body_hash
stringlengths 64
64
| body
stringlengths 23
109k
| docstring
stringlengths 1
57k
| path
stringlengths 4
198
| name
stringlengths 1
115
| repository_name
stringlengths 7
111
| repository_stars
float64 0
191k
| lang
stringclasses 1
value | body_without_docstring
stringlengths 14
108k
| unified
stringlengths 45
133k
|
---|---|---|---|---|---|---|---|---|---|
86e5c4db03fcdf9a27ba6804dc2d28b947e70e53e115bb84bcfc8e9df661499d | def is_consistent_transaction(self, tx: Transaction) -> bool:
'\n Check if the transaction is consistent.\n\n E.g. check that the agent state has enough money if it is a buyer\n or enough holdings if it is a seller.\n\n :param tx: the transaction\n :return: True if the transaction is legal wrt the current state, False otherwise.\n '
result = (self.agent_address in [tx.sender_address, tx.counterparty_address])
result = (result and tx.is_single_currency)
if (not result):
return result
if (all(((amount == 0) for amount in tx.amount_by_currency_id.values())) and all(((quantity == 0) for quantity in tx.quantities_by_good_id.values()))):
result = False
elif (all(((amount <= 0) for amount in tx.amount_by_currency_id.values())) and all(((quantity >= 0) for quantity in tx.quantities_by_good_id.values()))):
if (self.agent_address == tx.sender_address):
result = (result and (self.amount_by_currency_id[tx.currency_id] >= tx.sender_payable_amount))
elif (self.agent_address == tx.counterparty_address):
result = (result and all(((self.quantities_by_good_id[good_id] >= quantity) for (good_id, quantity) in tx.quantities_by_good_id.items())))
elif (all(((amount >= 0) for amount in tx.amount_by_currency_id.values())) and all(((quantity <= 0) for quantity in tx.quantities_by_good_id.values()))):
if (self.agent_address == tx.sender_address):
result = (result and all(((self.quantities_by_good_id[good_id] >= (- quantity)) for (good_id, quantity) in tx.quantities_by_good_id.items())))
elif (self.agent_address == tx.counterparty_address):
result = (result and (self.amount_by_currency_id[tx.currency_id] >= tx.counterparty_payable_amount))
else:
result = False
return result | Check if the transaction is consistent.
E.g. check that the agent state has enough money if it is a buyer
or enough holdings if it is a seller.
:param tx: the transaction
:return: True if the transaction is legal wrt the current state, False otherwise. | packages/fetchai/skills/tac_control/game.py | is_consistent_transaction | bryanchriswhite/agents-aea | 126 | python | def is_consistent_transaction(self, tx: Transaction) -> bool:
'\n Check if the transaction is consistent.\n\n E.g. check that the agent state has enough money if it is a buyer\n or enough holdings if it is a seller.\n\n :param tx: the transaction\n :return: True if the transaction is legal wrt the current state, False otherwise.\n '
result = (self.agent_address in [tx.sender_address, tx.counterparty_address])
result = (result and tx.is_single_currency)
if (not result):
return result
if (all(((amount == 0) for amount in tx.amount_by_currency_id.values())) and all(((quantity == 0) for quantity in tx.quantities_by_good_id.values()))):
result = False
elif (all(((amount <= 0) for amount in tx.amount_by_currency_id.values())) and all(((quantity >= 0) for quantity in tx.quantities_by_good_id.values()))):
if (self.agent_address == tx.sender_address):
result = (result and (self.amount_by_currency_id[tx.currency_id] >= tx.sender_payable_amount))
elif (self.agent_address == tx.counterparty_address):
result = (result and all(((self.quantities_by_good_id[good_id] >= quantity) for (good_id, quantity) in tx.quantities_by_good_id.items())))
elif (all(((amount >= 0) for amount in tx.amount_by_currency_id.values())) and all(((quantity <= 0) for quantity in tx.quantities_by_good_id.values()))):
if (self.agent_address == tx.sender_address):
result = (result and all(((self.quantities_by_good_id[good_id] >= (- quantity)) for (good_id, quantity) in tx.quantities_by_good_id.items())))
elif (self.agent_address == tx.counterparty_address):
result = (result and (self.amount_by_currency_id[tx.currency_id] >= tx.counterparty_payable_amount))
else:
result = False
return result | def is_consistent_transaction(self, tx: Transaction) -> bool:
'\n Check if the transaction is consistent.\n\n E.g. check that the agent state has enough money if it is a buyer\n or enough holdings if it is a seller.\n\n :param tx: the transaction\n :return: True if the transaction is legal wrt the current state, False otherwise.\n '
result = (self.agent_address in [tx.sender_address, tx.counterparty_address])
result = (result and tx.is_single_currency)
if (not result):
return result
if (all(((amount == 0) for amount in tx.amount_by_currency_id.values())) and all(((quantity == 0) for quantity in tx.quantities_by_good_id.values()))):
result = False
elif (all(((amount <= 0) for amount in tx.amount_by_currency_id.values())) and all(((quantity >= 0) for quantity in tx.quantities_by_good_id.values()))):
if (self.agent_address == tx.sender_address):
result = (result and (self.amount_by_currency_id[tx.currency_id] >= tx.sender_payable_amount))
elif (self.agent_address == tx.counterparty_address):
result = (result and all(((self.quantities_by_good_id[good_id] >= quantity) for (good_id, quantity) in tx.quantities_by_good_id.items())))
elif (all(((amount >= 0) for amount in tx.amount_by_currency_id.values())) and all(((quantity <= 0) for quantity in tx.quantities_by_good_id.values()))):
if (self.agent_address == tx.sender_address):
result = (result and all(((self.quantities_by_good_id[good_id] >= (- quantity)) for (good_id, quantity) in tx.quantities_by_good_id.items())))
elif (self.agent_address == tx.counterparty_address):
result = (result and (self.amount_by_currency_id[tx.currency_id] >= tx.counterparty_payable_amount))
else:
result = False
return result<|docstring|>Check if the transaction is consistent.
E.g. check that the agent state has enough money if it is a buyer
or enough holdings if it is a seller.
:param tx: the transaction
:return: True if the transaction is legal wrt the current state, False otherwise.<|endoftext|> |
4d9c2ea6e9fb131b3929924f0922ae8355f927543c0b693fedc9ce9e235b6d53 | def apply(self, transactions: List[Transaction]) -> 'AgentState':
'\n Apply a list of transactions to the current state.\n\n :param transactions: the sequence of transaction.\n :return: the final state.\n '
new_state = copy.copy(self)
for tx in transactions:
new_state.update(tx)
return new_state | Apply a list of transactions to the current state.
:param transactions: the sequence of transaction.
:return: the final state. | packages/fetchai/skills/tac_control/game.py | apply | bryanchriswhite/agents-aea | 126 | python | def apply(self, transactions: List[Transaction]) -> 'AgentState':
'\n Apply a list of transactions to the current state.\n\n :param transactions: the sequence of transaction.\n :return: the final state.\n '
new_state = copy.copy(self)
for tx in transactions:
new_state.update(tx)
return new_state | def apply(self, transactions: List[Transaction]) -> 'AgentState':
'\n Apply a list of transactions to the current state.\n\n :param transactions: the sequence of transaction.\n :return: the final state.\n '
new_state = copy.copy(self)
for tx in transactions:
new_state.update(tx)
return new_state<|docstring|>Apply a list of transactions to the current state.
:param transactions: the sequence of transaction.
:return: the final state.<|endoftext|> |
3f08c71bdfa77f32cbcb07c7f10bc920fc75fc9daa4cb3df3f17c9a99f611f95 | def update(self, tx: Transaction) -> None:
'\n Update the agent state from a transaction.\n\n :param tx: the transaction.\n '
enforce(self.is_consistent_transaction(tx), 'Inconsistent transaction.')
new_amount_by_currency_id = self.amount_by_currency_id
if (self.agent_address == tx.sender_address):
for (currency_id, amount) in tx.amount_by_currency_id.items():
new_amount_by_currency_id[currency_id] += amount
elif (self.agent_address == tx.counterparty_address):
for (currency_id, amount) in tx.amount_by_currency_id.items():
new_amount_by_currency_id[currency_id] -= amount
self._amount_by_currency_id = new_amount_by_currency_id
new_quantities_by_good_id = self.quantities_by_good_id
for (good_id, quantity) in tx.quantities_by_good_id.items():
if (self.agent_address == tx.sender_address):
new_quantities_by_good_id[good_id] += quantity
elif (self.agent_address == tx.counterparty_address):
new_quantities_by_good_id[good_id] -= quantity
self._quantities_by_good_id = new_quantities_by_good_id | Update the agent state from a transaction.
:param tx: the transaction. | packages/fetchai/skills/tac_control/game.py | update | bryanchriswhite/agents-aea | 126 | python | def update(self, tx: Transaction) -> None:
'\n Update the agent state from a transaction.\n\n :param tx: the transaction.\n '
enforce(self.is_consistent_transaction(tx), 'Inconsistent transaction.')
new_amount_by_currency_id = self.amount_by_currency_id
if (self.agent_address == tx.sender_address):
for (currency_id, amount) in tx.amount_by_currency_id.items():
new_amount_by_currency_id[currency_id] += amount
elif (self.agent_address == tx.counterparty_address):
for (currency_id, amount) in tx.amount_by_currency_id.items():
new_amount_by_currency_id[currency_id] -= amount
self._amount_by_currency_id = new_amount_by_currency_id
new_quantities_by_good_id = self.quantities_by_good_id
for (good_id, quantity) in tx.quantities_by_good_id.items():
if (self.agent_address == tx.sender_address):
new_quantities_by_good_id[good_id] += quantity
elif (self.agent_address == tx.counterparty_address):
new_quantities_by_good_id[good_id] -= quantity
self._quantities_by_good_id = new_quantities_by_good_id | def update(self, tx: Transaction) -> None:
'\n Update the agent state from a transaction.\n\n :param tx: the transaction.\n '
enforce(self.is_consistent_transaction(tx), 'Inconsistent transaction.')
new_amount_by_currency_id = self.amount_by_currency_id
if (self.agent_address == tx.sender_address):
for (currency_id, amount) in tx.amount_by_currency_id.items():
new_amount_by_currency_id[currency_id] += amount
elif (self.agent_address == tx.counterparty_address):
for (currency_id, amount) in tx.amount_by_currency_id.items():
new_amount_by_currency_id[currency_id] -= amount
self._amount_by_currency_id = new_amount_by_currency_id
new_quantities_by_good_id = self.quantities_by_good_id
for (good_id, quantity) in tx.quantities_by_good_id.items():
if (self.agent_address == tx.sender_address):
new_quantities_by_good_id[good_id] += quantity
elif (self.agent_address == tx.counterparty_address):
new_quantities_by_good_id[good_id] -= quantity
self._quantities_by_good_id = new_quantities_by_good_id<|docstring|>Update the agent state from a transaction.
:param tx: the transaction.<|endoftext|> |
576505c45b5e3bb31ac196f54632b1e08f2488580d5c6b09103e00e333434e3b | def __copy__(self) -> 'AgentState':
'Copy the object.'
return AgentState(self.agent_address, self.amount_by_currency_id, self.exchange_params_by_currency_id, self.quantities_by_good_id, self.utility_params_by_good_id) | Copy the object. | packages/fetchai/skills/tac_control/game.py | __copy__ | bryanchriswhite/agents-aea | 126 | python | def __copy__(self) -> 'AgentState':
return AgentState(self.agent_address, self.amount_by_currency_id, self.exchange_params_by_currency_id, self.quantities_by_good_id, self.utility_params_by_good_id) | def __copy__(self) -> 'AgentState':
return AgentState(self.agent_address, self.amount_by_currency_id, self.exchange_params_by_currency_id, self.quantities_by_good_id, self.utility_params_by_good_id)<|docstring|>Copy the object.<|endoftext|> |
ee61f34631a0fd1a78a2ded8df99c21849d6cd4539e70f987244ec8941f1d587 | def __str__(self) -> str:
'From object to string.'
return 'AgentState{}'.format(pprint.pformat({'agent_address': self.agent_address, 'amount_by_currency_id': self.amount_by_currency_id, 'exchange_params_by_currency_id': self.exchange_params_by_currency_id, 'quantities_by_good_id': self.quantities_by_good_id, 'utility_params_by_good_id': self.utility_params_by_good_id})) | From object to string. | packages/fetchai/skills/tac_control/game.py | __str__ | bryanchriswhite/agents-aea | 126 | python | def __str__(self) -> str:
return 'AgentState{}'.format(pprint.pformat({'agent_address': self.agent_address, 'amount_by_currency_id': self.amount_by_currency_id, 'exchange_params_by_currency_id': self.exchange_params_by_currency_id, 'quantities_by_good_id': self.quantities_by_good_id, 'utility_params_by_good_id': self.utility_params_by_good_id})) | def __str__(self) -> str:
return 'AgentState{}'.format(pprint.pformat({'agent_address': self.agent_address, 'amount_by_currency_id': self.amount_by_currency_id, 'exchange_params_by_currency_id': self.exchange_params_by_currency_id, 'quantities_by_good_id': self.quantities_by_good_id, 'utility_params_by_good_id': self.utility_params_by_good_id}))<|docstring|>From object to string.<|endoftext|> |
37df2b35d9caa45aa28060859a3f5329a96bc880982ecebf9aaa900731fff0c5 | def __eq__(self, other: Any) -> bool:
'Compare equality of two instances of the class.'
return (isinstance(other, AgentState) and (self.agent_address == other.agent_address) and (self.amount_by_currency_id == other.amount_by_currency_id) and (self.exchange_params_by_currency_id == other.exchange_params_by_currency_id) and (self.quantities_by_good_id == other.quantities_by_good_id) and (self.utility_params_by_good_id == other.utility_params_by_good_id)) | Compare equality of two instances of the class. | packages/fetchai/skills/tac_control/game.py | __eq__ | bryanchriswhite/agents-aea | 126 | python | def __eq__(self, other: Any) -> bool:
return (isinstance(other, AgentState) and (self.agent_address == other.agent_address) and (self.amount_by_currency_id == other.amount_by_currency_id) and (self.exchange_params_by_currency_id == other.exchange_params_by_currency_id) and (self.quantities_by_good_id == other.quantities_by_good_id) and (self.utility_params_by_good_id == other.utility_params_by_good_id)) | def __eq__(self, other: Any) -> bool:
return (isinstance(other, AgentState) and (self.agent_address == other.agent_address) and (self.amount_by_currency_id == other.amount_by_currency_id) and (self.exchange_params_by_currency_id == other.exchange_params_by_currency_id) and (self.quantities_by_good_id == other.quantities_by_good_id) and (self.utility_params_by_good_id == other.utility_params_by_good_id))<|docstring|>Compare equality of two instances of the class.<|endoftext|> |
93d04a5315cd880c4e31fad177afd38fa0d13e900aa3417a7be30a5407a21fce | def __init__(self) -> None:
'Instantiate the transaction class.'
self._confirmed = {}
self._confirmed_per_agent = {} | Instantiate the transaction class. | packages/fetchai/skills/tac_control/game.py | __init__ | bryanchriswhite/agents-aea | 126 | python | def __init__(self) -> None:
self._confirmed = {}
self._confirmed_per_agent = {} | def __init__(self) -> None:
self._confirmed = {}
self._confirmed_per_agent = {}<|docstring|>Instantiate the transaction class.<|endoftext|> |
1d5600f5e0ecf9a76101ca52f9fd2b329b1169dfaaae7062997e1f6a07b61a82 | @property
def confirmed(self) -> Dict[(datetime.datetime, Transaction)]:
'Get the confirmed transactions.'
return self._confirmed | Get the confirmed transactions. | packages/fetchai/skills/tac_control/game.py | confirmed | bryanchriswhite/agents-aea | 126 | python | @property
def confirmed(self) -> Dict[(datetime.datetime, Transaction)]:
return self._confirmed | @property
def confirmed(self) -> Dict[(datetime.datetime, Transaction)]:
return self._confirmed<|docstring|>Get the confirmed transactions.<|endoftext|> |
1044bf4618565490216d650ad7cc9e0d9ce95028921e059405799e5a64ea7b87 | @property
def confirmed_per_agent(self) -> Dict[(Address, Dict[(datetime.datetime, Transaction)])]:
'Get the confirmed transactions by agent.'
return self._confirmed_per_agent | Get the confirmed transactions by agent. | packages/fetchai/skills/tac_control/game.py | confirmed_per_agent | bryanchriswhite/agents-aea | 126 | python | @property
def confirmed_per_agent(self) -> Dict[(Address, Dict[(datetime.datetime, Transaction)])]:
return self._confirmed_per_agent | @property
def confirmed_per_agent(self) -> Dict[(Address, Dict[(datetime.datetime, Transaction)])]:
return self._confirmed_per_agent<|docstring|>Get the confirmed transactions by agent.<|endoftext|> |
918811fd5f3635e67c05cdbf63859a79b4816d70076566b6db7dfcb874d84aeb | def add(self, transaction: Transaction) -> None:
'\n Add a confirmed transaction.\n\n :param transaction: the transaction\n '
now = datetime.datetime.now()
self._confirmed[now] = transaction
if (self._confirmed_per_agent.get(transaction.sender_address) is None):
self._confirmed_per_agent[transaction.sender_address] = {}
self._confirmed_per_agent[transaction.sender_address][now] = transaction
if (self._confirmed_per_agent.get(transaction.counterparty_address) is None):
self._confirmed_per_agent[transaction.counterparty_address] = {}
self._confirmed_per_agent[transaction.counterparty_address][now] = transaction | Add a confirmed transaction.
:param transaction: the transaction | packages/fetchai/skills/tac_control/game.py | add | bryanchriswhite/agents-aea | 126 | python | def add(self, transaction: Transaction) -> None:
'\n Add a confirmed transaction.\n\n :param transaction: the transaction\n '
now = datetime.datetime.now()
self._confirmed[now] = transaction
if (self._confirmed_per_agent.get(transaction.sender_address) is None):
self._confirmed_per_agent[transaction.sender_address] = {}
self._confirmed_per_agent[transaction.sender_address][now] = transaction
if (self._confirmed_per_agent.get(transaction.counterparty_address) is None):
self._confirmed_per_agent[transaction.counterparty_address] = {}
self._confirmed_per_agent[transaction.counterparty_address][now] = transaction | def add(self, transaction: Transaction) -> None:
'\n Add a confirmed transaction.\n\n :param transaction: the transaction\n '
now = datetime.datetime.now()
self._confirmed[now] = transaction
if (self._confirmed_per_agent.get(transaction.sender_address) is None):
self._confirmed_per_agent[transaction.sender_address] = {}
self._confirmed_per_agent[transaction.sender_address][now] = transaction
if (self._confirmed_per_agent.get(transaction.counterparty_address) is None):
self._confirmed_per_agent[transaction.counterparty_address] = {}
self._confirmed_per_agent[transaction.counterparty_address][now] = transaction<|docstring|>Add a confirmed transaction.
:param transaction: the transaction<|endoftext|> |
5a4dc86bbaadcc519146b599ab62da57518b43150ad49e89b9582cc140ff6065 | def __init__(self) -> None:
'Instantiate the registration class.'
self._agent_addr_to_name = {} | Instantiate the registration class. | packages/fetchai/skills/tac_control/game.py | __init__ | bryanchriswhite/agents-aea | 126 | python | def __init__(self) -> None:
self._agent_addr_to_name = {} | def __init__(self) -> None:
self._agent_addr_to_name = {}<|docstring|>Instantiate the registration class.<|endoftext|> |
ac8644e59379acf87dc4f478745a9214ccd26b9b298ba377f511bbb2b788bde1 | @property
def agent_addr_to_name(self) -> Dict[(str, str)]:
'Get the registered agent addresses and their names.'
return self._agent_addr_to_name | Get the registered agent addresses and their names. | packages/fetchai/skills/tac_control/game.py | agent_addr_to_name | bryanchriswhite/agents-aea | 126 | python | @property
def agent_addr_to_name(self) -> Dict[(str, str)]:
return self._agent_addr_to_name | @property
def agent_addr_to_name(self) -> Dict[(str, str)]:
return self._agent_addr_to_name<|docstring|>Get the registered agent addresses and their names.<|endoftext|> |
d7b18dbf6c5b0375332d75e089f9ea1b0056ce4f71093ef1f917b6c53a892a07 | @property
def nb_agents(self) -> int:
'Get the number of registered agents.'
return len(self._agent_addr_to_name) | Get the number of registered agents. | packages/fetchai/skills/tac_control/game.py | nb_agents | bryanchriswhite/agents-aea | 126 | python | @property
def nb_agents(self) -> int:
return len(self._agent_addr_to_name) | @property
def nb_agents(self) -> int:
return len(self._agent_addr_to_name)<|docstring|>Get the number of registered agents.<|endoftext|> |
7af81e4d9ef1f5398ccede6e51f54a56b5da9ec568e6388e0fd13b034c9fe468 | def register_agent(self, agent_addr: Address, agent_name: str) -> None:
'\n Register an agent.\n\n :param agent_addr: the Address of the agent\n :param agent_name: the name of the agent\n '
self._agent_addr_to_name[agent_addr] = agent_name | Register an agent.
:param agent_addr: the Address of the agent
:param agent_name: the name of the agent | packages/fetchai/skills/tac_control/game.py | register_agent | bryanchriswhite/agents-aea | 126 | python | def register_agent(self, agent_addr: Address, agent_name: str) -> None:
'\n Register an agent.\n\n :param agent_addr: the Address of the agent\n :param agent_name: the name of the agent\n '
self._agent_addr_to_name[agent_addr] = agent_name | def register_agent(self, agent_addr: Address, agent_name: str) -> None:
'\n Register an agent.\n\n :param agent_addr: the Address of the agent\n :param agent_name: the name of the agent\n '
self._agent_addr_to_name[agent_addr] = agent_name<|docstring|>Register an agent.
:param agent_addr: the Address of the agent
:param agent_name: the name of the agent<|endoftext|> |
d90f2eb76156c3240068d3a84aacf687963968f8df0bcef13accf261d00cd510 | def unregister_agent(self, agent_addr: Address) -> None:
'\n Register an agent.\n\n :param agent_addr: the Address of the agent\n '
self._agent_addr_to_name.pop(agent_addr) | Register an agent.
:param agent_addr: the Address of the agent | packages/fetchai/skills/tac_control/game.py | unregister_agent | bryanchriswhite/agents-aea | 126 | python | def unregister_agent(self, agent_addr: Address) -> None:
'\n Register an agent.\n\n :param agent_addr: the Address of the agent\n '
self._agent_addr_to_name.pop(agent_addr) | def unregister_agent(self, agent_addr: Address) -> None:
'\n Register an agent.\n\n :param agent_addr: the Address of the agent\n '
self._agent_addr_to_name.pop(agent_addr)<|docstring|>Register an agent.
:param agent_addr: the Address of the agent<|endoftext|> |
a6cfc1218c0ad505e8e8d617d72b9f514061bfee7aed521062f8223a43947aef | def __init__(self, **kwargs: Any) -> None:
'Instantiate the search class.'
super().__init__(**kwargs)
self._phase = Phase.PRE_GAME
self._registration = Registration()
self._conf = None
self._initialization = None
self._initial_agent_states = None
self._current_agent_states = None
self._transactions = Transactions()
self._already_minted_agents = []
self._is_allowed_to_mint = True
self.is_registered_agent = False | Instantiate the search class. | packages/fetchai/skills/tac_control/game.py | __init__ | bryanchriswhite/agents-aea | 126 | python | def __init__(self, **kwargs: Any) -> None:
super().__init__(**kwargs)
self._phase = Phase.PRE_GAME
self._registration = Registration()
self._conf = None
self._initialization = None
self._initial_agent_states = None
self._current_agent_states = None
self._transactions = Transactions()
self._already_minted_agents = []
self._is_allowed_to_mint = True
self.is_registered_agent = False | def __init__(self, **kwargs: Any) -> None:
super().__init__(**kwargs)
self._phase = Phase.PRE_GAME
self._registration = Registration()
self._conf = None
self._initialization = None
self._initial_agent_states = None
self._current_agent_states = None
self._transactions = Transactions()
self._already_minted_agents = []
self._is_allowed_to_mint = True
self.is_registered_agent = False<|docstring|>Instantiate the search class.<|endoftext|> |
6c7cf583b0a98bc4f2e1c0a7d48ee797a479d8e126eb22ecaeadd91cc8b4ac5d | @property
def phase(self) -> Phase:
'Get the game phase.'
return self._phase | Get the game phase. | packages/fetchai/skills/tac_control/game.py | phase | bryanchriswhite/agents-aea | 126 | python | @property
def phase(self) -> Phase:
return self._phase | @property
def phase(self) -> Phase:
return self._phase<|docstring|>Get the game phase.<|endoftext|> |
ce89d74e9701446c3668446226f3e792291da085f8564d99813abca044c9dafa | @phase.setter
def phase(self, phase: Phase) -> None:
'Set the game phase.'
self.context.logger.debug('Game phase set to: {}'.format(phase))
self._phase = phase | Set the game phase. | packages/fetchai/skills/tac_control/game.py | phase | bryanchriswhite/agents-aea | 126 | python | @phase.setter
def phase(self, phase: Phase) -> None:
self.context.logger.debug('Game phase set to: {}'.format(phase))
self._phase = phase | @phase.setter
def phase(self, phase: Phase) -> None:
self.context.logger.debug('Game phase set to: {}'.format(phase))
self._phase = phase<|docstring|>Set the game phase.<|endoftext|> |
114f90dcbfa54e1384d01d3156ccf67eb0682afde9d44004ef3e8974b0d0ed7b | @property
def registration(self) -> Registration:
'Get the registration.'
return self._registration | Get the registration. | packages/fetchai/skills/tac_control/game.py | registration | bryanchriswhite/agents-aea | 126 | python | @property
def registration(self) -> Registration:
return self._registration | @property
def registration(self) -> Registration:
return self._registration<|docstring|>Get the registration.<|endoftext|> |
a8f0a7b4b0f3d4e1908838aa8a080fa12ea4664e0fd156784e33bed0e03b6bfb | @property
def conf(self) -> Configuration:
'Get game configuration.'
if (self._conf is None):
raise AEAEnforceError('Call create before calling configuration.')
return self._conf | Get game configuration. | packages/fetchai/skills/tac_control/game.py | conf | bryanchriswhite/agents-aea | 126 | python | @property
def conf(self) -> Configuration:
if (self._conf is None):
raise AEAEnforceError('Call create before calling configuration.')
return self._conf | @property
def conf(self) -> Configuration:
if (self._conf is None):
raise AEAEnforceError('Call create before calling configuration.')
return self._conf<|docstring|>Get game configuration.<|endoftext|> |
a71de6ba8104093fb51e7d8371d8945cf823d8a3daeaa5c783b3a077156e7320 | @property
def initialization(self) -> Initialization:
'Get game initialization.'
if (self._initialization is None):
raise AEAEnforceError('Call create before calling initialization.')
return self._initialization | Get game initialization. | packages/fetchai/skills/tac_control/game.py | initialization | bryanchriswhite/agents-aea | 126 | python | @property
def initialization(self) -> Initialization:
if (self._initialization is None):
raise AEAEnforceError('Call create before calling initialization.')
return self._initialization | @property
def initialization(self) -> Initialization:
if (self._initialization is None):
raise AEAEnforceError('Call create before calling initialization.')
return self._initialization<|docstring|>Get game initialization.<|endoftext|> |
031b29d0daa7db9e5e2421c28d2d0c09e5e554a239f3e6e42874e7cca741c5cf | @property
def initial_agent_states(self) -> Dict[(str, AgentState)]:
'Get initial state of each agent.'
if (self._initial_agent_states is None):
raise AEAEnforceError('Call create before calling initial_agent_states.')
return self._initial_agent_states | Get initial state of each agent. | packages/fetchai/skills/tac_control/game.py | initial_agent_states | bryanchriswhite/agents-aea | 126 | python | @property
def initial_agent_states(self) -> Dict[(str, AgentState)]:
if (self._initial_agent_states is None):
raise AEAEnforceError('Call create before calling initial_agent_states.')
return self._initial_agent_states | @property
def initial_agent_states(self) -> Dict[(str, AgentState)]:
if (self._initial_agent_states is None):
raise AEAEnforceError('Call create before calling initial_agent_states.')
return self._initial_agent_states<|docstring|>Get initial state of each agent.<|endoftext|> |
2a04f897886f39c7499a65acf298c0bd1002e793da7aac2ba6c9544d1993a49f | @property
def current_agent_states(self) -> Dict[(str, AgentState)]:
'Get current state of each agent.'
if (self._current_agent_states is None):
raise AEAEnforceError('Call create before calling current_agent_states.')
return self._current_agent_states | Get current state of each agent. | packages/fetchai/skills/tac_control/game.py | current_agent_states | bryanchriswhite/agents-aea | 126 | python | @property
def current_agent_states(self) -> Dict[(str, AgentState)]:
if (self._current_agent_states is None):
raise AEAEnforceError('Call create before calling current_agent_states.')
return self._current_agent_states | @property
def current_agent_states(self) -> Dict[(str, AgentState)]:
if (self._current_agent_states is None):
raise AEAEnforceError('Call create before calling current_agent_states.')
return self._current_agent_states<|docstring|>Get current state of each agent.<|endoftext|> |
bbe5b84c38d272a26f54810fdf05eca7cbe0e7604fd249015c65d8551a534b38 | @property
def transactions(self) -> Transactions:
'Get the transactions.'
return self._transactions | Get the transactions. | packages/fetchai/skills/tac_control/game.py | transactions | bryanchriswhite/agents-aea | 126 | python | @property
def transactions(self) -> Transactions:
return self._transactions | @property
def transactions(self) -> Transactions:
return self._transactions<|docstring|>Get the transactions.<|endoftext|> |
31898f1aaa1cac53db6f18b924d8dfbc42f421bde765211adb4e001d8febc6f0 | def create(self) -> None:
'Create a game.'
enforce((self.phase != Phase.GAME), 'A game phase is already active.')
self._phase = Phase.GAME_SETUP
self._generate() | Create a game. | packages/fetchai/skills/tac_control/game.py | create | bryanchriswhite/agents-aea | 126 | python | def create(self) -> None:
enforce((self.phase != Phase.GAME), 'A game phase is already active.')
self._phase = Phase.GAME_SETUP
self._generate() | def create(self) -> None:
enforce((self.phase != Phase.GAME), 'A game phase is already active.')
self._phase = Phase.GAME_SETUP
self._generate()<|docstring|>Create a game.<|endoftext|> |
a1dc7c0dd810d6777e56cf1e973deece0c53542e0855e8875b81d0250248a553 | @property
def is_allowed_to_mint(self) -> bool:
'Get is allowed to mint.'
return self._is_allowed_to_mint | Get is allowed to mint. | packages/fetchai/skills/tac_control/game.py | is_allowed_to_mint | bryanchriswhite/agents-aea | 126 | python | @property
def is_allowed_to_mint(self) -> bool:
return self._is_allowed_to_mint | @property
def is_allowed_to_mint(self) -> bool:
return self._is_allowed_to_mint<|docstring|>Get is allowed to mint.<|endoftext|> |
1048e4e825cf6edfb006e2dff536764672e5a45f051c412e283f68818c6b5db3 | @is_allowed_to_mint.setter
def is_allowed_to_mint(self, is_allowed_to_mint: bool) -> None:
'Get is allowed to mint.'
self._is_allowed_to_mint = is_allowed_to_mint | Get is allowed to mint. | packages/fetchai/skills/tac_control/game.py | is_allowed_to_mint | bryanchriswhite/agents-aea | 126 | python | @is_allowed_to_mint.setter
def is_allowed_to_mint(self, is_allowed_to_mint: bool) -> None:
self._is_allowed_to_mint = is_allowed_to_mint | @is_allowed_to_mint.setter
def is_allowed_to_mint(self, is_allowed_to_mint: bool) -> None:
self._is_allowed_to_mint = is_allowed_to_mint<|docstring|>Get is allowed to mint.<|endoftext|> |
b88053b3e1e4b9b7087da01195bf6d7ce44067c207275bcce5b12dcb8246c6b5 | def get_next_agent_state_for_minting(self) -> Optional[AgentState]:
'Get next agent state for token minting.'
result = None
for (agent_addr, agent_state) in self.initial_agent_states.items():
if (agent_addr in self._already_minted_agents):
continue
self._already_minted_agents.append(agent_addr)
result = agent_state
break
return result | Get next agent state for token minting. | packages/fetchai/skills/tac_control/game.py | get_next_agent_state_for_minting | bryanchriswhite/agents-aea | 126 | python | def get_next_agent_state_for_minting(self) -> Optional[AgentState]:
result = None
for (agent_addr, agent_state) in self.initial_agent_states.items():
if (agent_addr in self._already_minted_agents):
continue
self._already_minted_agents.append(agent_addr)
result = agent_state
break
return result | def get_next_agent_state_for_minting(self) -> Optional[AgentState]:
result = None
for (agent_addr, agent_state) in self.initial_agent_states.items():
if (agent_addr in self._already_minted_agents):
continue
self._already_minted_agents.append(agent_addr)
result = agent_state
break
return result<|docstring|>Get next agent state for token minting.<|endoftext|> |
5484b3c51f94bc3771caa274c2ca6406ff4274b06985914e719e21577d73891c | def _generate(self) -> None:
'Generate a TAC game.'
parameters = cast(Parameters, self.context.parameters)
self._conf = Configuration(parameters.version_id, parameters.tx_fee, self.registration.agent_addr_to_name, parameters.currency_id_to_name, parameters.good_id_to_name)
scaling_factor = determine_scaling_factor(parameters.money_endowment)
agent_addr_to_currency_endowments = generate_currency_endowments(list(self.conf.agent_addr_to_name.keys()), list(self.conf.currency_id_to_name.keys()), parameters.money_endowment)
agent_addr_to_exchange_params = generate_exchange_params(list(self.conf.agent_addr_to_name.keys()), list(self.conf.currency_id_to_name.keys()))
agent_addr_to_good_endowments = generate_good_endowments(list(self.conf.agent_addr_to_name.keys()), list(self.conf.good_id_to_name.keys()), parameters.base_good_endowment, parameters.lower_bound_factor, parameters.upper_bound_factor)
agent_addr_to_utility_params = generate_utility_params(list(self.conf.agent_addr_to_name.keys()), list(self.conf.good_id_to_name.keys()), scaling_factor)
(good_id_to_eq_prices, agent_addr_to_eq_good_holdings, agent_addr_to_eq_currency_holdings) = generate_equilibrium_prices_and_holdings(agent_addr_to_good_endowments, agent_addr_to_utility_params, agent_addr_to_currency_endowments, agent_addr_to_exchange_params, scaling_factor)
self._initialization = Initialization(agent_addr_to_currency_endowments, agent_addr_to_exchange_params, agent_addr_to_good_endowments, agent_addr_to_utility_params, good_id_to_eq_prices, agent_addr_to_eq_good_holdings, agent_addr_to_eq_currency_holdings)
self._initial_agent_states = dict(((agent_addr, AgentState(agent_addr, self.initialization.agent_addr_to_currency_endowments[agent_addr], self.initialization.agent_addr_to_exchange_params[agent_addr], self.initialization.agent_addr_to_good_endowments[agent_addr], self.initialization.agent_addr_to_utility_params[agent_addr])) for agent_addr in self.conf.agent_addr_to_name.keys()))
self._current_agent_states = dict(((agent_addr, AgentState(agent_addr, self.initialization.agent_addr_to_currency_endowments[agent_addr], self.initialization.agent_addr_to_exchange_params[agent_addr], self.initialization.agent_addr_to_good_endowments[agent_addr], self.initialization.agent_addr_to_utility_params[agent_addr])) for agent_addr in self.conf.agent_addr_to_name.keys())) | Generate a TAC game. | packages/fetchai/skills/tac_control/game.py | _generate | bryanchriswhite/agents-aea | 126 | python | def _generate(self) -> None:
parameters = cast(Parameters, self.context.parameters)
self._conf = Configuration(parameters.version_id, parameters.tx_fee, self.registration.agent_addr_to_name, parameters.currency_id_to_name, parameters.good_id_to_name)
scaling_factor = determine_scaling_factor(parameters.money_endowment)
agent_addr_to_currency_endowments = generate_currency_endowments(list(self.conf.agent_addr_to_name.keys()), list(self.conf.currency_id_to_name.keys()), parameters.money_endowment)
agent_addr_to_exchange_params = generate_exchange_params(list(self.conf.agent_addr_to_name.keys()), list(self.conf.currency_id_to_name.keys()))
agent_addr_to_good_endowments = generate_good_endowments(list(self.conf.agent_addr_to_name.keys()), list(self.conf.good_id_to_name.keys()), parameters.base_good_endowment, parameters.lower_bound_factor, parameters.upper_bound_factor)
agent_addr_to_utility_params = generate_utility_params(list(self.conf.agent_addr_to_name.keys()), list(self.conf.good_id_to_name.keys()), scaling_factor)
(good_id_to_eq_prices, agent_addr_to_eq_good_holdings, agent_addr_to_eq_currency_holdings) = generate_equilibrium_prices_and_holdings(agent_addr_to_good_endowments, agent_addr_to_utility_params, agent_addr_to_currency_endowments, agent_addr_to_exchange_params, scaling_factor)
self._initialization = Initialization(agent_addr_to_currency_endowments, agent_addr_to_exchange_params, agent_addr_to_good_endowments, agent_addr_to_utility_params, good_id_to_eq_prices, agent_addr_to_eq_good_holdings, agent_addr_to_eq_currency_holdings)
self._initial_agent_states = dict(((agent_addr, AgentState(agent_addr, self.initialization.agent_addr_to_currency_endowments[agent_addr], self.initialization.agent_addr_to_exchange_params[agent_addr], self.initialization.agent_addr_to_good_endowments[agent_addr], self.initialization.agent_addr_to_utility_params[agent_addr])) for agent_addr in self.conf.agent_addr_to_name.keys()))
self._current_agent_states = dict(((agent_addr, AgentState(agent_addr, self.initialization.agent_addr_to_currency_endowments[agent_addr], self.initialization.agent_addr_to_exchange_params[agent_addr], self.initialization.agent_addr_to_good_endowments[agent_addr], self.initialization.agent_addr_to_utility_params[agent_addr])) for agent_addr in self.conf.agent_addr_to_name.keys())) | def _generate(self) -> None:
parameters = cast(Parameters, self.context.parameters)
self._conf = Configuration(parameters.version_id, parameters.tx_fee, self.registration.agent_addr_to_name, parameters.currency_id_to_name, parameters.good_id_to_name)
scaling_factor = determine_scaling_factor(parameters.money_endowment)
agent_addr_to_currency_endowments = generate_currency_endowments(list(self.conf.agent_addr_to_name.keys()), list(self.conf.currency_id_to_name.keys()), parameters.money_endowment)
agent_addr_to_exchange_params = generate_exchange_params(list(self.conf.agent_addr_to_name.keys()), list(self.conf.currency_id_to_name.keys()))
agent_addr_to_good_endowments = generate_good_endowments(list(self.conf.agent_addr_to_name.keys()), list(self.conf.good_id_to_name.keys()), parameters.base_good_endowment, parameters.lower_bound_factor, parameters.upper_bound_factor)
agent_addr_to_utility_params = generate_utility_params(list(self.conf.agent_addr_to_name.keys()), list(self.conf.good_id_to_name.keys()), scaling_factor)
(good_id_to_eq_prices, agent_addr_to_eq_good_holdings, agent_addr_to_eq_currency_holdings) = generate_equilibrium_prices_and_holdings(agent_addr_to_good_endowments, agent_addr_to_utility_params, agent_addr_to_currency_endowments, agent_addr_to_exchange_params, scaling_factor)
self._initialization = Initialization(agent_addr_to_currency_endowments, agent_addr_to_exchange_params, agent_addr_to_good_endowments, agent_addr_to_utility_params, good_id_to_eq_prices, agent_addr_to_eq_good_holdings, agent_addr_to_eq_currency_holdings)
self._initial_agent_states = dict(((agent_addr, AgentState(agent_addr, self.initialization.agent_addr_to_currency_endowments[agent_addr], self.initialization.agent_addr_to_exchange_params[agent_addr], self.initialization.agent_addr_to_good_endowments[agent_addr], self.initialization.agent_addr_to_utility_params[agent_addr])) for agent_addr in self.conf.agent_addr_to_name.keys()))
self._current_agent_states = dict(((agent_addr, AgentState(agent_addr, self.initialization.agent_addr_to_currency_endowments[agent_addr], self.initialization.agent_addr_to_exchange_params[agent_addr], self.initialization.agent_addr_to_good_endowments[agent_addr], self.initialization.agent_addr_to_utility_params[agent_addr])) for agent_addr in self.conf.agent_addr_to_name.keys()))<|docstring|>Generate a TAC game.<|endoftext|> |
613279ddbfcddf841a43c6be6ab3ca149f4d0aec665561e35067ecb9293c65e4 | @property
def holdings_summary(self) -> str:
'Get holdings summary (a string representing the holdings for every agent).'
result = ('\n' + 'Current good & money allocation & score: \n')
for (agent_addr, agent_state) in self.current_agent_states.items():
result = ((((result + '- ') + self.conf.agent_addr_to_name[agent_addr]) + ':') + '\n')
for (good_id, quantity) in agent_state.quantities_by_good_id.items():
result += ((((' ' + self.conf.good_id_to_name[good_id]) + ': ') + str(quantity)) + '\n')
for (currency_id, amount) in agent_state.amount_by_currency_id.items():
result += ((((' ' + self.conf.currency_id_to_name[currency_id]) + ': ') + str(amount)) + '\n')
result += ((' score: ' + str(round(agent_state.get_score(), 2))) + '\n')
result = (result + '\n')
return result | Get holdings summary (a string representing the holdings for every agent). | packages/fetchai/skills/tac_control/game.py | holdings_summary | bryanchriswhite/agents-aea | 126 | python | @property
def holdings_summary(self) -> str:
result = ('\n' + 'Current good & money allocation & score: \n')
for (agent_addr, agent_state) in self.current_agent_states.items():
result = ((((result + '- ') + self.conf.agent_addr_to_name[agent_addr]) + ':') + '\n')
for (good_id, quantity) in agent_state.quantities_by_good_id.items():
result += ((((' ' + self.conf.good_id_to_name[good_id]) + ': ') + str(quantity)) + '\n')
for (currency_id, amount) in agent_state.amount_by_currency_id.items():
result += ((((' ' + self.conf.currency_id_to_name[currency_id]) + ': ') + str(amount)) + '\n')
result += ((' score: ' + str(round(agent_state.get_score(), 2))) + '\n')
result = (result + '\n')
return result | @property
def holdings_summary(self) -> str:
result = ('\n' + 'Current good & money allocation & score: \n')
for (agent_addr, agent_state) in self.current_agent_states.items():
result = ((((result + '- ') + self.conf.agent_addr_to_name[agent_addr]) + ':') + '\n')
for (good_id, quantity) in agent_state.quantities_by_good_id.items():
result += ((((' ' + self.conf.good_id_to_name[good_id]) + ': ') + str(quantity)) + '\n')
for (currency_id, amount) in agent_state.amount_by_currency_id.items():
result += ((((' ' + self.conf.currency_id_to_name[currency_id]) + ': ') + str(amount)) + '\n')
result += ((' score: ' + str(round(agent_state.get_score(), 2))) + '\n')
result = (result + '\n')
return result<|docstring|>Get holdings summary (a string representing the holdings for every agent).<|endoftext|> |
dca92a353b80c60f6bda13dcdb3989ea22b8156bfed256b160def85196c52e11 | @property
def equilibrium_summary(self) -> str:
'Get equilibrium summary.'
result = ('\n' + 'Equilibrium prices: \n')
for (good_id, eq_price) in self.initialization.good_id_to_eq_prices.items():
result = ((((result + self.conf.good_id_to_name[good_id]) + ' ') + str(eq_price)) + '\n')
result = (result + '\n')
result = (result + 'Equilibrium good allocation: \n')
for (agent_addr, eq_allocations) in self.initialization.agent_addr_to_eq_good_holdings.items():
result = (((result + '- ') + self.conf.agent_addr_to_name[agent_addr]) + ':\n')
for (good_id, quantity) in eq_allocations.items():
result = (((((result + ' ') + self.conf.good_id_to_name[good_id]) + ': ') + str(quantity)) + '\n')
result = (result + '\n')
result = (result + 'Equilibrium money allocation: \n')
for (agent_addr, eq_allocations) in self.initialization.agent_addr_to_eq_currency_holdings.items():
result = (((result + '- ') + self.conf.agent_addr_to_name[agent_addr]) + ':\n')
for (currency_id, quantity) in eq_allocations.items():
result = (((((result + ' ') + self.conf.currency_id_to_name[currency_id]) + ': ') + str(quantity)) + '\n')
result = (result + '\n')
return result | Get equilibrium summary. | packages/fetchai/skills/tac_control/game.py | equilibrium_summary | bryanchriswhite/agents-aea | 126 | python | @property
def equilibrium_summary(self) -> str:
result = ('\n' + 'Equilibrium prices: \n')
for (good_id, eq_price) in self.initialization.good_id_to_eq_prices.items():
result = ((((result + self.conf.good_id_to_name[good_id]) + ' ') + str(eq_price)) + '\n')
result = (result + '\n')
result = (result + 'Equilibrium good allocation: \n')
for (agent_addr, eq_allocations) in self.initialization.agent_addr_to_eq_good_holdings.items():
result = (((result + '- ') + self.conf.agent_addr_to_name[agent_addr]) + ':\n')
for (good_id, quantity) in eq_allocations.items():
result = (((((result + ' ') + self.conf.good_id_to_name[good_id]) + ': ') + str(quantity)) + '\n')
result = (result + '\n')
result = (result + 'Equilibrium money allocation: \n')
for (agent_addr, eq_allocations) in self.initialization.agent_addr_to_eq_currency_holdings.items():
result = (((result + '- ') + self.conf.agent_addr_to_name[agent_addr]) + ':\n')
for (currency_id, quantity) in eq_allocations.items():
result = (((((result + ' ') + self.conf.currency_id_to_name[currency_id]) + ': ') + str(quantity)) + '\n')
result = (result + '\n')
return result | @property
def equilibrium_summary(self) -> str:
result = ('\n' + 'Equilibrium prices: \n')
for (good_id, eq_price) in self.initialization.good_id_to_eq_prices.items():
result = ((((result + self.conf.good_id_to_name[good_id]) + ' ') + str(eq_price)) + '\n')
result = (result + '\n')
result = (result + 'Equilibrium good allocation: \n')
for (agent_addr, eq_allocations) in self.initialization.agent_addr_to_eq_good_holdings.items():
result = (((result + '- ') + self.conf.agent_addr_to_name[agent_addr]) + ':\n')
for (good_id, quantity) in eq_allocations.items():
result = (((((result + ' ') + self.conf.good_id_to_name[good_id]) + ': ') + str(quantity)) + '\n')
result = (result + '\n')
result = (result + 'Equilibrium money allocation: \n')
for (agent_addr, eq_allocations) in self.initialization.agent_addr_to_eq_currency_holdings.items():
result = (((result + '- ') + self.conf.agent_addr_to_name[agent_addr]) + ':\n')
for (currency_id, quantity) in eq_allocations.items():
result = (((((result + ' ') + self.conf.currency_id_to_name[currency_id]) + ': ') + str(quantity)) + '\n')
result = (result + '\n')
return result<|docstring|>Get equilibrium summary.<|endoftext|> |
ab3ada7309fde0db9ee2d4af258d1606457d57cc55e33b910d5202e0f0b1e19d | def is_transaction_valid(self, tx: Transaction) -> bool:
'\n Check whether the transaction is signed correctly and valid given the state of the game.\n\n :param tx: the transaction.\n :return: True if the transaction is valid, False otherwise.\n :raises: AEAEnforceError: if the data in the transaction are not allowed (e.g. negative amount).\n '
sender_state = self.current_agent_states[tx.sender_address]
counterparty_state = self.current_agent_states[tx.counterparty_address]
result = tx.has_matching_signatures()
result = (result and sender_state.is_consistent_transaction(tx))
result = (result and counterparty_state.is_consistent_transaction(tx))
return result | Check whether the transaction is signed correctly and valid given the state of the game.
:param tx: the transaction.
:return: True if the transaction is valid, False otherwise.
:raises: AEAEnforceError: if the data in the transaction are not allowed (e.g. negative amount). | packages/fetchai/skills/tac_control/game.py | is_transaction_valid | bryanchriswhite/agents-aea | 126 | python | def is_transaction_valid(self, tx: Transaction) -> bool:
'\n Check whether the transaction is signed correctly and valid given the state of the game.\n\n :param tx: the transaction.\n :return: True if the transaction is valid, False otherwise.\n :raises: AEAEnforceError: if the data in the transaction are not allowed (e.g. negative amount).\n '
sender_state = self.current_agent_states[tx.sender_address]
counterparty_state = self.current_agent_states[tx.counterparty_address]
result = tx.has_matching_signatures()
result = (result and sender_state.is_consistent_transaction(tx))
result = (result and counterparty_state.is_consistent_transaction(tx))
return result | def is_transaction_valid(self, tx: Transaction) -> bool:
'\n Check whether the transaction is signed correctly and valid given the state of the game.\n\n :param tx: the transaction.\n :return: True if the transaction is valid, False otherwise.\n :raises: AEAEnforceError: if the data in the transaction are not allowed (e.g. negative amount).\n '
sender_state = self.current_agent_states[tx.sender_address]
counterparty_state = self.current_agent_states[tx.counterparty_address]
result = tx.has_matching_signatures()
result = (result and sender_state.is_consistent_transaction(tx))
result = (result and counterparty_state.is_consistent_transaction(tx))
return result<|docstring|>Check whether the transaction is signed correctly and valid given the state of the game.
:param tx: the transaction.
:return: True if the transaction is valid, False otherwise.
:raises: AEAEnforceError: if the data in the transaction are not allowed (e.g. negative amount).<|endoftext|> |
d5ad0c75abea4f56949c22c055bc807c4a4eb5fe92a8dc634587a28a79eb4067 | def settle_transaction(self, tx: Transaction) -> None:
'\n Settle a valid transaction.\n\n :param tx: the game transaction.\n :raises: AEAEnforceError if the transaction is not valid.\n '
if (self._current_agent_states is None):
raise AEAEnforceError('Call create before calling current_agent_states.')
enforce(self.is_transaction_valid(tx), 'Transaction is not valid.')
sender_state = self.current_agent_states[tx.sender_address]
counterparty_state = self.current_agent_states[tx.counterparty_address]
new_sender_state = sender_state.apply([tx])
new_counterparty_state = counterparty_state.apply([tx])
self.transactions.add(tx)
self._current_agent_states.update({tx.sender_address: new_sender_state})
self._current_agent_states.update({tx.counterparty_address: new_counterparty_state}) | Settle a valid transaction.
:param tx: the game transaction.
:raises: AEAEnforceError if the transaction is not valid. | packages/fetchai/skills/tac_control/game.py | settle_transaction | bryanchriswhite/agents-aea | 126 | python | def settle_transaction(self, tx: Transaction) -> None:
'\n Settle a valid transaction.\n\n :param tx: the game transaction.\n :raises: AEAEnforceError if the transaction is not valid.\n '
if (self._current_agent_states is None):
raise AEAEnforceError('Call create before calling current_agent_states.')
enforce(self.is_transaction_valid(tx), 'Transaction is not valid.')
sender_state = self.current_agent_states[tx.sender_address]
counterparty_state = self.current_agent_states[tx.counterparty_address]
new_sender_state = sender_state.apply([tx])
new_counterparty_state = counterparty_state.apply([tx])
self.transactions.add(tx)
self._current_agent_states.update({tx.sender_address: new_sender_state})
self._current_agent_states.update({tx.counterparty_address: new_counterparty_state}) | def settle_transaction(self, tx: Transaction) -> None:
'\n Settle a valid transaction.\n\n :param tx: the game transaction.\n :raises: AEAEnforceError if the transaction is not valid.\n '
if (self._current_agent_states is None):
raise AEAEnforceError('Call create before calling current_agent_states.')
enforce(self.is_transaction_valid(tx), 'Transaction is not valid.')
sender_state = self.current_agent_states[tx.sender_address]
counterparty_state = self.current_agent_states[tx.counterparty_address]
new_sender_state = sender_state.apply([tx])
new_counterparty_state = counterparty_state.apply([tx])
self.transactions.add(tx)
self._current_agent_states.update({tx.sender_address: new_sender_state})
self._current_agent_states.update({tx.counterparty_address: new_counterparty_state})<|docstring|>Settle a valid transaction.
:param tx: the game transaction.
:raises: AEAEnforceError if the transaction is not valid.<|endoftext|> |
94efd01da7d1df9b693f379d3ac0f14ced8a2620a31e4d06c7f3da53301d6b8e | def get_location_description(self) -> Description:
"\n Get the location description.\n\n :return: a description of the agent's location\n "
description = Description(self.context.parameters.agent_location, data_model=AGENT_LOCATION_MODEL)
return description | Get the location description.
:return: a description of the agent's location | packages/fetchai/skills/tac_control/game.py | get_location_description | bryanchriswhite/agents-aea | 126 | python | def get_location_description(self) -> Description:
"\n Get the location description.\n\n :return: a description of the agent's location\n "
description = Description(self.context.parameters.agent_location, data_model=AGENT_LOCATION_MODEL)
return description | def get_location_description(self) -> Description:
"\n Get the location description.\n\n :return: a description of the agent's location\n "
description = Description(self.context.parameters.agent_location, data_model=AGENT_LOCATION_MODEL)
return description<|docstring|>Get the location description.
:return: a description of the agent's location<|endoftext|> |
4389f5d5a3cf2914e8c0ab07bbbfeecfe658f6ac553ed6d27c84a523d9972070 | def get_register_tac_description(self) -> Description:
'Get the tac description for registering.'
description = Description(self.context.parameters.set_service_data, data_model=AGENT_SET_SERVICE_MODEL)
return description | Get the tac description for registering. | packages/fetchai/skills/tac_control/game.py | get_register_tac_description | bryanchriswhite/agents-aea | 126 | python | def get_register_tac_description(self) -> Description:
description = Description(self.context.parameters.set_service_data, data_model=AGENT_SET_SERVICE_MODEL)
return description | def get_register_tac_description(self) -> Description:
description = Description(self.context.parameters.set_service_data, data_model=AGENT_SET_SERVICE_MODEL)
return description<|docstring|>Get the tac description for registering.<|endoftext|> |
4003d9e9a43e8840fe95b2a7264f96051f6557cb736e2fcc8b0753925475f46f | def get_register_personality_description(self) -> Description:
'\n Get the register personality description.\n\n :return: a description of the personality\n '
description = Description(self.context.parameters.set_personality_data, data_model=AGENT_PERSONALITY_MODEL)
return description | Get the register personality description.
:return: a description of the personality | packages/fetchai/skills/tac_control/game.py | get_register_personality_description | bryanchriswhite/agents-aea | 126 | python | def get_register_personality_description(self) -> Description:
'\n Get the register personality description.\n\n :return: a description of the personality\n '
description = Description(self.context.parameters.set_personality_data, data_model=AGENT_PERSONALITY_MODEL)
return description | def get_register_personality_description(self) -> Description:
'\n Get the register personality description.\n\n :return: a description of the personality\n '
description = Description(self.context.parameters.set_personality_data, data_model=AGENT_PERSONALITY_MODEL)
return description<|docstring|>Get the register personality description.
:return: a description of the personality<|endoftext|> |
b8ec62da2a205f270222f91511de5bbff9e146d663c0b513749da73aea9c9e4d | def get_register_classification_description(self) -> Description:
'\n Get the register classification description.\n\n :return: a description of the classification\n '
description = Description(self.context.parameters.set_classification, data_model=AGENT_PERSONALITY_MODEL)
return description | Get the register classification description.
:return: a description of the classification | packages/fetchai/skills/tac_control/game.py | get_register_classification_description | bryanchriswhite/agents-aea | 126 | python | def get_register_classification_description(self) -> Description:
'\n Get the register classification description.\n\n :return: a description of the classification\n '
description = Description(self.context.parameters.set_classification, data_model=AGENT_PERSONALITY_MODEL)
return description | def get_register_classification_description(self) -> Description:
'\n Get the register classification description.\n\n :return: a description of the classification\n '
description = Description(self.context.parameters.set_classification, data_model=AGENT_PERSONALITY_MODEL)
return description<|docstring|>Get the register classification description.
:return: a description of the classification<|endoftext|> |
0dae63cd56cb2fd7cf34aa19102e30a23135aade4262356defedc6e15c5a2efa | def get_unregister_tac_description(self) -> Description:
'Get the tac description for unregistering.'
description = Description(self.context.parameters.remove_service_data, data_model=AGENT_REMOVE_SERVICE_MODEL)
return description | Get the tac description for unregistering. | packages/fetchai/skills/tac_control/game.py | get_unregister_tac_description | bryanchriswhite/agents-aea | 126 | python | def get_unregister_tac_description(self) -> Description:
description = Description(self.context.parameters.remove_service_data, data_model=AGENT_REMOVE_SERVICE_MODEL)
return description | def get_unregister_tac_description(self) -> Description:
description = Description(self.context.parameters.remove_service_data, data_model=AGENT_REMOVE_SERVICE_MODEL)
return description<|docstring|>Get the tac description for unregistering.<|endoftext|> |
927c3209022aa00fa703928fd2ca0671e9ebddb1b566c165ceae58893fc5a24c | def rollout(process_index: int, rollout_config: RolloutConfig, config: CNNConfigBase) -> None:
'Produce episode data using epsilon-greedy.\n Args:\n process_index: Index of process.\n rollout_config: Configuration of rollout.\n config: Configuration of DQN agent.\n '
assert rollout_config.out.exists()
if (process_index == 0):
pprint.pprint(asdict(rollout_config))
pprint.pprint(asdict(config))
policy = Policy(config=config)
if rollout_config.snap:
assert rollout_config.snap.exists()
learner = Learner(config=config)
learner.load_online_model(rollout_config.snap)
policy.update_model_param(learner.get_model_param(), only_online_model=True)
explorer = Explorer(action_size=config.model.action_size, init_eps=rollout_config.eps, init_beta=config.intrinsic_reward.reward_ratio, use_intrinsic_reward=False, use_ucb=False, apply_value_scaling=config.apply_value_scaling)
rollout_logger = RolloutLogger(out_dir=rollout_config.out, render=rollout_config.render, filename_header=str(process_index))
env = make_env(config.env)
render = (lambda : env.render(mode='rgb_array'))
for i in range(rollout_config.num_episode):
print(f'process: {process_index} # episode = {i}')
obs = env.reset()
done = False
rollout_logger.on_reset(obs, (render() if rollout_config.render else None))
while (not done):
(prediction, intrinsic_reward) = policy.infer([obs])
(q_e, q_i) = prediction.as_numpy_tuple()
action = explorer.select_action(q_e[0])
(obs, reward, done, info) = env.step(action)
rollout_logger.on_step(action=action, q_e=q_e[0].tolist(), q_i=(q_i[0].tolist() if (q_i is not None) else None), intrinsic_reward=(intrinsic_reward[0] if (intrinsic_reward is not None) else None), obs=obs, reward=reward, info=info, done=done, image_frame=(render() if rollout_config.render else None)) | Produce episode data using epsilon-greedy.
Args:
process_index: Index of process.
rollout_config: Configuration of rollout.
config: Configuration of DQN agent. | bin/rollout_cnn.py | rollout | DwangoMediaVillage/marltas_core | 9 | python | def rollout(process_index: int, rollout_config: RolloutConfig, config: CNNConfigBase) -> None:
'Produce episode data using epsilon-greedy.\n Args:\n process_index: Index of process.\n rollout_config: Configuration of rollout.\n config: Configuration of DQN agent.\n '
assert rollout_config.out.exists()
if (process_index == 0):
pprint.pprint(asdict(rollout_config))
pprint.pprint(asdict(config))
policy = Policy(config=config)
if rollout_config.snap:
assert rollout_config.snap.exists()
learner = Learner(config=config)
learner.load_online_model(rollout_config.snap)
policy.update_model_param(learner.get_model_param(), only_online_model=True)
explorer = Explorer(action_size=config.model.action_size, init_eps=rollout_config.eps, init_beta=config.intrinsic_reward.reward_ratio, use_intrinsic_reward=False, use_ucb=False, apply_value_scaling=config.apply_value_scaling)
rollout_logger = RolloutLogger(out_dir=rollout_config.out, render=rollout_config.render, filename_header=str(process_index))
env = make_env(config.env)
render = (lambda : env.render(mode='rgb_array'))
for i in range(rollout_config.num_episode):
print(f'process: {process_index} # episode = {i}')
obs = env.reset()
done = False
rollout_logger.on_reset(obs, (render() if rollout_config.render else None))
while (not done):
(prediction, intrinsic_reward) = policy.infer([obs])
(q_e, q_i) = prediction.as_numpy_tuple()
action = explorer.select_action(q_e[0])
(obs, reward, done, info) = env.step(action)
rollout_logger.on_step(action=action, q_e=q_e[0].tolist(), q_i=(q_i[0].tolist() if (q_i is not None) else None), intrinsic_reward=(intrinsic_reward[0] if (intrinsic_reward is not None) else None), obs=obs, reward=reward, info=info, done=done, image_frame=(render() if rollout_config.render else None)) | def rollout(process_index: int, rollout_config: RolloutConfig, config: CNNConfigBase) -> None:
'Produce episode data using epsilon-greedy.\n Args:\n process_index: Index of process.\n rollout_config: Configuration of rollout.\n config: Configuration of DQN agent.\n '
assert rollout_config.out.exists()
if (process_index == 0):
pprint.pprint(asdict(rollout_config))
pprint.pprint(asdict(config))
policy = Policy(config=config)
if rollout_config.snap:
assert rollout_config.snap.exists()
learner = Learner(config=config)
learner.load_online_model(rollout_config.snap)
policy.update_model_param(learner.get_model_param(), only_online_model=True)
explorer = Explorer(action_size=config.model.action_size, init_eps=rollout_config.eps, init_beta=config.intrinsic_reward.reward_ratio, use_intrinsic_reward=False, use_ucb=False, apply_value_scaling=config.apply_value_scaling)
rollout_logger = RolloutLogger(out_dir=rollout_config.out, render=rollout_config.render, filename_header=str(process_index))
env = make_env(config.env)
render = (lambda : env.render(mode='rgb_array'))
for i in range(rollout_config.num_episode):
print(f'process: {process_index} # episode = {i}')
obs = env.reset()
done = False
rollout_logger.on_reset(obs, (render() if rollout_config.render else None))
while (not done):
(prediction, intrinsic_reward) = policy.infer([obs])
(q_e, q_i) = prediction.as_numpy_tuple()
action = explorer.select_action(q_e[0])
(obs, reward, done, info) = env.step(action)
rollout_logger.on_step(action=action, q_e=q_e[0].tolist(), q_i=(q_i[0].tolist() if (q_i is not None) else None), intrinsic_reward=(intrinsic_reward[0] if (intrinsic_reward is not None) else None), obs=obs, reward=reward, info=info, done=done, image_frame=(render() if rollout_config.render else None))<|docstring|>Produce episode data using epsilon-greedy.
Args:
process_index: Index of process.
rollout_config: Configuration of rollout.
config: Configuration of DQN agent.<|endoftext|> |
bafaec14ccb55ea0ee323b4e99848b5b3d254375ab2eb5f35fcd67e3deb1689d | def main(rollout_config: RolloutConfig, config: CNNConfigBase) -> None:
'Kick `rollout` using Multiprocessing'
if (rollout_config.num_process == 1):
rollout(process_index=0, rollout_config=rollout_config, config=config)
else:
import functools
import multiprocessing
with multiprocessing.Pool(processes=rollout_config.num_process) as pool:
[p for p in pool.imap_unordered(functools.partial(rollout, rollout_config=rollout_config, config=config), range(rollout_config.num_process))] | Kick `rollout` using Multiprocessing | bin/rollout_cnn.py | main | DwangoMediaVillage/marltas_core | 9 | python | def main(rollout_config: RolloutConfig, config: CNNConfigBase) -> None:
if (rollout_config.num_process == 1):
rollout(process_index=0, rollout_config=rollout_config, config=config)
else:
import functools
import multiprocessing
with multiprocessing.Pool(processes=rollout_config.num_process) as pool:
[p for p in pool.imap_unordered(functools.partial(rollout, rollout_config=rollout_config, config=config), range(rollout_config.num_process))] | def main(rollout_config: RolloutConfig, config: CNNConfigBase) -> None:
if (rollout_config.num_process == 1):
rollout(process_index=0, rollout_config=rollout_config, config=config)
else:
import functools
import multiprocessing
with multiprocessing.Pool(processes=rollout_config.num_process) as pool:
[p for p in pool.imap_unordered(functools.partial(rollout, rollout_config=rollout_config, config=config), range(rollout_config.num_process))]<|docstring|>Kick `rollout` using Multiprocessing<|endoftext|> |
6810871e14cd94b043a6a034f78303d9db04560ff1449f5b6340fc8e805dfdb9 | def __init__(self, min_freq, max_freq, min_duty=0, max_duty=100):
'Create a PWM provider'
self.__logger = logging.getLogger('hw.pwm.pwm-provider')
self._duty = 0
self._min_duty = min_duty
self._max_duty = max_duty
self._min_freq = min_freq
self._max_freq = max_freq | Create a PWM provider | src/hw/pwm/pwm_provider.py | __init__ | geoff-coppertop/train-turnout-control-python | 0 | python | def __init__(self, min_freq, max_freq, min_duty=0, max_duty=100):
self.__logger = logging.getLogger('hw.pwm.pwm-provider')
self._duty = 0
self._min_duty = min_duty
self._max_duty = max_duty
self._min_freq = min_freq
self._max_freq = max_freq | def __init__(self, min_freq, max_freq, min_duty=0, max_duty=100):
self.__logger = logging.getLogger('hw.pwm.pwm-provider')
self._duty = 0
self._min_duty = min_duty
self._max_duty = max_duty
self._min_freq = min_freq
self._max_freq = max_freq<|docstring|>Create a PWM provider<|endoftext|> |
c846483d7d8ab5f8c3d52ad5512f59392bcc5905ebceba14f026c1b01f6392c0 | def set_duty(self, duty):
'Set the duty cycle of the PWM provider'
self.__logger.info('Duty Cycle: %d', duty)
self._duty = duty | Set the duty cycle of the PWM provider | src/hw/pwm/pwm_provider.py | set_duty | geoff-coppertop/train-turnout-control-python | 0 | python | def set_duty(self, duty):
self.__logger.info('Duty Cycle: %d', duty)
self._duty = duty | def set_duty(self, duty):
self.__logger.info('Duty Cycle: %d', duty)
self._duty = duty<|docstring|>Set the duty cycle of the PWM provider<|endoftext|> |
8fe1ba7a4b538686254e12988c9e034ac7bb2d422778c38483a8e2ac56615acf | def set_freq(self, freq):
'Set the frequency of the PWM provider'
raise NotImplementedError("You're trying to use an abstract method to get frequency.") | Set the frequency of the PWM provider | src/hw/pwm/pwm_provider.py | set_freq | geoff-coppertop/train-turnout-control-python | 0 | python | def set_freq(self, freq):
raise NotImplementedError("You're trying to use an abstract method to get frequency.") | def set_freq(self, freq):
raise NotImplementedError("You're trying to use an abstract method to get frequency.")<|docstring|>Set the frequency of the PWM provider<|endoftext|> |
24db20a14cb56af2be891309ed9130be5af2e9be743352a45a188336bf0e54f2 | def turn_on(self):
'Turn on the PWM provider at the set duty cycle'
raise NotImplementedError("You're trying to use an abstract method to turn the output on.") | Turn on the PWM provider at the set duty cycle | src/hw/pwm/pwm_provider.py | turn_on | geoff-coppertop/train-turnout-control-python | 0 | python | def turn_on(self):
raise NotImplementedError("You're trying to use an abstract method to turn the output on.") | def turn_on(self):
raise NotImplementedError("You're trying to use an abstract method to turn the output on.")<|docstring|>Turn on the PWM provider at the set duty cycle<|endoftext|> |
8f1203d86c6efeb4343c2cd4e833f3f9045b42d7bd7893f55aff8daca24010fc | def turn_off(self):
'Turn off the PWM provider'
raise NotImplementedError("You're trying to use an abstract method to turn the output off.") | Turn off the PWM provider | src/hw/pwm/pwm_provider.py | turn_off | geoff-coppertop/train-turnout-control-python | 0 | python | def turn_off(self):
raise NotImplementedError("You're trying to use an abstract method to turn the output off.") | def turn_off(self):
raise NotImplementedError("You're trying to use an abstract method to turn the output off.")<|docstring|>Turn off the PWM provider<|endoftext|> |
02e5c1ce9ec1e0deb315442ebbc19b718fbcdb1cd3bab734c4bd072c85f7057e | def load_transaction_items(filename, date_column='order_date', order_id_column='order_id', customer_id_column='customer_id', sku_column='sku', quantity_column='quantity', unit_price_column='unit_price'):
"Load a CSV of transactional item data, sets standard column names, and calculates line price.\n\n Args:\n filename (str): Filename and path of CSV file containing transaction items.\n date_column (str, optional): Name of order date column, default is order_date\n order_id_column (str, optional): Name of order ID column, default is order_id\n customer_id_column (str, optional): Name of customer ID column, default is customer_id\n sku_column (str, optional): Name of SKU column, default is sku\n quantity_column (int, optional): Name of quantity column, default is quantity\n unit_price_column (float, optional): Name of unit price column, default is unit_price\n\n Usage:\n transaction_items = rt.load_data('data/input/transaction_items_non_standard_names.csv',\n date_column='InvoiceDate',\n order_id_column='OrderId',\n customer_id_column='CustomerId',\n sku_column='VariantId',\n quantity_column='Qty',\n unit_price_column='Price'\n )\n\n Returns:\n A Pandas dataframe containing the same data with the column names changed to the\n standardised names used throughout RetailTools, if they do not already match, and\n the order_date column correctly set as a datetime column. If the user provides a\n CSV file in which the column names are already set to these values, it it not a\n requirement to provide them.\n\n "
df = pd.read_csv(filename, parse_dates=[date_column])
df = df.rename(columns={date_column: 'order_date', order_id_column: 'order_id', customer_id_column: 'customer_id', sku_column: 'sku', quantity_column: 'quantity', unit_price_column: 'unit_price'})
df['line_price'] = round((df['quantity'] * df['unit_price']), 2)
return df | Load a CSV of transactional item data, sets standard column names, and calculates line price.
Args:
filename (str): Filename and path of CSV file containing transaction items.
date_column (str, optional): Name of order date column, default is order_date
order_id_column (str, optional): Name of order ID column, default is order_id
customer_id_column (str, optional): Name of customer ID column, default is customer_id
sku_column (str, optional): Name of SKU column, default is sku
quantity_column (int, optional): Name of quantity column, default is quantity
unit_price_column (float, optional): Name of unit price column, default is unit_price
Usage:
transaction_items = rt.load_data('data/input/transaction_items_non_standard_names.csv',
date_column='InvoiceDate',
order_id_column='OrderId',
customer_id_column='CustomerId',
sku_column='VariantId',
quantity_column='Qty',
unit_price_column='Price'
)
Returns:
A Pandas dataframe containing the same data with the column names changed to the
standardised names used throughout RetailTools, if they do not already match, and
the order_date column correctly set as a datetime column. If the user provides a
CSV file in which the column names are already set to these values, it it not a
requirement to provide them. | ecommercetools/utilities/tools.py | load_transaction_items | admariner/ecommercetools | 43 | python | def load_transaction_items(filename, date_column='order_date', order_id_column='order_id', customer_id_column='customer_id', sku_column='sku', quantity_column='quantity', unit_price_column='unit_price'):
"Load a CSV of transactional item data, sets standard column names, and calculates line price.\n\n Args:\n filename (str): Filename and path of CSV file containing transaction items.\n date_column (str, optional): Name of order date column, default is order_date\n order_id_column (str, optional): Name of order ID column, default is order_id\n customer_id_column (str, optional): Name of customer ID column, default is customer_id\n sku_column (str, optional): Name of SKU column, default is sku\n quantity_column (int, optional): Name of quantity column, default is quantity\n unit_price_column (float, optional): Name of unit price column, default is unit_price\n\n Usage:\n transaction_items = rt.load_data('data/input/transaction_items_non_standard_names.csv',\n date_column='InvoiceDate',\n order_id_column='OrderId',\n customer_id_column='CustomerId',\n sku_column='VariantId',\n quantity_column='Qty',\n unit_price_column='Price'\n )\n\n Returns:\n A Pandas dataframe containing the same data with the column names changed to the\n standardised names used throughout RetailTools, if they do not already match, and\n the order_date column correctly set as a datetime column. If the user provides a\n CSV file in which the column names are already set to these values, it it not a\n requirement to provide them.\n\n "
df = pd.read_csv(filename, parse_dates=[date_column])
df = df.rename(columns={date_column: 'order_date', order_id_column: 'order_id', customer_id_column: 'customer_id', sku_column: 'sku', quantity_column: 'quantity', unit_price_column: 'unit_price'})
df['line_price'] = round((df['quantity'] * df['unit_price']), 2)
return df | def load_transaction_items(filename, date_column='order_date', order_id_column='order_id', customer_id_column='customer_id', sku_column='sku', quantity_column='quantity', unit_price_column='unit_price'):
"Load a CSV of transactional item data, sets standard column names, and calculates line price.\n\n Args:\n filename (str): Filename and path of CSV file containing transaction items.\n date_column (str, optional): Name of order date column, default is order_date\n order_id_column (str, optional): Name of order ID column, default is order_id\n customer_id_column (str, optional): Name of customer ID column, default is customer_id\n sku_column (str, optional): Name of SKU column, default is sku\n quantity_column (int, optional): Name of quantity column, default is quantity\n unit_price_column (float, optional): Name of unit price column, default is unit_price\n\n Usage:\n transaction_items = rt.load_data('data/input/transaction_items_non_standard_names.csv',\n date_column='InvoiceDate',\n order_id_column='OrderId',\n customer_id_column='CustomerId',\n sku_column='VariantId',\n quantity_column='Qty',\n unit_price_column='Price'\n )\n\n Returns:\n A Pandas dataframe containing the same data with the column names changed to the\n standardised names used throughout RetailTools, if they do not already match, and\n the order_date column correctly set as a datetime column. If the user provides a\n CSV file in which the column names are already set to these values, it it not a\n requirement to provide them.\n\n "
df = pd.read_csv(filename, parse_dates=[date_column])
df = df.rename(columns={date_column: 'order_date', order_id_column: 'order_id', customer_id_column: 'customer_id', sku_column: 'sku', quantity_column: 'quantity', unit_price_column: 'unit_price'})
df['line_price'] = round((df['quantity'] * df['unit_price']), 2)
return df<|docstring|>Load a CSV of transactional item data, sets standard column names, and calculates line price.
Args:
filename (str): Filename and path of CSV file containing transaction items.
date_column (str, optional): Name of order date column, default is order_date
order_id_column (str, optional): Name of order ID column, default is order_id
customer_id_column (str, optional): Name of customer ID column, default is customer_id
sku_column (str, optional): Name of SKU column, default is sku
quantity_column (int, optional): Name of quantity column, default is quantity
unit_price_column (float, optional): Name of unit price column, default is unit_price
Usage:
transaction_items = rt.load_data('data/input/transaction_items_non_standard_names.csv',
date_column='InvoiceDate',
order_id_column='OrderId',
customer_id_column='CustomerId',
sku_column='VariantId',
quantity_column='Qty',
unit_price_column='Price'
)
Returns:
A Pandas dataframe containing the same data with the column names changed to the
standardised names used throughout RetailTools, if they do not already match, and
the order_date column correctly set as a datetime column. If the user provides a
CSV file in which the column names are already set to these values, it it not a
requirement to provide them.<|endoftext|> |
02b94a0def17014b5280450ee95fe81edeb998069282f6d8ae0251e6c84ac0db | def load_sample_data():
'Load the Online Retail dataset of transaction items and format for use within EcommerceTools functions.\n\n :return: Pandas dataframe.\n '
df = pd.read_csv('https://raw.githubusercontent.com/databricks/Spark-The-Definitive-Guide/master/data/retail-data/all/online-retail-dataset.csv', names=['order_id', 'sku', 'description', 'quantity', 'order_date', 'unit_price', 'customer_id', 'country'], skiprows=1, parse_dates=['order_date'])
df['line_price'] = (df['unit_price'] * df['quantity'])
return df | Load the Online Retail dataset of transaction items and format for use within EcommerceTools functions.
:return: Pandas dataframe. | ecommercetools/utilities/tools.py | load_sample_data | admariner/ecommercetools | 43 | python | def load_sample_data():
'Load the Online Retail dataset of transaction items and format for use within EcommerceTools functions.\n\n :return: Pandas dataframe.\n '
df = pd.read_csv('https://raw.githubusercontent.com/databricks/Spark-The-Definitive-Guide/master/data/retail-data/all/online-retail-dataset.csv', names=['order_id', 'sku', 'description', 'quantity', 'order_date', 'unit_price', 'customer_id', 'country'], skiprows=1, parse_dates=['order_date'])
df['line_price'] = (df['unit_price'] * df['quantity'])
return df | def load_sample_data():
'Load the Online Retail dataset of transaction items and format for use within EcommerceTools functions.\n\n :return: Pandas dataframe.\n '
df = pd.read_csv('https://raw.githubusercontent.com/databricks/Spark-The-Definitive-Guide/master/data/retail-data/all/online-retail-dataset.csv', names=['order_id', 'sku', 'description', 'quantity', 'order_date', 'unit_price', 'customer_id', 'country'], skiprows=1, parse_dates=['order_date'])
df['line_price'] = (df['unit_price'] * df['quantity'])
return df<|docstring|>Load the Online Retail dataset of transaction items and format for use within EcommerceTools functions.
:return: Pandas dataframe.<|endoftext|> |
c7124420044b487d9af1df5f274af85b43a7f4f01b102730a3f421cf26ff92ae | def get_cumulative_count(df, group_column, count_column, sort_column):
"Get the cumulative count of a column based on a GroupBy.\n\n Args:\n df (object): Pandas DataFrame.\n group_column (string): Column to group by.\n count_column (string): Column to count.\n sort_column (string): Column to sort by.\n\n Returns:\n Cumulative count of the column.\n\n Usage:\n df['running_total'] = get_cumulative_count(df, 'customer_id', 'order_id', 'date_created')\n "
df = df.sort_values(by=sort_column, ascending=True)
return df.groupby([group_column])[count_column].cumcount() | Get the cumulative count of a column based on a GroupBy.
Args:
df (object): Pandas DataFrame.
group_column (string): Column to group by.
count_column (string): Column to count.
sort_column (string): Column to sort by.
Returns:
Cumulative count of the column.
Usage:
df['running_total'] = get_cumulative_count(df, 'customer_id', 'order_id', 'date_created') | ecommercetools/utilities/tools.py | get_cumulative_count | admariner/ecommercetools | 43 | python | def get_cumulative_count(df, group_column, count_column, sort_column):
"Get the cumulative count of a column based on a GroupBy.\n\n Args:\n df (object): Pandas DataFrame.\n group_column (string): Column to group by.\n count_column (string): Column to count.\n sort_column (string): Column to sort by.\n\n Returns:\n Cumulative count of the column.\n\n Usage:\n df['running_total'] = get_cumulative_count(df, 'customer_id', 'order_id', 'date_created')\n "
df = df.sort_values(by=sort_column, ascending=True)
return df.groupby([group_column])[count_column].cumcount() | def get_cumulative_count(df, group_column, count_column, sort_column):
"Get the cumulative count of a column based on a GroupBy.\n\n Args:\n df (object): Pandas DataFrame.\n group_column (string): Column to group by.\n count_column (string): Column to count.\n sort_column (string): Column to sort by.\n\n Returns:\n Cumulative count of the column.\n\n Usage:\n df['running_total'] = get_cumulative_count(df, 'customer_id', 'order_id', 'date_created')\n "
df = df.sort_values(by=sort_column, ascending=True)
return df.groupby([group_column])[count_column].cumcount()<|docstring|>Get the cumulative count of a column based on a GroupBy.
Args:
df (object): Pandas DataFrame.
group_column (string): Column to group by.
count_column (string): Column to count.
sort_column (string): Column to sort by.
Returns:
Cumulative count of the column.
Usage:
df['running_total'] = get_cumulative_count(df, 'customer_id', 'order_id', 'date_created')<|endoftext|> |
1d8c2ba7b859927a05590afacc9dc56dd5eac7a3a04f9e666da9b6bc9c1614d1 | def get_previous_value(df, group_column, value_column):
'Group by a column and return the previous value of another column and assign value to a new column.\n\n Args:\n df (object): Pandas DataFrame.\n group_column (str): Column name to group by\n value_column (str): Column value to return.\n\n Returns:\n Original DataFrame with new column containing previous value of named column.\n '
df = df.copy()
df = df.sort_values(by=[value_column], ascending=False)
return df.groupby([group_column])[value_column].shift((- 1)) | Group by a column and return the previous value of another column and assign value to a new column.
Args:
df (object): Pandas DataFrame.
group_column (str): Column name to group by
value_column (str): Column value to return.
Returns:
Original DataFrame with new column containing previous value of named column. | ecommercetools/utilities/tools.py | get_previous_value | admariner/ecommercetools | 43 | python | def get_previous_value(df, group_column, value_column):
'Group by a column and return the previous value of another column and assign value to a new column.\n\n Args:\n df (object): Pandas DataFrame.\n group_column (str): Column name to group by\n value_column (str): Column value to return.\n\n Returns:\n Original DataFrame with new column containing previous value of named column.\n '
df = df.copy()
df = df.sort_values(by=[value_column], ascending=False)
return df.groupby([group_column])[value_column].shift((- 1)) | def get_previous_value(df, group_column, value_column):
'Group by a column and return the previous value of another column and assign value to a new column.\n\n Args:\n df (object): Pandas DataFrame.\n group_column (str): Column name to group by\n value_column (str): Column value to return.\n\n Returns:\n Original DataFrame with new column containing previous value of named column.\n '
df = df.copy()
df = df.sort_values(by=[value_column], ascending=False)
return df.groupby([group_column])[value_column].shift((- 1))<|docstring|>Group by a column and return the previous value of another column and assign value to a new column.
Args:
df (object): Pandas DataFrame.
group_column (str): Column name to group by
value_column (str): Column value to return.
Returns:
Original DataFrame with new column containing previous value of named column.<|endoftext|> |
113fd97b90007a471d4ec9ec54d27a84dc5600a5a081bc6cd07267cf5334bf4b | def get_days_since_date(df, before_datetime, after_datetime):
'Return a new column containing the difference between two dates in days.\n\n Args:\n df (object): Pandas DataFrame.\n before_datetime (datetime): Earliest datetime (will convert value)\n after_datetime (datetime): Latest datetime (will convert value)\n\n Returns:\n New column value\n '
df = df.copy()
df[before_datetime] = pd.to_datetime(df[before_datetime])
df[after_datetime] = pd.to_datetime(df[after_datetime])
diff = (df[after_datetime] - df[before_datetime])
return round((diff / np.timedelta64(1, 'D'))).fillna(0).astype(int) | Return a new column containing the difference between two dates in days.
Args:
df (object): Pandas DataFrame.
before_datetime (datetime): Earliest datetime (will convert value)
after_datetime (datetime): Latest datetime (will convert value)
Returns:
New column value | ecommercetools/utilities/tools.py | get_days_since_date | admariner/ecommercetools | 43 | python | def get_days_since_date(df, before_datetime, after_datetime):
'Return a new column containing the difference between two dates in days.\n\n Args:\n df (object): Pandas DataFrame.\n before_datetime (datetime): Earliest datetime (will convert value)\n after_datetime (datetime): Latest datetime (will convert value)\n\n Returns:\n New column value\n '
df = df.copy()
df[before_datetime] = pd.to_datetime(df[before_datetime])
df[after_datetime] = pd.to_datetime(df[after_datetime])
diff = (df[after_datetime] - df[before_datetime])
return round((diff / np.timedelta64(1, 'D'))).fillna(0).astype(int) | def get_days_since_date(df, before_datetime, after_datetime):
'Return a new column containing the difference between two dates in days.\n\n Args:\n df (object): Pandas DataFrame.\n before_datetime (datetime): Earliest datetime (will convert value)\n after_datetime (datetime): Latest datetime (will convert value)\n\n Returns:\n New column value\n '
df = df.copy()
df[before_datetime] = pd.to_datetime(df[before_datetime])
df[after_datetime] = pd.to_datetime(df[after_datetime])
diff = (df[after_datetime] - df[before_datetime])
return round((diff / np.timedelta64(1, 'D'))).fillna(0).astype(int)<|docstring|>Return a new column containing the difference between two dates in days.
Args:
df (object): Pandas DataFrame.
before_datetime (datetime): Earliest datetime (will convert value)
after_datetime (datetime): Latest datetime (will convert value)
Returns:
New column value<|endoftext|> |
15c43953238561822beca353f260b4197503097999e7c6858e8e5c186c78214f | def date_subtract(date, days):
'Given a date, subtract a specified number of days, and return the date.\n\n Args:\n date (datetime): Original date to subtract from.\n days (int): Number of days to subtract from date.\n\n Return:\n subtracted_date (datetime): Original date with days subtracted.\n '
return (pd.to_datetime(date) - timedelta(days=days)) | Given a date, subtract a specified number of days, and return the date.
Args:
date (datetime): Original date to subtract from.
days (int): Number of days to subtract from date.
Return:
subtracted_date (datetime): Original date with days subtracted. | ecommercetools/utilities/tools.py | date_subtract | admariner/ecommercetools | 43 | python | def date_subtract(date, days):
'Given a date, subtract a specified number of days, and return the date.\n\n Args:\n date (datetime): Original date to subtract from.\n days (int): Number of days to subtract from date.\n\n Return:\n subtracted_date (datetime): Original date with days subtracted.\n '
return (pd.to_datetime(date) - timedelta(days=days)) | def date_subtract(date, days):
'Given a date, subtract a specified number of days, and return the date.\n\n Args:\n date (datetime): Original date to subtract from.\n days (int): Number of days to subtract from date.\n\n Return:\n subtracted_date (datetime): Original date with days subtracted.\n '
return (pd.to_datetime(date) - timedelta(days=days))<|docstring|>Given a date, subtract a specified number of days, and return the date.
Args:
date (datetime): Original date to subtract from.
days (int): Number of days to subtract from date.
Return:
subtracted_date (datetime): Original date with days subtracted.<|endoftext|> |
fef76b8a902876b8dca166b49ca0369ab1f884329b81b8bc929776bac8901089 | def select_last_x_days(df, date_column='order_date', days=365):
'Select the last X days from a Pandas dataframe.\n\n Args:\n df (object): Pandas dataframe containing time series data.\n date_column (str, optional): Name of column containing date. Default is order_date.\n days (int, optional): Number of days to subtract from current date. Default is 365.\n\n Returns:\n df (object): Filtered dataframe containing only records from the past X days.\n '
subtracted_date = date_subtract(datetime.today(), days)
df = df[(df[date_column] >= subtracted_date)]
return df | Select the last X days from a Pandas dataframe.
Args:
df (object): Pandas dataframe containing time series data.
date_column (str, optional): Name of column containing date. Default is order_date.
days (int, optional): Number of days to subtract from current date. Default is 365.
Returns:
df (object): Filtered dataframe containing only records from the past X days. | ecommercetools/utilities/tools.py | select_last_x_days | admariner/ecommercetools | 43 | python | def select_last_x_days(df, date_column='order_date', days=365):
'Select the last X days from a Pandas dataframe.\n\n Args:\n df (object): Pandas dataframe containing time series data.\n date_column (str, optional): Name of column containing date. Default is order_date.\n days (int, optional): Number of days to subtract from current date. Default is 365.\n\n Returns:\n df (object): Filtered dataframe containing only records from the past X days.\n '
subtracted_date = date_subtract(datetime.today(), days)
df = df[(df[date_column] >= subtracted_date)]
return df | def select_last_x_days(df, date_column='order_date', days=365):
'Select the last X days from a Pandas dataframe.\n\n Args:\n df (object): Pandas dataframe containing time series data.\n date_column (str, optional): Name of column containing date. Default is order_date.\n days (int, optional): Number of days to subtract from current date. Default is 365.\n\n Returns:\n df (object): Filtered dataframe containing only records from the past X days.\n '
subtracted_date = date_subtract(datetime.today(), days)
df = df[(df[date_column] >= subtracted_date)]
return df<|docstring|>Select the last X days from a Pandas dataframe.
Args:
df (object): Pandas dataframe containing time series data.
date_column (str, optional): Name of column containing date. Default is order_date.
days (int, optional): Number of days to subtract from current date. Default is 365.
Returns:
df (object): Filtered dataframe containing only records from the past X days.<|endoftext|> |
12d9a94a335fc187263591be8a197f3bee15d2b78b84415eb69115793229f039 | async def execute(self, query):
"Execute an EdgeQL command (or commands).\n\n Example:\n\n .. code-block:: pycon\n\n >>> await con.execute('''\n ... CREATE TYPE MyType { CREATE PROPERTY a -> int64 };\n ... FOR x IN {100, 200, 300} UNION INSERT MyType { a := x };\n ... ''')\n "
(await self._protocol.simple_query(query)) | Execute an EdgeQL command (or commands).
Example:
.. code-block:: pycon
>>> await con.execute('''
... CREATE TYPE MyType { CREATE PROPERTY a -> int64 };
... FOR x IN {100, 200, 300} UNION INSERT MyType { a := x };
... ''') | edgedb/asyncio_con.py | execute | sanketsaurav/edgedb-python | 0 | python | async def execute(self, query):
"Execute an EdgeQL command (or commands).\n\n Example:\n\n .. code-block:: pycon\n\n >>> await con.execute('\n ... CREATE TYPE MyType { CREATE PROPERTY a -> int64 };\n ... FOR x IN {100, 200, 300} UNION INSERT MyType { a := x };\n ... ')\n "
(await self._protocol.simple_query(query)) | async def execute(self, query):
"Execute an EdgeQL command (or commands).\n\n Example:\n\n .. code-block:: pycon\n\n >>> await con.execute('\n ... CREATE TYPE MyType { CREATE PROPERTY a -> int64 };\n ... FOR x IN {100, 200, 300} UNION INSERT MyType { a := x };\n ... ')\n "
(await self._protocol.simple_query(query))<|docstring|>Execute an EdgeQL command (or commands).
Example:
.. code-block:: pycon
>>> await con.execute('''
... CREATE TYPE MyType { CREATE PROPERTY a -> int64 };
... FOR x IN {100, 200, 300} UNION INSERT MyType { a := x };
... ''')<|endoftext|> |
e63da4dc729aba2cb62d9f558978250278f6374a551d227203d85f76a2a45285 | def _reward(self, action, goal_speed) -> float:
'\n The reward is defined to foster driving at high speed, on the rightmost lanes, and to avoid collisions.\n :param action: the last action performed\n :return: the corresponding reward\n '
scaled_speed = utils.lmap(self.vehicle.speed, self.config['reward_speed_range'], [0, 1])
action_speed = action[0]
steering = abs(action[1])
speed_difference = utils.lmap(abs((self.vehicle.speed - goal_speed)), [0, 15], [0, 1])
reward = (((((self.config['collision_reward'] * self.vehicle.crashed) + (self.config['high_speed_reward'] * np.clip(scaled_speed, 0, 1))) + (self.config['acceleration reward'] * action_speed)) + (self.config['lane_change_reward'] * steering)) + (self.config['goal_diffrence_reward'] * speed_difference))
reward = utils.lmap(reward, [(((self.config['collision_reward'] - self.config['acceleration reward']) + self.config['lane_change_reward']) + self.config['goal_diffrence_reward']), (self.config['high_speed_reward'] + self.config['acceleration reward'])], [0, 1])
reward = (0 if (not self.vehicle.on_road) else reward)
return reward | The reward is defined to foster driving at high speed, on the rightmost lanes, and to avoid collisions.
:param action: the last action performed
:return: the corresponding reward | highway_env/envs/highway_meta.py | _reward | hoaklee/highway-env | 0 | python | def _reward(self, action, goal_speed) -> float:
'\n The reward is defined to foster driving at high speed, on the rightmost lanes, and to avoid collisions.\n :param action: the last action performed\n :return: the corresponding reward\n '
scaled_speed = utils.lmap(self.vehicle.speed, self.config['reward_speed_range'], [0, 1])
action_speed = action[0]
steering = abs(action[1])
speed_difference = utils.lmap(abs((self.vehicle.speed - goal_speed)), [0, 15], [0, 1])
reward = (((((self.config['collision_reward'] * self.vehicle.crashed) + (self.config['high_speed_reward'] * np.clip(scaled_speed, 0, 1))) + (self.config['acceleration reward'] * action_speed)) + (self.config['lane_change_reward'] * steering)) + (self.config['goal_diffrence_reward'] * speed_difference))
reward = utils.lmap(reward, [(((self.config['collision_reward'] - self.config['acceleration reward']) + self.config['lane_change_reward']) + self.config['goal_diffrence_reward']), (self.config['high_speed_reward'] + self.config['acceleration reward'])], [0, 1])
reward = (0 if (not self.vehicle.on_road) else reward)
return reward | def _reward(self, action, goal_speed) -> float:
'\n The reward is defined to foster driving at high speed, on the rightmost lanes, and to avoid collisions.\n :param action: the last action performed\n :return: the corresponding reward\n '
scaled_speed = utils.lmap(self.vehicle.speed, self.config['reward_speed_range'], [0, 1])
action_speed = action[0]
steering = abs(action[1])
speed_difference = utils.lmap(abs((self.vehicle.speed - goal_speed)), [0, 15], [0, 1])
reward = (((((self.config['collision_reward'] * self.vehicle.crashed) + (self.config['high_speed_reward'] * np.clip(scaled_speed, 0, 1))) + (self.config['acceleration reward'] * action_speed)) + (self.config['lane_change_reward'] * steering)) + (self.config['goal_diffrence_reward'] * speed_difference))
reward = utils.lmap(reward, [(((self.config['collision_reward'] - self.config['acceleration reward']) + self.config['lane_change_reward']) + self.config['goal_diffrence_reward']), (self.config['high_speed_reward'] + self.config['acceleration reward'])], [0, 1])
reward = (0 if (not self.vehicle.on_road) else reward)
return reward<|docstring|>The reward is defined to foster driving at high speed, on the rightmost lanes, and to avoid collisions.
:param action: the last action performed
:return: the corresponding reward<|endoftext|> |
e76e73884d4bde7fb3da48e1cbe1f62fa1baeb272491e4f3e2c57644fc238a20 | def step(self, action):
'\n Perform an action and step the environment dynamics.\n The action is executed by the ego-vehicle, and all other vehicles on the road performs their default behaviour\n for several simulation timesteps until the next decision making step.\n\n :param action: the action performed by the ego-vehicle\n :return: a tuple (observation, reward, terminal, info)\n '
if ((self.road is None) or (self.vehicle is None)):
raise NotImplementedError('The road and vehicle must be initialized in the environment implementation')
self.steps += 1
self._simulate(action)
obs = self.observation_type.observe()
reward = self._reward(action, self._goal)
terminal = self._is_terminal()
info = self._info(obs, action)
return (obs, reward, terminal, info) | Perform an action and step the environment dynamics.
The action is executed by the ego-vehicle, and all other vehicles on the road performs their default behaviour
for several simulation timesteps until the next decision making step.
:param action: the action performed by the ego-vehicle
:return: a tuple (observation, reward, terminal, info) | highway_env/envs/highway_meta.py | step | hoaklee/highway-env | 0 | python | def step(self, action):
'\n Perform an action and step the environment dynamics.\n The action is executed by the ego-vehicle, and all other vehicles on the road performs their default behaviour\n for several simulation timesteps until the next decision making step.\n\n :param action: the action performed by the ego-vehicle\n :return: a tuple (observation, reward, terminal, info)\n '
if ((self.road is None) or (self.vehicle is None)):
raise NotImplementedError('The road and vehicle must be initialized in the environment implementation')
self.steps += 1
self._simulate(action)
obs = self.observation_type.observe()
reward = self._reward(action, self._goal)
terminal = self._is_terminal()
info = self._info(obs, action)
return (obs, reward, terminal, info) | def step(self, action):
'\n Perform an action and step the environment dynamics.\n The action is executed by the ego-vehicle, and all other vehicles on the road performs their default behaviour\n for several simulation timesteps until the next decision making step.\n\n :param action: the action performed by the ego-vehicle\n :return: a tuple (observation, reward, terminal, info)\n '
if ((self.road is None) or (self.vehicle is None)):
raise NotImplementedError('The road and vehicle must be initialized in the environment implementation')
self.steps += 1
self._simulate(action)
obs = self.observation_type.observe()
reward = self._reward(action, self._goal)
terminal = self._is_terminal()
info = self._info(obs, action)
return (obs, reward, terminal, info)<|docstring|>Perform an action and step the environment dynamics.
The action is executed by the ego-vehicle, and all other vehicles on the road performs their default behaviour
for several simulation timesteps until the next decision making step.
:param action: the action performed by the ego-vehicle
:return: a tuple (observation, reward, terminal, info)<|endoftext|> |
d70892e18f098030e4655d1cbca76eb4cd652ae120233aa8805067b7d8ec8f76 | def _info(self, obs, action):
'\n Return a dictionary of additional information\n\n :param obs: current observation\n :param action: current action\n :return: info dict\n '
info = {'speed': self.vehicle.speed, 'crashed': self.vehicle.crashed, 'action': action}
try:
info['cost'] = self._cost(action)
info['goal'] = self._task
except NotImplementedError:
pass
return info | Return a dictionary of additional information
:param obs: current observation
:param action: current action
:return: info dict | highway_env/envs/highway_meta.py | _info | hoaklee/highway-env | 0 | python | def _info(self, obs, action):
'\n Return a dictionary of additional information\n\n :param obs: current observation\n :param action: current action\n :return: info dict\n '
info = {'speed': self.vehicle.speed, 'crashed': self.vehicle.crashed, 'action': action}
try:
info['cost'] = self._cost(action)
info['goal'] = self._task
except NotImplementedError:
pass
return info | def _info(self, obs, action):
'\n Return a dictionary of additional information\n\n :param obs: current observation\n :param action: current action\n :return: info dict\n '
info = {'speed': self.vehicle.speed, 'crashed': self.vehicle.crashed, 'action': action}
try:
info['cost'] = self._cost(action)
info['goal'] = self._task
except NotImplementedError:
pass
return info<|docstring|>Return a dictionary of additional information
:param obs: current observation
:param action: current action
:return: info dict<|endoftext|> |
e84f7ef99b9ed7b0ffac525153a69199360567de5fdf754a191d9f943a452701 | def __init__(self, x, y):
'Stores x and y'
self.x = x
self.y = y | Stores x and y | src/bricks/types/point.py | __init__ | SandroWissmann/Bricks-Py | 0 | python | def __init__(self, x, y):
self.x = x
self.y = y | def __init__(self, x, y):
self.x = x
self.y = y<|docstring|>Stores x and y<|endoftext|> |
17072ba21ce036071af0dc3df59d39fcf8e8c7a0ce0d391e7357d731005de3f8 | def load_config(self, config):
'Load a configuration.\n\n Uses ``config`` if not None. Otherwise the method will try to load\n the config from a Flask configuration variable (named using the\n ``config_name`` attribute). Last it will use the config provided in\n ``default_config``.\n\n :param config: A service configuration or None.\n '
return (config or load_or_import_from_config(self.config_name, default=self.default_config)) | Load a configuration.
Uses ``config`` if not None. Otherwise the method will try to load
the config from a Flask configuration variable (named using the
``config_name`` attribute). Last it will use the config provided in
``default_config``.
:param config: A service configuration or None. | invenio_records_resources/config.py | load_config | diegodelemos/invenio-records-resources | 0 | python | def load_config(self, config):
'Load a configuration.\n\n Uses ``config`` if not None. Otherwise the method will try to load\n the config from a Flask configuration variable (named using the\n ``config_name`` attribute). Last it will use the config provided in\n ``default_config``.\n\n :param config: A service configuration or None.\n '
return (config or load_or_import_from_config(self.config_name, default=self.default_config)) | def load_config(self, config):
'Load a configuration.\n\n Uses ``config`` if not None. Otherwise the method will try to load\n the config from a Flask configuration variable (named using the\n ``config_name`` attribute). Last it will use the config provided in\n ``default_config``.\n\n :param config: A service configuration or None.\n '
return (config or load_or_import_from_config(self.config_name, default=self.default_config))<|docstring|>Load a configuration.
Uses ``config`` if not None. Otherwise the method will try to load
the config from a Flask configuration variable (named using the
``config_name`` attribute). Last it will use the config provided in
``default_config``.
:param config: A service configuration or None.<|endoftext|> |
3f3d7f4a59b4afc08658cda46c28c7f4f2a2277815c9b361e19b097ac0da7886 | def f1_score(y_true, y_score, threshold='auto'):
"Plot the F1 score.\n\n Parameters\n ----------\n y_true : numpy.ndarray\n The target vector.\n y_score : numpy.ndarray\n The score vector.\n threshold : 'auto' or float\n Increasing thresholds on the decision function used to compute precision and recall.\n\n Returns\n -------\n score : float\n "
msg = 'mode must be "auto" or 0 to 1.'
assert ((threshold == 'auto') or (0 <= threshold < 1)), msg
if (threshold == 'auto'):
(fpr, tpr, thresholds) = metrics.roc_curve(y_true, y_score)
gmeans = np.sqrt((tpr * (1 - fpr)))
threshold = thresholds[np.argmax(gmeans)]
score = metrics.f1_score(y_true, (y_score > threshold))
return score | Plot the F1 score.
Parameters
----------
y_true : numpy.ndarray
The target vector.
y_score : numpy.ndarray
The score vector.
threshold : 'auto' or float
Increasing thresholds on the decision function used to compute precision and recall.
Returns
-------
score : float | pycalf/metrics.py | f1_score | konumaru/pycalf | 2 | python | def f1_score(y_true, y_score, threshold='auto'):
"Plot the F1 score.\n\n Parameters\n ----------\n y_true : numpy.ndarray\n The target vector.\n y_score : numpy.ndarray\n The score vector.\n threshold : 'auto' or float\n Increasing thresholds on the decision function used to compute precision and recall.\n\n Returns\n -------\n score : float\n "
msg = 'mode must be "auto" or 0 to 1.'
assert ((threshold == 'auto') or (0 <= threshold < 1)), msg
if (threshold == 'auto'):
(fpr, tpr, thresholds) = metrics.roc_curve(y_true, y_score)
gmeans = np.sqrt((tpr * (1 - fpr)))
threshold = thresholds[np.argmax(gmeans)]
score = metrics.f1_score(y_true, (y_score > threshold))
return score | def f1_score(y_true, y_score, threshold='auto'):
"Plot the F1 score.\n\n Parameters\n ----------\n y_true : numpy.ndarray\n The target vector.\n y_score : numpy.ndarray\n The score vector.\n threshold : 'auto' or float\n Increasing thresholds on the decision function used to compute precision and recall.\n\n Returns\n -------\n score : float\n "
msg = 'mode must be "auto" or 0 to 1.'
assert ((threshold == 'auto') or (0 <= threshold < 1)), msg
if (threshold == 'auto'):
(fpr, tpr, thresholds) = metrics.roc_curve(y_true, y_score)
gmeans = np.sqrt((tpr * (1 - fpr)))
threshold = thresholds[np.argmax(gmeans)]
score = metrics.f1_score(y_true, (y_score > threshold))
return score<|docstring|>Plot the F1 score.
Parameters
----------
y_true : numpy.ndarray
The target vector.
y_score : numpy.ndarray
The score vector.
threshold : 'auto' or float
Increasing thresholds on the decision function used to compute precision and recall.
Returns
-------
score : float<|endoftext|> |
d026273b26aa79734fcdd355dcf26fa98966f99dddaf7191d6ec0730b59205dc | def fit(self, X: pd.DataFrame, treatment: np.ndarray, weight: np.ndarray=None):
'Fit the model with X.\n\n Parameters\n ----------\n X : pd.DataFrame\n Covariates for propensity score.\n treatment : pd.Series\n Flags with or without intervention.\n weight : np.array\n The weight of each sample.\n\n Returns\n -------\n None\n '
if (weight is None):
weight = np.ones(X.shape[0])
treat_avg = np.average(X[treatment], weights=weight[treatment], axis=0)
treat_var = np.average(np.square((X[treatment] - treat_avg)), weights=weight[treatment], axis=0)
control_avg = np.average(X[(~ treatment)], weights=weight[(~ treatment)], axis=0)
control_var = np.average(np.square((X[(~ treatment)] - control_avg)), weights=weight[(~ treatment)], axis=0)
data_size = X.shape[0]
treat_size = np.sum(treatment)
control_size = np.sum((~ treatment))
sc = np.sqrt((((treat_size * treat_var) + (control_size * control_var)) / data_size))
d_value = (np.abs((treat_avg - control_avg)) / sc)
self.effect_size = np.array(d_value)
self.effect_name = X.columns.to_numpy() | Fit the model with X.
Parameters
----------
X : pd.DataFrame
Covariates for propensity score.
treatment : pd.Series
Flags with or without intervention.
weight : np.array
The weight of each sample.
Returns
-------
None | pycalf/metrics.py | fit | konumaru/pycalf | 2 | python | def fit(self, X: pd.DataFrame, treatment: np.ndarray, weight: np.ndarray=None):
'Fit the model with X.\n\n Parameters\n ----------\n X : pd.DataFrame\n Covariates for propensity score.\n treatment : pd.Series\n Flags with or without intervention.\n weight : np.array\n The weight of each sample.\n\n Returns\n -------\n None\n '
if (weight is None):
weight = np.ones(X.shape[0])
treat_avg = np.average(X[treatment], weights=weight[treatment], axis=0)
treat_var = np.average(np.square((X[treatment] - treat_avg)), weights=weight[treatment], axis=0)
control_avg = np.average(X[(~ treatment)], weights=weight[(~ treatment)], axis=0)
control_var = np.average(np.square((X[(~ treatment)] - control_avg)), weights=weight[(~ treatment)], axis=0)
data_size = X.shape[0]
treat_size = np.sum(treatment)
control_size = np.sum((~ treatment))
sc = np.sqrt((((treat_size * treat_var) + (control_size * control_var)) / data_size))
d_value = (np.abs((treat_avg - control_avg)) / sc)
self.effect_size = np.array(d_value)
self.effect_name = X.columns.to_numpy() | def fit(self, X: pd.DataFrame, treatment: np.ndarray, weight: np.ndarray=None):
'Fit the model with X.\n\n Parameters\n ----------\n X : pd.DataFrame\n Covariates for propensity score.\n treatment : pd.Series\n Flags with or without intervention.\n weight : np.array\n The weight of each sample.\n\n Returns\n -------\n None\n '
if (weight is None):
weight = np.ones(X.shape[0])
treat_avg = np.average(X[treatment], weights=weight[treatment], axis=0)
treat_var = np.average(np.square((X[treatment] - treat_avg)), weights=weight[treatment], axis=0)
control_avg = np.average(X[(~ treatment)], weights=weight[(~ treatment)], axis=0)
control_var = np.average(np.square((X[(~ treatment)] - control_avg)), weights=weight[(~ treatment)], axis=0)
data_size = X.shape[0]
treat_size = np.sum(treatment)
control_size = np.sum((~ treatment))
sc = np.sqrt((((treat_size * treat_var) + (control_size * control_var)) / data_size))
d_value = (np.abs((treat_avg - control_avg)) / sc)
self.effect_size = np.array(d_value)
self.effect_name = X.columns.to_numpy()<|docstring|>Fit the model with X.
Parameters
----------
X : pd.DataFrame
Covariates for propensity score.
treatment : pd.Series
Flags with or without intervention.
weight : np.array
The weight of each sample.
Returns
-------
None<|endoftext|> |
f2d8629ebe205d69eedb1109fe529e62300998557cc2b2a7580ff2d3fb5e8c80 | def transform(self):
'Apply the calculating the effect size d.\n\n Returns\n -------\n (effect_name, effect_size) : tuple\n '
return (self.effect_name, self.effect_size) | Apply the calculating the effect size d.
Returns
-------
(effect_name, effect_size) : tuple | pycalf/metrics.py | transform | konumaru/pycalf | 2 | python | def transform(self):
'Apply the calculating the effect size d.\n\n Returns\n -------\n (effect_name, effect_size) : tuple\n '
return (self.effect_name, self.effect_size) | def transform(self):
'Apply the calculating the effect size d.\n\n Returns\n -------\n (effect_name, effect_size) : tuple\n '
return (self.effect_name, self.effect_size)<|docstring|>Apply the calculating the effect size d.
Returns
-------
(effect_name, effect_size) : tuple<|endoftext|> |
c3617d0a7c6f71a75bd07b8d41a1b7a359e7486151589286c38c2da14bd4da75 | def fit_transform(self, X: pd.DataFrame, treatment: np.ndarray, weight: np.ndarray=None):
'Fit the model with X and apply the dimensionality reduction on X.\n\n Parameters\n ----------\n X : pd.DataFrame\n Covariates for propensity score.\n treatment : pd.Series\n Flags with or without intervention.\n weight : np.array\n The weight of each sample.\n\n Returns\n -------\n pd.DataFrame\n '
self.fit(X, treatment, weight)
return self.transform() | Fit the model with X and apply the dimensionality reduction on X.
Parameters
----------
X : pd.DataFrame
Covariates for propensity score.
treatment : pd.Series
Flags with or without intervention.
weight : np.array
The weight of each sample.
Returns
-------
pd.DataFrame | pycalf/metrics.py | fit_transform | konumaru/pycalf | 2 | python | def fit_transform(self, X: pd.DataFrame, treatment: np.ndarray, weight: np.ndarray=None):
'Fit the model with X and apply the dimensionality reduction on X.\n\n Parameters\n ----------\n X : pd.DataFrame\n Covariates for propensity score.\n treatment : pd.Series\n Flags with or without intervention.\n weight : np.array\n The weight of each sample.\n\n Returns\n -------\n pd.DataFrame\n '
self.fit(X, treatment, weight)
return self.transform() | def fit_transform(self, X: pd.DataFrame, treatment: np.ndarray, weight: np.ndarray=None):
'Fit the model with X and apply the dimensionality reduction on X.\n\n Parameters\n ----------\n X : pd.DataFrame\n Covariates for propensity score.\n treatment : pd.Series\n Flags with or without intervention.\n weight : np.array\n The weight of each sample.\n\n Returns\n -------\n pd.DataFrame\n '
self.fit(X, treatment, weight)
return self.transform()<|docstring|>Fit the model with X and apply the dimensionality reduction on X.
Parameters
----------
X : pd.DataFrame
Covariates for propensity score.
treatment : pd.Series
Flags with or without intervention.
weight : np.array
The weight of each sample.
Returns
-------
pd.DataFrame<|endoftext|> |
4836ea76f0647d33e43c8c8b6a104f181227ba236ed773968b213b304b204561 | def fit(self, X: pd.DataFrame, treatment: pd.Series, y: pd.Series, weight: np.array=None):
'Fit the model with X, y and weight.\n\n Parameters\n ----------\n X : pd.DataFrame\n Covariates for propensity score.\n treatment : pd.Series\n Flags with or without intervention.\n y : pd.Series\n Outcome variables.\n weight : np.array\n The weight of each sample.\n\n Returns\n -------\n None\n '
is_treat = (treatment == 1)
self.treat_result = sm.WLS(y[is_treat], X[is_treat], weights=weight[is_treat]).fit()
self.control_result = sm.WLS(y[(~ is_treat)], X[(~ is_treat)], weights=weight[(~ is_treat)]).fit() | Fit the model with X, y and weight.
Parameters
----------
X : pd.DataFrame
Covariates for propensity score.
treatment : pd.Series
Flags with or without intervention.
y : pd.Series
Outcome variables.
weight : np.array
The weight of each sample.
Returns
-------
None | pycalf/metrics.py | fit | konumaru/pycalf | 2 | python | def fit(self, X: pd.DataFrame, treatment: pd.Series, y: pd.Series, weight: np.array=None):
'Fit the model with X, y and weight.\n\n Parameters\n ----------\n X : pd.DataFrame\n Covariates for propensity score.\n treatment : pd.Series\n Flags with or without intervention.\n y : pd.Series\n Outcome variables.\n weight : np.array\n The weight of each sample.\n\n Returns\n -------\n None\n '
is_treat = (treatment == 1)
self.treat_result = sm.WLS(y[is_treat], X[is_treat], weights=weight[is_treat]).fit()
self.control_result = sm.WLS(y[(~ is_treat)], X[(~ is_treat)], weights=weight[(~ is_treat)]).fit() | def fit(self, X: pd.DataFrame, treatment: pd.Series, y: pd.Series, weight: np.array=None):
'Fit the model with X, y and weight.\n\n Parameters\n ----------\n X : pd.DataFrame\n Covariates for propensity score.\n treatment : pd.Series\n Flags with or without intervention.\n y : pd.Series\n Outcome variables.\n weight : np.array\n The weight of each sample.\n\n Returns\n -------\n None\n '
is_treat = (treatment == 1)
self.treat_result = sm.WLS(y[is_treat], X[is_treat], weights=weight[is_treat]).fit()
self.control_result = sm.WLS(y[(~ is_treat)], X[(~ is_treat)], weights=weight[(~ is_treat)]).fit()<|docstring|>Fit the model with X, y and weight.
Parameters
----------
X : pd.DataFrame
Covariates for propensity score.
treatment : pd.Series
Flags with or without intervention.
y : pd.Series
Outcome variables.
weight : np.array
The weight of each sample.
Returns
-------
None<|endoftext|> |
7e2cf7a96bfb4b45ccb8e1bc09aae401d10fe3f59d2ffdb2b22ddf22aaab9e4b | def transform(self):
'Apply the estimating the effect of the intervention by attribute.\n\n Parameters\n ----------\n None\n\n Returns\n -------\n pd.DataFrame\n '
result = pd.DataFrame()
models = [self.control_result, self.treat_result]
for (i, model) in enumerate(models):
result[f'Z{i}_effect'] = model.params.round(1)
result[f'Z{i}_tvalue'] = model.tvalues.round(2).apply((lambda x: ((str(x) + '**') if (abs(x) >= 1.96) else str(x))))
result['Lift'] = (result['Z1_effect'] - result['Z0_effect'])
result_df = result.sort_values(by='Lift')
self.effect = result_df
return result_df | Apply the estimating the effect of the intervention by attribute.
Parameters
----------
None
Returns
-------
pd.DataFrame | pycalf/metrics.py | transform | konumaru/pycalf | 2 | python | def transform(self):
'Apply the estimating the effect of the intervention by attribute.\n\n Parameters\n ----------\n None\n\n Returns\n -------\n pd.DataFrame\n '
result = pd.DataFrame()
models = [self.control_result, self.treat_result]
for (i, model) in enumerate(models):
result[f'Z{i}_effect'] = model.params.round(1)
result[f'Z{i}_tvalue'] = model.tvalues.round(2).apply((lambda x: ((str(x) + '**') if (abs(x) >= 1.96) else str(x))))
result['Lift'] = (result['Z1_effect'] - result['Z0_effect'])
result_df = result.sort_values(by='Lift')
self.effect = result_df
return result_df | def transform(self):
'Apply the estimating the effect of the intervention by attribute.\n\n Parameters\n ----------\n None\n\n Returns\n -------\n pd.DataFrame\n '
result = pd.DataFrame()
models = [self.control_result, self.treat_result]
for (i, model) in enumerate(models):
result[f'Z{i}_effect'] = model.params.round(1)
result[f'Z{i}_tvalue'] = model.tvalues.round(2).apply((lambda x: ((str(x) + '**') if (abs(x) >= 1.96) else str(x))))
result['Lift'] = (result['Z1_effect'] - result['Z0_effect'])
result_df = result.sort_values(by='Lift')
self.effect = result_df
return result_df<|docstring|>Apply the estimating the effect of the intervention by attribute.
Parameters
----------
None
Returns
-------
pd.DataFrame<|endoftext|> |
b1f707ce01c02dcb78b648fe7c0f8433192d4923e21e309ea0b1046028292abc | def plot_lift_values(self, figsize: tuple=(12, 6)):
'Plot the effect.\n\n Parameters\n ----------\n figsize : tuple\n Figure dimension ``(width, height)`` in inches.\n\n Returns\n -------\n '
plt.figure(figsize=figsize)
plt.title('Treatment Lift Values')
plt.bar(self.effect.index, self.effect['Lift'].values)
plt.ylabel('Lift Value')
plt.xticks(rotation=90)
plt.tight_layout()
plt.show() | Plot the effect.
Parameters
----------
figsize : tuple
Figure dimension ``(width, height)`` in inches.
Returns
------- | pycalf/metrics.py | plot_lift_values | konumaru/pycalf | 2 | python | def plot_lift_values(self, figsize: tuple=(12, 6)):
'Plot the effect.\n\n Parameters\n ----------\n figsize : tuple\n Figure dimension ``(width, height)`` in inches.\n\n Returns\n -------\n '
plt.figure(figsize=figsize)
plt.title('Treatment Lift Values')
plt.bar(self.effect.index, self.effect['Lift'].values)
plt.ylabel('Lift Value')
plt.xticks(rotation=90)
plt.tight_layout()
plt.show() | def plot_lift_values(self, figsize: tuple=(12, 6)):
'Plot the effect.\n\n Parameters\n ----------\n figsize : tuple\n Figure dimension ``(width, height)`` in inches.\n\n Returns\n -------\n '
plt.figure(figsize=figsize)
plt.title('Treatment Lift Values')
plt.bar(self.effect.index, self.effect['Lift'].values)
plt.ylabel('Lift Value')
plt.xticks(rotation=90)
plt.tight_layout()
plt.show()<|docstring|>Plot the effect.
Parameters
----------
figsize : tuple
Figure dimension ``(width, height)`` in inches.
Returns
-------<|endoftext|> |
f1ad6c0ecf1aefabb79a837a8009c2b7cf9fdb9abe099206475454a70a4fb3e5 | def fit(self, data: pd.DataFrame):
'Fit the model with data.\n\n Parameters\n ----------\n data : pd.DataFrame\n\n Returns\n -------\n None\n '
vif = pd.DataFrame(index=data.columns.tolist(), columns=['VIF'], dtype='float64')
for feature in data.columns.tolist():
X = data.drop([feature], axis=1)
y = data[feature]
model = linear_model.OLS(endog=y, exog=X)
r2 = model.fit().rsquared
vif.loc[(feature, 'VIF')] = np.round((1 / (1 - r2)), 2)
self.result = vif | Fit the model with data.
Parameters
----------
data : pd.DataFrame
Returns
-------
None | pycalf/metrics.py | fit | konumaru/pycalf | 2 | python | def fit(self, data: pd.DataFrame):
'Fit the model with data.\n\n Parameters\n ----------\n data : pd.DataFrame\n\n Returns\n -------\n None\n '
vif = pd.DataFrame(index=data.columns.tolist(), columns=['VIF'], dtype='float64')
for feature in data.columns.tolist():
X = data.drop([feature], axis=1)
y = data[feature]
model = linear_model.OLS(endog=y, exog=X)
r2 = model.fit().rsquared
vif.loc[(feature, 'VIF')] = np.round((1 / (1 - r2)), 2)
self.result = vif | def fit(self, data: pd.DataFrame):
'Fit the model with data.\n\n Parameters\n ----------\n data : pd.DataFrame\n\n Returns\n -------\n None\n '
vif = pd.DataFrame(index=data.columns.tolist(), columns=['VIF'], dtype='float64')
for feature in data.columns.tolist():
X = data.drop([feature], axis=1)
y = data[feature]
model = linear_model.OLS(endog=y, exog=X)
r2 = model.fit().rsquared
vif.loc[(feature, 'VIF')] = np.round((1 / (1 - r2)), 2)
self.result = vif<|docstring|>Fit the model with data.
Parameters
----------
data : pd.DataFrame
Returns
-------
None<|endoftext|> |
d8a739d091f4d101b1443660efe10bcd8f1184f875161ce687f3bd0fea5e0c50 | def transform(self):
'Apply the calculating vif.\n\n Returns\n -------\n result : pd.DataFrame\n '
return self.result | Apply the calculating vif.
Returns
-------
result : pd.DataFrame | pycalf/metrics.py | transform | konumaru/pycalf | 2 | python | def transform(self):
'Apply the calculating vif.\n\n Returns\n -------\n result : pd.DataFrame\n '
return self.result | def transform(self):
'Apply the calculating vif.\n\n Returns\n -------\n result : pd.DataFrame\n '
return self.result<|docstring|>Apply the calculating vif.
Returns
-------
result : pd.DataFrame<|endoftext|> |
d350c2134930a61bd93e34b8ae5762f8bf8fb491ab09ed557f0b5c9a62a67acd | def fit_transform(self, data: pd.DataFrame, **kwargs):
'Fit the model with data and apply the calculating vif.\n\n Parameters\n ----------\n data : pd.DataFrame\n\n Returns\n -------\n result : pd.DataFrame\n '
self.fit(data, **kwargs)
return self.transform() | Fit the model with data and apply the calculating vif.
Parameters
----------
data : pd.DataFrame
Returns
-------
result : pd.DataFrame | pycalf/metrics.py | fit_transform | konumaru/pycalf | 2 | python | def fit_transform(self, data: pd.DataFrame, **kwargs):
'Fit the model with data and apply the calculating vif.\n\n Parameters\n ----------\n data : pd.DataFrame\n\n Returns\n -------\n result : pd.DataFrame\n '
self.fit(data, **kwargs)
return self.transform() | def fit_transform(self, data: pd.DataFrame, **kwargs):
'Fit the model with data and apply the calculating vif.\n\n Parameters\n ----------\n data : pd.DataFrame\n\n Returns\n -------\n result : pd.DataFrame\n '
self.fit(data, **kwargs)
return self.transform()<|docstring|>Fit the model with data and apply the calculating vif.
Parameters
----------
data : pd.DataFrame
Returns
-------
result : pd.DataFrame<|endoftext|> |
c0b46c559ca4286ec9a40c6c678329e8b4e5eaad0887415d2d35e1d7535ea49f | def string_escape(text: str) -> str:
'Escape values special to javascript in strings.\n\n With this we should be able to use something like:\n elem.evaluateJavaScript("this.value=\'{}\'".format(string_escape(...)))\n And all values should work.\n '
replacements = (('\\', '\\\\'), ("'", "\\'"), ('"', '\\"'), ('\n', '\\n'), ('\r', '\\r'), ('\x00', '\\x00'), ('\ufeff', '\\ufeff'), ('\u2028', '\\u2028'), ('\u2029', '\\u2029'))
for (orig, repl) in replacements:
text = text.replace(orig, repl)
return text | Escape values special to javascript in strings.
With this we should be able to use something like:
elem.evaluateJavaScript("this.value='{}'".format(string_escape(...)))
And all values should work. | Lib/site-packages/qutebrowser/utils/javascript.py | string_escape | fochoao/cpython | 0 | python | def string_escape(text: str) -> str:
'Escape values special to javascript in strings.\n\n With this we should be able to use something like:\n elem.evaluateJavaScript("this.value=\'{}\'".format(string_escape(...)))\n And all values should work.\n '
replacements = (('\\', '\\\\'), ("'", "\\'"), ('"', '\\"'), ('\n', '\\n'), ('\r', '\\r'), ('\x00', '\\x00'), ('\ufeff', '\\ufeff'), ('\u2028', '\\u2028'), ('\u2029', '\\u2029'))
for (orig, repl) in replacements:
text = text.replace(orig, repl)
return text | def string_escape(text: str) -> str:
'Escape values special to javascript in strings.\n\n With this we should be able to use something like:\n elem.evaluateJavaScript("this.value=\'{}\'".format(string_escape(...)))\n And all values should work.\n '
replacements = (('\\', '\\\\'), ("'", "\\'"), ('"', '\\"'), ('\n', '\\n'), ('\r', '\\r'), ('\x00', '\\x00'), ('\ufeff', '\\ufeff'), ('\u2028', '\\u2028'), ('\u2029', '\\u2029'))
for (orig, repl) in replacements:
text = text.replace(orig, repl)
return text<|docstring|>Escape values special to javascript in strings.
With this we should be able to use something like:
elem.evaluateJavaScript("this.value='{}'".format(string_escape(...)))
And all values should work.<|endoftext|> |
37f91f7e437b3aaead529dd95de62e754d08d54b9de4b45bcd3b5d77a1f9e4ea | def to_js(arg: _JsArgType) -> str:
"Convert the given argument so it's the equivalent in JS."
if (arg is None):
return 'undefined'
elif isinstance(arg, str):
return '"{}"'.format(string_escape(arg))
elif isinstance(arg, bool):
return str(arg).lower()
elif isinstance(arg, (int, float)):
return str(arg)
elif isinstance(arg, list):
return '[{}]'.format(', '.join((to_js(e) for e in arg)))
else:
raise TypeError("Don't know how to handle {!r} of type {}!".format(arg, type(arg).__name__)) | Convert the given argument so it's the equivalent in JS. | Lib/site-packages/qutebrowser/utils/javascript.py | to_js | fochoao/cpython | 0 | python | def to_js(arg: _JsArgType) -> str:
if (arg is None):
return 'undefined'
elif isinstance(arg, str):
return '"{}"'.format(string_escape(arg))
elif isinstance(arg, bool):
return str(arg).lower()
elif isinstance(arg, (int, float)):
return str(arg)
elif isinstance(arg, list):
return '[{}]'.format(', '.join((to_js(e) for e in arg)))
else:
raise TypeError("Don't know how to handle {!r} of type {}!".format(arg, type(arg).__name__)) | def to_js(arg: _JsArgType) -> str:
if (arg is None):
return 'undefined'
elif isinstance(arg, str):
return '"{}"'.format(string_escape(arg))
elif isinstance(arg, bool):
return str(arg).lower()
elif isinstance(arg, (int, float)):
return str(arg)
elif isinstance(arg, list):
return '[{}]'.format(', '.join((to_js(e) for e in arg)))
else:
raise TypeError("Don't know how to handle {!r} of type {}!".format(arg, type(arg).__name__))<|docstring|>Convert the given argument so it's the equivalent in JS.<|endoftext|> |
229657e1eb38579a16b801b7891c0c43cb7eb7a4ebb706d07e16899e63dada41 | def assemble(module: str, function: str, *args: _JsArgType) -> str:
'Assemble a javascript file and a function call.'
js_args = ', '.join((to_js(arg) for arg in args))
if (module == 'window'):
parts = ['window', function]
else:
parts = ['window', '_qutebrowser', module, function]
code = '"use strict";\n{}({});'.format('.'.join(parts), js_args)
return code | Assemble a javascript file and a function call. | Lib/site-packages/qutebrowser/utils/javascript.py | assemble | fochoao/cpython | 0 | python | def assemble(module: str, function: str, *args: _JsArgType) -> str:
js_args = ', '.join((to_js(arg) for arg in args))
if (module == 'window'):
parts = ['window', function]
else:
parts = ['window', '_qutebrowser', module, function]
code = '"use strict";\n{}({});'.format('.'.join(parts), js_args)
return code | def assemble(module: str, function: str, *args: _JsArgType) -> str:
js_args = ', '.join((to_js(arg) for arg in args))
if (module == 'window'):
parts = ['window', function]
else:
parts = ['window', '_qutebrowser', module, function]
code = '"use strict";\n{}({});'.format('.'.join(parts), js_args)
return code<|docstring|>Assemble a javascript file and a function call.<|endoftext|> |
1643b90311dc417f0c1d809898ad3acaf08aee0471592bf247f1a3c92402d4eb | def wrap_global(name: str, *sources: str) -> str:
'Wrap a script using window._qutebrowser.'
from qutebrowser.utils import jinja
template = jinja.js_environment.get_template('global_wrapper.js')
return template.render(code='\n'.join(sources), name=name) | Wrap a script using window._qutebrowser. | Lib/site-packages/qutebrowser/utils/javascript.py | wrap_global | fochoao/cpython | 0 | python | def wrap_global(name: str, *sources: str) -> str:
from qutebrowser.utils import jinja
template = jinja.js_environment.get_template('global_wrapper.js')
return template.render(code='\n'.join(sources), name=name) | def wrap_global(name: str, *sources: str) -> str:
from qutebrowser.utils import jinja
template = jinja.js_environment.get_template('global_wrapper.js')
return template.render(code='\n'.join(sources), name=name)<|docstring|>Wrap a script using window._qutebrowser.<|endoftext|> |
9f00d1d12e4932d2c6e7c3cb9d16147f3b01a5dc513552ed8ca14903ea434b95 | def getLevelName(lvl):
'\n Get (numerical) python logging level for (string) spec-defined log level name.\n '
lvl = _ocrdLevel2pythonLevel.get(lvl, lvl)
return logging.getLevelName(lvl) | Get (numerical) python logging level for (string) spec-defined log level name. | ocrd/logging.py | getLevelName | saw-leipzig/pyocrd | 0 | python | def getLevelName(lvl):
'\n \n '
lvl = _ocrdLevel2pythonLevel.get(lvl, lvl)
return logging.getLevelName(lvl) | def getLevelName(lvl):
'\n \n '
lvl = _ocrdLevel2pythonLevel.get(lvl, lvl)
return logging.getLevelName(lvl)<|docstring|>Get (numerical) python logging level for (string) spec-defined log level name.<|endoftext|> |
9f9d7aea4fd925998e57668af56bbe8b836a6d1e6fbe443f19fbd5cc456499df | def setOverrideLogLevel(lvl):
'\n Override all logger filter levels to include lvl and above.\n\n\n - Set root logger level\n - iterates all existing loggers and sets their log level to ``NOTSET``.\n\n Args:\n lvl (string): Log level name.\n '
if (lvl is None):
return
logging.info('Overriding log level globally to %s', lvl)
lvl = getLevelName(lvl)
_overrideLogLevel = lvl
logging.getLogger('').setLevel(lvl)
for loggerName in logging.Logger.manager.loggerDict:
logger = logging.Logger.manager.loggerDict[loggerName]
if isinstance(logger, logging.PlaceHolder):
continue
logger.setLevel(logging.NOTSET) | Override all logger filter levels to include lvl and above.
- Set root logger level
- iterates all existing loggers and sets their log level to ``NOTSET``.
Args:
lvl (string): Log level name. | ocrd/logging.py | setOverrideLogLevel | saw-leipzig/pyocrd | 0 | python | def setOverrideLogLevel(lvl):
'\n Override all logger filter levels to include lvl and above.\n\n\n - Set root logger level\n - iterates all existing loggers and sets their log level to ``NOTSET``.\n\n Args:\n lvl (string): Log level name.\n '
if (lvl is None):
return
logging.info('Overriding log level globally to %s', lvl)
lvl = getLevelName(lvl)
_overrideLogLevel = lvl
logging.getLogger().setLevel(lvl)
for loggerName in logging.Logger.manager.loggerDict:
logger = logging.Logger.manager.loggerDict[loggerName]
if isinstance(logger, logging.PlaceHolder):
continue
logger.setLevel(logging.NOTSET) | def setOverrideLogLevel(lvl):
'\n Override all logger filter levels to include lvl and above.\n\n\n - Set root logger level\n - iterates all existing loggers and sets their log level to ``NOTSET``.\n\n Args:\n lvl (string): Log level name.\n '
if (lvl is None):
return
logging.info('Overriding log level globally to %s', lvl)
lvl = getLevelName(lvl)
_overrideLogLevel = lvl
logging.getLogger().setLevel(lvl)
for loggerName in logging.Logger.manager.loggerDict:
logger = logging.Logger.manager.loggerDict[loggerName]
if isinstance(logger, logging.PlaceHolder):
continue
logger.setLevel(logging.NOTSET)<|docstring|>Override all logger filter levels to include lvl and above.
- Set root logger level
- iterates all existing loggers and sets their log level to ``NOTSET``.
Args:
lvl (string): Log level name.<|endoftext|> |
342507eb4bb0d9b7d0a4f9265afac4c54bfd946ecb26fecffe815ba1b64b1dbf | def initLogging():
'\n Sets logging defaults\n '
logging.basicConfig(level=logging.INFO, format='%(asctime)s.%(msecs)03d %(levelname)s %(name)s - %(message)s', datefmt='%H:%M:%S')
logging.getLogger('').setLevel(logging.INFO)
logging.getLogger('PIL').setLevel(logging.INFO)
CONFIG_PATHS = [os.path.curdir, os.path.join(os.path.expanduser('~')), '/etc']
for p in CONFIG_PATHS:
config_file = os.path.join(p, 'ocrd_logging.py')
if os.path.exists(config_file):
logging.info("Loading logging configuration from '%s'", config_file)
with open(config_file) as f:
code = compile(f.read(), config_file, 'exec')
exec(code, globals(), locals()) | Sets logging defaults | ocrd/logging.py | initLogging | saw-leipzig/pyocrd | 0 | python | def initLogging():
'\n \n '
logging.basicConfig(level=logging.INFO, format='%(asctime)s.%(msecs)03d %(levelname)s %(name)s - %(message)s', datefmt='%H:%M:%S')
logging.getLogger().setLevel(logging.INFO)
logging.getLogger('PIL').setLevel(logging.INFO)
CONFIG_PATHS = [os.path.curdir, os.path.join(os.path.expanduser('~')), '/etc']
for p in CONFIG_PATHS:
config_file = os.path.join(p, 'ocrd_logging.py')
if os.path.exists(config_file):
logging.info("Loading logging configuration from '%s'", config_file)
with open(config_file) as f:
code = compile(f.read(), config_file, 'exec')
exec(code, globals(), locals()) | def initLogging():
'\n \n '
logging.basicConfig(level=logging.INFO, format='%(asctime)s.%(msecs)03d %(levelname)s %(name)s - %(message)s', datefmt='%H:%M:%S')
logging.getLogger().setLevel(logging.INFO)
logging.getLogger('PIL').setLevel(logging.INFO)
CONFIG_PATHS = [os.path.curdir, os.path.join(os.path.expanduser('~')), '/etc']
for p in CONFIG_PATHS:
config_file = os.path.join(p, 'ocrd_logging.py')
if os.path.exists(config_file):
logging.info("Loading logging configuration from '%s'", config_file)
with open(config_file) as f:
code = compile(f.read(), config_file, 'exec')
exec(code, globals(), locals())<|docstring|>Sets logging defaults<|endoftext|> |
a846ef7b29a7e3c7b51532096b8d7587ba88670ebcbd1c8528ad9560fdc09344 | def fit_estimator(config: ModelConfig, dataset: DatasetConfig, num_learning_rate_decays: int=3, num_model_checkpoints: int=5, validate: bool=False, verbose: bool=True) -> FitResult:
'\n Fits the given estimator using the provided training dataset.\n\n Args:\n config: The configuration of the estimator to be fitted.\n dataset: The configuration of the dataset to be used for fitting.\n num_learning_rate_decays: The number of times the learning rate should be decayed.\n validate: Whether to use a validation dataset.\n choose_best: Whether the best model according to the validation loss within Hyperband\n intervals should be used.\n verbose: Whether to create multiple predictors and log associated information.\n\n Returns:\n The result from fitting, contains most notably the list of predictors fitted during\n training. Contains a single entry if the model is not trainable or `verbose` is set to\n false.\n '
count_callback = ParameterCountCallback()
callbacks: List[Callback] = [count_callback]
milestones = []
if isinstance(config, TrainConfig):
training_time = (config.training_fraction * dataset.max_training_time)
else:
training_time = 0
with tempfile.TemporaryDirectory() as tmp_dir:
saver_callback: ModelSaverCallback
if isinstance(config, TrainConfig):
hyperband_milestones = [(training_time * ((1 / 3) ** i)) for i in reversed(range(num_model_checkpoints))]
for i in range((len(hyperband_milestones) // 2)):
milestones += [hyperband_milestones[i]]
pivot = hyperband_milestones[(len(hyperband_milestones) // 2)]
milestones += np.arange(pivot, (training_time + (pivot / 2)), pivot).tolist()
saver_callback = ModelSaverCallback(Path(tmp_dir), milestones)
callbacks += [saver_callback]
if (num_learning_rate_decays > 0):
learning_rate_callback = LearningRateScheduleCallback(milestones=[((training_time / (num_learning_rate_decays + 1)) * i) for i in range(1, (num_learning_rate_decays + 1))])
callbacks += [learning_rate_callback]
meta = dataset.meta
estimator = config.create_estimator(freq=meta.freq, prediction_length=cast(int, meta.prediction_length), time_features=dataset.has_time_features, training_time=training_time, validation_milestones=(milestones if validate else []), callbacks=callbacks)
train_kwargs = {}
if (isinstance(config, TrainConfig) and validate):
train_kwargs['validation_data'] = dataset.data.val().gluonts()
train_data = dataset.data.train(validate).gluonts()
predictor = estimator.train(train_data, **train_kwargs)
if (not isinstance(config, TrainConfig)):
if verbose:
log_metric('num_model_parameters', 0)
log_metric('num_gradient_updates', 0)
log_metric('training_time', 0)
return FitResult(config, [predictor], [0.0], 0)
predictors = []
model_paths = []
with tempfile.TemporaryDirectory() as model_dir:
for (i, params) in enumerate(saver_callback.saved_parameters):
saver_callback.network.load_parameters(params.absolute().as_posix())
predictor = cast(TrainConfig, config).create_predictor(estimator, cast(nn.HybridBlock, saver_callback.network))
path = (Path(model_dir) / f'model_{i}')
path.mkdir()
predictor.serialize(path)
model_paths.append(path)
copied_predictor = Predictor.deserialize(model_paths[i])
predictors.append(copied_predictor)
log_metric('num_model_parameters', count_callback.num_parameters)
log_metric('num_gradient_updates', saver_callback.num_gradient_updates[i])
log_metric('training_time', saver_callback.training_times[i])
return FitResult(config, predictors, saver_callback.training_times, count_callback.num_parameters) | Fits the given estimator using the provided training dataset.
Args:
config: The configuration of the estimator to be fitted.
dataset: The configuration of the dataset to be used for fitting.
num_learning_rate_decays: The number of times the learning rate should be decayed.
validate: Whether to use a validation dataset.
choose_best: Whether the best model according to the validation loss within Hyperband
intervals should be used.
verbose: Whether to create multiple predictors and log associated information.
Returns:
The result from fitting, contains most notably the list of predictors fitted during
training. Contains a single entry if the model is not trainable or `verbose` is set to
false. | src/gluonts/nursery/tsbench/src/tsbench/evaluations/training/fit.py | fit_estimator | RingoIngo/gluon-ts | 1 | python | def fit_estimator(config: ModelConfig, dataset: DatasetConfig, num_learning_rate_decays: int=3, num_model_checkpoints: int=5, validate: bool=False, verbose: bool=True) -> FitResult:
'\n Fits the given estimator using the provided training dataset.\n\n Args:\n config: The configuration of the estimator to be fitted.\n dataset: The configuration of the dataset to be used for fitting.\n num_learning_rate_decays: The number of times the learning rate should be decayed.\n validate: Whether to use a validation dataset.\n choose_best: Whether the best model according to the validation loss within Hyperband\n intervals should be used.\n verbose: Whether to create multiple predictors and log associated information.\n\n Returns:\n The result from fitting, contains most notably the list of predictors fitted during\n training. Contains a single entry if the model is not trainable or `verbose` is set to\n false.\n '
count_callback = ParameterCountCallback()
callbacks: List[Callback] = [count_callback]
milestones = []
if isinstance(config, TrainConfig):
training_time = (config.training_fraction * dataset.max_training_time)
else:
training_time = 0
with tempfile.TemporaryDirectory() as tmp_dir:
saver_callback: ModelSaverCallback
if isinstance(config, TrainConfig):
hyperband_milestones = [(training_time * ((1 / 3) ** i)) for i in reversed(range(num_model_checkpoints))]
for i in range((len(hyperband_milestones) // 2)):
milestones += [hyperband_milestones[i]]
pivot = hyperband_milestones[(len(hyperband_milestones) // 2)]
milestones += np.arange(pivot, (training_time + (pivot / 2)), pivot).tolist()
saver_callback = ModelSaverCallback(Path(tmp_dir), milestones)
callbacks += [saver_callback]
if (num_learning_rate_decays > 0):
learning_rate_callback = LearningRateScheduleCallback(milestones=[((training_time / (num_learning_rate_decays + 1)) * i) for i in range(1, (num_learning_rate_decays + 1))])
callbacks += [learning_rate_callback]
meta = dataset.meta
estimator = config.create_estimator(freq=meta.freq, prediction_length=cast(int, meta.prediction_length), time_features=dataset.has_time_features, training_time=training_time, validation_milestones=(milestones if validate else []), callbacks=callbacks)
train_kwargs = {}
if (isinstance(config, TrainConfig) and validate):
train_kwargs['validation_data'] = dataset.data.val().gluonts()
train_data = dataset.data.train(validate).gluonts()
predictor = estimator.train(train_data, **train_kwargs)
if (not isinstance(config, TrainConfig)):
if verbose:
log_metric('num_model_parameters', 0)
log_metric('num_gradient_updates', 0)
log_metric('training_time', 0)
return FitResult(config, [predictor], [0.0], 0)
predictors = []
model_paths = []
with tempfile.TemporaryDirectory() as model_dir:
for (i, params) in enumerate(saver_callback.saved_parameters):
saver_callback.network.load_parameters(params.absolute().as_posix())
predictor = cast(TrainConfig, config).create_predictor(estimator, cast(nn.HybridBlock, saver_callback.network))
path = (Path(model_dir) / f'model_{i}')
path.mkdir()
predictor.serialize(path)
model_paths.append(path)
copied_predictor = Predictor.deserialize(model_paths[i])
predictors.append(copied_predictor)
log_metric('num_model_parameters', count_callback.num_parameters)
log_metric('num_gradient_updates', saver_callback.num_gradient_updates[i])
log_metric('training_time', saver_callback.training_times[i])
return FitResult(config, predictors, saver_callback.training_times, count_callback.num_parameters) | def fit_estimator(config: ModelConfig, dataset: DatasetConfig, num_learning_rate_decays: int=3, num_model_checkpoints: int=5, validate: bool=False, verbose: bool=True) -> FitResult:
'\n Fits the given estimator using the provided training dataset.\n\n Args:\n config: The configuration of the estimator to be fitted.\n dataset: The configuration of the dataset to be used for fitting.\n num_learning_rate_decays: The number of times the learning rate should be decayed.\n validate: Whether to use a validation dataset.\n choose_best: Whether the best model according to the validation loss within Hyperband\n intervals should be used.\n verbose: Whether to create multiple predictors and log associated information.\n\n Returns:\n The result from fitting, contains most notably the list of predictors fitted during\n training. Contains a single entry if the model is not trainable or `verbose` is set to\n false.\n '
count_callback = ParameterCountCallback()
callbacks: List[Callback] = [count_callback]
milestones = []
if isinstance(config, TrainConfig):
training_time = (config.training_fraction * dataset.max_training_time)
else:
training_time = 0
with tempfile.TemporaryDirectory() as tmp_dir:
saver_callback: ModelSaverCallback
if isinstance(config, TrainConfig):
hyperband_milestones = [(training_time * ((1 / 3) ** i)) for i in reversed(range(num_model_checkpoints))]
for i in range((len(hyperband_milestones) // 2)):
milestones += [hyperband_milestones[i]]
pivot = hyperband_milestones[(len(hyperband_milestones) // 2)]
milestones += np.arange(pivot, (training_time + (pivot / 2)), pivot).tolist()
saver_callback = ModelSaverCallback(Path(tmp_dir), milestones)
callbacks += [saver_callback]
if (num_learning_rate_decays > 0):
learning_rate_callback = LearningRateScheduleCallback(milestones=[((training_time / (num_learning_rate_decays + 1)) * i) for i in range(1, (num_learning_rate_decays + 1))])
callbacks += [learning_rate_callback]
meta = dataset.meta
estimator = config.create_estimator(freq=meta.freq, prediction_length=cast(int, meta.prediction_length), time_features=dataset.has_time_features, training_time=training_time, validation_milestones=(milestones if validate else []), callbacks=callbacks)
train_kwargs = {}
if (isinstance(config, TrainConfig) and validate):
train_kwargs['validation_data'] = dataset.data.val().gluonts()
train_data = dataset.data.train(validate).gluonts()
predictor = estimator.train(train_data, **train_kwargs)
if (not isinstance(config, TrainConfig)):
if verbose:
log_metric('num_model_parameters', 0)
log_metric('num_gradient_updates', 0)
log_metric('training_time', 0)
return FitResult(config, [predictor], [0.0], 0)
predictors = []
model_paths = []
with tempfile.TemporaryDirectory() as model_dir:
for (i, params) in enumerate(saver_callback.saved_parameters):
saver_callback.network.load_parameters(params.absolute().as_posix())
predictor = cast(TrainConfig, config).create_predictor(estimator, cast(nn.HybridBlock, saver_callback.network))
path = (Path(model_dir) / f'model_{i}')
path.mkdir()
predictor.serialize(path)
model_paths.append(path)
copied_predictor = Predictor.deserialize(model_paths[i])
predictors.append(copied_predictor)
log_metric('num_model_parameters', count_callback.num_parameters)
log_metric('num_gradient_updates', saver_callback.num_gradient_updates[i])
log_metric('training_time', saver_callback.training_times[i])
return FitResult(config, predictors, saver_callback.training_times, count_callback.num_parameters)<|docstring|>Fits the given estimator using the provided training dataset.
Args:
config: The configuration of the estimator to be fitted.
dataset: The configuration of the dataset to be used for fitting.
num_learning_rate_decays: The number of times the learning rate should be decayed.
validate: Whether to use a validation dataset.
choose_best: Whether the best model according to the validation loss within Hyperband
intervals should be used.
verbose: Whether to create multiple predictors and log associated information.
Returns:
The result from fitting, contains most notably the list of predictors fitted during
training. Contains a single entry if the model is not trainable or `verbose` is set to
false.<|endoftext|> |
c2397e31af57555a2797b72d14705e5300776e25ce56d1af40b27d3eeeeb5646 | def odir_limiter(self, odir, max_odirs=(- 1)):
'Function to backup previously run output directory to maintain a\n history of a limited number of output directories. It deletes the output\n directory with the oldest timestamps, if the limit is reached. It returns\n a list of directories that remain after deletion.\n Arguments:\n odir: The output directory to backup\n max_odirs: Maximum output directories to maintain as history.\n\n Returns:\n dirs: Space-separated list of directories that remain after deletion.\n '
try:
if os.path.exists(odir):
ts = run_cmd(((((("date '+" + self.sim_cfg.ts_format) + '\' -d "') + "$(stat -c '%y' ") + odir) + ')"'))
os.system(((((('mv ' + odir) + ' ') + odir) + '_') + ts))
except IOError:
log.error('Failed to back up existing output directory %s', odir)
dirs = ''
try:
pdir = os.path.realpath((odir + '/..'))
if (pdir == '/'):
log.fatal('Something went wrong while processing "%s": odir = "%s"', self.name, odir)
sys.exit(1)
if os.path.exists(pdir):
find_cmd = (('find ' + pdir) + ' -mindepth 1 -maxdepth 1 -type d ')
dirs = run_cmd(find_cmd)
dirs = dirs.replace('\n', ' ')
list_dirs = dirs.split()
num_dirs = len(list_dirs)
if (max_odirs == (- 1)):
max_odirs = self.max_odirs
num_rm_dirs = (num_dirs - max_odirs)
if (num_rm_dirs > (- 1)):
rm_dirs = run_cmd((((find_cmd + "-printf '%T+ %p\n' | sort | head -n ") + str((num_rm_dirs + 1))) + " | awk '{print $2}'"))
rm_dirs = rm_dirs.replace('\n', ' ')
dirs = dirs.replace(rm_dirs, '')
os.system(('/bin/rm -rf ' + rm_dirs))
except IOError:
log.error('Failed to delete old run directories!')
return dirs | Function to backup previously run output directory to maintain a
history of a limited number of output directories. It deletes the output
directory with the oldest timestamps, if the limit is reached. It returns
a list of directories that remain after deletion.
Arguments:
odir: The output directory to backup
max_odirs: Maximum output directories to maintain as history.
Returns:
dirs: Space-separated list of directories that remain after deletion. | vendor/lowrisc_ip/dvsim/Deploy.py | odir_limiter | jacekmw8/ibex | 1 | python | def odir_limiter(self, odir, max_odirs=(- 1)):
'Function to backup previously run output directory to maintain a\n history of a limited number of output directories. It deletes the output\n directory with the oldest timestamps, if the limit is reached. It returns\n a list of directories that remain after deletion.\n Arguments:\n odir: The output directory to backup\n max_odirs: Maximum output directories to maintain as history.\n\n Returns:\n dirs: Space-separated list of directories that remain after deletion.\n '
try:
if os.path.exists(odir):
ts = run_cmd(((((("date '+" + self.sim_cfg.ts_format) + '\' -d "') + "$(stat -c '%y' ") + odir) + ')"'))
os.system(((((('mv ' + odir) + ' ') + odir) + '_') + ts))
except IOError:
log.error('Failed to back up existing output directory %s', odir)
dirs =
try:
pdir = os.path.realpath((odir + '/..'))
if (pdir == '/'):
log.fatal('Something went wrong while processing "%s": odir = "%s"', self.name, odir)
sys.exit(1)
if os.path.exists(pdir):
find_cmd = (('find ' + pdir) + ' -mindepth 1 -maxdepth 1 -type d ')
dirs = run_cmd(find_cmd)
dirs = dirs.replace('\n', ' ')
list_dirs = dirs.split()
num_dirs = len(list_dirs)
if (max_odirs == (- 1)):
max_odirs = self.max_odirs
num_rm_dirs = (num_dirs - max_odirs)
if (num_rm_dirs > (- 1)):
rm_dirs = run_cmd((((find_cmd + "-printf '%T+ %p\n' | sort | head -n ") + str((num_rm_dirs + 1))) + " | awk '{print $2}'"))
rm_dirs = rm_dirs.replace('\n', ' ')
dirs = dirs.replace(rm_dirs, )
os.system(('/bin/rm -rf ' + rm_dirs))
except IOError:
log.error('Failed to delete old run directories!')
return dirs | def odir_limiter(self, odir, max_odirs=(- 1)):
'Function to backup previously run output directory to maintain a\n history of a limited number of output directories. It deletes the output\n directory with the oldest timestamps, if the limit is reached. It returns\n a list of directories that remain after deletion.\n Arguments:\n odir: The output directory to backup\n max_odirs: Maximum output directories to maintain as history.\n\n Returns:\n dirs: Space-separated list of directories that remain after deletion.\n '
try:
if os.path.exists(odir):
ts = run_cmd(((((("date '+" + self.sim_cfg.ts_format) + '\' -d "') + "$(stat -c '%y' ") + odir) + ')"'))
os.system(((((('mv ' + odir) + ' ') + odir) + '_') + ts))
except IOError:
log.error('Failed to back up existing output directory %s', odir)
dirs =
try:
pdir = os.path.realpath((odir + '/..'))
if (pdir == '/'):
log.fatal('Something went wrong while processing "%s": odir = "%s"', self.name, odir)
sys.exit(1)
if os.path.exists(pdir):
find_cmd = (('find ' + pdir) + ' -mindepth 1 -maxdepth 1 -type d ')
dirs = run_cmd(find_cmd)
dirs = dirs.replace('\n', ' ')
list_dirs = dirs.split()
num_dirs = len(list_dirs)
if (max_odirs == (- 1)):
max_odirs = self.max_odirs
num_rm_dirs = (num_dirs - max_odirs)
if (num_rm_dirs > (- 1)):
rm_dirs = run_cmd((((find_cmd + "-printf '%T+ %p\n' | sort | head -n ") + str((num_rm_dirs + 1))) + " | awk '{print $2}'"))
rm_dirs = rm_dirs.replace('\n', ' ')
dirs = dirs.replace(rm_dirs, )
os.system(('/bin/rm -rf ' + rm_dirs))
except IOError:
log.error('Failed to delete old run directories!')
return dirs<|docstring|>Function to backup previously run output directory to maintain a
history of a limited number of output directories. It deletes the output
directory with the oldest timestamps, if the limit is reached. It returns
a list of directories that remain after deletion.
Arguments:
odir: The output directory to backup
max_odirs: Maximum output directories to maintain as history.
Returns:
dirs: Space-separated list of directories that remain after deletion.<|endoftext|> |
6556def277490b918dbc6f2b6a834071261df5ca18dbf5a9287e5242c6705c2b | def get_status(self):
'Override base class get_status implementation for additional post-status\n actions.'
super().get_status()
if (self.status not in ['D', 'P']):
if os.path.exists(self.cov_db_test_dir):
log.log(VERBOSE, 'Deleting coverage data of failing test:\n%s', self.cov_db_test_dir)
os.system(('/bin/rm -rf ' + self.cov_db_test_dir)) | Override base class get_status implementation for additional post-status
actions. | vendor/lowrisc_ip/dvsim/Deploy.py | get_status | jacekmw8/ibex | 1 | python | def get_status(self):
'Override base class get_status implementation for additional post-status\n actions.'
super().get_status()
if (self.status not in ['D', 'P']):
if os.path.exists(self.cov_db_test_dir):
log.log(VERBOSE, 'Deleting coverage data of failing test:\n%s', self.cov_db_test_dir)
os.system(('/bin/rm -rf ' + self.cov_db_test_dir)) | def get_status(self):
'Override base class get_status implementation for additional post-status\n actions.'
super().get_status()
if (self.status not in ['D', 'P']):
if os.path.exists(self.cov_db_test_dir):
log.log(VERBOSE, 'Deleting coverage data of failing test:\n%s', self.cov_db_test_dir)
os.system(('/bin/rm -rf ' + self.cov_db_test_dir))<|docstring|>Override base class get_status implementation for additional post-status
actions.<|endoftext|> |
51ecc0279a0b20c880c204d9b0b31570bf2cffd8df9ceb6050c9a91c762e14a1 | def create_parser():
'\n Creates the argparse parser with all the arguments.\n '
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
subparsers = parser.add_subparsers(title='subcommands', dest='cmd')
parser_allocate = subparsers.add_parser('allocate', help='Allocate IP load test')
parser_release = subparsers.add_parser('release', help='Release IP load test')
for cmd in [parser_allocate, parser_release]:
cmd.add_argument('--num', default=2000, help='Number of requests')
cmd.add_argument('--import_path', help='Protobuf dir import path')
parser_allocate.set_defaults(func=parser_allocate)
parser_release.set_defaults(func=parser_release)
return parser | Creates the argparse parser with all the arguments. | lte/gateway/python/load_tests/loadtest_mobilityd.py | create_parser | lucasgonze/magma | 849 | python | def create_parser():
'\n \n '
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
subparsers = parser.add_subparsers(title='subcommands', dest='cmd')
parser_allocate = subparsers.add_parser('allocate', help='Allocate IP load test')
parser_release = subparsers.add_parser('release', help='Release IP load test')
for cmd in [parser_allocate, parser_release]:
cmd.add_argument('--num', default=2000, help='Number of requests')
cmd.add_argument('--import_path', help='Protobuf dir import path')
parser_allocate.set_defaults(func=parser_allocate)
parser_release.set_defaults(func=parser_release)
return parser | def create_parser():
'\n \n '
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
subparsers = parser.add_subparsers(title='subcommands', dest='cmd')
parser_allocate = subparsers.add_parser('allocate', help='Allocate IP load test')
parser_release = subparsers.add_parser('release', help='Release IP load test')
for cmd in [parser_allocate, parser_release]:
cmd.add_argument('--num', default=2000, help='Number of requests')
cmd.add_argument('--import_path', help='Protobuf dir import path')
parser_allocate.set_defaults(func=parser_allocate)
parser_release.set_defaults(func=parser_release)
return parser<|docstring|>Creates the argparse parser with all the arguments.<|endoftext|> |
07ccbcb352b642e3464786542164057fd669f9f9b849a09487ee5c6eb14debf4 | def gauss_hermite(n, mode='numpy'):
'\n Gauss-Hermite quadrature for integrals of the form\n\n int_{-inf}^{+inf} exp(-x^2) f(x) dx.\n '
if (mode == 'numpy'):
(points, weights) = numpy.polynomial.hermite.hermgauss(n)
else:
(_, _, alpha, beta) = orthopy.e1r2.recurrence_coefficients(n, 'monic', symbolic=True)
beta[1:] /= 2
(points, weights) = scheme_from_rc(alpha, beta, mode=mode)
return E1r2Scheme(f'Gauss-Hermite ({n})', weights, points, ((2 * n) - 1)) | Gauss-Hermite quadrature for integrals of the form
int_{-inf}^{+inf} exp(-x^2) f(x) dx. | quadpy/e1r2/_gauss_hermite.py | gauss_hermite | whzup/quadpy | 0 | python | def gauss_hermite(n, mode='numpy'):
'\n Gauss-Hermite quadrature for integrals of the form\n\n int_{-inf}^{+inf} exp(-x^2) f(x) dx.\n '
if (mode == 'numpy'):
(points, weights) = numpy.polynomial.hermite.hermgauss(n)
else:
(_, _, alpha, beta) = orthopy.e1r2.recurrence_coefficients(n, 'monic', symbolic=True)
beta[1:] /= 2
(points, weights) = scheme_from_rc(alpha, beta, mode=mode)
return E1r2Scheme(f'Gauss-Hermite ({n})', weights, points, ((2 * n) - 1)) | def gauss_hermite(n, mode='numpy'):
'\n Gauss-Hermite quadrature for integrals of the form\n\n int_{-inf}^{+inf} exp(-x^2) f(x) dx.\n '
if (mode == 'numpy'):
(points, weights) = numpy.polynomial.hermite.hermgauss(n)
else:
(_, _, alpha, beta) = orthopy.e1r2.recurrence_coefficients(n, 'monic', symbolic=True)
beta[1:] /= 2
(points, weights) = scheme_from_rc(alpha, beta, mode=mode)
return E1r2Scheme(f'Gauss-Hermite ({n})', weights, points, ((2 * n) - 1))<|docstring|>Gauss-Hermite quadrature for integrals of the form
int_{-inf}^{+inf} exp(-x^2) f(x) dx.<|endoftext|> |
86d3cde675a699af9c6ea81821cd05795d1ddfd34579324a7ec61543b710ba11 | def load_data(name):
'Load splitted datasets for one experiment'
train = pd.read_parquet(f'data/processed/X_{name}_train.parquet')
valid = pd.read_parquet(f'data/processed/X_{name}_valid.parquet')
test = pd.read_parquet(f'data/processed/X_{name}_test.parquet')
exp_dict = {'name': name, 'train': train, 'valid': valid, 'test': test}
return exp_dict | Load splitted datasets for one experiment | scripts/07_compare_features.py | load_data | ThorbenJensen/feature-engineering | 15 | python | def load_data(name):
train = pd.read_parquet(f'data/processed/X_{name}_train.parquet')
valid = pd.read_parquet(f'data/processed/X_{name}_valid.parquet')
test = pd.read_parquet(f'data/processed/X_{name}_test.parquet')
exp_dict = {'name': name, 'train': train, 'valid': valid, 'test': test}
return exp_dict | def load_data(name):
train = pd.read_parquet(f'data/processed/X_{name}_train.parquet')
valid = pd.read_parquet(f'data/processed/X_{name}_valid.parquet')
test = pd.read_parquet(f'data/processed/X_{name}_test.parquet')
exp_dict = {'name': name, 'train': train, 'valid': valid, 'test': test}
return exp_dict<|docstring|>Load splitted datasets for one experiment<|endoftext|> |
5cf5c1c5cbec78cc16e992c60a01d45b63268e245e86abe99084a576b6f18076 | def load_target():
'Load target values independently from generated feature sets'
y = {}
for split in ['train', 'valid', 'test']:
y[split] = pd.read_parquet(f'data/processed/Y_target_{split}.parquet').loc[(:, CNF_TARGET_COL)].squeeze().copy()
return y | Load target values independently from generated feature sets | scripts/07_compare_features.py | load_target | ThorbenJensen/feature-engineering | 15 | python | def load_target():
y = {}
for split in ['train', 'valid', 'test']:
y[split] = pd.read_parquet(f'data/processed/Y_target_{split}.parquet').loc[(:, CNF_TARGET_COL)].squeeze().copy()
return y | def load_target():
y = {}
for split in ['train', 'valid', 'test']:
y[split] = pd.read_parquet(f'data/processed/Y_target_{split}.parquet').loc[(:, CNF_TARGET_COL)].squeeze().copy()
return y<|docstring|>Load target values independently from generated feature sets<|endoftext|> |
8686d94da654d87f5f1edded2e4c0c3384fb9f13a9b03f4d39a1ef08184c45e1 | def evaluate_features(experiment_seed_tuple):
'\n Evaluate Feature Matrix for each algorithm by using an independent\n XG-Boost Regressor.\n :param experiment: Dict containing Name, Features(train, vaild, test)\n '
experiment = experiment_seed_tuple[0]
seed = experiment_seed_tuple[1]
X_train = experiment['train']
X_valid = experiment['valid']
X_test = experiment['test']
Y_train = Y_target['train']
Y_valid = Y_target['valid']
Y_test = Y_target['test']
def df_to_dmatrix(features, target):
x = features.drop(columns=['Date'], errors='ignore')
y = target
dmatrix = xgb.DMatrix(x, label=y)
return dmatrix
dm_train = df_to_dmatrix(X_train, Y_train)
dm_valid = df_to_dmatrix(X_valid, Y_valid)
dm_test = df_to_dmatrix(X_test, Y_test)
CMP_XGB_PARAMS['seed'] = seed
evals = [(dm_train, 'train'), (dm_valid, 'valid')]
model_bst = xgb.train(params=CMP_XGB_PARAMS, dtrain=dm_train, evals=evals, num_boost_round=CMP_NUM_BOOST_ROUND, early_stopping_rounds=CMP_EARLY_STOPPING_ROUNDS)
best_ntree_limit = model_bst.best_ntree_limit
evals2 = [(dm_train, 'train'), (dm_test, 'test')]
model_final = xgb.train(params=CMP_XGB_PARAMS, dtrain=dm_train, evals=evals2, num_boost_round=best_ntree_limit)
feature_information_gain = model_final.get_score(importance_type='gain')
feature_importance = pd.DataFrame(list(feature_information_gain.items()), columns=['feature', 'information_gain'])
feature_importance['algorithm'] = experiment['name']
feature_importance['seed'] = seed
feature_importance = feature_importance[FEATURE_IMPORTANCE_COLUMNS]
y_pred = model_final.predict(dm_test)
y_true = dm_test.get_label()
preds = pd.DataFrame()
preds['y_true'] = y_true
preds['y_pred'] = y_pred
preds['algorithm'] = experiment['name']
preds['seed'] = seed
preds = preds[PREDS_COLUMNS]
r2 = r2_score(y_true=y_true, y_pred=y_pred)
mse = mean_squared_error(y_true=y_true, y_pred=y_pred)
rmse = sqrt(mse)
metrics = pd.DataFrame([[experiment['name'], seed, mse, rmse, r2]], columns=EVAL_COLUMNS)
eval_dict = {'name': experiment['name'], 'metrics': metrics, 'preds': preds, 'feature_importance': feature_importance}
return eval_dict | Evaluate Feature Matrix for each algorithm by using an independent
XG-Boost Regressor.
:param experiment: Dict containing Name, Features(train, vaild, test) | scripts/07_compare_features.py | evaluate_features | ThorbenJensen/feature-engineering | 15 | python | def evaluate_features(experiment_seed_tuple):
'\n Evaluate Feature Matrix for each algorithm by using an independent\n XG-Boost Regressor.\n :param experiment: Dict containing Name, Features(train, vaild, test)\n '
experiment = experiment_seed_tuple[0]
seed = experiment_seed_tuple[1]
X_train = experiment['train']
X_valid = experiment['valid']
X_test = experiment['test']
Y_train = Y_target['train']
Y_valid = Y_target['valid']
Y_test = Y_target['test']
def df_to_dmatrix(features, target):
x = features.drop(columns=['Date'], errors='ignore')
y = target
dmatrix = xgb.DMatrix(x, label=y)
return dmatrix
dm_train = df_to_dmatrix(X_train, Y_train)
dm_valid = df_to_dmatrix(X_valid, Y_valid)
dm_test = df_to_dmatrix(X_test, Y_test)
CMP_XGB_PARAMS['seed'] = seed
evals = [(dm_train, 'train'), (dm_valid, 'valid')]
model_bst = xgb.train(params=CMP_XGB_PARAMS, dtrain=dm_train, evals=evals, num_boost_round=CMP_NUM_BOOST_ROUND, early_stopping_rounds=CMP_EARLY_STOPPING_ROUNDS)
best_ntree_limit = model_bst.best_ntree_limit
evals2 = [(dm_train, 'train'), (dm_test, 'test')]
model_final = xgb.train(params=CMP_XGB_PARAMS, dtrain=dm_train, evals=evals2, num_boost_round=best_ntree_limit)
feature_information_gain = model_final.get_score(importance_type='gain')
feature_importance = pd.DataFrame(list(feature_information_gain.items()), columns=['feature', 'information_gain'])
feature_importance['algorithm'] = experiment['name']
feature_importance['seed'] = seed
feature_importance = feature_importance[FEATURE_IMPORTANCE_COLUMNS]
y_pred = model_final.predict(dm_test)
y_true = dm_test.get_label()
preds = pd.DataFrame()
preds['y_true'] = y_true
preds['y_pred'] = y_pred
preds['algorithm'] = experiment['name']
preds['seed'] = seed
preds = preds[PREDS_COLUMNS]
r2 = r2_score(y_true=y_true, y_pred=y_pred)
mse = mean_squared_error(y_true=y_true, y_pred=y_pred)
rmse = sqrt(mse)
metrics = pd.DataFrame([[experiment['name'], seed, mse, rmse, r2]], columns=EVAL_COLUMNS)
eval_dict = {'name': experiment['name'], 'metrics': metrics, 'preds': preds, 'feature_importance': feature_importance}
return eval_dict | def evaluate_features(experiment_seed_tuple):
'\n Evaluate Feature Matrix for each algorithm by using an independent\n XG-Boost Regressor.\n :param experiment: Dict containing Name, Features(train, vaild, test)\n '
experiment = experiment_seed_tuple[0]
seed = experiment_seed_tuple[1]
X_train = experiment['train']
X_valid = experiment['valid']
X_test = experiment['test']
Y_train = Y_target['train']
Y_valid = Y_target['valid']
Y_test = Y_target['test']
def df_to_dmatrix(features, target):
x = features.drop(columns=['Date'], errors='ignore')
y = target
dmatrix = xgb.DMatrix(x, label=y)
return dmatrix
dm_train = df_to_dmatrix(X_train, Y_train)
dm_valid = df_to_dmatrix(X_valid, Y_valid)
dm_test = df_to_dmatrix(X_test, Y_test)
CMP_XGB_PARAMS['seed'] = seed
evals = [(dm_train, 'train'), (dm_valid, 'valid')]
model_bst = xgb.train(params=CMP_XGB_PARAMS, dtrain=dm_train, evals=evals, num_boost_round=CMP_NUM_BOOST_ROUND, early_stopping_rounds=CMP_EARLY_STOPPING_ROUNDS)
best_ntree_limit = model_bst.best_ntree_limit
evals2 = [(dm_train, 'train'), (dm_test, 'test')]
model_final = xgb.train(params=CMP_XGB_PARAMS, dtrain=dm_train, evals=evals2, num_boost_round=best_ntree_limit)
feature_information_gain = model_final.get_score(importance_type='gain')
feature_importance = pd.DataFrame(list(feature_information_gain.items()), columns=['feature', 'information_gain'])
feature_importance['algorithm'] = experiment['name']
feature_importance['seed'] = seed
feature_importance = feature_importance[FEATURE_IMPORTANCE_COLUMNS]
y_pred = model_final.predict(dm_test)
y_true = dm_test.get_label()
preds = pd.DataFrame()
preds['y_true'] = y_true
preds['y_pred'] = y_pred
preds['algorithm'] = experiment['name']
preds['seed'] = seed
preds = preds[PREDS_COLUMNS]
r2 = r2_score(y_true=y_true, y_pred=y_pred)
mse = mean_squared_error(y_true=y_true, y_pred=y_pred)
rmse = sqrt(mse)
metrics = pd.DataFrame([[experiment['name'], seed, mse, rmse, r2]], columns=EVAL_COLUMNS)
eval_dict = {'name': experiment['name'], 'metrics': metrics, 'preds': preds, 'feature_importance': feature_importance}
return eval_dict<|docstring|>Evaluate Feature Matrix for each algorithm by using an independent
XG-Boost Regressor.
:param experiment: Dict containing Name, Features(train, vaild, test)<|endoftext|> |
e4a12773466ed80dfa64a9a4e225efb900a919f851a27e2a5c3c421226a8bb6e | def read_csv_molecules(filename):
'Read molecules from the specified path\n\n Parameters\n ----------\n filename : str\n File from which molecules are to be read\n\n Returns\n -------\n molecules : list of openeye.oechem.OEMol\n The read molecules\n '
from openeye import oechem
mol = oechem.OEMol()
molecules = list()
with oechem.oemolistream(filename) as ifs:
while oechem.OEReadCSVFile(ifs, mol):
molecules.append(oechem.OEMol(mol))
return molecules | Read molecules from the specified path
Parameters
----------
filename : str
File from which molecules are to be read
Returns
-------
molecules : list of openeye.oechem.OEMol
The read molecules | scripts/attic/02-dock-ligands-to-corresponding-receptors-multiprocessing.py | read_csv_molecules | JenkeScheen/covid-moonshot | 60 | python | def read_csv_molecules(filename):
'Read molecules from the specified path\n\n Parameters\n ----------\n filename : str\n File from which molecules are to be read\n\n Returns\n -------\n molecules : list of openeye.oechem.OEMol\n The read molecules\n '
from openeye import oechem
mol = oechem.OEMol()
molecules = list()
with oechem.oemolistream(filename) as ifs:
while oechem.OEReadCSVFile(ifs, mol):
molecules.append(oechem.OEMol(mol))
return molecules | def read_csv_molecules(filename):
'Read molecules from the specified path\n\n Parameters\n ----------\n filename : str\n File from which molecules are to be read\n\n Returns\n -------\n molecules : list of openeye.oechem.OEMol\n The read molecules\n '
from openeye import oechem
mol = oechem.OEMol()
molecules = list()
with oechem.oemolistream(filename) as ifs:
while oechem.OEReadCSVFile(ifs, mol):
molecules.append(oechem.OEMol(mol))
return molecules<|docstring|>Read molecules from the specified path
Parameters
----------
filename : str
File from which molecules are to be read
Returns
-------
molecules : list of openeye.oechem.OEMol
The read molecules<|endoftext|> |
5f426f0c85e7b9c00c8f8cec64aa4e820ffb55ed3f3eef9cea069d3af9ded435 | def dock_molecule(molecule, default_receptor='x0387'):
"\n Dock the specified molecules, writing out to specified file\n\n Parameters\n ----------\n molecule : OEMol\n The molecule to dock\n default_receptor : str, optional, default='0387'\n The default receptor to dock to\n\n Returns\n -------\n all_docked_molecules : list of OEMol\n All docked molecules\n "
import os
import oechem
molecule = oechem.OEMol(molecule)
fragments = list()
fragments = oechem.OEGetSDData(molecule, 'fragments').split(',')
fragments = [fragment for fragment in fragments if os.path.exists(f'../receptors/Mpro-{fragment}-receptor.oeb.gz')]
if (len(fragments) == 0):
fragments = [default_receptor]
all_docked_molecules = list()
for fragment in fragments:
molecule_to_dock = oechem.OEMol(molecule)
import os
receptor_filename = os.path.join(f'../receptors/Mpro-{fragment}-receptor.oeb.gz')
oechem.OESetSDData(molecule_to_dock, 'fragments', fragment)
from openeye import oequacpac
protomer = oechem.OEMol()
protomers = [oechem.OEMol(protomer) for protomer in oequacpac.OEGetReasonableProtomers(molecule_to_dock)]
docked_molecules = dock_molecules_to_receptor(receptor_filename, protomers)
all_docked_molecules += docked_molecules
return all_docked_molecules | Dock the specified molecules, writing out to specified file
Parameters
----------
molecule : OEMol
The molecule to dock
default_receptor : str, optional, default='0387'
The default receptor to dock to
Returns
-------
all_docked_molecules : list of OEMol
All docked molecules | scripts/attic/02-dock-ligands-to-corresponding-receptors-multiprocessing.py | dock_molecule | JenkeScheen/covid-moonshot | 60 | python | def dock_molecule(molecule, default_receptor='x0387'):
"\n Dock the specified molecules, writing out to specified file\n\n Parameters\n ----------\n molecule : OEMol\n The molecule to dock\n default_receptor : str, optional, default='0387'\n The default receptor to dock to\n\n Returns\n -------\n all_docked_molecules : list of OEMol\n All docked molecules\n "
import os
import oechem
molecule = oechem.OEMol(molecule)
fragments = list()
fragments = oechem.OEGetSDData(molecule, 'fragments').split(',')
fragments = [fragment for fragment in fragments if os.path.exists(f'../receptors/Mpro-{fragment}-receptor.oeb.gz')]
if (len(fragments) == 0):
fragments = [default_receptor]
all_docked_molecules = list()
for fragment in fragments:
molecule_to_dock = oechem.OEMol(molecule)
import os
receptor_filename = os.path.join(f'../receptors/Mpro-{fragment}-receptor.oeb.gz')
oechem.OESetSDData(molecule_to_dock, 'fragments', fragment)
from openeye import oequacpac
protomer = oechem.OEMol()
protomers = [oechem.OEMol(protomer) for protomer in oequacpac.OEGetReasonableProtomers(molecule_to_dock)]
docked_molecules = dock_molecules_to_receptor(receptor_filename, protomers)
all_docked_molecules += docked_molecules
return all_docked_molecules | def dock_molecule(molecule, default_receptor='x0387'):
"\n Dock the specified molecules, writing out to specified file\n\n Parameters\n ----------\n molecule : OEMol\n The molecule to dock\n default_receptor : str, optional, default='0387'\n The default receptor to dock to\n\n Returns\n -------\n all_docked_molecules : list of OEMol\n All docked molecules\n "
import os
import oechem
molecule = oechem.OEMol(molecule)
fragments = list()
fragments = oechem.OEGetSDData(molecule, 'fragments').split(',')
fragments = [fragment for fragment in fragments if os.path.exists(f'../receptors/Mpro-{fragment}-receptor.oeb.gz')]
if (len(fragments) == 0):
fragments = [default_receptor]
all_docked_molecules = list()
for fragment in fragments:
molecule_to_dock = oechem.OEMol(molecule)
import os
receptor_filename = os.path.join(f'../receptors/Mpro-{fragment}-receptor.oeb.gz')
oechem.OESetSDData(molecule_to_dock, 'fragments', fragment)
from openeye import oequacpac
protomer = oechem.OEMol()
protomers = [oechem.OEMol(protomer) for protomer in oequacpac.OEGetReasonableProtomers(molecule_to_dock)]
docked_molecules = dock_molecules_to_receptor(receptor_filename, protomers)
all_docked_molecules += docked_molecules
return all_docked_molecules<|docstring|>Dock the specified molecules, writing out to specified file
Parameters
----------
molecule : OEMol
The molecule to dock
default_receptor : str, optional, default='0387'
The default receptor to dock to
Returns
-------
all_docked_molecules : list of OEMol
All docked molecules<|endoftext|> |
65c2429ac185cf7074e64ab9abf019144893b38376f0d15ad62e1ff133947cdd | def dock_molecules_to_receptor(receptor_filename, molecules):
'\n Dock the specified molecules, writing out to specified file\n\n Parameters\n ----------\n receptor_filename : str\n Receptor .oeb.gz filename\n molecules : list of openeye.oechem.OEMol\n The read molecules to dock\n\n Returns\n -------\n docked_molecules : list of OEMol\n All docked molecules\n\n '
from openeye import oechem, oedocking
receptor = oechem.OEGraphMol()
if (not oedocking.OEReadReceptorFile(receptor, receptor_filename)):
oechem.OEThrow.Fatal('Unable to read receptor')
if (not oedocking.OEReceptorHasBoundLigand(receptor)):
raise Exception('Receptor does not have bound ligand')
dockMethod = oedocking.OEDockMethod_Hybrid2
dockResolution = oedocking.OESearchResolution_High
dock = oedocking.OEDock(dockMethod, dockResolution)
success = dock.Initialize(receptor)
from openeye import oeomega
omegaOpts = oeomega.OEOmegaOptions()
omega = oeomega.OEOmega(omegaOpts)
omega.SetStrictStereo(False)
docked_molecules = list()
for mol in molecules:
dockedMol = oechem.OEGraphMol()
omega.Build(mol)
retCode = dock.DockMultiConformerMolecule(dockedMol, mol)
if (retCode != oedocking.OEDockingReturnCode_Success):
print(('Docking Failed with error code ' + oedocking.OEDockingReturnCodeGetName(retCode)))
continue
sdtag = oedocking.OEDockMethodGetName(dockMethod)
oedocking.OESetSDScore(dockedMol, dock, sdtag)
dock.AnnotatePose(dockedMol)
docked_molecules.append(oechem.OEMol(dockedMol))
return docked_molecules | Dock the specified molecules, writing out to specified file
Parameters
----------
receptor_filename : str
Receptor .oeb.gz filename
molecules : list of openeye.oechem.OEMol
The read molecules to dock
Returns
-------
docked_molecules : list of OEMol
All docked molecules | scripts/attic/02-dock-ligands-to-corresponding-receptors-multiprocessing.py | dock_molecules_to_receptor | JenkeScheen/covid-moonshot | 60 | python | def dock_molecules_to_receptor(receptor_filename, molecules):
'\n Dock the specified molecules, writing out to specified file\n\n Parameters\n ----------\n receptor_filename : str\n Receptor .oeb.gz filename\n molecules : list of openeye.oechem.OEMol\n The read molecules to dock\n\n Returns\n -------\n docked_molecules : list of OEMol\n All docked molecules\n\n '
from openeye import oechem, oedocking
receptor = oechem.OEGraphMol()
if (not oedocking.OEReadReceptorFile(receptor, receptor_filename)):
oechem.OEThrow.Fatal('Unable to read receptor')
if (not oedocking.OEReceptorHasBoundLigand(receptor)):
raise Exception('Receptor does not have bound ligand')
dockMethod = oedocking.OEDockMethod_Hybrid2
dockResolution = oedocking.OESearchResolution_High
dock = oedocking.OEDock(dockMethod, dockResolution)
success = dock.Initialize(receptor)
from openeye import oeomega
omegaOpts = oeomega.OEOmegaOptions()
omega = oeomega.OEOmega(omegaOpts)
omega.SetStrictStereo(False)
docked_molecules = list()
for mol in molecules:
dockedMol = oechem.OEGraphMol()
omega.Build(mol)
retCode = dock.DockMultiConformerMolecule(dockedMol, mol)
if (retCode != oedocking.OEDockingReturnCode_Success):
print(('Docking Failed with error code ' + oedocking.OEDockingReturnCodeGetName(retCode)))
continue
sdtag = oedocking.OEDockMethodGetName(dockMethod)
oedocking.OESetSDScore(dockedMol, dock, sdtag)
dock.AnnotatePose(dockedMol)
docked_molecules.append(oechem.OEMol(dockedMol))
return docked_molecules | def dock_molecules_to_receptor(receptor_filename, molecules):
'\n Dock the specified molecules, writing out to specified file\n\n Parameters\n ----------\n receptor_filename : str\n Receptor .oeb.gz filename\n molecules : list of openeye.oechem.OEMol\n The read molecules to dock\n\n Returns\n -------\n docked_molecules : list of OEMol\n All docked molecules\n\n '
from openeye import oechem, oedocking
receptor = oechem.OEGraphMol()
if (not oedocking.OEReadReceptorFile(receptor, receptor_filename)):
oechem.OEThrow.Fatal('Unable to read receptor')
if (not oedocking.OEReceptorHasBoundLigand(receptor)):
raise Exception('Receptor does not have bound ligand')
dockMethod = oedocking.OEDockMethod_Hybrid2
dockResolution = oedocking.OESearchResolution_High
dock = oedocking.OEDock(dockMethod, dockResolution)
success = dock.Initialize(receptor)
from openeye import oeomega
omegaOpts = oeomega.OEOmegaOptions()
omega = oeomega.OEOmega(omegaOpts)
omega.SetStrictStereo(False)
docked_molecules = list()
for mol in molecules:
dockedMol = oechem.OEGraphMol()
omega.Build(mol)
retCode = dock.DockMultiConformerMolecule(dockedMol, mol)
if (retCode != oedocking.OEDockingReturnCode_Success):
print(('Docking Failed with error code ' + oedocking.OEDockingReturnCodeGetName(retCode)))
continue
sdtag = oedocking.OEDockMethodGetName(dockMethod)
oedocking.OESetSDScore(dockedMol, dock, sdtag)
dock.AnnotatePose(dockedMol)
docked_molecules.append(oechem.OEMol(dockedMol))
return docked_molecules<|docstring|>Dock the specified molecules, writing out to specified file
Parameters
----------
receptor_filename : str
Receptor .oeb.gz filename
molecules : list of openeye.oechem.OEMol
The read molecules to dock
Returns
-------
docked_molecules : list of OEMol
All docked molecules<|endoftext|> |
541210db82bc5f24b62ce56e5d4ec5cd2d1cf3777680509ff36de930c8a3b870 | def _load(self):
' return False if a new session is created\n '
def __valid_session_id(session_id):
rx = kind.re_compile('^[0-9a-fA-F]+$')
return rx.match(session_id)
if (self._session_id and (not __valid_session_id(self._session_id))):
self._session_id = None
_sessionDao.cleanup(self._sessionConfig.timeout)
if self._session_id:
session = _sessionDao.get_session(self._session_id)
if (session is not None):
if ((not self._sessionConfig.ignore_change_ip) and (self._ip != session.ip)):
raise SessionInvalidError()
self._data.update(**_sessionDao.decode(session.data))
_sessionDao.access_session(self._session_id)
else:
self._session_id = None
if (self._session_id is None):
self._session_id = self._generate_session_id()
_sessionDao.create_session(self._session_id, self._data.copy(), self._ip) | return False if a new session is created | ssguan/ignitor/web/session.py | _load | samuelbaizg/ssguan | 1 | python | def _load(self):
' \n '
def __valid_session_id(session_id):
rx = kind.re_compile('^[0-9a-fA-F]+$')
return rx.match(session_id)
if (self._session_id and (not __valid_session_id(self._session_id))):
self._session_id = None
_sessionDao.cleanup(self._sessionConfig.timeout)
if self._session_id:
session = _sessionDao.get_session(self._session_id)
if (session is not None):
if ((not self._sessionConfig.ignore_change_ip) and (self._ip != session.ip)):
raise SessionInvalidError()
self._data.update(**_sessionDao.decode(session.data))
_sessionDao.access_session(self._session_id)
else:
self._session_id = None
if (self._session_id is None):
self._session_id = self._generate_session_id()
_sessionDao.create_session(self._session_id, self._data.copy(), self._ip) | def _load(self):
' \n '
def __valid_session_id(session_id):
rx = kind.re_compile('^[0-9a-fA-F]+$')
return rx.match(session_id)
if (self._session_id and (not __valid_session_id(self._session_id))):
self._session_id = None
_sessionDao.cleanup(self._sessionConfig.timeout)
if self._session_id:
session = _sessionDao.get_session(self._session_id)
if (session is not None):
if ((not self._sessionConfig.ignore_change_ip) and (self._ip != session.ip)):
raise SessionInvalidError()
self._data.update(**_sessionDao.decode(session.data))
_sessionDao.access_session(self._session_id)
else:
self._session_id = None
if (self._session_id is None):
self._session_id = self._generate_session_id()
_sessionDao.create_session(self._session_id, self._data.copy(), self._ip)<|docstring|>return False if a new session is created<|endoftext|> |
5d252c4e001634fc8a5b96c868923852f94563315ed20f73a5ce517d5fbfad35 | def __init__(self, config, installer):
"Initialize Client Authenticator.\n\n :param config: Configuration.\n :type config: :class:`letsencrypt.interfaces.IConfig`\n\n :param installer: Let's Encrypt Installer.\n :type installer: :class:`letsencrypt.interfaces.IInstaller`\n\n "
self.proof_of_pos = proof_of_possession.ProofOfPossession(installer) | Initialize Client Authenticator.
:param config: Configuration.
:type config: :class:`letsencrypt.interfaces.IConfig`
:param installer: Let's Encrypt Installer.
:type installer: :class:`letsencrypt.interfaces.IInstaller` | letsencrypt/continuity_auth.py | __init__ | mithrandi/letsencrypt | 0 | python | def __init__(self, config, installer):
"Initialize Client Authenticator.\n\n :param config: Configuration.\n :type config: :class:`letsencrypt.interfaces.IConfig`\n\n :param installer: Let's Encrypt Installer.\n :type installer: :class:`letsencrypt.interfaces.IInstaller`\n\n "
self.proof_of_pos = proof_of_possession.ProofOfPossession(installer) | def __init__(self, config, installer):
"Initialize Client Authenticator.\n\n :param config: Configuration.\n :type config: :class:`letsencrypt.interfaces.IConfig`\n\n :param installer: Let's Encrypt Installer.\n :type installer: :class:`letsencrypt.interfaces.IInstaller`\n\n "
self.proof_of_pos = proof_of_possession.ProofOfPossession(installer)<|docstring|>Initialize Client Authenticator.
:param config: Configuration.
:type config: :class:`letsencrypt.interfaces.IConfig`
:param installer: Let's Encrypt Installer.
:type installer: :class:`letsencrypt.interfaces.IInstaller`<|endoftext|> |
c4d829aeb5070ccc7916129aa7e06101efbf2f50cc22bd954669deb1b4b82a77 | def get_chall_pref(self, unused_domain):
'Return list of challenge preferences.'
return [challenges.ProofOfPossession] | Return list of challenge preferences. | letsencrypt/continuity_auth.py | get_chall_pref | mithrandi/letsencrypt | 0 | python | def get_chall_pref(self, unused_domain):
return [challenges.ProofOfPossession] | def get_chall_pref(self, unused_domain):
return [challenges.ProofOfPossession]<|docstring|>Return list of challenge preferences.<|endoftext|> |
40310bfe168904524074c0ab9d4b0a541b784d9a7932f5ba57b70dab038e63f3 | def perform(self, achalls):
'Perform client specific challenges for IAuthenticator'
responses = []
for achall in achalls:
if isinstance(achall, achallenges.ProofOfPossession):
responses.append(self.proof_of_pos.perform(achall))
else:
raise errors.ContAuthError('Unexpected Challenge')
return responses | Perform client specific challenges for IAuthenticator | letsencrypt/continuity_auth.py | perform | mithrandi/letsencrypt | 0 | python | def perform(self, achalls):
responses = []
for achall in achalls:
if isinstance(achall, achallenges.ProofOfPossession):
responses.append(self.proof_of_pos.perform(achall))
else:
raise errors.ContAuthError('Unexpected Challenge')
return responses | def perform(self, achalls):
responses = []
for achall in achalls:
if isinstance(achall, achallenges.ProofOfPossession):
responses.append(self.proof_of_pos.perform(achall))
else:
raise errors.ContAuthError('Unexpected Challenge')
return responses<|docstring|>Perform client specific challenges for IAuthenticator<|endoftext|> |
9796f95a83b5dca9b89a0771a769157637c65e1aceefed3a8b6b7a94d0817f8f | def cleanup(self, achalls):
'Cleanup call for IAuthenticator.'
for achall in achalls:
if (not isinstance(achall, achallenges.ProofOfPossession)):
raise errors.ContAuthError('Unexpected Challenge') | Cleanup call for IAuthenticator. | letsencrypt/continuity_auth.py | cleanup | mithrandi/letsencrypt | 0 | python | def cleanup(self, achalls):
for achall in achalls:
if (not isinstance(achall, achallenges.ProofOfPossession)):
raise errors.ContAuthError('Unexpected Challenge') | def cleanup(self, achalls):
for achall in achalls:
if (not isinstance(achall, achallenges.ProofOfPossession)):
raise errors.ContAuthError('Unexpected Challenge')<|docstring|>Cleanup call for IAuthenticator.<|endoftext|> |
e3acd370fe9b26ca88d3822b1388817e708837eec732ed4f8ee11b078e233eb2 | def compute_lid(x, x_train, k, exclude_self=False):
'\n Calculate LID using the estimation from [1]\n\n [1] Ma et al., "Characterizing Adversarial Subspaces Using\n Local Intrinsic Dimensionality," ICLR 2018.\n '
with torch.no_grad():
x = x.view((x.size(0), (- 1)))
x_train = x_train.view((x_train.size(0), (- 1)))
lid = torch.zeros((x.size(0),))
for (i, x_cur) in enumerate(x):
dist = (x_cur.view(1, (- 1)) - x_train).norm(2, 1)
if exclude_self:
topk_dist = dist.topk((k + 1), largest=False)[0][1:]
else:
topk_dist = dist.topk(k, largest=False)[0]
mean_log = torch.log((topk_dist / topk_dist[(- 1)])).mean()
lid[i] = ((- 1) / mean_log)
return lid | Calculate LID using the estimation from [1]
[1] Ma et al., "Characterizing Adversarial Subspaces Using
Local Intrinsic Dimensionality," ICLR 2018. | lib/utils.py | compute_lid | chawins/entangle-rep | 15 | python | def compute_lid(x, x_train, k, exclude_self=False):
'\n Calculate LID using the estimation from [1]\n\n [1] Ma et al., "Characterizing Adversarial Subspaces Using\n Local Intrinsic Dimensionality," ICLR 2018.\n '
with torch.no_grad():
x = x.view((x.size(0), (- 1)))
x_train = x_train.view((x_train.size(0), (- 1)))
lid = torch.zeros((x.size(0),))
for (i, x_cur) in enumerate(x):
dist = (x_cur.view(1, (- 1)) - x_train).norm(2, 1)
if exclude_self:
topk_dist = dist.topk((k + 1), largest=False)[0][1:]
else:
topk_dist = dist.topk(k, largest=False)[0]
mean_log = torch.log((topk_dist / topk_dist[(- 1)])).mean()
lid[i] = ((- 1) / mean_log)
return lid | def compute_lid(x, x_train, k, exclude_self=False):
'\n Calculate LID using the estimation from [1]\n\n [1] Ma et al., "Characterizing Adversarial Subspaces Using\n Local Intrinsic Dimensionality," ICLR 2018.\n '
with torch.no_grad():
x = x.view((x.size(0), (- 1)))
x_train = x_train.view((x_train.size(0), (- 1)))
lid = torch.zeros((x.size(0),))
for (i, x_cur) in enumerate(x):
dist = (x_cur.view(1, (- 1)) - x_train).norm(2, 1)
if exclude_self:
topk_dist = dist.topk((k + 1), largest=False)[0][1:]
else:
topk_dist = dist.topk(k, largest=False)[0]
mean_log = torch.log((topk_dist / topk_dist[(- 1)])).mean()
lid[i] = ((- 1) / mean_log)
return lid<|docstring|>Calculate LID using the estimation from [1]
[1] Ma et al., "Characterizing Adversarial Subspaces Using
Local Intrinsic Dimensionality," ICLR 2018.<|endoftext|> |
fe0f380d4ada5bb298b4d69cba0bf43cbb42c0cd56703e8fb5e9233cf4d53d36 | def compute_spnorm_batch(inputs, output):
'\n :param inputs: (batch_size, input_size)\n :param output: (batch_size, output_size)\n :return: jacobian: (batch_size, output_size, input_size)\n '
(batch_size, input_dim) = inputs.view(inputs.size(0), (- 1)).size()
output = output.view(batch_size, (- 1))
jacobian = torch.zeros((batch_size, output.size(1), input_dim))
for i in range(output.size(1)):
grad = torch.autograd.grad(output[(:, i)].sum(), inputs, retain_graph=True)[0]
jacobian[(:, i, :)] = grad.view(batch_size, input_dim)
norm = np.zeros((batch_size,))
for i in range(batch_size):
norm[i] = np.linalg.norm(jacobian[i].detach().cpu().numpy(), 2)
return norm | :param inputs: (batch_size, input_size)
:param output: (batch_size, output_size)
:return: jacobian: (batch_size, output_size, input_size) | lib/utils.py | compute_spnorm_batch | chawins/entangle-rep | 15 | python | def compute_spnorm_batch(inputs, output):
'\n :param inputs: (batch_size, input_size)\n :param output: (batch_size, output_size)\n :return: jacobian: (batch_size, output_size, input_size)\n '
(batch_size, input_dim) = inputs.view(inputs.size(0), (- 1)).size()
output = output.view(batch_size, (- 1))
jacobian = torch.zeros((batch_size, output.size(1), input_dim))
for i in range(output.size(1)):
grad = torch.autograd.grad(output[(:, i)].sum(), inputs, retain_graph=True)[0]
jacobian[(:, i, :)] = grad.view(batch_size, input_dim)
norm = np.zeros((batch_size,))
for i in range(batch_size):
norm[i] = np.linalg.norm(jacobian[i].detach().cpu().numpy(), 2)
return norm | def compute_spnorm_batch(inputs, output):
'\n :param inputs: (batch_size, input_size)\n :param output: (batch_size, output_size)\n :return: jacobian: (batch_size, output_size, input_size)\n '
(batch_size, input_dim) = inputs.view(inputs.size(0), (- 1)).size()
output = output.view(batch_size, (- 1))
jacobian = torch.zeros((batch_size, output.size(1), input_dim))
for i in range(output.size(1)):
grad = torch.autograd.grad(output[(:, i)].sum(), inputs, retain_graph=True)[0]
jacobian[(:, i, :)] = grad.view(batch_size, input_dim)
norm = np.zeros((batch_size,))
for i in range(batch_size):
norm[i] = np.linalg.norm(jacobian[i].detach().cpu().numpy(), 2)
return norm<|docstring|>:param inputs: (batch_size, input_size)
:param output: (batch_size, output_size)
:return: jacobian: (batch_size, output_size, input_size)<|endoftext|> |
bd8f20a180da24d1bfdfd47d89cb63104d29984688ce07b805d879350d028cc7 | def add(self, group_creation_information):
'Creates a Group resource'
group = Group(self.context)
self.add_child(group)
qry = CreateEntityQuery(self, group_creation_information)
self.context.add_query(qry)
return group | Creates a Group resource | office365/sharepoint/group_collection.py | add | stardust85/Office365-REST-Python-Client | 0 | python | def add(self, group_creation_information):
group = Group(self.context)
self.add_child(group)
qry = CreateEntityQuery(self, group_creation_information)
self.context.add_query(qry)
return group | def add(self, group_creation_information):
group = Group(self.context)
self.add_child(group)
qry = CreateEntityQuery(self, group_creation_information)
self.context.add_query(qry)
return group<|docstring|>Creates a Group resource<|endoftext|> |
061cdedcd1415601964d9c6cc227088ad3ae356955e9057e4a49275125e520f7 | def get_by_id(self, group_id):
'Returns the list item with the specified list item identifier.'
group = Group(self.context, ResourcePathServiceOperation('getbyid', [group_id], self.resource_path))
return group | Returns the list item with the specified list item identifier. | office365/sharepoint/group_collection.py | get_by_id | stardust85/Office365-REST-Python-Client | 0 | python | def get_by_id(self, group_id):
group = Group(self.context, ResourcePathServiceOperation('getbyid', [group_id], self.resource_path))
return group | def get_by_id(self, group_id):
group = Group(self.context, ResourcePathServiceOperation('getbyid', [group_id], self.resource_path))
return group<|docstring|>Returns the list item with the specified list item identifier.<|endoftext|> |
8197e204bd5234f4d91659445cd60de1d6447eef0b933d3aba6afd8d13872ab5 | def get_by_name(self, group_name):
'Returns a cross-site group from the collection based on the name of the group.'
return Group(self.context, ResourcePathServiceOperation('getbyname', [group_name], self.resource_path)) | Returns a cross-site group from the collection based on the name of the group. | office365/sharepoint/group_collection.py | get_by_name | stardust85/Office365-REST-Python-Client | 0 | python | def get_by_name(self, group_name):
return Group(self.context, ResourcePathServiceOperation('getbyname', [group_name], self.resource_path)) | def get_by_name(self, group_name):
return Group(self.context, ResourcePathServiceOperation('getbyname', [group_name], self.resource_path))<|docstring|>Returns a cross-site group from the collection based on the name of the group.<|endoftext|> |
2f492f768bae5068f94cbc8610063949d7f97e66888278b10d7ccea07a3e9926 | def remove_by_id(self, group_id):
'Removes the group with the specified member ID from the collection.'
qry = ServiceOperationQuery(self, 'removebyid', [group_id])
self.context.add_query(qry) | Removes the group with the specified member ID from the collection. | office365/sharepoint/group_collection.py | remove_by_id | stardust85/Office365-REST-Python-Client | 0 | python | def remove_by_id(self, group_id):
qry = ServiceOperationQuery(self, 'removebyid', [group_id])
self.context.add_query(qry) | def remove_by_id(self, group_id):
qry = ServiceOperationQuery(self, 'removebyid', [group_id])
self.context.add_query(qry)<|docstring|>Removes the group with the specified member ID from the collection.<|endoftext|> |
66ca0eb9d45a8d57cb674e44e0754a385fc8621690837bdf4268959d117da10f | def remove_by_login_name(self, group_name):
'Removes the cross-site group with the specified name from the collection.'
qry = ServiceOperationQuery(self, 'removebyloginname', [group_name])
self.context.add_query(qry) | Removes the cross-site group with the specified name from the collection. | office365/sharepoint/group_collection.py | remove_by_login_name | stardust85/Office365-REST-Python-Client | 0 | python | def remove_by_login_name(self, group_name):
qry = ServiceOperationQuery(self, 'removebyloginname', [group_name])
self.context.add_query(qry) | def remove_by_login_name(self, group_name):
qry = ServiceOperationQuery(self, 'removebyloginname', [group_name])
self.context.add_query(qry)<|docstring|>Removes the cross-site group with the specified name from the collection.<|endoftext|> |
04ffd4cd8fd433061d0eb372c36a6d62173f7a5570315f7579f51bba197c0bb8 | def get_global_option(option):
' Returns the value of the option\n :returns: str or None\n '
try:
return CONFIGURATION['global'][option]
except KeyError:
return None | Returns the value of the option
:returns: str or None | dynamic_ec2reservation/config_handler.py | get_global_option | highlyunavailable/dynamic-ec2reservation | 1 | python | def get_global_option(option):
' Returns the value of the option\n :returns: str or None\n '
try:
return CONFIGURATION['global'][option]
except KeyError:
return None | def get_global_option(option):
' Returns the value of the option\n :returns: str or None\n '
try:
return CONFIGURATION['global'][option]
except KeyError:
return None<|docstring|>Returns the value of the option
:returns: str or None<|endoftext|> |
796d2ecddc8ab40b038e4ad763b6a7a2220a05b84828b9222f1d1172448e3979 | def get_logging_option(option):
' Returns the value of the option\n :returns: str or None\n '
try:
return CONFIGURATION['logging'][option]
except KeyError:
return None | Returns the value of the option
:returns: str or None | dynamic_ec2reservation/config_handler.py | get_logging_option | highlyunavailable/dynamic-ec2reservation | 1 | python | def get_logging_option(option):
' Returns the value of the option\n :returns: str or None\n '
try:
return CONFIGURATION['logging'][option]
except KeyError:
return None | def get_logging_option(option):
' Returns the value of the option\n :returns: str or None\n '
try:
return CONFIGURATION['logging'][option]
except KeyError:
return None<|docstring|>Returns the value of the option
:returns: str or None<|endoftext|> |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.