().sum().sum() == 0) target_variable = 'median_house_value' (training_set, _, test_set, _) = TestHelper.split_train_holdout_regression(data, target_variable) transformer = CenterScaleTransformer() transformed_training = transformer.fit_transform(data_x=training_set.copy()) assert (transformed_training.drop(columns='total_bedrooms').isna().sum().sum() == 0) assert all((transformed_training.longitude == 0)) transformed_test = transformer.transform(data_x=test_set.copy()) assert (transformed_test.drop(columns='total_bedrooms').isna().sum().sum() == 0) assert all((transformed_test.longitude == 0)) test_set.loc[(3396, 'longitude')] = 2 assert (not all((test_set.longitude == 1))) self.assertRaises(AssertionError, (lambda : transformer.transform(data_x=test_set.copy())))
the standard deviation of a column containing all of the same number is 0, which creates a problem because we divide by the standard deviation (i.e. 0) which gives NaN values. in this case, if there is no standard deviation, all of the valuse should simply be 0 for Center/Scaling around a mean of 0
tests/test_Transformers.py
test_CenterScaleTransformer_column_all_same_values
shane-kercheval/oo-learning
1
python
def test_CenterScaleTransformer_column_all_same_values(self): '\n the standard deviation of a column containing all of the same number is 0, which creates a problem\n because we divide by the standard deviation (i.e. 0) which gives NaN values.\n in this case, if there is no standard deviation, all of the valuse should simply be 0 for\n Center/Scaling around a mean of 0\n ' data = TestHelper.get_housing_data() data['longitude'] = ([1] * len(data)) assert all((data.longitude.values == 1)) assert (data.drop(columns='total_bedrooms').isna().sum().sum() == 0) target_variable = 'median_house_value' (training_set, _, test_set, _) = TestHelper.split_train_holdout_regression(data, target_variable) transformer = CenterScaleTransformer() transformed_training = transformer.fit_transform(data_x=training_set.copy()) assert (transformed_training.drop(columns='total_bedrooms').isna().sum().sum() == 0) assert all((transformed_training.longitude == 0)) transformed_test = transformer.transform(data_x=test_set.copy()) assert (transformed_test.drop(columns='total_bedrooms').isna().sum().sum() == 0) assert all((transformed_test.longitude == 0)) test_set.loc[(3396, 'longitude')] = 2 assert (not all((test_set.longitude == 1))) self.assertRaises(AssertionError, (lambda : transformer.transform(data_x=test_set.copy())))
def test_CenterScaleTransformer_column_all_same_values(self): '\n the standard deviation of a column containing all of the same number is 0, which creates a problem\n because we divide by the standard deviation (i.e. 0) which gives NaN values.\n in this case, if there is no standard deviation, all of the valuse should simply be 0 for\n Center/Scaling around a mean of 0\n ' data = TestHelper.get_housing_data() data['longitude'] = ([1] * len(data)) assert all((data.longitude.values == 1)) assert (data.drop(columns='total_bedrooms').isna().sum().sum() == 0) target_variable = 'median_house_value' (training_set, _, test_set, _) = TestHelper.split_train_holdout_regression(data, target_variable) transformer = CenterScaleTransformer() transformed_training = transformer.fit_transform(data_x=training_set.copy()) assert (transformed_training.drop(columns='total_bedrooms').isna().sum().sum() == 0) assert all((transformed_training.longitude == 0)) transformed_test = transformer.transform(data_x=test_set.copy()) assert (transformed_test.drop(columns='total_bedrooms').isna().sum().sum() == 0) assert all((transformed_test.longitude == 0)) test_set.loc[(3396, 'longitude')] = 2 assert (not all((test_set.longitude == 1))) self.assertRaises(AssertionError, (lambda : transformer.transform(data_x=test_set.copy())))<|docstring|>the standard deviation of a column containing all of the same number is 0, which creates a problem because we divide by the standard deviation (i.e. 0) which gives NaN values. in this case, if there is no standard deviation, all of the valuse should simply be 0 for Center/Scaling around a mean of 0<|endoftext|>
6bf0115b598ec0b94bc85e3859635a12d4a72cae70822c423fdc250055348b71
def __init__(self, version_id: str, tx_fee: int, agent_addr_to_name: Dict[(Address, str)], currency_id_to_name: Dict[(str, str)], good_id_to_name: Dict[(str, str)]): '\n Instantiate a game configuration.\n\n :param version_id: the version of the game.\n :param tx_fee: the fee for a transaction.\n :param agent_addr_to_name: a dictionary mapping agent addresses to agent names (as strings).\n :param currency_id_to_name: the mapping of currency id to name.\n :param good_id_to_name: the mapping of good id to name.\n ' self._version_id = version_id self._tx_fee = tx_fee self._agent_addr_to_name = agent_addr_to_name self._currency_id_to_name = currency_id_to_name self._good_id_to_name = good_id_to_name self._contract_address = None self._check_consistency()
Instantiate a game configuration. :param version_id: the version of the game. :param tx_fee: the fee for a transaction. :param agent_addr_to_name: a dictionary mapping agent addresses to agent names (as strings). :param currency_id_to_name: the mapping of currency id to name. :param good_id_to_name: the mapping of good id to name.
packages/fetchai/skills/tac_control/game.py
__init__
bryanchriswhite/agents-aea
126
python
def __init__(self, version_id: str, tx_fee: int, agent_addr_to_name: Dict[(Address, str)], currency_id_to_name: Dict[(str, str)], good_id_to_name: Dict[(str, str)]): '\n Instantiate a game configuration.\n\n :param version_id: the version of the game.\n :param tx_fee: the fee for a transaction.\n :param agent_addr_to_name: a dictionary mapping agent addresses to agent names (as strings).\n :param currency_id_to_name: the mapping of currency id to name.\n :param good_id_to_name: the mapping of good id to name.\n ' self._version_id = version_id self._tx_fee = tx_fee self._agent_addr_to_name = agent_addr_to_name self._currency_id_to_name = currency_id_to_name self._good_id_to_name = good_id_to_name self._contract_address = None self._check_consistency()
def __init__(self, version_id: str, tx_fee: int, agent_addr_to_name: Dict[(Address, str)], currency_id_to_name: Dict[(str, str)], good_id_to_name: Dict[(str, str)]): '\n Instantiate a game configuration.\n\n :param version_id: the version of the game.\n :param tx_fee: the fee for a transaction.\n :param agent_addr_to_name: a dictionary mapping agent addresses to agent names (as strings).\n :param currency_id_to_name: the mapping of currency id to name.\n :param good_id_to_name: the mapping of good id to name.\n ' self._version_id = version_id self._tx_fee = tx_fee self._agent_addr_to_name = agent_addr_to_name self._currency_id_to_name = currency_id_to_name self._good_id_to_name = good_id_to_name self._contract_address = None self._check_consistency()<|docstring|>Instantiate a game configuration. :param version_id: the version of the game. :param tx_fee: the fee for a transaction. :param agent_addr_to_name: a dictionary mapping agent addresses to agent names (as strings). :param currency_id_to_name: the mapping of currency id to name. :param good_id_to_name: the mapping of good id to name.<|endoftext|>
dfea2d638b2aea6e29b56f91e550c337975324654c56a46c47e282863922f235
@property def version_id(self) -> str: 'Agent number of a TAC instance.' return self._version_id
Agent number of a TAC instance.
packages/fetchai/skills/tac_control/game.py
version_id
bryanchriswhite/agents-aea
126
python
@property def version_id(self) -> str: return self._version_id
@property def version_id(self) -> str: return self._version_id<|docstring|>Agent number of a TAC instance.<|endoftext|>
66126cfac11284df9bf6bf3a30f410eec121ac0f3064b781dc1159488a639795
@property def fee_by_currency_id(self) -> Dict[(str, int)]: 'Transaction fee for the TAC instance.' return {next(iter(self.currency_id_to_name.keys())): self._tx_fee}
Transaction fee for the TAC instance.
packages/fetchai/skills/tac_control/game.py
fee_by_currency_id
bryanchriswhite/agents-aea
126
python
@property def fee_by_currency_id(self) -> Dict[(str, int)]: return {next(iter(self.currency_id_to_name.keys())): self._tx_fee}
@property def fee_by_currency_id(self) -> Dict[(str, int)]: return {next(iter(self.currency_id_to_name.keys())): self._tx_fee}<|docstring|>Transaction fee for the TAC instance.<|endoftext|>
2d42f1072840be7f9c09257dc48fa1fe8814309dc864ed7c71e40eb012a3bd24
@property def agent_addr_to_name(self) -> Dict[(Address, str)]: 'Map agent addresses to names.' return self._agent_addr_to_name
Map agent addresses to names.
packages/fetchai/skills/tac_control/game.py
agent_addr_to_name
bryanchriswhite/agents-aea
126
python
@property def agent_addr_to_name(self) -> Dict[(Address, str)]: return self._agent_addr_to_name
@property def agent_addr_to_name(self) -> Dict[(Address, str)]: return self._agent_addr_to_name<|docstring|>Map agent addresses to names.<|endoftext|>
91d84a70a4dd873b23cec58f2cf1ffca6b2a31cfe10bbb373f9b98a6e80b225e
@property def currency_id_to_name(self) -> Dict[(str, str)]: 'Map currency ids to names.' return self._currency_id_to_name
Map currency ids to names.
packages/fetchai/skills/tac_control/game.py
currency_id_to_name
bryanchriswhite/agents-aea
126
python
@property def currency_id_to_name(self) -> Dict[(str, str)]: return self._currency_id_to_name
@property def currency_id_to_name(self) -> Dict[(str, str)]: return self._currency_id_to_name<|docstring|>Map currency ids to names.<|endoftext|>
33743f02df1667053e14de8cec009fbcaaab8cf9a528ad0100049307d971a477
@property def good_id_to_name(self) -> Dict[(str, str)]: 'Map good ids to names.' return self._good_id_to_name
Map good ids to names.
packages/fetchai/skills/tac_control/game.py
good_id_to_name
bryanchriswhite/agents-aea
126
python
@property def good_id_to_name(self) -> Dict[(str, str)]: return self._good_id_to_name
@property def good_id_to_name(self) -> Dict[(str, str)]: return self._good_id_to_name<|docstring|>Map good ids to names.<|endoftext|>
afca6d9e17f77c5ea45d0d57c823a4e204e2f65e1c122f4d48174aca90cc8f75
@property def has_contract_address(self) -> bool: 'Check if contract address is present.' return (self._contract_address is not None)
Check if contract address is present.
packages/fetchai/skills/tac_control/game.py
has_contract_address
bryanchriswhite/agents-aea
126
python
@property def has_contract_address(self) -> bool: return (self._contract_address is not None)
@property def has_contract_address(self) -> bool: return (self._contract_address is not None)<|docstring|>Check if contract address is present.<|endoftext|>
701dd2bea4a083369a7d8129554ba8fc72e347f6e6fedef33e54bf097432527d
@property def contract_address(self) -> str: 'Get the contract address for the game.' if (self._contract_address is None): raise AEAEnforceError('Contract_address not set yet!') return self._contract_address
Get the contract address for the game.
packages/fetchai/skills/tac_control/game.py
contract_address
bryanchriswhite/agents-aea
126
python
@property def contract_address(self) -> str: if (self._contract_address is None): raise AEAEnforceError('Contract_address not set yet!') return self._contract_address
@property def contract_address(self) -> str: if (self._contract_address is None): raise AEAEnforceError('Contract_address not set yet!') return self._contract_address<|docstring|>Get the contract address for the game.<|endoftext|>
325bba863b7a392988648787831944516c94fd2e2b71817d13e359c7b0e477fa
@contract_address.setter def contract_address(self, contract_address: str) -> None: 'Set the contract address for the game.' enforce((self._contract_address is None), 'Contract_address already set!') self._contract_address = contract_address
Set the contract address for the game.
packages/fetchai/skills/tac_control/game.py
contract_address
bryanchriswhite/agents-aea
126
python
@contract_address.setter def contract_address(self, contract_address: str) -> None: enforce((self._contract_address is None), 'Contract_address already set!') self._contract_address = contract_address
@contract_address.setter def contract_address(self, contract_address: str) -> None: enforce((self._contract_address is None), 'Contract_address already set!') self._contract_address = contract_address<|docstring|>Set the contract address for the game.<|endoftext|>
b18bc1b4f08a901ffd2b1d19f455d2f9fa870159fad54f718b72e7da3685d37d
def _check_consistency(self) -> None: '\n Check the consistency of the game configuration.\n\n :raises: AEAEnforceError: if some constraint is not satisfied.\n ' if (self.version_id is None): raise AEAEnforceError('A version id must be set.') enforce((self._tx_fee >= 0), 'Tx fee must be non-negative.') enforce((len(self.agent_addr_to_name) >= 2), 'Must have at least two agents.') enforce((len(self.good_id_to_name) >= 2), 'Must have at least two goods.') enforce((len(self.currency_id_to_name) == 1), 'Must have exactly one currency.') enforce((next(iter(self.currency_id_to_name)) not in self.good_id_to_name), 'Currency id and good ids cannot overlap.')
Check the consistency of the game configuration. :raises: AEAEnforceError: if some constraint is not satisfied.
packages/fetchai/skills/tac_control/game.py
_check_consistency
bryanchriswhite/agents-aea
126
python
def _check_consistency(self) -> None: '\n Check the consistency of the game configuration.\n\n :raises: AEAEnforceError: if some constraint is not satisfied.\n ' if (self.version_id is None): raise AEAEnforceError('A version id must be set.') enforce((self._tx_fee >= 0), 'Tx fee must be non-negative.') enforce((len(self.agent_addr_to_name) >= 2), 'Must have at least two agents.') enforce((len(self.good_id_to_name) >= 2), 'Must have at least two goods.') enforce((len(self.currency_id_to_name) == 1), 'Must have exactly one currency.') enforce((next(iter(self.currency_id_to_name)) not in self.good_id_to_name), 'Currency id and good ids cannot overlap.')
def _check_consistency(self) -> None: '\n Check the consistency of the game configuration.\n\n :raises: AEAEnforceError: if some constraint is not satisfied.\n ' if (self.version_id is None): raise AEAEnforceError('A version id must be set.') enforce((self._tx_fee >= 0), 'Tx fee must be non-negative.') enforce((len(self.agent_addr_to_name) >= 2), 'Must have at least two agents.') enforce((len(self.good_id_to_name) >= 2), 'Must have at least two goods.') enforce((len(self.currency_id_to_name) == 1), 'Must have exactly one currency.') enforce((next(iter(self.currency_id_to_name)) not in self.good_id_to_name), 'Currency id and good ids cannot overlap.')<|docstring|>Check the consistency of the game configuration. :raises: AEAEnforceError: if some constraint is not satisfied.<|endoftext|>
8dcb71cc8bcc8911d1e4bbbe7f8fd77e21ab336c2d3b2380a4b39e06ac555164
def __init__(self, agent_addr_to_currency_endowments: Dict[(Address, CurrencyEndowment)], agent_addr_to_exchange_params: Dict[(Address, ExchangeParams)], agent_addr_to_good_endowments: Dict[(Address, GoodEndowment)], agent_addr_to_utility_params: Dict[(Address, UtilityParams)], good_id_to_eq_prices: Dict[(GoodId, float)], agent_addr_to_eq_good_holdings: Dict[(Address, EquilibriumGoodHoldings)], agent_addr_to_eq_currency_holdings: Dict[(Address, EquilibriumCurrencyHoldings)]): '\n Instantiate a game initialization.\n\n :param agent_addr_to_currency_endowments: the currency endowments of the agents. A nested dict where the outer key is the agent id\n and the inner key is the currency id.\n :param agent_addr_to_exchange_params: the exchange params representing the exchange rate the agents use between currencies.\n :param agent_addr_to_good_endowments: the good endowments of the agents. A nested dict where the outer key is the agent id\n and the inner key is the good id.\n :param agent_addr_to_utility_params: the utility params representing the preferences of the agents.\n :param good_id_to_eq_prices: the competitive equilibrium prices of the goods. A list.\n :param agent_addr_to_eq_good_holdings: the competitive equilibrium good holdings of the agents.\n :param agent_addr_to_eq_currency_holdings: the competitive equilibrium money holdings of the agents.\n ' self._agent_addr_to_currency_endowments = agent_addr_to_currency_endowments self._agent_addr_to_exchange_params = agent_addr_to_exchange_params self._agent_addr_to_good_endowments = agent_addr_to_good_endowments self._agent_addr_to_utility_params = agent_addr_to_utility_params self._good_id_to_eq_prices = good_id_to_eq_prices self._agent_addr_to_eq_good_holdings = agent_addr_to_eq_good_holdings self._agent_addr_to_eq_currency_holdings = agent_addr_to_eq_currency_holdings self._check_consistency()
Instantiate a game initialization. :param agent_addr_to_currency_endowments: the currency endowments of the agents. A nested dict where the outer key is the agent id and the inner key is the currency id. :param agent_addr_to_exchange_params: the exchange params representing the exchange rate the agents use between currencies. :param agent_addr_to_good_endowments: the good endowments of the agents. A nested dict where the outer key is the agent id and the inner key is the good id. :param agent_addr_to_utility_params: the utility params representing the preferences of the agents. :param good_id_to_eq_prices: the competitive equilibrium prices of the goods. A list. :param agent_addr_to_eq_good_holdings: the competitive equilibrium good holdings of the agents. :param agent_addr_to_eq_currency_holdings: the competitive equilibrium money holdings of the agents.
packages/fetchai/skills/tac_control/game.py
__init__
bryanchriswhite/agents-aea
126
python
def __init__(self, agent_addr_to_currency_endowments: Dict[(Address, CurrencyEndowment)], agent_addr_to_exchange_params: Dict[(Address, ExchangeParams)], agent_addr_to_good_endowments: Dict[(Address, GoodEndowment)], agent_addr_to_utility_params: Dict[(Address, UtilityParams)], good_id_to_eq_prices: Dict[(GoodId, float)], agent_addr_to_eq_good_holdings: Dict[(Address, EquilibriumGoodHoldings)], agent_addr_to_eq_currency_holdings: Dict[(Address, EquilibriumCurrencyHoldings)]): '\n Instantiate a game initialization.\n\n :param agent_addr_to_currency_endowments: the currency endowments of the agents. A nested dict where the outer key is the agent id\n and the inner key is the currency id.\n :param agent_addr_to_exchange_params: the exchange params representing the exchange rate the agents use between currencies.\n :param agent_addr_to_good_endowments: the good endowments of the agents. A nested dict where the outer key is the agent id\n and the inner key is the good id.\n :param agent_addr_to_utility_params: the utility params representing the preferences of the agents.\n :param good_id_to_eq_prices: the competitive equilibrium prices of the goods. A list.\n :param agent_addr_to_eq_good_holdings: the competitive equilibrium good holdings of the agents.\n :param agent_addr_to_eq_currency_holdings: the competitive equilibrium money holdings of the agents.\n ' self._agent_addr_to_currency_endowments = agent_addr_to_currency_endowments self._agent_addr_to_exchange_params = agent_addr_to_exchange_params self._agent_addr_to_good_endowments = agent_addr_to_good_endowments self._agent_addr_to_utility_params = agent_addr_to_utility_params self._good_id_to_eq_prices = good_id_to_eq_prices self._agent_addr_to_eq_good_holdings = agent_addr_to_eq_good_holdings self._agent_addr_to_eq_currency_holdings = agent_addr_to_eq_currency_holdings self._check_consistency()
def __init__(self, agent_addr_to_currency_endowments: Dict[(Address, CurrencyEndowment)], agent_addr_to_exchange_params: Dict[(Address, ExchangeParams)], agent_addr_to_good_endowments: Dict[(Address, GoodEndowment)], agent_addr_to_utility_params: Dict[(Address, UtilityParams)], good_id_to_eq_prices: Dict[(GoodId, float)], agent_addr_to_eq_good_holdings: Dict[(Address, EquilibriumGoodHoldings)], agent_addr_to_eq_currency_holdings: Dict[(Address, EquilibriumCurrencyHoldings)]): '\n Instantiate a game initialization.\n\n :param agent_addr_to_currency_endowments: the currency endowments of the agents. A nested dict where the outer key is the agent id\n and the inner key is the currency id.\n :param agent_addr_to_exchange_params: the exchange params representing the exchange rate the agents use between currencies.\n :param agent_addr_to_good_endowments: the good endowments of the agents. A nested dict where the outer key is the agent id\n and the inner key is the good id.\n :param agent_addr_to_utility_params: the utility params representing the preferences of the agents.\n :param good_id_to_eq_prices: the competitive equilibrium prices of the goods. A list.\n :param agent_addr_to_eq_good_holdings: the competitive equilibrium good holdings of the agents.\n :param agent_addr_to_eq_currency_holdings: the competitive equilibrium money holdings of the agents.\n ' self._agent_addr_to_currency_endowments = agent_addr_to_currency_endowments self._agent_addr_to_exchange_params = agent_addr_to_exchange_params self._agent_addr_to_good_endowments = agent_addr_to_good_endowments self._agent_addr_to_utility_params = agent_addr_to_utility_params self._good_id_to_eq_prices = good_id_to_eq_prices self._agent_addr_to_eq_good_holdings = agent_addr_to_eq_good_holdings self._agent_addr_to_eq_currency_holdings = agent_addr_to_eq_currency_holdings self._check_consistency()<|docstring|>Instantiate a game initialization. :param agent_addr_to_currency_endowments: the currency endowments of the agents. A nested dict where the outer key is the agent id and the inner key is the currency id. :param agent_addr_to_exchange_params: the exchange params representing the exchange rate the agents use between currencies. :param agent_addr_to_good_endowments: the good endowments of the agents. A nested dict where the outer key is the agent id and the inner key is the good id. :param agent_addr_to_utility_params: the utility params representing the preferences of the agents. :param good_id_to_eq_prices: the competitive equilibrium prices of the goods. A list. :param agent_addr_to_eq_good_holdings: the competitive equilibrium good holdings of the agents. :param agent_addr_to_eq_currency_holdings: the competitive equilibrium money holdings of the agents.<|endoftext|>
6e4f3f460955900ebb6c1ac884d6bcb54f3a2f3db3c8cebd54b867d723fc042d
@property def agent_addr_to_currency_endowments(self) -> Dict[(Address, CurrencyEndowment)]: 'Get currency endowments of agents.' return self._agent_addr_to_currency_endowments
Get currency endowments of agents.
packages/fetchai/skills/tac_control/game.py
agent_addr_to_currency_endowments
bryanchriswhite/agents-aea
126
python
@property def agent_addr_to_currency_endowments(self) -> Dict[(Address, CurrencyEndowment)]: return self._agent_addr_to_currency_endowments
@property def agent_addr_to_currency_endowments(self) -> Dict[(Address, CurrencyEndowment)]: return self._agent_addr_to_currency_endowments<|docstring|>Get currency endowments of agents.<|endoftext|>
d0a8317c7dcd4a3138044fe8220f72b26098bbe25586186906ccf19f5e590ffc
@property def agent_addr_to_exchange_params(self) -> Dict[(Address, ExchangeParams)]: 'Get exchange params of agents.' return self._agent_addr_to_exchange_params
Get exchange params of agents.
packages/fetchai/skills/tac_control/game.py
agent_addr_to_exchange_params
bryanchriswhite/agents-aea
126
python
@property def agent_addr_to_exchange_params(self) -> Dict[(Address, ExchangeParams)]: return self._agent_addr_to_exchange_params
@property def agent_addr_to_exchange_params(self) -> Dict[(Address, ExchangeParams)]: return self._agent_addr_to_exchange_params<|docstring|>Get exchange params of agents.<|endoftext|>
207eea6ec66877c7df21ff89920e83ee4f2502bc6ee09572c60dd997bc1d48c6
@property def agent_addr_to_good_endowments(self) -> Dict[(Address, GoodEndowment)]: 'Get good endowments of the agents.' return self._agent_addr_to_good_endowments
Get good endowments of the agents.
packages/fetchai/skills/tac_control/game.py
agent_addr_to_good_endowments
bryanchriswhite/agents-aea
126
python
@property def agent_addr_to_good_endowments(self) -> Dict[(Address, GoodEndowment)]: return self._agent_addr_to_good_endowments
@property def agent_addr_to_good_endowments(self) -> Dict[(Address, GoodEndowment)]: return self._agent_addr_to_good_endowments<|docstring|>Get good endowments of the agents.<|endoftext|>
3ac0c8dbb5d1ec8ee8bfa31f8db75b9b6a5fbe0c28c5f82637b3a7080e106f2d
@property def agent_addr_to_utility_params(self) -> Dict[(Address, UtilityParams)]: 'Get utility parameters of agents.' return self._agent_addr_to_utility_params
Get utility parameters of agents.
packages/fetchai/skills/tac_control/game.py
agent_addr_to_utility_params
bryanchriswhite/agents-aea
126
python
@property def agent_addr_to_utility_params(self) -> Dict[(Address, UtilityParams)]: return self._agent_addr_to_utility_params
@property def agent_addr_to_utility_params(self) -> Dict[(Address, UtilityParams)]: return self._agent_addr_to_utility_params<|docstring|>Get utility parameters of agents.<|endoftext|>
7833a1b7f97460751e0f248772135c27d8f6b00d4dfc518fe83a50250c687240
@property def good_id_to_eq_prices(self) -> Dict[(GoodId, float)]: 'Get theoretical equilibrium prices (a benchmark).' return self._good_id_to_eq_prices
Get theoretical equilibrium prices (a benchmark).
packages/fetchai/skills/tac_control/game.py
good_id_to_eq_prices
bryanchriswhite/agents-aea
126
python
@property def good_id_to_eq_prices(self) -> Dict[(GoodId, float)]: return self._good_id_to_eq_prices
@property def good_id_to_eq_prices(self) -> Dict[(GoodId, float)]: return self._good_id_to_eq_prices<|docstring|>Get theoretical equilibrium prices (a benchmark).<|endoftext|>
17e29d908677f658abe138d06dd87aa3d7216241c723b81b10aade838f1ef055
@property def agent_addr_to_eq_good_holdings(self) -> Dict[(Address, EquilibriumGoodHoldings)]: 'Get theoretical equilibrium good holdings (a benchmark).' return self._agent_addr_to_eq_good_holdings
Get theoretical equilibrium good holdings (a benchmark).
packages/fetchai/skills/tac_control/game.py
agent_addr_to_eq_good_holdings
bryanchriswhite/agents-aea
126
python
@property def agent_addr_to_eq_good_holdings(self) -> Dict[(Address, EquilibriumGoodHoldings)]: return self._agent_addr_to_eq_good_holdings
@property def agent_addr_to_eq_good_holdings(self) -> Dict[(Address, EquilibriumGoodHoldings)]: return self._agent_addr_to_eq_good_holdings<|docstring|>Get theoretical equilibrium good holdings (a benchmark).<|endoftext|>
67a62096ddbaa6792b1b3caf1f7be178aa88a5b7a5345cd73b42c59231692549
@property def agent_addr_to_eq_currency_holdings(self) -> Dict[(Address, EquilibriumCurrencyHoldings)]: 'Get theoretical equilibrium currency holdings (a benchmark).' return self._agent_addr_to_eq_currency_holdings
Get theoretical equilibrium currency holdings (a benchmark).
packages/fetchai/skills/tac_control/game.py
agent_addr_to_eq_currency_holdings
bryanchriswhite/agents-aea
126
python
@property def agent_addr_to_eq_currency_holdings(self) -> Dict[(Address, EquilibriumCurrencyHoldings)]: return self._agent_addr_to_eq_currency_holdings
@property def agent_addr_to_eq_currency_holdings(self) -> Dict[(Address, EquilibriumCurrencyHoldings)]: return self._agent_addr_to_eq_currency_holdings<|docstring|>Get theoretical equilibrium currency holdings (a benchmark).<|endoftext|>
dfceaa679a1928f3d78806cdcb9ef235214e19562bf5dcebb81afd4d268d7955
def _check_consistency(self) -> None: 'Check the consistency of the game configuration.' enforce(all(((c_e >= 0) for currency_endowments in self.agent_addr_to_currency_endowments.values() for c_e in currency_endowments.values())), 'Currency endowments must be non-negative.') enforce(all(((p > 0) for params in self.agent_addr_to_exchange_params.values() for p in params.values())), 'ExchangeParams must be strictly positive.') enforce(all(((g_e > 0) for good_endowments in self.agent_addr_to_good_endowments.values() for g_e in good_endowments.values())), 'Good endowments must be strictly positive.') enforce(all(((p > 0) for params in self.agent_addr_to_utility_params.values() for p in params.values())), 'UtilityParams must be strictly positive.') enforce((len(self.agent_addr_to_good_endowments.keys()) == len(self.agent_addr_to_currency_endowments.keys())), 'Length of endowments must be the same.') enforce((len(self.agent_addr_to_exchange_params.keys()) == len(self.agent_addr_to_utility_params.keys())), 'Length of params must be the same.') enforce(all(((len(self.good_id_to_eq_prices.values()) == len(eq_good_holdings)) for eq_good_holdings in self.agent_addr_to_eq_good_holdings.values())), 'Length of eq_prices and an element of eq_good_holdings must be the same.') enforce((len(self.agent_addr_to_eq_good_holdings.values()) == len(self.agent_addr_to_eq_currency_holdings.values())), 'Length of eq_good_holdings and eq_currency_holdings must be the same.') enforce(all(((len(self.agent_addr_to_exchange_params[agent_addr]) == len(endowments)) for (agent_addr, endowments) in self.agent_addr_to_currency_endowments.items())), 'Dimensions for exchange_params and currency_endowments rows must be the same.') enforce(all(((len(self.agent_addr_to_utility_params[agent_addr]) == len(endowments)) for (agent_addr, endowments) in self.agent_addr_to_good_endowments.items())), 'Dimensions for utility_params and good_endowments rows must be the same.')
Check the consistency of the game configuration.
packages/fetchai/skills/tac_control/game.py
_check_consistency
bryanchriswhite/agents-aea
126
python
def _check_consistency(self) -> None: enforce(all(((c_e >= 0) for currency_endowments in self.agent_addr_to_currency_endowments.values() for c_e in currency_endowments.values())), 'Currency endowments must be non-negative.') enforce(all(((p > 0) for params in self.agent_addr_to_exchange_params.values() for p in params.values())), 'ExchangeParams must be strictly positive.') enforce(all(((g_e > 0) for good_endowments in self.agent_addr_to_good_endowments.values() for g_e in good_endowments.values())), 'Good endowments must be strictly positive.') enforce(all(((p > 0) for params in self.agent_addr_to_utility_params.values() for p in params.values())), 'UtilityParams must be strictly positive.') enforce((len(self.agent_addr_to_good_endowments.keys()) == len(self.agent_addr_to_currency_endowments.keys())), 'Length of endowments must be the same.') enforce((len(self.agent_addr_to_exchange_params.keys()) == len(self.agent_addr_to_utility_params.keys())), 'Length of params must be the same.') enforce(all(((len(self.good_id_to_eq_prices.values()) == len(eq_good_holdings)) for eq_good_holdings in self.agent_addr_to_eq_good_holdings.values())), 'Length of eq_prices and an element of eq_good_holdings must be the same.') enforce((len(self.agent_addr_to_eq_good_holdings.values()) == len(self.agent_addr_to_eq_currency_holdings.values())), 'Length of eq_good_holdings and eq_currency_holdings must be the same.') enforce(all(((len(self.agent_addr_to_exchange_params[agent_addr]) == len(endowments)) for (agent_addr, endowments) in self.agent_addr_to_currency_endowments.items())), 'Dimensions for exchange_params and currency_endowments rows must be the same.') enforce(all(((len(self.agent_addr_to_utility_params[agent_addr]) == len(endowments)) for (agent_addr, endowments) in self.agent_addr_to_good_endowments.items())), 'Dimensions for utility_params and good_endowments rows must be the same.')
def _check_consistency(self) -> None: enforce(all(((c_e >= 0) for currency_endowments in self.agent_addr_to_currency_endowments.values() for c_e in currency_endowments.values())), 'Currency endowments must be non-negative.') enforce(all(((p > 0) for params in self.agent_addr_to_exchange_params.values() for p in params.values())), 'ExchangeParams must be strictly positive.') enforce(all(((g_e > 0) for good_endowments in self.agent_addr_to_good_endowments.values() for g_e in good_endowments.values())), 'Good endowments must be strictly positive.') enforce(all(((p > 0) for params in self.agent_addr_to_utility_params.values() for p in params.values())), 'UtilityParams must be strictly positive.') enforce((len(self.agent_addr_to_good_endowments.keys()) == len(self.agent_addr_to_currency_endowments.keys())), 'Length of endowments must be the same.') enforce((len(self.agent_addr_to_exchange_params.keys()) == len(self.agent_addr_to_utility_params.keys())), 'Length of params must be the same.') enforce(all(((len(self.good_id_to_eq_prices.values()) == len(eq_good_holdings)) for eq_good_holdings in self.agent_addr_to_eq_good_holdings.values())), 'Length of eq_prices and an element of eq_good_holdings must be the same.') enforce((len(self.agent_addr_to_eq_good_holdings.values()) == len(self.agent_addr_to_eq_currency_holdings.values())), 'Length of eq_good_holdings and eq_currency_holdings must be the same.') enforce(all(((len(self.agent_addr_to_exchange_params[agent_addr]) == len(endowments)) for (agent_addr, endowments) in self.agent_addr_to_currency_endowments.items())), 'Dimensions for exchange_params and currency_endowments rows must be the same.') enforce(all(((len(self.agent_addr_to_utility_params[agent_addr]) == len(endowments)) for (agent_addr, endowments) in self.agent_addr_to_good_endowments.items())), 'Dimensions for utility_params and good_endowments rows must be the same.')<|docstring|>Check the consistency of the game configuration.<|endoftext|>
72069c8b456e425ae339c0f99cb50d8a7d6ee5e146006b610fe245c20285e4e3
def __init__(self, ledger_id: str, sender_address: Address, counterparty_address: Address, amount_by_currency_id: Dict[(str, int)], quantities_by_good_id: Dict[(str, int)], is_sender_payable_tx_fee: bool, nonce: str, fee_by_currency_id: Optional[Dict[(str, int)]], sender_signature: str, counterparty_signature: str) -> None: '\n Instantiate transaction.\n\n This extends a terms object to be used as a transaction.\n\n :param ledger_id: the ledger on which the terms are to be settled.\n :param sender_address: the sender address of the transaction.\n :param counterparty_address: the counterparty address of the transaction.\n :param amount_by_currency_id: the amount by the currency of the transaction.\n :param quantities_by_good_id: a map from good id to the quantity of that good involved in the transaction.\n :param is_sender_payable_tx_fee: whether the sender or counterparty pays the tx fee.\n :param nonce: nonce to be included in transaction to discriminate otherwise identical transactions.\n :param fee_by_currency_id: the fee associated with the transaction.\n :param sender_signature: the signature of the terms by the sender.\n :param counterparty_signature: the signature of the terms by the counterparty.\n ' super().__init__(ledger_id=ledger_id, sender_address=sender_address, counterparty_address=counterparty_address, amount_by_currency_id=amount_by_currency_id, quantities_by_good_id=quantities_by_good_id, is_sender_payable_tx_fee=is_sender_payable_tx_fee, nonce=nonce, fee_by_currency_id=fee_by_currency_id) self._sender_signature = sender_signature self._counterparty_signature = counterparty_signature
Instantiate transaction. This extends a terms object to be used as a transaction. :param ledger_id: the ledger on which the terms are to be settled. :param sender_address: the sender address of the transaction. :param counterparty_address: the counterparty address of the transaction. :param amount_by_currency_id: the amount by the currency of the transaction. :param quantities_by_good_id: a map from good id to the quantity of that good involved in the transaction. :param is_sender_payable_tx_fee: whether the sender or counterparty pays the tx fee. :param nonce: nonce to be included in transaction to discriminate otherwise identical transactions. :param fee_by_currency_id: the fee associated with the transaction. :param sender_signature: the signature of the terms by the sender. :param counterparty_signature: the signature of the terms by the counterparty.
packages/fetchai/skills/tac_control/game.py
__init__
bryanchriswhite/agents-aea
126
python
def __init__(self, ledger_id: str, sender_address: Address, counterparty_address: Address, amount_by_currency_id: Dict[(str, int)], quantities_by_good_id: Dict[(str, int)], is_sender_payable_tx_fee: bool, nonce: str, fee_by_currency_id: Optional[Dict[(str, int)]], sender_signature: str, counterparty_signature: str) -> None: '\n Instantiate transaction.\n\n This extends a terms object to be used as a transaction.\n\n :param ledger_id: the ledger on which the terms are to be settled.\n :param sender_address: the sender address of the transaction.\n :param counterparty_address: the counterparty address of the transaction.\n :param amount_by_currency_id: the amount by the currency of the transaction.\n :param quantities_by_good_id: a map from good id to the quantity of that good involved in the transaction.\n :param is_sender_payable_tx_fee: whether the sender or counterparty pays the tx fee.\n :param nonce: nonce to be included in transaction to discriminate otherwise identical transactions.\n :param fee_by_currency_id: the fee associated with the transaction.\n :param sender_signature: the signature of the terms by the sender.\n :param counterparty_signature: the signature of the terms by the counterparty.\n ' super().__init__(ledger_id=ledger_id, sender_address=sender_address, counterparty_address=counterparty_address, amount_by_currency_id=amount_by_currency_id, quantities_by_good_id=quantities_by_good_id, is_sender_payable_tx_fee=is_sender_payable_tx_fee, nonce=nonce, fee_by_currency_id=fee_by_currency_id) self._sender_signature = sender_signature self._counterparty_signature = counterparty_signature
def __init__(self, ledger_id: str, sender_address: Address, counterparty_address: Address, amount_by_currency_id: Dict[(str, int)], quantities_by_good_id: Dict[(str, int)], is_sender_payable_tx_fee: bool, nonce: str, fee_by_currency_id: Optional[Dict[(str, int)]], sender_signature: str, counterparty_signature: str) -> None: '\n Instantiate transaction.\n\n This extends a terms object to be used as a transaction.\n\n :param ledger_id: the ledger on which the terms are to be settled.\n :param sender_address: the sender address of the transaction.\n :param counterparty_address: the counterparty address of the transaction.\n :param amount_by_currency_id: the amount by the currency of the transaction.\n :param quantities_by_good_id: a map from good id to the quantity of that good involved in the transaction.\n :param is_sender_payable_tx_fee: whether the sender or counterparty pays the tx fee.\n :param nonce: nonce to be included in transaction to discriminate otherwise identical transactions.\n :param fee_by_currency_id: the fee associated with the transaction.\n :param sender_signature: the signature of the terms by the sender.\n :param counterparty_signature: the signature of the terms by the counterparty.\n ' super().__init__(ledger_id=ledger_id, sender_address=sender_address, counterparty_address=counterparty_address, amount_by_currency_id=amount_by_currency_id, quantities_by_good_id=quantities_by_good_id, is_sender_payable_tx_fee=is_sender_payable_tx_fee, nonce=nonce, fee_by_currency_id=fee_by_currency_id) self._sender_signature = sender_signature self._counterparty_signature = counterparty_signature<|docstring|>Instantiate transaction. This extends a terms object to be used as a transaction. :param ledger_id: the ledger on which the terms are to be settled. :param sender_address: the sender address of the transaction. :param counterparty_address: the counterparty address of the transaction. :param amount_by_currency_id: the amount by the currency of the transaction. :param quantities_by_good_id: a map from good id to the quantity of that good involved in the transaction. :param is_sender_payable_tx_fee: whether the sender or counterparty pays the tx fee. :param nonce: nonce to be included in transaction to discriminate otherwise identical transactions. :param fee_by_currency_id: the fee associated with the transaction. :param sender_signature: the signature of the terms by the sender. :param counterparty_signature: the signature of the terms by the counterparty.<|endoftext|>
27f7bd4cf7731c7c383f0db27e2b47d7ee5e9ca73e48f1165153ff0387aa3c55
@property def sender_signature(self) -> str: 'Get the sender signature.' return self._sender_signature
Get the sender signature.
packages/fetchai/skills/tac_control/game.py
sender_signature
bryanchriswhite/agents-aea
126
python
@property def sender_signature(self) -> str: return self._sender_signature
@property def sender_signature(self) -> str: return self._sender_signature<|docstring|>Get the sender signature.<|endoftext|>
6391ff8613b18f9378969a60d93d87f003278024597aeddfbe15c7e6b9edcf65
@property def counterparty_signature(self) -> str: 'Get the counterparty signature.' return self._counterparty_signature
Get the counterparty signature.
packages/fetchai/skills/tac_control/game.py
counterparty_signature
bryanchriswhite/agents-aea
126
python
@property def counterparty_signature(self) -> str: return self._counterparty_signature
@property def counterparty_signature(self) -> str: return self._counterparty_signature<|docstring|>Get the counterparty signature.<|endoftext|>
8f7d2108877308136036884182a535e841189f14c20d7a302011c517e295d378
def has_matching_signatures(self) -> bool: '\n Check that the signatures match the terms of trade.\n\n :return: True if the transaction has been signed by both parties\n ' result = (self.sender_address in LedgerApis.recover_message(identifier=self.ledger_id, message=self.sender_hash.encode('utf-8'), signature=self.sender_signature)) result = (result and (self.counterparty_address in LedgerApis.recover_message(identifier=self.ledger_id, message=self.counterparty_hash.encode('utf-8'), signature=self.counterparty_signature))) return result
Check that the signatures match the terms of trade. :return: True if the transaction has been signed by both parties
packages/fetchai/skills/tac_control/game.py
has_matching_signatures
bryanchriswhite/agents-aea
126
python
def has_matching_signatures(self) -> bool: '\n Check that the signatures match the terms of trade.\n\n :return: True if the transaction has been signed by both parties\n ' result = (self.sender_address in LedgerApis.recover_message(identifier=self.ledger_id, message=self.sender_hash.encode('utf-8'), signature=self.sender_signature)) result = (result and (self.counterparty_address in LedgerApis.recover_message(identifier=self.ledger_id, message=self.counterparty_hash.encode('utf-8'), signature=self.counterparty_signature))) return result
def has_matching_signatures(self) -> bool: '\n Check that the signatures match the terms of trade.\n\n :return: True if the transaction has been signed by both parties\n ' result = (self.sender_address in LedgerApis.recover_message(identifier=self.ledger_id, message=self.sender_hash.encode('utf-8'), signature=self.sender_signature)) result = (result and (self.counterparty_address in LedgerApis.recover_message(identifier=self.ledger_id, message=self.counterparty_hash.encode('utf-8'), signature=self.counterparty_signature))) return result<|docstring|>Check that the signatures match the terms of trade. :return: True if the transaction has been signed by both parties<|endoftext|>
edfc0c457ab6a409be9e9603b2c3330eaf0608494fd5fe04d5de2cf454af2785
@classmethod def from_message(cls, message: TacMessage) -> 'Transaction': '\n Create a transaction from a proposal.\n\n :param message: the message\n :return: Transaction\n ' enforce((message.performative == TacMessage.Performative.TRANSACTION), 'Wrong performative') sender_is_seller = all([(value >= 0) for value in message.amount_by_currency_id.values()]) transaction = Transaction(ledger_id=message.ledger_id, sender_address=message.sender_address, counterparty_address=message.counterparty_address, amount_by_currency_id=message.amount_by_currency_id, fee_by_currency_id=message.fee_by_currency_id, quantities_by_good_id=message.quantities_by_good_id, is_sender_payable_tx_fee=(not sender_is_seller), nonce=message.nonce, sender_signature=message.sender_signature, counterparty_signature=message.counterparty_signature) enforce((transaction.id == message.transaction_id), 'Transaction content does not match hash.') return transaction
Create a transaction from a proposal. :param message: the message :return: Transaction
packages/fetchai/skills/tac_control/game.py
from_message
bryanchriswhite/agents-aea
126
python
@classmethod def from_message(cls, message: TacMessage) -> 'Transaction': '\n Create a transaction from a proposal.\n\n :param message: the message\n :return: Transaction\n ' enforce((message.performative == TacMessage.Performative.TRANSACTION), 'Wrong performative') sender_is_seller = all([(value >= 0) for value in message.amount_by_currency_id.values()]) transaction = Transaction(ledger_id=message.ledger_id, sender_address=message.sender_address, counterparty_address=message.counterparty_address, amount_by_currency_id=message.amount_by_currency_id, fee_by_currency_id=message.fee_by_currency_id, quantities_by_good_id=message.quantities_by_good_id, is_sender_payable_tx_fee=(not sender_is_seller), nonce=message.nonce, sender_signature=message.sender_signature, counterparty_signature=message.counterparty_signature) enforce((transaction.id == message.transaction_id), 'Transaction content does not match hash.') return transaction
@classmethod def from_message(cls, message: TacMessage) -> 'Transaction': '\n Create a transaction from a proposal.\n\n :param message: the message\n :return: Transaction\n ' enforce((message.performative == TacMessage.Performative.TRANSACTION), 'Wrong performative') sender_is_seller = all([(value >= 0) for value in message.amount_by_currency_id.values()]) transaction = Transaction(ledger_id=message.ledger_id, sender_address=message.sender_address, counterparty_address=message.counterparty_address, amount_by_currency_id=message.amount_by_currency_id, fee_by_currency_id=message.fee_by_currency_id, quantities_by_good_id=message.quantities_by_good_id, is_sender_payable_tx_fee=(not sender_is_seller), nonce=message.nonce, sender_signature=message.sender_signature, counterparty_signature=message.counterparty_signature) enforce((transaction.id == message.transaction_id), 'Transaction content does not match hash.') return transaction<|docstring|>Create a transaction from a proposal. :param message: the message :return: Transaction<|endoftext|>
0700b8a65d814b3070d2585375aadfbea2071b911a9df4e2dfe109b24a5bb9f6
def __eq__(self, other: Any) -> bool: 'Compare to another object.' return (isinstance(other, Transaction) and super().__eq__(other) and (self.sender_signature == other.sender_signature) and (self.counterparty_signature == other.counterparty_signature))
Compare to another object.
packages/fetchai/skills/tac_control/game.py
__eq__
bryanchriswhite/agents-aea
126
python
def __eq__(self, other: Any) -> bool: return (isinstance(other, Transaction) and super().__eq__(other) and (self.sender_signature == other.sender_signature) and (self.counterparty_signature == other.counterparty_signature))
def __eq__(self, other: Any) -> bool: return (isinstance(other, Transaction) and super().__eq__(other) and (self.sender_signature == other.sender_signature) and (self.counterparty_signature == other.counterparty_signature))<|docstring|>Compare to another object.<|endoftext|>
ecac22156fb2ddbbf912f6577171ab10a0514d829d919f72a764b935e55fc7a5
def __init__(self, agent_address: Address, amount_by_currency_id: Dict[(CurrencyId, Quantity)], exchange_params_by_currency_id: Dict[(CurrencyId, Parameter)], quantities_by_good_id: Dict[(GoodId, Quantity)], utility_params_by_good_id: Dict[(GoodId, Parameter)]): '\n Instantiate an agent state object.\n\n :param agent_address: the agent address\n :param amount_by_currency_id: the amount for each currency\n :param exchange_params_by_currency_id: the exchange parameters of the different currencies\n :param quantities_by_good_id: the quantities for each good.\n :param utility_params_by_good_id: the utility params for every good.\n ' enforce((len(amount_by_currency_id.keys()) == len(exchange_params_by_currency_id.keys())), 'Different number of elements in amount_by_currency_id and exchange_params_by_currency_id') enforce((len(quantities_by_good_id.keys()) == len(utility_params_by_good_id.keys())), 'Different number of elements in quantities_by_good_id and utility_params_by_good_id') self._agent_address = agent_address self._amount_by_currency_id = copy.copy(amount_by_currency_id) self._exchange_params_by_currency_id = copy.copy(exchange_params_by_currency_id) self._quantities_by_good_id = quantities_by_good_id self._utility_params_by_good_id = copy.copy(utility_params_by_good_id)
Instantiate an agent state object. :param agent_address: the agent address :param amount_by_currency_id: the amount for each currency :param exchange_params_by_currency_id: the exchange parameters of the different currencies :param quantities_by_good_id: the quantities for each good. :param utility_params_by_good_id: the utility params for every good.
packages/fetchai/skills/tac_control/game.py
__init__
bryanchriswhite/agents-aea
126
python
def __init__(self, agent_address: Address, amount_by_currency_id: Dict[(CurrencyId, Quantity)], exchange_params_by_currency_id: Dict[(CurrencyId, Parameter)], quantities_by_good_id: Dict[(GoodId, Quantity)], utility_params_by_good_id: Dict[(GoodId, Parameter)]): '\n Instantiate an agent state object.\n\n :param agent_address: the agent address\n :param amount_by_currency_id: the amount for each currency\n :param exchange_params_by_currency_id: the exchange parameters of the different currencies\n :param quantities_by_good_id: the quantities for each good.\n :param utility_params_by_good_id: the utility params for every good.\n ' enforce((len(amount_by_currency_id.keys()) == len(exchange_params_by_currency_id.keys())), 'Different number of elements in amount_by_currency_id and exchange_params_by_currency_id') enforce((len(quantities_by_good_id.keys()) == len(utility_params_by_good_id.keys())), 'Different number of elements in quantities_by_good_id and utility_params_by_good_id') self._agent_address = agent_address self._amount_by_currency_id = copy.copy(amount_by_currency_id) self._exchange_params_by_currency_id = copy.copy(exchange_params_by_currency_id) self._quantities_by_good_id = quantities_by_good_id self._utility_params_by_good_id = copy.copy(utility_params_by_good_id)
def __init__(self, agent_address: Address, amount_by_currency_id: Dict[(CurrencyId, Quantity)], exchange_params_by_currency_id: Dict[(CurrencyId, Parameter)], quantities_by_good_id: Dict[(GoodId, Quantity)], utility_params_by_good_id: Dict[(GoodId, Parameter)]): '\n Instantiate an agent state object.\n\n :param agent_address: the agent address\n :param amount_by_currency_id: the amount for each currency\n :param exchange_params_by_currency_id: the exchange parameters of the different currencies\n :param quantities_by_good_id: the quantities for each good.\n :param utility_params_by_good_id: the utility params for every good.\n ' enforce((len(amount_by_currency_id.keys()) == len(exchange_params_by_currency_id.keys())), 'Different number of elements in amount_by_currency_id and exchange_params_by_currency_id') enforce((len(quantities_by_good_id.keys()) == len(utility_params_by_good_id.keys())), 'Different number of elements in quantities_by_good_id and utility_params_by_good_id') self._agent_address = agent_address self._amount_by_currency_id = copy.copy(amount_by_currency_id) self._exchange_params_by_currency_id = copy.copy(exchange_params_by_currency_id) self._quantities_by_good_id = quantities_by_good_id self._utility_params_by_good_id = copy.copy(utility_params_by_good_id)<|docstring|>Instantiate an agent state object. :param agent_address: the agent address :param amount_by_currency_id: the amount for each currency :param exchange_params_by_currency_id: the exchange parameters of the different currencies :param quantities_by_good_id: the quantities for each good. :param utility_params_by_good_id: the utility params for every good.<|endoftext|>
34299fab60f8e5b3f6f38e93f73247081bfa778428080f60883cec0ce74de30f
@property def agent_address(self) -> str: 'Get address of the agent which state that is.' return self._agent_address
Get address of the agent which state that is.
packages/fetchai/skills/tac_control/game.py
agent_address
bryanchriswhite/agents-aea
126
python
@property def agent_address(self) -> str: return self._agent_address
@property def agent_address(self) -> str: return self._agent_address<|docstring|>Get address of the agent which state that is.<|endoftext|>
72582e54ae2d2e7e5a006a393e5e69e721051c3a6298e057d8a670e6c895d6be
@property def amount_by_currency_id(self) -> Dict[(CurrencyId, Quantity)]: 'Get the amount for each currency.' return copy.copy(self._amount_by_currency_id)
Get the amount for each currency.
packages/fetchai/skills/tac_control/game.py
amount_by_currency_id
bryanchriswhite/agents-aea
126
python
@property def amount_by_currency_id(self) -> Dict[(CurrencyId, Quantity)]: return copy.copy(self._amount_by_currency_id)
@property def amount_by_currency_id(self) -> Dict[(CurrencyId, Quantity)]: return copy.copy(self._amount_by_currency_id)<|docstring|>Get the amount for each currency.<|endoftext|>
50f87836512a2c9f4ed9aeb3fd5afafbacd580ed56d0955730aa72bf4a318b1d
@property def exchange_params_by_currency_id(self) -> Dict[(CurrencyId, Parameter)]: 'Get the exchange parameters for each currency.' return copy.copy(self._exchange_params_by_currency_id)
Get the exchange parameters for each currency.
packages/fetchai/skills/tac_control/game.py
exchange_params_by_currency_id
bryanchriswhite/agents-aea
126
python
@property def exchange_params_by_currency_id(self) -> Dict[(CurrencyId, Parameter)]: return copy.copy(self._exchange_params_by_currency_id)
@property def exchange_params_by_currency_id(self) -> Dict[(CurrencyId, Parameter)]: return copy.copy(self._exchange_params_by_currency_id)<|docstring|>Get the exchange parameters for each currency.<|endoftext|>
e96fd6c6adbf09a1562edb0797d427b1bacbab5b7b9efd26d12441bb77c3d5d7
@property def quantities_by_good_id(self) -> Dict[(GoodId, Quantity)]: 'Get holding of each good.' return copy.copy(self._quantities_by_good_id)
Get holding of each good.
packages/fetchai/skills/tac_control/game.py
quantities_by_good_id
bryanchriswhite/agents-aea
126
python
@property def quantities_by_good_id(self) -> Dict[(GoodId, Quantity)]: return copy.copy(self._quantities_by_good_id)
@property def quantities_by_good_id(self) -> Dict[(GoodId, Quantity)]: return copy.copy(self._quantities_by_good_id)<|docstring|>Get holding of each good.<|endoftext|>
5e2b85a1638651651f31499821e9e2bc7a40795f53564e281c3818b5e0aa4d9d
@property def utility_params_by_good_id(self) -> Dict[(GoodId, Parameter)]: 'Get utility parameter for each good.' return copy.copy(self._utility_params_by_good_id)
Get utility parameter for each good.
packages/fetchai/skills/tac_control/game.py
utility_params_by_good_id
bryanchriswhite/agents-aea
126
python
@property def utility_params_by_good_id(self) -> Dict[(GoodId, Parameter)]: return copy.copy(self._utility_params_by_good_id)
@property def utility_params_by_good_id(self) -> Dict[(GoodId, Parameter)]: return copy.copy(self._utility_params_by_good_id)<|docstring|>Get utility parameter for each good.<|endoftext|>
8d0583f78a429cca58d8ff59c44c89d03876d1ffccae01bfe8efc5f5f7cfb27e
def get_score(self) -> float: '\n Compute the score of the current state.\n\n The score is computed as the sum of all the utilities for the good holdings\n with positive quantity plus the money left.\n :return: the score.\n ' goods_score = logarithmic_utility(self.utility_params_by_good_id, self.quantities_by_good_id) money_score = linear_utility(self.exchange_params_by_currency_id, self.amount_by_currency_id) score = (goods_score + money_score) return score
Compute the score of the current state. The score is computed as the sum of all the utilities for the good holdings with positive quantity plus the money left. :return: the score.
packages/fetchai/skills/tac_control/game.py
get_score
bryanchriswhite/agents-aea
126
python
def get_score(self) -> float: '\n Compute the score of the current state.\n\n The score is computed as the sum of all the utilities for the good holdings\n with positive quantity plus the money left.\n :return: the score.\n ' goods_score = logarithmic_utility(self.utility_params_by_good_id, self.quantities_by_good_id) money_score = linear_utility(self.exchange_params_by_currency_id, self.amount_by_currency_id) score = (goods_score + money_score) return score
def get_score(self) -> float: '\n Compute the score of the current state.\n\n The score is computed as the sum of all the utilities for the good holdings\n with positive quantity plus the money left.\n :return: the score.\n ' goods_score = logarithmic_utility(self.utility_params_by_good_id, self.quantities_by_good_id) money_score = linear_utility(self.exchange_params_by_currency_id, self.amount_by_currency_id) score = (goods_score + money_score) return score<|docstring|>Compute the score of the current state. The score is computed as the sum of all the utilities for the good holdings with positive quantity plus the money left. :return: the score.<|endoftext|>