body_hash
stringlengths
64
64
body
stringlengths
23
109k
docstring
stringlengths
1
57k
path
stringlengths
4
198
name
stringlengths
1
115
repository_name
stringlengths
7
111
repository_stars
float64
0
191k
lang
stringclasses
1 value
body_without_docstring
stringlengths
14
108k
unified
stringlengths
45
133k
8a655791799b4fddaedc980287faba153a8dcc96d95554aff1849cae36133f0e
@bp.route('/readyz') def readyz(): 'Status check to verify the service is ready to respond.' return (jsonify({'message': 'api is ready'}), 200)
Status check to verify the service is ready to respond.
mhr_api/src/mhr_api/resources/v1/ops.py
readyz
cameron-freshworks/ppr
0
python
@bp.route('/readyz') def readyz(): return (jsonify({'message': 'api is ready'}), 200)
@bp.route('/readyz') def readyz(): return (jsonify({'message': 'api is ready'}), 200)<|docstring|>Status check to verify the service is ready to respond.<|endoftext|>
9a9964cdcf902d79ccfbcd5d48286c7ca5041ac9d2aab0c0feb9cff93c75335f
def remove(self, key: str) -> None: 'Safely remove an arbitrary key from telemetry metadata' self._values.pop(key, None)
Safely remove an arbitrary key from telemetry metadata
servo/telemetry.py
remove
opsani/servox
4
python
def remove(self, key: str) -> None: self._values.pop(key, None)
def remove(self, key: str) -> None: self._values.pop(key, None)<|docstring|>Safely remove an arbitrary key from telemetry metadata<|endoftext|>
3ef7bb3f01ccd5e6ecd2306ba8dfaa1edfe3d31ebac0fede234210900b62aebc
def sort_string(self, string: str) -> None: '\n Test:\n "cat"\n "act"\n tca\n\n index cl c pi pc\n 1 0 \'a\' 0 \'c\'\n -1\n 2 2 \'t\' 1 \'c\'\n 0 \'a\'\n\n Quicksort - nlog n -->\n Pros:\n - unstability is fine\n - in place\n Cons:\n - right idea of a pivot, --> risking quadratic runtoime\n\n Selection and Bubble\n\n TimSort(can\'t use built-in)\n HeapSort(can\'t use built-in)\n\n\n ' for index in range(1, len(string)): char = string[index] current_loc = index for previous_index in range((current_loc - 1), (- 1), (- 1)): prev_char = string[previous_index] if (char < prev_char): string[previous_index] = char string[current_loc] = prev_char current_loc = previous_index return string
Test: "cat" "act" tca index cl c pi pc 1 0 'a' 0 'c' -1 2 2 't' 1 'c' 0 'a' Quicksort - nlog n --> Pros: - unstability is fine - in place Cons: - right idea of a pivot, --> risking quadratic runtoime Selection and Bubble TimSort(can't use built-in) HeapSort(can't use built-in)
array_str_problems/is_unique.py
sort_string
UPstartDeveloper/Problem_Solving_Practice
0
python
def sort_string(self, string: str) -> None: '\n Test:\n "cat"\n "act"\n tca\n\n index cl c pi pc\n 1 0 \'a\' 0 \'c\'\n -1\n 2 2 \'t\' 1 \'c\'\n 0 \'a\'\n\n Quicksort - nlog n -->\n Pros:\n - unstability is fine\n - in place\n Cons:\n - right idea of a pivot, --> risking quadratic runtoime\n\n Selection and Bubble\n\n TimSort(can\'t use built-in)\n HeapSort(can\'t use built-in)\n\n\n ' for index in range(1, len(string)): char = string[index] current_loc = index for previous_index in range((current_loc - 1), (- 1), (- 1)): prev_char = string[previous_index] if (char < prev_char): string[previous_index] = char string[current_loc] = prev_char current_loc = previous_index return string
def sort_string(self, string: str) -> None: '\n Test:\n "cat"\n "act"\n tca\n\n index cl c pi pc\n 1 0 \'a\' 0 \'c\'\n -1\n 2 2 \'t\' 1 \'c\'\n 0 \'a\'\n\n Quicksort - nlog n -->\n Pros:\n - unstability is fine\n - in place\n Cons:\n - right idea of a pivot, --> risking quadratic runtoime\n\n Selection and Bubble\n\n TimSort(can\'t use built-in)\n HeapSort(can\'t use built-in)\n\n\n ' for index in range(1, len(string)): char = string[index] current_loc = index for previous_index in range((current_loc - 1), (- 1), (- 1)): prev_char = string[previous_index] if (char < prev_char): string[previous_index] = char string[current_loc] = prev_char current_loc = previous_index return string<|docstring|>Test: "cat" "act" tca index cl c pi pc 1 0 'a' 0 'c' -1 2 2 't' 1 'c' 0 'a' Quicksort - nlog n --> Pros: - unstability is fine - in place Cons: - right idea of a pivot, --> risking quadratic runtoime Selection and Bubble TimSort(can't use built-in) HeapSort(can't use built-in)<|endoftext|>
816d725df754742c342fa50295a8420711752eabbc767d1716c1c62208323452
def is_unique(self, string: str) -> bool: '\n Time: O(n^2)\n Space: O(1)\n ' for index in range(len(string)): char = string[index] for previous in range((index - 1), (- 1), (- 1)): if (char == string[previous]): return False return True
Time: O(n^2) Space: O(1)
array_str_problems/is_unique.py
is_unique
UPstartDeveloper/Problem_Solving_Practice
0
python
def is_unique(self, string: str) -> bool: '\n Time: O(n^2)\n Space: O(1)\n ' for index in range(len(string)): char = string[index] for previous in range((index - 1), (- 1), (- 1)): if (char == string[previous]): return False return True
def is_unique(self, string: str) -> bool: '\n Time: O(n^2)\n Space: O(1)\n ' for index in range(len(string)): char = string[index] for previous in range((index - 1), (- 1), (- 1)): if (char == string[previous]): return False return True<|docstring|>Time: O(n^2) Space: O(1)<|endoftext|>
60f5d97e3c073fd5df1d859ab623d5d0b07fdfd2180d18313659beffa4073a33
def l2norm(X, dim, eps=1e-08): '\n L2-normalize columns of X\n ' norm = (torch.pow(X, 2).sum(dim=dim, keepdim=True).sqrt() + eps) X = torch.div(X, norm) return X
L2-normalize columns of X
models/nafs.py
l2norm
TencentYoutuResearch/PersonReID-YouReID
29
python
def l2norm(X, dim, eps=1e-08): '\n \n ' norm = (torch.pow(X, 2).sum(dim=dim, keepdim=True).sqrt() + eps) X = torch.div(X, norm) return X
def l2norm(X, dim, eps=1e-08): '\n \n ' norm = (torch.pow(X, 2).sum(dim=dim, keepdim=True).sqrt() + eps) X = torch.div(X, norm) return X<|docstring|>L2-normalize columns of X<|endoftext|>
973e2648cc063b224d76ebcbc2373c61c29e91ab1547b84928d72db0d0262576
def compute_similarity(x1, x2, dim=1, eps=1e-08): '\n Returns cosine similarity between x1 and x2, computed along dim.\n ' w12 = torch.sum((x1 * x2), dim) w1 = torch.norm(x1, 2, dim) w2 = torch.norm(x2, 2, dim) return (w12 / (w1 * w2).clamp(min=eps)).squeeze()
Returns cosine similarity between x1 and x2, computed along dim.
models/nafs.py
compute_similarity
TencentYoutuResearch/PersonReID-YouReID
29
python
def compute_similarity(x1, x2, dim=1, eps=1e-08): '\n \n ' w12 = torch.sum((x1 * x2), dim) w1 = torch.norm(x1, 2, dim) w2 = torch.norm(x2, 2, dim) return (w12 / (w1 * w2).clamp(min=eps)).squeeze()
def compute_similarity(x1, x2, dim=1, eps=1e-08): '\n \n ' w12 = torch.sum((x1 * x2), dim) w1 = torch.norm(x1, 2, dim) w2 = torch.norm(x2, 2, dim) return (w12 / (w1 * w2).clamp(min=eps)).squeeze()<|docstring|>Returns cosine similarity between x1 and x2, computed along dim.<|endoftext|>
b0641da6fd6b8f16f23d040ff487fca0095ef6608c4a9fd9921d10223c96d41b
def func_attention_MxN(local_img_query, txt_i_key_expand, txt_i_value_expand, eps=1e-08): '\n query: (batch, queryL, d)\n context: (batch, sourceL, d)\n ' (batch_size, queryL, sourceL) = (txt_i_key_expand.size(0), local_img_query.size(1), txt_i_key_expand.size(1)) local_img_query_norm = l2norm(local_img_query, dim=(- 1)) txt_i_key_expand_norm = l2norm(txt_i_key_expand, dim=(- 1)) local_img_queryT = torch.transpose(local_img_query_norm, 1, 2) attn = torch.bmm(txt_i_key_expand_norm, local_img_queryT) attn = nn.LeakyReLU(0.1)(attn) attn = l2norm(attn, 2) attn = torch.transpose(attn, 1, 2).contiguous() attn = attn.view((batch_size * queryL), sourceL) attn = nn.Softmax(dim=1)((attn * config.get('model_config')['lambda_softmax'])) attn = attn.view(batch_size, queryL, sourceL) if (config.get('model_config')['focal_type'] == 'equal'): funcH = focal_equal(attn, batch_size, queryL, sourceL) elif (config.get('model_config')['focal_type'] == 'prob'): funcH = focal_prob(attn, batch_size, queryL, sourceL) else: funcH = None if (funcH is not None): tmp_attn = (funcH * attn) attn_sum = torch.sum(tmp_attn, dim=(- 1), keepdim=True) attn = (tmp_attn / attn_sum) txt_i_valueT = torch.transpose(txt_i_value_expand, 1, 2) attnT = torch.transpose(attn, 1, 2).contiguous() weightedContext = torch.bmm(txt_i_valueT, attnT) weightedContext = torch.transpose(weightedContext, 1, 2) return weightedContext
query: (batch, queryL, d) context: (batch, sourceL, d)
models/nafs.py
func_attention_MxN
TencentYoutuResearch/PersonReID-YouReID
29
python
def func_attention_MxN(local_img_query, txt_i_key_expand, txt_i_value_expand, eps=1e-08): '\n query: (batch, queryL, d)\n context: (batch, sourceL, d)\n ' (batch_size, queryL, sourceL) = (txt_i_key_expand.size(0), local_img_query.size(1), txt_i_key_expand.size(1)) local_img_query_norm = l2norm(local_img_query, dim=(- 1)) txt_i_key_expand_norm = l2norm(txt_i_key_expand, dim=(- 1)) local_img_queryT = torch.transpose(local_img_query_norm, 1, 2) attn = torch.bmm(txt_i_key_expand_norm, local_img_queryT) attn = nn.LeakyReLU(0.1)(attn) attn = l2norm(attn, 2) attn = torch.transpose(attn, 1, 2).contiguous() attn = attn.view((batch_size * queryL), sourceL) attn = nn.Softmax(dim=1)((attn * config.get('model_config')['lambda_softmax'])) attn = attn.view(batch_size, queryL, sourceL) if (config.get('model_config')['focal_type'] == 'equal'): funcH = focal_equal(attn, batch_size, queryL, sourceL) elif (config.get('model_config')['focal_type'] == 'prob'): funcH = focal_prob(attn, batch_size, queryL, sourceL) else: funcH = None if (funcH is not None): tmp_attn = (funcH * attn) attn_sum = torch.sum(tmp_attn, dim=(- 1), keepdim=True) attn = (tmp_attn / attn_sum) txt_i_valueT = torch.transpose(txt_i_value_expand, 1, 2) attnT = torch.transpose(attn, 1, 2).contiguous() weightedContext = torch.bmm(txt_i_valueT, attnT) weightedContext = torch.transpose(weightedContext, 1, 2) return weightedContext
def func_attention_MxN(local_img_query, txt_i_key_expand, txt_i_value_expand, eps=1e-08): '\n query: (batch, queryL, d)\n context: (batch, sourceL, d)\n ' (batch_size, queryL, sourceL) = (txt_i_key_expand.size(0), local_img_query.size(1), txt_i_key_expand.size(1)) local_img_query_norm = l2norm(local_img_query, dim=(- 1)) txt_i_key_expand_norm = l2norm(txt_i_key_expand, dim=(- 1)) local_img_queryT = torch.transpose(local_img_query_norm, 1, 2) attn = torch.bmm(txt_i_key_expand_norm, local_img_queryT) attn = nn.LeakyReLU(0.1)(attn) attn = l2norm(attn, 2) attn = torch.transpose(attn, 1, 2).contiguous() attn = attn.view((batch_size * queryL), sourceL) attn = nn.Softmax(dim=1)((attn * config.get('model_config')['lambda_softmax'])) attn = attn.view(batch_size, queryL, sourceL) if (config.get('model_config')['focal_type'] == 'equal'): funcH = focal_equal(attn, batch_size, queryL, sourceL) elif (config.get('model_config')['focal_type'] == 'prob'): funcH = focal_prob(attn, batch_size, queryL, sourceL) else: funcH = None if (funcH is not None): tmp_attn = (funcH * attn) attn_sum = torch.sum(tmp_attn, dim=(- 1), keepdim=True) attn = (tmp_attn / attn_sum) txt_i_valueT = torch.transpose(txt_i_value_expand, 1, 2) attnT = torch.transpose(attn, 1, 2).contiguous() weightedContext = torch.bmm(txt_i_valueT, attnT) weightedContext = torch.transpose(weightedContext, 1, 2) return weightedContext<|docstring|>query: (batch, queryL, d) context: (batch, sourceL, d)<|endoftext|>
2cd4eaaf583c78d25ef4d4b9dbd73afd391ac48aef82e26210fe801ad846c8e3
def focal_equal(attn, batch_size, queryL, sourceL): '\n consider the confidence g(x) for each fragment as equal\n sigma_{j} (xi - xj) = sigma_{j} xi - sigma_{j} xj\n attn: (batch, queryL, sourceL)\n ' funcF = ((attn * sourceL) - torch.sum(attn, dim=(- 1), keepdim=True)) fattn = torch.where((funcF > 0), torch.ones_like(attn), torch.zeros_like(attn)) return fattn
consider the confidence g(x) for each fragment as equal sigma_{j} (xi - xj) = sigma_{j} xi - sigma_{j} xj attn: (batch, queryL, sourceL)
models/nafs.py
focal_equal
TencentYoutuResearch/PersonReID-YouReID
29
python
def focal_equal(attn, batch_size, queryL, sourceL): '\n consider the confidence g(x) for each fragment as equal\n sigma_{j} (xi - xj) = sigma_{j} xi - sigma_{j} xj\n attn: (batch, queryL, sourceL)\n ' funcF = ((attn * sourceL) - torch.sum(attn, dim=(- 1), keepdim=True)) fattn = torch.where((funcF > 0), torch.ones_like(attn), torch.zeros_like(attn)) return fattn
def focal_equal(attn, batch_size, queryL, sourceL): '\n consider the confidence g(x) for each fragment as equal\n sigma_{j} (xi - xj) = sigma_{j} xi - sigma_{j} xj\n attn: (batch, queryL, sourceL)\n ' funcF = ((attn * sourceL) - torch.sum(attn, dim=(- 1), keepdim=True)) fattn = torch.where((funcF > 0), torch.ones_like(attn), torch.zeros_like(attn)) return fattn<|docstring|>consider the confidence g(x) for each fragment as equal sigma_{j} (xi - xj) = sigma_{j} xi - sigma_{j} xj attn: (batch, queryL, sourceL)<|endoftext|>
e59be8cd01f000216770f08a326c4e10f62fd95c17071d7a293cb3448e0eff29
def focal_prob(attn, batch_size, queryL, sourceL): '\n consider the confidence g(x) for each fragment as the sqrt\n of their similarity probability to the query fragment\n sigma_{j} (xi - xj)gj = sigma_{j} xi*gj - sigma_{j} xj*gj\n attn: (batch, queryL, sourceL)\n ' xi = attn.unsqueeze((- 1)).contiguous() xj = attn.unsqueeze(2).contiguous() xj_confi = torch.sqrt(xj) xi = xi.view((batch_size * queryL), sourceL, 1) xj = xj.view((batch_size * queryL), 1, sourceL) xj_confi = xj_confi.view((batch_size * queryL), 1, sourceL) term1 = torch.bmm(xi, xj_confi) term2 = (xj * xj_confi) funcF = torch.sum((term1 - term2), dim=(- 1)) funcF = funcF.view(batch_size, queryL, sourceL) fattn = torch.where((funcF > 0), torch.ones_like(attn), torch.zeros_like(attn)) return fattn
consider the confidence g(x) for each fragment as the sqrt of their similarity probability to the query fragment sigma_{j} (xi - xj)gj = sigma_{j} xi*gj - sigma_{j} xj*gj attn: (batch, queryL, sourceL)
models/nafs.py
focal_prob
TencentYoutuResearch/PersonReID-YouReID
29
python
def focal_prob(attn, batch_size, queryL, sourceL): '\n consider the confidence g(x) for each fragment as the sqrt\n of their similarity probability to the query fragment\n sigma_{j} (xi - xj)gj = sigma_{j} xi*gj - sigma_{j} xj*gj\n attn: (batch, queryL, sourceL)\n ' xi = attn.unsqueeze((- 1)).contiguous() xj = attn.unsqueeze(2).contiguous() xj_confi = torch.sqrt(xj) xi = xi.view((batch_size * queryL), sourceL, 1) xj = xj.view((batch_size * queryL), 1, sourceL) xj_confi = xj_confi.view((batch_size * queryL), 1, sourceL) term1 = torch.bmm(xi, xj_confi) term2 = (xj * xj_confi) funcF = torch.sum((term1 - term2), dim=(- 1)) funcF = funcF.view(batch_size, queryL, sourceL) fattn = torch.where((funcF > 0), torch.ones_like(attn), torch.zeros_like(attn)) return fattn
def focal_prob(attn, batch_size, queryL, sourceL): '\n consider the confidence g(x) for each fragment as the sqrt\n of their similarity probability to the query fragment\n sigma_{j} (xi - xj)gj = sigma_{j} xi*gj - sigma_{j} xj*gj\n attn: (batch, queryL, sourceL)\n ' xi = attn.unsqueeze((- 1)).contiguous() xj = attn.unsqueeze(2).contiguous() xj_confi = torch.sqrt(xj) xi = xi.view((batch_size * queryL), sourceL, 1) xj = xj.view((batch_size * queryL), 1, sourceL) xj_confi = xj_confi.view((batch_size * queryL), 1, sourceL) term1 = torch.bmm(xi, xj_confi) term2 = (xj * xj_confi) funcF = torch.sum((term1 - term2), dim=(- 1)) funcF = funcF.view(batch_size, queryL, sourceL) fattn = torch.where((funcF > 0), torch.ones_like(attn), torch.zeros_like(attn)) return fattn<|docstring|>consider the confidence g(x) for each fragment as the sqrt of their similarity probability to the query fragment sigma_{j} (xi - xj)gj = sigma_{j} xi*gj - sigma_{j} xj*gj attn: (batch, queryL, sourceL)<|endoftext|>
0f20e175353547fc029c2ba0e0125666c875d6baf054b84358d51202429713cc
def compute_weiTexts(local_img_query, local_img_value, local_text_key, local_text_value, text_length): '\n Compute weighted text embeddings\n :param image_embeddings: Tensor with dtype torch.float32, [n_img, n_region, d]\n :param text_embeddings: Tensor with dtype torch.float32, [n_txt, n_word, d]\n :param text_length: list, contain length of each sentence, [batch_size]\n :param labels: Tensor with dtype torch.int32, [batch_size]\n :return: i2t_similarities: Tensor, [n_img, n_txt]\n t2i_similarities: Tensor, [n_img, n_txt]\n ' n_img = local_img_query.shape[0] n_txt = local_text_key.shape[0] t2i_similarities = [] i2t_similarities = [] for i in range(n_txt): n_word = text_length[i] txt_i_key = local_text_key[(i, :n_word, :)].unsqueeze(0).contiguous() txt_i_value = local_text_value[(i, :n_word, :)].unsqueeze(0).contiguous() txt_i_key_expand = txt_i_key.repeat(n_img, 1, 1) txt_i_value_expand = txt_i_value.repeat(n_img, 1, 1) weiText = func_attention_MxN(local_img_query, txt_i_key_expand, txt_i_value_expand) weiText = l2norm(weiText, dim=2) i2t_sim = compute_similarity(local_img_value, weiText, dim=2) i2t_sim = i2t_sim.mean(dim=1, keepdim=True) i2t_similarities.append(i2t_sim) weiImage = func_attention_MxN(txt_i_key_expand, local_img_query, local_img_value) weiImage = l2norm(weiImage, dim=2) t2i_sim = compute_similarity(txt_i_value_expand, weiImage, dim=2) t2i_sim = t2i_sim.mean(dim=1, keepdim=True) t2i_similarities.append(t2i_sim) i2t_similarities = torch.cat(i2t_similarities, 1) t2i_similarities = torch.cat(t2i_similarities, 1) return (i2t_similarities, t2i_similarities)
Compute weighted text embeddings :param image_embeddings: Tensor with dtype torch.float32, [n_img, n_region, d] :param text_embeddings: Tensor with dtype torch.float32, [n_txt, n_word, d] :param text_length: list, contain length of each sentence, [batch_size] :param labels: Tensor with dtype torch.int32, [batch_size] :return: i2t_similarities: Tensor, [n_img, n_txt] t2i_similarities: Tensor, [n_img, n_txt]
models/nafs.py
compute_weiTexts
TencentYoutuResearch/PersonReID-YouReID
29
python
def compute_weiTexts(local_img_query, local_img_value, local_text_key, local_text_value, text_length): '\n Compute weighted text embeddings\n :param image_embeddings: Tensor with dtype torch.float32, [n_img, n_region, d]\n :param text_embeddings: Tensor with dtype torch.float32, [n_txt, n_word, d]\n :param text_length: list, contain length of each sentence, [batch_size]\n :param labels: Tensor with dtype torch.int32, [batch_size]\n :return: i2t_similarities: Tensor, [n_img, n_txt]\n t2i_similarities: Tensor, [n_img, n_txt]\n ' n_img = local_img_query.shape[0] n_txt = local_text_key.shape[0] t2i_similarities = [] i2t_similarities = [] for i in range(n_txt): n_word = text_length[i] txt_i_key = local_text_key[(i, :n_word, :)].unsqueeze(0).contiguous() txt_i_value = local_text_value[(i, :n_word, :)].unsqueeze(0).contiguous() txt_i_key_expand = txt_i_key.repeat(n_img, 1, 1) txt_i_value_expand = txt_i_value.repeat(n_img, 1, 1) weiText = func_attention_MxN(local_img_query, txt_i_key_expand, txt_i_value_expand) weiText = l2norm(weiText, dim=2) i2t_sim = compute_similarity(local_img_value, weiText, dim=2) i2t_sim = i2t_sim.mean(dim=1, keepdim=True) i2t_similarities.append(i2t_sim) weiImage = func_attention_MxN(txt_i_key_expand, local_img_query, local_img_value) weiImage = l2norm(weiImage, dim=2) t2i_sim = compute_similarity(txt_i_value_expand, weiImage, dim=2) t2i_sim = t2i_sim.mean(dim=1, keepdim=True) t2i_similarities.append(t2i_sim) i2t_similarities = torch.cat(i2t_similarities, 1) t2i_similarities = torch.cat(t2i_similarities, 1) return (i2t_similarities, t2i_similarities)
def compute_weiTexts(local_img_query, local_img_value, local_text_key, local_text_value, text_length): '\n Compute weighted text embeddings\n :param image_embeddings: Tensor with dtype torch.float32, [n_img, n_region, d]\n :param text_embeddings: Tensor with dtype torch.float32, [n_txt, n_word, d]\n :param text_length: list, contain length of each sentence, [batch_size]\n :param labels: Tensor with dtype torch.int32, [batch_size]\n :return: i2t_similarities: Tensor, [n_img, n_txt]\n t2i_similarities: Tensor, [n_img, n_txt]\n ' n_img = local_img_query.shape[0] n_txt = local_text_key.shape[0] t2i_similarities = [] i2t_similarities = [] for i in range(n_txt): n_word = text_length[i] txt_i_key = local_text_key[(i, :n_word, :)].unsqueeze(0).contiguous() txt_i_value = local_text_value[(i, :n_word, :)].unsqueeze(0).contiguous() txt_i_key_expand = txt_i_key.repeat(n_img, 1, 1) txt_i_value_expand = txt_i_value.repeat(n_img, 1, 1) weiText = func_attention_MxN(local_img_query, txt_i_key_expand, txt_i_value_expand) weiText = l2norm(weiText, dim=2) i2t_sim = compute_similarity(local_img_value, weiText, dim=2) i2t_sim = i2t_sim.mean(dim=1, keepdim=True) i2t_similarities.append(i2t_sim) weiImage = func_attention_MxN(txt_i_key_expand, local_img_query, local_img_value) weiImage = l2norm(weiImage, dim=2) t2i_sim = compute_similarity(txt_i_value_expand, weiImage, dim=2) t2i_sim = t2i_sim.mean(dim=1, keepdim=True) t2i_similarities.append(t2i_sim) i2t_similarities = torch.cat(i2t_similarities, 1) t2i_similarities = torch.cat(t2i_similarities, 1) return (i2t_similarities, t2i_similarities)<|docstring|>Compute weighted text embeddings :param image_embeddings: Tensor with dtype torch.float32, [n_img, n_region, d] :param text_embeddings: Tensor with dtype torch.float32, [n_txt, n_word, d] :param text_length: list, contain length of each sentence, [batch_size] :param labels: Tensor with dtype torch.int32, [batch_size] :return: i2t_similarities: Tensor, [n_img, n_txt] t2i_similarities: Tensor, [n_img, n_txt]<|endoftext|>
71f2fbcd4cd295bc6b6eb12eb3cfc67a6d30b386244cf2e755ed7930852149ba
def conv3x3(in_planes, out_planes, stride=1): '3x3 convolution with padding' 'Imported from https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py L26 - L29' return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
3x3 convolution with padding
models/nafs.py
conv3x3
TencentYoutuResearch/PersonReID-YouReID
29
python
def conv3x3(in_planes, out_planes, stride=1): 'Imported from https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py L26 - L29' return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
def conv3x3(in_planes, out_planes, stride=1): 'Imported from https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py L26 - L29' return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)<|docstring|>3x3 convolution with padding<|endoftext|>
b6482a1d9025898a7cbb0490806609df8637e5f600fc4193cba38bdbf2c332ae
def conv1x1(in_planes, out_planes, stride=1): '1x1 convolution' 'Imported from https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py L32 - L34' return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
1x1 convolution
models/nafs.py
conv1x1
TencentYoutuResearch/PersonReID-YouReID
29
python
def conv1x1(in_planes, out_planes, stride=1): 'Imported from https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py L32 - L34' return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
def conv1x1(in_planes, out_planes, stride=1): 'Imported from https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py L32 - L34' return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)<|docstring|>1x1 convolution<|endoftext|>
ae9e824bf713ae8aa049bb58a12f1c7bea50ba2af7ffa04453759d8285a2fd39
def get_index_pair_list(self, x, permu): '\n Split feature map according to height dimension.\n :param x: Tensor with dtype torch.float32, [batchsize, num_channels, height, width]\n :param permu: List with integers, e.g. [0, 1, 2]\n \n :return: List of pairs [(start1, end1), (start2, end2)...] \n ' (batchsize, num_channels, height, width) = x.data.size() number_slice = len(permu) height_per_slice = (height // number_slice) index_pair_list = [((height_per_slice * i), (height_per_slice * (i + 1))) for i in range((number_slice - 1))] index_pair_list.append(((height_per_slice * (number_slice - 1)), height)) return index_pair_list
Split feature map according to height dimension. :param x: Tensor with dtype torch.float32, [batchsize, num_channels, height, width] :param permu: List with integers, e.g. [0, 1, 2] :return: List of pairs [(start1, end1), (start2, end2)...]
models/nafs.py
get_index_pair_list
TencentYoutuResearch/PersonReID-YouReID
29
python
def get_index_pair_list(self, x, permu): '\n Split feature map according to height dimension.\n :param x: Tensor with dtype torch.float32, [batchsize, num_channels, height, width]\n :param permu: List with integers, e.g. [0, 1, 2]\n \n :return: List of pairs [(start1, end1), (start2, end2)...] \n ' (batchsize, num_channels, height, width) = x.data.size() number_slice = len(permu) height_per_slice = (height // number_slice) index_pair_list = [((height_per_slice * i), (height_per_slice * (i + 1))) for i in range((number_slice - 1))] index_pair_list.append(((height_per_slice * (number_slice - 1)), height)) return index_pair_list
def get_index_pair_list(self, x, permu): '\n Split feature map according to height dimension.\n :param x: Tensor with dtype torch.float32, [batchsize, num_channels, height, width]\n :param permu: List with integers, e.g. [0, 1, 2]\n \n :return: List of pairs [(start1, end1), (start2, end2)...] \n ' (batchsize, num_channels, height, width) = x.data.size() number_slice = len(permu) height_per_slice = (height // number_slice) index_pair_list = [((height_per_slice * i), (height_per_slice * (i + 1))) for i in range((number_slice - 1))] index_pair_list.append(((height_per_slice * (number_slice - 1)), height)) return index_pair_list<|docstring|>Split feature map according to height dimension. :param x: Tensor with dtype torch.float32, [batchsize, num_channels, height, width] :param permu: List with integers, e.g. [0, 1, 2] :return: List of pairs [(start1, end1), (start2, end2)...]<|endoftext|>
488de074bd08745a129f8ca33840ec20eaf9ca85386371661b9b73441a93e717
def height_shuffle(self, x, permu): '\n Shuffle the feature map according to height dimension.\n ' (batchsize, num_channels, height, width) = x.data.size() result = torch.zeros(batchsize, num_channels, height, width).cuda() number_slice = len(permu) height_per_slice = (height // number_slice) index_pair_list = [((height_per_slice * i), (height_per_slice * (i + 1))) for i in range((number_slice - 1))] index_pair_list.append(((height_per_slice * (number_slice - 1)), height)) index_pair_list_shuffled = [] for i in range(number_slice): index_pair_list_shuffled.append(index_pair_list[permu[i]]) start = 0 for i in range(len(index_pair_list_shuffled)): index_pair = index_pair_list_shuffled[i] length = (index_pair[1] - index_pair[0]) result[(:, :, start:(start + length), :)] = x[(:, :, index_pair[0]:index_pair[1], :)] start = (start + length) return result
Shuffle the feature map according to height dimension.
models/nafs.py
height_shuffle
TencentYoutuResearch/PersonReID-YouReID
29
python
def height_shuffle(self, x, permu): '\n \n ' (batchsize, num_channels, height, width) = x.data.size() result = torch.zeros(batchsize, num_channels, height, width).cuda() number_slice = len(permu) height_per_slice = (height // number_slice) index_pair_list = [((height_per_slice * i), (height_per_slice * (i + 1))) for i in range((number_slice - 1))] index_pair_list.append(((height_per_slice * (number_slice - 1)), height)) index_pair_list_shuffled = [] for i in range(number_slice): index_pair_list_shuffled.append(index_pair_list[permu[i]]) start = 0 for i in range(len(index_pair_list_shuffled)): index_pair = index_pair_list_shuffled[i] length = (index_pair[1] - index_pair[0]) result[(:, :, start:(start + length), :)] = x[(:, :, index_pair[0]:index_pair[1], :)] start = (start + length) return result
def height_shuffle(self, x, permu): '\n \n ' (batchsize, num_channels, height, width) = x.data.size() result = torch.zeros(batchsize, num_channels, height, width).cuda() number_slice = len(permu) height_per_slice = (height // number_slice) index_pair_list = [((height_per_slice * i), (height_per_slice * (i + 1))) for i in range((number_slice - 1))] index_pair_list.append(((height_per_slice * (number_slice - 1)), height)) index_pair_list_shuffled = [] for i in range(number_slice): index_pair_list_shuffled.append(index_pair_list[permu[i]]) start = 0 for i in range(len(index_pair_list_shuffled)): index_pair = index_pair_list_shuffled[i] length = (index_pair[1] - index_pair[0]) result[(:, :, start:(start + length), :)] = x[(:, :, index_pair[0]:index_pair[1], :)] start = (start + length) return result<|docstring|>Shuffle the feature map according to height dimension.<|endoftext|>
8d5c7b4017039b3c2a76237f46a59f1e6a1e85d2171fe523deff7f85db3ad45a
def recover_shuffle(self, x, permu): '\n Recover the feature map to the original order.\n ' dic = {} recover_permu = [] for i in range(len(permu)): dic[permu[i]] = i all_key = list(dic.keys()) all_key.sort() for i in range(len(all_key)): recover_permu.append(dic[all_key[i]]) return self.height_shuffle(x, recover_permu)
Recover the feature map to the original order.
models/nafs.py
recover_shuffle
TencentYoutuResearch/PersonReID-YouReID
29
python
def recover_shuffle(self, x, permu): '\n \n ' dic = {} recover_permu = [] for i in range(len(permu)): dic[permu[i]] = i all_key = list(dic.keys()) all_key.sort() for i in range(len(all_key)): recover_permu.append(dic[all_key[i]]) return self.height_shuffle(x, recover_permu)
def recover_shuffle(self, x, permu): '\n \n ' dic = {} recover_permu = [] for i in range(len(permu)): dic[permu[i]] = i all_key = list(dic.keys()) all_key.sort() for i in range(len(all_key)): recover_permu.append(dic[all_key[i]]) return self.height_shuffle(x, recover_permu)<|docstring|>Recover the feature map to the original order.<|endoftext|>
437e61eeddff389833df4570443e425d3e73e0fa221bc1ced6676abcec29cf6e
def compute_cmpc_loss(self, image_embeddings, text_embeddings, labels): '\n Cross-Modal Projection Classfication loss(CMPC)\n :param image_embeddings: Tensor with dtype torch.float32\n :param text_embeddings: Tensor with dtype torch.float32\n :param labels: Tensor with dtype torch.int32\n :return:\n ' criterion = nn.CrossEntropyLoss(reduction='mean') self.W_norm = F.normalize(self.W, p=2, dim=0) image_norm = (image_embeddings / image_embeddings.norm(dim=1, keepdim=True)) text_norm = (text_embeddings / text_embeddings.norm(dim=1, keepdim=True)) image_proj_text = (torch.sum((image_embeddings * text_norm), dim=1, keepdim=True) * text_norm) text_proj_image = (torch.sum((text_embeddings * image_norm), dim=1, keepdim=True) * image_norm) image_logits = torch.matmul(image_proj_text, self.W_norm) text_logits = torch.matmul(text_proj_image, self.W_norm) '\n ipt_loss = criterion(input=image_logits, target=labels)\n tpi_loss = criterion(input=text_logits, target=labels)\n cmpc_loss = ipt_loss + tpi_loss\n ' cmpc_loss = (criterion(image_logits, labels) + criterion(text_logits, labels)) image_pred = torch.argmax(image_logits, dim=1) text_pred = torch.argmax(text_logits, dim=1) image_precision = torch.mean((image_pred == labels).float()) text_precision = torch.mean((text_pred == labels).float()) return (cmpc_loss, image_precision, text_precision)
Cross-Modal Projection Classfication loss(CMPC) :param image_embeddings: Tensor with dtype torch.float32 :param text_embeddings: Tensor with dtype torch.float32 :param labels: Tensor with dtype torch.int32 :return:
models/nafs.py
compute_cmpc_loss
TencentYoutuResearch/PersonReID-YouReID
29
python
def compute_cmpc_loss(self, image_embeddings, text_embeddings, labels): '\n Cross-Modal Projection Classfication loss(CMPC)\n :param image_embeddings: Tensor with dtype torch.float32\n :param text_embeddings: Tensor with dtype torch.float32\n :param labels: Tensor with dtype torch.int32\n :return:\n ' criterion = nn.CrossEntropyLoss(reduction='mean') self.W_norm = F.normalize(self.W, p=2, dim=0) image_norm = (image_embeddings / image_embeddings.norm(dim=1, keepdim=True)) text_norm = (text_embeddings / text_embeddings.norm(dim=1, keepdim=True)) image_proj_text = (torch.sum((image_embeddings * text_norm), dim=1, keepdim=True) * text_norm) text_proj_image = (torch.sum((text_embeddings * image_norm), dim=1, keepdim=True) * image_norm) image_logits = torch.matmul(image_proj_text, self.W_norm) text_logits = torch.matmul(text_proj_image, self.W_norm) '\n ipt_loss = criterion(input=image_logits, target=labels)\n tpi_loss = criterion(input=text_logits, target=labels)\n cmpc_loss = ipt_loss + tpi_loss\n ' cmpc_loss = (criterion(image_logits, labels) + criterion(text_logits, labels)) image_pred = torch.argmax(image_logits, dim=1) text_pred = torch.argmax(text_logits, dim=1) image_precision = torch.mean((image_pred == labels).float()) text_precision = torch.mean((text_pred == labels).float()) return (cmpc_loss, image_precision, text_precision)
def compute_cmpc_loss(self, image_embeddings, text_embeddings, labels): '\n Cross-Modal Projection Classfication loss(CMPC)\n :param image_embeddings: Tensor with dtype torch.float32\n :param text_embeddings: Tensor with dtype torch.float32\n :param labels: Tensor with dtype torch.int32\n :return:\n ' criterion = nn.CrossEntropyLoss(reduction='mean') self.W_norm = F.normalize(self.W, p=2, dim=0) image_norm = (image_embeddings / image_embeddings.norm(dim=1, keepdim=True)) text_norm = (text_embeddings / text_embeddings.norm(dim=1, keepdim=True)) image_proj_text = (torch.sum((image_embeddings * text_norm), dim=1, keepdim=True) * text_norm) text_proj_image = (torch.sum((text_embeddings * image_norm), dim=1, keepdim=True) * image_norm) image_logits = torch.matmul(image_proj_text, self.W_norm) text_logits = torch.matmul(text_proj_image, self.W_norm) '\n ipt_loss = criterion(input=image_logits, target=labels)\n tpi_loss = criterion(input=text_logits, target=labels)\n cmpc_loss = ipt_loss + tpi_loss\n ' cmpc_loss = (criterion(image_logits, labels) + criterion(text_logits, labels)) image_pred = torch.argmax(image_logits, dim=1) text_pred = torch.argmax(text_logits, dim=1) image_precision = torch.mean((image_pred == labels).float()) text_precision = torch.mean((text_pred == labels).float()) return (cmpc_loss, image_precision, text_precision)<|docstring|>Cross-Modal Projection Classfication loss(CMPC) :param image_embeddings: Tensor with dtype torch.float32 :param text_embeddings: Tensor with dtype torch.float32 :param labels: Tensor with dtype torch.int32 :return:<|endoftext|>
fdced31a79afef6404ceeefa5db87de1c8116ac23b3f1e780200c0e1b302bded
def compute_cmpm_loss(self, image_embeddings, text_embeddings, labels): '\n Cross-Modal Projection Matching Loss(CMPM)\n :param image_embeddings: Tensor with dtype torch.float32\n :param text_embeddings: Tensor with dtype torch.float32\n :param labels: Tensor with dtype torch.int32\n :return:\n i2t_loss: cmpm loss for image projected to text\n t2i_loss: cmpm loss for text projected to image\n pos_avg_sim: average cosine-similarity for positive pairs\n neg_avg_sim: averate cosine-similarity for negative pairs\n ' batch_size = image_embeddings.shape[0] labels_reshape = torch.reshape(labels, (batch_size, 1)) labels_dist = (labels_reshape - labels_reshape.t()) labels_mask = (labels_dist == 0) image_norm = (image_embeddings / image_embeddings.norm(dim=1, keepdim=True)) text_norm = (text_embeddings / text_embeddings.norm(dim=1, keepdim=True)) image_proj_text = torch.matmul(image_embeddings, text_norm.t()) text_proj_image = torch.matmul(text_embeddings, image_norm.t()) labels_mask_norm = (labels_mask.float() / labels_mask.float().norm(dim=1)) i2t_pred = F.softmax(image_proj_text, dim=1) i2t_loss = (i2t_pred * (F.log_softmax(image_proj_text, dim=1) - torch.log((labels_mask_norm + self.epsilon)))) t2i_pred = F.softmax(text_proj_image, dim=1) t2i_loss = (t2i_pred * (F.log_softmax(text_proj_image, dim=1) - torch.log((labels_mask_norm + self.epsilon)))) cmpm_loss = (torch.mean(torch.sum(i2t_loss, dim=1)) + torch.mean(torch.sum(t2i_loss, dim=1))) sim_cos = torch.matmul(image_norm, text_norm.t()) pos_avg_sim = torch.mean(torch.masked_select(sim_cos, labels_mask)) neg_avg_sim = torch.mean(torch.masked_select(sim_cos, (labels_mask == 0))) return (cmpm_loss, pos_avg_sim, neg_avg_sim)
Cross-Modal Projection Matching Loss(CMPM) :param image_embeddings: Tensor with dtype torch.float32 :param text_embeddings: Tensor with dtype torch.float32 :param labels: Tensor with dtype torch.int32 :return: i2t_loss: cmpm loss for image projected to text t2i_loss: cmpm loss for text projected to image pos_avg_sim: average cosine-similarity for positive pairs neg_avg_sim: averate cosine-similarity for negative pairs
models/nafs.py
compute_cmpm_loss
TencentYoutuResearch/PersonReID-YouReID
29
python
def compute_cmpm_loss(self, image_embeddings, text_embeddings, labels): '\n Cross-Modal Projection Matching Loss(CMPM)\n :param image_embeddings: Tensor with dtype torch.float32\n :param text_embeddings: Tensor with dtype torch.float32\n :param labels: Tensor with dtype torch.int32\n :return:\n i2t_loss: cmpm loss for image projected to text\n t2i_loss: cmpm loss for text projected to image\n pos_avg_sim: average cosine-similarity for positive pairs\n neg_avg_sim: averate cosine-similarity for negative pairs\n ' batch_size = image_embeddings.shape[0] labels_reshape = torch.reshape(labels, (batch_size, 1)) labels_dist = (labels_reshape - labels_reshape.t()) labels_mask = (labels_dist == 0) image_norm = (image_embeddings / image_embeddings.norm(dim=1, keepdim=True)) text_norm = (text_embeddings / text_embeddings.norm(dim=1, keepdim=True)) image_proj_text = torch.matmul(image_embeddings, text_norm.t()) text_proj_image = torch.matmul(text_embeddings, image_norm.t()) labels_mask_norm = (labels_mask.float() / labels_mask.float().norm(dim=1)) i2t_pred = F.softmax(image_proj_text, dim=1) i2t_loss = (i2t_pred * (F.log_softmax(image_proj_text, dim=1) - torch.log((labels_mask_norm + self.epsilon)))) t2i_pred = F.softmax(text_proj_image, dim=1) t2i_loss = (t2i_pred * (F.log_softmax(text_proj_image, dim=1) - torch.log((labels_mask_norm + self.epsilon)))) cmpm_loss = (torch.mean(torch.sum(i2t_loss, dim=1)) + torch.mean(torch.sum(t2i_loss, dim=1))) sim_cos = torch.matmul(image_norm, text_norm.t()) pos_avg_sim = torch.mean(torch.masked_select(sim_cos, labels_mask)) neg_avg_sim = torch.mean(torch.masked_select(sim_cos, (labels_mask == 0))) return (cmpm_loss, pos_avg_sim, neg_avg_sim)
def compute_cmpm_loss(self, image_embeddings, text_embeddings, labels): '\n Cross-Modal Projection Matching Loss(CMPM)\n :param image_embeddings: Tensor with dtype torch.float32\n :param text_embeddings: Tensor with dtype torch.float32\n :param labels: Tensor with dtype torch.int32\n :return:\n i2t_loss: cmpm loss for image projected to text\n t2i_loss: cmpm loss for text projected to image\n pos_avg_sim: average cosine-similarity for positive pairs\n neg_avg_sim: averate cosine-similarity for negative pairs\n ' batch_size = image_embeddings.shape[0] labels_reshape = torch.reshape(labels, (batch_size, 1)) labels_dist = (labels_reshape - labels_reshape.t()) labels_mask = (labels_dist == 0) image_norm = (image_embeddings / image_embeddings.norm(dim=1, keepdim=True)) text_norm = (text_embeddings / text_embeddings.norm(dim=1, keepdim=True)) image_proj_text = torch.matmul(image_embeddings, text_norm.t()) text_proj_image = torch.matmul(text_embeddings, image_norm.t()) labels_mask_norm = (labels_mask.float() / labels_mask.float().norm(dim=1)) i2t_pred = F.softmax(image_proj_text, dim=1) i2t_loss = (i2t_pred * (F.log_softmax(image_proj_text, dim=1) - torch.log((labels_mask_norm + self.epsilon)))) t2i_pred = F.softmax(text_proj_image, dim=1) t2i_loss = (t2i_pred * (F.log_softmax(text_proj_image, dim=1) - torch.log((labels_mask_norm + self.epsilon)))) cmpm_loss = (torch.mean(torch.sum(i2t_loss, dim=1)) + torch.mean(torch.sum(t2i_loss, dim=1))) sim_cos = torch.matmul(image_norm, text_norm.t()) pos_avg_sim = torch.mean(torch.masked_select(sim_cos, labels_mask)) neg_avg_sim = torch.mean(torch.masked_select(sim_cos, (labels_mask == 0))) return (cmpm_loss, pos_avg_sim, neg_avg_sim)<|docstring|>Cross-Modal Projection Matching Loss(CMPM) :param image_embeddings: Tensor with dtype torch.float32 :param text_embeddings: Tensor with dtype torch.float32 :param labels: Tensor with dtype torch.int32 :return: i2t_loss: cmpm loss for image projected to text t2i_loss: cmpm loss for text projected to image pos_avg_sim: average cosine-similarity for positive pairs neg_avg_sim: averate cosine-similarity for negative pairs<|endoftext|>
34993951c26366c7b2d046b26e618e5d6fe8af92cd3b707e244db14f29b7c150
def Signature(*args, **kwargs): "\n ``@Signature`` is a decorator to implement the function-argument annotations in Python-2.7,\n as needed by the ``@Function`` decorator.\n This is only needed when you have not yet migrated to Python 3.x.\n\n Note: Although this is aimed at enabling ``@Function`` syntax with type annotations\n in Python 2.7, ``@Signature`` is independent of CNTK and can be used for any argument annotation.\n\n Args:\n *args: types of arguments of the function that this decorator is applied to, in the same order.\n **kwargs: types of arguments with optional names, e.g. `x=Tensor[42]`. Use this second form for\n longer argument lists.\n\n Example::\n\n # Python 3:\n @Function\n def f(x: Tensor[42]):\n return sigmoid(x)\n\n # Python 2.7:\n @Function\n @Signature(Tensor[42])\n def f(x):\n return sigmoid(x)\n\n # note that this:\n @Function\n @Signature(x:int)\n def sqr(x):\n return x*x\n # is identical to:\n def sqr(x):\n return x*x\n sqr.__annotations__ = {'x': int}``\n " def add_annotations(f): (param_names, annotations) = get_python_function_arguments(f) if annotations: raise ValueError('@Signature cannot be applied to functions that already have annotations') annotations = {} if ((len(args) + len(kwargs)) != len(param_names)): raise TypeError('{} annotations provided for function to be decorated, but function has {} parameters'.format((len(args) + len(kwargs)), len(param_names))) params_dict = {name: name for name in param_names} f.__annotations__ = map_function_arguments(param_names, params_dict, *args, **kwargs) return f return add_annotations
``@Signature`` is a decorator to implement the function-argument annotations in Python-2.7, as needed by the ``@Function`` decorator. This is only needed when you have not yet migrated to Python 3.x. Note: Although this is aimed at enabling ``@Function`` syntax with type annotations in Python 2.7, ``@Signature`` is independent of CNTK and can be used for any argument annotation. Args: *args: types of arguments of the function that this decorator is applied to, in the same order. **kwargs: types of arguments with optional names, e.g. `x=Tensor[42]`. Use this second form for longer argument lists. Example:: # Python 3: @Function def f(x: Tensor[42]): return sigmoid(x) # Python 2.7: @Function @Signature(Tensor[42]) def f(x): return sigmoid(x) # note that this: @Function @Signature(x:int) def sqr(x): return x*x # is identical to: def sqr(x): return x*x sqr.__annotations__ = {'x': int}``
bindings/python/cntk/layers/typing.py
Signature
Wootai/CNTK
0
python
def Signature(*args, **kwargs): "\n ``@Signature`` is a decorator to implement the function-argument annotations in Python-2.7,\n as needed by the ``@Function`` decorator.\n This is only needed when you have not yet migrated to Python 3.x.\n\n Note: Although this is aimed at enabling ``@Function`` syntax with type annotations\n in Python 2.7, ``@Signature`` is independent of CNTK and can be used for any argument annotation.\n\n Args:\n *args: types of arguments of the function that this decorator is applied to, in the same order.\n **kwargs: types of arguments with optional names, e.g. `x=Tensor[42]`. Use this second form for\n longer argument lists.\n\n Example::\n\n # Python 3:\n @Function\n def f(x: Tensor[42]):\n return sigmoid(x)\n\n # Python 2.7:\n @Function\n @Signature(Tensor[42])\n def f(x):\n return sigmoid(x)\n\n # note that this:\n @Function\n @Signature(x:int)\n def sqr(x):\n return x*x\n # is identical to:\n def sqr(x):\n return x*x\n sqr.__annotations__ = {'x': int}``\n " def add_annotations(f): (param_names, annotations) = get_python_function_arguments(f) if annotations: raise ValueError('@Signature cannot be applied to functions that already have annotations') annotations = {} if ((len(args) + len(kwargs)) != len(param_names)): raise TypeError('{} annotations provided for function to be decorated, but function has {} parameters'.format((len(args) + len(kwargs)), len(param_names))) params_dict = {name: name for name in param_names} f.__annotations__ = map_function_arguments(param_names, params_dict, *args, **kwargs) return f return add_annotations
def Signature(*args, **kwargs): "\n ``@Signature`` is a decorator to implement the function-argument annotations in Python-2.7,\n as needed by the ``@Function`` decorator.\n This is only needed when you have not yet migrated to Python 3.x.\n\n Note: Although this is aimed at enabling ``@Function`` syntax with type annotations\n in Python 2.7, ``@Signature`` is independent of CNTK and can be used for any argument annotation.\n\n Args:\n *args: types of arguments of the function that this decorator is applied to, in the same order.\n **kwargs: types of arguments with optional names, e.g. `x=Tensor[42]`. Use this second form for\n longer argument lists.\n\n Example::\n\n # Python 3:\n @Function\n def f(x: Tensor[42]):\n return sigmoid(x)\n\n # Python 2.7:\n @Function\n @Signature(Tensor[42])\n def f(x):\n return sigmoid(x)\n\n # note that this:\n @Function\n @Signature(x:int)\n def sqr(x):\n return x*x\n # is identical to:\n def sqr(x):\n return x*x\n sqr.__annotations__ = {'x': int}``\n " def add_annotations(f): (param_names, annotations) = get_python_function_arguments(f) if annotations: raise ValueError('@Signature cannot be applied to functions that already have annotations') annotations = {} if ((len(args) + len(kwargs)) != len(param_names)): raise TypeError('{} annotations provided for function to be decorated, but function has {} parameters'.format((len(args) + len(kwargs)), len(param_names))) params_dict = {name: name for name in param_names} f.__annotations__ = map_function_arguments(param_names, params_dict, *args, **kwargs) return f return add_annotations<|docstring|>``@Signature`` is a decorator to implement the function-argument annotations in Python-2.7, as needed by the ``@Function`` decorator. This is only needed when you have not yet migrated to Python 3.x. Note: Although this is aimed at enabling ``@Function`` syntax with type annotations in Python 2.7, ``@Signature`` is independent of CNTK and can be used for any argument annotation. Args: *args: types of arguments of the function that this decorator is applied to, in the same order. **kwargs: types of arguments with optional names, e.g. `x=Tensor[42]`. Use this second form for longer argument lists. Example:: # Python 3: @Function def f(x: Tensor[42]): return sigmoid(x) # Python 2.7: @Function @Signature(Tensor[42]) def f(x): return sigmoid(x) # note that this: @Function @Signature(x:int) def sqr(x): return x*x # is identical to: def sqr(x): return x*x sqr.__annotations__ = {'x': int}``<|endoftext|>
3156dc69e9e56e3ae8a7cc41d905dc9e147e7bd156a7fa2d058216bce8ae10dc
def worker(base): '\n Process one project by calling set of commands.\n ' x = Commands(base) logger.debug(((str(os.getpid()) + ' ') + str(x))) x.run() base.fill(x.retcodes, x.outputs, x.failed) return base
Process one project by calling set of commands.
Resources/Code/open-grok/opengrok-1.1-rc41/tools/src/main/python/sync.py
worker
briancabbott/xtrax
2
python
def worker(base): '\n \n ' x = Commands(base) logger.debug(((str(os.getpid()) + ' ') + str(x))) x.run() base.fill(x.retcodes, x.outputs, x.failed) return base
def worker(base): '\n \n ' x = Commands(base) logger.debug(((str(os.getpid()) + ' ') + str(x))) x.run() base.fill(x.retcodes, x.outputs, x.failed) return base<|docstring|>Process one project by calling set of commands.<|endoftext|>
e2fdcd951ce79121ced815f4780e5fe283890666c7d408a570f4871afac251a0
def target_function(s: str): 'Generate a training data point.' return [s.replace(' ', '\n'), (len(s) - s.count(' '))]
Generate a training data point.
examples/software_synthesis/replace_space_with_newline.py
target_function
nbro/pyshgp
51
python
def target_function(s: str): return [s.replace(' ', '\n'), (len(s) - s.count(' '))]
def target_function(s: str): return [s.replace(' ', '\n'), (len(s) - s.count(' '))]<|docstring|>Generate a training data point.<|endoftext|>
d7bf5de42a7fefda38a55146177bbce6b3ce433f164acdbbafeeb7a3fe852072
def synthetic_input(): 'Generate a string to use as input to a trining data point.' size = (randint(0, 19) + 2) s = '' for ndx in range(size): if (random() < 0.2): s += ' ' else: s += choice(_possible_chars) return s
Generate a string to use as input to a trining data point.
examples/software_synthesis/replace_space_with_newline.py
synthetic_input
nbro/pyshgp
51
python
def synthetic_input(): size = (randint(0, 19) + 2) s = for ndx in range(size): if (random() < 0.2): s += ' ' else: s += choice(_possible_chars) return s
def synthetic_input(): size = (randint(0, 19) + 2) s = for ndx in range(size): if (random() < 0.2): s += ' ' else: s += choice(_possible_chars) return s<|docstring|>Generate a string to use as input to a trining data point.<|endoftext|>
e10ef32d87721461a79b64e9f59f4112610544249c6fbc80e8b1503d4e4f7a32
def random_char(): 'Return a random character.' return Char(choice(_possible_chars))
Return a random character.
examples/software_synthesis/replace_space_with_newline.py
random_char
nbro/pyshgp
51
python
def random_char(): return Char(choice(_possible_chars))
def random_char(): return Char(choice(_possible_chars))<|docstring|>Return a random character.<|endoftext|>
1e3a6e989ddf78dd238978a9097bf883ff28e7bea71b4c0426adf26505886e45
def enumerate_assignments(max_context_number): '\n enumerate all possible assignments of contexts to clusters for a fixed\n number of contexts. Has the hard assumption that the first context belongs\n to cluster #1, to remove redundant assignments that differ in labeling.\n\n :param max_context_number: int\n :return: list of lists, each a function that takes in a context id\n number and returns a cluster id number\n ' cluster_assignments = [{}] for contextNumber in range(0, max_context_number): cluster_assignments = augment_assignments(cluster_assignments, contextNumber) return cluster_assignments
enumerate all possible assignments of contexts to clusters for a fixed number of contexts. Has the hard assumption that the first context belongs to cluster #1, to remove redundant assignments that differ in labeling. :param max_context_number: int :return: list of lists, each a function that takes in a context id number and returns a cluster id number
ClusteringModel/dpvi.py
enumerate_assignments
nicktfranklin/StructuredBandits
8
python
def enumerate_assignments(max_context_number): '\n enumerate all possible assignments of contexts to clusters for a fixed\n number of contexts. Has the hard assumption that the first context belongs\n to cluster #1, to remove redundant assignments that differ in labeling.\n\n :param max_context_number: int\n :return: list of lists, each a function that takes in a context id\n number and returns a cluster id number\n ' cluster_assignments = [{}] for contextNumber in range(0, max_context_number): cluster_assignments = augment_assignments(cluster_assignments, contextNumber) return cluster_assignments
def enumerate_assignments(max_context_number): '\n enumerate all possible assignments of contexts to clusters for a fixed\n number of contexts. Has the hard assumption that the first context belongs\n to cluster #1, to remove redundant assignments that differ in labeling.\n\n :param max_context_number: int\n :return: list of lists, each a function that takes in a context id\n number and returns a cluster id number\n ' cluster_assignments = [{}] for contextNumber in range(0, max_context_number): cluster_assignments = augment_assignments(cluster_assignments, contextNumber) return cluster_assignments<|docstring|>enumerate all possible assignments of contexts to clusters for a fixed number of contexts. Has the hard assumption that the first context belongs to cluster #1, to remove redundant assignments that differ in labeling. :param max_context_number: int :return: list of lists, each a function that takes in a context id number and returns a cluster id number<|endoftext|>
bdad88e241feed98866f53f0ac49dc119411d1fe442ed29e16e466df47e8ecca
def count_hypothesis_space(n_contexts): '\n Determine the number of unique hypotheses in the clustering space\n ' return len(enumerate_assignments(n_contexts))
Determine the number of unique hypotheses in the clustering space
ClusteringModel/dpvi.py
count_hypothesis_space
nicktfranklin/StructuredBandits
8
python
def count_hypothesis_space(n_contexts): '\n \n ' return len(enumerate_assignments(n_contexts))
def count_hypothesis_space(n_contexts): '\n \n ' return len(enumerate_assignments(n_contexts))<|docstring|>Determine the number of unique hypotheses in the clustering space<|endoftext|>
39ff8000ea9bdefa363ec20d70141058ff10c08fd2c9c68c11b59fecf9a4bd8d
def __init__(self, k, n_arms=8, mu_init=0.0, var_init=1.0, alpha=1.0, cluster_class=NoiseCluster, kernel=None): '\n Parameters\n ----------\n\n k: int\n number of particles\n\n mu_init: float (default 0.0)\n prior for mu\n\n var_init: float (default 1.0)\n initial value of sigma\n\n alpha: float (default 1.0)\n concentration parameter for the CRP\n ' self.k = k self.hypothesis_kwargs = dict(n_arms=n_arms, alpha=alpha, mu_init=mu_init, var_init=var_init, cluster_class=cluster_class, kernel=kernel) self.hypotheses = list([Hypothesis(**self.hypothesis_kwargs)]) self.w = list([1.0]) self.visited_blocks = set() self.experience = list()
Parameters ---------- k: int number of particles mu_init: float (default 0.0) prior for mu var_init: float (default 1.0) initial value of sigma alpha: float (default 1.0) concentration parameter for the CRP
ClusteringModel/dpvi.py
__init__
nicktfranklin/StructuredBandits
8
python
def __init__(self, k, n_arms=8, mu_init=0.0, var_init=1.0, alpha=1.0, cluster_class=NoiseCluster, kernel=None): '\n Parameters\n ----------\n\n k: int\n number of particles\n\n mu_init: float (default 0.0)\n prior for mu\n\n var_init: float (default 1.0)\n initial value of sigma\n\n alpha: float (default 1.0)\n concentration parameter for the CRP\n ' self.k = k self.hypothesis_kwargs = dict(n_arms=n_arms, alpha=alpha, mu_init=mu_init, var_init=var_init, cluster_class=cluster_class, kernel=kernel) self.hypotheses = list([Hypothesis(**self.hypothesis_kwargs)]) self.w = list([1.0]) self.visited_blocks = set() self.experience = list()
def __init__(self, k, n_arms=8, mu_init=0.0, var_init=1.0, alpha=1.0, cluster_class=NoiseCluster, kernel=None): '\n Parameters\n ----------\n\n k: int\n number of particles\n\n mu_init: float (default 0.0)\n prior for mu\n\n var_init: float (default 1.0)\n initial value of sigma\n\n alpha: float (default 1.0)\n concentration parameter for the CRP\n ' self.k = k self.hypothesis_kwargs = dict(n_arms=n_arms, alpha=alpha, mu_init=mu_init, var_init=var_init, cluster_class=cluster_class, kernel=kernel) self.hypotheses = list([Hypothesis(**self.hypothesis_kwargs)]) self.w = list([1.0]) self.visited_blocks = set() self.experience = list()<|docstring|>Parameters ---------- k: int number of particles mu_init: float (default 0.0) prior for mu var_init: float (default 1.0) initial value of sigma alpha: float (default 1.0) concentration parameter for the CRP<|endoftext|>
f39da8dcd16be0a7ed4fb62e36bd7a31418c1062a660833fb7eb797b93f62361
def _get_var_prior(self, block, arm): " this is a special case function that returns the prior probability\n of each cluster and it's variance for the " pass
this is a special case function that returns the prior probability of each cluster and it's variance for the
ClusteringModel/dpvi.py
_get_var_prior
nicktfranklin/StructuredBandits
8
python
def _get_var_prior(self, block, arm): " this is a special case function that returns the prior probability\n of each cluster and it's variance for the " pass
def _get_var_prior(self, block, arm): " this is a special case function that returns the prior probability\n of each cluster and it's variance for the " pass<|docstring|>this is a special case function that returns the prior probability of each cluster and it's variance for the<|endoftext|>
f333f2bea4077b7fb06dd44c53e91312391d593c1c83049d735f748b9c5ed237
def helper_force_authenticate(request, user): '\n In addition to calling `force_authenticate`, set\n the organisation as it would happen in the middleware\n ' force_authenticate(request, user=user) request.organisation = user.staffprofile.organisation
In addition to calling `force_authenticate`, set the organisation as it would happen in the middleware
app/organisation/tests.py
helper_force_authenticate
DOSSIER-dev/DOSSIER-Sources
7
python
def helper_force_authenticate(request, user): '\n In addition to calling `force_authenticate`, set\n the organisation as it would happen in the middleware\n ' force_authenticate(request, user=user) request.organisation = user.staffprofile.organisation
def helper_force_authenticate(request, user): '\n In addition to calling `force_authenticate`, set\n the organisation as it would happen in the middleware\n ' force_authenticate(request, user=user) request.organisation = user.staffprofile.organisation<|docstring|>In addition to calling `force_authenticate`, set the organisation as it would happen in the middleware<|endoftext|>
3c4e6f2e9a9b890580e1863b5e5d46ed6138eae24cac050abb35cad75e9264fb
def test_unique_username(self): '\n Test that unique usernames are enforced at the api level, BUT an\n update of a user must be possible keeping the same username\n ' factory = APIRequestFactory() request = factory.post('/staffer/', {'isActive': True, 'isManager': False, 'user': {'username': '[email protected]', 'firstname': 'alice', 'lastname': 'abc', 'email': '[email protected]'}}, format='json') helper_force_authenticate(request, user=self.alice) view = StafferViewSet.as_view({'post': 'create'}) response = view(request) self.assertEqual(response.status_code, 400) id_ = self.alice.id request = factory.put('/staffer/', {'isActive': True, 'isManager': True, 'user': {'username': '[email protected]', 'firstname': 'New Alice', 'lastname': 'abcxyz', 'email': '[email protected]'}}, format='json') helper_force_authenticate(request, user=self.alice) view = StafferViewSet.as_view({'put': 'update'}) response = view(request, pk=id_) self.assertEqual(response.status_code, 200) alice = User.objects.get(id=id_) self.assertEqual(alice.first_name, 'New Alice') self.assertEqual(alice.last_name, 'abcxyz') self.assertEqual(alice.email, '[email protected]')
Test that unique usernames are enforced at the api level, BUT an update of a user must be possible keeping the same username
app/organisation/tests.py
test_unique_username
DOSSIER-dev/DOSSIER-Sources
7
python
def test_unique_username(self): '\n Test that unique usernames are enforced at the api level, BUT an\n update of a user must be possible keeping the same username\n ' factory = APIRequestFactory() request = factory.post('/staffer/', {'isActive': True, 'isManager': False, 'user': {'username': '[email protected]', 'firstname': 'alice', 'lastname': 'abc', 'email': '[email protected]'}}, format='json') helper_force_authenticate(request, user=self.alice) view = StafferViewSet.as_view({'post': 'create'}) response = view(request) self.assertEqual(response.status_code, 400) id_ = self.alice.id request = factory.put('/staffer/', {'isActive': True, 'isManager': True, 'user': {'username': '[email protected]', 'firstname': 'New Alice', 'lastname': 'abcxyz', 'email': '[email protected]'}}, format='json') helper_force_authenticate(request, user=self.alice) view = StafferViewSet.as_view({'put': 'update'}) response = view(request, pk=id_) self.assertEqual(response.status_code, 200) alice = User.objects.get(id=id_) self.assertEqual(alice.first_name, 'New Alice') self.assertEqual(alice.last_name, 'abcxyz') self.assertEqual(alice.email, '[email protected]')
def test_unique_username(self): '\n Test that unique usernames are enforced at the api level, BUT an\n update of a user must be possible keeping the same username\n ' factory = APIRequestFactory() request = factory.post('/staffer/', {'isActive': True, 'isManager': False, 'user': {'username': '[email protected]', 'firstname': 'alice', 'lastname': 'abc', 'email': '[email protected]'}}, format='json') helper_force_authenticate(request, user=self.alice) view = StafferViewSet.as_view({'post': 'create'}) response = view(request) self.assertEqual(response.status_code, 400) id_ = self.alice.id request = factory.put('/staffer/', {'isActive': True, 'isManager': True, 'user': {'username': '[email protected]', 'firstname': 'New Alice', 'lastname': 'abcxyz', 'email': '[email protected]'}}, format='json') helper_force_authenticate(request, user=self.alice) view = StafferViewSet.as_view({'put': 'update'}) response = view(request, pk=id_) self.assertEqual(response.status_code, 200) alice = User.objects.get(id=id_) self.assertEqual(alice.first_name, 'New Alice') self.assertEqual(alice.last_name, 'abcxyz') self.assertEqual(alice.email, '[email protected]')<|docstring|>Test that unique usernames are enforced at the api level, BUT an update of a user must be possible keeping the same username<|endoftext|>
87ab883d5ea16f53daafe9d368972109a08ddfa561aa4767772d523aba1596c9
def __init__(self, value: Union[(List[T], tuple, range, 'Array')]) -> None: '\n Array class for the apysc library.\n\n Parameters\n ----------\n value : list or tuple or range or Array\n Initial array value.\n\n References\n ----------\n - Array document\n - https://simon-ritchie.github.io/apysc/array.html\n - Array class comparison interfaces document\n - https://simon-ritchie.github.io/apysc/array_comparison.html\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 2, 3])\n >>> arr\n Array([1, 2, 3])\n\n >>> arr[0]\n 1\n\n >>> arr[1]\n 2\n\n >>> arr = ap.Array((4, 5, 6))\n >>> arr\n Array([4, 5, 6])\n\n >>> arr = ap.Array(range(3))\n >>> arr\n Array([0, 1, 2])\n ' import apysc as ap with ap.DebugInfo(callable_='__init__', locals_=locals(), module_name=__name__, class_=Array): from apysc._expression import expression_variables_util from apysc._expression import var_names from apysc._expression.event_handler_scope import TemporaryNotHandlerScope with TemporaryNotHandlerScope(): TYPE_NAME: str = var_names.ARRAY self._validate_acceptable_value_type(value=value) value = self._convert_range_to_list(value=value) value_: Union[(List[Any], tuple, 'Array')] = value self._initial_value = value_ self._type_name = TYPE_NAME self._value = self._get_list_value(value=value) self.variable_name = expression_variables_util.get_next_variable_name(type_name=TYPE_NAME) self._append_constructor_expression()
Array class for the apysc library. Parameters ---------- value : list or tuple or range or Array Initial array value. References ---------- - Array document - https://simon-ritchie.github.io/apysc/array.html - Array class comparison interfaces document - https://simon-ritchie.github.io/apysc/array_comparison.html Examples -------- >>> import apysc as ap >>> arr: ap.Array = ap.Array([1, 2, 3]) >>> arr Array([1, 2, 3]) >>> arr[0] 1 >>> arr[1] 2 >>> arr = ap.Array((4, 5, 6)) >>> arr Array([4, 5, 6]) >>> arr = ap.Array(range(3)) >>> arr Array([0, 1, 2])
apysc/_type/array.py
__init__
simon-ritchie/apysc
16
python
def __init__(self, value: Union[(List[T], tuple, range, 'Array')]) -> None: '\n Array class for the apysc library.\n\n Parameters\n ----------\n value : list or tuple or range or Array\n Initial array value.\n\n References\n ----------\n - Array document\n - https://simon-ritchie.github.io/apysc/array.html\n - Array class comparison interfaces document\n - https://simon-ritchie.github.io/apysc/array_comparison.html\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 2, 3])\n >>> arr\n Array([1, 2, 3])\n\n >>> arr[0]\n 1\n\n >>> arr[1]\n 2\n\n >>> arr = ap.Array((4, 5, 6))\n >>> arr\n Array([4, 5, 6])\n\n >>> arr = ap.Array(range(3))\n >>> arr\n Array([0, 1, 2])\n ' import apysc as ap with ap.DebugInfo(callable_='__init__', locals_=locals(), module_name=__name__, class_=Array): from apysc._expression import expression_variables_util from apysc._expression import var_names from apysc._expression.event_handler_scope import TemporaryNotHandlerScope with TemporaryNotHandlerScope(): TYPE_NAME: str = var_names.ARRAY self._validate_acceptable_value_type(value=value) value = self._convert_range_to_list(value=value) value_: Union[(List[Any], tuple, 'Array')] = value self._initial_value = value_ self._type_name = TYPE_NAME self._value = self._get_list_value(value=value) self.variable_name = expression_variables_util.get_next_variable_name(type_name=TYPE_NAME) self._append_constructor_expression()
def __init__(self, value: Union[(List[T], tuple, range, 'Array')]) -> None: '\n Array class for the apysc library.\n\n Parameters\n ----------\n value : list or tuple or range or Array\n Initial array value.\n\n References\n ----------\n - Array document\n - https://simon-ritchie.github.io/apysc/array.html\n - Array class comparison interfaces document\n - https://simon-ritchie.github.io/apysc/array_comparison.html\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 2, 3])\n >>> arr\n Array([1, 2, 3])\n\n >>> arr[0]\n 1\n\n >>> arr[1]\n 2\n\n >>> arr = ap.Array((4, 5, 6))\n >>> arr\n Array([4, 5, 6])\n\n >>> arr = ap.Array(range(3))\n >>> arr\n Array([0, 1, 2])\n ' import apysc as ap with ap.DebugInfo(callable_='__init__', locals_=locals(), module_name=__name__, class_=Array): from apysc._expression import expression_variables_util from apysc._expression import var_names from apysc._expression.event_handler_scope import TemporaryNotHandlerScope with TemporaryNotHandlerScope(): TYPE_NAME: str = var_names.ARRAY self._validate_acceptable_value_type(value=value) value = self._convert_range_to_list(value=value) value_: Union[(List[Any], tuple, 'Array')] = value self._initial_value = value_ self._type_name = TYPE_NAME self._value = self._get_list_value(value=value) self.variable_name = expression_variables_util.get_next_variable_name(type_name=TYPE_NAME) self._append_constructor_expression()<|docstring|>Array class for the apysc library. Parameters ---------- value : list or tuple or range or Array Initial array value. References ---------- - Array document - https://simon-ritchie.github.io/apysc/array.html - Array class comparison interfaces document - https://simon-ritchie.github.io/apysc/array_comparison.html Examples -------- >>> import apysc as ap >>> arr: ap.Array = ap.Array([1, 2, 3]) >>> arr Array([1, 2, 3]) >>> arr[0] 1 >>> arr[1] 2 >>> arr = ap.Array((4, 5, 6)) >>> arr Array([4, 5, 6]) >>> arr = ap.Array(range(3)) >>> arr Array([0, 1, 2])<|endoftext|>
85d692c1ce8e108acdd4388568e906e48cb7ff5faa1e7d4bf18ced6f034102ea
def _convert_range_to_list(self, *, value: Any) -> Union[(List[Any], tuple, 'Array')]: '\n Convert argument value to list that if specified\n value is range type.\n\n Parameters\n ----------\n value : list or tuple or range or Array\n Target value.\n\n Returns\n -------\n value : list or tuple or Array\n Converted value.\n ' if isinstance(value, range): return list(value) return value
Convert argument value to list that if specified value is range type. Parameters ---------- value : list or tuple or range or Array Target value. Returns ------- value : list or tuple or Array Converted value.
apysc/_type/array.py
_convert_range_to_list
simon-ritchie/apysc
16
python
def _convert_range_to_list(self, *, value: Any) -> Union[(List[Any], tuple, 'Array')]: '\n Convert argument value to list that if specified\n value is range type.\n\n Parameters\n ----------\n value : list or tuple or range or Array\n Target value.\n\n Returns\n -------\n value : list or tuple or Array\n Converted value.\n ' if isinstance(value, range): return list(value) return value
def _convert_range_to_list(self, *, value: Any) -> Union[(List[Any], tuple, 'Array')]: '\n Convert argument value to list that if specified\n value is range type.\n\n Parameters\n ----------\n value : list or tuple or range or Array\n Target value.\n\n Returns\n -------\n value : list or tuple or Array\n Converted value.\n ' if isinstance(value, range): return list(value) return value<|docstring|>Convert argument value to list that if specified value is range type. Parameters ---------- value : list or tuple or range or Array Target value. Returns ------- value : list or tuple or Array Converted value.<|endoftext|>
8fd17662a575d75892facf839f72fb384d480380552754ef3547debf06c12a67
def _append_constructor_expression(self) -> None: '\n Append constructor expression.\n ' import apysc as ap with ap.DebugInfo(callable_=self._append_constructor_expression, locals_=locals(), module_name=__name__, class_=Array): from apysc._type import value_util expression: str = f'var {self.variable_name} = ' if isinstance(self._initial_value, Array): expression += f'{self._initial_value.variable_name};' else: value_str: str = value_util.get_value_str_for_expression(value=self._value) expression += f'{value_str};' ap.append_js_expression(expression=expression)
Append constructor expression.
apysc/_type/array.py
_append_constructor_expression
simon-ritchie/apysc
16
python
def _append_constructor_expression(self) -> None: '\n \n ' import apysc as ap with ap.DebugInfo(callable_=self._append_constructor_expression, locals_=locals(), module_name=__name__, class_=Array): from apysc._type import value_util expression: str = f'var {self.variable_name} = ' if isinstance(self._initial_value, Array): expression += f'{self._initial_value.variable_name};' else: value_str: str = value_util.get_value_str_for_expression(value=self._value) expression += f'{value_str};' ap.append_js_expression(expression=expression)
def _append_constructor_expression(self) -> None: '\n \n ' import apysc as ap with ap.DebugInfo(callable_=self._append_constructor_expression, locals_=locals(), module_name=__name__, class_=Array): from apysc._type import value_util expression: str = f'var {self.variable_name} = ' if isinstance(self._initial_value, Array): expression += f'{self._initial_value.variable_name};' else: value_str: str = value_util.get_value_str_for_expression(value=self._value) expression += f'{value_str};' ap.append_js_expression(expression=expression)<|docstring|>Append constructor expression.<|endoftext|>
b497c72909468f7f953dcc4d5f78bb837fa8379bea94347ad392da0e865f2c49
def _get_list_value(self, *, value: Union[(List[Any], tuple, 'Array')]) -> List[Any]: '\n Get a list value from specified list, tuple, or Array value.\n\n Parameters\n ----------\n value : list or tuple or Array\n Specified list, tuple, or Array value.\n\n Returns\n -------\n list_val : list\n Converted list value.\n ' if isinstance(value, tuple): return list(value) if isinstance(value, Array): return value._value return value
Get a list value from specified list, tuple, or Array value. Parameters ---------- value : list or tuple or Array Specified list, tuple, or Array value. Returns ------- list_val : list Converted list value.
apysc/_type/array.py
_get_list_value
simon-ritchie/apysc
16
python
def _get_list_value(self, *, value: Union[(List[Any], tuple, 'Array')]) -> List[Any]: '\n Get a list value from specified list, tuple, or Array value.\n\n Parameters\n ----------\n value : list or tuple or Array\n Specified list, tuple, or Array value.\n\n Returns\n -------\n list_val : list\n Converted list value.\n ' if isinstance(value, tuple): return list(value) if isinstance(value, Array): return value._value return value
def _get_list_value(self, *, value: Union[(List[Any], tuple, 'Array')]) -> List[Any]: '\n Get a list value from specified list, tuple, or Array value.\n\n Parameters\n ----------\n value : list or tuple or Array\n Specified list, tuple, or Array value.\n\n Returns\n -------\n list_val : list\n Converted list value.\n ' if isinstance(value, tuple): return list(value) if isinstance(value, Array): return value._value return value<|docstring|>Get a list value from specified list, tuple, or Array value. Parameters ---------- value : list or tuple or Array Specified list, tuple, or Array value. Returns ------- list_val : list Converted list value.<|endoftext|>
c16774ddb8da3f564893e782c2aa6ff9d864ce88c550bee966f2f8a9e7af4759
def _validate_acceptable_value_type(self, *, value: Union[(List[Any], tuple, range, 'Array')]) -> None: "\n Validate that specified value is acceptable type or not.\n\n Parameters\n ----------\n value : list or tuple or range or Array\n Iterable value to check.\n\n Raises\n ------\n ValueError\n If specified value's type is not list, tuple, or Array.\n " if isinstance(value, (list, tuple, range, Array)): return raise ValueError(f'''Not acceptable value type is specified. Specified value type: {type(value)} Acceptable types: list, tuple, range, and Array''')
Validate that specified value is acceptable type or not. Parameters ---------- value : list or tuple or range or Array Iterable value to check. Raises ------ ValueError If specified value's type is not list, tuple, or Array.
apysc/_type/array.py
_validate_acceptable_value_type
simon-ritchie/apysc
16
python
def _validate_acceptable_value_type(self, *, value: Union[(List[Any], tuple, range, 'Array')]) -> None: "\n Validate that specified value is acceptable type or not.\n\n Parameters\n ----------\n value : list or tuple or range or Array\n Iterable value to check.\n\n Raises\n ------\n ValueError\n If specified value's type is not list, tuple, or Array.\n " if isinstance(value, (list, tuple, range, Array)): return raise ValueError(f'Not acceptable value type is specified. Specified value type: {type(value)} Acceptable types: list, tuple, range, and Array')
def _validate_acceptable_value_type(self, *, value: Union[(List[Any], tuple, range, 'Array')]) -> None: "\n Validate that specified value is acceptable type or not.\n\n Parameters\n ----------\n value : list or tuple or range or Array\n Iterable value to check.\n\n Raises\n ------\n ValueError\n If specified value's type is not list, tuple, or Array.\n " if isinstance(value, (list, tuple, range, Array)): return raise ValueError(f'Not acceptable value type is specified. Specified value type: {type(value)} Acceptable types: list, tuple, range, and Array')<|docstring|>Validate that specified value is acceptable type or not. Parameters ---------- value : list or tuple or range or Array Iterable value to check. Raises ------ ValueError If specified value's type is not list, tuple, or Array.<|endoftext|>
1828ca587f32942e6ded0bc477bcc1e37f4351fb6a36786c4e8c7f8e613a913f
@property def value(self) -> Union[(List[Any], tuple, 'Array')]: '\n Get a current array value.\n\n Returns\n -------\n value : list\n Current array value.\n\n References\n ----------\n - apysc basic data classes common value interface\n - https://bit.ly/3Be1aij\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 2, 3])\n >>> arr.value = [4, 5, 6]\n >>> arr.value\n [4, 5, 6]\n ' return self._value
Get a current array value. Returns ------- value : list Current array value. References ---------- - apysc basic data classes common value interface - https://bit.ly/3Be1aij Examples -------- >>> import apysc as ap >>> arr: ap.Array = ap.Array([1, 2, 3]) >>> arr.value = [4, 5, 6] >>> arr.value [4, 5, 6]
apysc/_type/array.py
value
simon-ritchie/apysc
16
python
@property def value(self) -> Union[(List[Any], tuple, 'Array')]: '\n Get a current array value.\n\n Returns\n -------\n value : list\n Current array value.\n\n References\n ----------\n - apysc basic data classes common value interface\n - https://bit.ly/3Be1aij\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 2, 3])\n >>> arr.value = [4, 5, 6]\n >>> arr.value\n [4, 5, 6]\n ' return self._value
@property def value(self) -> Union[(List[Any], tuple, 'Array')]: '\n Get a current array value.\n\n Returns\n -------\n value : list\n Current array value.\n\n References\n ----------\n - apysc basic data classes common value interface\n - https://bit.ly/3Be1aij\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 2, 3])\n >>> arr.value = [4, 5, 6]\n >>> arr.value\n [4, 5, 6]\n ' return self._value<|docstring|>Get a current array value. Returns ------- value : list Current array value. References ---------- - apysc basic data classes common value interface - https://bit.ly/3Be1aij Examples -------- >>> import apysc as ap >>> arr: ap.Array = ap.Array([1, 2, 3]) >>> arr.value = [4, 5, 6] >>> arr.value [4, 5, 6]<|endoftext|>
28c8cb8250d1026c8d45381acb3f4219660498e7e7d3d4d59fe3089b5a5a3124
@value.setter def value(self, value: Union[(List[Any], tuple, 'Array')]) -> None: '\n Set array value.\n\n Parameters\n ----------\n value : list or tuple or Array\n Iterable value (list, tuple, or Array) to set.\n\n References\n ----------\n apysc basic data classes common value interface\n https://bit.ly/3Be1aij\n ' import apysc as ap with ap.DebugInfo(callable_='value', locals_=locals(), module_name=__name__, class_=Array): self._validate_acceptable_value_type(value=value) self._value = self._get_list_value(value=value) self._append_value_setter_expression(value=value)
Set array value. Parameters ---------- value : list or tuple or Array Iterable value (list, tuple, or Array) to set. References ---------- apysc basic data classes common value interface https://bit.ly/3Be1aij
apysc/_type/array.py
value
simon-ritchie/apysc
16
python
@value.setter def value(self, value: Union[(List[Any], tuple, 'Array')]) -> None: '\n Set array value.\n\n Parameters\n ----------\n value : list or tuple or Array\n Iterable value (list, tuple, or Array) to set.\n\n References\n ----------\n apysc basic data classes common value interface\n https://bit.ly/3Be1aij\n ' import apysc as ap with ap.DebugInfo(callable_='value', locals_=locals(), module_name=__name__, class_=Array): self._validate_acceptable_value_type(value=value) self._value = self._get_list_value(value=value) self._append_value_setter_expression(value=value)
@value.setter def value(self, value: Union[(List[Any], tuple, 'Array')]) -> None: '\n Set array value.\n\n Parameters\n ----------\n value : list or tuple or Array\n Iterable value (list, tuple, or Array) to set.\n\n References\n ----------\n apysc basic data classes common value interface\n https://bit.ly/3Be1aij\n ' import apysc as ap with ap.DebugInfo(callable_='value', locals_=locals(), module_name=__name__, class_=Array): self._validate_acceptable_value_type(value=value) self._value = self._get_list_value(value=value) self._append_value_setter_expression(value=value)<|docstring|>Set array value. Parameters ---------- value : list or tuple or Array Iterable value (list, tuple, or Array) to set. References ---------- apysc basic data classes common value interface https://bit.ly/3Be1aij<|endoftext|>
e1f0fb252076526cdafd77e386e3e9c65f272fb3557db8b2182091f59b3ab032
def _append_value_setter_expression(self, *, value: Union[(List[Any], tuple, 'Array')]) -> None: "\n Append value's setter expression.\n\n Parameters\n ----------\n value : list or tuple or Array\n Iterable value (list, tuple, or Array) to set.\n " import apysc as ap with ap.DebugInfo(callable_=self._append_value_setter_expression, locals_=locals(), module_name=__name__, class_=Array): from apysc._type import value_util expression: str = f'{self.variable_name} = ' if isinstance(value, Array): expression += f'{value.variable_name};' else: value_str: str = value_util.get_value_str_for_expression(value=value) expression += f'{value_str};' ap.append_js_expression(expression=expression)
Append value's setter expression. Parameters ---------- value : list or tuple or Array Iterable value (list, tuple, or Array) to set.
apysc/_type/array.py
_append_value_setter_expression
simon-ritchie/apysc
16
python
def _append_value_setter_expression(self, *, value: Union[(List[Any], tuple, 'Array')]) -> None: "\n Append value's setter expression.\n\n Parameters\n ----------\n value : list or tuple or Array\n Iterable value (list, tuple, or Array) to set.\n " import apysc as ap with ap.DebugInfo(callable_=self._append_value_setter_expression, locals_=locals(), module_name=__name__, class_=Array): from apysc._type import value_util expression: str = f'{self.variable_name} = ' if isinstance(value, Array): expression += f'{value.variable_name};' else: value_str: str = value_util.get_value_str_for_expression(value=value) expression += f'{value_str};' ap.append_js_expression(expression=expression)
def _append_value_setter_expression(self, *, value: Union[(List[Any], tuple, 'Array')]) -> None: "\n Append value's setter expression.\n\n Parameters\n ----------\n value : list or tuple or Array\n Iterable value (list, tuple, or Array) to set.\n " import apysc as ap with ap.DebugInfo(callable_=self._append_value_setter_expression, locals_=locals(), module_name=__name__, class_=Array): from apysc._type import value_util expression: str = f'{self.variable_name} = ' if isinstance(value, Array): expression += f'{value.variable_name};' else: value_str: str = value_util.get_value_str_for_expression(value=value) expression += f'{value_str};' ap.append_js_expression(expression=expression)<|docstring|>Append value's setter expression. Parameters ---------- value : list or tuple or Array Iterable value (list, tuple, or Array) to set.<|endoftext|>
65cec69070a3b147f8716971b9b7de691aed3a21afa6f08d86f4f0c0548cfef0
def append(self, value: T) -> None: '\n Add any value to the end of this array.\n This behaves same as push method.\n\n Parameters\n ----------\n value : *\n Any value to append.\n\n References\n ----------\n - Array class append and push interfaces document\n - https://simon-ritchie.github.io/apysc/array_append_and_push.html\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 2, 3])\n >>> arr.append(4)\n >>> arr\n Array([1, 2, 3, 4])\n ' import apysc as ap with ap.DebugInfo(callable_=self.append, locals_=locals(), module_name=__name__, class_=Array): self._value.append(value) self._append_push_and_append_expression(value=value)
Add any value to the end of this array. This behaves same as push method. Parameters ---------- value : * Any value to append. References ---------- - Array class append and push interfaces document - https://simon-ritchie.github.io/apysc/array_append_and_push.html Examples -------- >>> import apysc as ap >>> arr: ap.Array = ap.Array([1, 2, 3]) >>> arr.append(4) >>> arr Array([1, 2, 3, 4])
apysc/_type/array.py
append
simon-ritchie/apysc
16
python
def append(self, value: T) -> None: '\n Add any value to the end of this array.\n This behaves same as push method.\n\n Parameters\n ----------\n value : *\n Any value to append.\n\n References\n ----------\n - Array class append and push interfaces document\n - https://simon-ritchie.github.io/apysc/array_append_and_push.html\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 2, 3])\n >>> arr.append(4)\n >>> arr\n Array([1, 2, 3, 4])\n ' import apysc as ap with ap.DebugInfo(callable_=self.append, locals_=locals(), module_name=__name__, class_=Array): self._value.append(value) self._append_push_and_append_expression(value=value)
def append(self, value: T) -> None: '\n Add any value to the end of this array.\n This behaves same as push method.\n\n Parameters\n ----------\n value : *\n Any value to append.\n\n References\n ----------\n - Array class append and push interfaces document\n - https://simon-ritchie.github.io/apysc/array_append_and_push.html\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 2, 3])\n >>> arr.append(4)\n >>> arr\n Array([1, 2, 3, 4])\n ' import apysc as ap with ap.DebugInfo(callable_=self.append, locals_=locals(), module_name=__name__, class_=Array): self._value.append(value) self._append_push_and_append_expression(value=value)<|docstring|>Add any value to the end of this array. This behaves same as push method. Parameters ---------- value : * Any value to append. References ---------- - Array class append and push interfaces document - https://simon-ritchie.github.io/apysc/array_append_and_push.html Examples -------- >>> import apysc as ap >>> arr: ap.Array = ap.Array([1, 2, 3]) >>> arr.append(4) >>> arr Array([1, 2, 3, 4])<|endoftext|>
c1cfa417f687b42b0e4433618fffee955545e508c4cb1daefc3d1d0c81e9a296
def push(self, value: T) -> None: '\n Add any value to the end of this array.\n This behaves same as append method.\n\n Parameters\n ----------\n value : *\n Any value to append.\n\n References\n ----------\n - Array class append and push interfaces document\n - https://simon-ritchie.github.io/apysc/array_append_and_push.html\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 2, 3])\n >>> arr.push(4)\n >>> arr\n Array([1, 2, 3, 4])\n ' import apysc as ap with ap.DebugInfo(callable_=self.push, locals_=locals(), module_name=__name__, class_=Array): self.append(value=value)
Add any value to the end of this array. This behaves same as append method. Parameters ---------- value : * Any value to append. References ---------- - Array class append and push interfaces document - https://simon-ritchie.github.io/apysc/array_append_and_push.html Examples -------- >>> import apysc as ap >>> arr: ap.Array = ap.Array([1, 2, 3]) >>> arr.push(4) >>> arr Array([1, 2, 3, 4])
apysc/_type/array.py
push
simon-ritchie/apysc
16
python
def push(self, value: T) -> None: '\n Add any value to the end of this array.\n This behaves same as append method.\n\n Parameters\n ----------\n value : *\n Any value to append.\n\n References\n ----------\n - Array class append and push interfaces document\n - https://simon-ritchie.github.io/apysc/array_append_and_push.html\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 2, 3])\n >>> arr.push(4)\n >>> arr\n Array([1, 2, 3, 4])\n ' import apysc as ap with ap.DebugInfo(callable_=self.push, locals_=locals(), module_name=__name__, class_=Array): self.append(value=value)
def push(self, value: T) -> None: '\n Add any value to the end of this array.\n This behaves same as append method.\n\n Parameters\n ----------\n value : *\n Any value to append.\n\n References\n ----------\n - Array class append and push interfaces document\n - https://simon-ritchie.github.io/apysc/array_append_and_push.html\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 2, 3])\n >>> arr.push(4)\n >>> arr\n Array([1, 2, 3, 4])\n ' import apysc as ap with ap.DebugInfo(callable_=self.push, locals_=locals(), module_name=__name__, class_=Array): self.append(value=value)<|docstring|>Add any value to the end of this array. This behaves same as append method. Parameters ---------- value : * Any value to append. References ---------- - Array class append and push interfaces document - https://simon-ritchie.github.io/apysc/array_append_and_push.html Examples -------- >>> import apysc as ap >>> arr: ap.Array = ap.Array([1, 2, 3]) >>> arr.push(4) >>> arr Array([1, 2, 3, 4])<|endoftext|>
8cd17358659156cb8449b3d2c90b88462e848426fee24e4d16419695f6310d79
def _append_push_and_append_expression(self, *, value: T) -> None: '\n Append push and append method expression.\n\n Parameters\n ----------\n value : *\n Any value to append.\n ' import apysc as ap with ap.DebugInfo(callable_=self._append_push_and_append_expression, locals_=locals(), module_name=__name__, class_=Array): from apysc._type import value_util value_str: str = value_util.get_value_str_for_expression(value=value) expression: str = f'{self.variable_name}.push({value_str});' ap.append_js_expression(expression=expression)
Append push and append method expression. Parameters ---------- value : * Any value to append.
apysc/_type/array.py
_append_push_and_append_expression
simon-ritchie/apysc
16
python
def _append_push_and_append_expression(self, *, value: T) -> None: '\n Append push and append method expression.\n\n Parameters\n ----------\n value : *\n Any value to append.\n ' import apysc as ap with ap.DebugInfo(callable_=self._append_push_and_append_expression, locals_=locals(), module_name=__name__, class_=Array): from apysc._type import value_util value_str: str = value_util.get_value_str_for_expression(value=value) expression: str = f'{self.variable_name}.push({value_str});' ap.append_js_expression(expression=expression)
def _append_push_and_append_expression(self, *, value: T) -> None: '\n Append push and append method expression.\n\n Parameters\n ----------\n value : *\n Any value to append.\n ' import apysc as ap with ap.DebugInfo(callable_=self._append_push_and_append_expression, locals_=locals(), module_name=__name__, class_=Array): from apysc._type import value_util value_str: str = value_util.get_value_str_for_expression(value=value) expression: str = f'{self.variable_name}.push({value_str});' ap.append_js_expression(expression=expression)<|docstring|>Append push and append method expression. Parameters ---------- value : * Any value to append.<|endoftext|>
621de9050b0e0fa3300f46f3ca1e7085450d84c14dce128f25188071a85d30d4
def extend(self, other_arr: Union[(List[T], tuple, 'Array')]) -> None: "\n Concatenate argument array to this one. Argument array's\n values will positioned after this array's values.\n This method is similar to concat method, but there is a\n difference in whether the same variable will be\n updated (extend) or returned as a different variable (concat).\n\n Parameters\n ----------\n other_arr : list or tuple or Array\n Other array-like value to concatenate.\n\n References\n ----------\n - Array class extend and concat interfaces document\n - https://bit.ly/3r1TdIu\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 2, 3])\n >>> arr.extend([4, 5, 6])\n >>> arr\n Array([1, 2, 3, 4, 5, 6])\n " import apysc as ap with ap.DebugInfo(callable_=self.extend, locals_=locals(), module_name=__name__, class_=Array): self._validate_acceptable_value_type(value=other_arr) if isinstance(other_arr, Array): self._value.extend(other_arr.value) else: self._value.extend(other_arr) self._append_extend_expression(other_arr=other_arr)
Concatenate argument array to this one. Argument array's values will positioned after this array's values. This method is similar to concat method, but there is a difference in whether the same variable will be updated (extend) or returned as a different variable (concat). Parameters ---------- other_arr : list or tuple or Array Other array-like value to concatenate. References ---------- - Array class extend and concat interfaces document - https://bit.ly/3r1TdIu Examples -------- >>> import apysc as ap >>> arr: ap.Array = ap.Array([1, 2, 3]) >>> arr.extend([4, 5, 6]) >>> arr Array([1, 2, 3, 4, 5, 6])
apysc/_type/array.py
extend
simon-ritchie/apysc
16
python
def extend(self, other_arr: Union[(List[T], tuple, 'Array')]) -> None: "\n Concatenate argument array to this one. Argument array's\n values will positioned after this array's values.\n This method is similar to concat method, but there is a\n difference in whether the same variable will be\n updated (extend) or returned as a different variable (concat).\n\n Parameters\n ----------\n other_arr : list or tuple or Array\n Other array-like value to concatenate.\n\n References\n ----------\n - Array class extend and concat interfaces document\n - https://bit.ly/3r1TdIu\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 2, 3])\n >>> arr.extend([4, 5, 6])\n >>> arr\n Array([1, 2, 3, 4, 5, 6])\n " import apysc as ap with ap.DebugInfo(callable_=self.extend, locals_=locals(), module_name=__name__, class_=Array): self._validate_acceptable_value_type(value=other_arr) if isinstance(other_arr, Array): self._value.extend(other_arr.value) else: self._value.extend(other_arr) self._append_extend_expression(other_arr=other_arr)
def extend(self, other_arr: Union[(List[T], tuple, 'Array')]) -> None: "\n Concatenate argument array to this one. Argument array's\n values will positioned after this array's values.\n This method is similar to concat method, but there is a\n difference in whether the same variable will be\n updated (extend) or returned as a different variable (concat).\n\n Parameters\n ----------\n other_arr : list or tuple or Array\n Other array-like value to concatenate.\n\n References\n ----------\n - Array class extend and concat interfaces document\n - https://bit.ly/3r1TdIu\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 2, 3])\n >>> arr.extend([4, 5, 6])\n >>> arr\n Array([1, 2, 3, 4, 5, 6])\n " import apysc as ap with ap.DebugInfo(callable_=self.extend, locals_=locals(), module_name=__name__, class_=Array): self._validate_acceptable_value_type(value=other_arr) if isinstance(other_arr, Array): self._value.extend(other_arr.value) else: self._value.extend(other_arr) self._append_extend_expression(other_arr=other_arr)<|docstring|>Concatenate argument array to this one. Argument array's values will positioned after this array's values. This method is similar to concat method, but there is a difference in whether the same variable will be updated (extend) or returned as a different variable (concat). Parameters ---------- other_arr : list or tuple or Array Other array-like value to concatenate. References ---------- - Array class extend and concat interfaces document - https://bit.ly/3r1TdIu Examples -------- >>> import apysc as ap >>> arr: ap.Array = ap.Array([1, 2, 3]) >>> arr.extend([4, 5, 6]) >>> arr Array([1, 2, 3, 4, 5, 6])<|endoftext|>
c534c0e7fce3873d2f5c85d41c08a28f96610d51189755779c6f4ebe45c3c3fc
def _append_extend_expression(self, *, other_arr: Union[(List[T], tuple, 'Array')]) -> None: '\n Append extend method expression.\n\n Parameters\n ----------\n other_arr : list or tuple or Array\n Other array-like value to concatenate.\n ' import apysc as ap with ap.DebugInfo(callable_=self._append_extend_expression, locals_=locals(), module_name=__name__, class_=Array): from apysc._type import value_util value_str: str = value_util.get_value_str_for_expression(value=other_arr) expression: str = f'{self.variable_name} = {self.variable_name}.concat({value_str});' ap.append_js_expression(expression=expression)
Append extend method expression. Parameters ---------- other_arr : list or tuple or Array Other array-like value to concatenate.
apysc/_type/array.py
_append_extend_expression
simon-ritchie/apysc
16
python
def _append_extend_expression(self, *, other_arr: Union[(List[T], tuple, 'Array')]) -> None: '\n Append extend method expression.\n\n Parameters\n ----------\n other_arr : list or tuple or Array\n Other array-like value to concatenate.\n ' import apysc as ap with ap.DebugInfo(callable_=self._append_extend_expression, locals_=locals(), module_name=__name__, class_=Array): from apysc._type import value_util value_str: str = value_util.get_value_str_for_expression(value=other_arr) expression: str = f'{self.variable_name} = {self.variable_name}.concat({value_str});' ap.append_js_expression(expression=expression)
def _append_extend_expression(self, *, other_arr: Union[(List[T], tuple, 'Array')]) -> None: '\n Append extend method expression.\n\n Parameters\n ----------\n other_arr : list or tuple or Array\n Other array-like value to concatenate.\n ' import apysc as ap with ap.DebugInfo(callable_=self._append_extend_expression, locals_=locals(), module_name=__name__, class_=Array): from apysc._type import value_util value_str: str = value_util.get_value_str_for_expression(value=other_arr) expression: str = f'{self.variable_name} = {self.variable_name}.concat({value_str});' ap.append_js_expression(expression=expression)<|docstring|>Append extend method expression. Parameters ---------- other_arr : list or tuple or Array Other array-like value to concatenate.<|endoftext|>
e7a0d452f02a87894df7c307228ca3f5985a95ae02952b6f1ca91e81357b44d0
def concat(self, other_arr: Union[(List[T], tuple, 'Array')]) -> 'Array': "\n Concatenate arugment array to this one. Argument array's\n values will positioned after this array's values.\n This method is similar to extend method, but there is a\n difference in whether the same variable will be\n updated (extend) or returned as a different variable (concat).\n\n Parameters\n ----------\n other_arr : list or tuple or Array\n Other array-like value to concatenate.\n\n Returns\n -------\n concatenated : Array\n Concatenated array value.\n\n References\n ----------\n - Array class extend and concat interfaces document\n - https://bit.ly/3r1TdIu\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 2, 3])\n >>> arr = arr.concat([4, 5, 6])\n >>> arr\n Array([1, 2, 3, 4, 5, 6])\n " import apysc as ap with ap.DebugInfo(callable_=self.concat, locals_=locals(), module_name=__name__, class_=Array): concatenated: Array = self._copy() concatenated.extend(other_arr) self._append_concat_expression(concatenated=concatenated, other_arr=other_arr) return concatenated
Concatenate arugment array to this one. Argument array's values will positioned after this array's values. This method is similar to extend method, but there is a difference in whether the same variable will be updated (extend) or returned as a different variable (concat). Parameters ---------- other_arr : list or tuple or Array Other array-like value to concatenate. Returns ------- concatenated : Array Concatenated array value. References ---------- - Array class extend and concat interfaces document - https://bit.ly/3r1TdIu Examples -------- >>> import apysc as ap >>> arr: ap.Array = ap.Array([1, 2, 3]) >>> arr = arr.concat([4, 5, 6]) >>> arr Array([1, 2, 3, 4, 5, 6])
apysc/_type/array.py
concat
simon-ritchie/apysc
16
python
def concat(self, other_arr: Union[(List[T], tuple, 'Array')]) -> 'Array': "\n Concatenate arugment array to this one. Argument array's\n values will positioned after this array's values.\n This method is similar to extend method, but there is a\n difference in whether the same variable will be\n updated (extend) or returned as a different variable (concat).\n\n Parameters\n ----------\n other_arr : list or tuple or Array\n Other array-like value to concatenate.\n\n Returns\n -------\n concatenated : Array\n Concatenated array value.\n\n References\n ----------\n - Array class extend and concat interfaces document\n - https://bit.ly/3r1TdIu\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 2, 3])\n >>> arr = arr.concat([4, 5, 6])\n >>> arr\n Array([1, 2, 3, 4, 5, 6])\n " import apysc as ap with ap.DebugInfo(callable_=self.concat, locals_=locals(), module_name=__name__, class_=Array): concatenated: Array = self._copy() concatenated.extend(other_arr) self._append_concat_expression(concatenated=concatenated, other_arr=other_arr) return concatenated
def concat(self, other_arr: Union[(List[T], tuple, 'Array')]) -> 'Array': "\n Concatenate arugment array to this one. Argument array's\n values will positioned after this array's values.\n This method is similar to extend method, but there is a\n difference in whether the same variable will be\n updated (extend) or returned as a different variable (concat).\n\n Parameters\n ----------\n other_arr : list or tuple or Array\n Other array-like value to concatenate.\n\n Returns\n -------\n concatenated : Array\n Concatenated array value.\n\n References\n ----------\n - Array class extend and concat interfaces document\n - https://bit.ly/3r1TdIu\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 2, 3])\n >>> arr = arr.concat([4, 5, 6])\n >>> arr\n Array([1, 2, 3, 4, 5, 6])\n " import apysc as ap with ap.DebugInfo(callable_=self.concat, locals_=locals(), module_name=__name__, class_=Array): concatenated: Array = self._copy() concatenated.extend(other_arr) self._append_concat_expression(concatenated=concatenated, other_arr=other_arr) return concatenated<|docstring|>Concatenate arugment array to this one. Argument array's values will positioned after this array's values. This method is similar to extend method, but there is a difference in whether the same variable will be updated (extend) or returned as a different variable (concat). Parameters ---------- other_arr : list or tuple or Array Other array-like value to concatenate. Returns ------- concatenated : Array Concatenated array value. References ---------- - Array class extend and concat interfaces document - https://bit.ly/3r1TdIu Examples -------- >>> import apysc as ap >>> arr: ap.Array = ap.Array([1, 2, 3]) >>> arr = arr.concat([4, 5, 6]) >>> arr Array([1, 2, 3, 4, 5, 6])<|endoftext|>
38abeb100602f3692ec03b197c62f4d17b0f99c77d614e0381fc5aed77b2b0c4
def _append_concat_expression(self, *, concatenated: VariableNameInterface, other_arr: Union[(List[T], tuple, 'Array')]) -> None: '\n Append concat method expression.\n\n Parameters\n ----------\n concatenated : Array\n Concatenated array value.\n other_arr : list or tuple or Array\n Other array-like value to concatenate.\n ' import apysc as ap with ap.DebugInfo(callable_=self._append_concat_expression, locals_=locals(), module_name=__name__, class_=Array): from apysc._type import value_util value_str: str = value_util.get_value_str_for_expression(value=other_arr) expression: str = f'var {concatenated.variable_name} = {self.variable_name}.concat({value_str});' ap.append_js_expression(expression=expression)
Append concat method expression. Parameters ---------- concatenated : Array Concatenated array value. other_arr : list or tuple or Array Other array-like value to concatenate.
apysc/_type/array.py
_append_concat_expression
simon-ritchie/apysc
16
python
def _append_concat_expression(self, *, concatenated: VariableNameInterface, other_arr: Union[(List[T], tuple, 'Array')]) -> None: '\n Append concat method expression.\n\n Parameters\n ----------\n concatenated : Array\n Concatenated array value.\n other_arr : list or tuple or Array\n Other array-like value to concatenate.\n ' import apysc as ap with ap.DebugInfo(callable_=self._append_concat_expression, locals_=locals(), module_name=__name__, class_=Array): from apysc._type import value_util value_str: str = value_util.get_value_str_for_expression(value=other_arr) expression: str = f'var {concatenated.variable_name} = {self.variable_name}.concat({value_str});' ap.append_js_expression(expression=expression)
def _append_concat_expression(self, *, concatenated: VariableNameInterface, other_arr: Union[(List[T], tuple, 'Array')]) -> None: '\n Append concat method expression.\n\n Parameters\n ----------\n concatenated : Array\n Concatenated array value.\n other_arr : list or tuple or Array\n Other array-like value to concatenate.\n ' import apysc as ap with ap.DebugInfo(callable_=self._append_concat_expression, locals_=locals(), module_name=__name__, class_=Array): from apysc._type import value_util value_str: str = value_util.get_value_str_for_expression(value=other_arr) expression: str = f'var {concatenated.variable_name} = {self.variable_name}.concat({value_str});' ap.append_js_expression(expression=expression)<|docstring|>Append concat method expression. Parameters ---------- concatenated : Array Concatenated array value. other_arr : list or tuple or Array Other array-like value to concatenate.<|endoftext|>
e101f423203bc79139b96512ca2637c9b81a38e5f19504f0f6d283a98d8ded96
def insert(self, index: Union[(int, Int)], value: T) -> None: '\n Insert value to this array at a specified index.\n This behaves same as insert_at method.\n\n Parameters\n ----------\n index : int or Int\n Index to append value to.\n value : *\n Any value to append.\n\n References\n ----------\n - Array class insert and insert_at interfaces document\n - https://bit.ly/3G9LBtQ\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 3])\n >>> arr.insert(index=1, value=2)\n >>> arr\n Array([1, 2, 3])\n ' import apysc as ap with ap.DebugInfo(callable_=self.insert, locals_=locals(), module_name=__name__, class_=Array): from apysc._validation import number_validation number_validation.validate_integer(integer=index) if isinstance(index, ap.Int): index_: int = int(index.value) else: index_ = index value_: Any if isinstance(value, ap.Int): value_ = int(value.value) else: value_ = value self._value.insert(index_, value_) self._append_insert_expression(index=index, value=value)
Insert value to this array at a specified index. This behaves same as insert_at method. Parameters ---------- index : int or Int Index to append value to. value : * Any value to append. References ---------- - Array class insert and insert_at interfaces document - https://bit.ly/3G9LBtQ Examples -------- >>> import apysc as ap >>> arr: ap.Array = ap.Array([1, 3]) >>> arr.insert(index=1, value=2) >>> arr Array([1, 2, 3])
apysc/_type/array.py
insert
simon-ritchie/apysc
16
python
def insert(self, index: Union[(int, Int)], value: T) -> None: '\n Insert value to this array at a specified index.\n This behaves same as insert_at method.\n\n Parameters\n ----------\n index : int or Int\n Index to append value to.\n value : *\n Any value to append.\n\n References\n ----------\n - Array class insert and insert_at interfaces document\n - https://bit.ly/3G9LBtQ\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 3])\n >>> arr.insert(index=1, value=2)\n >>> arr\n Array([1, 2, 3])\n ' import apysc as ap with ap.DebugInfo(callable_=self.insert, locals_=locals(), module_name=__name__, class_=Array): from apysc._validation import number_validation number_validation.validate_integer(integer=index) if isinstance(index, ap.Int): index_: int = int(index.value) else: index_ = index value_: Any if isinstance(value, ap.Int): value_ = int(value.value) else: value_ = value self._value.insert(index_, value_) self._append_insert_expression(index=index, value=value)
def insert(self, index: Union[(int, Int)], value: T) -> None: '\n Insert value to this array at a specified index.\n This behaves same as insert_at method.\n\n Parameters\n ----------\n index : int or Int\n Index to append value to.\n value : *\n Any value to append.\n\n References\n ----------\n - Array class insert and insert_at interfaces document\n - https://bit.ly/3G9LBtQ\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 3])\n >>> arr.insert(index=1, value=2)\n >>> arr\n Array([1, 2, 3])\n ' import apysc as ap with ap.DebugInfo(callable_=self.insert, locals_=locals(), module_name=__name__, class_=Array): from apysc._validation import number_validation number_validation.validate_integer(integer=index) if isinstance(index, ap.Int): index_: int = int(index.value) else: index_ = index value_: Any if isinstance(value, ap.Int): value_ = int(value.value) else: value_ = value self._value.insert(index_, value_) self._append_insert_expression(index=index, value=value)<|docstring|>Insert value to this array at a specified index. This behaves same as insert_at method. Parameters ---------- index : int or Int Index to append value to. value : * Any value to append. References ---------- - Array class insert and insert_at interfaces document - https://bit.ly/3G9LBtQ Examples -------- >>> import apysc as ap >>> arr: ap.Array = ap.Array([1, 3]) >>> arr.insert(index=1, value=2) >>> arr Array([1, 2, 3])<|endoftext|>
0077cac3ad4c8a0fdf222459a1fdd97dc65df93ff7f4f8b5bd0d642da7bcbb36
def insert_at(self, index: Union[(int, Int)], value: T) -> None: '\n Insert value to this array at a specified index.\n This behaves same as insert method.\n\n Parameters\n ----------\n index : int or Int\n Index to append value to.\n value : *\n Any value to append.\n\n References\n ----------\n - Array class insert and insert_at interfaces document\n - https://bit.ly/3G9LBtQ\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 3])\n >>> arr.insert_at(index=1, value=2)\n >>> arr\n Array([1, 2, 3])\n ' import apysc as ap with ap.DebugInfo(callable_=self.insert_at, locals_=locals(), module_name=__name__, class_=Array): self.insert(index=index, value=value)
Insert value to this array at a specified index. This behaves same as insert method. Parameters ---------- index : int or Int Index to append value to. value : * Any value to append. References ---------- - Array class insert and insert_at interfaces document - https://bit.ly/3G9LBtQ Examples -------- >>> import apysc as ap >>> arr: ap.Array = ap.Array([1, 3]) >>> arr.insert_at(index=1, value=2) >>> arr Array([1, 2, 3])
apysc/_type/array.py
insert_at
simon-ritchie/apysc
16
python
def insert_at(self, index: Union[(int, Int)], value: T) -> None: '\n Insert value to this array at a specified index.\n This behaves same as insert method.\n\n Parameters\n ----------\n index : int or Int\n Index to append value to.\n value : *\n Any value to append.\n\n References\n ----------\n - Array class insert and insert_at interfaces document\n - https://bit.ly/3G9LBtQ\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 3])\n >>> arr.insert_at(index=1, value=2)\n >>> arr\n Array([1, 2, 3])\n ' import apysc as ap with ap.DebugInfo(callable_=self.insert_at, locals_=locals(), module_name=__name__, class_=Array): self.insert(index=index, value=value)
def insert_at(self, index: Union[(int, Int)], value: T) -> None: '\n Insert value to this array at a specified index.\n This behaves same as insert method.\n\n Parameters\n ----------\n index : int or Int\n Index to append value to.\n value : *\n Any value to append.\n\n References\n ----------\n - Array class insert and insert_at interfaces document\n - https://bit.ly/3G9LBtQ\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 3])\n >>> arr.insert_at(index=1, value=2)\n >>> arr\n Array([1, 2, 3])\n ' import apysc as ap with ap.DebugInfo(callable_=self.insert_at, locals_=locals(), module_name=__name__, class_=Array): self.insert(index=index, value=value)<|docstring|>Insert value to this array at a specified index. This behaves same as insert method. Parameters ---------- index : int or Int Index to append value to. value : * Any value to append. References ---------- - Array class insert and insert_at interfaces document - https://bit.ly/3G9LBtQ Examples -------- >>> import apysc as ap >>> arr: ap.Array = ap.Array([1, 3]) >>> arr.insert_at(index=1, value=2) >>> arr Array([1, 2, 3])<|endoftext|>
d763e748ae76221b80facedbd9de35786fe7ac660033645b218010342c389069
def _append_insert_expression(self, *, index: Union[(int, Int)], value: T) -> None: '\n Append insert method expression.\n\n Parameters\n ----------\n index : int or Int\n Index to append value to.\n value : *\n Any value to append.\n ' import apysc as ap with ap.DebugInfo(callable_=self._append_insert_expression, locals_=locals(), module_name=__name__, class_=Array): from apysc._type import value_util value_str: str = value_util.get_value_str_for_expression(value=value) index_str: str = value_util.get_value_str_for_expression(value=index) expression: str = f'{self.variable_name}.splice({index_str}, 0, {value_str});' ap.append_js_expression(expression=expression)
Append insert method expression. Parameters ---------- index : int or Int Index to append value to. value : * Any value to append.
apysc/_type/array.py
_append_insert_expression
simon-ritchie/apysc
16
python
def _append_insert_expression(self, *, index: Union[(int, Int)], value: T) -> None: '\n Append insert method expression.\n\n Parameters\n ----------\n index : int or Int\n Index to append value to.\n value : *\n Any value to append.\n ' import apysc as ap with ap.DebugInfo(callable_=self._append_insert_expression, locals_=locals(), module_name=__name__, class_=Array): from apysc._type import value_util value_str: str = value_util.get_value_str_for_expression(value=value) index_str: str = value_util.get_value_str_for_expression(value=index) expression: str = f'{self.variable_name}.splice({index_str}, 0, {value_str});' ap.append_js_expression(expression=expression)
def _append_insert_expression(self, *, index: Union[(int, Int)], value: T) -> None: '\n Append insert method expression.\n\n Parameters\n ----------\n index : int or Int\n Index to append value to.\n value : *\n Any value to append.\n ' import apysc as ap with ap.DebugInfo(callable_=self._append_insert_expression, locals_=locals(), module_name=__name__, class_=Array): from apysc._type import value_util value_str: str = value_util.get_value_str_for_expression(value=value) index_str: str = value_util.get_value_str_for_expression(value=index) expression: str = f'{self.variable_name}.splice({index_str}, 0, {value_str});' ap.append_js_expression(expression=expression)<|docstring|>Append insert method expression. Parameters ---------- index : int or Int Index to append value to. value : * Any value to append.<|endoftext|>
b0fd9e9fde4efb55c147bba72d6bf13511c4c2e7eb163209db37885e3665e6f1
def pop(self) -> T: "\n Remove this array's last value and return it.\n\n Returns\n -------\n value : *\n Removed value.\n\n References\n ----------\n - Array class pop interface document\n - https://simon-ritchie.github.io/apysc/array_pop.html\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 2, 3])\n >>> popped_val: int = arr.pop()\n >>> popped_val\n 3\n\n >>> arr\n Array([1, 2])\n " import apysc as ap with ap.DebugInfo(callable_=self.pop, locals_=locals(), module_name=__name__, class_=Array): value: T = self._value.pop() self._append_pop_expression(value=value) return value
Remove this array's last value and return it. Returns ------- value : * Removed value. References ---------- - Array class pop interface document - https://simon-ritchie.github.io/apysc/array_pop.html Examples -------- >>> import apysc as ap >>> arr: ap.Array = ap.Array([1, 2, 3]) >>> popped_val: int = arr.pop() >>> popped_val 3 >>> arr Array([1, 2])
apysc/_type/array.py
pop
simon-ritchie/apysc
16
python
def pop(self) -> T: "\n Remove this array's last value and return it.\n\n Returns\n -------\n value : *\n Removed value.\n\n References\n ----------\n - Array class pop interface document\n - https://simon-ritchie.github.io/apysc/array_pop.html\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 2, 3])\n >>> popped_val: int = arr.pop()\n >>> popped_val\n 3\n\n >>> arr\n Array([1, 2])\n " import apysc as ap with ap.DebugInfo(callable_=self.pop, locals_=locals(), module_name=__name__, class_=Array): value: T = self._value.pop() self._append_pop_expression(value=value) return value
def pop(self) -> T: "\n Remove this array's last value and return it.\n\n Returns\n -------\n value : *\n Removed value.\n\n References\n ----------\n - Array class pop interface document\n - https://simon-ritchie.github.io/apysc/array_pop.html\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 2, 3])\n >>> popped_val: int = arr.pop()\n >>> popped_val\n 3\n\n >>> arr\n Array([1, 2])\n " import apysc as ap with ap.DebugInfo(callable_=self.pop, locals_=locals(), module_name=__name__, class_=Array): value: T = self._value.pop() self._append_pop_expression(value=value) return value<|docstring|>Remove this array's last value and return it. Returns ------- value : * Removed value. References ---------- - Array class pop interface document - https://simon-ritchie.github.io/apysc/array_pop.html Examples -------- >>> import apysc as ap >>> arr: ap.Array = ap.Array([1, 2, 3]) >>> popped_val: int = arr.pop() >>> popped_val 3 >>> arr Array([1, 2])<|endoftext|>
c64859a7d7e38c81983971a8f23deabe931f2c7dae00d719696b0fc4fc10b8de
def _append_pop_expression(self, *, value: T) -> None: '\n Append pop method expression.\n\n Parameters\n ----------\n value : *\n Removed value.\n ' import apysc as ap with ap.DebugInfo(callable_=self._append_pop_expression, locals_=locals(), module_name=__name__, class_=Array): expression: str = f'{self.variable_name}.pop();' if isinstance(value, VariableNameInterface): expression = f'{value.variable_name} = {expression}' ap.append_js_expression(expression=expression)
Append pop method expression. Parameters ---------- value : * Removed value.
apysc/_type/array.py
_append_pop_expression
simon-ritchie/apysc
16
python
def _append_pop_expression(self, *, value: T) -> None: '\n Append pop method expression.\n\n Parameters\n ----------\n value : *\n Removed value.\n ' import apysc as ap with ap.DebugInfo(callable_=self._append_pop_expression, locals_=locals(), module_name=__name__, class_=Array): expression: str = f'{self.variable_name}.pop();' if isinstance(value, VariableNameInterface): expression = f'{value.variable_name} = {expression}' ap.append_js_expression(expression=expression)
def _append_pop_expression(self, *, value: T) -> None: '\n Append pop method expression.\n\n Parameters\n ----------\n value : *\n Removed value.\n ' import apysc as ap with ap.DebugInfo(callable_=self._append_pop_expression, locals_=locals(), module_name=__name__, class_=Array): expression: str = f'{self.variable_name}.pop();' if isinstance(value, VariableNameInterface): expression = f'{value.variable_name} = {expression}' ap.append_js_expression(expression=expression)<|docstring|>Append pop method expression. Parameters ---------- value : * Removed value.<|endoftext|>
0e01d07779710bc3cdf225b5c5296556dc091fe68ef7124e9e866866ec43cb2a
def remove(self, value: T) -> None: '\n Remove specified value from this array.\n\n Parameters\n ----------\n value : Any\n Value to remove.\n\n References\n ----------\n - Array class remove and remove_at interfaces document\n - https://bit.ly/3zDO6Cl\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 3, 5])\n >>> arr.remove(3)\n >>> arr\n Array([1, 5])\n ' import apysc as ap with ap.DebugInfo(callable_=self.remove, locals_=locals(), module_name=__name__, class_=Array): self._value.remove(value) self._append_remove_expression(value=value)
Remove specified value from this array. Parameters ---------- value : Any Value to remove. References ---------- - Array class remove and remove_at interfaces document - https://bit.ly/3zDO6Cl Examples -------- >>> import apysc as ap >>> arr: ap.Array = ap.Array([1, 3, 5]) >>> arr.remove(3) >>> arr Array([1, 5])
apysc/_type/array.py
remove
simon-ritchie/apysc
16
python
def remove(self, value: T) -> None: '\n Remove specified value from this array.\n\n Parameters\n ----------\n value : Any\n Value to remove.\n\n References\n ----------\n - Array class remove and remove_at interfaces document\n - https://bit.ly/3zDO6Cl\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 3, 5])\n >>> arr.remove(3)\n >>> arr\n Array([1, 5])\n ' import apysc as ap with ap.DebugInfo(callable_=self.remove, locals_=locals(), module_name=__name__, class_=Array): self._value.remove(value) self._append_remove_expression(value=value)
def remove(self, value: T) -> None: '\n Remove specified value from this array.\n\n Parameters\n ----------\n value : Any\n Value to remove.\n\n References\n ----------\n - Array class remove and remove_at interfaces document\n - https://bit.ly/3zDO6Cl\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 3, 5])\n >>> arr.remove(3)\n >>> arr\n Array([1, 5])\n ' import apysc as ap with ap.DebugInfo(callable_=self.remove, locals_=locals(), module_name=__name__, class_=Array): self._value.remove(value) self._append_remove_expression(value=value)<|docstring|>Remove specified value from this array. Parameters ---------- value : Any Value to remove. References ---------- - Array class remove and remove_at interfaces document - https://bit.ly/3zDO6Cl Examples -------- >>> import apysc as ap >>> arr: ap.Array = ap.Array([1, 3, 5]) >>> arr.remove(3) >>> arr Array([1, 5])<|endoftext|>
1d61729a5f0e9391d8d0a868caadc202f886a36e8cf20cd209d838ff5a30415e
def _append_remove_expression(self, *, value: T) -> None: '\n Append remove method expression.\n\n Parameters\n ----------\n value : Any\n Value to remove.\n ' import apysc as ap with ap.DebugInfo(callable_=self._append_remove_expression, locals_=locals(), module_name=__name__, class_=Array): from apysc._expression import expression_variables_util from apysc._expression import var_names from apysc._type import value_util index_var_name: str = expression_variables_util.get_next_variable_name(type_name=var_names.INDEX) value_str: str = value_util.get_value_str_for_expression(value=value) expression: str = f'''var {index_var_name} = _.indexOf({self.variable_name}, {value_str}); {self.variable_name}.splice({index_var_name}, 1);''' ap.append_js_expression(expression=expression)
Append remove method expression. Parameters ---------- value : Any Value to remove.
apysc/_type/array.py
_append_remove_expression
simon-ritchie/apysc
16
python
def _append_remove_expression(self, *, value: T) -> None: '\n Append remove method expression.\n\n Parameters\n ----------\n value : Any\n Value to remove.\n ' import apysc as ap with ap.DebugInfo(callable_=self._append_remove_expression, locals_=locals(), module_name=__name__, class_=Array): from apysc._expression import expression_variables_util from apysc._expression import var_names from apysc._type import value_util index_var_name: str = expression_variables_util.get_next_variable_name(type_name=var_names.INDEX) value_str: str = value_util.get_value_str_for_expression(value=value) expression: str = f'var {index_var_name} = _.indexOf({self.variable_name}, {value_str}); {self.variable_name}.splice({index_var_name}, 1);' ap.append_js_expression(expression=expression)
def _append_remove_expression(self, *, value: T) -> None: '\n Append remove method expression.\n\n Parameters\n ----------\n value : Any\n Value to remove.\n ' import apysc as ap with ap.DebugInfo(callable_=self._append_remove_expression, locals_=locals(), module_name=__name__, class_=Array): from apysc._expression import expression_variables_util from apysc._expression import var_names from apysc._type import value_util index_var_name: str = expression_variables_util.get_next_variable_name(type_name=var_names.INDEX) value_str: str = value_util.get_value_str_for_expression(value=value) expression: str = f'var {index_var_name} = _.indexOf({self.variable_name}, {value_str}); {self.variable_name}.splice({index_var_name}, 1);' ap.append_js_expression(expression=expression)<|docstring|>Append remove method expression. Parameters ---------- value : Any Value to remove.<|endoftext|>
0ec127df0e87f1589d4b8aa8ca900ffa936476920472084711218a2955df3706
def remove_at(self, index: Union[(int, Int)]) -> None: '\n Remove specified index value from this array.\n\n Parameters\n ----------\n index : int or Int\n Index to remove value.\n\n References\n ----------\n - Array class remove and remove_at interfaces document\n - https://bit.ly/3zDO6Cl\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 2, 3])\n >>> arr.remove_at(1)\n >>> arr\n Array([1, 3])\n ' import apysc as ap with ap.DebugInfo(callable_=self.remove_at, locals_=locals(), module_name=__name__, class_=Array): self._validate_index_type_is_int(index=index) if isinstance(index, ap.Int): index_: int = int(index.value) else: index_ = index if (index_ in self._value): del self._value[index_] self._append_remove_at_expression(index=index)
Remove specified index value from this array. Parameters ---------- index : int or Int Index to remove value. References ---------- - Array class remove and remove_at interfaces document - https://bit.ly/3zDO6Cl Examples -------- >>> import apysc as ap >>> arr: ap.Array = ap.Array([1, 2, 3]) >>> arr.remove_at(1) >>> arr Array([1, 3])
apysc/_type/array.py
remove_at
simon-ritchie/apysc
16
python
def remove_at(self, index: Union[(int, Int)]) -> None: '\n Remove specified index value from this array.\n\n Parameters\n ----------\n index : int or Int\n Index to remove value.\n\n References\n ----------\n - Array class remove and remove_at interfaces document\n - https://bit.ly/3zDO6Cl\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 2, 3])\n >>> arr.remove_at(1)\n >>> arr\n Array([1, 3])\n ' import apysc as ap with ap.DebugInfo(callable_=self.remove_at, locals_=locals(), module_name=__name__, class_=Array): self._validate_index_type_is_int(index=index) if isinstance(index, ap.Int): index_: int = int(index.value) else: index_ = index if (index_ in self._value): del self._value[index_] self._append_remove_at_expression(index=index)
def remove_at(self, index: Union[(int, Int)]) -> None: '\n Remove specified index value from this array.\n\n Parameters\n ----------\n index : int or Int\n Index to remove value.\n\n References\n ----------\n - Array class remove and remove_at interfaces document\n - https://bit.ly/3zDO6Cl\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 2, 3])\n >>> arr.remove_at(1)\n >>> arr\n Array([1, 3])\n ' import apysc as ap with ap.DebugInfo(callable_=self.remove_at, locals_=locals(), module_name=__name__, class_=Array): self._validate_index_type_is_int(index=index) if isinstance(index, ap.Int): index_: int = int(index.value) else: index_ = index if (index_ in self._value): del self._value[index_] self._append_remove_at_expression(index=index)<|docstring|>Remove specified index value from this array. Parameters ---------- index : int or Int Index to remove value. References ---------- - Array class remove and remove_at interfaces document - https://bit.ly/3zDO6Cl Examples -------- >>> import apysc as ap >>> arr: ap.Array = ap.Array([1, 2, 3]) >>> arr.remove_at(1) >>> arr Array([1, 3])<|endoftext|>
acd2e44bcc221bb2900d814f1e89f7b823375629849cc55498a82f2b904ae9f6
def _append_remove_at_expression(self, *, index: Union[(int, Int)]) -> None: '\n Append remove_at method expression.\n\n Parameters\n ----------\n index : int or Int\n Index to remove value.\n ' import apysc as ap with ap.DebugInfo(callable_=self._append_remove_at_expression, locals_=locals(), module_name=__name__, class_=Array): from apysc._type import value_util index_str: str = value_util.get_value_str_for_expression(value=index) expression: str = f'{self.variable_name}.splice({index_str}, 1);' ap.append_js_expression(expression=expression)
Append remove_at method expression. Parameters ---------- index : int or Int Index to remove value.
apysc/_type/array.py
_append_remove_at_expression
simon-ritchie/apysc
16
python
def _append_remove_at_expression(self, *, index: Union[(int, Int)]) -> None: '\n Append remove_at method expression.\n\n Parameters\n ----------\n index : int or Int\n Index to remove value.\n ' import apysc as ap with ap.DebugInfo(callable_=self._append_remove_at_expression, locals_=locals(), module_name=__name__, class_=Array): from apysc._type import value_util index_str: str = value_util.get_value_str_for_expression(value=index) expression: str = f'{self.variable_name}.splice({index_str}, 1);' ap.append_js_expression(expression=expression)
def _append_remove_at_expression(self, *, index: Union[(int, Int)]) -> None: '\n Append remove_at method expression.\n\n Parameters\n ----------\n index : int or Int\n Index to remove value.\n ' import apysc as ap with ap.DebugInfo(callable_=self._append_remove_at_expression, locals_=locals(), module_name=__name__, class_=Array): from apysc._type import value_util index_str: str = value_util.get_value_str_for_expression(value=index) expression: str = f'{self.variable_name}.splice({index_str}, 1);' ap.append_js_expression(expression=expression)<|docstring|>Append remove_at method expression. Parameters ---------- index : int or Int Index to remove value.<|endoftext|>
d9c3ffdbedcc360049c8b3741812c037e601cb0bd05fd5546e54b2be7a38488a
def reverse(self) -> None: '\n Reverse this array in place.\n\n References\n ----------\n - Array class reverse interface document\n - https://simon-ritchie.github.io/apysc/array_reverse.html\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 2, 3])\n >>> arr.reverse()\n >>> arr\n Array([3, 2, 1])\n ' import apysc as ap with ap.DebugInfo(callable_=self.reverse, locals_=locals(), module_name=__name__, class_=Array): self._value.reverse() self._append_reverse_expression()
Reverse this array in place. References ---------- - Array class reverse interface document - https://simon-ritchie.github.io/apysc/array_reverse.html Examples -------- >>> import apysc as ap >>> arr: ap.Array = ap.Array([1, 2, 3]) >>> arr.reverse() >>> arr Array([3, 2, 1])
apysc/_type/array.py
reverse
simon-ritchie/apysc
16
python
def reverse(self) -> None: '\n Reverse this array in place.\n\n References\n ----------\n - Array class reverse interface document\n - https://simon-ritchie.github.io/apysc/array_reverse.html\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 2, 3])\n >>> arr.reverse()\n >>> arr\n Array([3, 2, 1])\n ' import apysc as ap with ap.DebugInfo(callable_=self.reverse, locals_=locals(), module_name=__name__, class_=Array): self._value.reverse() self._append_reverse_expression()
def reverse(self) -> None: '\n Reverse this array in place.\n\n References\n ----------\n - Array class reverse interface document\n - https://simon-ritchie.github.io/apysc/array_reverse.html\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 2, 3])\n >>> arr.reverse()\n >>> arr\n Array([3, 2, 1])\n ' import apysc as ap with ap.DebugInfo(callable_=self.reverse, locals_=locals(), module_name=__name__, class_=Array): self._value.reverse() self._append_reverse_expression()<|docstring|>Reverse this array in place. References ---------- - Array class reverse interface document - https://simon-ritchie.github.io/apysc/array_reverse.html Examples -------- >>> import apysc as ap >>> arr: ap.Array = ap.Array([1, 2, 3]) >>> arr.reverse() >>> arr Array([3, 2, 1])<|endoftext|>
d9492865d710613a2d3c7c6e54c25ad3693a18b11b7cdce2f9e2de6bfb9e0857
def _append_reverse_expression(self) -> None: '\n Append reverse method expression.\n ' import apysc as ap with ap.DebugInfo(callable_=self._append_reverse_expression, locals_=locals(), module_name=__name__, class_=Array): expression: str = f'{self.variable_name}.reverse();' ap.append_js_expression(expression=expression)
Append reverse method expression.
apysc/_type/array.py
_append_reverse_expression
simon-ritchie/apysc
16
python
def _append_reverse_expression(self) -> None: '\n \n ' import apysc as ap with ap.DebugInfo(callable_=self._append_reverse_expression, locals_=locals(), module_name=__name__, class_=Array): expression: str = f'{self.variable_name}.reverse();' ap.append_js_expression(expression=expression)
def _append_reverse_expression(self) -> None: '\n \n ' import apysc as ap with ap.DebugInfo(callable_=self._append_reverse_expression, locals_=locals(), module_name=__name__, class_=Array): expression: str = f'{self.variable_name}.reverse();' ap.append_js_expression(expression=expression)<|docstring|>Append reverse method expression.<|endoftext|>
46fee2cc7e9b51ff5d4237dc489250d466093bb38082dc754bb770631e0b9ee9
def sort(self, *, ascending: bool=True) -> None: '\n Sort this array in place.\n\n Parameters\n ----------\n ascending : bool, default True\n Sort by ascending or not. If False is specified,\n values will be descending.\n\n References\n ----------\n - Array class sort interface document\n - https://simon-ritchie.github.io/apysc/array_sort.html\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([3, 5, 1, 4, 2])\n >>> arr.sort()\n >>> arr\n Array([1, 2, 3, 4, 5])\n\n >>> arr.sort(ascending=False)\n >>> arr\n Array([5, 4, 3, 2, 1])\n ' import apysc as ap with ap.DebugInfo(callable_=self.sort, locals_=locals(), module_name=__name__, class_=Array): self._value.sort() self._append_sort_expression() if (not ascending): self.reverse()
Sort this array in place. Parameters ---------- ascending : bool, default True Sort by ascending or not. If False is specified, values will be descending. References ---------- - Array class sort interface document - https://simon-ritchie.github.io/apysc/array_sort.html Examples -------- >>> import apysc as ap >>> arr: ap.Array = ap.Array([3, 5, 1, 4, 2]) >>> arr.sort() >>> arr Array([1, 2, 3, 4, 5]) >>> arr.sort(ascending=False) >>> arr Array([5, 4, 3, 2, 1])
apysc/_type/array.py
sort
simon-ritchie/apysc
16
python
def sort(self, *, ascending: bool=True) -> None: '\n Sort this array in place.\n\n Parameters\n ----------\n ascending : bool, default True\n Sort by ascending or not. If False is specified,\n values will be descending.\n\n References\n ----------\n - Array class sort interface document\n - https://simon-ritchie.github.io/apysc/array_sort.html\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([3, 5, 1, 4, 2])\n >>> arr.sort()\n >>> arr\n Array([1, 2, 3, 4, 5])\n\n >>> arr.sort(ascending=False)\n >>> arr\n Array([5, 4, 3, 2, 1])\n ' import apysc as ap with ap.DebugInfo(callable_=self.sort, locals_=locals(), module_name=__name__, class_=Array): self._value.sort() self._append_sort_expression() if (not ascending): self.reverse()
def sort(self, *, ascending: bool=True) -> None: '\n Sort this array in place.\n\n Parameters\n ----------\n ascending : bool, default True\n Sort by ascending or not. If False is specified,\n values will be descending.\n\n References\n ----------\n - Array class sort interface document\n - https://simon-ritchie.github.io/apysc/array_sort.html\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([3, 5, 1, 4, 2])\n >>> arr.sort()\n >>> arr\n Array([1, 2, 3, 4, 5])\n\n >>> arr.sort(ascending=False)\n >>> arr\n Array([5, 4, 3, 2, 1])\n ' import apysc as ap with ap.DebugInfo(callable_=self.sort, locals_=locals(), module_name=__name__, class_=Array): self._value.sort() self._append_sort_expression() if (not ascending): self.reverse()<|docstring|>Sort this array in place. Parameters ---------- ascending : bool, default True Sort by ascending or not. If False is specified, values will be descending. References ---------- - Array class sort interface document - https://simon-ritchie.github.io/apysc/array_sort.html Examples -------- >>> import apysc as ap >>> arr: ap.Array = ap.Array([3, 5, 1, 4, 2]) >>> arr.sort() >>> arr Array([1, 2, 3, 4, 5]) >>> arr.sort(ascending=False) >>> arr Array([5, 4, 3, 2, 1])<|endoftext|>
14600cafa973bb9c1fea288f13985faf2b3890bec36b32bed46282210b6d5d40
def _append_sort_expression(self) -> None: '\n Append sort method expression.\n ' import apysc as ap with ap.DebugInfo(callable_=self._append_sort_expression, locals_=locals(), module_name=__name__, class_=Array): expression: str = f'{self.variable_name}.sort();' ap.append_js_expression(expression=expression)
Append sort method expression.
apysc/_type/array.py
_append_sort_expression
simon-ritchie/apysc
16
python
def _append_sort_expression(self) -> None: '\n \n ' import apysc as ap with ap.DebugInfo(callable_=self._append_sort_expression, locals_=locals(), module_name=__name__, class_=Array): expression: str = f'{self.variable_name}.sort();' ap.append_js_expression(expression=expression)
def _append_sort_expression(self) -> None: '\n \n ' import apysc as ap with ap.DebugInfo(callable_=self._append_sort_expression, locals_=locals(), module_name=__name__, class_=Array): expression: str = f'{self.variable_name}.sort();' ap.append_js_expression(expression=expression)<|docstring|>Append sort method expression.<|endoftext|>
40bdbdcf9688ec54d807460ea0084644de3f902510a16de70e7b8032292baff1
def slice(self, *, start: Optional[Union[(int, Int)]]=None, end: Optional[Union[(int, Int)]]=None) -> 'Array': '\n Slice this array by specified start and end indexes.\n\n Parameters\n ----------\n start : int or Int or None, default None\n Slicing start index.\n end : int or Int or None, default None\n Slicing end index (this index will not be including).\n\n Returns\n -------\n sliced_arr : Array\n Sliced array.\n\n References\n ----------\n - Array class slice interface document\n - https://simon-ritchie.github.io/apysc/array_slice.html\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 2, 3, 4])\n >>> arr.slice(start=1, end=3)\n Array([2, 3])\n\n >>> arr.slice(start=1)\n Array([2, 3, 4])\n\n >>> arr.slice(end=2)\n Array([1, 2])\n ' import apysc as ap with ap.DebugInfo(callable_=self.slice, locals_=locals(), module_name=__name__, class_=Array): if isinstance(start, ap.Int): start_: Optional[int] = int(start.value) else: start_ = start if isinstance(end, ap.Int): end_: Optional[int] = int(end.value) else: end_ = end sliced_arr: Array = self._copy() sliced_arr._value = self._value[slice(start_, end_)] self._append_slice_expression(sliced_arr=sliced_arr, start=start, end=end) return sliced_arr
Slice this array by specified start and end indexes. Parameters ---------- start : int or Int or None, default None Slicing start index. end : int or Int or None, default None Slicing end index (this index will not be including). Returns ------- sliced_arr : Array Sliced array. References ---------- - Array class slice interface document - https://simon-ritchie.github.io/apysc/array_slice.html Examples -------- >>> import apysc as ap >>> arr: ap.Array = ap.Array([1, 2, 3, 4]) >>> arr.slice(start=1, end=3) Array([2, 3]) >>> arr.slice(start=1) Array([2, 3, 4]) >>> arr.slice(end=2) Array([1, 2])
apysc/_type/array.py
slice
simon-ritchie/apysc
16
python
def slice(self, *, start: Optional[Union[(int, Int)]]=None, end: Optional[Union[(int, Int)]]=None) -> 'Array': '\n Slice this array by specified start and end indexes.\n\n Parameters\n ----------\n start : int or Int or None, default None\n Slicing start index.\n end : int or Int or None, default None\n Slicing end index (this index will not be including).\n\n Returns\n -------\n sliced_arr : Array\n Sliced array.\n\n References\n ----------\n - Array class slice interface document\n - https://simon-ritchie.github.io/apysc/array_slice.html\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 2, 3, 4])\n >>> arr.slice(start=1, end=3)\n Array([2, 3])\n\n >>> arr.slice(start=1)\n Array([2, 3, 4])\n\n >>> arr.slice(end=2)\n Array([1, 2])\n ' import apysc as ap with ap.DebugInfo(callable_=self.slice, locals_=locals(), module_name=__name__, class_=Array): if isinstance(start, ap.Int): start_: Optional[int] = int(start.value) else: start_ = start if isinstance(end, ap.Int): end_: Optional[int] = int(end.value) else: end_ = end sliced_arr: Array = self._copy() sliced_arr._value = self._value[slice(start_, end_)] self._append_slice_expression(sliced_arr=sliced_arr, start=start, end=end) return sliced_arr
def slice(self, *, start: Optional[Union[(int, Int)]]=None, end: Optional[Union[(int, Int)]]=None) -> 'Array': '\n Slice this array by specified start and end indexes.\n\n Parameters\n ----------\n start : int or Int or None, default None\n Slicing start index.\n end : int or Int or None, default None\n Slicing end index (this index will not be including).\n\n Returns\n -------\n sliced_arr : Array\n Sliced array.\n\n References\n ----------\n - Array class slice interface document\n - https://simon-ritchie.github.io/apysc/array_slice.html\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 2, 3, 4])\n >>> arr.slice(start=1, end=3)\n Array([2, 3])\n\n >>> arr.slice(start=1)\n Array([2, 3, 4])\n\n >>> arr.slice(end=2)\n Array([1, 2])\n ' import apysc as ap with ap.DebugInfo(callable_=self.slice, locals_=locals(), module_name=__name__, class_=Array): if isinstance(start, ap.Int): start_: Optional[int] = int(start.value) else: start_ = start if isinstance(end, ap.Int): end_: Optional[int] = int(end.value) else: end_ = end sliced_arr: Array = self._copy() sliced_arr._value = self._value[slice(start_, end_)] self._append_slice_expression(sliced_arr=sliced_arr, start=start, end=end) return sliced_arr<|docstring|>Slice this array by specified start and end indexes. Parameters ---------- start : int or Int or None, default None Slicing start index. end : int or Int or None, default None Slicing end index (this index will not be including). Returns ------- sliced_arr : Array Sliced array. References ---------- - Array class slice interface document - https://simon-ritchie.github.io/apysc/array_slice.html Examples -------- >>> import apysc as ap >>> arr: ap.Array = ap.Array([1, 2, 3, 4]) >>> arr.slice(start=1, end=3) Array([2, 3]) >>> arr.slice(start=1) Array([2, 3, 4]) >>> arr.slice(end=2) Array([1, 2])<|endoftext|>
aa88234ce74b2c77c80b76e13069429f79d1657dc4e9423b8a2ed402da045480
def _append_slice_expression(self, *, sliced_arr: VariableNameInterface, start: Optional[Union[(int, Int)]], end: Optional[Union[(int, Int)]]) -> None: '\n Append slice method expression.\n\n Parameters\n ----------\n sliced_arr : Array\n Sliced array.\n start : int or Int or None\n Slicing start index.\n end : int or Int or None\n Slicing end index.\n ' import apysc as ap with ap.DebugInfo(callable_=self._append_slice_expression, locals_=locals(), module_name=__name__, class_=Array): if (start is None): start = 0 expression: str = f'var {sliced_arr.variable_name} = {self.variable_name}.slice({start}' if (end is not None): expression += f', {end}' expression += ');' ap.append_js_expression(expression=expression)
Append slice method expression. Parameters ---------- sliced_arr : Array Sliced array. start : int or Int or None Slicing start index. end : int or Int or None Slicing end index.
apysc/_type/array.py
_append_slice_expression
simon-ritchie/apysc
16
python
def _append_slice_expression(self, *, sliced_arr: VariableNameInterface, start: Optional[Union[(int, Int)]], end: Optional[Union[(int, Int)]]) -> None: '\n Append slice method expression.\n\n Parameters\n ----------\n sliced_arr : Array\n Sliced array.\n start : int or Int or None\n Slicing start index.\n end : int or Int or None\n Slicing end index.\n ' import apysc as ap with ap.DebugInfo(callable_=self._append_slice_expression, locals_=locals(), module_name=__name__, class_=Array): if (start is None): start = 0 expression: str = f'var {sliced_arr.variable_name} = {self.variable_name}.slice({start}' if (end is not None): expression += f', {end}' expression += ');' ap.append_js_expression(expression=expression)
def _append_slice_expression(self, *, sliced_arr: VariableNameInterface, start: Optional[Union[(int, Int)]], end: Optional[Union[(int, Int)]]) -> None: '\n Append slice method expression.\n\n Parameters\n ----------\n sliced_arr : Array\n Sliced array.\n start : int or Int or None\n Slicing start index.\n end : int or Int or None\n Slicing end index.\n ' import apysc as ap with ap.DebugInfo(callable_=self._append_slice_expression, locals_=locals(), module_name=__name__, class_=Array): if (start is None): start = 0 expression: str = f'var {sliced_arr.variable_name} = {self.variable_name}.slice({start}' if (end is not None): expression += f', {end}' expression += ');' ap.append_js_expression(expression=expression)<|docstring|>Append slice method expression. Parameters ---------- sliced_arr : Array Sliced array. start : int or Int or None Slicing start index. end : int or Int or None Slicing end index.<|endoftext|>
bad3649734137dddf6dccf74f95d8156184d68beabb5b37ddae211985d5da692
def __getitem__(self, index: Union[(int, Int)]) -> T: "\n Get a specified index single value.\n\n Parameters\n ----------\n index : int or Int\n Array's index to get value. Currently not supported tuple\n value (e.g., slicing).\n\n Returns\n -------\n value : *\n Specified index's value.\n\n Raises\n ------\n ValueError\n If specified index type is not int and Int.\n " import apysc as ap with ap.DebugInfo(callable_='__getitem__', locals_=locals(), module_name=__name__, class_=Array): self._validate_index_type_is_int(index=index) index_: int = self._get_builtin_int_from_index(index=index) value: Any if (len(self._value) <= index): value = ap.AnyValue(None) else: value = self._value[index_] self._append_getitem_expression(index=index, value=value) return value
Get a specified index single value. Parameters ---------- index : int or Int Array's index to get value. Currently not supported tuple value (e.g., slicing). Returns ------- value : * Specified index's value. Raises ------ ValueError If specified index type is not int and Int.
apysc/_type/array.py
__getitem__
simon-ritchie/apysc
16
python
def __getitem__(self, index: Union[(int, Int)]) -> T: "\n Get a specified index single value.\n\n Parameters\n ----------\n index : int or Int\n Array's index to get value. Currently not supported tuple\n value (e.g., slicing).\n\n Returns\n -------\n value : *\n Specified index's value.\n\n Raises\n ------\n ValueError\n If specified index type is not int and Int.\n " import apysc as ap with ap.DebugInfo(callable_='__getitem__', locals_=locals(), module_name=__name__, class_=Array): self._validate_index_type_is_int(index=index) index_: int = self._get_builtin_int_from_index(index=index) value: Any if (len(self._value) <= index): value = ap.AnyValue(None) else: value = self._value[index_] self._append_getitem_expression(index=index, value=value) return value
def __getitem__(self, index: Union[(int, Int)]) -> T: "\n Get a specified index single value.\n\n Parameters\n ----------\n index : int or Int\n Array's index to get value. Currently not supported tuple\n value (e.g., slicing).\n\n Returns\n -------\n value : *\n Specified index's value.\n\n Raises\n ------\n ValueError\n If specified index type is not int and Int.\n " import apysc as ap with ap.DebugInfo(callable_='__getitem__', locals_=locals(), module_name=__name__, class_=Array): self._validate_index_type_is_int(index=index) index_: int = self._get_builtin_int_from_index(index=index) value: Any if (len(self._value) <= index): value = ap.AnyValue(None) else: value = self._value[index_] self._append_getitem_expression(index=index, value=value) return value<|docstring|>Get a specified index single value. Parameters ---------- index : int or Int Array's index to get value. Currently not supported tuple value (e.g., slicing). Returns ------- value : * Specified index's value. Raises ------ ValueError If specified index type is not int and Int.<|endoftext|>
1bf7c2138d5d0f701384ea6b2d623e5162da655499e0596d6601b4c5e1c6a26f
def _get_builtin_int_from_index(self, *, index: Union[(int, Int)]) -> int: "\n Get Python builtin integer from index value.\n\n Parameters\n ----------\n index : int or Int\n Specified array's index.\n\n Returns\n -------\n builtin_int_index : int\n Python builtin integer index value.\n " import apysc as ap if isinstance(index, ap.Int): return int(index.value) return index
Get Python builtin integer from index value. Parameters ---------- index : int or Int Specified array's index. Returns ------- builtin_int_index : int Python builtin integer index value.
apysc/_type/array.py
_get_builtin_int_from_index
simon-ritchie/apysc
16
python
def _get_builtin_int_from_index(self, *, index: Union[(int, Int)]) -> int: "\n Get Python builtin integer from index value.\n\n Parameters\n ----------\n index : int or Int\n Specified array's index.\n\n Returns\n -------\n builtin_int_index : int\n Python builtin integer index value.\n " import apysc as ap if isinstance(index, ap.Int): return int(index.value) return index
def _get_builtin_int_from_index(self, *, index: Union[(int, Int)]) -> int: "\n Get Python builtin integer from index value.\n\n Parameters\n ----------\n index : int or Int\n Specified array's index.\n\n Returns\n -------\n builtin_int_index : int\n Python builtin integer index value.\n " import apysc as ap if isinstance(index, ap.Int): return int(index.value) return index<|docstring|>Get Python builtin integer from index value. Parameters ---------- index : int or Int Specified array's index. Returns ------- builtin_int_index : int Python builtin integer index value.<|endoftext|>
5ebbb7a00c2918a2357526d49ec3c92d636584d5cdd04393dfc3e99a89357f4b
def _validate_index_type_is_int(self, *, index: Union[(int, Int)]) -> None: '\n Validate whether index value type is int (or Int) or not.\n\n Parameters\n ----------\n index : int or Int\n Index value to check.\n\n Raises\n ------\n ValueError\n If index type is not int or Int type.\n ' if isinstance(index, (int, Int)): return raise ValueError('Currently indexing is only supported int or Int types. If you need to slice array please use slice method.')
Validate whether index value type is int (or Int) or not. Parameters ---------- index : int or Int Index value to check. Raises ------ ValueError If index type is not int or Int type.
apysc/_type/array.py
_validate_index_type_is_int
simon-ritchie/apysc
16
python
def _validate_index_type_is_int(self, *, index: Union[(int, Int)]) -> None: '\n Validate whether index value type is int (or Int) or not.\n\n Parameters\n ----------\n index : int or Int\n Index value to check.\n\n Raises\n ------\n ValueError\n If index type is not int or Int type.\n ' if isinstance(index, (int, Int)): return raise ValueError('Currently indexing is only supported int or Int types. If you need to slice array please use slice method.')
def _validate_index_type_is_int(self, *, index: Union[(int, Int)]) -> None: '\n Validate whether index value type is int (or Int) or not.\n\n Parameters\n ----------\n index : int or Int\n Index value to check.\n\n Raises\n ------\n ValueError\n If index type is not int or Int type.\n ' if isinstance(index, (int, Int)): return raise ValueError('Currently indexing is only supported int or Int types. If you need to slice array please use slice method.')<|docstring|>Validate whether index value type is int (or Int) or not. Parameters ---------- index : int or Int Index value to check. Raises ------ ValueError If index type is not int or Int type.<|endoftext|>
98db2444a0eb3d82ac30b7230567c6a87fe4f5df8dbd1f1d370cb7011bdc1b8a
def _append_getitem_expression(self, *, index: Union[(int, Int)], value: T) -> None: "\n Append __getitem__ expression.\n\n Parameters\n ----------\n index : int or Int\n Array's index to get value.\n value : *\n Specified index's value.\n " import apysc as ap with ap.DebugInfo(callable_=self._append_getitem_expression, locals_=locals(), module_name=__name__, class_=Array): from apysc._type import value_util value_: VariableNameInterface if (not isinstance(value, VariableNameInterface)): value_ = ap.AnyValue(None) else: value_ = value index_str: str = value_util.get_value_str_for_expression(value=index) expression: str = f'var {value_.variable_name} = {self.variable_name}[{index_str}];' ap.append_js_expression(expression=expression)
Append __getitem__ expression. Parameters ---------- index : int or Int Array's index to get value. value : * Specified index's value.
apysc/_type/array.py
_append_getitem_expression
simon-ritchie/apysc
16
python
def _append_getitem_expression(self, *, index: Union[(int, Int)], value: T) -> None: "\n Append __getitem__ expression.\n\n Parameters\n ----------\n index : int or Int\n Array's index to get value.\n value : *\n Specified index's value.\n " import apysc as ap with ap.DebugInfo(callable_=self._append_getitem_expression, locals_=locals(), module_name=__name__, class_=Array): from apysc._type import value_util value_: VariableNameInterface if (not isinstance(value, VariableNameInterface)): value_ = ap.AnyValue(None) else: value_ = value index_str: str = value_util.get_value_str_for_expression(value=index) expression: str = f'var {value_.variable_name} = {self.variable_name}[{index_str}];' ap.append_js_expression(expression=expression)
def _append_getitem_expression(self, *, index: Union[(int, Int)], value: T) -> None: "\n Append __getitem__ expression.\n\n Parameters\n ----------\n index : int or Int\n Array's index to get value.\n value : *\n Specified index's value.\n " import apysc as ap with ap.DebugInfo(callable_=self._append_getitem_expression, locals_=locals(), module_name=__name__, class_=Array): from apysc._type import value_util value_: VariableNameInterface if (not isinstance(value, VariableNameInterface)): value_ = ap.AnyValue(None) else: value_ = value index_str: str = value_util.get_value_str_for_expression(value=index) expression: str = f'var {value_.variable_name} = {self.variable_name}[{index_str}];' ap.append_js_expression(expression=expression)<|docstring|>Append __getitem__ expression. Parameters ---------- index : int or Int Array's index to get value. value : * Specified index's value.<|endoftext|>
692fa3ff75d62cd645ee4cbd08246cde095e178b53f9a847cf2ac4fe777ea8d1
def __setitem__(self, index: Union[(int, Int)], value: T) -> None: "\n Set value to a specified index.\n\n Parameters\n ----------\n index : int or Int\n Array's index to set value. Currently not supported tuple\n value (e.g., slicing).\n value : *\n Any value to set.\n\n Raises\n ------\n ValueError\n If specified index type is not int and Int.\n " import apysc as ap with ap.DebugInfo(callable_='__setitem__', locals_=locals(), module_name=__name__, class_=Array): self._validate_index_type_is_int(index=index) index_: int = self._get_builtin_int_from_index(index=index) self._value[index_] = value self._append_setitem_expression(index=index, value=value)
Set value to a specified index. Parameters ---------- index : int or Int Array's index to set value. Currently not supported tuple value (e.g., slicing). value : * Any value to set. Raises ------ ValueError If specified index type is not int and Int.
apysc/_type/array.py
__setitem__
simon-ritchie/apysc
16
python
def __setitem__(self, index: Union[(int, Int)], value: T) -> None: "\n Set value to a specified index.\n\n Parameters\n ----------\n index : int or Int\n Array's index to set value. Currently not supported tuple\n value (e.g., slicing).\n value : *\n Any value to set.\n\n Raises\n ------\n ValueError\n If specified index type is not int and Int.\n " import apysc as ap with ap.DebugInfo(callable_='__setitem__', locals_=locals(), module_name=__name__, class_=Array): self._validate_index_type_is_int(index=index) index_: int = self._get_builtin_int_from_index(index=index) self._value[index_] = value self._append_setitem_expression(index=index, value=value)
def __setitem__(self, index: Union[(int, Int)], value: T) -> None: "\n Set value to a specified index.\n\n Parameters\n ----------\n index : int or Int\n Array's index to set value. Currently not supported tuple\n value (e.g., slicing).\n value : *\n Any value to set.\n\n Raises\n ------\n ValueError\n If specified index type is not int and Int.\n " import apysc as ap with ap.DebugInfo(callable_='__setitem__', locals_=locals(), module_name=__name__, class_=Array): self._validate_index_type_is_int(index=index) index_: int = self._get_builtin_int_from_index(index=index) self._value[index_] = value self._append_setitem_expression(index=index, value=value)<|docstring|>Set value to a specified index. Parameters ---------- index : int or Int Array's index to set value. Currently not supported tuple value (e.g., slicing). value : * Any value to set. Raises ------ ValueError If specified index type is not int and Int.<|endoftext|>
e3478eb441b4ead0cf6f7574cc499b8474e6baeb5a340432f2942553c47a45f5
def _append_setitem_expression(self, *, index: Union[(int, Int)], value: T) -> None: "\n Append __setitem__ method expression.\n\n Parameters\n ----------\n index : int or Int\n Array's index to set value. Currently not supported tuple\n value (e.g., slicing).\n value : *\n Any value to set.\n " import apysc as ap with ap.DebugInfo(callable_=self._append_setitem_expression, locals_=locals(), module_name=__name__, class_=Array): from apysc._type import value_util index_str: str = value_util.get_value_str_for_expression(value=index) value_str: str = value_util.get_value_str_for_expression(value=value) expression: str = f'{self.variable_name}[{index_str}] = {value_str};' ap.append_js_expression(expression=expression)
Append __setitem__ method expression. Parameters ---------- index : int or Int Array's index to set value. Currently not supported tuple value (e.g., slicing). value : * Any value to set.
apysc/_type/array.py
_append_setitem_expression
simon-ritchie/apysc
16
python
def _append_setitem_expression(self, *, index: Union[(int, Int)], value: T) -> None: "\n Append __setitem__ method expression.\n\n Parameters\n ----------\n index : int or Int\n Array's index to set value. Currently not supported tuple\n value (e.g., slicing).\n value : *\n Any value to set.\n " import apysc as ap with ap.DebugInfo(callable_=self._append_setitem_expression, locals_=locals(), module_name=__name__, class_=Array): from apysc._type import value_util index_str: str = value_util.get_value_str_for_expression(value=index) value_str: str = value_util.get_value_str_for_expression(value=value) expression: str = f'{self.variable_name}[{index_str}] = {value_str};' ap.append_js_expression(expression=expression)
def _append_setitem_expression(self, *, index: Union[(int, Int)], value: T) -> None: "\n Append __setitem__ method expression.\n\n Parameters\n ----------\n index : int or Int\n Array's index to set value. Currently not supported tuple\n value (e.g., slicing).\n value : *\n Any value to set.\n " import apysc as ap with ap.DebugInfo(callable_=self._append_setitem_expression, locals_=locals(), module_name=__name__, class_=Array): from apysc._type import value_util index_str: str = value_util.get_value_str_for_expression(value=index) value_str: str = value_util.get_value_str_for_expression(value=value) expression: str = f'{self.variable_name}[{index_str}] = {value_str};' ap.append_js_expression(expression=expression)<|docstring|>Append __setitem__ method expression. Parameters ---------- index : int or Int Array's index to set value. Currently not supported tuple value (e.g., slicing). value : * Any value to set.<|endoftext|>
95320aff7233a77f603cefe30fffc7831727921412de714d07e664aeb7f86bd7
def __delitem__(self, index: Union[(int, Int)]) -> None: "\n Delete specified index value from this array.\n\n Parameters\n ----------\n index : int or Int\n Array's index to delete. Currently not supported tuple\n value (e.g., slicing).\n\n Raises\n ------\n ValueError\n If specified index type is not int and Int.\n " import apysc as ap with ap.DebugInfo(callable_='__delitem__', locals_=locals(), module_name=__name__, class_=Array): self.remove_at(index=index)
Delete specified index value from this array. Parameters ---------- index : int or Int Array's index to delete. Currently not supported tuple value (e.g., slicing). Raises ------ ValueError If specified index type is not int and Int.
apysc/_type/array.py
__delitem__
simon-ritchie/apysc
16
python
def __delitem__(self, index: Union[(int, Int)]) -> None: "\n Delete specified index value from this array.\n\n Parameters\n ----------\n index : int or Int\n Array's index to delete. Currently not supported tuple\n value (e.g., slicing).\n\n Raises\n ------\n ValueError\n If specified index type is not int and Int.\n " import apysc as ap with ap.DebugInfo(callable_='__delitem__', locals_=locals(), module_name=__name__, class_=Array): self.remove_at(index=index)
def __delitem__(self, index: Union[(int, Int)]) -> None: "\n Delete specified index value from this array.\n\n Parameters\n ----------\n index : int or Int\n Array's index to delete. Currently not supported tuple\n value (e.g., slicing).\n\n Raises\n ------\n ValueError\n If specified index type is not int and Int.\n " import apysc as ap with ap.DebugInfo(callable_='__delitem__', locals_=locals(), module_name=__name__, class_=Array): self.remove_at(index=index)<|docstring|>Delete specified index value from this array. Parameters ---------- index : int or Int Array's index to delete. Currently not supported tuple value (e.g., slicing). Raises ------ ValueError If specified index type is not int and Int.<|endoftext|>
6b1e45d3da1c229c9702cf24b075cf64591f8edc52d3b555f8899bad2390e048
@property def length(self) -> Int: "\n Get length of this array.\n\n Returns\n -------\n length : Int\n This array's length.\n\n References\n ----------\n - Array class length interface document\n - https://simon-ritchie.github.io/apysc/array_length.html\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 2, 3])\n >>> arr.length\n Int(3)\n " import apysc as ap with ap.DebugInfo(callable_='length', locals_=locals(), module_name=__name__, class_=Array): length: ap.Int = ap.Int(len(self._value)) self._append_length_expression(length=length) return length
Get length of this array. Returns ------- length : Int This array's length. References ---------- - Array class length interface document - https://simon-ritchie.github.io/apysc/array_length.html Examples -------- >>> import apysc as ap >>> arr: ap.Array = ap.Array([1, 2, 3]) >>> arr.length Int(3)
apysc/_type/array.py
length
simon-ritchie/apysc
16
python
@property def length(self) -> Int: "\n Get length of this array.\n\n Returns\n -------\n length : Int\n This array's length.\n\n References\n ----------\n - Array class length interface document\n - https://simon-ritchie.github.io/apysc/array_length.html\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 2, 3])\n >>> arr.length\n Int(3)\n " import apysc as ap with ap.DebugInfo(callable_='length', locals_=locals(), module_name=__name__, class_=Array): length: ap.Int = ap.Int(len(self._value)) self._append_length_expression(length=length) return length
@property def length(self) -> Int: "\n Get length of this array.\n\n Returns\n -------\n length : Int\n This array's length.\n\n References\n ----------\n - Array class length interface document\n - https://simon-ritchie.github.io/apysc/array_length.html\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 2, 3])\n >>> arr.length\n Int(3)\n " import apysc as ap with ap.DebugInfo(callable_='length', locals_=locals(), module_name=__name__, class_=Array): length: ap.Int = ap.Int(len(self._value)) self._append_length_expression(length=length) return length<|docstring|>Get length of this array. Returns ------- length : Int This array's length. References ---------- - Array class length interface document - https://simon-ritchie.github.io/apysc/array_length.html Examples -------- >>> import apysc as ap >>> arr: ap.Array = ap.Array([1, 2, 3]) >>> arr.length Int(3)<|endoftext|>
e854a428c8253c9338dc2f4db790dfd32af9767843299b8383c7e74ca4536c14
def _append_length_expression(self, *, length: Int) -> None: '\n Append length method expression.\n\n Parameters\n ----------\n length : Int\n Created length Int variable.\n ' import apysc as ap with ap.DebugInfo(callable_=self._append_length_expression, locals_=locals(), module_name=__name__, class_=Array): expression: str = f'{length.variable_name} = {self.variable_name}.length;' ap.append_js_expression(expression=expression)
Append length method expression. Parameters ---------- length : Int Created length Int variable.
apysc/_type/array.py
_append_length_expression
simon-ritchie/apysc
16
python
def _append_length_expression(self, *, length: Int) -> None: '\n Append length method expression.\n\n Parameters\n ----------\n length : Int\n Created length Int variable.\n ' import apysc as ap with ap.DebugInfo(callable_=self._append_length_expression, locals_=locals(), module_name=__name__, class_=Array): expression: str = f'{length.variable_name} = {self.variable_name}.length;' ap.append_js_expression(expression=expression)
def _append_length_expression(self, *, length: Int) -> None: '\n Append length method expression.\n\n Parameters\n ----------\n length : Int\n Created length Int variable.\n ' import apysc as ap with ap.DebugInfo(callable_=self._append_length_expression, locals_=locals(), module_name=__name__, class_=Array): expression: str = f'{length.variable_name} = {self.variable_name}.length;' ap.append_js_expression(expression=expression)<|docstring|>Append length method expression. Parameters ---------- length : Int Created length Int variable.<|endoftext|>
fc3209e61f5768b3180f7fa211f601601f5f90e0c05bab6569e3c423da6f0c2f
def __len__(self) -> None: "\n This method is disabled and can't use from Array instance.\n " raise Exception("Array instance can't apply len function. Please use length property instead.")
This method is disabled and can't use from Array instance.
apysc/_type/array.py
__len__
simon-ritchie/apysc
16
python
def __len__(self) -> None: "\n \n " raise Exception("Array instance can't apply len function. Please use length property instead.")
def __len__(self) -> None: "\n \n " raise Exception("Array instance can't apply len function. Please use length property instead.")<|docstring|>This method is disabled and can't use from Array instance.<|endoftext|>
8bd38c404f933e74ce1d73654a8fedf39b92f4b7d627d784a0690d9e62d6f47b
def join(self, sep: Union[(str, String)]) -> String: "\n Join this array values with specified separator string.\n\n Parameters\n ----------\n sep : str or String\n Separator string.\n\n Returns\n -------\n joined : String\n Joined string.\n\n References\n ----------\n - Array class join interface document\n - https://simon-ritchie.github.io/apysc/array_join.html\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 2, 3])\n >>> arr.join(sep=', ')\n String('1, 2, 3')\n " import apysc as ap with ap.DebugInfo(callable_=self.join, locals_=locals(), module_name=__name__, class_=Array): if isinstance(sep, ap.String): sep_: str = sep._value else: sep_ = sep values_: List[Any] = [str(value) for value in self._value] joined: ap.String = ap.String(sep_.join(values_)) self._append_join_expression(joined=joined, sep=sep) return joined
Join this array values with specified separator string. Parameters ---------- sep : str or String Separator string. Returns ------- joined : String Joined string. References ---------- - Array class join interface document - https://simon-ritchie.github.io/apysc/array_join.html Examples -------- >>> import apysc as ap >>> arr: ap.Array = ap.Array([1, 2, 3]) >>> arr.join(sep=', ') String('1, 2, 3')
apysc/_type/array.py
join
simon-ritchie/apysc
16
python
def join(self, sep: Union[(str, String)]) -> String: "\n Join this array values with specified separator string.\n\n Parameters\n ----------\n sep : str or String\n Separator string.\n\n Returns\n -------\n joined : String\n Joined string.\n\n References\n ----------\n - Array class join interface document\n - https://simon-ritchie.github.io/apysc/array_join.html\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 2, 3])\n >>> arr.join(sep=', ')\n String('1, 2, 3')\n " import apysc as ap with ap.DebugInfo(callable_=self.join, locals_=locals(), module_name=__name__, class_=Array): if isinstance(sep, ap.String): sep_: str = sep._value else: sep_ = sep values_: List[Any] = [str(value) for value in self._value] joined: ap.String = ap.String(sep_.join(values_)) self._append_join_expression(joined=joined, sep=sep) return joined
def join(self, sep: Union[(str, String)]) -> String: "\n Join this array values with specified separator string.\n\n Parameters\n ----------\n sep : str or String\n Separator string.\n\n Returns\n -------\n joined : String\n Joined string.\n\n References\n ----------\n - Array class join interface document\n - https://simon-ritchie.github.io/apysc/array_join.html\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 2, 3])\n >>> arr.join(sep=', ')\n String('1, 2, 3')\n " import apysc as ap with ap.DebugInfo(callable_=self.join, locals_=locals(), module_name=__name__, class_=Array): if isinstance(sep, ap.String): sep_: str = sep._value else: sep_ = sep values_: List[Any] = [str(value) for value in self._value] joined: ap.String = ap.String(sep_.join(values_)) self._append_join_expression(joined=joined, sep=sep) return joined<|docstring|>Join this array values with specified separator string. Parameters ---------- sep : str or String Separator string. Returns ------- joined : String Joined string. References ---------- - Array class join interface document - https://simon-ritchie.github.io/apysc/array_join.html Examples -------- >>> import apysc as ap >>> arr: ap.Array = ap.Array([1, 2, 3]) >>> arr.join(sep=', ') String('1, 2, 3')<|endoftext|>
2b2e1e013d8c73b08f2ca0d326661e7f72862b1c4d37798230fd12c411b08e5c
def _append_join_expression(self, *, joined: String, sep: Union[(str, String)]) -> None: '\n Append join method expression.\n\n Parameters\n ----------\n joined : String\n Joined string.\n sep : str or String\n Separator string.\n ' import apysc as ap with ap.DebugInfo(callable_=self._append_join_expression, locals_=locals(), module_name=__name__, class_=Array): from apysc._type import value_util sep_str: str = value_util.get_value_str_for_expression(value=sep) expression: str = f'{joined.variable_name} = {self.variable_name}.join({sep_str});' ap.append_js_expression(expression=expression)
Append join method expression. Parameters ---------- joined : String Joined string. sep : str or String Separator string.
apysc/_type/array.py
_append_join_expression
simon-ritchie/apysc
16
python
def _append_join_expression(self, *, joined: String, sep: Union[(str, String)]) -> None: '\n Append join method expression.\n\n Parameters\n ----------\n joined : String\n Joined string.\n sep : str or String\n Separator string.\n ' import apysc as ap with ap.DebugInfo(callable_=self._append_join_expression, locals_=locals(), module_name=__name__, class_=Array): from apysc._type import value_util sep_str: str = value_util.get_value_str_for_expression(value=sep) expression: str = f'{joined.variable_name} = {self.variable_name}.join({sep_str});' ap.append_js_expression(expression=expression)
def _append_join_expression(self, *, joined: String, sep: Union[(str, String)]) -> None: '\n Append join method expression.\n\n Parameters\n ----------\n joined : String\n Joined string.\n sep : str or String\n Separator string.\n ' import apysc as ap with ap.DebugInfo(callable_=self._append_join_expression, locals_=locals(), module_name=__name__, class_=Array): from apysc._type import value_util sep_str: str = value_util.get_value_str_for_expression(value=sep) expression: str = f'{joined.variable_name} = {self.variable_name}.join({sep_str});' ap.append_js_expression(expression=expression)<|docstring|>Append join method expression. Parameters ---------- joined : String Joined string. sep : str or String Separator string.<|endoftext|>
3dddd1f13c57c954db461dc43b932715cbfb996a7e024051b6966518ca383747
def __str__(self) -> str: '\n String conversion method.\n\n Returns\n -------\n string : str\n Converted value string.\n ' if (not hasattr(self, '_value')): return '[]' return str(self._value)
String conversion method. Returns ------- string : str Converted value string.
apysc/_type/array.py
__str__
simon-ritchie/apysc
16
python
def __str__(self) -> str: '\n String conversion method.\n\n Returns\n -------\n string : str\n Converted value string.\n ' if (not hasattr(self, '_value')): return '[]' return str(self._value)
def __str__(self) -> str: '\n String conversion method.\n\n Returns\n -------\n string : str\n Converted value string.\n ' if (not hasattr(self, '_value')): return '[]' return str(self._value)<|docstring|>String conversion method. Returns ------- string : str Converted value string.<|endoftext|>
e8ab82942ca89db0cbc773cc1463e073acb72d32c8261a2c0dc6af1aab031d7d
def __repr__(self) -> str: '\n Get a representation string of this instance.\n\n Returns\n -------\n repr_str : str\n Representation string of this instance.\n ' if (not hasattr(self, '_value')): repr_str: str = 'Array([])' else: repr_str = f'Array({repr(self._value)})' return repr_str
Get a representation string of this instance. Returns ------- repr_str : str Representation string of this instance.
apysc/_type/array.py
__repr__
simon-ritchie/apysc
16
python
def __repr__(self) -> str: '\n Get a representation string of this instance.\n\n Returns\n -------\n repr_str : str\n Representation string of this instance.\n ' if (not hasattr(self, '_value')): repr_str: str = 'Array([])' else: repr_str = f'Array({repr(self._value)})' return repr_str
def __repr__(self) -> str: '\n Get a representation string of this instance.\n\n Returns\n -------\n repr_str : str\n Representation string of this instance.\n ' if (not hasattr(self, '_value')): repr_str: str = 'Array([])' else: repr_str = f'Array({repr(self._value)})' return repr_str<|docstring|>Get a representation string of this instance. Returns ------- repr_str : str Representation string of this instance.<|endoftext|>
aed6aa4fc410773833be4fc9ca6684173bbe0084127ce4176af42e3bb9a6b21e
def index_of(self, value: T) -> Int: "\n Search specified value's index and return it.\n\n Parameters\n ----------\n value : *\n Any value to search.\n\n Returns\n -------\n index : Int\n Found position of index. If value is not contains,\n -1 will be returned.\n\n References\n ----------\n - Array class index_of interface document\n - https://simon-ritchie.github.io/apysc/array_index_of.html\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 3, 5])\n >>> arr.index_of(3)\n Int(1)\n " import apysc as ap with ap.DebugInfo(callable_=self.index_of, locals_=locals(), module_name=__name__, class_=Array): index: ap.Int = ap.Int((- 1)) try: index_: int = self._value.index(value) except Exception: index_ = (- 1) index._value = index_ self._append_index_of_expression(index=index, value=value) return index
Search specified value's index and return it. Parameters ---------- value : * Any value to search. Returns ------- index : Int Found position of index. If value is not contains, -1 will be returned. References ---------- - Array class index_of interface document - https://simon-ritchie.github.io/apysc/array_index_of.html Examples -------- >>> import apysc as ap >>> arr: ap.Array = ap.Array([1, 3, 5]) >>> arr.index_of(3) Int(1)
apysc/_type/array.py
index_of
simon-ritchie/apysc
16
python
def index_of(self, value: T) -> Int: "\n Search specified value's index and return it.\n\n Parameters\n ----------\n value : *\n Any value to search.\n\n Returns\n -------\n index : Int\n Found position of index. If value is not contains,\n -1 will be returned.\n\n References\n ----------\n - Array class index_of interface document\n - https://simon-ritchie.github.io/apysc/array_index_of.html\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 3, 5])\n >>> arr.index_of(3)\n Int(1)\n " import apysc as ap with ap.DebugInfo(callable_=self.index_of, locals_=locals(), module_name=__name__, class_=Array): index: ap.Int = ap.Int((- 1)) try: index_: int = self._value.index(value) except Exception: index_ = (- 1) index._value = index_ self._append_index_of_expression(index=index, value=value) return index
def index_of(self, value: T) -> Int: "\n Search specified value's index and return it.\n\n Parameters\n ----------\n value : *\n Any value to search.\n\n Returns\n -------\n index : Int\n Found position of index. If value is not contains,\n -1 will be returned.\n\n References\n ----------\n - Array class index_of interface document\n - https://simon-ritchie.github.io/apysc/array_index_of.html\n\n Examples\n --------\n >>> import apysc as ap\n >>> arr: ap.Array = ap.Array([1, 3, 5])\n >>> arr.index_of(3)\n Int(1)\n " import apysc as ap with ap.DebugInfo(callable_=self.index_of, locals_=locals(), module_name=__name__, class_=Array): index: ap.Int = ap.Int((- 1)) try: index_: int = self._value.index(value) except Exception: index_ = (- 1) index._value = index_ self._append_index_of_expression(index=index, value=value) return index<|docstring|>Search specified value's index and return it. Parameters ---------- value : * Any value to search. Returns ------- index : Int Found position of index. If value is not contains, -1 will be returned. References ---------- - Array class index_of interface document - https://simon-ritchie.github.io/apysc/array_index_of.html Examples -------- >>> import apysc as ap >>> arr: ap.Array = ap.Array([1, 3, 5]) >>> arr.index_of(3) Int(1)<|endoftext|>
857b1bb9ed8c7297c6eefd578717b0219b8b2c79db7b1248dd8f06865c4b8cdc
def _append_index_of_expression(self, *, index: Int, value: T) -> None: '\n Append index_of method expression.\n\n Parameters\n ----------\n index : Int\n Found position of index. If value is not contains,\n -1 will be set.\n value : *\n Any value to search.\n ' import apysc as ap with ap.DebugInfo(callable_=self._append_index_of_expression, locals_=locals(), module_name=__name__, class_=Array): from apysc._type import value_util value_str: str = value_util.get_value_str_for_expression(value=value) expression: str = f'{index.variable_name} = {self.variable_name}.indexOf({value_str});' ap.append_js_expression(expression=expression)
Append index_of method expression. Parameters ---------- index : Int Found position of index. If value is not contains, -1 will be set. value : * Any value to search.
apysc/_type/array.py
_append_index_of_expression
simon-ritchie/apysc
16
python
def _append_index_of_expression(self, *, index: Int, value: T) -> None: '\n Append index_of method expression.\n\n Parameters\n ----------\n index : Int\n Found position of index. If value is not contains,\n -1 will be set.\n value : *\n Any value to search.\n ' import apysc as ap with ap.DebugInfo(callable_=self._append_index_of_expression, locals_=locals(), module_name=__name__, class_=Array): from apysc._type import value_util value_str: str = value_util.get_value_str_for_expression(value=value) expression: str = f'{index.variable_name} = {self.variable_name}.indexOf({value_str});' ap.append_js_expression(expression=expression)
def _append_index_of_expression(self, *, index: Int, value: T) -> None: '\n Append index_of method expression.\n\n Parameters\n ----------\n index : Int\n Found position of index. If value is not contains,\n -1 will be set.\n value : *\n Any value to search.\n ' import apysc as ap with ap.DebugInfo(callable_=self._append_index_of_expression, locals_=locals(), module_name=__name__, class_=Array): from apysc._type import value_util value_str: str = value_util.get_value_str_for_expression(value=value) expression: str = f'{index.variable_name} = {self.variable_name}.indexOf({value_str});' ap.append_js_expression(expression=expression)<|docstring|>Append index_of method expression. Parameters ---------- index : Int Found position of index. If value is not contains, -1 will be set. value : * Any value to search.<|endoftext|>
7ea36e656157dbf97925317e0157af529d09cce6a4270b02ad396b0ab4a0a5c7
def __eq__(self, other: Any) -> Any: '\n Equal comparison method.\n\n Parameters\n ----------\n other : *\n Other value to compare. list or Array types are acceptable.\n\n Returns\n -------\n result : Boolean\n Comparison result.\n ' import apysc as ap with ap.DebugInfo(callable_='__eq__', locals_=locals(), module_name=__name__, class_=Array): result: ap.Boolean if isinstance(other, Array): result = ap.Boolean((self._value == other._value)) else: result = ap.Boolean((self._value == other)) other = self._convert_other_val_to_array(other=other) if isinstance(other, VariableNameInterface): self._append_eq_expression(result=result, other=other) return result
Equal comparison method. Parameters ---------- other : * Other value to compare. list or Array types are acceptable. Returns ------- result : Boolean Comparison result.
apysc/_type/array.py
__eq__
simon-ritchie/apysc
16
python
def __eq__(self, other: Any) -> Any: '\n Equal comparison method.\n\n Parameters\n ----------\n other : *\n Other value to compare. list or Array types are acceptable.\n\n Returns\n -------\n result : Boolean\n Comparison result.\n ' import apysc as ap with ap.DebugInfo(callable_='__eq__', locals_=locals(), module_name=__name__, class_=Array): result: ap.Boolean if isinstance(other, Array): result = ap.Boolean((self._value == other._value)) else: result = ap.Boolean((self._value == other)) other = self._convert_other_val_to_array(other=other) if isinstance(other, VariableNameInterface): self._append_eq_expression(result=result, other=other) return result
def __eq__(self, other: Any) -> Any: '\n Equal comparison method.\n\n Parameters\n ----------\n other : *\n Other value to compare. list or Array types are acceptable.\n\n Returns\n -------\n result : Boolean\n Comparison result.\n ' import apysc as ap with ap.DebugInfo(callable_='__eq__', locals_=locals(), module_name=__name__, class_=Array): result: ap.Boolean if isinstance(other, Array): result = ap.Boolean((self._value == other._value)) else: result = ap.Boolean((self._value == other)) other = self._convert_other_val_to_array(other=other) if isinstance(other, VariableNameInterface): self._append_eq_expression(result=result, other=other) return result<|docstring|>Equal comparison method. Parameters ---------- other : * Other value to compare. list or Array types are acceptable. Returns ------- result : Boolean Comparison result.<|endoftext|>
9dad4f485d2e78e673f81c64288684560dc08ee94e97972f70a1405df2e18097
def _convert_other_val_to_array(self, *, other: Any) -> Any: "\n If comparison's other value is list value, then convert it to\n Array instance.\n\n Parameters\n ----------\n other : *\n Other value to compare.\n\n Returns\n -------\n converted_val : *\n Converted value. If other value is list, then this will\n be Array type. Otherwise this will be returned directly\n (not to be converted).\n " import apysc as ap with ap.DebugInfo(callable_=self._convert_other_val_to_array, locals_=locals(), module_name=__name__, class_=Array): if isinstance(other, list): return Array(other) return other
If comparison's other value is list value, then convert it to Array instance. Parameters ---------- other : * Other value to compare. Returns ------- converted_val : * Converted value. If other value is list, then this will be Array type. Otherwise this will be returned directly (not to be converted).
apysc/_type/array.py
_convert_other_val_to_array
simon-ritchie/apysc
16
python
def _convert_other_val_to_array(self, *, other: Any) -> Any: "\n If comparison's other value is list value, then convert it to\n Array instance.\n\n Parameters\n ----------\n other : *\n Other value to compare.\n\n Returns\n -------\n converted_val : *\n Converted value. If other value is list, then this will\n be Array type. Otherwise this will be returned directly\n (not to be converted).\n " import apysc as ap with ap.DebugInfo(callable_=self._convert_other_val_to_array, locals_=locals(), module_name=__name__, class_=Array): if isinstance(other, list): return Array(other) return other
def _convert_other_val_to_array(self, *, other: Any) -> Any: "\n If comparison's other value is list value, then convert it to\n Array instance.\n\n Parameters\n ----------\n other : *\n Other value to compare.\n\n Returns\n -------\n converted_val : *\n Converted value. If other value is list, then this will\n be Array type. Otherwise this will be returned directly\n (not to be converted).\n " import apysc as ap with ap.DebugInfo(callable_=self._convert_other_val_to_array, locals_=locals(), module_name=__name__, class_=Array): if isinstance(other, list): return Array(other) return other<|docstring|>If comparison's other value is list value, then convert it to Array instance. Parameters ---------- other : * Other value to compare. Returns ------- converted_val : * Converted value. If other value is list, then this will be Array type. Otherwise this will be returned directly (not to be converted).<|endoftext|>
fa08a277914900c39b07f04c096fba6901a49f3f21bc6cbbdf304dc7b73816ad
def _append_eq_expression(self, *, result: Boolean, other: VariableNameInterface) -> None: '\n Append an __eq__ expression.\n\n Parameters\n ----------\n result : Boolean\n Result boolean value.\n other : Array\n Array other value to compare.\n ' import apysc as ap with ap.DebugInfo(callable_=self._append_eq_expression, locals_=locals(), module_name=__name__, class_=Array): expression: str = f'{result.variable_name} = _.isEqual({self.variable_name}, {other.variable_name});' ap.append_js_expression(expression=expression)
Append an __eq__ expression. Parameters ---------- result : Boolean Result boolean value. other : Array Array other value to compare.
apysc/_type/array.py
_append_eq_expression
simon-ritchie/apysc
16
python
def _append_eq_expression(self, *, result: Boolean, other: VariableNameInterface) -> None: '\n Append an __eq__ expression.\n\n Parameters\n ----------\n result : Boolean\n Result boolean value.\n other : Array\n Array other value to compare.\n ' import apysc as ap with ap.DebugInfo(callable_=self._append_eq_expression, locals_=locals(), module_name=__name__, class_=Array): expression: str = f'{result.variable_name} = _.isEqual({self.variable_name}, {other.variable_name});' ap.append_js_expression(expression=expression)
def _append_eq_expression(self, *, result: Boolean, other: VariableNameInterface) -> None: '\n Append an __eq__ expression.\n\n Parameters\n ----------\n result : Boolean\n Result boolean value.\n other : Array\n Array other value to compare.\n ' import apysc as ap with ap.DebugInfo(callable_=self._append_eq_expression, locals_=locals(), module_name=__name__, class_=Array): expression: str = f'{result.variable_name} = _.isEqual({self.variable_name}, {other.variable_name});' ap.append_js_expression(expression=expression)<|docstring|>Append an __eq__ expression. Parameters ---------- result : Boolean Result boolean value. other : Array Array other value to compare.<|endoftext|>
94ec59720e6a186d6dfaba290db4829d36699cb35b7bcbaacbc510f7810a6c96
def __ne__(self, other: Any) -> Any: '\n Not equal comparison method.\n\n Parameters\n ----------\n other : *\n Other value to compare. list or Array types are acceptable.\n\n Returns\n -------\n result : Boolean\n Comparison result.\n ' import apysc as ap with ap.DebugInfo(callable_='__ne__', locals_=locals(), module_name=__name__, class_=Array): other = self._convert_other_val_to_array(other=other) result: ap.Boolean = (self == other) result = result.not_ if isinstance(other, VariableNameInterface): self._append_ne_expression(result=result, other=other) return result
Not equal comparison method. Parameters ---------- other : * Other value to compare. list or Array types are acceptable. Returns ------- result : Boolean Comparison result.
apysc/_type/array.py
__ne__
simon-ritchie/apysc
16
python
def __ne__(self, other: Any) -> Any: '\n Not equal comparison method.\n\n Parameters\n ----------\n other : *\n Other value to compare. list or Array types are acceptable.\n\n Returns\n -------\n result : Boolean\n Comparison result.\n ' import apysc as ap with ap.DebugInfo(callable_='__ne__', locals_=locals(), module_name=__name__, class_=Array): other = self._convert_other_val_to_array(other=other) result: ap.Boolean = (self == other) result = result.not_ if isinstance(other, VariableNameInterface): self._append_ne_expression(result=result, other=other) return result
def __ne__(self, other: Any) -> Any: '\n Not equal comparison method.\n\n Parameters\n ----------\n other : *\n Other value to compare. list or Array types are acceptable.\n\n Returns\n -------\n result : Boolean\n Comparison result.\n ' import apysc as ap with ap.DebugInfo(callable_='__ne__', locals_=locals(), module_name=__name__, class_=Array): other = self._convert_other_val_to_array(other=other) result: ap.Boolean = (self == other) result = result.not_ if isinstance(other, VariableNameInterface): self._append_ne_expression(result=result, other=other) return result<|docstring|>Not equal comparison method. Parameters ---------- other : * Other value to compare. list or Array types are acceptable. Returns ------- result : Boolean Comparison result.<|endoftext|>
8d0e0dbab63ee1de3b5fcb2cec805cc89d282d2c3749aec6d37912c54cec68df
def _append_ne_expression(self, *, result: Boolean, other: VariableNameInterface) -> None: '\n Append a __ne__ expression.\n\n Parameters\n ----------\n result : Boolean\n Result boolean value.\n other : Array\n Array other value to compare.\n ' import apysc as ap with ap.DebugInfo(callable_=self._append_ne_expression, locals_=locals(), module_name=__name__, class_=Array): expression: str = f'{result.variable_name} = !_.isEqual({self.variable_name}, {other.variable_name});' ap.append_js_expression(expression=expression)
Append a __ne__ expression. Parameters ---------- result : Boolean Result boolean value. other : Array Array other value to compare.
apysc/_type/array.py
_append_ne_expression
simon-ritchie/apysc
16
python
def _append_ne_expression(self, *, result: Boolean, other: VariableNameInterface) -> None: '\n Append a __ne__ expression.\n\n Parameters\n ----------\n result : Boolean\n Result boolean value.\n other : Array\n Array other value to compare.\n ' import apysc as ap with ap.DebugInfo(callable_=self._append_ne_expression, locals_=locals(), module_name=__name__, class_=Array): expression: str = f'{result.variable_name} = !_.isEqual({self.variable_name}, {other.variable_name});' ap.append_js_expression(expression=expression)
def _append_ne_expression(self, *, result: Boolean, other: VariableNameInterface) -> None: '\n Append a __ne__ expression.\n\n Parameters\n ----------\n result : Boolean\n Result boolean value.\n other : Array\n Array other value to compare.\n ' import apysc as ap with ap.DebugInfo(callable_=self._append_ne_expression, locals_=locals(), module_name=__name__, class_=Array): expression: str = f'{result.variable_name} = !_.isEqual({self.variable_name}, {other.variable_name});' ap.append_js_expression(expression=expression)<|docstring|>Append a __ne__ expression. Parameters ---------- result : Boolean Result boolean value. other : Array Array other value to compare.<|endoftext|>
e1ec15f8895cf77f0c63e859f9618841d12f7a1d352bc75c4116c2c1955044d8
def __bool__(self) -> bool: '\n Get a boolean value whether this array is empty or not.\n\n Returns\n -------\n result : bool\n If this array is empty, True will be returned.\n ' return bool(self._value)
Get a boolean value whether this array is empty or not. Returns ------- result : bool If this array is empty, True will be returned.
apysc/_type/array.py
__bool__
simon-ritchie/apysc
16
python
def __bool__(self) -> bool: '\n Get a boolean value whether this array is empty or not.\n\n Returns\n -------\n result : bool\n If this array is empty, True will be returned.\n ' return bool(self._value)
def __bool__(self) -> bool: '\n Get a boolean value whether this array is empty or not.\n\n Returns\n -------\n result : bool\n If this array is empty, True will be returned.\n ' return bool(self._value)<|docstring|>Get a boolean value whether this array is empty or not. Returns ------- result : bool If this array is empty, True will be returned.<|endoftext|>
d949d07c59392d7d1d8bf4dc1d0beddb39518ad3c08b7a2be9e8aecea37a98eb
def _make_snapshot(self, *, snapshot_name: str) -> None: "\n Make values' snapshot.\n\n Parameters\n ----------\n snapshot_name : str\n Target snapshot name.\n " self._set_single_snapshot_val_to_dict(dict_name='_value_snapshots', value=[*self._value], snapshot_name=snapshot_name)
Make values' snapshot. Parameters ---------- snapshot_name : str Target snapshot name.
apysc/_type/array.py
_make_snapshot
simon-ritchie/apysc
16
python
def _make_snapshot(self, *, snapshot_name: str) -> None: "\n Make values' snapshot.\n\n Parameters\n ----------\n snapshot_name : str\n Target snapshot name.\n " self._set_single_snapshot_val_to_dict(dict_name='_value_snapshots', value=[*self._value], snapshot_name=snapshot_name)
def _make_snapshot(self, *, snapshot_name: str) -> None: "\n Make values' snapshot.\n\n Parameters\n ----------\n snapshot_name : str\n Target snapshot name.\n " self._set_single_snapshot_val_to_dict(dict_name='_value_snapshots', value=[*self._value], snapshot_name=snapshot_name)<|docstring|>Make values' snapshot. Parameters ---------- snapshot_name : str Target snapshot name.<|endoftext|>
044a3b3c2d9e7042cb03f83391420f5f5741fe2e8e614ea1397fa964fdcc6253
def _revert(self, *, snapshot_name: str) -> None: '\n Revert values if snapshot exists.\n\n Parameters\n ----------\n snapshot_name : str\n Target snapshot name.\n ' if (not self._snapshot_exists(snapshot_name=snapshot_name)): return self._value = self._value_snapshots[snapshot_name]
Revert values if snapshot exists. Parameters ---------- snapshot_name : str Target snapshot name.
apysc/_type/array.py
_revert
simon-ritchie/apysc
16
python
def _revert(self, *, snapshot_name: str) -> None: '\n Revert values if snapshot exists.\n\n Parameters\n ----------\n snapshot_name : str\n Target snapshot name.\n ' if (not self._snapshot_exists(snapshot_name=snapshot_name)): return self._value = self._value_snapshots[snapshot_name]
def _revert(self, *, snapshot_name: str) -> None: '\n Revert values if snapshot exists.\n\n Parameters\n ----------\n snapshot_name : str\n Target snapshot name.\n ' if (not self._snapshot_exists(snapshot_name=snapshot_name)): return self._value = self._value_snapshots[snapshot_name]<|docstring|>Revert values if snapshot exists. Parameters ---------- snapshot_name : str Target snapshot name.<|endoftext|>
7d440573dbebfac3b861a12d6b54227b81a0548931fe2c57a16830878c7decfb
def test_process_match(self): '\n Tests the process method for a matching email.\n ' mock_doc_id = 1 email = {'Message-ID': 'abc', 'Subject': 'This is a Critical Alert'} doc_obj = DocumentObj(data=email) mailchute = MailChute.objects.get(pk=1) mailchute.munger.process = Mock(return_value=mock_doc_id) doc_id = mailchute.process(doc_obj) mailchute.munger.process.assert_called_once_with(doc_obj) (self.assertEqual(doc_id, mock_doc_id), None)
Tests the process method for a matching email.
Incident-Response/Tools/cyphon/cyphon/sifter/mailsifter/mailchutes/tests/test_models.py
test_process_match
sn0b4ll/Incident-Playbook
1
python
def test_process_match(self): '\n \n ' mock_doc_id = 1 email = {'Message-ID': 'abc', 'Subject': 'This is a Critical Alert'} doc_obj = DocumentObj(data=email) mailchute = MailChute.objects.get(pk=1) mailchute.munger.process = Mock(return_value=mock_doc_id) doc_id = mailchute.process(doc_obj) mailchute.munger.process.assert_called_once_with(doc_obj) (self.assertEqual(doc_id, mock_doc_id), None)
def test_process_match(self): '\n \n ' mock_doc_id = 1 email = {'Message-ID': 'abc', 'Subject': 'This is a Critical Alert'} doc_obj = DocumentObj(data=email) mailchute = MailChute.objects.get(pk=1) mailchute.munger.process = Mock(return_value=mock_doc_id) doc_id = mailchute.process(doc_obj) mailchute.munger.process.assert_called_once_with(doc_obj) (self.assertEqual(doc_id, mock_doc_id), None)<|docstring|>Tests the process method for a matching email.<|endoftext|>
35402a7bacc5f3660bc7abdb4fd4dd5806cdb995a675d099929bc0013048a5e4
def test_process_nonmatch(self): '\n Tests the process method for a nonmatching email.\n ' email = {'Message-ID': 'abc', 'Subject': 'This is an Urgent Alert'} doc_obj = DocumentObj(data=email) mailchute = MailChute.objects.get(pk=1) mailchute.munger.process = Mock(return_value=None) doc_id = mailchute.process(doc_obj) self.assertEqual(doc_id, None)
Tests the process method for a nonmatching email.
Incident-Response/Tools/cyphon/cyphon/sifter/mailsifter/mailchutes/tests/test_models.py
test_process_nonmatch
sn0b4ll/Incident-Playbook
1
python
def test_process_nonmatch(self): '\n \n ' email = {'Message-ID': 'abc', 'Subject': 'This is an Urgent Alert'} doc_obj = DocumentObj(data=email) mailchute = MailChute.objects.get(pk=1) mailchute.munger.process = Mock(return_value=None) doc_id = mailchute.process(doc_obj) self.assertEqual(doc_id, None)
def test_process_nonmatch(self): '\n \n ' email = {'Message-ID': 'abc', 'Subject': 'This is an Urgent Alert'} doc_obj = DocumentObj(data=email) mailchute = MailChute.objects.get(pk=1) mailchute.munger.process = Mock(return_value=None) doc_id = mailchute.process(doc_obj) self.assertEqual(doc_id, None)<|docstring|>Tests the process method for a nonmatching email.<|endoftext|>
be30c1ff09303df1ae2671ceee9db01af73a6aacf9b96fdf604d3f370fdf8b43
def test_process_no_sieve(self): '\n Tests the process method for a chute with no sieve.\n ' mock_doc_id = 1 email = {'Message-ID': 'abc', 'Subject': 'This is an Urgent Alert'} doc_obj = DocumentObj(data=email) mailchute = MailChute.objects.get(pk=3) mailchute.enabled = True mailchute.munger.process = Mock(return_value=mock_doc_id) doc_id = mailchute.process(doc_obj) mailchute.munger.process.assert_called_once_with(doc_obj) self.assertEqual(doc_id, mock_doc_id)
Tests the process method for a chute with no sieve.
Incident-Response/Tools/cyphon/cyphon/sifter/mailsifter/mailchutes/tests/test_models.py
test_process_no_sieve
sn0b4ll/Incident-Playbook
1
python
def test_process_no_sieve(self): '\n \n ' mock_doc_id = 1 email = {'Message-ID': 'abc', 'Subject': 'This is an Urgent Alert'} doc_obj = DocumentObj(data=email) mailchute = MailChute.objects.get(pk=3) mailchute.enabled = True mailchute.munger.process = Mock(return_value=mock_doc_id) doc_id = mailchute.process(doc_obj) mailchute.munger.process.assert_called_once_with(doc_obj) self.assertEqual(doc_id, mock_doc_id)
def test_process_no_sieve(self): '\n \n ' mock_doc_id = 1 email = {'Message-ID': 'abc', 'Subject': 'This is an Urgent Alert'} doc_obj = DocumentObj(data=email) mailchute = MailChute.objects.get(pk=3) mailchute.enabled = True mailchute.munger.process = Mock(return_value=mock_doc_id) doc_id = mailchute.process(doc_obj) mailchute.munger.process.assert_called_once_with(doc_obj) self.assertEqual(doc_id, mock_doc_id)<|docstring|>Tests the process method for a chute with no sieve.<|endoftext|>
e20ff89af2648436bc7e697eebe914b4c62c3c80486bd5ce861adf785e6b73bc
def test_match_with_default(self): '\n Tests the process_email receiver for an email that matches an\n existing MailChute.\n ' doc_obj = self.doc_obj doc_obj.data['Subject'] = 'critical alert' mock_config = {'DEFAULT_MUNGER': 'default_mail', 'DEFAULT_MUNGER_ENABLED': True} with patch('distilleries.models.Distillery.save_data', return_value='id_123') as mock_save: with patch.dict('sifter.mailsifter.mailchutes.models.conf.MAILSIFTER', mock_config): with patch('sifter.mailsifter.mailchutes.models.MailChuteManager._process_with_default') as mock_catch_email: MailChute.objects.process(doc_obj) self.assertIs(mock_save.called, True) self.assertIs(mock_catch_email.called, False)
Tests the process_email receiver for an email that matches an existing MailChute.
Incident-Response/Tools/cyphon/cyphon/sifter/mailsifter/mailchutes/tests/test_models.py
test_match_with_default
sn0b4ll/Incident-Playbook
1
python
def test_match_with_default(self): '\n Tests the process_email receiver for an email that matches an\n existing MailChute.\n ' doc_obj = self.doc_obj doc_obj.data['Subject'] = 'critical alert' mock_config = {'DEFAULT_MUNGER': 'default_mail', 'DEFAULT_MUNGER_ENABLED': True} with patch('distilleries.models.Distillery.save_data', return_value='id_123') as mock_save: with patch.dict('sifter.mailsifter.mailchutes.models.conf.MAILSIFTER', mock_config): with patch('sifter.mailsifter.mailchutes.models.MailChuteManager._process_with_default') as mock_catch_email: MailChute.objects.process(doc_obj) self.assertIs(mock_save.called, True) self.assertIs(mock_catch_email.called, False)
def test_match_with_default(self): '\n Tests the process_email receiver for an email that matches an\n existing MailChute.\n ' doc_obj = self.doc_obj doc_obj.data['Subject'] = 'critical alert' mock_config = {'DEFAULT_MUNGER': 'default_mail', 'DEFAULT_MUNGER_ENABLED': True} with patch('distilleries.models.Distillery.save_data', return_value='id_123') as mock_save: with patch.dict('sifter.mailsifter.mailchutes.models.conf.MAILSIFTER', mock_config): with patch('sifter.mailsifter.mailchutes.models.MailChuteManager._process_with_default') as mock_catch_email: MailChute.objects.process(doc_obj) self.assertIs(mock_save.called, True) self.assertIs(mock_catch_email.called, False)<|docstring|>Tests the process_email receiver for an email that matches an existing MailChute.<|endoftext|>
9fc5b534919a26c12bd7c442e19cfdb7c998f0f9bb1b8f146ba7672c127e57b0
def test_no_match_without_default(self): "\n Tests the process_email receiver for an email that doesn't match\n an existing MailChute when a default MailMunger is not enabled.\n " doc_obj = self.doc_obj doc_obj.data['Subject'] = 'nothing to see here' mock_config = {'DEFAULT_MUNGER': 'default_mail', 'DEFAULT_MUNGER_ENABLED': False} with patch('distilleries.models.Distillery.save_data') as mock_save: with patch.dict('sifter.mailsifter.mailchutes.models.conf.MAILSIFTER', mock_config): with patch('sifter.mailsifter.mailchutes.models.MailChuteManager._process_with_default') as mock_catch_email: MailChute.objects.process(doc_obj) self.assertIs(mock_save.called, False) self.assertIs(mock_catch_email.called, False)
Tests the process_email receiver for an email that doesn't match an existing MailChute when a default MailMunger is not enabled.
Incident-Response/Tools/cyphon/cyphon/sifter/mailsifter/mailchutes/tests/test_models.py
test_no_match_without_default
sn0b4ll/Incident-Playbook
1
python
def test_no_match_without_default(self): "\n Tests the process_email receiver for an email that doesn't match\n an existing MailChute when a default MailMunger is not enabled.\n " doc_obj = self.doc_obj doc_obj.data['Subject'] = 'nothing to see here' mock_config = {'DEFAULT_MUNGER': 'default_mail', 'DEFAULT_MUNGER_ENABLED': False} with patch('distilleries.models.Distillery.save_data') as mock_save: with patch.dict('sifter.mailsifter.mailchutes.models.conf.MAILSIFTER', mock_config): with patch('sifter.mailsifter.mailchutes.models.MailChuteManager._process_with_default') as mock_catch_email: MailChute.objects.process(doc_obj) self.assertIs(mock_save.called, False) self.assertIs(mock_catch_email.called, False)
def test_no_match_without_default(self): "\n Tests the process_email receiver for an email that doesn't match\n an existing MailChute when a default MailMunger is not enabled.\n " doc_obj = self.doc_obj doc_obj.data['Subject'] = 'nothing to see here' mock_config = {'DEFAULT_MUNGER': 'default_mail', 'DEFAULT_MUNGER_ENABLED': False} with patch('distilleries.models.Distillery.save_data') as mock_save: with patch.dict('sifter.mailsifter.mailchutes.models.conf.MAILSIFTER', mock_config): with patch('sifter.mailsifter.mailchutes.models.MailChuteManager._process_with_default') as mock_catch_email: MailChute.objects.process(doc_obj) self.assertIs(mock_save.called, False) self.assertIs(mock_catch_email.called, False)<|docstring|>Tests the process_email receiver for an email that doesn't match an existing MailChute when a default MailMunger is not enabled.<|endoftext|>
628ecafe090a1cb6b08fa6e7f898de8b2800dcaab05633c32e42846af7e99bde
def test_no_match_with_default(self): "\n Tests the process_email receiver for an email that doesn't match\n an existing MailChute when a default MailMunger is enabled.\n " doc_obj = self.doc_obj doc_obj.data['Subject'] = 'nothing to see here' mock_config = {'DEFAULT_MUNGER': 'default_mail', 'DEFAULT_MUNGER_ENABLED': True} with patch.dict('sifter.mailsifter.mailchutes.models.conf.MAILSIFTER', mock_config): with patch('sifter.mailsifter.mailchutes.models.MailChuteManager._process_with_default') as mock_default_process: MailChute.objects.process(doc_obj) mock_default_process.assert_called_once_with(doc_obj)
Tests the process_email receiver for an email that doesn't match an existing MailChute when a default MailMunger is enabled.
Incident-Response/Tools/cyphon/cyphon/sifter/mailsifter/mailchutes/tests/test_models.py
test_no_match_with_default
sn0b4ll/Incident-Playbook
1
python
def test_no_match_with_default(self): "\n Tests the process_email receiver for an email that doesn't match\n an existing MailChute when a default MailMunger is enabled.\n " doc_obj = self.doc_obj doc_obj.data['Subject'] = 'nothing to see here' mock_config = {'DEFAULT_MUNGER': 'default_mail', 'DEFAULT_MUNGER_ENABLED': True} with patch.dict('sifter.mailsifter.mailchutes.models.conf.MAILSIFTER', mock_config): with patch('sifter.mailsifter.mailchutes.models.MailChuteManager._process_with_default') as mock_default_process: MailChute.objects.process(doc_obj) mock_default_process.assert_called_once_with(doc_obj)
def test_no_match_with_default(self): "\n Tests the process_email receiver for an email that doesn't match\n an existing MailChute when a default MailMunger is enabled.\n " doc_obj = self.doc_obj doc_obj.data['Subject'] = 'nothing to see here' mock_config = {'DEFAULT_MUNGER': 'default_mail', 'DEFAULT_MUNGER_ENABLED': True} with patch.dict('sifter.mailsifter.mailchutes.models.conf.MAILSIFTER', mock_config): with patch('sifter.mailsifter.mailchutes.models.MailChuteManager._process_with_default') as mock_default_process: MailChute.objects.process(doc_obj) mock_default_process.assert_called_once_with(doc_obj)<|docstring|>Tests the process_email receiver for an email that doesn't match an existing MailChute when a default MailMunger is enabled.<|endoftext|>
1b200908ca17697afccd2bd9c5e914cf08fbdf6a779ac4246bb2b7bbb7576e00
def test_no_match_missing_munger(self): "\n Tests the process_email receiver for an email that doesn't match\n an existing MailChute when a default MailChute is enabled but\n the defaul MailMunger can't be found.\n " doc_obj = self.doc_obj doc_obj.data['Subject'] = 'nothing to see here' mock_config = {'DEFAULT_MUNGER': 'missing_munger', 'DEFAULT_MUNGER_ENABLED': True} with patch.dict('sifter.mailsifter.mailchutes.models.conf.MAILSIFTER', mock_config): with LogCapture() as log_capture: msg = 'Default MailMunger "missing_munger" is not configured.' MailChute.objects.process(doc_obj) log_capture.check(('sifter.chutes.models', 'ERROR', msg))
Tests the process_email receiver for an email that doesn't match an existing MailChute when a default MailChute is enabled but the defaul MailMunger can't be found.
Incident-Response/Tools/cyphon/cyphon/sifter/mailsifter/mailchutes/tests/test_models.py
test_no_match_missing_munger
sn0b4ll/Incident-Playbook
1
python
def test_no_match_missing_munger(self): "\n Tests the process_email receiver for an email that doesn't match\n an existing MailChute when a default MailChute is enabled but\n the defaul MailMunger can't be found.\n " doc_obj = self.doc_obj doc_obj.data['Subject'] = 'nothing to see here' mock_config = {'DEFAULT_MUNGER': 'missing_munger', 'DEFAULT_MUNGER_ENABLED': True} with patch.dict('sifter.mailsifter.mailchutes.models.conf.MAILSIFTER', mock_config): with LogCapture() as log_capture: msg = 'Default MailMunger "missing_munger" is not configured.' MailChute.objects.process(doc_obj) log_capture.check(('sifter.chutes.models', 'ERROR', msg))
def test_no_match_missing_munger(self): "\n Tests the process_email receiver for an email that doesn't match\n an existing MailChute when a default MailChute is enabled but\n the defaul MailMunger can't be found.\n " doc_obj = self.doc_obj doc_obj.data['Subject'] = 'nothing to see here' mock_config = {'DEFAULT_MUNGER': 'missing_munger', 'DEFAULT_MUNGER_ENABLED': True} with patch.dict('sifter.mailsifter.mailchutes.models.conf.MAILSIFTER', mock_config): with LogCapture() as log_capture: msg = 'Default MailMunger "missing_munger" is not configured.' MailChute.objects.process(doc_obj) log_capture.check(('sifter.chutes.models', 'ERROR', msg))<|docstring|>Tests the process_email receiver for an email that doesn't match an existing MailChute when a default MailChute is enabled but the defaul MailMunger can't be found.<|endoftext|>
658bf221afadb81ef0ac14116cb0069922985d1af190ee4c7d91e18bd79dbb21
def parse_arguments(parser: Any=None, ci_values: List[str]=None) -> Any: "\n Standard argparse wrapper for interpreting command line arguments.\n\n Args:\n parser: if there's an existing parser, provide it, else, this will\n create a new one.\n ci_values: use for testing purposes only.\n " if (not parser): parser = argparse.ArgumentParser() parser.add_argument('--config', help='location of the config file', required=True) parser.add_argument('--key_name', default='Project') parser.add_argument('--key_value', default='RNA-Seq1') parser.add_argument('--gene_list', default=None) if ci_values: args = parser.parse_args(ci_values) else: args = parse_arguments() return args
Standard argparse wrapper for interpreting command line arguments. Args: parser: if there's an existing parser, provide it, else, this will create a new one. ci_values: use for testing purposes only.
edgePy/data_import/mongodb/mongo_import.py
parse_arguments
r-bioinformatics/edgePy
79
python
def parse_arguments(parser: Any=None, ci_values: List[str]=None) -> Any: "\n Standard argparse wrapper for interpreting command line arguments.\n\n Args:\n parser: if there's an existing parser, provide it, else, this will\n create a new one.\n ci_values: use for testing purposes only.\n " if (not parser): parser = argparse.ArgumentParser() parser.add_argument('--config', help='location of the config file', required=True) parser.add_argument('--key_name', default='Project') parser.add_argument('--key_value', default='RNA-Seq1') parser.add_argument('--gene_list', default=None) if ci_values: args = parser.parse_args(ci_values) else: args = parse_arguments() return args
def parse_arguments(parser: Any=None, ci_values: List[str]=None) -> Any: "\n Standard argparse wrapper for interpreting command line arguments.\n\n Args:\n parser: if there's an existing parser, provide it, else, this will\n create a new one.\n ci_values: use for testing purposes only.\n " if (not parser): parser = argparse.ArgumentParser() parser.add_argument('--config', help='location of the config file', required=True) parser.add_argument('--key_name', default='Project') parser.add_argument('--key_value', default='RNA-Seq1') parser.add_argument('--gene_list', default=None) if ci_values: args = parser.parse_args(ci_values) else: args = parse_arguments() return args<|docstring|>Standard argparse wrapper for interpreting command line arguments. Args: parser: if there's an existing parser, provide it, else, this will create a new one. ci_values: use for testing purposes only.<|endoftext|>
693e4d7f39cfddc8ef19c6b88db0f8fe9e5452296a7b5bb78c5e8b86581406c0
def translate_gene_list(self, database: str) -> None: '\n If there was a list of genes provided, convert them to ENSG symbols.\n\n Args:\n database: name of the database\n\n ' if self.input_gene_file: input_genes = get_genelist_from_file(self.input_gene_file) (ensg_genes, gene_symbols) = translate_genes(input_genes, self.mongo_reader, database=database) self.gene_list = ensg_genes
If there was a list of genes provided, convert them to ENSG symbols. Args: database: name of the database
edgePy/data_import/mongodb/mongo_import.py
translate_gene_list
r-bioinformatics/edgePy
79
python
def translate_gene_list(self, database: str) -> None: '\n If there was a list of genes provided, convert them to ENSG symbols.\n\n Args:\n database: name of the database\n\n ' if self.input_gene_file: input_genes = get_genelist_from_file(self.input_gene_file) (ensg_genes, gene_symbols) = translate_genes(input_genes, self.mongo_reader, database=database) self.gene_list = ensg_genes
def translate_gene_list(self, database: str) -> None: '\n If there was a list of genes provided, convert them to ENSG symbols.\n\n Args:\n database: name of the database\n\n ' if self.input_gene_file: input_genes = get_genelist_from_file(self.input_gene_file) (ensg_genes, gene_symbols) = translate_genes(input_genes, self.mongo_reader, database=database) self.gene_list = ensg_genes<|docstring|>If there was a list of genes provided, convert them to ENSG symbols. Args: database: name of the database<|endoftext|>
6ef126c986ef2213871fadb25485e45170de1d612cb2ede5ee78b2d08b6046c9
def get_data_from_mongo(self, database: str, rpkm_flag: bool=False) -> Tuple[(List[str], Dict[(Hashable, Any)], List[str], Dict[(Hashable, Any)])]: '\n Run the queries to get the samples, from mongo, and then use that data to retrieve\n the counts.\n\n Args:\n database: name of the database to retrieve data from.\n rpkm_flag: takes the rpkm values from the mongodb, instead of the raw counts\n\n Returns:\n the list of samples, the data itself,\n the gene list and the categories of the samples.\n\n ' if (self.input_gene_file and (not self.gene_list)): self.translate_gene_list(database) query: Dict[(Hashable, Any)] = {} if (self.search_key and self.search_value): if (self.search_value == 'regex'): query = {self.search_key: {'$regex': 'myocyte|fibroblast'}} elif isinstance(self.search_value, list): query[self.search_key] = {'$in': self.search_value} else: query[self.search_key] = self.search_value elif (self.search_key and (not self.search_value)): query[self.search_key] = {'$exists': True} elif ((not self.search_key) and (not self.search_value)): pass else: raise Exception("Invalid input - you can't specify a key_value without specifying a key_name") projection: Dict[(Hashable, Any)] = {'sample_name': 1, '_id': 0} if (self.search_key and (not (self.search_key == 'sample_name'))): projection[self.search_key] = 1 cursor = self.mongo_reader.find_as_cursor(database=database, collection='samples', query=query, projection=projection) sample_names = set() sample_category = {} for result in cursor: log.info(result) sample_names.add(result['sample_name']) sample_category[result['sample_name']] = (result[self.search_key] if self.search_key else result['sample_name']) log.info(f'Get data for sample_names {list(sample_names)}') query = {'sample_name': {'$in': list(sample_names)}} if self.gene_list: log.info(self.gene_list) query['gene'] = {'$in': list(self.gene_list)} cursor = self.mongo_reader.find_as_cursor(database=database, collection='RNASeq', query=query, projection={'_id': 0}) log.info(f'Importing data from mongo ({self.mongo_host})...') dataset: Dict[(Hashable, Dict[(Hashable, Optional[int])])] = {} gene_list = set() sample_list = set() for (count, result) in enumerate(cursor): if ((count % 100000) == 0): log.info(f'{count} rows processed.') sample = result['sample_name'] rpkm = (get_canonical_rpkm(result) if rpkm_flag else get_canonical_raw(result)) gene = result['gene'] if (sample not in dataset): dataset[sample] = {} dataset[sample][gene] = rpkm sample_list.add(sample) gene_list.add(gene) return (sorted(sample_list), dataset, sorted(gene_list), sample_category)
Run the queries to get the samples, from mongo, and then use that data to retrieve the counts. Args: database: name of the database to retrieve data from. rpkm_flag: takes the rpkm values from the mongodb, instead of the raw counts Returns: the list of samples, the data itself, the gene list and the categories of the samples.
edgePy/data_import/mongodb/mongo_import.py
get_data_from_mongo
r-bioinformatics/edgePy
79
python
def get_data_from_mongo(self, database: str, rpkm_flag: bool=False) -> Tuple[(List[str], Dict[(Hashable, Any)], List[str], Dict[(Hashable, Any)])]: '\n Run the queries to get the samples, from mongo, and then use that data to retrieve\n the counts.\n\n Args:\n database: name of the database to retrieve data from.\n rpkm_flag: takes the rpkm values from the mongodb, instead of the raw counts\n\n Returns:\n the list of samples, the data itself,\n the gene list and the categories of the samples.\n\n ' if (self.input_gene_file and (not self.gene_list)): self.translate_gene_list(database) query: Dict[(Hashable, Any)] = {} if (self.search_key and self.search_value): if (self.search_value == 'regex'): query = {self.search_key: {'$regex': 'myocyte|fibroblast'}} elif isinstance(self.search_value, list): query[self.search_key] = {'$in': self.search_value} else: query[self.search_key] = self.search_value elif (self.search_key and (not self.search_value)): query[self.search_key] = {'$exists': True} elif ((not self.search_key) and (not self.search_value)): pass else: raise Exception("Invalid input - you can't specify a key_value without specifying a key_name") projection: Dict[(Hashable, Any)] = {'sample_name': 1, '_id': 0} if (self.search_key and (not (self.search_key == 'sample_name'))): projection[self.search_key] = 1 cursor = self.mongo_reader.find_as_cursor(database=database, collection='samples', query=query, projection=projection) sample_names = set() sample_category = {} for result in cursor: log.info(result) sample_names.add(result['sample_name']) sample_category[result['sample_name']] = (result[self.search_key] if self.search_key else result['sample_name']) log.info(f'Get data for sample_names {list(sample_names)}') query = {'sample_name': {'$in': list(sample_names)}} if self.gene_list: log.info(self.gene_list) query['gene'] = {'$in': list(self.gene_list)} cursor = self.mongo_reader.find_as_cursor(database=database, collection='RNASeq', query=query, projection={'_id': 0}) log.info(f'Importing data from mongo ({self.mongo_host})...') dataset: Dict[(Hashable, Dict[(Hashable, Optional[int])])] = {} gene_list = set() sample_list = set() for (count, result) in enumerate(cursor): if ((count % 100000) == 0): log.info(f'{count} rows processed.') sample = result['sample_name'] rpkm = (get_canonical_rpkm(result) if rpkm_flag else get_canonical_raw(result)) gene = result['gene'] if (sample not in dataset): dataset[sample] = {} dataset[sample][gene] = rpkm sample_list.add(sample) gene_list.add(gene) return (sorted(sample_list), dataset, sorted(gene_list), sample_category)
def get_data_from_mongo(self, database: str, rpkm_flag: bool=False) -> Tuple[(List[str], Dict[(Hashable, Any)], List[str], Dict[(Hashable, Any)])]: '\n Run the queries to get the samples, from mongo, and then use that data to retrieve\n the counts.\n\n Args:\n database: name of the database to retrieve data from.\n rpkm_flag: takes the rpkm values from the mongodb, instead of the raw counts\n\n Returns:\n the list of samples, the data itself,\n the gene list and the categories of the samples.\n\n ' if (self.input_gene_file and (not self.gene_list)): self.translate_gene_list(database) query: Dict[(Hashable, Any)] = {} if (self.search_key and self.search_value): if (self.search_value == 'regex'): query = {self.search_key: {'$regex': 'myocyte|fibroblast'}} elif isinstance(self.search_value, list): query[self.search_key] = {'$in': self.search_value} else: query[self.search_key] = self.search_value elif (self.search_key and (not self.search_value)): query[self.search_key] = {'$exists': True} elif ((not self.search_key) and (not self.search_value)): pass else: raise Exception("Invalid input - you can't specify a key_value without specifying a key_name") projection: Dict[(Hashable, Any)] = {'sample_name': 1, '_id': 0} if (self.search_key and (not (self.search_key == 'sample_name'))): projection[self.search_key] = 1 cursor = self.mongo_reader.find_as_cursor(database=database, collection='samples', query=query, projection=projection) sample_names = set() sample_category = {} for result in cursor: log.info(result) sample_names.add(result['sample_name']) sample_category[result['sample_name']] = (result[self.search_key] if self.search_key else result['sample_name']) log.info(f'Get data for sample_names {list(sample_names)}') query = {'sample_name': {'$in': list(sample_names)}} if self.gene_list: log.info(self.gene_list) query['gene'] = {'$in': list(self.gene_list)} cursor = self.mongo_reader.find_as_cursor(database=database, collection='RNASeq', query=query, projection={'_id': 0}) log.info(f'Importing data from mongo ({self.mongo_host})...') dataset: Dict[(Hashable, Dict[(Hashable, Optional[int])])] = {} gene_list = set() sample_list = set() for (count, result) in enumerate(cursor): if ((count % 100000) == 0): log.info(f'{count} rows processed.') sample = result['sample_name'] rpkm = (get_canonical_rpkm(result) if rpkm_flag else get_canonical_raw(result)) gene = result['gene'] if (sample not in dataset): dataset[sample] = {} dataset[sample][gene] = rpkm sample_list.add(sample) gene_list.add(gene) return (sorted(sample_list), dataset, sorted(gene_list), sample_category)<|docstring|>Run the queries to get the samples, from mongo, and then use that data to retrieve the counts. Args: database: name of the database to retrieve data from. rpkm_flag: takes the rpkm values from the mongodb, instead of the raw counts Returns: the list of samples, the data itself, the gene list and the categories of the samples.<|endoftext|>
0fe1259603a9a23db385de48a7d8ce3bcf3bddf2613253f61d7cfbd52fb5796e
def __sub__(self, widget): '\n\t\tRemove subwindow and unassigned it from widget\n\t\t:param widget:\n\t\t:return:\n\t\t' widget.close() self += widget self.removeSubWindow(widget.subwindow) del widget.subwindow logger.debug('Widget sub window removed. MDI area sub windows: %s', self.subWindowList()) return self
Remove subwindow and unassigned it from widget :param widget: :return:
pyforms/gui/Controls/ControlMdiArea.py
__sub__
Jess3Jane/pyforms
0
python
def __sub__(self, widget): '\n\t\tRemove subwindow and unassigned it from widget\n\t\t:param widget:\n\t\t:return:\n\t\t' widget.close() self += widget self.removeSubWindow(widget.subwindow) del widget.subwindow logger.debug('Widget sub window removed. MDI area sub windows: %s', self.subWindowList()) return self
def __sub__(self, widget): '\n\t\tRemove subwindow and unassigned it from widget\n\t\t:param widget:\n\t\t:return:\n\t\t' widget.close() self += widget self.removeSubWindow(widget.subwindow) del widget.subwindow logger.debug('Widget sub window removed. MDI area sub windows: %s', self.subWindowList()) return self<|docstring|>Remove subwindow and unassigned it from widget :param widget: :return:<|endoftext|>
4f2b57c0c2981f20180175e25918f6f9fa364d59dbf5c218bd9df58d2cf35529
def __add__(self, widget): '\n\t\tShow widget on mdi area.\n\n\t\tIf widget does not have a subwindow assigned, create a new subwindow without enabling the WA_DeleteOnClose event.\n\t\tThis will allow subwindow to be hidden instead of destroyed. Otherwise, the closeEvent.accept() will cause\n\t\tthe "Internal c++ Object Already Deleted" problem.\n\n\t\tIf widget already has a subwindow, just show them (both the subwindow and the widget inside)!\n\t\t:param widget:\n\t\t:return:\n\t\t' if (not hasattr(widget, 'subwindow')): subwindow = QMdiSubWindow() subwindow.setWidget(widget) rect = widget.geometry() widget.subwindow = self.addSubWindow(subwindow) subwindow.setGeometry(rect) widget.subwindow.show() widget.show() widget.closeEvent = (lambda x: self._subWindowClosed(x)) widget.setFocus() logger.debug('Sub window opened. MDI area sub windows: %s', self.subWindowList()) return self
Show widget on mdi area. If widget does not have a subwindow assigned, create a new subwindow without enabling the WA_DeleteOnClose event. This will allow subwindow to be hidden instead of destroyed. Otherwise, the closeEvent.accept() will cause the "Internal c++ Object Already Deleted" problem. If widget already has a subwindow, just show them (both the subwindow and the widget inside)! :param widget: :return:
pyforms/gui/Controls/ControlMdiArea.py
__add__
Jess3Jane/pyforms
0
python
def __add__(self, widget): '\n\t\tShow widget on mdi area.\n\n\t\tIf widget does not have a subwindow assigned, create a new subwindow without enabling the WA_DeleteOnClose event.\n\t\tThis will allow subwindow to be hidden instead of destroyed. Otherwise, the closeEvent.accept() will cause\n\t\tthe "Internal c++ Object Already Deleted" problem.\n\n\t\tIf widget already has a subwindow, just show them (both the subwindow and the widget inside)!\n\t\t:param widget:\n\t\t:return:\n\t\t' if (not hasattr(widget, 'subwindow')): subwindow = QMdiSubWindow() subwindow.setWidget(widget) rect = widget.geometry() widget.subwindow = self.addSubWindow(subwindow) subwindow.setGeometry(rect) widget.subwindow.show() widget.show() widget.closeEvent = (lambda x: self._subWindowClosed(x)) widget.setFocus() logger.debug('Sub window opened. MDI area sub windows: %s', self.subWindowList()) return self
def __add__(self, widget): '\n\t\tShow widget on mdi area.\n\n\t\tIf widget does not have a subwindow assigned, create a new subwindow without enabling the WA_DeleteOnClose event.\n\t\tThis will allow subwindow to be hidden instead of destroyed. Otherwise, the closeEvent.accept() will cause\n\t\tthe "Internal c++ Object Already Deleted" problem.\n\n\t\tIf widget already has a subwindow, just show them (both the subwindow and the widget inside)!\n\t\t:param widget:\n\t\t:return:\n\t\t' if (not hasattr(widget, 'subwindow')): subwindow = QMdiSubWindow() subwindow.setWidget(widget) rect = widget.geometry() widget.subwindow = self.addSubWindow(subwindow) subwindow.setGeometry(rect) widget.subwindow.show() widget.show() widget.closeEvent = (lambda x: self._subWindowClosed(x)) widget.setFocus() logger.debug('Sub window opened. MDI area sub windows: %s', self.subWindowList()) return self<|docstring|>Show widget on mdi area. If widget does not have a subwindow assigned, create a new subwindow without enabling the WA_DeleteOnClose event. This will allow subwindow to be hidden instead of destroyed. Otherwise, the closeEvent.accept() will cause the "Internal c++ Object Already Deleted" problem. If widget already has a subwindow, just show them (both the subwindow and the widget inside)! :param widget: :return:<|endoftext|>
3d725d36cc3b27082f37685692929099b14b59714d6239d9b90737c41fc7961d
def _subWindowClosed(self, closeEvent): "\n\t\tPerform actions when subwindow is closed.\n\t\tIn this case, we don't want subwindow to be removed nor destroyed in order to reutilize later.\n\t\tThe closeEvent.accept() will just hide the subwindow.\n\t\t:param closeEvent:\n\t\t:return:\n\t\t" try: window = self.activeSubWindow() if window: widget = window.widget() widget.before_close_event() elif hasattr(window, 'before_close_event'): widget.before_close_event() closeEvent.accept() logger.debug('Sub window closed. MDI area sub windows: %s', self.subWindowList()) except Exception as err: logger.warning(str(err))
Perform actions when subwindow is closed. In this case, we don't want subwindow to be removed nor destroyed in order to reutilize later. The closeEvent.accept() will just hide the subwindow. :param closeEvent: :return:
pyforms/gui/Controls/ControlMdiArea.py
_subWindowClosed
Jess3Jane/pyforms
0
python
def _subWindowClosed(self, closeEvent): "\n\t\tPerform actions when subwindow is closed.\n\t\tIn this case, we don't want subwindow to be removed nor destroyed in order to reutilize later.\n\t\tThe closeEvent.accept() will just hide the subwindow.\n\t\t:param closeEvent:\n\t\t:return:\n\t\t" try: window = self.activeSubWindow() if window: widget = window.widget() widget.before_close_event() elif hasattr(window, 'before_close_event'): widget.before_close_event() closeEvent.accept() logger.debug('Sub window closed. MDI area sub windows: %s', self.subWindowList()) except Exception as err: logger.warning(str(err))
def _subWindowClosed(self, closeEvent): "\n\t\tPerform actions when subwindow is closed.\n\t\tIn this case, we don't want subwindow to be removed nor destroyed in order to reutilize later.\n\t\tThe closeEvent.accept() will just hide the subwindow.\n\t\t:param closeEvent:\n\t\t:return:\n\t\t" try: window = self.activeSubWindow() if window: widget = window.widget() widget.before_close_event() elif hasattr(window, 'before_close_event'): widget.before_close_event() closeEvent.accept() logger.debug('Sub window closed. MDI area sub windows: %s', self.subWindowList()) except Exception as err: logger.warning(str(err))<|docstring|>Perform actions when subwindow is closed. In this case, we don't want subwindow to be removed nor destroyed in order to reutilize later. The closeEvent.accept() will just hide the subwindow. :param closeEvent: :return:<|endoftext|>
a113a64c67eabf955b5dbeaf638689a03aa2ec93f8876f53bc364c1ec31a28f1
def wrap(func: _Callable, *, delay: bool=None, strict: StrictModeT=STRICT_MODE) -> _Callable: 'Wrap a callable to automatically enforce type-coercion.\n\n Parameters\n ----------\n func\n The callable for which you wish to ensure type-safety\n delay\n Delay annotation resolution until the first call\n strict\n Turn on "validator mode": e.g. validate incoming data rather than coerce.\n\n See Also\n --------\n :py:func:`inspect.signature`\n :py:meth:`inspect.Signature.bind`\n ' if isinstance(delay, bool): warnings.warn('The `delay` argument is no longer required and is deprecated. It will be removed in a future version.', category=DeprecationWarning) protos = protocols(func, strict=cast(bool, strict)) params = cached_signature(func).parameters enforcer = resolver.binder.get_enforcer(parameters=params, protocols=protos) @functools.wraps(func) def func_wrapper(*args, **kwargs): (args, kwargs) = enforcer(*args, **kwargs) return func(*args, **kwargs) return cast(_Callable, func_wrapper)
Wrap a callable to automatically enforce type-coercion. Parameters ---------- func The callable for which you wish to ensure type-safety delay Delay annotation resolution until the first call strict Turn on "validator mode": e.g. validate incoming data rather than coerce. See Also -------- :py:func:`inspect.signature` :py:meth:`inspect.Signature.bind`
typic/api.py
wrap
wyfo/typical
157
python
def wrap(func: _Callable, *, delay: bool=None, strict: StrictModeT=STRICT_MODE) -> _Callable: 'Wrap a callable to automatically enforce type-coercion.\n\n Parameters\n ----------\n func\n The callable for which you wish to ensure type-safety\n delay\n Delay annotation resolution until the first call\n strict\n Turn on "validator mode": e.g. validate incoming data rather than coerce.\n\n See Also\n --------\n :py:func:`inspect.signature`\n :py:meth:`inspect.Signature.bind`\n ' if isinstance(delay, bool): warnings.warn('The `delay` argument is no longer required and is deprecated. It will be removed in a future version.', category=DeprecationWarning) protos = protocols(func, strict=cast(bool, strict)) params = cached_signature(func).parameters enforcer = resolver.binder.get_enforcer(parameters=params, protocols=protos) @functools.wraps(func) def func_wrapper(*args, **kwargs): (args, kwargs) = enforcer(*args, **kwargs) return func(*args, **kwargs) return cast(_Callable, func_wrapper)
def wrap(func: _Callable, *, delay: bool=None, strict: StrictModeT=STRICT_MODE) -> _Callable: 'Wrap a callable to automatically enforce type-coercion.\n\n Parameters\n ----------\n func\n The callable for which you wish to ensure type-safety\n delay\n Delay annotation resolution until the first call\n strict\n Turn on "validator mode": e.g. validate incoming data rather than coerce.\n\n See Also\n --------\n :py:func:`inspect.signature`\n :py:meth:`inspect.Signature.bind`\n ' if isinstance(delay, bool): warnings.warn('The `delay` argument is no longer required and is deprecated. It will be removed in a future version.', category=DeprecationWarning) protos = protocols(func, strict=cast(bool, strict)) params = cached_signature(func).parameters enforcer = resolver.binder.get_enforcer(parameters=params, protocols=protos) @functools.wraps(func) def func_wrapper(*args, **kwargs): (args, kwargs) = enforcer(*args, **kwargs) return func(*args, **kwargs) return cast(_Callable, func_wrapper)<|docstring|>Wrap a callable to automatically enforce type-coercion. Parameters ---------- func The callable for which you wish to ensure type-safety delay Delay annotation resolution until the first call strict Turn on "validator mode": e.g. validate incoming data rather than coerce. See Also -------- :py:func:`inspect.signature` :py:meth:`inspect.Signature.bind`<|endoftext|>
b1655950c3e45f0c9a1946d396dffb128dcacfe4f6b53d68cf09c0779ec2482e
def wrap_cls(klass: Type[ObjectT], *, delay: bool=False, strict: StrictModeT=STRICT_MODE, jsonschema: bool=True, serde: SerdeFlags=SerdeFlags(), always: bool=None) -> Type[WrappedObjectT[ObjectT]]: 'Wrap a class to automatically enforce type-coercion on init.\n\n Notes\n -----\n While `Coercer.wrap` will work with classes alone, it changes the signature of the\n object to a function, there-by breaking inheritance. This follows a similar pattern to\n :func:`dataclasses.dataclasses`, which executes the function when wrapped, preserving\n the signature of the target class.\n\n Parameters\n ----------\n klass\n The class you wish to patch with coercion.\n delay\n Delay annotation resolution until first initialization.\n strict\n Turn on "validator mode": e.g. validate incoming data rather than coerce.\n jsonschema\n Generate a JSON Schema entry for this object.\n serde\n Optional settings for serialization/deserialization\n ' def cls_wrapper(cls_: Type[ObjectT]) -> Type[WrappedObjectT[ObjectT]]: if isinstance(delay, bool): warnings.warn('The `delay` argument is no longer required and is deprecated.It will be removed in a future version.', category=DeprecationWarning) setattr(cls_, '__delayed__', False) return _resolve_class(cls_, strict=strict, jsonschema=jsonschema, serde=serde, always=always) wrapped: Type[WrappedObjectT[ObjectT]] = cls_wrapper(klass) return wrapped
Wrap a class to automatically enforce type-coercion on init. Notes ----- While `Coercer.wrap` will work with classes alone, it changes the signature of the object to a function, there-by breaking inheritance. This follows a similar pattern to :func:`dataclasses.dataclasses`, which executes the function when wrapped, preserving the signature of the target class. Parameters ---------- klass The class you wish to patch with coercion. delay Delay annotation resolution until first initialization. strict Turn on "validator mode": e.g. validate incoming data rather than coerce. jsonschema Generate a JSON Schema entry for this object. serde Optional settings for serialization/deserialization
typic/api.py
wrap_cls
wyfo/typical
157
python
def wrap_cls(klass: Type[ObjectT], *, delay: bool=False, strict: StrictModeT=STRICT_MODE, jsonschema: bool=True, serde: SerdeFlags=SerdeFlags(), always: bool=None) -> Type[WrappedObjectT[ObjectT]]: 'Wrap a class to automatically enforce type-coercion on init.\n\n Notes\n -----\n While `Coercer.wrap` will work with classes alone, it changes the signature of the\n object to a function, there-by breaking inheritance. This follows a similar pattern to\n :func:`dataclasses.dataclasses`, which executes the function when wrapped, preserving\n the signature of the target class.\n\n Parameters\n ----------\n klass\n The class you wish to patch with coercion.\n delay\n Delay annotation resolution until first initialization.\n strict\n Turn on "validator mode": e.g. validate incoming data rather than coerce.\n jsonschema\n Generate a JSON Schema entry for this object.\n serde\n Optional settings for serialization/deserialization\n ' def cls_wrapper(cls_: Type[ObjectT]) -> Type[WrappedObjectT[ObjectT]]: if isinstance(delay, bool): warnings.warn('The `delay` argument is no longer required and is deprecated.It will be removed in a future version.', category=DeprecationWarning) setattr(cls_, '__delayed__', False) return _resolve_class(cls_, strict=strict, jsonschema=jsonschema, serde=serde, always=always) wrapped: Type[WrappedObjectT[ObjectT]] = cls_wrapper(klass) return wrapped
def wrap_cls(klass: Type[ObjectT], *, delay: bool=False, strict: StrictModeT=STRICT_MODE, jsonschema: bool=True, serde: SerdeFlags=SerdeFlags(), always: bool=None) -> Type[WrappedObjectT[ObjectT]]: 'Wrap a class to automatically enforce type-coercion on init.\n\n Notes\n -----\n While `Coercer.wrap` will work with classes alone, it changes the signature of the\n object to a function, there-by breaking inheritance. This follows a similar pattern to\n :func:`dataclasses.dataclasses`, which executes the function when wrapped, preserving\n the signature of the target class.\n\n Parameters\n ----------\n klass\n The class you wish to patch with coercion.\n delay\n Delay annotation resolution until first initialization.\n strict\n Turn on "validator mode": e.g. validate incoming data rather than coerce.\n jsonschema\n Generate a JSON Schema entry for this object.\n serde\n Optional settings for serialization/deserialization\n ' def cls_wrapper(cls_: Type[ObjectT]) -> Type[WrappedObjectT[ObjectT]]: if isinstance(delay, bool): warnings.warn('The `delay` argument is no longer required and is deprecated.It will be removed in a future version.', category=DeprecationWarning) setattr(cls_, '__delayed__', False) return _resolve_class(cls_, strict=strict, jsonschema=jsonschema, serde=serde, always=always) wrapped: Type[WrappedObjectT[ObjectT]] = cls_wrapper(klass) return wrapped<|docstring|>Wrap a class to automatically enforce type-coercion on init. Notes ----- While `Coercer.wrap` will work with classes alone, it changes the signature of the object to a function, there-by breaking inheritance. This follows a similar pattern to :func:`dataclasses.dataclasses`, which executes the function when wrapped, preserving the signature of the target class. Parameters ---------- klass The class you wish to patch with coercion. delay Delay annotation resolution until first initialization. strict Turn on "validator mode": e.g. validate incoming data rather than coerce. jsonschema Generate a JSON Schema entry for this object. serde Optional settings for serialization/deserialization<|endoftext|>
721d3ee29e38b8eff9ec97b16da0f3c4163bc6068a57d4de3f78348e1e003d22
def typed(_cls_or_callable=None, *, delay: bool=False, strict: bool=None, always: bool=None): 'A convenience function which automatically selects the correct wrapper.\n\n Parameters\n ----------\n delay\n Optionally delay annotation resolution until first call.\n strict\n Turn on "validator mode": e.g. validate incoming data rather than coerce.\n always\n Whether classes should always coerce values on their attributes.\n\n Returns\n -------\n The target object, appropriately wrapped.\n ' strict = (STRICT_MODE if (strict is None) else strict) def _typed(obj: Union[(Callable, Type[ObjectT])]): if inspect.isclass(obj): return wrap_cls(obj, delay=delay, strict=strict, always=always) elif callable(obj): return wrap(obj, delay=delay, strict=strict) else: raise TypeError(f'{__name__} requires a callable or class. Provided: {type(obj)}: {obj}') return (_typed(_cls_or_callable) if (_cls_or_callable is not None) else _typed)
A convenience function which automatically selects the correct wrapper. Parameters ---------- delay Optionally delay annotation resolution until first call. strict Turn on "validator mode": e.g. validate incoming data rather than coerce. always Whether classes should always coerce values on their attributes. Returns ------- The target object, appropriately wrapped.
typic/api.py
typed
wyfo/typical
157
python
def typed(_cls_or_callable=None, *, delay: bool=False, strict: bool=None, always: bool=None): 'A convenience function which automatically selects the correct wrapper.\n\n Parameters\n ----------\n delay\n Optionally delay annotation resolution until first call.\n strict\n Turn on "validator mode": e.g. validate incoming data rather than coerce.\n always\n Whether classes should always coerce values on their attributes.\n\n Returns\n -------\n The target object, appropriately wrapped.\n ' strict = (STRICT_MODE if (strict is None) else strict) def _typed(obj: Union[(Callable, Type[ObjectT])]): if inspect.isclass(obj): return wrap_cls(obj, delay=delay, strict=strict, always=always) elif callable(obj): return wrap(obj, delay=delay, strict=strict) else: raise TypeError(f'{__name__} requires a callable or class. Provided: {type(obj)}: {obj}') return (_typed(_cls_or_callable) if (_cls_or_callable is not None) else _typed)
def typed(_cls_or_callable=None, *, delay: bool=False, strict: bool=None, always: bool=None): 'A convenience function which automatically selects the correct wrapper.\n\n Parameters\n ----------\n delay\n Optionally delay annotation resolution until first call.\n strict\n Turn on "validator mode": e.g. validate incoming data rather than coerce.\n always\n Whether classes should always coerce values on their attributes.\n\n Returns\n -------\n The target object, appropriately wrapped.\n ' strict = (STRICT_MODE if (strict is None) else strict) def _typed(obj: Union[(Callable, Type[ObjectT])]): if inspect.isclass(obj): return wrap_cls(obj, delay=delay, strict=strict, always=always) elif callable(obj): return wrap(obj, delay=delay, strict=strict) else: raise TypeError(f'{__name__} requires a callable or class. Provided: {type(obj)}: {obj}') return (_typed(_cls_or_callable) if (_cls_or_callable is not None) else _typed)<|docstring|>A convenience function which automatically selects the correct wrapper. Parameters ---------- delay Optionally delay annotation resolution until first call. strict Turn on "validator mode": e.g. validate incoming data rather than coerce. always Whether classes should always coerce values on their attributes. Returns ------- The target object, appropriately wrapped.<|endoftext|>
e135311b8c0eb8f8a0187a405ac756145494886d4be306331b7c1f2317708c6f
def resolve(): 'Resolve any delayed annotations.\n\n If this is not called, annotations will be resolved on first call\n of the wrapped class or callable.\n\n Examples\n --------\n >>> import typic\n >>>\n >>> @typic.klass(delay=True)\n ... class Duck:\n ... color: str\n ...\n >>> typic.resolve()\n ' warnings.warn('Delayed type resolution is handled automatically as of v2.3.0. This function is now a no-op and will be removed in a future version.', category=DeprecationWarning)
Resolve any delayed annotations. If this is not called, annotations will be resolved on first call of the wrapped class or callable. Examples -------- >>> import typic >>> >>> @typic.klass(delay=True) ... class Duck: ... color: str ... >>> typic.resolve()
typic/api.py
resolve
wyfo/typical
157
python
def resolve(): 'Resolve any delayed annotations.\n\n If this is not called, annotations will be resolved on first call\n of the wrapped class or callable.\n\n Examples\n --------\n >>> import typic\n >>>\n >>> @typic.klass(delay=True)\n ... class Duck:\n ... color: str\n ...\n >>> typic.resolve()\n ' warnings.warn('Delayed type resolution is handled automatically as of v2.3.0. This function is now a no-op and will be removed in a future version.', category=DeprecationWarning)
def resolve(): 'Resolve any delayed annotations.\n\n If this is not called, annotations will be resolved on first call\n of the wrapped class or callable.\n\n Examples\n --------\n >>> import typic\n >>>\n >>> @typic.klass(delay=True)\n ... class Duck:\n ... color: str\n ...\n >>> typic.resolve()\n ' warnings.warn('Delayed type resolution is handled automatically as of v2.3.0. This function is now a no-op and will be removed in a future version.', category=DeprecationWarning)<|docstring|>Resolve any delayed annotations. If this is not called, annotations will be resolved on first call of the wrapped class or callable. Examples -------- >>> import typic >>> >>> @typic.klass(delay=True) ... class Duck: ... color: str ... >>> typic.resolve()<|endoftext|>
e6cde6310148ff726b984352a96a91d2c95922766bf9b0674e515a6f1f00e8bb
def constrained(_klass=None, *, values: Union[(Type, Tuple[(Type, ...)])]=None, **constraints): 'A wrapper to indicate a \'constrained\' type.\n\n Parameters\n ----------\n values\n For container-types, you can pass in other constraints for the values to be\n validated against. Can be a single constraint for all values or a tuple of\n constraints to choose from.\n\n **constraints\n The restrictions to apply to values being cast as the decorated type.\n\n Examples\n --------\n >>> import typic\n >>>\n >>> @typic.constrained(max_length=10)\n ... class ShortStr(str):\n ... \'\'\'A short string.\'\'\'\n ... ...\n ...\n >>> ShortStr(\'foo\')\n \'foo\'\n >>> ShortStr(\'waytoomanycharacters\')\n Traceback (most recent call last):\n ...\n typic.constraints.error.ConstraintValueError: Given value <\'waytoomanycharacters\'> fails constraints: (type=str, nullable=False, max_length=10)\n >>> @typic.constrained(values=ShortStr, max_items=2)\n ... class SmallMap(dict):\n ... \'\'\'A small map that only allows short strings.\'\'\'\n ...\n >>> import json\n >>> print(json.dumps(typic.schema(SmallMap, primitive=True), indent=2))\n {\n "type": "object",\n "title": "SmallMap",\n "description": "A small map that only allows short strings.",\n "additionalProperties": {\n "type": "string",\n "maxLength": 10\n },\n "maxProperties": 2\n }\n\n\n See Also\n --------\n :py:mod:`typic.constraints.array`\n\n :py:mod:`typic.constraints.common`\n\n :py:mod:`typic.constraints.error`\n\n :py:mod:`typic.constraints.mapping`\n\n :py:mod:`typic.constraints.number`\n\n :py:mod:`typic.constraints.text`\n ' def constr_wrapper(cls_: Type[ObjectT]) -> Type[ObjectT]: nonlocal constraints nonlocal values cdict = dict(cls_.__dict__) cdict.pop('__dict__', None) cdict.pop('__weakref__', None) constr_cls = _get_constraint_cls(cls_) if (not constr_cls): raise TypeError(f"can't constrain type {cls_.__name__!r}") args: Tuple[(Type, ...)] = () if (values and (constr_cls.type in {list, dict, set, tuple, frozenset})): args = _handle_constraint_values(constraints, values, args) if (constr_cls.type == dict): args = _handle_constraint_keys(constraints, args) if args: cdict['__args__'] = args constraints_inst = constr_cls(**constraints) bases = inspect.getmro(cls_) def new(_new): @functools.wraps(_new) def __constrained_new(*args, **kwargs): result = _new(*args, **kwargs) return constraints_inst.validate(result) return __constrained_new def init(_init): @functools.wraps(_init) def __constrained_init(self, *args, **kwargs): _init(self, *args, **kwargs) constraints_inst.validate(self) return __constrained_init name = cls_.__name__ if isbuiltintype(cls_): name = f'Constrained{cls_.__name__.capitalize()}' cdict.update(__constraints__=constraints_inst, __parent__=constraints_inst.type, __module__=cls_.__module__, **({'__new__': new(cls_.__new__)} if (constraints_inst.type in {str, bytes, int, float}) else {'__init__': init(cls_.__init__)})) cls: Type[ObjectT] = cast(Type[ObjectT], type(name, bases, cdict)) return cls return (constr_wrapper(_klass) if _klass else constr_wrapper)
A wrapper to indicate a 'constrained' type. Parameters ---------- values For container-types, you can pass in other constraints for the values to be validated against. Can be a single constraint for all values or a tuple of constraints to choose from. **constraints The restrictions to apply to values being cast as the decorated type. Examples -------- >>> import typic >>> >>> @typic.constrained(max_length=10) ... class ShortStr(str): ... '''A short string.''' ... ... ... >>> ShortStr('foo') 'foo' >>> ShortStr('waytoomanycharacters') Traceback (most recent call last): ... typic.constraints.error.ConstraintValueError: Given value <'waytoomanycharacters'> fails constraints: (type=str, nullable=False, max_length=10) >>> @typic.constrained(values=ShortStr, max_items=2) ... class SmallMap(dict): ... '''A small map that only allows short strings.''' ... >>> import json >>> print(json.dumps(typic.schema(SmallMap, primitive=True), indent=2)) { "type": "object", "title": "SmallMap", "description": "A small map that only allows short strings.", "additionalProperties": { "type": "string", "maxLength": 10 }, "maxProperties": 2 } See Also -------- :py:mod:`typic.constraints.array` :py:mod:`typic.constraints.common` :py:mod:`typic.constraints.error` :py:mod:`typic.constraints.mapping` :py:mod:`typic.constraints.number` :py:mod:`typic.constraints.text`
typic/api.py
constrained
wyfo/typical
157
python
def constrained(_klass=None, *, values: Union[(Type, Tuple[(Type, ...)])]=None, **constraints): 'A wrapper to indicate a \'constrained\' type.\n\n Parameters\n ----------\n values\n For container-types, you can pass in other constraints for the values to be\n validated against. Can be a single constraint for all values or a tuple of\n constraints to choose from.\n\n **constraints\n The restrictions to apply to values being cast as the decorated type.\n\n Examples\n --------\n >>> import typic\n >>>\n >>> @typic.constrained(max_length=10)\n ... class ShortStr(str):\n ... \'\'\'A short string.\'\'\'\n ... ...\n ...\n >>> ShortStr(\'foo\')\n \'foo\'\n >>> ShortStr(\'waytoomanycharacters\')\n Traceback (most recent call last):\n ...\n typic.constraints.error.ConstraintValueError: Given value <\'waytoomanycharacters\'> fails constraints: (type=str, nullable=False, max_length=10)\n >>> @typic.constrained(values=ShortStr, max_items=2)\n ... class SmallMap(dict):\n ... \'\'\'A small map that only allows short strings.\'\'\'\n ...\n >>> import json\n >>> print(json.dumps(typic.schema(SmallMap, primitive=True), indent=2))\n {\n "type": "object",\n "title": "SmallMap",\n "description": "A small map that only allows short strings.",\n "additionalProperties": {\n "type": "string",\n "maxLength": 10\n },\n "maxProperties": 2\n }\n\n\n See Also\n --------\n :py:mod:`typic.constraints.array`\n\n :py:mod:`typic.constraints.common`\n\n :py:mod:`typic.constraints.error`\n\n :py:mod:`typic.constraints.mapping`\n\n :py:mod:`typic.constraints.number`\n\n :py:mod:`typic.constraints.text`\n ' def constr_wrapper(cls_: Type[ObjectT]) -> Type[ObjectT]: nonlocal constraints nonlocal values cdict = dict(cls_.__dict__) cdict.pop('__dict__', None) cdict.pop('__weakref__', None) constr_cls = _get_constraint_cls(cls_) if (not constr_cls): raise TypeError(f"can't constrain type {cls_.__name__!r}") args: Tuple[(Type, ...)] = () if (values and (constr_cls.type in {list, dict, set, tuple, frozenset})): args = _handle_constraint_values(constraints, values, args) if (constr_cls.type == dict): args = _handle_constraint_keys(constraints, args) if args: cdict['__args__'] = args constraints_inst = constr_cls(**constraints) bases = inspect.getmro(cls_) def new(_new): @functools.wraps(_new) def __constrained_new(*args, **kwargs): result = _new(*args, **kwargs) return constraints_inst.validate(result) return __constrained_new def init(_init): @functools.wraps(_init) def __constrained_init(self, *args, **kwargs): _init(self, *args, **kwargs) constraints_inst.validate(self) return __constrained_init name = cls_.__name__ if isbuiltintype(cls_): name = f'Constrained{cls_.__name__.capitalize()}' cdict.update(__constraints__=constraints_inst, __parent__=constraints_inst.type, __module__=cls_.__module__, **({'__new__': new(cls_.__new__)} if (constraints_inst.type in {str, bytes, int, float}) else {'__init__': init(cls_.__init__)})) cls: Type[ObjectT] = cast(Type[ObjectT], type(name, bases, cdict)) return cls return (constr_wrapper(_klass) if _klass else constr_wrapper)
def constrained(_klass=None, *, values: Union[(Type, Tuple[(Type, ...)])]=None, **constraints): 'A wrapper to indicate a \'constrained\' type.\n\n Parameters\n ----------\n values\n For container-types, you can pass in other constraints for the values to be\n validated against. Can be a single constraint for all values or a tuple of\n constraints to choose from.\n\n **constraints\n The restrictions to apply to values being cast as the decorated type.\n\n Examples\n --------\n >>> import typic\n >>>\n >>> @typic.constrained(max_length=10)\n ... class ShortStr(str):\n ... \'\'\'A short string.\'\'\'\n ... ...\n ...\n >>> ShortStr(\'foo\')\n \'foo\'\n >>> ShortStr(\'waytoomanycharacters\')\n Traceback (most recent call last):\n ...\n typic.constraints.error.ConstraintValueError: Given value <\'waytoomanycharacters\'> fails constraints: (type=str, nullable=False, max_length=10)\n >>> @typic.constrained(values=ShortStr, max_items=2)\n ... class SmallMap(dict):\n ... \'\'\'A small map that only allows short strings.\'\'\'\n ...\n >>> import json\n >>> print(json.dumps(typic.schema(SmallMap, primitive=True), indent=2))\n {\n "type": "object",\n "title": "SmallMap",\n "description": "A small map that only allows short strings.",\n "additionalProperties": {\n "type": "string",\n "maxLength": 10\n },\n "maxProperties": 2\n }\n\n\n See Also\n --------\n :py:mod:`typic.constraints.array`\n\n :py:mod:`typic.constraints.common`\n\n :py:mod:`typic.constraints.error`\n\n :py:mod:`typic.constraints.mapping`\n\n :py:mod:`typic.constraints.number`\n\n :py:mod:`typic.constraints.text`\n ' def constr_wrapper(cls_: Type[ObjectT]) -> Type[ObjectT]: nonlocal constraints nonlocal values cdict = dict(cls_.__dict__) cdict.pop('__dict__', None) cdict.pop('__weakref__', None) constr_cls = _get_constraint_cls(cls_) if (not constr_cls): raise TypeError(f"can't constrain type {cls_.__name__!r}") args: Tuple[(Type, ...)] = () if (values and (constr_cls.type in {list, dict, set, tuple, frozenset})): args = _handle_constraint_values(constraints, values, args) if (constr_cls.type == dict): args = _handle_constraint_keys(constraints, args) if args: cdict['__args__'] = args constraints_inst = constr_cls(**constraints) bases = inspect.getmro(cls_) def new(_new): @functools.wraps(_new) def __constrained_new(*args, **kwargs): result = _new(*args, **kwargs) return constraints_inst.validate(result) return __constrained_new def init(_init): @functools.wraps(_init) def __constrained_init(self, *args, **kwargs): _init(self, *args, **kwargs) constraints_inst.validate(self) return __constrained_init name = cls_.__name__ if isbuiltintype(cls_): name = f'Constrained{cls_.__name__.capitalize()}' cdict.update(__constraints__=constraints_inst, __parent__=constraints_inst.type, __module__=cls_.__module__, **({'__new__': new(cls_.__new__)} if (constraints_inst.type in {str, bytes, int, float}) else {'__init__': init(cls_.__init__)})) cls: Type[ObjectT] = cast(Type[ObjectT], type(name, bases, cdict)) return cls return (constr_wrapper(_klass) if _klass else constr_wrapper)<|docstring|>A wrapper to indicate a 'constrained' type. Parameters ---------- values For container-types, you can pass in other constraints for the values to be validated against. Can be a single constraint for all values or a tuple of constraints to choose from. **constraints The restrictions to apply to values being cast as the decorated type. Examples -------- >>> import typic >>> >>> @typic.constrained(max_length=10) ... class ShortStr(str): ... '''A short string.''' ... ... ... >>> ShortStr('foo') 'foo' >>> ShortStr('waytoomanycharacters') Traceback (most recent call last): ... typic.constraints.error.ConstraintValueError: Given value <'waytoomanycharacters'> fails constraints: (type=str, nullable=False, max_length=10) >>> @typic.constrained(values=ShortStr, max_items=2) ... class SmallMap(dict): ... '''A small map that only allows short strings.''' ... >>> import json >>> print(json.dumps(typic.schema(SmallMap, primitive=True), indent=2)) { "type": "object", "title": "SmallMap", "description": "A small map that only allows short strings.", "additionalProperties": { "type": "string", "maxLength": 10 }, "maxProperties": 2 } See Also -------- :py:mod:`typic.constraints.array` :py:mod:`typic.constraints.common` :py:mod:`typic.constraints.error` :py:mod:`typic.constraints.mapping` :py:mod:`typic.constraints.number` :py:mod:`typic.constraints.text`<|endoftext|>