body_hash
stringlengths
64
64
body
stringlengths
23
109k
docstring
stringlengths
1
57k
path
stringlengths
4
198
name
stringlengths
1
115
repository_name
stringlengths
7
111
repository_stars
float64
0
191k
lang
stringclasses
1 value
body_without_docstring
stringlengths
14
108k
unified
stringlengths
45
133k
5ddb0f45824bd88d6d472dc13e6648a01938384a5f4eb15806a7ce33b2da380f
def get_network_info_for_port(session, port_id): 'Get Port network informations from DB\n\n Get network informations (MAC, IP and gateway addresses and\n subnet mask) from database associated to a port\n ' LOG.debug(('get_network_info_for_port() called for port %s' % port_id)) with session.begin(subtransactions=True): try: net_info = session.query(models_v2.Port.mac_address, models_v2.IPAllocation.ip_address, models_v2.Subnet.cidr, models_v2.Subnet.gateway_ip).join(models_v2.IPAllocation).join(models_v2.Subnet, (models_v2.IPAllocation.subnet_id == models_v2.Subnet.id)).filter((models_v2.Subnet.ip_version == 4)).filter((models_v2.Port.id == port_id)).one() return net_info except exc.NoResultFound: raise NoNetworkInfoForPort(port_id)
Get Port network informations from DB Get network informations (MAC, IP and gateway addresses and subnet mask) from database associated to a port
networking_bagpipe/driver/mech_bagpipe.py
get_network_info_for_port
mail2nsrajesh/networking-bagpipe
0
python
def get_network_info_for_port(session, port_id): 'Get Port network informations from DB\n\n Get network informations (MAC, IP and gateway addresses and\n subnet mask) from database associated to a port\n ' LOG.debug(('get_network_info_for_port() called for port %s' % port_id)) with session.begin(subtransactions=True): try: net_info = session.query(models_v2.Port.mac_address, models_v2.IPAllocation.ip_address, models_v2.Subnet.cidr, models_v2.Subnet.gateway_ip).join(models_v2.IPAllocation).join(models_v2.Subnet, (models_v2.IPAllocation.subnet_id == models_v2.Subnet.id)).filter((models_v2.Subnet.ip_version == 4)).filter((models_v2.Port.id == port_id)).one() return net_info except exc.NoResultFound: raise NoNetworkInfoForPort(port_id)
def get_network_info_for_port(session, port_id): 'Get Port network informations from DB\n\n Get network informations (MAC, IP and gateway addresses and\n subnet mask) from database associated to a port\n ' LOG.debug(('get_network_info_for_port() called for port %s' % port_id)) with session.begin(subtransactions=True): try: net_info = session.query(models_v2.Port.mac_address, models_v2.IPAllocation.ip_address, models_v2.Subnet.cidr, models_v2.Subnet.gateway_ip).join(models_v2.IPAllocation).join(models_v2.Subnet, (models_v2.IPAllocation.subnet_id == models_v2.Subnet.id)).filter((models_v2.Subnet.ip_version == 4)).filter((models_v2.Port.id == port_id)).one() return net_info except exc.NoResultFound: raise NoNetworkInfoForPort(port_id)<|docstring|>Get Port network informations from DB Get network informations (MAC, IP and gateway addresses and subnet mask) from database associated to a port<|endoftext|>
720637ba67c681fbf8c4d7f100f92f27f8bd4b2ea754431a7fab7794f590bde9
def _get_network_info_for_port(self, port_id): 'Get MAC, IP and Gw IP addresses informations for a specific port' session = db_api.get_reader_session() (mac_address, ip_address, cidr, gateway_ip) = get_network_info_for_port(session, port_id) return {'mac_address': mac_address, 'ip_address': (ip_address + cidr[cidr.index('/'):]), 'gateway_ip': gateway_ip}
Get MAC, IP and Gw IP addresses informations for a specific port
networking_bagpipe/driver/mech_bagpipe.py
_get_network_info_for_port
mail2nsrajesh/networking-bagpipe
0
python
def _get_network_info_for_port(self, port_id): session = db_api.get_reader_session() (mac_address, ip_address, cidr, gateway_ip) = get_network_info_for_port(session, port_id) return {'mac_address': mac_address, 'ip_address': (ip_address + cidr[cidr.index('/'):]), 'gateway_ip': gateway_ip}
def _get_network_info_for_port(self, port_id): session = db_api.get_reader_session() (mac_address, ip_address, cidr, gateway_ip) = get_network_info_for_port(session, port_id) return {'mac_address': mac_address, 'ip_address': (ip_address + cidr[cidr.index('/'):]), 'gateway_ip': gateway_ip}<|docstring|>Get MAC, IP and Gw IP addresses informations for a specific port<|endoftext|>
85ca685672915e86a5525f323b5666724acbe62b77b1952e601f78150781728c
def _retrieve_bagpipe_net_info_for_port(self, port_id, segment): "Retrieve BaGPipe network informations for a specific port\n\n {\n 'network_id': <UUID>,\n 'mac_address': '00:00:de:ad:be:ef',\n 'ip_address': '10.0.0.2',\n 'gateway_ip': '10.0.0.1',\n 'evpn' : {\n 'import_rt': ['12345:1', '12345:2', '12345:3'],\n 'export_rt': ['12345:1', '12345:2', '12345:4']\n }\n }\n " bagpipe_network_info = {} bagpipe_rt = self._get_route_target(segment) if bagpipe_rt: bagpipe_network_info.update({'evpn': {'import_rt': bagpipe_rt, 'export_rt': bagpipe_rt}}) else: LOG.debug('No E-VPN RT info for port %s', port_id) LOG.debug('Getting port %s network details', port_id) bagpipe_network_info.update(self._get_network_info_for_port(port_id)) return bagpipe_network_info
Retrieve BaGPipe network informations for a specific port { 'network_id': <UUID>, 'mac_address': '00:00:de:ad:be:ef', 'ip_address': '10.0.0.2', 'gateway_ip': '10.0.0.1', 'evpn' : { 'import_rt': ['12345:1', '12345:2', '12345:3'], 'export_rt': ['12345:1', '12345:2', '12345:4'] } }
networking_bagpipe/driver/mech_bagpipe.py
_retrieve_bagpipe_net_info_for_port
mail2nsrajesh/networking-bagpipe
0
python
def _retrieve_bagpipe_net_info_for_port(self, port_id, segment): "Retrieve BaGPipe network informations for a specific port\n\n {\n 'network_id': <UUID>,\n 'mac_address': '00:00:de:ad:be:ef',\n 'ip_address': '10.0.0.2',\n 'gateway_ip': '10.0.0.1',\n 'evpn' : {\n 'import_rt': ['12345:1', '12345:2', '12345:3'],\n 'export_rt': ['12345:1', '12345:2', '12345:4']\n }\n }\n " bagpipe_network_info = {} bagpipe_rt = self._get_route_target(segment) if bagpipe_rt: bagpipe_network_info.update({'evpn': {'import_rt': bagpipe_rt, 'export_rt': bagpipe_rt}}) else: LOG.debug('No E-VPN RT info for port %s', port_id) LOG.debug('Getting port %s network details', port_id) bagpipe_network_info.update(self._get_network_info_for_port(port_id)) return bagpipe_network_info
def _retrieve_bagpipe_net_info_for_port(self, port_id, segment): "Retrieve BaGPipe network informations for a specific port\n\n {\n 'network_id': <UUID>,\n 'mac_address': '00:00:de:ad:be:ef',\n 'ip_address': '10.0.0.2',\n 'gateway_ip': '10.0.0.1',\n 'evpn' : {\n 'import_rt': ['12345:1', '12345:2', '12345:3'],\n 'export_rt': ['12345:1', '12345:2', '12345:4']\n }\n }\n " bagpipe_network_info = {} bagpipe_rt = self._get_route_target(segment) if bagpipe_rt: bagpipe_network_info.update({'evpn': {'import_rt': bagpipe_rt, 'export_rt': bagpipe_rt}}) else: LOG.debug('No E-VPN RT info for port %s', port_id) LOG.debug('Getting port %s network details', port_id) bagpipe_network_info.update(self._get_network_info_for_port(port_id)) return bagpipe_network_info<|docstring|>Retrieve BaGPipe network informations for a specific port { 'network_id': <UUID>, 'mac_address': '00:00:de:ad:be:ef', 'ip_address': '10.0.0.2', 'gateway_ip': '10.0.0.1', 'evpn' : { 'import_rt': ['12345:1', '12345:2', '12345:3'], 'export_rt': ['12345:1', '12345:2', '12345:4'] } }<|endoftext|>
26c617b34e270d45b0c31c44958dd4bda6f1b0fa03f06aa9ef9e05b2d0a8845d
def _read_in_thread(address, pty, blocking): 'Read data from the pty in a thread.\n ' client = socket.socket(socket.AF_INET, socket.SOCK_STREAM) client.connect(address) while 1: data = pty.read(4096, blocking=blocking) if ((not data) and (not pty.isalive())): while ((not data) and (not pty.iseof())): data += pty.read(4096, blocking=blocking) if (not data): try: client.send(b'') except socket.error: pass break try: client.send(data) except socket.error: break client.close()
Read data from the pty in a thread.
afdb_docs_env/Lib/site-packages/winpty/ptyprocess.py
_read_in_thread
Semaine52/AuFilDuBoamp_Docs
2
python
def _read_in_thread(address, pty, blocking): '\n ' client = socket.socket(socket.AF_INET, socket.SOCK_STREAM) client.connect(address) while 1: data = pty.read(4096, blocking=blocking) if ((not data) and (not pty.isalive())): while ((not data) and (not pty.iseof())): data += pty.read(4096, blocking=blocking) if (not data): try: client.send(b) except socket.error: pass break try: client.send(data) except socket.error: break client.close()
def _read_in_thread(address, pty, blocking): '\n ' client = socket.socket(socket.AF_INET, socket.SOCK_STREAM) client.connect(address) while 1: data = pty.read(4096, blocking=blocking) if ((not data) and (not pty.isalive())): while ((not data) and (not pty.iseof())): data += pty.read(4096, blocking=blocking) if (not data): try: client.send(b) except socket.error: pass break try: client.send(data) except socket.error: break client.close()<|docstring|>Read data from the pty in a thread.<|endoftext|>
c1bb71cd9a1a0158bfd03922b217ad8cc9ae916b1f34738050cdbb27dd94050f
@classmethod def spawn(cls, argv, cwd=None, env=None, dimensions=(24, 80), encoding='utf-8', backend=None): 'Start the given command in a child process in a pseudo terminal.\n\n This does all the setting up the pty, and returns an instance of\n PtyProcess.\n\n Dimensions of the psuedoterminal used for the subprocess can be\n specified as a tuple (rows, cols), or the default (24, 80) will be\n used.\n ' if isinstance(argv, str): argv = shlex.split(argv, posix=False) if (not isinstance(argv, (list, tuple))): raise TypeError(('Expected a list or tuple for argv, got %r' % argv)) argv = argv[:] command = argv[0] env = (env or os.environ) path = env.get('PATH', os.defpath) command_with_path = which(command, path=path) if (command_with_path is None): raise FileNotFoundError(('The command was not found or was not ' + ('executable: %s.' % command))) command = command_with_path argv[0] = command cmdline = (' ' + subprocess.list2cmdline(argv[1:])) cwd = (cwd or os.getcwd()) backend = os.environ.get('PYWINPTY_BACKEND', None) backend = (int(backend) if (backend is not None) else backend) proc = PTY(dimensions[1], dimensions[0], encoding=encoding, backend=backend) envStrs = [] for (key, value) in env.items(): envStrs.append(('%s=%s' % (key, value))) env = ('\x00'.join(envStrs) + '\x00') command = bytes(command, encoding) cwd = bytes(cwd, encoding) cmdline = bytes(cmdline, encoding) env = bytes(env, encoding) if (len(argv) == 1): proc.spawn(command, cwd=cwd, env=env) else: proc.spawn(command, cwd=cwd, env=env, cmdline=cmdline) inst = cls(proc, encoding) inst._winsize = dimensions inst.argv = argv if (env is not None): inst.env = env if (cwd is not None): inst.launch_dir = cwd return inst
Start the given command in a child process in a pseudo terminal. This does all the setting up the pty, and returns an instance of PtyProcess. Dimensions of the psuedoterminal used for the subprocess can be specified as a tuple (rows, cols), or the default (24, 80) will be used.
afdb_docs_env/Lib/site-packages/winpty/ptyprocess.py
spawn
Semaine52/AuFilDuBoamp_Docs
2
python
@classmethod def spawn(cls, argv, cwd=None, env=None, dimensions=(24, 80), encoding='utf-8', backend=None): 'Start the given command in a child process in a pseudo terminal.\n\n This does all the setting up the pty, and returns an instance of\n PtyProcess.\n\n Dimensions of the psuedoterminal used for the subprocess can be\n specified as a tuple (rows, cols), or the default (24, 80) will be\n used.\n ' if isinstance(argv, str): argv = shlex.split(argv, posix=False) if (not isinstance(argv, (list, tuple))): raise TypeError(('Expected a list or tuple for argv, got %r' % argv)) argv = argv[:] command = argv[0] env = (env or os.environ) path = env.get('PATH', os.defpath) command_with_path = which(command, path=path) if (command_with_path is None): raise FileNotFoundError(('The command was not found or was not ' + ('executable: %s.' % command))) command = command_with_path argv[0] = command cmdline = (' ' + subprocess.list2cmdline(argv[1:])) cwd = (cwd or os.getcwd()) backend = os.environ.get('PYWINPTY_BACKEND', None) backend = (int(backend) if (backend is not None) else backend) proc = PTY(dimensions[1], dimensions[0], encoding=encoding, backend=backend) envStrs = [] for (key, value) in env.items(): envStrs.append(('%s=%s' % (key, value))) env = ('\x00'.join(envStrs) + '\x00') command = bytes(command, encoding) cwd = bytes(cwd, encoding) cmdline = bytes(cmdline, encoding) env = bytes(env, encoding) if (len(argv) == 1): proc.spawn(command, cwd=cwd, env=env) else: proc.spawn(command, cwd=cwd, env=env, cmdline=cmdline) inst = cls(proc, encoding) inst._winsize = dimensions inst.argv = argv if (env is not None): inst.env = env if (cwd is not None): inst.launch_dir = cwd return inst
@classmethod def spawn(cls, argv, cwd=None, env=None, dimensions=(24, 80), encoding='utf-8', backend=None): 'Start the given command in a child process in a pseudo terminal.\n\n This does all the setting up the pty, and returns an instance of\n PtyProcess.\n\n Dimensions of the psuedoterminal used for the subprocess can be\n specified as a tuple (rows, cols), or the default (24, 80) will be\n used.\n ' if isinstance(argv, str): argv = shlex.split(argv, posix=False) if (not isinstance(argv, (list, tuple))): raise TypeError(('Expected a list or tuple for argv, got %r' % argv)) argv = argv[:] command = argv[0] env = (env or os.environ) path = env.get('PATH', os.defpath) command_with_path = which(command, path=path) if (command_with_path is None): raise FileNotFoundError(('The command was not found or was not ' + ('executable: %s.' % command))) command = command_with_path argv[0] = command cmdline = (' ' + subprocess.list2cmdline(argv[1:])) cwd = (cwd or os.getcwd()) backend = os.environ.get('PYWINPTY_BACKEND', None) backend = (int(backend) if (backend is not None) else backend) proc = PTY(dimensions[1], dimensions[0], encoding=encoding, backend=backend) envStrs = [] for (key, value) in env.items(): envStrs.append(('%s=%s' % (key, value))) env = ('\x00'.join(envStrs) + '\x00') command = bytes(command, encoding) cwd = bytes(cwd, encoding) cmdline = bytes(cmdline, encoding) env = bytes(env, encoding) if (len(argv) == 1): proc.spawn(command, cwd=cwd, env=env) else: proc.spawn(command, cwd=cwd, env=env, cmdline=cmdline) inst = cls(proc, encoding) inst._winsize = dimensions inst.argv = argv if (env is not None): inst.env = env if (cwd is not None): inst.launch_dir = cwd return inst<|docstring|>Start the given command in a child process in a pseudo terminal. This does all the setting up the pty, and returns an instance of PtyProcess. Dimensions of the psuedoterminal used for the subprocess can be specified as a tuple (rows, cols), or the default (24, 80) will be used.<|endoftext|>
f123b7ee0ce4cd714bf33485b2c93a0c5e7676315a611014eb86c253994545a5
@property def exitstatus(self): 'The exit status of the process.\n ' return self.pty.get_exitstatus()
The exit status of the process.
afdb_docs_env/Lib/site-packages/winpty/ptyprocess.py
exitstatus
Semaine52/AuFilDuBoamp_Docs
2
python
@property def exitstatus(self): '\n ' return self.pty.get_exitstatus()
@property def exitstatus(self): '\n ' return self.pty.get_exitstatus()<|docstring|>The exit status of the process.<|endoftext|>
c805ea2e0cdb9691cfa1049a684f7bcfeeb931fc30468ed0a7c823c90ebaa6ef
def fileno(self): 'This returns the file descriptor of the pty for the child.\n ' return self.fd
This returns the file descriptor of the pty for the child.
afdb_docs_env/Lib/site-packages/winpty/ptyprocess.py
fileno
Semaine52/AuFilDuBoamp_Docs
2
python
def fileno(self): '\n ' return self.fd
def fileno(self): '\n ' return self.fd<|docstring|>This returns the file descriptor of the pty for the child.<|endoftext|>
32979d72b344544685b3087ffad7e2709a69ac8879db3cb1c23ffed4df40947b
def close(self, force=False): 'This closes the connection with the child application. Note that\n calling close() more than once is valid. This emulates standard Python\n behavior with files. Set force to True if you want to make sure that\n the child is terminated (SIGKILL is sent if the child ignores\n SIGINT).' if (not self.closed): del self.pty self.pty = None self.fileobj.close() self._server.close() time.sleep(self.delayafterclose) if self.isalive(): if (not self.terminate(force)): raise IOError('Could not terminate the child.') self.fd = (- 1) self.closed = True
This closes the connection with the child application. Note that calling close() more than once is valid. This emulates standard Python behavior with files. Set force to True if you want to make sure that the child is terminated (SIGKILL is sent if the child ignores SIGINT).
afdb_docs_env/Lib/site-packages/winpty/ptyprocess.py
close
Semaine52/AuFilDuBoamp_Docs
2
python
def close(self, force=False): 'This closes the connection with the child application. Note that\n calling close() more than once is valid. This emulates standard Python\n behavior with files. Set force to True if you want to make sure that\n the child is terminated (SIGKILL is sent if the child ignores\n SIGINT).' if (not self.closed): del self.pty self.pty = None self.fileobj.close() self._server.close() time.sleep(self.delayafterclose) if self.isalive(): if (not self.terminate(force)): raise IOError('Could not terminate the child.') self.fd = (- 1) self.closed = True
def close(self, force=False): 'This closes the connection with the child application. Note that\n calling close() more than once is valid. This emulates standard Python\n behavior with files. Set force to True if you want to make sure that\n the child is terminated (SIGKILL is sent if the child ignores\n SIGINT).' if (not self.closed): del self.pty self.pty = None self.fileobj.close() self._server.close() time.sleep(self.delayafterclose) if self.isalive(): if (not self.terminate(force)): raise IOError('Could not terminate the child.') self.fd = (- 1) self.closed = True<|docstring|>This closes the connection with the child application. Note that calling close() more than once is valid. This emulates standard Python behavior with files. Set force to True if you want to make sure that the child is terminated (SIGKILL is sent if the child ignores SIGINT).<|endoftext|>
abc37f20e57510976254e3de6dafe7c7088c0cdc98b01354b614a2dd65946317
def __del__(self): 'This makes sure that no system resources are left open. Python only\n garbage collects Python objects. OS file descriptors are not Python\n objects, so they must be handled explicitly. If the child file\n descriptor was opened outside of this class (passed to the constructor)\n then this does not close it.\n ' try: self.close() except Exception: pass
This makes sure that no system resources are left open. Python only garbage collects Python objects. OS file descriptors are not Python objects, so they must be handled explicitly. If the child file descriptor was opened outside of this class (passed to the constructor) then this does not close it.
afdb_docs_env/Lib/site-packages/winpty/ptyprocess.py
__del__
Semaine52/AuFilDuBoamp_Docs
2
python
def __del__(self): 'This makes sure that no system resources are left open. Python only\n garbage collects Python objects. OS file descriptors are not Python\n objects, so they must be handled explicitly. If the child file\n descriptor was opened outside of this class (passed to the constructor)\n then this does not close it.\n ' try: self.close() except Exception: pass
def __del__(self): 'This makes sure that no system resources are left open. Python only\n garbage collects Python objects. OS file descriptors are not Python\n objects, so they must be handled explicitly. If the child file\n descriptor was opened outside of this class (passed to the constructor)\n then this does not close it.\n ' try: self.close() except Exception: pass<|docstring|>This makes sure that no system resources are left open. Python only garbage collects Python objects. OS file descriptors are not Python objects, so they must be handled explicitly. If the child file descriptor was opened outside of this class (passed to the constructor) then this does not close it.<|endoftext|>
8bed5469ba443a8cfe855af61945a60bad3388899da9a44bf22edd745bd4a4bc
def flush(self): 'This does nothing. It is here to support the interface for a\n File-like object. ' pass
This does nothing. It is here to support the interface for a File-like object.
afdb_docs_env/Lib/site-packages/winpty/ptyprocess.py
flush
Semaine52/AuFilDuBoamp_Docs
2
python
def flush(self): 'This does nothing. It is here to support the interface for a\n File-like object. ' pass
def flush(self): 'This does nothing. It is here to support the interface for a\n File-like object. ' pass<|docstring|>This does nothing. It is here to support the interface for a File-like object.<|endoftext|>
c5bd2375ccf02c39f9edfc3b85385a5b856b463aab4ec248d0f6e59097c3ce5e
def isatty(self): 'This returns True if the file descriptor is open and connected to a\n tty(-like) device, else False.' return self.isalive()
This returns True if the file descriptor is open and connected to a tty(-like) device, else False.
afdb_docs_env/Lib/site-packages/winpty/ptyprocess.py
isatty
Semaine52/AuFilDuBoamp_Docs
2
python
def isatty(self): 'This returns True if the file descriptor is open and connected to a\n tty(-like) device, else False.' return self.isalive()
def isatty(self): 'This returns True if the file descriptor is open and connected to a\n tty(-like) device, else False.' return self.isalive()<|docstring|>This returns True if the file descriptor is open and connected to a tty(-like) device, else False.<|endoftext|>
c74662f65c53122d5a30d4eb8f811b5aff052f47aa2f232c568b940d301e88f8
def read(self, size=1024): 'Read and return at most ``size`` characters from the pty.\n\n Can block if there is nothing to read. Raises :exc:`EOFError` if the\n terminal was closed.\n ' data = self.fileobj.recv(size) if (not data): self.flag_eof = True raise EOFError('Pty is closed') return self.decoder.decode(data, final=False)
Read and return at most ``size`` characters from the pty. Can block if there is nothing to read. Raises :exc:`EOFError` if the terminal was closed.
afdb_docs_env/Lib/site-packages/winpty/ptyprocess.py
read
Semaine52/AuFilDuBoamp_Docs
2
python
def read(self, size=1024): 'Read and return at most ``size`` characters from the pty.\n\n Can block if there is nothing to read. Raises :exc:`EOFError` if the\n terminal was closed.\n ' data = self.fileobj.recv(size) if (not data): self.flag_eof = True raise EOFError('Pty is closed') return self.decoder.decode(data, final=False)
def read(self, size=1024): 'Read and return at most ``size`` characters from the pty.\n\n Can block if there is nothing to read. Raises :exc:`EOFError` if the\n terminal was closed.\n ' data = self.fileobj.recv(size) if (not data): self.flag_eof = True raise EOFError('Pty is closed') return self.decoder.decode(data, final=False)<|docstring|>Read and return at most ``size`` characters from the pty. Can block if there is nothing to read. Raises :exc:`EOFError` if the terminal was closed.<|endoftext|>
db848ecd2037d06792c457144421548ff9530505e4dcf5abfedaa6699f8bb3b4
def readline(self): 'Read one line from the pseudoterminal as bytes.\n\n Can block if there is nothing to read. Raises :exc:`EOFError` if the\n terminal was closed.\n ' buf = [] while 1: try: ch = self.read(1) except EOFError: return ''.join(buf) buf.append(ch) if (ch == '\n'): return ''.join(buf)
Read one line from the pseudoterminal as bytes. Can block if there is nothing to read. Raises :exc:`EOFError` if the terminal was closed.
afdb_docs_env/Lib/site-packages/winpty/ptyprocess.py
readline
Semaine52/AuFilDuBoamp_Docs
2
python
def readline(self): 'Read one line from the pseudoterminal as bytes.\n\n Can block if there is nothing to read. Raises :exc:`EOFError` if the\n terminal was closed.\n ' buf = [] while 1: try: ch = self.read(1) except EOFError: return .join(buf) buf.append(ch) if (ch == '\n'): return .join(buf)
def readline(self): 'Read one line from the pseudoterminal as bytes.\n\n Can block if there is nothing to read. Raises :exc:`EOFError` if the\n terminal was closed.\n ' buf = [] while 1: try: ch = self.read(1) except EOFError: return .join(buf) buf.append(ch) if (ch == '\n'): return .join(buf)<|docstring|>Read one line from the pseudoterminal as bytes. Can block if there is nothing to read. Raises :exc:`EOFError` if the terminal was closed.<|endoftext|>
93da51787d4477b99c59d8f40d0b2817f5aa8b938d9d0672eb86adda33e7e7bb
def write(self, s): 'Write the string ``s`` to the pseudoterminal.\n\n Returns the number of bytes written.\n ' if (not self.isalive()): raise EOFError('Pty is closed') nbytes = self.pty.write(bytes(s, self.encoding)) return nbytes
Write the string ``s`` to the pseudoterminal. Returns the number of bytes written.
afdb_docs_env/Lib/site-packages/winpty/ptyprocess.py
write
Semaine52/AuFilDuBoamp_Docs
2
python
def write(self, s): 'Write the string ``s`` to the pseudoterminal.\n\n Returns the number of bytes written.\n ' if (not self.isalive()): raise EOFError('Pty is closed') nbytes = self.pty.write(bytes(s, self.encoding)) return nbytes
def write(self, s): 'Write the string ``s`` to the pseudoterminal.\n\n Returns the number of bytes written.\n ' if (not self.isalive()): raise EOFError('Pty is closed') nbytes = self.pty.write(bytes(s, self.encoding)) return nbytes<|docstring|>Write the string ``s`` to the pseudoterminal. Returns the number of bytes written.<|endoftext|>
2bb7b33a98980919a2f0d686a0a652c4b42f5d90e1ed4d94f68e2a422c6554f3
def terminate(self, force=False): 'This forces a child process to terminate.' if (not self.isalive()): return True self.kill(signal.SIGINT) time.sleep(self.delayafterterminate) if (not self.isalive()): return True if force: self.kill(signal.SIGKILL) time.sleep(self.delayafterterminate) if (not self.isalive()): return True else: return False
This forces a child process to terminate.
afdb_docs_env/Lib/site-packages/winpty/ptyprocess.py
terminate
Semaine52/AuFilDuBoamp_Docs
2
python
def terminate(self, force=False): if (not self.isalive()): return True self.kill(signal.SIGINT) time.sleep(self.delayafterterminate) if (not self.isalive()): return True if force: self.kill(signal.SIGKILL) time.sleep(self.delayafterterminate) if (not self.isalive()): return True else: return False
def terminate(self, force=False): if (not self.isalive()): return True self.kill(signal.SIGINT) time.sleep(self.delayafterterminate) if (not self.isalive()): return True if force: self.kill(signal.SIGKILL) time.sleep(self.delayafterterminate) if (not self.isalive()): return True else: return False<|docstring|>This forces a child process to terminate.<|endoftext|>
04115149ad1558fd19b15e5acb6b5ae4d13c4f9527014fc8c6f111aeb84a53b9
def wait(self): 'This waits until the child exits. This is a blocking call. This will\n not read any data from the child.\n ' while self.isalive(): time.sleep(0.1) return self.exitstatus
This waits until the child exits. This is a blocking call. This will not read any data from the child.
afdb_docs_env/Lib/site-packages/winpty/ptyprocess.py
wait
Semaine52/AuFilDuBoamp_Docs
2
python
def wait(self): 'This waits until the child exits. This is a blocking call. This will\n not read any data from the child.\n ' while self.isalive(): time.sleep(0.1) return self.exitstatus
def wait(self): 'This waits until the child exits. This is a blocking call. This will\n not read any data from the child.\n ' while self.isalive(): time.sleep(0.1) return self.exitstatus<|docstring|>This waits until the child exits. This is a blocking call. This will not read any data from the child.<|endoftext|>
004d5ec077afb132e0cf7d5cb39f2045acedfe42ca6eee5946fe34412bc8f3c9
def isalive(self): 'This tests if the child process is running or not. This is\n non-blocking. If the child was terminated then this will read the\n exitstatus or signalstatus of the child. This returns True if the child\n process appears to be running or False if not.\n ' return (self.pty and self.pty.isalive())
This tests if the child process is running or not. This is non-blocking. If the child was terminated then this will read the exitstatus or signalstatus of the child. This returns True if the child process appears to be running or False if not.
afdb_docs_env/Lib/site-packages/winpty/ptyprocess.py
isalive
Semaine52/AuFilDuBoamp_Docs
2
python
def isalive(self): 'This tests if the child process is running or not. This is\n non-blocking. If the child was terminated then this will read the\n exitstatus or signalstatus of the child. This returns True if the child\n process appears to be running or False if not.\n ' return (self.pty and self.pty.isalive())
def isalive(self): 'This tests if the child process is running or not. This is\n non-blocking. If the child was terminated then this will read the\n exitstatus or signalstatus of the child. This returns True if the child\n process appears to be running or False if not.\n ' return (self.pty and self.pty.isalive())<|docstring|>This tests if the child process is running or not. This is non-blocking. If the child was terminated then this will read the exitstatus or signalstatus of the child. This returns True if the child process appears to be running or False if not.<|endoftext|>
4041de4156b259f6cf59b97142649421e31b7a67ff022f5a98ca0582a78f5879
def kill(self, sig=None): 'Kill the process with the given signal.\n ' os.kill(self.pid, sig)
Kill the process with the given signal.
afdb_docs_env/Lib/site-packages/winpty/ptyprocess.py
kill
Semaine52/AuFilDuBoamp_Docs
2
python
def kill(self, sig=None): '\n ' os.kill(self.pid, sig)
def kill(self, sig=None): '\n ' os.kill(self.pid, sig)<|docstring|>Kill the process with the given signal.<|endoftext|>
142c94d69e8513c25656dc39efc21bb22d3f2456d05637b0961aaffd64398ae6
def sendcontrol(self, char): "Helper method that wraps send() with mnemonic access for sending control\n character to the child (such as Ctrl-C or Ctrl-D). For example, to send\n Ctrl-G (ASCII 7, bell, '\x07')::\n child.sendcontrol('g')\n See also, sendintr() and sendeof().\n " char = char.lower() a = ord(char) if (97 <= a <= 122): a = ((a - ord('a')) + 1) byte = bytes([a]) return (self.pty.write(byte), byte) d = {'@': 0, '`': 0, '[': 27, '{': 27, '\\': 28, '|': 28, ']': 29, '}': 29, '^': 30, '~': 30, '_': 31, '?': 127} if (char not in d): return (0, b'') byte = bytes([d[char]]) return (self.pty.write(byte), byte)
Helper method that wraps send() with mnemonic access for sending control character to the child (such as Ctrl-C or Ctrl-D). For example, to send Ctrl-G (ASCII 7, bell, ''):: child.sendcontrol('g') See also, sendintr() and sendeof().
afdb_docs_env/Lib/site-packages/winpty/ptyprocess.py
sendcontrol
Semaine52/AuFilDuBoamp_Docs
2
python
def sendcontrol(self, char): "Helper method that wraps send() with mnemonic access for sending control\n character to the child (such as Ctrl-C or Ctrl-D). For example, to send\n Ctrl-G (ASCII 7, bell, '\x07')::\n child.sendcontrol('g')\n See also, sendintr() and sendeof().\n " char = char.lower() a = ord(char) if (97 <= a <= 122): a = ((a - ord('a')) + 1) byte = bytes([a]) return (self.pty.write(byte), byte) d = {'@': 0, '`': 0, '[': 27, '{': 27, '\\': 28, '|': 28, ']': 29, '}': 29, '^': 30, '~': 30, '_': 31, '?': 127} if (char not in d): return (0, b) byte = bytes([d[char]]) return (self.pty.write(byte), byte)
def sendcontrol(self, char): "Helper method that wraps send() with mnemonic access for sending control\n character to the child (such as Ctrl-C or Ctrl-D). For example, to send\n Ctrl-G (ASCII 7, bell, '\x07')::\n child.sendcontrol('g')\n See also, sendintr() and sendeof().\n " char = char.lower() a = ord(char) if (97 <= a <= 122): a = ((a - ord('a')) + 1) byte = bytes([a]) return (self.pty.write(byte), byte) d = {'@': 0, '`': 0, '[': 27, '{': 27, '\\': 28, '|': 28, ']': 29, '}': 29, '^': 30, '~': 30, '_': 31, '?': 127} if (char not in d): return (0, b) byte = bytes([d[char]]) return (self.pty.write(byte), byte)<|docstring|>Helper method that wraps send() with mnemonic access for sending control character to the child (such as Ctrl-C or Ctrl-D). For example, to send Ctrl-G (ASCII 7, bell, ''):: child.sendcontrol('g') See also, sendintr() and sendeof().<|endoftext|>
6671872c9556574b854222caa82dfb883e2f788b53f9233de69eb913eaefdfa4
def sendeof(self): 'This sends an EOF to the child. This sends a character which causes\n the pending parent output buffer to be sent to the waiting child\n program without waiting for end-of-line. If it is the first character\n of the line, the read() in the user program returns 0, which signifies\n end-of-file. This means to work as expected a sendeof() has to be\n called at the beginning of a line. This method does not send a newline.\n It is the responsibility of the caller to ensure the eof is sent at the\n beginning of a line.' (self.pty.write(b'\x04'), '\x04')
This sends an EOF to the child. This sends a character which causes the pending parent output buffer to be sent to the waiting child program without waiting for end-of-line. If it is the first character of the line, the read() in the user program returns 0, which signifies end-of-file. This means to work as expected a sendeof() has to be called at the beginning of a line. This method does not send a newline. It is the responsibility of the caller to ensure the eof is sent at the beginning of a line.
afdb_docs_env/Lib/site-packages/winpty/ptyprocess.py
sendeof
Semaine52/AuFilDuBoamp_Docs
2
python
def sendeof(self): 'This sends an EOF to the child. This sends a character which causes\n the pending parent output buffer to be sent to the waiting child\n program without waiting for end-of-line. If it is the first character\n of the line, the read() in the user program returns 0, which signifies\n end-of-file. This means to work as expected a sendeof() has to be\n called at the beginning of a line. This method does not send a newline.\n It is the responsibility of the caller to ensure the eof is sent at the\n beginning of a line.' (self.pty.write(b'\x04'), '\x04')
def sendeof(self): 'This sends an EOF to the child. This sends a character which causes\n the pending parent output buffer to be sent to the waiting child\n program without waiting for end-of-line. If it is the first character\n of the line, the read() in the user program returns 0, which signifies\n end-of-file. This means to work as expected a sendeof() has to be\n called at the beginning of a line. This method does not send a newline.\n It is the responsibility of the caller to ensure the eof is sent at the\n beginning of a line.' (self.pty.write(b'\x04'), '\x04')<|docstring|>This sends an EOF to the child. This sends a character which causes the pending parent output buffer to be sent to the waiting child program without waiting for end-of-line. If it is the first character of the line, the read() in the user program returns 0, which signifies end-of-file. This means to work as expected a sendeof() has to be called at the beginning of a line. This method does not send a newline. It is the responsibility of the caller to ensure the eof is sent at the beginning of a line.<|endoftext|>
41d0473309d4ea7546c361d694c8a8a5165e9caf534665f552caa797ae0d7f91
def sendintr(self): 'This sends a SIGINT to the child. It does not require\n the SIGINT to be the first character on a line. ' (self.pty.write(b'\x03'), '\x03')
This sends a SIGINT to the child. It does not require the SIGINT to be the first character on a line.
afdb_docs_env/Lib/site-packages/winpty/ptyprocess.py
sendintr
Semaine52/AuFilDuBoamp_Docs
2
python
def sendintr(self): 'This sends a SIGINT to the child. It does not require\n the SIGINT to be the first character on a line. ' (self.pty.write(b'\x03'), '\x03')
def sendintr(self): 'This sends a SIGINT to the child. It does not require\n the SIGINT to be the first character on a line. ' (self.pty.write(b'\x03'), '\x03')<|docstring|>This sends a SIGINT to the child. It does not require the SIGINT to be the first character on a line.<|endoftext|>
abda035d6d4d7637596030e6eea6cbce12e1a677a40c21775a63d6ab803e454c
def eof(self): 'This returns True if the EOF exception was ever raised.\n ' return self.flag_eof
This returns True if the EOF exception was ever raised.
afdb_docs_env/Lib/site-packages/winpty/ptyprocess.py
eof
Semaine52/AuFilDuBoamp_Docs
2
python
def eof(self): '\n ' return self.flag_eof
def eof(self): '\n ' return self.flag_eof<|docstring|>This returns True if the EOF exception was ever raised.<|endoftext|>
78779423ea1ad3056d778e90895d2f3f195f51a8cd29f50a3dcff0602e8418ef
def getwinsize(self): 'Return the window size of the pseudoterminal as a tuple (rows, cols).\n ' return self._winsize
Return the window size of the pseudoterminal as a tuple (rows, cols).
afdb_docs_env/Lib/site-packages/winpty/ptyprocess.py
getwinsize
Semaine52/AuFilDuBoamp_Docs
2
python
def getwinsize(self): '\n ' return self._winsize
def getwinsize(self): '\n ' return self._winsize<|docstring|>Return the window size of the pseudoterminal as a tuple (rows, cols).<|endoftext|>
323684842cf0a2458f2ee99224ac7bc5c8ad8f7a0c860f5b05c789524a6eb760
def setwinsize(self, rows, cols): 'Set the terminal window size of the child tty.\n ' self._winsize = (rows, cols) self.pty.set_size(cols, rows)
Set the terminal window size of the child tty.
afdb_docs_env/Lib/site-packages/winpty/ptyprocess.py
setwinsize
Semaine52/AuFilDuBoamp_Docs
2
python
def setwinsize(self, rows, cols): '\n ' self._winsize = (rows, cols) self.pty.set_size(cols, rows)
def setwinsize(self, rows, cols): '\n ' self._winsize = (rows, cols) self.pty.set_size(cols, rows)<|docstring|>Set the terminal window size of the child tty.<|endoftext|>
e9a03ad1cd540520099cf565281421944544d869ece5acea9bdee28d489ae213
def __init__(self, bytes_per_second=None, io_rate=None, time_periods=None): 'Constructor for the BandwidthLimitOverride class' self.bytes_per_second = bytes_per_second self.io_rate = io_rate self.time_periods = time_periods
Constructor for the BandwidthLimitOverride class
cohesity_management_sdk/models/bandwidth_limit_override.py
__init__
nick6655/management-sdk-python
18
python
def __init__(self, bytes_per_second=None, io_rate=None, time_periods=None): self.bytes_per_second = bytes_per_second self.io_rate = io_rate self.time_periods = time_periods
def __init__(self, bytes_per_second=None, io_rate=None, time_periods=None): self.bytes_per_second = bytes_per_second self.io_rate = io_rate self.time_periods = time_periods<|docstring|>Constructor for the BandwidthLimitOverride class<|endoftext|>
6f20d3dc0faf6880351d94fb44e2483e5a1af32befedf7ede48256af252225e5
@classmethod def from_dictionary(cls, dictionary): "Creates an instance of this model from a dictionary\n\n Args:\n dictionary (dictionary): A dictionary representation of the object as\n obtained from the deserialization of the server's response. The keys\n MUST match property names in the API description.\n\n Returns:\n object: An instance of this structure class.\n\n " if (dictionary is None): return None bytes_per_second = dictionary.get('bytesPerSecond') io_rate = dictionary.get('ioRate') time_periods = (cohesity_management_sdk.models.time_of_a_week.TimeOfAWeek.from_dictionary(dictionary.get('timePeriods')) if dictionary.get('timePeriods') else None) return cls(bytes_per_second, io_rate, time_periods)
Creates an instance of this model from a dictionary Args: dictionary (dictionary): A dictionary representation of the object as obtained from the deserialization of the server's response. The keys MUST match property names in the API description. Returns: object: An instance of this structure class.
cohesity_management_sdk/models/bandwidth_limit_override.py
from_dictionary
nick6655/management-sdk-python
18
python
@classmethod def from_dictionary(cls, dictionary): "Creates an instance of this model from a dictionary\n\n Args:\n dictionary (dictionary): A dictionary representation of the object as\n obtained from the deserialization of the server's response. The keys\n MUST match property names in the API description.\n\n Returns:\n object: An instance of this structure class.\n\n " if (dictionary is None): return None bytes_per_second = dictionary.get('bytesPerSecond') io_rate = dictionary.get('ioRate') time_periods = (cohesity_management_sdk.models.time_of_a_week.TimeOfAWeek.from_dictionary(dictionary.get('timePeriods')) if dictionary.get('timePeriods') else None) return cls(bytes_per_second, io_rate, time_periods)
@classmethod def from_dictionary(cls, dictionary): "Creates an instance of this model from a dictionary\n\n Args:\n dictionary (dictionary): A dictionary representation of the object as\n obtained from the deserialization of the server's response. The keys\n MUST match property names in the API description.\n\n Returns:\n object: An instance of this structure class.\n\n " if (dictionary is None): return None bytes_per_second = dictionary.get('bytesPerSecond') io_rate = dictionary.get('ioRate') time_periods = (cohesity_management_sdk.models.time_of_a_week.TimeOfAWeek.from_dictionary(dictionary.get('timePeriods')) if dictionary.get('timePeriods') else None) return cls(bytes_per_second, io_rate, time_periods)<|docstring|>Creates an instance of this model from a dictionary Args: dictionary (dictionary): A dictionary representation of the object as obtained from the deserialization of the server's response. The keys MUST match property names in the API description. Returns: object: An instance of this structure class.<|endoftext|>
102f93ab15f2e1a50995ccf80c9275b0f4d0780320e6a772a521be06d7bf3811
async def test_flow_user_init(hass, mqtt_mock): 'Test the initialization of the form in the first step of the config flow.' result = (await hass.config_entries.flow.async_init(config_flow.DOMAIN, context={'source': 'user'})) expected = {'data_schema': config_flow.TOPIC_SCHEMA, 'description_placeholders': None, 'errors': {}, 'flow_id': mock.ANY, 'handler': 'ferroamp', 'step_id': 'user', 'type': 'form', 'last_step': None} assert (expected == result)
Test the initialization of the form in the first step of the config flow.
tests/test_config_flow.py
test_flow_user_init
TurboJonte/ha-ferroamp
22
python
async def test_flow_user_init(hass, mqtt_mock): result = (await hass.config_entries.flow.async_init(config_flow.DOMAIN, context={'source': 'user'})) expected = {'data_schema': config_flow.TOPIC_SCHEMA, 'description_placeholders': None, 'errors': {}, 'flow_id': mock.ANY, 'handler': 'ferroamp', 'step_id': 'user', 'type': 'form', 'last_step': None} assert (expected == result)
async def test_flow_user_init(hass, mqtt_mock): result = (await hass.config_entries.flow.async_init(config_flow.DOMAIN, context={'source': 'user'})) expected = {'data_schema': config_flow.TOPIC_SCHEMA, 'description_placeholders': None, 'errors': {}, 'flow_id': mock.ANY, 'handler': 'ferroamp', 'step_id': 'user', 'type': 'form', 'last_step': None} assert (expected == result)<|docstring|>Test the initialization of the form in the first step of the config flow.<|endoftext|>
f2bda85ef6b44c1e21dba1190273daebc614e7cdf2cc7fc7a127fedab5d45ebb
async def test_flow_user_step_no_input(hass, mqtt_mock): 'Test appropriate error when no input is provided.' _result = (await hass.config_entries.flow.async_init(config_flow.DOMAIN, context={'source': 'user'})) result = (await hass.config_entries.flow.async_configure(_result['flow_id'], user_input={CONF_NAME: '', CONF_PREFIX: ''})) assert ({'base': 'name'} == result['errors'])
Test appropriate error when no input is provided.
tests/test_config_flow.py
test_flow_user_step_no_input
TurboJonte/ha-ferroamp
22
python
async def test_flow_user_step_no_input(hass, mqtt_mock): _result = (await hass.config_entries.flow.async_init(config_flow.DOMAIN, context={'source': 'user'})) result = (await hass.config_entries.flow.async_configure(_result['flow_id'], user_input={CONF_NAME: , CONF_PREFIX: })) assert ({'base': 'name'} == result['errors'])
async def test_flow_user_step_no_input(hass, mqtt_mock): _result = (await hass.config_entries.flow.async_init(config_flow.DOMAIN, context={'source': 'user'})) result = (await hass.config_entries.flow.async_configure(_result['flow_id'], user_input={CONF_NAME: , CONF_PREFIX: })) assert ({'base': 'name'} == result['errors'])<|docstring|>Test appropriate error when no input is provided.<|endoftext|>
477826f6a1612fa031bc5de346fa1b7337d8f42b07ee0cd711b96f3487bf6d92
async def test_flow_user_creates_config_entry(hass, mqtt_mock): 'Test the config entry is successfully created.' _result = (await hass.config_entries.flow.async_init(config_flow.DOMAIN, context={'source': 'user'})) result = (await hass.config_entries.flow.async_configure(_result['flow_id'], user_input={})) expected = {'version': 1, 'type': 'create_entry', 'flow_id': mock.ANY, 'handler': 'ferroamp', 'options': {}, 'title': 'Ferroamp', 'data': {'name': 'Ferroamp', 'prefix': 'extapi'}, 'description': None, 'description_placeholders': None, 'result': mock.ANY} assert (expected == result)
Test the config entry is successfully created.
tests/test_config_flow.py
test_flow_user_creates_config_entry
TurboJonte/ha-ferroamp
22
python
async def test_flow_user_creates_config_entry(hass, mqtt_mock): _result = (await hass.config_entries.flow.async_init(config_flow.DOMAIN, context={'source': 'user'})) result = (await hass.config_entries.flow.async_configure(_result['flow_id'], user_input={})) expected = {'version': 1, 'type': 'create_entry', 'flow_id': mock.ANY, 'handler': 'ferroamp', 'options': {}, 'title': 'Ferroamp', 'data': {'name': 'Ferroamp', 'prefix': 'extapi'}, 'description': None, 'description_placeholders': None, 'result': mock.ANY} assert (expected == result)
async def test_flow_user_creates_config_entry(hass, mqtt_mock): _result = (await hass.config_entries.flow.async_init(config_flow.DOMAIN, context={'source': 'user'})) result = (await hass.config_entries.flow.async_configure(_result['flow_id'], user_input={})) expected = {'version': 1, 'type': 'create_entry', 'flow_id': mock.ANY, 'handler': 'ferroamp', 'options': {}, 'title': 'Ferroamp', 'data': {'name': 'Ferroamp', 'prefix': 'extapi'}, 'description': None, 'description_placeholders': None, 'result': mock.ANY} assert (expected == result)<|docstring|>Test the config entry is successfully created.<|endoftext|>
43b65c0ed01748391fcf93c5ef1ffe3064c8a51569480dfff2fb1a62bb4882eb
async def test_options_flow(hass, mqtt_mock): 'Test config flow options.' config_entry = MockConfigEntry(domain=config_flow.DOMAIN, unique_id='ferroamp', data={CONF_NAME: 'Ferroamp', CONF_PREFIX: 'extapi'}) config_entry.add_to_hass(hass) assert (await hass.config_entries.async_setup(config_entry.entry_id)) (await hass.async_block_till_done()) result = (await hass.config_entries.options.async_init(config_entry.entry_id)) assert ('form' == result['type']) assert ('init' == result['step_id']) assert ({} == result['errors']) result = (await hass.config_entries.options.async_configure(result['flow_id'], user_input={CONF_INTERVAL: 20, CONF_PRECISION_BATTERY: 1, CONF_PRECISION_CURRENT: 2, CONF_PRECISION_ENERGY: 3, CONF_PRECISION_FREQUENCY: 6, CONF_PRECISION_TEMPERATURE: 4, CONF_PRECISION_VOLTAGE: 5})) assert (result['type'] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY) assert (result['data'] == {CONF_INTERVAL: 20, CONF_PRECISION_BATTERY: 1, CONF_PRECISION_CURRENT: 2, CONF_PRECISION_ENERGY: 3, CONF_PRECISION_FREQUENCY: 6, CONF_PRECISION_TEMPERATURE: 4, CONF_PRECISION_VOLTAGE: 5}) assert (config_entry.data == {CONF_NAME: 'Ferroamp', CONF_PREFIX: 'extapi'}) assert (config_entry.options == {CONF_INTERVAL: 20, CONF_PRECISION_BATTERY: 1, CONF_PRECISION_CURRENT: 2, CONF_PRECISION_ENERGY: 3, CONF_PRECISION_FREQUENCY: 6, CONF_PRECISION_TEMPERATURE: 4, CONF_PRECISION_VOLTAGE: 5})
Test config flow options.
tests/test_config_flow.py
test_options_flow
TurboJonte/ha-ferroamp
22
python
async def test_options_flow(hass, mqtt_mock): config_entry = MockConfigEntry(domain=config_flow.DOMAIN, unique_id='ferroamp', data={CONF_NAME: 'Ferroamp', CONF_PREFIX: 'extapi'}) config_entry.add_to_hass(hass) assert (await hass.config_entries.async_setup(config_entry.entry_id)) (await hass.async_block_till_done()) result = (await hass.config_entries.options.async_init(config_entry.entry_id)) assert ('form' == result['type']) assert ('init' == result['step_id']) assert ({} == result['errors']) result = (await hass.config_entries.options.async_configure(result['flow_id'], user_input={CONF_INTERVAL: 20, CONF_PRECISION_BATTERY: 1, CONF_PRECISION_CURRENT: 2, CONF_PRECISION_ENERGY: 3, CONF_PRECISION_FREQUENCY: 6, CONF_PRECISION_TEMPERATURE: 4, CONF_PRECISION_VOLTAGE: 5})) assert (result['type'] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY) assert (result['data'] == {CONF_INTERVAL: 20, CONF_PRECISION_BATTERY: 1, CONF_PRECISION_CURRENT: 2, CONF_PRECISION_ENERGY: 3, CONF_PRECISION_FREQUENCY: 6, CONF_PRECISION_TEMPERATURE: 4, CONF_PRECISION_VOLTAGE: 5}) assert (config_entry.data == {CONF_NAME: 'Ferroamp', CONF_PREFIX: 'extapi'}) assert (config_entry.options == {CONF_INTERVAL: 20, CONF_PRECISION_BATTERY: 1, CONF_PRECISION_CURRENT: 2, CONF_PRECISION_ENERGY: 3, CONF_PRECISION_FREQUENCY: 6, CONF_PRECISION_TEMPERATURE: 4, CONF_PRECISION_VOLTAGE: 5})
async def test_options_flow(hass, mqtt_mock): config_entry = MockConfigEntry(domain=config_flow.DOMAIN, unique_id='ferroamp', data={CONF_NAME: 'Ferroamp', CONF_PREFIX: 'extapi'}) config_entry.add_to_hass(hass) assert (await hass.config_entries.async_setup(config_entry.entry_id)) (await hass.async_block_till_done()) result = (await hass.config_entries.options.async_init(config_entry.entry_id)) assert ('form' == result['type']) assert ('init' == result['step_id']) assert ({} == result['errors']) result = (await hass.config_entries.options.async_configure(result['flow_id'], user_input={CONF_INTERVAL: 20, CONF_PRECISION_BATTERY: 1, CONF_PRECISION_CURRENT: 2, CONF_PRECISION_ENERGY: 3, CONF_PRECISION_FREQUENCY: 6, CONF_PRECISION_TEMPERATURE: 4, CONF_PRECISION_VOLTAGE: 5})) assert (result['type'] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY) assert (result['data'] == {CONF_INTERVAL: 20, CONF_PRECISION_BATTERY: 1, CONF_PRECISION_CURRENT: 2, CONF_PRECISION_ENERGY: 3, CONF_PRECISION_FREQUENCY: 6, CONF_PRECISION_TEMPERATURE: 4, CONF_PRECISION_VOLTAGE: 5}) assert (config_entry.data == {CONF_NAME: 'Ferroamp', CONF_PREFIX: 'extapi'}) assert (config_entry.options == {CONF_INTERVAL: 20, CONF_PRECISION_BATTERY: 1, CONF_PRECISION_CURRENT: 2, CONF_PRECISION_ENERGY: 3, CONF_PRECISION_FREQUENCY: 6, CONF_PRECISION_TEMPERATURE: 4, CONF_PRECISION_VOLTAGE: 5})<|docstring|>Test config flow options.<|endoftext|>
35ed61f6cfbb17b4ac06d7bb07f14ee6893fa90438b3f406483f21b4b487ea74
def select_data_adapter(x, y): 'Selects a data adapter than can handle a given x and y.' adapter_cls = [cls for cls in ALL_ADAPTER_CLS if cls.can_handle(x, y)] if (not adapter_cls): raise ValueError('Failed to find data adapter that can handle input: {}, {}'.format(_type_name(x), _type_name(y))) elif (len(adapter_cls) > 1): raise RuntimeError('Data adapters should be mutually exclusive for handling inputs. Found multiple adapters {} to handle input: {}, {}'.format(adapter_cls, _type_name(x), _type_name(y))) return adapter_cls[0]
Selects a data adapter than can handle a given x and y.
tensorflow/python/keras/engine/data_adapter.py
select_data_adapter
bbbboom/tensorflow
50
python
def select_data_adapter(x, y): adapter_cls = [cls for cls in ALL_ADAPTER_CLS if cls.can_handle(x, y)] if (not adapter_cls): raise ValueError('Failed to find data adapter that can handle input: {}, {}'.format(_type_name(x), _type_name(y))) elif (len(adapter_cls) > 1): raise RuntimeError('Data adapters should be mutually exclusive for handling inputs. Found multiple adapters {} to handle input: {}, {}'.format(adapter_cls, _type_name(x), _type_name(y))) return adapter_cls[0]
def select_data_adapter(x, y): adapter_cls = [cls for cls in ALL_ADAPTER_CLS if cls.can_handle(x, y)] if (not adapter_cls): raise ValueError('Failed to find data adapter that can handle input: {}, {}'.format(_type_name(x), _type_name(y))) elif (len(adapter_cls) > 1): raise RuntimeError('Data adapters should be mutually exclusive for handling inputs. Found multiple adapters {} to handle input: {}, {}'.format(adapter_cls, _type_name(x), _type_name(y))) return adapter_cls[0]<|docstring|>Selects a data adapter than can handle a given x and y.<|endoftext|>
7f74033531516f66e1006bafc912efcee4327b39f345ce8f863a181822e6dec5
def _type_name(x): 'Generates a description of the type of an object.' if isinstance(x, dict): key_types = set((_type_name(key) for key in x.keys())) val_types = set((_type_name(key) for key in x.values())) return '({} containing {} keys and {} values)'.format(type(x), key_types, val_types) if isinstance(x, (list, tuple)): types = set((_type_name(val) for val in x)) return '({} containing values of types {})'.format(type(x), types) return str(type(x))
Generates a description of the type of an object.
tensorflow/python/keras/engine/data_adapter.py
_type_name
bbbboom/tensorflow
50
python
def _type_name(x): if isinstance(x, dict): key_types = set((_type_name(key) for key in x.keys())) val_types = set((_type_name(key) for key in x.values())) return '({} containing {} keys and {} values)'.format(type(x), key_types, val_types) if isinstance(x, (list, tuple)): types = set((_type_name(val) for val in x)) return '({} containing values of types {})'.format(type(x), types) return str(type(x))
def _type_name(x): if isinstance(x, dict): key_types = set((_type_name(key) for key in x.keys())) val_types = set((_type_name(key) for key in x.values())) return '({} containing {} keys and {} values)'.format(type(x), key_types, val_types) if isinstance(x, (list, tuple)): types = set((_type_name(val) for val in x)) return '({} containing values of types {})'.format(type(x), types) return str(type(x))<|docstring|>Generates a description of the type of an object.<|endoftext|>
896e9a9132dfa278573f00f4ee430813bfe128b18a6604fcc0f3e5a8a28eb9f2
def _process_tensorlike(inputs): 'Process tensor-like inputs.\n\n This function:\n\n (1) Converts `Numpy` arrays to `Tensor`s.\n (2) Converts `Scipy` sparse matrices to `SparseTensor`s.\n (2) Converts `list`s to `tuple`s (for `tf.data` support).\n\n Args:\n inputs: Structure of `Tensor`s, `NumPy` arrays, or tensor-like.\n\n Returns:\n Structure of `Tensor`s or tensor-like.\n ' def _convert_numpy_and_scipy(x): if isinstance(x, np.ndarray): dtype = None if issubclass(x.dtype.type, np.floating): dtype = backend.floatx() return ops.convert_to_tensor(x, dtype=dtype) elif (scipy_sparse and scipy_sparse.issparse(x)): return _scipy_sparse_to_sparse_tensor(x) return x inputs = nest.map_structure(_convert_numpy_and_scipy, inputs) return nest._list_to_tuple(inputs)
Process tensor-like inputs. This function: (1) Converts `Numpy` arrays to `Tensor`s. (2) Converts `Scipy` sparse matrices to `SparseTensor`s. (2) Converts `list`s to `tuple`s (for `tf.data` support). Args: inputs: Structure of `Tensor`s, `NumPy` arrays, or tensor-like. Returns: Structure of `Tensor`s or tensor-like.
tensorflow/python/keras/engine/data_adapter.py
_process_tensorlike
bbbboom/tensorflow
50
python
def _process_tensorlike(inputs): 'Process tensor-like inputs.\n\n This function:\n\n (1) Converts `Numpy` arrays to `Tensor`s.\n (2) Converts `Scipy` sparse matrices to `SparseTensor`s.\n (2) Converts `list`s to `tuple`s (for `tf.data` support).\n\n Args:\n inputs: Structure of `Tensor`s, `NumPy` arrays, or tensor-like.\n\n Returns:\n Structure of `Tensor`s or tensor-like.\n ' def _convert_numpy_and_scipy(x): if isinstance(x, np.ndarray): dtype = None if issubclass(x.dtype.type, np.floating): dtype = backend.floatx() return ops.convert_to_tensor(x, dtype=dtype) elif (scipy_sparse and scipy_sparse.issparse(x)): return _scipy_sparse_to_sparse_tensor(x) return x inputs = nest.map_structure(_convert_numpy_and_scipy, inputs) return nest._list_to_tuple(inputs)
def _process_tensorlike(inputs): 'Process tensor-like inputs.\n\n This function:\n\n (1) Converts `Numpy` arrays to `Tensor`s.\n (2) Converts `Scipy` sparse matrices to `SparseTensor`s.\n (2) Converts `list`s to `tuple`s (for `tf.data` support).\n\n Args:\n inputs: Structure of `Tensor`s, `NumPy` arrays, or tensor-like.\n\n Returns:\n Structure of `Tensor`s or tensor-like.\n ' def _convert_numpy_and_scipy(x): if isinstance(x, np.ndarray): dtype = None if issubclass(x.dtype.type, np.floating): dtype = backend.floatx() return ops.convert_to_tensor(x, dtype=dtype) elif (scipy_sparse and scipy_sparse.issparse(x)): return _scipy_sparse_to_sparse_tensor(x) return x inputs = nest.map_structure(_convert_numpy_and_scipy, inputs) return nest._list_to_tuple(inputs)<|docstring|>Process tensor-like inputs. This function: (1) Converts `Numpy` arrays to `Tensor`s. (2) Converts `Scipy` sparse matrices to `SparseTensor`s. (2) Converts `list`s to `tuple`s (for `tf.data` support). Args: inputs: Structure of `Tensor`s, `NumPy` arrays, or tensor-like. Returns: Structure of `Tensor`s or tensor-like.<|endoftext|>
187cc5a6e44e7d91e664efcb9f0235b6072d1e4d519278afc915ff49c3bce858
def broadcast_sample_weight_modes(target_structure, sample_weight_modes): 'Match sample_weight_modes structure with output structure.' if ((target_structure is None) or (not nest.flatten(target_structure))): return sample_weight_modes if isinstance(sample_weight_modes, str): if isinstance(target_structure, dict): return {key: sample_weight_modes for key in target_structure.keys()} return [sample_weight_modes for _ in target_structure] if sample_weight_modes: try: nest.assert_same_structure(training_utils.list_to_tuple(target_structure), training_utils.list_to_tuple(sample_weight_modes)) except (ValueError, TypeError): target_str = str(nest.map_structure((lambda _: '...'), target_structure)) mode_str = str(nest.map_structure((lambda _: '...'), sample_weight_modes)) try: sample_weight_modes = nest.pack_sequence_as(target_structure, nest.flatten(sample_weight_modes)) logging.warning('sample_weight modes were coerced from\n {}\n to \n {}'.format(target_str, mode_str)) except (ValueError, TypeError): raise ValueError('Unable to match target structure and sample_weight_modes structure:\n {}\n to \n {}'.format(target_str, mode_str)) return sample_weight_modes
Match sample_weight_modes structure with output structure.
tensorflow/python/keras/engine/data_adapter.py
broadcast_sample_weight_modes
bbbboom/tensorflow
50
python
def broadcast_sample_weight_modes(target_structure, sample_weight_modes): if ((target_structure is None) or (not nest.flatten(target_structure))): return sample_weight_modes if isinstance(sample_weight_modes, str): if isinstance(target_structure, dict): return {key: sample_weight_modes for key in target_structure.keys()} return [sample_weight_modes for _ in target_structure] if sample_weight_modes: try: nest.assert_same_structure(training_utils.list_to_tuple(target_structure), training_utils.list_to_tuple(sample_weight_modes)) except (ValueError, TypeError): target_str = str(nest.map_structure((lambda _: '...'), target_structure)) mode_str = str(nest.map_structure((lambda _: '...'), sample_weight_modes)) try: sample_weight_modes = nest.pack_sequence_as(target_structure, nest.flatten(sample_weight_modes)) logging.warning('sample_weight modes were coerced from\n {}\n to \n {}'.format(target_str, mode_str)) except (ValueError, TypeError): raise ValueError('Unable to match target structure and sample_weight_modes structure:\n {}\n to \n {}'.format(target_str, mode_str)) return sample_weight_modes
def broadcast_sample_weight_modes(target_structure, sample_weight_modes): if ((target_structure is None) or (not nest.flatten(target_structure))): return sample_weight_modes if isinstance(sample_weight_modes, str): if isinstance(target_structure, dict): return {key: sample_weight_modes for key in target_structure.keys()} return [sample_weight_modes for _ in target_structure] if sample_weight_modes: try: nest.assert_same_structure(training_utils.list_to_tuple(target_structure), training_utils.list_to_tuple(sample_weight_modes)) except (ValueError, TypeError): target_str = str(nest.map_structure((lambda _: '...'), target_structure)) mode_str = str(nest.map_structure((lambda _: '...'), sample_weight_modes)) try: sample_weight_modes = nest.pack_sequence_as(target_structure, nest.flatten(sample_weight_modes)) logging.warning('sample_weight modes were coerced from\n {}\n to \n {}'.format(target_str, mode_str)) except (ValueError, TypeError): raise ValueError('Unable to match target structure and sample_weight_modes structure:\n {}\n to \n {}'.format(target_str, mode_str)) return sample_weight_modes<|docstring|>Match sample_weight_modes structure with output structure.<|endoftext|>
ddecea543bc5d40ad1cd5ecdd21a68184ded28f24f96535763ae263e63584644
def _make_class_weight_map_fn(class_weight): 'Applies class weighting to a `Dataset`.\n\n The `Dataset` is assumed to be in format `(x, y)` or `(x, y, sw)`, where\n `y` must be a single `Tensor`.\n\n Arguments:\n class_weight: A map where the keys are integer class ids and values are\n the class weights, e.g. `{0: 0.2, 1: 0.6, 2: 0.3}`\n\n Returns:\n A function that can be used with `tf.data.Dataset.map` to apply class\n weighting.\n ' class_ids = list(sorted(class_weight.keys())) expected_class_ids = list(range(len(class_ids))) if (class_ids != expected_class_ids): error_msg = 'Expected `class_weight` to be a dict with keys from 0 to one less than the number of classes, found {}'.format(class_weight) raise ValueError(error_msg) class_weight_tensor = ops.convert_to_tensor_v2([int(class_weight[c]) for c in class_ids], dtype='int64') def _class_weights_map_fn(*data): 'Convert `class_weight` to `sample_weight`.' (x, y, sw) = unpack_x_y_sample_weight(data) if nest.is_sequence(y): raise ValueError('`class_weight` is only supported for Models with a single output.') if (y.shape.rank > 2): raise ValueError('`class_weight` not supported for 3+ dimensional targets.') y_classes = smart_cond.smart_cond(((y.shape.rank == 2) and (backend.shape(y)[1] > 1)), (lambda : backend.argmax(y, axis=1)), (lambda : math_ops.cast(backend.reshape(y, ((- 1),)), dtypes.int64))) cw = array_ops.gather_v2(class_weight_tensor, y_classes) if (sw is not None): cw = math_ops.cast(cw, sw.dtype) (sw, cw) = expand_1d((sw, cw)) sw = (sw * cw) else: sw = cw return (x, y, sw) return _class_weights_map_fn
Applies class weighting to a `Dataset`. The `Dataset` is assumed to be in format `(x, y)` or `(x, y, sw)`, where `y` must be a single `Tensor`. Arguments: class_weight: A map where the keys are integer class ids and values are the class weights, e.g. `{0: 0.2, 1: 0.6, 2: 0.3}` Returns: A function that can be used with `tf.data.Dataset.map` to apply class weighting.
tensorflow/python/keras/engine/data_adapter.py
_make_class_weight_map_fn
bbbboom/tensorflow
50
python
def _make_class_weight_map_fn(class_weight): 'Applies class weighting to a `Dataset`.\n\n The `Dataset` is assumed to be in format `(x, y)` or `(x, y, sw)`, where\n `y` must be a single `Tensor`.\n\n Arguments:\n class_weight: A map where the keys are integer class ids and values are\n the class weights, e.g. `{0: 0.2, 1: 0.6, 2: 0.3}`\n\n Returns:\n A function that can be used with `tf.data.Dataset.map` to apply class\n weighting.\n ' class_ids = list(sorted(class_weight.keys())) expected_class_ids = list(range(len(class_ids))) if (class_ids != expected_class_ids): error_msg = 'Expected `class_weight` to be a dict with keys from 0 to one less than the number of classes, found {}'.format(class_weight) raise ValueError(error_msg) class_weight_tensor = ops.convert_to_tensor_v2([int(class_weight[c]) for c in class_ids], dtype='int64') def _class_weights_map_fn(*data): 'Convert `class_weight` to `sample_weight`.' (x, y, sw) = unpack_x_y_sample_weight(data) if nest.is_sequence(y): raise ValueError('`class_weight` is only supported for Models with a single output.') if (y.shape.rank > 2): raise ValueError('`class_weight` not supported for 3+ dimensional targets.') y_classes = smart_cond.smart_cond(((y.shape.rank == 2) and (backend.shape(y)[1] > 1)), (lambda : backend.argmax(y, axis=1)), (lambda : math_ops.cast(backend.reshape(y, ((- 1),)), dtypes.int64))) cw = array_ops.gather_v2(class_weight_tensor, y_classes) if (sw is not None): cw = math_ops.cast(cw, sw.dtype) (sw, cw) = expand_1d((sw, cw)) sw = (sw * cw) else: sw = cw return (x, y, sw) return _class_weights_map_fn
def _make_class_weight_map_fn(class_weight): 'Applies class weighting to a `Dataset`.\n\n The `Dataset` is assumed to be in format `(x, y)` or `(x, y, sw)`, where\n `y` must be a single `Tensor`.\n\n Arguments:\n class_weight: A map where the keys are integer class ids and values are\n the class weights, e.g. `{0: 0.2, 1: 0.6, 2: 0.3}`\n\n Returns:\n A function that can be used with `tf.data.Dataset.map` to apply class\n weighting.\n ' class_ids = list(sorted(class_weight.keys())) expected_class_ids = list(range(len(class_ids))) if (class_ids != expected_class_ids): error_msg = 'Expected `class_weight` to be a dict with keys from 0 to one less than the number of classes, found {}'.format(class_weight) raise ValueError(error_msg) class_weight_tensor = ops.convert_to_tensor_v2([int(class_weight[c]) for c in class_ids], dtype='int64') def _class_weights_map_fn(*data): 'Convert `class_weight` to `sample_weight`.' (x, y, sw) = unpack_x_y_sample_weight(data) if nest.is_sequence(y): raise ValueError('`class_weight` is only supported for Models with a single output.') if (y.shape.rank > 2): raise ValueError('`class_weight` not supported for 3+ dimensional targets.') y_classes = smart_cond.smart_cond(((y.shape.rank == 2) and (backend.shape(y)[1] > 1)), (lambda : backend.argmax(y, axis=1)), (lambda : math_ops.cast(backend.reshape(y, ((- 1),)), dtypes.int64))) cw = array_ops.gather_v2(class_weight_tensor, y_classes) if (sw is not None): cw = math_ops.cast(cw, sw.dtype) (sw, cw) = expand_1d((sw, cw)) sw = (sw * cw) else: sw = cw return (x, y, sw) return _class_weights_map_fn<|docstring|>Applies class weighting to a `Dataset`. The `Dataset` is assumed to be in format `(x, y)` or `(x, y, sw)`, where `y` must be a single `Tensor`. Arguments: class_weight: A map where the keys are integer class ids and values are the class weights, e.g. `{0: 0.2, 1: 0.6, 2: 0.3}` Returns: A function that can be used with `tf.data.Dataset.map` to apply class weighting.<|endoftext|>
487ccd9690b847d1da9f69517675f986371e43d676af8e9e39e406c7b93c6dfe
def expand_1d(data): 'Expands 1-dimensional `Tensor`s into 2-dimensional `Tensor`s.' def _expand_single_1d_tensor(t): if (isinstance(t, ops.Tensor) and isinstance(t.shape, tensor_shape.TensorShape) and (t.shape.rank == 1)): return array_ops.expand_dims_v2(t, axis=(- 1)) return t return nest.map_structure(_expand_single_1d_tensor, data)
Expands 1-dimensional `Tensor`s into 2-dimensional `Tensor`s.
tensorflow/python/keras/engine/data_adapter.py
expand_1d
bbbboom/tensorflow
50
python
def expand_1d(data): def _expand_single_1d_tensor(t): if (isinstance(t, ops.Tensor) and isinstance(t.shape, tensor_shape.TensorShape) and (t.shape.rank == 1)): return array_ops.expand_dims_v2(t, axis=(- 1)) return t return nest.map_structure(_expand_single_1d_tensor, data)
def expand_1d(data): def _expand_single_1d_tensor(t): if (isinstance(t, ops.Tensor) and isinstance(t.shape, tensor_shape.TensorShape) and (t.shape.rank == 1)): return array_ops.expand_dims_v2(t, axis=(- 1)) return t return nest.map_structure(_expand_single_1d_tensor, data)<|docstring|>Expands 1-dimensional `Tensor`s into 2-dimensional `Tensor`s.<|endoftext|>
c5e44386278ab5bb858d60bbe36f2b398cb9b921f872672a0e80d213797d0261
def train_validation_split(arrays, validation_split, shuffle=True): 'Split arrays into random train and validation subsets.\n\n Arguments:\n arrays: Tensors to split. Allowed inputs are arbitrarily nested structures\n of Tensors and NumPy arrays.\n validation_split: Float between 0 and 1. The proportion of the dataset to\n include in the validation split. The rest of the dataset will be included\n in the training split.\n shuffle: Bool. Whether to shuffle the data before performing a split. If\n `False`, the last `validation_split` fraction of that training data will\n become the validation split.\n\n Returns:\n `(train_arrays, validation_arrays)`\n ' def _can_split(t): tensor_types = (ops.Tensor, np.ndarray) if pd: tensor_types = (ops.Tensor, np.ndarray, pd.Series, pd.DataFrame) return (isinstance(t, tensor_types) or (t is None)) flat_arrays = nest.flatten(arrays) if (not all((_can_split(t) for t in flat_arrays))): raise ValueError('`validation_split` is only supported for Tensors or NumPy arrays, found: {}'.format(arrays)) if all(((t is None) for t in flat_arrays)): return (arrays, arrays) first_non_none = None for t in flat_arrays: if (t is not None): first_non_none = t break batch_dim = int(first_non_none.shape[0]) indices = ops.convert_to_tensor_v2(range(batch_dim)) if shuffle: indices = random_ops.random_shuffle(indices) split_at = int(math.floor((batch_dim * (1.0 - validation_split)))) train_indices = indices[:split_at] val_indices = indices[split_at:] def _split(t, indices): if (t is None): return t t = ops.convert_to_tensor_v2(t) return array_ops.gather_v2(t, indices) train_arrays = nest.map_structure(functools.partial(_split, indices=train_indices), arrays) val_arrays = nest.map_structure(functools.partial(_split, indices=val_indices), arrays) return (train_arrays, val_arrays)
Split arrays into random train and validation subsets. Arguments: arrays: Tensors to split. Allowed inputs are arbitrarily nested structures of Tensors and NumPy arrays. validation_split: Float between 0 and 1. The proportion of the dataset to include in the validation split. The rest of the dataset will be included in the training split. shuffle: Bool. Whether to shuffle the data before performing a split. If `False`, the last `validation_split` fraction of that training data will become the validation split. Returns: `(train_arrays, validation_arrays)`
tensorflow/python/keras/engine/data_adapter.py
train_validation_split
bbbboom/tensorflow
50
python
def train_validation_split(arrays, validation_split, shuffle=True): 'Split arrays into random train and validation subsets.\n\n Arguments:\n arrays: Tensors to split. Allowed inputs are arbitrarily nested structures\n of Tensors and NumPy arrays.\n validation_split: Float between 0 and 1. The proportion of the dataset to\n include in the validation split. The rest of the dataset will be included\n in the training split.\n shuffle: Bool. Whether to shuffle the data before performing a split. If\n `False`, the last `validation_split` fraction of that training data will\n become the validation split.\n\n Returns:\n `(train_arrays, validation_arrays)`\n ' def _can_split(t): tensor_types = (ops.Tensor, np.ndarray) if pd: tensor_types = (ops.Tensor, np.ndarray, pd.Series, pd.DataFrame) return (isinstance(t, tensor_types) or (t is None)) flat_arrays = nest.flatten(arrays) if (not all((_can_split(t) for t in flat_arrays))): raise ValueError('`validation_split` is only supported for Tensors or NumPy arrays, found: {}'.format(arrays)) if all(((t is None) for t in flat_arrays)): return (arrays, arrays) first_non_none = None for t in flat_arrays: if (t is not None): first_non_none = t break batch_dim = int(first_non_none.shape[0]) indices = ops.convert_to_tensor_v2(range(batch_dim)) if shuffle: indices = random_ops.random_shuffle(indices) split_at = int(math.floor((batch_dim * (1.0 - validation_split)))) train_indices = indices[:split_at] val_indices = indices[split_at:] def _split(t, indices): if (t is None): return t t = ops.convert_to_tensor_v2(t) return array_ops.gather_v2(t, indices) train_arrays = nest.map_structure(functools.partial(_split, indices=train_indices), arrays) val_arrays = nest.map_structure(functools.partial(_split, indices=val_indices), arrays) return (train_arrays, val_arrays)
def train_validation_split(arrays, validation_split, shuffle=True): 'Split arrays into random train and validation subsets.\n\n Arguments:\n arrays: Tensors to split. Allowed inputs are arbitrarily nested structures\n of Tensors and NumPy arrays.\n validation_split: Float between 0 and 1. The proportion of the dataset to\n include in the validation split. The rest of the dataset will be included\n in the training split.\n shuffle: Bool. Whether to shuffle the data before performing a split. If\n `False`, the last `validation_split` fraction of that training data will\n become the validation split.\n\n Returns:\n `(train_arrays, validation_arrays)`\n ' def _can_split(t): tensor_types = (ops.Tensor, np.ndarray) if pd: tensor_types = (ops.Tensor, np.ndarray, pd.Series, pd.DataFrame) return (isinstance(t, tensor_types) or (t is None)) flat_arrays = nest.flatten(arrays) if (not all((_can_split(t) for t in flat_arrays))): raise ValueError('`validation_split` is only supported for Tensors or NumPy arrays, found: {}'.format(arrays)) if all(((t is None) for t in flat_arrays)): return (arrays, arrays) first_non_none = None for t in flat_arrays: if (t is not None): first_non_none = t break batch_dim = int(first_non_none.shape[0]) indices = ops.convert_to_tensor_v2(range(batch_dim)) if shuffle: indices = random_ops.random_shuffle(indices) split_at = int(math.floor((batch_dim * (1.0 - validation_split)))) train_indices = indices[:split_at] val_indices = indices[split_at:] def _split(t, indices): if (t is None): return t t = ops.convert_to_tensor_v2(t) return array_ops.gather_v2(t, indices) train_arrays = nest.map_structure(functools.partial(_split, indices=train_indices), arrays) val_arrays = nest.map_structure(functools.partial(_split, indices=val_indices), arrays) return (train_arrays, val_arrays)<|docstring|>Split arrays into random train and validation subsets. Arguments: arrays: Tensors to split. Allowed inputs are arbitrarily nested structures of Tensors and NumPy arrays. validation_split: Float between 0 and 1. The proportion of the dataset to include in the validation split. The rest of the dataset will be included in the training split. shuffle: Bool. Whether to shuffle the data before performing a split. If `False`, the last `validation_split` fraction of that training data will become the validation split. Returns: `(train_arrays, validation_arrays)`<|endoftext|>
28ef3cd0cd92426fb3f8b30a9716f8778117332ea8d40dcb5c39f76582b9dfa0
def unpack_x_y_sample_weight(data): 'Unpacks user-provided data tuple.' if (not isinstance(data, tuple)): return (data, None, None) elif (len(data) == 1): return (data[0], None, None) elif (len(data) == 2): return (data[0], data[1], None) elif (len(data) == 3): return (data[0], data[1], data[2]) raise ValueError('Data not understood.')
Unpacks user-provided data tuple.
tensorflow/python/keras/engine/data_adapter.py
unpack_x_y_sample_weight
bbbboom/tensorflow
50
python
def unpack_x_y_sample_weight(data): if (not isinstance(data, tuple)): return (data, None, None) elif (len(data) == 1): return (data[0], None, None) elif (len(data) == 2): return (data[0], data[1], None) elif (len(data) == 3): return (data[0], data[1], data[2]) raise ValueError('Data not understood.')
def unpack_x_y_sample_weight(data): if (not isinstance(data, tuple)): return (data, None, None) elif (len(data) == 1): return (data[0], None, None) elif (len(data) == 2): return (data[0], data[1], None) elif (len(data) == 3): return (data[0], data[1], data[2]) raise ValueError('Data not understood.')<|docstring|>Unpacks user-provided data tuple.<|endoftext|>
991e80c30da5dcdd82a0bbccbe08e3352d30c14dbb30a051e1a065d73cba1a77
def pack_x_y_sample_weight(x, y=None, sample_weight=None): 'Packs user-provided data into a tuple.' if (y is None): return (x,) elif (sample_weight is None): return (x, y) else: return (x, y, sample_weight)
Packs user-provided data into a tuple.
tensorflow/python/keras/engine/data_adapter.py
pack_x_y_sample_weight
bbbboom/tensorflow
50
python
def pack_x_y_sample_weight(x, y=None, sample_weight=None): if (y is None): return (x,) elif (sample_weight is None): return (x, y) else: return (x, y, sample_weight)
def pack_x_y_sample_weight(x, y=None, sample_weight=None): if (y is None): return (x,) elif (sample_weight is None): return (x, y) else: return (x, y, sample_weight)<|docstring|>Packs user-provided data into a tuple.<|endoftext|>
ae50269358cb1dd63d534dde18d3d21c2461a500907348f29771fe3d815a86e8
def single_batch_iterator(strategy, x, y=None, sample_weight=None, class_weight=None): 'Creates a single-batch dataset.' (x, y, sample_weight) = _process_tensorlike((x, y, sample_weight)) if (y is None): data = (x,) elif (sample_weight is None): data = (x, y) else: data = (x, y, sample_weight) dataset = dataset_ops.DatasetV2.from_tensors(data) if class_weight: dataset = dataset.map(_make_class_weight_map_fn(class_weight)) dataset = strategy.experimental_distribute_dataset(dataset) return iter(dataset)
Creates a single-batch dataset.
tensorflow/python/keras/engine/data_adapter.py
single_batch_iterator
bbbboom/tensorflow
50
python
def single_batch_iterator(strategy, x, y=None, sample_weight=None, class_weight=None): (x, y, sample_weight) = _process_tensorlike((x, y, sample_weight)) if (y is None): data = (x,) elif (sample_weight is None): data = (x, y) else: data = (x, y, sample_weight) dataset = dataset_ops.DatasetV2.from_tensors(data) if class_weight: dataset = dataset.map(_make_class_weight_map_fn(class_weight)) dataset = strategy.experimental_distribute_dataset(dataset) return iter(dataset)
def single_batch_iterator(strategy, x, y=None, sample_weight=None, class_weight=None): (x, y, sample_weight) = _process_tensorlike((x, y, sample_weight)) if (y is None): data = (x,) elif (sample_weight is None): data = (x, y) else: data = (x, y, sample_weight) dataset = dataset_ops.DatasetV2.from_tensors(data) if class_weight: dataset = dataset.map(_make_class_weight_map_fn(class_weight)) dataset = strategy.experimental_distribute_dataset(dataset) return iter(dataset)<|docstring|>Creates a single-batch dataset.<|endoftext|>
17a60c6c4e9ba6de0e4e9c721f722e58c131d29a8146c3fe14fb11bc5582553a
def _scipy_sparse_to_sparse_tensor(t): 'Converts a SciPy sparse matrix to a SparseTensor.' sparse_coo = t.tocoo() (row, col) = (sparse_coo.row, sparse_coo.col) (data, shape) = (sparse_coo.data, sparse_coo.shape) if issubclass(data.dtype.type, np.floating): data = data.astype(backend.floatx()) indices = np.concatenate((np.expand_dims(row, axis=1), np.expand_dims(col, axis=1)), axis=1) return sparse_tensor.SparseTensor(indices, data, shape)
Converts a SciPy sparse matrix to a SparseTensor.
tensorflow/python/keras/engine/data_adapter.py
_scipy_sparse_to_sparse_tensor
bbbboom/tensorflow
50
python
def _scipy_sparse_to_sparse_tensor(t): sparse_coo = t.tocoo() (row, col) = (sparse_coo.row, sparse_coo.col) (data, shape) = (sparse_coo.data, sparse_coo.shape) if issubclass(data.dtype.type, np.floating): data = data.astype(backend.floatx()) indices = np.concatenate((np.expand_dims(row, axis=1), np.expand_dims(col, axis=1)), axis=1) return sparse_tensor.SparseTensor(indices, data, shape)
def _scipy_sparse_to_sparse_tensor(t): sparse_coo = t.tocoo() (row, col) = (sparse_coo.row, sparse_coo.col) (data, shape) = (sparse_coo.data, sparse_coo.shape) if issubclass(data.dtype.type, np.floating): data = data.astype(backend.floatx()) indices = np.concatenate((np.expand_dims(row, axis=1), np.expand_dims(col, axis=1)), axis=1) return sparse_tensor.SparseTensor(indices, data, shape)<|docstring|>Converts a SciPy sparse matrix to a SparseTensor.<|endoftext|>
a50463ad58456992e352a5ed96d44f7aeb46502cc61fa4cc1cfeb2b8996e1e98
@staticmethod def can_handle(x, y=None): 'Whether the current DataAdapter could handle the input x and y.\n\n Structure wise, x and y can be single object, or list of objects if there\n multiple input/output, or dictionary of objects when the intput/output are\n named.\n\n Args:\n x: input features.\n y: target labels. Note that y could be None in the case of prediction.\n\n Returns:\n boolean\n ' raise NotImplementedError
Whether the current DataAdapter could handle the input x and y. Structure wise, x and y can be single object, or list of objects if there multiple input/output, or dictionary of objects when the intput/output are named. Args: x: input features. y: target labels. Note that y could be None in the case of prediction. Returns: boolean
tensorflow/python/keras/engine/data_adapter.py
can_handle
bbbboom/tensorflow
50
python
@staticmethod def can_handle(x, y=None): 'Whether the current DataAdapter could handle the input x and y.\n\n Structure wise, x and y can be single object, or list of objects if there\n multiple input/output, or dictionary of objects when the intput/output are\n named.\n\n Args:\n x: input features.\n y: target labels. Note that y could be None in the case of prediction.\n\n Returns:\n boolean\n ' raise NotImplementedError
@staticmethod def can_handle(x, y=None): 'Whether the current DataAdapter could handle the input x and y.\n\n Structure wise, x and y can be single object, or list of objects if there\n multiple input/output, or dictionary of objects when the intput/output are\n named.\n\n Args:\n x: input features.\n y: target labels. Note that y could be None in the case of prediction.\n\n Returns:\n boolean\n ' raise NotImplementedError<|docstring|>Whether the current DataAdapter could handle the input x and y. Structure wise, x and y can be single object, or list of objects if there multiple input/output, or dictionary of objects when the intput/output are named. Args: x: input features. y: target labels. Note that y could be None in the case of prediction. Returns: boolean<|endoftext|>
ed8f8b395f99719f520b9dd83b8f51b3a563e42c92d85a309f24522582abefc3
@abc.abstractmethod def __init__(self, x, y=None, **kwargs): "Create a DataAdapter based on data inputs.\n\n The caller must make sure to call `can_handle()` first before invoking this\n method. Provide unsupported data type will result into unexpected behavior.\n\n Args:\n x: input features.\n y: target labels. Note that y could be None in the case of prediction.\n **kwargs: Other keyword arguments for DataAdapter during the construction\n of the tf.dataset.Dataset. For example:\n - Numpy data might have `sample_weights` which will be used for\n weighting the loss function during training.\n - Numpy data might need to have `batch_size` parameter when constructing\n the dataset and iterator.\n - Certain input might need to be distribution strategy aware. When\n `distribution_strategy` is passed, the created dataset need to respect\n the strategy.\n DataAdapter might choose to ignore any keyword argument if it doesn't\n use it, or raise exception if any required argument is not provide.\n " if (not self.can_handle(x, y)): raise ValueError('{} Cannot handle input {}, {}'.format(self.__class__, x, y))
Create a DataAdapter based on data inputs. The caller must make sure to call `can_handle()` first before invoking this method. Provide unsupported data type will result into unexpected behavior. Args: x: input features. y: target labels. Note that y could be None in the case of prediction. **kwargs: Other keyword arguments for DataAdapter during the construction of the tf.dataset.Dataset. For example: - Numpy data might have `sample_weights` which will be used for weighting the loss function during training. - Numpy data might need to have `batch_size` parameter when constructing the dataset and iterator. - Certain input might need to be distribution strategy aware. When `distribution_strategy` is passed, the created dataset need to respect the strategy. DataAdapter might choose to ignore any keyword argument if it doesn't use it, or raise exception if any required argument is not provide.
tensorflow/python/keras/engine/data_adapter.py
__init__
bbbboom/tensorflow
50
python
@abc.abstractmethod def __init__(self, x, y=None, **kwargs): "Create a DataAdapter based on data inputs.\n\n The caller must make sure to call `can_handle()` first before invoking this\n method. Provide unsupported data type will result into unexpected behavior.\n\n Args:\n x: input features.\n y: target labels. Note that y could be None in the case of prediction.\n **kwargs: Other keyword arguments for DataAdapter during the construction\n of the tf.dataset.Dataset. For example:\n - Numpy data might have `sample_weights` which will be used for\n weighting the loss function during training.\n - Numpy data might need to have `batch_size` parameter when constructing\n the dataset and iterator.\n - Certain input might need to be distribution strategy aware. When\n `distribution_strategy` is passed, the created dataset need to respect\n the strategy.\n DataAdapter might choose to ignore any keyword argument if it doesn't\n use it, or raise exception if any required argument is not provide.\n " if (not self.can_handle(x, y)): raise ValueError('{} Cannot handle input {}, {}'.format(self.__class__, x, y))
@abc.abstractmethod def __init__(self, x, y=None, **kwargs): "Create a DataAdapter based on data inputs.\n\n The caller must make sure to call `can_handle()` first before invoking this\n method. Provide unsupported data type will result into unexpected behavior.\n\n Args:\n x: input features.\n y: target labels. Note that y could be None in the case of prediction.\n **kwargs: Other keyword arguments for DataAdapter during the construction\n of the tf.dataset.Dataset. For example:\n - Numpy data might have `sample_weights` which will be used for\n weighting the loss function during training.\n - Numpy data might need to have `batch_size` parameter when constructing\n the dataset and iterator.\n - Certain input might need to be distribution strategy aware. When\n `distribution_strategy` is passed, the created dataset need to respect\n the strategy.\n DataAdapter might choose to ignore any keyword argument if it doesn't\n use it, or raise exception if any required argument is not provide.\n " if (not self.can_handle(x, y)): raise ValueError('{} Cannot handle input {}, {}'.format(self.__class__, x, y))<|docstring|>Create a DataAdapter based on data inputs. The caller must make sure to call `can_handle()` first before invoking this method. Provide unsupported data type will result into unexpected behavior. Args: x: input features. y: target labels. Note that y could be None in the case of prediction. **kwargs: Other keyword arguments for DataAdapter during the construction of the tf.dataset.Dataset. For example: - Numpy data might have `sample_weights` which will be used for weighting the loss function during training. - Numpy data might need to have `batch_size` parameter when constructing the dataset and iterator. - Certain input might need to be distribution strategy aware. When `distribution_strategy` is passed, the created dataset need to respect the strategy. DataAdapter might choose to ignore any keyword argument if it doesn't use it, or raise exception if any required argument is not provide.<|endoftext|>
61c87c02e8283b522d89b8afefdb35a131d67a7c6a160d8d5c568f3e0204c1a7
@abc.abstractmethod def get_dataset(self): 'Get a dataset instance for the current DataAdapter.\n\n Note that the dataset returned does not repeat for epoch, so caller might\n need to create new iterator for the same dataset at the beginning of the\n epoch. This behavior might change in future.\n\n Returns:\n An tf.dataset.Dataset. Caller might use the dataset in different\n context, eg iter(dataset) in eager to get the value directly, or in graph\n mode, provide the iterator tensor to Keras model function.\n ' raise NotImplementedError
Get a dataset instance for the current DataAdapter. Note that the dataset returned does not repeat for epoch, so caller might need to create new iterator for the same dataset at the beginning of the epoch. This behavior might change in future. Returns: An tf.dataset.Dataset. Caller might use the dataset in different context, eg iter(dataset) in eager to get the value directly, or in graph mode, provide the iterator tensor to Keras model function.
tensorflow/python/keras/engine/data_adapter.py
get_dataset
bbbboom/tensorflow
50
python
@abc.abstractmethod def get_dataset(self): 'Get a dataset instance for the current DataAdapter.\n\n Note that the dataset returned does not repeat for epoch, so caller might\n need to create new iterator for the same dataset at the beginning of the\n epoch. This behavior might change in future.\n\n Returns:\n An tf.dataset.Dataset. Caller might use the dataset in different\n context, eg iter(dataset) in eager to get the value directly, or in graph\n mode, provide the iterator tensor to Keras model function.\n ' raise NotImplementedError
@abc.abstractmethod def get_dataset(self): 'Get a dataset instance for the current DataAdapter.\n\n Note that the dataset returned does not repeat for epoch, so caller might\n need to create new iterator for the same dataset at the beginning of the\n epoch. This behavior might change in future.\n\n Returns:\n An tf.dataset.Dataset. Caller might use the dataset in different\n context, eg iter(dataset) in eager to get the value directly, or in graph\n mode, provide the iterator tensor to Keras model function.\n ' raise NotImplementedError<|docstring|>Get a dataset instance for the current DataAdapter. Note that the dataset returned does not repeat for epoch, so caller might need to create new iterator for the same dataset at the beginning of the epoch. This behavior might change in future. Returns: An tf.dataset.Dataset. Caller might use the dataset in different context, eg iter(dataset) in eager to get the value directly, or in graph mode, provide the iterator tensor to Keras model function.<|endoftext|>
f2b115204d9519a764d529c10913e5b91776cb7c06a3df6d46641e7089149daf
@abc.abstractmethod def get_size(self): 'Return the size (number of batches) for the dataset created.\n\n For certain type of the data input, the number of batches is known, eg for\n Numpy data, the size is same as (number_of_element / batch_size). Whereas\n for dataset or python generator, the size is unknown since it may or may not\n have a end state.\n\n Returns:\n int, the number of batches for the dataset, or None if it is unknown. The\n caller could use this to control the loop of training, show progress bar,\n or handle unexpected StopIteration error.\n ' raise NotImplementedError
Return the size (number of batches) for the dataset created. For certain type of the data input, the number of batches is known, eg for Numpy data, the size is same as (number_of_element / batch_size). Whereas for dataset or python generator, the size is unknown since it may or may not have a end state. Returns: int, the number of batches for the dataset, or None if it is unknown. The caller could use this to control the loop of training, show progress bar, or handle unexpected StopIteration error.
tensorflow/python/keras/engine/data_adapter.py
get_size
bbbboom/tensorflow
50
python
@abc.abstractmethod def get_size(self): 'Return the size (number of batches) for the dataset created.\n\n For certain type of the data input, the number of batches is known, eg for\n Numpy data, the size is same as (number_of_element / batch_size). Whereas\n for dataset or python generator, the size is unknown since it may or may not\n have a end state.\n\n Returns:\n int, the number of batches for the dataset, or None if it is unknown. The\n caller could use this to control the loop of training, show progress bar,\n or handle unexpected StopIteration error.\n ' raise NotImplementedError
@abc.abstractmethod def get_size(self): 'Return the size (number of batches) for the dataset created.\n\n For certain type of the data input, the number of batches is known, eg for\n Numpy data, the size is same as (number_of_element / batch_size). Whereas\n for dataset or python generator, the size is unknown since it may or may not\n have a end state.\n\n Returns:\n int, the number of batches for the dataset, or None if it is unknown. The\n caller could use this to control the loop of training, show progress bar,\n or handle unexpected StopIteration error.\n ' raise NotImplementedError<|docstring|>Return the size (number of batches) for the dataset created. For certain type of the data input, the number of batches is known, eg for Numpy data, the size is same as (number_of_element / batch_size). Whereas for dataset or python generator, the size is unknown since it may or may not have a end state. Returns: int, the number of batches for the dataset, or None if it is unknown. The caller could use this to control the loop of training, show progress bar, or handle unexpected StopIteration error.<|endoftext|>
32a1a6ecf0743e98ca71bf3f61e8a132adffccfea395cf449ee3b64cb03c73d7
@abc.abstractmethod def batch_size(self): 'Return the batch size of the dataset created.\n\n For certain type of the data input, the batch size is known, and even\n required, like numpy array. Where as for dataset, the batch is unknown\n unless we take a peek.\n\n Returns:\n int, the batch size of the dataset, or None if it is unknown.\n ' raise NotImplementedError
Return the batch size of the dataset created. For certain type of the data input, the batch size is known, and even required, like numpy array. Where as for dataset, the batch is unknown unless we take a peek. Returns: int, the batch size of the dataset, or None if it is unknown.
tensorflow/python/keras/engine/data_adapter.py
batch_size
bbbboom/tensorflow
50
python
@abc.abstractmethod def batch_size(self): 'Return the batch size of the dataset created.\n\n For certain type of the data input, the batch size is known, and even\n required, like numpy array. Where as for dataset, the batch is unknown\n unless we take a peek.\n\n Returns:\n int, the batch size of the dataset, or None if it is unknown.\n ' raise NotImplementedError
@abc.abstractmethod def batch_size(self): 'Return the batch size of the dataset created.\n\n For certain type of the data input, the batch size is known, and even\n required, like numpy array. Where as for dataset, the batch is unknown\n unless we take a peek.\n\n Returns:\n int, the batch size of the dataset, or None if it is unknown.\n ' raise NotImplementedError<|docstring|>Return the batch size of the dataset created. For certain type of the data input, the batch size is known, and even required, like numpy array. Where as for dataset, the batch is unknown unless we take a peek. Returns: int, the batch size of the dataset, or None if it is unknown.<|endoftext|>
c6ed40b1e95e6a87c0a2a149e258e2066cd0106d9769932b17ac10e16ad65f0e
def representative_batch_size(self): 'Return a representative size for batches in the dataset.\n\n This is not guaranteed to be the batch size for all batches in the\n dataset. It just needs to be a rough approximation for batch sizes in\n the dataset.\n\n Returns:\n int, a representative size for batches found in the dataset,\n or None if it is unknown.\n ' return self.batch_size()
Return a representative size for batches in the dataset. This is not guaranteed to be the batch size for all batches in the dataset. It just needs to be a rough approximation for batch sizes in the dataset. Returns: int, a representative size for batches found in the dataset, or None if it is unknown.
tensorflow/python/keras/engine/data_adapter.py
representative_batch_size
bbbboom/tensorflow
50
python
def representative_batch_size(self): 'Return a representative size for batches in the dataset.\n\n This is not guaranteed to be the batch size for all batches in the\n dataset. It just needs to be a rough approximation for batch sizes in\n the dataset.\n\n Returns:\n int, a representative size for batches found in the dataset,\n or None if it is unknown.\n ' return self.batch_size()
def representative_batch_size(self): 'Return a representative size for batches in the dataset.\n\n This is not guaranteed to be the batch size for all batches in the\n dataset. It just needs to be a rough approximation for batch sizes in\n the dataset.\n\n Returns:\n int, a representative size for batches found in the dataset,\n or None if it is unknown.\n ' return self.batch_size()<|docstring|>Return a representative size for batches in the dataset. This is not guaranteed to be the batch size for all batches in the dataset. It just needs to be a rough approximation for batch sizes in the dataset. Returns: int, a representative size for batches found in the dataset, or None if it is unknown.<|endoftext|>
236231450e58cb8f0a4659675cbee57680d68d4fe15e2b89f9f93999c96c65c2
@abc.abstractmethod def has_partial_batch(self): 'Whether the dataset has partial batch at the end.' raise NotImplementedError
Whether the dataset has partial batch at the end.
tensorflow/python/keras/engine/data_adapter.py
has_partial_batch
bbbboom/tensorflow
50
python
@abc.abstractmethod def has_partial_batch(self): raise NotImplementedError
@abc.abstractmethod def has_partial_batch(self): raise NotImplementedError<|docstring|>Whether the dataset has partial batch at the end.<|endoftext|>
64dc2edeb404382f0c174498c83713f6ae9152585766a86c3c53cc0d960020ab
@abc.abstractmethod def partial_batch_size(self): 'The size of the final partial batch for dataset.\n\n Will return None if has_partial_batch is False or batch_size is None.\n ' raise NotImplementedError
The size of the final partial batch for dataset. Will return None if has_partial_batch is False or batch_size is None.
tensorflow/python/keras/engine/data_adapter.py
partial_batch_size
bbbboom/tensorflow
50
python
@abc.abstractmethod def partial_batch_size(self): 'The size of the final partial batch for dataset.\n\n Will return None if has_partial_batch is False or batch_size is None.\n ' raise NotImplementedError
@abc.abstractmethod def partial_batch_size(self): 'The size of the final partial batch for dataset.\n\n Will return None if has_partial_batch is False or batch_size is None.\n ' raise NotImplementedError<|docstring|>The size of the final partial batch for dataset. Will return None if has_partial_batch is False or batch_size is None.<|endoftext|>
b1052a9345568be1d0b2bfd3c5c7c428269030053f0dca0c39bbe44cdd991f8d
@abc.abstractmethod def should_recreate_iterator(self): 'Returns whether a new iterator should be created every epoch.' raise NotImplementedError
Returns whether a new iterator should be created every epoch.
tensorflow/python/keras/engine/data_adapter.py
should_recreate_iterator
bbbboom/tensorflow
50
python
@abc.abstractmethod def should_recreate_iterator(self): raise NotImplementedError
@abc.abstractmethod def should_recreate_iterator(self): raise NotImplementedError<|docstring|>Returns whether a new iterator should be created every epoch.<|endoftext|>
242fff6c408dcb9126d78935e090b657059216dc70c13b41492ac2bad45f90e4
def get_samples(self): 'Returns number of samples in the data, or `None`.' if ((not self.get_size()) or (not self.batch_size())): return None total_sample = (self.get_size() * self.batch_size()) if self.has_partial_batch(): total_sample -= (self.batch_size() - self.partial_batch_size()) return total_sample
Returns number of samples in the data, or `None`.
tensorflow/python/keras/engine/data_adapter.py
get_samples
bbbboom/tensorflow
50
python
def get_samples(self): if ((not self.get_size()) or (not self.batch_size())): return None total_sample = (self.get_size() * self.batch_size()) if self.has_partial_batch(): total_sample -= (self.batch_size() - self.partial_batch_size()) return total_sample
def get_samples(self): if ((not self.get_size()) or (not self.batch_size())): return None total_sample = (self.get_size() * self.batch_size()) if self.has_partial_batch(): total_sample -= (self.batch_size() - self.partial_batch_size()) return total_sample<|docstring|>Returns number of samples in the data, or `None`.<|endoftext|>
0f7ff45551a4cf6e3fe38e9a56ef01cac81fb716e76086f11b7e8fb5aa32c88b
def on_epoch_end(self): 'A hook called after each epoch.' pass
A hook called after each epoch.
tensorflow/python/keras/engine/data_adapter.py
on_epoch_end
bbbboom/tensorflow
50
python
def on_epoch_end(self): pass
def on_epoch_end(self): pass<|docstring|>A hook called after each epoch.<|endoftext|>
bb8ca5de57d1d78ce84cfdc7081a34de2a26497ff98c24e64863343794efdbe9
def slice_inputs(self, indices_dataset, inputs): 'Slice inputs into a Dataset of batches.\n\n Given a Dataset of batch indices and the unsliced inputs,\n this step slices the inputs in a parallelized fashion\n and produces a dataset of input batches.\n\n Args:\n indices_dataset: A Dataset of batched indices\n inputs: A python data structure that contains the inputs, targets,\n and possibly sample weights.\n\n Returns:\n A Dataset of input batches matching the batch indices.\n ' dataset = dataset_ops.DatasetV2.zip((indices_dataset, dataset_ops.DatasetV2.from_tensors(inputs).repeat())) def grab_batch(i, data): return nest.map_structure((lambda d: array_ops.gather(d, i, axis=0)), data) dataset = dataset.map(grab_batch, num_parallel_calls=dataset_ops.AUTOTUNE) options = dataset_ops.Options() options.experimental_optimization.apply_default_optimizations = False if self._shuffle: options.experimental_external_state_policy = distribute_options.ExternalStatePolicy.IGNORE dataset = dataset.with_options(options) return dataset
Slice inputs into a Dataset of batches. Given a Dataset of batch indices and the unsliced inputs, this step slices the inputs in a parallelized fashion and produces a dataset of input batches. Args: indices_dataset: A Dataset of batched indices inputs: A python data structure that contains the inputs, targets, and possibly sample weights. Returns: A Dataset of input batches matching the batch indices.
tensorflow/python/keras/engine/data_adapter.py
slice_inputs
bbbboom/tensorflow
50
python
def slice_inputs(self, indices_dataset, inputs): 'Slice inputs into a Dataset of batches.\n\n Given a Dataset of batch indices and the unsliced inputs,\n this step slices the inputs in a parallelized fashion\n and produces a dataset of input batches.\n\n Args:\n indices_dataset: A Dataset of batched indices\n inputs: A python data structure that contains the inputs, targets,\n and possibly sample weights.\n\n Returns:\n A Dataset of input batches matching the batch indices.\n ' dataset = dataset_ops.DatasetV2.zip((indices_dataset, dataset_ops.DatasetV2.from_tensors(inputs).repeat())) def grab_batch(i, data): return nest.map_structure((lambda d: array_ops.gather(d, i, axis=0)), data) dataset = dataset.map(grab_batch, num_parallel_calls=dataset_ops.AUTOTUNE) options = dataset_ops.Options() options.experimental_optimization.apply_default_optimizations = False if self._shuffle: options.experimental_external_state_policy = distribute_options.ExternalStatePolicy.IGNORE dataset = dataset.with_options(options) return dataset
def slice_inputs(self, indices_dataset, inputs): 'Slice inputs into a Dataset of batches.\n\n Given a Dataset of batch indices and the unsliced inputs,\n this step slices the inputs in a parallelized fashion\n and produces a dataset of input batches.\n\n Args:\n indices_dataset: A Dataset of batched indices\n inputs: A python data structure that contains the inputs, targets,\n and possibly sample weights.\n\n Returns:\n A Dataset of input batches matching the batch indices.\n ' dataset = dataset_ops.DatasetV2.zip((indices_dataset, dataset_ops.DatasetV2.from_tensors(inputs).repeat())) def grab_batch(i, data): return nest.map_structure((lambda d: array_ops.gather(d, i, axis=0)), data) dataset = dataset.map(grab_batch, num_parallel_calls=dataset_ops.AUTOTUNE) options = dataset_ops.Options() options.experimental_optimization.apply_default_optimizations = False if self._shuffle: options.experimental_external_state_policy = distribute_options.ExternalStatePolicy.IGNORE dataset = dataset.with_options(options) return dataset<|docstring|>Slice inputs into a Dataset of batches. Given a Dataset of batch indices and the unsliced inputs, this step slices the inputs in a parallelized fashion and produces a dataset of input batches. Args: indices_dataset: A Dataset of batched indices inputs: A python data structure that contains the inputs, targets, and possibly sample weights. Returns: A Dataset of input batches matching the batch indices.<|endoftext|>
1ba3fe9b6de78ad5afa692954ce5f98859beea0bde139407cc05c6a6911b5217
def slice_inputs(self, indices_dataset, inputs): 'Slice inputs into a Dataset of batches.\n\n Given a Dataset of batch indices and the unsliced inputs,\n this step slices the inputs in a parallelized fashion\n and produces a dataset of input batches.\n\n Args:\n indices_dataset: A Dataset of batched indices\n inputs: A python data structure that contains the inputs, targets,\n and possibly sample weights.\n\n Returns:\n A Dataset of input batches matching the batch indices.\n ' flat_inputs = nest.flatten(inputs) def dynamic_shape_like(t): shape = list(t.shape) shape[0] = None return tuple(shape) flat_dtypes = [inp.dtype for inp in flat_inputs] contiguous = True if (self._shuffle and (self._shuffle != 'batch')): contiguous = False def grab_batch(indices): 'Grab a batch of data from the inputs.' def py_method(ind): def slice_array(data): return training_utils.slice_arrays(data, ind.numpy(), contiguous=contiguous) return [slice_array(inp) for inp in flat_inputs] flat_out = script_ops.eager_py_func(py_method, [indices], flat_dtypes) for (v, original_inp) in zip(flat_out, flat_inputs): v.set_shape(dynamic_shape_like(original_inp)) return nest.pack_sequence_as(inputs, flat_out) dataset = indices_dataset.map(grab_batch, num_parallel_calls=dataset_ops.AUTOTUNE) return dataset
Slice inputs into a Dataset of batches. Given a Dataset of batch indices and the unsliced inputs, this step slices the inputs in a parallelized fashion and produces a dataset of input batches. Args: indices_dataset: A Dataset of batched indices inputs: A python data structure that contains the inputs, targets, and possibly sample weights. Returns: A Dataset of input batches matching the batch indices.
tensorflow/python/keras/engine/data_adapter.py
slice_inputs
bbbboom/tensorflow
50
python
def slice_inputs(self, indices_dataset, inputs): 'Slice inputs into a Dataset of batches.\n\n Given a Dataset of batch indices and the unsliced inputs,\n this step slices the inputs in a parallelized fashion\n and produces a dataset of input batches.\n\n Args:\n indices_dataset: A Dataset of batched indices\n inputs: A python data structure that contains the inputs, targets,\n and possibly sample weights.\n\n Returns:\n A Dataset of input batches matching the batch indices.\n ' flat_inputs = nest.flatten(inputs) def dynamic_shape_like(t): shape = list(t.shape) shape[0] = None return tuple(shape) flat_dtypes = [inp.dtype for inp in flat_inputs] contiguous = True if (self._shuffle and (self._shuffle != 'batch')): contiguous = False def grab_batch(indices): 'Grab a batch of data from the inputs.' def py_method(ind): def slice_array(data): return training_utils.slice_arrays(data, ind.numpy(), contiguous=contiguous) return [slice_array(inp) for inp in flat_inputs] flat_out = script_ops.eager_py_func(py_method, [indices], flat_dtypes) for (v, original_inp) in zip(flat_out, flat_inputs): v.set_shape(dynamic_shape_like(original_inp)) return nest.pack_sequence_as(inputs, flat_out) dataset = indices_dataset.map(grab_batch, num_parallel_calls=dataset_ops.AUTOTUNE) return dataset
def slice_inputs(self, indices_dataset, inputs): 'Slice inputs into a Dataset of batches.\n\n Given a Dataset of batch indices and the unsliced inputs,\n this step slices the inputs in a parallelized fashion\n and produces a dataset of input batches.\n\n Args:\n indices_dataset: A Dataset of batched indices\n inputs: A python data structure that contains the inputs, targets,\n and possibly sample weights.\n\n Returns:\n A Dataset of input batches matching the batch indices.\n ' flat_inputs = nest.flatten(inputs) def dynamic_shape_like(t): shape = list(t.shape) shape[0] = None return tuple(shape) flat_dtypes = [inp.dtype for inp in flat_inputs] contiguous = True if (self._shuffle and (self._shuffle != 'batch')): contiguous = False def grab_batch(indices): 'Grab a batch of data from the inputs.' def py_method(ind): def slice_array(data): return training_utils.slice_arrays(data, ind.numpy(), contiguous=contiguous) return [slice_array(inp) for inp in flat_inputs] flat_out = script_ops.eager_py_func(py_method, [indices], flat_dtypes) for (v, original_inp) in zip(flat_out, flat_inputs): v.set_shape(dynamic_shape_like(original_inp)) return nest.pack_sequence_as(inputs, flat_out) dataset = indices_dataset.map(grab_batch, num_parallel_calls=dataset_ops.AUTOTUNE) return dataset<|docstring|>Slice inputs into a Dataset of batches. Given a Dataset of batch indices and the unsliced inputs, this step slices the inputs in a parallelized fashion and produces a dataset of input batches. Args: indices_dataset: A Dataset of batched indices inputs: A python data structure that contains the inputs, targets, and possibly sample weights. Returns: A Dataset of input batches matching the batch indices.<|endoftext|>
eb74d778e2f99a8da208895c75e19899ced3405a9e72dca28f122695b213a63a
def _validate_args(self, y, sample_weights, steps): 'Validates `__init__` arguments.' if (not is_none_or_empty(y)): raise ValueError('`y` argument is not supported when using dataset as input.') if (not is_none_or_empty(sample_weights)): raise ValueError('`sample_weight` argument is not supported when using dataset as input.') size = cardinality.cardinality(self._dataset).numpy() if ((size == cardinality.INFINITE) and (steps is None)): raise ValueError('When providing an infinite dataset, you must specify the number of steps to run.')
Validates `__init__` arguments.
tensorflow/python/keras/engine/data_adapter.py
_validate_args
bbbboom/tensorflow
50
python
def _validate_args(self, y, sample_weights, steps): if (not is_none_or_empty(y)): raise ValueError('`y` argument is not supported when using dataset as input.') if (not is_none_or_empty(sample_weights)): raise ValueError('`sample_weight` argument is not supported when using dataset as input.') size = cardinality.cardinality(self._dataset).numpy() if ((size == cardinality.INFINITE) and (steps is None)): raise ValueError('When providing an infinite dataset, you must specify the number of steps to run.')
def _validate_args(self, y, sample_weights, steps): if (not is_none_or_empty(y)): raise ValueError('`y` argument is not supported when using dataset as input.') if (not is_none_or_empty(sample_weights)): raise ValueError('`sample_weight` argument is not supported when using dataset as input.') size = cardinality.cardinality(self._dataset).numpy() if ((size == cardinality.INFINITE) and (steps is None)): raise ValueError('When providing an infinite dataset, you must specify the number of steps to run.')<|docstring|>Validates `__init__` arguments.<|endoftext|>
127620fcc70c89c4574a1665cc6910c67db50b72ddf915e0bdc496147c920646
def _standardize_batch(self, data): 'Standardizes a batch output by a generator.' (x, y, sample_weight) = unpack_x_y_sample_weight(data) data = pack_x_y_sample_weight(x, y, sample_weight) data = nest._list_to_tuple(data) def _convert_dtype(t): if (isinstance(t, np.ndarray) and issubclass(t.dtype.type, np.floating)): return np.array(t, dtype=backend.floatx()) return t data = nest.map_structure(_convert_dtype, data) return data
Standardizes a batch output by a generator.
tensorflow/python/keras/engine/data_adapter.py
_standardize_batch
bbbboom/tensorflow
50
python
def _standardize_batch(self, data): (x, y, sample_weight) = unpack_x_y_sample_weight(data) data = pack_x_y_sample_weight(x, y, sample_weight) data = nest._list_to_tuple(data) def _convert_dtype(t): if (isinstance(t, np.ndarray) and issubclass(t.dtype.type, np.floating)): return np.array(t, dtype=backend.floatx()) return t data = nest.map_structure(_convert_dtype, data) return data
def _standardize_batch(self, data): (x, y, sample_weight) = unpack_x_y_sample_weight(data) data = pack_x_y_sample_weight(x, y, sample_weight) data = nest._list_to_tuple(data) def _convert_dtype(t): if (isinstance(t, np.ndarray) and issubclass(t.dtype.type, np.floating)): return np.array(t, dtype=backend.floatx()) return t data = nest.map_structure(_convert_dtype, data) return data<|docstring|>Standardizes a batch output by a generator.<|endoftext|>
eaa063c3b39a2ade49435d058d650ed4fe96d020bf1fd176fe3f35465dcdce2d
def _handle_multiprocessing(self, x, workers, use_multiprocessing, max_queue_size): 'Create a callable, possibly including an Enqueuer.' if ((workers > 1) or ((workers > 0) and use_multiprocessing)): if use_multiprocessing: logging.warning(UserWarning('Using a generator with `use_multiprocessing=True` and multiple workers may duplicate your data. Please consider using the `tf.data.Dataset`.')) def generator_fn(): enqueuer = data_utils.GeneratorEnqueuer(x, use_multiprocessing=use_multiprocessing) enqueuer.start(workers=workers, max_queue_size=max_queue_size) return enqueuer.get() else: generator_fn = (lambda : x) return generator_fn
Create a callable, possibly including an Enqueuer.
tensorflow/python/keras/engine/data_adapter.py
_handle_multiprocessing
bbbboom/tensorflow
50
python
def _handle_multiprocessing(self, x, workers, use_multiprocessing, max_queue_size): if ((workers > 1) or ((workers > 0) and use_multiprocessing)): if use_multiprocessing: logging.warning(UserWarning('Using a generator with `use_multiprocessing=True` and multiple workers may duplicate your data. Please consider using the `tf.data.Dataset`.')) def generator_fn(): enqueuer = data_utils.GeneratorEnqueuer(x, use_multiprocessing=use_multiprocessing) enqueuer.start(workers=workers, max_queue_size=max_queue_size) return enqueuer.get() else: generator_fn = (lambda : x) return generator_fn
def _handle_multiprocessing(self, x, workers, use_multiprocessing, max_queue_size): if ((workers > 1) or ((workers > 0) and use_multiprocessing)): if use_multiprocessing: logging.warning(UserWarning('Using a generator with `use_multiprocessing=True` and multiple workers may duplicate your data. Please consider using the `tf.data.Dataset`.')) def generator_fn(): enqueuer = data_utils.GeneratorEnqueuer(x, use_multiprocessing=use_multiprocessing) enqueuer.start(workers=workers, max_queue_size=max_queue_size) return enqueuer.get() else: generator_fn = (lambda : x) return generator_fn<|docstring|>Create a callable, possibly including an Enqueuer.<|endoftext|>
dc79a81c9486d18d657ead276d64527963c0b78feadede6e09cb0a113ab67081
def enumerate_epochs(self): 'Yields `(epoch, tf.data.Iterator)`.' data_iterator = iter(self._dataset) for epoch in range(self._initial_epoch, self._epochs): if self._insufficient_data: break if self._adapter.should_recreate_iterator(): if ds_context.has_strategy(): data_iterator._initializer else: data_iterator = iter(self._dataset) (yield (epoch, data_iterator)) self._adapter.on_epoch_end()
Yields `(epoch, tf.data.Iterator)`.
tensorflow/python/keras/engine/data_adapter.py
enumerate_epochs
bbbboom/tensorflow
50
python
def enumerate_epochs(self): data_iterator = iter(self._dataset) for epoch in range(self._initial_epoch, self._epochs): if self._insufficient_data: break if self._adapter.should_recreate_iterator(): if ds_context.has_strategy(): data_iterator._initializer else: data_iterator = iter(self._dataset) (yield (epoch, data_iterator)) self._adapter.on_epoch_end()
def enumerate_epochs(self): data_iterator = iter(self._dataset) for epoch in range(self._initial_epoch, self._epochs): if self._insufficient_data: break if self._adapter.should_recreate_iterator(): if ds_context.has_strategy(): data_iterator._initializer else: data_iterator = iter(self._dataset) (yield (epoch, data_iterator)) self._adapter.on_epoch_end()<|docstring|>Yields `(epoch, tf.data.Iterator)`.<|endoftext|>
9c81f62c9710868fa4ac4745501cf94b55ad324fa3067bf83709364be478858a
@contextlib.contextmanager def catch_stop_iteration(self): 'Catches errors when an iterator runs out of data.' try: (yield) context.async_wait() except (StopIteration, errors.OutOfRangeError): if ((self._adapter.get_size() is None) and (self._inferred_steps is None) and (self._current_step > 0)): self._inferred_steps = self._current_step else: self._insufficient_data = True total_epochs = (self._epochs - self._initial_epoch) logging.warning('Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least `steps_per_epoch * epochs` batches (in this case, {} batches). You may need to use the repeat() function when building your dataset.'.format((total_epochs * self._inferred_steps)))
Catches errors when an iterator runs out of data.
tensorflow/python/keras/engine/data_adapter.py
catch_stop_iteration
bbbboom/tensorflow
50
python
@contextlib.contextmanager def catch_stop_iteration(self): try: (yield) context.async_wait() except (StopIteration, errors.OutOfRangeError): if ((self._adapter.get_size() is None) and (self._inferred_steps is None) and (self._current_step > 0)): self._inferred_steps = self._current_step else: self._insufficient_data = True total_epochs = (self._epochs - self._initial_epoch) logging.warning('Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least `steps_per_epoch * epochs` batches (in this case, {} batches). You may need to use the repeat() function when building your dataset.'.format((total_epochs * self._inferred_steps)))
@contextlib.contextmanager def catch_stop_iteration(self): try: (yield) context.async_wait() except (StopIteration, errors.OutOfRangeError): if ((self._adapter.get_size() is None) and (self._inferred_steps is None) and (self._current_step > 0)): self._inferred_steps = self._current_step else: self._insufficient_data = True total_epochs = (self._epochs - self._initial_epoch) logging.warning('Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least `steps_per_epoch * epochs` batches (in this case, {} batches). You may need to use the repeat() function when building your dataset.'.format((total_epochs * self._inferred_steps)))<|docstring|>Catches errors when an iterator runs out of data.<|endoftext|>
f65fdaf8008be2cd9fdf7d541f22bcb445add07160575fefc7acc1ec274666e6
def steps(self): 'Yields steps for the current epoch.' self._current_step = 0 while ((self._inferred_steps is None) or (self._current_step < self._inferred_steps)): if self._insufficient_data: break (yield self._current_step) self._current_step += 1
Yields steps for the current epoch.
tensorflow/python/keras/engine/data_adapter.py
steps
bbbboom/tensorflow
50
python
def steps(self): self._current_step = 0 while ((self._inferred_steps is None) or (self._current_step < self._inferred_steps)): if self._insufficient_data: break (yield self._current_step) self._current_step += 1
def steps(self): self._current_step = 0 while ((self._inferred_steps is None) or (self._current_step < self._inferred_steps)): if self._insufficient_data: break (yield self._current_step) self._current_step += 1<|docstring|>Yields steps for the current epoch.<|endoftext|>
dd5221edfc17a38ed3491e9de1dcde08fb297947def39ad329f1ddceb613abb9
@property def inferred_steps(self): 'The inferred steps per epoch of the created `Dataset`.\n\n This will be `None` in the case where:\n\n (1) A `Dataset` of unknown cardinality was passed to the `DataHandler`, and\n (2) `steps_per_epoch` was not provided, and\n (3) The first epoch of iteration has not yet completed.\n\n Returns:\n The inferred steps per epoch of the created `Dataset`.\n ' return self._inferred_steps
The inferred steps per epoch of the created `Dataset`. This will be `None` in the case where: (1) A `Dataset` of unknown cardinality was passed to the `DataHandler`, and (2) `steps_per_epoch` was not provided, and (3) The first epoch of iteration has not yet completed. Returns: The inferred steps per epoch of the created `Dataset`.
tensorflow/python/keras/engine/data_adapter.py
inferred_steps
bbbboom/tensorflow
50
python
@property def inferred_steps(self): 'The inferred steps per epoch of the created `Dataset`.\n\n This will be `None` in the case where:\n\n (1) A `Dataset` of unknown cardinality was passed to the `DataHandler`, and\n (2) `steps_per_epoch` was not provided, and\n (3) The first epoch of iteration has not yet completed.\n\n Returns:\n The inferred steps per epoch of the created `Dataset`.\n ' return self._inferred_steps
@property def inferred_steps(self): 'The inferred steps per epoch of the created `Dataset`.\n\n This will be `None` in the case where:\n\n (1) A `Dataset` of unknown cardinality was passed to the `DataHandler`, and\n (2) `steps_per_epoch` was not provided, and\n (3) The first epoch of iteration has not yet completed.\n\n Returns:\n The inferred steps per epoch of the created `Dataset`.\n ' return self._inferred_steps<|docstring|>The inferred steps per epoch of the created `Dataset`. This will be `None` in the case where: (1) A `Dataset` of unknown cardinality was passed to the `DataHandler`, and (2) `steps_per_epoch` was not provided, and (3) The first epoch of iteration has not yet completed. Returns: The inferred steps per epoch of the created `Dataset`.<|endoftext|>
f734b240e1993050c85d433110775dde5f873895008e573efc8417f09117d112
def _infer_steps(self, steps, dataset): 'Infers steps_per_epoch needed to loop through a dataset.' if (steps is not None): return steps adapter_steps = self._adapter.get_size() if (adapter_steps is not None): return adapter_steps if (ds_context.get_strategy().extended._in_multi_worker_mode() and (dataset.options().experimental_distribute.auto_shard_policy != distribute_options.AutoShardPolicy.OFF)): raise ValueError('When dataset is sharded across workers, please specify a reasonable `steps_per_epoch` such that all workers will train the same number of steps and each step can get data from dataset without EOF. This is required for allreduce to succeed. We will handle the last partial batch in the future.') size = cardinality.cardinality(dataset) if ((size == cardinality.INFINITE) and (steps is None)): raise ValueError('When passing an infinitely repeating dataset, you must specify how many steps to draw.') if (size >= 0): return size.numpy().item() return None
Infers steps_per_epoch needed to loop through a dataset.
tensorflow/python/keras/engine/data_adapter.py
_infer_steps
bbbboom/tensorflow
50
python
def _infer_steps(self, steps, dataset): if (steps is not None): return steps adapter_steps = self._adapter.get_size() if (adapter_steps is not None): return adapter_steps if (ds_context.get_strategy().extended._in_multi_worker_mode() and (dataset.options().experimental_distribute.auto_shard_policy != distribute_options.AutoShardPolicy.OFF)): raise ValueError('When dataset is sharded across workers, please specify a reasonable `steps_per_epoch` such that all workers will train the same number of steps and each step can get data from dataset without EOF. This is required for allreduce to succeed. We will handle the last partial batch in the future.') size = cardinality.cardinality(dataset) if ((size == cardinality.INFINITE) and (steps is None)): raise ValueError('When passing an infinitely repeating dataset, you must specify how many steps to draw.') if (size >= 0): return size.numpy().item() return None
def _infer_steps(self, steps, dataset): if (steps is not None): return steps adapter_steps = self._adapter.get_size() if (adapter_steps is not None): return adapter_steps if (ds_context.get_strategy().extended._in_multi_worker_mode() and (dataset.options().experimental_distribute.auto_shard_policy != distribute_options.AutoShardPolicy.OFF)): raise ValueError('When dataset is sharded across workers, please specify a reasonable `steps_per_epoch` such that all workers will train the same number of steps and each step can get data from dataset without EOF. This is required for allreduce to succeed. We will handle the last partial batch in the future.') size = cardinality.cardinality(dataset) if ((size == cardinality.INFINITE) and (steps is None)): raise ValueError('When passing an infinitely repeating dataset, you must specify how many steps to draw.') if (size >= 0): return size.numpy().item() return None<|docstring|>Infers steps_per_epoch needed to loop through a dataset.<|endoftext|>
b63ae4239b54337579347a553e899c05a5c35893b7a0e43b26dd0f031757bca7
def _class_weights_map_fn(*data): 'Convert `class_weight` to `sample_weight`.' (x, y, sw) = unpack_x_y_sample_weight(data) if nest.is_sequence(y): raise ValueError('`class_weight` is only supported for Models with a single output.') if (y.shape.rank > 2): raise ValueError('`class_weight` not supported for 3+ dimensional targets.') y_classes = smart_cond.smart_cond(((y.shape.rank == 2) and (backend.shape(y)[1] > 1)), (lambda : backend.argmax(y, axis=1)), (lambda : math_ops.cast(backend.reshape(y, ((- 1),)), dtypes.int64))) cw = array_ops.gather_v2(class_weight_tensor, y_classes) if (sw is not None): cw = math_ops.cast(cw, sw.dtype) (sw, cw) = expand_1d((sw, cw)) sw = (sw * cw) else: sw = cw return (x, y, sw)
Convert `class_weight` to `sample_weight`.
tensorflow/python/keras/engine/data_adapter.py
_class_weights_map_fn
bbbboom/tensorflow
50
python
def _class_weights_map_fn(*data): (x, y, sw) = unpack_x_y_sample_weight(data) if nest.is_sequence(y): raise ValueError('`class_weight` is only supported for Models with a single output.') if (y.shape.rank > 2): raise ValueError('`class_weight` not supported for 3+ dimensional targets.') y_classes = smart_cond.smart_cond(((y.shape.rank == 2) and (backend.shape(y)[1] > 1)), (lambda : backend.argmax(y, axis=1)), (lambda : math_ops.cast(backend.reshape(y, ((- 1),)), dtypes.int64))) cw = array_ops.gather_v2(class_weight_tensor, y_classes) if (sw is not None): cw = math_ops.cast(cw, sw.dtype) (sw, cw) = expand_1d((sw, cw)) sw = (sw * cw) else: sw = cw return (x, y, sw)
def _class_weights_map_fn(*data): (x, y, sw) = unpack_x_y_sample_weight(data) if nest.is_sequence(y): raise ValueError('`class_weight` is only supported for Models with a single output.') if (y.shape.rank > 2): raise ValueError('`class_weight` not supported for 3+ dimensional targets.') y_classes = smart_cond.smart_cond(((y.shape.rank == 2) and (backend.shape(y)[1] > 1)), (lambda : backend.argmax(y, axis=1)), (lambda : math_ops.cast(backend.reshape(y, ((- 1),)), dtypes.int64))) cw = array_ops.gather_v2(class_weight_tensor, y_classes) if (sw is not None): cw = math_ops.cast(cw, sw.dtype) (sw, cw) = expand_1d((sw, cw)) sw = (sw * cw) else: sw = cw return (x, y, sw)<|docstring|>Convert `class_weight` to `sample_weight`.<|endoftext|>
36845b4c1b9a1a87f99f772348b2c3730ace2c2a6b93e89cbcbd5b3551d56835
def slice_batch_indices(indices): 'Convert a Tensor of indices into a dataset of batched indices.\n\n This step can be accomplished in several ways. The most natural is to\n slice the Tensor in a Dataset map. (With a condition on the upper index to\n handle the partial batch.) However it turns out that coercing the Tensor\n into a shape which is divisible by the batch size (and handling the last\n partial batch separately) allows for a much more favorable memory access\n pattern and improved performance.\n\n Args:\n indices: Tensor which determines the data order for an entire epoch.\n\n Returns:\n A Dataset of batched indices.\n ' num_in_full_batch = (num_full_batches * batch_size) first_k_indices = array_ops.slice(indices, [0], [num_in_full_batch]) first_k_indices = array_ops.reshape(first_k_indices, [num_full_batches, batch_size]) flat_dataset = dataset_ops.DatasetV2.from_tensor_slices(first_k_indices) if self._partial_batch_size: index_remainder = dataset_ops.DatasetV2.from_tensors(array_ops.slice(indices, [num_in_full_batch], [self._partial_batch_size])) flat_dataset = flat_dataset.concatenate(index_remainder) if (shuffle == 'batch'): flat_dataset = flat_dataset.shuffle(1024).repeat(epochs) return flat_dataset
Convert a Tensor of indices into a dataset of batched indices. This step can be accomplished in several ways. The most natural is to slice the Tensor in a Dataset map. (With a condition on the upper index to handle the partial batch.) However it turns out that coercing the Tensor into a shape which is divisible by the batch size (and handling the last partial batch separately) allows for a much more favorable memory access pattern and improved performance. Args: indices: Tensor which determines the data order for an entire epoch. Returns: A Dataset of batched indices.
tensorflow/python/keras/engine/data_adapter.py
slice_batch_indices
bbbboom/tensorflow
50
python
def slice_batch_indices(indices): 'Convert a Tensor of indices into a dataset of batched indices.\n\n This step can be accomplished in several ways. The most natural is to\n slice the Tensor in a Dataset map. (With a condition on the upper index to\n handle the partial batch.) However it turns out that coercing the Tensor\n into a shape which is divisible by the batch size (and handling the last\n partial batch separately) allows for a much more favorable memory access\n pattern and improved performance.\n\n Args:\n indices: Tensor which determines the data order for an entire epoch.\n\n Returns:\n A Dataset of batched indices.\n ' num_in_full_batch = (num_full_batches * batch_size) first_k_indices = array_ops.slice(indices, [0], [num_in_full_batch]) first_k_indices = array_ops.reshape(first_k_indices, [num_full_batches, batch_size]) flat_dataset = dataset_ops.DatasetV2.from_tensor_slices(first_k_indices) if self._partial_batch_size: index_remainder = dataset_ops.DatasetV2.from_tensors(array_ops.slice(indices, [num_in_full_batch], [self._partial_batch_size])) flat_dataset = flat_dataset.concatenate(index_remainder) if (shuffle == 'batch'): flat_dataset = flat_dataset.shuffle(1024).repeat(epochs) return flat_dataset
def slice_batch_indices(indices): 'Convert a Tensor of indices into a dataset of batched indices.\n\n This step can be accomplished in several ways. The most natural is to\n slice the Tensor in a Dataset map. (With a condition on the upper index to\n handle the partial batch.) However it turns out that coercing the Tensor\n into a shape which is divisible by the batch size (and handling the last\n partial batch separately) allows for a much more favorable memory access\n pattern and improved performance.\n\n Args:\n indices: Tensor which determines the data order for an entire epoch.\n\n Returns:\n A Dataset of batched indices.\n ' num_in_full_batch = (num_full_batches * batch_size) first_k_indices = array_ops.slice(indices, [0], [num_in_full_batch]) first_k_indices = array_ops.reshape(first_k_indices, [num_full_batches, batch_size]) flat_dataset = dataset_ops.DatasetV2.from_tensor_slices(first_k_indices) if self._partial_batch_size: index_remainder = dataset_ops.DatasetV2.from_tensors(array_ops.slice(indices, [num_in_full_batch], [self._partial_batch_size])) flat_dataset = flat_dataset.concatenate(index_remainder) if (shuffle == 'batch'): flat_dataset = flat_dataset.shuffle(1024).repeat(epochs) return flat_dataset<|docstring|>Convert a Tensor of indices into a dataset of batched indices. This step can be accomplished in several ways. The most natural is to slice the Tensor in a Dataset map. (With a condition on the upper index to handle the partial batch.) However it turns out that coercing the Tensor into a shape which is divisible by the batch size (and handling the last partial batch separately) allows for a much more favorable memory access pattern and improved performance. Args: indices: Tensor which determines the data order for an entire epoch. Returns: A Dataset of batched indices.<|endoftext|>
b892d5f72256cd8a2ecf777bc1117701f751cef2deb0621c1acfd91633d8eb6d
def _is_array_like(v): 'Return True if v is a Tensor, array, or is array-like.' return (hasattr(v, '__getitem__') and hasattr(v, 'shape') and hasattr(v, 'dtype') and hasattr(v, '__len__'))
Return True if v is a Tensor, array, or is array-like.
tensorflow/python/keras/engine/data_adapter.py
_is_array_like
bbbboom/tensorflow
50
python
def _is_array_like(v): return (hasattr(v, '__getitem__') and hasattr(v, 'shape') and hasattr(v, 'dtype') and hasattr(v, '__len__'))
def _is_array_like(v): return (hasattr(v, '__getitem__') and hasattr(v, 'shape') and hasattr(v, 'dtype') and hasattr(v, '__len__'))<|docstring|>Return True if v is a Tensor, array, or is array-like.<|endoftext|>
44b44ce1a5e55a23a56d5df3f6eee6da06fe018309522e84dd624570ede2c1f9
def grab_batch(indices): 'Grab a batch of data from the inputs.' def py_method(ind): def slice_array(data): return training_utils.slice_arrays(data, ind.numpy(), contiguous=contiguous) return [slice_array(inp) for inp in flat_inputs] flat_out = script_ops.eager_py_func(py_method, [indices], flat_dtypes) for (v, original_inp) in zip(flat_out, flat_inputs): v.set_shape(dynamic_shape_like(original_inp)) return nest.pack_sequence_as(inputs, flat_out)
Grab a batch of data from the inputs.
tensorflow/python/keras/engine/data_adapter.py
grab_batch
bbbboom/tensorflow
50
python
def grab_batch(indices): def py_method(ind): def slice_array(data): return training_utils.slice_arrays(data, ind.numpy(), contiguous=contiguous) return [slice_array(inp) for inp in flat_inputs] flat_out = script_ops.eager_py_func(py_method, [indices], flat_dtypes) for (v, original_inp) in zip(flat_out, flat_inputs): v.set_shape(dynamic_shape_like(original_inp)) return nest.pack_sequence_as(inputs, flat_out)
def grab_batch(indices): def py_method(ind): def slice_array(data): return training_utils.slice_arrays(data, ind.numpy(), contiguous=contiguous) return [slice_array(inp) for inp in flat_inputs] flat_out = script_ops.eager_py_func(py_method, [indices], flat_dtypes) for (v, original_inp) in zip(flat_out, flat_inputs): v.set_shape(dynamic_shape_like(original_inp)) return nest.pack_sequence_as(inputs, flat_out)<|docstring|>Grab a batch of data from the inputs.<|endoftext|>
fd821dadec8f0edf4b82e3a2f05532b8d6f11bb62d0d1986028d0a1713e52c1a
def test_find_https_url(): '\n unit test multiple strings for urls in bulk - rather than separate test functions for each\n one way to rapidly iterate on your code, nicely encapsulates similar cases\n\n requires editing REGEX in excel_read_cell_info.find_url to make this test pass\n ' result = {} input01 = 'Coed Boarding/Day School Grades 6-12; Enrollment 350 http://www.prioryca.org' input02 = 'https://windwardschool.org' assert (find_url(input01, result) == 'http://www.prioryca.org') assert (find_url(input02, result) == 'https://windwardschool.org')
unit test multiple strings for urls in bulk - rather than separate test functions for each one way to rapidly iterate on your code, nicely encapsulates similar cases requires editing REGEX in excel_read_cell_info.find_url to make this test pass
tests/test_03_cais_find_https_url.py
test_find_https_url
surfaceowl/pythontalk_tdd_for_data
0
python
def test_find_https_url(): '\n unit test multiple strings for urls in bulk - rather than separate test functions for each\n one way to rapidly iterate on your code, nicely encapsulates similar cases\n\n requires editing REGEX in excel_read_cell_info.find_url to make this test pass\n ' result = {} input01 = 'Coed Boarding/Day School Grades 6-12; Enrollment 350 http://www.prioryca.org' input02 = 'https://windwardschool.org' assert (find_url(input01, result) == 'http://www.prioryca.org') assert (find_url(input02, result) == 'https://windwardschool.org')
def test_find_https_url(): '\n unit test multiple strings for urls in bulk - rather than separate test functions for each\n one way to rapidly iterate on your code, nicely encapsulates similar cases\n\n requires editing REGEX in excel_read_cell_info.find_url to make this test pass\n ' result = {} input01 = 'Coed Boarding/Day School Grades 6-12; Enrollment 350 http://www.prioryca.org' input02 = 'https://windwardschool.org' assert (find_url(input01, result) == 'http://www.prioryca.org') assert (find_url(input02, result) == 'https://windwardschool.org')<|docstring|>unit test multiple strings for urls in bulk - rather than separate test functions for each one way to rapidly iterate on your code, nicely encapsulates similar cases requires editing REGEX in excel_read_cell_info.find_url to make this test pass<|endoftext|>
484dfb4e9a07b0c952dab29ba4c4039dcca7b3ed235acfa55fb57e5899b299b4
def get_notes(file): '\n get a string of all the notes/rest and their durations for a given file\n ' notes = [] midi = converter.parse(file) notes_to_parse = None parts = instrument.partitionByInstrument(midi) if parts: notes_to_parse = parts.parts[0].recurse() else: notes_to_parse = midi.flat.notes for element in notes_to_parse: if isinstance(element, note.Note): string = ((((' ' + str(element.pitch.name)) + str(element.pitch.octave)) + ' ') + str(element.duration.quarterLength)) notes.append(string) if (getattr(element, 'isRest', None) and element.isRest): string = (((' ' + 'Rest') + ' ') + str(element.duration.quarterLength)) notes.append(string) elif isinstance(element, chord.Chord): notes.append('.'.join((str(n) for n in element.normalOrder))) return ''.join(chain.from_iterable(notes))
get a string of all the notes/rest and their durations for a given file
src/midi.py
get_notes
eraoul/hamr2018
0
python
def get_notes(file): '\n \n ' notes = [] midi = converter.parse(file) notes_to_parse = None parts = instrument.partitionByInstrument(midi) if parts: notes_to_parse = parts.parts[0].recurse() else: notes_to_parse = midi.flat.notes for element in notes_to_parse: if isinstance(element, note.Note): string = ((((' ' + str(element.pitch.name)) + str(element.pitch.octave)) + ' ') + str(element.duration.quarterLength)) notes.append(string) if (getattr(element, 'isRest', None) and element.isRest): string = (((' ' + 'Rest') + ' ') + str(element.duration.quarterLength)) notes.append(string) elif isinstance(element, chord.Chord): notes.append('.'.join((str(n) for n in element.normalOrder))) return .join(chain.from_iterable(notes))
def get_notes(file): '\n \n ' notes = [] midi = converter.parse(file) notes_to_parse = None parts = instrument.partitionByInstrument(midi) if parts: notes_to_parse = parts.parts[0].recurse() else: notes_to_parse = midi.flat.notes for element in notes_to_parse: if isinstance(element, note.Note): string = ((((' ' + str(element.pitch.name)) + str(element.pitch.octave)) + ' ') + str(element.duration.quarterLength)) notes.append(string) if (getattr(element, 'isRest', None) and element.isRest): string = (((' ' + 'Rest') + ' ') + str(element.duration.quarterLength)) notes.append(string) elif isinstance(element, chord.Chord): notes.append('.'.join((str(n) for n in element.normalOrder))) return .join(chain.from_iterable(notes))<|docstring|>get a string of all the notes/rest and their durations for a given file<|endoftext|>
83974639b7e9b8bfa53ec62af11cd6727e4f99fcf1c840f6f871592c9bb3e65b
@factory.post_generation def channels(self, create, extracted, **kwargs): ' Create associated channels' if (not create): return if extracted: for channel in extracted: self.channels.add(channel)
Create associated channels
moira_lists/factories.py
channels
mitodl/open-discussions
12
python
@factory.post_generation def channels(self, create, extracted, **kwargs): ' ' if (not create): return if extracted: for channel in extracted: self.channels.add(channel)
@factory.post_generation def channels(self, create, extracted, **kwargs): ' ' if (not create): return if extracted: for channel in extracted: self.channels.add(channel)<|docstring|>Create associated channels<|endoftext|>
507bc5628be3fcf165c641a920ec5b3dc77fb0e7d768382ba9470d97883387a3
@factory.post_generation def users(self, create, extracted, **kwargs): ' Create associated users' if (not create): return if extracted: for user in extracted: self.users.add(user)
Create associated users
moira_lists/factories.py
users
mitodl/open-discussions
12
python
@factory.post_generation def users(self, create, extracted, **kwargs): ' ' if (not create): return if extracted: for user in extracted: self.users.add(user)
@factory.post_generation def users(self, create, extracted, **kwargs): ' ' if (not create): return if extracted: for user in extracted: self.users.add(user)<|docstring|>Create associated users<|endoftext|>
f28d3655873ccc4679ef7a5b7bfde668f917832e05ec892a071af631bd4ddfdd
def inIPython(): ' Checks if tellurium is used in IPython.\n\n Returns true if tellurium is being using in\n an IPython environment, false otherwise.\n :return: boolean\n ' global __in_ipython return __in_ipython
Checks if tellurium is used in IPython. Returns true if tellurium is being using in an IPython environment, false otherwise. :return: boolean
tellurium/bombBeetle.py
inIPython
madfain/BombBeetle
1
python
def inIPython(): ' Checks if tellurium is used in IPython.\n\n Returns true if tellurium is being using in\n an IPython environment, false otherwise.\n :return: boolean\n ' global __in_ipython return __in_ipython
def inIPython(): ' Checks if tellurium is used in IPython.\n\n Returns true if tellurium is being using in\n an IPython environment, false otherwise.\n :return: boolean\n ' global __in_ipython return __in_ipython<|docstring|>Checks if tellurium is used in IPython. Returns true if tellurium is being using in an IPython environment, false otherwise. :return: boolean<|endoftext|>
cfae52eb7b2b929c82ff675849d93f3275d68bb7fbc3456ea6ba5126028dbfa7
def getDefaultPlottingEngine(): " Get the default plotting engine.\n Options are 'matplotlib' or 'plotly'.\n :return:\n " global __default_plotting_engine return __default_plotting_engine
Get the default plotting engine. Options are 'matplotlib' or 'plotly'. :return:
tellurium/bombBeetle.py
getDefaultPlottingEngine
madfain/BombBeetle
1
python
def getDefaultPlottingEngine(): " Get the default plotting engine.\n Options are 'matplotlib' or 'plotly'.\n :return:\n " global __default_plotting_engine return __default_plotting_engine
def getDefaultPlottingEngine(): " Get the default plotting engine.\n Options are 'matplotlib' or 'plotly'.\n :return:\n " global __default_plotting_engine return __default_plotting_engine<|docstring|>Get the default plotting engine. Options are 'matplotlib' or 'plotly'. :return:<|endoftext|>
cf273ce8bbb264e6b14e929e54cf8c309775a03b3cc14939c810cea7fad93876
def setDefaultPlottingEngine(engine): " Set the default plotting engine. Overrides current value.\n\n :param engine: A string describing which plotting engine to use. Valid values are 'matplotlib' and 'plotly'.\n " if (engine not in [PLOTTING_ENGINE_PLOTLY, PLOTTING_ENGINE_MATPLOTLIB, PLOTTING_ENGINE_NULL]): raise ValueError('Plotting engine is not supported: {}'.format(engine)) global __default_plotting_engine __default_plotting_engine = engine
Set the default plotting engine. Overrides current value. :param engine: A string describing which plotting engine to use. Valid values are 'matplotlib' and 'plotly'.
tellurium/bombBeetle.py
setDefaultPlottingEngine
madfain/BombBeetle
1
python
def setDefaultPlottingEngine(engine): " Set the default plotting engine. Overrides current value.\n\n :param engine: A string describing which plotting engine to use. Valid values are 'matplotlib' and 'plotly'.\n " if (engine not in [PLOTTING_ENGINE_PLOTLY, PLOTTING_ENGINE_MATPLOTLIB, PLOTTING_ENGINE_NULL]): raise ValueError('Plotting engine is not supported: {}'.format(engine)) global __default_plotting_engine __default_plotting_engine = engine
def setDefaultPlottingEngine(engine): " Set the default plotting engine. Overrides current value.\n\n :param engine: A string describing which plotting engine to use. Valid values are 'matplotlib' and 'plotly'.\n " if (engine not in [PLOTTING_ENGINE_PLOTLY, PLOTTING_ENGINE_MATPLOTLIB, PLOTTING_ENGINE_NULL]): raise ValueError('Plotting engine is not supported: {}'.format(engine)) global __default_plotting_engine __default_plotting_engine = engine<|docstring|>Set the default plotting engine. Overrides current value. :param engine: A string describing which plotting engine to use. Valid values are 'matplotlib' and 'plotly'.<|endoftext|>
d476f70256c21598e383ffb1a22569b995c81c77817a292f13a29bac8377d7df
def setSavePlotsToPDF(value): ' Sets whether plots should be saved to PDF. ' global __save_plots_to_pdf __save_plots_to_pdf = value
Sets whether plots should be saved to PDF.
tellurium/bombBeetle.py
setSavePlotsToPDF
madfain/BombBeetle
1
python
def setSavePlotsToPDF(value): ' ' global __save_plots_to_pdf __save_plots_to_pdf = value
def setSavePlotsToPDF(value): ' ' global __save_plots_to_pdf __save_plots_to_pdf = value<|docstring|>Sets whether plots should be saved to PDF.<|endoftext|>
dd489123dc9a9c6d2efac1108209275d20e9fe45a99b9c89989e9541415cb75c
def getVersionInfo(): ' Returns version information for tellurium included packages.\n\n :returns: list of tuples (package, version)\n ' versions = [('tellurium', getTelluriumVersion()), ('roadrunner', roadrunner.__version__), ('antimony', antimony.__version__)] if libsbml: versions.append(('libsbml', libsbml.getLibSBMLDottedVersion())) if libsedml: versions.append(('libsedml', libsedml.getLibSEDMLDottedVersion())) if phrasedml: versions.append(('phrasedml', phrasedml.__version__)) if sbol: versions.append(('pySBOL', sbol.__version__)) return versions
Returns version information for tellurium included packages. :returns: list of tuples (package, version)
tellurium/bombBeetle.py
getVersionInfo
madfain/BombBeetle
1
python
def getVersionInfo(): ' Returns version information for tellurium included packages.\n\n :returns: list of tuples (package, version)\n ' versions = [('tellurium', getTelluriumVersion()), ('roadrunner', roadrunner.__version__), ('antimony', antimony.__version__)] if libsbml: versions.append(('libsbml', libsbml.getLibSBMLDottedVersion())) if libsedml: versions.append(('libsedml', libsedml.getLibSEDMLDottedVersion())) if phrasedml: versions.append(('phrasedml', phrasedml.__version__)) if sbol: versions.append(('pySBOL', sbol.__version__)) return versions
def getVersionInfo(): ' Returns version information for tellurium included packages.\n\n :returns: list of tuples (package, version)\n ' versions = [('tellurium', getTelluriumVersion()), ('roadrunner', roadrunner.__version__), ('antimony', antimony.__version__)] if libsbml: versions.append(('libsbml', libsbml.getLibSBMLDottedVersion())) if libsedml: versions.append(('libsedml', libsedml.getLibSEDMLDottedVersion())) if phrasedml: versions.append(('phrasedml', phrasedml.__version__)) if sbol: versions.append(('pySBOL', sbol.__version__)) return versions<|docstring|>Returns version information for tellurium included packages. :returns: list of tuples (package, version)<|endoftext|>
7c734294aa76bb0470b29f0d63df322a8901bbd01d1fc494aa48b0ba981ef1e2
def printVersionInfo(): ' Prints version information for tellurium included packages.\n\n see also: :func:`getVersionInfo`\n ' versions = getVersionInfo() for v in versions: print(v[0], ':', v[1])
Prints version information for tellurium included packages. see also: :func:`getVersionInfo`
tellurium/bombBeetle.py
printVersionInfo
madfain/BombBeetle
1
python
def printVersionInfo(): ' Prints version information for tellurium included packages.\n\n see also: :func:`getVersionInfo`\n ' versions = getVersionInfo() for v in versions: print(v[0], ':', v[1])
def printVersionInfo(): ' Prints version information for tellurium included packages.\n\n see also: :func:`getVersionInfo`\n ' versions = getVersionInfo() for v in versions: print(v[0], ':', v[1])<|docstring|>Prints version information for tellurium included packages. see also: :func:`getVersionInfo`<|endoftext|>
60ffe1f3e99fec3f163c4e846c32a4dcec48e8889e84176c4effe5f2be1dfe4a
def getTelluriumVersion(): ' Version number of tellurium.\n\n :returns: version\n :rtype: str\n ' try: with open(os.path.join(os.path.dirname(__file__), '..', 'VERSION.txt'), 'r') as f: version = f.read().rstrip() except: with open(os.path.join(os.path.dirname(__file__), 'VERSION.txt'), 'r') as f: version = f.read().rstrip() return version
Version number of tellurium. :returns: version :rtype: str
tellurium/bombBeetle.py
getTelluriumVersion
madfain/BombBeetle
1
python
def getTelluriumVersion(): ' Version number of tellurium.\n\n :returns: version\n :rtype: str\n ' try: with open(os.path.join(os.path.dirname(__file__), '..', 'VERSION.txt'), 'r') as f: version = f.read().rstrip() except: with open(os.path.join(os.path.dirname(__file__), 'VERSION.txt'), 'r') as f: version = f.read().rstrip() return version
def getTelluriumVersion(): ' Version number of tellurium.\n\n :returns: version\n :rtype: str\n ' try: with open(os.path.join(os.path.dirname(__file__), '..', 'VERSION.txt'), 'r') as f: version = f.read().rstrip() except: with open(os.path.join(os.path.dirname(__file__), 'VERSION.txt'), 'r') as f: version = f.read().rstrip() return version<|docstring|>Version number of tellurium. :returns: version :rtype: str<|endoftext|>
a7a7191a5864caa871dd9af421cd2e1be2d5361a9e11bdacf2caae0c70bc189d
def noticesOff(): 'Switch off the generation of notices to the user.\n Call this to stop roadrunner from printing warning message to the console.\n\n See also :func:`noticesOn`\n ' roadrunner.Logger.setLevel(roadrunner.Logger.LOG_WARNING)
Switch off the generation of notices to the user. Call this to stop roadrunner from printing warning message to the console. See also :func:`noticesOn`
tellurium/bombBeetle.py
noticesOff
madfain/BombBeetle
1
python
def noticesOff(): 'Switch off the generation of notices to the user.\n Call this to stop roadrunner from printing warning message to the console.\n\n See also :func:`noticesOn`\n ' roadrunner.Logger.setLevel(roadrunner.Logger.LOG_WARNING)
def noticesOff(): 'Switch off the generation of notices to the user.\n Call this to stop roadrunner from printing warning message to the console.\n\n See also :func:`noticesOn`\n ' roadrunner.Logger.setLevel(roadrunner.Logger.LOG_WARNING)<|docstring|>Switch off the generation of notices to the user. Call this to stop roadrunner from printing warning message to the console. See also :func:`noticesOn`<|endoftext|>
c294ffdafc7a8e28e9eed95c222db2e046fbd961e10686dbe8136f17478aa6eb
def noticesOn(): ' Switch on notice generation to the user.\n\n See also :func:`noticesOff`\n ' roadrunner.Logger.setLevel(roadrunner.Logger.LOG_NOTICE)
Switch on notice generation to the user. See also :func:`noticesOff`
tellurium/bombBeetle.py
noticesOn
madfain/BombBeetle
1
python
def noticesOn(): ' Switch on notice generation to the user.\n\n See also :func:`noticesOff`\n ' roadrunner.Logger.setLevel(roadrunner.Logger.LOG_NOTICE)
def noticesOn(): ' Switch on notice generation to the user.\n\n See also :func:`noticesOff`\n ' roadrunner.Logger.setLevel(roadrunner.Logger.LOG_NOTICE)<|docstring|>Switch on notice generation to the user. See also :func:`noticesOff`<|endoftext|>
9c20d600b5a24de4b0a399af15a5d1d5a40c65fe34f6c4057a28db9783869702
def model(model_name): 'Retrieve a model which has already been loaded.\n\n :param model_name: the name of the model\n :type model_name: str\n ' if (not (model_name in __te_models)): raise KeyError('No such model has been loaded: {}'.format(model_name)) return __te_models[model_name]
Retrieve a model which has already been loaded. :param model_name: the name of the model :type model_name: str
tellurium/bombBeetle.py
model
madfain/BombBeetle
1
python
def model(model_name): 'Retrieve a model which has already been loaded.\n\n :param model_name: the name of the model\n :type model_name: str\n ' if (not (model_name in __te_models)): raise KeyError('No such model has been loaded: {}'.format(model_name)) return __te_models[model_name]
def model(model_name): 'Retrieve a model which has already been loaded.\n\n :param model_name: the name of the model\n :type model_name: str\n ' if (not (model_name in __te_models)): raise KeyError('No such model has been loaded: {}'.format(model_name)) return __te_models[model_name]<|docstring|>Retrieve a model which has already been loaded. :param model_name: the name of the model :type model_name: str<|endoftext|>
12d3ab1aa3c4ea82c7cb66189bd4b6aadbd59373530ceefe4c03c92de49517a9
def _checkAntimonyReturnCode(code): ' Helper for checking the antimony response code.\n Raises Exception if error in antimony.\n\n :param code: antimony response\n :type code: int\n ' if (code < 0): raise Exception('Antimony: {}'.format(antimony.getLastError()))
Helper for checking the antimony response code. Raises Exception if error in antimony. :param code: antimony response :type code: int
tellurium/bombBeetle.py
_checkAntimonyReturnCode
madfain/BombBeetle
1
python
def _checkAntimonyReturnCode(code): ' Helper for checking the antimony response code.\n Raises Exception if error in antimony.\n\n :param code: antimony response\n :type code: int\n ' if (code < 0): raise Exception('Antimony: {}'.format(antimony.getLastError()))
def _checkAntimonyReturnCode(code): ' Helper for checking the antimony response code.\n Raises Exception if error in antimony.\n\n :param code: antimony response\n :type code: int\n ' if (code < 0): raise Exception('Antimony: {}'.format(antimony.getLastError()))<|docstring|>Helper for checking the antimony response code. Raises Exception if error in antimony. :param code: antimony response :type code: int<|endoftext|>
a0ab5f6fe86da990705629ce2c6e5704199a927ea3c5643d3853eca959254afb
def colorCycle(color, polyNumber): ' Adjusts contents of self.color as needed for plotting methods.' if (len(color) < polyNumber): for i in range((polyNumber - len(color))): color.append(color[i]) else: for i in range((len(color) - polyNumber)): del color[(- (i + 1))] return color
Adjusts contents of self.color as needed for plotting methods.
tellurium/bombBeetle.py
colorCycle
madfain/BombBeetle
1
python
def colorCycle(color, polyNumber): ' ' if (len(color) < polyNumber): for i in range((polyNumber - len(color))): color.append(color[i]) else: for i in range((len(color) - polyNumber)): del color[(- (i + 1))] return color
def colorCycle(color, polyNumber): ' ' if (len(color) < polyNumber): for i in range((polyNumber - len(color))): color.append(color[i]) else: for i in range((len(color) - polyNumber)): del color[(- (i + 1))] return color<|docstring|>Adjusts contents of self.color as needed for plotting methods.<|endoftext|>
bdfbcaea937e81cfcdab5908f95409687c8c19d447db8ac67d2f80a263b4c207
def loada(ant): "Load model from Antimony string.\n\n See also: :func:`loadAntimonyModel`\n ::\n\n r = te.loada('S1 -> S2; k1*S1; k1=0.1; S1=10.0; S2 = 0.0')\n\n :param ant: Antimony model\n :type ant: str | file\n :returns: RoadRunner instance with model loaded\n :rtype: roadrunner.ExtendedRoadRunner\n " return loadAntimonyModel(ant)
Load model from Antimony string. See also: :func:`loadAntimonyModel` :: r = te.loada('S1 -> S2; k1*S1; k1=0.1; S1=10.0; S2 = 0.0') :param ant: Antimony model :type ant: str | file :returns: RoadRunner instance with model loaded :rtype: roadrunner.ExtendedRoadRunner
tellurium/bombBeetle.py
loada
madfain/BombBeetle
1
python
def loada(ant): "Load model from Antimony string.\n\n See also: :func:`loadAntimonyModel`\n ::\n\n r = te.loada('S1 -> S2; k1*S1; k1=0.1; S1=10.0; S2 = 0.0')\n\n :param ant: Antimony model\n :type ant: str | file\n :returns: RoadRunner instance with model loaded\n :rtype: roadrunner.ExtendedRoadRunner\n " return loadAntimonyModel(ant)
def loada(ant): "Load model from Antimony string.\n\n See also: :func:`loadAntimonyModel`\n ::\n\n r = te.loada('S1 -> S2; k1*S1; k1=0.1; S1=10.0; S2 = 0.0')\n\n :param ant: Antimony model\n :type ant: str | file\n :returns: RoadRunner instance with model loaded\n :rtype: roadrunner.ExtendedRoadRunner\n " return loadAntimonyModel(ant)<|docstring|>Load model from Antimony string. See also: :func:`loadAntimonyModel` :: r = te.loada('S1 -> S2; k1*S1; k1=0.1; S1=10.0; S2 = 0.0') :param ant: Antimony model :type ant: str | file :returns: RoadRunner instance with model loaded :rtype: roadrunner.ExtendedRoadRunner<|endoftext|>
5353bb22f8d352802e1ea727bba687379536f0634a2f038e348b7f680b717107
def loadAntimonyModel(ant): "Load Antimony model with tellurium.\n\n See also: :func:`loada`\n ::\n\n r = te.loadAntimonyModel('S1 -> S2; k1*S1; k1=0.1; S1=10.0; S2 = 0.0')\n\n :param ant: Antimony model\n :type ant: str | file\n :returns: RoadRunner instance with model loaded\n :rtype: roadrunner.ExtendedRoadRunner\n " sbml = antimonyToSBML(ant) return roadrunner.RoadRunner(sbml)
Load Antimony model with tellurium. See also: :func:`loada` :: r = te.loadAntimonyModel('S1 -> S2; k1*S1; k1=0.1; S1=10.0; S2 = 0.0') :param ant: Antimony model :type ant: str | file :returns: RoadRunner instance with model loaded :rtype: roadrunner.ExtendedRoadRunner
tellurium/bombBeetle.py
loadAntimonyModel
madfain/BombBeetle
1
python
def loadAntimonyModel(ant): "Load Antimony model with tellurium.\n\n See also: :func:`loada`\n ::\n\n r = te.loadAntimonyModel('S1 -> S2; k1*S1; k1=0.1; S1=10.0; S2 = 0.0')\n\n :param ant: Antimony model\n :type ant: str | file\n :returns: RoadRunner instance with model loaded\n :rtype: roadrunner.ExtendedRoadRunner\n " sbml = antimonyToSBML(ant) return roadrunner.RoadRunner(sbml)
def loadAntimonyModel(ant): "Load Antimony model with tellurium.\n\n See also: :func:`loada`\n ::\n\n r = te.loadAntimonyModel('S1 -> S2; k1*S1; k1=0.1; S1=10.0; S2 = 0.0')\n\n :param ant: Antimony model\n :type ant: str | file\n :returns: RoadRunner instance with model loaded\n :rtype: roadrunner.ExtendedRoadRunner\n " sbml = antimonyToSBML(ant) return roadrunner.RoadRunner(sbml)<|docstring|>Load Antimony model with tellurium. See also: :func:`loada` :: r = te.loadAntimonyModel('S1 -> S2; k1*S1; k1=0.1; S1=10.0; S2 = 0.0') :param ant: Antimony model :type ant: str | file :returns: RoadRunner instance with model loaded :rtype: roadrunner.ExtendedRoadRunner<|endoftext|>
ea47dc20cf1d14013198d288bb599b3d46169cd30084f0693c1a5fc2ca5e68d1
def loads(ant): 'Load SBML model with tellurium\n\n See also: :func:`loadSBMLModel`\n\n :param ant: SBML model\n :type ant: str | file\n :returns: RoadRunner instance with model loaded\n :rtype: roadrunner.ExtendedRoadRunner\n ' return loadSBMLModel(ant)
Load SBML model with tellurium See also: :func:`loadSBMLModel` :param ant: SBML model :type ant: str | file :returns: RoadRunner instance with model loaded :rtype: roadrunner.ExtendedRoadRunner
tellurium/bombBeetle.py
loads
madfain/BombBeetle
1
python
def loads(ant): 'Load SBML model with tellurium\n\n See also: :func:`loadSBMLModel`\n\n :param ant: SBML model\n :type ant: str | file\n :returns: RoadRunner instance with model loaded\n :rtype: roadrunner.ExtendedRoadRunner\n ' return loadSBMLModel(ant)
def loads(ant): 'Load SBML model with tellurium\n\n See also: :func:`loadSBMLModel`\n\n :param ant: SBML model\n :type ant: str | file\n :returns: RoadRunner instance with model loaded\n :rtype: roadrunner.ExtendedRoadRunner\n ' return loadSBMLModel(ant)<|docstring|>Load SBML model with tellurium See also: :func:`loadSBMLModel` :param ant: SBML model :type ant: str | file :returns: RoadRunner instance with model loaded :rtype: roadrunner.ExtendedRoadRunner<|endoftext|>
9b6d21e35e20f145abb3662951042ee53f5fe39e400b187895a430981ad97819
def loadSBMLModel(sbml): ' Load SBML model from a string or file.\n\n :param sbml: SBML model\n :type sbml: str | file\n :returns: RoadRunner instance with model loaded\n :rtype: roadrunner.ExtendedRoadRunner\n ' return roadrunner.RoadRunner(sbml)
Load SBML model from a string or file. :param sbml: SBML model :type sbml: str | file :returns: RoadRunner instance with model loaded :rtype: roadrunner.ExtendedRoadRunner
tellurium/bombBeetle.py
loadSBMLModel
madfain/BombBeetle
1
python
def loadSBMLModel(sbml): ' Load SBML model from a string or file.\n\n :param sbml: SBML model\n :type sbml: str | file\n :returns: RoadRunner instance with model loaded\n :rtype: roadrunner.ExtendedRoadRunner\n ' return roadrunner.RoadRunner(sbml)
def loadSBMLModel(sbml): ' Load SBML model from a string or file.\n\n :param sbml: SBML model\n :type sbml: str | file\n :returns: RoadRunner instance with model loaded\n :rtype: roadrunner.ExtendedRoadRunner\n ' return roadrunner.RoadRunner(sbml)<|docstring|>Load SBML model from a string or file. :param sbml: SBML model :type sbml: str | file :returns: RoadRunner instance with model loaded :rtype: roadrunner.ExtendedRoadRunner<|endoftext|>
8ab20fa5d3e4d6af6d08b7ef185dfea1d962df3d4f87f30b9743d2b9cb6bc731
def loadCellMLModel(cellml): ' Load CellML model with tellurium.\n\n :param cellml: CellML model\n :type cellml: str | file\n :returns: RoadRunner instance with model loaded\n :rtype: roadrunner.ExtendedRoadRunner\n ' sbml = cellmlToSBML(cellml) return roadrunner.RoadRunner(sbml)
Load CellML model with tellurium. :param cellml: CellML model :type cellml: str | file :returns: RoadRunner instance with model loaded :rtype: roadrunner.ExtendedRoadRunner
tellurium/bombBeetle.py
loadCellMLModel
madfain/BombBeetle
1
python
def loadCellMLModel(cellml): ' Load CellML model with tellurium.\n\n :param cellml: CellML model\n :type cellml: str | file\n :returns: RoadRunner instance with model loaded\n :rtype: roadrunner.ExtendedRoadRunner\n ' sbml = cellmlToSBML(cellml) return roadrunner.RoadRunner(sbml)
def loadCellMLModel(cellml): ' Load CellML model with tellurium.\n\n :param cellml: CellML model\n :type cellml: str | file\n :returns: RoadRunner instance with model loaded\n :rtype: roadrunner.ExtendedRoadRunner\n ' sbml = cellmlToSBML(cellml) return roadrunner.RoadRunner(sbml)<|docstring|>Load CellML model with tellurium. :param cellml: CellML model :type cellml: str | file :returns: RoadRunner instance with model loaded :rtype: roadrunner.ExtendedRoadRunner<|endoftext|>
5ed3f9801ede77f53ccac0f21b23e8c75469ab2c0500837a3b5772f97f6129f0
def antimonyToSBML(ant): ' Convert Antimony to SBML string.\n\n :param ant: Antimony string or file\n :type ant: str | file\n :return: SBML\n :rtype: str\n ' try: isfile = os.path.isfile(ant) except ValueError: isfile = False if isfile: code = antimony.loadAntimonyFile(ant) else: code = antimony.loadAntimonyString(ant) _checkAntimonyReturnCode(code) mid = antimony.getMainModuleName() return antimony.getSBMLString(mid)
Convert Antimony to SBML string. :param ant: Antimony string or file :type ant: str | file :return: SBML :rtype: str
tellurium/bombBeetle.py
antimonyToSBML
madfain/BombBeetle
1
python
def antimonyToSBML(ant): ' Convert Antimony to SBML string.\n\n :param ant: Antimony string or file\n :type ant: str | file\n :return: SBML\n :rtype: str\n ' try: isfile = os.path.isfile(ant) except ValueError: isfile = False if isfile: code = antimony.loadAntimonyFile(ant) else: code = antimony.loadAntimonyString(ant) _checkAntimonyReturnCode(code) mid = antimony.getMainModuleName() return antimony.getSBMLString(mid)
def antimonyToSBML(ant): ' Convert Antimony to SBML string.\n\n :param ant: Antimony string or file\n :type ant: str | file\n :return: SBML\n :rtype: str\n ' try: isfile = os.path.isfile(ant) except ValueError: isfile = False if isfile: code = antimony.loadAntimonyFile(ant) else: code = antimony.loadAntimonyString(ant) _checkAntimonyReturnCode(code) mid = antimony.getMainModuleName() return antimony.getSBMLString(mid)<|docstring|>Convert Antimony to SBML string. :param ant: Antimony string or file :type ant: str | file :return: SBML :rtype: str<|endoftext|>
861bd062573088b81d0c9ef4f92ae3ab9ac4b090023c26d1377e3692f08516ed
def antimonyToCellML(ant): ' Convert Antimony to CellML string.\n\n :param ant: Antimony string or file\n :type ant: str | file\n :return: CellML\n :rtype: str\n ' if os.path.isfile(ant): code = antimony.loadAntimonyFile(ant) else: code = antimony.loadAntimonyString(ant) _checkAntimonyReturnCode(code) mid = antimony.getMainModuleName() return antimony.getCellMLString(mid)
Convert Antimony to CellML string. :param ant: Antimony string or file :type ant: str | file :return: CellML :rtype: str
tellurium/bombBeetle.py
antimonyToCellML
madfain/BombBeetle
1
python
def antimonyToCellML(ant): ' Convert Antimony to CellML string.\n\n :param ant: Antimony string or file\n :type ant: str | file\n :return: CellML\n :rtype: str\n ' if os.path.isfile(ant): code = antimony.loadAntimonyFile(ant) else: code = antimony.loadAntimonyString(ant) _checkAntimonyReturnCode(code) mid = antimony.getMainModuleName() return antimony.getCellMLString(mid)
def antimonyToCellML(ant): ' Convert Antimony to CellML string.\n\n :param ant: Antimony string or file\n :type ant: str | file\n :return: CellML\n :rtype: str\n ' if os.path.isfile(ant): code = antimony.loadAntimonyFile(ant) else: code = antimony.loadAntimonyString(ant) _checkAntimonyReturnCode(code) mid = antimony.getMainModuleName() return antimony.getCellMLString(mid)<|docstring|>Convert Antimony to CellML string. :param ant: Antimony string or file :type ant: str | file :return: CellML :rtype: str<|endoftext|>
366b86905f12bc4a1413ad73207a4837f5c89878a1cd05b11372d4d8e8a191cd
def sbmlToAntimony(sbml): ' Convert SBML to antimony string.\n\n :param sbml: SBML string or file\n :type sbml: str | file\n :return: Antimony\n :rtype: str\n ' isfile = False try: isfile = os.path.isfile(sbml) except: pass if isfile: code = antimony.loadSBMLFile(sbml) else: code = antimony.loadSBMLString(str(sbml)) _checkAntimonyReturnCode(code) return antimony.getAntimonyString(None)
Convert SBML to antimony string. :param sbml: SBML string or file :type sbml: str | file :return: Antimony :rtype: str
tellurium/bombBeetle.py
sbmlToAntimony
madfain/BombBeetle
1
python
def sbmlToAntimony(sbml): ' Convert SBML to antimony string.\n\n :param sbml: SBML string or file\n :type sbml: str | file\n :return: Antimony\n :rtype: str\n ' isfile = False try: isfile = os.path.isfile(sbml) except: pass if isfile: code = antimony.loadSBMLFile(sbml) else: code = antimony.loadSBMLString(str(sbml)) _checkAntimonyReturnCode(code) return antimony.getAntimonyString(None)
def sbmlToAntimony(sbml): ' Convert SBML to antimony string.\n\n :param sbml: SBML string or file\n :type sbml: str | file\n :return: Antimony\n :rtype: str\n ' isfile = False try: isfile = os.path.isfile(sbml) except: pass if isfile: code = antimony.loadSBMLFile(sbml) else: code = antimony.loadSBMLString(str(sbml)) _checkAntimonyReturnCode(code) return antimony.getAntimonyString(None)<|docstring|>Convert SBML to antimony string. :param sbml: SBML string or file :type sbml: str | file :return: Antimony :rtype: str<|endoftext|>
9f8c067331fc410c0a7e9b63d5c89e23cd49bc812d571a045d2dd26942f320ea
def sbmlToCellML(sbml): ' Convert SBML to CellML string.\n\n :param sbml: SBML string or file\n :type sbml: str | file\n :return: CellML\n :rtype: str\n ' if os.path.isfile(sbml): code = antimony.loadSBMLFile(sbml) else: code = antimony.loadSBMLString(sbml) _checkAntimonyReturnCode(code) return antimony.getCellMLString(None)
Convert SBML to CellML string. :param sbml: SBML string or file :type sbml: str | file :return: CellML :rtype: str
tellurium/bombBeetle.py
sbmlToCellML
madfain/BombBeetle
1
python
def sbmlToCellML(sbml): ' Convert SBML to CellML string.\n\n :param sbml: SBML string or file\n :type sbml: str | file\n :return: CellML\n :rtype: str\n ' if os.path.isfile(sbml): code = antimony.loadSBMLFile(sbml) else: code = antimony.loadSBMLString(sbml) _checkAntimonyReturnCode(code) return antimony.getCellMLString(None)
def sbmlToCellML(sbml): ' Convert SBML to CellML string.\n\n :param sbml: SBML string or file\n :type sbml: str | file\n :return: CellML\n :rtype: str\n ' if os.path.isfile(sbml): code = antimony.loadSBMLFile(sbml) else: code = antimony.loadSBMLString(sbml) _checkAntimonyReturnCode(code) return antimony.getCellMLString(None)<|docstring|>Convert SBML to CellML string. :param sbml: SBML string or file :type sbml: str | file :return: CellML :rtype: str<|endoftext|>
6c5ba80a8fbeda60e49fd7dc8d1ba5fc3da51064b757a2cdd750ddb4e3b6b2d2
def cellmlToAntimony(cellml): ' Convert CellML to antimony string.\n\n :param cellml: CellML string or file\n :type cellml: str | file\n :return: antimony\n :rtype: str\n ' if os.path.isfile(cellml): code = antimony.loadCellMLFile(cellml) else: code = antimony.loadCellMLString(cellml) _checkAntimonyReturnCode(code) return antimony.getAntimonyString(None)
Convert CellML to antimony string. :param cellml: CellML string or file :type cellml: str | file :return: antimony :rtype: str
tellurium/bombBeetle.py
cellmlToAntimony
madfain/BombBeetle
1
python
def cellmlToAntimony(cellml): ' Convert CellML to antimony string.\n\n :param cellml: CellML string or file\n :type cellml: str | file\n :return: antimony\n :rtype: str\n ' if os.path.isfile(cellml): code = antimony.loadCellMLFile(cellml) else: code = antimony.loadCellMLString(cellml) _checkAntimonyReturnCode(code) return antimony.getAntimonyString(None)
def cellmlToAntimony(cellml): ' Convert CellML to antimony string.\n\n :param cellml: CellML string or file\n :type cellml: str | file\n :return: antimony\n :rtype: str\n ' if os.path.isfile(cellml): code = antimony.loadCellMLFile(cellml) else: code = antimony.loadCellMLString(cellml) _checkAntimonyReturnCode(code) return antimony.getAntimonyString(None)<|docstring|>Convert CellML to antimony string. :param cellml: CellML string or file :type cellml: str | file :return: antimony :rtype: str<|endoftext|>
c829dea3be013b5d8006aaa519970660a866b3697c85e8a6350ea025d7dddd07
def cellmlToSBML(cellml): ' Convert CellML to SBML string.\n\n :param cellml: CellML string or file\n :type cellml: str | file\n :return: SBML\n :rtype: str\n ' if os.path.isfile(cellml): code = antimony.loadCellMLFile(cellml) else: code = antimony.loadCellMLString(cellml) _checkAntimonyReturnCode(code) return antimony.getSBMLString(None)
Convert CellML to SBML string. :param cellml: CellML string or file :type cellml: str | file :return: SBML :rtype: str
tellurium/bombBeetle.py
cellmlToSBML
madfain/BombBeetle
1
python
def cellmlToSBML(cellml): ' Convert CellML to SBML string.\n\n :param cellml: CellML string or file\n :type cellml: str | file\n :return: SBML\n :rtype: str\n ' if os.path.isfile(cellml): code = antimony.loadCellMLFile(cellml) else: code = antimony.loadCellMLString(cellml) _checkAntimonyReturnCode(code) return antimony.getSBMLString(None)
def cellmlToSBML(cellml): ' Convert CellML to SBML string.\n\n :param cellml: CellML string or file\n :type cellml: str | file\n :return: SBML\n :rtype: str\n ' if os.path.isfile(cellml): code = antimony.loadCellMLFile(cellml) else: code = antimony.loadCellMLString(cellml) _checkAntimonyReturnCode(code) return antimony.getSBMLString(None)<|docstring|>Convert CellML to SBML string. :param cellml: CellML string or file :type cellml: str | file :return: SBML :rtype: str<|endoftext|>
48f1d8f0a256c4940938e3d14247bb75d1cfea374567198e3240fb52fa311989
def exportInlineOmex(inline_omex, export_location): ' Export an inline OMEX string to a COMBINE archive.\n\n :param inline_omex: String containing inline OMEX describing models and simulations.\n :param export_location: Filepath of Combine archive to create.\n ' from .teconverters import saveInlineOMEX saveInlineOMEX(inline_omex, export_location)
Export an inline OMEX string to a COMBINE archive. :param inline_omex: String containing inline OMEX describing models and simulations. :param export_location: Filepath of Combine archive to create.
tellurium/bombBeetle.py
exportInlineOmex
madfain/BombBeetle
1
python
def exportInlineOmex(inline_omex, export_location): ' Export an inline OMEX string to a COMBINE archive.\n\n :param inline_omex: String containing inline OMEX describing models and simulations.\n :param export_location: Filepath of Combine archive to create.\n ' from .teconverters import saveInlineOMEX saveInlineOMEX(inline_omex, export_location)
def exportInlineOmex(inline_omex, export_location): ' Export an inline OMEX string to a COMBINE archive.\n\n :param inline_omex: String containing inline OMEX describing models and simulations.\n :param export_location: Filepath of Combine archive to create.\n ' from .teconverters import saveInlineOMEX saveInlineOMEX(inline_omex, export_location)<|docstring|>Export an inline OMEX string to a COMBINE archive. :param inline_omex: String containing inline OMEX describing models and simulations. :param export_location: Filepath of Combine archive to create.<|endoftext|>
dda9f52042cdf1696f519575bb388c47aa807fd7130960ae65093e8e4361c5ca
def executeInlineOmex(inline_omex, comp=False): ' Execute inline phrasedml and antimony.\n\n :param inline_omex: String containing inline phrasedml and antimony.\n ' in_omex = teconverters.inlineOmex.fromString(inline_omex, comp=comp) in_omex.executeOmex()
Execute inline phrasedml and antimony. :param inline_omex: String containing inline phrasedml and antimony.
tellurium/bombBeetle.py
executeInlineOmex
madfain/BombBeetle
1
python
def executeInlineOmex(inline_omex, comp=False): ' Execute inline phrasedml and antimony.\n\n :param inline_omex: String containing inline phrasedml and antimony.\n ' in_omex = teconverters.inlineOmex.fromString(inline_omex, comp=comp) in_omex.executeOmex()
def executeInlineOmex(inline_omex, comp=False): ' Execute inline phrasedml and antimony.\n\n :param inline_omex: String containing inline phrasedml and antimony.\n ' in_omex = teconverters.inlineOmex.fromString(inline_omex, comp=comp) in_omex.executeOmex()<|docstring|>Execute inline phrasedml and antimony. :param inline_omex: String containing inline phrasedml and antimony.<|endoftext|>
3ead6176487d787f545641d505f084f899d7b32fef4fc14e60f4bfd987107e31
def executeInlineOmexFromFile(filepath): ' Execute inline OMEX with simulations described in phrasedml and models described in antimony.\n\n :param filepath: Path to file containing inline phrasedml and antimony.\n ' with open(filepath) as f: executeInlineOmex(f.read())
Execute inline OMEX with simulations described in phrasedml and models described in antimony. :param filepath: Path to file containing inline phrasedml and antimony.
tellurium/bombBeetle.py
executeInlineOmexFromFile
madfain/BombBeetle
1
python
def executeInlineOmexFromFile(filepath): ' Execute inline OMEX with simulations described in phrasedml and models described in antimony.\n\n :param filepath: Path to file containing inline phrasedml and antimony.\n ' with open(filepath) as f: executeInlineOmex(f.read())
def executeInlineOmexFromFile(filepath): ' Execute inline OMEX with simulations described in phrasedml and models described in antimony.\n\n :param filepath: Path to file containing inline phrasedml and antimony.\n ' with open(filepath) as f: executeInlineOmex(f.read())<|docstring|>Execute inline OMEX with simulations described in phrasedml and models described in antimony. :param filepath: Path to file containing inline phrasedml and antimony.<|endoftext|>
d6eaf252ce9e71f1ed68be90b7d29e980a0d37d9560d0ec16abf3cf8c779de6a
def convertCombineArchive(location): ' Read a COMBINE archive and convert its contents to an\n inline Omex.\n\n :param location: Filesystem path to the archive.\n ' from .teconverters import inlineOmexImporter return inlineOmexImporter.fromFile(location).toInlineOmex()
Read a COMBINE archive and convert its contents to an inline Omex. :param location: Filesystem path to the archive.
tellurium/bombBeetle.py
convertCombineArchive
madfain/BombBeetle
1
python
def convertCombineArchive(location): ' Read a COMBINE archive and convert its contents to an\n inline Omex.\n\n :param location: Filesystem path to the archive.\n ' from .teconverters import inlineOmexImporter return inlineOmexImporter.fromFile(location).toInlineOmex()
def convertCombineArchive(location): ' Read a COMBINE archive and convert its contents to an\n inline Omex.\n\n :param location: Filesystem path to the archive.\n ' from .teconverters import inlineOmexImporter return inlineOmexImporter.fromFile(location).toInlineOmex()<|docstring|>Read a COMBINE archive and convert its contents to an inline Omex. :param location: Filesystem path to the archive.<|endoftext|>
fac0d888b7ff919cb15091e9236cd560f01466863703437f84603841d82bad8a
def convertAndExecuteCombineArchive(location): ' Read and execute a COMBINE archive.\n\n :param location: Filesystem path to the archive.\n ' from .teconverters import inlineOmexImporter inlineomex = inlineOmexImporter.fromFile(location).toInlineOmex() executeInlineOmex(inlineomex)
Read and execute a COMBINE archive. :param location: Filesystem path to the archive.
tellurium/bombBeetle.py
convertAndExecuteCombineArchive
madfain/BombBeetle
1
python
def convertAndExecuteCombineArchive(location): ' Read and execute a COMBINE archive.\n\n :param location: Filesystem path to the archive.\n ' from .teconverters import inlineOmexImporter inlineomex = inlineOmexImporter.fromFile(location).toInlineOmex() executeInlineOmex(inlineomex)
def convertAndExecuteCombineArchive(location): ' Read and execute a COMBINE archive.\n\n :param location: Filesystem path to the archive.\n ' from .teconverters import inlineOmexImporter inlineomex = inlineOmexImporter.fromFile(location).toInlineOmex() executeInlineOmex(inlineomex)<|docstring|>Read and execute a COMBINE archive. :param location: Filesystem path to the archive.<|endoftext|>
7de5f14daae51639eac7ab0974438e30e6917dafd8f05ecb6938e1c0bfb3381d
def extractFileFromCombineArchive(archive_path, entry_location): ' Extract a single file from a COMBINE archive and return it as a string.\n ' warnings.warn('Use libcombine instead.', DeprecationWarning) import tecombine archive = tecombine.CombineArchive() if (not archive.initializeFromArchive(archive_path)): raise RuntimeError('Failed to initialize archive') try: entry = archive.getEntryByLocation(entry_location) except: raise RuntimeError('Could not find entry {}'.format(entry_location)) return archive.extractEntryToString(entry_location)
Extract a single file from a COMBINE archive and return it as a string.
tellurium/bombBeetle.py
extractFileFromCombineArchive
madfain/BombBeetle
1
python
def extractFileFromCombineArchive(archive_path, entry_location): ' \n ' warnings.warn('Use libcombine instead.', DeprecationWarning) import tecombine archive = tecombine.CombineArchive() if (not archive.initializeFromArchive(archive_path)): raise RuntimeError('Failed to initialize archive') try: entry = archive.getEntryByLocation(entry_location) except: raise RuntimeError('Could not find entry {}'.format(entry_location)) return archive.extractEntryToString(entry_location)
def extractFileFromCombineArchive(archive_path, entry_location): ' \n ' warnings.warn('Use libcombine instead.', DeprecationWarning) import tecombine archive = tecombine.CombineArchive() if (not archive.initializeFromArchive(archive_path)): raise RuntimeError('Failed to initialize archive') try: entry = archive.getEntryByLocation(entry_location) except: raise RuntimeError('Could not find entry {}'.format(entry_location)) return archive.extractEntryToString(entry_location)<|docstring|>Extract a single file from a COMBINE archive and return it as a string.<|endoftext|>
325161e81cb33a42a6cddc175e6b32a9d8eb7cdf7500dbd14ea7eb9014e37a7f
def addFileToCombineArchive(archive_path, file_name, entry_location, file_format, master, out_archive_path): ' Add a file to an existing COMBINE archive on disk and save the result as a new archive.\n\n :param archive_path: The path to the archive.\n :param file_name: The name of the file to add.\n :param entry_location: The location to store the entry in the archive.\n :param file_format: The format of the file. Can use tecombine.KnownFormats.lookupFormat for common formats.\n :param master: Whether the file should be marked master.\n :param out_archive_path: The path to the output archive.\n ' addFilesToCombineArchive(archive_path, [file_name], [entry_location], [file_format], [master], out_archive_path)
Add a file to an existing COMBINE archive on disk and save the result as a new archive. :param archive_path: The path to the archive. :param file_name: The name of the file to add. :param entry_location: The location to store the entry in the archive. :param file_format: The format of the file. Can use tecombine.KnownFormats.lookupFormat for common formats. :param master: Whether the file should be marked master. :param out_archive_path: The path to the output archive.
tellurium/bombBeetle.py
addFileToCombineArchive
madfain/BombBeetle
1
python
def addFileToCombineArchive(archive_path, file_name, entry_location, file_format, master, out_archive_path): ' Add a file to an existing COMBINE archive on disk and save the result as a new archive.\n\n :param archive_path: The path to the archive.\n :param file_name: The name of the file to add.\n :param entry_location: The location to store the entry in the archive.\n :param file_format: The format of the file. Can use tecombine.KnownFormats.lookupFormat for common formats.\n :param master: Whether the file should be marked master.\n :param out_archive_path: The path to the output archive.\n ' addFilesToCombineArchive(archive_path, [file_name], [entry_location], [file_format], [master], out_archive_path)
def addFileToCombineArchive(archive_path, file_name, entry_location, file_format, master, out_archive_path): ' Add a file to an existing COMBINE archive on disk and save the result as a new archive.\n\n :param archive_path: The path to the archive.\n :param file_name: The name of the file to add.\n :param entry_location: The location to store the entry in the archive.\n :param file_format: The format of the file. Can use tecombine.KnownFormats.lookupFormat for common formats.\n :param master: Whether the file should be marked master.\n :param out_archive_path: The path to the output archive.\n ' addFilesToCombineArchive(archive_path, [file_name], [entry_location], [file_format], [master], out_archive_path)<|docstring|>Add a file to an existing COMBINE archive on disk and save the result as a new archive. :param archive_path: The path to the archive. :param file_name: The name of the file to add. :param entry_location: The location to store the entry in the archive. :param file_format: The format of the file. Can use tecombine.KnownFormats.lookupFormat for common formats. :param master: Whether the file should be marked master. :param out_archive_path: The path to the output archive.<|endoftext|>