body_hash
stringlengths 64
64
| body
stringlengths 23
109k
| docstring
stringlengths 1
57k
| path
stringlengths 4
198
| name
stringlengths 1
115
| repository_name
stringlengths 7
111
| repository_stars
float64 0
191k
| lang
stringclasses 1
value | body_without_docstring
stringlengths 14
108k
| unified
stringlengths 45
133k
|
---|---|---|---|---|---|---|---|---|---|
e25ba4f6b2095c2f1ce12895b5e24a3e5a5fb72b44ada82be641e93e10127368 | async def async_is_socket(self) -> bool:
'\n Whether this path is a socket.\n '
try:
stat = (await self.async_stat())
return S_ISSOCK(stat.st_mode)
except OSError as e:
if (not _ignore_error(e)):
raise
return False
except ValueError:
return False | Whether this path is a socket. | lazy/io/pathz_v2/base.py | async_is_socket | trisongz/lazycls | 2 | python | async def async_is_socket(self) -> bool:
'\n \n '
try:
stat = (await self.async_stat())
return S_ISSOCK(stat.st_mode)
except OSError as e:
if (not _ignore_error(e)):
raise
return False
except ValueError:
return False | async def async_is_socket(self) -> bool:
'\n \n '
try:
stat = (await self.async_stat())
return S_ISSOCK(stat.st_mode)
except OSError as e:
if (not _ignore_error(e)):
raise
return False
except ValueError:
return False<|docstring|>Whether this path is a socket.<|endoftext|> |
21bc43f041b4235d4638bf90ac58ba84fcf06726ea0a9d9d86c9bd92322c1e83 | def expanduser(self) -> PathzPath:
' Return a new path with expanded ~ and ~user constructs\n (as returned by os.path.expanduser)\n '
if ((not self._drv) and (not self._root) and self._parts and (self._parts[0][:1] == '~')):
homedir = self._flavour.gethomedir(self._parts[0][1:])
return self._from_parts(([homedir] + self._parts[1:]))
return self | Return a new path with expanded ~ and ~user constructs
(as returned by os.path.expanduser) | lazy/io/pathz_v2/base.py | expanduser | trisongz/lazycls | 2 | python | def expanduser(self) -> PathzPath:
' Return a new path with expanded ~ and ~user constructs\n (as returned by os.path.expanduser)\n '
if ((not self._drv) and (not self._root) and self._parts and (self._parts[0][:1] == '~')):
homedir = self._flavour.gethomedir(self._parts[0][1:])
return self._from_parts(([homedir] + self._parts[1:]))
return self | def expanduser(self) -> PathzPath:
' Return a new path with expanded ~ and ~user constructs\n (as returned by os.path.expanduser)\n '
if ((not self._drv) and (not self._root) and self._parts and (self._parts[0][:1] == '~')):
homedir = self._flavour.gethomedir(self._parts[0][1:])
return self._from_parts(([homedir] + self._parts[1:]))
return self<|docstring|>Return a new path with expanded ~ and ~user constructs
(as returned by os.path.expanduser)<|endoftext|> |
bb4ebeac8a7d10b76f6685991d32d64ad317c792159a9b6d1359695acb0ac2ac | async def async_expanduser(self) -> PathzPath:
' Return a new path with expanded ~ and ~user constructs\n (as returned by os.path.expanduser)\n '
if ((not self._drv) and (not self._root) and self._parts and (self._parts[0][:1] == '~')):
homedir = (await self._flavour.async_gethomedir(self._parts[0][1:]))
return self._from_parts(([homedir] + self._parts[1:]))
return self | Return a new path with expanded ~ and ~user constructs
(as returned by os.path.expanduser) | lazy/io/pathz_v2/base.py | async_expanduser | trisongz/lazycls | 2 | python | async def async_expanduser(self) -> PathzPath:
' Return a new path with expanded ~ and ~user constructs\n (as returned by os.path.expanduser)\n '
if ((not self._drv) and (not self._root) and self._parts and (self._parts[0][:1] == '~')):
homedir = (await self._flavour.async_gethomedir(self._parts[0][1:]))
return self._from_parts(([homedir] + self._parts[1:]))
return self | async def async_expanduser(self) -> PathzPath:
' Return a new path with expanded ~ and ~user constructs\n (as returned by os.path.expanduser)\n '
if ((not self._drv) and (not self._root) and self._parts and (self._parts[0][:1] == '~')):
homedir = (await self._flavour.async_gethomedir(self._parts[0][1:]))
return self._from_parts(([homedir] + self._parts[1:]))
return self<|docstring|>Return a new path with expanded ~ and ~user constructs
(as returned by os.path.expanduser)<|endoftext|> |
5e3716c4aae893e3e1921c2a233480c3acb7a7695572141a7156832e0984edf1 | def read_json(self, encoding: Optional[str]=DEFAULT_ENCODING, **kwargs) -> JsonType:
'\n Reads JSON\n '
return Serialize.Json.loads(self.read_text(encoding=encoding), **kwargs) | Reads JSON | lazy/io/pathz_v2/base.py | read_json | trisongz/lazycls | 2 | python | def read_json(self, encoding: Optional[str]=DEFAULT_ENCODING, **kwargs) -> JsonType:
'\n \n '
return Serialize.Json.loads(self.read_text(encoding=encoding), **kwargs) | def read_json(self, encoding: Optional[str]=DEFAULT_ENCODING, **kwargs) -> JsonType:
'\n \n '
return Serialize.Json.loads(self.read_text(encoding=encoding), **kwargs)<|docstring|>Reads JSON<|endoftext|> |
6d49f57ca3e7728c64957878a53ce44a864283910effe35134b4147695e66445 | def read_jsonlines(self, mode: str='r', skip_errors: bool=True, as_iterable: bool=True, **kwargs) -> Iterator[T]:
'\n Reads JSON Lines\n '
with self.open(mode=mode) as f:
return Serialize.Json.readlines(f, as_iterable=as_iterable, skip_errors=skip_errors, **kwargs) | Reads JSON Lines | lazy/io/pathz_v2/base.py | read_jsonlines | trisongz/lazycls | 2 | python | def read_jsonlines(self, mode: str='r', skip_errors: bool=True, as_iterable: bool=True, **kwargs) -> Iterator[T]:
'\n \n '
with self.open(mode=mode) as f:
return Serialize.Json.readlines(f, as_iterable=as_iterable, skip_errors=skip_errors, **kwargs) | def read_jsonlines(self, mode: str='r', skip_errors: bool=True, as_iterable: bool=True, **kwargs) -> Iterator[T]:
'\n \n '
with self.open(mode=mode) as f:
return Serialize.Json.readlines(f, as_iterable=as_iterable, skip_errors=skip_errors, **kwargs)<|docstring|>Reads JSON Lines<|endoftext|> |
94ca7f115b686654aeff177c101c9aef6a88f1008feb4a7ca4b22b71bb98eb43 | def read_yaml(self, encoding: Optional[str]=DEFAULT_ENCODING, **kwargs) -> JsonType:
'\n Reads YAML\n '
return Serialize.Yaml.loads(self.read_text(encoding=encoding), **kwargs) | Reads YAML | lazy/io/pathz_v2/base.py | read_yaml | trisongz/lazycls | 2 | python | def read_yaml(self, encoding: Optional[str]=DEFAULT_ENCODING, **kwargs) -> JsonType:
'\n \n '
return Serialize.Yaml.loads(self.read_text(encoding=encoding), **kwargs) | def read_yaml(self, encoding: Optional[str]=DEFAULT_ENCODING, **kwargs) -> JsonType:
'\n \n '
return Serialize.Yaml.loads(self.read_text(encoding=encoding), **kwargs)<|docstring|>Reads YAML<|endoftext|> |
9f14f0b960a4135e7904f8e926cebb8cf837b5c806ba6cf159f3c0253afe2270 | def read_pickle(self, mode: str='rb', **kwargs):
'\n Reads Pickle File\n '
with self.open(mode=mode) as f:
return Serialize.Pkl.loads(f.read(), **kwargs) | Reads Pickle File | lazy/io/pathz_v2/base.py | read_pickle | trisongz/lazycls | 2 | python | def read_pickle(self, mode: str='rb', **kwargs):
'\n \n '
with self.open(mode=mode) as f:
return Serialize.Pkl.loads(f.read(), **kwargs) | def read_pickle(self, mode: str='rb', **kwargs):
'\n \n '
with self.open(mode=mode) as f:
return Serialize.Pkl.loads(f.read(), **kwargs)<|docstring|>Reads Pickle File<|endoftext|> |
9d3e1563dbb7e6176d3722a99fef36153b6c3165ab34aeafdd4d5ffc81988a65 | def append_jsonlines(self, data: List[JsonType], encoding: Optional[str]=DEFAULT_ENCODING, newline: str='\n', ignore_errors: bool=True, ensure_file_exists: bool=True, flush_every: int=0, log_errors: bool=False, **kwargs):
'\n Appends JSON Lines to File\n '
if (ensure_file_exists and (not self.exists())):
self.touch()
with self.open(mode='a', encoding=encoding) as f:
Serialize.Json.write_jsonlines(f, data=data, newline=newline, ignore_errors=ignore_errors, flush_every=flush_every, log_errors=log_errors, **kwargs) | Appends JSON Lines to File | lazy/io/pathz_v2/base.py | append_jsonlines | trisongz/lazycls | 2 | python | def append_jsonlines(self, data: List[JsonType], encoding: Optional[str]=DEFAULT_ENCODING, newline: str='\n', ignore_errors: bool=True, ensure_file_exists: bool=True, flush_every: int=0, log_errors: bool=False, **kwargs):
'\n \n '
if (ensure_file_exists and (not self.exists())):
self.touch()
with self.open(mode='a', encoding=encoding) as f:
Serialize.Json.write_jsonlines(f, data=data, newline=newline, ignore_errors=ignore_errors, flush_every=flush_every, log_errors=log_errors, **kwargs) | def append_jsonlines(self, data: List[JsonType], encoding: Optional[str]=DEFAULT_ENCODING, newline: str='\n', ignore_errors: bool=True, ensure_file_exists: bool=True, flush_every: int=0, log_errors: bool=False, **kwargs):
'\n \n '
if (ensure_file_exists and (not self.exists())):
self.touch()
with self.open(mode='a', encoding=encoding) as f:
Serialize.Json.write_jsonlines(f, data=data, newline=newline, ignore_errors=ignore_errors, flush_every=flush_every, log_errors=log_errors, **kwargs)<|docstring|>Appends JSON Lines to File<|endoftext|> |
6f33e3571b5bf70aa0c12b76a59c4e1119df3734c13cf69a1d00deb1f52d6597 | def write_json(self, data: JsonType, encoding: Optional[str]=DEFAULT_ENCODING, ensure_ascii: bool=False, indent: int=2, **kwargs) -> None:
'\n Writes JSON to File\n '
with self.open('w', encoding=encoding) as f:
f.write(Serialize.SimdJson.dumps(data, ensure_ascii=ensure_ascii, indent=indent, **kwargs)) | Writes JSON to File | lazy/io/pathz_v2/base.py | write_json | trisongz/lazycls | 2 | python | def write_json(self, data: JsonType, encoding: Optional[str]=DEFAULT_ENCODING, ensure_ascii: bool=False, indent: int=2, **kwargs) -> None:
'\n \n '
with self.open('w', encoding=encoding) as f:
f.write(Serialize.SimdJson.dumps(data, ensure_ascii=ensure_ascii, indent=indent, **kwargs)) | def write_json(self, data: JsonType, encoding: Optional[str]=DEFAULT_ENCODING, ensure_ascii: bool=False, indent: int=2, **kwargs) -> None:
'\n \n '
with self.open('w', encoding=encoding) as f:
f.write(Serialize.SimdJson.dumps(data, ensure_ascii=ensure_ascii, indent=indent, **kwargs))<|docstring|>Writes JSON to File<|endoftext|> |
d65fd53e045af30e41b602d8787ce7d269ef737651926f549c98bb10410788c6 | def write_jsonlines(self, data: List[JsonType], append: bool=False, encoding: Optional[str]=DEFAULT_ENCODING, newline: str='\n', ignore_errors: bool=True, ensure_file_exists: bool=True, flush_every: int=0, log_errors: bool=False, **kwargs):
'\n Writes JSON Lines to File\n '
if (ensure_file_exists and (not self.exists())):
self.touch()
mode = ('a' if ((append and self.exists()) or ensure_file_exists) else 'w')
with self.open(mode=mode, encoding=encoding) as f:
Serialize.Json.write_jsonlines(f, data=data, newline=newline, ignore_errors=ignore_errors, flush_every=flush_every, log_errors=log_errors, **kwargs) | Writes JSON Lines to File | lazy/io/pathz_v2/base.py | write_jsonlines | trisongz/lazycls | 2 | python | def write_jsonlines(self, data: List[JsonType], append: bool=False, encoding: Optional[str]=DEFAULT_ENCODING, newline: str='\n', ignore_errors: bool=True, ensure_file_exists: bool=True, flush_every: int=0, log_errors: bool=False, **kwargs):
'\n \n '
if (ensure_file_exists and (not self.exists())):
self.touch()
mode = ('a' if ((append and self.exists()) or ensure_file_exists) else 'w')
with self.open(mode=mode, encoding=encoding) as f:
Serialize.Json.write_jsonlines(f, data=data, newline=newline, ignore_errors=ignore_errors, flush_every=flush_every, log_errors=log_errors, **kwargs) | def write_jsonlines(self, data: List[JsonType], append: bool=False, encoding: Optional[str]=DEFAULT_ENCODING, newline: str='\n', ignore_errors: bool=True, ensure_file_exists: bool=True, flush_every: int=0, log_errors: bool=False, **kwargs):
'\n \n '
if (ensure_file_exists and (not self.exists())):
self.touch()
mode = ('a' if ((append and self.exists()) or ensure_file_exists) else 'w')
with self.open(mode=mode, encoding=encoding) as f:
Serialize.Json.write_jsonlines(f, data=data, newline=newline, ignore_errors=ignore_errors, flush_every=flush_every, log_errors=log_errors, **kwargs)<|docstring|>Writes JSON Lines to File<|endoftext|> |
eb88007fadef03ad871e71e8b258121cfd3b2999f2dfe211e22ee5d59fccea50 | def write_yaml(self, data: JsonType, encoding: Optional[str]=DEFAULT_ENCODING, **kwargs) -> None:
'\n Writes YAML to File\n '
with self.open('w', encoding=encoding) as f:
f.write(Serialize.Yaml.dumps(data, **kwargs)) | Writes YAML to File | lazy/io/pathz_v2/base.py | write_yaml | trisongz/lazycls | 2 | python | def write_yaml(self, data: JsonType, encoding: Optional[str]=DEFAULT_ENCODING, **kwargs) -> None:
'\n \n '
with self.open('w', encoding=encoding) as f:
f.write(Serialize.Yaml.dumps(data, **kwargs)) | def write_yaml(self, data: JsonType, encoding: Optional[str]=DEFAULT_ENCODING, **kwargs) -> None:
'\n \n '
with self.open('w', encoding=encoding) as f:
f.write(Serialize.Yaml.dumps(data, **kwargs))<|docstring|>Writes YAML to File<|endoftext|> |
3dee812549f6d27d9605fc9122c369102264b4b8e99f9ab4cb3148b29970e4d2 | def write_pickle(self, obj: Any, **kwargs) -> None:
'\n Writes Pickle to File\n '
data = Serialize.Pkl.dumps(obj, **kwargs)
return self.write_bytes(data) | Writes Pickle to File | lazy/io/pathz_v2/base.py | write_pickle | trisongz/lazycls | 2 | python | def write_pickle(self, obj: Any, **kwargs) -> None:
'\n \n '
data = Serialize.Pkl.dumps(obj, **kwargs)
return self.write_bytes(data) | def write_pickle(self, obj: Any, **kwargs) -> None:
'\n \n '
data = Serialize.Pkl.dumps(obj, **kwargs)
return self.write_bytes(data)<|docstring|>Writes Pickle to File<|endoftext|> |
72c27eaa3fd87b1968a9746cbe0fcdaa722cd975c1382393e73b4c410e33a87c | async def async_read_json(self, encoding: Optional[str]=DEFAULT_ENCODING, **kwargs) -> JsonType:
'\n Reads JSON Asyncronously\n '
return (await Serialize.Json.async_loads((await self.async_read_text(encoding=encoding)), **kwargs)) | Reads JSON Asyncronously | lazy/io/pathz_v2/base.py | async_read_json | trisongz/lazycls | 2 | python | async def async_read_json(self, encoding: Optional[str]=DEFAULT_ENCODING, **kwargs) -> JsonType:
'\n \n '
return (await Serialize.Json.async_loads((await self.async_read_text(encoding=encoding)), **kwargs)) | async def async_read_json(self, encoding: Optional[str]=DEFAULT_ENCODING, **kwargs) -> JsonType:
'\n \n '
return (await Serialize.Json.async_loads((await self.async_read_text(encoding=encoding)), **kwargs))<|docstring|>Reads JSON Asyncronously<|endoftext|> |
63160c9445781a397d7385a2ee30ef0d048269c8e7954df48cba25615686326e | async def async_read_jsonlines(self, mode: str='r', skip_errors: bool=True, as_iterable: bool=True, **kwargs) -> Iterator[T]:
'\n Reads JSON Lines Asyncronously\n '
async with self.async_open(mode=mode) as f:
return (await Serialize.Json.async_readlines(f, as_iterable=as_iterable, skip_errors=skip_errors, **kwargs)) | Reads JSON Lines Asyncronously | lazy/io/pathz_v2/base.py | async_read_jsonlines | trisongz/lazycls | 2 | python | async def async_read_jsonlines(self, mode: str='r', skip_errors: bool=True, as_iterable: bool=True, **kwargs) -> Iterator[T]:
'\n \n '
async with self.async_open(mode=mode) as f:
return (await Serialize.Json.async_readlines(f, as_iterable=as_iterable, skip_errors=skip_errors, **kwargs)) | async def async_read_jsonlines(self, mode: str='r', skip_errors: bool=True, as_iterable: bool=True, **kwargs) -> Iterator[T]:
'\n \n '
async with self.async_open(mode=mode) as f:
return (await Serialize.Json.async_readlines(f, as_iterable=as_iterable, skip_errors=skip_errors, **kwargs))<|docstring|>Reads JSON Lines Asyncronously<|endoftext|> |
31cd7afd0292273e35d27724b2cf886b04cc21832eddc6d5a6dd9fb893b59f3c | async def async_read_yaml(self, encoding: Optional[str]=DEFAULT_ENCODING, **kwargs) -> JsonType:
'\n Reads YAML Asyncronously\n '
return (await Serialize.Yaml.async_loads((await self.async_read_text(encoding=encoding)), **kwargs)) | Reads YAML Asyncronously | lazy/io/pathz_v2/base.py | async_read_yaml | trisongz/lazycls | 2 | python | async def async_read_yaml(self, encoding: Optional[str]=DEFAULT_ENCODING, **kwargs) -> JsonType:
'\n \n '
return (await Serialize.Yaml.async_loads((await self.async_read_text(encoding=encoding)), **kwargs)) | async def async_read_yaml(self, encoding: Optional[str]=DEFAULT_ENCODING, **kwargs) -> JsonType:
'\n \n '
return (await Serialize.Yaml.async_loads((await self.async_read_text(encoding=encoding)), **kwargs))<|docstring|>Reads YAML Asyncronously<|endoftext|> |
d0336bc0c597e60674568d665e0c4ce634fcc85366222022d3a83e74950a9e92 | async def async_read_pickle(self, mode: str='rb', **kwargs):
'\n Reads Pickle File Asyncronously\n '
async with self.async_open(mode=mode) as f:
return (await Serialize.Pkl.async_loads((await f.read()), **kwargs)) | Reads Pickle File Asyncronously | lazy/io/pathz_v2/base.py | async_read_pickle | trisongz/lazycls | 2 | python | async def async_read_pickle(self, mode: str='rb', **kwargs):
'\n \n '
async with self.async_open(mode=mode) as f:
return (await Serialize.Pkl.async_loads((await f.read()), **kwargs)) | async def async_read_pickle(self, mode: str='rb', **kwargs):
'\n \n '
async with self.async_open(mode=mode) as f:
return (await Serialize.Pkl.async_loads((await f.read()), **kwargs))<|docstring|>Reads Pickle File Asyncronously<|endoftext|> |
26d6977a5c3c97d40d979128a01bcffac8fdec142a14d3b064a886635b82df21 | async def async_append_jsonlines(self, data: List[JsonType], encoding: Optional[str]=DEFAULT_ENCODING, newline: str='\n', ignore_errors: bool=True, ensure_file_exists: bool=True, flush_every: int=0, log_errors: bool=False, **kwargs):
'\n Appends JSON Lines to File Asyncronously\n '
if (ensure_file_exists and (not (await self.async_exists_))):
(await self.async_touch())
async with self.async_open(mode='a', encoding=encoding) as f:
(await Serialize.Json.write_jsonlines(f, data=data, newline=newline, ignore_errors=ignore_errors, flush_every=flush_every, log_errors=log_errors, **kwargs)) | Appends JSON Lines to File Asyncronously | lazy/io/pathz_v2/base.py | async_append_jsonlines | trisongz/lazycls | 2 | python | async def async_append_jsonlines(self, data: List[JsonType], encoding: Optional[str]=DEFAULT_ENCODING, newline: str='\n', ignore_errors: bool=True, ensure_file_exists: bool=True, flush_every: int=0, log_errors: bool=False, **kwargs):
'\n \n '
if (ensure_file_exists and (not (await self.async_exists_))):
(await self.async_touch())
async with self.async_open(mode='a', encoding=encoding) as f:
(await Serialize.Json.write_jsonlines(f, data=data, newline=newline, ignore_errors=ignore_errors, flush_every=flush_every, log_errors=log_errors, **kwargs)) | async def async_append_jsonlines(self, data: List[JsonType], encoding: Optional[str]=DEFAULT_ENCODING, newline: str='\n', ignore_errors: bool=True, ensure_file_exists: bool=True, flush_every: int=0, log_errors: bool=False, **kwargs):
'\n \n '
if (ensure_file_exists and (not (await self.async_exists_))):
(await self.async_touch())
async with self.async_open(mode='a', encoding=encoding) as f:
(await Serialize.Json.write_jsonlines(f, data=data, newline=newline, ignore_errors=ignore_errors, flush_every=flush_every, log_errors=log_errors, **kwargs))<|docstring|>Appends JSON Lines to File Asyncronously<|endoftext|> |
2fb404df23d4863101c279dcb6212659d289a5cb362b93e00b74c3849fc3dc9d | async def async_write_json(self, data: JsonType, encoding: Optional[str]=DEFAULT_ENCODING, ensure_ascii: bool=False, indent: int=2, **kwargs) -> None:
'\n Writes JSON to File Asyncronously\n '
async with self.async_open('w', encoding=encoding) as f:
(await f.write((await Serialize.SimdJson.async_dumps(data, ensure_ascii=ensure_ascii, indent=indent, **kwargs)))) | Writes JSON to File Asyncronously | lazy/io/pathz_v2/base.py | async_write_json | trisongz/lazycls | 2 | python | async def async_write_json(self, data: JsonType, encoding: Optional[str]=DEFAULT_ENCODING, ensure_ascii: bool=False, indent: int=2, **kwargs) -> None:
'\n \n '
async with self.async_open('w', encoding=encoding) as f:
(await f.write((await Serialize.SimdJson.async_dumps(data, ensure_ascii=ensure_ascii, indent=indent, **kwargs)))) | async def async_write_json(self, data: JsonType, encoding: Optional[str]=DEFAULT_ENCODING, ensure_ascii: bool=False, indent: int=2, **kwargs) -> None:
'\n \n '
async with self.async_open('w', encoding=encoding) as f:
(await f.write((await Serialize.SimdJson.async_dumps(data, ensure_ascii=ensure_ascii, indent=indent, **kwargs))))<|docstring|>Writes JSON to File Asyncronously<|endoftext|> |
01e3088b46baabf98e47a5bea864d36909a1c42e11504a4336dbd3aa6d590af2 | async def async_write_jsonlines(self, data: List[JsonType], append: bool=False, encoding: Optional[str]=DEFAULT_ENCODING, newline: str='\n', ignore_errors: bool=True, ensure_file_exists: bool=True, flush_every: int=0, log_errors: bool=False, **kwargs):
'\n Writes JSON Lines to File Asyncronously\n '
if (ensure_file_exists and (not (await self.async_exists_))):
(await self.async_touch())
mode = ('a' if ((append and (await self.async_exists_)) or ensure_file_exists) else 'w')
async with self.async_open(mode=mode, encoding=encoding) as f:
(await Serialize.Json.async_write_jsonlines(f, data=data, newline=newline, ignore_errors=ignore_errors, flush_every=flush_every, log_errors=log_errors, **kwargs)) | Writes JSON Lines to File Asyncronously | lazy/io/pathz_v2/base.py | async_write_jsonlines | trisongz/lazycls | 2 | python | async def async_write_jsonlines(self, data: List[JsonType], append: bool=False, encoding: Optional[str]=DEFAULT_ENCODING, newline: str='\n', ignore_errors: bool=True, ensure_file_exists: bool=True, flush_every: int=0, log_errors: bool=False, **kwargs):
'\n \n '
if (ensure_file_exists and (not (await self.async_exists_))):
(await self.async_touch())
mode = ('a' if ((append and (await self.async_exists_)) or ensure_file_exists) else 'w')
async with self.async_open(mode=mode, encoding=encoding) as f:
(await Serialize.Json.async_write_jsonlines(f, data=data, newline=newline, ignore_errors=ignore_errors, flush_every=flush_every, log_errors=log_errors, **kwargs)) | async def async_write_jsonlines(self, data: List[JsonType], append: bool=False, encoding: Optional[str]=DEFAULT_ENCODING, newline: str='\n', ignore_errors: bool=True, ensure_file_exists: bool=True, flush_every: int=0, log_errors: bool=False, **kwargs):
'\n \n '
if (ensure_file_exists and (not (await self.async_exists_))):
(await self.async_touch())
mode = ('a' if ((append and (await self.async_exists_)) or ensure_file_exists) else 'w')
async with self.async_open(mode=mode, encoding=encoding) as f:
(await Serialize.Json.async_write_jsonlines(f, data=data, newline=newline, ignore_errors=ignore_errors, flush_every=flush_every, log_errors=log_errors, **kwargs))<|docstring|>Writes JSON Lines to File Asyncronously<|endoftext|> |
672e2f55057c281419df114de8ea8427eabc71f7e630eb03f04052f9d6e32a13 | async def async_write_yaml(self, data: JsonType, encoding: Optional[str]=DEFAULT_ENCODING, **kwargs) -> None:
'\n Writes YAML to File Asyncronously\n '
async with self.async_open('w', encoding=encoding) as f:
(await f.write((await Serialize.Yaml.async_dumps(data, **kwargs)))) | Writes YAML to File Asyncronously | lazy/io/pathz_v2/base.py | async_write_yaml | trisongz/lazycls | 2 | python | async def async_write_yaml(self, data: JsonType, encoding: Optional[str]=DEFAULT_ENCODING, **kwargs) -> None:
'\n \n '
async with self.async_open('w', encoding=encoding) as f:
(await f.write((await Serialize.Yaml.async_dumps(data, **kwargs)))) | async def async_write_yaml(self, data: JsonType, encoding: Optional[str]=DEFAULT_ENCODING, **kwargs) -> None:
'\n \n '
async with self.async_open('w', encoding=encoding) as f:
(await f.write((await Serialize.Yaml.async_dumps(data, **kwargs))))<|docstring|>Writes YAML to File Asyncronously<|endoftext|> |
c9f77de318edb517c204392a19a3ac570383084ac3f921a8845e3a2576b301cc | async def async_write_pickle(self, obj: Any, **kwargs) -> None:
'\n Writes Pickle to File Asyncronously\n '
data = (await Serialize.Pkl.async_dumps(obj, **kwargs))
return (await self.async_write_bytes(data)) | Writes Pickle to File Asyncronously | lazy/io/pathz_v2/base.py | async_write_pickle | trisongz/lazycls | 2 | python | async def async_write_pickle(self, obj: Any, **kwargs) -> None:
'\n \n '
data = (await Serialize.Pkl.async_dumps(obj, **kwargs))
return (await self.async_write_bytes(data)) | async def async_write_pickle(self, obj: Any, **kwargs) -> None:
'\n \n '
data = (await Serialize.Pkl.async_dumps(obj, **kwargs))
return (await self.async_write_bytes(data))<|docstring|>Writes Pickle to File Asyncronously<|endoftext|> |
457d69344c6ec2ff5c6cd6ee8cdff615f24cc5b8106e83b7cf421f9cca42a619 | def __init__(self, tarball_name, package=None):
'\n A (third-party downloadable) tarball\n\n Note that the tarball might also be a different kind of\n archive format that is supported, it does not necessarily have\n to be tar.\n\n INPUT:\n\n - ``tarball_name`` - string. The full filename (``foo-1.3.tar.bz2``)\n of a tarball on the Sage mirror network.\n '
self.__filename = tarball_name
if (package is None):
self.__package = None
for pkg in Package.all():
if (pkg.tarball_filename == tarball_name):
self.__package = pkg.tarball_package
if (self.package is None):
error = 'tarball {0} is not referenced by any Sage package'.format(tarball_name)
log.error(error)
raise ValueError(error)
else:
self.__package = package
if (package.tarball_filename != tarball_name):
error = 'tarball {0} is not referenced by the {1} package'.format(tarball_name, package.name)
log.error(error)
raise ValueError(error) | A (third-party downloadable) tarball
Note that the tarball might also be a different kind of
archive format that is supported, it does not necessarily have
to be tar.
INPUT:
- ``tarball_name`` - string. The full filename (``foo-1.3.tar.bz2``)
of a tarball on the Sage mirror network. | build/sage_bootstrap/tarball.py | __init__ | velasjk3/SageMath | 1,742 | python | def __init__(self, tarball_name, package=None):
'\n A (third-party downloadable) tarball\n\n Note that the tarball might also be a different kind of\n archive format that is supported, it does not necessarily have\n to be tar.\n\n INPUT:\n\n - ``tarball_name`` - string. The full filename (``foo-1.3.tar.bz2``)\n of a tarball on the Sage mirror network.\n '
self.__filename = tarball_name
if (package is None):
self.__package = None
for pkg in Package.all():
if (pkg.tarball_filename == tarball_name):
self.__package = pkg.tarball_package
if (self.package is None):
error = 'tarball {0} is not referenced by any Sage package'.format(tarball_name)
log.error(error)
raise ValueError(error)
else:
self.__package = package
if (package.tarball_filename != tarball_name):
error = 'tarball {0} is not referenced by the {1} package'.format(tarball_name, package.name)
log.error(error)
raise ValueError(error) | def __init__(self, tarball_name, package=None):
'\n A (third-party downloadable) tarball\n\n Note that the tarball might also be a different kind of\n archive format that is supported, it does not necessarily have\n to be tar.\n\n INPUT:\n\n - ``tarball_name`` - string. The full filename (``foo-1.3.tar.bz2``)\n of a tarball on the Sage mirror network.\n '
self.__filename = tarball_name
if (package is None):
self.__package = None
for pkg in Package.all():
if (pkg.tarball_filename == tarball_name):
self.__package = pkg.tarball_package
if (self.package is None):
error = 'tarball {0} is not referenced by any Sage package'.format(tarball_name)
log.error(error)
raise ValueError(error)
else:
self.__package = package
if (package.tarball_filename != tarball_name):
error = 'tarball {0} is not referenced by the {1} package'.format(tarball_name, package.name)
log.error(error)
raise ValueError(error)<|docstring|>A (third-party downloadable) tarball
Note that the tarball might also be a different kind of
archive format that is supported, it does not necessarily have
to be tar.
INPUT:
- ``tarball_name`` - string. The full filename (``foo-1.3.tar.bz2``)
of a tarball on the Sage mirror network.<|endoftext|> |
9c70adb382bb78ea5d3b0b6c4295765da6568d6b8b52cc45ad40f14b772f0c7e | @property
def filename(self):
'\n Return the tarball filename\n\n OUTPUT:\n\n String. The full filename (``foo-1.3.tar.bz2``) of the\n tarball.\n '
return self.__filename | Return the tarball filename
OUTPUT:
String. The full filename (``foo-1.3.tar.bz2``) of the
tarball. | build/sage_bootstrap/tarball.py | filename | velasjk3/SageMath | 1,742 | python | @property
def filename(self):
'\n Return the tarball filename\n\n OUTPUT:\n\n String. The full filename (``foo-1.3.tar.bz2``) of the\n tarball.\n '
return self.__filename | @property
def filename(self):
'\n Return the tarball filename\n\n OUTPUT:\n\n String. The full filename (``foo-1.3.tar.bz2``) of the\n tarball.\n '
return self.__filename<|docstring|>Return the tarball filename
OUTPUT:
String. The full filename (``foo-1.3.tar.bz2``) of the
tarball.<|endoftext|> |
f70f63f337b7bd424e88b1f5cba3d76c9999a78161dd91e04f33cc5271b4628a | @property
def package(self):
'\n Return the package that the tarball belongs to\n\n OUTPUT:\n\n Instance of :class:`sage_bootstrap.package.Package`\n '
return self.__package | Return the package that the tarball belongs to
OUTPUT:
Instance of :class:`sage_bootstrap.package.Package` | build/sage_bootstrap/tarball.py | package | velasjk3/SageMath | 1,742 | python | @property
def package(self):
'\n Return the package that the tarball belongs to\n\n OUTPUT:\n\n Instance of :class:`sage_bootstrap.package.Package`\n '
return self.__package | @property
def package(self):
'\n Return the package that the tarball belongs to\n\n OUTPUT:\n\n Instance of :class:`sage_bootstrap.package.Package`\n '
return self.__package<|docstring|>Return the package that the tarball belongs to
OUTPUT:
Instance of :class:`sage_bootstrap.package.Package`<|endoftext|> |
a6e20b9a128c1591fe05eea330f0bcb036f3ab8c8cb439de0096e6537e7b2359 | @property
def upstream_fqn(self):
'\n The fully-qualified (including directory) file name in the upstream directory.\n '
return os.path.join(SAGE_DISTFILES, self.filename) | The fully-qualified (including directory) file name in the upstream directory. | build/sage_bootstrap/tarball.py | upstream_fqn | velasjk3/SageMath | 1,742 | python | @property
def upstream_fqn(self):
'\n \n '
return os.path.join(SAGE_DISTFILES, self.filename) | @property
def upstream_fqn(self):
'\n \n '
return os.path.join(SAGE_DISTFILES, self.filename)<|docstring|>The fully-qualified (including directory) file name in the upstream directory.<|endoftext|> |
135430a9f966d816e98ea743b52075444cc3ebb10f8edc2572d418d93276c157 | def checksum_verifies(self):
'\n Test whether the checksum of the downloaded file is correct.\n '
sha1 = self._compute_sha1()
return (sha1 == self.package.sha1) | Test whether the checksum of the downloaded file is correct. | build/sage_bootstrap/tarball.py | checksum_verifies | velasjk3/SageMath | 1,742 | python | def checksum_verifies(self):
'\n \n '
sha1 = self._compute_sha1()
return (sha1 == self.package.sha1) | def checksum_verifies(self):
'\n \n '
sha1 = self._compute_sha1()
return (sha1 == self.package.sha1)<|docstring|>Test whether the checksum of the downloaded file is correct.<|endoftext|> |
7d951b20852015d0f7e0684c86a91692a5a7ad2902beaf1aa129ecded1825064 | def download(self, allow_upstream=False):
'\n Download the tarball to the upstream directory.\n\n If allow_upstream is False and the package cannot be found\n on the sage mirrors, fall back to downloading it from\n the upstream URL if the package has one.\n '
if (not self.filename):
raise ValueError('non-normal package does define a tarball, so cannot download')
destination = self.upstream_fqn
if os.path.isfile(destination):
if self.checksum_verifies():
log.info('Using cached file {destination}'.format(destination=destination))
return
else:
log.warning('Invalid checksum; ignoring cached file {destination}'.format(destination=destination))
successful_download = False
log.info('Attempting to download package {0} from mirrors'.format(self.filename))
for mirror in MirrorList():
url = (mirror + '/'.join(['spkg', 'upstream', self.package.name, self.filename]))
log.info(url)
try:
Download(url, destination).run()
successful_download = True
break
except IOError:
log.debug('File not on mirror')
if (not successful_download):
url = self.package.tarball_upstream_url
if (allow_upstream and url):
log.info('Attempting to download from {}'.format(url))
try:
Download(url, destination).run()
successful_download = True
except IOError:
raise FileNotMirroredError('tarball does not exist on mirror network and neither at the upstream URL')
else:
raise FileNotMirroredError('tarball does not exist on mirror network')
if (not self.checksum_verifies()):
raise ChecksumError('checksum does not match') | Download the tarball to the upstream directory.
If allow_upstream is False and the package cannot be found
on the sage mirrors, fall back to downloading it from
the upstream URL if the package has one. | build/sage_bootstrap/tarball.py | download | velasjk3/SageMath | 1,742 | python | def download(self, allow_upstream=False):
'\n Download the tarball to the upstream directory.\n\n If allow_upstream is False and the package cannot be found\n on the sage mirrors, fall back to downloading it from\n the upstream URL if the package has one.\n '
if (not self.filename):
raise ValueError('non-normal package does define a tarball, so cannot download')
destination = self.upstream_fqn
if os.path.isfile(destination):
if self.checksum_verifies():
log.info('Using cached file {destination}'.format(destination=destination))
return
else:
log.warning('Invalid checksum; ignoring cached file {destination}'.format(destination=destination))
successful_download = False
log.info('Attempting to download package {0} from mirrors'.format(self.filename))
for mirror in MirrorList():
url = (mirror + '/'.join(['spkg', 'upstream', self.package.name, self.filename]))
log.info(url)
try:
Download(url, destination).run()
successful_download = True
break
except IOError:
log.debug('File not on mirror')
if (not successful_download):
url = self.package.tarball_upstream_url
if (allow_upstream and url):
log.info('Attempting to download from {}'.format(url))
try:
Download(url, destination).run()
successful_download = True
except IOError:
raise FileNotMirroredError('tarball does not exist on mirror network and neither at the upstream URL')
else:
raise FileNotMirroredError('tarball does not exist on mirror network')
if (not self.checksum_verifies()):
raise ChecksumError('checksum does not match') | def download(self, allow_upstream=False):
'\n Download the tarball to the upstream directory.\n\n If allow_upstream is False and the package cannot be found\n on the sage mirrors, fall back to downloading it from\n the upstream URL if the package has one.\n '
if (not self.filename):
raise ValueError('non-normal package does define a tarball, so cannot download')
destination = self.upstream_fqn
if os.path.isfile(destination):
if self.checksum_verifies():
log.info('Using cached file {destination}'.format(destination=destination))
return
else:
log.warning('Invalid checksum; ignoring cached file {destination}'.format(destination=destination))
successful_download = False
log.info('Attempting to download package {0} from mirrors'.format(self.filename))
for mirror in MirrorList():
url = (mirror + '/'.join(['spkg', 'upstream', self.package.name, self.filename]))
log.info(url)
try:
Download(url, destination).run()
successful_download = True
break
except IOError:
log.debug('File not on mirror')
if (not successful_download):
url = self.package.tarball_upstream_url
if (allow_upstream and url):
log.info('Attempting to download from {}'.format(url))
try:
Download(url, destination).run()
successful_download = True
except IOError:
raise FileNotMirroredError('tarball does not exist on mirror network and neither at the upstream URL')
else:
raise FileNotMirroredError('tarball does not exist on mirror network')
if (not self.checksum_verifies()):
raise ChecksumError('checksum does not match')<|docstring|>Download the tarball to the upstream directory.
If allow_upstream is False and the package cannot be found
on the sage mirrors, fall back to downloading it from
the upstream URL if the package has one.<|endoftext|> |
e551705a0cfb0fd906a355d2c6e8d0597c3a671fd6f4449194a17cd48bd4be4a | def save_as(self, destination):
'\n Save the tarball as a new file\n '
import shutil
shutil.copy(self.upstream_fqn, destination) | Save the tarball as a new file | build/sage_bootstrap/tarball.py | save_as | velasjk3/SageMath | 1,742 | python | def save_as(self, destination):
'\n \n '
import shutil
shutil.copy(self.upstream_fqn, destination) | def save_as(self, destination):
'\n \n '
import shutil
shutil.copy(self.upstream_fqn, destination)<|docstring|>Save the tarball as a new file<|endoftext|> |
c7c6b1971392dfff0b16ed4ff450ce73dba94986a7dca22cfc22cb03db824222 | def test_analyze_nir(test_data):
'Test for PlantCV.'
outputs.clear()
img = cv2.imread(test_data.small_gray_img, (- 1))
mask = cv2.imread(test_data.small_bin_img, (- 1))
_ = analyze_nir_intensity(gray_img=img, mask=mask, bins=256, histplot=True)
assert (int(outputs.observations['default']['nir_median']['value']) == 117) | Test for PlantCV. | tests/plantcv/test_analyze_nir_intensity.py | test_analyze_nir | ygarrot/plantcv | 1 | python | def test_analyze_nir(test_data):
outputs.clear()
img = cv2.imread(test_data.small_gray_img, (- 1))
mask = cv2.imread(test_data.small_bin_img, (- 1))
_ = analyze_nir_intensity(gray_img=img, mask=mask, bins=256, histplot=True)
assert (int(outputs.observations['default']['nir_median']['value']) == 117) | def test_analyze_nir(test_data):
outputs.clear()
img = cv2.imread(test_data.small_gray_img, (- 1))
mask = cv2.imread(test_data.small_bin_img, (- 1))
_ = analyze_nir_intensity(gray_img=img, mask=mask, bins=256, histplot=True)
assert (int(outputs.observations['default']['nir_median']['value']) == 117)<|docstring|>Test for PlantCV.<|endoftext|> |
035456266e767e36fdf76915b73e7eb038eedf5f1d4e4e282d187e746c3fa5bf | def test_analyze_nir_16bit(test_data):
'Test for PlantCV.'
outputs.clear()
img = cv2.imread(test_data.small_gray_img, (- 1))
mask = cv2.imread(test_data.small_bin_img, (- 1))
_ = analyze_nir_intensity(gray_img=np.uint16(img), mask=mask, bins=256, histplot=True)
assert (int(outputs.observations['default']['nir_median']['value']) == 117) | Test for PlantCV. | tests/plantcv/test_analyze_nir_intensity.py | test_analyze_nir_16bit | ygarrot/plantcv | 1 | python | def test_analyze_nir_16bit(test_data):
outputs.clear()
img = cv2.imread(test_data.small_gray_img, (- 1))
mask = cv2.imread(test_data.small_bin_img, (- 1))
_ = analyze_nir_intensity(gray_img=np.uint16(img), mask=mask, bins=256, histplot=True)
assert (int(outputs.observations['default']['nir_median']['value']) == 117) | def test_analyze_nir_16bit(test_data):
outputs.clear()
img = cv2.imread(test_data.small_gray_img, (- 1))
mask = cv2.imread(test_data.small_bin_img, (- 1))
_ = analyze_nir_intensity(gray_img=np.uint16(img), mask=mask, bins=256, histplot=True)
assert (int(outputs.observations['default']['nir_median']['value']) == 117)<|docstring|>Test for PlantCV.<|endoftext|> |
89ffb4473990c464521852c4f4d1f7605a8bb3eb72884a90533d1cc101cafd7e | def __init__(self, cfg: CfgNode):
'\n Initialize CSE loss from configuration options\n\n Args:\n cfg (CfgNode): configuration options\n '
self.w_segm = cfg.MODEL.ROI_DENSEPOSE_HEAD.INDEX_WEIGHTS
self.w_embed = cfg.MODEL.ROI_DENSEPOSE_HEAD.CSE.EMBED_LOSS_WEIGHT
self.segm_loss = MaskOrSegmentationLoss(cfg)
self.embed_loss = DensePoseCseLoss.create_embed_loss(cfg) | Initialize CSE loss from configuration options
Args:
cfg (CfgNode): configuration options | projects/DensePose/densepose/modeling/losses/cse.py | __init__ | vghost2008/detectron2 | 100 | python | def __init__(self, cfg: CfgNode):
'\n Initialize CSE loss from configuration options\n\n Args:\n cfg (CfgNode): configuration options\n '
self.w_segm = cfg.MODEL.ROI_DENSEPOSE_HEAD.INDEX_WEIGHTS
self.w_embed = cfg.MODEL.ROI_DENSEPOSE_HEAD.CSE.EMBED_LOSS_WEIGHT
self.segm_loss = MaskOrSegmentationLoss(cfg)
self.embed_loss = DensePoseCseLoss.create_embed_loss(cfg) | def __init__(self, cfg: CfgNode):
'\n Initialize CSE loss from configuration options\n\n Args:\n cfg (CfgNode): configuration options\n '
self.w_segm = cfg.MODEL.ROI_DENSEPOSE_HEAD.INDEX_WEIGHTS
self.w_embed = cfg.MODEL.ROI_DENSEPOSE_HEAD.CSE.EMBED_LOSS_WEIGHT
self.segm_loss = MaskOrSegmentationLoss(cfg)
self.embed_loss = DensePoseCseLoss.create_embed_loss(cfg)<|docstring|>Initialize CSE loss from configuration options
Args:
cfg (CfgNode): configuration options<|endoftext|> |
964ce90cad23a97a1446de497b75f10d6fa678c12e20d279637b0c1fa9de9f74 | def _validate_variable(self, variable, context=None):
'Validates that variable is 1d array\n '
if (len(np.atleast_2d(variable)) != 1):
raise FunctionError('Variable for {} must contain a single array or list of numbers'.format(self.name))
return variable | Validates that variable is 1d array | psyneulink/core/components/functions/nonstateful/objectivefunctions.py | _validate_variable | MetaCell/PsyNeuLink | 67 | python | def _validate_variable(self, variable, context=None):
'\n '
if (len(np.atleast_2d(variable)) != 1):
raise FunctionError('Variable for {} must contain a single array or list of numbers'.format(self.name))
return variable | def _validate_variable(self, variable, context=None):
'\n '
if (len(np.atleast_2d(variable)) != 1):
raise FunctionError('Variable for {} must contain a single array or list of numbers'.format(self.name))
return variable<|docstring|>Validates that variable is 1d array<|endoftext|> |
8d654c8582b7dbde19a490af1a4bde0fc5860b4ceeea0e74fedbcd663ed1dc27 | def _validate_params(self, variable, request_set, target_set=None, context=None):
'Validate matrix param\n\n `matrix <Stability.matrix>` argument must be one of the following\n - 2d list, np.ndarray or np.matrix\n - ParameterPort for one of the above\n - MappingProjection with a parameterPorts[MATRIX] for one of the above\n\n Parse matrix specification to insure it resolves to a square matrix\n (but leave in the form in which it was specified so that, if it is a ParameterPort or MappingProjection,\n its current value can be accessed at runtime (i.e., it can be used as a "pointer")\n '
if ((MATRIX in target_set) and (not isinstance(target_set[MATRIX], str))):
from psyneulink.core.components.projections.pathway.mappingprojection import MappingProjection
from psyneulink.core.components.ports.parameterport import ParameterPort
matrix = target_set[MATRIX]
if isinstance(matrix, MappingProjection):
try:
matrix = matrix._parameter_ports[MATRIX].value
param_type_string = "MappingProjection's ParameterPort"
except KeyError:
raise FunctionError('The MappingProjection specified for the {} arg of {} ({}) must have a {} ParameterPort that has been assigned a 2d array or matrix'.format(MATRIX, self.name, matrix.shape, MATRIX))
elif isinstance(matrix, ParameterPort):
try:
matrix = matrix.value
param_type_string = 'ParameterPort'
except KeyError:
raise FunctionError('The value of the {} parameterPort specified for the {} arg of {} ({}) must be a 2d array or matrix'.format(MATRIX, MATRIX, self.name, matrix.shape))
else:
param_type_string = 'array or matrix'
matrix = np.array(matrix)
if (matrix.ndim != 2):
raise FunctionError('The value of the {} specified for the {} arg of {} ({}) must be a 2d array or matrix'.format(param_type_string, MATRIX, self.name, matrix))
rows = matrix.shape[0]
cols = matrix.shape[1]
squeezed = np.array(self.defaults.variable)
if (squeezed.ndim > 1):
squeezed = np.squeeze(squeezed)
size = safe_len(squeezed)
if (rows != size):
raise FunctionError('The value of the {} specified for the {} arg of {} is the wrong size;it is {}x{}, but must be square matrix of size {}'.format(param_type_string, MATRIX, self.name, rows, cols, size))
if (rows != cols):
raise FunctionError('The value of the {} specified for the {} arg of {} ({}) must be a square matrix'.format(param_type_string, MATRIX, self.name, matrix))
super()._validate_params(request_set=request_set, target_set=target_set, context=context) | Validate matrix param
`matrix <Stability.matrix>` argument must be one of the following
- 2d list, np.ndarray or np.matrix
- ParameterPort for one of the above
- MappingProjection with a parameterPorts[MATRIX] for one of the above
Parse matrix specification to insure it resolves to a square matrix
(but leave in the form in which it was specified so that, if it is a ParameterPort or MappingProjection,
its current value can be accessed at runtime (i.e., it can be used as a "pointer") | psyneulink/core/components/functions/nonstateful/objectivefunctions.py | _validate_params | MetaCell/PsyNeuLink | 67 | python | def _validate_params(self, variable, request_set, target_set=None, context=None):
'Validate matrix param\n\n `matrix <Stability.matrix>` argument must be one of the following\n - 2d list, np.ndarray or np.matrix\n - ParameterPort for one of the above\n - MappingProjection with a parameterPorts[MATRIX] for one of the above\n\n Parse matrix specification to insure it resolves to a square matrix\n (but leave in the form in which it was specified so that, if it is a ParameterPort or MappingProjection,\n its current value can be accessed at runtime (i.e., it can be used as a "pointer")\n '
if ((MATRIX in target_set) and (not isinstance(target_set[MATRIX], str))):
from psyneulink.core.components.projections.pathway.mappingprojection import MappingProjection
from psyneulink.core.components.ports.parameterport import ParameterPort
matrix = target_set[MATRIX]
if isinstance(matrix, MappingProjection):
try:
matrix = matrix._parameter_ports[MATRIX].value
param_type_string = "MappingProjection's ParameterPort"
except KeyError:
raise FunctionError('The MappingProjection specified for the {} arg of {} ({}) must have a {} ParameterPort that has been assigned a 2d array or matrix'.format(MATRIX, self.name, matrix.shape, MATRIX))
elif isinstance(matrix, ParameterPort):
try:
matrix = matrix.value
param_type_string = 'ParameterPort'
except KeyError:
raise FunctionError('The value of the {} parameterPort specified for the {} arg of {} ({}) must be a 2d array or matrix'.format(MATRIX, MATRIX, self.name, matrix.shape))
else:
param_type_string = 'array or matrix'
matrix = np.array(matrix)
if (matrix.ndim != 2):
raise FunctionError('The value of the {} specified for the {} arg of {} ({}) must be a 2d array or matrix'.format(param_type_string, MATRIX, self.name, matrix))
rows = matrix.shape[0]
cols = matrix.shape[1]
squeezed = np.array(self.defaults.variable)
if (squeezed.ndim > 1):
squeezed = np.squeeze(squeezed)
size = safe_len(squeezed)
if (rows != size):
raise FunctionError('The value of the {} specified for the {} arg of {} is the wrong size;it is {}x{}, but must be square matrix of size {}'.format(param_type_string, MATRIX, self.name, rows, cols, size))
if (rows != cols):
raise FunctionError('The value of the {} specified for the {} arg of {} ({}) must be a square matrix'.format(param_type_string, MATRIX, self.name, matrix))
super()._validate_params(request_set=request_set, target_set=target_set, context=context) | def _validate_params(self, variable, request_set, target_set=None, context=None):
'Validate matrix param\n\n `matrix <Stability.matrix>` argument must be one of the following\n - 2d list, np.ndarray or np.matrix\n - ParameterPort for one of the above\n - MappingProjection with a parameterPorts[MATRIX] for one of the above\n\n Parse matrix specification to insure it resolves to a square matrix\n (but leave in the form in which it was specified so that, if it is a ParameterPort or MappingProjection,\n its current value can be accessed at runtime (i.e., it can be used as a "pointer")\n '
if ((MATRIX in target_set) and (not isinstance(target_set[MATRIX], str))):
from psyneulink.core.components.projections.pathway.mappingprojection import MappingProjection
from psyneulink.core.components.ports.parameterport import ParameterPort
matrix = target_set[MATRIX]
if isinstance(matrix, MappingProjection):
try:
matrix = matrix._parameter_ports[MATRIX].value
param_type_string = "MappingProjection's ParameterPort"
except KeyError:
raise FunctionError('The MappingProjection specified for the {} arg of {} ({}) must have a {} ParameterPort that has been assigned a 2d array or matrix'.format(MATRIX, self.name, matrix.shape, MATRIX))
elif isinstance(matrix, ParameterPort):
try:
matrix = matrix.value
param_type_string = 'ParameterPort'
except KeyError:
raise FunctionError('The value of the {} parameterPort specified for the {} arg of {} ({}) must be a 2d array or matrix'.format(MATRIX, MATRIX, self.name, matrix.shape))
else:
param_type_string = 'array or matrix'
matrix = np.array(matrix)
if (matrix.ndim != 2):
raise FunctionError('The value of the {} specified for the {} arg of {} ({}) must be a 2d array or matrix'.format(param_type_string, MATRIX, self.name, matrix))
rows = matrix.shape[0]
cols = matrix.shape[1]
squeezed = np.array(self.defaults.variable)
if (squeezed.ndim > 1):
squeezed = np.squeeze(squeezed)
size = safe_len(squeezed)
if (rows != size):
raise FunctionError('The value of the {} specified for the {} arg of {} is the wrong size;it is {}x{}, but must be square matrix of size {}'.format(param_type_string, MATRIX, self.name, rows, cols, size))
if (rows != cols):
raise FunctionError('The value of the {} specified for the {} arg of {} ({}) must be a square matrix'.format(param_type_string, MATRIX, self.name, matrix))
super()._validate_params(request_set=request_set, target_set=target_set, context=context)<|docstring|>Validate matrix param
`matrix <Stability.matrix>` argument must be one of the following
- 2d list, np.ndarray or np.matrix
- ParameterPort for one of the above
- MappingProjection with a parameterPorts[MATRIX] for one of the above
Parse matrix specification to insure it resolves to a square matrix
(but leave in the form in which it was specified so that, if it is a ParameterPort or MappingProjection,
its current value can be accessed at runtime (i.e., it can be used as a "pointer")<|endoftext|> |
d45dcb61d4c5f246cc212ea411e287884fb92afb91c84dbb1d64a20203d5d4f1 | def _instantiate_attributes_before_function(self, function=None, context=None):
'Instantiate matrix\n\n Specified matrix is convolved with HOLLOW_MATRIX\n to eliminate the diagonal (self-connections) from the calculation.\n The `Distance` Function is used for all calculations except ENERGY (which is not really a distance metric).\n If ENTROPY is specified as the metric, convert to CROSS_ENTROPY for use with the Distance Function.\n :param function:\n\n '
from psyneulink.core.components.projections.pathway.mappingprojection import MappingProjection
from psyneulink.core.components.ports.parameterport import ParameterPort
squeezed = np.array(self.defaults.variable)
if (squeezed.ndim > 1):
squeezed = np.squeeze(squeezed)
size = safe_len(squeezed)
matrix = self.parameters.matrix._get(context)
if isinstance(matrix, MappingProjection):
matrix = matrix._parameter_ports[MATRIX]
elif isinstance(matrix, ParameterPort):
pass
else:
matrix = get_matrix(matrix, size, size)
self.parameters.matrix._set(matrix, context)
self._hollow_matrix = get_matrix(HOLLOW_MATRIX, size, size)
default_variable = [self.defaults.variable, self.defaults.variable]
if (self.metric == ENTROPY):
self.metric_fct = Distance(default_variable=default_variable, metric=CROSS_ENTROPY, normalize=self.normalize)
elif (self.metric in DISTANCE_METRICS._set()):
self.metric_fct = Distance(default_variable=default_variable, metric=self.metric, normalize=self.normalize)
else:
assert False, 'Unknown metric'
self.parameters.metric_fct.set(self.metric_fct) | Instantiate matrix
Specified matrix is convolved with HOLLOW_MATRIX
to eliminate the diagonal (self-connections) from the calculation.
The `Distance` Function is used for all calculations except ENERGY (which is not really a distance metric).
If ENTROPY is specified as the metric, convert to CROSS_ENTROPY for use with the Distance Function.
:param function: | psyneulink/core/components/functions/nonstateful/objectivefunctions.py | _instantiate_attributes_before_function | MetaCell/PsyNeuLink | 67 | python | def _instantiate_attributes_before_function(self, function=None, context=None):
'Instantiate matrix\n\n Specified matrix is convolved with HOLLOW_MATRIX\n to eliminate the diagonal (self-connections) from the calculation.\n The `Distance` Function is used for all calculations except ENERGY (which is not really a distance metric).\n If ENTROPY is specified as the metric, convert to CROSS_ENTROPY for use with the Distance Function.\n :param function:\n\n '
from psyneulink.core.components.projections.pathway.mappingprojection import MappingProjection
from psyneulink.core.components.ports.parameterport import ParameterPort
squeezed = np.array(self.defaults.variable)
if (squeezed.ndim > 1):
squeezed = np.squeeze(squeezed)
size = safe_len(squeezed)
matrix = self.parameters.matrix._get(context)
if isinstance(matrix, MappingProjection):
matrix = matrix._parameter_ports[MATRIX]
elif isinstance(matrix, ParameterPort):
pass
else:
matrix = get_matrix(matrix, size, size)
self.parameters.matrix._set(matrix, context)
self._hollow_matrix = get_matrix(HOLLOW_MATRIX, size, size)
default_variable = [self.defaults.variable, self.defaults.variable]
if (self.metric == ENTROPY):
self.metric_fct = Distance(default_variable=default_variable, metric=CROSS_ENTROPY, normalize=self.normalize)
elif (self.metric in DISTANCE_METRICS._set()):
self.metric_fct = Distance(default_variable=default_variable, metric=self.metric, normalize=self.normalize)
else:
assert False, 'Unknown metric'
self.parameters.metric_fct.set(self.metric_fct) | def _instantiate_attributes_before_function(self, function=None, context=None):
'Instantiate matrix\n\n Specified matrix is convolved with HOLLOW_MATRIX\n to eliminate the diagonal (self-connections) from the calculation.\n The `Distance` Function is used for all calculations except ENERGY (which is not really a distance metric).\n If ENTROPY is specified as the metric, convert to CROSS_ENTROPY for use with the Distance Function.\n :param function:\n\n '
from psyneulink.core.components.projections.pathway.mappingprojection import MappingProjection
from psyneulink.core.components.ports.parameterport import ParameterPort
squeezed = np.array(self.defaults.variable)
if (squeezed.ndim > 1):
squeezed = np.squeeze(squeezed)
size = safe_len(squeezed)
matrix = self.parameters.matrix._get(context)
if isinstance(matrix, MappingProjection):
matrix = matrix._parameter_ports[MATRIX]
elif isinstance(matrix, ParameterPort):
pass
else:
matrix = get_matrix(matrix, size, size)
self.parameters.matrix._set(matrix, context)
self._hollow_matrix = get_matrix(HOLLOW_MATRIX, size, size)
default_variable = [self.defaults.variable, self.defaults.variable]
if (self.metric == ENTROPY):
self.metric_fct = Distance(default_variable=default_variable, metric=CROSS_ENTROPY, normalize=self.normalize)
elif (self.metric in DISTANCE_METRICS._set()):
self.metric_fct = Distance(default_variable=default_variable, metric=self.metric, normalize=self.normalize)
else:
assert False, 'Unknown metric'
self.parameters.metric_fct.set(self.metric_fct)<|docstring|>Instantiate matrix
Specified matrix is convolved with HOLLOW_MATRIX
to eliminate the diagonal (self-connections) from the calculation.
The `Distance` Function is used for all calculations except ENERGY (which is not really a distance metric).
If ENTROPY is specified as the metric, convert to CROSS_ENTROPY for use with the Distance Function.
:param function:<|endoftext|> |
63e5af873f4a66e6c3b9f492e17b1bc15e5b2c3865294b7df977acf969977d29 | def _function(self, variable=None, context=None, params=None):
'Calculate the stability of `variable <Stability.variable>`.\n\n Compare the value of `variable <Stability.variable>` with its value after transformation by\n `matrix <Stability.matrix>` and `transfer_fct <Stability.transfer_fct>` (if specified), using the specified\n `metric <Stability.metric>`. If `normalize <Stability.normalize>` is `True`, the result is divided\n by the length of `variable <Stability.variable>`.\n\n Returns\n -------\n\n stability : scalar\n\n '
variable = np.array(variable)
if (variable.ndim > 1):
variable = np.squeeze(variable)
matrix = self._get_current_parameter_value(MATRIX, context)
current = variable
transformed = np.dot((matrix * self._hollow_matrix), variable)
if (self.transfer_fct is not None):
transformed = self.transfer_fct(transformed)
result = self.metric_fct(variable=[current, transformed], context=context)
return self.convert_output_type(result) | Calculate the stability of `variable <Stability.variable>`.
Compare the value of `variable <Stability.variable>` with its value after transformation by
`matrix <Stability.matrix>` and `transfer_fct <Stability.transfer_fct>` (if specified), using the specified
`metric <Stability.metric>`. If `normalize <Stability.normalize>` is `True`, the result is divided
by the length of `variable <Stability.variable>`.
Returns
-------
stability : scalar | psyneulink/core/components/functions/nonstateful/objectivefunctions.py | _function | MetaCell/PsyNeuLink | 67 | python | def _function(self, variable=None, context=None, params=None):
'Calculate the stability of `variable <Stability.variable>`.\n\n Compare the value of `variable <Stability.variable>` with its value after transformation by\n `matrix <Stability.matrix>` and `transfer_fct <Stability.transfer_fct>` (if specified), using the specified\n `metric <Stability.metric>`. If `normalize <Stability.normalize>` is `True`, the result is divided\n by the length of `variable <Stability.variable>`.\n\n Returns\n -------\n\n stability : scalar\n\n '
variable = np.array(variable)
if (variable.ndim > 1):
variable = np.squeeze(variable)
matrix = self._get_current_parameter_value(MATRIX, context)
current = variable
transformed = np.dot((matrix * self._hollow_matrix), variable)
if (self.transfer_fct is not None):
transformed = self.transfer_fct(transformed)
result = self.metric_fct(variable=[current, transformed], context=context)
return self.convert_output_type(result) | def _function(self, variable=None, context=None, params=None):
'Calculate the stability of `variable <Stability.variable>`.\n\n Compare the value of `variable <Stability.variable>` with its value after transformation by\n `matrix <Stability.matrix>` and `transfer_fct <Stability.transfer_fct>` (if specified), using the specified\n `metric <Stability.metric>`. If `normalize <Stability.normalize>` is `True`, the result is divided\n by the length of `variable <Stability.variable>`.\n\n Returns\n -------\n\n stability : scalar\n\n '
variable = np.array(variable)
if (variable.ndim > 1):
variable = np.squeeze(variable)
matrix = self._get_current_parameter_value(MATRIX, context)
current = variable
transformed = np.dot((matrix * self._hollow_matrix), variable)
if (self.transfer_fct is not None):
transformed = self.transfer_fct(transformed)
result = self.metric_fct(variable=[current, transformed], context=context)
return self.convert_output_type(result)<|docstring|>Calculate the stability of `variable <Stability.variable>`.
Compare the value of `variable <Stability.variable>` with its value after transformation by
`matrix <Stability.matrix>` and `transfer_fct <Stability.transfer_fct>` (if specified), using the specified
`metric <Stability.metric>`. If `normalize <Stability.normalize>` is `True`, the result is divided
by the length of `variable <Stability.variable>`.
Returns
-------
stability : scalar<|endoftext|> |
cccd5c535e5ee334501f3bf1bea16d87ee5666712a17d5f5eacbce2a840079b8 | def _validate_params(self, request_set, target_set=None, variable=None, context=None):
'Validate that variable has two items of equal length\n\n '
super()._validate_params(request_set=request_set, target_set=target_set, context=context)
err_two_items = FunctionError('variable for {} ({}) must have two items'.format(self.name, variable))
try:
if (len(variable) != 2):
raise err_two_items
except TypeError:
raise err_two_items
try:
if (len(variable[0]) != len(variable[1])):
raise FunctionError('The lengths of the items in the variable for {0} ({1},{2}) must be equal'.format(self.name, variable[0], variable[1]))
except TypeError:
if (is_iterable(variable[0]) ^ is_iterable(variable[1])):
raise FunctionError('The lengths of the items in the variable for {0} ({1},{2}) must be equal'.format(self.name, variable[0], variable[1])) | Validate that variable has two items of equal length | psyneulink/core/components/functions/nonstateful/objectivefunctions.py | _validate_params | MetaCell/PsyNeuLink | 67 | python | def _validate_params(self, request_set, target_set=None, variable=None, context=None):
'\n\n '
super()._validate_params(request_set=request_set, target_set=target_set, context=context)
err_two_items = FunctionError('variable for {} ({}) must have two items'.format(self.name, variable))
try:
if (len(variable) != 2):
raise err_two_items
except TypeError:
raise err_two_items
try:
if (len(variable[0]) != len(variable[1])):
raise FunctionError('The lengths of the items in the variable for {0} ({1},{2}) must be equal'.format(self.name, variable[0], variable[1]))
except TypeError:
if (is_iterable(variable[0]) ^ is_iterable(variable[1])):
raise FunctionError('The lengths of the items in the variable for {0} ({1},{2}) must be equal'.format(self.name, variable[0], variable[1])) | def _validate_params(self, request_set, target_set=None, variable=None, context=None):
'\n\n '
super()._validate_params(request_set=request_set, target_set=target_set, context=context)
err_two_items = FunctionError('variable for {} ({}) must have two items'.format(self.name, variable))
try:
if (len(variable) != 2):
raise err_two_items
except TypeError:
raise err_two_items
try:
if (len(variable[0]) != len(variable[1])):
raise FunctionError('The lengths of the items in the variable for {0} ({1},{2}) must be equal'.format(self.name, variable[0], variable[1]))
except TypeError:
if (is_iterable(variable[0]) ^ is_iterable(variable[1])):
raise FunctionError('The lengths of the items in the variable for {0} ({1},{2}) must be equal'.format(self.name, variable[0], variable[1]))<|docstring|>Validate that variable has two items of equal length<|endoftext|> |
712a4b108cdcaed174f1e2cafeaa17f658aee87045929fdfc88a8be4458ca518 | def _function(self, variable=None, context=None, params=None):
'Calculate the distance between the two vectors in `variable <Stability.variable>`.\n\n Use the `distance metric <DistanceMetrics>` specified in `metric <Distance.metric>` to calculate the distance.\n If `normalize <Distance.normalize>` is `True`, the result is divided by the length of `variable\n <Distance.variable>`.\n\n Returns\n -------\n\n distance : scalar\n\n '
try:
v1 = np.hstack(variable[0])
except TypeError:
v1 = variable[0]
try:
v2 = np.hstack(variable[1])
except TypeError:
v2 = variable[1]
if (self.metric == MAX_ABS_DIFF):
result = np.max(np.fabs((v1 - v2)))
elif (self.metric == DIFFERENCE):
result = np.sum(np.fabs((v1 - v2)))
elif (self.metric == NORMED_L0_SIMILARITY):
result = (1.0 - (np.sum(np.abs((v1 - v2))) / 4.0))
elif (self.metric == EUCLIDEAN):
result = np.linalg.norm((v2 - v1))
elif (self.metric == COSINE):
result = (1.0 - np.fabs(Distance.cosine(v1, v2)))
return self.convert_output_type(result)
elif (self.metric == CORRELATION):
result = (1.0 - np.fabs(Distance.correlation(v1, v2)))
return self.convert_output_type(result)
elif (self.metric == CROSS_ENTROPY):
if (not self.is_initializing):
v1 = np.where((v1 == 0), EPSILON, v1)
v2 = np.where((v2 == 0), EPSILON, v2)
result = (- np.sum(np.where(np.logical_and((v1 == 0), (v2 == 0)), 0.0, (v1 * np.log(v2)))))
elif (self.metric == ENERGY):
result = ((- np.sum((v1 * v2))) / 2.0)
else:
assert False, '{} not a recognized metric in {}'.format(self.metric, self.__class__.__name__)
if (self.normalize and (self.metric not in {MAX_ABS_DIFF, CORRELATION})):
if (self.metric == ENERGY):
result /= (len(v1) ** 2.0)
else:
result /= len(v1)
return self.convert_output_type(result) | Calculate the distance between the two vectors in `variable <Stability.variable>`.
Use the `distance metric <DistanceMetrics>` specified in `metric <Distance.metric>` to calculate the distance.
If `normalize <Distance.normalize>` is `True`, the result is divided by the length of `variable
<Distance.variable>`.
Returns
-------
distance : scalar | psyneulink/core/components/functions/nonstateful/objectivefunctions.py | _function | MetaCell/PsyNeuLink | 67 | python | def _function(self, variable=None, context=None, params=None):
'Calculate the distance between the two vectors in `variable <Stability.variable>`.\n\n Use the `distance metric <DistanceMetrics>` specified in `metric <Distance.metric>` to calculate the distance.\n If `normalize <Distance.normalize>` is `True`, the result is divided by the length of `variable\n <Distance.variable>`.\n\n Returns\n -------\n\n distance : scalar\n\n '
try:
v1 = np.hstack(variable[0])
except TypeError:
v1 = variable[0]
try:
v2 = np.hstack(variable[1])
except TypeError:
v2 = variable[1]
if (self.metric == MAX_ABS_DIFF):
result = np.max(np.fabs((v1 - v2)))
elif (self.metric == DIFFERENCE):
result = np.sum(np.fabs((v1 - v2)))
elif (self.metric == NORMED_L0_SIMILARITY):
result = (1.0 - (np.sum(np.abs((v1 - v2))) / 4.0))
elif (self.metric == EUCLIDEAN):
result = np.linalg.norm((v2 - v1))
elif (self.metric == COSINE):
result = (1.0 - np.fabs(Distance.cosine(v1, v2)))
return self.convert_output_type(result)
elif (self.metric == CORRELATION):
result = (1.0 - np.fabs(Distance.correlation(v1, v2)))
return self.convert_output_type(result)
elif (self.metric == CROSS_ENTROPY):
if (not self.is_initializing):
v1 = np.where((v1 == 0), EPSILON, v1)
v2 = np.where((v2 == 0), EPSILON, v2)
result = (- np.sum(np.where(np.logical_and((v1 == 0), (v2 == 0)), 0.0, (v1 * np.log(v2)))))
elif (self.metric == ENERGY):
result = ((- np.sum((v1 * v2))) / 2.0)
else:
assert False, '{} not a recognized metric in {}'.format(self.metric, self.__class__.__name__)
if (self.normalize and (self.metric not in {MAX_ABS_DIFF, CORRELATION})):
if (self.metric == ENERGY):
result /= (len(v1) ** 2.0)
else:
result /= len(v1)
return self.convert_output_type(result) | def _function(self, variable=None, context=None, params=None):
'Calculate the distance between the two vectors in `variable <Stability.variable>`.\n\n Use the `distance metric <DistanceMetrics>` specified in `metric <Distance.metric>` to calculate the distance.\n If `normalize <Distance.normalize>` is `True`, the result is divided by the length of `variable\n <Distance.variable>`.\n\n Returns\n -------\n\n distance : scalar\n\n '
try:
v1 = np.hstack(variable[0])
except TypeError:
v1 = variable[0]
try:
v2 = np.hstack(variable[1])
except TypeError:
v2 = variable[1]
if (self.metric == MAX_ABS_DIFF):
result = np.max(np.fabs((v1 - v2)))
elif (self.metric == DIFFERENCE):
result = np.sum(np.fabs((v1 - v2)))
elif (self.metric == NORMED_L0_SIMILARITY):
result = (1.0 - (np.sum(np.abs((v1 - v2))) / 4.0))
elif (self.metric == EUCLIDEAN):
result = np.linalg.norm((v2 - v1))
elif (self.metric == COSINE):
result = (1.0 - np.fabs(Distance.cosine(v1, v2)))
return self.convert_output_type(result)
elif (self.metric == CORRELATION):
result = (1.0 - np.fabs(Distance.correlation(v1, v2)))
return self.convert_output_type(result)
elif (self.metric == CROSS_ENTROPY):
if (not self.is_initializing):
v1 = np.where((v1 == 0), EPSILON, v1)
v2 = np.where((v2 == 0), EPSILON, v2)
result = (- np.sum(np.where(np.logical_and((v1 == 0), (v2 == 0)), 0.0, (v1 * np.log(v2)))))
elif (self.metric == ENERGY):
result = ((- np.sum((v1 * v2))) / 2.0)
else:
assert False, '{} not a recognized metric in {}'.format(self.metric, self.__class__.__name__)
if (self.normalize and (self.metric not in {MAX_ABS_DIFF, CORRELATION})):
if (self.metric == ENERGY):
result /= (len(v1) ** 2.0)
else:
result /= len(v1)
return self.convert_output_type(result)<|docstring|>Calculate the distance between the two vectors in `variable <Stability.variable>`.
Use the `distance metric <DistanceMetrics>` specified in `metric <Distance.metric>` to calculate the distance.
If `normalize <Distance.normalize>` is `True`, the result is divided by the length of `variable
<Distance.variable>`.
Returns
-------
distance : scalar<|endoftext|> |
cfd5220fbf9ff5f4973151b0b0e49dbf98ba3961c304d72a86f3e6c5bd035c5f | def filter_queryset(self, qs, filter_param):
'\n Filter the queryset `qs`, given the selected `filter_param`. Default\n implementation does no filtering at all.\n '
return qs | Filter the queryset `qs`, given the selected `filter_param`. Default
implementation does no filtering at all. | src/mds/web/generic/filtering.py | filter_queryset | m-socha/sana.mds | 2 | python | def filter_queryset(self, qs, filter_param):
'\n Filter the queryset `qs`, given the selected `filter_param`. Default\n implementation does no filtering at all.\n '
return qs | def filter_queryset(self, qs, filter_param):
'\n Filter the queryset `qs`, given the selected `filter_param`. Default\n implementation does no filtering at all.\n '
return qs<|docstring|>Filter the queryset `qs`, given the selected `filter_param`. Default
implementation does no filtering at all.<|endoftext|> |
5419dd55e01e938e839d1771850f83fb88f2397ebf52c2ba58f3c31bc7abf5da | def handle(self, *args, **options):
'See :meth:`django.core.management.base.BaseCommand.handle`.\n\n This method starts the Scale daily metrics.\n '
day = options.get('day')
logger.info('Command starting: scale_daily_metrics')
logger.info(' - Day: %s', day)
logger.info('Generating metrics...')
date = datetime.datetime.strptime(day, '%Y-%m-%d')
failed = 0
for provider in registry.get_providers():
metrics_type = provider.get_metrics_type()
try:
logger.info('Starting: %s', metrics_type.name)
self._calculate_metrics(provider, date)
logger.info('Completed: %s', metrics_type.name)
except:
failed += 1
logger.exception('Unable to calculate metrics: %s', metrics_type.name)
logger.info('Command completed: scale_daily_metrics')
if failed:
logger.info('Metric providers failed: %i', failed)
sys.exit(failed) | See :meth:`django.core.management.base.BaseCommand.handle`.
This method starts the Scale daily metrics. | scale/metrics/management/commands/scale_daily_metrics.py | handle | kfconsultant/scale | 121 | python | def handle(self, *args, **options):
'See :meth:`django.core.management.base.BaseCommand.handle`.\n\n This method starts the Scale daily metrics.\n '
day = options.get('day')
logger.info('Command starting: scale_daily_metrics')
logger.info(' - Day: %s', day)
logger.info('Generating metrics...')
date = datetime.datetime.strptime(day, '%Y-%m-%d')
failed = 0
for provider in registry.get_providers():
metrics_type = provider.get_metrics_type()
try:
logger.info('Starting: %s', metrics_type.name)
self._calculate_metrics(provider, date)
logger.info('Completed: %s', metrics_type.name)
except:
failed += 1
logger.exception('Unable to calculate metrics: %s', metrics_type.name)
logger.info('Command completed: scale_daily_metrics')
if failed:
logger.info('Metric providers failed: %i', failed)
sys.exit(failed) | def handle(self, *args, **options):
'See :meth:`django.core.management.base.BaseCommand.handle`.\n\n This method starts the Scale daily metrics.\n '
day = options.get('day')
logger.info('Command starting: scale_daily_metrics')
logger.info(' - Day: %s', day)
logger.info('Generating metrics...')
date = datetime.datetime.strptime(day, '%Y-%m-%d')
failed = 0
for provider in registry.get_providers():
metrics_type = provider.get_metrics_type()
try:
logger.info('Starting: %s', metrics_type.name)
self._calculate_metrics(provider, date)
logger.info('Completed: %s', metrics_type.name)
except:
failed += 1
logger.exception('Unable to calculate metrics: %s', metrics_type.name)
logger.info('Command completed: scale_daily_metrics')
if failed:
logger.info('Metric providers failed: %i', failed)
sys.exit(failed)<|docstring|>See :meth:`django.core.management.base.BaseCommand.handle`.
This method starts the Scale daily metrics.<|endoftext|> |
997d3e685142ee466ff9327586a077cbdb5ad0ec2c9b68202a91eeaace940cbb | @retry_database_query
def _calculate_metrics(self, provider, date):
'Calculates the Scale metrics for the given date with the given provider\n\n :param provider: The metrics provider\n :type provider: :class:`metrics.registry.MetricsTypeProvider`\n :param date: The date for generating metrics\n :type date: :class:`datetime.datetime`\n '
provider.calculate(date) | Calculates the Scale metrics for the given date with the given provider
:param provider: The metrics provider
:type provider: :class:`metrics.registry.MetricsTypeProvider`
:param date: The date for generating metrics
:type date: :class:`datetime.datetime` | scale/metrics/management/commands/scale_daily_metrics.py | _calculate_metrics | kfconsultant/scale | 121 | python | @retry_database_query
def _calculate_metrics(self, provider, date):
'Calculates the Scale metrics for the given date with the given provider\n\n :param provider: The metrics provider\n :type provider: :class:`metrics.registry.MetricsTypeProvider`\n :param date: The date for generating metrics\n :type date: :class:`datetime.datetime`\n '
provider.calculate(date) | @retry_database_query
def _calculate_metrics(self, provider, date):
'Calculates the Scale metrics for the given date with the given provider\n\n :param provider: The metrics provider\n :type provider: :class:`metrics.registry.MetricsTypeProvider`\n :param date: The date for generating metrics\n :type date: :class:`datetime.datetime`\n '
provider.calculate(date)<|docstring|>Calculates the Scale metrics for the given date with the given provider
:param provider: The metrics provider
:type provider: :class:`metrics.registry.MetricsTypeProvider`
:param date: The date for generating metrics
:type date: :class:`datetime.datetime`<|endoftext|> |
d727af41d28527ea93007af3bb3af31c14a4ff7a0ac57901ce90253c7718a98a | @abc.abstractmethod
def belongs(self, point, atol=gs.atol):
'Evaluate if a point belongs to the manifold.\n\n Parameters\n ----------\n point : array-like, shape=[..., dim]\n Point to evaluate.\n atol : float\n Absolute tolerance.\n Optional, default: backend atol.\n\n Returns\n -------\n belongs : array-like, shape=[...,]\n Boolean evaluating if point belongs to the manifold.\n ' | Evaluate if a point belongs to the manifold.
Parameters
----------
point : array-like, shape=[..., dim]
Point to evaluate.
atol : float
Absolute tolerance.
Optional, default: backend atol.
Returns
-------
belongs : array-like, shape=[...,]
Boolean evaluating if point belongs to the manifold. | geomstats/geometry/manifold.py | belongs | qbarthelemy/geomstats | 743 | python | @abc.abstractmethod
def belongs(self, point, atol=gs.atol):
'Evaluate if a point belongs to the manifold.\n\n Parameters\n ----------\n point : array-like, shape=[..., dim]\n Point to evaluate.\n atol : float\n Absolute tolerance.\n Optional, default: backend atol.\n\n Returns\n -------\n belongs : array-like, shape=[...,]\n Boolean evaluating if point belongs to the manifold.\n ' | @abc.abstractmethod
def belongs(self, point, atol=gs.atol):
'Evaluate if a point belongs to the manifold.\n\n Parameters\n ----------\n point : array-like, shape=[..., dim]\n Point to evaluate.\n atol : float\n Absolute tolerance.\n Optional, default: backend atol.\n\n Returns\n -------\n belongs : array-like, shape=[...,]\n Boolean evaluating if point belongs to the manifold.\n '<|docstring|>Evaluate if a point belongs to the manifold.
Parameters
----------
point : array-like, shape=[..., dim]
Point to evaluate.
atol : float
Absolute tolerance.
Optional, default: backend atol.
Returns
-------
belongs : array-like, shape=[...,]
Boolean evaluating if point belongs to the manifold.<|endoftext|> |
6c43639b9dd16f96e368e859b97937f686e02e1f806e44b4f05f34944855d0c4 | @abc.abstractmethod
def is_tangent(self, vector, base_point, atol=gs.atol):
'Check whether the vector is tangent at base_point.\n\n Parameters\n ----------\n vector : array-like, shape=[..., dim]\n Vector.\n base_point : array-like, shape=[..., dim]\n Point on the manifold.\n atol : float\n Absolute tolerance.\n Optional, default: backend atol.\n\n Returns\n -------\n is_tangent : bool\n Boolean denoting if vector is a tangent vector at the base point.\n ' | Check whether the vector is tangent at base_point.
Parameters
----------
vector : array-like, shape=[..., dim]
Vector.
base_point : array-like, shape=[..., dim]
Point on the manifold.
atol : float
Absolute tolerance.
Optional, default: backend atol.
Returns
-------
is_tangent : bool
Boolean denoting if vector is a tangent vector at the base point. | geomstats/geometry/manifold.py | is_tangent | qbarthelemy/geomstats | 743 | python | @abc.abstractmethod
def is_tangent(self, vector, base_point, atol=gs.atol):
'Check whether the vector is tangent at base_point.\n\n Parameters\n ----------\n vector : array-like, shape=[..., dim]\n Vector.\n base_point : array-like, shape=[..., dim]\n Point on the manifold.\n atol : float\n Absolute tolerance.\n Optional, default: backend atol.\n\n Returns\n -------\n is_tangent : bool\n Boolean denoting if vector is a tangent vector at the base point.\n ' | @abc.abstractmethod
def is_tangent(self, vector, base_point, atol=gs.atol):
'Check whether the vector is tangent at base_point.\n\n Parameters\n ----------\n vector : array-like, shape=[..., dim]\n Vector.\n base_point : array-like, shape=[..., dim]\n Point on the manifold.\n atol : float\n Absolute tolerance.\n Optional, default: backend atol.\n\n Returns\n -------\n is_tangent : bool\n Boolean denoting if vector is a tangent vector at the base point.\n '<|docstring|>Check whether the vector is tangent at base_point.
Parameters
----------
vector : array-like, shape=[..., dim]
Vector.
base_point : array-like, shape=[..., dim]
Point on the manifold.
atol : float
Absolute tolerance.
Optional, default: backend atol.
Returns
-------
is_tangent : bool
Boolean denoting if vector is a tangent vector at the base point.<|endoftext|> |
ba0f2f68e429f6f25552558799fc863825fca809732fc433fb3d64f9de3d967e | @abc.abstractmethod
def to_tangent(self, vector, base_point):
'Project a vector to a tangent space of the manifold.\n\n Parameters\n ----------\n vector : array-like, shape=[..., dim]\n Vector.\n base_point : array-like, shape=[..., dim]\n Point on the manifold.\n\n Returns\n -------\n tangent_vec : array-like, shape=[..., dim]\n Tangent vector at base point.\n ' | Project a vector to a tangent space of the manifold.
Parameters
----------
vector : array-like, shape=[..., dim]
Vector.
base_point : array-like, shape=[..., dim]
Point on the manifold.
Returns
-------
tangent_vec : array-like, shape=[..., dim]
Tangent vector at base point. | geomstats/geometry/manifold.py | to_tangent | qbarthelemy/geomstats | 743 | python | @abc.abstractmethod
def to_tangent(self, vector, base_point):
'Project a vector to a tangent space of the manifold.\n\n Parameters\n ----------\n vector : array-like, shape=[..., dim]\n Vector.\n base_point : array-like, shape=[..., dim]\n Point on the manifold.\n\n Returns\n -------\n tangent_vec : array-like, shape=[..., dim]\n Tangent vector at base point.\n ' | @abc.abstractmethod
def to_tangent(self, vector, base_point):
'Project a vector to a tangent space of the manifold.\n\n Parameters\n ----------\n vector : array-like, shape=[..., dim]\n Vector.\n base_point : array-like, shape=[..., dim]\n Point on the manifold.\n\n Returns\n -------\n tangent_vec : array-like, shape=[..., dim]\n Tangent vector at base point.\n '<|docstring|>Project a vector to a tangent space of the manifold.
Parameters
----------
vector : array-like, shape=[..., dim]
Vector.
base_point : array-like, shape=[..., dim]
Point on the manifold.
Returns
-------
tangent_vec : array-like, shape=[..., dim]
Tangent vector at base point.<|endoftext|> |
c181e0d12b46cb15d1665dc62681883d99c1d555f6a9f504b20ebb04a7c22b23 | @abc.abstractmethod
def random_point(self, n_samples=1, bound=1.0):
'Sample random points on the manifold.\n\n If the manifold is compact, a uniform distribution is used.\n\n Parameters\n ----------\n n_samples : int\n Number of samples.\n Optional, default: 1.\n bound : float\n Bound of the interval in which to sample for non compact manifolds.\n Optional, default: 1.\n\n Returns\n -------\n samples : array-like, shape=[..., {dim, [n, n]}]\n Points sampled on the hypersphere.\n ' | Sample random points on the manifold.
If the manifold is compact, a uniform distribution is used.
Parameters
----------
n_samples : int
Number of samples.
Optional, default: 1.
bound : float
Bound of the interval in which to sample for non compact manifolds.
Optional, default: 1.
Returns
-------
samples : array-like, shape=[..., {dim, [n, n]}]
Points sampled on the hypersphere. | geomstats/geometry/manifold.py | random_point | qbarthelemy/geomstats | 743 | python | @abc.abstractmethod
def random_point(self, n_samples=1, bound=1.0):
'Sample random points on the manifold.\n\n If the manifold is compact, a uniform distribution is used.\n\n Parameters\n ----------\n n_samples : int\n Number of samples.\n Optional, default: 1.\n bound : float\n Bound of the interval in which to sample for non compact manifolds.\n Optional, default: 1.\n\n Returns\n -------\n samples : array-like, shape=[..., {dim, [n, n]}]\n Points sampled on the hypersphere.\n ' | @abc.abstractmethod
def random_point(self, n_samples=1, bound=1.0):
'Sample random points on the manifold.\n\n If the manifold is compact, a uniform distribution is used.\n\n Parameters\n ----------\n n_samples : int\n Number of samples.\n Optional, default: 1.\n bound : float\n Bound of the interval in which to sample for non compact manifolds.\n Optional, default: 1.\n\n Returns\n -------\n samples : array-like, shape=[..., {dim, [n, n]}]\n Points sampled on the hypersphere.\n '<|docstring|>Sample random points on the manifold.
If the manifold is compact, a uniform distribution is used.
Parameters
----------
n_samples : int
Number of samples.
Optional, default: 1.
bound : float
Bound of the interval in which to sample for non compact manifolds.
Optional, default: 1.
Returns
-------
samples : array-like, shape=[..., {dim, [n, n]}]
Points sampled on the hypersphere.<|endoftext|> |
85ad6e8515e79921527f7971f5913b4c410a77ac6d8cdcfe5ef3444ca1b506d2 | def regularize(self, point):
'Regularize a point to the canonical representation for the manifold.\n\n Parameters\n ----------\n point : array-like, shape=[..., dim]\n Point.\n\n Returns\n -------\n regularized_point : array-like, shape=[..., dim]\n Regularized point.\n '
regularized_point = point
return regularized_point | Regularize a point to the canonical representation for the manifold.
Parameters
----------
point : array-like, shape=[..., dim]
Point.
Returns
-------
regularized_point : array-like, shape=[..., dim]
Regularized point. | geomstats/geometry/manifold.py | regularize | qbarthelemy/geomstats | 743 | python | def regularize(self, point):
'Regularize a point to the canonical representation for the manifold.\n\n Parameters\n ----------\n point : array-like, shape=[..., dim]\n Point.\n\n Returns\n -------\n regularized_point : array-like, shape=[..., dim]\n Regularized point.\n '
regularized_point = point
return regularized_point | def regularize(self, point):
'Regularize a point to the canonical representation for the manifold.\n\n Parameters\n ----------\n point : array-like, shape=[..., dim]\n Point.\n\n Returns\n -------\n regularized_point : array-like, shape=[..., dim]\n Regularized point.\n '
regularized_point = point
return regularized_point<|docstring|>Regularize a point to the canonical representation for the manifold.
Parameters
----------
point : array-like, shape=[..., dim]
Point.
Returns
-------
regularized_point : array-like, shape=[..., dim]
Regularized point.<|endoftext|> |
bbbafbc8f266cb4f089778e3c1c07c41e973cae2923086c5d658dde241b575d8 | @property
def metric(self):
'Riemannian Metric associated to the Manifold.'
return self._metric | Riemannian Metric associated to the Manifold. | geomstats/geometry/manifold.py | metric | qbarthelemy/geomstats | 743 | python | @property
def metric(self):
return self._metric | @property
def metric(self):
return self._metric<|docstring|>Riemannian Metric associated to the Manifold.<|endoftext|> |
b086de90055d370c65a9d3853a52387f073a156051a4fcf17179a6cffe76e937 | def run_ipython_shell_v10(locals, globals, first_time):
'IPython shell from IPython version 0.10'
if first_time:
banner = 'Hit Ctrl-D to return to PuDB.'
else:
banner = ''
ns = locals.copy()
from IPython.Shell import IPShell
IPShell(argv=[], user_ns=ns, user_global_ns=globals).mainloop(banner=banner) | IPython shell from IPython version 0.10 | pudb/shell.py | run_ipython_shell_v10 | flupke/pudb | 0 | python | def run_ipython_shell_v10(locals, globals, first_time):
if first_time:
banner = 'Hit Ctrl-D to return to PuDB.'
else:
banner =
ns = locals.copy()
from IPython.Shell import IPShell
IPShell(argv=[], user_ns=ns, user_global_ns=globals).mainloop(banner=banner) | def run_ipython_shell_v10(locals, globals, first_time):
if first_time:
banner = 'Hit Ctrl-D to return to PuDB.'
else:
banner =
ns = locals.copy()
from IPython.Shell import IPShell
IPShell(argv=[], user_ns=ns, user_global_ns=globals).mainloop(banner=banner)<|docstring|>IPython shell from IPython version 0.10<|endoftext|> |
00a71b5cb4f8d4f333dcb87ae9de0e7914a8975117fdbff5756b78a32de737a6 | def run_ipython_shell_v11(locals, globals, first_time):
'IPython shell from IPython version 0.11'
if first_time:
banner = 'Hit Ctrl-D to return to PuDB.'
else:
banner = ''
from IPython.frontend.terminal.interactiveshell import TerminalInteractiveShell
from IPython.frontend.terminal.ipapp import load_default_config
config = load_default_config()
shell = TerminalInteractiveShell.instance(config=config, banner2=banner)
shell.history_manager.new_session()
old_locals = shell.user_ns
old_globals = shell.user_global_ns
_update_ns(shell, locals, globals)
shell.mainloop(banner)
_update_ns(shell, old_locals, old_globals) | IPython shell from IPython version 0.11 | pudb/shell.py | run_ipython_shell_v11 | flupke/pudb | 0 | python | def run_ipython_shell_v11(locals, globals, first_time):
if first_time:
banner = 'Hit Ctrl-D to return to PuDB.'
else:
banner =
from IPython.frontend.terminal.interactiveshell import TerminalInteractiveShell
from IPython.frontend.terminal.ipapp import load_default_config
config = load_default_config()
shell = TerminalInteractiveShell.instance(config=config, banner2=banner)
shell.history_manager.new_session()
old_locals = shell.user_ns
old_globals = shell.user_global_ns
_update_ns(shell, locals, globals)
shell.mainloop(banner)
_update_ns(shell, old_locals, old_globals) | def run_ipython_shell_v11(locals, globals, first_time):
if first_time:
banner = 'Hit Ctrl-D to return to PuDB.'
else:
banner =
from IPython.frontend.terminal.interactiveshell import TerminalInteractiveShell
from IPython.frontend.terminal.ipapp import load_default_config
config = load_default_config()
shell = TerminalInteractiveShell.instance(config=config, banner2=banner)
shell.history_manager.new_session()
old_locals = shell.user_ns
old_globals = shell.user_global_ns
_update_ns(shell, locals, globals)
shell.mainloop(banner)
_update_ns(shell, old_locals, old_globals)<|docstring|>IPython shell from IPython version 0.11<|endoftext|> |
9898a5e40e09d52aa90632ac09e8ebc93c7f404505d3111951d42dcb8629cd8e | def _update_ns(shell, locals, globals):
'Update the IPython 0.11 namespace at every visit'
shell.user_ns = locals.copy()
try:
shell.user_global_ns = globals
except AttributeError:
class DummyMod(object):
"A dummy module used for IPython's interactive namespace."
pass
user_module = DummyMod()
user_module.__dict__ = globals
shell.user_module = user_module
shell.init_user_ns()
shell.init_completer() | Update the IPython 0.11 namespace at every visit | pudb/shell.py | _update_ns | flupke/pudb | 0 | python | def _update_ns(shell, locals, globals):
shell.user_ns = locals.copy()
try:
shell.user_global_ns = globals
except AttributeError:
class DummyMod(object):
"A dummy module used for IPython's interactive namespace."
pass
user_module = DummyMod()
user_module.__dict__ = globals
shell.user_module = user_module
shell.init_user_ns()
shell.init_completer() | def _update_ns(shell, locals, globals):
shell.user_ns = locals.copy()
try:
shell.user_global_ns = globals
except AttributeError:
class DummyMod(object):
"A dummy module used for IPython's interactive namespace."
pass
user_module = DummyMod()
user_module.__dict__ = globals
shell.user_module = user_module
shell.init_user_ns()
shell.init_completer()<|docstring|>Update the IPython 0.11 namespace at every visit<|endoftext|> |
cc40b86a98a04e34b96e2c76b659947e7dde5bb69411e64d694e213da6b88d6a | @classmethod
def main(cls, args):
' generated source for method main '
GamerLogger.setSpilloverLogfile('spilloverLog')
GamerLogger.log('Proxy', 'Starting the ProxyGamePlayerClient program.')
if (not len(args)):
GamerLogger.logError('Proxy', 'Usage is: \n\tProxyGamePlayerClient gamer port')
return
port = 9147
gamer = None
try:
port = Integer.valueOf(args[1])
except Exception as e:
GamerLogger.logError('Proxy', (args[1] + ' is not a valid port.'))
return
gamers = Lists.newArrayList(ProjectSearcher.GAMERS.getConcreteClasses())
gamerNames = ArrayList()
if (len(gamerNames) != len(gamers)):
for c in gamers:
gamerNames.add(c.__name__.replaceAll('^.*\\.', ''))
idx = gamerNames.indexOf(args[0])
if (idx == (- 1)):
GamerLogger.logError('Proxy', (args[0] + ' is not a subclass of gamer. Valid options are:'))
for s in gamerNames:
GamerLogger.logError('Proxy', ('\t' + s))
return
try:
gamer = gamers.get(idx).newInstance()
except Exception as ex:
GamerLogger.logError('Proxy', ('Cannot create instance of ' + args[0]))
return
try:
theClient.start()
except IOException as e:
GamerLogger.logStackTrace('Proxy', e) | generated source for method main | ggpy/cruft/autocode/ProxyGamePlayerClient.py | main | hobson/ggpy | 1 | python | @classmethod
def main(cls, args):
' '
GamerLogger.setSpilloverLogfile('spilloverLog')
GamerLogger.log('Proxy', 'Starting the ProxyGamePlayerClient program.')
if (not len(args)):
GamerLogger.logError('Proxy', 'Usage is: \n\tProxyGamePlayerClient gamer port')
return
port = 9147
gamer = None
try:
port = Integer.valueOf(args[1])
except Exception as e:
GamerLogger.logError('Proxy', (args[1] + ' is not a valid port.'))
return
gamers = Lists.newArrayList(ProjectSearcher.GAMERS.getConcreteClasses())
gamerNames = ArrayList()
if (len(gamerNames) != len(gamers)):
for c in gamers:
gamerNames.add(c.__name__.replaceAll('^.*\\.', ))
idx = gamerNames.indexOf(args[0])
if (idx == (- 1)):
GamerLogger.logError('Proxy', (args[0] + ' is not a subclass of gamer. Valid options are:'))
for s in gamerNames:
GamerLogger.logError('Proxy', ('\t' + s))
return
try:
gamer = gamers.get(idx).newInstance()
except Exception as ex:
GamerLogger.logError('Proxy', ('Cannot create instance of ' + args[0]))
return
try:
theClient.start()
except IOException as e:
GamerLogger.logStackTrace('Proxy', e) | @classmethod
def main(cls, args):
' '
GamerLogger.setSpilloverLogfile('spilloverLog')
GamerLogger.log('Proxy', 'Starting the ProxyGamePlayerClient program.')
if (not len(args)):
GamerLogger.logError('Proxy', 'Usage is: \n\tProxyGamePlayerClient gamer port')
return
port = 9147
gamer = None
try:
port = Integer.valueOf(args[1])
except Exception as e:
GamerLogger.logError('Proxy', (args[1] + ' is not a valid port.'))
return
gamers = Lists.newArrayList(ProjectSearcher.GAMERS.getConcreteClasses())
gamerNames = ArrayList()
if (len(gamerNames) != len(gamers)):
for c in gamers:
gamerNames.add(c.__name__.replaceAll('^.*\\.', ))
idx = gamerNames.indexOf(args[0])
if (idx == (- 1)):
GamerLogger.logError('Proxy', (args[0] + ' is not a subclass of gamer. Valid options are:'))
for s in gamerNames:
GamerLogger.logError('Proxy', ('\t' + s))
return
try:
gamer = gamers.get(idx).newInstance()
except Exception as ex:
GamerLogger.logError('Proxy', ('Cannot create instance of ' + args[0]))
return
try:
theClient.start()
except IOException as e:
GamerLogger.logStackTrace('Proxy', e)<|docstring|>generated source for method main<|endoftext|> |
5dd2856f519ba81afad65658fc638b5134baaeef46614e770cf0378264d4b28a | def __init__(self, port, gamer):
' generated source for method __init__ '
super(ProxyGamePlayerClient, self).__init__()
self.observers = ArrayList()
self.theConnection = Socket('127.0.0.1', port)
self.theOutput = PrintStream(self.theConnection.getOutputStream())
self.theInput = BufferedReader(InputStreamReader(self.theConnection.getInputStream()))
self.gamer = gamer
gamer.addObserver(self) | generated source for method __init__ | ggpy/cruft/autocode/ProxyGamePlayerClient.py | __init__ | hobson/ggpy | 1 | python | def __init__(self, port, gamer):
' '
super(ProxyGamePlayerClient, self).__init__()
self.observers = ArrayList()
self.theConnection = Socket('127.0.0.1', port)
self.theOutput = PrintStream(self.theConnection.getOutputStream())
self.theInput = BufferedReader(InputStreamReader(self.theConnection.getInputStream()))
self.gamer = gamer
gamer.addObserver(self) | def __init__(self, port, gamer):
' '
super(ProxyGamePlayerClient, self).__init__()
self.observers = ArrayList()
self.theConnection = Socket('127.0.0.1', port)
self.theOutput = PrintStream(self.theConnection.getOutputStream())
self.theInput = BufferedReader(InputStreamReader(self.theConnection.getInputStream()))
self.gamer = gamer
gamer.addObserver(self)<|docstring|>generated source for method __init__<|endoftext|> |
ceaa5a1bb0657f062739249c2ebfb2590a91d1d9048974538a056049622a0408 | def addObserver(self, observer):
' generated source for method addObserver '
self.observers.add(observer) | generated source for method addObserver | ggpy/cruft/autocode/ProxyGamePlayerClient.py | addObserver | hobson/ggpy | 1 | python | def addObserver(self, observer):
' '
self.observers.add(observer) | def addObserver(self, observer):
' '
self.observers.add(observer)<|docstring|>generated source for method addObserver<|endoftext|> |
d0ef463d863dafae161bd47c7371610dd17c8a60ee1ec4ac9b5f05a0c226e0c2 | def notifyObservers(self, event):
' generated source for method notifyObservers '
for observer in observers:
observer.observe(event) | generated source for method notifyObservers | ggpy/cruft/autocode/ProxyGamePlayerClient.py | notifyObservers | hobson/ggpy | 1 | python | def notifyObservers(self, event):
' '
for observer in observers:
observer.observe(event) | def notifyObservers(self, event):
' '
for observer in observers:
observer.observe(event)<|docstring|>generated source for method notifyObservers<|endoftext|> |
70bd937f5751a7d20c13036c62fefa0ebd151ad2c2e1082bb0b97532dca880eb | def run(self):
' generated source for method run '
while (not isInterrupted()):
try:
GamerLogger.log('Proxy', ('[ProxyClient] Got message: ' + theMessage))
self.theCode = theMessage.messageCode
self.notifyObservers(PlayerReceivedMessageEvent(in_))
if isinstance(request, (StartRequest,)):
RequestFactory().create(theDefaultGamer, in_).process(1)
GamerLogger.startFileLogging(theDefaultGamer.getMatch(), theDefaultGamer.getRoleName().__str__())
GamerLogger.log('Proxy', ('[ProxyClient] Got message: ' + theMessage))
outMessage.writeTo(self.theOutput)
GamerLogger.log('Proxy', ('[ProxyClient] Sent message: ' + outMessage))
self.notifyObservers(PlayerSentMessageEvent(out))
if isinstance(request, (StopRequest,)):
GamerLogger.log('Proxy', '[ProxyClient] Got stop request, shutting down.')
System.exit(0)
if isinstance(request, (AbortRequest,)):
GamerLogger.log('Proxy', '[ProxyClient] Got abort request, shutting down.')
System.exit(0)
except Exception as e:
GamerLogger.logStackTrace('Proxy', e)
self.notifyObservers(PlayerDroppedPacketEvent())
GamerLogger.log('Proxy', '[ProxyClient] Got interrupted, shutting down.') | generated source for method run | ggpy/cruft/autocode/ProxyGamePlayerClient.py | run | hobson/ggpy | 1 | python | def run(self):
' '
while (not isInterrupted()):
try:
GamerLogger.log('Proxy', ('[ProxyClient] Got message: ' + theMessage))
self.theCode = theMessage.messageCode
self.notifyObservers(PlayerReceivedMessageEvent(in_))
if isinstance(request, (StartRequest,)):
RequestFactory().create(theDefaultGamer, in_).process(1)
GamerLogger.startFileLogging(theDefaultGamer.getMatch(), theDefaultGamer.getRoleName().__str__())
GamerLogger.log('Proxy', ('[ProxyClient] Got message: ' + theMessage))
outMessage.writeTo(self.theOutput)
GamerLogger.log('Proxy', ('[ProxyClient] Sent message: ' + outMessage))
self.notifyObservers(PlayerSentMessageEvent(out))
if isinstance(request, (StopRequest,)):
GamerLogger.log('Proxy', '[ProxyClient] Got stop request, shutting down.')
System.exit(0)
if isinstance(request, (AbortRequest,)):
GamerLogger.log('Proxy', '[ProxyClient] Got abort request, shutting down.')
System.exit(0)
except Exception as e:
GamerLogger.logStackTrace('Proxy', e)
self.notifyObservers(PlayerDroppedPacketEvent())
GamerLogger.log('Proxy', '[ProxyClient] Got interrupted, shutting down.') | def run(self):
' '
while (not isInterrupted()):
try:
GamerLogger.log('Proxy', ('[ProxyClient] Got message: ' + theMessage))
self.theCode = theMessage.messageCode
self.notifyObservers(PlayerReceivedMessageEvent(in_))
if isinstance(request, (StartRequest,)):
RequestFactory().create(theDefaultGamer, in_).process(1)
GamerLogger.startFileLogging(theDefaultGamer.getMatch(), theDefaultGamer.getRoleName().__str__())
GamerLogger.log('Proxy', ('[ProxyClient] Got message: ' + theMessage))
outMessage.writeTo(self.theOutput)
GamerLogger.log('Proxy', ('[ProxyClient] Sent message: ' + outMessage))
self.notifyObservers(PlayerSentMessageEvent(out))
if isinstance(request, (StopRequest,)):
GamerLogger.log('Proxy', '[ProxyClient] Got stop request, shutting down.')
System.exit(0)
if isinstance(request, (AbortRequest,)):
GamerLogger.log('Proxy', '[ProxyClient] Got abort request, shutting down.')
System.exit(0)
except Exception as e:
GamerLogger.logStackTrace('Proxy', e)
self.notifyObservers(PlayerDroppedPacketEvent())
GamerLogger.log('Proxy', '[ProxyClient] Got interrupted, shutting down.')<|docstring|>generated source for method run<|endoftext|> |
538a0d165c57c1a06706dc29390e91e6ef58912886d68883b9ab69c8f9025c71 | def observe(self, event):
' generated source for method observe '
if isinstance(event, (WorkingResponseSelectedEvent,)):
theMessage.writeTo(self.theOutput)
GamerLogger.log('Proxy', ('[ProxyClient] Sent message: ' + theMessage)) | generated source for method observe | ggpy/cruft/autocode/ProxyGamePlayerClient.py | observe | hobson/ggpy | 1 | python | def observe(self, event):
' '
if isinstance(event, (WorkingResponseSelectedEvent,)):
theMessage.writeTo(self.theOutput)
GamerLogger.log('Proxy', ('[ProxyClient] Sent message: ' + theMessage)) | def observe(self, event):
' '
if isinstance(event, (WorkingResponseSelectedEvent,)):
theMessage.writeTo(self.theOutput)
GamerLogger.log('Proxy', ('[ProxyClient] Sent message: ' + theMessage))<|docstring|>generated source for method observe<|endoftext|> |
a96a837057f2d48a8924ef32c05496eb347c398ad8ce40083678b51cee4defe9 | def points(self):
'\n return points of rebar in a list.\n list contain pairs of (x, y) coordinates\n '
p2 = Point(*self.insert).plusx(self.length)
return [self.insert, tuple(p2)] | return points of rebar in a list.
list contain pairs of (x, y) coordinates | pyconcrete/rebar.py | points | SurajDadral/pyconcrete | 19 | python | def points(self):
'\n return points of rebar in a list.\n list contain pairs of (x, y) coordinates\n '
p2 = Point(*self.insert).plusx(self.length)
return [self.insert, tuple(p2)] | def points(self):
'\n return points of rebar in a list.\n list contain pairs of (x, y) coordinates\n '
p2 = Point(*self.insert).plusx(self.length)
return [self.insert, tuple(p2)]<|docstring|>return points of rebar in a list.
list contain pairs of (x, y) coordinates<|endoftext|> |
6e96c25df56927439b73dbef035e5f18e39dbde49e90c53db027b486a660ca36 | def base_points(self):
'\n using base point for calculating points_along in\n inheritance class\n '
p2 = Point(*self.insert).plusx(self.length)
return [self.insert, tuple(p2)] | using base point for calculating points_along in
inheritance class | pyconcrete/rebar.py | base_points | SurajDadral/pyconcrete | 19 | python | def base_points(self):
'\n using base point for calculating points_along in\n inheritance class\n '
p2 = Point(*self.insert).plusx(self.length)
return [self.insert, tuple(p2)] | def base_points(self):
'\n using base point for calculating points_along in\n inheritance class\n '
p2 = Point(*self.insert).plusx(self.length)
return [self.insert, tuple(p2)]<|docstring|>using base point for calculating points_along in
inheritance class<|endoftext|> |
41649f758f747d4de1ea51ddb5b5ae373aa435f0ababd4e93b31fc9e0111c270 | @property
def text(self):
"\n return text in format 'count~diameter'\n "
return f'{self.count}~{self.diameter}' | return text in format 'count~diameter' | pyconcrete/rebar.py | text | SurajDadral/pyconcrete | 19 | python | @property
def text(self):
"\n \n "
return f'{self.count}~{self.diameter}' | @property
def text(self):
"\n \n "
return f'{self.count}~{self.diameter}'<|docstring|>return text in format 'count~diameter'<|endoftext|> |
ebb7fceb80f9b46020b7be6e29e99b4af867fcf498dd7142a579acb40b6df735 | def parse_args(args):
'\n 解析命令参数\n '
parser = argparse.ArgumentParser(prog=version.__prog_name__, description=version.__description__)
parser.add_argument('-v', '--version', action='version', version=('%(prog)s ' + version.__version__))
parser.add_argument('-d', '--debug', action='store_true', default=DEFAULT_DEBUG_MODE, help='print debug information')
parser.add_argument('-p', '--port', type=int, default=DEFAULT_SERVICE_PORT, metavar='port', help='specify the port to listen')
parser.add_argument('-s', '--save', default=DEFAULT_DATEBASE, metavar='database', dest='database', help='specify the database file')
parser.add_argument('-c', '--cache', default=DEFAULT_CACHE_PATH, metavar='cache', dest='cache', help='specify the cache path')
parser.add_argument('-l', '--log', default=DEFAULT_LOG_PATH, metavar='log', dest='log', help='specify the log files path')
parser.add_argument('-q', '--quiet', action='store_true', default=DEFAULT_SILENT_MODE, help='switch on silent mode')
return parser.parse_args(args) | 解析命令参数 | src/service/main.py | parse_args | tabris17/doufen | 152 | python | def parse_args(args):
'\n \n '
parser = argparse.ArgumentParser(prog=version.__prog_name__, description=version.__description__)
parser.add_argument('-v', '--version', action='version', version=('%(prog)s ' + version.__version__))
parser.add_argument('-d', '--debug', action='store_true', default=DEFAULT_DEBUG_MODE, help='print debug information')
parser.add_argument('-p', '--port', type=int, default=DEFAULT_SERVICE_PORT, metavar='port', help='specify the port to listen')
parser.add_argument('-s', '--save', default=DEFAULT_DATEBASE, metavar='database', dest='database', help='specify the database file')
parser.add_argument('-c', '--cache', default=DEFAULT_CACHE_PATH, metavar='cache', dest='cache', help='specify the cache path')
parser.add_argument('-l', '--log', default=DEFAULT_LOG_PATH, metavar='log', dest='log', help='specify the log files path')
parser.add_argument('-q', '--quiet', action='store_true', default=DEFAULT_SILENT_MODE, help='switch on silent mode')
return parser.parse_args(args) | def parse_args(args):
'\n \n '
parser = argparse.ArgumentParser(prog=version.__prog_name__, description=version.__description__)
parser.add_argument('-v', '--version', action='version', version=('%(prog)s ' + version.__version__))
parser.add_argument('-d', '--debug', action='store_true', default=DEFAULT_DEBUG_MODE, help='print debug information')
parser.add_argument('-p', '--port', type=int, default=DEFAULT_SERVICE_PORT, metavar='port', help='specify the port to listen')
parser.add_argument('-s', '--save', default=DEFAULT_DATEBASE, metavar='database', dest='database', help='specify the database file')
parser.add_argument('-c', '--cache', default=DEFAULT_CACHE_PATH, metavar='cache', dest='cache', help='specify the cache path')
parser.add_argument('-l', '--log', default=DEFAULT_LOG_PATH, metavar='log', dest='log', help='specify the log files path')
parser.add_argument('-q', '--quiet', action='store_true', default=DEFAULT_SILENT_MODE, help='switch on silent mode')
return parser.parse_args(args)<|docstring|>解析命令参数<|endoftext|> |
18c25e218f89301c5fce46adb31335bdbb2ef3979b7dc35f8757718c84b77e4e | def main(args):
'\n 程序主函数\n '
parsed_args = parse_args(args)
settings.update({'cache': parsed_args.cache, 'log': parsed_args.log, 'database': parsed_args.database, 'port': parsed_args.port, 'debug': parsed_args.debug, 'quiet': parsed_args.quiet})
init_env()
init_logger()
db.init(parsed_args.database)
server = Server(parsed_args.port, DEFAULT_SERVICE_HOST, parsed_args.cache)
server.run() | 程序主函数 | src/service/main.py | main | tabris17/doufen | 152 | python | def main(args):
'\n \n '
parsed_args = parse_args(args)
settings.update({'cache': parsed_args.cache, 'log': parsed_args.log, 'database': parsed_args.database, 'port': parsed_args.port, 'debug': parsed_args.debug, 'quiet': parsed_args.quiet})
init_env()
init_logger()
db.init(parsed_args.database)
server = Server(parsed_args.port, DEFAULT_SERVICE_HOST, parsed_args.cache)
server.run() | def main(args):
'\n \n '
parsed_args = parse_args(args)
settings.update({'cache': parsed_args.cache, 'log': parsed_args.log, 'database': parsed_args.database, 'port': parsed_args.port, 'debug': parsed_args.debug, 'quiet': parsed_args.quiet})
init_env()
init_logger()
db.init(parsed_args.database)
server = Server(parsed_args.port, DEFAULT_SERVICE_HOST, parsed_args.cache)
server.run()<|docstring|>程序主函数<|endoftext|> |
df3ead234abe2cd698f138568a624bff96265888d7cd9f870a32b0f4d57b38b1 | def copy_obj():
' 多个文件复制到一个文件 '
bufsize = (16 * 1024)
with open('test.txt', 'wb') as out_file:
cwd = Path.cwd()
for child in cwd.iterdir():
print(child)
if (child.is_file() and (child.name != 'test.txt')):
with child.open('rb') as in_file:
shutil.copyfileobj(in_file, out_file) | 多个文件复制到一个文件 | src/06_tool/demo_shutil.py | copy_obj | edgardeng/python-advance-interview | 1 | python | def copy_obj():
' '
bufsize = (16 * 1024)
with open('test.txt', 'wb') as out_file:
cwd = Path.cwd()
for child in cwd.iterdir():
print(child)
if (child.is_file() and (child.name != 'test.txt')):
with child.open('rb') as in_file:
shutil.copyfileobj(in_file, out_file) | def copy_obj():
' '
bufsize = (16 * 1024)
with open('test.txt', 'wb') as out_file:
cwd = Path.cwd()
for child in cwd.iterdir():
print(child)
if (child.is_file() and (child.name != 'test.txt')):
with child.open('rb') as in_file:
shutil.copyfileobj(in_file, out_file)<|docstring|>多个文件复制到一个文件<|endoftext|> |
ab088c029991525d7fce3afec55b4de9740e8779aad6ea8658342321c2139f7a | def extract_version() -> str:
'\n Extract version from .py file using regex\n\n :return: odahuflow version\n '
with open(VERSION_FILE, 'rt') as version_file:
file_content = version_file.read()
VSRE = '^__version__ = [\'\\"]([^\'\\"]*)[\'\\"]'
mo = re.search(VSRE, file_content, re.M)
if mo:
return mo.group(1)
else:
raise RuntimeError(('Unable to find version string in %s.' % (file_content,))) | Extract version from .py file using regex
:return: odahuflow version | setup.py | extract_version | odahu/odahuJupyterLab | 4 | python | def extract_version() -> str:
'\n Extract version from .py file using regex\n\n :return: odahuflow version\n '
with open(VERSION_FILE, 'rt') as version_file:
file_content = version_file.read()
VSRE = '^__version__ = [\'\\"]([^\'\\"]*)[\'\\"]'
mo = re.search(VSRE, file_content, re.M)
if mo:
return mo.group(1)
else:
raise RuntimeError(('Unable to find version string in %s.' % (file_content,))) | def extract_version() -> str:
'\n Extract version from .py file using regex\n\n :return: odahuflow version\n '
with open(VERSION_FILE, 'rt') as version_file:
file_content = version_file.read()
VSRE = '^__version__ = [\'\\"]([^\'\\"]*)[\'\\"]'
mo = re.search(VSRE, file_content, re.M)
if mo:
return mo.group(1)
else:
raise RuntimeError(('Unable to find version string in %s.' % (file_content,)))<|docstring|>Extract version from .py file using regex
:return: odahuflow version<|endoftext|> |
182df06e09fed67e943b2e3bb279f75ed3155b9cf3c81dd8f59cd289c7120403 | async def main() -> None:
'doc'
bot = MyBot().use(Task())
os.environ['WECHATY_PUPPET'] = 'wechaty-puppet-padlocal'
os.environ['WECHATY_PUPPET_SERVICE_ENDPOINT'] = '192.168.1.124:8788'
(await bot.start()) | doc | app/robot.py | main | anonier/python-wechaty | 0 | python | async def main() -> None:
bot = MyBot().use(Task())
os.environ['WECHATY_PUPPET'] = 'wechaty-puppet-padlocal'
os.environ['WECHATY_PUPPET_SERVICE_ENDPOINT'] = '192.168.1.124:8788'
(await bot.start()) | async def main() -> None:
bot = MyBot().use(Task())
os.environ['WECHATY_PUPPET'] = 'wechaty-puppet-padlocal'
os.environ['WECHATY_PUPPET_SERVICE_ENDPOINT'] = '192.168.1.124:8788'
(await bot.start())<|docstring|>doc<|endoftext|> |
d368ec5e2fb3f99bb515a6fd04f3c4ad6b11223c0b2f817d541e1144900005ed | def __init__(self) -> None:
'initialization function\n '
self.login_user: Optional[Contact] = None
super().__init__() | initialization function | app/robot.py | __init__ | anonier/python-wechaty | 0 | python | def __init__(self) -> None:
'\n '
self.login_user: Optional[Contact] = None
super().__init__() | def __init__(self) -> None:
'\n '
self.login_user: Optional[Contact] = None
super().__init__()<|docstring|>initialization function<|endoftext|> |
1ba60cde6b65646a31cdc9e9e67e94e93cd1ec970ae28b04d1c3e17c8accf915 | async def on_ready(self, payload: EventReadyPayload) -> None:
'listen for on-ready event'
logger.info('ready event %s...', payload) | listen for on-ready event | app/robot.py | on_ready | anonier/python-wechaty | 0 | python | async def on_ready(self, payload: EventReadyPayload) -> None:
logger.info('ready event %s...', payload) | async def on_ready(self, payload: EventReadyPayload) -> None:
logger.info('ready event %s...', payload)<|docstring|>listen for on-ready event<|endoftext|> |
f93c7e888a35458d59919cb7ae5cc53816d92a2f806bc72f767a7b765d4319d9 | async def on_message(self, msg: Message) -> None:
'\n listen for message event\n '
from_contact: Contact = msg.talker()
contact_id = from_contact.contact_id
text: str = msg.text()
room: Optional[Room] = msg.room()
room_id = room.room_id
msg_type: MessageType = msg.type()
if ('25398111924@chatroom' == room_id):
if (('@AI出单' in text) and ('查单' not in text) and ('报价' not in text) and (text.count('出单') == 1) and ('录单' not in text)):
conversation: Union[(Room, Contact)] = (from_contact if (room is None) else room)
(await conversation.ready())
(await conversation.say((('@' + msg.talker().name) + ' 未识别到指令,请核实后重新发送!')))
elif (('@AI出单' in text) and ('查单' in text)):
conversation: Union[(Room, Contact)] = (from_contact if (room is None) else room)
(await conversation.ready())
url = (ip + 'api/RobotApi/policy.do')
x = text.split()
man_cmd = [a for a in x if ('业务员' in a)]
if ((len(x) != 4) or (len(man_cmd) == 0) or ((':' not in man_cmd[0]) and (':' not in man_cmd[0]))):
(await conversation.say((('@' + msg.talker().name) + ' 未识别到指令,请核实后重新发送!')))
return
salesman = (man_cmd[0].split(':')[1] if (':' in man_cmd[0]) else man_cmd[0].split(':')[1])
car_licence = [a for a in x if (('出单' not in a) and ('查单' not in a) and ('@' not in a) and ('业务员' not in a))]
if ((len(car_licence) == 0) or not_car_number(license_plate, car_licence[0])):
(await conversation.say((('@' + msg.talker().name) + ' 未识别到车辆信息,请核对信息!')))
return
car_licence = car_licence[0]
(await conversation.say((('@' + msg.talker().name) + ' 收到查单指令,识别到车辆信息,数据处理中请稍后!')))
multipart_encoder = MultipartEncoder(fields={'roomId': room_id, 'contactId': contact_id, 'operator': '1', 'cmdName': text, 'salesman': salesman, 'licenseId': car_licence, 'appKey': 'X08ASKYS', 'nickname': msg.talker().name}, boundary=('-----------------------------' + str(random.randint(1e+28, (1e+29 - 1)))))
headers = {'Referer': url, 'Content-Type': multipart_encoder.content_type}
try:
response = requests.post(url, data=multipart_encoder, headers=headers, timeout=30)
except:
(await conversation.say((('@' + msg.talker().name) + ' 未查询到客户数据!')))
return
res_dict = json.loads(response.text)
if (res_dict['errorCode'] != ''):
(await conversation.say((('@' + msg.talker().name) + res_dict['errorMsg'])))
return
num = 0
second = sleep_time(0, 0, 5)
while True:
time.sleep(second)
url = (ip + 'api/RobotApi/pullPolicy.do')
multipart_encoder = MultipartEncoder(fields={'uuid': res_dict['data'], 'appKey': 'X08ASKYS'}, boundary=('-----------------------------' + str(random.randint(1e+28, (1e+29 - 1)))))
headers = {'Referer': url, 'Content-Type': multipart_encoder.content_type}
try:
response = requests.post(url, data=multipart_encoder, headers=headers, timeout=30)
except:
if (num == 6):
(await conversation.say((('@' + msg.talker().name) + ' 未查询到客户数据!')))
return
response_dict = json.loads(response.text)
if (response_dict['errorCode'] != ''):
(await conversation.say((('@' + msg.talker().name) + response_dict['errorMsg'])))
return
if (num == 6):
(await conversation.say((('@' + msg.talker().name) + ' 未查询到客户数据!')))
return
elif response_dict['success']:
(await conversation.say((((('@' + msg.talker().name) + ' 请查看') + car_licence) + '的电子保单文件!')))
for (key, value) in response_dict['data'].items():
file_box = FileBox.from_url(value, name=key)
(await conversation.say(file_box))
return
num = (num + 1)
elif (('@AI出单' in text) and ('报价' in text)):
conversation: Union[(Room, Contact)] = (from_contact if (room is None) else room)
(await conversation.ready())
url = (ip + 'api/RobotApi/declaration.do')
x = text.split()
insurance_cmd = [a for a in x if ('险种' in a)]
man_cmd = [a for a in x if ('业务员' in a)]
if (((len(x) != 5) and (len(x) != 7)) or (len(man_cmd) == 0) or (len(insurance_cmd) == 0) or (len(insurance_cmd) > 1) or ((':' not in man_cmd[0]) and (':' not in man_cmd[0]))):
(await conversation.say((('@' + msg.talker().name) + ' 未识别到指令,请核实后重新发送!')))
return
salesman = (man_cmd[0].split(':')[1] if (':' in man_cmd[0]) else man_cmd[0].split(':')[1])
insurance = (insurance_cmd[0].split(':')[1] if (':' in insurance_cmd[0]) else insurance_cmd[0].split(':')[1])
if ('基本' in insurance):
if (len(x) == 5):
if (len([a for a in x if ('-商业' in a)]) != 0):
jqInsurance = 'true'
csInsurance = 'false'
szInsurance = None
driver = None
passenger = None
accident = None
else:
jqInsurance = ('false' if [a for a in x if ('-交强' in a)] else 'true')
if (len([a for a in x if ('-车损' in a)]) != 0):
csInsurance = 'false'
elif (len([a for a in x if (('车损' in a) and ('-' not in a))]) != 0):
csInsurance = get_number((a for a in x if ('车损' in a)))
else:
csInsurance = 'true'
szInsurance = ('100' if (len([a for a in x if ('三者' in a)]) == 0) else get_number(str([a for a in x if ('三者' in a)])))
driver = ('1' if (len([a for a in x if ('司机' in a)]) == 0) else get_number(str([a for a in x if ('司机' in a)])))
passenger = ('1' if (len([a for a in x if ('乘客' in a)]) == 0) else get_number(str([a for a in x if ('乘客' in a)])))
accident = (None if (len([a for a in x if ('意外' in a)]) == 0) else get_number(str([a for a in x if ('意外' in a)])))
elif (len(x) == 7):
jqInsurance = 'true'
csInsurance = 'true'
szInsurance = get_number(str([a for a in x if ('三者' in a)]))
driver = get_number(str([a for a in x if ('司机' in a)]))
passenger = get_number(str([a for a in x if ('乘客' in a)]))
accident = None
else:
(await conversation.say((('@' + msg.talker().name) + ' 未识别到指令,请核实后重新发送!')))
return
elif ('进阶' in insurance):
if (len(x) == 5):
if (len([a for a in x if ('-商业' in a)]) != 0):
jqInsurance = 'true'
csInsurance = 'false'
szInsurance = None
driver = None
passenger = None
accident = None
else:
jqInsurance = ('false' if [a for a in x if ('-交强' in a)] else 'true')
if (len([a for a in x if ('-车损' in a)]) != 0):
csInsurance = 'false'
elif (len([a for a in x if (('车损' in a) and ('-' not in a))]) != 0):
csInsurance = get_number((a for a in x if ('车损' in a)))
else:
csInsurance = 'true'
szInsurance = ('150' if (len([a for a in x if ('三者' in a)]) == 0) else get_number(str([a for a in x if ('三者' in a)])))
driver = ('5' if (len([a for a in x if ('司机' in a)]) == 0) else get_number(str([a for a in x if ('司机' in a)])))
passenger = ('5' if (len([a for a in x if ('乘客' in a)]) == 0) else get_number(str([a for a in x if ('乘客' in a)])))
accident = (None if (len([a for a in x if ('意外' in a)]) == 0) else get_number(str([a for a in x if ('意外' in a)])))
elif (len(x) == 7):
jqInsurance = 'true'
csInsurance = 'true'
szInsurance = get_number(str([a for a in x if ('三者' in a)]))
driver = get_number(str([a for a in x if ('司机' in a)]))
passenger = get_number(str([a for a in x if ('乘客' in a)]))
accident = None
else:
(await conversation.say((('@' + msg.talker().name) + ' 未识别到指令,请核实后重新发送!')))
return
szInsurance = szInsurance[0]
driver = driver[0]
passenger = passenger[0]
(await conversation.say((('@' + msg.talker().name) + ' 收到报价指令,努力处理中,请稍后!')))
multipart_encoder = MultipartEncoder(fields={'roomId': room_id, 'contactId': contact_id, 'operator': '2', 'cmdName': text, 'appKey': 'X08ASKYS', 'jqInsurance': jqInsurance, 'csInsurance': csInsurance, 'szInsurance': szInsurance, 'salesman': salesman, 'driver': driver, 'passenger': passenger, 'accident': (None if (accident is None) else '*'.join(accident)), 'nickname': msg.talker().name}, boundary=('-----------------------------' + str(random.randint(1e+28, (1e+29 - 1)))))
headers = {'Referer': url, 'Content-Type': multipart_encoder.content_type}
try:
response = requests.post(url, data=multipart_encoder, headers=headers, timeout=30)
except:
(await conversation.say((('@' + msg.talker().name) + ' 未查询到客户数据!')))
return
res_dict = json.loads(response.text)
if (res_dict['errorCode'] != ''):
(await conversation.say((('@' + msg.talker().name) + res_dict['errorMsg'])))
return
num = 0
second = sleep_time(0, 0, 5)
while True:
time.sleep(second)
url = (ip + 'api/RobotApi/pullPolicy.do')
multipart_encoder = MultipartEncoder(fields={'uuid': res_dict['data'], 'appKey': 'X08ASKYS'}, boundary=('-----------------------------' + str(random.randint(1e+28, (1e+29 - 1)))))
headers = {'Referer': url, 'Content-Type': multipart_encoder.content_type}
try:
response = requests.post(url, data=multipart_encoder, headers=headers, timeout=30)
except:
if (num == 6):
(await conversation.say((('@' + msg.talker().name) + ' 未查询到客户数据!')))
return
response_dict = json.loads(response.text)
if (response_dict['errorCode'] != ''):
(await conversation.say((('@' + msg.talker().name) + response_dict['errorMsg'])))
return
if (num == 6):
(await conversation.say((('@' + msg.talker().name) + ' 未查询到客户数据!')))
return
elif response_dict['success']:
try:
data = response_dict['data']
(await conversation.say((((((((((('@' + msg.talker().name) + ' 本车客户风险等级:') + data['customerRiskRating']) + '; 车系风险等级:') + data['familyGrade']) + '; 无赔系数:') + data['unattendGrade']) + '; 自主定价系数:') + data['rateProduct']) + '。')))
(await conversation.say((((((((((((((((((((((((((((((('@' + msg.talker().name) + ' ') + data['ownerName']) + ',您好!您的爱车') + data['plateNumber']) + '预计估价共计') + data['totalPremium']) + '元,其中交强险') + data['compulsoryPremium']) + '元, 商业险') + data['businessPremium']) + '元。商业险明细:车损保额') + [a for a in data['policyBusinessCategoryList'] if ('车损' in a['name'])][0]['amountWy']) + '万元,保费') + [a for a in data['policyBusinessCategoryList'] if ('车损' in a['name'])][0]['premium']) + '元 ;三者保额') + [a for a in data['policyBusinessCategoryList'] if ('三者' in a['name'])][0]['amountWy']) + '万元,保费') + [a for a in data['policyBusinessCategoryList'] if ('三者' in a['name'])][0]['premium']) + '元 ;司机保额') + [a for a in data['policyBusinessCategoryList'] if ('司机' in a['name'])][0]['amountWy']) + '万元,保费') + [a for a in data['policyBusinessCategoryList'] if ('司机' in a['name'])][0]['premium']) + '元;乘客保额') + [a for a in data['policyBusinessCategoryList'] if ('乘客' in a['name'])][0]['amountWy']) + '万元,保费') + [a for a in data['policyBusinessCategoryList'] if ('乘客' in a['name'])][0]['premium']) + '元 。代收车船税') + data['taxPremium']) + '元。此报价仅供参考,最终价格以出单为准。')))
file_box = FileBox.from_url(data['url'], name='policy.jpg')
(await conversation.say(file_box))
return
except:
(await conversation.say((('@' + msg.talker().name) + ' 操作报价失败,请手动操作!')))
return
num = (num + 1)
elif (('@AI出单' in text) and (text.count('出单') == 2)):
conversation: Union[(Room, Contact)] = (from_contact if (room is None) else room)
(await conversation.ready())
url = (ip + 'api/RobotApi/issuing.do')
x = text.split()
man_cmd = [a for a in x if ('业务员' in a)]
if ((len(x) < 4) or (len(x) > 5) or (len(man_cmd) == 0) or ((':' not in man_cmd[0]) and (':' not in man_cmd[0]))):
(await conversation.say((('@' + msg.talker().name) + ' 未识别到指令,请核实后重新发送!')))
return
salesman = (man_cmd[0].split(':')[1] if (':' in man_cmd[0]) else man_cmd[0].split(':')[1])
car_licence = [a for a in x if (('出单' not in a) and ('@' not in a) and ('业务员' not in a))]
if ((len(car_licence) == 0) or not_car_number(license_plate, car_licence[0])):
(await conversation.say((('@' + msg.talker().name) + ' 未识别到车辆信息,请核对信息!')))
return
car_licence = car_licence[0]
(await conversation.say((('@' + msg.talker().name) + ' 收到出单指令,数据处理中请稍后!')))
multipart_encoder = MultipartEncoder(fields={'roomId': room_id, 'contactId': contact_id, 'operator': '3', 'cmdName': text, 'salesman': salesman, 'licenseId': car_licence, 'appKey': 'X08ASKYS', 'nickname': msg.talker().name}, boundary=('-----------------------------' + str(random.randint(1e+28, (1e+29 - 1)))))
headers = {'Referer': url, 'Content-Type': multipart_encoder.content_type}
try:
response = requests.post(url, data=multipart_encoder, headers=headers, timeout=30)
except:
(await conversation.say((('@' + msg.talker().name) + ' 未查询到客户数据!')))
return
res_dict = json.loads(response.text)
if (res_dict['errorCode'] != ''):
(await conversation.say((('@' + msg.talker().name) + res_dict['errorMsg'])))
return
num = 0
second = sleep_time(0, 0, 5)
while True:
time.sleep(second)
url = (ip + 'api/RobotApi/pullPolicy.do')
multipart_encoder = MultipartEncoder(fields={'uuid': res_dict['data'], 'appKey': 'X08ASKYS'}, boundary=('-----------------------------' + str(random.randint(1e+28, (1e+29 - 1)))))
headers = {'Referer': url, 'Content-Type': multipart_encoder.content_type}
try:
response = requests.post(url, data=multipart_encoder, headers=headers, timeout=30)
except:
if (num == 6):
(await conversation.say((('@' + msg.talker().name) + ' 未查询到客户数据!')))
return
response_dict = json.loads(response.text)
if (response_dict['errorCode'] != ''):
(await conversation.say((('@' + msg.talker().name) + response_dict['errorMsg'])))
return
if (num == 6):
(await conversation.say((('@' + msg.talker().name) + ' 未查询到客户数据!')))
return
elif response_dict['success']:
(await conversation.say((('@' + msg.talker().name) + ' 已完成出单!')))
qr = FileBox.from_base64(open('qr.txt', 'rb').read(), 'qr.jpg')
(await conversation.say(qr))
file_box = FileBox.from_base64(str.encode(str(response_dict['data']).split(',')[1]), name='qr.jpg')
(await conversation.say(file_box))
return
num = (num + 1)
elif (('@AI出单' in text) and ('录单' in text)):
conversation: Union[(Room, Contact)] = (from_contact if (room is None) else room)
(await conversation.ready())
url = (ip + 'api/RobotApi/policy.do')
x = text.split()
man_cmd = [a for a in x if ('业务员' in a)]
phone_cmd = [a for a in x if ('手机' in a)]
insurance_cmd = [a for a in x if ('险种' in a)]
if ((len(x) != 8) or (len(man_cmd) == 0) or (len(phone_cmd) == 0) or ((':' not in man_cmd[0]) and (':' not in man_cmd[0])) or ((':' not in phone_cmd[0]) and (':' not in phone_cmd[0]))):
(await conversation.say((('@' + msg.talker().name) + ' 未识别到指令,请核实后重新发送!')))
return
salesman = (man_cmd[0].split(':')[1] if (':' in man_cmd[0]) else man_cmd[0].split(':')[1])
phone = (phone_cmd[0].split(':')[1] if (':' in phone_cmd[0]) else phone_cmd[0].split(':')[1])
insurance = (insurance_cmd[0].split(':')[1] if (':' in insurance_cmd[0]) else insurance_cmd[0].split(':')[1])
if ('基本' in insurance):
if (len(x) == 5):
if (len([a for a in x if ('-商业' in a)]) != 0):
jqInsurance = 'true'
csInsurance = 'false'
szInsurance = None
driver = None
passenger = None
accident = None
else:
jqInsurance = ('false' if [a for a in x if ('-交强' in a)] else 'true')
if (len([a for a in x if ('-车损' in a)]) != 0):
csInsurance = 'false'
elif (len([a for a in x if (('车损' in a) and ('-' not in a))]) != 0):
csInsurance = get_number((a for a in x if ('车损' in a)))
else:
csInsurance = 'true'
szInsurance = ('100' if (len([a for a in x if ('三者' in a)]) == 0) else get_number(str([a for a in x if ('三者' in a)])))
driver = ('1' if (len([a for a in x if ('司机' in a)]) == 0) else get_number(str([a for a in x if ('司机' in a)])))
passenger = ('1' if (len([a for a in x if ('乘客' in a)]) == 0) else get_number(str([a for a in x if ('乘客' in a)])))
accident = (None if (len([a for a in x if ('意外' in a)]) == 0) else get_number(str([a for a in x if ('意外' in a)])))
elif (len(x) == 7):
jqInsurance = 'true'
csInsurance = 'true'
szInsurance = get_number(str([a for a in x if ('三者' in a)]))
driver = get_number(str([a for a in x if ('司机' in a)]))
passenger = get_number(str([a for a in x if ('乘客' in a)]))
accident = None
else:
(await conversation.say((('@' + msg.talker().name) + ' 未识别到指令,请核实后重新发送!')))
return
elif ('进阶' in insurance):
if (len(x) == 5):
if (len([a for a in x if ('-商业' in a)]) != 0):
jqInsurance = 'true'
csInsurance = 'false'
szInsurance = None
driver = None
passenger = None
accident = None
else:
jqInsurance = ('false' if [a for a in x if ('-交强' in a)] else 'true')
if (len([a for a in x if ('-车损' in a)]) != 0):
csInsurance = 'false'
elif (len([a for a in x if (('车损' in a) and ('-' not in a))]) != 0):
csInsurance = get_number((a for a in x if ('车损' in a)))
else:
csInsurance = 'true'
szInsurance = ('150' if (len([a for a in x if ('三者' in a)]) == 0) else get_number(str([a for a in x if ('三者' in a)])))
driver = ('5' if (len([a for a in x if ('司机' in a)]) == 0) else get_number(str([a for a in x if ('司机' in a)])))
passenger = ('5' if (len([a for a in x if ('乘客' in a)]) == 0) else get_number(str([a for a in x if ('乘客' in a)])))
accident = (None if (len([a for a in x if ('意外' in a)]) == 0) else get_number(str([a for a in x if ('意外' in a)])))
elif (len(x) == 7):
jqInsurance = 'true'
csInsurance = 'true'
szInsurance = get_number(str([a for a in x if ('三者' in a)]))
driver = get_number(str([a for a in x if ('司机' in a)]))
passenger = get_number(str([a for a in x if ('乘客' in a)]))
accident = None
else:
(await conversation.say((('@' + msg.talker().name) + ' 未识别到指令,请核实后重新发送!')))
return
szInsurance = szInsurance[0]
driver = driver[0]
passenger = passenger[0]
(await conversation.say((('@' + msg.talker().name) + ' 收到录单指令,数据处理中请稍后!')))
multipart_encoder = MultipartEncoder(fields={'roomId': room_id, 'contactId': contact_id, 'operator': '4', 'cmdName': text, 'salesman': salesman, 'jqInsurance': jqInsurance, 'csInsurance': csInsurance, 'szInsurance': szInsurance, 'driver': driver, 'passenger': passenger, 'accident': (None if (accident is None) else '*'.join(accident)), 'phone': phone, 'appKey': 'X08ASKYS', 'nickname': msg.talker().name}, boundary=('-----------------------------' + str(random.randint(1e+28, (1e+29 - 1)))))
headers = {'Referer': url, 'Content-Type': multipart_encoder.content_type}
try:
response = requests.post(url, data=multipart_encoder, headers=headers, timeout=30)
except:
(await conversation.say((('@' + msg.talker().name) + ' 未查询到客户数据!')))
return
res_dict = json.loads(response.text)
if (not res_dict['success']):
(await conversation.say((('@' + msg.talker().name) + ' 未查询到客户数据!')))
return
(await conversation.say((('@' + msg.talker().name) + ' 已完成录单!')))
num = 0
second = sleep_time(0, 0, 5)
while True:
time.sleep(second)
url = (ip + 'api/RobotApi/pullPolicy.do')
multipart_encoder = MultipartEncoder(fields={'uuid': res_dict['data'], 'appKey': 'X08ASKYS'}, boundary=('-----------------------------' + str(random.randint(1e+28, (1e+29 - 1)))))
headers = {'Referer': url, 'Content-Type': multipart_encoder.content_type}
try:
response = requests.post(url, data=multipart_encoder, headers=headers, timeout=30)
except:
if (num == 6):
(await conversation.say((('@' + msg.talker().name) + ' 未查询到客户数据!')))
return
response_dict = json.loads(response.text)
if (response_dict['errorCode'] != ''):
(await conversation.say((('@' + msg.talker().name) + response_dict['errorMsg'])))
return
if (num == 6):
(await conversation.say((('@' + msg.talker().name) + ' 未查询到客户数据!')))
return
elif response_dict['success']:
try:
data = response_dict['data']
(await conversation.say((((((((((('@' + msg.talker().name) + ' 本车客户风险等级:') + data['customerRiskRating']) + '; 车系风险等级:') + data['familyGrade']) + '; 无赔系数:') + data['unattendGrade']) + '; 自主定价系数:') + data['rateProduct']) + '。')))
(await conversation.say((((((((((((((((((((((((((((((('@' + msg.talker().name) + ' ') + data['ownerName']) + ',您好!您的爱车') + data['plateNumber']) + '预计估价共计') + data['totalPremium']) + '元,其中交强险') + data['compulsoryPremium']) + '元, 商业险') + data['businessPremium']) + '元。商业险明细:车损保额') + [a for a in data['policyBusinessCategoryList'] if ('车损' in a['name'])][0]['amountWy']) + '万元,保费') + [a for a in data['policyBusinessCategoryList'] if ('车损' in a['name'])][0]['premium']) + '元 ;三者保额') + [a for a in data['policyBusinessCategoryList'] if ('三者' in a['name'])][0]['amountWy']) + '万元,保费') + [a for a in data['policyBusinessCategoryList'] if ('三者' in a['name'])][0]['premium']) + '元 ;司机保额') + [a for a in data['policyBusinessCategoryList'] if ('司机' in a['name'])][0]['amountWy']) + '万元,保费') + [a for a in data['policyBusinessCategoryList'] if ('司机' in a['name'])][0]['premium']) + '元;乘客保额') + [a for a in data['policyBusinessCategoryList'] if ('乘客' in a['name'])][0]['amountWy']) + '万元,保费') + [a for a in data['policyBusinessCategoryList'] if ('乘客' in a['name'])][0]['premium']) + '元 。代收车船税') + data['taxPremium']) + '元。此报价仅供参考,最终价格以出单为准。')))
file_box = FileBox.from_url(data['url'], name='policy.jpg')
(await conversation.say(file_box))
return
except:
(await conversation.say((('@' + msg.talker().name) + ' 操作报价失败,请手动操作!')))
return
return
num = (num + 1)
elif (msg_type == MessageType.MESSAGE_TYPE_IMAGE):
conversation: Union[(Room, Contact)] = (from_contact if (room is None) else room)
(await conversation.ready())
logger.info('receving image file')
image: WeImage = msg.to_image()
hd_file_box: FileBox = (await image.hd())
url = (ip + 'api/RobotApi/imgUpload.do')
multipart_encoder = MultipartEncoder(fields={'roomId': room_id, 'contactId': contact_id, 'path': '/img/robotOrder', 'storageServer': 'FASTDFS', 'file': ((str(int(time.time())) + '.jpg'), BytesIO(hd_file_box.stream), 'image/jpeg'), 'appKey': 'X08ASKYS'}, boundary=('-----------------------------' + str(random.randint(1e+28, (1e+29 - 1)))))
headers = {'Referer': url, 'Content-Type': multipart_encoder.content_type}
response = requests.post(url, data=multipart_encoder, headers=headers, timeout=30)
res_dict = json.loads(response.text)
if (not res_dict['success']):
(await conversation.say((('@' + msg.talker().name) + res_dict['errorMsg'])))
else:
pass
if (msg.type() == MessageType.MESSAGE_TYPE_UNSPECIFIED):
talker = msg.talker()
assert isinstance(talker, Contact)
elif ('21121012651@chatroom' == room_id):
if (('@AI出单' in text) and ('查单' in text)):
pass
elif (('@AI出单' in text) and ('批量出单' in text)):
conversation: Union[(Room, Contact)] = (from_contact if (room is None) else room)
(await conversation.ready())
(await conversation.say((('@' + msg.talker().name) + ' 收到指令,努力处理中请稍后!')))
url = (ip_js + 'api/RobotApi/wycPolicy.do')
multipart_encoder = MultipartEncoder(fields={'roomId': room_id, 'contactId': contact_id, 'operator': msg.talker().name, 'cmdName': text, 'appKey': 'X08ASKYS'}, boundary=('-----------------------------' + str(random.randint(1e+28, (1e+29 - 1)))))
headers = {'Referer': url, 'Content-Type': multipart_encoder.content_type}
try:
response = requests.post(url, data=multipart_encoder, headers=headers, timeout=30)
except:
(await conversation.say((('@' + msg.talker().name) + ' 抱歉,连接已断开,未查询到用户数据!')))
return
res_dict = json.loads(response.text)
if (res_dict['errorCode'] != ''):
(await conversation.say((('@' + msg.talker().name) + res_dict['errorMsg'])))
return
num = 0
second = sleep_time(0, 0, 5)
while True:
time.sleep(second)
url = (ip_js + 'api/RobotApi/pullPolicy.do')
multipart_encoder = MultipartEncoder(fields={'uuid': res_dict['data'], 'appKey': 'X08ASKYS'}, boundary=('-----------------------------' + str(random.randint(1e+28, (1e+29 - 1)))))
headers = {'Referer': url, 'Content-Type': multipart_encoder.content_type}
try:
response = requests.post(url, data=multipart_encoder, headers=headers, timeout=30)
except:
if (num == 6):
(await conversation.say((('@' + msg.talker().name) + ' 抱歉,连接已断开,未查询到用户数据!')))
return
response_dict = json.loads(response.text)
if (response_dict['errorCode'] != ''):
(await conversation.say((('@' + msg.talker().name) + response_dict['errorMsg'])))
return
if (num == 6):
(await conversation.say((('@' + msg.talker().name) + ' 抱歉,连接已断开,未查询到用户数据!')))
return
elif response_dict['success']:
try:
file_box = FileBox.from_url(response_dict['data'], name='policy.xlsx')
(await conversation.say(file_box))
(await conversation.say((('@' + msg.talker().name) + ' 完成批量出单,请查收结果!')))
return
except:
(await conversation.say((('@' + msg.talker().name) + ' 批量出单失败,请手动操作!')))
return
num = (num + 1)
elif (msg_type == MessageType.MESSAGE_TYPE_IMAGE):
conversation: Union[(Room, Contact)] = (from_contact if (room is None) else room)
(await conversation.ready())
logger.info('receving image file')
image: WeImage = msg.to_image()
hd_file_box: FileBox = (await image.hd())
url = (ip_js + 'api/RobotApi/imgUpload.do')
multipart_encoder = MultipartEncoder(fields={'roomId': room_id, 'contactId': contact_id, 'path': '/img/robotOrder', 'storageServer': 'FASTDFS', 'file': ((str(int(time.time())) + '.jpg'), BytesIO(hd_file_box.stream), 'image/jpeg'), 'appKey': 'X08ASKYS'}, boundary=('-----------------------------' + str(random.randint(1e+28, (1e+29 - 1)))))
headers = {'Referer': url, 'Content-Type': multipart_encoder.content_type}
response = requests.post(url, data=multipart_encoder, headers=headers, timeout=30)
res_dict = json.loads(response.text)
if (not res_dict['success']):
(await conversation.say((('@' + msg.talker().name) + res_dict['errorMsg'])))
elif (msg_type in [MessageType.MESSAGE_TYPE_AUDIO, MessageType.MESSAGE_TYPE_ATTACHMENT, MessageType.MESSAGE_TYPE_VIDEO]):
conversation: Union[(Room, Contact)] = (from_contact if (room is None) else room)
(await conversation.ready())
logger.info(('receving file:' + 'test'))
file_box = (await msg.to_file_box())
url = (ip_js + 'api/RobotApi/imgUpload.do')
multipart_encoder = MultipartEncoder(fields={'roomId': room_id, 'operator': '6', 'nickname': msg.talker().name, 'contactId': contact_id, 'path': '/img/robotOrder', 'storageServer': 'FASTDFS', 'file': (((str(int(time.time())) + '.xlsx') if file_box.name.endswith('xlsx') else '.xls'), BytesIO(file_box.stream), ('application/vnd.openxmlformats-officedocument.spreadsheetml.sheet' if file_box.name.endswith('xlsx') else 'application/vnd.ms-excel')), 'appKey': 'X08ASKYS'}, boundary=('-----------------------------' + str(random.randint(1e+28, (1e+29 - 1)))))
headers = {'Referer': url, 'Content-Type': multipart_encoder.content_type}
response = requests.post(url, data=multipart_encoder, headers=headers, timeout=30)
res_dict = json.loads(response.text)
if (not res_dict['success']):
(await conversation.say((('@' + msg.talker().name) + res_dict['errorMsg'])))
else:
pass
if (msg.type() == MessageType.MESSAGE_TYPE_UNSPECIFIED):
talker = msg.talker()
assert isinstance(talker, Contact)
else:
pass | listen for message event | app/robot.py | on_message | anonier/python-wechaty | 0 | python | async def on_message(self, msg: Message) -> None:
'\n \n '
from_contact: Contact = msg.talker()
contact_id = from_contact.contact_id
text: str = msg.text()
room: Optional[Room] = msg.room()
room_id = room.room_id
msg_type: MessageType = msg.type()
if ('25398111924@chatroom' == room_id):
if (('@AI出单' in text) and ('查单' not in text) and ('报价' not in text) and (text.count('出单') == 1) and ('录单' not in text)):
conversation: Union[(Room, Contact)] = (from_contact if (room is None) else room)
(await conversation.ready())
(await conversation.say((('@' + msg.talker().name) + ' 未识别到指令,请核实后重新发送!')))
elif (('@AI出单' in text) and ('查单' in text)):
conversation: Union[(Room, Contact)] = (from_contact if (room is None) else room)
(await conversation.ready())
url = (ip + 'api/RobotApi/policy.do')
x = text.split()
man_cmd = [a for a in x if ('业务员' in a)]
if ((len(x) != 4) or (len(man_cmd) == 0) or ((':' not in man_cmd[0]) and (':' not in man_cmd[0]))):
(await conversation.say((('@' + msg.talker().name) + ' 未识别到指令,请核实后重新发送!')))
return
salesman = (man_cmd[0].split(':')[1] if (':' in man_cmd[0]) else man_cmd[0].split(':')[1])
car_licence = [a for a in x if (('出单' not in a) and ('查单' not in a) and ('@' not in a) and ('业务员' not in a))]
if ((len(car_licence) == 0) or not_car_number(license_plate, car_licence[0])):
(await conversation.say((('@' + msg.talker().name) + ' 未识别到车辆信息,请核对信息!')))
return
car_licence = car_licence[0]
(await conversation.say((('@' + msg.talker().name) + ' 收到查单指令,识别到车辆信息,数据处理中请稍后!')))
multipart_encoder = MultipartEncoder(fields={'roomId': room_id, 'contactId': contact_id, 'operator': '1', 'cmdName': text, 'salesman': salesman, 'licenseId': car_licence, 'appKey': 'X08ASKYS', 'nickname': msg.talker().name}, boundary=('-----------------------------' + str(random.randint(1e+28, (1e+29 - 1)))))
headers = {'Referer': url, 'Content-Type': multipart_encoder.content_type}
try:
response = requests.post(url, data=multipart_encoder, headers=headers, timeout=30)
except:
(await conversation.say((('@' + msg.talker().name) + ' 未查询到客户数据!')))
return
res_dict = json.loads(response.text)
if (res_dict['errorCode'] != ):
(await conversation.say((('@' + msg.talker().name) + res_dict['errorMsg'])))
return
num = 0
second = sleep_time(0, 0, 5)
while True:
time.sleep(second)
url = (ip + 'api/RobotApi/pullPolicy.do')
multipart_encoder = MultipartEncoder(fields={'uuid': res_dict['data'], 'appKey': 'X08ASKYS'}, boundary=('-----------------------------' + str(random.randint(1e+28, (1e+29 - 1)))))
headers = {'Referer': url, 'Content-Type': multipart_encoder.content_type}
try:
response = requests.post(url, data=multipart_encoder, headers=headers, timeout=30)
except:
if (num == 6):
(await conversation.say((('@' + msg.talker().name) + ' 未查询到客户数据!')))
return
response_dict = json.loads(response.text)
if (response_dict['errorCode'] != ):
(await conversation.say((('@' + msg.talker().name) + response_dict['errorMsg'])))
return
if (num == 6):
(await conversation.say((('@' + msg.talker().name) + ' 未查询到客户数据!')))
return
elif response_dict['success']:
(await conversation.say((((('@' + msg.talker().name) + ' 请查看') + car_licence) + '的电子保单文件!')))
for (key, value) in response_dict['data'].items():
file_box = FileBox.from_url(value, name=key)
(await conversation.say(file_box))
return
num = (num + 1)
elif (('@AI出单' in text) and ('报价' in text)):
conversation: Union[(Room, Contact)] = (from_contact if (room is None) else room)
(await conversation.ready())
url = (ip + 'api/RobotApi/declaration.do')
x = text.split()
insurance_cmd = [a for a in x if ('险种' in a)]
man_cmd = [a for a in x if ('业务员' in a)]
if (((len(x) != 5) and (len(x) != 7)) or (len(man_cmd) == 0) or (len(insurance_cmd) == 0) or (len(insurance_cmd) > 1) or ((':' not in man_cmd[0]) and (':' not in man_cmd[0]))):
(await conversation.say((('@' + msg.talker().name) + ' 未识别到指令,请核实后重新发送!')))
return
salesman = (man_cmd[0].split(':')[1] if (':' in man_cmd[0]) else man_cmd[0].split(':')[1])
insurance = (insurance_cmd[0].split(':')[1] if (':' in insurance_cmd[0]) else insurance_cmd[0].split(':')[1])
if ('基本' in insurance):
if (len(x) == 5):
if (len([a for a in x if ('-商业' in a)]) != 0):
jqInsurance = 'true'
csInsurance = 'false'
szInsurance = None
driver = None
passenger = None
accident = None
else:
jqInsurance = ('false' if [a for a in x if ('-交强' in a)] else 'true')
if (len([a for a in x if ('-车损' in a)]) != 0):
csInsurance = 'false'
elif (len([a for a in x if (('车损' in a) and ('-' not in a))]) != 0):
csInsurance = get_number((a for a in x if ('车损' in a)))
else:
csInsurance = 'true'
szInsurance = ('100' if (len([a for a in x if ('三者' in a)]) == 0) else get_number(str([a for a in x if ('三者' in a)])))
driver = ('1' if (len([a for a in x if ('司机' in a)]) == 0) else get_number(str([a for a in x if ('司机' in a)])))
passenger = ('1' if (len([a for a in x if ('乘客' in a)]) == 0) else get_number(str([a for a in x if ('乘客' in a)])))
accident = (None if (len([a for a in x if ('意外' in a)]) == 0) else get_number(str([a for a in x if ('意外' in a)])))
elif (len(x) == 7):
jqInsurance = 'true'
csInsurance = 'true'
szInsurance = get_number(str([a for a in x if ('三者' in a)]))
driver = get_number(str([a for a in x if ('司机' in a)]))
passenger = get_number(str([a for a in x if ('乘客' in a)]))
accident = None
else:
(await conversation.say((('@' + msg.talker().name) + ' 未识别到指令,请核实后重新发送!')))
return
elif ('进阶' in insurance):
if (len(x) == 5):
if (len([a for a in x if ('-商业' in a)]) != 0):
jqInsurance = 'true'
csInsurance = 'false'
szInsurance = None
driver = None
passenger = None
accident = None
else:
jqInsurance = ('false' if [a for a in x if ('-交强' in a)] else 'true')
if (len([a for a in x if ('-车损' in a)]) != 0):
csInsurance = 'false'
elif (len([a for a in x if (('车损' in a) and ('-' not in a))]) != 0):
csInsurance = get_number((a for a in x if ('车损' in a)))
else:
csInsurance = 'true'
szInsurance = ('150' if (len([a for a in x if ('三者' in a)]) == 0) else get_number(str([a for a in x if ('三者' in a)])))
driver = ('5' if (len([a for a in x if ('司机' in a)]) == 0) else get_number(str([a for a in x if ('司机' in a)])))
passenger = ('5' if (len([a for a in x if ('乘客' in a)]) == 0) else get_number(str([a for a in x if ('乘客' in a)])))
accident = (None if (len([a for a in x if ('意外' in a)]) == 0) else get_number(str([a for a in x if ('意外' in a)])))
elif (len(x) == 7):
jqInsurance = 'true'
csInsurance = 'true'
szInsurance = get_number(str([a for a in x if ('三者' in a)]))
driver = get_number(str([a for a in x if ('司机' in a)]))
passenger = get_number(str([a for a in x if ('乘客' in a)]))
accident = None
else:
(await conversation.say((('@' + msg.talker().name) + ' 未识别到指令,请核实后重新发送!')))
return
szInsurance = szInsurance[0]
driver = driver[0]
passenger = passenger[0]
(await conversation.say((('@' + msg.talker().name) + ' 收到报价指令,努力处理中,请稍后!')))
multipart_encoder = MultipartEncoder(fields={'roomId': room_id, 'contactId': contact_id, 'operator': '2', 'cmdName': text, 'appKey': 'X08ASKYS', 'jqInsurance': jqInsurance, 'csInsurance': csInsurance, 'szInsurance': szInsurance, 'salesman': salesman, 'driver': driver, 'passenger': passenger, 'accident': (None if (accident is None) else '*'.join(accident)), 'nickname': msg.talker().name}, boundary=('-----------------------------' + str(random.randint(1e+28, (1e+29 - 1)))))
headers = {'Referer': url, 'Content-Type': multipart_encoder.content_type}
try:
response = requests.post(url, data=multipart_encoder, headers=headers, timeout=30)
except:
(await conversation.say((('@' + msg.talker().name) + ' 未查询到客户数据!')))
return
res_dict = json.loads(response.text)
if (res_dict['errorCode'] != ):
(await conversation.say((('@' + msg.talker().name) + res_dict['errorMsg'])))
return
num = 0
second = sleep_time(0, 0, 5)
while True:
time.sleep(second)
url = (ip + 'api/RobotApi/pullPolicy.do')
multipart_encoder = MultipartEncoder(fields={'uuid': res_dict['data'], 'appKey': 'X08ASKYS'}, boundary=('-----------------------------' + str(random.randint(1e+28, (1e+29 - 1)))))
headers = {'Referer': url, 'Content-Type': multipart_encoder.content_type}
try:
response = requests.post(url, data=multipart_encoder, headers=headers, timeout=30)
except:
if (num == 6):
(await conversation.say((('@' + msg.talker().name) + ' 未查询到客户数据!')))
return
response_dict = json.loads(response.text)
if (response_dict['errorCode'] != ):
(await conversation.say((('@' + msg.talker().name) + response_dict['errorMsg'])))
return
if (num == 6):
(await conversation.say((('@' + msg.talker().name) + ' 未查询到客户数据!')))
return
elif response_dict['success']:
try:
data = response_dict['data']
(await conversation.say((((((((((('@' + msg.talker().name) + ' 本车客户风险等级:') + data['customerRiskRating']) + '; 车系风险等级:') + data['familyGrade']) + '; 无赔系数:') + data['unattendGrade']) + '; 自主定价系数:') + data['rateProduct']) + '。')))
(await conversation.say((((((((((((((((((((((((((((((('@' + msg.talker().name) + ' ') + data['ownerName']) + ',您好!您的爱车') + data['plateNumber']) + '预计估价共计') + data['totalPremium']) + '元,其中交强险') + data['compulsoryPremium']) + '元, 商业险') + data['businessPremium']) + '元。商业险明细:车损保额') + [a for a in data['policyBusinessCategoryList'] if ('车损' in a['name'])][0]['amountWy']) + '万元,保费') + [a for a in data['policyBusinessCategoryList'] if ('车损' in a['name'])][0]['premium']) + '元 ;三者保额') + [a for a in data['policyBusinessCategoryList'] if ('三者' in a['name'])][0]['amountWy']) + '万元,保费') + [a for a in data['policyBusinessCategoryList'] if ('三者' in a['name'])][0]['premium']) + '元 ;司机保额') + [a for a in data['policyBusinessCategoryList'] if ('司机' in a['name'])][0]['amountWy']) + '万元,保费') + [a for a in data['policyBusinessCategoryList'] if ('司机' in a['name'])][0]['premium']) + '元;乘客保额') + [a for a in data['policyBusinessCategoryList'] if ('乘客' in a['name'])][0]['amountWy']) + '万元,保费') + [a for a in data['policyBusinessCategoryList'] if ('乘客' in a['name'])][0]['premium']) + '元 。代收车船税') + data['taxPremium']) + '元。此报价仅供参考,最终价格以出单为准。')))
file_box = FileBox.from_url(data['url'], name='policy.jpg')
(await conversation.say(file_box))
return
except:
(await conversation.say((('@' + msg.talker().name) + ' 操作报价失败,请手动操作!')))
return
num = (num + 1)
elif (('@AI出单' in text) and (text.count('出单') == 2)):
conversation: Union[(Room, Contact)] = (from_contact if (room is None) else room)
(await conversation.ready())
url = (ip + 'api/RobotApi/issuing.do')
x = text.split()
man_cmd = [a for a in x if ('业务员' in a)]
if ((len(x) < 4) or (len(x) > 5) or (len(man_cmd) == 0) or ((':' not in man_cmd[0]) and (':' not in man_cmd[0]))):
(await conversation.say((('@' + msg.talker().name) + ' 未识别到指令,请核实后重新发送!')))
return
salesman = (man_cmd[0].split(':')[1] if (':' in man_cmd[0]) else man_cmd[0].split(':')[1])
car_licence = [a for a in x if (('出单' not in a) and ('@' not in a) and ('业务员' not in a))]
if ((len(car_licence) == 0) or not_car_number(license_plate, car_licence[0])):
(await conversation.say((('@' + msg.talker().name) + ' 未识别到车辆信息,请核对信息!')))
return
car_licence = car_licence[0]
(await conversation.say((('@' + msg.talker().name) + ' 收到出单指令,数据处理中请稍后!')))
multipart_encoder = MultipartEncoder(fields={'roomId': room_id, 'contactId': contact_id, 'operator': '3', 'cmdName': text, 'salesman': salesman, 'licenseId': car_licence, 'appKey': 'X08ASKYS', 'nickname': msg.talker().name}, boundary=('-----------------------------' + str(random.randint(1e+28, (1e+29 - 1)))))
headers = {'Referer': url, 'Content-Type': multipart_encoder.content_type}
try:
response = requests.post(url, data=multipart_encoder, headers=headers, timeout=30)
except:
(await conversation.say((('@' + msg.talker().name) + ' 未查询到客户数据!')))
return
res_dict = json.loads(response.text)
if (res_dict['errorCode'] != ):
(await conversation.say((('@' + msg.talker().name) + res_dict['errorMsg'])))
return
num = 0
second = sleep_time(0, 0, 5)
while True:
time.sleep(second)
url = (ip + 'api/RobotApi/pullPolicy.do')
multipart_encoder = MultipartEncoder(fields={'uuid': res_dict['data'], 'appKey': 'X08ASKYS'}, boundary=('-----------------------------' + str(random.randint(1e+28, (1e+29 - 1)))))
headers = {'Referer': url, 'Content-Type': multipart_encoder.content_type}
try:
response = requests.post(url, data=multipart_encoder, headers=headers, timeout=30)
except:
if (num == 6):
(await conversation.say((('@' + msg.talker().name) + ' 未查询到客户数据!')))
return
response_dict = json.loads(response.text)
if (response_dict['errorCode'] != ):
(await conversation.say((('@' + msg.talker().name) + response_dict['errorMsg'])))
return
if (num == 6):
(await conversation.say((('@' + msg.talker().name) + ' 未查询到客户数据!')))
return
elif response_dict['success']:
(await conversation.say((('@' + msg.talker().name) + ' 已完成出单!')))
qr = FileBox.from_base64(open('qr.txt', 'rb').read(), 'qr.jpg')
(await conversation.say(qr))
file_box = FileBox.from_base64(str.encode(str(response_dict['data']).split(',')[1]), name='qr.jpg')
(await conversation.say(file_box))
return
num = (num + 1)
elif (('@AI出单' in text) and ('录单' in text)):
conversation: Union[(Room, Contact)] = (from_contact if (room is None) else room)
(await conversation.ready())
url = (ip + 'api/RobotApi/policy.do')
x = text.split()
man_cmd = [a for a in x if ('业务员' in a)]
phone_cmd = [a for a in x if ('手机' in a)]
insurance_cmd = [a for a in x if ('险种' in a)]
if ((len(x) != 8) or (len(man_cmd) == 0) or (len(phone_cmd) == 0) or ((':' not in man_cmd[0]) and (':' not in man_cmd[0])) or ((':' not in phone_cmd[0]) and (':' not in phone_cmd[0]))):
(await conversation.say((('@' + msg.talker().name) + ' 未识别到指令,请核实后重新发送!')))
return
salesman = (man_cmd[0].split(':')[1] if (':' in man_cmd[0]) else man_cmd[0].split(':')[1])
phone = (phone_cmd[0].split(':')[1] if (':' in phone_cmd[0]) else phone_cmd[0].split(':')[1])
insurance = (insurance_cmd[0].split(':')[1] if (':' in insurance_cmd[0]) else insurance_cmd[0].split(':')[1])
if ('基本' in insurance):
if (len(x) == 5):
if (len([a for a in x if ('-商业' in a)]) != 0):
jqInsurance = 'true'
csInsurance = 'false'
szInsurance = None
driver = None
passenger = None
accident = None
else:
jqInsurance = ('false' if [a for a in x if ('-交强' in a)] else 'true')
if (len([a for a in x if ('-车损' in a)]) != 0):
csInsurance = 'false'
elif (len([a for a in x if (('车损' in a) and ('-' not in a))]) != 0):
csInsurance = get_number((a for a in x if ('车损' in a)))
else:
csInsurance = 'true'
szInsurance = ('100' if (len([a for a in x if ('三者' in a)]) == 0) else get_number(str([a for a in x if ('三者' in a)])))
driver = ('1' if (len([a for a in x if ('司机' in a)]) == 0) else get_number(str([a for a in x if ('司机' in a)])))
passenger = ('1' if (len([a for a in x if ('乘客' in a)]) == 0) else get_number(str([a for a in x if ('乘客' in a)])))
accident = (None if (len([a for a in x if ('意外' in a)]) == 0) else get_number(str([a for a in x if ('意外' in a)])))
elif (len(x) == 7):
jqInsurance = 'true'
csInsurance = 'true'
szInsurance = get_number(str([a for a in x if ('三者' in a)]))
driver = get_number(str([a for a in x if ('司机' in a)]))
passenger = get_number(str([a for a in x if ('乘客' in a)]))
accident = None
else:
(await conversation.say((('@' + msg.talker().name) + ' 未识别到指令,请核实后重新发送!')))
return
elif ('进阶' in insurance):
if (len(x) == 5):
if (len([a for a in x if ('-商业' in a)]) != 0):
jqInsurance = 'true'
csInsurance = 'false'
szInsurance = None
driver = None
passenger = None
accident = None
else:
jqInsurance = ('false' if [a for a in x if ('-交强' in a)] else 'true')
if (len([a for a in x if ('-车损' in a)]) != 0):
csInsurance = 'false'
elif (len([a for a in x if (('车损' in a) and ('-' not in a))]) != 0):
csInsurance = get_number((a for a in x if ('车损' in a)))
else:
csInsurance = 'true'
szInsurance = ('150' if (len([a for a in x if ('三者' in a)]) == 0) else get_number(str([a for a in x if ('三者' in a)])))
driver = ('5' if (len([a for a in x if ('司机' in a)]) == 0) else get_number(str([a for a in x if ('司机' in a)])))
passenger = ('5' if (len([a for a in x if ('乘客' in a)]) == 0) else get_number(str([a for a in x if ('乘客' in a)])))
accident = (None if (len([a for a in x if ('意外' in a)]) == 0) else get_number(str([a for a in x if ('意外' in a)])))
elif (len(x) == 7):
jqInsurance = 'true'
csInsurance = 'true'
szInsurance = get_number(str([a for a in x if ('三者' in a)]))
driver = get_number(str([a for a in x if ('司机' in a)]))
passenger = get_number(str([a for a in x if ('乘客' in a)]))
accident = None
else:
(await conversation.say((('@' + msg.talker().name) + ' 未识别到指令,请核实后重新发送!')))
return
szInsurance = szInsurance[0]
driver = driver[0]
passenger = passenger[0]
(await conversation.say((('@' + msg.talker().name) + ' 收到录单指令,数据处理中请稍后!')))
multipart_encoder = MultipartEncoder(fields={'roomId': room_id, 'contactId': contact_id, 'operator': '4', 'cmdName': text, 'salesman': salesman, 'jqInsurance': jqInsurance, 'csInsurance': csInsurance, 'szInsurance': szInsurance, 'driver': driver, 'passenger': passenger, 'accident': (None if (accident is None) else '*'.join(accident)), 'phone': phone, 'appKey': 'X08ASKYS', 'nickname': msg.talker().name}, boundary=('-----------------------------' + str(random.randint(1e+28, (1e+29 - 1)))))
headers = {'Referer': url, 'Content-Type': multipart_encoder.content_type}
try:
response = requests.post(url, data=multipart_encoder, headers=headers, timeout=30)
except:
(await conversation.say((('@' + msg.talker().name) + ' 未查询到客户数据!')))
return
res_dict = json.loads(response.text)
if (not res_dict['success']):
(await conversation.say((('@' + msg.talker().name) + ' 未查询到客户数据!')))
return
(await conversation.say((('@' + msg.talker().name) + ' 已完成录单!')))
num = 0
second = sleep_time(0, 0, 5)
while True:
time.sleep(second)
url = (ip + 'api/RobotApi/pullPolicy.do')
multipart_encoder = MultipartEncoder(fields={'uuid': res_dict['data'], 'appKey': 'X08ASKYS'}, boundary=('-----------------------------' + str(random.randint(1e+28, (1e+29 - 1)))))
headers = {'Referer': url, 'Content-Type': multipart_encoder.content_type}
try:
response = requests.post(url, data=multipart_encoder, headers=headers, timeout=30)
except:
if (num == 6):
(await conversation.say((('@' + msg.talker().name) + ' 未查询到客户数据!')))
return
response_dict = json.loads(response.text)
if (response_dict['errorCode'] != ):
(await conversation.say((('@' + msg.talker().name) + response_dict['errorMsg'])))
return
if (num == 6):
(await conversation.say((('@' + msg.talker().name) + ' 未查询到客户数据!')))
return
elif response_dict['success']:
try:
data = response_dict['data']
(await conversation.say((((((((((('@' + msg.talker().name) + ' 本车客户风险等级:') + data['customerRiskRating']) + '; 车系风险等级:') + data['familyGrade']) + '; 无赔系数:') + data['unattendGrade']) + '; 自主定价系数:') + data['rateProduct']) + '。')))
(await conversation.say((((((((((((((((((((((((((((((('@' + msg.talker().name) + ' ') + data['ownerName']) + ',您好!您的爱车') + data['plateNumber']) + '预计估价共计') + data['totalPremium']) + '元,其中交强险') + data['compulsoryPremium']) + '元, 商业险') + data['businessPremium']) + '元。商业险明细:车损保额') + [a for a in data['policyBusinessCategoryList'] if ('车损' in a['name'])][0]['amountWy']) + '万元,保费') + [a for a in data['policyBusinessCategoryList'] if ('车损' in a['name'])][0]['premium']) + '元 ;三者保额') + [a for a in data['policyBusinessCategoryList'] if ('三者' in a['name'])][0]['amountWy']) + '万元,保费') + [a for a in data['policyBusinessCategoryList'] if ('三者' in a['name'])][0]['premium']) + '元 ;司机保额') + [a for a in data['policyBusinessCategoryList'] if ('司机' in a['name'])][0]['amountWy']) + '万元,保费') + [a for a in data['policyBusinessCategoryList'] if ('司机' in a['name'])][0]['premium']) + '元;乘客保额') + [a for a in data['policyBusinessCategoryList'] if ('乘客' in a['name'])][0]['amountWy']) + '万元,保费') + [a for a in data['policyBusinessCategoryList'] if ('乘客' in a['name'])][0]['premium']) + '元 。代收车船税') + data['taxPremium']) + '元。此报价仅供参考,最终价格以出单为准。')))
file_box = FileBox.from_url(data['url'], name='policy.jpg')
(await conversation.say(file_box))
return
except:
(await conversation.say((('@' + msg.talker().name) + ' 操作报价失败,请手动操作!')))
return
return
num = (num + 1)
elif (msg_type == MessageType.MESSAGE_TYPE_IMAGE):
conversation: Union[(Room, Contact)] = (from_contact if (room is None) else room)
(await conversation.ready())
logger.info('receving image file')
image: WeImage = msg.to_image()
hd_file_box: FileBox = (await image.hd())
url = (ip + 'api/RobotApi/imgUpload.do')
multipart_encoder = MultipartEncoder(fields={'roomId': room_id, 'contactId': contact_id, 'path': '/img/robotOrder', 'storageServer': 'FASTDFS', 'file': ((str(int(time.time())) + '.jpg'), BytesIO(hd_file_box.stream), 'image/jpeg'), 'appKey': 'X08ASKYS'}, boundary=('-----------------------------' + str(random.randint(1e+28, (1e+29 - 1)))))
headers = {'Referer': url, 'Content-Type': multipart_encoder.content_type}
response = requests.post(url, data=multipart_encoder, headers=headers, timeout=30)
res_dict = json.loads(response.text)
if (not res_dict['success']):
(await conversation.say((('@' + msg.talker().name) + res_dict['errorMsg'])))
else:
pass
if (msg.type() == MessageType.MESSAGE_TYPE_UNSPECIFIED):
talker = msg.talker()
assert isinstance(talker, Contact)
elif ('21121012651@chatroom' == room_id):
if (('@AI出单' in text) and ('查单' in text)):
pass
elif (('@AI出单' in text) and ('批量出单' in text)):
conversation: Union[(Room, Contact)] = (from_contact if (room is None) else room)
(await conversation.ready())
(await conversation.say((('@' + msg.talker().name) + ' 收到指令,努力处理中请稍后!')))
url = (ip_js + 'api/RobotApi/wycPolicy.do')
multipart_encoder = MultipartEncoder(fields={'roomId': room_id, 'contactId': contact_id, 'operator': msg.talker().name, 'cmdName': text, 'appKey': 'X08ASKYS'}, boundary=('-----------------------------' + str(random.randint(1e+28, (1e+29 - 1)))))
headers = {'Referer': url, 'Content-Type': multipart_encoder.content_type}
try:
response = requests.post(url, data=multipart_encoder, headers=headers, timeout=30)
except:
(await conversation.say((('@' + msg.talker().name) + ' 抱歉,连接已断开,未查询到用户数据!')))
return
res_dict = json.loads(response.text)
if (res_dict['errorCode'] != ):
(await conversation.say((('@' + msg.talker().name) + res_dict['errorMsg'])))
return
num = 0
second = sleep_time(0, 0, 5)
while True:
time.sleep(second)
url = (ip_js + 'api/RobotApi/pullPolicy.do')
multipart_encoder = MultipartEncoder(fields={'uuid': res_dict['data'], 'appKey': 'X08ASKYS'}, boundary=('-----------------------------' + str(random.randint(1e+28, (1e+29 - 1)))))
headers = {'Referer': url, 'Content-Type': multipart_encoder.content_type}
try:
response = requests.post(url, data=multipart_encoder, headers=headers, timeout=30)
except:
if (num == 6):
(await conversation.say((('@' + msg.talker().name) + ' 抱歉,连接已断开,未查询到用户数据!')))
return
response_dict = json.loads(response.text)
if (response_dict['errorCode'] != ):
(await conversation.say((('@' + msg.talker().name) + response_dict['errorMsg'])))
return
if (num == 6):
(await conversation.say((('@' + msg.talker().name) + ' 抱歉,连接已断开,未查询到用户数据!')))
return
elif response_dict['success']:
try:
file_box = FileBox.from_url(response_dict['data'], name='policy.xlsx')
(await conversation.say(file_box))
(await conversation.say((('@' + msg.talker().name) + ' 完成批量出单,请查收结果!')))
return
except:
(await conversation.say((('@' + msg.talker().name) + ' 批量出单失败,请手动操作!')))
return
num = (num + 1)
elif (msg_type == MessageType.MESSAGE_TYPE_IMAGE):
conversation: Union[(Room, Contact)] = (from_contact if (room is None) else room)
(await conversation.ready())
logger.info('receving image file')
image: WeImage = msg.to_image()
hd_file_box: FileBox = (await image.hd())
url = (ip_js + 'api/RobotApi/imgUpload.do')
multipart_encoder = MultipartEncoder(fields={'roomId': room_id, 'contactId': contact_id, 'path': '/img/robotOrder', 'storageServer': 'FASTDFS', 'file': ((str(int(time.time())) + '.jpg'), BytesIO(hd_file_box.stream), 'image/jpeg'), 'appKey': 'X08ASKYS'}, boundary=('-----------------------------' + str(random.randint(1e+28, (1e+29 - 1)))))
headers = {'Referer': url, 'Content-Type': multipart_encoder.content_type}
response = requests.post(url, data=multipart_encoder, headers=headers, timeout=30)
res_dict = json.loads(response.text)
if (not res_dict['success']):
(await conversation.say((('@' + msg.talker().name) + res_dict['errorMsg'])))
elif (msg_type in [MessageType.MESSAGE_TYPE_AUDIO, MessageType.MESSAGE_TYPE_ATTACHMENT, MessageType.MESSAGE_TYPE_VIDEO]):
conversation: Union[(Room, Contact)] = (from_contact if (room is None) else room)
(await conversation.ready())
logger.info(('receving file:' + 'test'))
file_box = (await msg.to_file_box())
url = (ip_js + 'api/RobotApi/imgUpload.do')
multipart_encoder = MultipartEncoder(fields={'roomId': room_id, 'operator': '6', 'nickname': msg.talker().name, 'contactId': contact_id, 'path': '/img/robotOrder', 'storageServer': 'FASTDFS', 'file': (((str(int(time.time())) + '.xlsx') if file_box.name.endswith('xlsx') else '.xls'), BytesIO(file_box.stream), ('application/vnd.openxmlformats-officedocument.spreadsheetml.sheet' if file_box.name.endswith('xlsx') else 'application/vnd.ms-excel')), 'appKey': 'X08ASKYS'}, boundary=('-----------------------------' + str(random.randint(1e+28, (1e+29 - 1)))))
headers = {'Referer': url, 'Content-Type': multipart_encoder.content_type}
response = requests.post(url, data=multipart_encoder, headers=headers, timeout=30)
res_dict = json.loads(response.text)
if (not res_dict['success']):
(await conversation.say((('@' + msg.talker().name) + res_dict['errorMsg'])))
else:
pass
if (msg.type() == MessageType.MESSAGE_TYPE_UNSPECIFIED):
talker = msg.talker()
assert isinstance(talker, Contact)
else:
pass | async def on_message(self, msg: Message) -> None:
'\n \n '
from_contact: Contact = msg.talker()
contact_id = from_contact.contact_id
text: str = msg.text()
room: Optional[Room] = msg.room()
room_id = room.room_id
msg_type: MessageType = msg.type()
if ('25398111924@chatroom' == room_id):
if (('@AI出单' in text) and ('查单' not in text) and ('报价' not in text) and (text.count('出单') == 1) and ('录单' not in text)):
conversation: Union[(Room, Contact)] = (from_contact if (room is None) else room)
(await conversation.ready())
(await conversation.say((('@' + msg.talker().name) + ' 未识别到指令,请核实后重新发送!')))
elif (('@AI出单' in text) and ('查单' in text)):
conversation: Union[(Room, Contact)] = (from_contact if (room is None) else room)
(await conversation.ready())
url = (ip + 'api/RobotApi/policy.do')
x = text.split()
man_cmd = [a for a in x if ('业务员' in a)]
if ((len(x) != 4) or (len(man_cmd) == 0) or ((':' not in man_cmd[0]) and (':' not in man_cmd[0]))):
(await conversation.say((('@' + msg.talker().name) + ' 未识别到指令,请核实后重新发送!')))
return
salesman = (man_cmd[0].split(':')[1] if (':' in man_cmd[0]) else man_cmd[0].split(':')[1])
car_licence = [a for a in x if (('出单' not in a) and ('查单' not in a) and ('@' not in a) and ('业务员' not in a))]
if ((len(car_licence) == 0) or not_car_number(license_plate, car_licence[0])):
(await conversation.say((('@' + msg.talker().name) + ' 未识别到车辆信息,请核对信息!')))
return
car_licence = car_licence[0]
(await conversation.say((('@' + msg.talker().name) + ' 收到查单指令,识别到车辆信息,数据处理中请稍后!')))
multipart_encoder = MultipartEncoder(fields={'roomId': room_id, 'contactId': contact_id, 'operator': '1', 'cmdName': text, 'salesman': salesman, 'licenseId': car_licence, 'appKey': 'X08ASKYS', 'nickname': msg.talker().name}, boundary=('-----------------------------' + str(random.randint(1e+28, (1e+29 - 1)))))
headers = {'Referer': url, 'Content-Type': multipart_encoder.content_type}
try:
response = requests.post(url, data=multipart_encoder, headers=headers, timeout=30)
except:
(await conversation.say((('@' + msg.talker().name) + ' 未查询到客户数据!')))
return
res_dict = json.loads(response.text)
if (res_dict['errorCode'] != ):
(await conversation.say((('@' + msg.talker().name) + res_dict['errorMsg'])))
return
num = 0
second = sleep_time(0, 0, 5)
while True:
time.sleep(second)
url = (ip + 'api/RobotApi/pullPolicy.do')
multipart_encoder = MultipartEncoder(fields={'uuid': res_dict['data'], 'appKey': 'X08ASKYS'}, boundary=('-----------------------------' + str(random.randint(1e+28, (1e+29 - 1)))))
headers = {'Referer': url, 'Content-Type': multipart_encoder.content_type}
try:
response = requests.post(url, data=multipart_encoder, headers=headers, timeout=30)
except:
if (num == 6):
(await conversation.say((('@' + msg.talker().name) + ' 未查询到客户数据!')))
return
response_dict = json.loads(response.text)
if (response_dict['errorCode'] != ):
(await conversation.say((('@' + msg.talker().name) + response_dict['errorMsg'])))
return
if (num == 6):
(await conversation.say((('@' + msg.talker().name) + ' 未查询到客户数据!')))
return
elif response_dict['success']:
(await conversation.say((((('@' + msg.talker().name) + ' 请查看') + car_licence) + '的电子保单文件!')))
for (key, value) in response_dict['data'].items():
file_box = FileBox.from_url(value, name=key)
(await conversation.say(file_box))
return
num = (num + 1)
elif (('@AI出单' in text) and ('报价' in text)):
conversation: Union[(Room, Contact)] = (from_contact if (room is None) else room)
(await conversation.ready())
url = (ip + 'api/RobotApi/declaration.do')
x = text.split()
insurance_cmd = [a for a in x if ('险种' in a)]
man_cmd = [a for a in x if ('业务员' in a)]
if (((len(x) != 5) and (len(x) != 7)) or (len(man_cmd) == 0) or (len(insurance_cmd) == 0) or (len(insurance_cmd) > 1) or ((':' not in man_cmd[0]) and (':' not in man_cmd[0]))):
(await conversation.say((('@' + msg.talker().name) + ' 未识别到指令,请核实后重新发送!')))
return
salesman = (man_cmd[0].split(':')[1] if (':' in man_cmd[0]) else man_cmd[0].split(':')[1])
insurance = (insurance_cmd[0].split(':')[1] if (':' in insurance_cmd[0]) else insurance_cmd[0].split(':')[1])
if ('基本' in insurance):
if (len(x) == 5):
if (len([a for a in x if ('-商业' in a)]) != 0):
jqInsurance = 'true'
csInsurance = 'false'
szInsurance = None
driver = None
passenger = None
accident = None
else:
jqInsurance = ('false' if [a for a in x if ('-交强' in a)] else 'true')
if (len([a for a in x if ('-车损' in a)]) != 0):
csInsurance = 'false'
elif (len([a for a in x if (('车损' in a) and ('-' not in a))]) != 0):
csInsurance = get_number((a for a in x if ('车损' in a)))
else:
csInsurance = 'true'
szInsurance = ('100' if (len([a for a in x if ('三者' in a)]) == 0) else get_number(str([a for a in x if ('三者' in a)])))
driver = ('1' if (len([a for a in x if ('司机' in a)]) == 0) else get_number(str([a for a in x if ('司机' in a)])))
passenger = ('1' if (len([a for a in x if ('乘客' in a)]) == 0) else get_number(str([a for a in x if ('乘客' in a)])))
accident = (None if (len([a for a in x if ('意外' in a)]) == 0) else get_number(str([a for a in x if ('意外' in a)])))
elif (len(x) == 7):
jqInsurance = 'true'
csInsurance = 'true'
szInsurance = get_number(str([a for a in x if ('三者' in a)]))
driver = get_number(str([a for a in x if ('司机' in a)]))
passenger = get_number(str([a for a in x if ('乘客' in a)]))
accident = None
else:
(await conversation.say((('@' + msg.talker().name) + ' 未识别到指令,请核实后重新发送!')))
return
elif ('进阶' in insurance):
if (len(x) == 5):
if (len([a for a in x if ('-商业' in a)]) != 0):
jqInsurance = 'true'
csInsurance = 'false'
szInsurance = None
driver = None
passenger = None
accident = None
else:
jqInsurance = ('false' if [a for a in x if ('-交强' in a)] else 'true')
if (len([a for a in x if ('-车损' in a)]) != 0):
csInsurance = 'false'
elif (len([a for a in x if (('车损' in a) and ('-' not in a))]) != 0):
csInsurance = get_number((a for a in x if ('车损' in a)))
else:
csInsurance = 'true'
szInsurance = ('150' if (len([a for a in x if ('三者' in a)]) == 0) else get_number(str([a for a in x if ('三者' in a)])))
driver = ('5' if (len([a for a in x if ('司机' in a)]) == 0) else get_number(str([a for a in x if ('司机' in a)])))
passenger = ('5' if (len([a for a in x if ('乘客' in a)]) == 0) else get_number(str([a for a in x if ('乘客' in a)])))
accident = (None if (len([a for a in x if ('意外' in a)]) == 0) else get_number(str([a for a in x if ('意外' in a)])))
elif (len(x) == 7):
jqInsurance = 'true'
csInsurance = 'true'
szInsurance = get_number(str([a for a in x if ('三者' in a)]))
driver = get_number(str([a for a in x if ('司机' in a)]))
passenger = get_number(str([a for a in x if ('乘客' in a)]))
accident = None
else:
(await conversation.say((('@' + msg.talker().name) + ' 未识别到指令,请核实后重新发送!')))
return
szInsurance = szInsurance[0]
driver = driver[0]
passenger = passenger[0]
(await conversation.say((('@' + msg.talker().name) + ' 收到报价指令,努力处理中,请稍后!')))
multipart_encoder = MultipartEncoder(fields={'roomId': room_id, 'contactId': contact_id, 'operator': '2', 'cmdName': text, 'appKey': 'X08ASKYS', 'jqInsurance': jqInsurance, 'csInsurance': csInsurance, 'szInsurance': szInsurance, 'salesman': salesman, 'driver': driver, 'passenger': passenger, 'accident': (None if (accident is None) else '*'.join(accident)), 'nickname': msg.talker().name}, boundary=('-----------------------------' + str(random.randint(1e+28, (1e+29 - 1)))))
headers = {'Referer': url, 'Content-Type': multipart_encoder.content_type}
try:
response = requests.post(url, data=multipart_encoder, headers=headers, timeout=30)
except:
(await conversation.say((('@' + msg.talker().name) + ' 未查询到客户数据!')))
return
res_dict = json.loads(response.text)
if (res_dict['errorCode'] != ):
(await conversation.say((('@' + msg.talker().name) + res_dict['errorMsg'])))
return
num = 0
second = sleep_time(0, 0, 5)
while True:
time.sleep(second)
url = (ip + 'api/RobotApi/pullPolicy.do')
multipart_encoder = MultipartEncoder(fields={'uuid': res_dict['data'], 'appKey': 'X08ASKYS'}, boundary=('-----------------------------' + str(random.randint(1e+28, (1e+29 - 1)))))
headers = {'Referer': url, 'Content-Type': multipart_encoder.content_type}
try:
response = requests.post(url, data=multipart_encoder, headers=headers, timeout=30)
except:
if (num == 6):
(await conversation.say((('@' + msg.talker().name) + ' 未查询到客户数据!')))
return
response_dict = json.loads(response.text)
if (response_dict['errorCode'] != ):
(await conversation.say((('@' + msg.talker().name) + response_dict['errorMsg'])))
return
if (num == 6):
(await conversation.say((('@' + msg.talker().name) + ' 未查询到客户数据!')))
return
elif response_dict['success']:
try:
data = response_dict['data']
(await conversation.say((((((((((('@' + msg.talker().name) + ' 本车客户风险等级:') + data['customerRiskRating']) + '; 车系风险等级:') + data['familyGrade']) + '; 无赔系数:') + data['unattendGrade']) + '; 自主定价系数:') + data['rateProduct']) + '。')))
(await conversation.say((((((((((((((((((((((((((((((('@' + msg.talker().name) + ' ') + data['ownerName']) + ',您好!您的爱车') + data['plateNumber']) + '预计估价共计') + data['totalPremium']) + '元,其中交强险') + data['compulsoryPremium']) + '元, 商业险') + data['businessPremium']) + '元。商业险明细:车损保额') + [a for a in data['policyBusinessCategoryList'] if ('车损' in a['name'])][0]['amountWy']) + '万元,保费') + [a for a in data['policyBusinessCategoryList'] if ('车损' in a['name'])][0]['premium']) + '元 ;三者保额') + [a for a in data['policyBusinessCategoryList'] if ('三者' in a['name'])][0]['amountWy']) + '万元,保费') + [a for a in data['policyBusinessCategoryList'] if ('三者' in a['name'])][0]['premium']) + '元 ;司机保额') + [a for a in data['policyBusinessCategoryList'] if ('司机' in a['name'])][0]['amountWy']) + '万元,保费') + [a for a in data['policyBusinessCategoryList'] if ('司机' in a['name'])][0]['premium']) + '元;乘客保额') + [a for a in data['policyBusinessCategoryList'] if ('乘客' in a['name'])][0]['amountWy']) + '万元,保费') + [a for a in data['policyBusinessCategoryList'] if ('乘客' in a['name'])][0]['premium']) + '元 。代收车船税') + data['taxPremium']) + '元。此报价仅供参考,最终价格以出单为准。')))
file_box = FileBox.from_url(data['url'], name='policy.jpg')
(await conversation.say(file_box))
return
except:
(await conversation.say((('@' + msg.talker().name) + ' 操作报价失败,请手动操作!')))
return
num = (num + 1)
elif (('@AI出单' in text) and (text.count('出单') == 2)):
conversation: Union[(Room, Contact)] = (from_contact if (room is None) else room)
(await conversation.ready())
url = (ip + 'api/RobotApi/issuing.do')
x = text.split()
man_cmd = [a for a in x if ('业务员' in a)]
if ((len(x) < 4) or (len(x) > 5) or (len(man_cmd) == 0) or ((':' not in man_cmd[0]) and (':' not in man_cmd[0]))):
(await conversation.say((('@' + msg.talker().name) + ' 未识别到指令,请核实后重新发送!')))
return
salesman = (man_cmd[0].split(':')[1] if (':' in man_cmd[0]) else man_cmd[0].split(':')[1])
car_licence = [a for a in x if (('出单' not in a) and ('@' not in a) and ('业务员' not in a))]
if ((len(car_licence) == 0) or not_car_number(license_plate, car_licence[0])):
(await conversation.say((('@' + msg.talker().name) + ' 未识别到车辆信息,请核对信息!')))
return
car_licence = car_licence[0]
(await conversation.say((('@' + msg.talker().name) + ' 收到出单指令,数据处理中请稍后!')))
multipart_encoder = MultipartEncoder(fields={'roomId': room_id, 'contactId': contact_id, 'operator': '3', 'cmdName': text, 'salesman': salesman, 'licenseId': car_licence, 'appKey': 'X08ASKYS', 'nickname': msg.talker().name}, boundary=('-----------------------------' + str(random.randint(1e+28, (1e+29 - 1)))))
headers = {'Referer': url, 'Content-Type': multipart_encoder.content_type}
try:
response = requests.post(url, data=multipart_encoder, headers=headers, timeout=30)
except:
(await conversation.say((('@' + msg.talker().name) + ' 未查询到客户数据!')))
return
res_dict = json.loads(response.text)
if (res_dict['errorCode'] != ):
(await conversation.say((('@' + msg.talker().name) + res_dict['errorMsg'])))
return
num = 0
second = sleep_time(0, 0, 5)
while True:
time.sleep(second)
url = (ip + 'api/RobotApi/pullPolicy.do')
multipart_encoder = MultipartEncoder(fields={'uuid': res_dict['data'], 'appKey': 'X08ASKYS'}, boundary=('-----------------------------' + str(random.randint(1e+28, (1e+29 - 1)))))
headers = {'Referer': url, 'Content-Type': multipart_encoder.content_type}
try:
response = requests.post(url, data=multipart_encoder, headers=headers, timeout=30)
except:
if (num == 6):
(await conversation.say((('@' + msg.talker().name) + ' 未查询到客户数据!')))
return
response_dict = json.loads(response.text)
if (response_dict['errorCode'] != ):
(await conversation.say((('@' + msg.talker().name) + response_dict['errorMsg'])))
return
if (num == 6):
(await conversation.say((('@' + msg.talker().name) + ' 未查询到客户数据!')))
return
elif response_dict['success']:
(await conversation.say((('@' + msg.talker().name) + ' 已完成出单!')))
qr = FileBox.from_base64(open('qr.txt', 'rb').read(), 'qr.jpg')
(await conversation.say(qr))
file_box = FileBox.from_base64(str.encode(str(response_dict['data']).split(',')[1]), name='qr.jpg')
(await conversation.say(file_box))
return
num = (num + 1)
elif (('@AI出单' in text) and ('录单' in text)):
conversation: Union[(Room, Contact)] = (from_contact if (room is None) else room)
(await conversation.ready())
url = (ip + 'api/RobotApi/policy.do')
x = text.split()
man_cmd = [a for a in x if ('业务员' in a)]
phone_cmd = [a for a in x if ('手机' in a)]
insurance_cmd = [a for a in x if ('险种' in a)]
if ((len(x) != 8) or (len(man_cmd) == 0) or (len(phone_cmd) == 0) or ((':' not in man_cmd[0]) and (':' not in man_cmd[0])) or ((':' not in phone_cmd[0]) and (':' not in phone_cmd[0]))):
(await conversation.say((('@' + msg.talker().name) + ' 未识别到指令,请核实后重新发送!')))
return
salesman = (man_cmd[0].split(':')[1] if (':' in man_cmd[0]) else man_cmd[0].split(':')[1])
phone = (phone_cmd[0].split(':')[1] if (':' in phone_cmd[0]) else phone_cmd[0].split(':')[1])
insurance = (insurance_cmd[0].split(':')[1] if (':' in insurance_cmd[0]) else insurance_cmd[0].split(':')[1])
if ('基本' in insurance):
if (len(x) == 5):
if (len([a for a in x if ('-商业' in a)]) != 0):
jqInsurance = 'true'
csInsurance = 'false'
szInsurance = None
driver = None
passenger = None
accident = None
else:
jqInsurance = ('false' if [a for a in x if ('-交强' in a)] else 'true')
if (len([a for a in x if ('-车损' in a)]) != 0):
csInsurance = 'false'
elif (len([a for a in x if (('车损' in a) and ('-' not in a))]) != 0):
csInsurance = get_number((a for a in x if ('车损' in a)))
else:
csInsurance = 'true'
szInsurance = ('100' if (len([a for a in x if ('三者' in a)]) == 0) else get_number(str([a for a in x if ('三者' in a)])))
driver = ('1' if (len([a for a in x if ('司机' in a)]) == 0) else get_number(str([a for a in x if ('司机' in a)])))
passenger = ('1' if (len([a for a in x if ('乘客' in a)]) == 0) else get_number(str([a for a in x if ('乘客' in a)])))
accident = (None if (len([a for a in x if ('意外' in a)]) == 0) else get_number(str([a for a in x if ('意外' in a)])))
elif (len(x) == 7):
jqInsurance = 'true'
csInsurance = 'true'
szInsurance = get_number(str([a for a in x if ('三者' in a)]))
driver = get_number(str([a for a in x if ('司机' in a)]))
passenger = get_number(str([a for a in x if ('乘客' in a)]))
accident = None
else:
(await conversation.say((('@' + msg.talker().name) + ' 未识别到指令,请核实后重新发送!')))
return
elif ('进阶' in insurance):
if (len(x) == 5):
if (len([a for a in x if ('-商业' in a)]) != 0):
jqInsurance = 'true'
csInsurance = 'false'
szInsurance = None
driver = None
passenger = None
accident = None
else:
jqInsurance = ('false' if [a for a in x if ('-交强' in a)] else 'true')
if (len([a for a in x if ('-车损' in a)]) != 0):
csInsurance = 'false'
elif (len([a for a in x if (('车损' in a) and ('-' not in a))]) != 0):
csInsurance = get_number((a for a in x if ('车损' in a)))
else:
csInsurance = 'true'
szInsurance = ('150' if (len([a for a in x if ('三者' in a)]) == 0) else get_number(str([a for a in x if ('三者' in a)])))
driver = ('5' if (len([a for a in x if ('司机' in a)]) == 0) else get_number(str([a for a in x if ('司机' in a)])))
passenger = ('5' if (len([a for a in x if ('乘客' in a)]) == 0) else get_number(str([a for a in x if ('乘客' in a)])))
accident = (None if (len([a for a in x if ('意外' in a)]) == 0) else get_number(str([a for a in x if ('意外' in a)])))
elif (len(x) == 7):
jqInsurance = 'true'
csInsurance = 'true'
szInsurance = get_number(str([a for a in x if ('三者' in a)]))
driver = get_number(str([a for a in x if ('司机' in a)]))
passenger = get_number(str([a for a in x if ('乘客' in a)]))
accident = None
else:
(await conversation.say((('@' + msg.talker().name) + ' 未识别到指令,请核实后重新发送!')))
return
szInsurance = szInsurance[0]
driver = driver[0]
passenger = passenger[0]
(await conversation.say((('@' + msg.talker().name) + ' 收到录单指令,数据处理中请稍后!')))
multipart_encoder = MultipartEncoder(fields={'roomId': room_id, 'contactId': contact_id, 'operator': '4', 'cmdName': text, 'salesman': salesman, 'jqInsurance': jqInsurance, 'csInsurance': csInsurance, 'szInsurance': szInsurance, 'driver': driver, 'passenger': passenger, 'accident': (None if (accident is None) else '*'.join(accident)), 'phone': phone, 'appKey': 'X08ASKYS', 'nickname': msg.talker().name}, boundary=('-----------------------------' + str(random.randint(1e+28, (1e+29 - 1)))))
headers = {'Referer': url, 'Content-Type': multipart_encoder.content_type}
try:
response = requests.post(url, data=multipart_encoder, headers=headers, timeout=30)
except:
(await conversation.say((('@' + msg.talker().name) + ' 未查询到客户数据!')))
return
res_dict = json.loads(response.text)
if (not res_dict['success']):
(await conversation.say((('@' + msg.talker().name) + ' 未查询到客户数据!')))
return
(await conversation.say((('@' + msg.talker().name) + ' 已完成录单!')))
num = 0
second = sleep_time(0, 0, 5)
while True:
time.sleep(second)
url = (ip + 'api/RobotApi/pullPolicy.do')
multipart_encoder = MultipartEncoder(fields={'uuid': res_dict['data'], 'appKey': 'X08ASKYS'}, boundary=('-----------------------------' + str(random.randint(1e+28, (1e+29 - 1)))))
headers = {'Referer': url, 'Content-Type': multipart_encoder.content_type}
try:
response = requests.post(url, data=multipart_encoder, headers=headers, timeout=30)
except:
if (num == 6):
(await conversation.say((('@' + msg.talker().name) + ' 未查询到客户数据!')))
return
response_dict = json.loads(response.text)
if (response_dict['errorCode'] != ):
(await conversation.say((('@' + msg.talker().name) + response_dict['errorMsg'])))
return
if (num == 6):
(await conversation.say((('@' + msg.talker().name) + ' 未查询到客户数据!')))
return
elif response_dict['success']:
try:
data = response_dict['data']
(await conversation.say((((((((((('@' + msg.talker().name) + ' 本车客户风险等级:') + data['customerRiskRating']) + '; 车系风险等级:') + data['familyGrade']) + '; 无赔系数:') + data['unattendGrade']) + '; 自主定价系数:') + data['rateProduct']) + '。')))
(await conversation.say((((((((((((((((((((((((((((((('@' + msg.talker().name) + ' ') + data['ownerName']) + ',您好!您的爱车') + data['plateNumber']) + '预计估价共计') + data['totalPremium']) + '元,其中交强险') + data['compulsoryPremium']) + '元, 商业险') + data['businessPremium']) + '元。商业险明细:车损保额') + [a for a in data['policyBusinessCategoryList'] if ('车损' in a['name'])][0]['amountWy']) + '万元,保费') + [a for a in data['policyBusinessCategoryList'] if ('车损' in a['name'])][0]['premium']) + '元 ;三者保额') + [a for a in data['policyBusinessCategoryList'] if ('三者' in a['name'])][0]['amountWy']) + '万元,保费') + [a for a in data['policyBusinessCategoryList'] if ('三者' in a['name'])][0]['premium']) + '元 ;司机保额') + [a for a in data['policyBusinessCategoryList'] if ('司机' in a['name'])][0]['amountWy']) + '万元,保费') + [a for a in data['policyBusinessCategoryList'] if ('司机' in a['name'])][0]['premium']) + '元;乘客保额') + [a for a in data['policyBusinessCategoryList'] if ('乘客' in a['name'])][0]['amountWy']) + '万元,保费') + [a for a in data['policyBusinessCategoryList'] if ('乘客' in a['name'])][0]['premium']) + '元 。代收车船税') + data['taxPremium']) + '元。此报价仅供参考,最终价格以出单为准。')))
file_box = FileBox.from_url(data['url'], name='policy.jpg')
(await conversation.say(file_box))
return
except:
(await conversation.say((('@' + msg.talker().name) + ' 操作报价失败,请手动操作!')))
return
return
num = (num + 1)
elif (msg_type == MessageType.MESSAGE_TYPE_IMAGE):
conversation: Union[(Room, Contact)] = (from_contact if (room is None) else room)
(await conversation.ready())
logger.info('receving image file')
image: WeImage = msg.to_image()
hd_file_box: FileBox = (await image.hd())
url = (ip + 'api/RobotApi/imgUpload.do')
multipart_encoder = MultipartEncoder(fields={'roomId': room_id, 'contactId': contact_id, 'path': '/img/robotOrder', 'storageServer': 'FASTDFS', 'file': ((str(int(time.time())) + '.jpg'), BytesIO(hd_file_box.stream), 'image/jpeg'), 'appKey': 'X08ASKYS'}, boundary=('-----------------------------' + str(random.randint(1e+28, (1e+29 - 1)))))
headers = {'Referer': url, 'Content-Type': multipart_encoder.content_type}
response = requests.post(url, data=multipart_encoder, headers=headers, timeout=30)
res_dict = json.loads(response.text)
if (not res_dict['success']):
(await conversation.say((('@' + msg.talker().name) + res_dict['errorMsg'])))
else:
pass
if (msg.type() == MessageType.MESSAGE_TYPE_UNSPECIFIED):
talker = msg.talker()
assert isinstance(talker, Contact)
elif ('21121012651@chatroom' == room_id):
if (('@AI出单' in text) and ('查单' in text)):
pass
elif (('@AI出单' in text) and ('批量出单' in text)):
conversation: Union[(Room, Contact)] = (from_contact if (room is None) else room)
(await conversation.ready())
(await conversation.say((('@' + msg.talker().name) + ' 收到指令,努力处理中请稍后!')))
url = (ip_js + 'api/RobotApi/wycPolicy.do')
multipart_encoder = MultipartEncoder(fields={'roomId': room_id, 'contactId': contact_id, 'operator': msg.talker().name, 'cmdName': text, 'appKey': 'X08ASKYS'}, boundary=('-----------------------------' + str(random.randint(1e+28, (1e+29 - 1)))))
headers = {'Referer': url, 'Content-Type': multipart_encoder.content_type}
try:
response = requests.post(url, data=multipart_encoder, headers=headers, timeout=30)
except:
(await conversation.say((('@' + msg.talker().name) + ' 抱歉,连接已断开,未查询到用户数据!')))
return
res_dict = json.loads(response.text)
if (res_dict['errorCode'] != ):
(await conversation.say((('@' + msg.talker().name) + res_dict['errorMsg'])))
return
num = 0
second = sleep_time(0, 0, 5)
while True:
time.sleep(second)
url = (ip_js + 'api/RobotApi/pullPolicy.do')
multipart_encoder = MultipartEncoder(fields={'uuid': res_dict['data'], 'appKey': 'X08ASKYS'}, boundary=('-----------------------------' + str(random.randint(1e+28, (1e+29 - 1)))))
headers = {'Referer': url, 'Content-Type': multipart_encoder.content_type}
try:
response = requests.post(url, data=multipart_encoder, headers=headers, timeout=30)
except:
if (num == 6):
(await conversation.say((('@' + msg.talker().name) + ' 抱歉,连接已断开,未查询到用户数据!')))
return
response_dict = json.loads(response.text)
if (response_dict['errorCode'] != ):
(await conversation.say((('@' + msg.talker().name) + response_dict['errorMsg'])))
return
if (num == 6):
(await conversation.say((('@' + msg.talker().name) + ' 抱歉,连接已断开,未查询到用户数据!')))
return
elif response_dict['success']:
try:
file_box = FileBox.from_url(response_dict['data'], name='policy.xlsx')
(await conversation.say(file_box))
(await conversation.say((('@' + msg.talker().name) + ' 完成批量出单,请查收结果!')))
return
except:
(await conversation.say((('@' + msg.talker().name) + ' 批量出单失败,请手动操作!')))
return
num = (num + 1)
elif (msg_type == MessageType.MESSAGE_TYPE_IMAGE):
conversation: Union[(Room, Contact)] = (from_contact if (room is None) else room)
(await conversation.ready())
logger.info('receving image file')
image: WeImage = msg.to_image()
hd_file_box: FileBox = (await image.hd())
url = (ip_js + 'api/RobotApi/imgUpload.do')
multipart_encoder = MultipartEncoder(fields={'roomId': room_id, 'contactId': contact_id, 'path': '/img/robotOrder', 'storageServer': 'FASTDFS', 'file': ((str(int(time.time())) + '.jpg'), BytesIO(hd_file_box.stream), 'image/jpeg'), 'appKey': 'X08ASKYS'}, boundary=('-----------------------------' + str(random.randint(1e+28, (1e+29 - 1)))))
headers = {'Referer': url, 'Content-Type': multipart_encoder.content_type}
response = requests.post(url, data=multipart_encoder, headers=headers, timeout=30)
res_dict = json.loads(response.text)
if (not res_dict['success']):
(await conversation.say((('@' + msg.talker().name) + res_dict['errorMsg'])))
elif (msg_type in [MessageType.MESSAGE_TYPE_AUDIO, MessageType.MESSAGE_TYPE_ATTACHMENT, MessageType.MESSAGE_TYPE_VIDEO]):
conversation: Union[(Room, Contact)] = (from_contact if (room is None) else room)
(await conversation.ready())
logger.info(('receving file:' + 'test'))
file_box = (await msg.to_file_box())
url = (ip_js + 'api/RobotApi/imgUpload.do')
multipart_encoder = MultipartEncoder(fields={'roomId': room_id, 'operator': '6', 'nickname': msg.talker().name, 'contactId': contact_id, 'path': '/img/robotOrder', 'storageServer': 'FASTDFS', 'file': (((str(int(time.time())) + '.xlsx') if file_box.name.endswith('xlsx') else '.xls'), BytesIO(file_box.stream), ('application/vnd.openxmlformats-officedocument.spreadsheetml.sheet' if file_box.name.endswith('xlsx') else 'application/vnd.ms-excel')), 'appKey': 'X08ASKYS'}, boundary=('-----------------------------' + str(random.randint(1e+28, (1e+29 - 1)))))
headers = {'Referer': url, 'Content-Type': multipart_encoder.content_type}
response = requests.post(url, data=multipart_encoder, headers=headers, timeout=30)
res_dict = json.loads(response.text)
if (not res_dict['success']):
(await conversation.say((('@' + msg.talker().name) + res_dict['errorMsg'])))
else:
pass
if (msg.type() == MessageType.MESSAGE_TYPE_UNSPECIFIED):
talker = msg.talker()
assert isinstance(talker, Contact)
else:
pass<|docstring|>listen for message event<|endoftext|> |
dc05a2547f26c46ace2e904e215aae6695b6865accb92e279943c0fd5e74e27d | async def on_login(self, contact: Contact) -> None:
'login event\n\n Args:\n contact (Contact): the account logined\n '
logger.info('Contact<%s> has logined ...', contact)
self.login_user = contact | login event
Args:
contact (Contact): the account logined | app/robot.py | on_login | anonier/python-wechaty | 0 | python | async def on_login(self, contact: Contact) -> None:
'login event\n\n Args:\n contact (Contact): the account logined\n '
logger.info('Contact<%s> has logined ...', contact)
self.login_user = contact | async def on_login(self, contact: Contact) -> None:
'login event\n\n Args:\n contact (Contact): the account logined\n '
logger.info('Contact<%s> has logined ...', contact)
self.login_user = contact<|docstring|>login event
Args:
contact (Contact): the account logined<|endoftext|> |
f55b4b6c4afae17ea0528d55353ec6c858062cdd820ad0a5164062ebd0adbb32 | async def on_friendship(self, friendship: Friendship) -> None:
'when receive a new friendship application, or accept a new friendship\n\n Args:\n friendship (Friendship): contains the status and friendship info,\n eg: hello text, friend contact object\n '
MAX_ROOM_MEMBER_COUNT = 500
if (friendship.type() == FriendshipType.FRIENDSHIP_TYPE_RECEIVE):
hello_text: str = friendship.hello()
if ('wechaty' in hello_text.lower()):
(await friendship.accept())
elif (friendship.type() == FriendshipType.FRIENDSHIP_TYPE_CONFIRM):
wechaty_rooms: List[Room] = (await self.Room.find_all('Wechaty'))
for wechaty_room in wechaty_rooms:
members: List[Contact] = (await wechaty_room.member_list())
if (len(members) < MAX_ROOM_MEMBER_COUNT):
contact: Contact = friendship.contact()
(await wechaty_room.add(contact))
break | when receive a new friendship application, or accept a new friendship
Args:
friendship (Friendship): contains the status and friendship info,
eg: hello text, friend contact object | app/robot.py | on_friendship | anonier/python-wechaty | 0 | python | async def on_friendship(self, friendship: Friendship) -> None:
'when receive a new friendship application, or accept a new friendship\n\n Args:\n friendship (Friendship): contains the status and friendship info,\n eg: hello text, friend contact object\n '
MAX_ROOM_MEMBER_COUNT = 500
if (friendship.type() == FriendshipType.FRIENDSHIP_TYPE_RECEIVE):
hello_text: str = friendship.hello()
if ('wechaty' in hello_text.lower()):
(await friendship.accept())
elif (friendship.type() == FriendshipType.FRIENDSHIP_TYPE_CONFIRM):
wechaty_rooms: List[Room] = (await self.Room.find_all('Wechaty'))
for wechaty_room in wechaty_rooms:
members: List[Contact] = (await wechaty_room.member_list())
if (len(members) < MAX_ROOM_MEMBER_COUNT):
contact: Contact = friendship.contact()
(await wechaty_room.add(contact))
break | async def on_friendship(self, friendship: Friendship) -> None:
'when receive a new friendship application, or accept a new friendship\n\n Args:\n friendship (Friendship): contains the status and friendship info,\n eg: hello text, friend contact object\n '
MAX_ROOM_MEMBER_COUNT = 500
if (friendship.type() == FriendshipType.FRIENDSHIP_TYPE_RECEIVE):
hello_text: str = friendship.hello()
if ('wechaty' in hello_text.lower()):
(await friendship.accept())
elif (friendship.type() == FriendshipType.FRIENDSHIP_TYPE_CONFIRM):
wechaty_rooms: List[Room] = (await self.Room.find_all('Wechaty'))
for wechaty_room in wechaty_rooms:
members: List[Contact] = (await wechaty_room.member_list())
if (len(members) < MAX_ROOM_MEMBER_COUNT):
contact: Contact = friendship.contact()
(await wechaty_room.add(contact))
break<|docstring|>when receive a new friendship application, or accept a new friendship
Args:
friendship (Friendship): contains the status and friendship info,
eg: hello text, friend contact object<|endoftext|> |
23fbd86be74651120140609606097505b80dc8e74d1f9dd9b509ed034ad056f4 | async def on_room_join(self, room: Room, invitees: List[Contact], inviter: Contact, date: datetime) -> None:
'on_room_join when there are new contacts to the room\n\n Args:\n room (Room): the room instance\n invitees (List[Contact]): the new contacts to the room\n inviter (Contact): the inviter who share qrcode or manual invite someone\n date (datetime): the datetime to join the room\n '
names: List[str] = []
for invitee in invitees:
(await invitee.ready())
names.append(invitee.name)
(await room.say(f"welcome {','.join(names)} to the wechaty group !")) | on_room_join when there are new contacts to the room
Args:
room (Room): the room instance
invitees (List[Contact]): the new contacts to the room
inviter (Contact): the inviter who share qrcode or manual invite someone
date (datetime): the datetime to join the room | app/robot.py | on_room_join | anonier/python-wechaty | 0 | python | async def on_room_join(self, room: Room, invitees: List[Contact], inviter: Contact, date: datetime) -> None:
'on_room_join when there are new contacts to the room\n\n Args:\n room (Room): the room instance\n invitees (List[Contact]): the new contacts to the room\n inviter (Contact): the inviter who share qrcode or manual invite someone\n date (datetime): the datetime to join the room\n '
names: List[str] = []
for invitee in invitees:
(await invitee.ready())
names.append(invitee.name)
(await room.say(f"welcome {','.join(names)} to the wechaty group !")) | async def on_room_join(self, room: Room, invitees: List[Contact], inviter: Contact, date: datetime) -> None:
'on_room_join when there are new contacts to the room\n\n Args:\n room (Room): the room instance\n invitees (List[Contact]): the new contacts to the room\n inviter (Contact): the inviter who share qrcode or manual invite someone\n date (datetime): the datetime to join the room\n '
names: List[str] = []
for invitee in invitees:
(await invitee.ready())
names.append(invitee.name)
(await room.say(f"welcome {','.join(names)} to the wechaty group !"))<|docstring|>on_room_join when there are new contacts to the room
Args:
room (Room): the room instance
invitees (List[Contact]): the new contacts to the room
inviter (Contact): the inviter who share qrcode or manual invite someone
date (datetime): the datetime to join the room<|endoftext|> |
daa3a56170d6ff41cdd90ca9db5588d36f479d2472de480af65c121f384d73d8 | def solve_and_print_example():
'\n Example ILP problem solved with PuLP and default CBC solver.\n Problem:\n Minimize x + y (first integers, then real numbers) with constraints:\n y >= x - 1\n y >= -4x + 4\n y <= -0.5x + 3\n ' | Example ILP problem solved with PuLP and default CBC solver.
Problem:
Minimize x + y (first integers, then real numbers) with constraints:
y >= x - 1
y >= -4x + 4
y <= -0.5x + 3 | lab6_ILP/ilp/example.py | solve_and_print_example | j-adamczyk/ADPTO_templates | 0 | python | def solve_and_print_example():
'\n Example ILP problem solved with PuLP and default CBC solver.\n Problem:\n Minimize x + y (first integers, then real numbers) with constraints:\n y >= x - 1\n y >= -4x + 4\n y <= -0.5x + 3\n ' | def solve_and_print_example():
'\n Example ILP problem solved with PuLP and default CBC solver.\n Problem:\n Minimize x + y (first integers, then real numbers) with constraints:\n y >= x - 1\n y >= -4x + 4\n y <= -0.5x + 3\n '<|docstring|>Example ILP problem solved with PuLP and default CBC solver.
Problem:
Minimize x + y (first integers, then real numbers) with constraints:
y >= x - 1
y >= -4x + 4
y <= -0.5x + 3<|endoftext|> |
654f4f05efd1e5f681cee7c84ef501b3dd8e5cdc5bca942eb33f9bf6bdc6fd15 | @click.command()
@click.argument('data_filepath', type=click.Path(), default='data')
@click.argument('trained_model_filepath', type=click.Path(), default='models/trained_model.pth')
def main(data_filepath, trained_model_filepath):
' Evaluates the neural network using MNIST test data '
logger = logging.getLogger(__name__)
logger.info('Evaluating a neural network using MNIST test data')
model = MyAwesomeModel()
project_dir = Path(__file__).resolve().parents[2]
state_dict = torch.load(project_dir.joinpath(trained_model_filepath))
model.load_state_dict(state_dict)
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
test_set = datasets.MNIST(project_dir.joinpath(data_filepath), download=False, train=False, transform=transform)
batch_size = 64
test_loader = torch.utils.data.DataLoader(test_set, batch_size=batch_size, shuffle=True)
test_correct = 0
with torch.no_grad():
model.eval()
for (images, labels) in test_loader:
log_ps = model(images)
ps = torch.exp(log_ps)
(top_p, top_class) = ps.topk(1, dim=1)
equals = (top_class == labels.view(*top_class.shape))
test_correct += equals.type(torch.FloatTensor).sum().item()
test_accuracy = (test_correct / len(test_set))
logger.info(str('Test Accuracy: {:.3f}'.format(test_accuracy))) | Evaluates the neural network using MNIST test data | src/models/evaluate_model.py | main | georgezefko/https---github.com-georgezefko-MLOps_dtu | 0 | python | @click.command()
@click.argument('data_filepath', type=click.Path(), default='data')
@click.argument('trained_model_filepath', type=click.Path(), default='models/trained_model.pth')
def main(data_filepath, trained_model_filepath):
' '
logger = logging.getLogger(__name__)
logger.info('Evaluating a neural network using MNIST test data')
model = MyAwesomeModel()
project_dir = Path(__file__).resolve().parents[2]
state_dict = torch.load(project_dir.joinpath(trained_model_filepath))
model.load_state_dict(state_dict)
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
test_set = datasets.MNIST(project_dir.joinpath(data_filepath), download=False, train=False, transform=transform)
batch_size = 64
test_loader = torch.utils.data.DataLoader(test_set, batch_size=batch_size, shuffle=True)
test_correct = 0
with torch.no_grad():
model.eval()
for (images, labels) in test_loader:
log_ps = model(images)
ps = torch.exp(log_ps)
(top_p, top_class) = ps.topk(1, dim=1)
equals = (top_class == labels.view(*top_class.shape))
test_correct += equals.type(torch.FloatTensor).sum().item()
test_accuracy = (test_correct / len(test_set))
logger.info(str('Test Accuracy: {:.3f}'.format(test_accuracy))) | @click.command()
@click.argument('data_filepath', type=click.Path(), default='data')
@click.argument('trained_model_filepath', type=click.Path(), default='models/trained_model.pth')
def main(data_filepath, trained_model_filepath):
' '
logger = logging.getLogger(__name__)
logger.info('Evaluating a neural network using MNIST test data')
model = MyAwesomeModel()
project_dir = Path(__file__).resolve().parents[2]
state_dict = torch.load(project_dir.joinpath(trained_model_filepath))
model.load_state_dict(state_dict)
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
test_set = datasets.MNIST(project_dir.joinpath(data_filepath), download=False, train=False, transform=transform)
batch_size = 64
test_loader = torch.utils.data.DataLoader(test_set, batch_size=batch_size, shuffle=True)
test_correct = 0
with torch.no_grad():
model.eval()
for (images, labels) in test_loader:
log_ps = model(images)
ps = torch.exp(log_ps)
(top_p, top_class) = ps.topk(1, dim=1)
equals = (top_class == labels.view(*top_class.shape))
test_correct += equals.type(torch.FloatTensor).sum().item()
test_accuracy = (test_correct / len(test_set))
logger.info(str('Test Accuracy: {:.3f}'.format(test_accuracy)))<|docstring|>Evaluates the neural network using MNIST test data<|endoftext|> |
c9d1e0f3bc64d89f8c50dc2f56facd94faf9c624220259a6e5f66a65d1adb266 | def plane_phase(self, period, theta):
'\n Compute a plane wave phase with a specified angle with the horizontal. This gets represented in the tilt of the\n fringes produced.\n :return: numpy array with the phase\n '
(u, v) = np.meshgrid((np.linspace(0, self.width, self.width, endpoint=False) + (1 / 2)), (np.linspace(0, self.height, self.height, endpoint=False) + (1 / 2)))
phase = ((u * np.round(np.cos(theta), decimals=2)) + (v * np.round(np.sin(theta), decimals=2)))
return (((2.0 * math.pi) / period) * phase) | Compute a plane wave phase with a specified angle with the horizontal. This gets represented in the tilt of the
fringes produced.
:return: numpy array with the phase | speck_rem/dmd.py | plane_phase | johnrest/speckle_removal | 0 | python | def plane_phase(self, period, theta):
'\n Compute a plane wave phase with a specified angle with the horizontal. This gets represented in the tilt of the\n fringes produced.\n :return: numpy array with the phase\n '
(u, v) = np.meshgrid((np.linspace(0, self.width, self.width, endpoint=False) + (1 / 2)), (np.linspace(0, self.height, self.height, endpoint=False) + (1 / 2)))
phase = ((u * np.round(np.cos(theta), decimals=2)) + (v * np.round(np.sin(theta), decimals=2)))
return (((2.0 * math.pi) / period) * phase) | def plane_phase(self, period, theta):
'\n Compute a plane wave phase with a specified angle with the horizontal. This gets represented in the tilt of the\n fringes produced.\n :return: numpy array with the phase\n '
(u, v) = np.meshgrid((np.linspace(0, self.width, self.width, endpoint=False) + (1 / 2)), (np.linspace(0, self.height, self.height, endpoint=False) + (1 / 2)))
phase = ((u * np.round(np.cos(theta), decimals=2)) + (v * np.round(np.sin(theta), decimals=2)))
return (((2.0 * math.pi) / period) * phase)<|docstring|>Compute a plane wave phase with a specified angle with the horizontal. This gets represented in the tilt of the
fringes produced.
:return: numpy array with the phase<|endoftext|> |
383922a7be445879da61a56d7bf0c592eab937189e8afe553e66ecc86cc65ee7 | def compute_plane_mask(self, period, theta):
'\n Compute the mask for a tilted plane with an specific frequency and rotation\n :param period: in pixels\n :param theta: angle in radians\n :return: None\n '
phase = self.plane_phase(period, theta)
self.image_array = ((1 / 2) + ((1 / 2) * np.sign(np.sin(phase)))) | Compute the mask for a tilted plane with an specific frequency and rotation
:param period: in pixels
:param theta: angle in radians
:return: None | speck_rem/dmd.py | compute_plane_mask | johnrest/speckle_removal | 0 | python | def compute_plane_mask(self, period, theta):
'\n Compute the mask for a tilted plane with an specific frequency and rotation\n :param period: in pixels\n :param theta: angle in radians\n :return: None\n '
phase = self.plane_phase(period, theta)
self.image_array = ((1 / 2) + ((1 / 2) * np.sign(np.sin(phase)))) | def compute_plane_mask(self, period, theta):
'\n Compute the mask for a tilted plane with an specific frequency and rotation\n :param period: in pixels\n :param theta: angle in radians\n :return: None\n '
phase = self.plane_phase(period, theta)
self.image_array = ((1 / 2) + ((1 / 2) * np.sign(np.sin(phase))))<|docstring|>Compute the mask for a tilted plane with an specific frequency and rotation
:param period: in pixels
:param theta: angle in radians
:return: None<|endoftext|> |
bb4d403d6256029e055d936ee7eecd6d033f64338bbe64c900fbb3be0119c9b4 | def compute_fairness_constraint_mask(self, period, theta, pattern, grain):
'\n Compute a random mask under the fairness constraint sampling with a specified block/grain size\n :param period: in pixels\n :param theta: angle in radians\n :param pattern: numpy array with the sampling under fcn generated from another function\n :param grain: size of individual elements in pixels\n :return: None\n '
phase = self.plane_phase(period, theta)
large_pattern = pattern.repeat(grain, axis=0).repeat(grain, axis=1)
large_pattern = np.pad(large_pattern, ((28, 28), (448, 448)), 'constant', constant_values=0)
self.image_array = ((1 / 2) + ((1 / 2) * np.sign(np.sin((phase - (large_pattern * np.pi)))))) | Compute a random mask under the fairness constraint sampling with a specified block/grain size
:param period: in pixels
:param theta: angle in radians
:param pattern: numpy array with the sampling under fcn generated from another function
:param grain: size of individual elements in pixels
:return: None | speck_rem/dmd.py | compute_fairness_constraint_mask | johnrest/speckle_removal | 0 | python | def compute_fairness_constraint_mask(self, period, theta, pattern, grain):
'\n Compute a random mask under the fairness constraint sampling with a specified block/grain size\n :param period: in pixels\n :param theta: angle in radians\n :param pattern: numpy array with the sampling under fcn generated from another function\n :param grain: size of individual elements in pixels\n :return: None\n '
phase = self.plane_phase(period, theta)
large_pattern = pattern.repeat(grain, axis=0).repeat(grain, axis=1)
large_pattern = np.pad(large_pattern, ((28, 28), (448, 448)), 'constant', constant_values=0)
self.image_array = ((1 / 2) + ((1 / 2) * np.sign(np.sin((phase - (large_pattern * np.pi)))))) | def compute_fairness_constraint_mask(self, period, theta, pattern, grain):
'\n Compute a random mask under the fairness constraint sampling with a specified block/grain size\n :param period: in pixels\n :param theta: angle in radians\n :param pattern: numpy array with the sampling under fcn generated from another function\n :param grain: size of individual elements in pixels\n :return: None\n '
phase = self.plane_phase(period, theta)
large_pattern = pattern.repeat(grain, axis=0).repeat(grain, axis=1)
large_pattern = np.pad(large_pattern, ((28, 28), (448, 448)), 'constant', constant_values=0)
self.image_array = ((1 / 2) + ((1 / 2) * np.sign(np.sin((phase - (large_pattern * np.pi))))))<|docstring|>Compute a random mask under the fairness constraint sampling with a specified block/grain size
:param period: in pixels
:param theta: angle in radians
:param pattern: numpy array with the sampling under fcn generated from another function
:param grain: size of individual elements in pixels
:return: None<|endoftext|> |
2bdb066d0b4402c2eb207277643c8c2044b0cfdd89868c4095f422099185a856 | def compute_random_mask(self, period, theta, grain):
'\n Compute a random mask with a specified block/grain size\n :param period: in pixels\n :param theta: angle in radians\n :param grain: size of individual elements in pixels\n :return: None\n '
phase = self.plane_phase(period, theta)
window = int(np.ceil((1080 / grain)))
pattern = np.random.randint(2, size=(window, window))
large_pattern = pattern.repeat(grain, axis=0).repeat(grain, axis=1)
large_pattern = large_pattern[(0:1080, 0:1080)]
large_pattern = np.pad(large_pattern, ((0, 0), (420, 420)), 'constant', constant_values=0)
self.image_array = ((1 / 2) + ((1 / 2) * np.sign(np.sin((phase - (large_pattern * np.pi)))))) | Compute a random mask with a specified block/grain size
:param period: in pixels
:param theta: angle in radians
:param grain: size of individual elements in pixels
:return: None | speck_rem/dmd.py | compute_random_mask | johnrest/speckle_removal | 0 | python | def compute_random_mask(self, period, theta, grain):
'\n Compute a random mask with a specified block/grain size\n :param period: in pixels\n :param theta: angle in radians\n :param grain: size of individual elements in pixels\n :return: None\n '
phase = self.plane_phase(period, theta)
window = int(np.ceil((1080 / grain)))
pattern = np.random.randint(2, size=(window, window))
large_pattern = pattern.repeat(grain, axis=0).repeat(grain, axis=1)
large_pattern = large_pattern[(0:1080, 0:1080)]
large_pattern = np.pad(large_pattern, ((0, 0), (420, 420)), 'constant', constant_values=0)
self.image_array = ((1 / 2) + ((1 / 2) * np.sign(np.sin((phase - (large_pattern * np.pi)))))) | def compute_random_mask(self, period, theta, grain):
'\n Compute a random mask with a specified block/grain size\n :param period: in pixels\n :param theta: angle in radians\n :param grain: size of individual elements in pixels\n :return: None\n '
phase = self.plane_phase(period, theta)
window = int(np.ceil((1080 / grain)))
pattern = np.random.randint(2, size=(window, window))
large_pattern = pattern.repeat(grain, axis=0).repeat(grain, axis=1)
large_pattern = large_pattern[(0:1080, 0:1080)]
large_pattern = np.pad(large_pattern, ((0, 0), (420, 420)), 'constant', constant_values=0)
self.image_array = ((1 / 2) + ((1 / 2) * np.sign(np.sin((phase - (large_pattern * np.pi))))))<|docstring|>Compute a random mask with a specified block/grain size
:param period: in pixels
:param theta: angle in radians
:param grain: size of individual elements in pixels
:return: None<|endoftext|> |
002cff82b7b531b126af88ef20f6eb535aa294e193c75bcbf8c386ffdd084525 | def __init__(self, host: str, timeout: Union[(float, Timeout, None)]=None):
'Instantiate connection to UNIX domain socket for HTTP client.'
if isinstance(timeout, Timeout):
try:
timeout = float(timeout.total)
except TypeError:
timeout = None
super().__init__('localhost', timeout=timeout)
self.url = host
self.sock: Optional[socket.socket] = None
self.timeout = timeout | Instantiate connection to UNIX domain socket for HTTP client. | podman/api/uds.py | __init__ | FedericoRessi/podman-py | 0 | python | def __init__(self, host: str, timeout: Union[(float, Timeout, None)]=None):
if isinstance(timeout, Timeout):
try:
timeout = float(timeout.total)
except TypeError:
timeout = None
super().__init__('localhost', timeout=timeout)
self.url = host
self.sock: Optional[socket.socket] = None
self.timeout = timeout | def __init__(self, host: str, timeout: Union[(float, Timeout, None)]=None):
if isinstance(timeout, Timeout):
try:
timeout = float(timeout.total)
except TypeError:
timeout = None
super().__init__('localhost', timeout=timeout)
self.url = host
self.sock: Optional[socket.socket] = None
self.timeout = timeout<|docstring|>Instantiate connection to UNIX domain socket for HTTP client.<|endoftext|> |
bbbc58e61762624452d1bdc1d29f5d33328d9dbe95348738691099fda8e73e74 | def connect(self):
'Returns socket for unix domain socket.'
sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
sock.settimeout(self.timeout)
netloc = unquote(urlparse(self.url).netloc)
sock.connect(netloc)
self.sock = sock | Returns socket for unix domain socket. | podman/api/uds.py | connect | FedericoRessi/podman-py | 0 | python | def connect(self):
sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
sock.settimeout(self.timeout)
netloc = unquote(urlparse(self.url).netloc)
sock.connect(netloc)
self.sock = sock | def connect(self):
sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
sock.settimeout(self.timeout)
netloc = unquote(urlparse(self.url).netloc)
sock.connect(netloc)
self.sock = sock<|docstring|>Returns socket for unix domain socket.<|endoftext|> |
108e48e76fbc0ccb346d603128597b7d6eb357ef7e3f4f10f36ef0a69c2f0960 | def __del__(self):
'Cleanup connection.'
if self.sock:
self.sock.close() | Cleanup connection. | podman/api/uds.py | __del__ | FedericoRessi/podman-py | 0 | python | def __del__(self):
if self.sock:
self.sock.close() | def __del__(self):
if self.sock:
self.sock.close()<|docstring|>Cleanup connection.<|endoftext|> |
b913ac0dafe9bb737d34436e21c992e57732a6b5a4451ce64b7d95126a69f2f7 | def reduce_maze(maze):
'\n This function returns a adjacency matrix representing the tree-like structure of the\n maze.\n\n It only contains the initial position(s), the keys and the doors.\n\n There is an edge between 2 given vertices x and y, iff one can go from x to y in the\n maze without passing through another key / door.\n\n This function is mainly used to quickly figure out which keys are accessible or not.\n '
q = deque()
seen = set()
for i in range(len(maze)):
for j in range(len(maze[0])):
if (maze[i][j] in ['@', '1', '2', '3', '4']):
q.append(((i, j), None))
seen.add((i, j))
reduced_maze = defaultdict(set)
while q:
(pos, pred) = q.popleft()
current = maze[pos[0]][pos[1]]
if (current not in ['#', '.']):
if (pred is not None):
reduced_maze[pred].add(current)
reduced_maze[current].add(pred)
pred = current
for next_pos in next_positions(pos):
if ((maze[next_pos[0]][next_pos[1]] == '#') or (next_pos in seen)):
continue
seen.add(next_pos)
q.append((next_pos, pred))
return dict(reduced_maze) | This function returns a adjacency matrix representing the tree-like structure of the
maze.
It only contains the initial position(s), the keys and the doors.
There is an edge between 2 given vertices x and y, iff one can go from x to y in the
maze without passing through another key / door.
This function is mainly used to quickly figure out which keys are accessible or not. | day-18/part-2/francisco.py | reduce_maze | TPXP/adventofcode-2019 | 8 | python | def reduce_maze(maze):
'\n This function returns a adjacency matrix representing the tree-like structure of the\n maze.\n\n It only contains the initial position(s), the keys and the doors.\n\n There is an edge between 2 given vertices x and y, iff one can go from x to y in the\n maze without passing through another key / door.\n\n This function is mainly used to quickly figure out which keys are accessible or not.\n '
q = deque()
seen = set()
for i in range(len(maze)):
for j in range(len(maze[0])):
if (maze[i][j] in ['@', '1', '2', '3', '4']):
q.append(((i, j), None))
seen.add((i, j))
reduced_maze = defaultdict(set)
while q:
(pos, pred) = q.popleft()
current = maze[pos[0]][pos[1]]
if (current not in ['#', '.']):
if (pred is not None):
reduced_maze[pred].add(current)
reduced_maze[current].add(pred)
pred = current
for next_pos in next_positions(pos):
if ((maze[next_pos[0]][next_pos[1]] == '#') or (next_pos in seen)):
continue
seen.add(next_pos)
q.append((next_pos, pred))
return dict(reduced_maze) | def reduce_maze(maze):
'\n This function returns a adjacency matrix representing the tree-like structure of the\n maze.\n\n It only contains the initial position(s), the keys and the doors.\n\n There is an edge between 2 given vertices x and y, iff one can go from x to y in the\n maze without passing through another key / door.\n\n This function is mainly used to quickly figure out which keys are accessible or not.\n '
q = deque()
seen = set()
for i in range(len(maze)):
for j in range(len(maze[0])):
if (maze[i][j] in ['@', '1', '2', '3', '4']):
q.append(((i, j), None))
seen.add((i, j))
reduced_maze = defaultdict(set)
while q:
(pos, pred) = q.popleft()
current = maze[pos[0]][pos[1]]
if (current not in ['#', '.']):
if (pred is not None):
reduced_maze[pred].add(current)
reduced_maze[current].add(pred)
pred = current
for next_pos in next_positions(pos):
if ((maze[next_pos[0]][next_pos[1]] == '#') or (next_pos in seen)):
continue
seen.add(next_pos)
q.append((next_pos, pred))
return dict(reduced_maze)<|docstring|>This function returns a adjacency matrix representing the tree-like structure of the
maze.
It only contains the initial position(s), the keys and the doors.
There is an edge between 2 given vertices x and y, iff one can go from x to y in the
maze without passing through another key / door.
This function is mainly used to quickly figure out which keys are accessible or not.<|endoftext|> |
b5bf948db15c1c5cb67f71b2b1fa566650d61c11eeffa03ba31171b87779c5e3 | def get_accessible_keys(reduced_maze, keys, pos='@'):
'\n Uses the reduced maze to quickly figure out which keys are accessible from a given\n position.\n '
q = deque([pos])
seen = set()
accessible = set()
while q:
pos = q.popleft()
if (pos in ascii_lowercase):
accessible.add(pos)
for next_pos in reduced_maze[pos]:
if (next_pos in seen):
continue
seen.add(next_pos)
if ((next_pos in ascii_uppercase) and (next_pos.lower() in reduced_maze) and (next_pos.lower() not in keys)):
continue
q.append(next_pos)
return accessible | Uses the reduced maze to quickly figure out which keys are accessible from a given
position. | day-18/part-2/francisco.py | get_accessible_keys | TPXP/adventofcode-2019 | 8 | python | def get_accessible_keys(reduced_maze, keys, pos='@'):
'\n Uses the reduced maze to quickly figure out which keys are accessible from a given\n position.\n '
q = deque([pos])
seen = set()
accessible = set()
while q:
pos = q.popleft()
if (pos in ascii_lowercase):
accessible.add(pos)
for next_pos in reduced_maze[pos]:
if (next_pos in seen):
continue
seen.add(next_pos)
if ((next_pos in ascii_uppercase) and (next_pos.lower() in reduced_maze) and (next_pos.lower() not in keys)):
continue
q.append(next_pos)
return accessible | def get_accessible_keys(reduced_maze, keys, pos='@'):
'\n Uses the reduced maze to quickly figure out which keys are accessible from a given\n position.\n '
q = deque([pos])
seen = set()
accessible = set()
while q:
pos = q.popleft()
if (pos in ascii_lowercase):
accessible.add(pos)
for next_pos in reduced_maze[pos]:
if (next_pos in seen):
continue
seen.add(next_pos)
if ((next_pos in ascii_uppercase) and (next_pos.lower() in reduced_maze) and (next_pos.lower() not in keys)):
continue
q.append(next_pos)
return accessible<|docstring|>Uses the reduced maze to quickly figure out which keys are accessible from a given
position.<|endoftext|> |
95f7abc646eb5cc38c8ece5f59c1fc0c3a190b456c2fbf77db0e7f652bed74f4 | def compute_distances(maze):
'\n Returns a matrix of distances between all the points of interest.\n d[x][y] is the distance of the only path that goes from x to y by only passing\n through keys and doors.\n '
positions = {}
for i in range(len(maze)):
for j in range(len(maze[0])):
if ((maze[i][j] == '@') or (maze[i][j] in ascii_lowercase)):
positions[maze[i][j]] = (i, j)
def bfs(pos):
q = deque([(pos, 0)])
seen = {pos}
distances = {}
while q:
(pos, distance) = q.popleft()
current = maze[pos[0]][pos[1]]
if ((current not in ['#', '.']) and (not current.isupper())):
distances[current] = distance
for next_pos in next_positions(pos):
if (maze[next_pos[0]][next_pos[1]] == '#'):
continue
if (next_pos in seen):
continue
seen.add(next_pos)
q.append((next_pos, (distance + 1)))
return distances
return (positions, {key: bfs(pos) for (key, pos) in positions.items()}) | Returns a matrix of distances between all the points of interest.
d[x][y] is the distance of the only path that goes from x to y by only passing
through keys and doors. | day-18/part-2/francisco.py | compute_distances | TPXP/adventofcode-2019 | 8 | python | def compute_distances(maze):
'\n Returns a matrix of distances between all the points of interest.\n d[x][y] is the distance of the only path that goes from x to y by only passing\n through keys and doors.\n '
positions = {}
for i in range(len(maze)):
for j in range(len(maze[0])):
if ((maze[i][j] == '@') or (maze[i][j] in ascii_lowercase)):
positions[maze[i][j]] = (i, j)
def bfs(pos):
q = deque([(pos, 0)])
seen = {pos}
distances = {}
while q:
(pos, distance) = q.popleft()
current = maze[pos[0]][pos[1]]
if ((current not in ['#', '.']) and (not current.isupper())):
distances[current] = distance
for next_pos in next_positions(pos):
if (maze[next_pos[0]][next_pos[1]] == '#'):
continue
if (next_pos in seen):
continue
seen.add(next_pos)
q.append((next_pos, (distance + 1)))
return distances
return (positions, {key: bfs(pos) for (key, pos) in positions.items()}) | def compute_distances(maze):
'\n Returns a matrix of distances between all the points of interest.\n d[x][y] is the distance of the only path that goes from x to y by only passing\n through keys and doors.\n '
positions = {}
for i in range(len(maze)):
for j in range(len(maze[0])):
if ((maze[i][j] == '@') or (maze[i][j] in ascii_lowercase)):
positions[maze[i][j]] = (i, j)
def bfs(pos):
q = deque([(pos, 0)])
seen = {pos}
distances = {}
while q:
(pos, distance) = q.popleft()
current = maze[pos[0]][pos[1]]
if ((current not in ['#', '.']) and (not current.isupper())):
distances[current] = distance
for next_pos in next_positions(pos):
if (maze[next_pos[0]][next_pos[1]] == '#'):
continue
if (next_pos in seen):
continue
seen.add(next_pos)
q.append((next_pos, (distance + 1)))
return distances
return (positions, {key: bfs(pos) for (key, pos) in positions.items()})<|docstring|>Returns a matrix of distances between all the points of interest.
d[x][y] is the distance of the only path that goes from x to y by only passing
through keys and doors.<|endoftext|> |
e85f3ecc620a8433a3c9615af96a76293a90978cd96926df01796849414aac54 | def __init__(self, gamma=1.0, offset=0, lower_bound=0):
'\n :param float gamma: the root for gamma computation\n :param float offset: an offset added to the result\n :param int lower_bound: The lowest possible output value - the highest\n is always 255.\n\n '
self.gamma = gamma
self.offset = offset
self.lower_bound = lower_bound
width = (255 - lower_bound)
def gam(i):
return int(((lower_bound + (pow((i / 255), gamma) * width)) + offset))
self.table = tuple((gam(i) for i in range(256))) | :param float gamma: the root for gamma computation
:param float offset: an offset added to the result
:param int lower_bound: The lowest possible output value - the highest
is always 255. | bibliopixel/colors/gamma.py | __init__ | 8cH9azbsFifZ/BiblioPixel | 2 | python | def __init__(self, gamma=1.0, offset=0, lower_bound=0):
'\n :param float gamma: the root for gamma computation\n :param float offset: an offset added to the result\n :param int lower_bound: The lowest possible output value - the highest\n is always 255.\n\n '
self.gamma = gamma
self.offset = offset
self.lower_bound = lower_bound
width = (255 - lower_bound)
def gam(i):
return int(((lower_bound + (pow((i / 255), gamma) * width)) + offset))
self.table = tuple((gam(i) for i in range(256))) | def __init__(self, gamma=1.0, offset=0, lower_bound=0):
'\n :param float gamma: the root for gamma computation\n :param float offset: an offset added to the result\n :param int lower_bound: The lowest possible output value - the highest\n is always 255.\n\n '
self.gamma = gamma
self.offset = offset
self.lower_bound = lower_bound
width = (255 - lower_bound)
def gam(i):
return int(((lower_bound + (pow((i / 255), gamma) * width)) + offset))
self.table = tuple((gam(i) for i in range(256)))<|docstring|>:param float gamma: the root for gamma computation
:param float offset: an offset added to the result
:param int lower_bound: The lowest possible output value - the highest
is always 255.<|endoftext|> |
46a6dc8e488775e97c16d995518f9121a390a56e5cc0ecd041fd4702cfd0eee8 | def get(self, i):
'\n :returns: The gamma table entry\n :param int i: the index into the table\n '
return self.table[max(0, min(255, int(i)))] | :returns: The gamma table entry
:param int i: the index into the table | bibliopixel/colors/gamma.py | get | 8cH9azbsFifZ/BiblioPixel | 2 | python | def get(self, i):
'\n :returns: The gamma table entry\n :param int i: the index into the table\n '
return self.table[max(0, min(255, int(i)))] | def get(self, i):
'\n :returns: The gamma table entry\n :param int i: the index into the table\n '
return self.table[max(0, min(255, int(i)))]<|docstring|>:returns: The gamma table entry
:param int i: the index into the table<|endoftext|> |
b01a7e01d6cc74fab267b7ef65ab5041cf8e6262ecb4592080d3cc11879d8a6e | def hz2mel(f):
'\\cite{shannon:2003}'
return (np.log10(((f / 700.0) + 1.0)) * 2595.0) | \cite{shannon:2003} | examples/nsgt_orig/fscale.py | hz2mel | sevagh/slicqt | 85 | python | def hz2mel(f):
'\'
return (np.log10(((f / 700.0) + 1.0)) * 2595.0) | def hz2mel(f):
'\'
return (np.log10(((f / 700.0) + 1.0)) * 2595.0)<|docstring|>\cite{shannon:2003}<|endoftext|> |
abeec8d36ab069b3e85ec6ef7093c3b0a6527bea67454f7ef08c8b4343ba28fa | def mel2hz(m):
'\\cite{shannon:2003}'
return ((np.power(10.0, (m / 2595.0)) - 1.0) * 700.0) | \cite{shannon:2003} | examples/nsgt_orig/fscale.py | mel2hz | sevagh/slicqt | 85 | python | def mel2hz(m):
'\'
return ((np.power(10.0, (m / 2595.0)) - 1.0) * 700.0) | def mel2hz(m):
'\'
return ((np.power(10.0, (m / 2595.0)) - 1.0) * 700.0)<|docstring|>\cite{shannon:2003}<|endoftext|> |
e3338b4e1dc6f5be7c11c61d24581ca996c55be7d8a0f34ad124ee0d2ddb9c24 | def __init__(self, fmin, fmax, bpo, beyond=0):
'\n @param fmin: minimum frequency (Hz)\n @param fmax: maximum frequency (Hz)\n @param bpo: bands per octave (int)\n @param beyond: number of frequency bands below fmin and above fmax (int)\n '
lfmin = np.log2(fmin)
lfmax = np.log2(fmax)
bnds = (int(np.ceil(((lfmax - lfmin) * bpo))) + 1)
Scale.__init__(self, (bnds + (beyond * 2)))
odiv = ((lfmax - lfmin) / (bnds - 1))
lfmin_ = (lfmin - (odiv * beyond))
lfmax_ = (lfmax + (odiv * beyond))
self.fmin = (2 ** lfmin_)
self.fmax = (2 ** lfmax_)
self.pow2n = (2 ** odiv)
self.q = ((np.sqrt(self.pow2n) / (self.pow2n - 1.0)) / 2.0) | @param fmin: minimum frequency (Hz)
@param fmax: maximum frequency (Hz)
@param bpo: bands per octave (int)
@param beyond: number of frequency bands below fmin and above fmax (int) | examples/nsgt_orig/fscale.py | __init__ | sevagh/slicqt | 85 | python | def __init__(self, fmin, fmax, bpo, beyond=0):
'\n @param fmin: minimum frequency (Hz)\n @param fmax: maximum frequency (Hz)\n @param bpo: bands per octave (int)\n @param beyond: number of frequency bands below fmin and above fmax (int)\n '
lfmin = np.log2(fmin)
lfmax = np.log2(fmax)
bnds = (int(np.ceil(((lfmax - lfmin) * bpo))) + 1)
Scale.__init__(self, (bnds + (beyond * 2)))
odiv = ((lfmax - lfmin) / (bnds - 1))
lfmin_ = (lfmin - (odiv * beyond))
lfmax_ = (lfmax + (odiv * beyond))
self.fmin = (2 ** lfmin_)
self.fmax = (2 ** lfmax_)
self.pow2n = (2 ** odiv)
self.q = ((np.sqrt(self.pow2n) / (self.pow2n - 1.0)) / 2.0) | def __init__(self, fmin, fmax, bpo, beyond=0):
'\n @param fmin: minimum frequency (Hz)\n @param fmax: maximum frequency (Hz)\n @param bpo: bands per octave (int)\n @param beyond: number of frequency bands below fmin and above fmax (int)\n '
lfmin = np.log2(fmin)
lfmax = np.log2(fmax)
bnds = (int(np.ceil(((lfmax - lfmin) * bpo))) + 1)
Scale.__init__(self, (bnds + (beyond * 2)))
odiv = ((lfmax - lfmin) / (bnds - 1))
lfmin_ = (lfmin - (odiv * beyond))
lfmax_ = (lfmax + (odiv * beyond))
self.fmin = (2 ** lfmin_)
self.fmax = (2 ** lfmax_)
self.pow2n = (2 ** odiv)
self.q = ((np.sqrt(self.pow2n) / (self.pow2n - 1.0)) / 2.0)<|docstring|>@param fmin: minimum frequency (Hz)
@param fmax: maximum frequency (Hz)
@param bpo: bands per octave (int)
@param beyond: number of frequency bands below fmin and above fmax (int)<|endoftext|> |
6da26512415854a9b0cc64c43b5fed8caa5d5e9e63928c4c1a561540a816ed19 | def __init__(self, fmin, fmax, bnds, beyond=0):
'\n @param fmin: minimum frequency (Hz)\n @param fmax: maximum frequency (Hz)\n @param bnds: number of frequency bands (int)\n @param beyond: number of frequency bands below fmin and above fmax (int)\n '
Scale.__init__(self, (bnds + (beyond * 2)))
lfmin = np.log2(fmin)
lfmax = np.log2(fmax)
odiv = ((lfmax - lfmin) / (bnds - 1))
lfmin_ = (lfmin - (odiv * beyond))
lfmax_ = (lfmax + (odiv * beyond))
self.fmin = (2 ** lfmin_)
self.fmax = (2 ** lfmax_)
self.pow2n = (2 ** odiv)
self.q = ((np.sqrt(self.pow2n) / (self.pow2n - 1.0)) / 2.0) | @param fmin: minimum frequency (Hz)
@param fmax: maximum frequency (Hz)
@param bnds: number of frequency bands (int)
@param beyond: number of frequency bands below fmin and above fmax (int) | examples/nsgt_orig/fscale.py | __init__ | sevagh/slicqt | 85 | python | def __init__(self, fmin, fmax, bnds, beyond=0):
'\n @param fmin: minimum frequency (Hz)\n @param fmax: maximum frequency (Hz)\n @param bnds: number of frequency bands (int)\n @param beyond: number of frequency bands below fmin and above fmax (int)\n '
Scale.__init__(self, (bnds + (beyond * 2)))
lfmin = np.log2(fmin)
lfmax = np.log2(fmax)
odiv = ((lfmax - lfmin) / (bnds - 1))
lfmin_ = (lfmin - (odiv * beyond))
lfmax_ = (lfmax + (odiv * beyond))
self.fmin = (2 ** lfmin_)
self.fmax = (2 ** lfmax_)
self.pow2n = (2 ** odiv)
self.q = ((np.sqrt(self.pow2n) / (self.pow2n - 1.0)) / 2.0) | def __init__(self, fmin, fmax, bnds, beyond=0):
'\n @param fmin: minimum frequency (Hz)\n @param fmax: maximum frequency (Hz)\n @param bnds: number of frequency bands (int)\n @param beyond: number of frequency bands below fmin and above fmax (int)\n '
Scale.__init__(self, (bnds + (beyond * 2)))
lfmin = np.log2(fmin)
lfmax = np.log2(fmax)
odiv = ((lfmax - lfmin) / (bnds - 1))
lfmin_ = (lfmin - (odiv * beyond))
lfmax_ = (lfmax + (odiv * beyond))
self.fmin = (2 ** lfmin_)
self.fmax = (2 ** lfmax_)
self.pow2n = (2 ** odiv)
self.q = ((np.sqrt(self.pow2n) / (self.pow2n - 1.0)) / 2.0)<|docstring|>@param fmin: minimum frequency (Hz)
@param fmax: maximum frequency (Hz)
@param bnds: number of frequency bands (int)
@param beyond: number of frequency bands below fmin and above fmax (int)<|endoftext|> |
08a318a7beb9ea5b7b4bd88148a55db29946dfc6bd7242ecbcfb28f35a7a8d2b | def __init__(self, fmin, fmax, bnds, beyond=0):
'\n @param fmin: minimum frequency (Hz)\n @param fmax: maximum frequency (Hz)\n @param bnds: number of frequency bands (int)\n @param beyond: number of frequency bands below fmin and above fmax (int)\n '
self.df = (float((fmax - fmin)) / (bnds - 1))
Scale.__init__(self, (bnds + (beyond * 2)))
self.fmin = (float(fmin) - (self.df * beyond))
if (self.fmin <= 0):
raise ValueError('Frequencies must be > 0.')
self.fmax = (float(fmax) + (self.df * beyond)) | @param fmin: minimum frequency (Hz)
@param fmax: maximum frequency (Hz)
@param bnds: number of frequency bands (int)
@param beyond: number of frequency bands below fmin and above fmax (int) | examples/nsgt_orig/fscale.py | __init__ | sevagh/slicqt | 85 | python | def __init__(self, fmin, fmax, bnds, beyond=0):
'\n @param fmin: minimum frequency (Hz)\n @param fmax: maximum frequency (Hz)\n @param bnds: number of frequency bands (int)\n @param beyond: number of frequency bands below fmin and above fmax (int)\n '
self.df = (float((fmax - fmin)) / (bnds - 1))
Scale.__init__(self, (bnds + (beyond * 2)))
self.fmin = (float(fmin) - (self.df * beyond))
if (self.fmin <= 0):
raise ValueError('Frequencies must be > 0.')
self.fmax = (float(fmax) + (self.df * beyond)) | def __init__(self, fmin, fmax, bnds, beyond=0):
'\n @param fmin: minimum frequency (Hz)\n @param fmax: maximum frequency (Hz)\n @param bnds: number of frequency bands (int)\n @param beyond: number of frequency bands below fmin and above fmax (int)\n '
self.df = (float((fmax - fmin)) / (bnds - 1))
Scale.__init__(self, (bnds + (beyond * 2)))
self.fmin = (float(fmin) - (self.df * beyond))
if (self.fmin <= 0):
raise ValueError('Frequencies must be > 0.')
self.fmax = (float(fmax) + (self.df * beyond))<|docstring|>@param fmin: minimum frequency (Hz)
@param fmax: maximum frequency (Hz)
@param bnds: number of frequency bands (int)
@param beyond: number of frequency bands below fmin and above fmax (int)<|endoftext|> |
9649b99eb909c59f53ff37c6ba73ad36d3a3a3a6eb326c2cb142eed6fe4e92d5 | def __init__(self, fmin, fmax, bnds, beyond=0):
'\n @param fmin: minimum frequency (Hz)\n @param fmax: maximum frequency (Hz)\n @param bnds: number of frequency bands (int)\n @param beyond: number of frequency bands below fmin and above fmax (int)\n '
mmin = hz2mel(fmin)
mmax = hz2mel(fmax)
Scale.__init__(self, (bnds + (beyond * 2)))
self.fmin = float(fmin)
self.fmax = float(fmax)
self.mbnd = ((mmax - mmin) / (bnds - 1))
self.mmin = (mmin - (self.mbnd * beyond))
self.mmax = (mmax + (self.mbnd * beyond)) | @param fmin: minimum frequency (Hz)
@param fmax: maximum frequency (Hz)
@param bnds: number of frequency bands (int)
@param beyond: number of frequency bands below fmin and above fmax (int) | examples/nsgt_orig/fscale.py | __init__ | sevagh/slicqt | 85 | python | def __init__(self, fmin, fmax, bnds, beyond=0):
'\n @param fmin: minimum frequency (Hz)\n @param fmax: maximum frequency (Hz)\n @param bnds: number of frequency bands (int)\n @param beyond: number of frequency bands below fmin and above fmax (int)\n '
mmin = hz2mel(fmin)
mmax = hz2mel(fmax)
Scale.__init__(self, (bnds + (beyond * 2)))
self.fmin = float(fmin)
self.fmax = float(fmax)
self.mbnd = ((mmax - mmin) / (bnds - 1))
self.mmin = (mmin - (self.mbnd * beyond))
self.mmax = (mmax + (self.mbnd * beyond)) | def __init__(self, fmin, fmax, bnds, beyond=0):
'\n @param fmin: minimum frequency (Hz)\n @param fmax: maximum frequency (Hz)\n @param bnds: number of frequency bands (int)\n @param beyond: number of frequency bands below fmin and above fmax (int)\n '
mmin = hz2mel(fmin)
mmax = hz2mel(fmax)
Scale.__init__(self, (bnds + (beyond * 2)))
self.fmin = float(fmin)
self.fmax = float(fmax)
self.mbnd = ((mmax - mmin) / (bnds - 1))
self.mmin = (mmin - (self.mbnd * beyond))
self.mmax = (mmax + (self.mbnd * beyond))<|docstring|>@param fmin: minimum frequency (Hz)
@param fmax: maximum frequency (Hz)
@param bnds: number of frequency bands (int)
@param beyond: number of frequency bands below fmin and above fmax (int)<|endoftext|> |
1711ca71303990e80c08bc310fd20e2cc6d30398081d6989358017855d492ec1 | @click.command(options_metavar='[<options>]')
@click.option('-v', '--verbose', count=True, help='Output more info (repeatable flag).')
@click.option('--raw', is_flag=True, help='Output raw API response.')
def status(verbose=0, raw=False, _override={}, _return_parsed=False):
'Describe the current playback session.'
res = Spotify.request('me/player', method='GET')
if (not res):
raise NoPlaybackError
if raw:
if (verbose >= 0):
import json
click.echo(json.dumps(res))
return res
data = {}
data['is_podcast'] = (res['currently_playing_type'] == 'episode')
if data['is_podcast']:
raise PodcastNotSupported
data['is_shuffle'] = res['shuffle_state']
data['repeat_state'] = res['repeat_state']
data['is_playing'] = res['is_playing']
data['device'] = {'name': res['device']['name'], 'type': res['device']['type'], 'volume': res['device']['volume_percent']}
item = res['item']
context = parse_context(res['context'])
data['music'] = {'context': context, 'track': parse_track(item), 'album': parse_album(item['album']), 'artist': parse_artists(item['artists'])}
music = data['music']
music['track']['progress'] = format_duration_ms(res['progress_ms'])
if _override:
data.update(_override)
for key in ['name', 'id', 'url']:
music['artist'][key] = music['artist'][(key + 's')][0]
music['artist'][('long_' + key)] = ', '.join(music['artist'][(key + 's')])
if (key != 'name'):
music['artist'][('long_' + key)] = music['artist'][('long_' + key)].replace(' ', '')
playback_status = ('Playing' if data['is_playing'] else 'Paused')
playback_options = []
if (data['repeat_state'] == 'track'):
playback_options.append('repeat [track]')
elif (data['repeat_state'] == 'context'):
playback_options.append('repeat')
if data['is_shuffle']:
playback_options.append('shuffle')
playback_str = ''
if data['is_playing']:
playback_options_str = '{}'.format(('on {}'.format((' and '.join(playback_options) + ', ')) if playback_options else ''))
playback_str = '({}{}% volume)'.format(playback_options_str, data['device']['volume'])
if _return_parsed:
return data
if (not verbose):
click.echo('{}: {}{}\n {} - {}'.format(playback_status, (' ' if (not data['is_playing']) else ''), music['track']['name'], music['artist']['long_name'], music['album']['name']))
if (verbose >= 1):
click.echo('Track {} ({} / {})\nArtist {}\nAlbum {}\nStatus {} {}'.format(music['track']['name'], music['track']['progress'], music['track']['duration'], music['artist']['long_name'], music['album']['name'], playback_status, playback_str))
if (verbose >= 2):
click.echo('\nDevice {} ({})\nURL {}'.format(data['device']['name'], data['device']['type'], music['track']['url']))
return | Describe the current playback session. | cli/commands/status.py | status | yeahnope/spotify-cli | 73 | python | @click.command(options_metavar='[<options>]')
@click.option('-v', '--verbose', count=True, help='Output more info (repeatable flag).')
@click.option('--raw', is_flag=True, help='Output raw API response.')
def status(verbose=0, raw=False, _override={}, _return_parsed=False):
res = Spotify.request('me/player', method='GET')
if (not res):
raise NoPlaybackError
if raw:
if (verbose >= 0):
import json
click.echo(json.dumps(res))
return res
data = {}
data['is_podcast'] = (res['currently_playing_type'] == 'episode')
if data['is_podcast']:
raise PodcastNotSupported
data['is_shuffle'] = res['shuffle_state']
data['repeat_state'] = res['repeat_state']
data['is_playing'] = res['is_playing']
data['device'] = {'name': res['device']['name'], 'type': res['device']['type'], 'volume': res['device']['volume_percent']}
item = res['item']
context = parse_context(res['context'])
data['music'] = {'context': context, 'track': parse_track(item), 'album': parse_album(item['album']), 'artist': parse_artists(item['artists'])}
music = data['music']
music['track']['progress'] = format_duration_ms(res['progress_ms'])
if _override:
data.update(_override)
for key in ['name', 'id', 'url']:
music['artist'][key] = music['artist'][(key + 's')][0]
music['artist'][('long_' + key)] = ', '.join(music['artist'][(key + 's')])
if (key != 'name'):
music['artist'][('long_' + key)] = music['artist'][('long_' + key)].replace(' ', )
playback_status = ('Playing' if data['is_playing'] else 'Paused')
playback_options = []
if (data['repeat_state'] == 'track'):
playback_options.append('repeat [track]')
elif (data['repeat_state'] == 'context'):
playback_options.append('repeat')
if data['is_shuffle']:
playback_options.append('shuffle')
playback_str =
if data['is_playing']:
playback_options_str = '{}'.format(('on {}'.format((' and '.join(playback_options) + ', ')) if playback_options else ))
playback_str = '({}{}% volume)'.format(playback_options_str, data['device']['volume'])
if _return_parsed:
return data
if (not verbose):
click.echo('{}: {}{}\n {} - {}'.format(playback_status, (' ' if (not data['is_playing']) else ), music['track']['name'], music['artist']['long_name'], music['album']['name']))
if (verbose >= 1):
click.echo('Track {} ({} / {})\nArtist {}\nAlbum {}\nStatus {} {}'.format(music['track']['name'], music['track']['progress'], music['track']['duration'], music['artist']['long_name'], music['album']['name'], playback_status, playback_str))
if (verbose >= 2):
click.echo('\nDevice {} ({})\nURL {}'.format(data['device']['name'], data['device']['type'], music['track']['url']))
return | @click.command(options_metavar='[<options>]')
@click.option('-v', '--verbose', count=True, help='Output more info (repeatable flag).')
@click.option('--raw', is_flag=True, help='Output raw API response.')
def status(verbose=0, raw=False, _override={}, _return_parsed=False):
res = Spotify.request('me/player', method='GET')
if (not res):
raise NoPlaybackError
if raw:
if (verbose >= 0):
import json
click.echo(json.dumps(res))
return res
data = {}
data['is_podcast'] = (res['currently_playing_type'] == 'episode')
if data['is_podcast']:
raise PodcastNotSupported
data['is_shuffle'] = res['shuffle_state']
data['repeat_state'] = res['repeat_state']
data['is_playing'] = res['is_playing']
data['device'] = {'name': res['device']['name'], 'type': res['device']['type'], 'volume': res['device']['volume_percent']}
item = res['item']
context = parse_context(res['context'])
data['music'] = {'context': context, 'track': parse_track(item), 'album': parse_album(item['album']), 'artist': parse_artists(item['artists'])}
music = data['music']
music['track']['progress'] = format_duration_ms(res['progress_ms'])
if _override:
data.update(_override)
for key in ['name', 'id', 'url']:
music['artist'][key] = music['artist'][(key + 's')][0]
music['artist'][('long_' + key)] = ', '.join(music['artist'][(key + 's')])
if (key != 'name'):
music['artist'][('long_' + key)] = music['artist'][('long_' + key)].replace(' ', )
playback_status = ('Playing' if data['is_playing'] else 'Paused')
playback_options = []
if (data['repeat_state'] == 'track'):
playback_options.append('repeat [track]')
elif (data['repeat_state'] == 'context'):
playback_options.append('repeat')
if data['is_shuffle']:
playback_options.append('shuffle')
playback_str =
if data['is_playing']:
playback_options_str = '{}'.format(('on {}'.format((' and '.join(playback_options) + ', ')) if playback_options else ))
playback_str = '({}{}% volume)'.format(playback_options_str, data['device']['volume'])
if _return_parsed:
return data
if (not verbose):
click.echo('{}: {}{}\n {} - {}'.format(playback_status, (' ' if (not data['is_playing']) else ), music['track']['name'], music['artist']['long_name'], music['album']['name']))
if (verbose >= 1):
click.echo('Track {} ({} / {})\nArtist {}\nAlbum {}\nStatus {} {}'.format(music['track']['name'], music['track']['progress'], music['track']['duration'], music['artist']['long_name'], music['album']['name'], playback_status, playback_str))
if (verbose >= 2):
click.echo('\nDevice {} ({})\nURL {}'.format(data['device']['name'], data['device']['type'], music['track']['url']))
return<|docstring|>Describe the current playback session.<|endoftext|> |
78df13d38e1c76d1f6521fe56b58407a2e322a5485562c9f51c0f3277edb490e | def initialize_weights(net):
"\n initialize network\n note:It's different to initialize discriminator and classifier.\n For detail,please check the initialization of resnet and wgan-gp.\n "
for m in net.modules():
if isinstance(m, nn.Conv2d):
m.weight.data.normal_(0, 0.02)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
m.weight.data.normal_(0, 0.02)
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_() | initialize network
note:It's different to initialize discriminator and classifier.
For detail,please check the initialization of resnet and wgan-gp. | networks/ops.py | initialize_weights | youngyzzZ/a-weakly-supervised-localization-and-segmentation-method | 0 | python | def initialize_weights(net):
"\n initialize network\n note:It's different to initialize discriminator and classifier.\n For detail,please check the initialization of resnet and wgan-gp.\n "
for m in net.modules():
if isinstance(m, nn.Conv2d):
m.weight.data.normal_(0, 0.02)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
m.weight.data.normal_(0, 0.02)
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_() | def initialize_weights(net):
"\n initialize network\n note:It's different to initialize discriminator and classifier.\n For detail,please check the initialization of resnet and wgan-gp.\n "
for m in net.modules():
if isinstance(m, nn.Conv2d):
m.weight.data.normal_(0, 0.02)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
m.weight.data.normal_(0, 0.02)
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()<|docstring|>initialize network
note:It's different to initialize discriminator and classifier.
For detail,please check the initialization of resnet and wgan-gp.<|endoftext|> |
4499f42d4fdf2e0408f0b8fe86eda86b8aad5dc88773ef48426f7258cfd89ab2 | def allowed_file(filename):
"check the file name to avoid possible hack\n Arguments: uploaded file's name\n Return: rendered result page 'result.html'\n "
return (('.' in filename) and (filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS)) | check the file name to avoid possible hack
Arguments: uploaded file's name
Return: rendered result page 'result.html' | ReChord_frontend.py | allowed_file | oxy-compsci/reChord | 1 | python | def allowed_file(filename):
"check the file name to avoid possible hack\n Arguments: uploaded file's name\n Return: rendered result page 'result.html'\n "
return (('.' in filename) and (filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS)) | def allowed_file(filename):
"check the file name to avoid possible hack\n Arguments: uploaded file's name\n Return: rendered result page 'result.html'\n "
return (('.' in filename) and (filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS))<|docstring|>check the file name to avoid possible hack
Arguments: uploaded file's name
Return: rendered result page 'result.html'<|endoftext|> |
0596c9251781aaf4ce957e320d8a2530b70bdc0f8ad83b822d8dfdfaaadd1d23 | @app.route('/')
def form():
"render front page template\n Return: rendered front page 'index.html'\n "
return render_template('index.html') | render front page template
Return: rendered front page 'index.html' | ReChord_frontend.py | form | oxy-compsci/reChord | 1 | python | @app.route('/')
def form():
"render front page template\n Return: rendered front page 'index.html'\n "
return render_template('index.html') | @app.route('/')
def form():
"render front page template\n Return: rendered front page 'index.html'\n "
return render_template('index.html')<|docstring|>render front page template
Return: rendered front page 'index.html'<|endoftext|> |
21b67dfc02dcd2a5642b08bef1b973a269d5bd693b480522d66ee51601dfe8fa | @app.route('/documentation')
def documentation():
"render front page template\n Return: rendered front page 'index.html'\n "
return render_template('documentation.html') | render front page template
Return: rendered front page 'index.html' | ReChord_frontend.py | documentation | oxy-compsci/reChord | 1 | python | @app.route('/documentation')
def documentation():
"render front page template\n Return: rendered front page 'index.html'\n "
return render_template('documentation.html') | @app.route('/documentation')
def documentation():
"render front page template\n Return: rendered front page 'index.html'\n "
return render_template('documentation.html')<|docstring|>render front page template
Return: rendered front page 'index.html'<|endoftext|> |
8c20431cfef0a6d0c279ebc506d52981486f290597a2dde12af5ae5c6078efee | @app.route('/', methods=['POST'])
def form_post():
"the view function which return the result page by using the input pass to the back end\n Arguments: forms submitted in index.html\n Return: rendered result page 'result.html' by call on helper functions\n "
if (request.form['submit'] == 'Search Snippet In Our Database'):
path = 'database/MEI_Complete_examples'
return search_snippet(path, request.form['text'])
elif (request.form['submit'] == 'Search Terms In Our Database'):
tag = request.form['term']
para = request.form['parameter']
path = 'database/MEI_Complete_examples'
return search_terms(path, tag, para)
elif (request.form['submit'] == 'Upload and Search Your Snippet'):
with tempfile.TemporaryDirectory() as tmpdirname:
try:
path = upload_file('base_file', tmpdirname)
return search_snippet(path, request.form['text'])
except NameError as error_msg:
return render_template('result.html', errors=str(error_msg))
elif (request.form['submit'] == 'Upload and Search Parameter'):
tag = request.form['term']
para = request.form['parameter']
with tempfile.TemporaryDirectory() as tmpdirname:
try:
path = upload_file('base_file', tmpdirname)
return search_terms(path, tag, para)
except NameError as error_msg:
return render_template('result.html', errors=str(error_msg))
else:
abort(404)
return None | the view function which return the result page by using the input pass to the back end
Arguments: forms submitted in index.html
Return: rendered result page 'result.html' by call on helper functions | ReChord_frontend.py | form_post | oxy-compsci/reChord | 1 | python | @app.route('/', methods=['POST'])
def form_post():
"the view function which return the result page by using the input pass to the back end\n Arguments: forms submitted in index.html\n Return: rendered result page 'result.html' by call on helper functions\n "
if (request.form['submit'] == 'Search Snippet In Our Database'):
path = 'database/MEI_Complete_examples'
return search_snippet(path, request.form['text'])
elif (request.form['submit'] == 'Search Terms In Our Database'):
tag = request.form['term']
para = request.form['parameter']
path = 'database/MEI_Complete_examples'
return search_terms(path, tag, para)
elif (request.form['submit'] == 'Upload and Search Your Snippet'):
with tempfile.TemporaryDirectory() as tmpdirname:
try:
path = upload_file('base_file', tmpdirname)
return search_snippet(path, request.form['text'])
except NameError as error_msg:
return render_template('result.html', errors=str(error_msg))
elif (request.form['submit'] == 'Upload and Search Parameter'):
tag = request.form['term']
para = request.form['parameter']
with tempfile.TemporaryDirectory() as tmpdirname:
try:
path = upload_file('base_file', tmpdirname)
return search_terms(path, tag, para)
except NameError as error_msg:
return render_template('result.html', errors=str(error_msg))
else:
abort(404)
return None | @app.route('/', methods=['POST'])
def form_post():
"the view function which return the result page by using the input pass to the back end\n Arguments: forms submitted in index.html\n Return: rendered result page 'result.html' by call on helper functions\n "
if (request.form['submit'] == 'Search Snippet In Our Database'):
path = 'database/MEI_Complete_examples'
return search_snippet(path, request.form['text'])
elif (request.form['submit'] == 'Search Terms In Our Database'):
tag = request.form['term']
para = request.form['parameter']
path = 'database/MEI_Complete_examples'
return search_terms(path, tag, para)
elif (request.form['submit'] == 'Upload and Search Your Snippet'):
with tempfile.TemporaryDirectory() as tmpdirname:
try:
path = upload_file('base_file', tmpdirname)
return search_snippet(path, request.form['text'])
except NameError as error_msg:
return render_template('result.html', errors=str(error_msg))
elif (request.form['submit'] == 'Upload and Search Parameter'):
tag = request.form['term']
para = request.form['parameter']
with tempfile.TemporaryDirectory() as tmpdirname:
try:
path = upload_file('base_file', tmpdirname)
return search_terms(path, tag, para)
except NameError as error_msg:
return render_template('result.html', errors=str(error_msg))
else:
abort(404)
return None<|docstring|>the view function which return the result page by using the input pass to the back end
Arguments: forms submitted in index.html
Return: rendered result page 'result.html' by call on helper functions<|endoftext|> |
ae5969792b44e44c49f6b96d892b9b560597d0d21c7c38641a3f3256031c396e | def get_mei_from_folder(path):
'gets a list of MEI files from a given folder path\n Arguments: path [string]: absolute or relative path to folder\n Returns: all_mei_files: List<file>: list of mei files in path\n '
return [((path + '/') + filename) for filename in os.listdir(path) if (filename.endswith('.mei') or filename.endswith('.xml'))] | gets a list of MEI files from a given folder path
Arguments: path [string]: absolute or relative path to folder
Returns: all_mei_files: List<file>: list of mei files in path | ReChord_frontend.py | get_mei_from_folder | oxy-compsci/reChord | 1 | python | def get_mei_from_folder(path):
'gets a list of MEI files from a given folder path\n Arguments: path [string]: absolute or relative path to folder\n Returns: all_mei_files: List<file>: list of mei files in path\n '
return [((path + '/') + filename) for filename in os.listdir(path) if (filename.endswith('.mei') or filename.endswith('.xml'))] | def get_mei_from_folder(path):
'gets a list of MEI files from a given folder path\n Arguments: path [string]: absolute or relative path to folder\n Returns: all_mei_files: List<file>: list of mei files in path\n '
return [((path + '/') + filename) for filename in os.listdir(path) if (filename.endswith('.mei') or filename.endswith('.xml'))]<|docstring|>gets a list of MEI files from a given folder path
Arguments: path [string]: absolute or relative path to folder
Returns: all_mei_files: List<file>: list of mei files in path<|endoftext|> |
1d5f5db92350e3629b25262adeae11a120189a06929c126d8cb03c8650fa1824 | def search_snippet(path, snippet):
"search the snippet from the given database\n Arguments:\n snippet of xml that want to search for\n tree of xml base that needed to be searched in\n Return: rendered result page 'result.html'\n "
xml = BytesIO(snippet.encode())
error_msg = ''
try:
(input_xml_tree, _) = prepare_tree(xml)
named_tuples_ls = snippet_search_folder(path, input_xml_tree)
if named_tuples_ls:
return render_template('result.html', origins=named_tuples_ls)
else:
error_msg = 'No matched snippet found, maybe try something else?'
return render_template('result.html', nomatch=error_msg)
except (etree.XMLSyntaxError, ValueError):
error_msg = 'Invalid MEI snippet inputs. Please double check the source and try it again!'
except KeyError:
error_msg = 'Invalid upload file. Please double check the source and try it again!'
return render_template('result.html', errors=error_msg) | search the snippet from the given database
Arguments:
snippet of xml that want to search for
tree of xml base that needed to be searched in
Return: rendered result page 'result.html' | ReChord_frontend.py | search_snippet | oxy-compsci/reChord | 1 | python | def search_snippet(path, snippet):
"search the snippet from the given database\n Arguments:\n snippet of xml that want to search for\n tree of xml base that needed to be searched in\n Return: rendered result page 'result.html'\n "
xml = BytesIO(snippet.encode())
error_msg =
try:
(input_xml_tree, _) = prepare_tree(xml)
named_tuples_ls = snippet_search_folder(path, input_xml_tree)
if named_tuples_ls:
return render_template('result.html', origins=named_tuples_ls)
else:
error_msg = 'No matched snippet found, maybe try something else?'
return render_template('result.html', nomatch=error_msg)
except (etree.XMLSyntaxError, ValueError):
error_msg = 'Invalid MEI snippet inputs. Please double check the source and try it again!'
except KeyError:
error_msg = 'Invalid upload file. Please double check the source and try it again!'
return render_template('result.html', errors=error_msg) | def search_snippet(path, snippet):
"search the snippet from the given database\n Arguments:\n snippet of xml that want to search for\n tree of xml base that needed to be searched in\n Return: rendered result page 'result.html'\n "
xml = BytesIO(snippet.encode())
error_msg =
try:
(input_xml_tree, _) = prepare_tree(xml)
named_tuples_ls = snippet_search_folder(path, input_xml_tree)
if named_tuples_ls:
return render_template('result.html', origins=named_tuples_ls)
else:
error_msg = 'No matched snippet found, maybe try something else?'
return render_template('result.html', nomatch=error_msg)
except (etree.XMLSyntaxError, ValueError):
error_msg = 'Invalid MEI snippet inputs. Please double check the source and try it again!'
except KeyError:
error_msg = 'Invalid upload file. Please double check the source and try it again!'
return render_template('result.html', errors=error_msg)<|docstring|>search the snippet from the given database
Arguments:
snippet of xml that want to search for
tree of xml base that needed to be searched in
Return: rendered result page 'result.html'<|endoftext|> |
e73f4d9679cddc7cd5680152984451556a473e21f010881f0e1b54b9eef84873 | def search_terms(path, tag, para):
" search terms in the database\n Arguments:\n tags of term that want to search for\n para(meters) of tags that want to search for\n tree of xml base that needed to be searched in\n Return: rendered result page 'result.html'\n "
error_msg = ''
try:
named_tuples_ls = text_box_search_folder(path, tag, para)
if named_tuples_ls:
return render_template('result.html', origins=named_tuples_ls)
else:
error_msg = 'No matched term found, maybe try something else?'
return render_template('result.html', nomatch=error_msg)
except KeyError:
error_msg = 'Invalid upload file. Please double check the source and try it again!'
return render_template('result.html', errors=error_msg) | search terms in the database
Arguments:
tags of term that want to search for
para(meters) of tags that want to search for
tree of xml base that needed to be searched in
Return: rendered result page 'result.html' | ReChord_frontend.py | search_terms | oxy-compsci/reChord | 1 | python | def search_terms(path, tag, para):
" search terms in the database\n Arguments:\n tags of term that want to search for\n para(meters) of tags that want to search for\n tree of xml base that needed to be searched in\n Return: rendered result page 'result.html'\n "
error_msg =
try:
named_tuples_ls = text_box_search_folder(path, tag, para)
if named_tuples_ls:
return render_template('result.html', origins=named_tuples_ls)
else:
error_msg = 'No matched term found, maybe try something else?'
return render_template('result.html', nomatch=error_msg)
except KeyError:
error_msg = 'Invalid upload file. Please double check the source and try it again!'
return render_template('result.html', errors=error_msg) | def search_terms(path, tag, para):
" search terms in the database\n Arguments:\n tags of term that want to search for\n para(meters) of tags that want to search for\n tree of xml base that needed to be searched in\n Return: rendered result page 'result.html'\n "
error_msg =
try:
named_tuples_ls = text_box_search_folder(path, tag, para)
if named_tuples_ls:
return render_template('result.html', origins=named_tuples_ls)
else:
error_msg = 'No matched term found, maybe try something else?'
return render_template('result.html', nomatch=error_msg)
except KeyError:
error_msg = 'Invalid upload file. Please double check the source and try it again!'
return render_template('result.html', errors=error_msg)<|docstring|>search terms in the database
Arguments:
tags of term that want to search for
para(meters) of tags that want to search for
tree of xml base that needed to be searched in
Return: rendered result page 'result.html'<|endoftext|> |
b124a6da568118ad3565b42d9f98b136023aa2705390b2f9ca82836b5d45f89d | def upload_file(name_tag, tmpdirname):
"pass the upload files and store them in uploads folder's unique sub-folder\n Arguments: name_tag that used in html\n Return: upload path name\n "
if ('base_file' not in request.files):
flash('No file part')
return redirect(request.url)
else:
files = request.files.getlist(name_tag)
for file in files:
if (file.filename == ''):
flash('No selected file')
return redirect(request.url)
elif file:
if allowed_file(file.filename):
file.save(os.path.join(tmpdirname, secure_filename(file.filename)))
else:
raise NameError((file.filename + ' is not a allowed name or the file extension is not .mei or .xml.'))
return tmpdirname | pass the upload files and store them in uploads folder's unique sub-folder
Arguments: name_tag that used in html
Return: upload path name | ReChord_frontend.py | upload_file | oxy-compsci/reChord | 1 | python | def upload_file(name_tag, tmpdirname):
"pass the upload files and store them in uploads folder's unique sub-folder\n Arguments: name_tag that used in html\n Return: upload path name\n "
if ('base_file' not in request.files):
flash('No file part')
return redirect(request.url)
else:
files = request.files.getlist(name_tag)
for file in files:
if (file.filename == ):
flash('No selected file')
return redirect(request.url)
elif file:
if allowed_file(file.filename):
file.save(os.path.join(tmpdirname, secure_filename(file.filename)))
else:
raise NameError((file.filename + ' is not a allowed name or the file extension is not .mei or .xml.'))
return tmpdirname | def upload_file(name_tag, tmpdirname):
"pass the upload files and store them in uploads folder's unique sub-folder\n Arguments: name_tag that used in html\n Return: upload path name\n "
if ('base_file' not in request.files):
flash('No file part')
return redirect(request.url)
else:
files = request.files.getlist(name_tag)
for file in files:
if (file.filename == ):
flash('No selected file')
return redirect(request.url)
elif file:
if allowed_file(file.filename):
file.save(os.path.join(tmpdirname, secure_filename(file.filename)))
else:
raise NameError((file.filename + ' is not a allowed name or the file extension is not .mei or .xml.'))
return tmpdirname<|docstring|>pass the upload files and store them in uploads folder's unique sub-folder
Arguments: name_tag that used in html
Return: upload path name<|endoftext|> |
670063089fa19f2910a2b64a67d074f9cf3cb3495f26a3b35d32ab44fa15e09e | @bp.route('/healthz')
def healthz():
'Status check to verify the service and required dependencies are still working.\n\n This could be thought of as a heartbeat for the service\n '
try:
db.session.execute(SQL)
except exc.SQLAlchemyError as db_exception:
current_app.logger.error(('DB connection pool unhealthy:' + str(db_exception)))
return ({'message': 'api is down'}, 500)
except Exception as default_exception:
current_app.logger.error(('DB connection pool query failed:' + str(default_exception)))
return ({'message': 'api is down'}, 500)
return (jsonify({'message': 'api is healthy'}), 200) | Status check to verify the service and required dependencies are still working.
This could be thought of as a heartbeat for the service | mhr_api/src/mhr_api/resources/v1/ops.py | healthz | cameron-freshworks/ppr | 0 | python | @bp.route('/healthz')
def healthz():
'Status check to verify the service and required dependencies are still working.\n\n This could be thought of as a heartbeat for the service\n '
try:
db.session.execute(SQL)
except exc.SQLAlchemyError as db_exception:
current_app.logger.error(('DB connection pool unhealthy:' + str(db_exception)))
return ({'message': 'api is down'}, 500)
except Exception as default_exception:
current_app.logger.error(('DB connection pool query failed:' + str(default_exception)))
return ({'message': 'api is down'}, 500)
return (jsonify({'message': 'api is healthy'}), 200) | @bp.route('/healthz')
def healthz():
'Status check to verify the service and required dependencies are still working.\n\n This could be thought of as a heartbeat for the service\n '
try:
db.session.execute(SQL)
except exc.SQLAlchemyError as db_exception:
current_app.logger.error(('DB connection pool unhealthy:' + str(db_exception)))
return ({'message': 'api is down'}, 500)
except Exception as default_exception:
current_app.logger.error(('DB connection pool query failed:' + str(default_exception)))
return ({'message': 'api is down'}, 500)
return (jsonify({'message': 'api is healthy'}), 200)<|docstring|>Status check to verify the service and required dependencies are still working.
This could be thought of as a heartbeat for the service<|endoftext|> |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.