body_hash
stringlengths
64
64
body
stringlengths
23
109k
docstring
stringlengths
1
57k
path
stringlengths
4
198
name
stringlengths
1
115
repository_name
stringlengths
7
111
repository_stars
float64
0
191k
lang
stringclasses
1 value
body_without_docstring
stringlengths
14
108k
unified
stringlengths
45
133k
d136c8177a772f0738fdd383246db46419efedc01f764a59b07413aa6eb236ab
def create_electricity_market_for_fuel_prep(self): ' This function fills the electricity market that supplies battery charging operations\n and hydrogen production through electrolysis.\n ' try: losses_to_low = float(self.bs.losses[self.country]['LV']) except KeyError: losses_to_low = float(self.bs.losses['RER']['LV']) for (y, year) in enumerate(self.scope['year']): m = np.array(self.mix[y]).reshape((- 1), 15, 1) self.A[np.ix_(np.arange(self.iterations), [self.inputs[self.elec_map[t]] for t in self.elec_map], [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('electricity market for fuel preparation' in i[0]))])] = ((m * (- 1)) * losses_to_low) self.A[(:, self.inputs[('transmission network construction, electricity, high voltage', 'CH', 'kilometer', 'transmission network, electricity, high voltage')], [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('electricity market for fuel preparation' in i[0]))])] = ((6.58e-09 * (- 1)) * losses_to_low) self.A[(:, self.inputs[('transmission network construction, electricity, medium voltage', 'CH', 'kilometer', 'transmission network, electricity, medium voltage')], [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('electricity market for fuel preparation' in i[0]))])] = ((1.86e-08 * (- 1)) * losses_to_low) self.A[(:, self.inputs[('transmission network construction, long-distance', 'UCTE', 'kilometer', 'transmission network, long-distance')], [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('electricity market for fuel preparation' in i[0]))])] = ((3.17e-10 * (- 1)) * losses_to_low) self.A[(:, self.inputs[('distribution network construction, electricity, low voltage', 'CH', 'kilometer', 'distribution network, electricity, low voltage')], [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('electricity market for fuel preparation' in i[0]))])] = ((8.74e-08 * (- 1)) * losses_to_low) self.A[(:, self.inputs[('market for sulfur hexafluoride, liquid', 'RER', 'kilogram', 'sulfur hexafluoride, liquid')], [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('electricity market for fuel preparation' in i[0]))])] = (((5.4e-08 + 2.99e-09) * (- 1)) * losses_to_low) self.A[(:, self.inputs[('Sulfur hexafluoride', ('air',), 'kilogram')], [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('electricity market for fuel preparation' in i[0]))])] = (((5.4e-08 + 2.99e-09) * (- 1)) * losses_to_low)
This function fills the electricity market that supplies battery charging operations and hydrogen production through electrolysis.
carculator/inventory.py
create_electricity_market_for_fuel_prep
rena-nong/carculator
1
python
def create_electricity_market_for_fuel_prep(self): ' This function fills the electricity market that supplies battery charging operations\n and hydrogen production through electrolysis.\n ' try: losses_to_low = float(self.bs.losses[self.country]['LV']) except KeyError: losses_to_low = float(self.bs.losses['RER']['LV']) for (y, year) in enumerate(self.scope['year']): m = np.array(self.mix[y]).reshape((- 1), 15, 1) self.A[np.ix_(np.arange(self.iterations), [self.inputs[self.elec_map[t]] for t in self.elec_map], [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('electricity market for fuel preparation' in i[0]))])] = ((m * (- 1)) * losses_to_low) self.A[(:, self.inputs[('transmission network construction, electricity, high voltage', 'CH', 'kilometer', 'transmission network, electricity, high voltage')], [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('electricity market for fuel preparation' in i[0]))])] = ((6.58e-09 * (- 1)) * losses_to_low) self.A[(:, self.inputs[('transmission network construction, electricity, medium voltage', 'CH', 'kilometer', 'transmission network, electricity, medium voltage')], [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('electricity market for fuel preparation' in i[0]))])] = ((1.86e-08 * (- 1)) * losses_to_low) self.A[(:, self.inputs[('transmission network construction, long-distance', 'UCTE', 'kilometer', 'transmission network, long-distance')], [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('electricity market for fuel preparation' in i[0]))])] = ((3.17e-10 * (- 1)) * losses_to_low) self.A[(:, self.inputs[('distribution network construction, electricity, low voltage', 'CH', 'kilometer', 'distribution network, electricity, low voltage')], [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('electricity market for fuel preparation' in i[0]))])] = ((8.74e-08 * (- 1)) * losses_to_low) self.A[(:, self.inputs[('market for sulfur hexafluoride, liquid', 'RER', 'kilogram', 'sulfur hexafluoride, liquid')], [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('electricity market for fuel preparation' in i[0]))])] = (((5.4e-08 + 2.99e-09) * (- 1)) * losses_to_low) self.A[(:, self.inputs[('Sulfur hexafluoride', ('air',), 'kilogram')], [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('electricity market for fuel preparation' in i[0]))])] = (((5.4e-08 + 2.99e-09) * (- 1)) * losses_to_low)
def create_electricity_market_for_fuel_prep(self): ' This function fills the electricity market that supplies battery charging operations\n and hydrogen production through electrolysis.\n ' try: losses_to_low = float(self.bs.losses[self.country]['LV']) except KeyError: losses_to_low = float(self.bs.losses['RER']['LV']) for (y, year) in enumerate(self.scope['year']): m = np.array(self.mix[y]).reshape((- 1), 15, 1) self.A[np.ix_(np.arange(self.iterations), [self.inputs[self.elec_map[t]] for t in self.elec_map], [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('electricity market for fuel preparation' in i[0]))])] = ((m * (- 1)) * losses_to_low) self.A[(:, self.inputs[('transmission network construction, electricity, high voltage', 'CH', 'kilometer', 'transmission network, electricity, high voltage')], [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('electricity market for fuel preparation' in i[0]))])] = ((6.58e-09 * (- 1)) * losses_to_low) self.A[(:, self.inputs[('transmission network construction, electricity, medium voltage', 'CH', 'kilometer', 'transmission network, electricity, medium voltage')], [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('electricity market for fuel preparation' in i[0]))])] = ((1.86e-08 * (- 1)) * losses_to_low) self.A[(:, self.inputs[('transmission network construction, long-distance', 'UCTE', 'kilometer', 'transmission network, long-distance')], [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('electricity market for fuel preparation' in i[0]))])] = ((3.17e-10 * (- 1)) * losses_to_low) self.A[(:, self.inputs[('distribution network construction, electricity, low voltage', 'CH', 'kilometer', 'distribution network, electricity, low voltage')], [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('electricity market for fuel preparation' in i[0]))])] = ((8.74e-08 * (- 1)) * losses_to_low) self.A[(:, self.inputs[('market for sulfur hexafluoride, liquid', 'RER', 'kilogram', 'sulfur hexafluoride, liquid')], [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('electricity market for fuel preparation' in i[0]))])] = (((5.4e-08 + 2.99e-09) * (- 1)) * losses_to_low) self.A[(:, self.inputs[('Sulfur hexafluoride', ('air',), 'kilogram')], [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('electricity market for fuel preparation' in i[0]))])] = (((5.4e-08 + 2.99e-09) * (- 1)) * losses_to_low)<|docstring|>This function fills the electricity market that supplies battery charging operations and hydrogen production through electrolysis.<|endoftext|>
b6849d08b40dcab8a054435f4fb0d84689024d0cf3ab5c2840cb2c7d027236af
def create_electricity_market_for_battery_production(self): '\n This function fills in the column in `self.A` concerned with the electricity mix used for manufacturing battery cells\n :return:\n ' battery_origin = self.background_configuration['energy storage']['electric']['origin'] if (battery_origin != 'custom electricity mix'): try: losses_to_low = float(self.bs.losses[battery_origin]['LV']) except KeyError: losses_to_low = float(self.bs.losses['CN']['LV']) if (battery_origin not in self.bs.electricity_mix.country.values): print('The electricity mix for {} could not be found. Average Chinese electricity mix is used for battery manufacture instead.'.format(self.country)) battery_origin = 'CN' mix_battery_manufacturing = self.bs.electricity_mix.sel(country=battery_origin, variable=['Hydro', 'Nuclear', 'Gas', 'Solar', 'Wind', 'Biomass', 'Coal', 'Oil', 'Geothermal', 'Waste', 'Biogas CCS', 'Biomass CCS', 'Coal CCS', 'Gas CCS', 'Wood CCS']).interp(year=self.scope['year'], kwargs={'fill_value': 'extrapolate'}).values else: mix_battery_manufacturing = self.mix losses_to_low = 1.1 for (y, year) in enumerate(self.scope['year']): m = np.array(mix_battery_manufacturing[y]).reshape((- 1), 15, 1) self.A[np.ix_(np.arange(self.iterations), [self.inputs[self.elec_map[t]] for t in self.elec_map], [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('electricity market for energy storage production' in i[0]))])] = ((m * losses_to_low) * (- 1)) self.A[(:, self.inputs[('transmission network construction, electricity, high voltage', 'CH', 'kilometer', 'transmission network, electricity, high voltage')], [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('electricity market for energy storage production' in i[0]))])] = ((6.58e-09 * (- 1)) * losses_to_low) self.A[(:, self.inputs[('transmission network construction, electricity, medium voltage', 'CH', 'kilometer', 'transmission network, electricity, medium voltage')], [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('electricity market for energy storage production' in i[0]))])] = ((1.86e-08 * (- 1)) * losses_to_low) self.A[(:, self.inputs[('transmission network construction, long-distance', 'UCTE', 'kilometer', 'transmission network, long-distance')], [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('electricity market for energy storage production' in i[0]))])] = ((3.17e-10 * (- 1)) * losses_to_low) self.A[(:, self.inputs[('distribution network construction, electricity, low voltage', 'CH', 'kilometer', 'distribution network, electricity, low voltage')], [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('electricity market for energy storage production' in i[0]))])] = ((8.74e-08 * (- 1)) * losses_to_low) self.A[(:, self.inputs[('market for sulfur hexafluoride, liquid', 'RER', 'kilogram', 'sulfur hexafluoride, liquid')], [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('electricity market for energy storage production' in i[0]))])] = (((5.4e-08 + 2.99e-09) * (- 1)) * losses_to_low) self.A[(:, self.inputs[('Sulfur hexafluoride', ('air',), 'kilogram')], [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('electricity market for energy storage production' in i[0]))])] = (((5.4e-08 + 2.99e-09) * (- 1)) * losses_to_low)
This function fills in the column in `self.A` concerned with the electricity mix used for manufacturing battery cells :return:
carculator/inventory.py
create_electricity_market_for_battery_production
rena-nong/carculator
1
python
def create_electricity_market_for_battery_production(self): '\n This function fills in the column in `self.A` concerned with the electricity mix used for manufacturing battery cells\n :return:\n ' battery_origin = self.background_configuration['energy storage']['electric']['origin'] if (battery_origin != 'custom electricity mix'): try: losses_to_low = float(self.bs.losses[battery_origin]['LV']) except KeyError: losses_to_low = float(self.bs.losses['CN']['LV']) if (battery_origin not in self.bs.electricity_mix.country.values): print('The electricity mix for {} could not be found. Average Chinese electricity mix is used for battery manufacture instead.'.format(self.country)) battery_origin = 'CN' mix_battery_manufacturing = self.bs.electricity_mix.sel(country=battery_origin, variable=['Hydro', 'Nuclear', 'Gas', 'Solar', 'Wind', 'Biomass', 'Coal', 'Oil', 'Geothermal', 'Waste', 'Biogas CCS', 'Biomass CCS', 'Coal CCS', 'Gas CCS', 'Wood CCS']).interp(year=self.scope['year'], kwargs={'fill_value': 'extrapolate'}).values else: mix_battery_manufacturing = self.mix losses_to_low = 1.1 for (y, year) in enumerate(self.scope['year']): m = np.array(mix_battery_manufacturing[y]).reshape((- 1), 15, 1) self.A[np.ix_(np.arange(self.iterations), [self.inputs[self.elec_map[t]] for t in self.elec_map], [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('electricity market for energy storage production' in i[0]))])] = ((m * losses_to_low) * (- 1)) self.A[(:, self.inputs[('transmission network construction, electricity, high voltage', 'CH', 'kilometer', 'transmission network, electricity, high voltage')], [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('electricity market for energy storage production' in i[0]))])] = ((6.58e-09 * (- 1)) * losses_to_low) self.A[(:, self.inputs[('transmission network construction, electricity, medium voltage', 'CH', 'kilometer', 'transmission network, electricity, medium voltage')], [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('electricity market for energy storage production' in i[0]))])] = ((1.86e-08 * (- 1)) * losses_to_low) self.A[(:, self.inputs[('transmission network construction, long-distance', 'UCTE', 'kilometer', 'transmission network, long-distance')], [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('electricity market for energy storage production' in i[0]))])] = ((3.17e-10 * (- 1)) * losses_to_low) self.A[(:, self.inputs[('distribution network construction, electricity, low voltage', 'CH', 'kilometer', 'distribution network, electricity, low voltage')], [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('electricity market for energy storage production' in i[0]))])] = ((8.74e-08 * (- 1)) * losses_to_low) self.A[(:, self.inputs[('market for sulfur hexafluoride, liquid', 'RER', 'kilogram', 'sulfur hexafluoride, liquid')], [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('electricity market for energy storage production' in i[0]))])] = (((5.4e-08 + 2.99e-09) * (- 1)) * losses_to_low) self.A[(:, self.inputs[('Sulfur hexafluoride', ('air',), 'kilogram')], [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('electricity market for energy storage production' in i[0]))])] = (((5.4e-08 + 2.99e-09) * (- 1)) * losses_to_low)
def create_electricity_market_for_battery_production(self): '\n This function fills in the column in `self.A` concerned with the electricity mix used for manufacturing battery cells\n :return:\n ' battery_origin = self.background_configuration['energy storage']['electric']['origin'] if (battery_origin != 'custom electricity mix'): try: losses_to_low = float(self.bs.losses[battery_origin]['LV']) except KeyError: losses_to_low = float(self.bs.losses['CN']['LV']) if (battery_origin not in self.bs.electricity_mix.country.values): print('The electricity mix for {} could not be found. Average Chinese electricity mix is used for battery manufacture instead.'.format(self.country)) battery_origin = 'CN' mix_battery_manufacturing = self.bs.electricity_mix.sel(country=battery_origin, variable=['Hydro', 'Nuclear', 'Gas', 'Solar', 'Wind', 'Biomass', 'Coal', 'Oil', 'Geothermal', 'Waste', 'Biogas CCS', 'Biomass CCS', 'Coal CCS', 'Gas CCS', 'Wood CCS']).interp(year=self.scope['year'], kwargs={'fill_value': 'extrapolate'}).values else: mix_battery_manufacturing = self.mix losses_to_low = 1.1 for (y, year) in enumerate(self.scope['year']): m = np.array(mix_battery_manufacturing[y]).reshape((- 1), 15, 1) self.A[np.ix_(np.arange(self.iterations), [self.inputs[self.elec_map[t]] for t in self.elec_map], [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('electricity market for energy storage production' in i[0]))])] = ((m * losses_to_low) * (- 1)) self.A[(:, self.inputs[('transmission network construction, electricity, high voltage', 'CH', 'kilometer', 'transmission network, electricity, high voltage')], [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('electricity market for energy storage production' in i[0]))])] = ((6.58e-09 * (- 1)) * losses_to_low) self.A[(:, self.inputs[('transmission network construction, electricity, medium voltage', 'CH', 'kilometer', 'transmission network, electricity, medium voltage')], [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('electricity market for energy storage production' in i[0]))])] = ((1.86e-08 * (- 1)) * losses_to_low) self.A[(:, self.inputs[('transmission network construction, long-distance', 'UCTE', 'kilometer', 'transmission network, long-distance')], [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('electricity market for energy storage production' in i[0]))])] = ((3.17e-10 * (- 1)) * losses_to_low) self.A[(:, self.inputs[('distribution network construction, electricity, low voltage', 'CH', 'kilometer', 'distribution network, electricity, low voltage')], [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('electricity market for energy storage production' in i[0]))])] = ((8.74e-08 * (- 1)) * losses_to_low) self.A[(:, self.inputs[('market for sulfur hexafluoride, liquid', 'RER', 'kilogram', 'sulfur hexafluoride, liquid')], [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('electricity market for energy storage production' in i[0]))])] = (((5.4e-08 + 2.99e-09) * (- 1)) * losses_to_low) self.A[(:, self.inputs[('Sulfur hexafluoride', ('air',), 'kilogram')], [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('electricity market for energy storage production' in i[0]))])] = (((5.4e-08 + 2.99e-09) * (- 1)) * losses_to_low)<|docstring|>This function fills in the column in `self.A` concerned with the electricity mix used for manufacturing battery cells :return:<|endoftext|>
45287ae3111093efbd0c7588e18c83555e8797190ab8f02124ed31f5cbbafe96
def set_actual_range(self): '\n Set the actual range considering the blend.\n Liquid bio-fuels and synthetic fuels typically have a lower calorific value. Hence, the need to recalculate\n the vehicle range.\n Modifies parameter `range` of `array` in place\n ' if {'ICEV-p', 'HEV-p', 'PHEV-p'}.intersection(set(self.scope['powertrain'])): for (y, year) in enumerate(self.scope['year']): share_primary = self.fuel_blends['petrol']['primary']['share'][y] lhv_primary = self.fuel_blends['petrol']['primary']['lhv'] share_secondary = self.fuel_blends['petrol']['secondary']['share'][y] lhv_secondary = self.fuel_blends['petrol']['secondary']['lhv'] if ('tertiary' in self.fuel_blends['petrol']): share_tertiary = self.fuel_blends['petrol']['tertiary']['share'][y] lhv_tertiary = self.fuel_blends['petrol']['tertiary']['lhv'] else: share_tertiary = 0 lhv_tertiary = 0 index = self.get_index_vehicle_from_array(['ICEV-p', 'HEV-p', 'PHEV-p'], year, method='and') self.array.values[(self.array_inputs['range'], :, index)] = ((((((self.array.values[(self.array_inputs['fuel mass'], :, index)] * share_primary) * lhv_primary) + ((self.array.values[(self.array_inputs['fuel mass'], :, index)] * share_secondary) * lhv_secondary)) + ((self.array.values[(self.array_inputs['fuel mass'], :, index)] * share_tertiary) * lhv_tertiary)) * 1000) / self.array.values[(self.array_inputs['TtW energy'], :, index)]) if {'ICEV-d', 'HEV-d', 'PHEV-d'}.intersection(set(self.scope['powertrain'])): for (y, year) in enumerate(self.scope['year']): share_primary = self.fuel_blends['diesel']['primary']['share'][y] lhv_primary = self.fuel_blends['diesel']['primary']['lhv'] share_secondary = self.fuel_blends['diesel']['secondary']['share'][y] lhv_secondary = self.fuel_blends['diesel']['secondary']['lhv'] if ('tertiary' in self.fuel_blends['diesel']): share_tertiary = self.fuel_blends['diesel']['tertiary']['share'][y] lhv_tertiary = self.fuel_blends['diesel']['tertiary']['lhv'] else: share_tertiary = 0 lhv_tertiary = 0 index = self.get_index_vehicle_from_array(['ICEV-d', 'PHEV-d', 'HEV-d'], year, method='and') self.array.values[(self.array_inputs['range'], :, index)] = ((((((self.array.values[(self.array_inputs['fuel mass'], :, index)] * share_primary) * lhv_primary) + ((self.array.values[(self.array_inputs['fuel mass'], :, index)] * share_secondary) * lhv_secondary)) + ((self.array.values[(self.array_inputs['fuel mass'], :, index)] * share_tertiary) * lhv_tertiary)) * 1000) / self.array.values[(self.array_inputs['TtW energy'], :, index)])
Set the actual range considering the blend. Liquid bio-fuels and synthetic fuels typically have a lower calorific value. Hence, the need to recalculate the vehicle range. Modifies parameter `range` of `array` in place
carculator/inventory.py
set_actual_range
rena-nong/carculator
1
python
def set_actual_range(self): '\n Set the actual range considering the blend.\n Liquid bio-fuels and synthetic fuels typically have a lower calorific value. Hence, the need to recalculate\n the vehicle range.\n Modifies parameter `range` of `array` in place\n ' if {'ICEV-p', 'HEV-p', 'PHEV-p'}.intersection(set(self.scope['powertrain'])): for (y, year) in enumerate(self.scope['year']): share_primary = self.fuel_blends['petrol']['primary']['share'][y] lhv_primary = self.fuel_blends['petrol']['primary']['lhv'] share_secondary = self.fuel_blends['petrol']['secondary']['share'][y] lhv_secondary = self.fuel_blends['petrol']['secondary']['lhv'] if ('tertiary' in self.fuel_blends['petrol']): share_tertiary = self.fuel_blends['petrol']['tertiary']['share'][y] lhv_tertiary = self.fuel_blends['petrol']['tertiary']['lhv'] else: share_tertiary = 0 lhv_tertiary = 0 index = self.get_index_vehicle_from_array(['ICEV-p', 'HEV-p', 'PHEV-p'], year, method='and') self.array.values[(self.array_inputs['range'], :, index)] = ((((((self.array.values[(self.array_inputs['fuel mass'], :, index)] * share_primary) * lhv_primary) + ((self.array.values[(self.array_inputs['fuel mass'], :, index)] * share_secondary) * lhv_secondary)) + ((self.array.values[(self.array_inputs['fuel mass'], :, index)] * share_tertiary) * lhv_tertiary)) * 1000) / self.array.values[(self.array_inputs['TtW energy'], :, index)]) if {'ICEV-d', 'HEV-d', 'PHEV-d'}.intersection(set(self.scope['powertrain'])): for (y, year) in enumerate(self.scope['year']): share_primary = self.fuel_blends['diesel']['primary']['share'][y] lhv_primary = self.fuel_blends['diesel']['primary']['lhv'] share_secondary = self.fuel_blends['diesel']['secondary']['share'][y] lhv_secondary = self.fuel_blends['diesel']['secondary']['lhv'] if ('tertiary' in self.fuel_blends['diesel']): share_tertiary = self.fuel_blends['diesel']['tertiary']['share'][y] lhv_tertiary = self.fuel_blends['diesel']['tertiary']['lhv'] else: share_tertiary = 0 lhv_tertiary = 0 index = self.get_index_vehicle_from_array(['ICEV-d', 'PHEV-d', 'HEV-d'], year, method='and') self.array.values[(self.array_inputs['range'], :, index)] = ((((((self.array.values[(self.array_inputs['fuel mass'], :, index)] * share_primary) * lhv_primary) + ((self.array.values[(self.array_inputs['fuel mass'], :, index)] * share_secondary) * lhv_secondary)) + ((self.array.values[(self.array_inputs['fuel mass'], :, index)] * share_tertiary) * lhv_tertiary)) * 1000) / self.array.values[(self.array_inputs['TtW energy'], :, index)])
def set_actual_range(self): '\n Set the actual range considering the blend.\n Liquid bio-fuels and synthetic fuels typically have a lower calorific value. Hence, the need to recalculate\n the vehicle range.\n Modifies parameter `range` of `array` in place\n ' if {'ICEV-p', 'HEV-p', 'PHEV-p'}.intersection(set(self.scope['powertrain'])): for (y, year) in enumerate(self.scope['year']): share_primary = self.fuel_blends['petrol']['primary']['share'][y] lhv_primary = self.fuel_blends['petrol']['primary']['lhv'] share_secondary = self.fuel_blends['petrol']['secondary']['share'][y] lhv_secondary = self.fuel_blends['petrol']['secondary']['lhv'] if ('tertiary' in self.fuel_blends['petrol']): share_tertiary = self.fuel_blends['petrol']['tertiary']['share'][y] lhv_tertiary = self.fuel_blends['petrol']['tertiary']['lhv'] else: share_tertiary = 0 lhv_tertiary = 0 index = self.get_index_vehicle_from_array(['ICEV-p', 'HEV-p', 'PHEV-p'], year, method='and') self.array.values[(self.array_inputs['range'], :, index)] = ((((((self.array.values[(self.array_inputs['fuel mass'], :, index)] * share_primary) * lhv_primary) + ((self.array.values[(self.array_inputs['fuel mass'], :, index)] * share_secondary) * lhv_secondary)) + ((self.array.values[(self.array_inputs['fuel mass'], :, index)] * share_tertiary) * lhv_tertiary)) * 1000) / self.array.values[(self.array_inputs['TtW energy'], :, index)]) if {'ICEV-d', 'HEV-d', 'PHEV-d'}.intersection(set(self.scope['powertrain'])): for (y, year) in enumerate(self.scope['year']): share_primary = self.fuel_blends['diesel']['primary']['share'][y] lhv_primary = self.fuel_blends['diesel']['primary']['lhv'] share_secondary = self.fuel_blends['diesel']['secondary']['share'][y] lhv_secondary = self.fuel_blends['diesel']['secondary']['lhv'] if ('tertiary' in self.fuel_blends['diesel']): share_tertiary = self.fuel_blends['diesel']['tertiary']['share'][y] lhv_tertiary = self.fuel_blends['diesel']['tertiary']['lhv'] else: share_tertiary = 0 lhv_tertiary = 0 index = self.get_index_vehicle_from_array(['ICEV-d', 'PHEV-d', 'HEV-d'], year, method='and') self.array.values[(self.array_inputs['range'], :, index)] = ((((((self.array.values[(self.array_inputs['fuel mass'], :, index)] * share_primary) * lhv_primary) + ((self.array.values[(self.array_inputs['fuel mass'], :, index)] * share_secondary) * lhv_secondary)) + ((self.array.values[(self.array_inputs['fuel mass'], :, index)] * share_tertiary) * lhv_tertiary)) * 1000) / self.array.values[(self.array_inputs['TtW energy'], :, index)])<|docstring|>Set the actual range considering the blend. Liquid bio-fuels and synthetic fuels typically have a lower calorific value. Hence, the need to recalculate the vehicle range. Modifies parameter `range` of `array` in place<|endoftext|>
094ba0d4eb48c25ba263488a2529367143767c5f3d59d9ee81469176152861b6
def define_fuel_blends(self): '\n This function defines fuel blends from what is passed in `background_configuration`.\n It populates a dictionary `self.fuel_blends` that contains the respective shares, lower heating values\n and CO2 emission factors of the fuels used.\n :return:\n ' fuels_lhv = {'petrol': 42.4, 'bioethanol - wheat straw': 26.8, 'bioethanol - maize starch': 26.8, 'bioethanol - sugarbeet': 26.8, 'bioethanol - forest residues': 26.8, 'synthetic gasoline': 42.4, 'diesel': 42.8, 'biodiesel - cooking oil': 31.7, 'biodiesel - algae': 31.7, 'biodiesel - rapeseed oil': 31.7, 'biodiesel - palm oil': 31.7, 'synthetic diesel': 43.3, 'synthetic diesel - energy allocation': 43.3, 'cng': 55.5, 'biogas - sewage sludge': 55.5, 'biogas - biowaste': 55.5, 'syngas': 55.5} fuels_CO2 = {'petrol': 3.18, 'bioethanol - wheat straw': 1.91, 'bioethanol - maize starch': 1.91, 'bioethanol - sugarbeet': 1.91, 'bioethanol - forest residues': 1.91, 'synthetic gasoline': 3.18, 'diesel': 3.14, 'biodiesel - cooking oil': 2.85, 'biodiesel - palm oil': 2.85, 'biodiesel - rapeseed oil': 2.85, 'biodiesel - algae': 2.85, 'synthetic diesel': 3.16, 'synthetic diesel - energy allocation': 3.16, 'cng': 2.65, 'biogas - sewage sludge': 2.65, 'biogas - biowaste': 2.65, 'syngas': 2.65} if {'ICEV-p', 'HEV-p', 'PHEV-p'}.intersection(set(self.scope['powertrain'])): fuel_type = 'petrol' (primary, secondary, primary_share, secondary_share, tertiary, tertiary_share) = self.find_fuel_shares(fuel_type) self.create_fuel_markets(fuel_type, primary, secondary, tertiary, primary_share, secondary_share, tertiary_share) self.fuel_blends[fuel_type] = {'primary': {'type': primary, 'share': primary_share, 'lhv': fuels_lhv[primary], 'CO2': fuels_CO2[primary]}, 'secondary': {'type': secondary, 'share': secondary_share, 'lhv': fuels_lhv[secondary], 'CO2': fuels_CO2[secondary]}} if tertiary: self.fuel_blends[fuel_type]['tertiary'] = {'type': tertiary, 'share': tertiary_share, 'lhv': fuels_lhv[tertiary], 'CO2': fuels_CO2[tertiary]} if {'ICEV-d', 'HEV-d', 'PHEV-d'}.intersection(set(self.scope['powertrain'])): fuel_type = 'diesel' (primary, secondary, primary_share, secondary_share, tertiary, tertiary_share) = self.find_fuel_shares(fuel_type) self.create_fuel_markets(fuel_type, primary, secondary, tertiary, primary_share, secondary_share, tertiary_share) self.fuel_blends[fuel_type] = {'primary': {'type': primary, 'share': primary_share, 'lhv': fuels_lhv[primary], 'CO2': fuels_CO2[primary]}, 'secondary': {'type': secondary, 'share': secondary_share, 'lhv': fuels_lhv[secondary], 'CO2': fuels_CO2[secondary]}} if tertiary: self.fuel_blends[fuel_type]['tertiary'] = {'type': tertiary, 'share': tertiary_share, 'lhv': fuels_lhv[tertiary], 'CO2': fuels_CO2[tertiary]} if {'ICEV-g'}.intersection(set(self.scope['powertrain'])): fuel_type = 'cng' (primary, secondary, primary_share, secondary_share, tertiary, tertiary_share) = self.find_fuel_shares(fuel_type) self.create_fuel_markets(fuel_type, primary, secondary, tertiary, primary_share, secondary_share, tertiary_share) self.fuel_blends[fuel_type] = {'primary': {'type': primary, 'share': primary_share, 'lhv': fuels_lhv[primary], 'CO2': fuels_CO2[primary]}, 'secondary': {'type': secondary, 'share': secondary_share, 'lhv': fuels_lhv[primary], 'CO2': fuels_CO2[primary]}} if tertiary: self.fuel_blends[fuel_type]['tertiary'] = {'type': tertiary, 'share': tertiary_share, 'lhv': fuels_lhv[tertiary], 'CO2': fuels_CO2[tertiary]} if {'FCEV'}.intersection(set(self.scope['powertrain'])): fuel_type = 'hydrogen' (primary, secondary, primary_share, secondary_share, tertiary, tertiary_share) = self.find_fuel_shares(fuel_type) self.create_fuel_markets(fuel_type, primary, secondary, tertiary, primary_share, secondary_share, tertiary_share) self.fuel_blends[fuel_type] = {'primary': {'type': primary, 'share': primary_share}, 'secondary': {'type': secondary, 'share': secondary_share}} if tertiary: self.fuel_blends[fuel_type]['tertiary'] = {'type': tertiary, 'share': tertiary_share} if {'BEV', 'PHEV-p', 'PHEV-d'}.intersection(set(self.scope['powertrain'])): fuel_type = 'electricity' self.create_fuel_markets(fuel_type)
This function defines fuel blends from what is passed in `background_configuration`. It populates a dictionary `self.fuel_blends` that contains the respective shares, lower heating values and CO2 emission factors of the fuels used. :return:
carculator/inventory.py
define_fuel_blends
rena-nong/carculator
1
python
def define_fuel_blends(self): '\n This function defines fuel blends from what is passed in `background_configuration`.\n It populates a dictionary `self.fuel_blends` that contains the respective shares, lower heating values\n and CO2 emission factors of the fuels used.\n :return:\n ' fuels_lhv = {'petrol': 42.4, 'bioethanol - wheat straw': 26.8, 'bioethanol - maize starch': 26.8, 'bioethanol - sugarbeet': 26.8, 'bioethanol - forest residues': 26.8, 'synthetic gasoline': 42.4, 'diesel': 42.8, 'biodiesel - cooking oil': 31.7, 'biodiesel - algae': 31.7, 'biodiesel - rapeseed oil': 31.7, 'biodiesel - palm oil': 31.7, 'synthetic diesel': 43.3, 'synthetic diesel - energy allocation': 43.3, 'cng': 55.5, 'biogas - sewage sludge': 55.5, 'biogas - biowaste': 55.5, 'syngas': 55.5} fuels_CO2 = {'petrol': 3.18, 'bioethanol - wheat straw': 1.91, 'bioethanol - maize starch': 1.91, 'bioethanol - sugarbeet': 1.91, 'bioethanol - forest residues': 1.91, 'synthetic gasoline': 3.18, 'diesel': 3.14, 'biodiesel - cooking oil': 2.85, 'biodiesel - palm oil': 2.85, 'biodiesel - rapeseed oil': 2.85, 'biodiesel - algae': 2.85, 'synthetic diesel': 3.16, 'synthetic diesel - energy allocation': 3.16, 'cng': 2.65, 'biogas - sewage sludge': 2.65, 'biogas - biowaste': 2.65, 'syngas': 2.65} if {'ICEV-p', 'HEV-p', 'PHEV-p'}.intersection(set(self.scope['powertrain'])): fuel_type = 'petrol' (primary, secondary, primary_share, secondary_share, tertiary, tertiary_share) = self.find_fuel_shares(fuel_type) self.create_fuel_markets(fuel_type, primary, secondary, tertiary, primary_share, secondary_share, tertiary_share) self.fuel_blends[fuel_type] = {'primary': {'type': primary, 'share': primary_share, 'lhv': fuels_lhv[primary], 'CO2': fuels_CO2[primary]}, 'secondary': {'type': secondary, 'share': secondary_share, 'lhv': fuels_lhv[secondary], 'CO2': fuels_CO2[secondary]}} if tertiary: self.fuel_blends[fuel_type]['tertiary'] = {'type': tertiary, 'share': tertiary_share, 'lhv': fuels_lhv[tertiary], 'CO2': fuels_CO2[tertiary]} if {'ICEV-d', 'HEV-d', 'PHEV-d'}.intersection(set(self.scope['powertrain'])): fuel_type = 'diesel' (primary, secondary, primary_share, secondary_share, tertiary, tertiary_share) = self.find_fuel_shares(fuel_type) self.create_fuel_markets(fuel_type, primary, secondary, tertiary, primary_share, secondary_share, tertiary_share) self.fuel_blends[fuel_type] = {'primary': {'type': primary, 'share': primary_share, 'lhv': fuels_lhv[primary], 'CO2': fuels_CO2[primary]}, 'secondary': {'type': secondary, 'share': secondary_share, 'lhv': fuels_lhv[secondary], 'CO2': fuels_CO2[secondary]}} if tertiary: self.fuel_blends[fuel_type]['tertiary'] = {'type': tertiary, 'share': tertiary_share, 'lhv': fuels_lhv[tertiary], 'CO2': fuels_CO2[tertiary]} if {'ICEV-g'}.intersection(set(self.scope['powertrain'])): fuel_type = 'cng' (primary, secondary, primary_share, secondary_share, tertiary, tertiary_share) = self.find_fuel_shares(fuel_type) self.create_fuel_markets(fuel_type, primary, secondary, tertiary, primary_share, secondary_share, tertiary_share) self.fuel_blends[fuel_type] = {'primary': {'type': primary, 'share': primary_share, 'lhv': fuels_lhv[primary], 'CO2': fuels_CO2[primary]}, 'secondary': {'type': secondary, 'share': secondary_share, 'lhv': fuels_lhv[primary], 'CO2': fuels_CO2[primary]}} if tertiary: self.fuel_blends[fuel_type]['tertiary'] = {'type': tertiary, 'share': tertiary_share, 'lhv': fuels_lhv[tertiary], 'CO2': fuels_CO2[tertiary]} if {'FCEV'}.intersection(set(self.scope['powertrain'])): fuel_type = 'hydrogen' (primary, secondary, primary_share, secondary_share, tertiary, tertiary_share) = self.find_fuel_shares(fuel_type) self.create_fuel_markets(fuel_type, primary, secondary, tertiary, primary_share, secondary_share, tertiary_share) self.fuel_blends[fuel_type] = {'primary': {'type': primary, 'share': primary_share}, 'secondary': {'type': secondary, 'share': secondary_share}} if tertiary: self.fuel_blends[fuel_type]['tertiary'] = {'type': tertiary, 'share': tertiary_share} if {'BEV', 'PHEV-p', 'PHEV-d'}.intersection(set(self.scope['powertrain'])): fuel_type = 'electricity' self.create_fuel_markets(fuel_type)
def define_fuel_blends(self): '\n This function defines fuel blends from what is passed in `background_configuration`.\n It populates a dictionary `self.fuel_blends` that contains the respective shares, lower heating values\n and CO2 emission factors of the fuels used.\n :return:\n ' fuels_lhv = {'petrol': 42.4, 'bioethanol - wheat straw': 26.8, 'bioethanol - maize starch': 26.8, 'bioethanol - sugarbeet': 26.8, 'bioethanol - forest residues': 26.8, 'synthetic gasoline': 42.4, 'diesel': 42.8, 'biodiesel - cooking oil': 31.7, 'biodiesel - algae': 31.7, 'biodiesel - rapeseed oil': 31.7, 'biodiesel - palm oil': 31.7, 'synthetic diesel': 43.3, 'synthetic diesel - energy allocation': 43.3, 'cng': 55.5, 'biogas - sewage sludge': 55.5, 'biogas - biowaste': 55.5, 'syngas': 55.5} fuels_CO2 = {'petrol': 3.18, 'bioethanol - wheat straw': 1.91, 'bioethanol - maize starch': 1.91, 'bioethanol - sugarbeet': 1.91, 'bioethanol - forest residues': 1.91, 'synthetic gasoline': 3.18, 'diesel': 3.14, 'biodiesel - cooking oil': 2.85, 'biodiesel - palm oil': 2.85, 'biodiesel - rapeseed oil': 2.85, 'biodiesel - algae': 2.85, 'synthetic diesel': 3.16, 'synthetic diesel - energy allocation': 3.16, 'cng': 2.65, 'biogas - sewage sludge': 2.65, 'biogas - biowaste': 2.65, 'syngas': 2.65} if {'ICEV-p', 'HEV-p', 'PHEV-p'}.intersection(set(self.scope['powertrain'])): fuel_type = 'petrol' (primary, secondary, primary_share, secondary_share, tertiary, tertiary_share) = self.find_fuel_shares(fuel_type) self.create_fuel_markets(fuel_type, primary, secondary, tertiary, primary_share, secondary_share, tertiary_share) self.fuel_blends[fuel_type] = {'primary': {'type': primary, 'share': primary_share, 'lhv': fuels_lhv[primary], 'CO2': fuels_CO2[primary]}, 'secondary': {'type': secondary, 'share': secondary_share, 'lhv': fuels_lhv[secondary], 'CO2': fuels_CO2[secondary]}} if tertiary: self.fuel_blends[fuel_type]['tertiary'] = {'type': tertiary, 'share': tertiary_share, 'lhv': fuels_lhv[tertiary], 'CO2': fuels_CO2[tertiary]} if {'ICEV-d', 'HEV-d', 'PHEV-d'}.intersection(set(self.scope['powertrain'])): fuel_type = 'diesel' (primary, secondary, primary_share, secondary_share, tertiary, tertiary_share) = self.find_fuel_shares(fuel_type) self.create_fuel_markets(fuel_type, primary, secondary, tertiary, primary_share, secondary_share, tertiary_share) self.fuel_blends[fuel_type] = {'primary': {'type': primary, 'share': primary_share, 'lhv': fuels_lhv[primary], 'CO2': fuels_CO2[primary]}, 'secondary': {'type': secondary, 'share': secondary_share, 'lhv': fuels_lhv[secondary], 'CO2': fuels_CO2[secondary]}} if tertiary: self.fuel_blends[fuel_type]['tertiary'] = {'type': tertiary, 'share': tertiary_share, 'lhv': fuels_lhv[tertiary], 'CO2': fuels_CO2[tertiary]} if {'ICEV-g'}.intersection(set(self.scope['powertrain'])): fuel_type = 'cng' (primary, secondary, primary_share, secondary_share, tertiary, tertiary_share) = self.find_fuel_shares(fuel_type) self.create_fuel_markets(fuel_type, primary, secondary, tertiary, primary_share, secondary_share, tertiary_share) self.fuel_blends[fuel_type] = {'primary': {'type': primary, 'share': primary_share, 'lhv': fuels_lhv[primary], 'CO2': fuels_CO2[primary]}, 'secondary': {'type': secondary, 'share': secondary_share, 'lhv': fuels_lhv[primary], 'CO2': fuels_CO2[primary]}} if tertiary: self.fuel_blends[fuel_type]['tertiary'] = {'type': tertiary, 'share': tertiary_share, 'lhv': fuels_lhv[tertiary], 'CO2': fuels_CO2[tertiary]} if {'FCEV'}.intersection(set(self.scope['powertrain'])): fuel_type = 'hydrogen' (primary, secondary, primary_share, secondary_share, tertiary, tertiary_share) = self.find_fuel_shares(fuel_type) self.create_fuel_markets(fuel_type, primary, secondary, tertiary, primary_share, secondary_share, tertiary_share) self.fuel_blends[fuel_type] = {'primary': {'type': primary, 'share': primary_share}, 'secondary': {'type': secondary, 'share': secondary_share}} if tertiary: self.fuel_blends[fuel_type]['tertiary'] = {'type': tertiary, 'share': tertiary_share} if {'BEV', 'PHEV-p', 'PHEV-d'}.intersection(set(self.scope['powertrain'])): fuel_type = 'electricity' self.create_fuel_markets(fuel_type)<|docstring|>This function defines fuel blends from what is passed in `background_configuration`. It populates a dictionary `self.fuel_blends` that contains the respective shares, lower heating values and CO2 emission factors of the fuels used. :return:<|endoftext|>
2c8771d34dc4927441b17fb8852d27243cb4bf632e8a312e8e8b5fc1d6c06b19
def get_sulfur_content(self, location, fuel, year): '\n Return the sulfur content in the fuel.\n If a region is passed, the average sulfur content over\n the countries the region contains is returned.\n :param location: str. A country or region ISO code\n :param fuel: str. "diesel" or "gasoline\n :return: float. Sulfur content in ppm.\n ' try: int(year) except ValueError: raise ValueError('The year for which to fetch sulfur concentration values is not valid.') if (location in self.bs.sulfur.country.values): sulfur_concentration = self.bs.sulfur.sel(country=location, year=year, fuel=fuel).sum().values else: list_countries = self.geo.iam_to_ecoinvent_location(location) list_countries = [c for c in list_countries if (c in self.bs.sulfur.country.values)] if (len(list_countries) > 0): sulfur_concentration = self.bs.sulfur.sel(country=list_countries, year=year, fuel=fuel).mean().values else: print('The sulfur content for {} fuel in {} could not be found. European average sulfur content is used instead.'.format(fuel, location)) sulfur_concentration = self.bs.sulfur.sel(country='RER', year=year, fuel=fuel).sum().values return sulfur_concentration
Return the sulfur content in the fuel. If a region is passed, the average sulfur content over the countries the region contains is returned. :param location: str. A country or region ISO code :param fuel: str. "diesel" or "gasoline :return: float. Sulfur content in ppm.
carculator/inventory.py
get_sulfur_content
rena-nong/carculator
1
python
def get_sulfur_content(self, location, fuel, year): '\n Return the sulfur content in the fuel.\n If a region is passed, the average sulfur content over\n the countries the region contains is returned.\n :param location: str. A country or region ISO code\n :param fuel: str. "diesel" or "gasoline\n :return: float. Sulfur content in ppm.\n ' try: int(year) except ValueError: raise ValueError('The year for which to fetch sulfur concentration values is not valid.') if (location in self.bs.sulfur.country.values): sulfur_concentration = self.bs.sulfur.sel(country=location, year=year, fuel=fuel).sum().values else: list_countries = self.geo.iam_to_ecoinvent_location(location) list_countries = [c for c in list_countries if (c in self.bs.sulfur.country.values)] if (len(list_countries) > 0): sulfur_concentration = self.bs.sulfur.sel(country=list_countries, year=year, fuel=fuel).mean().values else: print('The sulfur content for {} fuel in {} could not be found. European average sulfur content is used instead.'.format(fuel, location)) sulfur_concentration = self.bs.sulfur.sel(country='RER', year=year, fuel=fuel).sum().values return sulfur_concentration
def get_sulfur_content(self, location, fuel, year): '\n Return the sulfur content in the fuel.\n If a region is passed, the average sulfur content over\n the countries the region contains is returned.\n :param location: str. A country or region ISO code\n :param fuel: str. "diesel" or "gasoline\n :return: float. Sulfur content in ppm.\n ' try: int(year) except ValueError: raise ValueError('The year for which to fetch sulfur concentration values is not valid.') if (location in self.bs.sulfur.country.values): sulfur_concentration = self.bs.sulfur.sel(country=location, year=year, fuel=fuel).sum().values else: list_countries = self.geo.iam_to_ecoinvent_location(location) list_countries = [c for c in list_countries if (c in self.bs.sulfur.country.values)] if (len(list_countries) > 0): sulfur_concentration = self.bs.sulfur.sel(country=list_countries, year=year, fuel=fuel).mean().values else: print('The sulfur content for {} fuel in {} could not be found. European average sulfur content is used instead.'.format(fuel, location)) sulfur_concentration = self.bs.sulfur.sel(country='RER', year=year, fuel=fuel).sum().values return sulfur_concentration<|docstring|>Return the sulfur content in the fuel. If a region is passed, the average sulfur content over the countries the region contains is returned. :param location: str. A country or region ISO code :param fuel: str. "diesel" or "gasoline :return: float. Sulfur content in ppm.<|endoftext|>
b73f03d444dbd53f10cc9c9439e3304b5f12637e37010b4b06f3f7058d98306a
def create_fuel_markets(self, fuel_type, primary=None, secondary=None, tertiary=None, primary_share=None, secondary_share=None, tertiary_share=None): '\n This function creates markets for fuel, considering a given blend, a given fuel type and a given year.\n It also adds separate electricity input in case hydrogen from electrolysis is needed somewhere in the fuel supply chain.\n :return:\n ' d_dataset_name = {'petrol': 'fuel supply for gasoline vehicles, ', 'diesel': 'fuel supply for diesel vehicles, ', 'cng': 'fuel supply for gas vehicles, ', 'hydrogen': 'fuel supply for hydrogen vehicles, ', 'electricity': 'electricity supply for electric vehicles, '} if (fuel_type != 'electricity'): for (y, year) in enumerate(self.scope['year']): dataset_name = (d_dataset_name[fuel_type] + str(year)) fuel_market_index = [self.inputs[i] for i in self.inputs if (i[0] == dataset_name)][0] try: primary_fuel_activity_index = self.inputs[self.fuel_dictionary[primary]['name']] secondary_fuel_activity_index = self.inputs[self.fuel_dictionary[secondary]['name']] except KeyError: raise KeyError('One of the primary or secondary fuels specified in the fuel blend for {} is not valid.'.format(fuel_type)) self.A[(:, primary_fuel_activity_index, fuel_market_index)] = ((- 1) * primary_share[y]) self.A[(:, secondary_fuel_activity_index, fuel_market_index)] = ((- 1) * secondary_share[y]) additional_electricity = ((self.fuel_dictionary[primary]['additional electricity'] * primary_share[y]) + (self.fuel_dictionary[secondary]['additional electricity'] * secondary_share[y])) if tertiary: tertiary_fuel_activity_index = self.inputs[self.fuel_dictionary[tertiary]['name']] self.A[(:, tertiary_fuel_activity_index, fuel_market_index)] = ((- 1) * tertiary_share[y]) additional_electricity += (self.fuel_dictionary[tertiary]['additional electricity'] * tertiary_share[y]) if (additional_electricity > 0): electricity_mix_index = [self.inputs[i] for i in self.inputs if (i[0] == ('electricity market for fuel preparation, ' + str(year)))][0] self.A[(:, electricity_mix_index, fuel_market_index)] = ((- 1) * additional_electricity) else: for year in self.scope['year']: dataset_name = (d_dataset_name[fuel_type] + str(year)) electricity_market_index = [self.inputs[i] for i in self.inputs if (i[0] == dataset_name)][0] electricity_mix_index = [self.inputs[i] for i in self.inputs if (i[0] == ('electricity market for fuel preparation, ' + str(year)))][0] self.A[(:, electricity_mix_index, electricity_market_index)] = (- 1)
This function creates markets for fuel, considering a given blend, a given fuel type and a given year. It also adds separate electricity input in case hydrogen from electrolysis is needed somewhere in the fuel supply chain. :return:
carculator/inventory.py
create_fuel_markets
rena-nong/carculator
1
python
def create_fuel_markets(self, fuel_type, primary=None, secondary=None, tertiary=None, primary_share=None, secondary_share=None, tertiary_share=None): '\n This function creates markets for fuel, considering a given blend, a given fuel type and a given year.\n It also adds separate electricity input in case hydrogen from electrolysis is needed somewhere in the fuel supply chain.\n :return:\n ' d_dataset_name = {'petrol': 'fuel supply for gasoline vehicles, ', 'diesel': 'fuel supply for diesel vehicles, ', 'cng': 'fuel supply for gas vehicles, ', 'hydrogen': 'fuel supply for hydrogen vehicles, ', 'electricity': 'electricity supply for electric vehicles, '} if (fuel_type != 'electricity'): for (y, year) in enumerate(self.scope['year']): dataset_name = (d_dataset_name[fuel_type] + str(year)) fuel_market_index = [self.inputs[i] for i in self.inputs if (i[0] == dataset_name)][0] try: primary_fuel_activity_index = self.inputs[self.fuel_dictionary[primary]['name']] secondary_fuel_activity_index = self.inputs[self.fuel_dictionary[secondary]['name']] except KeyError: raise KeyError('One of the primary or secondary fuels specified in the fuel blend for {} is not valid.'.format(fuel_type)) self.A[(:, primary_fuel_activity_index, fuel_market_index)] = ((- 1) * primary_share[y]) self.A[(:, secondary_fuel_activity_index, fuel_market_index)] = ((- 1) * secondary_share[y]) additional_electricity = ((self.fuel_dictionary[primary]['additional electricity'] * primary_share[y]) + (self.fuel_dictionary[secondary]['additional electricity'] * secondary_share[y])) if tertiary: tertiary_fuel_activity_index = self.inputs[self.fuel_dictionary[tertiary]['name']] self.A[(:, tertiary_fuel_activity_index, fuel_market_index)] = ((- 1) * tertiary_share[y]) additional_electricity += (self.fuel_dictionary[tertiary]['additional electricity'] * tertiary_share[y]) if (additional_electricity > 0): electricity_mix_index = [self.inputs[i] for i in self.inputs if (i[0] == ('electricity market for fuel preparation, ' + str(year)))][0] self.A[(:, electricity_mix_index, fuel_market_index)] = ((- 1) * additional_electricity) else: for year in self.scope['year']: dataset_name = (d_dataset_name[fuel_type] + str(year)) electricity_market_index = [self.inputs[i] for i in self.inputs if (i[0] == dataset_name)][0] electricity_mix_index = [self.inputs[i] for i in self.inputs if (i[0] == ('electricity market for fuel preparation, ' + str(year)))][0] self.A[(:, electricity_mix_index, electricity_market_index)] = (- 1)
def create_fuel_markets(self, fuel_type, primary=None, secondary=None, tertiary=None, primary_share=None, secondary_share=None, tertiary_share=None): '\n This function creates markets for fuel, considering a given blend, a given fuel type and a given year.\n It also adds separate electricity input in case hydrogen from electrolysis is needed somewhere in the fuel supply chain.\n :return:\n ' d_dataset_name = {'petrol': 'fuel supply for gasoline vehicles, ', 'diesel': 'fuel supply for diesel vehicles, ', 'cng': 'fuel supply for gas vehicles, ', 'hydrogen': 'fuel supply for hydrogen vehicles, ', 'electricity': 'electricity supply for electric vehicles, '} if (fuel_type != 'electricity'): for (y, year) in enumerate(self.scope['year']): dataset_name = (d_dataset_name[fuel_type] + str(year)) fuel_market_index = [self.inputs[i] for i in self.inputs if (i[0] == dataset_name)][0] try: primary_fuel_activity_index = self.inputs[self.fuel_dictionary[primary]['name']] secondary_fuel_activity_index = self.inputs[self.fuel_dictionary[secondary]['name']] except KeyError: raise KeyError('One of the primary or secondary fuels specified in the fuel blend for {} is not valid.'.format(fuel_type)) self.A[(:, primary_fuel_activity_index, fuel_market_index)] = ((- 1) * primary_share[y]) self.A[(:, secondary_fuel_activity_index, fuel_market_index)] = ((- 1) * secondary_share[y]) additional_electricity = ((self.fuel_dictionary[primary]['additional electricity'] * primary_share[y]) + (self.fuel_dictionary[secondary]['additional electricity'] * secondary_share[y])) if tertiary: tertiary_fuel_activity_index = self.inputs[self.fuel_dictionary[tertiary]['name']] self.A[(:, tertiary_fuel_activity_index, fuel_market_index)] = ((- 1) * tertiary_share[y]) additional_electricity += (self.fuel_dictionary[tertiary]['additional electricity'] * tertiary_share[y]) if (additional_electricity > 0): electricity_mix_index = [self.inputs[i] for i in self.inputs if (i[0] == ('electricity market for fuel preparation, ' + str(year)))][0] self.A[(:, electricity_mix_index, fuel_market_index)] = ((- 1) * additional_electricity) else: for year in self.scope['year']: dataset_name = (d_dataset_name[fuel_type] + str(year)) electricity_market_index = [self.inputs[i] for i in self.inputs if (i[0] == dataset_name)][0] electricity_mix_index = [self.inputs[i] for i in self.inputs if (i[0] == ('electricity market for fuel preparation, ' + str(year)))][0] self.A[(:, electricity_mix_index, electricity_market_index)] = (- 1)<|docstring|>This function creates markets for fuel, considering a given blend, a given fuel type and a given year. It also adds separate electricity input in case hydrogen from electrolysis is needed somewhere in the fuel supply chain. :return:<|endoftext|>
224d07899ad25842055dea3c2a5527ceebe1b2c96cb1e8c0194501185c7faef4
def find_inputs(self, value_in, value_out, find_input_by='name', zero_out_input=False): "\n Finds the exchange inputs to a specified functional unit\n :param find_input_by: can be 'name' or 'unit'\n :param value_in: value to look for\n :param value_out: functional unit output\n :return: indices of all inputs to FU, indices of inputs of intereste\n :rtype: tuple\n " if isinstance(value_out, str): value_out = [value_out] index_output = [self.inputs[i] for val in value_out for i in self.inputs if (val.lower() in i[0].lower())] f = np.float32(np.zeros(np.shape(self.A)[1])) f[index_output] = 1 X = np.float32(sparse.linalg.spsolve(self.A[0], f.T)) ind_inputs = np.nonzero(X)[0] if (find_input_by == 'name'): ins = [i for i in ind_inputs if (value_in.lower() in self.rev_inputs[i][0].lower())] if (find_input_by == 'unit'): ins = [i for i in ind_inputs if (value_in.lower() in self.rev_inputs[i][2].lower())] outs = [i for i in ind_inputs if (i not in ins)] sum_supplied = X[ins].sum() if zero_out_input: self.A[np.ix_(np.arange(0, self.A.shape[0]), ins, outs)] *= 0 else: return sum_supplied
Finds the exchange inputs to a specified functional unit :param find_input_by: can be 'name' or 'unit' :param value_in: value to look for :param value_out: functional unit output :return: indices of all inputs to FU, indices of inputs of intereste :rtype: tuple
carculator/inventory.py
find_inputs
rena-nong/carculator
1
python
def find_inputs(self, value_in, value_out, find_input_by='name', zero_out_input=False): "\n Finds the exchange inputs to a specified functional unit\n :param find_input_by: can be 'name' or 'unit'\n :param value_in: value to look for\n :param value_out: functional unit output\n :return: indices of all inputs to FU, indices of inputs of intereste\n :rtype: tuple\n " if isinstance(value_out, str): value_out = [value_out] index_output = [self.inputs[i] for val in value_out for i in self.inputs if (val.lower() in i[0].lower())] f = np.float32(np.zeros(np.shape(self.A)[1])) f[index_output] = 1 X = np.float32(sparse.linalg.spsolve(self.A[0], f.T)) ind_inputs = np.nonzero(X)[0] if (find_input_by == 'name'): ins = [i for i in ind_inputs if (value_in.lower() in self.rev_inputs[i][0].lower())] if (find_input_by == 'unit'): ins = [i for i in ind_inputs if (value_in.lower() in self.rev_inputs[i][2].lower())] outs = [i for i in ind_inputs if (i not in ins)] sum_supplied = X[ins].sum() if zero_out_input: self.A[np.ix_(np.arange(0, self.A.shape[0]), ins, outs)] *= 0 else: return sum_supplied
def find_inputs(self, value_in, value_out, find_input_by='name', zero_out_input=False): "\n Finds the exchange inputs to a specified functional unit\n :param find_input_by: can be 'name' or 'unit'\n :param value_in: value to look for\n :param value_out: functional unit output\n :return: indices of all inputs to FU, indices of inputs of intereste\n :rtype: tuple\n " if isinstance(value_out, str): value_out = [value_out] index_output = [self.inputs[i] for val in value_out for i in self.inputs if (val.lower() in i[0].lower())] f = np.float32(np.zeros(np.shape(self.A)[1])) f[index_output] = 1 X = np.float32(sparse.linalg.spsolve(self.A[0], f.T)) ind_inputs = np.nonzero(X)[0] if (find_input_by == 'name'): ins = [i for i in ind_inputs if (value_in.lower() in self.rev_inputs[i][0].lower())] if (find_input_by == 'unit'): ins = [i for i in ind_inputs if (value_in.lower() in self.rev_inputs[i][2].lower())] outs = [i for i in ind_inputs if (i not in ins)] sum_supplied = X[ins].sum() if zero_out_input: self.A[np.ix_(np.arange(0, self.A.shape[0]), ins, outs)] *= 0 else: return sum_supplied<|docstring|>Finds the exchange inputs to a specified functional unit :param find_input_by: can be 'name' or 'unit' :param value_in: value to look for :param value_out: functional unit output :return: indices of all inputs to FU, indices of inputs of intereste :rtype: tuple<|endoftext|>
674b4f06b11eb8d6584f7e1737b306f73d8891ff7a3b0df3e68ed304cc4f4ee8
def set_inputs_in_A_matrix(self, array): '\n Fill-in the A matrix. Does not return anything. Modifies in place.\n Shape of the A matrix (values, products, activities).\n\n :param array: :attr:`array` from :class:`CarModel` class\n ' self.A[(:, self.inputs[('market for glider, passenger car', 'GLO', 'kilogram', 'glider, passenger car')], (- self.number_of_cars):)] = ((array[(self.array_inputs['glider base mass'], :)] / array[(self.array_inputs['lifetime kilometers'], :)]) * (- 1)) self.A[(:, self.inputs[('Glider lightweighting', 'GLO', 'kilogram', 'Glider lightweighting')], (- self.number_of_cars):)] = (((array[(self.array_inputs['lightweighting'], :)] * array[(self.array_inputs['glider base mass'], :)]) / array[(self.array_inputs['lifetime kilometers'], :)]) * (- 1)) self.A[(:, self.inputs[('maintenance, passenger car', 'RER', 'unit', 'passenger car maintenance')], (- self.number_of_cars):)] = (((array[(self.array_inputs['curb mass'], :)] / 1240) / 150000) * (- 1)) self.A[(:, self.inputs[('market for manual dismantling of used electric passenger car', 'GLO', 'unit', 'manual dismantling of used electric passenger car')], (- self.number_of_cars):)] = (((array[(self.array_inputs['curb mass'], :)] * (1 - array[(self.array_inputs['combustion power share'], :)])) / array[(self.array_inputs['lifetime kilometers'], :)]) * (- 1)) self.A[(:, self.inputs[('market for used Li-ion battery', 'GLO', 'kilogram', 'used Li-ion battery')], (- self.number_of_cars):)] = (array[(self.array_inputs['energy battery mass'], :)] / array[(self.array_inputs['lifetime kilometers'], :)]) self.A[(:, self.inputs[('market for manual dismantling of used passenger car with internal combustion engine', 'GLO', 'unit', 'manual dismantling of used passenger car with internal combustion engine')], (- self.number_of_cars):)] = (((array[(self.array_inputs['curb mass'], :)] * array[(self.array_inputs['combustion power share'], :)]) / array[(self.array_inputs['lifetime kilometers'], :)]) * (- 1)) self.A[(:, self.inputs[('market for charger, electric passenger car', 'GLO', 'kilogram', 'charger, electric passenger car')], (- self.number_of_cars):)] = ((array[(self.array_inputs['charger mass'], :)] / array[(self.array_inputs['lifetime kilometers'], :)]) * (- 1)) self.A[(:, self.inputs[('market for converter, for electric passenger car', 'GLO', 'kilogram', 'converter, for electric passenger car')], (- self.number_of_cars):)] = ((array[(self.array_inputs['converter mass'], :)] / array[(self.array_inputs['lifetime kilometers'], :)]) * (- 1)) self.A[(:, self.inputs[('market for electric motor, electric passenger car', 'GLO', 'kilogram', 'electric motor, electric passenger car')], (- self.number_of_cars):)] = ((array[(self.array_inputs['electric engine mass'], :)] / array[(self.array_inputs['lifetime kilometers'], :)]) * (- 1)) self.A[(:, self.inputs[('market for inverter, for electric passenger car', 'GLO', 'kilogram', 'inverter, for electric passenger car')], (- self.number_of_cars):)] = ((array[(self.array_inputs['inverter mass'], :)] / array[(self.array_inputs['lifetime kilometers'], :)]) * (- 1)) self.A[(:, self.inputs[('market for power distribution unit, for electric passenger car', 'GLO', 'kilogram', 'power distribution unit, for electric passenger car')], (- self.number_of_cars):)] = ((array[(self.array_inputs['power distribution unit mass'], :)] / array[(self.array_inputs['lifetime kilometers'], :)]) * (- 1)) l_elec_pt = ['charger mass', 'converter mass', 'inverter mass', 'power distribution unit mass', 'electric engine mass', 'fuel cell stack mass', 'fuel cell ancillary BoP mass', 'fuel cell essential BoP mass', 'battery cell mass', 'battery BoP mass'] self.A[(:, self.inputs[('market for used powertrain from electric passenger car, manual dismantling', 'GLO', 'kilogram', 'used powertrain from electric passenger car, manual dismantling')], (- self.number_of_cars):)] = (array[([self.array_inputs[l] for l in l_elec_pt], :)].sum(axis=0) / array[(self.array_inputs['lifetime kilometers'], :)]) self.A[(:, self.inputs[('market for internal combustion engine, passenger car', 'GLO', 'kilogram', 'internal combustion engine, for passenger car')], (- self.number_of_cars):)] = ((array[([self.array_inputs[l] for l in ['combustion engine mass', 'powertrain mass']], :)].sum(axis=0) / array[(self.array_inputs['lifetime kilometers'], :)]) * (- 1)) self.A[(:, self.inputs[('Ancillary BoP', 'GLO', 'kilogram', 'Ancillary BoP')], (- self.number_of_cars):)] = (((array[(self.array_inputs['fuel cell ancillary BoP mass'], :)] * (1 + array[(self.array_inputs['fuel cell lifetime replacements'], :)])) / array[(self.array_inputs['lifetime kilometers'], :)]) * (- 1)) self.A[(:, self.inputs[('Essential BoP', 'GLO', 'kilogram', 'Essential BoP')], (- self.number_of_cars):)] = (((array[(self.array_inputs['fuel cell essential BoP mass'], :)] * (1 + array[(self.array_inputs['fuel cell lifetime replacements'], :)])) / array[(self.array_inputs['lifetime kilometers'], :)]) * (- 1)) self.A[(:, self.inputs[('Stack', 'GLO', 'kilowatt', 'Stack')], (- self.number_of_cars):)] = ((((array[(self.array_inputs['fuel cell stack mass'], :)] / 0.51) * (1 + array[(self.array_inputs['fuel cell lifetime replacements'], :)])) / array[(self.array_inputs['lifetime kilometers'], :)]) * (- 1)) print('****************** IMPORTANT BACKGROUND PARAMETERS ******************', end='\n * ') print(('The country of use is ' + self.country), end='\n * ') battery_tech = self.background_configuration['energy storage']['electric']['type'] battery_origin = self.background_configuration['energy storage']['electric']['origin'] print((((('Power and energy batteries produced in ' + battery_origin) + ' using ') + battery_tech) + ' chemistry.'), end='\n * ') self.A[(:, self.inputs[('Battery BoP', 'GLO', 'kilogram', 'Battery BoP')], (- self.number_of_cars):)] = (((array[(self.array_inputs['battery BoP mass'], :)] * (1 + array[(self.array_inputs['battery lifetime replacements'], :)])) / array[(self.array_inputs['lifetime kilometers'], :)]) * (- 1)) battery_cell_label = (('Battery cell, ' + battery_tech), 'GLO', 'kilogram', 'Battery cell') self.A[(:, self.inputs[battery_cell_label], (- self.number_of_cars):)] = (((array[(self.array_inputs['battery cell mass'], :)] * (1 + array[(self.array_inputs['battery lifetime replacements'], :)])) / array[(self.array_inputs['lifetime kilometers'], :)]) * (- 1)) self.A[(:, self.inputs[('market group for electricity, medium voltage', 'World', 'kilowatt hour', 'electricity, medium voltage')], self.inputs[battery_cell_label])] = 0 for y in self.scope['year']: index = self.get_index_vehicle_from_array(y) self.A[np.ix_(np.arange(self.iterations), [self.inputs[i] for i in self.inputs if ((str(y) in i[0]) and ('electricity market for energy storage production' in i[0]))], [self.inputs[i] for i in self.inputs if ((str(y) in i[0]) and ('transport, passenger' in i[0]))])] = (array[(self.array_inputs['battery cell production electricity'], :, index)].T * self.A[(:, self.inputs[battery_cell_label], [self.inputs[i] for i in self.inputs if ((str(y) in i[0]) and ('transport, passenger' in i[0]))])]).reshape(self.iterations, 1, (- 1)) index_A = [self.inputs[c] for c in self.inputs if any(((ele in c[0]) for ele in ['ICEV-d', 'ICEV-p', 'HEV-p', 'PHEV-p', 'PHEV-d', 'HEV-d']))] index = self.get_index_vehicle_from_array(['ICEV-d', 'ICEV-p', 'HEV-p', 'PHEV-p', 'PHEV-d', 'HEV-d']) self.A[(:, self.inputs[('polyethylene production, high density, granulate', 'RER', 'kilogram', 'polyethylene, high density, granulate')], index_A)] = ((array[(self.array_inputs['fuel tank mass'], :, index)] / array[(self.array_inputs['lifetime kilometers'], :, index)]) * (- 1)).T index = self.get_index_vehicle_from_array('ICEV-g') self.A[(:, self.inputs[('glass fibre reinforced plastic production, polyamide, injection moulded', 'RER', 'kilogram', 'glass fibre reinforced plastic, polyamide, injection moulded')], self.index_cng)] = ((array[(self.array_inputs['fuel tank mass'], :, index)] / array[(self.array_inputs['lifetime kilometers'], :, index)]) * (- 1)).T if ('hydrogen' in self.background_configuration['energy storage']): hydro_tank_technology = self.background_configuration['energy storage']['hydrogen']['type'] else: hydro_tank_technology = 'carbon fiber' dict_tank_map = {'carbon fiber': ('Fuel tank, compressed hydrogen gas, 700bar', 'GLO', 'kilogram', 'Fuel tank, compressed hydrogen gas, 700bar'), 'hdpe': ('Fuel tank, compressed hydrogen gas, 700bar, with HDPE liner', 'RER', 'kilogram', 'Hydrogen tank'), 'aluminium': ('Fuel tank, compressed hydrogen gas, 700bar, with aluminium liner', 'RER', 'kilogram', 'Hydrogen tank')} index = self.get_index_vehicle_from_array('FCEV') self.A[(:, self.inputs[dict_tank_map[hydro_tank_technology]], self.index_fuel_cell)] = ((array[(self.array_inputs['fuel tank mass'], :, index)] / array[(self.array_inputs['lifetime kilometers'], :, index)]) * (- 1)).T (sum_renew, co2_intensity_tech) = self.define_renewable_rate_in_mix() for (y, year) in enumerate(self.scope['year']): if ((y + 1) == len(self.scope['year'])): end_str = '\n * ' else: end_str = '\n \t * ' print(((((((('in ' + str(year)) + ', % of renewable: ') + str(np.round((sum_renew[y] * 100), 0))) + '%') + ', GHG intensity per kWh: ') + str(int(np.sum((co2_intensity_tech[y] * self.mix[y]))))) + ' g. CO2-eq.'), end=end_str) if any((True for x in ['BEV', 'PHEV-p', 'PHEV-d'] if (x in self.scope['powertrain']))): for y in self.scope['year']: index = self.get_index_vehicle_from_array(['BEV', 'PHEV-p', 'PHEV-d'], y, method='and') self.A[np.ix_(np.arange(self.iterations), [self.inputs[i] for i in self.inputs if ((str(y) in i[0]) and ('electricity supply for electric vehicles' in i[0]))], [self.inputs[i] for i in self.inputs if ((str(y) in i[0]) and ('transport, passenger' in i[0]) and any((True for x in ['BEV', 'PHEV-p', 'PHEV-d'] if (x in i[0]))))])] = (array[(self.array_inputs['electricity consumption'], :, index)] * (- 1)).T.reshape(self.iterations, 1, (- 1)) if ('FCEV' in self.scope['powertrain']): index = self.get_index_vehicle_from_array('FCEV') if ('tertiary' in self.fuel_blends['hydrogen']): print('{} is completed by {} and {}.'.format(self.fuel_blends['hydrogen']['primary']['type'], self.fuel_blends['hydrogen']['secondary']['type'], self.fuel_blends['hydrogen']['tertiary']['type']), end='\n \t * ') else: print('{} is completed by {}.'.format(self.fuel_blends['hydrogen']['primary']['type'], self.fuel_blends['hydrogen']['secondary']['type']), end='\n \t * ') for (y, year) in enumerate(self.scope['year']): if ((y + 1) == len(self.scope['year'])): end_str = '\n * ' else: end_str = '\n \t * ' if ('tertiary' in self.fuel_blends['hydrogen']): print(((((((('in ' + str(year)) + ' _________________ ') + str(np.round((self.fuel_blends['hydrogen']['secondary']['share'][y] * 100), 0))) + '%') + ' _________________ ') + str(np.round((self.fuel_blends['hydrogen']['tertiary']['share'][y] * 100), 0))) + '%'), end=end_str) else: print((((('in ' + str(year)) + ' _________________________________________ ') + str(np.round((self.fuel_blends['hydrogen']['secondary']['share'][y] * 100), 0))) + '%'), end=end_str) ind_A = [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('transport, passenger' in i[0]) and ('FCEV' in i[0]))] ind_array = [x for x in self.get_index_vehicle_from_array(year) if (x in index)] self.A[(:, [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('fuel supply for hydrogen vehicles' in i[0]))], ind_A)] = ((array[(self.array_inputs['fuel mass'], :, ind_array)] / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T if ('ICEV-g' in self.scope['powertrain']): index = self.get_index_vehicle_from_array('ICEV-g') if ('tertiary' in self.fuel_blends['cng']): print('{} is completed by {} and {}.'.format(self.fuel_blends['cng']['primary']['type'], self.fuel_blends['cng']['secondary']['type'], self.fuel_blends['cng']['tertiary']['type']), end='\n \t * ') else: print('{} is completed by {}.'.format(self.fuel_blends['cng']['primary']['type'], self.fuel_blends['cng']['secondary']['type']), end='\n \t * ') for (y, year) in enumerate(self.scope['year']): if ((y + 1) == len(self.scope['year'])): end_str = '\n * ' else: end_str = '\n \t * ' if ('tertiary' in self.fuel_blends['cng']): print(((((((('in ' + str(year)) + ' _________________ ') + str(np.round((self.fuel_blends['cng']['secondary']['share'][y] * 100), 0))) + '%') + ' _________________ ') + str(np.round((self.fuel_blends['cng']['tertiary']['share'][y] * 100), 0))) + '%'), end=end_str) else: print((((('in ' + str(year)) + ' _________________________________________ ') + str(np.round((self.fuel_blends['cng']['secondary']['share'][y] * 100), 0))) + '%'), end=end_str) ind_A = [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('transport, passenger' in i[0]) and ('ICEV-g' in i[0]))] ind_array = [x for x in self.get_index_vehicle_from_array(year) if (x in index)] self.A[(:, [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('fuel supply for gas vehicles' in i[0]))], ind_A)] = (((array[(self.array_inputs['fuel mass'], :, ind_array)] / array[(self.array_inputs['range'], :, ind_array)]) * (1 + array[(self.array_inputs['CNG pump-to-tank leakage'], :, ind_array)])) * (- 1)).T self.A[(:, self.inputs[('Methane, fossil', ('air',), 'kilogram')], ind_A)] = (((array[(self.array_inputs['fuel mass'], :, ind_array)] / array[(self.array_inputs['range'], :, ind_array)]) * array[(self.array_inputs['CNG pump-to-tank leakage'], :, ind_array)]) * (- 1)).T share_fossil = 0 CO2_fossil = 0 if (self.fuel_blends['cng']['primary']['type'] == 'cng'): share_fossil += self.fuel_blends['cng']['primary']['share'][y] CO2_fossil = (self.fuel_blends['cng']['primary']['CO2'] * self.fuel_blends['cng']['primary']['share'][y]) if (self.fuel_blends['cng']['secondary']['type'] == 'cng'): share_fossil += self.fuel_blends['cng']['secondary']['share'][y] CO2_fossil += (self.fuel_blends['cng']['secondary']['CO2'] * self.fuel_blends['cng']['secondary']['share'][y]) if ('tertiary' in self.fuel_blends['cng']): if (self.fuel_blends['cng']['tertiary']['type'] == 'cng'): share_fossil += self.fuel_blends['cng']['tertiary']['share'][y] CO2_fossil += (self.fuel_blends['cng']['tertiary']['CO2'] * self.fuel_blends['cng']['tertiary']['share'][y]) self.A[(:, self.inputs[('Carbon dioxide, fossil', ('air',), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * CO2_fossil) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T share_non_fossil = 0 CO2_non_fossil = 0 if (self.fuel_blends['cng']['primary']['type'] != 'cng'): share_non_fossil += self.fuel_blends['cng']['primary']['share'][y] CO2_non_fossil = (self.fuel_blends['cng']['primary']['CO2'] * self.fuel_blends['cng']['primary']['share'][y]) if (self.fuel_blends['cng']['secondary']['type'] != 'cng'): share_non_fossil += self.fuel_blends['cng']['secondary']['share'][y] CO2_non_fossil += (self.fuel_blends['cng']['secondary']['share'][y] * self.fuel_blends['cng']['secondary']['CO2']) if ('tertiary' in self.fuel_blends['cng']): if (self.fuel_blends['cng']['tertiary']['type'] != 'cng'): share_non_fossil += self.fuel_blends['cng']['tertiary']['share'][y] CO2_non_fossil += (self.fuel_blends['cng']['tertiary']['share'][y] * self.fuel_blends['cng']['tertiary']['CO2']) self.A[(:, self.inputs[('Carbon dioxide, from soil or biomass stock', ('air',), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_non_fossil) * CO2_non_fossil) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T if [i for i in self.scope['powertrain'] if (i in ['ICEV-d', 'PHEV-d', 'HEV-d'])]: index = self.get_index_vehicle_from_array(['ICEV-d', 'PHEV-d', 'HEV-d']) if ('tertiary' in self.fuel_blends['diesel']): print('{} is completed by {} and {}.'.format(self.fuel_blends['diesel']['primary']['type'], self.fuel_blends['diesel']['secondary']['type'], self.fuel_blends['diesel']['tertiary']['type']), end='\n \t * ') else: print('{} is completed by {}.'.format(self.fuel_blends['diesel']['primary']['type'], self.fuel_blends['diesel']['secondary']['type']), end='\n \t * ') for (y, year) in enumerate(self.scope['year']): if ((y + 1) == len(self.scope['year'])): end_str = '\n * ' else: end_str = '\n \t * ' if ('tertiary' in self.fuel_blends['diesel']): print(((((((('in ' + str(year)) + ' _________________ ') + str(np.round((self.fuel_blends['diesel']['secondary']['share'][y] * 100), 0))) + '%') + ' _________________ ') + str(np.round((self.fuel_blends['diesel']['tertiary']['share'][y] * 100), 0))) + '%'), end=end_str) else: print((((('in ' + str(year)) + ' _________________________________________ ') + str(np.round((self.fuel_blends['diesel']['secondary']['share'][y] * 100), 0))) + '%'), end=end_str) ind_A = [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('transport, passenger' in i[0]) and any(((x in i[0]) for x in ['ICEV-d', 'PHEV-d', 'HEV-d'])))] ind_array = [x for x in self.get_index_vehicle_from_array(year) if (x in index)] self.A[(:, [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('fuel supply for diesel vehicles' in i[0]))], ind_A)] = ((array[(self.array_inputs['fuel mass'], :, ind_array)] / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T share_fossil = 0 CO2_fossil = 0 if (self.fuel_blends['diesel']['primary']['type'] == 'diesel'): share_fossil += self.fuel_blends['diesel']['primary']['share'][y] CO2_fossil += (self.fuel_blends['diesel']['primary']['CO2'] * self.fuel_blends['diesel']['primary']['share'][y]) if (self.fuel_blends['diesel']['secondary']['type'] == 'diesel'): share_fossil += self.fuel_blends['diesel']['secondary']['share'][y] CO2_fossil += (self.fuel_blends['diesel']['secondary']['CO2'] * self.fuel_blends['diesel']['secondary']['share'][y]) if ('tertiary' in self.fuel_blends['diesel']): if (self.fuel_blends['diesel']['tertiary']['type'] == 'diesel'): share_fossil += self.fuel_blends['diesel']['tertiary']['share'][y] CO2_fossil += (self.fuel_blends['diesel']['tertiary']['CO2'] * self.fuel_blends['diesel']['tertiary']['share'][y]) self.A[(:, self.inputs[('Carbon dioxide, fossil', ('air',), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * CO2_fossil) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T sulfur_concentration = self.get_sulfur_content(self.country, 'diesel', year) self.A[(:, self.inputs[('Sulfur dioxide', ('air',), 'kilogram')], ind_A)] = (((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * sulfur_concentration) * (64 / 32)) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T share_non_fossil = 0 CO2_non_fossil = 0 if (self.fuel_blends['diesel']['primary']['type'] != 'diesel'): share_non_fossil += self.fuel_blends['diesel']['primary']['share'][y] CO2_non_fossil += (self.fuel_blends['diesel']['primary']['CO2'] * self.fuel_blends['diesel']['primary']['share'][y]) if (self.fuel_blends['diesel']['secondary']['type'] != 'diesel'): share_non_fossil += self.fuel_blends['diesel']['secondary']['share'][y] CO2_non_fossil += (self.fuel_blends['diesel']['secondary']['share'][y] * self.fuel_blends['diesel']['secondary']['CO2']) if ('tertiary' in self.fuel_blends['diesel']): if (self.fuel_blends['diesel']['tertiary']['type'] != 'diesel'): share_non_fossil += self.fuel_blends['diesel']['tertiary']['share'][y] CO2_non_fossil += (self.fuel_blends['diesel']['tertiary']['share'][y] * self.fuel_blends['diesel']['tertiary']['CO2']) self.A[(:, self.inputs[('Carbon dioxide, from soil or biomass stock', ('air',), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_non_fossil) * CO2_non_fossil) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Cadmium', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Copper', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1.7e-06) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Chromium', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 5e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Nickel', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 7e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Selenium', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Zinc', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-06) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Chromium VI', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-10) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T if [i for i in self.scope['powertrain'] if (i in ['ICEV-p', 'HEV-p', 'PHEV-p'])]: index = self.get_index_vehicle_from_array(['ICEV-p', 'HEV-p', 'PHEV-p']) if ('tertiary' in self.fuel_blends['petrol']): print('{} is completed by {} and {}.'.format(self.fuel_blends['petrol']['primary']['type'], self.fuel_blends['petrol']['secondary']['type'], self.fuel_blends['petrol']['tertiary']['type']), end='\n \t * ') else: print('{} is completed by {}.'.format(self.fuel_blends['petrol']['primary']['type'], self.fuel_blends['petrol']['secondary']['type']), end='\n \t * ') for (y, year) in enumerate(self.scope['year']): if ((y + 1) == len(self.scope['year'])): end_str = '\n * ' else: end_str = '\n \t * ' if ('tertiary' in self.fuel_blends['petrol']): print(((((((('in ' + str(year)) + ' _________________ ') + str(np.round((self.fuel_blends['petrol']['secondary']['share'][y] * 100), 0))) + '%') + ' _________________ ') + str(np.round((self.fuel_blends['petrol']['tertiary']['share'][y] * 100), 0))) + '%'), end=end_str) else: print((((('in ' + str(year)) + ' _________________________________________ ') + str(np.round((self.fuel_blends['petrol']['secondary']['share'][y] * 100), 0))) + '%'), end=end_str) for (y, year) in enumerate(self.scope['year']): ind_A = [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('transport, passenger' in i[0]) and any(((x in i[0]) for x in ['ICEV-p', 'HEV-p', 'PHEV-p'])))] ind_array = [x for x in self.get_index_vehicle_from_array(year) if (x in index)] self.A[(:, [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('fuel supply for gasoline vehicles' in i[0]))], ind_A)] = ((array[(self.array_inputs['fuel mass'], :, ind_array)] / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T share_fossil = 0 CO2_fossil = 0 if (self.fuel_blends['petrol']['primary']['type'] == 'petrol'): share_fossil = self.fuel_blends['petrol']['primary']['share'][y] CO2_fossil += (self.fuel_blends['petrol']['primary']['CO2'] * self.fuel_blends['petrol']['primary']['share'][y]) if (self.fuel_blends['petrol']['secondary']['type'] == 'petrol'): share_fossil += self.fuel_blends['petrol']['secondary']['share'][y] CO2_fossil += (self.fuel_blends['petrol']['secondary']['CO2'] * self.fuel_blends['petrol']['secondary']['share'][y]) if ('tertiary' in self.fuel_blends['petrol']): if (self.fuel_blends['petrol']['tertiary']['type'] == 'petrol'): share_fossil += self.fuel_blends['petrol']['tertiary']['share'][y] CO2_fossil += (self.fuel_blends['petrol']['tertiary']['CO2'] * self.fuel_blends['petrol']['tertiary']['share'][y]) self.A[(:, self.inputs[('Carbon dioxide, fossil', ('air',), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * CO2_fossil) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T sulfur_concentration = self.get_sulfur_content(self.country, 'petrol', year) self.A[(:, self.inputs[('Sulfur dioxide', ('air',), 'kilogram')], ind_A)] = (((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * sulfur_concentration) * (64 / 32)) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T share_non_fossil = 0 CO2_non_fossil = 0 if (self.fuel_blends['petrol']['primary']['type'] != 'petrol'): share_non_fossil += self.fuel_blends['petrol']['primary']['share'][y] CO2_non_fossil += (self.fuel_blends['petrol']['primary']['CO2'] * self.fuel_blends['petrol']['primary']['share'][y]) if (self.fuel_blends['petrol']['secondary']['type'] != 'petrol'): share_non_fossil += self.fuel_blends['petrol']['secondary']['share'][y] CO2_non_fossil += (self.fuel_blends['petrol']['secondary']['CO2'] * self.fuel_blends['petrol']['secondary']['share'][y]) if ('tertiary' in self.fuel_blends['petrol']): if (self.fuel_blends['petrol']['tertiary']['type'] != 'petrol'): share_non_fossil += self.fuel_blends['petrol']['tertiary']['share'][y] CO2_non_fossil += (self.fuel_blends['petrol']['tertiary']['share'][y] * self.fuel_blends['petrol']['tertiary']['CO2']) self.A[(:, self.inputs[('Carbon dioxide, from soil or biomass stock', ('air',), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_non_fossil) * CO2_non_fossil) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Cadmium', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Copper', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1.7e-06) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Chromium', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 5e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Nickel', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 7e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Selenium', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Zinc', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-06) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Chromium VI', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-10) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('market for road wear emissions, passenger car', 'GLO', 'kilogram', 'road wear emissions, passenger car')], (- self.number_of_cars):)] = (array[(self.array_inputs['driving mass'], :)] * 1e-08) self.A[(:, self.inputs[('market for tyre wear emissions, passenger car', 'GLO', 'kilogram', 'tyre wear emissions, passenger car')], (- self.number_of_cars):)] = (array[(self.array_inputs['driving mass'], :)] * 6e-08) ind_A = [self.inputs[i] for i in self.inputs if (('transport, passenger' in i[0]) and any(((x in i[0]) for x in ['ICEV-d', 'ICEV-p', 'ICEV-g'])))] index = self.get_index_vehicle_from_array(['ICEV-d', 'ICEV-p', 'ICEV-g']) self.A[(:, self.inputs[('market for brake wear emissions, passenger car', 'GLO', 'kilogram', 'brake wear emissions, passenger car')], ind_A)] = (array[(self.array_inputs['driving mass'], :, index)].T * 5e-09) ind_A = [self.inputs[i] for i in self.inputs if (('transport, passenger' in i[0]) and any(((x in i[0]) for x in ['BEV', 'FCEV', 'HEV-p', 'HEV-d', 'PHEV-p', 'PHEV-d'])))] index = self.get_index_vehicle_from_array(['BEV', 'FCEV', 'HEV-p', 'HEV-d', 'PHEV-p', 'PHEV-d']) self.A[(:, self.inputs[('market for brake wear emissions, passenger car', 'GLO', 'kilogram', 'brake wear emissions, passenger car')], ind_A)] = ((array[(self.array_inputs['driving mass'], :, index)].T * 5e-09) * 0.2) self.A[(:, self.inputs[('market for road', 'GLO', 'meter-year', 'road')], (- self.number_of_cars):)] = ((5.37e-07 * array[(self.array_inputs['driving mass'], :)]) * (- 1)) self.A[(:, self.inputs[('market for road maintenance', 'RER', 'meter-year', 'road maintenance')], (- self.number_of_cars):)] = (0.00129 * (- 1)) self.A[(:, self.index_emissions, (- self.number_of_cars):)] = (array[[self.array_inputs[self.map_non_fuel_emissions[self.rev_inputs[x]]] for x in self.index_emissions]] * (- 1)).transpose([1, 0, 2]) self.A[(:, self.index_noise, (- self.number_of_cars):)] = (array[[self.array_inputs[self.map_noise_emissions[self.rev_inputs[x]]] for x in self.index_noise]] * (- 1)).transpose([1, 0, 2]) self.A[(:, self.inputs[('Ethane, 1,1,1,2-tetrafluoro-, HFC-134a', ('air',), 'kilogram')], (- self.number_of_cars):)] = ((0.053 / self.array.values[self.array_inputs['kilometers per year']]) * (- 1)) self.A[(:, self.inputs[('market for refrigerant R134a', 'GLO', 'kilogram', 'refrigerant R134a')], (- self.number_of_cars):)] = ((0.053 / self.array.values[self.array_inputs['kilometers per year']]) * (- 1)) print('*********************************************************************')
Fill-in the A matrix. Does not return anything. Modifies in place. Shape of the A matrix (values, products, activities). :param array: :attr:`array` from :class:`CarModel` class
carculator/inventory.py
set_inputs_in_A_matrix
rena-nong/carculator
1
python
def set_inputs_in_A_matrix(self, array): '\n Fill-in the A matrix. Does not return anything. Modifies in place.\n Shape of the A matrix (values, products, activities).\n\n :param array: :attr:`array` from :class:`CarModel` class\n ' self.A[(:, self.inputs[('market for glider, passenger car', 'GLO', 'kilogram', 'glider, passenger car')], (- self.number_of_cars):)] = ((array[(self.array_inputs['glider base mass'], :)] / array[(self.array_inputs['lifetime kilometers'], :)]) * (- 1)) self.A[(:, self.inputs[('Glider lightweighting', 'GLO', 'kilogram', 'Glider lightweighting')], (- self.number_of_cars):)] = (((array[(self.array_inputs['lightweighting'], :)] * array[(self.array_inputs['glider base mass'], :)]) / array[(self.array_inputs['lifetime kilometers'], :)]) * (- 1)) self.A[(:, self.inputs[('maintenance, passenger car', 'RER', 'unit', 'passenger car maintenance')], (- self.number_of_cars):)] = (((array[(self.array_inputs['curb mass'], :)] / 1240) / 150000) * (- 1)) self.A[(:, self.inputs[('market for manual dismantling of used electric passenger car', 'GLO', 'unit', 'manual dismantling of used electric passenger car')], (- self.number_of_cars):)] = (((array[(self.array_inputs['curb mass'], :)] * (1 - array[(self.array_inputs['combustion power share'], :)])) / array[(self.array_inputs['lifetime kilometers'], :)]) * (- 1)) self.A[(:, self.inputs[('market for used Li-ion battery', 'GLO', 'kilogram', 'used Li-ion battery')], (- self.number_of_cars):)] = (array[(self.array_inputs['energy battery mass'], :)] / array[(self.array_inputs['lifetime kilometers'], :)]) self.A[(:, self.inputs[('market for manual dismantling of used passenger car with internal combustion engine', 'GLO', 'unit', 'manual dismantling of used passenger car with internal combustion engine')], (- self.number_of_cars):)] = (((array[(self.array_inputs['curb mass'], :)] * array[(self.array_inputs['combustion power share'], :)]) / array[(self.array_inputs['lifetime kilometers'], :)]) * (- 1)) self.A[(:, self.inputs[('market for charger, electric passenger car', 'GLO', 'kilogram', 'charger, electric passenger car')], (- self.number_of_cars):)] = ((array[(self.array_inputs['charger mass'], :)] / array[(self.array_inputs['lifetime kilometers'], :)]) * (- 1)) self.A[(:, self.inputs[('market for converter, for electric passenger car', 'GLO', 'kilogram', 'converter, for electric passenger car')], (- self.number_of_cars):)] = ((array[(self.array_inputs['converter mass'], :)] / array[(self.array_inputs['lifetime kilometers'], :)]) * (- 1)) self.A[(:, self.inputs[('market for electric motor, electric passenger car', 'GLO', 'kilogram', 'electric motor, electric passenger car')], (- self.number_of_cars):)] = ((array[(self.array_inputs['electric engine mass'], :)] / array[(self.array_inputs['lifetime kilometers'], :)]) * (- 1)) self.A[(:, self.inputs[('market for inverter, for electric passenger car', 'GLO', 'kilogram', 'inverter, for electric passenger car')], (- self.number_of_cars):)] = ((array[(self.array_inputs['inverter mass'], :)] / array[(self.array_inputs['lifetime kilometers'], :)]) * (- 1)) self.A[(:, self.inputs[('market for power distribution unit, for electric passenger car', 'GLO', 'kilogram', 'power distribution unit, for electric passenger car')], (- self.number_of_cars):)] = ((array[(self.array_inputs['power distribution unit mass'], :)] / array[(self.array_inputs['lifetime kilometers'], :)]) * (- 1)) l_elec_pt = ['charger mass', 'converter mass', 'inverter mass', 'power distribution unit mass', 'electric engine mass', 'fuel cell stack mass', 'fuel cell ancillary BoP mass', 'fuel cell essential BoP mass', 'battery cell mass', 'battery BoP mass'] self.A[(:, self.inputs[('market for used powertrain from electric passenger car, manual dismantling', 'GLO', 'kilogram', 'used powertrain from electric passenger car, manual dismantling')], (- self.number_of_cars):)] = (array[([self.array_inputs[l] for l in l_elec_pt], :)].sum(axis=0) / array[(self.array_inputs['lifetime kilometers'], :)]) self.A[(:, self.inputs[('market for internal combustion engine, passenger car', 'GLO', 'kilogram', 'internal combustion engine, for passenger car')], (- self.number_of_cars):)] = ((array[([self.array_inputs[l] for l in ['combustion engine mass', 'powertrain mass']], :)].sum(axis=0) / array[(self.array_inputs['lifetime kilometers'], :)]) * (- 1)) self.A[(:, self.inputs[('Ancillary BoP', 'GLO', 'kilogram', 'Ancillary BoP')], (- self.number_of_cars):)] = (((array[(self.array_inputs['fuel cell ancillary BoP mass'], :)] * (1 + array[(self.array_inputs['fuel cell lifetime replacements'], :)])) / array[(self.array_inputs['lifetime kilometers'], :)]) * (- 1)) self.A[(:, self.inputs[('Essential BoP', 'GLO', 'kilogram', 'Essential BoP')], (- self.number_of_cars):)] = (((array[(self.array_inputs['fuel cell essential BoP mass'], :)] * (1 + array[(self.array_inputs['fuel cell lifetime replacements'], :)])) / array[(self.array_inputs['lifetime kilometers'], :)]) * (- 1)) self.A[(:, self.inputs[('Stack', 'GLO', 'kilowatt', 'Stack')], (- self.number_of_cars):)] = ((((array[(self.array_inputs['fuel cell stack mass'], :)] / 0.51) * (1 + array[(self.array_inputs['fuel cell lifetime replacements'], :)])) / array[(self.array_inputs['lifetime kilometers'], :)]) * (- 1)) print('****************** IMPORTANT BACKGROUND PARAMETERS ******************', end='\n * ') print(('The country of use is ' + self.country), end='\n * ') battery_tech = self.background_configuration['energy storage']['electric']['type'] battery_origin = self.background_configuration['energy storage']['electric']['origin'] print((((('Power and energy batteries produced in ' + battery_origin) + ' using ') + battery_tech) + ' chemistry.'), end='\n * ') self.A[(:, self.inputs[('Battery BoP', 'GLO', 'kilogram', 'Battery BoP')], (- self.number_of_cars):)] = (((array[(self.array_inputs['battery BoP mass'], :)] * (1 + array[(self.array_inputs['battery lifetime replacements'], :)])) / array[(self.array_inputs['lifetime kilometers'], :)]) * (- 1)) battery_cell_label = (('Battery cell, ' + battery_tech), 'GLO', 'kilogram', 'Battery cell') self.A[(:, self.inputs[battery_cell_label], (- self.number_of_cars):)] = (((array[(self.array_inputs['battery cell mass'], :)] * (1 + array[(self.array_inputs['battery lifetime replacements'], :)])) / array[(self.array_inputs['lifetime kilometers'], :)]) * (- 1)) self.A[(:, self.inputs[('market group for electricity, medium voltage', 'World', 'kilowatt hour', 'electricity, medium voltage')], self.inputs[battery_cell_label])] = 0 for y in self.scope['year']: index = self.get_index_vehicle_from_array(y) self.A[np.ix_(np.arange(self.iterations), [self.inputs[i] for i in self.inputs if ((str(y) in i[0]) and ('electricity market for energy storage production' in i[0]))], [self.inputs[i] for i in self.inputs if ((str(y) in i[0]) and ('transport, passenger' in i[0]))])] = (array[(self.array_inputs['battery cell production electricity'], :, index)].T * self.A[(:, self.inputs[battery_cell_label], [self.inputs[i] for i in self.inputs if ((str(y) in i[0]) and ('transport, passenger' in i[0]))])]).reshape(self.iterations, 1, (- 1)) index_A = [self.inputs[c] for c in self.inputs if any(((ele in c[0]) for ele in ['ICEV-d', 'ICEV-p', 'HEV-p', 'PHEV-p', 'PHEV-d', 'HEV-d']))] index = self.get_index_vehicle_from_array(['ICEV-d', 'ICEV-p', 'HEV-p', 'PHEV-p', 'PHEV-d', 'HEV-d']) self.A[(:, self.inputs[('polyethylene production, high density, granulate', 'RER', 'kilogram', 'polyethylene, high density, granulate')], index_A)] = ((array[(self.array_inputs['fuel tank mass'], :, index)] / array[(self.array_inputs['lifetime kilometers'], :, index)]) * (- 1)).T index = self.get_index_vehicle_from_array('ICEV-g') self.A[(:, self.inputs[('glass fibre reinforced plastic production, polyamide, injection moulded', 'RER', 'kilogram', 'glass fibre reinforced plastic, polyamide, injection moulded')], self.index_cng)] = ((array[(self.array_inputs['fuel tank mass'], :, index)] / array[(self.array_inputs['lifetime kilometers'], :, index)]) * (- 1)).T if ('hydrogen' in self.background_configuration['energy storage']): hydro_tank_technology = self.background_configuration['energy storage']['hydrogen']['type'] else: hydro_tank_technology = 'carbon fiber' dict_tank_map = {'carbon fiber': ('Fuel tank, compressed hydrogen gas, 700bar', 'GLO', 'kilogram', 'Fuel tank, compressed hydrogen gas, 700bar'), 'hdpe': ('Fuel tank, compressed hydrogen gas, 700bar, with HDPE liner', 'RER', 'kilogram', 'Hydrogen tank'), 'aluminium': ('Fuel tank, compressed hydrogen gas, 700bar, with aluminium liner', 'RER', 'kilogram', 'Hydrogen tank')} index = self.get_index_vehicle_from_array('FCEV') self.A[(:, self.inputs[dict_tank_map[hydro_tank_technology]], self.index_fuel_cell)] = ((array[(self.array_inputs['fuel tank mass'], :, index)] / array[(self.array_inputs['lifetime kilometers'], :, index)]) * (- 1)).T (sum_renew, co2_intensity_tech) = self.define_renewable_rate_in_mix() for (y, year) in enumerate(self.scope['year']): if ((y + 1) == len(self.scope['year'])): end_str = '\n * ' else: end_str = '\n \t * ' print(((((((('in ' + str(year)) + ', % of renewable: ') + str(np.round((sum_renew[y] * 100), 0))) + '%') + ', GHG intensity per kWh: ') + str(int(np.sum((co2_intensity_tech[y] * self.mix[y]))))) + ' g. CO2-eq.'), end=end_str) if any((True for x in ['BEV', 'PHEV-p', 'PHEV-d'] if (x in self.scope['powertrain']))): for y in self.scope['year']: index = self.get_index_vehicle_from_array(['BEV', 'PHEV-p', 'PHEV-d'], y, method='and') self.A[np.ix_(np.arange(self.iterations), [self.inputs[i] for i in self.inputs if ((str(y) in i[0]) and ('electricity supply for electric vehicles' in i[0]))], [self.inputs[i] for i in self.inputs if ((str(y) in i[0]) and ('transport, passenger' in i[0]) and any((True for x in ['BEV', 'PHEV-p', 'PHEV-d'] if (x in i[0]))))])] = (array[(self.array_inputs['electricity consumption'], :, index)] * (- 1)).T.reshape(self.iterations, 1, (- 1)) if ('FCEV' in self.scope['powertrain']): index = self.get_index_vehicle_from_array('FCEV') if ('tertiary' in self.fuel_blends['hydrogen']): print('{} is completed by {} and {}.'.format(self.fuel_blends['hydrogen']['primary']['type'], self.fuel_blends['hydrogen']['secondary']['type'], self.fuel_blends['hydrogen']['tertiary']['type']), end='\n \t * ') else: print('{} is completed by {}.'.format(self.fuel_blends['hydrogen']['primary']['type'], self.fuel_blends['hydrogen']['secondary']['type']), end='\n \t * ') for (y, year) in enumerate(self.scope['year']): if ((y + 1) == len(self.scope['year'])): end_str = '\n * ' else: end_str = '\n \t * ' if ('tertiary' in self.fuel_blends['hydrogen']): print(((((((('in ' + str(year)) + ' _________________ ') + str(np.round((self.fuel_blends['hydrogen']['secondary']['share'][y] * 100), 0))) + '%') + ' _________________ ') + str(np.round((self.fuel_blends['hydrogen']['tertiary']['share'][y] * 100), 0))) + '%'), end=end_str) else: print((((('in ' + str(year)) + ' _________________________________________ ') + str(np.round((self.fuel_blends['hydrogen']['secondary']['share'][y] * 100), 0))) + '%'), end=end_str) ind_A = [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('transport, passenger' in i[0]) and ('FCEV' in i[0]))] ind_array = [x for x in self.get_index_vehicle_from_array(year) if (x in index)] self.A[(:, [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('fuel supply for hydrogen vehicles' in i[0]))], ind_A)] = ((array[(self.array_inputs['fuel mass'], :, ind_array)] / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T if ('ICEV-g' in self.scope['powertrain']): index = self.get_index_vehicle_from_array('ICEV-g') if ('tertiary' in self.fuel_blends['cng']): print('{} is completed by {} and {}.'.format(self.fuel_blends['cng']['primary']['type'], self.fuel_blends['cng']['secondary']['type'], self.fuel_blends['cng']['tertiary']['type']), end='\n \t * ') else: print('{} is completed by {}.'.format(self.fuel_blends['cng']['primary']['type'], self.fuel_blends['cng']['secondary']['type']), end='\n \t * ') for (y, year) in enumerate(self.scope['year']): if ((y + 1) == len(self.scope['year'])): end_str = '\n * ' else: end_str = '\n \t * ' if ('tertiary' in self.fuel_blends['cng']): print(((((((('in ' + str(year)) + ' _________________ ') + str(np.round((self.fuel_blends['cng']['secondary']['share'][y] * 100), 0))) + '%') + ' _________________ ') + str(np.round((self.fuel_blends['cng']['tertiary']['share'][y] * 100), 0))) + '%'), end=end_str) else: print((((('in ' + str(year)) + ' _________________________________________ ') + str(np.round((self.fuel_blends['cng']['secondary']['share'][y] * 100), 0))) + '%'), end=end_str) ind_A = [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('transport, passenger' in i[0]) and ('ICEV-g' in i[0]))] ind_array = [x for x in self.get_index_vehicle_from_array(year) if (x in index)] self.A[(:, [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('fuel supply for gas vehicles' in i[0]))], ind_A)] = (((array[(self.array_inputs['fuel mass'], :, ind_array)] / array[(self.array_inputs['range'], :, ind_array)]) * (1 + array[(self.array_inputs['CNG pump-to-tank leakage'], :, ind_array)])) * (- 1)).T self.A[(:, self.inputs[('Methane, fossil', ('air',), 'kilogram')], ind_A)] = (((array[(self.array_inputs['fuel mass'], :, ind_array)] / array[(self.array_inputs['range'], :, ind_array)]) * array[(self.array_inputs['CNG pump-to-tank leakage'], :, ind_array)]) * (- 1)).T share_fossil = 0 CO2_fossil = 0 if (self.fuel_blends['cng']['primary']['type'] == 'cng'): share_fossil += self.fuel_blends['cng']['primary']['share'][y] CO2_fossil = (self.fuel_blends['cng']['primary']['CO2'] * self.fuel_blends['cng']['primary']['share'][y]) if (self.fuel_blends['cng']['secondary']['type'] == 'cng'): share_fossil += self.fuel_blends['cng']['secondary']['share'][y] CO2_fossil += (self.fuel_blends['cng']['secondary']['CO2'] * self.fuel_blends['cng']['secondary']['share'][y]) if ('tertiary' in self.fuel_blends['cng']): if (self.fuel_blends['cng']['tertiary']['type'] == 'cng'): share_fossil += self.fuel_blends['cng']['tertiary']['share'][y] CO2_fossil += (self.fuel_blends['cng']['tertiary']['CO2'] * self.fuel_blends['cng']['tertiary']['share'][y]) self.A[(:, self.inputs[('Carbon dioxide, fossil', ('air',), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * CO2_fossil) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T share_non_fossil = 0 CO2_non_fossil = 0 if (self.fuel_blends['cng']['primary']['type'] != 'cng'): share_non_fossil += self.fuel_blends['cng']['primary']['share'][y] CO2_non_fossil = (self.fuel_blends['cng']['primary']['CO2'] * self.fuel_blends['cng']['primary']['share'][y]) if (self.fuel_blends['cng']['secondary']['type'] != 'cng'): share_non_fossil += self.fuel_blends['cng']['secondary']['share'][y] CO2_non_fossil += (self.fuel_blends['cng']['secondary']['share'][y] * self.fuel_blends['cng']['secondary']['CO2']) if ('tertiary' in self.fuel_blends['cng']): if (self.fuel_blends['cng']['tertiary']['type'] != 'cng'): share_non_fossil += self.fuel_blends['cng']['tertiary']['share'][y] CO2_non_fossil += (self.fuel_blends['cng']['tertiary']['share'][y] * self.fuel_blends['cng']['tertiary']['CO2']) self.A[(:, self.inputs[('Carbon dioxide, from soil or biomass stock', ('air',), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_non_fossil) * CO2_non_fossil) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T if [i for i in self.scope['powertrain'] if (i in ['ICEV-d', 'PHEV-d', 'HEV-d'])]: index = self.get_index_vehicle_from_array(['ICEV-d', 'PHEV-d', 'HEV-d']) if ('tertiary' in self.fuel_blends['diesel']): print('{} is completed by {} and {}.'.format(self.fuel_blends['diesel']['primary']['type'], self.fuel_blends['diesel']['secondary']['type'], self.fuel_blends['diesel']['tertiary']['type']), end='\n \t * ') else: print('{} is completed by {}.'.format(self.fuel_blends['diesel']['primary']['type'], self.fuel_blends['diesel']['secondary']['type']), end='\n \t * ') for (y, year) in enumerate(self.scope['year']): if ((y + 1) == len(self.scope['year'])): end_str = '\n * ' else: end_str = '\n \t * ' if ('tertiary' in self.fuel_blends['diesel']): print(((((((('in ' + str(year)) + ' _________________ ') + str(np.round((self.fuel_blends['diesel']['secondary']['share'][y] * 100), 0))) + '%') + ' _________________ ') + str(np.round((self.fuel_blends['diesel']['tertiary']['share'][y] * 100), 0))) + '%'), end=end_str) else: print((((('in ' + str(year)) + ' _________________________________________ ') + str(np.round((self.fuel_blends['diesel']['secondary']['share'][y] * 100), 0))) + '%'), end=end_str) ind_A = [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('transport, passenger' in i[0]) and any(((x in i[0]) for x in ['ICEV-d', 'PHEV-d', 'HEV-d'])))] ind_array = [x for x in self.get_index_vehicle_from_array(year) if (x in index)] self.A[(:, [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('fuel supply for diesel vehicles' in i[0]))], ind_A)] = ((array[(self.array_inputs['fuel mass'], :, ind_array)] / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T share_fossil = 0 CO2_fossil = 0 if (self.fuel_blends['diesel']['primary']['type'] == 'diesel'): share_fossil += self.fuel_blends['diesel']['primary']['share'][y] CO2_fossil += (self.fuel_blends['diesel']['primary']['CO2'] * self.fuel_blends['diesel']['primary']['share'][y]) if (self.fuel_blends['diesel']['secondary']['type'] == 'diesel'): share_fossil += self.fuel_blends['diesel']['secondary']['share'][y] CO2_fossil += (self.fuel_blends['diesel']['secondary']['CO2'] * self.fuel_blends['diesel']['secondary']['share'][y]) if ('tertiary' in self.fuel_blends['diesel']): if (self.fuel_blends['diesel']['tertiary']['type'] == 'diesel'): share_fossil += self.fuel_blends['diesel']['tertiary']['share'][y] CO2_fossil += (self.fuel_blends['diesel']['tertiary']['CO2'] * self.fuel_blends['diesel']['tertiary']['share'][y]) self.A[(:, self.inputs[('Carbon dioxide, fossil', ('air',), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * CO2_fossil) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T sulfur_concentration = self.get_sulfur_content(self.country, 'diesel', year) self.A[(:, self.inputs[('Sulfur dioxide', ('air',), 'kilogram')], ind_A)] = (((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * sulfur_concentration) * (64 / 32)) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T share_non_fossil = 0 CO2_non_fossil = 0 if (self.fuel_blends['diesel']['primary']['type'] != 'diesel'): share_non_fossil += self.fuel_blends['diesel']['primary']['share'][y] CO2_non_fossil += (self.fuel_blends['diesel']['primary']['CO2'] * self.fuel_blends['diesel']['primary']['share'][y]) if (self.fuel_blends['diesel']['secondary']['type'] != 'diesel'): share_non_fossil += self.fuel_blends['diesel']['secondary']['share'][y] CO2_non_fossil += (self.fuel_blends['diesel']['secondary']['share'][y] * self.fuel_blends['diesel']['secondary']['CO2']) if ('tertiary' in self.fuel_blends['diesel']): if (self.fuel_blends['diesel']['tertiary']['type'] != 'diesel'): share_non_fossil += self.fuel_blends['diesel']['tertiary']['share'][y] CO2_non_fossil += (self.fuel_blends['diesel']['tertiary']['share'][y] * self.fuel_blends['diesel']['tertiary']['CO2']) self.A[(:, self.inputs[('Carbon dioxide, from soil or biomass stock', ('air',), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_non_fossil) * CO2_non_fossil) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Cadmium', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Copper', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1.7e-06) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Chromium', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 5e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Nickel', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 7e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Selenium', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Zinc', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-06) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Chromium VI', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-10) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T if [i for i in self.scope['powertrain'] if (i in ['ICEV-p', 'HEV-p', 'PHEV-p'])]: index = self.get_index_vehicle_from_array(['ICEV-p', 'HEV-p', 'PHEV-p']) if ('tertiary' in self.fuel_blends['petrol']): print('{} is completed by {} and {}.'.format(self.fuel_blends['petrol']['primary']['type'], self.fuel_blends['petrol']['secondary']['type'], self.fuel_blends['petrol']['tertiary']['type']), end='\n \t * ') else: print('{} is completed by {}.'.format(self.fuel_blends['petrol']['primary']['type'], self.fuel_blends['petrol']['secondary']['type']), end='\n \t * ') for (y, year) in enumerate(self.scope['year']): if ((y + 1) == len(self.scope['year'])): end_str = '\n * ' else: end_str = '\n \t * ' if ('tertiary' in self.fuel_blends['petrol']): print(((((((('in ' + str(year)) + ' _________________ ') + str(np.round((self.fuel_blends['petrol']['secondary']['share'][y] * 100), 0))) + '%') + ' _________________ ') + str(np.round((self.fuel_blends['petrol']['tertiary']['share'][y] * 100), 0))) + '%'), end=end_str) else: print((((('in ' + str(year)) + ' _________________________________________ ') + str(np.round((self.fuel_blends['petrol']['secondary']['share'][y] * 100), 0))) + '%'), end=end_str) for (y, year) in enumerate(self.scope['year']): ind_A = [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('transport, passenger' in i[0]) and any(((x in i[0]) for x in ['ICEV-p', 'HEV-p', 'PHEV-p'])))] ind_array = [x for x in self.get_index_vehicle_from_array(year) if (x in index)] self.A[(:, [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('fuel supply for gasoline vehicles' in i[0]))], ind_A)] = ((array[(self.array_inputs['fuel mass'], :, ind_array)] / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T share_fossil = 0 CO2_fossil = 0 if (self.fuel_blends['petrol']['primary']['type'] == 'petrol'): share_fossil = self.fuel_blends['petrol']['primary']['share'][y] CO2_fossil += (self.fuel_blends['petrol']['primary']['CO2'] * self.fuel_blends['petrol']['primary']['share'][y]) if (self.fuel_blends['petrol']['secondary']['type'] == 'petrol'): share_fossil += self.fuel_blends['petrol']['secondary']['share'][y] CO2_fossil += (self.fuel_blends['petrol']['secondary']['CO2'] * self.fuel_blends['petrol']['secondary']['share'][y]) if ('tertiary' in self.fuel_blends['petrol']): if (self.fuel_blends['petrol']['tertiary']['type'] == 'petrol'): share_fossil += self.fuel_blends['petrol']['tertiary']['share'][y] CO2_fossil += (self.fuel_blends['petrol']['tertiary']['CO2'] * self.fuel_blends['petrol']['tertiary']['share'][y]) self.A[(:, self.inputs[('Carbon dioxide, fossil', ('air',), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * CO2_fossil) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T sulfur_concentration = self.get_sulfur_content(self.country, 'petrol', year) self.A[(:, self.inputs[('Sulfur dioxide', ('air',), 'kilogram')], ind_A)] = (((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * sulfur_concentration) * (64 / 32)) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T share_non_fossil = 0 CO2_non_fossil = 0 if (self.fuel_blends['petrol']['primary']['type'] != 'petrol'): share_non_fossil += self.fuel_blends['petrol']['primary']['share'][y] CO2_non_fossil += (self.fuel_blends['petrol']['primary']['CO2'] * self.fuel_blends['petrol']['primary']['share'][y]) if (self.fuel_blends['petrol']['secondary']['type'] != 'petrol'): share_non_fossil += self.fuel_blends['petrol']['secondary']['share'][y] CO2_non_fossil += (self.fuel_blends['petrol']['secondary']['CO2'] * self.fuel_blends['petrol']['secondary']['share'][y]) if ('tertiary' in self.fuel_blends['petrol']): if (self.fuel_blends['petrol']['tertiary']['type'] != 'petrol'): share_non_fossil += self.fuel_blends['petrol']['tertiary']['share'][y] CO2_non_fossil += (self.fuel_blends['petrol']['tertiary']['share'][y] * self.fuel_blends['petrol']['tertiary']['CO2']) self.A[(:, self.inputs[('Carbon dioxide, from soil or biomass stock', ('air',), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_non_fossil) * CO2_non_fossil) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Cadmium', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Copper', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1.7e-06) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Chromium', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 5e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Nickel', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 7e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Selenium', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Zinc', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-06) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Chromium VI', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-10) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('market for road wear emissions, passenger car', 'GLO', 'kilogram', 'road wear emissions, passenger car')], (- self.number_of_cars):)] = (array[(self.array_inputs['driving mass'], :)] * 1e-08) self.A[(:, self.inputs[('market for tyre wear emissions, passenger car', 'GLO', 'kilogram', 'tyre wear emissions, passenger car')], (- self.number_of_cars):)] = (array[(self.array_inputs['driving mass'], :)] * 6e-08) ind_A = [self.inputs[i] for i in self.inputs if (('transport, passenger' in i[0]) and any(((x in i[0]) for x in ['ICEV-d', 'ICEV-p', 'ICEV-g'])))] index = self.get_index_vehicle_from_array(['ICEV-d', 'ICEV-p', 'ICEV-g']) self.A[(:, self.inputs[('market for brake wear emissions, passenger car', 'GLO', 'kilogram', 'brake wear emissions, passenger car')], ind_A)] = (array[(self.array_inputs['driving mass'], :, index)].T * 5e-09) ind_A = [self.inputs[i] for i in self.inputs if (('transport, passenger' in i[0]) and any(((x in i[0]) for x in ['BEV', 'FCEV', 'HEV-p', 'HEV-d', 'PHEV-p', 'PHEV-d'])))] index = self.get_index_vehicle_from_array(['BEV', 'FCEV', 'HEV-p', 'HEV-d', 'PHEV-p', 'PHEV-d']) self.A[(:, self.inputs[('market for brake wear emissions, passenger car', 'GLO', 'kilogram', 'brake wear emissions, passenger car')], ind_A)] = ((array[(self.array_inputs['driving mass'], :, index)].T * 5e-09) * 0.2) self.A[(:, self.inputs[('market for road', 'GLO', 'meter-year', 'road')], (- self.number_of_cars):)] = ((5.37e-07 * array[(self.array_inputs['driving mass'], :)]) * (- 1)) self.A[(:, self.inputs[('market for road maintenance', 'RER', 'meter-year', 'road maintenance')], (- self.number_of_cars):)] = (0.00129 * (- 1)) self.A[(:, self.index_emissions, (- self.number_of_cars):)] = (array[[self.array_inputs[self.map_non_fuel_emissions[self.rev_inputs[x]]] for x in self.index_emissions]] * (- 1)).transpose([1, 0, 2]) self.A[(:, self.index_noise, (- self.number_of_cars):)] = (array[[self.array_inputs[self.map_noise_emissions[self.rev_inputs[x]]] for x in self.index_noise]] * (- 1)).transpose([1, 0, 2]) self.A[(:, self.inputs[('Ethane, 1,1,1,2-tetrafluoro-, HFC-134a', ('air',), 'kilogram')], (- self.number_of_cars):)] = ((0.053 / self.array.values[self.array_inputs['kilometers per year']]) * (- 1)) self.A[(:, self.inputs[('market for refrigerant R134a', 'GLO', 'kilogram', 'refrigerant R134a')], (- self.number_of_cars):)] = ((0.053 / self.array.values[self.array_inputs['kilometers per year']]) * (- 1)) print('*********************************************************************')
def set_inputs_in_A_matrix(self, array): '\n Fill-in the A matrix. Does not return anything. Modifies in place.\n Shape of the A matrix (values, products, activities).\n\n :param array: :attr:`array` from :class:`CarModel` class\n ' self.A[(:, self.inputs[('market for glider, passenger car', 'GLO', 'kilogram', 'glider, passenger car')], (- self.number_of_cars):)] = ((array[(self.array_inputs['glider base mass'], :)] / array[(self.array_inputs['lifetime kilometers'], :)]) * (- 1)) self.A[(:, self.inputs[('Glider lightweighting', 'GLO', 'kilogram', 'Glider lightweighting')], (- self.number_of_cars):)] = (((array[(self.array_inputs['lightweighting'], :)] * array[(self.array_inputs['glider base mass'], :)]) / array[(self.array_inputs['lifetime kilometers'], :)]) * (- 1)) self.A[(:, self.inputs[('maintenance, passenger car', 'RER', 'unit', 'passenger car maintenance')], (- self.number_of_cars):)] = (((array[(self.array_inputs['curb mass'], :)] / 1240) / 150000) * (- 1)) self.A[(:, self.inputs[('market for manual dismantling of used electric passenger car', 'GLO', 'unit', 'manual dismantling of used electric passenger car')], (- self.number_of_cars):)] = (((array[(self.array_inputs['curb mass'], :)] * (1 - array[(self.array_inputs['combustion power share'], :)])) / array[(self.array_inputs['lifetime kilometers'], :)]) * (- 1)) self.A[(:, self.inputs[('market for used Li-ion battery', 'GLO', 'kilogram', 'used Li-ion battery')], (- self.number_of_cars):)] = (array[(self.array_inputs['energy battery mass'], :)] / array[(self.array_inputs['lifetime kilometers'], :)]) self.A[(:, self.inputs[('market for manual dismantling of used passenger car with internal combustion engine', 'GLO', 'unit', 'manual dismantling of used passenger car with internal combustion engine')], (- self.number_of_cars):)] = (((array[(self.array_inputs['curb mass'], :)] * array[(self.array_inputs['combustion power share'], :)]) / array[(self.array_inputs['lifetime kilometers'], :)]) * (- 1)) self.A[(:, self.inputs[('market for charger, electric passenger car', 'GLO', 'kilogram', 'charger, electric passenger car')], (- self.number_of_cars):)] = ((array[(self.array_inputs['charger mass'], :)] / array[(self.array_inputs['lifetime kilometers'], :)]) * (- 1)) self.A[(:, self.inputs[('market for converter, for electric passenger car', 'GLO', 'kilogram', 'converter, for electric passenger car')], (- self.number_of_cars):)] = ((array[(self.array_inputs['converter mass'], :)] / array[(self.array_inputs['lifetime kilometers'], :)]) * (- 1)) self.A[(:, self.inputs[('market for electric motor, electric passenger car', 'GLO', 'kilogram', 'electric motor, electric passenger car')], (- self.number_of_cars):)] = ((array[(self.array_inputs['electric engine mass'], :)] / array[(self.array_inputs['lifetime kilometers'], :)]) * (- 1)) self.A[(:, self.inputs[('market for inverter, for electric passenger car', 'GLO', 'kilogram', 'inverter, for electric passenger car')], (- self.number_of_cars):)] = ((array[(self.array_inputs['inverter mass'], :)] / array[(self.array_inputs['lifetime kilometers'], :)]) * (- 1)) self.A[(:, self.inputs[('market for power distribution unit, for electric passenger car', 'GLO', 'kilogram', 'power distribution unit, for electric passenger car')], (- self.number_of_cars):)] = ((array[(self.array_inputs['power distribution unit mass'], :)] / array[(self.array_inputs['lifetime kilometers'], :)]) * (- 1)) l_elec_pt = ['charger mass', 'converter mass', 'inverter mass', 'power distribution unit mass', 'electric engine mass', 'fuel cell stack mass', 'fuel cell ancillary BoP mass', 'fuel cell essential BoP mass', 'battery cell mass', 'battery BoP mass'] self.A[(:, self.inputs[('market for used powertrain from electric passenger car, manual dismantling', 'GLO', 'kilogram', 'used powertrain from electric passenger car, manual dismantling')], (- self.number_of_cars):)] = (array[([self.array_inputs[l] for l in l_elec_pt], :)].sum(axis=0) / array[(self.array_inputs['lifetime kilometers'], :)]) self.A[(:, self.inputs[('market for internal combustion engine, passenger car', 'GLO', 'kilogram', 'internal combustion engine, for passenger car')], (- self.number_of_cars):)] = ((array[([self.array_inputs[l] for l in ['combustion engine mass', 'powertrain mass']], :)].sum(axis=0) / array[(self.array_inputs['lifetime kilometers'], :)]) * (- 1)) self.A[(:, self.inputs[('Ancillary BoP', 'GLO', 'kilogram', 'Ancillary BoP')], (- self.number_of_cars):)] = (((array[(self.array_inputs['fuel cell ancillary BoP mass'], :)] * (1 + array[(self.array_inputs['fuel cell lifetime replacements'], :)])) / array[(self.array_inputs['lifetime kilometers'], :)]) * (- 1)) self.A[(:, self.inputs[('Essential BoP', 'GLO', 'kilogram', 'Essential BoP')], (- self.number_of_cars):)] = (((array[(self.array_inputs['fuel cell essential BoP mass'], :)] * (1 + array[(self.array_inputs['fuel cell lifetime replacements'], :)])) / array[(self.array_inputs['lifetime kilometers'], :)]) * (- 1)) self.A[(:, self.inputs[('Stack', 'GLO', 'kilowatt', 'Stack')], (- self.number_of_cars):)] = ((((array[(self.array_inputs['fuel cell stack mass'], :)] / 0.51) * (1 + array[(self.array_inputs['fuel cell lifetime replacements'], :)])) / array[(self.array_inputs['lifetime kilometers'], :)]) * (- 1)) print('****************** IMPORTANT BACKGROUND PARAMETERS ******************', end='\n * ') print(('The country of use is ' + self.country), end='\n * ') battery_tech = self.background_configuration['energy storage']['electric']['type'] battery_origin = self.background_configuration['energy storage']['electric']['origin'] print((((('Power and energy batteries produced in ' + battery_origin) + ' using ') + battery_tech) + ' chemistry.'), end='\n * ') self.A[(:, self.inputs[('Battery BoP', 'GLO', 'kilogram', 'Battery BoP')], (- self.number_of_cars):)] = (((array[(self.array_inputs['battery BoP mass'], :)] * (1 + array[(self.array_inputs['battery lifetime replacements'], :)])) / array[(self.array_inputs['lifetime kilometers'], :)]) * (- 1)) battery_cell_label = (('Battery cell, ' + battery_tech), 'GLO', 'kilogram', 'Battery cell') self.A[(:, self.inputs[battery_cell_label], (- self.number_of_cars):)] = (((array[(self.array_inputs['battery cell mass'], :)] * (1 + array[(self.array_inputs['battery lifetime replacements'], :)])) / array[(self.array_inputs['lifetime kilometers'], :)]) * (- 1)) self.A[(:, self.inputs[('market group for electricity, medium voltage', 'World', 'kilowatt hour', 'electricity, medium voltage')], self.inputs[battery_cell_label])] = 0 for y in self.scope['year']: index = self.get_index_vehicle_from_array(y) self.A[np.ix_(np.arange(self.iterations), [self.inputs[i] for i in self.inputs if ((str(y) in i[0]) and ('electricity market for energy storage production' in i[0]))], [self.inputs[i] for i in self.inputs if ((str(y) in i[0]) and ('transport, passenger' in i[0]))])] = (array[(self.array_inputs['battery cell production electricity'], :, index)].T * self.A[(:, self.inputs[battery_cell_label], [self.inputs[i] for i in self.inputs if ((str(y) in i[0]) and ('transport, passenger' in i[0]))])]).reshape(self.iterations, 1, (- 1)) index_A = [self.inputs[c] for c in self.inputs if any(((ele in c[0]) for ele in ['ICEV-d', 'ICEV-p', 'HEV-p', 'PHEV-p', 'PHEV-d', 'HEV-d']))] index = self.get_index_vehicle_from_array(['ICEV-d', 'ICEV-p', 'HEV-p', 'PHEV-p', 'PHEV-d', 'HEV-d']) self.A[(:, self.inputs[('polyethylene production, high density, granulate', 'RER', 'kilogram', 'polyethylene, high density, granulate')], index_A)] = ((array[(self.array_inputs['fuel tank mass'], :, index)] / array[(self.array_inputs['lifetime kilometers'], :, index)]) * (- 1)).T index = self.get_index_vehicle_from_array('ICEV-g') self.A[(:, self.inputs[('glass fibre reinforced plastic production, polyamide, injection moulded', 'RER', 'kilogram', 'glass fibre reinforced plastic, polyamide, injection moulded')], self.index_cng)] = ((array[(self.array_inputs['fuel tank mass'], :, index)] / array[(self.array_inputs['lifetime kilometers'], :, index)]) * (- 1)).T if ('hydrogen' in self.background_configuration['energy storage']): hydro_tank_technology = self.background_configuration['energy storage']['hydrogen']['type'] else: hydro_tank_technology = 'carbon fiber' dict_tank_map = {'carbon fiber': ('Fuel tank, compressed hydrogen gas, 700bar', 'GLO', 'kilogram', 'Fuel tank, compressed hydrogen gas, 700bar'), 'hdpe': ('Fuel tank, compressed hydrogen gas, 700bar, with HDPE liner', 'RER', 'kilogram', 'Hydrogen tank'), 'aluminium': ('Fuel tank, compressed hydrogen gas, 700bar, with aluminium liner', 'RER', 'kilogram', 'Hydrogen tank')} index = self.get_index_vehicle_from_array('FCEV') self.A[(:, self.inputs[dict_tank_map[hydro_tank_technology]], self.index_fuel_cell)] = ((array[(self.array_inputs['fuel tank mass'], :, index)] / array[(self.array_inputs['lifetime kilometers'], :, index)]) * (- 1)).T (sum_renew, co2_intensity_tech) = self.define_renewable_rate_in_mix() for (y, year) in enumerate(self.scope['year']): if ((y + 1) == len(self.scope['year'])): end_str = '\n * ' else: end_str = '\n \t * ' print(((((((('in ' + str(year)) + ', % of renewable: ') + str(np.round((sum_renew[y] * 100), 0))) + '%') + ', GHG intensity per kWh: ') + str(int(np.sum((co2_intensity_tech[y] * self.mix[y]))))) + ' g. CO2-eq.'), end=end_str) if any((True for x in ['BEV', 'PHEV-p', 'PHEV-d'] if (x in self.scope['powertrain']))): for y in self.scope['year']: index = self.get_index_vehicle_from_array(['BEV', 'PHEV-p', 'PHEV-d'], y, method='and') self.A[np.ix_(np.arange(self.iterations), [self.inputs[i] for i in self.inputs if ((str(y) in i[0]) and ('electricity supply for electric vehicles' in i[0]))], [self.inputs[i] for i in self.inputs if ((str(y) in i[0]) and ('transport, passenger' in i[0]) and any((True for x in ['BEV', 'PHEV-p', 'PHEV-d'] if (x in i[0]))))])] = (array[(self.array_inputs['electricity consumption'], :, index)] * (- 1)).T.reshape(self.iterations, 1, (- 1)) if ('FCEV' in self.scope['powertrain']): index = self.get_index_vehicle_from_array('FCEV') if ('tertiary' in self.fuel_blends['hydrogen']): print('{} is completed by {} and {}.'.format(self.fuel_blends['hydrogen']['primary']['type'], self.fuel_blends['hydrogen']['secondary']['type'], self.fuel_blends['hydrogen']['tertiary']['type']), end='\n \t * ') else: print('{} is completed by {}.'.format(self.fuel_blends['hydrogen']['primary']['type'], self.fuel_blends['hydrogen']['secondary']['type']), end='\n \t * ') for (y, year) in enumerate(self.scope['year']): if ((y + 1) == len(self.scope['year'])): end_str = '\n * ' else: end_str = '\n \t * ' if ('tertiary' in self.fuel_blends['hydrogen']): print(((((((('in ' + str(year)) + ' _________________ ') + str(np.round((self.fuel_blends['hydrogen']['secondary']['share'][y] * 100), 0))) + '%') + ' _________________ ') + str(np.round((self.fuel_blends['hydrogen']['tertiary']['share'][y] * 100), 0))) + '%'), end=end_str) else: print((((('in ' + str(year)) + ' _________________________________________ ') + str(np.round((self.fuel_blends['hydrogen']['secondary']['share'][y] * 100), 0))) + '%'), end=end_str) ind_A = [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('transport, passenger' in i[0]) and ('FCEV' in i[0]))] ind_array = [x for x in self.get_index_vehicle_from_array(year) if (x in index)] self.A[(:, [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('fuel supply for hydrogen vehicles' in i[0]))], ind_A)] = ((array[(self.array_inputs['fuel mass'], :, ind_array)] / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T if ('ICEV-g' in self.scope['powertrain']): index = self.get_index_vehicle_from_array('ICEV-g') if ('tertiary' in self.fuel_blends['cng']): print('{} is completed by {} and {}.'.format(self.fuel_blends['cng']['primary']['type'], self.fuel_blends['cng']['secondary']['type'], self.fuel_blends['cng']['tertiary']['type']), end='\n \t * ') else: print('{} is completed by {}.'.format(self.fuel_blends['cng']['primary']['type'], self.fuel_blends['cng']['secondary']['type']), end='\n \t * ') for (y, year) in enumerate(self.scope['year']): if ((y + 1) == len(self.scope['year'])): end_str = '\n * ' else: end_str = '\n \t * ' if ('tertiary' in self.fuel_blends['cng']): print(((((((('in ' + str(year)) + ' _________________ ') + str(np.round((self.fuel_blends['cng']['secondary']['share'][y] * 100), 0))) + '%') + ' _________________ ') + str(np.round((self.fuel_blends['cng']['tertiary']['share'][y] * 100), 0))) + '%'), end=end_str) else: print((((('in ' + str(year)) + ' _________________________________________ ') + str(np.round((self.fuel_blends['cng']['secondary']['share'][y] * 100), 0))) + '%'), end=end_str) ind_A = [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('transport, passenger' in i[0]) and ('ICEV-g' in i[0]))] ind_array = [x for x in self.get_index_vehicle_from_array(year) if (x in index)] self.A[(:, [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('fuel supply for gas vehicles' in i[0]))], ind_A)] = (((array[(self.array_inputs['fuel mass'], :, ind_array)] / array[(self.array_inputs['range'], :, ind_array)]) * (1 + array[(self.array_inputs['CNG pump-to-tank leakage'], :, ind_array)])) * (- 1)).T self.A[(:, self.inputs[('Methane, fossil', ('air',), 'kilogram')], ind_A)] = (((array[(self.array_inputs['fuel mass'], :, ind_array)] / array[(self.array_inputs['range'], :, ind_array)]) * array[(self.array_inputs['CNG pump-to-tank leakage'], :, ind_array)]) * (- 1)).T share_fossil = 0 CO2_fossil = 0 if (self.fuel_blends['cng']['primary']['type'] == 'cng'): share_fossil += self.fuel_blends['cng']['primary']['share'][y] CO2_fossil = (self.fuel_blends['cng']['primary']['CO2'] * self.fuel_blends['cng']['primary']['share'][y]) if (self.fuel_blends['cng']['secondary']['type'] == 'cng'): share_fossil += self.fuel_blends['cng']['secondary']['share'][y] CO2_fossil += (self.fuel_blends['cng']['secondary']['CO2'] * self.fuel_blends['cng']['secondary']['share'][y]) if ('tertiary' in self.fuel_blends['cng']): if (self.fuel_blends['cng']['tertiary']['type'] == 'cng'): share_fossil += self.fuel_blends['cng']['tertiary']['share'][y] CO2_fossil += (self.fuel_blends['cng']['tertiary']['CO2'] * self.fuel_blends['cng']['tertiary']['share'][y]) self.A[(:, self.inputs[('Carbon dioxide, fossil', ('air',), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * CO2_fossil) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T share_non_fossil = 0 CO2_non_fossil = 0 if (self.fuel_blends['cng']['primary']['type'] != 'cng'): share_non_fossil += self.fuel_blends['cng']['primary']['share'][y] CO2_non_fossil = (self.fuel_blends['cng']['primary']['CO2'] * self.fuel_blends['cng']['primary']['share'][y]) if (self.fuel_blends['cng']['secondary']['type'] != 'cng'): share_non_fossil += self.fuel_blends['cng']['secondary']['share'][y] CO2_non_fossil += (self.fuel_blends['cng']['secondary']['share'][y] * self.fuel_blends['cng']['secondary']['CO2']) if ('tertiary' in self.fuel_blends['cng']): if (self.fuel_blends['cng']['tertiary']['type'] != 'cng'): share_non_fossil += self.fuel_blends['cng']['tertiary']['share'][y] CO2_non_fossil += (self.fuel_blends['cng']['tertiary']['share'][y] * self.fuel_blends['cng']['tertiary']['CO2']) self.A[(:, self.inputs[('Carbon dioxide, from soil or biomass stock', ('air',), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_non_fossil) * CO2_non_fossil) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T if [i for i in self.scope['powertrain'] if (i in ['ICEV-d', 'PHEV-d', 'HEV-d'])]: index = self.get_index_vehicle_from_array(['ICEV-d', 'PHEV-d', 'HEV-d']) if ('tertiary' in self.fuel_blends['diesel']): print('{} is completed by {} and {}.'.format(self.fuel_blends['diesel']['primary']['type'], self.fuel_blends['diesel']['secondary']['type'], self.fuel_blends['diesel']['tertiary']['type']), end='\n \t * ') else: print('{} is completed by {}.'.format(self.fuel_blends['diesel']['primary']['type'], self.fuel_blends['diesel']['secondary']['type']), end='\n \t * ') for (y, year) in enumerate(self.scope['year']): if ((y + 1) == len(self.scope['year'])): end_str = '\n * ' else: end_str = '\n \t * ' if ('tertiary' in self.fuel_blends['diesel']): print(((((((('in ' + str(year)) + ' _________________ ') + str(np.round((self.fuel_blends['diesel']['secondary']['share'][y] * 100), 0))) + '%') + ' _________________ ') + str(np.round((self.fuel_blends['diesel']['tertiary']['share'][y] * 100), 0))) + '%'), end=end_str) else: print((((('in ' + str(year)) + ' _________________________________________ ') + str(np.round((self.fuel_blends['diesel']['secondary']['share'][y] * 100), 0))) + '%'), end=end_str) ind_A = [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('transport, passenger' in i[0]) and any(((x in i[0]) for x in ['ICEV-d', 'PHEV-d', 'HEV-d'])))] ind_array = [x for x in self.get_index_vehicle_from_array(year) if (x in index)] self.A[(:, [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('fuel supply for diesel vehicles' in i[0]))], ind_A)] = ((array[(self.array_inputs['fuel mass'], :, ind_array)] / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T share_fossil = 0 CO2_fossil = 0 if (self.fuel_blends['diesel']['primary']['type'] == 'diesel'): share_fossil += self.fuel_blends['diesel']['primary']['share'][y] CO2_fossil += (self.fuel_blends['diesel']['primary']['CO2'] * self.fuel_blends['diesel']['primary']['share'][y]) if (self.fuel_blends['diesel']['secondary']['type'] == 'diesel'): share_fossil += self.fuel_blends['diesel']['secondary']['share'][y] CO2_fossil += (self.fuel_blends['diesel']['secondary']['CO2'] * self.fuel_blends['diesel']['secondary']['share'][y]) if ('tertiary' in self.fuel_blends['diesel']): if (self.fuel_blends['diesel']['tertiary']['type'] == 'diesel'): share_fossil += self.fuel_blends['diesel']['tertiary']['share'][y] CO2_fossil += (self.fuel_blends['diesel']['tertiary']['CO2'] * self.fuel_blends['diesel']['tertiary']['share'][y]) self.A[(:, self.inputs[('Carbon dioxide, fossil', ('air',), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * CO2_fossil) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T sulfur_concentration = self.get_sulfur_content(self.country, 'diesel', year) self.A[(:, self.inputs[('Sulfur dioxide', ('air',), 'kilogram')], ind_A)] = (((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * sulfur_concentration) * (64 / 32)) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T share_non_fossil = 0 CO2_non_fossil = 0 if (self.fuel_blends['diesel']['primary']['type'] != 'diesel'): share_non_fossil += self.fuel_blends['diesel']['primary']['share'][y] CO2_non_fossil += (self.fuel_blends['diesel']['primary']['CO2'] * self.fuel_blends['diesel']['primary']['share'][y]) if (self.fuel_blends['diesel']['secondary']['type'] != 'diesel'): share_non_fossil += self.fuel_blends['diesel']['secondary']['share'][y] CO2_non_fossil += (self.fuel_blends['diesel']['secondary']['share'][y] * self.fuel_blends['diesel']['secondary']['CO2']) if ('tertiary' in self.fuel_blends['diesel']): if (self.fuel_blends['diesel']['tertiary']['type'] != 'diesel'): share_non_fossil += self.fuel_blends['diesel']['tertiary']['share'][y] CO2_non_fossil += (self.fuel_blends['diesel']['tertiary']['share'][y] * self.fuel_blends['diesel']['tertiary']['CO2']) self.A[(:, self.inputs[('Carbon dioxide, from soil or biomass stock', ('air',), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_non_fossil) * CO2_non_fossil) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Cadmium', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Copper', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1.7e-06) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Chromium', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 5e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Nickel', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 7e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Selenium', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Zinc', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-06) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Chromium VI', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-10) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T if [i for i in self.scope['powertrain'] if (i in ['ICEV-p', 'HEV-p', 'PHEV-p'])]: index = self.get_index_vehicle_from_array(['ICEV-p', 'HEV-p', 'PHEV-p']) if ('tertiary' in self.fuel_blends['petrol']): print('{} is completed by {} and {}.'.format(self.fuel_blends['petrol']['primary']['type'], self.fuel_blends['petrol']['secondary']['type'], self.fuel_blends['petrol']['tertiary']['type']), end='\n \t * ') else: print('{} is completed by {}.'.format(self.fuel_blends['petrol']['primary']['type'], self.fuel_blends['petrol']['secondary']['type']), end='\n \t * ') for (y, year) in enumerate(self.scope['year']): if ((y + 1) == len(self.scope['year'])): end_str = '\n * ' else: end_str = '\n \t * ' if ('tertiary' in self.fuel_blends['petrol']): print(((((((('in ' + str(year)) + ' _________________ ') + str(np.round((self.fuel_blends['petrol']['secondary']['share'][y] * 100), 0))) + '%') + ' _________________ ') + str(np.round((self.fuel_blends['petrol']['tertiary']['share'][y] * 100), 0))) + '%'), end=end_str) else: print((((('in ' + str(year)) + ' _________________________________________ ') + str(np.round((self.fuel_blends['petrol']['secondary']['share'][y] * 100), 0))) + '%'), end=end_str) for (y, year) in enumerate(self.scope['year']): ind_A = [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('transport, passenger' in i[0]) and any(((x in i[0]) for x in ['ICEV-p', 'HEV-p', 'PHEV-p'])))] ind_array = [x for x in self.get_index_vehicle_from_array(year) if (x in index)] self.A[(:, [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('fuel supply for gasoline vehicles' in i[0]))], ind_A)] = ((array[(self.array_inputs['fuel mass'], :, ind_array)] / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T share_fossil = 0 CO2_fossil = 0 if (self.fuel_blends['petrol']['primary']['type'] == 'petrol'): share_fossil = self.fuel_blends['petrol']['primary']['share'][y] CO2_fossil += (self.fuel_blends['petrol']['primary']['CO2'] * self.fuel_blends['petrol']['primary']['share'][y]) if (self.fuel_blends['petrol']['secondary']['type'] == 'petrol'): share_fossil += self.fuel_blends['petrol']['secondary']['share'][y] CO2_fossil += (self.fuel_blends['petrol']['secondary']['CO2'] * self.fuel_blends['petrol']['secondary']['share'][y]) if ('tertiary' in self.fuel_blends['petrol']): if (self.fuel_blends['petrol']['tertiary']['type'] == 'petrol'): share_fossil += self.fuel_blends['petrol']['tertiary']['share'][y] CO2_fossil += (self.fuel_blends['petrol']['tertiary']['CO2'] * self.fuel_blends['petrol']['tertiary']['share'][y]) self.A[(:, self.inputs[('Carbon dioxide, fossil', ('air',), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * CO2_fossil) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T sulfur_concentration = self.get_sulfur_content(self.country, 'petrol', year) self.A[(:, self.inputs[('Sulfur dioxide', ('air',), 'kilogram')], ind_A)] = (((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * sulfur_concentration) * (64 / 32)) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T share_non_fossil = 0 CO2_non_fossil = 0 if (self.fuel_blends['petrol']['primary']['type'] != 'petrol'): share_non_fossil += self.fuel_blends['petrol']['primary']['share'][y] CO2_non_fossil += (self.fuel_blends['petrol']['primary']['CO2'] * self.fuel_blends['petrol']['primary']['share'][y]) if (self.fuel_blends['petrol']['secondary']['type'] != 'petrol'): share_non_fossil += self.fuel_blends['petrol']['secondary']['share'][y] CO2_non_fossil += (self.fuel_blends['petrol']['secondary']['CO2'] * self.fuel_blends['petrol']['secondary']['share'][y]) if ('tertiary' in self.fuel_blends['petrol']): if (self.fuel_blends['petrol']['tertiary']['type'] != 'petrol'): share_non_fossil += self.fuel_blends['petrol']['tertiary']['share'][y] CO2_non_fossil += (self.fuel_blends['petrol']['tertiary']['share'][y] * self.fuel_blends['petrol']['tertiary']['CO2']) self.A[(:, self.inputs[('Carbon dioxide, from soil or biomass stock', ('air',), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_non_fossil) * CO2_non_fossil) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Cadmium', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Copper', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1.7e-06) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Chromium', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 5e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Nickel', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 7e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Selenium', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Zinc', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-06) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Chromium VI', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-10) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('market for road wear emissions, passenger car', 'GLO', 'kilogram', 'road wear emissions, passenger car')], (- self.number_of_cars):)] = (array[(self.array_inputs['driving mass'], :)] * 1e-08) self.A[(:, self.inputs[('market for tyre wear emissions, passenger car', 'GLO', 'kilogram', 'tyre wear emissions, passenger car')], (- self.number_of_cars):)] = (array[(self.array_inputs['driving mass'], :)] * 6e-08) ind_A = [self.inputs[i] for i in self.inputs if (('transport, passenger' in i[0]) and any(((x in i[0]) for x in ['ICEV-d', 'ICEV-p', 'ICEV-g'])))] index = self.get_index_vehicle_from_array(['ICEV-d', 'ICEV-p', 'ICEV-g']) self.A[(:, self.inputs[('market for brake wear emissions, passenger car', 'GLO', 'kilogram', 'brake wear emissions, passenger car')], ind_A)] = (array[(self.array_inputs['driving mass'], :, index)].T * 5e-09) ind_A = [self.inputs[i] for i in self.inputs if (('transport, passenger' in i[0]) and any(((x in i[0]) for x in ['BEV', 'FCEV', 'HEV-p', 'HEV-d', 'PHEV-p', 'PHEV-d'])))] index = self.get_index_vehicle_from_array(['BEV', 'FCEV', 'HEV-p', 'HEV-d', 'PHEV-p', 'PHEV-d']) self.A[(:, self.inputs[('market for brake wear emissions, passenger car', 'GLO', 'kilogram', 'brake wear emissions, passenger car')], ind_A)] = ((array[(self.array_inputs['driving mass'], :, index)].T * 5e-09) * 0.2) self.A[(:, self.inputs[('market for road', 'GLO', 'meter-year', 'road')], (- self.number_of_cars):)] = ((5.37e-07 * array[(self.array_inputs['driving mass'], :)]) * (- 1)) self.A[(:, self.inputs[('market for road maintenance', 'RER', 'meter-year', 'road maintenance')], (- self.number_of_cars):)] = (0.00129 * (- 1)) self.A[(:, self.index_emissions, (- self.number_of_cars):)] = (array[[self.array_inputs[self.map_non_fuel_emissions[self.rev_inputs[x]]] for x in self.index_emissions]] * (- 1)).transpose([1, 0, 2]) self.A[(:, self.index_noise, (- self.number_of_cars):)] = (array[[self.array_inputs[self.map_noise_emissions[self.rev_inputs[x]]] for x in self.index_noise]] * (- 1)).transpose([1, 0, 2]) self.A[(:, self.inputs[('Ethane, 1,1,1,2-tetrafluoro-, HFC-134a', ('air',), 'kilogram')], (- self.number_of_cars):)] = ((0.053 / self.array.values[self.array_inputs['kilometers per year']]) * (- 1)) self.A[(:, self.inputs[('market for refrigerant R134a', 'GLO', 'kilogram', 'refrigerant R134a')], (- self.number_of_cars):)] = ((0.053 / self.array.values[self.array_inputs['kilometers per year']]) * (- 1)) print('*********************************************************************')<|docstring|>Fill-in the A matrix. Does not return anything. Modifies in place. Shape of the A matrix (values, products, activities). :param array: :attr:`array` from :class:`CarModel` class<|endoftext|>
e97394747f44ae23d8c972fd38bddbef5a3d095dbd4489dd40fc5f2b7228f77c
def set_inputs_in_A_matrix_for_export(self, array): '\n Fill-in the A matrix. Does not return anything. Modifies in place.\n Shape of the A matrix (values, products, activities).\n\n :param array: :attr:`array` from :class:`CarModel` class\n ' self.A[(:, self.inputs[('market for glider, passenger car', 'GLO', 'kilogram', 'glider, passenger car')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = (array[(self.array_inputs['glider base mass'], :)] * (- 1)) self.A[(:, self.inputs[('Glider lightweighting', 'GLO', 'kilogram', 'Glider lightweighting')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = ((array[(self.array_inputs['lightweighting'], :)] * array[(self.array_inputs['glider base mass'], :)]) * (- 1)) self.A[(:, self.inputs[('maintenance, passenger car', 'RER', 'unit', 'passenger car maintenance')], [self.inputs[i] for i in self.inputs if ('transport, passenger car' in i[0])])] = (((array[(self.array_inputs['curb mass'], :)] / 1240) / 150000) * (- 1)) self.A[(:, self.inputs[('market for manual dismantling of used electric passenger car', 'GLO', 'unit', 'manual dismantling of used electric passenger car')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = (array[(self.array_inputs['curb mass'], :)] * (1 - array[(self.array_inputs['combustion power share'], :)])) self.A[(:, self.inputs[('market for used Li-ion battery', 'GLO', 'kilogram', 'used Li-ion battery')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = array[(self.array_inputs['energy battery mass'], :)] self.A[(:, self.inputs[('market for manual dismantling of used passenger car with internal combustion engine', 'GLO', 'unit', 'manual dismantling of used passenger car with internal combustion engine')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = ((array[(self.array_inputs['curb mass'], :)] * array[(self.array_inputs['combustion power share'], :)]) * (- 1)) self.A[(:, self.inputs[('market for charger, electric passenger car', 'GLO', 'kilogram', 'charger, electric passenger car')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = (array[(self.array_inputs['charger mass'], :)] * (- 1)) self.A[(:, self.inputs[('market for converter, for electric passenger car', 'GLO', 'kilogram', 'converter, for electric passenger car')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = (array[(self.array_inputs['converter mass'], :)] * (- 1)) self.A[(:, self.inputs[('market for electric motor, electric passenger car', 'GLO', 'kilogram', 'electric motor, electric passenger car')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = (array[(self.array_inputs['electric engine mass'], :)] * (- 1)) self.A[(:, self.inputs[('market for inverter, for electric passenger car', 'GLO', 'kilogram', 'inverter, for electric passenger car')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = (array[(self.array_inputs['inverter mass'], :)] * (- 1)) self.A[(:, self.inputs[('market for power distribution unit, for electric passenger car', 'GLO', 'kilogram', 'power distribution unit, for electric passenger car')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = (array[(self.array_inputs['power distribution unit mass'], :)] * (- 1)) l_elec_pt = ['charger mass', 'converter mass', 'inverter mass', 'power distribution unit mass', 'electric engine mass', 'fuel cell stack mass', 'fuel cell ancillary BoP mass', 'fuel cell essential BoP mass', 'battery cell mass', 'battery BoP mass'] self.A[(:, self.inputs[('market for used powertrain from electric passenger car, manual dismantling', 'GLO', 'kilogram', 'used powertrain from electric passenger car, manual dismantling')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = array[([self.array_inputs[l] for l in l_elec_pt], :)].sum(axis=0) self.A[(:, self.inputs[('market for internal combustion engine, passenger car', 'GLO', 'kilogram', 'internal combustion engine, for passenger car')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = (array[([self.array_inputs[l] for l in ['combustion engine mass', 'powertrain mass']], :)].sum(axis=0) * (- 1)) self.A[(:, self.inputs[('Ancillary BoP', 'GLO', 'kilogram', 'Ancillary BoP')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = (array[(self.array_inputs['fuel cell ancillary BoP mass'], :)] * (- 1)) self.A[(:, self.inputs[('Essential BoP', 'GLO', 'kilogram', 'Essential BoP')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = (array[(self.array_inputs['fuel cell essential BoP mass'], :)] * (- 1)) self.A[(:, self.inputs[('Stack', 'GLO', 'kilowatt', 'Stack')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = (array[(self.array_inputs['fuel cell stack mass'], :)] * (- 1)) print('****************** IMPORTANT BACKGROUND PARAMETERS ******************', end='\n * ') print(('The country of use is ' + self.country), end='\n * ') battery_tech = self.background_configuration['energy storage']['electric']['type'] battery_origin = self.background_configuration['energy storage']['electric']['origin'] print((((('Power and energy batteries produced in ' + battery_origin) + ' using ') + battery_tech) + ' chemistry.'), end='\n * ') self.A[(:, self.inputs[('Battery BoP', 'GLO', 'kilogram', 'Battery BoP')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = ((array[(self.array_inputs['battery BoP mass'], :)] * (1 + array[(self.array_inputs['battery lifetime replacements'], :)])) * (- 1)) battery_cell_label = (('Battery cell, ' + battery_tech), 'GLO', 'kilogram', 'Battery cell') self.A[(:, self.inputs[battery_cell_label], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = ((array[(self.array_inputs['battery cell mass'], :)] * (1 + array[(self.array_inputs['fuel cell lifetime replacements'], :)])) * (- 1)) self.A[(:, self.inputs[('market group for electricity, medium voltage', 'World', 'kilowatt hour', 'electricity, medium voltage')], self.inputs[battery_cell_label])] = 0 for y in self.scope['year']: index = self.get_index_vehicle_from_array(y) self.A[np.ix_(np.arange(self.iterations), [self.inputs[i] for i in self.inputs if ((str(y) in i[0]) and ('electricity market for energy storage production' in i[0]))], [self.inputs[i] for i in self.inputs if ((str(y) in i[0]) and ('Passenger car' in i[0]))])] = (array[(self.array_inputs['battery cell production electricity'], :, index)].T * self.A[(:, self.inputs[battery_cell_label], [self.inputs[i] for i in self.inputs if ((str(y) in i[0]) and ('Passenger car' in i[0]))])]).reshape(self.iterations, 1, (- 1)) index_A = [self.inputs[c] for c in self.inputs if (any(((ele in c[0]) for ele in ['ICEV-d', 'ICEV-p', 'HEV-p', 'PHEV-p', 'PHEV-d', 'HEV-d'])) and ('Passenger car' in c[0]))] index = self.get_index_vehicle_from_array(['ICEV-d', 'ICEV-p', 'HEV-p', 'PHEV-p', 'PHEV-d', 'HEV-d']) self.A[(:, self.inputs[('polyethylene production, high density, granulate', 'RER', 'kilogram', 'polyethylene, high density, granulate')], index_A)] = (array[(self.array_inputs['fuel tank mass'], :, index)] * (- 1)).T index_A = [self.inputs[c] for c in self.inputs if (('ICEV-g' in c[0]) and ('Passenger car' in c[0]))] index = self.get_index_vehicle_from_array('ICEV-g') self.A[(:, self.inputs[('glass fibre reinforced plastic production, polyamide, injection moulded', 'RER', 'kilogram', 'glass fibre reinforced plastic, polyamide, injection moulded')], index_A)] = (array[(self.array_inputs['fuel tank mass'], :, index)] * (- 1)).T if ('hydrogen' in self.background_configuration['energy storage']): hydro_tank_technology = self.background_configuration['energy storage']['hydrogen']['type'] else: hydro_tank_technology = 'carbon fiber' dict_tank_map = {'carbon fiber': ('Fuel tank, compressed hydrogen gas, 700bar', 'GLO', 'kilogram', 'Fuel tank, compressed hydrogen gas, 700bar'), 'hdpe': ('Fuel tank, compressed hydrogen gas, 700bar, with HDPE liner', 'RER', 'kilogram', 'Hydrogen tank'), 'aluminium': ('Fuel tank, compressed hydrogen gas, 700bar, with aluminium liner', 'RER', 'kilogram', 'Hydrogen tank')} index_A = [self.inputs[c] for c in self.inputs if (('FCEV' in c[0]) and ('Passenger car' in c[0]))] index = self.get_index_vehicle_from_array('FCEV') self.A[(:, self.inputs[dict_tank_map[hydro_tank_technology]], index_A)] = (array[(self.array_inputs['fuel tank mass'], :, index)] * (- 1)).T self.A[(:, [self.inputs[c] for c in self.inputs if ('Passenger car' in c[0])], [self.inputs[c] for c in self.inputs if ('transport, passenger car' in c[0])])] = ((- 1) / array[self.array_inputs['lifetime kilometers']]) (sum_renew, co2_intensity_tech) = self.define_renewable_rate_in_mix() for (y, year) in enumerate(self.scope['year']): if ((y + 1) == len(self.scope['year'])): end_str = '\n * ' else: end_str = '\n \t * ' print(((((((('in ' + str(year)) + ', % of renewable: ') + str(np.round((sum_renew[y] * 100), 0))) + '%') + ', GHG intensity per kWh: ') + str(int(np.sum((co2_intensity_tech[y] * self.mix[y]))))) + ' g. CO2-eq.'), end=end_str) if any((True for x in ['BEV', 'PHEV-p', 'PHEV-d'] if (x in self.scope['powertrain']))): for y in self.scope['year']: index = self.get_index_vehicle_from_array(['BEV', 'PHEV-p', 'PHEV-d'], y, method='and') self.A[np.ix_(np.arange(self.iterations), [self.inputs[i] for i in self.inputs if ((str(y) in i[0]) and ('electricity supply for electric vehicles' in i[0]))], [self.inputs[i] for i in self.inputs if ((str(y) in i[0]) and ('transport, passenger' in i[0]) and any((True for x in ['BEV', 'PHEV-p', 'PHEV-d'] if (x in i[0]))))])] = (array[(self.array_inputs['electricity consumption'], :, index)] * (- 1)).T.reshape(self.iterations, 1, (- 1)) if ('FCEV' in self.scope['powertrain']): index = self.get_index_vehicle_from_array('FCEV') if ('tertiary' in self.fuel_blends['hydrogen']): print('{} is completed by {} and {}.'.format(self.fuel_blends['hydrogen']['primary']['type'], self.fuel_blends['hydrogen']['secondary']['type'], self.fuel_blends['hydrogen']['tertiary']['type']), end='\n \t * ') else: print('{} is completed by {}.'.format(self.fuel_blends['hydrogen']['primary']['type'], self.fuel_blends['hydrogen']['secondary']['type']), end='\n \t * ') for (y, year) in enumerate(self.scope['year']): if ((y + 1) == len(self.scope['year'])): end_str = '\n * ' else: end_str = '\n \t * ' if ('tertiary' in self.fuel_blends['hydrogen']): print(((((((('in ' + str(year)) + ' _________________ ') + str(np.round((self.fuel_blends['hydrogen']['secondary']['share'][y] * 100), 0))) + '%') + ' _________________ ') + str(np.round((self.fuel_blends['hydrogen']['tertiary']['share'][y] * 100), 0))) + '%'), end=end_str) else: print((((('in ' + str(year)) + ' _________________________________________ ') + str(np.round((self.fuel_blends['hydrogen']['secondary']['share'][y] * 100), 0))) + '%'), end=end_str) ind_A = [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('transport, passenger' in i[0]) and ('FCEV' in i[0]))] ind_array = [x for x in self.get_index_vehicle_from_array(year) if (x in index)] self.A[(:, [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('fuel supply for hydrogen vehicles' in i[0]))], ind_A)] = ((array[(self.array_inputs['fuel mass'], :, ind_array)] / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T if ('ICEV-g' in self.scope['powertrain']): index = self.get_index_vehicle_from_array('ICEV-g') if ('tertiary' in self.fuel_blends['cng']): print('{} is completed by {} and {}.'.format(self.fuel_blends['cng']['primary']['type'], self.fuel_blends['cng']['secondary']['type'], self.fuel_blends['cng']['tertiary']['type']), end='\n \t * ') else: print('{} is completed by {}.'.format(self.fuel_blends['cng']['primary']['type'], self.fuel_blends['cng']['secondary']['type']), end='\n \t * ') for (y, year) in enumerate(self.scope['year']): if ((y + 1) == len(self.scope['year'])): end_str = '\n * ' else: end_str = '\n \t * ' if ('tertiary' in self.fuel_blends['cng']): print(((((((('in ' + str(year)) + ' _________________ ') + str(np.round((self.fuel_blends['cng']['secondary']['share'][y] * 100), 0))) + '%') + ' _________________ ') + str(np.round((self.fuel_blends['cng']['tertiary']['share'][y] * 100), 0))) + '%'), end=end_str) else: print((((('in ' + str(year)) + ' _________________________________________ ') + str(np.round((self.fuel_blends['cng']['secondary']['share'][y] * 100), 0))) + '%'), end=end_str) ind_A = [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('transport, passenger' in i[0]) and ('ICEV-g' in i[0]))] ind_array = [x for x in self.get_index_vehicle_from_array(year) if (x in index)] self.A[(:, [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('fuel supply for gas vehicles' in i[0]))], ind_A)] = (((array[(self.array_inputs['fuel mass'], :, ind_array)] / array[(self.array_inputs['range'], :, ind_array)]) * (1 + array[(self.array_inputs['CNG pump-to-tank leakage'], :, ind_array)])) * (- 1)).T self.A[(:, self.inputs[('Methane, fossil', ('air',), 'kilogram')], ind_A)] = (((array[(self.array_inputs['fuel mass'], :, ind_array)] / array[(self.array_inputs['range'], :, ind_array)]) * array[(self.array_inputs['CNG pump-to-tank leakage'], :, ind_array)]) * (- 1)).T share_fossil = 0 CO2_fossil = 0 if (self.fuel_blends['cng']['primary']['type'] == 'cng'): share_fossil += self.fuel_blends['cng']['primary']['share'][y] CO2_fossil += (self.fuel_blends['cng']['primary']['CO2'] * self.fuel_blends['cng']['primary']['share'][y]) if (self.fuel_blends['cng']['secondary']['type'] == 'cng'): share_fossil += self.fuel_blends['cng']['secondary']['share'][y] CO2_fossil += (self.fuel_blends['cng']['secondary']['CO2'] * self.fuel_blends['cng']['secondary']['share'][y]) if ('tertiary' in self.fuel_blends['cng']): if (self.fuel_blends['cng']['tertiary']['type'] == 'cng'): share_fossil += self.fuel_blends['cng']['tertiary']['share'][y] CO2_fossil += (self.fuel_blends['cng']['tertiary']['CO2'] * self.fuel_blends['cng']['tertiary']['share'][y]) self.A[(:, self.inputs[('Carbon dioxide, fossil', ('air',), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * CO2_fossil) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T share_non_fossil = 0 CO2_non_fossil = 0 if (self.fuel_blends['cng']['primary']['type'] != 'cng'): share_non_fossil += self.fuel_blends['cng']['primary']['share'][y] CO2_non_fossil = self.fuel_blends['cng']['primary']['CO2'] if (self.fuel_blends['cng']['secondary']['type'] != 'cng'): share_non_fossil += self.fuel_blends['cng']['secondary']['share'][y] CO2_non_fossil = self.fuel_blends['cng']['secondary']['CO2'] if ('tertiary' in self.fuel_blends['cng']): if (self.fuel_blends['cng']['tertiary']['type'] != 'cng'): share_non_fossil += self.fuel_blends['cng']['tertiary']['share'][y] CO2_non_fossil = self.fuel_blends['cng']['tertiary']['CO2'] self.A[(:, self.inputs[('Carbon dioxide, from soil or biomass stock', ('air',), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_non_fossil) * CO2_non_fossil) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T if [i for i in self.scope['powertrain'] if (i in ['ICEV-d', 'PHEV-d', 'HEV-d'])]: index = self.get_index_vehicle_from_array(['ICEV-d', 'PHEV-d', 'HEV-d']) if ('tertiary' in self.fuel_blends['diesel']): print('{} is completed by {} and {}.'.format(self.fuel_blends['diesel']['primary']['type'], self.fuel_blends['diesel']['secondary']['type'], self.fuel_blends['diesel']['tertiary']['type']), end='\n \t * ') else: print('{} is completed by {}.'.format(self.fuel_blends['diesel']['primary']['type'], self.fuel_blends['diesel']['secondary']['type']), end='\n \t * ') for (y, year) in enumerate(self.scope['year']): if ((y + 1) == len(self.scope['year'])): end_str = '\n * ' else: end_str = '\n \t * ' if ('tertiary' in self.fuel_blends['diesel']): print(((((((('in ' + str(year)) + ' _________________ ') + str(np.round((self.fuel_blends['diesel']['secondary']['share'][y] * 100), 0))) + '%') + ' _________________ ') + str(np.round((self.fuel_blends['diesel']['tertiary']['share'][y] * 100), 0))) + '%'), end=end_str) else: print((((('in ' + str(year)) + ' _________________________________________ ') + str(np.round((self.fuel_blends['diesel']['secondary']['share'][y] * 100), 0))) + '%'), end=end_str) ind_A = [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('transport, passenger car' in i[0]) and any(((x in i[0]) for x in ['ICEV-d', 'PHEV-d', 'HEV-d'])))] ind_array = [x for x in self.get_index_vehicle_from_array(year) if (x in index)] self.A[(:, [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('fuel supply for diesel vehicles' in i[0]))], ind_A)] = ((array[(self.array_inputs['fuel mass'], :, ind_array)] / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T share_fossil = 0 CO2_fossil = 0 if (self.fuel_blends['diesel']['primary']['type'] == 'diesel'): share_fossil += self.fuel_blends['diesel']['primary']['share'][y] CO2_fossil += (self.fuel_blends['diesel']['primary']['CO2'] * self.fuel_blends['diesel']['primary']['share'][y]) if (self.fuel_blends['diesel']['secondary']['type'] == 'diesel'): share_fossil += self.fuel_blends['diesel']['secondary']['share'][y] CO2_fossil += (self.fuel_blends['diesel']['secondary']['CO2'] * self.fuel_blends['diesel']['secondary']['share'][y]) if ('tertiary' in self.fuel_blends['diesel']): if (self.fuel_blends['diesel']['tertiary']['type'] == 'diesel'): share_fossil += self.fuel_blends['diesel']['tertiary']['share'][y] CO2_fossil += (self.fuel_blends['diesel']['tertiary']['CO2'] * self.fuel_blends['diesel']['tertiary']['share'][y]) self.A[(:, self.inputs[('Carbon dioxide, fossil', ('air',), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * CO2_fossil) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T sulfur_concentration = self.get_sulfur_content(self.country, 'diesel', year) self.A[(:, self.inputs[('Sulfur dioxide', ('air',), 'kilogram')], ind_A)] = (((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * sulfur_concentration) * (64 / 32)) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T share_non_fossil = 0 CO2_non_fossil = 0 if (self.fuel_blends['diesel']['primary']['type'] != 'diesel'): share_non_fossil += self.fuel_blends['diesel']['primary']['share'][y] CO2_non_fossil += (self.fuel_blends['diesel']['primary']['CO2'] * self.fuel_blends['diesel']['primary']['share'][y]) if (self.fuel_blends['diesel']['secondary']['type'] != 'diesel'): share_non_fossil += self.fuel_blends['diesel']['secondary']['share'][y] CO2_non_fossil += (self.fuel_blends['diesel']['secondary']['CO2'] * self.fuel_blends['diesel']['secondary']['share'][y]) if ('tertiary' in self.fuel_blends['diesel']): if (self.fuel_blends['diesel']['tertiary']['type'] != 'diesel'): share_non_fossil += self.fuel_blends['diesel']['tertiary']['share'][y] CO2_non_fossil += (self.fuel_blends['diesel']['tertiary']['CO2'] * self.fuel_blends['diesel']['tertiary']['share'][y]) self.A[(:, self.inputs[('Carbon dioxide, from soil or biomass stock', ('air',), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_non_fossil) * CO2_non_fossil) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Cadmium', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Copper', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1.7e-06) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Chromium', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 5e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Nickel', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 7e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Selenium', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Zinc', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-06) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Chromium VI', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-10) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T if [i for i in self.scope['powertrain'] if (i in ['ICEV-p', 'HEV-p', 'PHEV-p'])]: index = self.get_index_vehicle_from_array(['ICEV-p', 'HEV-p', 'PHEV-p']) if ('tertiary' in self.fuel_blends['petrol']): print('{} is completed by {} and {}.'.format(self.fuel_blends['petrol']['primary']['type'], self.fuel_blends['petrol']['secondary']['type'], self.fuel_blends['petrol']['tertiary']['type']), end='\n \t * ') else: print('{} is completed by {}.'.format(self.fuel_blends['petrol']['primary']['type'], self.fuel_blends['petrol']['secondary']['type']), end='\n \t * ') for (y, year) in enumerate(self.scope['year']): if ((y + 1) == len(self.scope['year'])): end_str = '\n * ' else: end_str = '\n \t * ' if ('tertiary' in self.fuel_blends['petrol']): print(((((((('in ' + str(year)) + ' _________________ ') + str(np.round((self.fuel_blends['petrol']['secondary']['share'][y] * 100), 0))) + '%') + ' _________________ ') + str(np.round((self.fuel_blends['petrol']['tertiary']['share'][y] * 100), 0))) + '%'), end=end_str) else: print((((('in ' + str(year)) + ' _________________________________________ ') + str(np.round((self.fuel_blends['petrol']['secondary']['share'][y] * 100), 0))) + '%'), end=end_str) for (y, year) in enumerate(self.scope['year']): ind_A = [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('transport, passenger' in i[0]) and any(((x in i[0]) for x in ['ICEV-p', 'HEV-p', 'PHEV-p'])))] ind_array = [x for x in self.get_index_vehicle_from_array(year) if (x in index)] self.A[(:, [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('fuel supply for gasoline vehicles' in i[0]))], ind_A)] = ((array[(self.array_inputs['fuel mass'], :, ind_array)] / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T share_fossil = 0 CO2_fossil = 0 if (self.fuel_blends['petrol']['primary']['type'] == 'petrol'): share_fossil += self.fuel_blends['petrol']['primary']['share'][y] CO2_fossil = (self.fuel_blends['petrol']['primary']['CO2'] * self.fuel_blends['petrol']['primary']['share'][y]) if (self.fuel_blends['petrol']['secondary']['type'] == 'petrol'): share_fossil += self.fuel_blends['petrol']['secondary']['share'][y] CO2_fossil += (self.fuel_blends['petrol']['secondary']['CO2'] * self.fuel_blends['petrol']['secondary']['share'][y]) if ('tertiary' in self.fuel_blends['petrol']): if (self.fuel_blends['petrol']['tertiary']['type'] == 'petrol'): share_fossil += self.fuel_blends['petrol']['tertiary']['share'][y] CO2_fossil += (self.fuel_blends['petrol']['tertiary']['CO2'] * self.fuel_blends['petrol']['tertiary']['share'][y]) self.A[(:, self.inputs[('Carbon dioxide, fossil', ('air',), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * CO2_fossil) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T sulfur_concentration = self.get_sulfur_content(self.country, 'petrol', year) self.A[(:, self.inputs[('Sulfur dioxide', ('air',), 'kilogram')], ind_A)] = (((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * sulfur_concentration) * (64 / 32)) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T share_non_fossil = 0 CO2_non_fossil = 0 if (self.fuel_blends['petrol']['primary']['type'] != 'petrol'): share_non_fossil += self.fuel_blends['petrol']['primary']['share'][y] CO2_non_fossil += (self.fuel_blends['petrol']['primary']['CO2'] * self.fuel_blends['petrol']['primary']['share'][y]) if (self.fuel_blends['petrol']['secondary']['type'] != 'petrol'): share_non_fossil += self.fuel_blends['petrol']['secondary']['share'][y] CO2_non_fossil += (self.fuel_blends['petrol']['secondary']['CO2'] * self.fuel_blends['petrol']['secondary']['share'][y]) if ('tertiary' in self.fuel_blends['petrol']): if (self.fuel_blends['petrol']['tertiary']['type'] != 'petrol'): share_non_fossil += self.fuel_blends['petrol']['tertiary']['share'][y] CO2_non_fossil += (self.fuel_blends['petrol']['tertiary']['CO2'] * self.fuel_blends['petrol']['tertiary']['share'][y]) self.A[(:, self.inputs[('Carbon dioxide, from soil or biomass stock', ('air',), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_non_fossil) * CO2_non_fossil) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Cadmium', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Copper', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1.7e-06) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Chromium', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 5e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Nickel', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 7e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Selenium', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Zinc', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-06) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Chromium VI', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-10) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T ind_A = [self.inputs[i] for i in self.inputs if ('transport, passenger' in i[0])] self.A[(:, self.inputs[('market for road wear emissions, passenger car', 'GLO', 'kilogram', 'road wear emissions, passenger car')], ind_A)] = (array[(self.array_inputs['driving mass'], :)] * 1e-08) self.A[(:, self.inputs[('market for tyre wear emissions, passenger car', 'GLO', 'kilogram', 'tyre wear emissions, passenger car')], ind_A)] = (array[(self.array_inputs['driving mass'], :)] * 6e-08) ind_A = [self.inputs[i] for i in self.inputs if (('transport, passenger' in i[0]) and any(((x in i[0]) for x in ['ICEV-d', 'ICEV-p', 'ICEV-g'])))] index = self.get_index_vehicle_from_array(['ICEV-d', 'ICEV-p', 'ICEV-g']) self.A[(:, self.inputs[('market for brake wear emissions, passenger car', 'GLO', 'kilogram', 'brake wear emissions, passenger car')], ind_A)] = (array[(self.array_inputs['driving mass'], :, index)].T * 5e-09) ind_A = [self.inputs[i] for i in self.inputs if (('transport, passenger' in i[0]) and any(((x in i[0]) for x in ['BEV', 'FCEV', 'HEV-p', 'HEV-d', 'PHEV-p', 'PHEV-d'])))] index = self.get_index_vehicle_from_array(['BEV', 'FCEV', 'HEV-p', 'HEV-d', 'PHEV-p', 'PHEV-d']) self.A[(:, self.inputs[('market for brake wear emissions, passenger car', 'GLO', 'kilogram', 'brake wear emissions, passenger car')], ind_A)] = ((array[(self.array_inputs['driving mass'], :, index)].T * 5e-09) * 0.2) self.A[(:, self.inputs[('market for road', 'GLO', 'meter-year', 'road')], [self.inputs[i] for i in self.inputs if ('transport, passenger car' in i[0])])] = ((5.37e-07 * array[(self.array_inputs['driving mass'], :)]) * (- 1)) self.A[(:, self.inputs[('market for road maintenance', 'RER', 'meter-year', 'road maintenance')], [self.inputs[i] for i in self.inputs if ('transport, passenger car' in i[0])])] = (0.00129 * (- 1)) self.A[np.ix_(np.arange(self.iterations), self.index_emissions, [self.inputs[i] for i in self.inputs if ('transport, passenger car' in i[0])])] = (array[[self.array_inputs[self.map_non_fuel_emissions[self.rev_inputs[x]]] for x in self.index_emissions]] * (- 1)).transpose([1, 0, 2]) self.A[np.ix_(np.arange(self.iterations), self.index_noise, [self.inputs[i] for i in self.inputs if ('transport, passenger car' in i[0])])] = (array[[self.array_inputs[self.map_noise_emissions[self.rev_inputs[x]]] for x in self.index_noise]] * (- 1)).transpose([1, 0, 2]) self.A[(:, self.inputs[('Ethane, 1,1,1,2-tetrafluoro-, HFC-134a', ('air',), 'kilogram')], [self.inputs[i] for i in self.inputs if ('transport, passenger car' in i[0])])] = ((0.053 / self.array.values[self.array_inputs['kilometers per year']]) * (- 1)) self.A[(:, self.inputs[('market for refrigerant R134a', 'GLO', 'kilogram', 'refrigerant R134a')], [self.inputs[i] for i in self.inputs if ('transport, passenger car' in i[0])])] = ((0.053 / self.array.values[self.array_inputs['kilometers per year']]) * (- 1)) print('*********************************************************************')
Fill-in the A matrix. Does not return anything. Modifies in place. Shape of the A matrix (values, products, activities). :param array: :attr:`array` from :class:`CarModel` class
carculator/inventory.py
set_inputs_in_A_matrix_for_export
rena-nong/carculator
1
python
def set_inputs_in_A_matrix_for_export(self, array): '\n Fill-in the A matrix. Does not return anything. Modifies in place.\n Shape of the A matrix (values, products, activities).\n\n :param array: :attr:`array` from :class:`CarModel` class\n ' self.A[(:, self.inputs[('market for glider, passenger car', 'GLO', 'kilogram', 'glider, passenger car')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = (array[(self.array_inputs['glider base mass'], :)] * (- 1)) self.A[(:, self.inputs[('Glider lightweighting', 'GLO', 'kilogram', 'Glider lightweighting')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = ((array[(self.array_inputs['lightweighting'], :)] * array[(self.array_inputs['glider base mass'], :)]) * (- 1)) self.A[(:, self.inputs[('maintenance, passenger car', 'RER', 'unit', 'passenger car maintenance')], [self.inputs[i] for i in self.inputs if ('transport, passenger car' in i[0])])] = (((array[(self.array_inputs['curb mass'], :)] / 1240) / 150000) * (- 1)) self.A[(:, self.inputs[('market for manual dismantling of used electric passenger car', 'GLO', 'unit', 'manual dismantling of used electric passenger car')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = (array[(self.array_inputs['curb mass'], :)] * (1 - array[(self.array_inputs['combustion power share'], :)])) self.A[(:, self.inputs[('market for used Li-ion battery', 'GLO', 'kilogram', 'used Li-ion battery')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = array[(self.array_inputs['energy battery mass'], :)] self.A[(:, self.inputs[('market for manual dismantling of used passenger car with internal combustion engine', 'GLO', 'unit', 'manual dismantling of used passenger car with internal combustion engine')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = ((array[(self.array_inputs['curb mass'], :)] * array[(self.array_inputs['combustion power share'], :)]) * (- 1)) self.A[(:, self.inputs[('market for charger, electric passenger car', 'GLO', 'kilogram', 'charger, electric passenger car')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = (array[(self.array_inputs['charger mass'], :)] * (- 1)) self.A[(:, self.inputs[('market for converter, for electric passenger car', 'GLO', 'kilogram', 'converter, for electric passenger car')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = (array[(self.array_inputs['converter mass'], :)] * (- 1)) self.A[(:, self.inputs[('market for electric motor, electric passenger car', 'GLO', 'kilogram', 'electric motor, electric passenger car')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = (array[(self.array_inputs['electric engine mass'], :)] * (- 1)) self.A[(:, self.inputs[('market for inverter, for electric passenger car', 'GLO', 'kilogram', 'inverter, for electric passenger car')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = (array[(self.array_inputs['inverter mass'], :)] * (- 1)) self.A[(:, self.inputs[('market for power distribution unit, for electric passenger car', 'GLO', 'kilogram', 'power distribution unit, for electric passenger car')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = (array[(self.array_inputs['power distribution unit mass'], :)] * (- 1)) l_elec_pt = ['charger mass', 'converter mass', 'inverter mass', 'power distribution unit mass', 'electric engine mass', 'fuel cell stack mass', 'fuel cell ancillary BoP mass', 'fuel cell essential BoP mass', 'battery cell mass', 'battery BoP mass'] self.A[(:, self.inputs[('market for used powertrain from electric passenger car, manual dismantling', 'GLO', 'kilogram', 'used powertrain from electric passenger car, manual dismantling')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = array[([self.array_inputs[l] for l in l_elec_pt], :)].sum(axis=0) self.A[(:, self.inputs[('market for internal combustion engine, passenger car', 'GLO', 'kilogram', 'internal combustion engine, for passenger car')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = (array[([self.array_inputs[l] for l in ['combustion engine mass', 'powertrain mass']], :)].sum(axis=0) * (- 1)) self.A[(:, self.inputs[('Ancillary BoP', 'GLO', 'kilogram', 'Ancillary BoP')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = (array[(self.array_inputs['fuel cell ancillary BoP mass'], :)] * (- 1)) self.A[(:, self.inputs[('Essential BoP', 'GLO', 'kilogram', 'Essential BoP')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = (array[(self.array_inputs['fuel cell essential BoP mass'], :)] * (- 1)) self.A[(:, self.inputs[('Stack', 'GLO', 'kilowatt', 'Stack')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = (array[(self.array_inputs['fuel cell stack mass'], :)] * (- 1)) print('****************** IMPORTANT BACKGROUND PARAMETERS ******************', end='\n * ') print(('The country of use is ' + self.country), end='\n * ') battery_tech = self.background_configuration['energy storage']['electric']['type'] battery_origin = self.background_configuration['energy storage']['electric']['origin'] print((((('Power and energy batteries produced in ' + battery_origin) + ' using ') + battery_tech) + ' chemistry.'), end='\n * ') self.A[(:, self.inputs[('Battery BoP', 'GLO', 'kilogram', 'Battery BoP')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = ((array[(self.array_inputs['battery BoP mass'], :)] * (1 + array[(self.array_inputs['battery lifetime replacements'], :)])) * (- 1)) battery_cell_label = (('Battery cell, ' + battery_tech), 'GLO', 'kilogram', 'Battery cell') self.A[(:, self.inputs[battery_cell_label], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = ((array[(self.array_inputs['battery cell mass'], :)] * (1 + array[(self.array_inputs['fuel cell lifetime replacements'], :)])) * (- 1)) self.A[(:, self.inputs[('market group for electricity, medium voltage', 'World', 'kilowatt hour', 'electricity, medium voltage')], self.inputs[battery_cell_label])] = 0 for y in self.scope['year']: index = self.get_index_vehicle_from_array(y) self.A[np.ix_(np.arange(self.iterations), [self.inputs[i] for i in self.inputs if ((str(y) in i[0]) and ('electricity market for energy storage production' in i[0]))], [self.inputs[i] for i in self.inputs if ((str(y) in i[0]) and ('Passenger car' in i[0]))])] = (array[(self.array_inputs['battery cell production electricity'], :, index)].T * self.A[(:, self.inputs[battery_cell_label], [self.inputs[i] for i in self.inputs if ((str(y) in i[0]) and ('Passenger car' in i[0]))])]).reshape(self.iterations, 1, (- 1)) index_A = [self.inputs[c] for c in self.inputs if (any(((ele in c[0]) for ele in ['ICEV-d', 'ICEV-p', 'HEV-p', 'PHEV-p', 'PHEV-d', 'HEV-d'])) and ('Passenger car' in c[0]))] index = self.get_index_vehicle_from_array(['ICEV-d', 'ICEV-p', 'HEV-p', 'PHEV-p', 'PHEV-d', 'HEV-d']) self.A[(:, self.inputs[('polyethylene production, high density, granulate', 'RER', 'kilogram', 'polyethylene, high density, granulate')], index_A)] = (array[(self.array_inputs['fuel tank mass'], :, index)] * (- 1)).T index_A = [self.inputs[c] for c in self.inputs if (('ICEV-g' in c[0]) and ('Passenger car' in c[0]))] index = self.get_index_vehicle_from_array('ICEV-g') self.A[(:, self.inputs[('glass fibre reinforced plastic production, polyamide, injection moulded', 'RER', 'kilogram', 'glass fibre reinforced plastic, polyamide, injection moulded')], index_A)] = (array[(self.array_inputs['fuel tank mass'], :, index)] * (- 1)).T if ('hydrogen' in self.background_configuration['energy storage']): hydro_tank_technology = self.background_configuration['energy storage']['hydrogen']['type'] else: hydro_tank_technology = 'carbon fiber' dict_tank_map = {'carbon fiber': ('Fuel tank, compressed hydrogen gas, 700bar', 'GLO', 'kilogram', 'Fuel tank, compressed hydrogen gas, 700bar'), 'hdpe': ('Fuel tank, compressed hydrogen gas, 700bar, with HDPE liner', 'RER', 'kilogram', 'Hydrogen tank'), 'aluminium': ('Fuel tank, compressed hydrogen gas, 700bar, with aluminium liner', 'RER', 'kilogram', 'Hydrogen tank')} index_A = [self.inputs[c] for c in self.inputs if (('FCEV' in c[0]) and ('Passenger car' in c[0]))] index = self.get_index_vehicle_from_array('FCEV') self.A[(:, self.inputs[dict_tank_map[hydro_tank_technology]], index_A)] = (array[(self.array_inputs['fuel tank mass'], :, index)] * (- 1)).T self.A[(:, [self.inputs[c] for c in self.inputs if ('Passenger car' in c[0])], [self.inputs[c] for c in self.inputs if ('transport, passenger car' in c[0])])] = ((- 1) / array[self.array_inputs['lifetime kilometers']]) (sum_renew, co2_intensity_tech) = self.define_renewable_rate_in_mix() for (y, year) in enumerate(self.scope['year']): if ((y + 1) == len(self.scope['year'])): end_str = '\n * ' else: end_str = '\n \t * ' print(((((((('in ' + str(year)) + ', % of renewable: ') + str(np.round((sum_renew[y] * 100), 0))) + '%') + ', GHG intensity per kWh: ') + str(int(np.sum((co2_intensity_tech[y] * self.mix[y]))))) + ' g. CO2-eq.'), end=end_str) if any((True for x in ['BEV', 'PHEV-p', 'PHEV-d'] if (x in self.scope['powertrain']))): for y in self.scope['year']: index = self.get_index_vehicle_from_array(['BEV', 'PHEV-p', 'PHEV-d'], y, method='and') self.A[np.ix_(np.arange(self.iterations), [self.inputs[i] for i in self.inputs if ((str(y) in i[0]) and ('electricity supply for electric vehicles' in i[0]))], [self.inputs[i] for i in self.inputs if ((str(y) in i[0]) and ('transport, passenger' in i[0]) and any((True for x in ['BEV', 'PHEV-p', 'PHEV-d'] if (x in i[0]))))])] = (array[(self.array_inputs['electricity consumption'], :, index)] * (- 1)).T.reshape(self.iterations, 1, (- 1)) if ('FCEV' in self.scope['powertrain']): index = self.get_index_vehicle_from_array('FCEV') if ('tertiary' in self.fuel_blends['hydrogen']): print('{} is completed by {} and {}.'.format(self.fuel_blends['hydrogen']['primary']['type'], self.fuel_blends['hydrogen']['secondary']['type'], self.fuel_blends['hydrogen']['tertiary']['type']), end='\n \t * ') else: print('{} is completed by {}.'.format(self.fuel_blends['hydrogen']['primary']['type'], self.fuel_blends['hydrogen']['secondary']['type']), end='\n \t * ') for (y, year) in enumerate(self.scope['year']): if ((y + 1) == len(self.scope['year'])): end_str = '\n * ' else: end_str = '\n \t * ' if ('tertiary' in self.fuel_blends['hydrogen']): print(((((((('in ' + str(year)) + ' _________________ ') + str(np.round((self.fuel_blends['hydrogen']['secondary']['share'][y] * 100), 0))) + '%') + ' _________________ ') + str(np.round((self.fuel_blends['hydrogen']['tertiary']['share'][y] * 100), 0))) + '%'), end=end_str) else: print((((('in ' + str(year)) + ' _________________________________________ ') + str(np.round((self.fuel_blends['hydrogen']['secondary']['share'][y] * 100), 0))) + '%'), end=end_str) ind_A = [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('transport, passenger' in i[0]) and ('FCEV' in i[0]))] ind_array = [x for x in self.get_index_vehicle_from_array(year) if (x in index)] self.A[(:, [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('fuel supply for hydrogen vehicles' in i[0]))], ind_A)] = ((array[(self.array_inputs['fuel mass'], :, ind_array)] / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T if ('ICEV-g' in self.scope['powertrain']): index = self.get_index_vehicle_from_array('ICEV-g') if ('tertiary' in self.fuel_blends['cng']): print('{} is completed by {} and {}.'.format(self.fuel_blends['cng']['primary']['type'], self.fuel_blends['cng']['secondary']['type'], self.fuel_blends['cng']['tertiary']['type']), end='\n \t * ') else: print('{} is completed by {}.'.format(self.fuel_blends['cng']['primary']['type'], self.fuel_blends['cng']['secondary']['type']), end='\n \t * ') for (y, year) in enumerate(self.scope['year']): if ((y + 1) == len(self.scope['year'])): end_str = '\n * ' else: end_str = '\n \t * ' if ('tertiary' in self.fuel_blends['cng']): print(((((((('in ' + str(year)) + ' _________________ ') + str(np.round((self.fuel_blends['cng']['secondary']['share'][y] * 100), 0))) + '%') + ' _________________ ') + str(np.round((self.fuel_blends['cng']['tertiary']['share'][y] * 100), 0))) + '%'), end=end_str) else: print((((('in ' + str(year)) + ' _________________________________________ ') + str(np.round((self.fuel_blends['cng']['secondary']['share'][y] * 100), 0))) + '%'), end=end_str) ind_A = [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('transport, passenger' in i[0]) and ('ICEV-g' in i[0]))] ind_array = [x for x in self.get_index_vehicle_from_array(year) if (x in index)] self.A[(:, [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('fuel supply for gas vehicles' in i[0]))], ind_A)] = (((array[(self.array_inputs['fuel mass'], :, ind_array)] / array[(self.array_inputs['range'], :, ind_array)]) * (1 + array[(self.array_inputs['CNG pump-to-tank leakage'], :, ind_array)])) * (- 1)).T self.A[(:, self.inputs[('Methane, fossil', ('air',), 'kilogram')], ind_A)] = (((array[(self.array_inputs['fuel mass'], :, ind_array)] / array[(self.array_inputs['range'], :, ind_array)]) * array[(self.array_inputs['CNG pump-to-tank leakage'], :, ind_array)]) * (- 1)).T share_fossil = 0 CO2_fossil = 0 if (self.fuel_blends['cng']['primary']['type'] == 'cng'): share_fossil += self.fuel_blends['cng']['primary']['share'][y] CO2_fossil += (self.fuel_blends['cng']['primary']['CO2'] * self.fuel_blends['cng']['primary']['share'][y]) if (self.fuel_blends['cng']['secondary']['type'] == 'cng'): share_fossil += self.fuel_blends['cng']['secondary']['share'][y] CO2_fossil += (self.fuel_blends['cng']['secondary']['CO2'] * self.fuel_blends['cng']['secondary']['share'][y]) if ('tertiary' in self.fuel_blends['cng']): if (self.fuel_blends['cng']['tertiary']['type'] == 'cng'): share_fossil += self.fuel_blends['cng']['tertiary']['share'][y] CO2_fossil += (self.fuel_blends['cng']['tertiary']['CO2'] * self.fuel_blends['cng']['tertiary']['share'][y]) self.A[(:, self.inputs[('Carbon dioxide, fossil', ('air',), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * CO2_fossil) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T share_non_fossil = 0 CO2_non_fossil = 0 if (self.fuel_blends['cng']['primary']['type'] != 'cng'): share_non_fossil += self.fuel_blends['cng']['primary']['share'][y] CO2_non_fossil = self.fuel_blends['cng']['primary']['CO2'] if (self.fuel_blends['cng']['secondary']['type'] != 'cng'): share_non_fossil += self.fuel_blends['cng']['secondary']['share'][y] CO2_non_fossil = self.fuel_blends['cng']['secondary']['CO2'] if ('tertiary' in self.fuel_blends['cng']): if (self.fuel_blends['cng']['tertiary']['type'] != 'cng'): share_non_fossil += self.fuel_blends['cng']['tertiary']['share'][y] CO2_non_fossil = self.fuel_blends['cng']['tertiary']['CO2'] self.A[(:, self.inputs[('Carbon dioxide, from soil or biomass stock', ('air',), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_non_fossil) * CO2_non_fossil) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T if [i for i in self.scope['powertrain'] if (i in ['ICEV-d', 'PHEV-d', 'HEV-d'])]: index = self.get_index_vehicle_from_array(['ICEV-d', 'PHEV-d', 'HEV-d']) if ('tertiary' in self.fuel_blends['diesel']): print('{} is completed by {} and {}.'.format(self.fuel_blends['diesel']['primary']['type'], self.fuel_blends['diesel']['secondary']['type'], self.fuel_blends['diesel']['tertiary']['type']), end='\n \t * ') else: print('{} is completed by {}.'.format(self.fuel_blends['diesel']['primary']['type'], self.fuel_blends['diesel']['secondary']['type']), end='\n \t * ') for (y, year) in enumerate(self.scope['year']): if ((y + 1) == len(self.scope['year'])): end_str = '\n * ' else: end_str = '\n \t * ' if ('tertiary' in self.fuel_blends['diesel']): print(((((((('in ' + str(year)) + ' _________________ ') + str(np.round((self.fuel_blends['diesel']['secondary']['share'][y] * 100), 0))) + '%') + ' _________________ ') + str(np.round((self.fuel_blends['diesel']['tertiary']['share'][y] * 100), 0))) + '%'), end=end_str) else: print((((('in ' + str(year)) + ' _________________________________________ ') + str(np.round((self.fuel_blends['diesel']['secondary']['share'][y] * 100), 0))) + '%'), end=end_str) ind_A = [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('transport, passenger car' in i[0]) and any(((x in i[0]) for x in ['ICEV-d', 'PHEV-d', 'HEV-d'])))] ind_array = [x for x in self.get_index_vehicle_from_array(year) if (x in index)] self.A[(:, [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('fuel supply for diesel vehicles' in i[0]))], ind_A)] = ((array[(self.array_inputs['fuel mass'], :, ind_array)] / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T share_fossil = 0 CO2_fossil = 0 if (self.fuel_blends['diesel']['primary']['type'] == 'diesel'): share_fossil += self.fuel_blends['diesel']['primary']['share'][y] CO2_fossil += (self.fuel_blends['diesel']['primary']['CO2'] * self.fuel_blends['diesel']['primary']['share'][y]) if (self.fuel_blends['diesel']['secondary']['type'] == 'diesel'): share_fossil += self.fuel_blends['diesel']['secondary']['share'][y] CO2_fossil += (self.fuel_blends['diesel']['secondary']['CO2'] * self.fuel_blends['diesel']['secondary']['share'][y]) if ('tertiary' in self.fuel_blends['diesel']): if (self.fuel_blends['diesel']['tertiary']['type'] == 'diesel'): share_fossil += self.fuel_blends['diesel']['tertiary']['share'][y] CO2_fossil += (self.fuel_blends['diesel']['tertiary']['CO2'] * self.fuel_blends['diesel']['tertiary']['share'][y]) self.A[(:, self.inputs[('Carbon dioxide, fossil', ('air',), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * CO2_fossil) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T sulfur_concentration = self.get_sulfur_content(self.country, 'diesel', year) self.A[(:, self.inputs[('Sulfur dioxide', ('air',), 'kilogram')], ind_A)] = (((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * sulfur_concentration) * (64 / 32)) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T share_non_fossil = 0 CO2_non_fossil = 0 if (self.fuel_blends['diesel']['primary']['type'] != 'diesel'): share_non_fossil += self.fuel_blends['diesel']['primary']['share'][y] CO2_non_fossil += (self.fuel_blends['diesel']['primary']['CO2'] * self.fuel_blends['diesel']['primary']['share'][y]) if (self.fuel_blends['diesel']['secondary']['type'] != 'diesel'): share_non_fossil += self.fuel_blends['diesel']['secondary']['share'][y] CO2_non_fossil += (self.fuel_blends['diesel']['secondary']['CO2'] * self.fuel_blends['diesel']['secondary']['share'][y]) if ('tertiary' in self.fuel_blends['diesel']): if (self.fuel_blends['diesel']['tertiary']['type'] != 'diesel'): share_non_fossil += self.fuel_blends['diesel']['tertiary']['share'][y] CO2_non_fossil += (self.fuel_blends['diesel']['tertiary']['CO2'] * self.fuel_blends['diesel']['tertiary']['share'][y]) self.A[(:, self.inputs[('Carbon dioxide, from soil or biomass stock', ('air',), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_non_fossil) * CO2_non_fossil) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Cadmium', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Copper', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1.7e-06) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Chromium', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 5e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Nickel', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 7e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Selenium', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Zinc', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-06) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Chromium VI', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-10) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T if [i for i in self.scope['powertrain'] if (i in ['ICEV-p', 'HEV-p', 'PHEV-p'])]: index = self.get_index_vehicle_from_array(['ICEV-p', 'HEV-p', 'PHEV-p']) if ('tertiary' in self.fuel_blends['petrol']): print('{} is completed by {} and {}.'.format(self.fuel_blends['petrol']['primary']['type'], self.fuel_blends['petrol']['secondary']['type'], self.fuel_blends['petrol']['tertiary']['type']), end='\n \t * ') else: print('{} is completed by {}.'.format(self.fuel_blends['petrol']['primary']['type'], self.fuel_blends['petrol']['secondary']['type']), end='\n \t * ') for (y, year) in enumerate(self.scope['year']): if ((y + 1) == len(self.scope['year'])): end_str = '\n * ' else: end_str = '\n \t * ' if ('tertiary' in self.fuel_blends['petrol']): print(((((((('in ' + str(year)) + ' _________________ ') + str(np.round((self.fuel_blends['petrol']['secondary']['share'][y] * 100), 0))) + '%') + ' _________________ ') + str(np.round((self.fuel_blends['petrol']['tertiary']['share'][y] * 100), 0))) + '%'), end=end_str) else: print((((('in ' + str(year)) + ' _________________________________________ ') + str(np.round((self.fuel_blends['petrol']['secondary']['share'][y] * 100), 0))) + '%'), end=end_str) for (y, year) in enumerate(self.scope['year']): ind_A = [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('transport, passenger' in i[0]) and any(((x in i[0]) for x in ['ICEV-p', 'HEV-p', 'PHEV-p'])))] ind_array = [x for x in self.get_index_vehicle_from_array(year) if (x in index)] self.A[(:, [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('fuel supply for gasoline vehicles' in i[0]))], ind_A)] = ((array[(self.array_inputs['fuel mass'], :, ind_array)] / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T share_fossil = 0 CO2_fossil = 0 if (self.fuel_blends['petrol']['primary']['type'] == 'petrol'): share_fossil += self.fuel_blends['petrol']['primary']['share'][y] CO2_fossil = (self.fuel_blends['petrol']['primary']['CO2'] * self.fuel_blends['petrol']['primary']['share'][y]) if (self.fuel_blends['petrol']['secondary']['type'] == 'petrol'): share_fossil += self.fuel_blends['petrol']['secondary']['share'][y] CO2_fossil += (self.fuel_blends['petrol']['secondary']['CO2'] * self.fuel_blends['petrol']['secondary']['share'][y]) if ('tertiary' in self.fuel_blends['petrol']): if (self.fuel_blends['petrol']['tertiary']['type'] == 'petrol'): share_fossil += self.fuel_blends['petrol']['tertiary']['share'][y] CO2_fossil += (self.fuel_blends['petrol']['tertiary']['CO2'] * self.fuel_blends['petrol']['tertiary']['share'][y]) self.A[(:, self.inputs[('Carbon dioxide, fossil', ('air',), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * CO2_fossil) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T sulfur_concentration = self.get_sulfur_content(self.country, 'petrol', year) self.A[(:, self.inputs[('Sulfur dioxide', ('air',), 'kilogram')], ind_A)] = (((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * sulfur_concentration) * (64 / 32)) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T share_non_fossil = 0 CO2_non_fossil = 0 if (self.fuel_blends['petrol']['primary']['type'] != 'petrol'): share_non_fossil += self.fuel_blends['petrol']['primary']['share'][y] CO2_non_fossil += (self.fuel_blends['petrol']['primary']['CO2'] * self.fuel_blends['petrol']['primary']['share'][y]) if (self.fuel_blends['petrol']['secondary']['type'] != 'petrol'): share_non_fossil += self.fuel_blends['petrol']['secondary']['share'][y] CO2_non_fossil += (self.fuel_blends['petrol']['secondary']['CO2'] * self.fuel_blends['petrol']['secondary']['share'][y]) if ('tertiary' in self.fuel_blends['petrol']): if (self.fuel_blends['petrol']['tertiary']['type'] != 'petrol'): share_non_fossil += self.fuel_blends['petrol']['tertiary']['share'][y] CO2_non_fossil += (self.fuel_blends['petrol']['tertiary']['CO2'] * self.fuel_blends['petrol']['tertiary']['share'][y]) self.A[(:, self.inputs[('Carbon dioxide, from soil or biomass stock', ('air',), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_non_fossil) * CO2_non_fossil) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Cadmium', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Copper', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1.7e-06) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Chromium', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 5e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Nickel', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 7e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Selenium', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Zinc', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-06) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Chromium VI', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-10) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T ind_A = [self.inputs[i] for i in self.inputs if ('transport, passenger' in i[0])] self.A[(:, self.inputs[('market for road wear emissions, passenger car', 'GLO', 'kilogram', 'road wear emissions, passenger car')], ind_A)] = (array[(self.array_inputs['driving mass'], :)] * 1e-08) self.A[(:, self.inputs[('market for tyre wear emissions, passenger car', 'GLO', 'kilogram', 'tyre wear emissions, passenger car')], ind_A)] = (array[(self.array_inputs['driving mass'], :)] * 6e-08) ind_A = [self.inputs[i] for i in self.inputs if (('transport, passenger' in i[0]) and any(((x in i[0]) for x in ['ICEV-d', 'ICEV-p', 'ICEV-g'])))] index = self.get_index_vehicle_from_array(['ICEV-d', 'ICEV-p', 'ICEV-g']) self.A[(:, self.inputs[('market for brake wear emissions, passenger car', 'GLO', 'kilogram', 'brake wear emissions, passenger car')], ind_A)] = (array[(self.array_inputs['driving mass'], :, index)].T * 5e-09) ind_A = [self.inputs[i] for i in self.inputs if (('transport, passenger' in i[0]) and any(((x in i[0]) for x in ['BEV', 'FCEV', 'HEV-p', 'HEV-d', 'PHEV-p', 'PHEV-d'])))] index = self.get_index_vehicle_from_array(['BEV', 'FCEV', 'HEV-p', 'HEV-d', 'PHEV-p', 'PHEV-d']) self.A[(:, self.inputs[('market for brake wear emissions, passenger car', 'GLO', 'kilogram', 'brake wear emissions, passenger car')], ind_A)] = ((array[(self.array_inputs['driving mass'], :, index)].T * 5e-09) * 0.2) self.A[(:, self.inputs[('market for road', 'GLO', 'meter-year', 'road')], [self.inputs[i] for i in self.inputs if ('transport, passenger car' in i[0])])] = ((5.37e-07 * array[(self.array_inputs['driving mass'], :)]) * (- 1)) self.A[(:, self.inputs[('market for road maintenance', 'RER', 'meter-year', 'road maintenance')], [self.inputs[i] for i in self.inputs if ('transport, passenger car' in i[0])])] = (0.00129 * (- 1)) self.A[np.ix_(np.arange(self.iterations), self.index_emissions, [self.inputs[i] for i in self.inputs if ('transport, passenger car' in i[0])])] = (array[[self.array_inputs[self.map_non_fuel_emissions[self.rev_inputs[x]]] for x in self.index_emissions]] * (- 1)).transpose([1, 0, 2]) self.A[np.ix_(np.arange(self.iterations), self.index_noise, [self.inputs[i] for i in self.inputs if ('transport, passenger car' in i[0])])] = (array[[self.array_inputs[self.map_noise_emissions[self.rev_inputs[x]]] for x in self.index_noise]] * (- 1)).transpose([1, 0, 2]) self.A[(:, self.inputs[('Ethane, 1,1,1,2-tetrafluoro-, HFC-134a', ('air',), 'kilogram')], [self.inputs[i] for i in self.inputs if ('transport, passenger car' in i[0])])] = ((0.053 / self.array.values[self.array_inputs['kilometers per year']]) * (- 1)) self.A[(:, self.inputs[('market for refrigerant R134a', 'GLO', 'kilogram', 'refrigerant R134a')], [self.inputs[i] for i in self.inputs if ('transport, passenger car' in i[0])])] = ((0.053 / self.array.values[self.array_inputs['kilometers per year']]) * (- 1)) print('*********************************************************************')
def set_inputs_in_A_matrix_for_export(self, array): '\n Fill-in the A matrix. Does not return anything. Modifies in place.\n Shape of the A matrix (values, products, activities).\n\n :param array: :attr:`array` from :class:`CarModel` class\n ' self.A[(:, self.inputs[('market for glider, passenger car', 'GLO', 'kilogram', 'glider, passenger car')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = (array[(self.array_inputs['glider base mass'], :)] * (- 1)) self.A[(:, self.inputs[('Glider lightweighting', 'GLO', 'kilogram', 'Glider lightweighting')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = ((array[(self.array_inputs['lightweighting'], :)] * array[(self.array_inputs['glider base mass'], :)]) * (- 1)) self.A[(:, self.inputs[('maintenance, passenger car', 'RER', 'unit', 'passenger car maintenance')], [self.inputs[i] for i in self.inputs if ('transport, passenger car' in i[0])])] = (((array[(self.array_inputs['curb mass'], :)] / 1240) / 150000) * (- 1)) self.A[(:, self.inputs[('market for manual dismantling of used electric passenger car', 'GLO', 'unit', 'manual dismantling of used electric passenger car')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = (array[(self.array_inputs['curb mass'], :)] * (1 - array[(self.array_inputs['combustion power share'], :)])) self.A[(:, self.inputs[('market for used Li-ion battery', 'GLO', 'kilogram', 'used Li-ion battery')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = array[(self.array_inputs['energy battery mass'], :)] self.A[(:, self.inputs[('market for manual dismantling of used passenger car with internal combustion engine', 'GLO', 'unit', 'manual dismantling of used passenger car with internal combustion engine')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = ((array[(self.array_inputs['curb mass'], :)] * array[(self.array_inputs['combustion power share'], :)]) * (- 1)) self.A[(:, self.inputs[('market for charger, electric passenger car', 'GLO', 'kilogram', 'charger, electric passenger car')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = (array[(self.array_inputs['charger mass'], :)] * (- 1)) self.A[(:, self.inputs[('market for converter, for electric passenger car', 'GLO', 'kilogram', 'converter, for electric passenger car')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = (array[(self.array_inputs['converter mass'], :)] * (- 1)) self.A[(:, self.inputs[('market for electric motor, electric passenger car', 'GLO', 'kilogram', 'electric motor, electric passenger car')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = (array[(self.array_inputs['electric engine mass'], :)] * (- 1)) self.A[(:, self.inputs[('market for inverter, for electric passenger car', 'GLO', 'kilogram', 'inverter, for electric passenger car')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = (array[(self.array_inputs['inverter mass'], :)] * (- 1)) self.A[(:, self.inputs[('market for power distribution unit, for electric passenger car', 'GLO', 'kilogram', 'power distribution unit, for electric passenger car')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = (array[(self.array_inputs['power distribution unit mass'], :)] * (- 1)) l_elec_pt = ['charger mass', 'converter mass', 'inverter mass', 'power distribution unit mass', 'electric engine mass', 'fuel cell stack mass', 'fuel cell ancillary BoP mass', 'fuel cell essential BoP mass', 'battery cell mass', 'battery BoP mass'] self.A[(:, self.inputs[('market for used powertrain from electric passenger car, manual dismantling', 'GLO', 'kilogram', 'used powertrain from electric passenger car, manual dismantling')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = array[([self.array_inputs[l] for l in l_elec_pt], :)].sum(axis=0) self.A[(:, self.inputs[('market for internal combustion engine, passenger car', 'GLO', 'kilogram', 'internal combustion engine, for passenger car')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = (array[([self.array_inputs[l] for l in ['combustion engine mass', 'powertrain mass']], :)].sum(axis=0) * (- 1)) self.A[(:, self.inputs[('Ancillary BoP', 'GLO', 'kilogram', 'Ancillary BoP')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = (array[(self.array_inputs['fuel cell ancillary BoP mass'], :)] * (- 1)) self.A[(:, self.inputs[('Essential BoP', 'GLO', 'kilogram', 'Essential BoP')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = (array[(self.array_inputs['fuel cell essential BoP mass'], :)] * (- 1)) self.A[(:, self.inputs[('Stack', 'GLO', 'kilowatt', 'Stack')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = (array[(self.array_inputs['fuel cell stack mass'], :)] * (- 1)) print('****************** IMPORTANT BACKGROUND PARAMETERS ******************', end='\n * ') print(('The country of use is ' + self.country), end='\n * ') battery_tech = self.background_configuration['energy storage']['electric']['type'] battery_origin = self.background_configuration['energy storage']['electric']['origin'] print((((('Power and energy batteries produced in ' + battery_origin) + ' using ') + battery_tech) + ' chemistry.'), end='\n * ') self.A[(:, self.inputs[('Battery BoP', 'GLO', 'kilogram', 'Battery BoP')], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = ((array[(self.array_inputs['battery BoP mass'], :)] * (1 + array[(self.array_inputs['battery lifetime replacements'], :)])) * (- 1)) battery_cell_label = (('Battery cell, ' + battery_tech), 'GLO', 'kilogram', 'Battery cell') self.A[(:, self.inputs[battery_cell_label], [self.inputs[i] for i in self.inputs if ('Passenger car' in i[0])])] = ((array[(self.array_inputs['battery cell mass'], :)] * (1 + array[(self.array_inputs['fuel cell lifetime replacements'], :)])) * (- 1)) self.A[(:, self.inputs[('market group for electricity, medium voltage', 'World', 'kilowatt hour', 'electricity, medium voltage')], self.inputs[battery_cell_label])] = 0 for y in self.scope['year']: index = self.get_index_vehicle_from_array(y) self.A[np.ix_(np.arange(self.iterations), [self.inputs[i] for i in self.inputs if ((str(y) in i[0]) and ('electricity market for energy storage production' in i[0]))], [self.inputs[i] for i in self.inputs if ((str(y) in i[0]) and ('Passenger car' in i[0]))])] = (array[(self.array_inputs['battery cell production electricity'], :, index)].T * self.A[(:, self.inputs[battery_cell_label], [self.inputs[i] for i in self.inputs if ((str(y) in i[0]) and ('Passenger car' in i[0]))])]).reshape(self.iterations, 1, (- 1)) index_A = [self.inputs[c] for c in self.inputs if (any(((ele in c[0]) for ele in ['ICEV-d', 'ICEV-p', 'HEV-p', 'PHEV-p', 'PHEV-d', 'HEV-d'])) and ('Passenger car' in c[0]))] index = self.get_index_vehicle_from_array(['ICEV-d', 'ICEV-p', 'HEV-p', 'PHEV-p', 'PHEV-d', 'HEV-d']) self.A[(:, self.inputs[('polyethylene production, high density, granulate', 'RER', 'kilogram', 'polyethylene, high density, granulate')], index_A)] = (array[(self.array_inputs['fuel tank mass'], :, index)] * (- 1)).T index_A = [self.inputs[c] for c in self.inputs if (('ICEV-g' in c[0]) and ('Passenger car' in c[0]))] index = self.get_index_vehicle_from_array('ICEV-g') self.A[(:, self.inputs[('glass fibre reinforced plastic production, polyamide, injection moulded', 'RER', 'kilogram', 'glass fibre reinforced plastic, polyamide, injection moulded')], index_A)] = (array[(self.array_inputs['fuel tank mass'], :, index)] * (- 1)).T if ('hydrogen' in self.background_configuration['energy storage']): hydro_tank_technology = self.background_configuration['energy storage']['hydrogen']['type'] else: hydro_tank_technology = 'carbon fiber' dict_tank_map = {'carbon fiber': ('Fuel tank, compressed hydrogen gas, 700bar', 'GLO', 'kilogram', 'Fuel tank, compressed hydrogen gas, 700bar'), 'hdpe': ('Fuel tank, compressed hydrogen gas, 700bar, with HDPE liner', 'RER', 'kilogram', 'Hydrogen tank'), 'aluminium': ('Fuel tank, compressed hydrogen gas, 700bar, with aluminium liner', 'RER', 'kilogram', 'Hydrogen tank')} index_A = [self.inputs[c] for c in self.inputs if (('FCEV' in c[0]) and ('Passenger car' in c[0]))] index = self.get_index_vehicle_from_array('FCEV') self.A[(:, self.inputs[dict_tank_map[hydro_tank_technology]], index_A)] = (array[(self.array_inputs['fuel tank mass'], :, index)] * (- 1)).T self.A[(:, [self.inputs[c] for c in self.inputs if ('Passenger car' in c[0])], [self.inputs[c] for c in self.inputs if ('transport, passenger car' in c[0])])] = ((- 1) / array[self.array_inputs['lifetime kilometers']]) (sum_renew, co2_intensity_tech) = self.define_renewable_rate_in_mix() for (y, year) in enumerate(self.scope['year']): if ((y + 1) == len(self.scope['year'])): end_str = '\n * ' else: end_str = '\n \t * ' print(((((((('in ' + str(year)) + ', % of renewable: ') + str(np.round((sum_renew[y] * 100), 0))) + '%') + ', GHG intensity per kWh: ') + str(int(np.sum((co2_intensity_tech[y] * self.mix[y]))))) + ' g. CO2-eq.'), end=end_str) if any((True for x in ['BEV', 'PHEV-p', 'PHEV-d'] if (x in self.scope['powertrain']))): for y in self.scope['year']: index = self.get_index_vehicle_from_array(['BEV', 'PHEV-p', 'PHEV-d'], y, method='and') self.A[np.ix_(np.arange(self.iterations), [self.inputs[i] for i in self.inputs if ((str(y) in i[0]) and ('electricity supply for electric vehicles' in i[0]))], [self.inputs[i] for i in self.inputs if ((str(y) in i[0]) and ('transport, passenger' in i[0]) and any((True for x in ['BEV', 'PHEV-p', 'PHEV-d'] if (x in i[0]))))])] = (array[(self.array_inputs['electricity consumption'], :, index)] * (- 1)).T.reshape(self.iterations, 1, (- 1)) if ('FCEV' in self.scope['powertrain']): index = self.get_index_vehicle_from_array('FCEV') if ('tertiary' in self.fuel_blends['hydrogen']): print('{} is completed by {} and {}.'.format(self.fuel_blends['hydrogen']['primary']['type'], self.fuel_blends['hydrogen']['secondary']['type'], self.fuel_blends['hydrogen']['tertiary']['type']), end='\n \t * ') else: print('{} is completed by {}.'.format(self.fuel_blends['hydrogen']['primary']['type'], self.fuel_blends['hydrogen']['secondary']['type']), end='\n \t * ') for (y, year) in enumerate(self.scope['year']): if ((y + 1) == len(self.scope['year'])): end_str = '\n * ' else: end_str = '\n \t * ' if ('tertiary' in self.fuel_blends['hydrogen']): print(((((((('in ' + str(year)) + ' _________________ ') + str(np.round((self.fuel_blends['hydrogen']['secondary']['share'][y] * 100), 0))) + '%') + ' _________________ ') + str(np.round((self.fuel_blends['hydrogen']['tertiary']['share'][y] * 100), 0))) + '%'), end=end_str) else: print((((('in ' + str(year)) + ' _________________________________________ ') + str(np.round((self.fuel_blends['hydrogen']['secondary']['share'][y] * 100), 0))) + '%'), end=end_str) ind_A = [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('transport, passenger' in i[0]) and ('FCEV' in i[0]))] ind_array = [x for x in self.get_index_vehicle_from_array(year) if (x in index)] self.A[(:, [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('fuel supply for hydrogen vehicles' in i[0]))], ind_A)] = ((array[(self.array_inputs['fuel mass'], :, ind_array)] / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T if ('ICEV-g' in self.scope['powertrain']): index = self.get_index_vehicle_from_array('ICEV-g') if ('tertiary' in self.fuel_blends['cng']): print('{} is completed by {} and {}.'.format(self.fuel_blends['cng']['primary']['type'], self.fuel_blends['cng']['secondary']['type'], self.fuel_blends['cng']['tertiary']['type']), end='\n \t * ') else: print('{} is completed by {}.'.format(self.fuel_blends['cng']['primary']['type'], self.fuel_blends['cng']['secondary']['type']), end='\n \t * ') for (y, year) in enumerate(self.scope['year']): if ((y + 1) == len(self.scope['year'])): end_str = '\n * ' else: end_str = '\n \t * ' if ('tertiary' in self.fuel_blends['cng']): print(((((((('in ' + str(year)) + ' _________________ ') + str(np.round((self.fuel_blends['cng']['secondary']['share'][y] * 100), 0))) + '%') + ' _________________ ') + str(np.round((self.fuel_blends['cng']['tertiary']['share'][y] * 100), 0))) + '%'), end=end_str) else: print((((('in ' + str(year)) + ' _________________________________________ ') + str(np.round((self.fuel_blends['cng']['secondary']['share'][y] * 100), 0))) + '%'), end=end_str) ind_A = [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('transport, passenger' in i[0]) and ('ICEV-g' in i[0]))] ind_array = [x for x in self.get_index_vehicle_from_array(year) if (x in index)] self.A[(:, [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('fuel supply for gas vehicles' in i[0]))], ind_A)] = (((array[(self.array_inputs['fuel mass'], :, ind_array)] / array[(self.array_inputs['range'], :, ind_array)]) * (1 + array[(self.array_inputs['CNG pump-to-tank leakage'], :, ind_array)])) * (- 1)).T self.A[(:, self.inputs[('Methane, fossil', ('air',), 'kilogram')], ind_A)] = (((array[(self.array_inputs['fuel mass'], :, ind_array)] / array[(self.array_inputs['range'], :, ind_array)]) * array[(self.array_inputs['CNG pump-to-tank leakage'], :, ind_array)]) * (- 1)).T share_fossil = 0 CO2_fossil = 0 if (self.fuel_blends['cng']['primary']['type'] == 'cng'): share_fossil += self.fuel_blends['cng']['primary']['share'][y] CO2_fossil += (self.fuel_blends['cng']['primary']['CO2'] * self.fuel_blends['cng']['primary']['share'][y]) if (self.fuel_blends['cng']['secondary']['type'] == 'cng'): share_fossil += self.fuel_blends['cng']['secondary']['share'][y] CO2_fossil += (self.fuel_blends['cng']['secondary']['CO2'] * self.fuel_blends['cng']['secondary']['share'][y]) if ('tertiary' in self.fuel_blends['cng']): if (self.fuel_blends['cng']['tertiary']['type'] == 'cng'): share_fossil += self.fuel_blends['cng']['tertiary']['share'][y] CO2_fossil += (self.fuel_blends['cng']['tertiary']['CO2'] * self.fuel_blends['cng']['tertiary']['share'][y]) self.A[(:, self.inputs[('Carbon dioxide, fossil', ('air',), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * CO2_fossil) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T share_non_fossil = 0 CO2_non_fossil = 0 if (self.fuel_blends['cng']['primary']['type'] != 'cng'): share_non_fossil += self.fuel_blends['cng']['primary']['share'][y] CO2_non_fossil = self.fuel_blends['cng']['primary']['CO2'] if (self.fuel_blends['cng']['secondary']['type'] != 'cng'): share_non_fossil += self.fuel_blends['cng']['secondary']['share'][y] CO2_non_fossil = self.fuel_blends['cng']['secondary']['CO2'] if ('tertiary' in self.fuel_blends['cng']): if (self.fuel_blends['cng']['tertiary']['type'] != 'cng'): share_non_fossil += self.fuel_blends['cng']['tertiary']['share'][y] CO2_non_fossil = self.fuel_blends['cng']['tertiary']['CO2'] self.A[(:, self.inputs[('Carbon dioxide, from soil or biomass stock', ('air',), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_non_fossil) * CO2_non_fossil) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T if [i for i in self.scope['powertrain'] if (i in ['ICEV-d', 'PHEV-d', 'HEV-d'])]: index = self.get_index_vehicle_from_array(['ICEV-d', 'PHEV-d', 'HEV-d']) if ('tertiary' in self.fuel_blends['diesel']): print('{} is completed by {} and {}.'.format(self.fuel_blends['diesel']['primary']['type'], self.fuel_blends['diesel']['secondary']['type'], self.fuel_blends['diesel']['tertiary']['type']), end='\n \t * ') else: print('{} is completed by {}.'.format(self.fuel_blends['diesel']['primary']['type'], self.fuel_blends['diesel']['secondary']['type']), end='\n \t * ') for (y, year) in enumerate(self.scope['year']): if ((y + 1) == len(self.scope['year'])): end_str = '\n * ' else: end_str = '\n \t * ' if ('tertiary' in self.fuel_blends['diesel']): print(((((((('in ' + str(year)) + ' _________________ ') + str(np.round((self.fuel_blends['diesel']['secondary']['share'][y] * 100), 0))) + '%') + ' _________________ ') + str(np.round((self.fuel_blends['diesel']['tertiary']['share'][y] * 100), 0))) + '%'), end=end_str) else: print((((('in ' + str(year)) + ' _________________________________________ ') + str(np.round((self.fuel_blends['diesel']['secondary']['share'][y] * 100), 0))) + '%'), end=end_str) ind_A = [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('transport, passenger car' in i[0]) and any(((x in i[0]) for x in ['ICEV-d', 'PHEV-d', 'HEV-d'])))] ind_array = [x for x in self.get_index_vehicle_from_array(year) if (x in index)] self.A[(:, [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('fuel supply for diesel vehicles' in i[0]))], ind_A)] = ((array[(self.array_inputs['fuel mass'], :, ind_array)] / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T share_fossil = 0 CO2_fossil = 0 if (self.fuel_blends['diesel']['primary']['type'] == 'diesel'): share_fossil += self.fuel_blends['diesel']['primary']['share'][y] CO2_fossil += (self.fuel_blends['diesel']['primary']['CO2'] * self.fuel_blends['diesel']['primary']['share'][y]) if (self.fuel_blends['diesel']['secondary']['type'] == 'diesel'): share_fossil += self.fuel_blends['diesel']['secondary']['share'][y] CO2_fossil += (self.fuel_blends['diesel']['secondary']['CO2'] * self.fuel_blends['diesel']['secondary']['share'][y]) if ('tertiary' in self.fuel_blends['diesel']): if (self.fuel_blends['diesel']['tertiary']['type'] == 'diesel'): share_fossil += self.fuel_blends['diesel']['tertiary']['share'][y] CO2_fossil += (self.fuel_blends['diesel']['tertiary']['CO2'] * self.fuel_blends['diesel']['tertiary']['share'][y]) self.A[(:, self.inputs[('Carbon dioxide, fossil', ('air',), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * CO2_fossil) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T sulfur_concentration = self.get_sulfur_content(self.country, 'diesel', year) self.A[(:, self.inputs[('Sulfur dioxide', ('air',), 'kilogram')], ind_A)] = (((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * sulfur_concentration) * (64 / 32)) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T share_non_fossil = 0 CO2_non_fossil = 0 if (self.fuel_blends['diesel']['primary']['type'] != 'diesel'): share_non_fossil += self.fuel_blends['diesel']['primary']['share'][y] CO2_non_fossil += (self.fuel_blends['diesel']['primary']['CO2'] * self.fuel_blends['diesel']['primary']['share'][y]) if (self.fuel_blends['diesel']['secondary']['type'] != 'diesel'): share_non_fossil += self.fuel_blends['diesel']['secondary']['share'][y] CO2_non_fossil += (self.fuel_blends['diesel']['secondary']['CO2'] * self.fuel_blends['diesel']['secondary']['share'][y]) if ('tertiary' in self.fuel_blends['diesel']): if (self.fuel_blends['diesel']['tertiary']['type'] != 'diesel'): share_non_fossil += self.fuel_blends['diesel']['tertiary']['share'][y] CO2_non_fossil += (self.fuel_blends['diesel']['tertiary']['CO2'] * self.fuel_blends['diesel']['tertiary']['share'][y]) self.A[(:, self.inputs[('Carbon dioxide, from soil or biomass stock', ('air',), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_non_fossil) * CO2_non_fossil) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Cadmium', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Copper', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1.7e-06) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Chromium', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 5e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Nickel', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 7e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Selenium', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Zinc', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-06) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Chromium VI', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-10) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T if [i for i in self.scope['powertrain'] if (i in ['ICEV-p', 'HEV-p', 'PHEV-p'])]: index = self.get_index_vehicle_from_array(['ICEV-p', 'HEV-p', 'PHEV-p']) if ('tertiary' in self.fuel_blends['petrol']): print('{} is completed by {} and {}.'.format(self.fuel_blends['petrol']['primary']['type'], self.fuel_blends['petrol']['secondary']['type'], self.fuel_blends['petrol']['tertiary']['type']), end='\n \t * ') else: print('{} is completed by {}.'.format(self.fuel_blends['petrol']['primary']['type'], self.fuel_blends['petrol']['secondary']['type']), end='\n \t * ') for (y, year) in enumerate(self.scope['year']): if ((y + 1) == len(self.scope['year'])): end_str = '\n * ' else: end_str = '\n \t * ' if ('tertiary' in self.fuel_blends['petrol']): print(((((((('in ' + str(year)) + ' _________________ ') + str(np.round((self.fuel_blends['petrol']['secondary']['share'][y] * 100), 0))) + '%') + ' _________________ ') + str(np.round((self.fuel_blends['petrol']['tertiary']['share'][y] * 100), 0))) + '%'), end=end_str) else: print((((('in ' + str(year)) + ' _________________________________________ ') + str(np.round((self.fuel_blends['petrol']['secondary']['share'][y] * 100), 0))) + '%'), end=end_str) for (y, year) in enumerate(self.scope['year']): ind_A = [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('transport, passenger' in i[0]) and any(((x in i[0]) for x in ['ICEV-p', 'HEV-p', 'PHEV-p'])))] ind_array = [x for x in self.get_index_vehicle_from_array(year) if (x in index)] self.A[(:, [self.inputs[i] for i in self.inputs if ((str(year) in i[0]) and ('fuel supply for gasoline vehicles' in i[0]))], ind_A)] = ((array[(self.array_inputs['fuel mass'], :, ind_array)] / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T share_fossil = 0 CO2_fossil = 0 if (self.fuel_blends['petrol']['primary']['type'] == 'petrol'): share_fossil += self.fuel_blends['petrol']['primary']['share'][y] CO2_fossil = (self.fuel_blends['petrol']['primary']['CO2'] * self.fuel_blends['petrol']['primary']['share'][y]) if (self.fuel_blends['petrol']['secondary']['type'] == 'petrol'): share_fossil += self.fuel_blends['petrol']['secondary']['share'][y] CO2_fossil += (self.fuel_blends['petrol']['secondary']['CO2'] * self.fuel_blends['petrol']['secondary']['share'][y]) if ('tertiary' in self.fuel_blends['petrol']): if (self.fuel_blends['petrol']['tertiary']['type'] == 'petrol'): share_fossil += self.fuel_blends['petrol']['tertiary']['share'][y] CO2_fossil += (self.fuel_blends['petrol']['tertiary']['CO2'] * self.fuel_blends['petrol']['tertiary']['share'][y]) self.A[(:, self.inputs[('Carbon dioxide, fossil', ('air',), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * CO2_fossil) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T sulfur_concentration = self.get_sulfur_content(self.country, 'petrol', year) self.A[(:, self.inputs[('Sulfur dioxide', ('air',), 'kilogram')], ind_A)] = (((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * sulfur_concentration) * (64 / 32)) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T share_non_fossil = 0 CO2_non_fossil = 0 if (self.fuel_blends['petrol']['primary']['type'] != 'petrol'): share_non_fossil += self.fuel_blends['petrol']['primary']['share'][y] CO2_non_fossil += (self.fuel_blends['petrol']['primary']['CO2'] * self.fuel_blends['petrol']['primary']['share'][y]) if (self.fuel_blends['petrol']['secondary']['type'] != 'petrol'): share_non_fossil += self.fuel_blends['petrol']['secondary']['share'][y] CO2_non_fossil += (self.fuel_blends['petrol']['secondary']['CO2'] * self.fuel_blends['petrol']['secondary']['share'][y]) if ('tertiary' in self.fuel_blends['petrol']): if (self.fuel_blends['petrol']['tertiary']['type'] != 'petrol'): share_non_fossil += self.fuel_blends['petrol']['tertiary']['share'][y] CO2_non_fossil += (self.fuel_blends['petrol']['tertiary']['CO2'] * self.fuel_blends['petrol']['tertiary']['share'][y]) self.A[(:, self.inputs[('Carbon dioxide, from soil or biomass stock', ('air',), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_non_fossil) * CO2_non_fossil) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Cadmium', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Copper', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1.7e-06) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Chromium', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 5e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Nickel', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 7e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Selenium', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-08) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Zinc', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-06) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T self.A[(:, self.inputs[('Chromium VI', ('air', 'urban air close to ground'), 'kilogram')], ind_A)] = ((((array[(self.array_inputs['fuel mass'], :, ind_array)] * share_fossil) * 1e-10) / array[(self.array_inputs['range'], :, ind_array)]) * (- 1)).T ind_A = [self.inputs[i] for i in self.inputs if ('transport, passenger' in i[0])] self.A[(:, self.inputs[('market for road wear emissions, passenger car', 'GLO', 'kilogram', 'road wear emissions, passenger car')], ind_A)] = (array[(self.array_inputs['driving mass'], :)] * 1e-08) self.A[(:, self.inputs[('market for tyre wear emissions, passenger car', 'GLO', 'kilogram', 'tyre wear emissions, passenger car')], ind_A)] = (array[(self.array_inputs['driving mass'], :)] * 6e-08) ind_A = [self.inputs[i] for i in self.inputs if (('transport, passenger' in i[0]) and any(((x in i[0]) for x in ['ICEV-d', 'ICEV-p', 'ICEV-g'])))] index = self.get_index_vehicle_from_array(['ICEV-d', 'ICEV-p', 'ICEV-g']) self.A[(:, self.inputs[('market for brake wear emissions, passenger car', 'GLO', 'kilogram', 'brake wear emissions, passenger car')], ind_A)] = (array[(self.array_inputs['driving mass'], :, index)].T * 5e-09) ind_A = [self.inputs[i] for i in self.inputs if (('transport, passenger' in i[0]) and any(((x in i[0]) for x in ['BEV', 'FCEV', 'HEV-p', 'HEV-d', 'PHEV-p', 'PHEV-d'])))] index = self.get_index_vehicle_from_array(['BEV', 'FCEV', 'HEV-p', 'HEV-d', 'PHEV-p', 'PHEV-d']) self.A[(:, self.inputs[('market for brake wear emissions, passenger car', 'GLO', 'kilogram', 'brake wear emissions, passenger car')], ind_A)] = ((array[(self.array_inputs['driving mass'], :, index)].T * 5e-09) * 0.2) self.A[(:, self.inputs[('market for road', 'GLO', 'meter-year', 'road')], [self.inputs[i] for i in self.inputs if ('transport, passenger car' in i[0])])] = ((5.37e-07 * array[(self.array_inputs['driving mass'], :)]) * (- 1)) self.A[(:, self.inputs[('market for road maintenance', 'RER', 'meter-year', 'road maintenance')], [self.inputs[i] for i in self.inputs if ('transport, passenger car' in i[0])])] = (0.00129 * (- 1)) self.A[np.ix_(np.arange(self.iterations), self.index_emissions, [self.inputs[i] for i in self.inputs if ('transport, passenger car' in i[0])])] = (array[[self.array_inputs[self.map_non_fuel_emissions[self.rev_inputs[x]]] for x in self.index_emissions]] * (- 1)).transpose([1, 0, 2]) self.A[np.ix_(np.arange(self.iterations), self.index_noise, [self.inputs[i] for i in self.inputs if ('transport, passenger car' in i[0])])] = (array[[self.array_inputs[self.map_noise_emissions[self.rev_inputs[x]]] for x in self.index_noise]] * (- 1)).transpose([1, 0, 2]) self.A[(:, self.inputs[('Ethane, 1,1,1,2-tetrafluoro-, HFC-134a', ('air',), 'kilogram')], [self.inputs[i] for i in self.inputs if ('transport, passenger car' in i[0])])] = ((0.053 / self.array.values[self.array_inputs['kilometers per year']]) * (- 1)) self.A[(:, self.inputs[('market for refrigerant R134a', 'GLO', 'kilogram', 'refrigerant R134a')], [self.inputs[i] for i in self.inputs if ('transport, passenger car' in i[0])])] = ((0.053 / self.array.values[self.array_inputs['kilometers per year']]) * (- 1)) print('*********************************************************************')<|docstring|>Fill-in the A matrix. Does not return anything. Modifies in place. Shape of the A matrix (values, products, activities). :param array: :attr:`array` from :class:`CarModel` class<|endoftext|>
a053c18baafbfed19c3ae99bd992a190ac036c6dd469b74980610011c984b628
def select_heat_supplier(self, heat_supplier): '\n The heat supply is an important aspect of direct air capture.\n Here, we can change the supplier of heat.\n :param heat_supplier: by default "waste heat". Must be one of "waste heat", "biomass heat",\n "natural gas heat", "market heat".\n :type heat_supplier: str\n :return:\n ' d_heat_suppliers = {'waste heat': ('heat, from municipal waste incineration to generic market for heat district or industrial, other than natural gas', 'CH', 'megajoule', 'heat, district or industrial, other than natural gas'), 'biomass heat': ('heat production, hardwood chips from forest, at furnace 1000kW, state-of-the-art 2014', 'CH', 'megajoule', 'heat, district or industrial, other than natural gas'), 'natural gas heat': ('market group for heat, central or small-scale, natural gas', 'RER', 'megajoule', 'heat, central or small-scale, natural gas'), 'market heat': ('market for heat, from steam, in chemical industry', 'RER', 'megajoule', 'heat, from steam, in chemical industry')} air_capture = self.inputs[('carbon dioxide, captured from atmosphere', 'RER', 'kilogram', 'carbon dioxide, captured from the atmosphere')] methanol_distillation = self.inputs[('Methanol distillation', 'RER', 'kilogram', 'Purified methanol')] all_inds = [self.inputs[i] for i in list(d_heat_suppliers.values())] heat_amount = self.A[np.ix_(range(self.A.shape[0]), all_inds, [air_capture])].sum() self.A[np.ix_(range(self.A.shape[0]), all_inds, [air_capture])] = 0 ind = self.inputs[d_heat_suppliers[heat_supplier]] self.A[np.ix_(range(self.A.shape[0]), [ind], [air_capture])] = heat_amount heat_amount = self.A[np.ix_(range(self.A.shape[0]), all_inds, [methanol_distillation])].sum() self.A[np.ix_(range(self.A.shape[0]), all_inds, [methanol_distillation])] = 0 ind = self.inputs[d_heat_suppliers[heat_supplier]] self.A[np.ix_(range(self.A.shape[0]), [ind], [methanol_distillation])] = heat_amount
The heat supply is an important aspect of direct air capture. Here, we can change the supplier of heat. :param heat_supplier: by default "waste heat". Must be one of "waste heat", "biomass heat", "natural gas heat", "market heat". :type heat_supplier: str :return:
carculator/inventory.py
select_heat_supplier
rena-nong/carculator
1
python
def select_heat_supplier(self, heat_supplier): '\n The heat supply is an important aspect of direct air capture.\n Here, we can change the supplier of heat.\n :param heat_supplier: by default "waste heat". Must be one of "waste heat", "biomass heat",\n "natural gas heat", "market heat".\n :type heat_supplier: str\n :return:\n ' d_heat_suppliers = {'waste heat': ('heat, from municipal waste incineration to generic market for heat district or industrial, other than natural gas', 'CH', 'megajoule', 'heat, district or industrial, other than natural gas'), 'biomass heat': ('heat production, hardwood chips from forest, at furnace 1000kW, state-of-the-art 2014', 'CH', 'megajoule', 'heat, district or industrial, other than natural gas'), 'natural gas heat': ('market group for heat, central or small-scale, natural gas', 'RER', 'megajoule', 'heat, central or small-scale, natural gas'), 'market heat': ('market for heat, from steam, in chemical industry', 'RER', 'megajoule', 'heat, from steam, in chemical industry')} air_capture = self.inputs[('carbon dioxide, captured from atmosphere', 'RER', 'kilogram', 'carbon dioxide, captured from the atmosphere')] methanol_distillation = self.inputs[('Methanol distillation', 'RER', 'kilogram', 'Purified methanol')] all_inds = [self.inputs[i] for i in list(d_heat_suppliers.values())] heat_amount = self.A[np.ix_(range(self.A.shape[0]), all_inds, [air_capture])].sum() self.A[np.ix_(range(self.A.shape[0]), all_inds, [air_capture])] = 0 ind = self.inputs[d_heat_suppliers[heat_supplier]] self.A[np.ix_(range(self.A.shape[0]), [ind], [air_capture])] = heat_amount heat_amount = self.A[np.ix_(range(self.A.shape[0]), all_inds, [methanol_distillation])].sum() self.A[np.ix_(range(self.A.shape[0]), all_inds, [methanol_distillation])] = 0 ind = self.inputs[d_heat_suppliers[heat_supplier]] self.A[np.ix_(range(self.A.shape[0]), [ind], [methanol_distillation])] = heat_amount
def select_heat_supplier(self, heat_supplier): '\n The heat supply is an important aspect of direct air capture.\n Here, we can change the supplier of heat.\n :param heat_supplier: by default "waste heat". Must be one of "waste heat", "biomass heat",\n "natural gas heat", "market heat".\n :type heat_supplier: str\n :return:\n ' d_heat_suppliers = {'waste heat': ('heat, from municipal waste incineration to generic market for heat district or industrial, other than natural gas', 'CH', 'megajoule', 'heat, district or industrial, other than natural gas'), 'biomass heat': ('heat production, hardwood chips from forest, at furnace 1000kW, state-of-the-art 2014', 'CH', 'megajoule', 'heat, district or industrial, other than natural gas'), 'natural gas heat': ('market group for heat, central or small-scale, natural gas', 'RER', 'megajoule', 'heat, central or small-scale, natural gas'), 'market heat': ('market for heat, from steam, in chemical industry', 'RER', 'megajoule', 'heat, from steam, in chemical industry')} air_capture = self.inputs[('carbon dioxide, captured from atmosphere', 'RER', 'kilogram', 'carbon dioxide, captured from the atmosphere')] methanol_distillation = self.inputs[('Methanol distillation', 'RER', 'kilogram', 'Purified methanol')] all_inds = [self.inputs[i] for i in list(d_heat_suppliers.values())] heat_amount = self.A[np.ix_(range(self.A.shape[0]), all_inds, [air_capture])].sum() self.A[np.ix_(range(self.A.shape[0]), all_inds, [air_capture])] = 0 ind = self.inputs[d_heat_suppliers[heat_supplier]] self.A[np.ix_(range(self.A.shape[0]), [ind], [air_capture])] = heat_amount heat_amount = self.A[np.ix_(range(self.A.shape[0]), all_inds, [methanol_distillation])].sum() self.A[np.ix_(range(self.A.shape[0]), all_inds, [methanol_distillation])] = 0 ind = self.inputs[d_heat_suppliers[heat_supplier]] self.A[np.ix_(range(self.A.shape[0]), [ind], [methanol_distillation])] = heat_amount<|docstring|>The heat supply is an important aspect of direct air capture. Here, we can change the supplier of heat. :param heat_supplier: by default "waste heat". Must be one of "waste heat", "biomass heat", "natural gas heat", "market heat". :type heat_supplier: str :return:<|endoftext|>
4723af1b0692eca50429a0b5922435a55f4c5efd85e46919f1730b3793beef8d
def report(filename, limit, lemmas, dbname=db, documents=None, most=True, display_format='html'): 'generate report and save to file\n ' if lemmas: print('lemmas') direction = '' if most: direction = 'DESC' if (not lemmas): sql = 'SELECT s.sentence, d.document, w.word\n FROM lemma_word_sentence lws\n LEFT JOIN sentence s\n ON s.id=lws.sentence_id\n LEFT JOIN document d \n ON d.id=s.document_id\n LEFT JOIN word w \n ON w.id=lws.word_id\n \n LEFT JOIN \n (SELECT w.id , w.word\n FROM word w \n JOIN lemma_word_sentence lws\n ON w.id=lws.word_id\n GROUP BY w.id\n ORDER BY\n SUM(lws.count) {}\n LIMIT {}) ranking\n ON lws.word_id=ranking.id\n WHERE ranking.id IS NOT NULL\n ORDER BY w.word, d.document, s.sentence {}\n '.format(direction, limit, direction) else: sql = 'SELECT s.sentence, d.document, l.lemma\n FROM lemma_word_sentence lws\n LEFT JOIN sentence s\n ON s.id=lws.sentence_id\n LEFT JOIN document d \n ON d.id=s.document_id\n LEFT JOIN lemma l\n ON l.id=lws.lemma_id\n \n LEFT JOIN \n (SELECT l.id , l.lemma\n FROM lemma l\n JOIN lemma_word_sentence lws\n ON l.id=lws.lemma_id\n GROUP BY l.id\n ORDER BY\n SUM(lws.count) {}\n LIMIT {}) ranking\n ON lws.lemma_id=ranking.id\n WHERE ranking.id IS NOT NULL\n ORDER BY l.lemma, d.document, s.sentence {}\n '.format(direction, limit, direction) df = pd.read_sql_query(sql, conn) if documents: df.set_index('document', drop=False, inplace=True) df = df[df.index.isin(documents)] if (not lemmas): df['count'] = df['word'].groupby(df['word']).transform('count') df.sort_values(by=['count', 'word', 'document'], ascending=[False, True, True], inplace=True) df = df[['word', 'document', 'sentence', 'count']] else: df['count'] = df['lemma'].groupby(df['lemma']).transform('count') df.sort_values(by=['count', 'lemma', 'document'], ascending=[False, True, True], inplace=True) df = df[['lemma', 'document', 'sentence', 'count']] print(df.shape) if (display_format == 'html'): df.to_html(open((filename + '.html'), 'w'), index=False) webbrowser.open(('file://' + os.path.realpath((filename + '.html')))) elif (display_format == 'csv'): df.to_csv((filename + '.csv'), index=False)
generate report and save to file
report.py
report
ImKogan/nlp
0
python
def report(filename, limit, lemmas, dbname=db, documents=None, most=True, display_format='html'): '\n ' if lemmas: print('lemmas') direction = if most: direction = 'DESC' if (not lemmas): sql = 'SELECT s.sentence, d.document, w.word\n FROM lemma_word_sentence lws\n LEFT JOIN sentence s\n ON s.id=lws.sentence_id\n LEFT JOIN document d \n ON d.id=s.document_id\n LEFT JOIN word w \n ON w.id=lws.word_id\n \n LEFT JOIN \n (SELECT w.id , w.word\n FROM word w \n JOIN lemma_word_sentence lws\n ON w.id=lws.word_id\n GROUP BY w.id\n ORDER BY\n SUM(lws.count) {}\n LIMIT {}) ranking\n ON lws.word_id=ranking.id\n WHERE ranking.id IS NOT NULL\n ORDER BY w.word, d.document, s.sentence {}\n '.format(direction, limit, direction) else: sql = 'SELECT s.sentence, d.document, l.lemma\n FROM lemma_word_sentence lws\n LEFT JOIN sentence s\n ON s.id=lws.sentence_id\n LEFT JOIN document d \n ON d.id=s.document_id\n LEFT JOIN lemma l\n ON l.id=lws.lemma_id\n \n LEFT JOIN \n (SELECT l.id , l.lemma\n FROM lemma l\n JOIN lemma_word_sentence lws\n ON l.id=lws.lemma_id\n GROUP BY l.id\n ORDER BY\n SUM(lws.count) {}\n LIMIT {}) ranking\n ON lws.lemma_id=ranking.id\n WHERE ranking.id IS NOT NULL\n ORDER BY l.lemma, d.document, s.sentence {}\n '.format(direction, limit, direction) df = pd.read_sql_query(sql, conn) if documents: df.set_index('document', drop=False, inplace=True) df = df[df.index.isin(documents)] if (not lemmas): df['count'] = df['word'].groupby(df['word']).transform('count') df.sort_values(by=['count', 'word', 'document'], ascending=[False, True, True], inplace=True) df = df[['word', 'document', 'sentence', 'count']] else: df['count'] = df['lemma'].groupby(df['lemma']).transform('count') df.sort_values(by=['count', 'lemma', 'document'], ascending=[False, True, True], inplace=True) df = df[['lemma', 'document', 'sentence', 'count']] print(df.shape) if (display_format == 'html'): df.to_html(open((filename + '.html'), 'w'), index=False) webbrowser.open(('file://' + os.path.realpath((filename + '.html')))) elif (display_format == 'csv'): df.to_csv((filename + '.csv'), index=False)
def report(filename, limit, lemmas, dbname=db, documents=None, most=True, display_format='html'): '\n ' if lemmas: print('lemmas') direction = if most: direction = 'DESC' if (not lemmas): sql = 'SELECT s.sentence, d.document, w.word\n FROM lemma_word_sentence lws\n LEFT JOIN sentence s\n ON s.id=lws.sentence_id\n LEFT JOIN document d \n ON d.id=s.document_id\n LEFT JOIN word w \n ON w.id=lws.word_id\n \n LEFT JOIN \n (SELECT w.id , w.word\n FROM word w \n JOIN lemma_word_sentence lws\n ON w.id=lws.word_id\n GROUP BY w.id\n ORDER BY\n SUM(lws.count) {}\n LIMIT {}) ranking\n ON lws.word_id=ranking.id\n WHERE ranking.id IS NOT NULL\n ORDER BY w.word, d.document, s.sentence {}\n '.format(direction, limit, direction) else: sql = 'SELECT s.sentence, d.document, l.lemma\n FROM lemma_word_sentence lws\n LEFT JOIN sentence s\n ON s.id=lws.sentence_id\n LEFT JOIN document d \n ON d.id=s.document_id\n LEFT JOIN lemma l\n ON l.id=lws.lemma_id\n \n LEFT JOIN \n (SELECT l.id , l.lemma\n FROM lemma l\n JOIN lemma_word_sentence lws\n ON l.id=lws.lemma_id\n GROUP BY l.id\n ORDER BY\n SUM(lws.count) {}\n LIMIT {}) ranking\n ON lws.lemma_id=ranking.id\n WHERE ranking.id IS NOT NULL\n ORDER BY l.lemma, d.document, s.sentence {}\n '.format(direction, limit, direction) df = pd.read_sql_query(sql, conn) if documents: df.set_index('document', drop=False, inplace=True) df = df[df.index.isin(documents)] if (not lemmas): df['count'] = df['word'].groupby(df['word']).transform('count') df.sort_values(by=['count', 'word', 'document'], ascending=[False, True, True], inplace=True) df = df[['word', 'document', 'sentence', 'count']] else: df['count'] = df['lemma'].groupby(df['lemma']).transform('count') df.sort_values(by=['count', 'lemma', 'document'], ascending=[False, True, True], inplace=True) df = df[['lemma', 'document', 'sentence', 'count']] print(df.shape) if (display_format == 'html'): df.to_html(open((filename + '.html'), 'w'), index=False) webbrowser.open(('file://' + os.path.realpath((filename + '.html')))) elif (display_format == 'csv'): df.to_csv((filename + '.csv'), index=False)<|docstring|>generate report and save to file<|endoftext|>
37607367ab1efa0d102b7248213bbb670ac7ac6cf672141f195caa19ba038d52
def __init__(self, img_size=(480, 892), render_type='naive'): '\n img_size: List or Tuple with two elemets: h, w\n ' assert (render_type in self._render_types), 'render_type:{} is not supported!'.format(render_type) self.render_type = render_type self.img_size = img_size (self.ylim, self.xlim) = img_size
img_size: List or Tuple with two elemets: h, w
plugin/packnet/pipelines.py
__init__
a1600012888/mmdetection3d
0
python
def __init__(self, img_size=(480, 892), render_type='naive'): '\n \n ' assert (render_type in self._render_types), 'render_type:{} is not supported!'.format(render_type) self.render_type = render_type self.img_size = img_size (self.ylim, self.xlim) = img_size
def __init__(self, img_size=(480, 892), render_type='naive'): '\n \n ' assert (render_type in self._render_types), 'render_type:{} is not supported!'.format(render_type) self.render_type = render_type self.img_size = img_size (self.ylim, self.xlim) = img_size<|docstring|>img_size: List or Tuple with two elemets: h, w<|endoftext|>
727d71ad7c24d9f875d78690b9ec5ba4155f2095a33a9a5a4044848f10b51d34
def sort_points(self, points): '\n sort the points accroding to their depth in descending order\n ' depth = points[(:, 2)] idx = np.argsort(depth) idx = idx[::(- 1)] new_points = points[idx] return new_points
sort the points accroding to their depth in descending order
plugin/packnet/pipelines.py
sort_points
a1600012888/mmdetection3d
0
python
def sort_points(self, points): '\n \n ' depth = points[(:, 2)] idx = np.argsort(depth) idx = idx[::(- 1)] new_points = points[idx] return new_points
def sort_points(self, points): '\n \n ' depth = points[(:, 2)] idx = np.argsort(depth) idx = idx[::(- 1)] new_points = points[idx] return new_points<|docstring|>sort the points accroding to their depth in descending order<|endoftext|>
8256e2ed8339e8141d7e859dd3c8002bd431f8101baf15ffc9a429e5b5847aa3
def naive_depth_render(self, points, depth_map): '\n for float cord, use its int version\n ' points = self.sort_points(points) x_cords = ((points[(:, 0)] * self.xlim) / 1600.0) y_cords = ((points[(:, 1)] * self.ylim) / 900.0) depth = points[(:, 2)] depth = np.clip(depth, a_min=1e-05, a_max=99999) x_cords = x_cords.astype(np.int) y_cords = y_cords.astype(np.int) depth_map[(y_cords, x_cords)] = points[(:, 2)] return depth_map
for float cord, use its int version
plugin/packnet/pipelines.py
naive_depth_render
a1600012888/mmdetection3d
0
python
def naive_depth_render(self, points, depth_map): '\n \n ' points = self.sort_points(points) x_cords = ((points[(:, 0)] * self.xlim) / 1600.0) y_cords = ((points[(:, 1)] * self.ylim) / 900.0) depth = points[(:, 2)] depth = np.clip(depth, a_min=1e-05, a_max=99999) x_cords = x_cords.astype(np.int) y_cords = y_cords.astype(np.int) depth_map[(y_cords, x_cords)] = points[(:, 2)] return depth_map
def naive_depth_render(self, points, depth_map): '\n \n ' points = self.sort_points(points) x_cords = ((points[(:, 0)] * self.xlim) / 1600.0) y_cords = ((points[(:, 1)] * self.ylim) / 900.0) depth = points[(:, 2)] depth = np.clip(depth, a_min=1e-05, a_max=99999) x_cords = x_cords.astype(np.int) y_cords = y_cords.astype(np.int) depth_map[(y_cords, x_cords)] = points[(:, 2)] return depth_map<|docstring|>for float cord, use its int version<|endoftext|>
34087245f3dd50ca7ced4c489a9bc4e5da72764e300e57fa8a142bc0ba40dd64
def split_path(path): 'Convert PATH to (parent-path, name), unless it is None.\n ' return (posixpath.split(path) if (path is not None) else None)
Convert PATH to (parent-path, name), unless it is None.
notes/move-tracking/path_pairs_to_eid_map.py
split_path
auycro/subversion
3
python
def split_path(path): '\n ' return (posixpath.split(path) if (path is not None) else None)
def split_path(path): '\n ' return (posixpath.split(path) if (path is not None) else None)<|docstring|>Convert PATH to (parent-path, name), unless it is None.<|endoftext|>
95cc59cdd466bfdff9f938a9197c850e8fe4ba43fdbd051dc3d958e14b945199
def add_eid_mapping_and_make_parents(mapping, side, eid, parent_path, name): 'Add a (parent_eid, name) entry for SIDE:EID, and for each of its parent\n paths that lacks an EID, up to a path that has an EID.\n Add this same mapping to the other side as well, but without caring\n whether the parent element exists on the other side. ### Is this right?\n ' parent_eid = mapping.find_eid_from_relpath(side, parent_path) if (parent_eid < 0): parent_eid = add_new(mapping, side, parent_path) loc = (parent_eid, name) mapping.set_peid_loc(side, eid, loc) return loc
Add a (parent_eid, name) entry for SIDE:EID, and for each of its parent paths that lacks an EID, up to a path that has an EID. Add this same mapping to the other side as well, but without caring whether the parent element exists on the other side. ### Is this right?
notes/move-tracking/path_pairs_to_eid_map.py
add_eid_mapping_and_make_parents
auycro/subversion
3
python
def add_eid_mapping_and_make_parents(mapping, side, eid, parent_path, name): 'Add a (parent_eid, name) entry for SIDE:EID, and for each of its parent\n paths that lacks an EID, up to a path that has an EID.\n Add this same mapping to the other side as well, but without caring\n whether the parent element exists on the other side. ### Is this right?\n ' parent_eid = mapping.find_eid_from_relpath(side, parent_path) if (parent_eid < 0): parent_eid = add_new(mapping, side, parent_path) loc = (parent_eid, name) mapping.set_peid_loc(side, eid, loc) return loc
def add_eid_mapping_and_make_parents(mapping, side, eid, parent_path, name): 'Add a (parent_eid, name) entry for SIDE:EID, and for each of its parent\n paths that lacks an EID, up to a path that has an EID.\n Add this same mapping to the other side as well, but without caring\n whether the parent element exists on the other side. ### Is this right?\n ' parent_eid = mapping.find_eid_from_relpath(side, parent_path) if (parent_eid < 0): parent_eid = add_new(mapping, side, parent_path) loc = (parent_eid, name) mapping.set_peid_loc(side, eid, loc) return loc<|docstring|>Add a (parent_eid, name) entry for SIDE:EID, and for each of its parent paths that lacks an EID, up to a path that has an EID. Add this same mapping to the other side as well, but without caring whether the parent element exists on the other side. ### Is this right?<|endoftext|>
1e1f2e05456fe028c17405f25618818dbf4106f5ca03fe6aa6a3ec31bb5fef5e
def add_new(mapping, side, path): 'Add a new EID and (parent_eid, name) entry for PATH, and for each\n of its parents that lacks an EID.\n\n Add this same mapping to the other side as well, but without caring\n whether the parent element exists on the other side.\n ### Why is this right?\n ' eid = get_next_eid() (parent_path, name) = posixpath.split(path) loc = add_eid_mapping_and_make_parents(mapping, side, eid, parent_path, name) if (not mapping.has_peid_loc((1 - side), loc)): mapping.set_peid_loc((1 - side), eid, loc) return eid
Add a new EID and (parent_eid, name) entry for PATH, and for each of its parents that lacks an EID. Add this same mapping to the other side as well, but without caring whether the parent element exists on the other side. ### Why is this right?
notes/move-tracking/path_pairs_to_eid_map.py
add_new
auycro/subversion
3
python
def add_new(mapping, side, path): 'Add a new EID and (parent_eid, name) entry for PATH, and for each\n of its parents that lacks an EID.\n\n Add this same mapping to the other side as well, but without caring\n whether the parent element exists on the other side.\n ### Why is this right?\n ' eid = get_next_eid() (parent_path, name) = posixpath.split(path) loc = add_eid_mapping_and_make_parents(mapping, side, eid, parent_path, name) if (not mapping.has_peid_loc((1 - side), loc)): mapping.set_peid_loc((1 - side), eid, loc) return eid
def add_new(mapping, side, path): 'Add a new EID and (parent_eid, name) entry for PATH, and for each\n of its parents that lacks an EID.\n\n Add this same mapping to the other side as well, but without caring\n whether the parent element exists on the other side.\n ### Why is this right?\n ' eid = get_next_eid() (parent_path, name) = posixpath.split(path) loc = add_eid_mapping_and_make_parents(mapping, side, eid, parent_path, name) if (not mapping.has_peid_loc((1 - side), loc)): mapping.set_peid_loc((1 - side), eid, loc) return eid<|docstring|>Add a new EID and (parent_eid, name) entry for PATH, and for each of its parents that lacks an EID. Add this same mapping to the other side as well, but without caring whether the parent element exists on the other side. ### Why is this right?<|endoftext|>
736e25364a49b61b68e857bb6ceb36adbd70f78493f7542dc38ebee6e7076355
def write_parent_eid(mapping, side, eid): 'Write a (parent_eid, name) mapping corresponding to the existing\n (parent-path, name) mapping for SIDE:EID.\n\n For each of its parent paths in SIDE that lacks an EID, up to a path\n that has an EID, allocate an EID and write a (parent-eid, name) mapping\n in BOTH sides.\n ' path_loc = mapping.path_locs_for_side(side)[eid] (parent_path, name) = path_loc new_loc = add_eid_mapping_and_make_parents(mapping, side, eid, parent_path, name) print(('# converting e%d: %s -> %s' % (eid, str(path_loc), str(new_loc))))
Write a (parent_eid, name) mapping corresponding to the existing (parent-path, name) mapping for SIDE:EID. For each of its parent paths in SIDE that lacks an EID, up to a path that has an EID, allocate an EID and write a (parent-eid, name) mapping in BOTH sides.
notes/move-tracking/path_pairs_to_eid_map.py
write_parent_eid
auycro/subversion
3
python
def write_parent_eid(mapping, side, eid): 'Write a (parent_eid, name) mapping corresponding to the existing\n (parent-path, name) mapping for SIDE:EID.\n\n For each of its parent paths in SIDE that lacks an EID, up to a path\n that has an EID, allocate an EID and write a (parent-eid, name) mapping\n in BOTH sides.\n ' path_loc = mapping.path_locs_for_side(side)[eid] (parent_path, name) = path_loc new_loc = add_eid_mapping_and_make_parents(mapping, side, eid, parent_path, name) print(('# converting e%d: %s -> %s' % (eid, str(path_loc), str(new_loc))))
def write_parent_eid(mapping, side, eid): 'Write a (parent_eid, name) mapping corresponding to the existing\n (parent-path, name) mapping for SIDE:EID.\n\n For each of its parent paths in SIDE that lacks an EID, up to a path\n that has an EID, allocate an EID and write a (parent-eid, name) mapping\n in BOTH sides.\n ' path_loc = mapping.path_locs_for_side(side)[eid] (parent_path, name) = path_loc new_loc = add_eid_mapping_and_make_parents(mapping, side, eid, parent_path, name) print(('# converting e%d: %s -> %s' % (eid, str(path_loc), str(new_loc))))<|docstring|>Write a (parent_eid, name) mapping corresponding to the existing (parent-path, name) mapping for SIDE:EID. For each of its parent paths in SIDE that lacks an EID, up to a path that has an EID, allocate an EID and write a (parent-eid, name) mapping in BOTH sides.<|endoftext|>
3e0aca8c33fdda76cdf78872d971fa8346ce1110b645983a7d6cf53ba8b58045
def __setitem__(self, k, v): 'Ensure no duplicate value already exists.' assert (v not in self.values()), (k, v) dict.__setitem__(self, k, v)
Ensure no duplicate value already exists.
notes/move-tracking/path_pairs_to_eid_map.py
__setitem__
auycro/subversion
3
python
def __setitem__(self, k, v): assert (v not in self.values()), (k, v) dict.__setitem__(self, k, v)
def __setitem__(self, k, v): assert (v not in self.values()), (k, v) dict.__setitem__(self, k, v)<|docstring|>Ensure no duplicate value already exists.<|endoftext|>
a6dd5b0f90f492064a454bffd23ce08c6623278e1b5eb89433942cdb59f5aaf2
def eid_from_relpath(self, relpath): 'Return the EID for RELPATH, or -1 if the EID for RELPATH is not known.\n ' if (relpath == ''): return 0 (parent_path, name) = posixpath.split(relpath) for (eid, loc) in self.items(): if (loc == (parent_path, name)): return eid return (- 1)
Return the EID for RELPATH, or -1 if the EID for RELPATH is not known.
notes/move-tracking/path_pairs_to_eid_map.py
eid_from_relpath
auycro/subversion
3
python
def eid_from_relpath(self, relpath): '\n ' if (relpath == ): return 0 (parent_path, name) = posixpath.split(relpath) for (eid, loc) in self.items(): if (loc == (parent_path, name)): return eid return (- 1)
def eid_from_relpath(self, relpath): '\n ' if (relpath == ): return 0 (parent_path, name) = posixpath.split(relpath) for (eid, loc) in self.items(): if (loc == (parent_path, name)): return eid return (- 1)<|docstring|>Return the EID for RELPATH, or -1 if the EID for RELPATH is not known.<|endoftext|>
ac1f0fdca15fe6064da66db171573136568a748492739f39fcc04af2a9a0f150
def eid_from_relpath(self, relpath): 'Return the EID for RELPATH, or -1 if the EID for RELPATH is not known.\n ' if (relpath == ''): return 0 (parent_path, name) = posixpath.split(relpath) for (eid, loc) in self.items(): if ((loc[1] == name) and (loc[0] == self.eid_from_relpath(parent_path))): return eid return (- 1)
Return the EID for RELPATH, or -1 if the EID for RELPATH is not known.
notes/move-tracking/path_pairs_to_eid_map.py
eid_from_relpath
auycro/subversion
3
python
def eid_from_relpath(self, relpath): '\n ' if (relpath == ): return 0 (parent_path, name) = posixpath.split(relpath) for (eid, loc) in self.items(): if ((loc[1] == name) and (loc[0] == self.eid_from_relpath(parent_path))): return eid return (- 1)
def eid_from_relpath(self, relpath): '\n ' if (relpath == ): return 0 (parent_path, name) = posixpath.split(relpath) for (eid, loc) in self.items(): if ((loc[1] == name) and (loc[0] == self.eid_from_relpath(parent_path))): return eid return (- 1)<|docstring|>Return the EID for RELPATH, or -1 if the EID for RELPATH is not known.<|endoftext|>
c61bf7aca96382692d66e5be0c29b86d7c8ef5a2bc42c5b6047a8187fb0ed7c8
def eid_from_loc(self, loc): 'Return the EID for LOC, or -1 if the EID for LOC is not known.\n LOC is (parent_eid, name).\n ' if (loc is None): return 0 for (eid, this_loc) in self.items(): if (loc == this_loc): return eid return (- 1)
Return the EID for LOC, or -1 if the EID for LOC is not known. LOC is (parent_eid, name).
notes/move-tracking/path_pairs_to_eid_map.py
eid_from_loc
auycro/subversion
3
python
def eid_from_loc(self, loc): 'Return the EID for LOC, or -1 if the EID for LOC is not known.\n LOC is (parent_eid, name).\n ' if (loc is None): return 0 for (eid, this_loc) in self.items(): if (loc == this_loc): return eid return (- 1)
def eid_from_loc(self, loc): 'Return the EID for LOC, or -1 if the EID for LOC is not known.\n LOC is (parent_eid, name).\n ' if (loc is None): return 0 for (eid, this_loc) in self.items(): if (loc == this_loc): return eid return (- 1)<|docstring|>Return the EID for LOC, or -1 if the EID for LOC is not known. LOC is (parent_eid, name).<|endoftext|>
69d189e775945b3350c2870fde432a16afd09022352be5b95795893bc3f13786
def relpath_from_eid(self, eid): 'Return the relpath of element EID in a mapping from EID to\n (parent_eid, name).\n ' if (eid == 0): return '' element = self.get(eid) if (element is None): return None (parent_eid, name) = element parent_path = self.relpath_from_eid(parent_eid) if (parent_path is None): return None return posixpath.join(parent_path, name)
Return the relpath of element EID in a mapping from EID to (parent_eid, name).
notes/move-tracking/path_pairs_to_eid_map.py
relpath_from_eid
auycro/subversion
3
python
def relpath_from_eid(self, eid): 'Return the relpath of element EID in a mapping from EID to\n (parent_eid, name).\n ' if (eid == 0): return element = self.get(eid) if (element is None): return None (parent_eid, name) = element parent_path = self.relpath_from_eid(parent_eid) if (parent_path is None): return None return posixpath.join(parent_path, name)
def relpath_from_eid(self, eid): 'Return the relpath of element EID in a mapping from EID to\n (parent_eid, name).\n ' if (eid == 0): return element = self.get(eid) if (element is None): return None (parent_eid, name) = element parent_path = self.relpath_from_eid(parent_eid) if (parent_path is None): return None return posixpath.join(parent_path, name)<|docstring|>Return the relpath of element EID in a mapping from EID to (parent_eid, name).<|endoftext|>
3b18bfa128a0cff212d1e31476613035476ce3a90993fef398ea88be64acd142
def set_peid_loc(self, side, eid, loc): 'Set the mapping for SIDE:EID to LOC. (If no mapping for EID already\n exists, implicitly set the other side to None.)\n LOC is (parent-eid, name).\n ' assert (type(loc[0]) is int) self.peid_maps[side][eid] = loc
Set the mapping for SIDE:EID to LOC. (If no mapping for EID already exists, implicitly set the other side to None.) LOC is (parent-eid, name).
notes/move-tracking/path_pairs_to_eid_map.py
set_peid_loc
auycro/subversion
3
python
def set_peid_loc(self, side, eid, loc): 'Set the mapping for SIDE:EID to LOC. (If no mapping for EID already\n exists, implicitly set the other side to None.)\n LOC is (parent-eid, name).\n ' assert (type(loc[0]) is int) self.peid_maps[side][eid] = loc
def set_peid_loc(self, side, eid, loc): 'Set the mapping for SIDE:EID to LOC. (If no mapping for EID already\n exists, implicitly set the other side to None.)\n LOC is (parent-eid, name).\n ' assert (type(loc[0]) is int) self.peid_maps[side][eid] = loc<|docstring|>Set the mapping for SIDE:EID to LOC. (If no mapping for EID already exists, implicitly set the other side to None.) LOC is (parent-eid, name).<|endoftext|>
bde5193bd7d6aee0719fff1d8f63ce9385edbe143af942a94d9e48c8d1cf5650
def find_eid_from_relpath(self, side, relpath): 'Return the EID for SIDE:RELPATH, or -1 if not found.\n ' eid = self.path_locs_for_side(side).eid_from_relpath(relpath) if (eid < 0): eid = self.peid_locs_for_side(side).eid_from_relpath(relpath) if (eid < 0): pass return eid
Return the EID for SIDE:RELPATH, or -1 if not found.
notes/move-tracking/path_pairs_to_eid_map.py
find_eid_from_relpath
auycro/subversion
3
python
def find_eid_from_relpath(self, side, relpath): '\n ' eid = self.path_locs_for_side(side).eid_from_relpath(relpath) if (eid < 0): eid = self.peid_locs_for_side(side).eid_from_relpath(relpath) if (eid < 0): pass return eid
def find_eid_from_relpath(self, side, relpath): '\n ' eid = self.path_locs_for_side(side).eid_from_relpath(relpath) if (eid < 0): eid = self.peid_locs_for_side(side).eid_from_relpath(relpath) if (eid < 0): pass return eid<|docstring|>Return the EID for SIDE:RELPATH, or -1 if not found.<|endoftext|>
45fffffb91f00357ba8272b6e9f58ca6a8447d9353e616a81750235617323920
def test(did_pass): ' Print the result of a test. ' linenum = sys._getframe(1).f_lineno if did_pass: msg = 'Test at line {0} ok.'.format(linenum) else: msg = 'Test at line {0} FAILED.'.format(linenum) print(msg)
Print the result of a test.
Chapter7/Exercise15.py
test
NoahNacho/Python-project-tests
2
python
def test(did_pass): ' ' linenum = sys._getframe(1).f_lineno if did_pass: msg = 'Test at line {0} ok.'.format(linenum) else: msg = 'Test at line {0} FAILED.'.format(linenum) print(msg)
def test(did_pass): ' ' linenum = sys._getframe(1).f_lineno if did_pass: msg = 'Test at line {0} ok.'.format(linenum) else: msg = 'Test at line {0} FAILED.'.format(linenum) print(msg)<|docstring|>Print the result of a test.<|endoftext|>
9ac4993dc114358527b3be52bcb3dd76b8d7881cc4d874218a6c58a1b45182a1
def inst_variable(x, y, z): '\n Instrumental variable method\n Args:\n x: the input matrix [T n]\n y: the output matrix [T]\n z: the instrument [T n]\n Returns:\n the estimation of theta in y = x theta + n by instrumental variable\n ' (T, n) = x.shape A = np.zeros((n, n)) B = np.zeros((n, 1)) epsI = (1e-05 * np.eye(n)) for t in range(T): A += (np.outer(z[(t, :)], x[(t, :)]) / T) B += np.dot(z[(t, :)], (y[t] / T)).reshape((n, 1)) return (LA.inv((A + epsI)) @ B)
Instrumental variable method Args: x: the input matrix [T n] y: the output matrix [T] z: the instrument [T n] Returns: the estimation of theta in y = x theta + n by instrumental variable
lq/funlib.py
inst_variable
FarnazAdib/Crash_course_on_RL
53
python
def inst_variable(x, y, z): '\n Instrumental variable method\n Args:\n x: the input matrix [T n]\n y: the output matrix [T]\n z: the instrument [T n]\n Returns:\n the estimation of theta in y = x theta + n by instrumental variable\n ' (T, n) = x.shape A = np.zeros((n, n)) B = np.zeros((n, 1)) epsI = (1e-05 * np.eye(n)) for t in range(T): A += (np.outer(z[(t, :)], x[(t, :)]) / T) B += np.dot(z[(t, :)], (y[t] / T)).reshape((n, 1)) return (LA.inv((A + epsI)) @ B)
def inst_variable(x, y, z): '\n Instrumental variable method\n Args:\n x: the input matrix [T n]\n y: the output matrix [T]\n z: the instrument [T n]\n Returns:\n the estimation of theta in y = x theta + n by instrumental variable\n ' (T, n) = x.shape A = np.zeros((n, n)) B = np.zeros((n, 1)) epsI = (1e-05 * np.eye(n)) for t in range(T): A += (np.outer(z[(t, :)], x[(t, :)]) / T) B += np.dot(z[(t, :)], (y[t] / T)).reshape((n, 1)) return (LA.inv((A + epsI)) @ B)<|docstring|>Instrumental variable method Args: x: the input matrix [T n] y: the output matrix [T] z: the instrument [T n] Returns: the estimation of theta in y = x theta + n by instrumental variable<|endoftext|>
608541fa0fe28bf70df4dba1abdf8b3256f2dccbba4e2850ba9dd58218a92d0e
def GtoP(G, K): '\n :param G: The kernel of Q function\n :param K: The gain\n :return: The P associated with G and K\n ' (_, n) = K.shape M = np.concatenate((np.eye(n), K.T), axis=1) return ((M @ G) @ M.T)
:param G: The kernel of Q function :param K: The gain :return: The P associated with G and K
lq/funlib.py
GtoP
FarnazAdib/Crash_course_on_RL
53
python
def GtoP(G, K): '\n :param G: The kernel of Q function\n :param K: The gain\n :return: The P associated with G and K\n ' (_, n) = K.shape M = np.concatenate((np.eye(n), K.T), axis=1) return ((M @ G) @ M.T)
def GtoP(G, K): '\n :param G: The kernel of Q function\n :param K: The gain\n :return: The P associated with G and K\n ' (_, n) = K.shape M = np.concatenate((np.eye(n), K.T), axis=1) return ((M @ G) @ M.T)<|docstring|>:param G: The kernel of Q function :param K: The gain :return: The P associated with G and K<|endoftext|>
ef797bdc7fdc7c5e4822702d0f060cfb56a22af3bbbfaf8613b8abe02b63a1a2
def vecv(x): '\n :param x: input vector of shape [T , n]\n :return: vector of x^2 of shape [T, n(n+1)/2]\n ' (T, n) = x.shape N = int(((n * (n + 1)) / 2)) y = np.zeros((T, N)) for t in range(T): yt = [] for i in range(n): for j in range(i, n): if (j == i): yt.append((x[(t, i)] ** 2)) else: yt.append(((2 * x[(t, i)]) * x[(t, j)])) y[(t, :)] = yt return y
:param x: input vector of shape [T , n] :return: vector of x^2 of shape [T, n(n+1)/2]
lq/funlib.py
vecv
FarnazAdib/Crash_course_on_RL
53
python
def vecv(x): '\n :param x: input vector of shape [T , n]\n :return: vector of x^2 of shape [T, n(n+1)/2]\n ' (T, n) = x.shape N = int(((n * (n + 1)) / 2)) y = np.zeros((T, N)) for t in range(T): yt = [] for i in range(n): for j in range(i, n): if (j == i): yt.append((x[(t, i)] ** 2)) else: yt.append(((2 * x[(t, i)]) * x[(t, j)])) y[(t, :)] = yt return y
def vecv(x): '\n :param x: input vector of shape [T , n]\n :return: vector of x^2 of shape [T, n(n+1)/2]\n ' (T, n) = x.shape N = int(((n * (n + 1)) / 2)) y = np.zeros((T, N)) for t in range(T): yt = [] for i in range(n): for j in range(i, n): if (j == i): yt.append((x[(t, i)] ** 2)) else: yt.append(((2 * x[(t, i)]) * x[(t, j)])) y[(t, :)] = yt return y<|docstring|>:param x: input vector of shape [T , n] :return: vector of x^2 of shape [T, n(n+1)/2]<|endoftext|>
6793f7973c3dcfe9f42ecf5af40ae722b86830bccc3431a635f698363202cc13
def SquareMat(v, n): '\n :param v: a vector\n :param n: dimension of the symmetric square matrix\n :return: a symmetric square matrix using v\n ' P = np.zeros((n, n)) s = 0 for i in range(n): e = ((s + n) - i) m = v[s:e].T P[(i, i:)] = m P[(i:, i)] = m s = e return P
:param v: a vector :param n: dimension of the symmetric square matrix :return: a symmetric square matrix using v
lq/funlib.py
SquareMat
FarnazAdib/Crash_course_on_RL
53
python
def SquareMat(v, n): '\n :param v: a vector\n :param n: dimension of the symmetric square matrix\n :return: a symmetric square matrix using v\n ' P = np.zeros((n, n)) s = 0 for i in range(n): e = ((s + n) - i) m = v[s:e].T P[(i, i:)] = m P[(i:, i)] = m s = e return P
def SquareMat(v, n): '\n :param v: a vector\n :param n: dimension of the symmetric square matrix\n :return: a symmetric square matrix using v\n ' P = np.zeros((n, n)) s = 0 for i in range(n): e = ((s + n) - i) m = v[s:e].T P[(i, i:)] = m P[(i:, i)] = m s = e return P<|docstring|>:param v: a vector :param n: dimension of the symmetric square matrix :return: a symmetric square matrix using v<|endoftext|>
ac32a1bc33a5955c689e28c4edff143fd1f83864032c1f3a41552d20790da98a
def opt_onestep(self, g): '\n This function calculate one iteration of adam optimization. It takes the gradient of cost functin with repect to\n parameter thetha and return dtheta. Note that you should use +dtheta when you are maximizing and -dtheta when\n minimizing.\n return the changes for the learning parameter\n :param g: Assume as gradient of loss with respect to the parameter theta\n :return: dtheta\n ' self.adam_M = ((self.beta1 * self.adam_M) + ((1 - self.beta1) * g)) self.adam_V = ((self.beta2 * self.adam_V) + ((1 - self.beta2) * (g * g))) mhat = (copy.copy(self.adam_M) / (1 - (self.beta1 ** (self.it_index + 1)))) vhat = (copy.copy(self.adam_V) / (1 - (self.beta2 ** (self.it_index + 1)))) self.it_index = (self.it_index + 1) return ((self.step_size * mhat) / (np.sqrt(vhat) + self.epsilon))
This function calculate one iteration of adam optimization. It takes the gradient of cost functin with repect to parameter thetha and return dtheta. Note that you should use +dtheta when you are maximizing and -dtheta when minimizing. return the changes for the learning parameter :param g: Assume as gradient of loss with respect to the parameter theta :return: dtheta
lq/funlib.py
opt_onestep
FarnazAdib/Crash_course_on_RL
53
python
def opt_onestep(self, g): '\n This function calculate one iteration of adam optimization. It takes the gradient of cost functin with repect to\n parameter thetha and return dtheta. Note that you should use +dtheta when you are maximizing and -dtheta when\n minimizing.\n return the changes for the learning parameter\n :param g: Assume as gradient of loss with respect to the parameter theta\n :return: dtheta\n ' self.adam_M = ((self.beta1 * self.adam_M) + ((1 - self.beta1) * g)) self.adam_V = ((self.beta2 * self.adam_V) + ((1 - self.beta2) * (g * g))) mhat = (copy.copy(self.adam_M) / (1 - (self.beta1 ** (self.it_index + 1)))) vhat = (copy.copy(self.adam_V) / (1 - (self.beta2 ** (self.it_index + 1)))) self.it_index = (self.it_index + 1) return ((self.step_size * mhat) / (np.sqrt(vhat) + self.epsilon))
def opt_onestep(self, g): '\n This function calculate one iteration of adam optimization. It takes the gradient of cost functin with repect to\n parameter thetha and return dtheta. Note that you should use +dtheta when you are maximizing and -dtheta when\n minimizing.\n return the changes for the learning parameter\n :param g: Assume as gradient of loss with respect to the parameter theta\n :return: dtheta\n ' self.adam_M = ((self.beta1 * self.adam_M) + ((1 - self.beta1) * g)) self.adam_V = ((self.beta2 * self.adam_V) + ((1 - self.beta2) * (g * g))) mhat = (copy.copy(self.adam_M) / (1 - (self.beta1 ** (self.it_index + 1)))) vhat = (copy.copy(self.adam_V) / (1 - (self.beta2 ** (self.it_index + 1)))) self.it_index = (self.it_index + 1) return ((self.step_size * mhat) / (np.sqrt(vhat) + self.epsilon))<|docstring|>This function calculate one iteration of adam optimization. It takes the gradient of cost functin with repect to parameter thetha and return dtheta. Note that you should use +dtheta when you are maximizing and -dtheta when minimizing. return the changes for the learning parameter :param g: Assume as gradient of loss with respect to the parameter theta :return: dtheta<|endoftext|>
db503034a0b394fdfbfd38f43bf369cf35ce71f460bf62ceb80f0e3ac4697f94
@cached_property def additional_properties_type(): '\n This must be a method because a model may have properties that are\n of type self, this must run after the class is loaded\n ' lazy_import() return (bool, date, datetime, dict, float, int, list, str, none_type)
This must be a method because a model may have properties that are of type self, this must run after the class is loaded
intersight/model/boot_san.py
additional_properties_type
CiscoDevNet/intersight-python
5
python
@cached_property def additional_properties_type(): '\n This must be a method because a model may have properties that are\n of type self, this must run after the class is loaded\n ' lazy_import() return (bool, date, datetime, dict, float, int, list, str, none_type)
@cached_property def additional_properties_type(): '\n This must be a method because a model may have properties that are\n of type self, this must run after the class is loaded\n ' lazy_import() return (bool, date, datetime, dict, float, int, list, str, none_type)<|docstring|>This must be a method because a model may have properties that are of type self, this must run after the class is loaded<|endoftext|>
ce20c930b8a8913807427169502712e588195e5348ae3255ce295d958c22ce8b
@cached_property def openapi_types(): '\n This must be a method because a model may have properties that are\n of type self, this must run after the class is loaded\n\n Returns\n openapi_types (dict): The key is attribute name\n and the value is attribute type.\n ' lazy_import() return {'class_id': (str,), 'object_type': (str,), 'bootloader': (BootBootloader,), 'interface_name': (str,), 'lun': (int,), 'slot': (str,), 'wwpn': (str,), 'enabled': (bool,), 'name': (str,)}
This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type.
intersight/model/boot_san.py
openapi_types
CiscoDevNet/intersight-python
5
python
@cached_property def openapi_types(): '\n This must be a method because a model may have properties that are\n of type self, this must run after the class is loaded\n\n Returns\n openapi_types (dict): The key is attribute name\n and the value is attribute type.\n ' lazy_import() return {'class_id': (str,), 'object_type': (str,), 'bootloader': (BootBootloader,), 'interface_name': (str,), 'lun': (int,), 'slot': (str,), 'wwpn': (str,), 'enabled': (bool,), 'name': (str,)}
@cached_property def openapi_types(): '\n This must be a method because a model may have properties that are\n of type self, this must run after the class is loaded\n\n Returns\n openapi_types (dict): The key is attribute name\n and the value is attribute type.\n ' lazy_import() return {'class_id': (str,), 'object_type': (str,), 'bootloader': (BootBootloader,), 'interface_name': (str,), 'lun': (int,), 'slot': (str,), 'wwpn': (str,), 'enabled': (bool,), 'name': (str,)}<|docstring|>This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type.<|endoftext|>
42cff2cb9ec50dc66236bda3e41900c8499a159d4658edd482490f4b27d5d8cd
@convert_js_args_to_python_args def __init__(self, *args, **kwargs): 'BootSan - a model defined in OpenAPI\n\n Args:\n\n Keyword Args:\n class_id (str): The fully-qualified name of the instantiated, concrete type. This property is used as a discriminator to identify the type of the payload when marshaling and unmarshaling data.. defaults to "boot.San", must be one of ["boot.San", ] # noqa: E501\n object_type (str): The fully-qualified name of the instantiated, concrete type. The value should be the same as the \'ClassId\' property.. defaults to "boot.San", must be one of ["boot.San", ] # noqa: E501\n _check_type (bool): if True, values for parameters in openapi_types\n will be type checked and a TypeError will be\n raised if the wrong type is input.\n Defaults to True\n _path_to_item (tuple/list): This is a list of keys or values to\n drill down to the model in received_data\n when deserializing a response\n _spec_property_naming (bool): True if the variable names in the input data\n are serialized names, as specified in the OpenAPI document.\n False if the variable names in the input data\n are pythonic names, e.g. snake case (default)\n _configuration (Configuration): the instance to use when\n deserializing a file_type parameter.\n If passed, type conversion is attempted\n If omitted no type conversion is done.\n _visited_composed_classes (tuple): This stores a tuple of\n classes that we have traveled through so that\n if we see that class again we will not use its\n discriminator again.\n When traveling through a discriminator, the\n composed schema that is\n is traveled through is added to this set.\n For example if Animal has a discriminator\n petType and we pass in "Dog", and the class Dog\n allOf includes Animal, we move through Animal\n once using the discriminator, and pick Dog.\n Then in Dog, we will make an instance of the\n Animal class but this time we won\'t travel\n through its discriminator because we passed in\n _visited_composed_classes = (Animal,)\n bootloader (BootBootloader): [optional] # noqa: E501\n interface_name (str): The name of the underlying vHBA interface to be used by the SAN boot device.. [optional] # noqa: E501\n lun (int): The Logical Unit Number (LUN) of the device.. [optional] if omitted the server will use the default value of 0 # noqa: E501\n slot (str): Slot ID of the device. Supported values are ( 1 - 255, "MLOM", "L1", "L2" ).. [optional] # noqa: E501\n wwpn (str): The WWPN Address of the underlying fiber channel interface used by the SAN boot device. Value must be in hexadecimal format xx:xx:xx:xx:xx:xx:xx:xx.. [optional] # noqa: E501\n enabled (bool): Specifies if the boot device is enabled or disabled.. [optional] if omitted the server will use the default value of False # noqa: E501\n name (str): A name that helps identify a boot device. It can be any string that adheres to the following constraints. It should start and end with an alphanumeric character. It can have underscores and hyphens. It cannot be more than 30 characters.. [optional] # noqa: E501\n ' class_id = kwargs.get('class_id', 'boot.San') object_type = kwargs.get('object_type', 'boot.San') _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError(('Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments.' % (args, self.__class__.__name__)), path_to_item=_path_to_item, valid_classes=(self.__class__,)) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = (_visited_composed_classes + (self.__class__,)) constant_args = {'_check_type': _check_type, '_path_to_item': _path_to_item, '_spec_property_naming': _spec_property_naming, '_configuration': _configuration, '_visited_composed_classes': self._visited_composed_classes} required_args = {'class_id': class_id, 'object_type': object_type} model_args = {} model_args.update(required_args) model_args.update(kwargs) composed_info = validate_get_composed_info(constant_args, model_args, self) self._composed_instances = composed_info[0] self._var_name_to_model_instances = composed_info[1] self._additional_properties_model_instances = composed_info[2] unused_args = composed_info[3] for (var_name, var_value) in required_args.items(): setattr(self, var_name, var_value) for (var_name, var_value) in kwargs.items(): if ((var_name in unused_args) and (self._configuration is not None) and self._configuration.discard_unknown_keys and (not self._additional_properties_model_instances)): continue setattr(self, var_name, var_value)
BootSan - a model defined in OpenAPI Args: Keyword Args: class_id (str): The fully-qualified name of the instantiated, concrete type. This property is used as a discriminator to identify the type of the payload when marshaling and unmarshaling data.. defaults to "boot.San", must be one of ["boot.San", ] # noqa: E501 object_type (str): The fully-qualified name of the instantiated, concrete type. The value should be the same as the 'ClassId' property.. defaults to "boot.San", must be one of ["boot.San", ] # noqa: E501 _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) bootloader (BootBootloader): [optional] # noqa: E501 interface_name (str): The name of the underlying vHBA interface to be used by the SAN boot device.. [optional] # noqa: E501 lun (int): The Logical Unit Number (LUN) of the device.. [optional] if omitted the server will use the default value of 0 # noqa: E501 slot (str): Slot ID of the device. Supported values are ( 1 - 255, "MLOM", "L1", "L2" ).. [optional] # noqa: E501 wwpn (str): The WWPN Address of the underlying fiber channel interface used by the SAN boot device. Value must be in hexadecimal format xx:xx:xx:xx:xx:xx:xx:xx.. [optional] # noqa: E501 enabled (bool): Specifies if the boot device is enabled or disabled.. [optional] if omitted the server will use the default value of False # noqa: E501 name (str): A name that helps identify a boot device. It can be any string that adheres to the following constraints. It should start and end with an alphanumeric character. It can have underscores and hyphens. It cannot be more than 30 characters.. [optional] # noqa: E501
intersight/model/boot_san.py
__init__
CiscoDevNet/intersight-python
5
python
@convert_js_args_to_python_args def __init__(self, *args, **kwargs): 'BootSan - a model defined in OpenAPI\n\n Args:\n\n Keyword Args:\n class_id (str): The fully-qualified name of the instantiated, concrete type. This property is used as a discriminator to identify the type of the payload when marshaling and unmarshaling data.. defaults to "boot.San", must be one of ["boot.San", ] # noqa: E501\n object_type (str): The fully-qualified name of the instantiated, concrete type. The value should be the same as the \'ClassId\' property.. defaults to "boot.San", must be one of ["boot.San", ] # noqa: E501\n _check_type (bool): if True, values for parameters in openapi_types\n will be type checked and a TypeError will be\n raised if the wrong type is input.\n Defaults to True\n _path_to_item (tuple/list): This is a list of keys or values to\n drill down to the model in received_data\n when deserializing a response\n _spec_property_naming (bool): True if the variable names in the input data\n are serialized names, as specified in the OpenAPI document.\n False if the variable names in the input data\n are pythonic names, e.g. snake case (default)\n _configuration (Configuration): the instance to use when\n deserializing a file_type parameter.\n If passed, type conversion is attempted\n If omitted no type conversion is done.\n _visited_composed_classes (tuple): This stores a tuple of\n classes that we have traveled through so that\n if we see that class again we will not use its\n discriminator again.\n When traveling through a discriminator, the\n composed schema that is\n is traveled through is added to this set.\n For example if Animal has a discriminator\n petType and we pass in "Dog", and the class Dog\n allOf includes Animal, we move through Animal\n once using the discriminator, and pick Dog.\n Then in Dog, we will make an instance of the\n Animal class but this time we won\'t travel\n through its discriminator because we passed in\n _visited_composed_classes = (Animal,)\n bootloader (BootBootloader): [optional] # noqa: E501\n interface_name (str): The name of the underlying vHBA interface to be used by the SAN boot device.. [optional] # noqa: E501\n lun (int): The Logical Unit Number (LUN) of the device.. [optional] if omitted the server will use the default value of 0 # noqa: E501\n slot (str): Slot ID of the device. Supported values are ( 1 - 255, "MLOM", "L1", "L2" ).. [optional] # noqa: E501\n wwpn (str): The WWPN Address of the underlying fiber channel interface used by the SAN boot device. Value must be in hexadecimal format xx:xx:xx:xx:xx:xx:xx:xx.. [optional] # noqa: E501\n enabled (bool): Specifies if the boot device is enabled or disabled.. [optional] if omitted the server will use the default value of False # noqa: E501\n name (str): A name that helps identify a boot device. It can be any string that adheres to the following constraints. It should start and end with an alphanumeric character. It can have underscores and hyphens. It cannot be more than 30 characters.. [optional] # noqa: E501\n ' class_id = kwargs.get('class_id', 'boot.San') object_type = kwargs.get('object_type', 'boot.San') _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError(('Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments.' % (args, self.__class__.__name__)), path_to_item=_path_to_item, valid_classes=(self.__class__,)) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = (_visited_composed_classes + (self.__class__,)) constant_args = {'_check_type': _check_type, '_path_to_item': _path_to_item, '_spec_property_naming': _spec_property_naming, '_configuration': _configuration, '_visited_composed_classes': self._visited_composed_classes} required_args = {'class_id': class_id, 'object_type': object_type} model_args = {} model_args.update(required_args) model_args.update(kwargs) composed_info = validate_get_composed_info(constant_args, model_args, self) self._composed_instances = composed_info[0] self._var_name_to_model_instances = composed_info[1] self._additional_properties_model_instances = composed_info[2] unused_args = composed_info[3] for (var_name, var_value) in required_args.items(): setattr(self, var_name, var_value) for (var_name, var_value) in kwargs.items(): if ((var_name in unused_args) and (self._configuration is not None) and self._configuration.discard_unknown_keys and (not self._additional_properties_model_instances)): continue setattr(self, var_name, var_value)
@convert_js_args_to_python_args def __init__(self, *args, **kwargs): 'BootSan - a model defined in OpenAPI\n\n Args:\n\n Keyword Args:\n class_id (str): The fully-qualified name of the instantiated, concrete type. This property is used as a discriminator to identify the type of the payload when marshaling and unmarshaling data.. defaults to "boot.San", must be one of ["boot.San", ] # noqa: E501\n object_type (str): The fully-qualified name of the instantiated, concrete type. The value should be the same as the \'ClassId\' property.. defaults to "boot.San", must be one of ["boot.San", ] # noqa: E501\n _check_type (bool): if True, values for parameters in openapi_types\n will be type checked and a TypeError will be\n raised if the wrong type is input.\n Defaults to True\n _path_to_item (tuple/list): This is a list of keys or values to\n drill down to the model in received_data\n when deserializing a response\n _spec_property_naming (bool): True if the variable names in the input data\n are serialized names, as specified in the OpenAPI document.\n False if the variable names in the input data\n are pythonic names, e.g. snake case (default)\n _configuration (Configuration): the instance to use when\n deserializing a file_type parameter.\n If passed, type conversion is attempted\n If omitted no type conversion is done.\n _visited_composed_classes (tuple): This stores a tuple of\n classes that we have traveled through so that\n if we see that class again we will not use its\n discriminator again.\n When traveling through a discriminator, the\n composed schema that is\n is traveled through is added to this set.\n For example if Animal has a discriminator\n petType and we pass in "Dog", and the class Dog\n allOf includes Animal, we move through Animal\n once using the discriminator, and pick Dog.\n Then in Dog, we will make an instance of the\n Animal class but this time we won\'t travel\n through its discriminator because we passed in\n _visited_composed_classes = (Animal,)\n bootloader (BootBootloader): [optional] # noqa: E501\n interface_name (str): The name of the underlying vHBA interface to be used by the SAN boot device.. [optional] # noqa: E501\n lun (int): The Logical Unit Number (LUN) of the device.. [optional] if omitted the server will use the default value of 0 # noqa: E501\n slot (str): Slot ID of the device. Supported values are ( 1 - 255, "MLOM", "L1", "L2" ).. [optional] # noqa: E501\n wwpn (str): The WWPN Address of the underlying fiber channel interface used by the SAN boot device. Value must be in hexadecimal format xx:xx:xx:xx:xx:xx:xx:xx.. [optional] # noqa: E501\n enabled (bool): Specifies if the boot device is enabled or disabled.. [optional] if omitted the server will use the default value of False # noqa: E501\n name (str): A name that helps identify a boot device. It can be any string that adheres to the following constraints. It should start and end with an alphanumeric character. It can have underscores and hyphens. It cannot be more than 30 characters.. [optional] # noqa: E501\n ' class_id = kwargs.get('class_id', 'boot.San') object_type = kwargs.get('object_type', 'boot.San') _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError(('Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments.' % (args, self.__class__.__name__)), path_to_item=_path_to_item, valid_classes=(self.__class__,)) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = (_visited_composed_classes + (self.__class__,)) constant_args = {'_check_type': _check_type, '_path_to_item': _path_to_item, '_spec_property_naming': _spec_property_naming, '_configuration': _configuration, '_visited_composed_classes': self._visited_composed_classes} required_args = {'class_id': class_id, 'object_type': object_type} model_args = {} model_args.update(required_args) model_args.update(kwargs) composed_info = validate_get_composed_info(constant_args, model_args, self) self._composed_instances = composed_info[0] self._var_name_to_model_instances = composed_info[1] self._additional_properties_model_instances = composed_info[2] unused_args = composed_info[3] for (var_name, var_value) in required_args.items(): setattr(self, var_name, var_value) for (var_name, var_value) in kwargs.items(): if ((var_name in unused_args) and (self._configuration is not None) and self._configuration.discard_unknown_keys and (not self._additional_properties_model_instances)): continue setattr(self, var_name, var_value)<|docstring|>BootSan - a model defined in OpenAPI Args: Keyword Args: class_id (str): The fully-qualified name of the instantiated, concrete type. This property is used as a discriminator to identify the type of the payload when marshaling and unmarshaling data.. defaults to "boot.San", must be one of ["boot.San", ] # noqa: E501 object_type (str): The fully-qualified name of the instantiated, concrete type. The value should be the same as the 'ClassId' property.. defaults to "boot.San", must be one of ["boot.San", ] # noqa: E501 _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) bootloader (BootBootloader): [optional] # noqa: E501 interface_name (str): The name of the underlying vHBA interface to be used by the SAN boot device.. [optional] # noqa: E501 lun (int): The Logical Unit Number (LUN) of the device.. [optional] if omitted the server will use the default value of 0 # noqa: E501 slot (str): Slot ID of the device. Supported values are ( 1 - 255, "MLOM", "L1", "L2" ).. [optional] # noqa: E501 wwpn (str): The WWPN Address of the underlying fiber channel interface used by the SAN boot device. Value must be in hexadecimal format xx:xx:xx:xx:xx:xx:xx:xx.. [optional] # noqa: E501 enabled (bool): Specifies if the boot device is enabled or disabled.. [optional] if omitted the server will use the default value of False # noqa: E501 name (str): A name that helps identify a boot device. It can be any string that adheres to the following constraints. It should start and end with an alphanumeric character. It can have underscores and hyphens. It cannot be more than 30 characters.. [optional] # noqa: E501<|endoftext|>
b34409f988bcc424201d148b010d9934c0f15caabbce3f9cfa440f2add9afbda
def iBEAt_test_DTI(Elastix_Parameter_file_PATH, output_dir, sorted_slice_files, ArrayDicomiBEAt, image_parameters, filenameDCM, lstFilesDCM): ' Example application of MDR in renal DTI (iBEAt data) \n\n Description\n -----------\n This function performs model driven registration for selected DTI sequence on a single selected slice \n and returns as output the MDR registered images, signal model fit, deformation field x, deformation field y, \n fitted parameters FA and ADC, and the final diagnostics.\n \n Args\n ----\n Elastix_Parameter_file_PATH (string): complete path to the elastix parameter file to be used. \n output_dir (string): directory where results are saved. \n slice_sorted_files (list): selected slices to process using MDR: sorted according to acquisition time. \n ArrayDicomiBEAt (numpy.ndarray): input DICOM to numpy array (unsorted). \n image_parameters (SITK input): image pixel spacing. \n filenameDCM (pathlib.PosixPath): dicom filenames to process. \n lstFilesDCM (list): list of dicom files to process. \n ' start_computation_time = time.time() image_shape = np.shape(ArrayDicomiBEAt) original_images = np.zeros(image_shape) for (i, s) in enumerate(sorted_slice_files): img2d = s.pixel_array original_images[(:, :, i)] = img2d full_module_name = 'models.DTI' model = importlib.import_module(full_module_name) signal_model_parameters = read_signal_model_parameters(filenameDCM, lstFilesDCM) elastix_model_parameters = read_elastix_model_parameters(Elastix_Parameter_file_PATH, ['MaximumNumberOfIterations', 1024]) MDR_output = model_driven_registration(original_images, image_parameters, model, signal_model_parameters, elastix_model_parameters, precision=1, function='main') export_images(MDR_output[0], (output_dir + '/coregistered/MDR-registered_DTI_')) export_images(MDR_output[1], (output_dir + '/fit/fit_image_')) export_images(MDR_output[2][(:, :, 0, :)], (output_dir + '/deformation_field/final_deformation_x_')) export_images(MDR_output[2][(:, :, 1, :)], (output_dir + '/deformation_field/final_deformation_y_')) export_maps(MDR_output[3][(0, :)], (output_dir + '/fitted_parameters/FA'), np.shape(original_images)) export_maps(MDR_output[3][(1, :)], (output_dir + '/fitted_parameters/ADC'), np.shape(original_images)) MDR_output[4].to_csv((output_dir + 'DTI_largest_deformations.csv')) end_computation_time = time.time() print('total computation time for MDR (minutes taken:)...') print((0.0166667 * (end_computation_time - start_computation_time))) print('completed MDR registration!') print('Finished processing Model Driven Registration case for iBEAt study DTI sequence!')
Example application of MDR in renal DTI (iBEAt data) Description ----------- This function performs model driven registration for selected DTI sequence on a single selected slice and returns as output the MDR registered images, signal model fit, deformation field x, deformation field y, fitted parameters FA and ADC, and the final diagnostics. Args ---- Elastix_Parameter_file_PATH (string): complete path to the elastix parameter file to be used. output_dir (string): directory where results are saved. slice_sorted_files (list): selected slices to process using MDR: sorted according to acquisition time. ArrayDicomiBEAt (numpy.ndarray): input DICOM to numpy array (unsorted). image_parameters (SITK input): image pixel spacing. filenameDCM (pathlib.PosixPath): dicom filenames to process. lstFilesDCM (list): list of dicom files to process.
tests/MDR_test_DTI.py
iBEAt_test_DTI
QIB-Sheffield/MDR-Library
0
python
def iBEAt_test_DTI(Elastix_Parameter_file_PATH, output_dir, sorted_slice_files, ArrayDicomiBEAt, image_parameters, filenameDCM, lstFilesDCM): ' Example application of MDR in renal DTI (iBEAt data) \n\n Description\n -----------\n This function performs model driven registration for selected DTI sequence on a single selected slice \n and returns as output the MDR registered images, signal model fit, deformation field x, deformation field y, \n fitted parameters FA and ADC, and the final diagnostics.\n \n Args\n ----\n Elastix_Parameter_file_PATH (string): complete path to the elastix parameter file to be used. \n output_dir (string): directory where results are saved. \n slice_sorted_files (list): selected slices to process using MDR: sorted according to acquisition time. \n ArrayDicomiBEAt (numpy.ndarray): input DICOM to numpy array (unsorted). \n image_parameters (SITK input): image pixel spacing. \n filenameDCM (pathlib.PosixPath): dicom filenames to process. \n lstFilesDCM (list): list of dicom files to process. \n ' start_computation_time = time.time() image_shape = np.shape(ArrayDicomiBEAt) original_images = np.zeros(image_shape) for (i, s) in enumerate(sorted_slice_files): img2d = s.pixel_array original_images[(:, :, i)] = img2d full_module_name = 'models.DTI' model = importlib.import_module(full_module_name) signal_model_parameters = read_signal_model_parameters(filenameDCM, lstFilesDCM) elastix_model_parameters = read_elastix_model_parameters(Elastix_Parameter_file_PATH, ['MaximumNumberOfIterations', 1024]) MDR_output = model_driven_registration(original_images, image_parameters, model, signal_model_parameters, elastix_model_parameters, precision=1, function='main') export_images(MDR_output[0], (output_dir + '/coregistered/MDR-registered_DTI_')) export_images(MDR_output[1], (output_dir + '/fit/fit_image_')) export_images(MDR_output[2][(:, :, 0, :)], (output_dir + '/deformation_field/final_deformation_x_')) export_images(MDR_output[2][(:, :, 1, :)], (output_dir + '/deformation_field/final_deformation_y_')) export_maps(MDR_output[3][(0, :)], (output_dir + '/fitted_parameters/FA'), np.shape(original_images)) export_maps(MDR_output[3][(1, :)], (output_dir + '/fitted_parameters/ADC'), np.shape(original_images)) MDR_output[4].to_csv((output_dir + 'DTI_largest_deformations.csv')) end_computation_time = time.time() print('total computation time for MDR (minutes taken:)...') print((0.0166667 * (end_computation_time - start_computation_time))) print('completed MDR registration!') print('Finished processing Model Driven Registration case for iBEAt study DTI sequence!')
def iBEAt_test_DTI(Elastix_Parameter_file_PATH, output_dir, sorted_slice_files, ArrayDicomiBEAt, image_parameters, filenameDCM, lstFilesDCM): ' Example application of MDR in renal DTI (iBEAt data) \n\n Description\n -----------\n This function performs model driven registration for selected DTI sequence on a single selected slice \n and returns as output the MDR registered images, signal model fit, deformation field x, deformation field y, \n fitted parameters FA and ADC, and the final diagnostics.\n \n Args\n ----\n Elastix_Parameter_file_PATH (string): complete path to the elastix parameter file to be used. \n output_dir (string): directory where results are saved. \n slice_sorted_files (list): selected slices to process using MDR: sorted according to acquisition time. \n ArrayDicomiBEAt (numpy.ndarray): input DICOM to numpy array (unsorted). \n image_parameters (SITK input): image pixel spacing. \n filenameDCM (pathlib.PosixPath): dicom filenames to process. \n lstFilesDCM (list): list of dicom files to process. \n ' start_computation_time = time.time() image_shape = np.shape(ArrayDicomiBEAt) original_images = np.zeros(image_shape) for (i, s) in enumerate(sorted_slice_files): img2d = s.pixel_array original_images[(:, :, i)] = img2d full_module_name = 'models.DTI' model = importlib.import_module(full_module_name) signal_model_parameters = read_signal_model_parameters(filenameDCM, lstFilesDCM) elastix_model_parameters = read_elastix_model_parameters(Elastix_Parameter_file_PATH, ['MaximumNumberOfIterations', 1024]) MDR_output = model_driven_registration(original_images, image_parameters, model, signal_model_parameters, elastix_model_parameters, precision=1, function='main') export_images(MDR_output[0], (output_dir + '/coregistered/MDR-registered_DTI_')) export_images(MDR_output[1], (output_dir + '/fit/fit_image_')) export_images(MDR_output[2][(:, :, 0, :)], (output_dir + '/deformation_field/final_deformation_x_')) export_images(MDR_output[2][(:, :, 1, :)], (output_dir + '/deformation_field/final_deformation_y_')) export_maps(MDR_output[3][(0, :)], (output_dir + '/fitted_parameters/FA'), np.shape(original_images)) export_maps(MDR_output[3][(1, :)], (output_dir + '/fitted_parameters/ADC'), np.shape(original_images)) MDR_output[4].to_csv((output_dir + 'DTI_largest_deformations.csv')) end_computation_time = time.time() print('total computation time for MDR (minutes taken:)...') print((0.0166667 * (end_computation_time - start_computation_time))) print('completed MDR registration!') print('Finished processing Model Driven Registration case for iBEAt study DTI sequence!')<|docstring|>Example application of MDR in renal DTI (iBEAt data) Description ----------- This function performs model driven registration for selected DTI sequence on a single selected slice and returns as output the MDR registered images, signal model fit, deformation field x, deformation field y, fitted parameters FA and ADC, and the final diagnostics. Args ---- Elastix_Parameter_file_PATH (string): complete path to the elastix parameter file to be used. output_dir (string): directory where results are saved. slice_sorted_files (list): selected slices to process using MDR: sorted according to acquisition time. ArrayDicomiBEAt (numpy.ndarray): input DICOM to numpy array (unsorted). image_parameters (SITK input): image pixel spacing. filenameDCM (pathlib.PosixPath): dicom filenames to process. lstFilesDCM (list): list of dicom files to process.<|endoftext|>
94f15fd820c1fceab101c975a603ce08351cbf64c13d90d88606b22fe67e075a
def read_dicom_tags_DTI(fname, lstFilesDCM): ' This function reads the DICOM header from the DTI sequence and returns the corresponding DTI tags.\n\n Args\n ----\n fname (pathlib.PosixPath): dicom filenames to process. \n lstFilesDCM (list): list of dicom files to process. \n\n Returns\n -------\n b-values (list): list of DTI b-values (s/mm2). \n b_Vec_original (list): original b-vectors as list. \n image_orientation_patient (list): patient orientation as list. \n ' b_values = [] b_Vec_original = [] image_orientation_patient = [] for fname in lstFilesDCM: dataset = pydicom.dcmread(fname) b_values.append(dataset[(25, 4108)].value) b_Vec_original.append(dataset[(25, 4110)].value) image_orientation_patient.append(dataset.ImageOrientationPatient) return (b_values, b_Vec_original, image_orientation_patient)
This function reads the DICOM header from the DTI sequence and returns the corresponding DTI tags. Args ---- fname (pathlib.PosixPath): dicom filenames to process. lstFilesDCM (list): list of dicom files to process. Returns ------- b-values (list): list of DTI b-values (s/mm2). b_Vec_original (list): original b-vectors as list. image_orientation_patient (list): patient orientation as list.
tests/MDR_test_DTI.py
read_dicom_tags_DTI
QIB-Sheffield/MDR-Library
0
python
def read_dicom_tags_DTI(fname, lstFilesDCM): ' This function reads the DICOM header from the DTI sequence and returns the corresponding DTI tags.\n\n Args\n ----\n fname (pathlib.PosixPath): dicom filenames to process. \n lstFilesDCM (list): list of dicom files to process. \n\n Returns\n -------\n b-values (list): list of DTI b-values (s/mm2). \n b_Vec_original (list): original b-vectors as list. \n image_orientation_patient (list): patient orientation as list. \n ' b_values = [] b_Vec_original = [] image_orientation_patient = [] for fname in lstFilesDCM: dataset = pydicom.dcmread(fname) b_values.append(dataset[(25, 4108)].value) b_Vec_original.append(dataset[(25, 4110)].value) image_orientation_patient.append(dataset.ImageOrientationPatient) return (b_values, b_Vec_original, image_orientation_patient)
def read_dicom_tags_DTI(fname, lstFilesDCM): ' This function reads the DICOM header from the DTI sequence and returns the corresponding DTI tags.\n\n Args\n ----\n fname (pathlib.PosixPath): dicom filenames to process. \n lstFilesDCM (list): list of dicom files to process. \n\n Returns\n -------\n b-values (list): list of DTI b-values (s/mm2). \n b_Vec_original (list): original b-vectors as list. \n image_orientation_patient (list): patient orientation as list. \n ' b_values = [] b_Vec_original = [] image_orientation_patient = [] for fname in lstFilesDCM: dataset = pydicom.dcmread(fname) b_values.append(dataset[(25, 4108)].value) b_Vec_original.append(dataset[(25, 4110)].value) image_orientation_patient.append(dataset.ImageOrientationPatient) return (b_values, b_Vec_original, image_orientation_patient)<|docstring|>This function reads the DICOM header from the DTI sequence and returns the corresponding DTI tags. Args ---- fname (pathlib.PosixPath): dicom filenames to process. lstFilesDCM (list): list of dicom files to process. Returns ------- b-values (list): list of DTI b-values (s/mm2). b_Vec_original (list): original b-vectors as list. image_orientation_patient (list): patient orientation as list.<|endoftext|>
d0bdfc1c168c71660383d952cc65eede72ebe681cacdb06835260eecb34859cd
def detect_card(image_path: str, output_dir: str='output/', unwarp: bool=True, model_name: str='maskrcnn_resnet50', color: tuple=(0, 0, 0)): '\n Arguments:\n image_path: path to the image to be processed\n output_dir: path to the results to be exported\n unwarp: unwarp detected id card to rectangle\n model_name: model to be used in the inference\n color: color to be used in the mask/bbox/quad visualizations\n ' image = read_image(image_path) (masks, boxes, classes, scores) = get_prediction(image=image, model_name='maskrcnn_resnet50', threshold=0.75) prediction_visual = visualize_prediction(image, masks, boxes, classes, rect_th=2, text_size=0.85, text_th=2, color=color, output_dir=output_dir) if (not unwarp): export_predicted_bboxes(image=image, boxes=boxes, output_dir=output_dir) quads = [] unwarped_quads = [] else: quads = fit_quads_over_masks(image, masks) quad_visual = visualize_quads(image=image, quads=quads, output_dir=output_dir, color=color) unwarped_quads = unwarp_quads(image, quads) export_unwarped_quads(unwarped_quads, output_dir=output_dir) return (masks, boxes, classes, scores, quads)
Arguments: image_path: path to the image to be processed output_dir: path to the results to be exported unwarp: unwarp detected id card to rectangle model_name: model to be used in the inference color: color to be used in the mask/bbox/quad visualizations
id_card_detector/__init__.py
detect_card
SaddamBInSyed/id-card-detector
3
python
def detect_card(image_path: str, output_dir: str='output/', unwarp: bool=True, model_name: str='maskrcnn_resnet50', color: tuple=(0, 0, 0)): '\n Arguments:\n image_path: path to the image to be processed\n output_dir: path to the results to be exported\n unwarp: unwarp detected id card to rectangle\n model_name: model to be used in the inference\n color: color to be used in the mask/bbox/quad visualizations\n ' image = read_image(image_path) (masks, boxes, classes, scores) = get_prediction(image=image, model_name='maskrcnn_resnet50', threshold=0.75) prediction_visual = visualize_prediction(image, masks, boxes, classes, rect_th=2, text_size=0.85, text_th=2, color=color, output_dir=output_dir) if (not unwarp): export_predicted_bboxes(image=image, boxes=boxes, output_dir=output_dir) quads = [] unwarped_quads = [] else: quads = fit_quads_over_masks(image, masks) quad_visual = visualize_quads(image=image, quads=quads, output_dir=output_dir, color=color) unwarped_quads = unwarp_quads(image, quads) export_unwarped_quads(unwarped_quads, output_dir=output_dir) return (masks, boxes, classes, scores, quads)
def detect_card(image_path: str, output_dir: str='output/', unwarp: bool=True, model_name: str='maskrcnn_resnet50', color: tuple=(0, 0, 0)): '\n Arguments:\n image_path: path to the image to be processed\n output_dir: path to the results to be exported\n unwarp: unwarp detected id card to rectangle\n model_name: model to be used in the inference\n color: color to be used in the mask/bbox/quad visualizations\n ' image = read_image(image_path) (masks, boxes, classes, scores) = get_prediction(image=image, model_name='maskrcnn_resnet50', threshold=0.75) prediction_visual = visualize_prediction(image, masks, boxes, classes, rect_th=2, text_size=0.85, text_th=2, color=color, output_dir=output_dir) if (not unwarp): export_predicted_bboxes(image=image, boxes=boxes, output_dir=output_dir) quads = [] unwarped_quads = [] else: quads = fit_quads_over_masks(image, masks) quad_visual = visualize_quads(image=image, quads=quads, output_dir=output_dir, color=color) unwarped_quads = unwarp_quads(image, quads) export_unwarped_quads(unwarped_quads, output_dir=output_dir) return (masks, boxes, classes, scores, quads)<|docstring|>Arguments: image_path: path to the image to be processed output_dir: path to the results to be exported unwarp: unwarp detected id card to rectangle model_name: model to be used in the inference color: color to be used in the mask/bbox/quad visualizations<|endoftext|>
9d19a07b1ce1c3fe46cfd55be73b390e720553ee601dfe88a5d35c87c8d5c68b
def validate_columns(columns): '\n Validates the columns based on their validity, returning a set\n :param columns: \n :return: a set of columns, constructed from the iterable passed in as the param\n ' columns = tuple(columns) if (len(columns) == 0): raise Exception('Pipeline must read >0 columns') cols = [] for c in columns: cols.append(''.join([i for i in c if (not i.isdigit())])) new_columns = set(cols) invalid_columns = (new_columns - valid_columns) if (len(invalid_columns) != 0): raise Exception("Can't instantiate Pipeline with invalid columns: {}".format(invalid_columns)) return columns
Validates the columns based on their validity, returning a set :param columns: :return: a set of columns, constructed from the iterable passed in as the param
tensorflow/contrib/persona/python/ops/io_pipe.py
validate_columns
epfl-dcsl/ptf-system
0
python
def validate_columns(columns): '\n Validates the columns based on their validity, returning a set\n :param columns: \n :return: a set of columns, constructed from the iterable passed in as the param\n ' columns = tuple(columns) if (len(columns) == 0): raise Exception('Pipeline must read >0 columns') cols = [] for c in columns: cols.append(.join([i for i in c if (not i.isdigit())])) new_columns = set(cols) invalid_columns = (new_columns - valid_columns) if (len(invalid_columns) != 0): raise Exception("Can't instantiate Pipeline with invalid columns: {}".format(invalid_columns)) return columns
def validate_columns(columns): '\n Validates the columns based on their validity, returning a set\n :param columns: \n :return: a set of columns, constructed from the iterable passed in as the param\n ' columns = tuple(columns) if (len(columns) == 0): raise Exception('Pipeline must read >0 columns') cols = [] for c in columns: cols.append(.join([i for i in c if (not i.isdigit())])) new_columns = set(cols) invalid_columns = (new_columns - valid_columns) if (len(invalid_columns) != 0): raise Exception("Can't instantiate Pipeline with invalid columns: {}".format(invalid_columns)) return columns<|docstring|>Validates the columns based on their validity, returning a set :param columns: :return: a set of columns, constructed from the iterable passed in as the param<|endoftext|>
a726ea82effec8d5a28b9c0f187a7fdb3cd27ee40dd6c178cc2b3a1039e00198
def expand_column_extensions(key, columns): '\n Expands a given AGD key into the full extensions, based on the columns\n :param keys: an iterator of scalar strings, representing the keys for a given parallelism level\n :param columns: assumed to have been validated previously be the caller\n :yield: a generator for keys\n ' for c in columns: (yield string_ops.string_join(inputs=[key, c], separator='.', name='AGD_column_expansion'))
Expands a given AGD key into the full extensions, based on the columns :param keys: an iterator of scalar strings, representing the keys for a given parallelism level :param columns: assumed to have been validated previously be the caller :yield: a generator for keys
tensorflow/contrib/persona/python/ops/io_pipe.py
expand_column_extensions
epfl-dcsl/ptf-system
0
python
def expand_column_extensions(key, columns): '\n Expands a given AGD key into the full extensions, based on the columns\n :param keys: an iterator of scalar strings, representing the keys for a given parallelism level\n :param columns: assumed to have been validated previously be the caller\n :yield: a generator for keys\n ' for c in columns: (yield string_ops.string_join(inputs=[key, c], separator='.', name='AGD_column_expansion'))
def expand_column_extensions(key, columns): '\n Expands a given AGD key into the full extensions, based on the columns\n :param keys: an iterator of scalar strings, representing the keys for a given parallelism level\n :param columns: assumed to have been validated previously be the caller\n :yield: a generator for keys\n ' for c in columns: (yield string_ops.string_join(inputs=[key, c], separator='.', name='AGD_column_expansion'))<|docstring|>Expands a given AGD key into the full extensions, based on the columns :param keys: an iterator of scalar strings, representing the keys for a given parallelism level :param columns: assumed to have been validated previously be the caller :yield: a generator for keys<|endoftext|>
e3a1bd5fdd1610b6fae0bdb0dcc335a80c430900a1ba9b7084fc48623545a851
def ceph_read_pipeline(upstream_tensors, user_name, cluster_name, ceph_conf_path, columns, pool_name, ceph_read_size=(2 ** 26), buffer_pool=None, buffer_pool_args=pool_default_args, delete_after_read=False, name='ceph_read_pipeline', log_directory=None, metadata=None): '\n Create a ceph input pipeline.\n \n :param upstream_tensors: a tuple of tensors (key, namespace), which are typically found in the metadata file. This controls the parallelism\n :param user_name: \n :param cluster_name: \n :param ceph_conf_path: \n :param columns: \n :param downstream_parallel: the level of parallelism to create for the downstream nodes\n :param ceph_read_size: \n :param buffer_pool: \n :param name: \n :return: a list of (key, namespace, tuple(chunk_buffers)) for every tensor in upstream tensors\n ' upstream_tensors = sanitize_generator(upstream_tensors) with ops.name_scope(name): columns = validate_columns(columns=columns) if (buffer_pool is None): buffer_pool = persona_ops.buffer_pool(**buffer_pool_args) reader = partial(persona_ops.ceph_reader, cluster_name=cluster_name, user_name=user_name, pool_name=pool_name, ceph_conf_path=ceph_conf_path, read_size=ceph_read_size, delete_after_read=delete_after_read, buffer_pool=buffer_pool) if (metadata is None): metadata = ((None,) * len(upstream_tensors)) else: metadata = sanitize_generator(metadata) if (len(metadata) != len(upstream_tensors)): raise Exception('Only have {m} metadata items, but passed in {u} upstream tensors to Ceph Read'.format(m=len(metadata), u=len(upstream_tensors))) for ((key, namespace), idc) in zip(upstream_tensors, metadata): validate_shape_and_dtype(tensor=key, expected_shape=scalar_shape, expected_dtype=dtypes.string) validate_shape_and_dtype(tensor=namespace, expected_shape=scalar_shape, expected_dtype=dtypes.string) chunk_buffers = tuple(((column_key, reader(key=column_key, namespace=namespace)) for column_key in expand_column_extensions(key=key, columns=columns))) def gen_file_handles(buffers): for (column_key, cb) in buffers: a = cb.file_handle if (log_directory is not None): timestamp = cb.time read_duration = cb.duration num_bytes = cb.bytes log_op = gate.log_events(item_names=(('timestamp', 'key', 'duration', 'bytes') + (('id',) if (idc is not None) else ())), directory=log_directory, event_name=name, name='{}_logger'.format(name), components=((timestamp, column_key, read_duration, num_bytes) + ((idc,) if (idc is not None) else ()))) with ops.control_dependencies((log_op,)): a = array_ops.identity(a) (yield a) (yield (key, namespace, tuple(gen_file_handles(buffers=chunk_buffers))))
Create a ceph input pipeline. :param upstream_tensors: a tuple of tensors (key, namespace), which are typically found in the metadata file. This controls the parallelism :param user_name: :param cluster_name: :param ceph_conf_path: :param columns: :param downstream_parallel: the level of parallelism to create for the downstream nodes :param ceph_read_size: :param buffer_pool: :param name: :return: a list of (key, namespace, tuple(chunk_buffers)) for every tensor in upstream tensors
tensorflow/contrib/persona/python/ops/io_pipe.py
ceph_read_pipeline
epfl-dcsl/ptf-system
0
python
def ceph_read_pipeline(upstream_tensors, user_name, cluster_name, ceph_conf_path, columns, pool_name, ceph_read_size=(2 ** 26), buffer_pool=None, buffer_pool_args=pool_default_args, delete_after_read=False, name='ceph_read_pipeline', log_directory=None, metadata=None): '\n Create a ceph input pipeline.\n \n :param upstream_tensors: a tuple of tensors (key, namespace), which are typically found in the metadata file. This controls the parallelism\n :param user_name: \n :param cluster_name: \n :param ceph_conf_path: \n :param columns: \n :param downstream_parallel: the level of parallelism to create for the downstream nodes\n :param ceph_read_size: \n :param buffer_pool: \n :param name: \n :return: a list of (key, namespace, tuple(chunk_buffers)) for every tensor in upstream tensors\n ' upstream_tensors = sanitize_generator(upstream_tensors) with ops.name_scope(name): columns = validate_columns(columns=columns) if (buffer_pool is None): buffer_pool = persona_ops.buffer_pool(**buffer_pool_args) reader = partial(persona_ops.ceph_reader, cluster_name=cluster_name, user_name=user_name, pool_name=pool_name, ceph_conf_path=ceph_conf_path, read_size=ceph_read_size, delete_after_read=delete_after_read, buffer_pool=buffer_pool) if (metadata is None): metadata = ((None,) * len(upstream_tensors)) else: metadata = sanitize_generator(metadata) if (len(metadata) != len(upstream_tensors)): raise Exception('Only have {m} metadata items, but passed in {u} upstream tensors to Ceph Read'.format(m=len(metadata), u=len(upstream_tensors))) for ((key, namespace), idc) in zip(upstream_tensors, metadata): validate_shape_and_dtype(tensor=key, expected_shape=scalar_shape, expected_dtype=dtypes.string) validate_shape_and_dtype(tensor=namespace, expected_shape=scalar_shape, expected_dtype=dtypes.string) chunk_buffers = tuple(((column_key, reader(key=column_key, namespace=namespace)) for column_key in expand_column_extensions(key=key, columns=columns))) def gen_file_handles(buffers): for (column_key, cb) in buffers: a = cb.file_handle if (log_directory is not None): timestamp = cb.time read_duration = cb.duration num_bytes = cb.bytes log_op = gate.log_events(item_names=(('timestamp', 'key', 'duration', 'bytes') + (('id',) if (idc is not None) else ())), directory=log_directory, event_name=name, name='{}_logger'.format(name), components=((timestamp, column_key, read_duration, num_bytes) + ((idc,) if (idc is not None) else ()))) with ops.control_dependencies((log_op,)): a = array_ops.identity(a) (yield a) (yield (key, namespace, tuple(gen_file_handles(buffers=chunk_buffers))))
def ceph_read_pipeline(upstream_tensors, user_name, cluster_name, ceph_conf_path, columns, pool_name, ceph_read_size=(2 ** 26), buffer_pool=None, buffer_pool_args=pool_default_args, delete_after_read=False, name='ceph_read_pipeline', log_directory=None, metadata=None): '\n Create a ceph input pipeline.\n \n :param upstream_tensors: a tuple of tensors (key, namespace), which are typically found in the metadata file. This controls the parallelism\n :param user_name: \n :param cluster_name: \n :param ceph_conf_path: \n :param columns: \n :param downstream_parallel: the level of parallelism to create for the downstream nodes\n :param ceph_read_size: \n :param buffer_pool: \n :param name: \n :return: a list of (key, namespace, tuple(chunk_buffers)) for every tensor in upstream tensors\n ' upstream_tensors = sanitize_generator(upstream_tensors) with ops.name_scope(name): columns = validate_columns(columns=columns) if (buffer_pool is None): buffer_pool = persona_ops.buffer_pool(**buffer_pool_args) reader = partial(persona_ops.ceph_reader, cluster_name=cluster_name, user_name=user_name, pool_name=pool_name, ceph_conf_path=ceph_conf_path, read_size=ceph_read_size, delete_after_read=delete_after_read, buffer_pool=buffer_pool) if (metadata is None): metadata = ((None,) * len(upstream_tensors)) else: metadata = sanitize_generator(metadata) if (len(metadata) != len(upstream_tensors)): raise Exception('Only have {m} metadata items, but passed in {u} upstream tensors to Ceph Read'.format(m=len(metadata), u=len(upstream_tensors))) for ((key, namespace), idc) in zip(upstream_tensors, metadata): validate_shape_and_dtype(tensor=key, expected_shape=scalar_shape, expected_dtype=dtypes.string) validate_shape_and_dtype(tensor=namespace, expected_shape=scalar_shape, expected_dtype=dtypes.string) chunk_buffers = tuple(((column_key, reader(key=column_key, namespace=namespace)) for column_key in expand_column_extensions(key=key, columns=columns))) def gen_file_handles(buffers): for (column_key, cb) in buffers: a = cb.file_handle if (log_directory is not None): timestamp = cb.time read_duration = cb.duration num_bytes = cb.bytes log_op = gate.log_events(item_names=(('timestamp', 'key', 'duration', 'bytes') + (('id',) if (idc is not None) else ())), directory=log_directory, event_name=name, name='{}_logger'.format(name), components=((timestamp, column_key, read_duration, num_bytes) + ((idc,) if (idc is not None) else ()))) with ops.control_dependencies((log_op,)): a = array_ops.identity(a) (yield a) (yield (key, namespace, tuple(gen_file_handles(buffers=chunk_buffers))))<|docstring|>Create a ceph input pipeline. :param upstream_tensors: a tuple of tensors (key, namespace), which are typically found in the metadata file. This controls the parallelism :param user_name: :param cluster_name: :param ceph_conf_path: :param columns: :param downstream_parallel: the level of parallelism to create for the downstream nodes :param ceph_read_size: :param buffer_pool: :param name: :return: a list of (key, namespace, tuple(chunk_buffers)) for every tensor in upstream tensors<|endoftext|>
a671e0af1524b1a18aab1dfdcf0e0f8ae617acdb35623c471c65ef6ba2311caa
def ceph_lazy_read_pipeline(upstream_tensors, user_name, cluster_name, ceph_conf_path, columns, pool_name, records_per_segment, segments_to_buffer, delete_after_read=False, name='ceph_lazy_read_pipeline'): '\n Create a lazy ceph input pipeline.\n\n :param upstream_tensors: a tuple of tensors (key, namespace), which are typically found in the metadata file. This controls the parallelism\n :param user_name:\n :param cluster_name:\n :param ceph_conf_path:\n :param columns:\n :param pool_name:\n :param records_per_segment:\n :param segments_to_buffer:\n :param delete_after_read:\n :param name:\n :return: yield a list of (key, namespace, tuple(chunk_buffers), record_id) for every tensor in upstream tensors\n Note that it is assumed that the record_id is the same for all column chunks (it should be)\n ' with ops.name_scope(name): columns = validate_columns(columns=columns) pool = persona_ops.ceph_lazy_column_pool(bound=False, size=0, user_name=user_name, cluster_name=cluster_name, ceph_conf_path=str(ceph_conf_path), pool_name=pool_name, records_per_segment=records_per_segment, num_segments=segments_to_buffer) reader = partial(persona_ops.lazy_ceph_reader, column_pool=pool, delete_after_read=delete_after_read) for (key, namespace) in upstream_tensors: validate_shape_and_dtype(tensor=key, expected_shape=scalar_shape, expected_dtype=dtypes.string) validate_shape_and_dtype(tensor=namespace, expected_shape=scalar_shape, expected_dtype=dtypes.string) (chunk_buffers, record_ids) = zip(*(reader(key=column_key, namespace=namespace) for column_key in expand_column_extensions(key=key, columns=columns))) (yield (key, namespace, chunk_buffers, record_ids[0]))
Create a lazy ceph input pipeline. :param upstream_tensors: a tuple of tensors (key, namespace), which are typically found in the metadata file. This controls the parallelism :param user_name: :param cluster_name: :param ceph_conf_path: :param columns: :param pool_name: :param records_per_segment: :param segments_to_buffer: :param delete_after_read: :param name: :return: yield a list of (key, namespace, tuple(chunk_buffers), record_id) for every tensor in upstream tensors Note that it is assumed that the record_id is the same for all column chunks (it should be)
tensorflow/contrib/persona/python/ops/io_pipe.py
ceph_lazy_read_pipeline
epfl-dcsl/ptf-system
0
python
def ceph_lazy_read_pipeline(upstream_tensors, user_name, cluster_name, ceph_conf_path, columns, pool_name, records_per_segment, segments_to_buffer, delete_after_read=False, name='ceph_lazy_read_pipeline'): '\n Create a lazy ceph input pipeline.\n\n :param upstream_tensors: a tuple of tensors (key, namespace), which are typically found in the metadata file. This controls the parallelism\n :param user_name:\n :param cluster_name:\n :param ceph_conf_path:\n :param columns:\n :param pool_name:\n :param records_per_segment:\n :param segments_to_buffer:\n :param delete_after_read:\n :param name:\n :return: yield a list of (key, namespace, tuple(chunk_buffers), record_id) for every tensor in upstream tensors\n Note that it is assumed that the record_id is the same for all column chunks (it should be)\n ' with ops.name_scope(name): columns = validate_columns(columns=columns) pool = persona_ops.ceph_lazy_column_pool(bound=False, size=0, user_name=user_name, cluster_name=cluster_name, ceph_conf_path=str(ceph_conf_path), pool_name=pool_name, records_per_segment=records_per_segment, num_segments=segments_to_buffer) reader = partial(persona_ops.lazy_ceph_reader, column_pool=pool, delete_after_read=delete_after_read) for (key, namespace) in upstream_tensors: validate_shape_and_dtype(tensor=key, expected_shape=scalar_shape, expected_dtype=dtypes.string) validate_shape_and_dtype(tensor=namespace, expected_shape=scalar_shape, expected_dtype=dtypes.string) (chunk_buffers, record_ids) = zip(*(reader(key=column_key, namespace=namespace) for column_key in expand_column_extensions(key=key, columns=columns))) (yield (key, namespace, chunk_buffers, record_ids[0]))
def ceph_lazy_read_pipeline(upstream_tensors, user_name, cluster_name, ceph_conf_path, columns, pool_name, records_per_segment, segments_to_buffer, delete_after_read=False, name='ceph_lazy_read_pipeline'): '\n Create a lazy ceph input pipeline.\n\n :param upstream_tensors: a tuple of tensors (key, namespace), which are typically found in the metadata file. This controls the parallelism\n :param user_name:\n :param cluster_name:\n :param ceph_conf_path:\n :param columns:\n :param pool_name:\n :param records_per_segment:\n :param segments_to_buffer:\n :param delete_after_read:\n :param name:\n :return: yield a list of (key, namespace, tuple(chunk_buffers), record_id) for every tensor in upstream tensors\n Note that it is assumed that the record_id is the same for all column chunks (it should be)\n ' with ops.name_scope(name): columns = validate_columns(columns=columns) pool = persona_ops.ceph_lazy_column_pool(bound=False, size=0, user_name=user_name, cluster_name=cluster_name, ceph_conf_path=str(ceph_conf_path), pool_name=pool_name, records_per_segment=records_per_segment, num_segments=segments_to_buffer) reader = partial(persona_ops.lazy_ceph_reader, column_pool=pool, delete_after_read=delete_after_read) for (key, namespace) in upstream_tensors: validate_shape_and_dtype(tensor=key, expected_shape=scalar_shape, expected_dtype=dtypes.string) validate_shape_and_dtype(tensor=namespace, expected_shape=scalar_shape, expected_dtype=dtypes.string) (chunk_buffers, record_ids) = zip(*(reader(key=column_key, namespace=namespace) for column_key in expand_column_extensions(key=key, columns=columns))) (yield (key, namespace, chunk_buffers, record_ids[0]))<|docstring|>Create a lazy ceph input pipeline. :param upstream_tensors: a tuple of tensors (key, namespace), which are typically found in the metadata file. This controls the parallelism :param user_name: :param cluster_name: :param ceph_conf_path: :param columns: :param pool_name: :param records_per_segment: :param segments_to_buffer: :param delete_after_read: :param name: :return: yield a list of (key, namespace, tuple(chunk_buffers), record_id) for every tensor in upstream tensors Note that it is assumed that the record_id is the same for all column chunks (it should be)<|endoftext|>
7365d4dec8551457ffeb96a576bb1abbac22181eba852444484542000442dc88
def ceph_combo_read_pipeline(upstream_tensors, user_name, cluster_name, ceph_conf_path, pool_name, columns, records_per_segment, segments_to_buffer, ceph_read_size=(2 ** 26), buffer_pool=None, buffer_pool_args=pool_default_args, eager_column_types=(), delete_after_read=False, name='ceph_combo_read_pipeline'): '\n Create a lazy ceph input pipeline.\n\n :param upstream_tensors: a tuple of tensors (key, namespace), which are typically found in the metadata file. This controls the parallelism\n :param user_name:\n :param cluster_name:\n :param ceph_conf_path:\n :param columns:\n :param pool_name:\n :param records_per_segment:\n :param segments_to_buffer:\n :param delete_after_read:\n :param name:\n :return: yield a list of (key, namespace, tuple(chunk_buffers), record_id) for every tensor in upstream tensors\n Note that it is assumed that the record_id is the same for all column chunks (it should be)\n ' with ops.name_scope(name): columns = validate_columns(columns=columns) pool = persona_ops.ceph_lazy_column_pool(bound=False, size=0, user_name=user_name, cluster_name=cluster_name, ceph_conf_path=str(ceph_conf_path), pool_name=pool_name, records_per_segment=records_per_segment, num_segments=segments_to_buffer) lazy_reader = partial(persona_ops.lazy_ceph_reader, column_pool=pool, delete_after_read=delete_after_read) if (buffer_pool is None): buffer_pool = persona_ops.buffer_pool(**buffer_pool_args) eager_reader = partial(persona_ops.ceph_reader, cluster_name=cluster_name, user_name=user_name, pool_name=pool_name, ceph_conf_path=str(ceph_conf_path), read_size=ceph_read_size, delete_after_read=delete_after_read, buffer_pool=buffer_pool) pool = persona_ops.raw_file_system_column_pool(bound=False, size=0) convert = partial(persona_ops.raw_file_converter, column_pool=pool) def gen_columns(key, namespace): for (column_key, column) in zip(expand_column_extensions(key=key, columns=columns), columns): if (column in eager_column_types): val = eager_reader(key=column_key, namespace=namespace) val = convert(data=val.file_handle) else: val = lazy_reader(key=column_key, namespace=namespace) (yield val) for (key, namespace) in upstream_tensors: validate_shape_and_dtype(tensor=key, expected_shape=scalar_shape, expected_dtype=dtypes.string) validate_shape_and_dtype(tensor=namespace, expected_shape=scalar_shape, expected_dtype=dtypes.string) this_columns = tuple(gen_columns(key=key, namespace=namespace)) (chunk_buffers, record_ids) = zip(*this_columns) (yield (key, namespace, chunk_buffers, record_ids[0]))
Create a lazy ceph input pipeline. :param upstream_tensors: a tuple of tensors (key, namespace), which are typically found in the metadata file. This controls the parallelism :param user_name: :param cluster_name: :param ceph_conf_path: :param columns: :param pool_name: :param records_per_segment: :param segments_to_buffer: :param delete_after_read: :param name: :return: yield a list of (key, namespace, tuple(chunk_buffers), record_id) for every tensor in upstream tensors Note that it is assumed that the record_id is the same for all column chunks (it should be)
tensorflow/contrib/persona/python/ops/io_pipe.py
ceph_combo_read_pipeline
epfl-dcsl/ptf-system
0
python
def ceph_combo_read_pipeline(upstream_tensors, user_name, cluster_name, ceph_conf_path, pool_name, columns, records_per_segment, segments_to_buffer, ceph_read_size=(2 ** 26), buffer_pool=None, buffer_pool_args=pool_default_args, eager_column_types=(), delete_after_read=False, name='ceph_combo_read_pipeline'): '\n Create a lazy ceph input pipeline.\n\n :param upstream_tensors: a tuple of tensors (key, namespace), which are typically found in the metadata file. This controls the parallelism\n :param user_name:\n :param cluster_name:\n :param ceph_conf_path:\n :param columns:\n :param pool_name:\n :param records_per_segment:\n :param segments_to_buffer:\n :param delete_after_read:\n :param name:\n :return: yield a list of (key, namespace, tuple(chunk_buffers), record_id) for every tensor in upstream tensors\n Note that it is assumed that the record_id is the same for all column chunks (it should be)\n ' with ops.name_scope(name): columns = validate_columns(columns=columns) pool = persona_ops.ceph_lazy_column_pool(bound=False, size=0, user_name=user_name, cluster_name=cluster_name, ceph_conf_path=str(ceph_conf_path), pool_name=pool_name, records_per_segment=records_per_segment, num_segments=segments_to_buffer) lazy_reader = partial(persona_ops.lazy_ceph_reader, column_pool=pool, delete_after_read=delete_after_read) if (buffer_pool is None): buffer_pool = persona_ops.buffer_pool(**buffer_pool_args) eager_reader = partial(persona_ops.ceph_reader, cluster_name=cluster_name, user_name=user_name, pool_name=pool_name, ceph_conf_path=str(ceph_conf_path), read_size=ceph_read_size, delete_after_read=delete_after_read, buffer_pool=buffer_pool) pool = persona_ops.raw_file_system_column_pool(bound=False, size=0) convert = partial(persona_ops.raw_file_converter, column_pool=pool) def gen_columns(key, namespace): for (column_key, column) in zip(expand_column_extensions(key=key, columns=columns), columns): if (column in eager_column_types): val = eager_reader(key=column_key, namespace=namespace) val = convert(data=val.file_handle) else: val = lazy_reader(key=column_key, namespace=namespace) (yield val) for (key, namespace) in upstream_tensors: validate_shape_and_dtype(tensor=key, expected_shape=scalar_shape, expected_dtype=dtypes.string) validate_shape_and_dtype(tensor=namespace, expected_shape=scalar_shape, expected_dtype=dtypes.string) this_columns = tuple(gen_columns(key=key, namespace=namespace)) (chunk_buffers, record_ids) = zip(*this_columns) (yield (key, namespace, chunk_buffers, record_ids[0]))
def ceph_combo_read_pipeline(upstream_tensors, user_name, cluster_name, ceph_conf_path, pool_name, columns, records_per_segment, segments_to_buffer, ceph_read_size=(2 ** 26), buffer_pool=None, buffer_pool_args=pool_default_args, eager_column_types=(), delete_after_read=False, name='ceph_combo_read_pipeline'): '\n Create a lazy ceph input pipeline.\n\n :param upstream_tensors: a tuple of tensors (key, namespace), which are typically found in the metadata file. This controls the parallelism\n :param user_name:\n :param cluster_name:\n :param ceph_conf_path:\n :param columns:\n :param pool_name:\n :param records_per_segment:\n :param segments_to_buffer:\n :param delete_after_read:\n :param name:\n :return: yield a list of (key, namespace, tuple(chunk_buffers), record_id) for every tensor in upstream tensors\n Note that it is assumed that the record_id is the same for all column chunks (it should be)\n ' with ops.name_scope(name): columns = validate_columns(columns=columns) pool = persona_ops.ceph_lazy_column_pool(bound=False, size=0, user_name=user_name, cluster_name=cluster_name, ceph_conf_path=str(ceph_conf_path), pool_name=pool_name, records_per_segment=records_per_segment, num_segments=segments_to_buffer) lazy_reader = partial(persona_ops.lazy_ceph_reader, column_pool=pool, delete_after_read=delete_after_read) if (buffer_pool is None): buffer_pool = persona_ops.buffer_pool(**buffer_pool_args) eager_reader = partial(persona_ops.ceph_reader, cluster_name=cluster_name, user_name=user_name, pool_name=pool_name, ceph_conf_path=str(ceph_conf_path), read_size=ceph_read_size, delete_after_read=delete_after_read, buffer_pool=buffer_pool) pool = persona_ops.raw_file_system_column_pool(bound=False, size=0) convert = partial(persona_ops.raw_file_converter, column_pool=pool) def gen_columns(key, namespace): for (column_key, column) in zip(expand_column_extensions(key=key, columns=columns), columns): if (column in eager_column_types): val = eager_reader(key=column_key, namespace=namespace) val = convert(data=val.file_handle) else: val = lazy_reader(key=column_key, namespace=namespace) (yield val) for (key, namespace) in upstream_tensors: validate_shape_and_dtype(tensor=key, expected_shape=scalar_shape, expected_dtype=dtypes.string) validate_shape_and_dtype(tensor=namespace, expected_shape=scalar_shape, expected_dtype=dtypes.string) this_columns = tuple(gen_columns(key=key, namespace=namespace)) (chunk_buffers, record_ids) = zip(*this_columns) (yield (key, namespace, chunk_buffers, record_ids[0]))<|docstring|>Create a lazy ceph input pipeline. :param upstream_tensors: a tuple of tensors (key, namespace), which are typically found in the metadata file. This controls the parallelism :param user_name: :param cluster_name: :param ceph_conf_path: :param columns: :param pool_name: :param records_per_segment: :param segments_to_buffer: :param delete_after_read: :param name: :return: yield a list of (key, namespace, tuple(chunk_buffers), record_id) for every tensor in upstream tensors Note that it is assumed that the record_id is the same for all column chunks (it should be)<|endoftext|>
623db8a3b8f01540218b569a3b0b5641a02f1e5516c025e8f3f21cc2bf7c267b
def aligner_compress_pipeline(upstream_tensors, buffer_pool=None, buffer_pool_args=pool_default_args, name='aligner_compress_pipeline'): '\n Compresses a list of upstream tensors of buffer list (via handles) into buffers\n :param upstream_tensors: \n :param name: \n :return: a stacked matrix of compressed buffers\n ' with ops.name_scope(name): if (buffer_pool is None): buffer_pool = persona_ops.buffer_pool(**buffer_pool_args) compress_buffer_list = partial(persona_ops.buffer_list_compressor, buffer_pool=buffer_pool) for buffer_lists in upstream_tensors: bls_unstacked = array_ops.unstack(buffer_lists) compressed_buffers = tuple((compress_buffer_list(buffer_list=a) for a in bls_unstacked)) (yield array_ops.stack(compressed_buffers))
Compresses a list of upstream tensors of buffer list (via handles) into buffers :param upstream_tensors: :param name: :return: a stacked matrix of compressed buffers
tensorflow/contrib/persona/python/ops/io_pipe.py
aligner_compress_pipeline
epfl-dcsl/ptf-system
0
python
def aligner_compress_pipeline(upstream_tensors, buffer_pool=None, buffer_pool_args=pool_default_args, name='aligner_compress_pipeline'): '\n Compresses a list of upstream tensors of buffer list (via handles) into buffers\n :param upstream_tensors: \n :param name: \n :return: a stacked matrix of compressed buffers\n ' with ops.name_scope(name): if (buffer_pool is None): buffer_pool = persona_ops.buffer_pool(**buffer_pool_args) compress_buffer_list = partial(persona_ops.buffer_list_compressor, buffer_pool=buffer_pool) for buffer_lists in upstream_tensors: bls_unstacked = array_ops.unstack(buffer_lists) compressed_buffers = tuple((compress_buffer_list(buffer_list=a) for a in bls_unstacked)) (yield array_ops.stack(compressed_buffers))
def aligner_compress_pipeline(upstream_tensors, buffer_pool=None, buffer_pool_args=pool_default_args, name='aligner_compress_pipeline'): '\n Compresses a list of upstream tensors of buffer list (via handles) into buffers\n :param upstream_tensors: \n :param name: \n :return: a stacked matrix of compressed buffers\n ' with ops.name_scope(name): if (buffer_pool is None): buffer_pool = persona_ops.buffer_pool(**buffer_pool_args) compress_buffer_list = partial(persona_ops.buffer_list_compressor, buffer_pool=buffer_pool) for buffer_lists in upstream_tensors: bls_unstacked = array_ops.unstack(buffer_lists) compressed_buffers = tuple((compress_buffer_list(buffer_list=a) for a in bls_unstacked)) (yield array_ops.stack(compressed_buffers))<|docstring|>Compresses a list of upstream tensors of buffer list (via handles) into buffers :param upstream_tensors: :param name: :return: a stacked matrix of compressed buffers<|endoftext|>
1d19b338993e8ce235a508c81668742bc1fe8254041b44fa7f1fec40f6fd3bb4
def sorter_compress_pipeline(upstream_tensors, buffer_pool=None, buffer_pool_args=pool_default_args, name='sorter_compress_pipeline'): '\n :param upstream_tensors: a generator of stacked (i.e. matrix of (N,2) references to buffer pairs) to compress\n :param buffer_pool:\n :param buffer_pool_args:\n :param name:\n :return: a generator of stacked references to buffers, in the same shape as upstream_tensors for each item\n ' with ops.name_scope('compress_merge_results'): if (buffer_pool is None): buffer_pool = persona_ops.buffer_pool(**buffer_pool_args) compressor = partial(persona_ops.buffer_pair_compressor, buffer_pool=buffer_pool) for buffer_pairs in upstream_tensors: bps_unstacked = array_ops.unstack(buffer_pairs) compressed_buffers = tuple((compressor(buffer_pair=a) for a in bps_unstacked)) (yield array_ops.stack(compressed_buffers))
:param upstream_tensors: a generator of stacked (i.e. matrix of (N,2) references to buffer pairs) to compress :param buffer_pool: :param buffer_pool_args: :param name: :return: a generator of stacked references to buffers, in the same shape as upstream_tensors for each item
tensorflow/contrib/persona/python/ops/io_pipe.py
sorter_compress_pipeline
epfl-dcsl/ptf-system
0
python
def sorter_compress_pipeline(upstream_tensors, buffer_pool=None, buffer_pool_args=pool_default_args, name='sorter_compress_pipeline'): '\n :param upstream_tensors: a generator of stacked (i.e. matrix of (N,2) references to buffer pairs) to compress\n :param buffer_pool:\n :param buffer_pool_args:\n :param name:\n :return: a generator of stacked references to buffers, in the same shape as upstream_tensors for each item\n ' with ops.name_scope('compress_merge_results'): if (buffer_pool is None): buffer_pool = persona_ops.buffer_pool(**buffer_pool_args) compressor = partial(persona_ops.buffer_pair_compressor, buffer_pool=buffer_pool) for buffer_pairs in upstream_tensors: bps_unstacked = array_ops.unstack(buffer_pairs) compressed_buffers = tuple((compressor(buffer_pair=a) for a in bps_unstacked)) (yield array_ops.stack(compressed_buffers))
def sorter_compress_pipeline(upstream_tensors, buffer_pool=None, buffer_pool_args=pool_default_args, name='sorter_compress_pipeline'): '\n :param upstream_tensors: a generator of stacked (i.e. matrix of (N,2) references to buffer pairs) to compress\n :param buffer_pool:\n :param buffer_pool_args:\n :param name:\n :return: a generator of stacked references to buffers, in the same shape as upstream_tensors for each item\n ' with ops.name_scope('compress_merge_results'): if (buffer_pool is None): buffer_pool = persona_ops.buffer_pool(**buffer_pool_args) compressor = partial(persona_ops.buffer_pair_compressor, buffer_pool=buffer_pool) for buffer_pairs in upstream_tensors: bps_unstacked = array_ops.unstack(buffer_pairs) compressed_buffers = tuple((compressor(buffer_pair=a) for a in bps_unstacked)) (yield array_ops.stack(compressed_buffers))<|docstring|>:param upstream_tensors: a generator of stacked (i.e. matrix of (N,2) references to buffer pairs) to compress :param buffer_pool: :param buffer_pool_args: :param name: :return: a generator of stacked references to buffers, in the same shape as upstream_tensors for each item<|endoftext|>
56228b6abe7f4d2c0cc6d883afe1bcf45e20d8c5541e6269f322c5d598fae1d3
def ceph_write_pipeline(upstream_tensors, user_name, cluster_name, pool_name, ceph_conf_path, compressed, record_types=default_records_type, name='ceph_write_pipeline', log_directory=None, metadata=None): '\n :param upstream_tensors: a list of aligner output tensors of type (key, namespace, num_records, first ordinal, record id, column handle)\n :param user_name: \n :param cluster_name: \n :param ceph_conf_path: \n :param name: \n :return: yields the output of ceph write columns\n ' writer_op = partial(persona_ops.agd_ceph_buffer_writer, user_name=user_name, cluster_name=cluster_name, ceph_conf_path=ceph_conf_path, pool_name=pool_name, compressed=compressed) record_types = sanitize_generator(record_types) upstream_tensors = sanitize_generator(upstream_tensors) def make_ceph_writer(key, first_ordinal, num_records, column_handle, namespace, record_id, idc): column_handles = array_ops.unstack(column_handle) if (not (len(column_handles) == len(record_types))): raise Exception('number of record types ({r}) must be equal to number of columns ({c})'.format(r=len(record_types), c=len(column_handles))) custom_writer_op = partial(writer_op, record_id=record_id, num_records=num_records, first_ordinal=first_ordinal, namespace=namespace) for (handle, record_type) in zip(column_handles, record_types): check_valid_record_type(record_type=record_type) full_key = string_ops.string_join([key, suffix_separator, record_type['extension']]) rtype = record_type['type'] a = custom_writer_op(record_type=rtype, path=full_key, resource_handle=handle, name='_'.join((name, rtype))) res_val = a.output_path if (log_directory is not None): timestamp = a.time write_duration = a.duration num_bytes = a.bytes log_op = gate.log_events(item_names=(('timestamp', 'key', 'duration', 'bytes') + (('id',) if (idc is not None) else ())), directory=log_directory, event_name=name, name='{}_logger'.format(name), components=((timestamp, res_val, write_duration, num_bytes) + ((idc,) if (idc is not None) else ()))) with ops.control_dependencies((log_op,)): res_val = array_ops.identity(res_val) (yield res_val) if (metadata is None): metadata = ((None,) * len(upstream_tensors)) else: metadata = sanitize_generator(metadata) if (len(metadata) != len(upstream_tensors)): raise Exception('Have {m} metadata tensors and {u} upstream buffers. Must be equal!'.format(m=len(metadata), u=len(upstream_tensors))) for ((key, namespace, num_records, first_ordinal, record_id, column_handle), idc) in zip(upstream_tensors, metadata): (yield make_ceph_writer(key=key, first_ordinal=first_ordinal, num_records=num_records, record_id=record_id, namespace=namespace, column_handle=column_handle, idc=idc))
:param upstream_tensors: a list of aligner output tensors of type (key, namespace, num_records, first ordinal, record id, column handle) :param user_name: :param cluster_name: :param ceph_conf_path: :param name: :return: yields the output of ceph write columns
tensorflow/contrib/persona/python/ops/io_pipe.py
ceph_write_pipeline
epfl-dcsl/ptf-system
0
python
def ceph_write_pipeline(upstream_tensors, user_name, cluster_name, pool_name, ceph_conf_path, compressed, record_types=default_records_type, name='ceph_write_pipeline', log_directory=None, metadata=None): '\n :param upstream_tensors: a list of aligner output tensors of type (key, namespace, num_records, first ordinal, record id, column handle)\n :param user_name: \n :param cluster_name: \n :param ceph_conf_path: \n :param name: \n :return: yields the output of ceph write columns\n ' writer_op = partial(persona_ops.agd_ceph_buffer_writer, user_name=user_name, cluster_name=cluster_name, ceph_conf_path=ceph_conf_path, pool_name=pool_name, compressed=compressed) record_types = sanitize_generator(record_types) upstream_tensors = sanitize_generator(upstream_tensors) def make_ceph_writer(key, first_ordinal, num_records, column_handle, namespace, record_id, idc): column_handles = array_ops.unstack(column_handle) if (not (len(column_handles) == len(record_types))): raise Exception('number of record types ({r}) must be equal to number of columns ({c})'.format(r=len(record_types), c=len(column_handles))) custom_writer_op = partial(writer_op, record_id=record_id, num_records=num_records, first_ordinal=first_ordinal, namespace=namespace) for (handle, record_type) in zip(column_handles, record_types): check_valid_record_type(record_type=record_type) full_key = string_ops.string_join([key, suffix_separator, record_type['extension']]) rtype = record_type['type'] a = custom_writer_op(record_type=rtype, path=full_key, resource_handle=handle, name='_'.join((name, rtype))) res_val = a.output_path if (log_directory is not None): timestamp = a.time write_duration = a.duration num_bytes = a.bytes log_op = gate.log_events(item_names=(('timestamp', 'key', 'duration', 'bytes') + (('id',) if (idc is not None) else ())), directory=log_directory, event_name=name, name='{}_logger'.format(name), components=((timestamp, res_val, write_duration, num_bytes) + ((idc,) if (idc is not None) else ()))) with ops.control_dependencies((log_op,)): res_val = array_ops.identity(res_val) (yield res_val) if (metadata is None): metadata = ((None,) * len(upstream_tensors)) else: metadata = sanitize_generator(metadata) if (len(metadata) != len(upstream_tensors)): raise Exception('Have {m} metadata tensors and {u} upstream buffers. Must be equal!'.format(m=len(metadata), u=len(upstream_tensors))) for ((key, namespace, num_records, first_ordinal, record_id, column_handle), idc) in zip(upstream_tensors, metadata): (yield make_ceph_writer(key=key, first_ordinal=first_ordinal, num_records=num_records, record_id=record_id, namespace=namespace, column_handle=column_handle, idc=idc))
def ceph_write_pipeline(upstream_tensors, user_name, cluster_name, pool_name, ceph_conf_path, compressed, record_types=default_records_type, name='ceph_write_pipeline', log_directory=None, metadata=None): '\n :param upstream_tensors: a list of aligner output tensors of type (key, namespace, num_records, first ordinal, record id, column handle)\n :param user_name: \n :param cluster_name: \n :param ceph_conf_path: \n :param name: \n :return: yields the output of ceph write columns\n ' writer_op = partial(persona_ops.agd_ceph_buffer_writer, user_name=user_name, cluster_name=cluster_name, ceph_conf_path=ceph_conf_path, pool_name=pool_name, compressed=compressed) record_types = sanitize_generator(record_types) upstream_tensors = sanitize_generator(upstream_tensors) def make_ceph_writer(key, first_ordinal, num_records, column_handle, namespace, record_id, idc): column_handles = array_ops.unstack(column_handle) if (not (len(column_handles) == len(record_types))): raise Exception('number of record types ({r}) must be equal to number of columns ({c})'.format(r=len(record_types), c=len(column_handles))) custom_writer_op = partial(writer_op, record_id=record_id, num_records=num_records, first_ordinal=first_ordinal, namespace=namespace) for (handle, record_type) in zip(column_handles, record_types): check_valid_record_type(record_type=record_type) full_key = string_ops.string_join([key, suffix_separator, record_type['extension']]) rtype = record_type['type'] a = custom_writer_op(record_type=rtype, path=full_key, resource_handle=handle, name='_'.join((name, rtype))) res_val = a.output_path if (log_directory is not None): timestamp = a.time write_duration = a.duration num_bytes = a.bytes log_op = gate.log_events(item_names=(('timestamp', 'key', 'duration', 'bytes') + (('id',) if (idc is not None) else ())), directory=log_directory, event_name=name, name='{}_logger'.format(name), components=((timestamp, res_val, write_duration, num_bytes) + ((idc,) if (idc is not None) else ()))) with ops.control_dependencies((log_op,)): res_val = array_ops.identity(res_val) (yield res_val) if (metadata is None): metadata = ((None,) * len(upstream_tensors)) else: metadata = sanitize_generator(metadata) if (len(metadata) != len(upstream_tensors)): raise Exception('Have {m} metadata tensors and {u} upstream buffers. Must be equal!'.format(m=len(metadata), u=len(upstream_tensors))) for ((key, namespace, num_records, first_ordinal, record_id, column_handle), idc) in zip(upstream_tensors, metadata): (yield make_ceph_writer(key=key, first_ordinal=first_ordinal, num_records=num_records, record_id=record_id, namespace=namespace, column_handle=column_handle, idc=idc))<|docstring|>:param upstream_tensors: a list of aligner output tensors of type (key, namespace, num_records, first ordinal, record id, column handle) :param user_name: :param cluster_name: :param ceph_conf_path: :param name: :return: yields the output of ceph write columns<|endoftext|>
1f0c0d9a3abc077a7a3211656d9b40cc15b4427c35ffa713368de1e5f52089dc
def local_read_group_pipeline(upstream_tensors, sync=True, mmap_pool=None, mmap_pool_args=pool_default_args, name='local_read_group_pipeline'): "\n Takes a bunch of groups of files and makes synchronous filemmap groups from them\n :param upstream_tensors: a generator of either a vector tensor or a list of scalar tensors of filenames to read. each of these constitutes a grop which will have control dependencies\n :param sync: whether or not to synchronously map the files\n :param mmap_pool: if not None, provide a persona_ops.file_m_map pool to this method\n :param mmap_pool_args:\n :return: yield a tuple of '(persona_ops.file_m_map for every column file, a generator)' for every tensor in upstream_tensors\n " if (mmap_pool is None): mmap_pool = persona_ops.m_map_pool(name=name, **mmap_pool_args) assert (len(upstream_tensors) > 0) for file_paths in upstream_tensors: if isinstance(file_paths, ops.Tensor): file_paths = array_ops.unstack(file_paths, axis=0) try: prev = [] for file_path in file_paths: with ops.control_dependencies(prev): mmap_op = persona_ops.file_m_map(filename=file_path, pool_handle=mmap_pool, synchronous=sync, name=name) prev.append(mmap_op) (yield prev) except TypeError: raise Exception('file paths {fp} is not an iterable or Tensor'.format(fp=file_paths))
Takes a bunch of groups of files and makes synchronous filemmap groups from them :param upstream_tensors: a generator of either a vector tensor or a list of scalar tensors of filenames to read. each of these constitutes a grop which will have control dependencies :param sync: whether or not to synchronously map the files :param mmap_pool: if not None, provide a persona_ops.file_m_map pool to this method :param mmap_pool_args: :return: yield a tuple of '(persona_ops.file_m_map for every column file, a generator)' for every tensor in upstream_tensors
tensorflow/contrib/persona/python/ops/io_pipe.py
local_read_group_pipeline
epfl-dcsl/ptf-system
0
python
def local_read_group_pipeline(upstream_tensors, sync=True, mmap_pool=None, mmap_pool_args=pool_default_args, name='local_read_group_pipeline'): "\n Takes a bunch of groups of files and makes synchronous filemmap groups from them\n :param upstream_tensors: a generator of either a vector tensor or a list of scalar tensors of filenames to read. each of these constitutes a grop which will have control dependencies\n :param sync: whether or not to synchronously map the files\n :param mmap_pool: if not None, provide a persona_ops.file_m_map pool to this method\n :param mmap_pool_args:\n :return: yield a tuple of '(persona_ops.file_m_map for every column file, a generator)' for every tensor in upstream_tensors\n " if (mmap_pool is None): mmap_pool = persona_ops.m_map_pool(name=name, **mmap_pool_args) assert (len(upstream_tensors) > 0) for file_paths in upstream_tensors: if isinstance(file_paths, ops.Tensor): file_paths = array_ops.unstack(file_paths, axis=0) try: prev = [] for file_path in file_paths: with ops.control_dependencies(prev): mmap_op = persona_ops.file_m_map(filename=file_path, pool_handle=mmap_pool, synchronous=sync, name=name) prev.append(mmap_op) (yield prev) except TypeError: raise Exception('file paths {fp} is not an iterable or Tensor'.format(fp=file_paths))
def local_read_group_pipeline(upstream_tensors, sync=True, mmap_pool=None, mmap_pool_args=pool_default_args, name='local_read_group_pipeline'): "\n Takes a bunch of groups of files and makes synchronous filemmap groups from them\n :param upstream_tensors: a generator of either a vector tensor or a list of scalar tensors of filenames to read. each of these constitutes a grop which will have control dependencies\n :param sync: whether or not to synchronously map the files\n :param mmap_pool: if not None, provide a persona_ops.file_m_map pool to this method\n :param mmap_pool_args:\n :return: yield a tuple of '(persona_ops.file_m_map for every column file, a generator)' for every tensor in upstream_tensors\n " if (mmap_pool is None): mmap_pool = persona_ops.m_map_pool(name=name, **mmap_pool_args) assert (len(upstream_tensors) > 0) for file_paths in upstream_tensors: if isinstance(file_paths, ops.Tensor): file_paths = array_ops.unstack(file_paths, axis=0) try: prev = [] for file_path in file_paths: with ops.control_dependencies(prev): mmap_op = persona_ops.file_m_map(filename=file_path, pool_handle=mmap_pool, synchronous=sync, name=name) prev.append(mmap_op) (yield prev) except TypeError: raise Exception('file paths {fp} is not an iterable or Tensor'.format(fp=file_paths))<|docstring|>Takes a bunch of groups of files and makes synchronous filemmap groups from them :param upstream_tensors: a generator of either a vector tensor or a list of scalar tensors of filenames to read. each of these constitutes a grop which will have control dependencies :param sync: whether or not to synchronously map the files :param mmap_pool: if not None, provide a persona_ops.file_m_map pool to this method :param mmap_pool_args: :return: yield a tuple of '(persona_ops.file_m_map for every column file, a generator)' for every tensor in upstream_tensors<|endoftext|>
c50ce0101a519ec5bcdd4db978167501b29c6fef1f86f5a155ce597673fdb0fb
def local_read_pipeline(upstream_tensors, columns, sync=True, delete_after_use=False, mmap_pool=None, mmap_pool_args=pool_default_args, name='local_read_pipeline'): "\n Create a read pipeline to read from the filesystem\n :param upstream_tensors: a list of file keys, as extracted from the metadata file\n :param columns: a list of columns to extract. See `valid_columns` for the set of valid columns\n :param sync: whether or not to synchronously map the files\n :param mmap_pool: if not None, provide a persona_ops.file_m_map pool to this method\n :param mmap_pool_args:\n :param name: \n :return: yield a tuple of '(persona_ops.file_m_map for every column file, a generator)' for every tensor in upstream_tensors\n " def make_readers(input_file_basename): prev = [] for full_filename in expand_column_extensions(key=input_file_basename, columns=columns): with ops.control_dependencies(prev): mmap_op = reader(filename=full_filename) (yield mmap_op) prev.append(mmap_op) columns = validate_columns(columns=columns) if (mmap_pool is None): mmap_pool = persona_ops.m_map_pool(name=name, **mmap_pool_args) reader = partial(persona_ops.file_m_map, synchronous=sync, pool_handle=mmap_pool, delete_after_use=delete_after_use) has_tensors = False for file_path in upstream_tensors: (yield make_readers(input_file_basename=file_path)) has_tensors = True assert has_tensors
Create a read pipeline to read from the filesystem :param upstream_tensors: a list of file keys, as extracted from the metadata file :param columns: a list of columns to extract. See `valid_columns` for the set of valid columns :param sync: whether or not to synchronously map the files :param mmap_pool: if not None, provide a persona_ops.file_m_map pool to this method :param mmap_pool_args: :param name: :return: yield a tuple of '(persona_ops.file_m_map for every column file, a generator)' for every tensor in upstream_tensors
tensorflow/contrib/persona/python/ops/io_pipe.py
local_read_pipeline
epfl-dcsl/ptf-system
0
python
def local_read_pipeline(upstream_tensors, columns, sync=True, delete_after_use=False, mmap_pool=None, mmap_pool_args=pool_default_args, name='local_read_pipeline'): "\n Create a read pipeline to read from the filesystem\n :param upstream_tensors: a list of file keys, as extracted from the metadata file\n :param columns: a list of columns to extract. See `valid_columns` for the set of valid columns\n :param sync: whether or not to synchronously map the files\n :param mmap_pool: if not None, provide a persona_ops.file_m_map pool to this method\n :param mmap_pool_args:\n :param name: \n :return: yield a tuple of '(persona_ops.file_m_map for every column file, a generator)' for every tensor in upstream_tensors\n " def make_readers(input_file_basename): prev = [] for full_filename in expand_column_extensions(key=input_file_basename, columns=columns): with ops.control_dependencies(prev): mmap_op = reader(filename=full_filename) (yield mmap_op) prev.append(mmap_op) columns = validate_columns(columns=columns) if (mmap_pool is None): mmap_pool = persona_ops.m_map_pool(name=name, **mmap_pool_args) reader = partial(persona_ops.file_m_map, synchronous=sync, pool_handle=mmap_pool, delete_after_use=delete_after_use) has_tensors = False for file_path in upstream_tensors: (yield make_readers(input_file_basename=file_path)) has_tensors = True assert has_tensors
def local_read_pipeline(upstream_tensors, columns, sync=True, delete_after_use=False, mmap_pool=None, mmap_pool_args=pool_default_args, name='local_read_pipeline'): "\n Create a read pipeline to read from the filesystem\n :param upstream_tensors: a list of file keys, as extracted from the metadata file\n :param columns: a list of columns to extract. See `valid_columns` for the set of valid columns\n :param sync: whether or not to synchronously map the files\n :param mmap_pool: if not None, provide a persona_ops.file_m_map pool to this method\n :param mmap_pool_args:\n :param name: \n :return: yield a tuple of '(persona_ops.file_m_map for every column file, a generator)' for every tensor in upstream_tensors\n " def make_readers(input_file_basename): prev = [] for full_filename in expand_column_extensions(key=input_file_basename, columns=columns): with ops.control_dependencies(prev): mmap_op = reader(filename=full_filename) (yield mmap_op) prev.append(mmap_op) columns = validate_columns(columns=columns) if (mmap_pool is None): mmap_pool = persona_ops.m_map_pool(name=name, **mmap_pool_args) reader = partial(persona_ops.file_m_map, synchronous=sync, pool_handle=mmap_pool, delete_after_use=delete_after_use) has_tensors = False for file_path in upstream_tensors: (yield make_readers(input_file_basename=file_path)) has_tensors = True assert has_tensors<|docstring|>Create a read pipeline to read from the filesystem :param upstream_tensors: a list of file keys, as extracted from the metadata file :param columns: a list of columns to extract. See `valid_columns` for the set of valid columns :param sync: whether or not to synchronously map the files :param mmap_pool: if not None, provide a persona_ops.file_m_map pool to this method :param mmap_pool_args: :param name: :return: yield a tuple of '(persona_ops.file_m_map for every column file, a generator)' for every tensor in upstream_tensors<|endoftext|>
0b648d132718799c8ba8f92325e11271e11a5a4e01548765151dd63f23330548
def local_write_pipeline(upstream_tensors, compressed, record_types=default_records_type, record_suffix='', name='local_write_pipeline'): '\n Create a local write pipeline, based on the number of upstream tensors received.\n :param upstream_tensors: a list of tensor tuples of type: buffer_list_handle, record_id, first_ordinal, num_records, file_path\n :param record_type: the type of results to write. See persona_ops.cc for valid types\n :param name: \n :return: yield a writer for each record to be written in upstream tensors. Each writer op returns the full path where it was written\n ' if compressed: writer_op = partial(persona_ops.agd_file_system_buffer_writer, compressed=True) else: writer_op = persona_ops.agd_file_system_buffer_list_writer record_types = sanitize_generator(record_types) suffix = constant_op.constant(record_suffix) def make_writer(record_id, file_path, first_ordinal, num_records, bl_handle): bl_handle = array_ops.unstack(bl_handle) if (len(bl_handle) != len(record_types)): raise Exception('number of record types must equal number of buffer list handles') for (handle, record_type) in zip(bl_handle, record_types): check_valid_record_type(record_type=record_type) full_filepath = string_ops.string_join([file_path, suffix, suffix_separator, record_type['extension']]) rtype = record_type['type'] (yield writer_op(record_id=record_id, record_type=rtype, resource_handle=handle, first_ordinal=first_ordinal, num_records=num_records, path=full_filepath, name='{name}_{rtype}'.format(name=name, rtype=rtype))) upstream_tensors = sanitize_generator(upstream_tensors) assert (len(upstream_tensors) > 0) for (buffer_list_handle, record_id, first_ordinal, num_records, file_path) in upstream_tensors: (yield make_writer(record_id=record_id, file_path=file_path, num_records=num_records, first_ordinal=first_ordinal, bl_handle=buffer_list_handle))
Create a local write pipeline, based on the number of upstream tensors received. :param upstream_tensors: a list of tensor tuples of type: buffer_list_handle, record_id, first_ordinal, num_records, file_path :param record_type: the type of results to write. See persona_ops.cc for valid types :param name: :return: yield a writer for each record to be written in upstream tensors. Each writer op returns the full path where it was written
tensorflow/contrib/persona/python/ops/io_pipe.py
local_write_pipeline
epfl-dcsl/ptf-system
0
python
def local_write_pipeline(upstream_tensors, compressed, record_types=default_records_type, record_suffix=, name='local_write_pipeline'): '\n Create a local write pipeline, based on the number of upstream tensors received.\n :param upstream_tensors: a list of tensor tuples of type: buffer_list_handle, record_id, first_ordinal, num_records, file_path\n :param record_type: the type of results to write. See persona_ops.cc for valid types\n :param name: \n :return: yield a writer for each record to be written in upstream tensors. Each writer op returns the full path where it was written\n ' if compressed: writer_op = partial(persona_ops.agd_file_system_buffer_writer, compressed=True) else: writer_op = persona_ops.agd_file_system_buffer_list_writer record_types = sanitize_generator(record_types) suffix = constant_op.constant(record_suffix) def make_writer(record_id, file_path, first_ordinal, num_records, bl_handle): bl_handle = array_ops.unstack(bl_handle) if (len(bl_handle) != len(record_types)): raise Exception('number of record types must equal number of buffer list handles') for (handle, record_type) in zip(bl_handle, record_types): check_valid_record_type(record_type=record_type) full_filepath = string_ops.string_join([file_path, suffix, suffix_separator, record_type['extension']]) rtype = record_type['type'] (yield writer_op(record_id=record_id, record_type=rtype, resource_handle=handle, first_ordinal=first_ordinal, num_records=num_records, path=full_filepath, name='{name}_{rtype}'.format(name=name, rtype=rtype))) upstream_tensors = sanitize_generator(upstream_tensors) assert (len(upstream_tensors) > 0) for (buffer_list_handle, record_id, first_ordinal, num_records, file_path) in upstream_tensors: (yield make_writer(record_id=record_id, file_path=file_path, num_records=num_records, first_ordinal=first_ordinal, bl_handle=buffer_list_handle))
def local_write_pipeline(upstream_tensors, compressed, record_types=default_records_type, record_suffix=, name='local_write_pipeline'): '\n Create a local write pipeline, based on the number of upstream tensors received.\n :param upstream_tensors: a list of tensor tuples of type: buffer_list_handle, record_id, first_ordinal, num_records, file_path\n :param record_type: the type of results to write. See persona_ops.cc for valid types\n :param name: \n :return: yield a writer for each record to be written in upstream tensors. Each writer op returns the full path where it was written\n ' if compressed: writer_op = partial(persona_ops.agd_file_system_buffer_writer, compressed=True) else: writer_op = persona_ops.agd_file_system_buffer_list_writer record_types = sanitize_generator(record_types) suffix = constant_op.constant(record_suffix) def make_writer(record_id, file_path, first_ordinal, num_records, bl_handle): bl_handle = array_ops.unstack(bl_handle) if (len(bl_handle) != len(record_types)): raise Exception('number of record types must equal number of buffer list handles') for (handle, record_type) in zip(bl_handle, record_types): check_valid_record_type(record_type=record_type) full_filepath = string_ops.string_join([file_path, suffix, suffix_separator, record_type['extension']]) rtype = record_type['type'] (yield writer_op(record_id=record_id, record_type=rtype, resource_handle=handle, first_ordinal=first_ordinal, num_records=num_records, path=full_filepath, name='{name}_{rtype}'.format(name=name, rtype=rtype))) upstream_tensors = sanitize_generator(upstream_tensors) assert (len(upstream_tensors) > 0) for (buffer_list_handle, record_id, first_ordinal, num_records, file_path) in upstream_tensors: (yield make_writer(record_id=record_id, file_path=file_path, num_records=num_records, first_ordinal=first_ordinal, bl_handle=buffer_list_handle))<|docstring|>Create a local write pipeline, based on the number of upstream tensors received. :param upstream_tensors: a list of tensor tuples of type: buffer_list_handle, record_id, first_ordinal, num_records, file_path :param record_type: the type of results to write. See persona_ops.cc for valid types :param name: :return: yield a writer for each record to be written in upstream tensors. Each writer op returns the full path where it was written<|endoftext|>
4887c7faf9b91bb3544bba63b557603843831aa810d280b645ba0546aa76a3d7
def agd_reader_pipeline(upstream_tensors, verify=False, buffer_pool=None, buffer_pool_args=pool_default_args, repack=None, name='agd_reader_pipeline'): "\n Yield a pipeline of input buffers processed by AGDReader.\n \n This processes ONLY A SINGLE COLUMN. Use agd_reader_multi_column_pipeline to do multiple columns in parallel.\n \n :param upstream_tensors: a tensor of handles to resources of type Data (in C++ persona code)\n :param verify: if True, enable format verification by AGDReader. Will fail if shape doesn't conform, but causes performance impact\n :param buffer_pool: if not None, use this as the buffer_pool, else create buffer_pool\n :param buffer_pool_default_args: the arguments to make the buffer_pool, if it is None\n :param name: \n :return: yields a tuple of output_buffer, num_records, first_ordinal, record_id\n " if (repack is None): repack = ((False,) * len(upstream_tensors)) with ops.name_scope('agd_reader'): if (buffer_pool is None): buffer_pool = persona_ops.buffer_pool(**buffer_pool_args, name='agd_reader_buffer_pool') if isinstance(upstream_tensors, ops.Tensor): upstream_tensors = array_ops.unstack(upstream_tensors) assert (len(upstream_tensors) > 0) if (len(repack) != len(upstream_tensors)): raise Exception('Repack vector not equal to the number of tensors') reader_op = partial(persona_ops.agd_reader, buffer_pool=buffer_pool, name=name, verify=verify) for (upstream_tensor, repack_column) in zip(upstream_tensors, repack): assert isinstance(repack_column, bool), 'repack is not a bool! got {}'.format(repack_column) ut_shape = upstream_tensor.get_shape() if (ut_shape != resource_shape): raise Exception('AGD_Reader pipeline encounter Tensor with shape {actual}, but expected {expected}'.format(actual=ut_shape, expected=resource_shape)) (output_buffer, num_records, first_ordinal, record_id) = reader_op(file_handle=upstream_tensor, unpack=(not repack_column), repack=repack_column) (yield (output_buffer, num_records, first_ordinal, record_id))
Yield a pipeline of input buffers processed by AGDReader. This processes ONLY A SINGLE COLUMN. Use agd_reader_multi_column_pipeline to do multiple columns in parallel. :param upstream_tensors: a tensor of handles to resources of type Data (in C++ persona code) :param verify: if True, enable format verification by AGDReader. Will fail if shape doesn't conform, but causes performance impact :param buffer_pool: if not None, use this as the buffer_pool, else create buffer_pool :param buffer_pool_default_args: the arguments to make the buffer_pool, if it is None :param name: :return: yields a tuple of output_buffer, num_records, first_ordinal, record_id
tensorflow/contrib/persona/python/ops/io_pipe.py
agd_reader_pipeline
epfl-dcsl/ptf-system
0
python
def agd_reader_pipeline(upstream_tensors, verify=False, buffer_pool=None, buffer_pool_args=pool_default_args, repack=None, name='agd_reader_pipeline'): "\n Yield a pipeline of input buffers processed by AGDReader.\n \n This processes ONLY A SINGLE COLUMN. Use agd_reader_multi_column_pipeline to do multiple columns in parallel.\n \n :param upstream_tensors: a tensor of handles to resources of type Data (in C++ persona code)\n :param verify: if True, enable format verification by AGDReader. Will fail if shape doesn't conform, but causes performance impact\n :param buffer_pool: if not None, use this as the buffer_pool, else create buffer_pool\n :param buffer_pool_default_args: the arguments to make the buffer_pool, if it is None\n :param name: \n :return: yields a tuple of output_buffer, num_records, first_ordinal, record_id\n " if (repack is None): repack = ((False,) * len(upstream_tensors)) with ops.name_scope('agd_reader'): if (buffer_pool is None): buffer_pool = persona_ops.buffer_pool(**buffer_pool_args, name='agd_reader_buffer_pool') if isinstance(upstream_tensors, ops.Tensor): upstream_tensors = array_ops.unstack(upstream_tensors) assert (len(upstream_tensors) > 0) if (len(repack) != len(upstream_tensors)): raise Exception('Repack vector not equal to the number of tensors') reader_op = partial(persona_ops.agd_reader, buffer_pool=buffer_pool, name=name, verify=verify) for (upstream_tensor, repack_column) in zip(upstream_tensors, repack): assert isinstance(repack_column, bool), 'repack is not a bool! got {}'.format(repack_column) ut_shape = upstream_tensor.get_shape() if (ut_shape != resource_shape): raise Exception('AGD_Reader pipeline encounter Tensor with shape {actual}, but expected {expected}'.format(actual=ut_shape, expected=resource_shape)) (output_buffer, num_records, first_ordinal, record_id) = reader_op(file_handle=upstream_tensor, unpack=(not repack_column), repack=repack_column) (yield (output_buffer, num_records, first_ordinal, record_id))
def agd_reader_pipeline(upstream_tensors, verify=False, buffer_pool=None, buffer_pool_args=pool_default_args, repack=None, name='agd_reader_pipeline'): "\n Yield a pipeline of input buffers processed by AGDReader.\n \n This processes ONLY A SINGLE COLUMN. Use agd_reader_multi_column_pipeline to do multiple columns in parallel.\n \n :param upstream_tensors: a tensor of handles to resources of type Data (in C++ persona code)\n :param verify: if True, enable format verification by AGDReader. Will fail if shape doesn't conform, but causes performance impact\n :param buffer_pool: if not None, use this as the buffer_pool, else create buffer_pool\n :param buffer_pool_default_args: the arguments to make the buffer_pool, if it is None\n :param name: \n :return: yields a tuple of output_buffer, num_records, first_ordinal, record_id\n " if (repack is None): repack = ((False,) * len(upstream_tensors)) with ops.name_scope('agd_reader'): if (buffer_pool is None): buffer_pool = persona_ops.buffer_pool(**buffer_pool_args, name='agd_reader_buffer_pool') if isinstance(upstream_tensors, ops.Tensor): upstream_tensors = array_ops.unstack(upstream_tensors) assert (len(upstream_tensors) > 0) if (len(repack) != len(upstream_tensors)): raise Exception('Repack vector not equal to the number of tensors') reader_op = partial(persona_ops.agd_reader, buffer_pool=buffer_pool, name=name, verify=verify) for (upstream_tensor, repack_column) in zip(upstream_tensors, repack): assert isinstance(repack_column, bool), 'repack is not a bool! got {}'.format(repack_column) ut_shape = upstream_tensor.get_shape() if (ut_shape != resource_shape): raise Exception('AGD_Reader pipeline encounter Tensor with shape {actual}, but expected {expected}'.format(actual=ut_shape, expected=resource_shape)) (output_buffer, num_records, first_ordinal, record_id) = reader_op(file_handle=upstream_tensor, unpack=(not repack_column), repack=repack_column) (yield (output_buffer, num_records, first_ordinal, record_id))<|docstring|>Yield a pipeline of input buffers processed by AGDReader. This processes ONLY A SINGLE COLUMN. Use agd_reader_multi_column_pipeline to do multiple columns in parallel. :param upstream_tensors: a tensor of handles to resources of type Data (in C++ persona code) :param verify: if True, enable format verification by AGDReader. Will fail if shape doesn't conform, but causes performance impact :param buffer_pool: if not None, use this as the buffer_pool, else create buffer_pool :param buffer_pool_default_args: the arguments to make the buffer_pool, if it is None :param name: :return: yields a tuple of output_buffer, num_records, first_ordinal, record_id<|endoftext|>
6c8c958991621cd774bf49d19d0f926b501baf6aeb629f484f83190bd733cd0c
def agd_reader_multi_column_pipeline(upstream_tensorz, control_ops=None, verify=False, buffer_pool=None, share_buffer_pool=True, buffer_pool_args=pool_default_args, repack=None, name='agd_reader_multi_column_pipeline'): "\n Create an AGDReader pipeline for an iterable of columns. Each column group is assumed to have the same first ordinal, number of records, and record id.\n :param upstream_tensorz: a list of list of tensors, each item being a column group\n :param verify: whether or not to invoke the verification for AGD columns\n :param buffer_pool: pass in a buffer_pool to reuse\n :param share_buffer_pool: if buffer_pool is not passed in, create one to share among all the AGDReader instances\n :param buffer_pool_args: special buffer pool args, if it's created\n :param name: \n :return: yield [output_buffer_handles], num_records, first_ordinal, record_id; in order, for each column group in upstream_tensorz\n " upstream_tensorz = sanitize_generator(upstream_tensorz) if (control_ops is not None): control_ops = sanitize_generator(control_ops) if (len(control_ops) != len(upstream_tensorz)): raise Exception('Control ops needs to be the same length as upstream tensors. len(tensors) = {lt}, len(control_ops) = {lc}'.format(lt=len(upstream_tensorz), lc=len(control_ops))) else: control_ops = itertools.repeat([]) with ops.name_scope('agd_read_multi'): if ((buffer_pool is None) and share_buffer_pool): buffer_pool = persona_ops.buffer_pool(**buffer_pool_args, name='agd_reader_buffer_pool') assert (len(upstream_tensorz) > 0) def gen_groups(): reader = partial(agd_reader_pipeline, verify=verify, buffer_pool_args=buffer_pool_args, buffer_pool=buffer_pool, name=name, repack=repack) for (upstream_tensors, control_dep) in zip(upstream_tensorz, control_ops): with ops.control_dependencies(control_dep): (yield reader(upstream_tensors=upstream_tensors)) for processed_tensors in gen_groups(): (output_buffers, num_recordss, first_ordinalss, record_ids) = zip(*processed_tensors) (yield (output_buffers, num_recordss[0], first_ordinalss[0], record_ids[0]))
Create an AGDReader pipeline for an iterable of columns. Each column group is assumed to have the same first ordinal, number of records, and record id. :param upstream_tensorz: a list of list of tensors, each item being a column group :param verify: whether or not to invoke the verification for AGD columns :param buffer_pool: pass in a buffer_pool to reuse :param share_buffer_pool: if buffer_pool is not passed in, create one to share among all the AGDReader instances :param buffer_pool_args: special buffer pool args, if it's created :param name: :return: yield [output_buffer_handles], num_records, first_ordinal, record_id; in order, for each column group in upstream_tensorz
tensorflow/contrib/persona/python/ops/io_pipe.py
agd_reader_multi_column_pipeline
epfl-dcsl/ptf-system
0
python
def agd_reader_multi_column_pipeline(upstream_tensorz, control_ops=None, verify=False, buffer_pool=None, share_buffer_pool=True, buffer_pool_args=pool_default_args, repack=None, name='agd_reader_multi_column_pipeline'): "\n Create an AGDReader pipeline for an iterable of columns. Each column group is assumed to have the same first ordinal, number of records, and record id.\n :param upstream_tensorz: a list of list of tensors, each item being a column group\n :param verify: whether or not to invoke the verification for AGD columns\n :param buffer_pool: pass in a buffer_pool to reuse\n :param share_buffer_pool: if buffer_pool is not passed in, create one to share among all the AGDReader instances\n :param buffer_pool_args: special buffer pool args, if it's created\n :param name: \n :return: yield [output_buffer_handles], num_records, first_ordinal, record_id; in order, for each column group in upstream_tensorz\n " upstream_tensorz = sanitize_generator(upstream_tensorz) if (control_ops is not None): control_ops = sanitize_generator(control_ops) if (len(control_ops) != len(upstream_tensorz)): raise Exception('Control ops needs to be the same length as upstream tensors. len(tensors) = {lt}, len(control_ops) = {lc}'.format(lt=len(upstream_tensorz), lc=len(control_ops))) else: control_ops = itertools.repeat([]) with ops.name_scope('agd_read_multi'): if ((buffer_pool is None) and share_buffer_pool): buffer_pool = persona_ops.buffer_pool(**buffer_pool_args, name='agd_reader_buffer_pool') assert (len(upstream_tensorz) > 0) def gen_groups(): reader = partial(agd_reader_pipeline, verify=verify, buffer_pool_args=buffer_pool_args, buffer_pool=buffer_pool, name=name, repack=repack) for (upstream_tensors, control_dep) in zip(upstream_tensorz, control_ops): with ops.control_dependencies(control_dep): (yield reader(upstream_tensors=upstream_tensors)) for processed_tensors in gen_groups(): (output_buffers, num_recordss, first_ordinalss, record_ids) = zip(*processed_tensors) (yield (output_buffers, num_recordss[0], first_ordinalss[0], record_ids[0]))
def agd_reader_multi_column_pipeline(upstream_tensorz, control_ops=None, verify=False, buffer_pool=None, share_buffer_pool=True, buffer_pool_args=pool_default_args, repack=None, name='agd_reader_multi_column_pipeline'): "\n Create an AGDReader pipeline for an iterable of columns. Each column group is assumed to have the same first ordinal, number of records, and record id.\n :param upstream_tensorz: a list of list of tensors, each item being a column group\n :param verify: whether or not to invoke the verification for AGD columns\n :param buffer_pool: pass in a buffer_pool to reuse\n :param share_buffer_pool: if buffer_pool is not passed in, create one to share among all the AGDReader instances\n :param buffer_pool_args: special buffer pool args, if it's created\n :param name: \n :return: yield [output_buffer_handles], num_records, first_ordinal, record_id; in order, for each column group in upstream_tensorz\n " upstream_tensorz = sanitize_generator(upstream_tensorz) if (control_ops is not None): control_ops = sanitize_generator(control_ops) if (len(control_ops) != len(upstream_tensorz)): raise Exception('Control ops needs to be the same length as upstream tensors. len(tensors) = {lt}, len(control_ops) = {lc}'.format(lt=len(upstream_tensorz), lc=len(control_ops))) else: control_ops = itertools.repeat([]) with ops.name_scope('agd_read_multi'): if ((buffer_pool is None) and share_buffer_pool): buffer_pool = persona_ops.buffer_pool(**buffer_pool_args, name='agd_reader_buffer_pool') assert (len(upstream_tensorz) > 0) def gen_groups(): reader = partial(agd_reader_pipeline, verify=verify, buffer_pool_args=buffer_pool_args, buffer_pool=buffer_pool, name=name, repack=repack) for (upstream_tensors, control_dep) in zip(upstream_tensorz, control_ops): with ops.control_dependencies(control_dep): (yield reader(upstream_tensors=upstream_tensors)) for processed_tensors in gen_groups(): (output_buffers, num_recordss, first_ordinalss, record_ids) = zip(*processed_tensors) (yield (output_buffers, num_recordss[0], first_ordinalss[0], record_ids[0]))<|docstring|>Create an AGDReader pipeline for an iterable of columns. Each column group is assumed to have the same first ordinal, number of records, and record id. :param upstream_tensorz: a list of list of tensors, each item being a column group :param verify: whether or not to invoke the verification for AGD columns :param buffer_pool: pass in a buffer_pool to reuse :param share_buffer_pool: if buffer_pool is not passed in, create one to share among all the AGDReader instances :param buffer_pool_args: special buffer pool args, if it's created :param name: :return: yield [output_buffer_handles], num_records, first_ordinal, record_id; in order, for each column group in upstream_tensorz<|endoftext|>
44e98f53d9877db5475dce4510095fefe2a34fd67f18e03f8c04c4e28c23ee45
def agd_bwa_read_assembler(upstream_tensors, agd_read_pool=None, agd_read_pool_args=pool_default_args, include_meta=False, name='agd_read_assembler'): "\n Generate agd_bwa_read datatypes from the upstream tensors. BWA paired aligner requires specific data structures\n :param upstream_tensors: a list of tuples of tensors with type: (column_buffers, num_reads)\n :param agd_read_pool: if not None, pass in an instance of persona_ops.agd_read_pool to share\n :param agd_read_pool_args: args for deafult construction of agd_read_pool if it's None\n :param include_meta: create a meta read assembler if passed. The shape of upstream_tensors must be compatible\n :param name: \n :return: yield instances of a tensor with AGDRead instance as the result\n " def make_agd_read(column_buffers, num_reads): if isinstance(column_buffers, ops.Tensor): column_buffers = array_ops.unstack(column_buffers) if include_meta: assert (len(column_buffers) == 3) return persona_ops.bwa_assembler(bwa_read_pool=agd_read_pool, base_handle=column_buffers[0], qual_handle=column_buffers[1], meta_handle=column_buffers[2], num_records=num_reads) else: assert (len(column_buffers) == 2) return persona_ops.no_meta_bwa_assembler(bwa_read_pool=agd_read_pool, base_handle=column_buffers[0], qual_handle=column_buffers[1], num_records=num_reads) if (agd_read_pool is None): agd_read_pool = persona_ops.bwa_read_pool(**agd_read_pool_args, name='agd_reader_bwa_read_pool') assert (len(upstream_tensors) > 0) for (output_buffers, num_reads) in upstream_tensors: (yield make_agd_read(column_buffers=output_buffers, num_reads=num_reads))
Generate agd_bwa_read datatypes from the upstream tensors. BWA paired aligner requires specific data structures :param upstream_tensors: a list of tuples of tensors with type: (column_buffers, num_reads) :param agd_read_pool: if not None, pass in an instance of persona_ops.agd_read_pool to share :param agd_read_pool_args: args for deafult construction of agd_read_pool if it's None :param include_meta: create a meta read assembler if passed. The shape of upstream_tensors must be compatible :param name: :return: yield instances of a tensor with AGDRead instance as the result
tensorflow/contrib/persona/python/ops/io_pipe.py
agd_bwa_read_assembler
epfl-dcsl/ptf-system
0
python
def agd_bwa_read_assembler(upstream_tensors, agd_read_pool=None, agd_read_pool_args=pool_default_args, include_meta=False, name='agd_read_assembler'): "\n Generate agd_bwa_read datatypes from the upstream tensors. BWA paired aligner requires specific data structures\n :param upstream_tensors: a list of tuples of tensors with type: (column_buffers, num_reads)\n :param agd_read_pool: if not None, pass in an instance of persona_ops.agd_read_pool to share\n :param agd_read_pool_args: args for deafult construction of agd_read_pool if it's None\n :param include_meta: create a meta read assembler if passed. The shape of upstream_tensors must be compatible\n :param name: \n :return: yield instances of a tensor with AGDRead instance as the result\n " def make_agd_read(column_buffers, num_reads): if isinstance(column_buffers, ops.Tensor): column_buffers = array_ops.unstack(column_buffers) if include_meta: assert (len(column_buffers) == 3) return persona_ops.bwa_assembler(bwa_read_pool=agd_read_pool, base_handle=column_buffers[0], qual_handle=column_buffers[1], meta_handle=column_buffers[2], num_records=num_reads) else: assert (len(column_buffers) == 2) return persona_ops.no_meta_bwa_assembler(bwa_read_pool=agd_read_pool, base_handle=column_buffers[0], qual_handle=column_buffers[1], num_records=num_reads) if (agd_read_pool is None): agd_read_pool = persona_ops.bwa_read_pool(**agd_read_pool_args, name='agd_reader_bwa_read_pool') assert (len(upstream_tensors) > 0) for (output_buffers, num_reads) in upstream_tensors: (yield make_agd_read(column_buffers=output_buffers, num_reads=num_reads))
def agd_bwa_read_assembler(upstream_tensors, agd_read_pool=None, agd_read_pool_args=pool_default_args, include_meta=False, name='agd_read_assembler'): "\n Generate agd_bwa_read datatypes from the upstream tensors. BWA paired aligner requires specific data structures\n :param upstream_tensors: a list of tuples of tensors with type: (column_buffers, num_reads)\n :param agd_read_pool: if not None, pass in an instance of persona_ops.agd_read_pool to share\n :param agd_read_pool_args: args for deafult construction of agd_read_pool if it's None\n :param include_meta: create a meta read assembler if passed. The shape of upstream_tensors must be compatible\n :param name: \n :return: yield instances of a tensor with AGDRead instance as the result\n " def make_agd_read(column_buffers, num_reads): if isinstance(column_buffers, ops.Tensor): column_buffers = array_ops.unstack(column_buffers) if include_meta: assert (len(column_buffers) == 3) return persona_ops.bwa_assembler(bwa_read_pool=agd_read_pool, base_handle=column_buffers[0], qual_handle=column_buffers[1], meta_handle=column_buffers[2], num_records=num_reads) else: assert (len(column_buffers) == 2) return persona_ops.no_meta_bwa_assembler(bwa_read_pool=agd_read_pool, base_handle=column_buffers[0], qual_handle=column_buffers[1], num_records=num_reads) if (agd_read_pool is None): agd_read_pool = persona_ops.bwa_read_pool(**agd_read_pool_args, name='agd_reader_bwa_read_pool') assert (len(upstream_tensors) > 0) for (output_buffers, num_reads) in upstream_tensors: (yield make_agd_read(column_buffers=output_buffers, num_reads=num_reads))<|docstring|>Generate agd_bwa_read datatypes from the upstream tensors. BWA paired aligner requires specific data structures :param upstream_tensors: a list of tuples of tensors with type: (column_buffers, num_reads) :param agd_read_pool: if not None, pass in an instance of persona_ops.agd_read_pool to share :param agd_read_pool_args: args for deafult construction of agd_read_pool if it's None :param include_meta: create a meta read assembler if passed. The shape of upstream_tensors must be compatible :param name: :return: yield instances of a tensor with AGDRead instance as the result<|endoftext|>
789f095a6f5719e39b10eb014465a9e011c02db01ef1cf4bad6119113760c39c
def agd_read_assembler(upstream_tensors, control_deps=None, agd_read_pool=None, agd_read_pool_args=pool_default_args, include_meta=False, name='agd_read_assembler'): "\n Generate agd_read datatypes from the upstream tensors\n :param upstream_tensors: a list of tuples of tensors with type: (column_buffers, num_reads)\n :param agd_read_pool: if not None, pass in an instance of persona_ops.agd_read_pool to share\n :param agd_read_pool_args: args for deafult construction of agd_read_pool if it's None\n :param include_meta: create a meta read assembler if passed. The shape of upstream_tensors must be compatible\n :param name: \n :return: yield instances of a tensor with AGDRead instance as the result\n " upstream_tensors = sanitize_generator(upstream_tensors) if (control_deps is None): control_deps = itertools.repeat([], times=len(upstream_tensors)) else: control_deps = sanitize_generator(control_deps) if (len(control_deps) != len(upstream_tensors)): raise Exception('Got {ut} upstream tensor groups, but only {cd} control dependencies. Must be equal!'.format(ut=len(upstream_tensors), cd=len(control_deps))) with ops.name_scope('agd_read_assembler'): def make_agd_read(column_buffers, num_reads): if isinstance(column_buffers, ops.Tensor): column_buffers = array_ops.unstack(column_buffers) if include_meta: assert (len(column_buffers) == 3) return persona_ops.agd_assembler(agd_read_pool=agd_read_pool, base_handle=column_buffers[0], qual_handle=column_buffers[1], meta_handle=column_buffers[2], num_records=num_reads) else: assert (len(column_buffers) == 2) return persona_ops.no_meta_agd_assembler(agd_read_pool=agd_read_pool, base_handle=column_buffers[0], qual_handle=column_buffers[1], num_records=num_reads) if (agd_read_pool is None): agd_read_pool = persona_ops.agd_read_pool(**agd_read_pool_args, name='agd_reader_agd_read_pool') assert (len(upstream_tensors) > 0) for ((output_buffers, num_reads), control_dep) in zip(upstream_tensors, control_deps): with ops.control_dependencies(control_dep): (yield make_agd_read(column_buffers=output_buffers, num_reads=num_reads))
Generate agd_read datatypes from the upstream tensors :param upstream_tensors: a list of tuples of tensors with type: (column_buffers, num_reads) :param agd_read_pool: if not None, pass in an instance of persona_ops.agd_read_pool to share :param agd_read_pool_args: args for deafult construction of agd_read_pool if it's None :param include_meta: create a meta read assembler if passed. The shape of upstream_tensors must be compatible :param name: :return: yield instances of a tensor with AGDRead instance as the result
tensorflow/contrib/persona/python/ops/io_pipe.py
agd_read_assembler
epfl-dcsl/ptf-system
0
python
def agd_read_assembler(upstream_tensors, control_deps=None, agd_read_pool=None, agd_read_pool_args=pool_default_args, include_meta=False, name='agd_read_assembler'): "\n Generate agd_read datatypes from the upstream tensors\n :param upstream_tensors: a list of tuples of tensors with type: (column_buffers, num_reads)\n :param agd_read_pool: if not None, pass in an instance of persona_ops.agd_read_pool to share\n :param agd_read_pool_args: args for deafult construction of agd_read_pool if it's None\n :param include_meta: create a meta read assembler if passed. The shape of upstream_tensors must be compatible\n :param name: \n :return: yield instances of a tensor with AGDRead instance as the result\n " upstream_tensors = sanitize_generator(upstream_tensors) if (control_deps is None): control_deps = itertools.repeat([], times=len(upstream_tensors)) else: control_deps = sanitize_generator(control_deps) if (len(control_deps) != len(upstream_tensors)): raise Exception('Got {ut} upstream tensor groups, but only {cd} control dependencies. Must be equal!'.format(ut=len(upstream_tensors), cd=len(control_deps))) with ops.name_scope('agd_read_assembler'): def make_agd_read(column_buffers, num_reads): if isinstance(column_buffers, ops.Tensor): column_buffers = array_ops.unstack(column_buffers) if include_meta: assert (len(column_buffers) == 3) return persona_ops.agd_assembler(agd_read_pool=agd_read_pool, base_handle=column_buffers[0], qual_handle=column_buffers[1], meta_handle=column_buffers[2], num_records=num_reads) else: assert (len(column_buffers) == 2) return persona_ops.no_meta_agd_assembler(agd_read_pool=agd_read_pool, base_handle=column_buffers[0], qual_handle=column_buffers[1], num_records=num_reads) if (agd_read_pool is None): agd_read_pool = persona_ops.agd_read_pool(**agd_read_pool_args, name='agd_reader_agd_read_pool') assert (len(upstream_tensors) > 0) for ((output_buffers, num_reads), control_dep) in zip(upstream_tensors, control_deps): with ops.control_dependencies(control_dep): (yield make_agd_read(column_buffers=output_buffers, num_reads=num_reads))
def agd_read_assembler(upstream_tensors, control_deps=None, agd_read_pool=None, agd_read_pool_args=pool_default_args, include_meta=False, name='agd_read_assembler'): "\n Generate agd_read datatypes from the upstream tensors\n :param upstream_tensors: a list of tuples of tensors with type: (column_buffers, num_reads)\n :param agd_read_pool: if not None, pass in an instance of persona_ops.agd_read_pool to share\n :param agd_read_pool_args: args for deafult construction of agd_read_pool if it's None\n :param include_meta: create a meta read assembler if passed. The shape of upstream_tensors must be compatible\n :param name: \n :return: yield instances of a tensor with AGDRead instance as the result\n " upstream_tensors = sanitize_generator(upstream_tensors) if (control_deps is None): control_deps = itertools.repeat([], times=len(upstream_tensors)) else: control_deps = sanitize_generator(control_deps) if (len(control_deps) != len(upstream_tensors)): raise Exception('Got {ut} upstream tensor groups, but only {cd} control dependencies. Must be equal!'.format(ut=len(upstream_tensors), cd=len(control_deps))) with ops.name_scope('agd_read_assembler'): def make_agd_read(column_buffers, num_reads): if isinstance(column_buffers, ops.Tensor): column_buffers = array_ops.unstack(column_buffers) if include_meta: assert (len(column_buffers) == 3) return persona_ops.agd_assembler(agd_read_pool=agd_read_pool, base_handle=column_buffers[0], qual_handle=column_buffers[1], meta_handle=column_buffers[2], num_records=num_reads) else: assert (len(column_buffers) == 2) return persona_ops.no_meta_agd_assembler(agd_read_pool=agd_read_pool, base_handle=column_buffers[0], qual_handle=column_buffers[1], num_records=num_reads) if (agd_read_pool is None): agd_read_pool = persona_ops.agd_read_pool(**agd_read_pool_args, name='agd_reader_agd_read_pool') assert (len(upstream_tensors) > 0) for ((output_buffers, num_reads), control_dep) in zip(upstream_tensors, control_deps): with ops.control_dependencies(control_dep): (yield make_agd_read(column_buffers=output_buffers, num_reads=num_reads))<|docstring|>Generate agd_read datatypes from the upstream tensors :param upstream_tensors: a list of tuples of tensors with type: (column_buffers, num_reads) :param agd_read_pool: if not None, pass in an instance of persona_ops.agd_read_pool to share :param agd_read_pool_args: args for deafult construction of agd_read_pool if it's None :param include_meta: create a meta read assembler if passed. The shape of upstream_tensors must be compatible :param name: :return: yield instances of a tensor with AGDRead instance as the result<|endoftext|>
d1e4746de554a42482775dc8f8af0c76f9d8cf10e4b06028ed958969187413da
@tf.function def call(self, inputs): '\n :param inputs: batched ids corresponding to text\n :return the probabilities as a tensor, [batch_size x num_classes]\n ' embedding = tf.nn.embedding_lookup(self.E, inputs) embedding = self.pos_embed(embedding) x = self.transformer(embedding) x = tf.keras.layers.GlobalAveragePooling1D()(x) probs = self.dense1(x) return probs
:param inputs: batched ids corresponding to text :return the probabilities as a tensor, [batch_size x num_classes]
transformer_model/code/transformer_model.py
call
nate-gillman/alzheimers-DL-final
0
python
@tf.function def call(self, inputs): '\n :param inputs: batched ids corresponding to text\n :return the probabilities as a tensor, [batch_size x num_classes]\n ' embedding = tf.nn.embedding_lookup(self.E, inputs) embedding = self.pos_embed(embedding) x = self.transformer(embedding) x = tf.keras.layers.GlobalAveragePooling1D()(x) probs = self.dense1(x) return probs
@tf.function def call(self, inputs): '\n :param inputs: batched ids corresponding to text\n :return the probabilities as a tensor, [batch_size x num_classes]\n ' embedding = tf.nn.embedding_lookup(self.E, inputs) embedding = self.pos_embed(embedding) x = self.transformer(embedding) x = tf.keras.layers.GlobalAveragePooling1D()(x) probs = self.dense1(x) return probs<|docstring|>:param inputs: batched ids corresponding to text :return the probabilities as a tensor, [batch_size x num_classes]<|endoftext|>
d943cb1ccda179e93309de0e0b5171ca0ad59285b1b10fdfb0e869dbf510a2ee
def accuracy(self, logits, labels): "\n Calculates the model's prediction accuracy by comparing\n logits to correct labels – no need to modify this.\n \n :param logits: a matrix of size (num_inputs, self.num_classes); during training, this will be (batch_size, self.num_classes)\n containing the result of multiple convolution and feed forward layers\n :param labels: matrix of size (num_labels, self.num_classes) containing the answers, during training, this will be (batch_size, self.num_classes)\n\n NOTE: DO NOT EDIT\n \n :return: the accuracy of the model as a Tensor\n " correct_predictions = tf.equal(tf.argmax(logits, 1), tf.argmax(labels, 1)) return tf.reduce_mean(tf.cast(correct_predictions, tf.float32))
Calculates the model's prediction accuracy by comparing logits to correct labels – no need to modify this. :param logits: a matrix of size (num_inputs, self.num_classes); during training, this will be (batch_size, self.num_classes) containing the result of multiple convolution and feed forward layers :param labels: matrix of size (num_labels, self.num_classes) containing the answers, during training, this will be (batch_size, self.num_classes) NOTE: DO NOT EDIT :return: the accuracy of the model as a Tensor
transformer_model/code/transformer_model.py
accuracy
nate-gillman/alzheimers-DL-final
0
python
def accuracy(self, logits, labels): "\n Calculates the model's prediction accuracy by comparing\n logits to correct labels – no need to modify this.\n \n :param logits: a matrix of size (num_inputs, self.num_classes); during training, this will be (batch_size, self.num_classes)\n containing the result of multiple convolution and feed forward layers\n :param labels: matrix of size (num_labels, self.num_classes) containing the answers, during training, this will be (batch_size, self.num_classes)\n\n NOTE: DO NOT EDIT\n \n :return: the accuracy of the model as a Tensor\n " correct_predictions = tf.equal(tf.argmax(logits, 1), tf.argmax(labels, 1)) return tf.reduce_mean(tf.cast(correct_predictions, tf.float32))
def accuracy(self, logits, labels): "\n Calculates the model's prediction accuracy by comparing\n logits to correct labels – no need to modify this.\n \n :param logits: a matrix of size (num_inputs, self.num_classes); during training, this will be (batch_size, self.num_classes)\n containing the result of multiple convolution and feed forward layers\n :param labels: matrix of size (num_labels, self.num_classes) containing the answers, during training, this will be (batch_size, self.num_classes)\n\n NOTE: DO NOT EDIT\n \n :return: the accuracy of the model as a Tensor\n " correct_predictions = tf.equal(tf.argmax(logits, 1), tf.argmax(labels, 1)) return tf.reduce_mean(tf.cast(correct_predictions, tf.float32))<|docstring|>Calculates the model's prediction accuracy by comparing logits to correct labels – no need to modify this. :param logits: a matrix of size (num_inputs, self.num_classes); during training, this will be (batch_size, self.num_classes) containing the result of multiple convolution and feed forward layers :param labels: matrix of size (num_labels, self.num_classes) containing the answers, during training, this will be (batch_size, self.num_classes) NOTE: DO NOT EDIT :return: the accuracy of the model as a Tensor<|endoftext|>
4ab77a2e02628b424fc2ad60f13d9fa55ddef53ce3309e426206ea23c0f8af54
def loss_function(self, prbs, labels, mask): '\n\t\tCalculates the model cross-entropy loss after one forward pass\n\t\tPlease use reduce sum here instead of reduce mean to make things easier in calculating per symbol accuracy.\n\n\t\t:param prbs: float tensor, word prediction probabilities [batch_size x window_size x english_vocab_size]\n\t\t:param labels: integer tensor, word prediction labels [batch_size x window_size]\n\t\t:param mask: tensor that acts as a padding mask [batch_size x window_size]\n\t\t:return: the loss of the model as a tensor\n\t\t' return tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels, prbs))
Calculates the model cross-entropy loss after one forward pass Please use reduce sum here instead of reduce mean to make things easier in calculating per symbol accuracy. :param prbs: float tensor, word prediction probabilities [batch_size x window_size x english_vocab_size] :param labels: integer tensor, word prediction labels [batch_size x window_size] :param mask: tensor that acts as a padding mask [batch_size x window_size] :return: the loss of the model as a tensor
transformer_model/code/transformer_model.py
loss_function
nate-gillman/alzheimers-DL-final
0
python
def loss_function(self, prbs, labels, mask): '\n\t\tCalculates the model cross-entropy loss after one forward pass\n\t\tPlease use reduce sum here instead of reduce mean to make things easier in calculating per symbol accuracy.\n\n\t\t:param prbs: float tensor, word prediction probabilities [batch_size x window_size x english_vocab_size]\n\t\t:param labels: integer tensor, word prediction labels [batch_size x window_size]\n\t\t:param mask: tensor that acts as a padding mask [batch_size x window_size]\n\t\t:return: the loss of the model as a tensor\n\t\t' return tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels, prbs))
def loss_function(self, prbs, labels, mask): '\n\t\tCalculates the model cross-entropy loss after one forward pass\n\t\tPlease use reduce sum here instead of reduce mean to make things easier in calculating per symbol accuracy.\n\n\t\t:param prbs: float tensor, word prediction probabilities [batch_size x window_size x english_vocab_size]\n\t\t:param labels: integer tensor, word prediction labels [batch_size x window_size]\n\t\t:param mask: tensor that acts as a padding mask [batch_size x window_size]\n\t\t:return: the loss of the model as a tensor\n\t\t' return tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels, prbs))<|docstring|>Calculates the model cross-entropy loss after one forward pass Please use reduce sum here instead of reduce mean to make things easier in calculating per symbol accuracy. :param prbs: float tensor, word prediction probabilities [batch_size x window_size x english_vocab_size] :param labels: integer tensor, word prediction labels [batch_size x window_size] :param mask: tensor that acts as a padding mask [batch_size x window_size] :return: the loss of the model as a tensor<|endoftext|>
c26d7ec7296685ef4962d4d5316996e82179196890578dfd579ba100d362381a
@staticmethod def maxArea(height: List[int]) -> int: '\n (以下段落摘抄自评论区)\n 其实我们显然可以发现影响问题的两个关键因素,一个是最短的短板,一个是宽度。\n 如果宽度变小,那么面积想比之前的更大,唯一的可能是最短的短板比之前要高。\n 所以更高的木板根本没必要移动,动它没有任何意义。如果想在更短的宽度得到更大的面积,唯一的可能是移动最短的短板,以期望其变高。短板原理啊,朋友们,是不是刷着刷着题突然就领悟到了人生的哲理。\n 所以大家不要老是想这道题该不该用双指针去解;看清这题的本质,自然而然就意识到双指针显然是个较优解。\n ' (i, j, res) = (0, (len(height) - 1), 0) while (i < j): if (height[i] < height[j]): res = max(res, (height[i] * (j - i))) i += 1 else: res = max(res, (height[j] * (j - i))) j -= 1 return res
(以下段落摘抄自评论区) 其实我们显然可以发现影响问题的两个关键因素,一个是最短的短板,一个是宽度。 如果宽度变小,那么面积想比之前的更大,唯一的可能是最短的短板比之前要高。 所以更高的木板根本没必要移动,动它没有任何意义。如果想在更短的宽度得到更大的面积,唯一的可能是移动最短的短板,以期望其变高。短板原理啊,朋友们,是不是刷着刷着题突然就领悟到了人生的哲理。 所以大家不要老是想这道题该不该用双指针去解;看清这题的本质,自然而然就意识到双指针显然是个较优解。
problems/11_most_water/good_solution.py
maxArea
TanyeeZhang/leet-note-code
0
python
@staticmethod def maxArea(height: List[int]) -> int: '\n (以下段落摘抄自评论区)\n 其实我们显然可以发现影响问题的两个关键因素,一个是最短的短板,一个是宽度。\n 如果宽度变小,那么面积想比之前的更大,唯一的可能是最短的短板比之前要高。\n 所以更高的木板根本没必要移动,动它没有任何意义。如果想在更短的宽度得到更大的面积,唯一的可能是移动最短的短板,以期望其变高。短板原理啊,朋友们,是不是刷着刷着题突然就领悟到了人生的哲理。\n 所以大家不要老是想这道题该不该用双指针去解;看清这题的本质,自然而然就意识到双指针显然是个较优解。\n ' (i, j, res) = (0, (len(height) - 1), 0) while (i < j): if (height[i] < height[j]): res = max(res, (height[i] * (j - i))) i += 1 else: res = max(res, (height[j] * (j - i))) j -= 1 return res
@staticmethod def maxArea(height: List[int]) -> int: '\n (以下段落摘抄自评论区)\n 其实我们显然可以发现影响问题的两个关键因素,一个是最短的短板,一个是宽度。\n 如果宽度变小,那么面积想比之前的更大,唯一的可能是最短的短板比之前要高。\n 所以更高的木板根本没必要移动,动它没有任何意义。如果想在更短的宽度得到更大的面积,唯一的可能是移动最短的短板,以期望其变高。短板原理啊,朋友们,是不是刷着刷着题突然就领悟到了人生的哲理。\n 所以大家不要老是想这道题该不该用双指针去解;看清这题的本质,自然而然就意识到双指针显然是个较优解。\n ' (i, j, res) = (0, (len(height) - 1), 0) while (i < j): if (height[i] < height[j]): res = max(res, (height[i] * (j - i))) i += 1 else: res = max(res, (height[j] * (j - i))) j -= 1 return res<|docstring|>(以下段落摘抄自评论区) 其实我们显然可以发现影响问题的两个关键因素,一个是最短的短板,一个是宽度。 如果宽度变小,那么面积想比之前的更大,唯一的可能是最短的短板比之前要高。 所以更高的木板根本没必要移动,动它没有任何意义。如果想在更短的宽度得到更大的面积,唯一的可能是移动最短的短板,以期望其变高。短板原理啊,朋友们,是不是刷着刷着题突然就领悟到了人生的哲理。 所以大家不要老是想这道题该不该用双指针去解;看清这题的本质,自然而然就意识到双指针显然是个较优解。<|endoftext|>
2110a4e980c233cbc87bcc4252708ccd1535e5255a0fa1e7d34a9aae26b04e84
def random_date(start, end): '\n This function will return a random datetime between two datetime\n objects.\n ' delta = (end - start) int_delta = ((((delta.days * 24) * 60) * 60) + delta.seconds) random_second = randrange(int_delta) return (start + timedelta(seconds=random_second))
This function will return a random datetime between two datetime objects.
src/tuberlin/inventory/management/commands/random_objekts.py
random_date
CircularBerlin/gmit
0
python
def random_date(start, end): '\n This function will return a random datetime between two datetime\n objects.\n ' delta = (end - start) int_delta = ((((delta.days * 24) * 60) * 60) + delta.seconds) random_second = randrange(int_delta) return (start + timedelta(seconds=random_second))
def random_date(start, end): '\n This function will return a random datetime between two datetime\n objects.\n ' delta = (end - start) int_delta = ((((delta.days * 24) * 60) * 60) + delta.seconds) random_second = randrange(int_delta) return (start + timedelta(seconds=random_second))<|docstring|>This function will return a random datetime between two datetime objects.<|endoftext|>
dc36bb4e4e6d6d904a1f62da78c769858183c37827e92be6951cd9713f1daab6
def run_network(pgm): 'Run the intcode network' computers = [] for c in range(0, 50): computers.append(intcode.Program('network', copy.copy(pgm), [c])) while True: for c in range(0, 50): if (computers[c].state['ptr'] != (- 1)): computers[c].intcode() if (len(computers[c].state['outputs']) >= 3): dst = computers[c].state['outputs'].pop(0) x = computers[c].state['outputs'].pop(0) y = computers[c].state['outputs'].pop(0) if (dst == 255): return y computers[dst].state['inputs'].append(x) computers[dst].state['inputs'].append(y)
Run the intcode network
aoc2019/day23.py
run_network
zoeimogen/AoC2019
0
python
def run_network(pgm): computers = [] for c in range(0, 50): computers.append(intcode.Program('network', copy.copy(pgm), [c])) while True: for c in range(0, 50): if (computers[c].state['ptr'] != (- 1)): computers[c].intcode() if (len(computers[c].state['outputs']) >= 3): dst = computers[c].state['outputs'].pop(0) x = computers[c].state['outputs'].pop(0) y = computers[c].state['outputs'].pop(0) if (dst == 255): return y computers[dst].state['inputs'].append(x) computers[dst].state['inputs'].append(y)
def run_network(pgm): computers = [] for c in range(0, 50): computers.append(intcode.Program('network', copy.copy(pgm), [c])) while True: for c in range(0, 50): if (computers[c].state['ptr'] != (- 1)): computers[c].intcode() if (len(computers[c].state['outputs']) >= 3): dst = computers[c].state['outputs'].pop(0) x = computers[c].state['outputs'].pop(0) y = computers[c].state['outputs'].pop(0) if (dst == 255): return y computers[dst].state['inputs'].append(x) computers[dst].state['inputs'].append(y)<|docstring|>Run the intcode network<|endoftext|>
193efc06f56f550f4c7309ce113644e509f44dee5e8b216e0fffa3a6aa14ab49
def run_network_p2(pgm): 'Run the intcode network with NAT' computers = [] for c in range(0, 50): computers.append(intcode.Program('network', copy.copy(pgm), [c])) nat = (0, 0) while True: for c in range(0, 50): if (computers[c].state['ptr'] != (- 1)): computers[c].intcode() if (len(computers[c].state['outputs']) >= 3): dst = computers[c].state['outputs'].pop(0) x = computers[c].state['outputs'].pop(0) y = computers[c].state['outputs'].pop(0) if (dst == 255): if (y == nat[1]): return y nat = (x, y) else: computers[dst].state['inputs'].append(x) computers[dst].state['inputs'].append(y) if (len([i for i in computers if (i.state['idle'] < 2)]) == 0): computers[0].state['idle'] = 0 computers[0].state['inputs'].append(nat[0]) computers[0].state['inputs'].append(nat[1])
Run the intcode network with NAT
aoc2019/day23.py
run_network_p2
zoeimogen/AoC2019
0
python
def run_network_p2(pgm): computers = [] for c in range(0, 50): computers.append(intcode.Program('network', copy.copy(pgm), [c])) nat = (0, 0) while True: for c in range(0, 50): if (computers[c].state['ptr'] != (- 1)): computers[c].intcode() if (len(computers[c].state['outputs']) >= 3): dst = computers[c].state['outputs'].pop(0) x = computers[c].state['outputs'].pop(0) y = computers[c].state['outputs'].pop(0) if (dst == 255): if (y == nat[1]): return y nat = (x, y) else: computers[dst].state['inputs'].append(x) computers[dst].state['inputs'].append(y) if (len([i for i in computers if (i.state['idle'] < 2)]) == 0): computers[0].state['idle'] = 0 computers[0].state['inputs'].append(nat[0]) computers[0].state['inputs'].append(nat[1])
def run_network_p2(pgm): computers = [] for c in range(0, 50): computers.append(intcode.Program('network', copy.copy(pgm), [c])) nat = (0, 0) while True: for c in range(0, 50): if (computers[c].state['ptr'] != (- 1)): computers[c].intcode() if (len(computers[c].state['outputs']) >= 3): dst = computers[c].state['outputs'].pop(0) x = computers[c].state['outputs'].pop(0) y = computers[c].state['outputs'].pop(0) if (dst == 255): if (y == nat[1]): return y nat = (x, y) else: computers[dst].state['inputs'].append(x) computers[dst].state['inputs'].append(y) if (len([i for i in computers if (i.state['idle'] < 2)]) == 0): computers[0].state['idle'] = 0 computers[0].state['inputs'].append(nat[0]) computers[0].state['inputs'].append(nat[1])<|docstring|>Run the intcode network with NAT<|endoftext|>
cc9938fcc0b25533a32636449b49c6e3339aa6db4f7f3b3d60d8ad46a882ca71
def run() -> Tuple[(int, int)]: 'Main' with open('inputs/day23.txt') as f: data = list(map(int, f.readline().split(','))) part1 = run_network(data) part2 = run_network_p2(data) return (part1, part2)
Main
aoc2019/day23.py
run
zoeimogen/AoC2019
0
python
def run() -> Tuple[(int, int)]: with open('inputs/day23.txt') as f: data = list(map(int, f.readline().split(','))) part1 = run_network(data) part2 = run_network_p2(data) return (part1, part2)
def run() -> Tuple[(int, int)]: with open('inputs/day23.txt') as f: data = list(map(int, f.readline().split(','))) part1 = run_network(data) part2 = run_network_p2(data) return (part1, part2)<|docstring|>Main<|endoftext|>
10c9f699fffc1cbcf3ef2f8089e22e31bc66714bc61df7a9d49bb8028f6af31b
@staticmethod def store_result(result: dict, filepath: str): 'Store the given result at the specified location' ScanResultProcessor.store_json_convertible_result(result, filepath)
Store the given result at the specified location
core/scan_result_processor.py
store_result
RE4CT10N/avain
51
python
@staticmethod def store_result(result: dict, filepath: str): ScanResultProcessor.store_json_convertible_result(result, filepath)
@staticmethod def store_result(result: dict, filepath: str): ScanResultProcessor.store_json_convertible_result(result, filepath)<|docstring|>Store the given result at the specified location<|endoftext|>
113c1b0d55e7ed547e0cbb64907791f9843e631372b31b3fc2acd27fdb70f9a3
@staticmethod def store_aggregated_result(aggr_result, filepath: str): 'Store the given aggregated result at the specified location' ScanResultProcessor.store_json_convertible_result(aggr_result, filepath)
Store the given aggregated result at the specified location
core/scan_result_processor.py
store_aggregated_result
RE4CT10N/avain
51
python
@staticmethod def store_aggregated_result(aggr_result, filepath: str): ScanResultProcessor.store_json_convertible_result(aggr_result, filepath)
@staticmethod def store_aggregated_result(aggr_result, filepath: str): ScanResultProcessor.store_json_convertible_result(aggr_result, filepath)<|docstring|>Store the given aggregated result at the specified location<|endoftext|>
438957c3c005e0f6186514b204c6154fab84c949c79ed6a5880c6276a3165d4e
def aggregate_results(self): '\n Accumulate all retrieved scan results to one scan result.\n\n :return: a dict having host IPs as keys and their scan results as values\n ' if (not self.results): result = {} elif (len(self.results) == 1): result = copy.deepcopy(self.results[list(self.results.keys())[0]]) else: result = self._aggregate_results() for (key, val) in result.items(): if (key != 'trust'): if (not ('os' in val)): val['os'] = {} if (not ('tcp' in val)): val['tcp'] = {} if (not ('udp' in val)): val['udp'] = {} ScanResultProcessor.remove_trust_values(result) for (_, host) in result.items(): if ('os' in host): if (not isinstance(host['os'], list)): host['os'] = [host['os']] for protocol in ('tcp', 'udp'): if (protocol in host): for (portid, portinfos) in host[protocol].items(): if (not isinstance(portinfos, list)): host[protocol][portid] = [portinfos] return ResultProcessor.sort_result_by_ip(result)
Accumulate all retrieved scan results to one scan result. :return: a dict having host IPs as keys and their scan results as values
core/scan_result_processor.py
aggregate_results
RE4CT10N/avain
51
python
def aggregate_results(self): '\n Accumulate all retrieved scan results to one scan result.\n\n :return: a dict having host IPs as keys and their scan results as values\n ' if (not self.results): result = {} elif (len(self.results) == 1): result = copy.deepcopy(self.results[list(self.results.keys())[0]]) else: result = self._aggregate_results() for (key, val) in result.items(): if (key != 'trust'): if (not ('os' in val)): val['os'] = {} if (not ('tcp' in val)): val['tcp'] = {} if (not ('udp' in val)): val['udp'] = {} ScanResultProcessor.remove_trust_values(result) for (_, host) in result.items(): if ('os' in host): if (not isinstance(host['os'], list)): host['os'] = [host['os']] for protocol in ('tcp', 'udp'): if (protocol in host): for (portid, portinfos) in host[protocol].items(): if (not isinstance(portinfos, list)): host[protocol][portid] = [portinfos] return ResultProcessor.sort_result_by_ip(result)
def aggregate_results(self): '\n Accumulate all retrieved scan results to one scan result.\n\n :return: a dict having host IPs as keys and their scan results as values\n ' if (not self.results): result = {} elif (len(self.results) == 1): result = copy.deepcopy(self.results[list(self.results.keys())[0]]) else: result = self._aggregate_results() for (key, val) in result.items(): if (key != 'trust'): if (not ('os' in val)): val['os'] = {} if (not ('tcp' in val)): val['tcp'] = {} if (not ('udp' in val)): val['udp'] = {} ScanResultProcessor.remove_trust_values(result) for (_, host) in result.items(): if ('os' in host): if (not isinstance(host['os'], list)): host['os'] = [host['os']] for protocol in ('tcp', 'udp'): if (protocol in host): for (portid, portinfos) in host[protocol].items(): if (not isinstance(portinfos, list)): host[protocol][portid] = [portinfos] return ResultProcessor.sort_result_by_ip(result)<|docstring|>Accumulate all retrieved scan results to one scan result. :return: a dict having host IPs as keys and their scan results as values<|endoftext|>
70b14611f18c094ea25c41400714b70519060e0e353ce51b5ad0341516cff6bf
def _group_by_product(self, intermediate_results): '\n Group the intermediate results by their CPE product value (if it exists). Two items\n are grouped if they have the same part and vendor and the cosine similarity of their\n product strings is greater than 0.45.\n\n :param intermediate_results: the intermediate results after first group and reduce\n :return: the intermediate results grouped by their CPE product\n ' def group_item_by_product(item, groups): for group in groups: for gitem in group: for cpe in item.get('cpes', []): for gcpe in gitem.get('cpes', []): (cpe_split, gcpe_split) = (cpe[5:].split(':'), gcpe[5:].split(':')) if ((len(cpe_split) > 2) and (len(gcpe_split) > 2)): if ((cpe_split[0] == gcpe_split[0]) and (cpe_split[1] == gcpe_split[1])): if (util.compute_cosine_similarity(cpe_split[2], gcpe_split[2], '[^\\W_]+') > 0.45): group.append(item) return True return False def group_protocol(protocol): nonlocal ip, host, product_groups if (protocol in host): if (protocol not in product_groups): product_groups[ip][protocol] = {} for (portid, port_nodes) in host[protocol].items(): port_groups = [] for port_node in port_nodes: if (not group_item_by_product(port_node, port_groups)): port_groups.append([port_node]) product_groups[ip][protocol][portid] = port_groups product_groups = {} for (ip, host) in intermediate_results.items(): if (ip not in product_groups): product_groups[ip] = {} if ('os' in host): os_groups = [] for os_node in host['os']: if (not group_item_by_product(os_node, os_groups)): os_groups.append([os_node]) product_groups[ip]['os'] = os_groups group_protocol('tcp') group_protocol('udp') return product_groups
Group the intermediate results by their CPE product value (if it exists). Two items are grouped if they have the same part and vendor and the cosine similarity of their product strings is greater than 0.45. :param intermediate_results: the intermediate results after first group and reduce :return: the intermediate results grouped by their CPE product
core/scan_result_processor.py
_group_by_product
RE4CT10N/avain
51
python
def _group_by_product(self, intermediate_results): '\n Group the intermediate results by their CPE product value (if it exists). Two items\n are grouped if they have the same part and vendor and the cosine similarity of their\n product strings is greater than 0.45.\n\n :param intermediate_results: the intermediate results after first group and reduce\n :return: the intermediate results grouped by their CPE product\n ' def group_item_by_product(item, groups): for group in groups: for gitem in group: for cpe in item.get('cpes', []): for gcpe in gitem.get('cpes', []): (cpe_split, gcpe_split) = (cpe[5:].split(':'), gcpe[5:].split(':')) if ((len(cpe_split) > 2) and (len(gcpe_split) > 2)): if ((cpe_split[0] == gcpe_split[0]) and (cpe_split[1] == gcpe_split[1])): if (util.compute_cosine_similarity(cpe_split[2], gcpe_split[2], '[^\\W_]+') > 0.45): group.append(item) return True return False def group_protocol(protocol): nonlocal ip, host, product_groups if (protocol in host): if (protocol not in product_groups): product_groups[ip][protocol] = {} for (portid, port_nodes) in host[protocol].items(): port_groups = [] for port_node in port_nodes: if (not group_item_by_product(port_node, port_groups)): port_groups.append([port_node]) product_groups[ip][protocol][portid] = port_groups product_groups = {} for (ip, host) in intermediate_results.items(): if (ip not in product_groups): product_groups[ip] = {} if ('os' in host): os_groups = [] for os_node in host['os']: if (not group_item_by_product(os_node, os_groups)): os_groups.append([os_node]) product_groups[ip]['os'] = os_groups group_protocol('tcp') group_protocol('udp') return product_groups
def _group_by_product(self, intermediate_results): '\n Group the intermediate results by their CPE product value (if it exists). Two items\n are grouped if they have the same part and vendor and the cosine similarity of their\n product strings is greater than 0.45.\n\n :param intermediate_results: the intermediate results after first group and reduce\n :return: the intermediate results grouped by their CPE product\n ' def group_item_by_product(item, groups): for group in groups: for gitem in group: for cpe in item.get('cpes', []): for gcpe in gitem.get('cpes', []): (cpe_split, gcpe_split) = (cpe[5:].split(':'), gcpe[5:].split(':')) if ((len(cpe_split) > 2) and (len(gcpe_split) > 2)): if ((cpe_split[0] == gcpe_split[0]) and (cpe_split[1] == gcpe_split[1])): if (util.compute_cosine_similarity(cpe_split[2], gcpe_split[2], '[^\\W_]+') > 0.45): group.append(item) return True return False def group_protocol(protocol): nonlocal ip, host, product_groups if (protocol in host): if (protocol not in product_groups): product_groups[ip][protocol] = {} for (portid, port_nodes) in host[protocol].items(): port_groups = [] for port_node in port_nodes: if (not group_item_by_product(port_node, port_groups)): port_groups.append([port_node]) product_groups[ip][protocol][portid] = port_groups product_groups = {} for (ip, host) in intermediate_results.items(): if (ip not in product_groups): product_groups[ip] = {} if ('os' in host): os_groups = [] for os_node in host['os']: if (not group_item_by_product(os_node, os_groups)): os_groups.append([os_node]) product_groups[ip]['os'] = os_groups group_protocol('tcp') group_protocol('udp') return product_groups<|docstring|>Group the intermediate results by their CPE product value (if it exists). Two items are grouped if they have the same part and vendor and the cosine similarity of their product strings is greater than 0.45. :param intermediate_results: the intermediate results after first group and reduce :return: the intermediate results grouped by their CPE product<|endoftext|>
f2a28f43f1ecf0e11b1a930a321e5ccb094fb85b82eca91f9c70f77eda66fbc2
def _aggregate_results(self): '\n Aggregate the "grouped and reduced" results to one final result. The\n aggregation is done depending on the config value for "scan_result_aggr_scheme".\n\n Value "SINGLE" : the single result with the highest trust rating is chosen\n Value "MULTIPLE" : the results are returned without further processing\n Value "FILTER" : similar products are filtered out, i.e. out of macOS 10.12\n and macOS 10.13, only the one with the highest trust rating\n is returned\n ' processed_results = self._group_and_reduce() if (self.config['core'].get('scan_result_aggr_scheme', '').upper() == 'MULTIPLE'): return processed_results if (self.config['core'].get('scan_result_aggr_scheme', '').upper() == 'SINGLE'): for (_, host) in processed_results.items(): if ('os' in host): host['os'] = [max(host['os'], key=(lambda entry: entry['trust']))] for protocol in ('tcp', 'udp'): if (protocol in host): for (portid, port_entries) in host[protocol].items(): host[protocol][portid] = [max(port_entries, key=(lambda entry: entry['trust']))] return processed_results if (self.config['core'].get('scan_result_aggr_scheme', 'FILTER').upper() == 'FILTER'): product_groups = self._group_by_product(processed_results) for (_, host) in product_groups.items(): if ('os' in host): os_items = [] for group in host['os']: os_items.append(max(group, key=(lambda entry: entry['trust']))) host['os'] = os_items for protocol in ('tcp', 'udp'): if (protocol in host): for (portid, port_groups) in host[protocol].items(): port_items = [] for group in port_groups: port_items.append(max(group, key=(lambda entry: entry['trust']))) host[protocol][portid] = port_items return product_groups util.printit("Warning: unknown config value for 'scan_result_aggr_scheme'", color=util.RED) return {}
Aggregate the "grouped and reduced" results to one final result. The aggregation is done depending on the config value for "scan_result_aggr_scheme". Value "SINGLE" : the single result with the highest trust rating is chosen Value "MULTIPLE" : the results are returned without further processing Value "FILTER" : similar products are filtered out, i.e. out of macOS 10.12 and macOS 10.13, only the one with the highest trust rating is returned
core/scan_result_processor.py
_aggregate_results
RE4CT10N/avain
51
python
def _aggregate_results(self): '\n Aggregate the "grouped and reduced" results to one final result. The\n aggregation is done depending on the config value for "scan_result_aggr_scheme".\n\n Value "SINGLE" : the single result with the highest trust rating is chosen\n Value "MULTIPLE" : the results are returned without further processing\n Value "FILTER" : similar products are filtered out, i.e. out of macOS 10.12\n and macOS 10.13, only the one with the highest trust rating\n is returned\n ' processed_results = self._group_and_reduce() if (self.config['core'].get('scan_result_aggr_scheme', ).upper() == 'MULTIPLE'): return processed_results if (self.config['core'].get('scan_result_aggr_scheme', ).upper() == 'SINGLE'): for (_, host) in processed_results.items(): if ('os' in host): host['os'] = [max(host['os'], key=(lambda entry: entry['trust']))] for protocol in ('tcp', 'udp'): if (protocol in host): for (portid, port_entries) in host[protocol].items(): host[protocol][portid] = [max(port_entries, key=(lambda entry: entry['trust']))] return processed_results if (self.config['core'].get('scan_result_aggr_scheme', 'FILTER').upper() == 'FILTER'): product_groups = self._group_by_product(processed_results) for (_, host) in product_groups.items(): if ('os' in host): os_items = [] for group in host['os']: os_items.append(max(group, key=(lambda entry: entry['trust']))) host['os'] = os_items for protocol in ('tcp', 'udp'): if (protocol in host): for (portid, port_groups) in host[protocol].items(): port_items = [] for group in port_groups: port_items.append(max(group, key=(lambda entry: entry['trust']))) host[protocol][portid] = port_items return product_groups util.printit("Warning: unknown config value for 'scan_result_aggr_scheme'", color=util.RED) return {}
def _aggregate_results(self): '\n Aggregate the "grouped and reduced" results to one final result. The\n aggregation is done depending on the config value for "scan_result_aggr_scheme".\n\n Value "SINGLE" : the single result with the highest trust rating is chosen\n Value "MULTIPLE" : the results are returned without further processing\n Value "FILTER" : similar products are filtered out, i.e. out of macOS 10.12\n and macOS 10.13, only the one with the highest trust rating\n is returned\n ' processed_results = self._group_and_reduce() if (self.config['core'].get('scan_result_aggr_scheme', ).upper() == 'MULTIPLE'): return processed_results if (self.config['core'].get('scan_result_aggr_scheme', ).upper() == 'SINGLE'): for (_, host) in processed_results.items(): if ('os' in host): host['os'] = [max(host['os'], key=(lambda entry: entry['trust']))] for protocol in ('tcp', 'udp'): if (protocol in host): for (portid, port_entries) in host[protocol].items(): host[protocol][portid] = [max(port_entries, key=(lambda entry: entry['trust']))] return processed_results if (self.config['core'].get('scan_result_aggr_scheme', 'FILTER').upper() == 'FILTER'): product_groups = self._group_by_product(processed_results) for (_, host) in product_groups.items(): if ('os' in host): os_items = [] for group in host['os']: os_items.append(max(group, key=(lambda entry: entry['trust']))) host['os'] = os_items for protocol in ('tcp', 'udp'): if (protocol in host): for (portid, port_groups) in host[protocol].items(): port_items = [] for group in port_groups: port_items.append(max(group, key=(lambda entry: entry['trust']))) host[protocol][portid] = port_items return product_groups util.printit("Warning: unknown config value for 'scan_result_aggr_scheme'", color=util.RED) return {}<|docstring|>Aggregate the "grouped and reduced" results to one final result. The aggregation is done depending on the config value for "scan_result_aggr_scheme". Value "SINGLE" : the single result with the highest trust rating is chosen Value "MULTIPLE" : the results are returned without further processing Value "FILTER" : similar products are filtered out, i.e. out of macOS 10.12 and macOS 10.13, only the one with the highest trust rating is returned<|endoftext|>
48b7ca6898c8dff73f5f2e911e3bb852fe924c95a9c4c716d89a46941eb96fb1
def _group_and_reduce(self): '\n First groups all the different OS and port information of every host\n retrieved from the different scanning modules into groups that contain\n similar items. For example, "OS: macOS 10.10 is" grouped together with\n "macOS 10.10.4".\n Next, these groups are reduced / aggregated to one entry each. This\n can be done in several ways. Currently supported are: 1. Reducing\n to the item with the highest trust value; 2. Reducing to the most\n specific entry and giving it an aggregated trust value, based on all\n trust values in its group.\n ' def group_os(): '\n Group the OS entry of the current host (of the current module)\n with similar entries from other modules.\n ' nonlocal ip, host, module if ('os' not in host): return if (not ('os' in groups[ip])): groups[ip]['os'] = [] if isinstance(host['os'], list): for item in host['os']: self._group_item(ip, module, item, groups[ip]['os'], (lambda host: host['os'])) else: self._group_item(ip, module, host['os'], groups[ip]['os'], (lambda host: host['os'])) def group_ports(protocol): '\n Group the port entries of the current host (of the current module)\n with similar entries from other modules.\n ' nonlocal ip, host, module if (protocol not in host): return if (protocol not in groups[ip]): groups[ip][protocol] = {} for (portid, port) in host[protocol].items(): if (not (portid in groups[ip][protocol])): groups[ip][protocol][portid] = [] if isinstance(port, list): for item in port: self._group_item(ip, module, item, groups[ip][protocol][portid], (lambda host: host[protocol][portid])) else: self._group_item(ip, module, port, groups[ip][protocol][portid], (lambda host: host[protocol][portid])) results = {} groups = {} for (module, result) in self.results.items(): if ('trust' in result): module_trust_rating = result['trust'] del result['trust'] else: module_trust_rating = self.default_trust for (ip, host) in result.items(): if (ip not in groups): groups[ip] = {} ScanResultProcessor._add_trust(host, module_trust_rating) if ('os' in host): group_os() if ('tcp' in host): group_ports('tcp') if ('udp' in host): group_ports('udp') group_out_file = os.path.join(self.output_dir, AGGR_GROUP_FILE) with open(group_out_file, 'w') as file: file.write(json.dumps(groups, ensure_ascii=False, indent=3)) self.logger.info('Grouped similar scan results and wrote result to %s', group_out_file) for (ip, host) in groups.items(): results[ip] = host if ('os' in host): os_items = [] for os_group in host['os']: os_items.append(self._aggregate_group(os_group)) results[ip]['os'] = os_items for protocol in {'tcp', 'udp'}: if (protocol in host): for (portid, port_groups) in host[protocol].items(): port_items = [] for port_group in port_groups: port_items.append(self._aggregate_group(port_group)) results[ip][protocol][portid] = port_items option_out_file = os.path.join(self.output_dir, AGGR_OPTION_FILE) with open(option_out_file, 'w') as file: file.write(json.dumps(results, ensure_ascii=False, indent=3)) self.logger.info('Aggregated the individual groups and wrote result to %s', option_out_file) return results
First groups all the different OS and port information of every host retrieved from the different scanning modules into groups that contain similar items. For example, "OS: macOS 10.10 is" grouped together with "macOS 10.10.4". Next, these groups are reduced / aggregated to one entry each. This can be done in several ways. Currently supported are: 1. Reducing to the item with the highest trust value; 2. Reducing to the most specific entry and giving it an aggregated trust value, based on all trust values in its group.
core/scan_result_processor.py
_group_and_reduce
RE4CT10N/avain
51
python
def _group_and_reduce(self): '\n First groups all the different OS and port information of every host\n retrieved from the different scanning modules into groups that contain\n similar items. For example, "OS: macOS 10.10 is" grouped together with\n "macOS 10.10.4".\n Next, these groups are reduced / aggregated to one entry each. This\n can be done in several ways. Currently supported are: 1. Reducing\n to the item with the highest trust value; 2. Reducing to the most\n specific entry and giving it an aggregated trust value, based on all\n trust values in its group.\n ' def group_os(): '\n Group the OS entry of the current host (of the current module)\n with similar entries from other modules.\n ' nonlocal ip, host, module if ('os' not in host): return if (not ('os' in groups[ip])): groups[ip]['os'] = [] if isinstance(host['os'], list): for item in host['os']: self._group_item(ip, module, item, groups[ip]['os'], (lambda host: host['os'])) else: self._group_item(ip, module, host['os'], groups[ip]['os'], (lambda host: host['os'])) def group_ports(protocol): '\n Group the port entries of the current host (of the current module)\n with similar entries from other modules.\n ' nonlocal ip, host, module if (protocol not in host): return if (protocol not in groups[ip]): groups[ip][protocol] = {} for (portid, port) in host[protocol].items(): if (not (portid in groups[ip][protocol])): groups[ip][protocol][portid] = [] if isinstance(port, list): for item in port: self._group_item(ip, module, item, groups[ip][protocol][portid], (lambda host: host[protocol][portid])) else: self._group_item(ip, module, port, groups[ip][protocol][portid], (lambda host: host[protocol][portid])) results = {} groups = {} for (module, result) in self.results.items(): if ('trust' in result): module_trust_rating = result['trust'] del result['trust'] else: module_trust_rating = self.default_trust for (ip, host) in result.items(): if (ip not in groups): groups[ip] = {} ScanResultProcessor._add_trust(host, module_trust_rating) if ('os' in host): group_os() if ('tcp' in host): group_ports('tcp') if ('udp' in host): group_ports('udp') group_out_file = os.path.join(self.output_dir, AGGR_GROUP_FILE) with open(group_out_file, 'w') as file: file.write(json.dumps(groups, ensure_ascii=False, indent=3)) self.logger.info('Grouped similar scan results and wrote result to %s', group_out_file) for (ip, host) in groups.items(): results[ip] = host if ('os' in host): os_items = [] for os_group in host['os']: os_items.append(self._aggregate_group(os_group)) results[ip]['os'] = os_items for protocol in {'tcp', 'udp'}: if (protocol in host): for (portid, port_groups) in host[protocol].items(): port_items = [] for port_group in port_groups: port_items.append(self._aggregate_group(port_group)) results[ip][protocol][portid] = port_items option_out_file = os.path.join(self.output_dir, AGGR_OPTION_FILE) with open(option_out_file, 'w') as file: file.write(json.dumps(results, ensure_ascii=False, indent=3)) self.logger.info('Aggregated the individual groups and wrote result to %s', option_out_file) return results
def _group_and_reduce(self): '\n First groups all the different OS and port information of every host\n retrieved from the different scanning modules into groups that contain\n similar items. For example, "OS: macOS 10.10 is" grouped together with\n "macOS 10.10.4".\n Next, these groups are reduced / aggregated to one entry each. This\n can be done in several ways. Currently supported are: 1. Reducing\n to the item with the highest trust value; 2. Reducing to the most\n specific entry and giving it an aggregated trust value, based on all\n trust values in its group.\n ' def group_os(): '\n Group the OS entry of the current host (of the current module)\n with similar entries from other modules.\n ' nonlocal ip, host, module if ('os' not in host): return if (not ('os' in groups[ip])): groups[ip]['os'] = [] if isinstance(host['os'], list): for item in host['os']: self._group_item(ip, module, item, groups[ip]['os'], (lambda host: host['os'])) else: self._group_item(ip, module, host['os'], groups[ip]['os'], (lambda host: host['os'])) def group_ports(protocol): '\n Group the port entries of the current host (of the current module)\n with similar entries from other modules.\n ' nonlocal ip, host, module if (protocol not in host): return if (protocol not in groups[ip]): groups[ip][protocol] = {} for (portid, port) in host[protocol].items(): if (not (portid in groups[ip][protocol])): groups[ip][protocol][portid] = [] if isinstance(port, list): for item in port: self._group_item(ip, module, item, groups[ip][protocol][portid], (lambda host: host[protocol][portid])) else: self._group_item(ip, module, port, groups[ip][protocol][portid], (lambda host: host[protocol][portid])) results = {} groups = {} for (module, result) in self.results.items(): if ('trust' in result): module_trust_rating = result['trust'] del result['trust'] else: module_trust_rating = self.default_trust for (ip, host) in result.items(): if (ip not in groups): groups[ip] = {} ScanResultProcessor._add_trust(host, module_trust_rating) if ('os' in host): group_os() if ('tcp' in host): group_ports('tcp') if ('udp' in host): group_ports('udp') group_out_file = os.path.join(self.output_dir, AGGR_GROUP_FILE) with open(group_out_file, 'w') as file: file.write(json.dumps(groups, ensure_ascii=False, indent=3)) self.logger.info('Grouped similar scan results and wrote result to %s', group_out_file) for (ip, host) in groups.items(): results[ip] = host if ('os' in host): os_items = [] for os_group in host['os']: os_items.append(self._aggregate_group(os_group)) results[ip]['os'] = os_items for protocol in {'tcp', 'udp'}: if (protocol in host): for (portid, port_groups) in host[protocol].items(): port_items = [] for port_group in port_groups: port_items.append(self._aggregate_group(port_group)) results[ip][protocol][portid] = port_items option_out_file = os.path.join(self.output_dir, AGGR_OPTION_FILE) with open(option_out_file, 'w') as file: file.write(json.dumps(results, ensure_ascii=False, indent=3)) self.logger.info('Aggregated the individual groups and wrote result to %s', option_out_file) return results<|docstring|>First groups all the different OS and port information of every host retrieved from the different scanning modules into groups that contain similar items. For example, "OS: macOS 10.10 is" grouped together with "macOS 10.10.4". Next, these groups are reduced / aggregated to one entry each. This can be done in several ways. Currently supported are: 1. Reducing to the item with the highest trust value; 2. Reducing to the most specific entry and giving it an aggregated trust value, based on all trust values in its group.<|endoftext|>
fd2794def9651aceac8cac8b1cb75b4b10d5c77985ce647793ad1b9d0483d951
@staticmethod def _add_trust(host: dict, trust_value: float): '\n Add a trust value to every OS and port entry of the current host.\n ' def add_to_ports(protocol: str): '\n Add trust values to the ports used by the given transport protocol.\n ' if (protocol in host): for (portid, portitems) in host[protocol].items(): if (not isinstance(portitems, list)): portitems = [portitems] for port in portitems: if ('trust' not in port): if ('trust' in host[protocol][portid]): port['trust'] = host[protocol][portid]['trust'] if ('trust' in host[protocol]): port['trust'] = host[protocol]['trust'] elif ('trust' in host): port['trust'] = host['trust'] else: port['trust'] = trust_value if ('os' in host): ositems = (host['os'] if isinstance(host['os'], list) else [host['os']]) for ositem in ositems: if ('trust' not in ositem): if ('trust' in host['os']): ositem['trust'] = host['os']['trust'] if ('trust' in host): ositem['trust'] = host['trust'] else: ositem['trust'] = trust_value add_to_ports('tcp') add_to_ports('udp')
Add a trust value to every OS and port entry of the current host.
core/scan_result_processor.py
_add_trust
RE4CT10N/avain
51
python
@staticmethod def _add_trust(host: dict, trust_value: float): '\n \n ' def add_to_ports(protocol: str): '\n Add trust values to the ports used by the given transport protocol.\n ' if (protocol in host): for (portid, portitems) in host[protocol].items(): if (not isinstance(portitems, list)): portitems = [portitems] for port in portitems: if ('trust' not in port): if ('trust' in host[protocol][portid]): port['trust'] = host[protocol][portid]['trust'] if ('trust' in host[protocol]): port['trust'] = host[protocol]['trust'] elif ('trust' in host): port['trust'] = host['trust'] else: port['trust'] = trust_value if ('os' in host): ositems = (host['os'] if isinstance(host['os'], list) else [host['os']]) for ositem in ositems: if ('trust' not in ositem): if ('trust' in host['os']): ositem['trust'] = host['os']['trust'] if ('trust' in host): ositem['trust'] = host['trust'] else: ositem['trust'] = trust_value add_to_ports('tcp') add_to_ports('udp')
@staticmethod def _add_trust(host: dict, trust_value: float): '\n \n ' def add_to_ports(protocol: str): '\n Add trust values to the ports used by the given transport protocol.\n ' if (protocol in host): for (portid, portitems) in host[protocol].items(): if (not isinstance(portitems, list)): portitems = [portitems] for port in portitems: if ('trust' not in port): if ('trust' in host[protocol][portid]): port['trust'] = host[protocol][portid]['trust'] if ('trust' in host[protocol]): port['trust'] = host[protocol]['trust'] elif ('trust' in host): port['trust'] = host['trust'] else: port['trust'] = trust_value if ('os' in host): ositems = (host['os'] if isinstance(host['os'], list) else [host['os']]) for ositem in ositems: if ('trust' not in ositem): if ('trust' in host['os']): ositem['trust'] = host['os']['trust'] if ('trust' in host): ositem['trust'] = host['trust'] else: ositem['trust'] = trust_value add_to_ports('tcp') add_to_ports('udp')<|docstring|>Add a trust value to every OS and port entry of the current host.<|endoftext|>
c169c550dcc8fec52df3305d8a05badef966edc9fc8fc18f3b9e89656573a08c
@staticmethod def remove_trust_values(result: dict): '\n Remove all potential "trust" fields stored in the given scan result\n ' def remove_in_protocol(protocol: str): '\n Remove the trust values stored under the given transport protocol.\n ' if (protocol in host): if ('trust' in host[protocol]): del host[protocol]['trust'] for (_, portinfos) in host[protocol].items(): for portinfo in portinfos: if ('trust' in portinfo): del portinfo['trust'] if ('trust' in result): del result['trust'] for (_, host) in result.items(): if ('trust' in host): del host['trust'] if ('os' in host): for osinfo in host['os']: if ('trust' in osinfo): del osinfo['trust'] remove_in_protocol('tcp') remove_in_protocol('udp')
Remove all potential "trust" fields stored in the given scan result
core/scan_result_processor.py
remove_trust_values
RE4CT10N/avain
51
python
@staticmethod def remove_trust_values(result: dict): '\n \n ' def remove_in_protocol(protocol: str): '\n Remove the trust values stored under the given transport protocol.\n ' if (protocol in host): if ('trust' in host[protocol]): del host[protocol]['trust'] for (_, portinfos) in host[protocol].items(): for portinfo in portinfos: if ('trust' in portinfo): del portinfo['trust'] if ('trust' in result): del result['trust'] for (_, host) in result.items(): if ('trust' in host): del host['trust'] if ('os' in host): for osinfo in host['os']: if ('trust' in osinfo): del osinfo['trust'] remove_in_protocol('tcp') remove_in_protocol('udp')
@staticmethod def remove_trust_values(result: dict): '\n \n ' def remove_in_protocol(protocol: str): '\n Remove the trust values stored under the given transport protocol.\n ' if (protocol in host): if ('trust' in host[protocol]): del host[protocol]['trust'] for (_, portinfos) in host[protocol].items(): for portinfo in portinfos: if ('trust' in portinfo): del portinfo['trust'] if ('trust' in result): del result['trust'] for (_, host) in result.items(): if ('trust' in host): del host['trust'] if ('os' in host): for osinfo in host['os']: if ('trust' in osinfo): del osinfo['trust'] remove_in_protocol('tcp') remove_in_protocol('udp')<|docstring|>Remove all potential "trust" fields stored in the given scan result<|endoftext|>
102c56939e7ab1ad4e4bf481dec79a27ae14b822426c7c247134735b551e184c
def _group_item(self, ip: str, module, item: dict, dest: dict, iter_access_func: Callable[([dict], dict)]): "\n Build a group based on the given item. The group consists of all entries that are\n similar to the given item. The mentioned entries are provided by all modules'\n scan results.\n\n :param item: the base item to group other items with\n :param dest: the dictionary to store the resulting group in\n :param iter_access_func: a function defining how to access compatible entries\n from other modules.\n " item_group = [item] for (module_iter, result_iter) in self.results.items(): if (module_iter == module): continue if (ip in result_iter): try: items_iter = iter_access_func(result_iter[ip]) except KeyError: continue if (not isinstance(items_iter, list)): items_iter = [items_iter] for item_iter in items_iter: addded_to_group = False for cpe in item.get('cpes', []): if any(((cpe_iter in cpe) for cpe_iter in item_iter.get('cpes', []))): item_group.append(item_iter) addded_to_group = True break if ((not addded_to_group) and ('name' in item) and ('name' in item_iter)): (item_str, item_iter_str) = (item['name'], item_iter['name']) if (('service' in item) and ('service' in item_iter)): item_str += (' ' + item['service']) item_iter_str += (' ' + item_iter['service']) if (item_iter_str in item_str): item_group.append(item_iter) if (not ScanResultProcessor._group_in(item_group, dest)): dest[:] = [other for other in dest if (not all(((o_item in item_group) for o_item in other)))] dest.append(item_group)
Build a group based on the given item. The group consists of all entries that are similar to the given item. The mentioned entries are provided by all modules' scan results. :param item: the base item to group other items with :param dest: the dictionary to store the resulting group in :param iter_access_func: a function defining how to access compatible entries from other modules.
core/scan_result_processor.py
_group_item
RE4CT10N/avain
51
python
def _group_item(self, ip: str, module, item: dict, dest: dict, iter_access_func: Callable[([dict], dict)]): "\n Build a group based on the given item. The group consists of all entries that are\n similar to the given item. The mentioned entries are provided by all modules'\n scan results.\n\n :param item: the base item to group other items with\n :param dest: the dictionary to store the resulting group in\n :param iter_access_func: a function defining how to access compatible entries\n from other modules.\n " item_group = [item] for (module_iter, result_iter) in self.results.items(): if (module_iter == module): continue if (ip in result_iter): try: items_iter = iter_access_func(result_iter[ip]) except KeyError: continue if (not isinstance(items_iter, list)): items_iter = [items_iter] for item_iter in items_iter: addded_to_group = False for cpe in item.get('cpes', []): if any(((cpe_iter in cpe) for cpe_iter in item_iter.get('cpes', []))): item_group.append(item_iter) addded_to_group = True break if ((not addded_to_group) and ('name' in item) and ('name' in item_iter)): (item_str, item_iter_str) = (item['name'], item_iter['name']) if (('service' in item) and ('service' in item_iter)): item_str += (' ' + item['service']) item_iter_str += (' ' + item_iter['service']) if (item_iter_str in item_str): item_group.append(item_iter) if (not ScanResultProcessor._group_in(item_group, dest)): dest[:] = [other for other in dest if (not all(((o_item in item_group) for o_item in other)))] dest.append(item_group)
def _group_item(self, ip: str, module, item: dict, dest: dict, iter_access_func: Callable[([dict], dict)]): "\n Build a group based on the given item. The group consists of all entries that are\n similar to the given item. The mentioned entries are provided by all modules'\n scan results.\n\n :param item: the base item to group other items with\n :param dest: the dictionary to store the resulting group in\n :param iter_access_func: a function defining how to access compatible entries\n from other modules.\n " item_group = [item] for (module_iter, result_iter) in self.results.items(): if (module_iter == module): continue if (ip in result_iter): try: items_iter = iter_access_func(result_iter[ip]) except KeyError: continue if (not isinstance(items_iter, list)): items_iter = [items_iter] for item_iter in items_iter: addded_to_group = False for cpe in item.get('cpes', []): if any(((cpe_iter in cpe) for cpe_iter in item_iter.get('cpes', []))): item_group.append(item_iter) addded_to_group = True break if ((not addded_to_group) and ('name' in item) and ('name' in item_iter)): (item_str, item_iter_str) = (item['name'], item_iter['name']) if (('service' in item) and ('service' in item_iter)): item_str += (' ' + item['service']) item_iter_str += (' ' + item_iter['service']) if (item_iter_str in item_str): item_group.append(item_iter) if (not ScanResultProcessor._group_in(item_group, dest)): dest[:] = [other for other in dest if (not all(((o_item in item_group) for o_item in other)))] dest.append(item_group)<|docstring|>Build a group based on the given item. The group consists of all entries that are similar to the given item. The mentioned entries are provided by all modules' scan results. :param item: the base item to group other items with :param dest: the dictionary to store the resulting group in :param iter_access_func: a function defining how to access compatible entries from other modules.<|endoftext|>
84239209e4a87a5b9722f9caed62520217b8c33d1f37aabc1828e62ad9f015ae
@staticmethod def _get_most_specific_group_entry(group: list): "\n Retrieve the most specific entry contained in the given group.\n\n :param group: the group of which to find its most specific entry\n :return: the given group's most specific entry as a dict\n " most_specific_entry = group[0] for entry in group[1:]: entry_cpes = entry.get('cpes', []) for entry_cpe in entry_cpes: mse_cpes = most_specific_entry.get('cpes', []) if mse_cpes: if any((util.neq_in(mse_cpe, entry_cpe) for mse_cpe in mse_cpes)): most_specific_entry = entry elif all(((entry_cpe == mse_cpe) for mse_cpe in mse_cpes)): e_name = entry.get('name', '') mse_name = most_specific_entry.get('name', '') if util.neq_in(mse_name, e_name): most_specific_entry = entry elif ('name' in most_specific_entry): (e_name, mse_name) = (entry.get('name', ''), most_specific_entry['name']) if (mse_name in e_name): most_specific_entry = entry else: most_specific_entry = entry if ((not entry_cpes) and ('name' in entry)): (e_name, mse_name) = (entry['name'], most_specific_entry.get('name', '')) if util.neq_in(mse_name, e_name): if (not ((mse_name == '') and ('cpes' in most_specific_entry))): most_specific_entry = entry return most_specific_entry
Retrieve the most specific entry contained in the given group. :param group: the group of which to find its most specific entry :return: the given group's most specific entry as a dict
core/scan_result_processor.py
_get_most_specific_group_entry
RE4CT10N/avain
51
python
@staticmethod def _get_most_specific_group_entry(group: list): "\n Retrieve the most specific entry contained in the given group.\n\n :param group: the group of which to find its most specific entry\n :return: the given group's most specific entry as a dict\n " most_specific_entry = group[0] for entry in group[1:]: entry_cpes = entry.get('cpes', []) for entry_cpe in entry_cpes: mse_cpes = most_specific_entry.get('cpes', []) if mse_cpes: if any((util.neq_in(mse_cpe, entry_cpe) for mse_cpe in mse_cpes)): most_specific_entry = entry elif all(((entry_cpe == mse_cpe) for mse_cpe in mse_cpes)): e_name = entry.get('name', ) mse_name = most_specific_entry.get('name', ) if util.neq_in(mse_name, e_name): most_specific_entry = entry elif ('name' in most_specific_entry): (e_name, mse_name) = (entry.get('name', ), most_specific_entry['name']) if (mse_name in e_name): most_specific_entry = entry else: most_specific_entry = entry if ((not entry_cpes) and ('name' in entry)): (e_name, mse_name) = (entry['name'], most_specific_entry.get('name', )) if util.neq_in(mse_name, e_name): if (not ((mse_name == ) and ('cpes' in most_specific_entry))): most_specific_entry = entry return most_specific_entry
@staticmethod def _get_most_specific_group_entry(group: list): "\n Retrieve the most specific entry contained in the given group.\n\n :param group: the group of which to find its most specific entry\n :return: the given group's most specific entry as a dict\n " most_specific_entry = group[0] for entry in group[1:]: entry_cpes = entry.get('cpes', []) for entry_cpe in entry_cpes: mse_cpes = most_specific_entry.get('cpes', []) if mse_cpes: if any((util.neq_in(mse_cpe, entry_cpe) for mse_cpe in mse_cpes)): most_specific_entry = entry elif all(((entry_cpe == mse_cpe) for mse_cpe in mse_cpes)): e_name = entry.get('name', ) mse_name = most_specific_entry.get('name', ) if util.neq_in(mse_name, e_name): most_specific_entry = entry elif ('name' in most_specific_entry): (e_name, mse_name) = (entry.get('name', ), most_specific_entry['name']) if (mse_name in e_name): most_specific_entry = entry else: most_specific_entry = entry if ((not entry_cpes) and ('name' in entry)): (e_name, mse_name) = (entry['name'], most_specific_entry.get('name', )) if util.neq_in(mse_name, e_name): if (not ((mse_name == ) and ('cpes' in most_specific_entry))): most_specific_entry = entry return most_specific_entry<|docstring|>Retrieve the most specific entry contained in the given group. :param group: the group of which to find its most specific entry :return: the given group's most specific entry as a dict<|endoftext|>
2ab7958e3b4416e154fb7a0c426baf35710c691ad52278965161ceeaf9a20ebb
@staticmethod def _group_in(group: list, list_groups: list): '\n Check if there exists a group in the second list parameter\n that contains all items in the given group (first list).\n\n :param group: the group to check whether all its items are already\n in a group contained in list_groups\n :param list_groups: a list of item groups\n :return: True if there is a group in list_groups that contains all\n items in group, False otherwise\n ' for l_group in list_groups: group_in = True for item in group: if (item not in l_group): group_in = False break if group_in: return True return False
Check if there exists a group in the second list parameter that contains all items in the given group (first list). :param group: the group to check whether all its items are already in a group contained in list_groups :param list_groups: a list of item groups :return: True if there is a group in list_groups that contains all items in group, False otherwise
core/scan_result_processor.py
_group_in
RE4CT10N/avain
51
python
@staticmethod def _group_in(group: list, list_groups: list): '\n Check if there exists a group in the second list parameter\n that contains all items in the given group (first list).\n\n :param group: the group to check whether all its items are already\n in a group contained in list_groups\n :param list_groups: a list of item groups\n :return: True if there is a group in list_groups that contains all\n items in group, False otherwise\n ' for l_group in list_groups: group_in = True for item in group: if (item not in l_group): group_in = False break if group_in: return True return False
@staticmethod def _group_in(group: list, list_groups: list): '\n Check if there exists a group in the second list parameter\n that contains all items in the given group (first list).\n\n :param group: the group to check whether all its items are already\n in a group contained in list_groups\n :param list_groups: a list of item groups\n :return: True if there is a group in list_groups that contains all\n items in group, False otherwise\n ' for l_group in list_groups: group_in = True for item in group: if (item not in l_group): group_in = False break if group_in: return True return False<|docstring|>Check if there exists a group in the second list parameter that contains all items in the given group (first list). :param group: the group to check whether all its items are already in a group contained in list_groups :param list_groups: a list of item groups :return: True if there is a group in list_groups that contains all items in group, False otherwise<|endoftext|>
8618d78d7e636ef999a97b53259129eb59458b0f9cc2b23f057751b458993347
def _aggregate_group(self, group: list): '\n Reduce the given group based on the algorithm specified by the\n respective configuration parameter.\n\n :param group: the group to reduce\n ' if (not group): return {} if (len(group) == 1): return group[0] if (not ('scan_trust_aggr_scheme' in self.config['core'])): return ScanResultProcessor._aggregate_group_by_trust_aggregation(group) if (self.config['core']['scan_trust_aggr_scheme'] == 'TRUST_AGGR'): return ScanResultProcessor._aggregate_group_by_trust_aggregation(group) if (self.config['core']['scan_trust_aggr_scheme'] == 'TRUST_MAX'): return ScanResultProcessor._aggregate_group_by_trust_max(group) return ScanResultProcessor._aggregate_group_by_trust_aggregation(group)
Reduce the given group based on the algorithm specified by the respective configuration parameter. :param group: the group to reduce
core/scan_result_processor.py
_aggregate_group
RE4CT10N/avain
51
python
def _aggregate_group(self, group: list): '\n Reduce the given group based on the algorithm specified by the\n respective configuration parameter.\n\n :param group: the group to reduce\n ' if (not group): return {} if (len(group) == 1): return group[0] if (not ('scan_trust_aggr_scheme' in self.config['core'])): return ScanResultProcessor._aggregate_group_by_trust_aggregation(group) if (self.config['core']['scan_trust_aggr_scheme'] == 'TRUST_AGGR'): return ScanResultProcessor._aggregate_group_by_trust_aggregation(group) if (self.config['core']['scan_trust_aggr_scheme'] == 'TRUST_MAX'): return ScanResultProcessor._aggregate_group_by_trust_max(group) return ScanResultProcessor._aggregate_group_by_trust_aggregation(group)
def _aggregate_group(self, group: list): '\n Reduce the given group based on the algorithm specified by the\n respective configuration parameter.\n\n :param group: the group to reduce\n ' if (not group): return {} if (len(group) == 1): return group[0] if (not ('scan_trust_aggr_scheme' in self.config['core'])): return ScanResultProcessor._aggregate_group_by_trust_aggregation(group) if (self.config['core']['scan_trust_aggr_scheme'] == 'TRUST_AGGR'): return ScanResultProcessor._aggregate_group_by_trust_aggregation(group) if (self.config['core']['scan_trust_aggr_scheme'] == 'TRUST_MAX'): return ScanResultProcessor._aggregate_group_by_trust_max(group) return ScanResultProcessor._aggregate_group_by_trust_aggregation(group)<|docstring|>Reduce the given group based on the algorithm specified by the respective configuration parameter. :param group: the group to reduce<|endoftext|>
bebfcc0dc6bfd5ff18e3a4ccb8448af293683c4e8c2e82f7b803f553f5978b3a
@staticmethod def _aggregate_group_by_trust_max(group: list): '\n Reduce the given group to the item with the highest trust value.\n\n :param group: the group to reduce\n ' return max(group, key=(lambda member: member['trust']))
Reduce the given group to the item with the highest trust value. :param group: the group to reduce
core/scan_result_processor.py
_aggregate_group_by_trust_max
RE4CT10N/avain
51
python
@staticmethod def _aggregate_group_by_trust_max(group: list): '\n Reduce the given group to the item with the highest trust value.\n\n :param group: the group to reduce\n ' return max(group, key=(lambda member: member['trust']))
@staticmethod def _aggregate_group_by_trust_max(group: list): '\n Reduce the given group to the item with the highest trust value.\n\n :param group: the group to reduce\n ' return max(group, key=(lambda member: member['trust']))<|docstring|>Reduce the given group to the item with the highest trust value. :param group: the group to reduce<|endoftext|>
0c0bd2b002a8c668415bfa37b6319a5c3659eaaca9a8c164095c5516b9344a50
@staticmethod def _aggregate_group_by_trust_aggregation(group: list): '\n Reduce the given group to its most specific entry and giving it a\n trust value based on all trust values contained in the group.\n\n :param group: the group to reduce\n ' grouping_strength = 0.675 most_specific_entry = copy.deepcopy(ScanResultProcessor._get_most_specific_group_entry(group)) trust_sum = sum([entry['trust'] for entry in group]) aggr_trust = (trust_sum / (len(group) ** grouping_strength)) most_specific_entry['trust'] = aggr_trust return most_specific_entry
Reduce the given group to its most specific entry and giving it a trust value based on all trust values contained in the group. :param group: the group to reduce
core/scan_result_processor.py
_aggregate_group_by_trust_aggregation
RE4CT10N/avain
51
python
@staticmethod def _aggregate_group_by_trust_aggregation(group: list): '\n Reduce the given group to its most specific entry and giving it a\n trust value based on all trust values contained in the group.\n\n :param group: the group to reduce\n ' grouping_strength = 0.675 most_specific_entry = copy.deepcopy(ScanResultProcessor._get_most_specific_group_entry(group)) trust_sum = sum([entry['trust'] for entry in group]) aggr_trust = (trust_sum / (len(group) ** grouping_strength)) most_specific_entry['trust'] = aggr_trust return most_specific_entry
@staticmethod def _aggregate_group_by_trust_aggregation(group: list): '\n Reduce the given group to its most specific entry and giving it a\n trust value based on all trust values contained in the group.\n\n :param group: the group to reduce\n ' grouping_strength = 0.675 most_specific_entry = copy.deepcopy(ScanResultProcessor._get_most_specific_group_entry(group)) trust_sum = sum([entry['trust'] for entry in group]) aggr_trust = (trust_sum / (len(group) ** grouping_strength)) most_specific_entry['trust'] = aggr_trust return most_specific_entry<|docstring|>Reduce the given group to its most specific entry and giving it a trust value based on all trust values contained in the group. :param group: the group to reduce<|endoftext|>
2ee892c01589760de760ea4f510ac18d96195bbc4f5baffc42885515ffc8967d
def group_os(): '\n Group the OS entry of the current host (of the current module)\n with similar entries from other modules.\n ' nonlocal ip, host, module if ('os' not in host): return if (not ('os' in groups[ip])): groups[ip]['os'] = [] if isinstance(host['os'], list): for item in host['os']: self._group_item(ip, module, item, groups[ip]['os'], (lambda host: host['os'])) else: self._group_item(ip, module, host['os'], groups[ip]['os'], (lambda host: host['os']))
Group the OS entry of the current host (of the current module) with similar entries from other modules.
core/scan_result_processor.py
group_os
RE4CT10N/avain
51
python
def group_os(): '\n Group the OS entry of the current host (of the current module)\n with similar entries from other modules.\n ' nonlocal ip, host, module if ('os' not in host): return if (not ('os' in groups[ip])): groups[ip]['os'] = [] if isinstance(host['os'], list): for item in host['os']: self._group_item(ip, module, item, groups[ip]['os'], (lambda host: host['os'])) else: self._group_item(ip, module, host['os'], groups[ip]['os'], (lambda host: host['os']))
def group_os(): '\n Group the OS entry of the current host (of the current module)\n with similar entries from other modules.\n ' nonlocal ip, host, module if ('os' not in host): return if (not ('os' in groups[ip])): groups[ip]['os'] = [] if isinstance(host['os'], list): for item in host['os']: self._group_item(ip, module, item, groups[ip]['os'], (lambda host: host['os'])) else: self._group_item(ip, module, host['os'], groups[ip]['os'], (lambda host: host['os']))<|docstring|>Group the OS entry of the current host (of the current module) with similar entries from other modules.<|endoftext|>
739e4da81c5a9ccc09ccf39409f69669d28e3d63a01c692f3d4820695bfe42d4
def group_ports(protocol): '\n Group the port entries of the current host (of the current module)\n with similar entries from other modules.\n ' nonlocal ip, host, module if (protocol not in host): return if (protocol not in groups[ip]): groups[ip][protocol] = {} for (portid, port) in host[protocol].items(): if (not (portid in groups[ip][protocol])): groups[ip][protocol][portid] = [] if isinstance(port, list): for item in port: self._group_item(ip, module, item, groups[ip][protocol][portid], (lambda host: host[protocol][portid])) else: self._group_item(ip, module, port, groups[ip][protocol][portid], (lambda host: host[protocol][portid]))
Group the port entries of the current host (of the current module) with similar entries from other modules.
core/scan_result_processor.py
group_ports
RE4CT10N/avain
51
python
def group_ports(protocol): '\n Group the port entries of the current host (of the current module)\n with similar entries from other modules.\n ' nonlocal ip, host, module if (protocol not in host): return if (protocol not in groups[ip]): groups[ip][protocol] = {} for (portid, port) in host[protocol].items(): if (not (portid in groups[ip][protocol])): groups[ip][protocol][portid] = [] if isinstance(port, list): for item in port: self._group_item(ip, module, item, groups[ip][protocol][portid], (lambda host: host[protocol][portid])) else: self._group_item(ip, module, port, groups[ip][protocol][portid], (lambda host: host[protocol][portid]))
def group_ports(protocol): '\n Group the port entries of the current host (of the current module)\n with similar entries from other modules.\n ' nonlocal ip, host, module if (protocol not in host): return if (protocol not in groups[ip]): groups[ip][protocol] = {} for (portid, port) in host[protocol].items(): if (not (portid in groups[ip][protocol])): groups[ip][protocol][portid] = [] if isinstance(port, list): for item in port: self._group_item(ip, module, item, groups[ip][protocol][portid], (lambda host: host[protocol][portid])) else: self._group_item(ip, module, port, groups[ip][protocol][portid], (lambda host: host[protocol][portid]))<|docstring|>Group the port entries of the current host (of the current module) with similar entries from other modules.<|endoftext|>
1c9b71ee8f66913ad95820940d5ff9be05e68662836bdb98b0a5bbdbd7d51df8
def add_to_ports(protocol: str): '\n Add trust values to the ports used by the given transport protocol.\n ' if (protocol in host): for (portid, portitems) in host[protocol].items(): if (not isinstance(portitems, list)): portitems = [portitems] for port in portitems: if ('trust' not in port): if ('trust' in host[protocol][portid]): port['trust'] = host[protocol][portid]['trust'] if ('trust' in host[protocol]): port['trust'] = host[protocol]['trust'] elif ('trust' in host): port['trust'] = host['trust'] else: port['trust'] = trust_value
Add trust values to the ports used by the given transport protocol.
core/scan_result_processor.py
add_to_ports
RE4CT10N/avain
51
python
def add_to_ports(protocol: str): '\n \n ' if (protocol in host): for (portid, portitems) in host[protocol].items(): if (not isinstance(portitems, list)): portitems = [portitems] for port in portitems: if ('trust' not in port): if ('trust' in host[protocol][portid]): port['trust'] = host[protocol][portid]['trust'] if ('trust' in host[protocol]): port['trust'] = host[protocol]['trust'] elif ('trust' in host): port['trust'] = host['trust'] else: port['trust'] = trust_value
def add_to_ports(protocol: str): '\n \n ' if (protocol in host): for (portid, portitems) in host[protocol].items(): if (not isinstance(portitems, list)): portitems = [portitems] for port in portitems: if ('trust' not in port): if ('trust' in host[protocol][portid]): port['trust'] = host[protocol][portid]['trust'] if ('trust' in host[protocol]): port['trust'] = host[protocol]['trust'] elif ('trust' in host): port['trust'] = host['trust'] else: port['trust'] = trust_value<|docstring|>Add trust values to the ports used by the given transport protocol.<|endoftext|>
c0fb1e09d410cfe47d751b088e32eb829b45dd85a878504ff8c533602c4e2e44
def remove_in_protocol(protocol: str): '\n Remove the trust values stored under the given transport protocol.\n ' if (protocol in host): if ('trust' in host[protocol]): del host[protocol]['trust'] for (_, portinfos) in host[protocol].items(): for portinfo in portinfos: if ('trust' in portinfo): del portinfo['trust']
Remove the trust values stored under the given transport protocol.
core/scan_result_processor.py
remove_in_protocol
RE4CT10N/avain
51
python
def remove_in_protocol(protocol: str): '\n \n ' if (protocol in host): if ('trust' in host[protocol]): del host[protocol]['trust'] for (_, portinfos) in host[protocol].items(): for portinfo in portinfos: if ('trust' in portinfo): del portinfo['trust']
def remove_in_protocol(protocol: str): '\n \n ' if (protocol in host): if ('trust' in host[protocol]): del host[protocol]['trust'] for (_, portinfos) in host[protocol].items(): for portinfo in portinfos: if ('trust' in portinfo): del portinfo['trust']<|docstring|>Remove the trust values stored under the given transport protocol.<|endoftext|>
c9722585649f5a522e9bd0ba8ad2f99f37c32d751f204a2763ae491a4e2fd7b4
def convert_to_unicode(text): "Converts `text` to Unicode (if it's not already), assuming utf-8 input." if isinstance(text, str): return text elif isinstance(text, bytes): return text.decode('utf-8', 'ignore') else: raise ValueError(('Unsupported string type: %s' % type(text)))
Converts `text` to Unicode (if it's not already), assuming utf-8 input.
pretraining/openwebtext/tokenization.py
convert_to_unicode
maact-org/electra-pytorch
122
python
def convert_to_unicode(text): if isinstance(text, str): return text elif isinstance(text, bytes): return text.decode('utf-8', 'ignore') else: raise ValueError(('Unsupported string type: %s' % type(text)))
def convert_to_unicode(text): if isinstance(text, str): return text elif isinstance(text, bytes): return text.decode('utf-8', 'ignore') else: raise ValueError(('Unsupported string type: %s' % type(text)))<|docstring|>Converts `text` to Unicode (if it's not already), assuming utf-8 input.<|endoftext|>
5d16e8339f1a2108558267007284b132a3b2ff49172ecdca48c30001b7a9ff1f
def printable_text(text): 'Returns text encoded in a way suitable for print.' if isinstance(text, str): return text elif isinstance(text, bytes): return text.decode('utf-8', 'ignore') else: raise ValueError(('Unsupported string type: %s' % type(text)))
Returns text encoded in a way suitable for print.
pretraining/openwebtext/tokenization.py
printable_text
maact-org/electra-pytorch
122
python
def printable_text(text): if isinstance(text, str): return text elif isinstance(text, bytes): return text.decode('utf-8', 'ignore') else: raise ValueError(('Unsupported string type: %s' % type(text)))
def printable_text(text): if isinstance(text, str): return text elif isinstance(text, bytes): return text.decode('utf-8', 'ignore') else: raise ValueError(('Unsupported string type: %s' % type(text)))<|docstring|>Returns text encoded in a way suitable for print.<|endoftext|>
b6db53f87d2a8191878cd1417b9c7d31d5793ed31cb8ff0c1d754bc43604b03b
def load_vocab(vocab_file): 'Loads a vocabulary file into a dictionary.' vocab = collections.OrderedDict() index = 0 with open(vocab_file, 'r') as reader: while True: token = convert_to_unicode(reader.readline()) if (not token): break token = token.strip() vocab[token] = index index += 1 return vocab
Loads a vocabulary file into a dictionary.
pretraining/openwebtext/tokenization.py
load_vocab
maact-org/electra-pytorch
122
python
def load_vocab(vocab_file): vocab = collections.OrderedDict() index = 0 with open(vocab_file, 'r') as reader: while True: token = convert_to_unicode(reader.readline()) if (not token): break token = token.strip() vocab[token] = index index += 1 return vocab
def load_vocab(vocab_file): vocab = collections.OrderedDict() index = 0 with open(vocab_file, 'r') as reader: while True: token = convert_to_unicode(reader.readline()) if (not token): break token = token.strip() vocab[token] = index index += 1 return vocab<|docstring|>Loads a vocabulary file into a dictionary.<|endoftext|>
4a9dc032a794b0b240fd2dcd12395b9c294f5aad2f51268ee098c1a6140d9728
def convert_by_vocab(vocab, items): 'Converts a sequence of [tokens|ids] using the vocab.' output = [] for item in items: output.append(vocab[item]) return output
Converts a sequence of [tokens|ids] using the vocab.
pretraining/openwebtext/tokenization.py
convert_by_vocab
maact-org/electra-pytorch
122
python
def convert_by_vocab(vocab, items): output = [] for item in items: output.append(vocab[item]) return output
def convert_by_vocab(vocab, items): output = [] for item in items: output.append(vocab[item]) return output<|docstring|>Converts a sequence of [tokens|ids] using the vocab.<|endoftext|>
ca9c93e0f8264eaba166533fb04fc0ffb2ffab9b2aa3fa3f3f2e56caec09269f
def whitespace_tokenize(text): 'Runs basic whitespace cleaning and splitting on a piece of text.' text = text.strip() if (not text): return [] tokens = text.split() return tokens
Runs basic whitespace cleaning and splitting on a piece of text.
pretraining/openwebtext/tokenization.py
whitespace_tokenize
maact-org/electra-pytorch
122
python
def whitespace_tokenize(text): text = text.strip() if (not text): return [] tokens = text.split() return tokens
def whitespace_tokenize(text): text = text.strip() if (not text): return [] tokens = text.split() return tokens<|docstring|>Runs basic whitespace cleaning and splitting on a piece of text.<|endoftext|>
c2af0c892229fa0e53a39bc6664a3159a9badeb37b2eec7ceaddbabd4d14707a
def _is_whitespace(char): 'Checks whether `chars` is a whitespace character.' if ((char == ' ') or (char == '\t') or (char == '\n') or (char == '\r')): return True cat = unicodedata.category(char) if (cat == 'Zs'): return True return False
Checks whether `chars` is a whitespace character.
pretraining/openwebtext/tokenization.py
_is_whitespace
maact-org/electra-pytorch
122
python
def _is_whitespace(char): if ((char == ' ') or (char == '\t') or (char == '\n') or (char == '\r')): return True cat = unicodedata.category(char) if (cat == 'Zs'): return True return False
def _is_whitespace(char): if ((char == ' ') or (char == '\t') or (char == '\n') or (char == '\r')): return True cat = unicodedata.category(char) if (cat == 'Zs'): return True return False<|docstring|>Checks whether `chars` is a whitespace character.<|endoftext|>
67385be4e39d28d240dbee44ee5340c921fd5c03962386dbef535f84b0adf6df
def _is_control(char): 'Checks whether `chars` is a control character.' if ((char == '\t') or (char == '\n') or (char == '\r')): return False cat = unicodedata.category(char) if cat.startswith('C'): return True return False
Checks whether `chars` is a control character.
pretraining/openwebtext/tokenization.py
_is_control
maact-org/electra-pytorch
122
python
def _is_control(char): if ((char == '\t') or (char == '\n') or (char == '\r')): return False cat = unicodedata.category(char) if cat.startswith('C'): return True return False
def _is_control(char): if ((char == '\t') or (char == '\n') or (char == '\r')): return False cat = unicodedata.category(char) if cat.startswith('C'): return True return False<|docstring|>Checks whether `chars` is a control character.<|endoftext|>
3036677df4a6a5fa3c51c846042ea3dd4acd704720bd66e96a0ec2dff3e7804a
def _is_punctuation(char): 'Checks whether `chars` is a punctuation character.' cp = ord(char) if (((cp >= 33) and (cp <= 47)) or ((cp >= 58) and (cp <= 64)) or ((cp >= 91) and (cp <= 96)) or ((cp >= 123) and (cp <= 126))): return True cat = unicodedata.category(char) if cat.startswith('P'): return True return False
Checks whether `chars` is a punctuation character.
pretraining/openwebtext/tokenization.py
_is_punctuation
maact-org/electra-pytorch
122
python
def _is_punctuation(char): cp = ord(char) if (((cp >= 33) and (cp <= 47)) or ((cp >= 58) and (cp <= 64)) or ((cp >= 91) and (cp <= 96)) or ((cp >= 123) and (cp <= 126))): return True cat = unicodedata.category(char) if cat.startswith('P'): return True return False
def _is_punctuation(char): cp = ord(char) if (((cp >= 33) and (cp <= 47)) or ((cp >= 58) and (cp <= 64)) or ((cp >= 91) and (cp <= 96)) or ((cp >= 123) and (cp <= 126))): return True cat = unicodedata.category(char) if cat.startswith('P'): return True return False<|docstring|>Checks whether `chars` is a punctuation character.<|endoftext|>
ba62f16d20314afeae3ede46ba056ee9eb2c4bd6ef4bfa593c6527add1c57062
def __init__(self, do_lower_case=True): 'Constructs a BasicTokenizer.\n\n\t\tArgs:\n\t\t\tdo_lower_case: Whether to lower case the input.\n\t\t' self.do_lower_case = do_lower_case
Constructs a BasicTokenizer. Args: do_lower_case: Whether to lower case the input.
pretraining/openwebtext/tokenization.py
__init__
maact-org/electra-pytorch
122
python
def __init__(self, do_lower_case=True): 'Constructs a BasicTokenizer.\n\n\t\tArgs:\n\t\t\tdo_lower_case: Whether to lower case the input.\n\t\t' self.do_lower_case = do_lower_case
def __init__(self, do_lower_case=True): 'Constructs a BasicTokenizer.\n\n\t\tArgs:\n\t\t\tdo_lower_case: Whether to lower case the input.\n\t\t' self.do_lower_case = do_lower_case<|docstring|>Constructs a BasicTokenizer. Args: do_lower_case: Whether to lower case the input.<|endoftext|>
3c7946930bb61b5cc2480959ef1fd494bdc1d3f0739f606533e0f19f895c8340
def tokenize(self, text): 'Tokenizes a piece of text.' text = convert_to_unicode(text) text = self._clean_text(text) text = self._tokenize_chinese_chars(text) orig_tokens = whitespace_tokenize(text) split_tokens = [] for token in orig_tokens: if self.do_lower_case: token = token.lower() token = self._run_strip_accents(token) split_tokens.extend(self._run_split_on_punc(token)) output_tokens = whitespace_tokenize(' '.join(split_tokens)) return output_tokens
Tokenizes a piece of text.
pretraining/openwebtext/tokenization.py
tokenize
maact-org/electra-pytorch
122
python
def tokenize(self, text): text = convert_to_unicode(text) text = self._clean_text(text) text = self._tokenize_chinese_chars(text) orig_tokens = whitespace_tokenize(text) split_tokens = [] for token in orig_tokens: if self.do_lower_case: token = token.lower() token = self._run_strip_accents(token) split_tokens.extend(self._run_split_on_punc(token)) output_tokens = whitespace_tokenize(' '.join(split_tokens)) return output_tokens
def tokenize(self, text): text = convert_to_unicode(text) text = self._clean_text(text) text = self._tokenize_chinese_chars(text) orig_tokens = whitespace_tokenize(text) split_tokens = [] for token in orig_tokens: if self.do_lower_case: token = token.lower() token = self._run_strip_accents(token) split_tokens.extend(self._run_split_on_punc(token)) output_tokens = whitespace_tokenize(' '.join(split_tokens)) return output_tokens<|docstring|>Tokenizes a piece of text.<|endoftext|>
666f3fb2d4b7ff45415e4e3c9d59d5fb364eec7360af935fffec5d85341cd417
def _run_strip_accents(self, text): 'Strips accents from a piece of text.' text = unicodedata.normalize('NFD', text) output = [] for char in text: cat = unicodedata.category(char) if (cat == 'Mn'): continue output.append(char) return ''.join(output)
Strips accents from a piece of text.
pretraining/openwebtext/tokenization.py
_run_strip_accents
maact-org/electra-pytorch
122
python
def _run_strip_accents(self, text): text = unicodedata.normalize('NFD', text) output = [] for char in text: cat = unicodedata.category(char) if (cat == 'Mn'): continue output.append(char) return .join(output)
def _run_strip_accents(self, text): text = unicodedata.normalize('NFD', text) output = [] for char in text: cat = unicodedata.category(char) if (cat == 'Mn'): continue output.append(char) return .join(output)<|docstring|>Strips accents from a piece of text.<|endoftext|>
6f77e2aee6fad165c2cc79fd43331b3689f7566954f401421fd2b3078ba07d15
def _run_split_on_punc(self, text): 'Splits punctuation on a piece of text.' chars = list(text) i = 0 start_new_word = True output = [] while (i < len(chars)): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[(- 1)].append(char) i += 1 return [''.join(x) for x in output]
Splits punctuation on a piece of text.
pretraining/openwebtext/tokenization.py
_run_split_on_punc
maact-org/electra-pytorch
122
python
def _run_split_on_punc(self, text): chars = list(text) i = 0 start_new_word = True output = [] while (i < len(chars)): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[(- 1)].append(char) i += 1 return [.join(x) for x in output]
def _run_split_on_punc(self, text): chars = list(text) i = 0 start_new_word = True output = [] while (i < len(chars)): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[(- 1)].append(char) i += 1 return [.join(x) for x in output]<|docstring|>Splits punctuation on a piece of text.<|endoftext|>
b35514042aac23aaf27f35a348b0f9fab0be127d05ecf3a4134759ba41954fc1
def _tokenize_chinese_chars(self, text): 'Adds whitespace around any CJK character.' output = [] for char in text: cp = ord(char) if self._is_chinese_char(cp): output.append(' ') output.append(char) output.append(' ') else: output.append(char) return ''.join(output)
Adds whitespace around any CJK character.
pretraining/openwebtext/tokenization.py
_tokenize_chinese_chars
maact-org/electra-pytorch
122
python
def _tokenize_chinese_chars(self, text): output = [] for char in text: cp = ord(char) if self._is_chinese_char(cp): output.append(' ') output.append(char) output.append(' ') else: output.append(char) return .join(output)
def _tokenize_chinese_chars(self, text): output = [] for char in text: cp = ord(char) if self._is_chinese_char(cp): output.append(' ') output.append(char) output.append(' ') else: output.append(char) return .join(output)<|docstring|>Adds whitespace around any CJK character.<|endoftext|>
70697919acb3c18bd2db785cf0971a446ae6062102038ca37a477129c8bda201
def _is_chinese_char(self, cp): 'Checks whether CP is the codepoint of a CJK character.' if (((cp >= 19968) and (cp <= 40959)) or ((cp >= 13312) and (cp <= 19903)) or ((cp >= 131072) and (cp <= 173791)) or ((cp >= 173824) and (cp <= 177983)) or ((cp >= 177984) and (cp <= 178207)) or ((cp >= 178208) and (cp <= 183983)) or ((cp >= 63744) and (cp <= 64255)) or ((cp >= 194560) and (cp <= 195103))): return True return False
Checks whether CP is the codepoint of a CJK character.
pretraining/openwebtext/tokenization.py
_is_chinese_char
maact-org/electra-pytorch
122
python
def _is_chinese_char(self, cp): if (((cp >= 19968) and (cp <= 40959)) or ((cp >= 13312) and (cp <= 19903)) or ((cp >= 131072) and (cp <= 173791)) or ((cp >= 173824) and (cp <= 177983)) or ((cp >= 177984) and (cp <= 178207)) or ((cp >= 178208) and (cp <= 183983)) or ((cp >= 63744) and (cp <= 64255)) or ((cp >= 194560) and (cp <= 195103))): return True return False
def _is_chinese_char(self, cp): if (((cp >= 19968) and (cp <= 40959)) or ((cp >= 13312) and (cp <= 19903)) or ((cp >= 131072) and (cp <= 173791)) or ((cp >= 173824) and (cp <= 177983)) or ((cp >= 177984) and (cp <= 178207)) or ((cp >= 178208) and (cp <= 183983)) or ((cp >= 63744) and (cp <= 64255)) or ((cp >= 194560) and (cp <= 195103))): return True return False<|docstring|>Checks whether CP is the codepoint of a CJK character.<|endoftext|>
5a6ae5e539033f597bf772d75b92c83ada8c6605fc6627b6ecdbf4cfeba8f187
def _clean_text(self, text): 'Performs invalid character removal and whitespace cleanup on text.' output = [] for char in text: cp = ord(char) if ((cp == 0) or (cp == 65533) or _is_control(char)): continue if _is_whitespace(char): output.append(' ') else: output.append(char) return ''.join(output)
Performs invalid character removal and whitespace cleanup on text.
pretraining/openwebtext/tokenization.py
_clean_text
maact-org/electra-pytorch
122
python
def _clean_text(self, text): output = [] for char in text: cp = ord(char) if ((cp == 0) or (cp == 65533) or _is_control(char)): continue if _is_whitespace(char): output.append(' ') else: output.append(char) return .join(output)
def _clean_text(self, text): output = [] for char in text: cp = ord(char) if ((cp == 0) or (cp == 65533) or _is_control(char)): continue if _is_whitespace(char): output.append(' ') else: output.append(char) return .join(output)<|docstring|>Performs invalid character removal and whitespace cleanup on text.<|endoftext|>
589f10da2306b0e3bc593dcb459ea151773675ddfc1455b5d033d9122817ab47
def tokenize(self, text): 'Tokenizes a piece of text into its word pieces.\n\n\t\tThis uses a greedy longest-match-first algorithm to perform tokenization\n\t\tusing the given vocabulary.\n\n\t\tFor example:\n\t\t\tinput = "unaffable"\n\t\t\toutput = ["un", "##aff", "##able"]\n\n\t\tArgs:\n\t\t\ttext: A single token or whitespace separated tokens. This should have\n\t\t\t\talready been passed through `BasicTokenizer.\n\n\t\tReturns:\n\t\t\tA list of wordpiece tokens.\n\t\t' text = convert_to_unicode(text) output_tokens = [] for token in whitespace_tokenize(text): chars = list(token) if (len(chars) > self.max_input_chars_per_word): output_tokens.append(self.unk_token) continue is_bad = False start = 0 sub_tokens = [] while (start < len(chars)): end = len(chars) cur_substr = None while (start < end): substr = ''.join(chars[start:end]) if (start > 0): substr = ('##' + substr) if (substr in self.vocab): cur_substr = substr break end -= 1 if (cur_substr is None): is_bad = True break sub_tokens.append(cur_substr) start = end if is_bad: output_tokens.append(self.unk_token) else: output_tokens.extend(sub_tokens) return output_tokens
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform tokenization using the given vocabulary. For example: input = "unaffable" output = ["un", "##aff", "##able"] Args: text: A single token or whitespace separated tokens. This should have already been passed through `BasicTokenizer. Returns: A list of wordpiece tokens.
pretraining/openwebtext/tokenization.py
tokenize
maact-org/electra-pytorch
122
python
def tokenize(self, text): 'Tokenizes a piece of text into its word pieces.\n\n\t\tThis uses a greedy longest-match-first algorithm to perform tokenization\n\t\tusing the given vocabulary.\n\n\t\tFor example:\n\t\t\tinput = "unaffable"\n\t\t\toutput = ["un", "##aff", "##able"]\n\n\t\tArgs:\n\t\t\ttext: A single token or whitespace separated tokens. This should have\n\t\t\t\talready been passed through `BasicTokenizer.\n\n\t\tReturns:\n\t\t\tA list of wordpiece tokens.\n\t\t' text = convert_to_unicode(text) output_tokens = [] for token in whitespace_tokenize(text): chars = list(token) if (len(chars) > self.max_input_chars_per_word): output_tokens.append(self.unk_token) continue is_bad = False start = 0 sub_tokens = [] while (start < len(chars)): end = len(chars) cur_substr = None while (start < end): substr = .join(chars[start:end]) if (start > 0): substr = ('##' + substr) if (substr in self.vocab): cur_substr = substr break end -= 1 if (cur_substr is None): is_bad = True break sub_tokens.append(cur_substr) start = end if is_bad: output_tokens.append(self.unk_token) else: output_tokens.extend(sub_tokens) return output_tokens
def tokenize(self, text): 'Tokenizes a piece of text into its word pieces.\n\n\t\tThis uses a greedy longest-match-first algorithm to perform tokenization\n\t\tusing the given vocabulary.\n\n\t\tFor example:\n\t\t\tinput = "unaffable"\n\t\t\toutput = ["un", "##aff", "##able"]\n\n\t\tArgs:\n\t\t\ttext: A single token or whitespace separated tokens. This should have\n\t\t\t\talready been passed through `BasicTokenizer.\n\n\t\tReturns:\n\t\t\tA list of wordpiece tokens.\n\t\t' text = convert_to_unicode(text) output_tokens = [] for token in whitespace_tokenize(text): chars = list(token) if (len(chars) > self.max_input_chars_per_word): output_tokens.append(self.unk_token) continue is_bad = False start = 0 sub_tokens = [] while (start < len(chars)): end = len(chars) cur_substr = None while (start < end): substr = .join(chars[start:end]) if (start > 0): substr = ('##' + substr) if (substr in self.vocab): cur_substr = substr break end -= 1 if (cur_substr is None): is_bad = True break sub_tokens.append(cur_substr) start = end if is_bad: output_tokens.append(self.unk_token) else: output_tokens.extend(sub_tokens) return output_tokens<|docstring|>Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform tokenization using the given vocabulary. For example: input = "unaffable" output = ["un", "##aff", "##able"] Args: text: A single token or whitespace separated tokens. This should have already been passed through `BasicTokenizer. Returns: A list of wordpiece tokens.<|endoftext|>
351a9c9150297eac4727e1d69579a3f2773b57fbb5492c8d1ef55f11e55d1987
def xgboost_cv(max_depth: int, gamma: float, min_child_weight: float, scale_pos_weight: float, n_estimators: int, reg_alpha: float, reg_lambda: float, max_delta_step: float, subsample: float, colsample_bytree: float, learning_rate: float, data: pd.DataFrame, targets: pd.DataFrame, n_jobs: int) -> float: 'XGBoost with 5 times repeated 5 fold cross validation.\n\n Parameters\n ----------\n max_depth: int\n Maximum depth of a tree.\n gamma: float\n Minimum loss reduction required to make a further partition on a leaf node of the tree. The larger gamma is,\n the more conservative the algorithm will be.\n min_child_weight: float\n Minimum sum of instance weight (hessian) needed in a child.\n scale_pos_weight: float\n Balancing of positive and negative weights.\n n_estimators: int\n Number of gradient boosted trees. Equivalent to number of boosting rounds.\n reg_alpha: float\n L1 regularization term on weights.\n reg_lambda: float\n L2 regularization term on weights\n max_delta_step: int\n Maximum delta step we allow each leaf output to be.\n subsample: float [0,1]\n Subsample ratio of the training instances.\n colsample_bytree: float\n Subsample ratio of columns when constructing each tree.\n learning_rate: float\n Boosting learning rate (xgb’s “eta”)\n data: pd.DataFrame\n Features (input data) used to train the model.\n targets: pd.DataFrame\n Labels used for training.\n n_jobs: int\n Number of parallel threads used to run xgboost.\n\n Returns\n -------\n float\n Mean cross-validation score.\n ' random.seed(42) estimator = XGBRegressor(objective='reg:squarederror', n_estimators=n_estimators, max_depth=max_depth, gamma=gamma, min_child_weight=min_child_weight, scale_pos_weight=scale_pos_weight, reg_alpha=reg_alpha, reg_lambda=reg_lambda, max_delta_step=max_delta_step, subsample=subsample, colsample_bytree=colsample_bytree, learning_rate=learning_rate, n_jobs=n_jobs) rkf = model_selection.RepeatedKFold(n_splits=5, n_repeats=5, random_state=1234) cval = model_selection.cross_val_score(estimator, data, targets, cv=rkf, scoring='neg_root_mean_squared_error') return cval.mean()
XGBoost with 5 times repeated 5 fold cross validation. Parameters ---------- max_depth: int Maximum depth of a tree. gamma: float Minimum loss reduction required to make a further partition on a leaf node of the tree. The larger gamma is, the more conservative the algorithm will be. min_child_weight: float Minimum sum of instance weight (hessian) needed in a child. scale_pos_weight: float Balancing of positive and negative weights. n_estimators: int Number of gradient boosted trees. Equivalent to number of boosting rounds. reg_alpha: float L1 regularization term on weights. reg_lambda: float L2 regularization term on weights max_delta_step: int Maximum delta step we allow each leaf output to be. subsample: float [0,1] Subsample ratio of the training instances. colsample_bytree: float Subsample ratio of columns when constructing each tree. learning_rate: float Boosting learning rate (xgb’s “eta”) data: pd.DataFrame Features (input data) used to train the model. targets: pd.DataFrame Labels used for training. n_jobs: int Number of parallel threads used to run xgboost. Returns ------- float Mean cross-validation score.
src/models.py
xgboost_cv
MoritzFeigl/Learning-from-mistakes
0
python
def xgboost_cv(max_depth: int, gamma: float, min_child_weight: float, scale_pos_weight: float, n_estimators: int, reg_alpha: float, reg_lambda: float, max_delta_step: float, subsample: float, colsample_bytree: float, learning_rate: float, data: pd.DataFrame, targets: pd.DataFrame, n_jobs: int) -> float: 'XGBoost with 5 times repeated 5 fold cross validation.\n\n Parameters\n ----------\n max_depth: int\n Maximum depth of a tree.\n gamma: float\n Minimum loss reduction required to make a further partition on a leaf node of the tree. The larger gamma is,\n the more conservative the algorithm will be.\n min_child_weight: float\n Minimum sum of instance weight (hessian) needed in a child.\n scale_pos_weight: float\n Balancing of positive and negative weights.\n n_estimators: int\n Number of gradient boosted trees. Equivalent to number of boosting rounds.\n reg_alpha: float\n L1 regularization term on weights.\n reg_lambda: float\n L2 regularization term on weights\n max_delta_step: int\n Maximum delta step we allow each leaf output to be.\n subsample: float [0,1]\n Subsample ratio of the training instances.\n colsample_bytree: float\n Subsample ratio of columns when constructing each tree.\n learning_rate: float\n Boosting learning rate (xgb’s “eta”)\n data: pd.DataFrame\n Features (input data) used to train the model.\n targets: pd.DataFrame\n Labels used for training.\n n_jobs: int\n Number of parallel threads used to run xgboost.\n\n Returns\n -------\n float\n Mean cross-validation score.\n ' random.seed(42) estimator = XGBRegressor(objective='reg:squarederror', n_estimators=n_estimators, max_depth=max_depth, gamma=gamma, min_child_weight=min_child_weight, scale_pos_weight=scale_pos_weight, reg_alpha=reg_alpha, reg_lambda=reg_lambda, max_delta_step=max_delta_step, subsample=subsample, colsample_bytree=colsample_bytree, learning_rate=learning_rate, n_jobs=n_jobs) rkf = model_selection.RepeatedKFold(n_splits=5, n_repeats=5, random_state=1234) cval = model_selection.cross_val_score(estimator, data, targets, cv=rkf, scoring='neg_root_mean_squared_error') return cval.mean()
def xgboost_cv(max_depth: int, gamma: float, min_child_weight: float, scale_pos_weight: float, n_estimators: int, reg_alpha: float, reg_lambda: float, max_delta_step: float, subsample: float, colsample_bytree: float, learning_rate: float, data: pd.DataFrame, targets: pd.DataFrame, n_jobs: int) -> float: 'XGBoost with 5 times repeated 5 fold cross validation.\n\n Parameters\n ----------\n max_depth: int\n Maximum depth of a tree.\n gamma: float\n Minimum loss reduction required to make a further partition on a leaf node of the tree. The larger gamma is,\n the more conservative the algorithm will be.\n min_child_weight: float\n Minimum sum of instance weight (hessian) needed in a child.\n scale_pos_weight: float\n Balancing of positive and negative weights.\n n_estimators: int\n Number of gradient boosted trees. Equivalent to number of boosting rounds.\n reg_alpha: float\n L1 regularization term on weights.\n reg_lambda: float\n L2 regularization term on weights\n max_delta_step: int\n Maximum delta step we allow each leaf output to be.\n subsample: float [0,1]\n Subsample ratio of the training instances.\n colsample_bytree: float\n Subsample ratio of columns when constructing each tree.\n learning_rate: float\n Boosting learning rate (xgb’s “eta”)\n data: pd.DataFrame\n Features (input data) used to train the model.\n targets: pd.DataFrame\n Labels used for training.\n n_jobs: int\n Number of parallel threads used to run xgboost.\n\n Returns\n -------\n float\n Mean cross-validation score.\n ' random.seed(42) estimator = XGBRegressor(objective='reg:squarederror', n_estimators=n_estimators, max_depth=max_depth, gamma=gamma, min_child_weight=min_child_weight, scale_pos_weight=scale_pos_weight, reg_alpha=reg_alpha, reg_lambda=reg_lambda, max_delta_step=max_delta_step, subsample=subsample, colsample_bytree=colsample_bytree, learning_rate=learning_rate, n_jobs=n_jobs) rkf = model_selection.RepeatedKFold(n_splits=5, n_repeats=5, random_state=1234) cval = model_selection.cross_val_score(estimator, data, targets, cv=rkf, scoring='neg_root_mean_squared_error') return cval.mean()<|docstring|>XGBoost with 5 times repeated 5 fold cross validation. Parameters ---------- max_depth: int Maximum depth of a tree. gamma: float Minimum loss reduction required to make a further partition on a leaf node of the tree. The larger gamma is, the more conservative the algorithm will be. min_child_weight: float Minimum sum of instance weight (hessian) needed in a child. scale_pos_weight: float Balancing of positive and negative weights. n_estimators: int Number of gradient boosted trees. Equivalent to number of boosting rounds. reg_alpha: float L1 regularization term on weights. reg_lambda: float L2 regularization term on weights max_delta_step: int Maximum delta step we allow each leaf output to be. subsample: float [0,1] Subsample ratio of the training instances. colsample_bytree: float Subsample ratio of columns when constructing each tree. learning_rate: float Boosting learning rate (xgb’s “eta”) data: pd.DataFrame Features (input data) used to train the model. targets: pd.DataFrame Labels used for training. n_jobs: int Number of parallel threads used to run xgboost. Returns ------- float Mean cross-validation score.<|endoftext|>
9a623a4fe5de9aac86a680df0ad4f00a59327d2e44d7615edd89d43523882970
def optimize_xgboost(data: pd.DataFrame, targets: pd.DataFrame, init_points: int, n_iter: int, n_jobs: int) -> bayes_opt.bayesian_optimization.BayesianOptimization: ' Bayesian Optimization of XGBoost parameters\n\n Parameters\n ----------\n data: pd.DataFrame\n Features (input data) used to train the model.\n targets: pd.DataFrame\n Labels used for training.\n init_points: int\n Number of randomly chosen points at the beginning of the optimization.\n n_iter: int\n Number of iterations.\n n_jobs: int\n Number of parallel threads used to run xgboost.\n\n Returns\n -------\n bayes_opt.bayesian_optimization.BayesianOptimization\n The optimizer object.\n ' def xgboost_crossval(max_depth, gamma, n_estimators, min_child_weight, scale_pos_weight, reg_alpha, reg_lambda, max_delta_step, subsample, colsample_bytree, learning_rate): 'Wrapper of XGBoost cross validation.' return xgboost_cv(n_estimators=int(n_estimators), max_depth=int(max_depth), gamma=gamma, min_child_weight=min_child_weight, scale_pos_weight=scale_pos_weight, reg_alpha=reg_alpha, reg_lambda=reg_lambda, max_delta_step=int(max_delta_step), subsample=subsample, colsample_bytree=colsample_bytree, learning_rate=learning_rate, data=data, targets=targets, n_jobs=n_jobs) random.seed(42) optimizer = bayes_opt.BayesianOptimization(f=xgboost_crossval, pbounds=dict(n_estimators=(50, 5000), max_depth=(3, 20), gamma=(0.01, 5), min_child_weight=(0, 10), scale_pos_weight=(1.2, 5), reg_alpha=(4.0, 10.0), reg_lambda=(1.0, 10.0), max_delta_step=(0, 5), subsample=(0.5, 1.0), colsample_bytree=(0.3, 1.0), learning_rate=(0.0, 1.0)), random_state=1234, verbose=2) random.seed(42) optimizer.maximize(n_iter=n_iter, init_points=init_points, acq='ucb', kappa=5) print('Maximum Value: {}'.format(optimizer.max['target'])) print('Best Parameters:') print(optimizer.max['params']) return optimizer
Bayesian Optimization of XGBoost parameters Parameters ---------- data: pd.DataFrame Features (input data) used to train the model. targets: pd.DataFrame Labels used for training. init_points: int Number of randomly chosen points at the beginning of the optimization. n_iter: int Number of iterations. n_jobs: int Number of parallel threads used to run xgboost. Returns ------- bayes_opt.bayesian_optimization.BayesianOptimization The optimizer object.
src/models.py
optimize_xgboost
MoritzFeigl/Learning-from-mistakes
0
python
def optimize_xgboost(data: pd.DataFrame, targets: pd.DataFrame, init_points: int, n_iter: int, n_jobs: int) -> bayes_opt.bayesian_optimization.BayesianOptimization: ' Bayesian Optimization of XGBoost parameters\n\n Parameters\n ----------\n data: pd.DataFrame\n Features (input data) used to train the model.\n targets: pd.DataFrame\n Labels used for training.\n init_points: int\n Number of randomly chosen points at the beginning of the optimization.\n n_iter: int\n Number of iterations.\n n_jobs: int\n Number of parallel threads used to run xgboost.\n\n Returns\n -------\n bayes_opt.bayesian_optimization.BayesianOptimization\n The optimizer object.\n ' def xgboost_crossval(max_depth, gamma, n_estimators, min_child_weight, scale_pos_weight, reg_alpha, reg_lambda, max_delta_step, subsample, colsample_bytree, learning_rate): 'Wrapper of XGBoost cross validation.' return xgboost_cv(n_estimators=int(n_estimators), max_depth=int(max_depth), gamma=gamma, min_child_weight=min_child_weight, scale_pos_weight=scale_pos_weight, reg_alpha=reg_alpha, reg_lambda=reg_lambda, max_delta_step=int(max_delta_step), subsample=subsample, colsample_bytree=colsample_bytree, learning_rate=learning_rate, data=data, targets=targets, n_jobs=n_jobs) random.seed(42) optimizer = bayes_opt.BayesianOptimization(f=xgboost_crossval, pbounds=dict(n_estimators=(50, 5000), max_depth=(3, 20), gamma=(0.01, 5), min_child_weight=(0, 10), scale_pos_weight=(1.2, 5), reg_alpha=(4.0, 10.0), reg_lambda=(1.0, 10.0), max_delta_step=(0, 5), subsample=(0.5, 1.0), colsample_bytree=(0.3, 1.0), learning_rate=(0.0, 1.0)), random_state=1234, verbose=2) random.seed(42) optimizer.maximize(n_iter=n_iter, init_points=init_points, acq='ucb', kappa=5) print('Maximum Value: {}'.format(optimizer.max['target'])) print('Best Parameters:') print(optimizer.max['params']) return optimizer
def optimize_xgboost(data: pd.DataFrame, targets: pd.DataFrame, init_points: int, n_iter: int, n_jobs: int) -> bayes_opt.bayesian_optimization.BayesianOptimization: ' Bayesian Optimization of XGBoost parameters\n\n Parameters\n ----------\n data: pd.DataFrame\n Features (input data) used to train the model.\n targets: pd.DataFrame\n Labels used for training.\n init_points: int\n Number of randomly chosen points at the beginning of the optimization.\n n_iter: int\n Number of iterations.\n n_jobs: int\n Number of parallel threads used to run xgboost.\n\n Returns\n -------\n bayes_opt.bayesian_optimization.BayesianOptimization\n The optimizer object.\n ' def xgboost_crossval(max_depth, gamma, n_estimators, min_child_weight, scale_pos_weight, reg_alpha, reg_lambda, max_delta_step, subsample, colsample_bytree, learning_rate): 'Wrapper of XGBoost cross validation.' return xgboost_cv(n_estimators=int(n_estimators), max_depth=int(max_depth), gamma=gamma, min_child_weight=min_child_weight, scale_pos_weight=scale_pos_weight, reg_alpha=reg_alpha, reg_lambda=reg_lambda, max_delta_step=int(max_delta_step), subsample=subsample, colsample_bytree=colsample_bytree, learning_rate=learning_rate, data=data, targets=targets, n_jobs=n_jobs) random.seed(42) optimizer = bayes_opt.BayesianOptimization(f=xgboost_crossval, pbounds=dict(n_estimators=(50, 5000), max_depth=(3, 20), gamma=(0.01, 5), min_child_weight=(0, 10), scale_pos_weight=(1.2, 5), reg_alpha=(4.0, 10.0), reg_lambda=(1.0, 10.0), max_delta_step=(0, 5), subsample=(0.5, 1.0), colsample_bytree=(0.3, 1.0), learning_rate=(0.0, 1.0)), random_state=1234, verbose=2) random.seed(42) optimizer.maximize(n_iter=n_iter, init_points=init_points, acq='ucb', kappa=5) print('Maximum Value: {}'.format(optimizer.max['target'])) print('Best Parameters:') print(optimizer.max['params']) return optimizer<|docstring|>Bayesian Optimization of XGBoost parameters Parameters ---------- data: pd.DataFrame Features (input data) used to train the model. targets: pd.DataFrame Labels used for training. init_points: int Number of randomly chosen points at the beginning of the optimization. n_iter: int Number of iterations. n_jobs: int Number of parallel threads used to run xgboost. Returns ------- bayes_opt.bayesian_optimization.BayesianOptimization The optimizer object.<|endoftext|>
5910dbb38c9796577e48feefd99881745fee08d48c98e719d88bb577fa96f148
def variance_inflation(self): 'Variance inflation factor for regressors of a linear model\n Computes variance inflation factor for all regressors.\n ' vif = pd.DataFrame({'variables': self.x.columns, 'VIF': [out.variance_inflation_factor(self.x.values, i) for i in range(self.x.shape[1])]}) print(vif)
Variance inflation factor for regressors of a linear model Computes variance inflation factor for all regressors.
src/models.py
variance_inflation
MoritzFeigl/Learning-from-mistakes
0
python
def variance_inflation(self): 'Variance inflation factor for regressors of a linear model\n Computes variance inflation factor for all regressors.\n ' vif = pd.DataFrame({'variables': self.x.columns, 'VIF': [out.variance_inflation_factor(self.x.values, i) for i in range(self.x.shape[1])]}) print(vif)
def variance_inflation(self): 'Variance inflation factor for regressors of a linear model\n Computes variance inflation factor for all regressors.\n ' vif = pd.DataFrame({'variables': self.x.columns, 'VIF': [out.variance_inflation_factor(self.x.values, i) for i in range(self.x.shape[1])]}) print(vif)<|docstring|>Variance inflation factor for regressors of a linear model Computes variance inflation factor for all regressors.<|endoftext|>
2825ee512f457844ec2b6be1d96fe66180344d3c67f3bf61499906d171f1adfe
def center_data(self): ' Data centering\n Centers data to reduce influence of multicollinearity.\n ' self.x = self.x.drop(columns='const') data_centered = pd.DataFrame(preprocessing.scale(self.x, with_mean='True', with_std='False')) data_centered.columns = self.x.columns data_centered.index = self.x.index self.x = data_centered self.x = tools.tools.add_constant(self.x) print('All columns successfully centered!')
Data centering Centers data to reduce influence of multicollinearity.
src/models.py
center_data
MoritzFeigl/Learning-from-mistakes
0
python
def center_data(self): ' Data centering\n Centers data to reduce influence of multicollinearity.\n ' self.x = self.x.drop(columns='const') data_centered = pd.DataFrame(preprocessing.scale(self.x, with_mean='True', with_std='False')) data_centered.columns = self.x.columns data_centered.index = self.x.index self.x = data_centered self.x = tools.tools.add_constant(self.x) print('All columns successfully centered!')
def center_data(self): ' Data centering\n Centers data to reduce influence of multicollinearity.\n ' self.x = self.x.drop(columns='const') data_centered = pd.DataFrame(preprocessing.scale(self.x, with_mean='True', with_std='False')) data_centered.columns = self.x.columns data_centered.index = self.x.index self.x = data_centered self.x = tools.tools.add_constant(self.x) print('All columns successfully centered!')<|docstring|>Data centering Centers data to reduce influence of multicollinearity.<|endoftext|>
abc4644a30b7271284b6db71fade71d19d2e153b95b98c6b1c1ce328ba5f1f25
def fit(self): ' Fit OLS regression model\n Fits a OLS regression model of the form y ~ x + intercept\n ' model = api.OLS(self.y, self.x) results = model.fit() print(results.summary()) with open('results/tables/regression_model.csv', 'w') as fh: fh.write(results.summary().as_csv()) print('Saved model summary in results/tables/regression_model.csv')
Fit OLS regression model Fits a OLS regression model of the form y ~ x + intercept
src/models.py
fit
MoritzFeigl/Learning-from-mistakes
0
python
def fit(self): ' Fit OLS regression model\n Fits a OLS regression model of the form y ~ x + intercept\n ' model = api.OLS(self.y, self.x) results = model.fit() print(results.summary()) with open('results/tables/regression_model.csv', 'w') as fh: fh.write(results.summary().as_csv()) print('Saved model summary in results/tables/regression_model.csv')
def fit(self): ' Fit OLS regression model\n Fits a OLS regression model of the form y ~ x + intercept\n ' model = api.OLS(self.y, self.x) results = model.fit() print(results.summary()) with open('results/tables/regression_model.csv', 'w') as fh: fh.write(results.summary().as_csv()) print('Saved model summary in results/tables/regression_model.csv')<|docstring|>Fit OLS regression model Fits a OLS regression model of the form y ~ x + intercept<|endoftext|>
eadde10281031d482273f257c56db1b9bacb3b461bf9a6358de5ed3e74cf139a
def xgboost_crossval(max_depth, gamma, n_estimators, min_child_weight, scale_pos_weight, reg_alpha, reg_lambda, max_delta_step, subsample, colsample_bytree, learning_rate): 'Wrapper of XGBoost cross validation.' return xgboost_cv(n_estimators=int(n_estimators), max_depth=int(max_depth), gamma=gamma, min_child_weight=min_child_weight, scale_pos_weight=scale_pos_weight, reg_alpha=reg_alpha, reg_lambda=reg_lambda, max_delta_step=int(max_delta_step), subsample=subsample, colsample_bytree=colsample_bytree, learning_rate=learning_rate, data=data, targets=targets, n_jobs=n_jobs)
Wrapper of XGBoost cross validation.
src/models.py
xgboost_crossval
MoritzFeigl/Learning-from-mistakes
0
python
def xgboost_crossval(max_depth, gamma, n_estimators, min_child_weight, scale_pos_weight, reg_alpha, reg_lambda, max_delta_step, subsample, colsample_bytree, learning_rate): return xgboost_cv(n_estimators=int(n_estimators), max_depth=int(max_depth), gamma=gamma, min_child_weight=min_child_weight, scale_pos_weight=scale_pos_weight, reg_alpha=reg_alpha, reg_lambda=reg_lambda, max_delta_step=int(max_delta_step), subsample=subsample, colsample_bytree=colsample_bytree, learning_rate=learning_rate, data=data, targets=targets, n_jobs=n_jobs)
def xgboost_crossval(max_depth, gamma, n_estimators, min_child_weight, scale_pos_weight, reg_alpha, reg_lambda, max_delta_step, subsample, colsample_bytree, learning_rate): return xgboost_cv(n_estimators=int(n_estimators), max_depth=int(max_depth), gamma=gamma, min_child_weight=min_child_weight, scale_pos_weight=scale_pos_weight, reg_alpha=reg_alpha, reg_lambda=reg_lambda, max_delta_step=int(max_delta_step), subsample=subsample, colsample_bytree=colsample_bytree, learning_rate=learning_rate, data=data, targets=targets, n_jobs=n_jobs)<|docstring|>Wrapper of XGBoost cross validation.<|endoftext|>