body_hash
stringlengths
64
64
body
stringlengths
23
109k
docstring
stringlengths
1
57k
path
stringlengths
4
198
name
stringlengths
1
115
repository_name
stringlengths
7
111
repository_stars
float64
0
191k
lang
stringclasses
1 value
body_without_docstring
stringlengths
14
108k
unified
stringlengths
45
133k
3106eafbeb541ae8ab72e332c8724747e2c48824c08f5c6da25a74416b80b251
def components_mass(self): 'Returns a dictionary with the mass of each a/c component' factors = self.factors areas = self.areas MTOW = self.data['MTOW'] ME = self.data['ME'] area_w = areas['wing'] area_f = areas['fuselage'] area_v = areas['vertical_tail'] area_h = areas['horizontal_tail'] mass = {} mass['wing'] = (((factors['wing'] * area_w) + (factors['main_gear'] * MTOW)) + (factors['power_plant'] * ME)) mass['fuselage'] = (((factors['fuselage'] * area_f) + (factors['nose_gear'] * MTOW)) + (factors['systems'] * MTOW)) mass['horizontal_tail'] = (factors['horizontal_tail'] * area_h) mass['vertical_tail'] = (factors['vertical_tail'] * area_v) print(mass['wing'], mass['fuselage'], mass['horizontal_tail'], mass['vertical_tail']) return mass
Returns a dictionary with the mass of each a/c component
aircraft/cg_calculation.py
components_mass
iamlucassantos/tutorial-systems-engineering
1
python
def components_mass(self): factors = self.factors areas = self.areas MTOW = self.data['MTOW'] ME = self.data['ME'] area_w = areas['wing'] area_f = areas['fuselage'] area_v = areas['vertical_tail'] area_h = areas['horizontal_tail'] mass = {} mass['wing'] = (((factors['wing'] * area_w) + (factors['main_gear'] * MTOW)) + (factors['power_plant'] * ME)) mass['fuselage'] = (((factors['fuselage'] * area_f) + (factors['nose_gear'] * MTOW)) + (factors['systems'] * MTOW)) mass['horizontal_tail'] = (factors['horizontal_tail'] * area_h) mass['vertical_tail'] = (factors['vertical_tail'] * area_v) print(mass['wing'], mass['fuselage'], mass['horizontal_tail'], mass['vertical_tail']) return mass
def components_mass(self): factors = self.factors areas = self.areas MTOW = self.data['MTOW'] ME = self.data['ME'] area_w = areas['wing'] area_f = areas['fuselage'] area_v = areas['vertical_tail'] area_h = areas['horizontal_tail'] mass = {} mass['wing'] = (((factors['wing'] * area_w) + (factors['main_gear'] * MTOW)) + (factors['power_plant'] * ME)) mass['fuselage'] = (((factors['fuselage'] * area_f) + (factors['nose_gear'] * MTOW)) + (factors['systems'] * MTOW)) mass['horizontal_tail'] = (factors['horizontal_tail'] * area_h) mass['vertical_tail'] = (factors['vertical_tail'] * area_v) print(mass['wing'], mass['fuselage'], mass['horizontal_tail'], mass['vertical_tail']) return mass<|docstring|>Returns a dictionary with the mass of each a/c component<|endoftext|>
fbcbc6d56b3542174344054d409abf617b062f364bacf3401cc99652cd2c78e5
def cg_distance_from_nose(self, x_loc, y, surface='w'): 'Returns the cg distance of the wing, vertical tail, and horizontal tail' if (surface == 'w'): tr = self.data['taper'] quarter_sweep = self.data['quart_sweep'] A = self.data['A'] distance_to_root = self.data['nose_distance_w'] elif (surface == 'v'): tr = self.data['taper_v'] quarter_sweep = self.data['quart_sweep_v'] A = self.data['A_v'] distance_to_root = self.data['nose_distance_v'] elif (surface == 'h'): tr = self.data['taper_h'] quarter_sweep = self.data['quart_sweep_h'] A = self.data['A_h'] distance_to_root = self.data['nose_distance_h'] else: return None sweep_le = np.arctan((np.tan(np.radians(quarter_sweep)) - ((4 / A) * (((- 0.25) * (1 - tr)) / (1 + tr))))) self.sweep_le = sweep_le cg_distance = ((x_loc + (y * np.tan(sweep_le))) + distance_to_root) return cg_distance
Returns the cg distance of the wing, vertical tail, and horizontal tail
aircraft/cg_calculation.py
cg_distance_from_nose
iamlucassantos/tutorial-systems-engineering
1
python
def cg_distance_from_nose(self, x_loc, y, surface='w'): if (surface == 'w'): tr = self.data['taper'] quarter_sweep = self.data['quart_sweep'] A = self.data['A'] distance_to_root = self.data['nose_distance_w'] elif (surface == 'v'): tr = self.data['taper_v'] quarter_sweep = self.data['quart_sweep_v'] A = self.data['A_v'] distance_to_root = self.data['nose_distance_v'] elif (surface == 'h'): tr = self.data['taper_h'] quarter_sweep = self.data['quart_sweep_h'] A = self.data['A_h'] distance_to_root = self.data['nose_distance_h'] else: return None sweep_le = np.arctan((np.tan(np.radians(quarter_sweep)) - ((4 / A) * (((- 0.25) * (1 - tr)) / (1 + tr))))) self.sweep_le = sweep_le cg_distance = ((x_loc + (y * np.tan(sweep_le))) + distance_to_root) return cg_distance
def cg_distance_from_nose(self, x_loc, y, surface='w'): if (surface == 'w'): tr = self.data['taper'] quarter_sweep = self.data['quart_sweep'] A = self.data['A'] distance_to_root = self.data['nose_distance_w'] elif (surface == 'v'): tr = self.data['taper_v'] quarter_sweep = self.data['quart_sweep_v'] A = self.data['A_v'] distance_to_root = self.data['nose_distance_v'] elif (surface == 'h'): tr = self.data['taper_h'] quarter_sweep = self.data['quart_sweep_h'] A = self.data['A_h'] distance_to_root = self.data['nose_distance_h'] else: return None sweep_le = np.arctan((np.tan(np.radians(quarter_sweep)) - ((4 / A) * (((- 0.25) * (1 - tr)) / (1 + tr))))) self.sweep_le = sweep_le cg_distance = ((x_loc + (y * np.tan(sweep_le))) + distance_to_root) return cg_distance<|docstring|>Returns the cg distance of the wing, vertical tail, and horizontal tail<|endoftext|>
e3cefd562d14098d7a49ed613c46c24ad0c1a9e667184602b8b19e21ecd77230
def chord_at_pctg(self, span_pctg, surface='w'): "Returns the chord length at n% from the\n\n args:\n root_pctg (float): pctg of the root where the chord is wanted\n surface (str): 'w' for wing, 'v' for vertical tail, 'h' for horizontal tail\n " if (surface == 'w'): taper_ratio = self.data['taper'] b = self.data['b'] cr = self.cr elif (surface == 'v'): taper_ratio = self.data['taper_v'] b = (self.data['b_half_v'] * 2) cr = self.cr_v elif (surface == 'h'): taper_ratio = self.data['taper_h'] b = self.data['b_h'] cr = self.cr_h else: return None y = ((span_pctg * b) / 2) return ((cr * (1 - (((2 * (1 - taper_ratio)) * y) / b))), y)
Returns the chord length at n% from the args: root_pctg (float): pctg of the root where the chord is wanted surface (str): 'w' for wing, 'v' for vertical tail, 'h' for horizontal tail
aircraft/cg_calculation.py
chord_at_pctg
iamlucassantos/tutorial-systems-engineering
1
python
def chord_at_pctg(self, span_pctg, surface='w'): "Returns the chord length at n% from the\n\n args:\n root_pctg (float): pctg of the root where the chord is wanted\n surface (str): 'w' for wing, 'v' for vertical tail, 'h' for horizontal tail\n " if (surface == 'w'): taper_ratio = self.data['taper'] b = self.data['b'] cr = self.cr elif (surface == 'v'): taper_ratio = self.data['taper_v'] b = (self.data['b_half_v'] * 2) cr = self.cr_v elif (surface == 'h'): taper_ratio = self.data['taper_h'] b = self.data['b_h'] cr = self.cr_h else: return None y = ((span_pctg * b) / 2) return ((cr * (1 - (((2 * (1 - taper_ratio)) * y) / b))), y)
def chord_at_pctg(self, span_pctg, surface='w'): "Returns the chord length at n% from the\n\n args:\n root_pctg (float): pctg of the root where the chord is wanted\n surface (str): 'w' for wing, 'v' for vertical tail, 'h' for horizontal tail\n " if (surface == 'w'): taper_ratio = self.data['taper'] b = self.data['b'] cr = self.cr elif (surface == 'v'): taper_ratio = self.data['taper_v'] b = (self.data['b_half_v'] * 2) cr = self.cr_v elif (surface == 'h'): taper_ratio = self.data['taper_h'] b = self.data['b_h'] cr = self.cr_h else: return None y = ((span_pctg * b) / 2) return ((cr * (1 - (((2 * (1 - taper_ratio)) * y) / b))), y)<|docstring|>Returns the chord length at n% from the args: root_pctg (float): pctg of the root where the chord is wanted surface (str): 'w' for wing, 'v' for vertical tail, 'h' for horizontal tail<|endoftext|>
9b0d5cdb54c07464f7568be0c4a8c2c54504e94026bd29fd1b66ce6706bd769c
def components_cg(self): 'Returns a dictionary with the cg of each a/c component' cgs = {} (chord_cg_w, dist_le_w) = self.chord_at_pctg(0.4, surface='w') cgs['wing'] = self.cg_distance_from_nose((chord_cg_w * 0.38), dist_le_w, surface='w') (chord_cg_h, dist_le_h) = self.chord_at_pctg(0.38, surface='h') cgs['horizontal_tail'] = self.cg_distance_from_nose((chord_cg_h * 0.42), dist_le_h, surface='h') (chord_cg_v, dist_le_v) = self.chord_at_pctg(0.38, surface='v') cgs['vertical_tail'] = self.cg_distance_from_nose((chord_cg_v * 0.43), dist_le_v, surface='v') cgs['fuselage'] = (0.42 * self.data['l_f']) return cgs
Returns a dictionary with the cg of each a/c component
aircraft/cg_calculation.py
components_cg
iamlucassantos/tutorial-systems-engineering
1
python
def components_cg(self): cgs = {} (chord_cg_w, dist_le_w) = self.chord_at_pctg(0.4, surface='w') cgs['wing'] = self.cg_distance_from_nose((chord_cg_w * 0.38), dist_le_w, surface='w') (chord_cg_h, dist_le_h) = self.chord_at_pctg(0.38, surface='h') cgs['horizontal_tail'] = self.cg_distance_from_nose((chord_cg_h * 0.42), dist_le_h, surface='h') (chord_cg_v, dist_le_v) = self.chord_at_pctg(0.38, surface='v') cgs['vertical_tail'] = self.cg_distance_from_nose((chord_cg_v * 0.43), dist_le_v, surface='v') cgs['fuselage'] = (0.42 * self.data['l_f']) return cgs
def components_cg(self): cgs = {} (chord_cg_w, dist_le_w) = self.chord_at_pctg(0.4, surface='w') cgs['wing'] = self.cg_distance_from_nose((chord_cg_w * 0.38), dist_le_w, surface='w') (chord_cg_h, dist_le_h) = self.chord_at_pctg(0.38, surface='h') cgs['horizontal_tail'] = self.cg_distance_from_nose((chord_cg_h * 0.42), dist_le_h, surface='h') (chord_cg_v, dist_le_v) = self.chord_at_pctg(0.38, surface='v') cgs['vertical_tail'] = self.cg_distance_from_nose((chord_cg_v * 0.43), dist_le_v, surface='v') cgs['fuselage'] = (0.42 * self.data['l_f']) return cgs<|docstring|>Returns a dictionary with the cg of each a/c component<|endoftext|>
440fad02280d4095b27f683ce56490a9320db817a7cfdd84bacde4250fb9b24c
def aircraft_cg(self): 'Returns the aircraft cg wrt the three main groups: wing, fuselage and tail' (numerator, denominator) = (0, 0) for group in ['wing', 'horizontal_tail', 'vertical_tail', 'fuselage']: numerator += (self.mass[group] * self.cgs[group]) denominator += self.mass[group] XLEMAC = self.data['XLEMAC'] mac = self.data['mac'] aircraft_cg = (((numerator / denominator) - XLEMAC) / mac) return aircraft_cg
Returns the aircraft cg wrt the three main groups: wing, fuselage and tail
aircraft/cg_calculation.py
aircraft_cg
iamlucassantos/tutorial-systems-engineering
1
python
def aircraft_cg(self): (numerator, denominator) = (0, 0) for group in ['wing', 'horizontal_tail', 'vertical_tail', 'fuselage']: numerator += (self.mass[group] * self.cgs[group]) denominator += self.mass[group] XLEMAC = self.data['XLEMAC'] mac = self.data['mac'] aircraft_cg = (((numerator / denominator) - XLEMAC) / mac) return aircraft_cg
def aircraft_cg(self): (numerator, denominator) = (0, 0) for group in ['wing', 'horizontal_tail', 'vertical_tail', 'fuselage']: numerator += (self.mass[group] * self.cgs[group]) denominator += self.mass[group] XLEMAC = self.data['XLEMAC'] mac = self.data['mac'] aircraft_cg = (((numerator / denominator) - XLEMAC) / mac) return aircraft_cg<|docstring|>Returns the aircraft cg wrt the three main groups: wing, fuselage and tail<|endoftext|>
302833e0cf4d4c1ebb9e39018f87d42aed0af929694eea631afccdc9474e17f2
def check_projects(config: Configuration, username: str) -> Dict[(str, Any)]: " Crawl through all projects to check for errors on loading or accessing imporant fields.\n Warning: This method may take a while.\n\n Args:\n config: Configuration to include root gigantum directory\n username: Active username - if none provided crawl for all users.\n\n Returns:\n Dictionary mapping a project path to errors\n\n Schema:\n {\n 'errors': {\n 'username/owner/labbooks/project-name': 'This is the error msg'\n },\n '_collectionTimeSec': 2.0\n }\n " gigantum_root = config.app_workdir project_paths = glob.glob(f'{gigantum_root}/{username}/*/labbooks/*') inventory = InventoryManager() t0 = time.time() errors: Dict[(str, Any)] = {'errors': {}} for project_path in project_paths: try: labbook = inventory.load_labbook_from_directory(project_path) _ = (labbook.creation_date, labbook.modified_on, labbook.data) except Exception as e: logger.error(e) errors['errors'][project_path.replace(gigantum_root, '')] = str(e) tfin = time.time() errors['_collectionTimeSec'] = float(f'{(tfin - t0):.2f}') return errors
Crawl through all projects to check for errors on loading or accessing imporant fields. Warning: This method may take a while. Args: config: Configuration to include root gigantum directory username: Active username - if none provided crawl for all users. Returns: Dictionary mapping a project path to errors Schema: { 'errors': { 'username/owner/labbooks/project-name': 'This is the error msg' }, '_collectionTimeSec': 2.0 }
packages/gtmapi/lmsrvcore/telemetry.py
check_projects
gigabackup/gigantum-client
60
python
def check_projects(config: Configuration, username: str) -> Dict[(str, Any)]: " Crawl through all projects to check for errors on loading or accessing imporant fields.\n Warning: This method may take a while.\n\n Args:\n config: Configuration to include root gigantum directory\n username: Active username - if none provided crawl for all users.\n\n Returns:\n Dictionary mapping a project path to errors\n\n Schema:\n {\n 'errors': {\n 'username/owner/labbooks/project-name': 'This is the error msg'\n },\n '_collectionTimeSec': 2.0\n }\n " gigantum_root = config.app_workdir project_paths = glob.glob(f'{gigantum_root}/{username}/*/labbooks/*') inventory = InventoryManager() t0 = time.time() errors: Dict[(str, Any)] = {'errors': {}} for project_path in project_paths: try: labbook = inventory.load_labbook_from_directory(project_path) _ = (labbook.creation_date, labbook.modified_on, labbook.data) except Exception as e: logger.error(e) errors['errors'][project_path.replace(gigantum_root, )] = str(e) tfin = time.time() errors['_collectionTimeSec'] = float(f'{(tfin - t0):.2f}') return errors
def check_projects(config: Configuration, username: str) -> Dict[(str, Any)]: " Crawl through all projects to check for errors on loading or accessing imporant fields.\n Warning: This method may take a while.\n\n Args:\n config: Configuration to include root gigantum directory\n username: Active username - if none provided crawl for all users.\n\n Returns:\n Dictionary mapping a project path to errors\n\n Schema:\n {\n 'errors': {\n 'username/owner/labbooks/project-name': 'This is the error msg'\n },\n '_collectionTimeSec': 2.0\n }\n " gigantum_root = config.app_workdir project_paths = glob.glob(f'{gigantum_root}/{username}/*/labbooks/*') inventory = InventoryManager() t0 = time.time() errors: Dict[(str, Any)] = {'errors': {}} for project_path in project_paths: try: labbook = inventory.load_labbook_from_directory(project_path) _ = (labbook.creation_date, labbook.modified_on, labbook.data) except Exception as e: logger.error(e) errors['errors'][project_path.replace(gigantum_root, )] = str(e) tfin = time.time() errors['_collectionTimeSec'] = float(f'{(tfin - t0):.2f}') return errors<|docstring|>Crawl through all projects to check for errors on loading or accessing imporant fields. Warning: This method may take a while. Args: config: Configuration to include root gigantum directory username: Active username - if none provided crawl for all users. Returns: Dictionary mapping a project path to errors Schema: { 'errors': { 'username/owner/labbooks/project-name': 'This is the error msg' }, '_collectionTimeSec': 2.0 }<|endoftext|>
ac2455b0a0cf732ab3a2c13842720189e28afd0040f1d9b8296a2b7e5884aff3
def _calc_disk_free_gb() -> Tuple[(float, float)]: 'Call `df` from the Client Container, parse and return as GB' disk_results = call_subprocess('df -BMB /'.split(), cwd='/').split('\n') (_, disk_size, disk_used, disk_avail, use_pct, _) = disk_results[1].split() (disk_size_num, disk_size_unit) = ((float(disk_used[:(- 2)]) / 1000), disk_used[(- 2):]) if (disk_size_unit != 'MB'): raise ValueError(f'Encountered unexpected unit "{disk_size_unit}" from `df -BMB` in Client') (disk_avail_num, disk_avail_unit) = ((float(disk_avail[:(- 2)]) / 1000), disk_avail[(- 2):]) if (disk_avail_unit != 'MB'): raise ValueError(f'Encountered unexpected unit "{disk_avail_unit}" from `df -BMB` in Client') return (disk_size_num, disk_avail_num)
Call `df` from the Client Container, parse and return as GB
packages/gtmapi/lmsrvcore/telemetry.py
_calc_disk_free_gb
gigabackup/gigantum-client
60
python
def _calc_disk_free_gb() -> Tuple[(float, float)]: disk_results = call_subprocess('df -BMB /'.split(), cwd='/').split('\n') (_, disk_size, disk_used, disk_avail, use_pct, _) = disk_results[1].split() (disk_size_num, disk_size_unit) = ((float(disk_used[:(- 2)]) / 1000), disk_used[(- 2):]) if (disk_size_unit != 'MB'): raise ValueError(f'Encountered unexpected unit "{disk_size_unit}" from `df -BMB` in Client') (disk_avail_num, disk_avail_unit) = ((float(disk_avail[:(- 2)]) / 1000), disk_avail[(- 2):]) if (disk_avail_unit != 'MB'): raise ValueError(f'Encountered unexpected unit "{disk_avail_unit}" from `df -BMB` in Client') return (disk_size_num, disk_avail_num)
def _calc_disk_free_gb() -> Tuple[(float, float)]: disk_results = call_subprocess('df -BMB /'.split(), cwd='/').split('\n') (_, disk_size, disk_used, disk_avail, use_pct, _) = disk_results[1].split() (disk_size_num, disk_size_unit) = ((float(disk_used[:(- 2)]) / 1000), disk_used[(- 2):]) if (disk_size_unit != 'MB'): raise ValueError(f'Encountered unexpected unit "{disk_size_unit}" from `df -BMB` in Client') (disk_avail_num, disk_avail_unit) = ((float(disk_avail[:(- 2)]) / 1000), disk_avail[(- 2):]) if (disk_avail_unit != 'MB'): raise ValueError(f'Encountered unexpected unit "{disk_avail_unit}" from `df -BMB` in Client') return (disk_size_num, disk_avail_num)<|docstring|>Call `df` from the Client Container, parse and return as GB<|endoftext|>
a59b915eb3ac772617bb6bf12cd2a896b97c44a57a47ef4c3da4c3a7e8a4196b
def _calc_rq_free() -> Dict[(str, Any)]: 'Parses the output of `rq info` to return total number\n of workers and the count of workers currently idle.' conn = default_redis_conn() with rq.Connection(connection=conn): workers: List[rq.Worker] = [w for w in rq.Worker.all()] idle_workers = [w for w in workers if (w.get_state() == 'idle')] resp = {'workersTotal': len(workers), 'workersIdle': len(idle_workers), 'workersUnknown': len([w for w in workers if (w.get_state() == '?')])} queues = ('default', 'build', 'publish') resp.update({f'queue{q.capitalize()}Size': len(rq.Queue(f'gigantum-{q}-queue', connection=conn)) for q in queues}) return resp
Parses the output of `rq info` to return total number of workers and the count of workers currently idle.
packages/gtmapi/lmsrvcore/telemetry.py
_calc_rq_free
gigabackup/gigantum-client
60
python
def _calc_rq_free() -> Dict[(str, Any)]: 'Parses the output of `rq info` to return total number\n of workers and the count of workers currently idle.' conn = default_redis_conn() with rq.Connection(connection=conn): workers: List[rq.Worker] = [w for w in rq.Worker.all()] idle_workers = [w for w in workers if (w.get_state() == 'idle')] resp = {'workersTotal': len(workers), 'workersIdle': len(idle_workers), 'workersUnknown': len([w for w in workers if (w.get_state() == '?')])} queues = ('default', 'build', 'publish') resp.update({f'queue{q.capitalize()}Size': len(rq.Queue(f'gigantum-{q}-queue', connection=conn)) for q in queues}) return resp
def _calc_rq_free() -> Dict[(str, Any)]: 'Parses the output of `rq info` to return total number\n of workers and the count of workers currently idle.' conn = default_redis_conn() with rq.Connection(connection=conn): workers: List[rq.Worker] = [w for w in rq.Worker.all()] idle_workers = [w for w in workers if (w.get_state() == 'idle')] resp = {'workersTotal': len(workers), 'workersIdle': len(idle_workers), 'workersUnknown': len([w for w in workers if (w.get_state() == '?')])} queues = ('default', 'build', 'publish') resp.update({f'queue{q.capitalize()}Size': len(rq.Queue(f'gigantum-{q}-queue', connection=conn)) for q in queues}) return resp<|docstring|>Parses the output of `rq info` to return total number of workers and the count of workers currently idle.<|endoftext|>
ca900bf67765f13253be83262caba7d1985444b91a68bcd10a2257938b4d1fdf
def get_conv_mixer_256_8(image_size=32, filters=256, depth=8, kernel_size=5, patch_size=2, num_classes=10): 'ConvMixer-256/8: https://openreview.net/pdf?id=TVHS5Y4dNvM.\n The hyperparameter values are taken from the paper.\n ' inputs = keras.Input((image_size, image_size, 3)) x = layers.Rescaling(scale=(1.0 / 255))(inputs) x = conv_stem(x, filters, patch_size) for _ in range(depth): x = conv_mixer_block(x, filters, kernel_size) x = layers.GlobalAvgPool2D()(x) outputs = layers.Dense(num_classes, activation='softmax')(x) return keras.Model(inputs, outputs)
ConvMixer-256/8: https://openreview.net/pdf?id=TVHS5Y4dNvM. The hyperparameter values are taken from the paper.
examples/vision/convmixer.py
get_conv_mixer_256_8
k-w-w/keras-io
1,542
python
def get_conv_mixer_256_8(image_size=32, filters=256, depth=8, kernel_size=5, patch_size=2, num_classes=10): 'ConvMixer-256/8: https://openreview.net/pdf?id=TVHS5Y4dNvM.\n The hyperparameter values are taken from the paper.\n ' inputs = keras.Input((image_size, image_size, 3)) x = layers.Rescaling(scale=(1.0 / 255))(inputs) x = conv_stem(x, filters, patch_size) for _ in range(depth): x = conv_mixer_block(x, filters, kernel_size) x = layers.GlobalAvgPool2D()(x) outputs = layers.Dense(num_classes, activation='softmax')(x) return keras.Model(inputs, outputs)
def get_conv_mixer_256_8(image_size=32, filters=256, depth=8, kernel_size=5, patch_size=2, num_classes=10): 'ConvMixer-256/8: https://openreview.net/pdf?id=TVHS5Y4dNvM.\n The hyperparameter values are taken from the paper.\n ' inputs = keras.Input((image_size, image_size, 3)) x = layers.Rescaling(scale=(1.0 / 255))(inputs) x = conv_stem(x, filters, patch_size) for _ in range(depth): x = conv_mixer_block(x, filters, kernel_size) x = layers.GlobalAvgPool2D()(x) outputs = layers.Dense(num_classes, activation='softmax')(x) return keras.Model(inputs, outputs)<|docstring|>ConvMixer-256/8: https://openreview.net/pdf?id=TVHS5Y4dNvM. The hyperparameter values are taken from the paper.<|endoftext|>
025fe97f88ae7c95b6878c52fe0c1c65f60131a3935b4baffa47bc0596938038
def __init__(self, device='cpu'): "\n Initialize the class.\n\n Parameters\n ----------\n device : str, optional\n The device where to put the data. The default is 'cpu'.\n " self.device = device
Initialize the class. Parameters ---------- device : str, optional The device where to put the data. The default is 'cpu'.
profrage/generate/reconstruct.py
__init__
federicoVS/ProFraGe
0
python
def __init__(self, device='cpu'): "\n Initialize the class.\n\n Parameters\n ----------\n device : str, optional\n The device where to put the data. The default is 'cpu'.\n " self.device = device
def __init__(self, device='cpu'): "\n Initialize the class.\n\n Parameters\n ----------\n device : str, optional\n The device where to put the data. The default is 'cpu'.\n " self.device = device<|docstring|>Initialize the class. Parameters ---------- device : str, optional The device where to put the data. The default is 'cpu'.<|endoftext|>
94e5b958af674dafdd29fa82601efb387902990a67b053f3be1c2f49c6474eb2
def reconstruct(self, D): '\n Multidimensional scaling algorithm to reconstruct the data.\n\n Parameters\n ----------\n D : torch.Tensor\n The distance matrix.\n\n Returns\n -------\n X : numpy.ndarray\n The coordinate matrix.\n ' n = D.shape[0] for i in range(n): for j in range(n): D[(i, j)] = (D[(i, j)] ** 2) C = (torch.eye(n).to(self.device) - ((1 / n) * torch.ones(n, n).to(self.device))) B = ((- 0.5) * torch.matmul(torch.matmul(C, D), C)) B = B.detach().cpu().numpy() (w, v) = np.linalg.eig(B) eigen_idx = np.argsort(w)[::(- 1)] (w, v) = (w[eigen_idx], v[eigen_idx]) X = np.zeros(shape=(n, 3)) for i in range(n): for j in range(3): X[(i, j)] = (v[(i, j)] * np.sqrt(w[j])) return X
Multidimensional scaling algorithm to reconstruct the data. Parameters ---------- D : torch.Tensor The distance matrix. Returns ------- X : numpy.ndarray The coordinate matrix.
profrage/generate/reconstruct.py
reconstruct
federicoVS/ProFraGe
0
python
def reconstruct(self, D): '\n Multidimensional scaling algorithm to reconstruct the data.\n\n Parameters\n ----------\n D : torch.Tensor\n The distance matrix.\n\n Returns\n -------\n X : numpy.ndarray\n The coordinate matrix.\n ' n = D.shape[0] for i in range(n): for j in range(n): D[(i, j)] = (D[(i, j)] ** 2) C = (torch.eye(n).to(self.device) - ((1 / n) * torch.ones(n, n).to(self.device))) B = ((- 0.5) * torch.matmul(torch.matmul(C, D), C)) B = B.detach().cpu().numpy() (w, v) = np.linalg.eig(B) eigen_idx = np.argsort(w)[::(- 1)] (w, v) = (w[eigen_idx], v[eigen_idx]) X = np.zeros(shape=(n, 3)) for i in range(n): for j in range(3): X[(i, j)] = (v[(i, j)] * np.sqrt(w[j])) return X
def reconstruct(self, D): '\n Multidimensional scaling algorithm to reconstruct the data.\n\n Parameters\n ----------\n D : torch.Tensor\n The distance matrix.\n\n Returns\n -------\n X : numpy.ndarray\n The coordinate matrix.\n ' n = D.shape[0] for i in range(n): for j in range(n): D[(i, j)] = (D[(i, j)] ** 2) C = (torch.eye(n).to(self.device) - ((1 / n) * torch.ones(n, n).to(self.device))) B = ((- 0.5) * torch.matmul(torch.matmul(C, D), C)) B = B.detach().cpu().numpy() (w, v) = np.linalg.eig(B) eigen_idx = np.argsort(w)[::(- 1)] (w, v) = (w[eigen_idx], v[eigen_idx]) X = np.zeros(shape=(n, 3)) for i in range(n): for j in range(3): X[(i, j)] = (v[(i, j)] * np.sqrt(w[j])) return X<|docstring|>Multidimensional scaling algorithm to reconstruct the data. Parameters ---------- D : torch.Tensor The distance matrix. Returns ------- X : numpy.ndarray The coordinate matrix.<|endoftext|>
1f4c2a7cd419b43e669528a76e0a3cef7a227a0ceb8d8e1659ae44029701d2c1
def get_activation(activation): ' returns the activation function represented by the input string ' if (activation and callable(activation)): return activation activation = [x for x in SUPPORTED_ACTIVATION_MAP if (activation.lower() == x.lower())] assert ((len(activation) == 1) and isinstance(activation[0], str)), 'Unhandled activation function' activation = activation[0] if (activation.lower() == 'none'): return None return vars(torch.nn.modules.activation)[activation]()
returns the activation function represented by the input string
util/ml_and_math/layers.py
get_activation
pchlenski/NeuroSEED
39
python
def get_activation(activation): ' ' if (activation and callable(activation)): return activation activation = [x for x in SUPPORTED_ACTIVATION_MAP if (activation.lower() == x.lower())] assert ((len(activation) == 1) and isinstance(activation[0], str)), 'Unhandled activation function' activation = activation[0] if (activation.lower() == 'none'): return None return vars(torch.nn.modules.activation)[activation]()
def get_activation(activation): ' ' if (activation and callable(activation)): return activation activation = [x for x in SUPPORTED_ACTIVATION_MAP if (activation.lower() == x.lower())] assert ((len(activation) == 1) and isinstance(activation[0], str)), 'Unhandled activation function' activation = activation[0] if (activation.lower() == 'none'): return None return vars(torch.nn.modules.activation)[activation]()<|docstring|>returns the activation function represented by the input string<|endoftext|>
c5f0267fc9445900c179cf67705c8f8b42063d68fd015c1d5642e8aa6aa9de57
def kronecker_product(t1, t2): '\n Computes the Kronecker product between two tensors\n See https://en.wikipedia.org/wiki/Kronecker_product\n ' (t1_height, t1_width) = t1.size() (t2_height, t2_width) = t2.size() out_height = (t1_height * t2_height) out_width = (t1_width * t2_width) tiled_t2 = t2.repeat(t1_height, t1_width) expanded_t1 = t1.unsqueeze(2).unsqueeze(3).repeat(1, t2_height, t2_width, 1).view(out_height, out_width) return (expanded_t1 * tiled_t2)
Computes the Kronecker product between two tensors See https://en.wikipedia.org/wiki/Kronecker_product
rlkit/torch/pytorch_util.py
kronecker_product
Asap7772/railrl_evalsawyer
0
python
def kronecker_product(t1, t2): '\n Computes the Kronecker product between two tensors\n See https://en.wikipedia.org/wiki/Kronecker_product\n ' (t1_height, t1_width) = t1.size() (t2_height, t2_width) = t2.size() out_height = (t1_height * t2_height) out_width = (t1_width * t2_width) tiled_t2 = t2.repeat(t1_height, t1_width) expanded_t1 = t1.unsqueeze(2).unsqueeze(3).repeat(1, t2_height, t2_width, 1).view(out_height, out_width) return (expanded_t1 * tiled_t2)
def kronecker_product(t1, t2): '\n Computes the Kronecker product between two tensors\n See https://en.wikipedia.org/wiki/Kronecker_product\n ' (t1_height, t1_width) = t1.size() (t2_height, t2_width) = t2.size() out_height = (t1_height * t2_height) out_width = (t1_width * t2_width) tiled_t2 = t2.repeat(t1_height, t1_width) expanded_t1 = t1.unsqueeze(2).unsqueeze(3).repeat(1, t2_height, t2_width, 1).view(out_height, out_width) return (expanded_t1 * tiled_t2)<|docstring|>Computes the Kronecker product between two tensors See https://en.wikipedia.org/wiki/Kronecker_product<|endoftext|>
d28344d44185fa1ad322933efa05b19b702bc4ca0b4c38d12b188d9535443996
def double_moments(x, y): '\n Returns the first two moments between x and y.\n\n Specifically, for each vector x_i and y_i in x and y, compute their\n outer-product. Flatten this resulting matrix and return it.\n\n The first moments (i.e. x_i and y_i) are included by appending a `1` to x_i\n and y_i before taking the outer product.\n :param x: Shape [batch_size, feature_x_dim]\n :param y: Shape [batch_size, feature_y_dim]\n :return: Shape [batch_size, (feature_x_dim + 1) * (feature_y_dim + 1)\n ' (batch_size, x_dim) = x.size() (_, y_dim) = x.size() x = torch.cat((x, torch.ones(batch_size, 1)), dim=1) y = torch.cat((y, torch.ones(batch_size, 1)), dim=1) x_dim += 1 y_dim += 1 x = x.unsqueeze(2) y = y.unsqueeze(1) outer_prod = (x.expand(batch_size, x_dim, y_dim) * y.expand(batch_size, x_dim, y_dim)) return outer_prod.view(batch_size, (- 1))
Returns the first two moments between x and y. Specifically, for each vector x_i and y_i in x and y, compute their outer-product. Flatten this resulting matrix and return it. The first moments (i.e. x_i and y_i) are included by appending a `1` to x_i and y_i before taking the outer product. :param x: Shape [batch_size, feature_x_dim] :param y: Shape [batch_size, feature_y_dim] :return: Shape [batch_size, (feature_x_dim + 1) * (feature_y_dim + 1)
rlkit/torch/pytorch_util.py
double_moments
Asap7772/railrl_evalsawyer
0
python
def double_moments(x, y): '\n Returns the first two moments between x and y.\n\n Specifically, for each vector x_i and y_i in x and y, compute their\n outer-product. Flatten this resulting matrix and return it.\n\n The first moments (i.e. x_i and y_i) are included by appending a `1` to x_i\n and y_i before taking the outer product.\n :param x: Shape [batch_size, feature_x_dim]\n :param y: Shape [batch_size, feature_y_dim]\n :return: Shape [batch_size, (feature_x_dim + 1) * (feature_y_dim + 1)\n ' (batch_size, x_dim) = x.size() (_, y_dim) = x.size() x = torch.cat((x, torch.ones(batch_size, 1)), dim=1) y = torch.cat((y, torch.ones(batch_size, 1)), dim=1) x_dim += 1 y_dim += 1 x = x.unsqueeze(2) y = y.unsqueeze(1) outer_prod = (x.expand(batch_size, x_dim, y_dim) * y.expand(batch_size, x_dim, y_dim)) return outer_prod.view(batch_size, (- 1))
def double_moments(x, y): '\n Returns the first two moments between x and y.\n\n Specifically, for each vector x_i and y_i in x and y, compute their\n outer-product. Flatten this resulting matrix and return it.\n\n The first moments (i.e. x_i and y_i) are included by appending a `1` to x_i\n and y_i before taking the outer product.\n :param x: Shape [batch_size, feature_x_dim]\n :param y: Shape [batch_size, feature_y_dim]\n :return: Shape [batch_size, (feature_x_dim + 1) * (feature_y_dim + 1)\n ' (batch_size, x_dim) = x.size() (_, y_dim) = x.size() x = torch.cat((x, torch.ones(batch_size, 1)), dim=1) y = torch.cat((y, torch.ones(batch_size, 1)), dim=1) x_dim += 1 y_dim += 1 x = x.unsqueeze(2) y = y.unsqueeze(1) outer_prod = (x.expand(batch_size, x_dim, y_dim) * y.expand(batch_size, x_dim, y_dim)) return outer_prod.view(batch_size, (- 1))<|docstring|>Returns the first two moments between x and y. Specifically, for each vector x_i and y_i in x and y, compute their outer-product. Flatten this resulting matrix and return it. The first moments (i.e. x_i and y_i) are included by appending a `1` to x_i and y_i before taking the outer product. :param x: Shape [batch_size, feature_x_dim] :param y: Shape [batch_size, feature_y_dim] :return: Shape [batch_size, (feature_x_dim + 1) * (feature_y_dim + 1)<|endoftext|>
ced03cdd42ac0e5224f8fbcd46f362d08762ed0550e44fcc883ea5b9344d0049
def batch_square_vector(vector, M): '\n Compute x^T M x\n ' vector = vector.unsqueeze(2) return torch.bmm(torch.bmm(vector.transpose(2, 1), M), vector).squeeze(2)
Compute x^T M x
rlkit/torch/pytorch_util.py
batch_square_vector
Asap7772/railrl_evalsawyer
0
python
def batch_square_vector(vector, M): '\n \n ' vector = vector.unsqueeze(2) return torch.bmm(torch.bmm(vector.transpose(2, 1), M), vector).squeeze(2)
def batch_square_vector(vector, M): '\n \n ' vector = vector.unsqueeze(2) return torch.bmm(torch.bmm(vector.transpose(2, 1), M), vector).squeeze(2)<|docstring|>Compute x^T M x<|endoftext|>
ba33e708327ebdc8e6f5e67d22e93c1d7e2e18b638800ed7c621916fd3f00c74
def almost_identity_weights_like(tensor): '\n Set W = I + lambda * Gaussian no\n :param tensor:\n :return:\n ' shape = tensor.size() init_value = np.eye(*shape) init_value += (0.01 * np.random.rand(*shape)) return FloatTensor(init_value)
Set W = I + lambda * Gaussian no :param tensor: :return:
rlkit/torch/pytorch_util.py
almost_identity_weights_like
Asap7772/railrl_evalsawyer
0
python
def almost_identity_weights_like(tensor): '\n Set W = I + lambda * Gaussian no\n :param tensor:\n :return:\n ' shape = tensor.size() init_value = np.eye(*shape) init_value += (0.01 * np.random.rand(*shape)) return FloatTensor(init_value)
def almost_identity_weights_like(tensor): '\n Set W = I + lambda * Gaussian no\n :param tensor:\n :return:\n ' shape = tensor.size() init_value = np.eye(*shape) init_value += (0.01 * np.random.rand(*shape)) return FloatTensor(init_value)<|docstring|>Set W = I + lambda * Gaussian no :param tensor: :return:<|endoftext|>
c38b313289f5e8b362267c52342a2a59e06247fd246ed0a0909c5756fcc052fa
def debounce(func): 'Decorator function. Debounce callbacks form HomeKit.' @ha_callback def call_later_listener(self, *args): 'Callback listener called from call_later.' debounce_params = self.debounce.pop(func.__name__, None) if debounce_params: self.hass.async_add_job(func, self, *debounce_params[1:]) @wraps(func) def wrapper(self, *args): 'Wrapper starts async timer.' debounce_params = self.debounce.pop(func.__name__, None) if debounce_params: debounce_params[0]() remove_listener = track_point_in_utc_time(self.hass, partial(call_later_listener, self), (dt_util.utcnow() + timedelta(seconds=DEBOUNCE_TIMEOUT))) self.debounce[func.__name__] = (remove_listener, *args) logger.debug('%s: Start %s timeout', self.entity_id, func.__name__.replace('set_', '')) name = getmodule(func).__name__ logger = logging.getLogger(name) return wrapper
Decorator function. Debounce callbacks form HomeKit.
homeassistant/components/homekit/accessories.py
debounce
ellsclytn/home-assistant
0
python
def debounce(func): @ha_callback def call_later_listener(self, *args): 'Callback listener called from call_later.' debounce_params = self.debounce.pop(func.__name__, None) if debounce_params: self.hass.async_add_job(func, self, *debounce_params[1:]) @wraps(func) def wrapper(self, *args): 'Wrapper starts async timer.' debounce_params = self.debounce.pop(func.__name__, None) if debounce_params: debounce_params[0]() remove_listener = track_point_in_utc_time(self.hass, partial(call_later_listener, self), (dt_util.utcnow() + timedelta(seconds=DEBOUNCE_TIMEOUT))) self.debounce[func.__name__] = (remove_listener, *args) logger.debug('%s: Start %s timeout', self.entity_id, func.__name__.replace('set_', )) name = getmodule(func).__name__ logger = logging.getLogger(name) return wrapper
def debounce(func): @ha_callback def call_later_listener(self, *args): 'Callback listener called from call_later.' debounce_params = self.debounce.pop(func.__name__, None) if debounce_params: self.hass.async_add_job(func, self, *debounce_params[1:]) @wraps(func) def wrapper(self, *args): 'Wrapper starts async timer.' debounce_params = self.debounce.pop(func.__name__, None) if debounce_params: debounce_params[0]() remove_listener = track_point_in_utc_time(self.hass, partial(call_later_listener, self), (dt_util.utcnow() + timedelta(seconds=DEBOUNCE_TIMEOUT))) self.debounce[func.__name__] = (remove_listener, *args) logger.debug('%s: Start %s timeout', self.entity_id, func.__name__.replace('set_', )) name = getmodule(func).__name__ logger = logging.getLogger(name) return wrapper<|docstring|>Decorator function. Debounce callbacks form HomeKit.<|endoftext|>
3226cf1f407d093140dfe2ac02425aff41bef4d7fe928b81d0dee389235c986f
@ha_callback def call_later_listener(self, *args): 'Callback listener called from call_later.' debounce_params = self.debounce.pop(func.__name__, None) if debounce_params: self.hass.async_add_job(func, self, *debounce_params[1:])
Callback listener called from call_later.
homeassistant/components/homekit/accessories.py
call_later_listener
ellsclytn/home-assistant
0
python
@ha_callback def call_later_listener(self, *args): debounce_params = self.debounce.pop(func.__name__, None) if debounce_params: self.hass.async_add_job(func, self, *debounce_params[1:])
@ha_callback def call_later_listener(self, *args): debounce_params = self.debounce.pop(func.__name__, None) if debounce_params: self.hass.async_add_job(func, self, *debounce_params[1:])<|docstring|>Callback listener called from call_later.<|endoftext|>
dfdba27c96f0d278201e3ef3cfe07de3e5e8c377c09fbb8d30180392e33fb67d
@wraps(func) def wrapper(self, *args): 'Wrapper starts async timer.' debounce_params = self.debounce.pop(func.__name__, None) if debounce_params: debounce_params[0]() remove_listener = track_point_in_utc_time(self.hass, partial(call_later_listener, self), (dt_util.utcnow() + timedelta(seconds=DEBOUNCE_TIMEOUT))) self.debounce[func.__name__] = (remove_listener, *args) logger.debug('%s: Start %s timeout', self.entity_id, func.__name__.replace('set_', ''))
Wrapper starts async timer.
homeassistant/components/homekit/accessories.py
wrapper
ellsclytn/home-assistant
0
python
@wraps(func) def wrapper(self, *args): debounce_params = self.debounce.pop(func.__name__, None) if debounce_params: debounce_params[0]() remove_listener = track_point_in_utc_time(self.hass, partial(call_later_listener, self), (dt_util.utcnow() + timedelta(seconds=DEBOUNCE_TIMEOUT))) self.debounce[func.__name__] = (remove_listener, *args) logger.debug('%s: Start %s timeout', self.entity_id, func.__name__.replace('set_', ))
@wraps(func) def wrapper(self, *args): debounce_params = self.debounce.pop(func.__name__, None) if debounce_params: debounce_params[0]() remove_listener = track_point_in_utc_time(self.hass, partial(call_later_listener, self), (dt_util.utcnow() + timedelta(seconds=DEBOUNCE_TIMEOUT))) self.debounce[func.__name__] = (remove_listener, *args) logger.debug('%s: Start %s timeout', self.entity_id, func.__name__.replace('set_', ))<|docstring|>Wrapper starts async timer.<|endoftext|>
27dc5ad998c7b411c16f952e6feb93d7fba869c61b81ccd3a6c2b38eb9fae159
def __init__(self, hass, driver, name, entity_id, aid, config, category=CATEGORY_OTHER): 'Initialize a Accessory object.' super().__init__(driver, name, aid=aid) model = split_entity_id(entity_id)[0].replace('_', ' ').title() self.set_info_service(firmware_revision=__version__, manufacturer=MANUFACTURER, model=model, serial_number=entity_id) self.category = category self.config = config self.entity_id = entity_id self.hass = hass self.debounce = {}
Initialize a Accessory object.
homeassistant/components/homekit/accessories.py
__init__
ellsclytn/home-assistant
0
python
def __init__(self, hass, driver, name, entity_id, aid, config, category=CATEGORY_OTHER): super().__init__(driver, name, aid=aid) model = split_entity_id(entity_id)[0].replace('_', ' ').title() self.set_info_service(firmware_revision=__version__, manufacturer=MANUFACTURER, model=model, serial_number=entity_id) self.category = category self.config = config self.entity_id = entity_id self.hass = hass self.debounce = {}
def __init__(self, hass, driver, name, entity_id, aid, config, category=CATEGORY_OTHER): super().__init__(driver, name, aid=aid) model = split_entity_id(entity_id)[0].replace('_', ' ').title() self.set_info_service(firmware_revision=__version__, manufacturer=MANUFACTURER, model=model, serial_number=entity_id) self.category = category self.config = config self.entity_id = entity_id self.hass = hass self.debounce = {}<|docstring|>Initialize a Accessory object.<|endoftext|>
d017fed2018cf8f6b20a861835cacb617112b5b70d038c66f5d8c947a4def09c
async def run(self): 'Method called by accessory after driver is started.\n\n Run inside the HAP-python event loop.\n ' state = self.hass.states.get(self.entity_id) self.hass.add_job(self.update_state_callback, None, None, state) async_track_state_change(self.hass, self.entity_id, self.update_state_callback)
Method called by accessory after driver is started. Run inside the HAP-python event loop.
homeassistant/components/homekit/accessories.py
run
ellsclytn/home-assistant
0
python
async def run(self): 'Method called by accessory after driver is started.\n\n Run inside the HAP-python event loop.\n ' state = self.hass.states.get(self.entity_id) self.hass.add_job(self.update_state_callback, None, None, state) async_track_state_change(self.hass, self.entity_id, self.update_state_callback)
async def run(self): 'Method called by accessory after driver is started.\n\n Run inside the HAP-python event loop.\n ' state = self.hass.states.get(self.entity_id) self.hass.add_job(self.update_state_callback, None, None, state) async_track_state_change(self.hass, self.entity_id, self.update_state_callback)<|docstring|>Method called by accessory after driver is started. Run inside the HAP-python event loop.<|endoftext|>
5206ec7f6ef4475a6445e3773e31172a3db0902c91b7b2102b2af99405c19554
@ha_callback def update_state_callback(self, entity_id=None, old_state=None, new_state=None): 'Callback from state change listener.' _LOGGER.debug('New_state: %s', new_state) if (new_state is None): return self.hass.async_add_job(self.update_state, new_state)
Callback from state change listener.
homeassistant/components/homekit/accessories.py
update_state_callback
ellsclytn/home-assistant
0
python
@ha_callback def update_state_callback(self, entity_id=None, old_state=None, new_state=None): _LOGGER.debug('New_state: %s', new_state) if (new_state is None): return self.hass.async_add_job(self.update_state, new_state)
@ha_callback def update_state_callback(self, entity_id=None, old_state=None, new_state=None): _LOGGER.debug('New_state: %s', new_state) if (new_state is None): return self.hass.async_add_job(self.update_state, new_state)<|docstring|>Callback from state change listener.<|endoftext|>
bce0ddc35f700ff7b1d55480e931900cc9c02dce11bcf7d7d9e25a7ffa83b9af
def update_state(self, new_state): 'Method called on state change to update HomeKit value.\n\n Overridden by accessory types.\n ' raise NotImplementedError()
Method called on state change to update HomeKit value. Overridden by accessory types.
homeassistant/components/homekit/accessories.py
update_state
ellsclytn/home-assistant
0
python
def update_state(self, new_state): 'Method called on state change to update HomeKit value.\n\n Overridden by accessory types.\n ' raise NotImplementedError()
def update_state(self, new_state): 'Method called on state change to update HomeKit value.\n\n Overridden by accessory types.\n ' raise NotImplementedError()<|docstring|>Method called on state change to update HomeKit value. Overridden by accessory types.<|endoftext|>
208c83e858615b7732439c27315501406b84981670fb7d18e468ac6275b569f8
def __init__(self, hass, driver, name=BRIDGE_NAME): 'Initialize a Bridge object.' super().__init__(driver, name) self.set_info_service(firmware_revision=__version__, manufacturer=MANUFACTURER, model=BRIDGE_MODEL, serial_number=BRIDGE_SERIAL_NUMBER) self.hass = hass
Initialize a Bridge object.
homeassistant/components/homekit/accessories.py
__init__
ellsclytn/home-assistant
0
python
def __init__(self, hass, driver, name=BRIDGE_NAME): super().__init__(driver, name) self.set_info_service(firmware_revision=__version__, manufacturer=MANUFACTURER, model=BRIDGE_MODEL, serial_number=BRIDGE_SERIAL_NUMBER) self.hass = hass
def __init__(self, hass, driver, name=BRIDGE_NAME): super().__init__(driver, name) self.set_info_service(firmware_revision=__version__, manufacturer=MANUFACTURER, model=BRIDGE_MODEL, serial_number=BRIDGE_SERIAL_NUMBER) self.hass = hass<|docstring|>Initialize a Bridge object.<|endoftext|>
97b4c4d7d22ce779a21ebb2d4539cfcb9f51afab13712bc1dfaef633280b4712
def setup_message(self): 'Prevent print of pyhap setup message to terminal.' pass
Prevent print of pyhap setup message to terminal.
homeassistant/components/homekit/accessories.py
setup_message
ellsclytn/home-assistant
0
python
def setup_message(self): pass
def setup_message(self): pass<|docstring|>Prevent print of pyhap setup message to terminal.<|endoftext|>
8f3552e6cde56b40f055e704cf3f6cdcd91ba88f52a1aac7b947050fff864f81
def __init__(self, hass, **kwargs): 'Initialize a AccessoryDriver object.' super().__init__(**kwargs) self.hass = hass
Initialize a AccessoryDriver object.
homeassistant/components/homekit/accessories.py
__init__
ellsclytn/home-assistant
0
python
def __init__(self, hass, **kwargs): super().__init__(**kwargs) self.hass = hass
def __init__(self, hass, **kwargs): super().__init__(**kwargs) self.hass = hass<|docstring|>Initialize a AccessoryDriver object.<|endoftext|>
a84f79174930d627b987ad80582999f6d9ef5c3dc51f632eb4bf1d908f7f3b23
def pair(self, client_uuid, client_public): 'Override super function to dismiss setup message if paired.' success = super().pair(client_uuid, client_public) if success: dismiss_setup_message(self.hass) return success
Override super function to dismiss setup message if paired.
homeassistant/components/homekit/accessories.py
pair
ellsclytn/home-assistant
0
python
def pair(self, client_uuid, client_public): success = super().pair(client_uuid, client_public) if success: dismiss_setup_message(self.hass) return success
def pair(self, client_uuid, client_public): success = super().pair(client_uuid, client_public) if success: dismiss_setup_message(self.hass) return success<|docstring|>Override super function to dismiss setup message if paired.<|endoftext|>
e8611daa867adc70fd29108886708c881911433dcd51fc470a3390c9e93671b5
def unpair(self, client_uuid): 'Override super function to show setup message if unpaired.' super().unpair(client_uuid) show_setup_message(self.hass, self.state.pincode)
Override super function to show setup message if unpaired.
homeassistant/components/homekit/accessories.py
unpair
ellsclytn/home-assistant
0
python
def unpair(self, client_uuid): super().unpair(client_uuid) show_setup_message(self.hass, self.state.pincode)
def unpair(self, client_uuid): super().unpair(client_uuid) show_setup_message(self.hass, self.state.pincode)<|docstring|>Override super function to show setup message if unpaired.<|endoftext|>
6b8667ce0beee80458a2de6d576ce233f99f2adb1e4c7a03c4814c8aa40284a8
def cumulative_sum_minus_last(l, offset=0): 'Returns cumulative sums for set of counts, removing last entry.\n\n Returns the cumulative sums for a set of counts with the first returned value\n starting at 0. I.e [3,2,4] -> [0, 3, 5]. Note last sum element 9 is missing.\n Useful for reindexing\n\n Parameters\n ----------\n l: list\n List of integers. Typically small counts.\n ' return (np.delete(np.insert(np.cumsum(l), 0, 0), (- 1)) + offset)
Returns cumulative sums for set of counts, removing last entry. Returns the cumulative sums for a set of counts with the first returned value starting at 0. I.e [3,2,4] -> [0, 3, 5]. Note last sum element 9 is missing. Useful for reindexing Parameters ---------- l: list List of integers. Typically small counts.
dcCustom/feat/mol_graphs.py
cumulative_sum_minus_last
simonfqy/DTI_prediction
31
python
def cumulative_sum_minus_last(l, offset=0): 'Returns cumulative sums for set of counts, removing last entry.\n\n Returns the cumulative sums for a set of counts with the first returned value\n starting at 0. I.e [3,2,4] -> [0, 3, 5]. Note last sum element 9 is missing.\n Useful for reindexing\n\n Parameters\n ----------\n l: list\n List of integers. Typically small counts.\n ' return (np.delete(np.insert(np.cumsum(l), 0, 0), (- 1)) + offset)
def cumulative_sum_minus_last(l, offset=0): 'Returns cumulative sums for set of counts, removing last entry.\n\n Returns the cumulative sums for a set of counts with the first returned value\n starting at 0. I.e [3,2,4] -> [0, 3, 5]. Note last sum element 9 is missing.\n Useful for reindexing\n\n Parameters\n ----------\n l: list\n List of integers. Typically small counts.\n ' return (np.delete(np.insert(np.cumsum(l), 0, 0), (- 1)) + offset)<|docstring|>Returns cumulative sums for set of counts, removing last entry. Returns the cumulative sums for a set of counts with the first returned value starting at 0. I.e [3,2,4] -> [0, 3, 5]. Note last sum element 9 is missing. Useful for reindexing Parameters ---------- l: list List of integers. Typically small counts.<|endoftext|>
ec02e999486e876c26b5dee085e80527a55df56300eebb6aa2155448ed0a55d9
def cumulative_sum(l, offset=0): 'Returns cumulative sums for set of counts.\n\n Returns the cumulative sums for a set of counts with the first returned value\n starting at 0. I.e [3,2,4] -> [0, 3, 5, 9]. Keeps final sum for searching. \n Useful for reindexing.\n\n Parameters\n ----------\n l: list\n List of integers. Typically small counts.\n ' return (np.insert(np.cumsum(l), 0, 0) + offset)
Returns cumulative sums for set of counts. Returns the cumulative sums for a set of counts with the first returned value starting at 0. I.e [3,2,4] -> [0, 3, 5, 9]. Keeps final sum for searching. Useful for reindexing. Parameters ---------- l: list List of integers. Typically small counts.
dcCustom/feat/mol_graphs.py
cumulative_sum
simonfqy/DTI_prediction
31
python
def cumulative_sum(l, offset=0): 'Returns cumulative sums for set of counts.\n\n Returns the cumulative sums for a set of counts with the first returned value\n starting at 0. I.e [3,2,4] -> [0, 3, 5, 9]. Keeps final sum for searching. \n Useful for reindexing.\n\n Parameters\n ----------\n l: list\n List of integers. Typically small counts.\n ' return (np.insert(np.cumsum(l), 0, 0) + offset)
def cumulative_sum(l, offset=0): 'Returns cumulative sums for set of counts.\n\n Returns the cumulative sums for a set of counts with the first returned value\n starting at 0. I.e [3,2,4] -> [0, 3, 5, 9]. Keeps final sum for searching. \n Useful for reindexing.\n\n Parameters\n ----------\n l: list\n List of integers. Typically small counts.\n ' return (np.insert(np.cumsum(l), 0, 0) + offset)<|docstring|>Returns cumulative sums for set of counts. Returns the cumulative sums for a set of counts with the first returned value starting at 0. I.e [3,2,4] -> [0, 3, 5, 9]. Keeps final sum for searching. Useful for reindexing. Parameters ---------- l: list List of integers. Typically small counts.<|endoftext|>
c070946fbdcdd7153a52e8c66481d8edb3c48e9eff35ccceff983cd49fda461b
def __init__(self, atom_features, adj_list, smiles=None, max_deg=10, min_deg=0): '\n Parameters\n ----------\n atom_features: np.ndarray\n Has shape (n_atoms, n_feat)\n canon_adj_list: list\n List of length n_atoms, with neighor indices of each atom.\n max_deg: int, optional\n Maximum degree of any atom.\n min_deg: int, optional\n Minimum degree of any atom.\n ' self.atom_features = atom_features (self.n_atoms, self.n_feat) = atom_features.shape self.deg_list = np.array([len(nbrs) for nbrs in adj_list], dtype=np.int32) self.canon_adj_list = adj_list self.deg_adj_lists = [] self.deg_slice = [] self.smiles = smiles self.max_deg = max_deg self.min_deg = min_deg self.membership = (self.get_num_atoms() * [0]) self._deg_sort() self.deg_id_list = (np.array(self.deg_list) - min_deg) deg_size = [self.get_num_atoms_with_deg(deg) for deg in range(self.min_deg, (self.max_deg + 1))] self.deg_start = cumulative_sum(deg_size) deg_block_indices = [(i - self.deg_start[self.deg_list[i]]) for i in range(self.n_atoms)] self.deg_block_indices = np.array(deg_block_indices)
Parameters ---------- atom_features: np.ndarray Has shape (n_atoms, n_feat) canon_adj_list: list List of length n_atoms, with neighor indices of each atom. max_deg: int, optional Maximum degree of any atom. min_deg: int, optional Minimum degree of any atom.
dcCustom/feat/mol_graphs.py
__init__
simonfqy/DTI_prediction
31
python
def __init__(self, atom_features, adj_list, smiles=None, max_deg=10, min_deg=0): '\n Parameters\n ----------\n atom_features: np.ndarray\n Has shape (n_atoms, n_feat)\n canon_adj_list: list\n List of length n_atoms, with neighor indices of each atom.\n max_deg: int, optional\n Maximum degree of any atom.\n min_deg: int, optional\n Minimum degree of any atom.\n ' self.atom_features = atom_features (self.n_atoms, self.n_feat) = atom_features.shape self.deg_list = np.array([len(nbrs) for nbrs in adj_list], dtype=np.int32) self.canon_adj_list = adj_list self.deg_adj_lists = [] self.deg_slice = [] self.smiles = smiles self.max_deg = max_deg self.min_deg = min_deg self.membership = (self.get_num_atoms() * [0]) self._deg_sort() self.deg_id_list = (np.array(self.deg_list) - min_deg) deg_size = [self.get_num_atoms_with_deg(deg) for deg in range(self.min_deg, (self.max_deg + 1))] self.deg_start = cumulative_sum(deg_size) deg_block_indices = [(i - self.deg_start[self.deg_list[i]]) for i in range(self.n_atoms)] self.deg_block_indices = np.array(deg_block_indices)
def __init__(self, atom_features, adj_list, smiles=None, max_deg=10, min_deg=0): '\n Parameters\n ----------\n atom_features: np.ndarray\n Has shape (n_atoms, n_feat)\n canon_adj_list: list\n List of length n_atoms, with neighor indices of each atom.\n max_deg: int, optional\n Maximum degree of any atom.\n min_deg: int, optional\n Minimum degree of any atom.\n ' self.atom_features = atom_features (self.n_atoms, self.n_feat) = atom_features.shape self.deg_list = np.array([len(nbrs) for nbrs in adj_list], dtype=np.int32) self.canon_adj_list = adj_list self.deg_adj_lists = [] self.deg_slice = [] self.smiles = smiles self.max_deg = max_deg self.min_deg = min_deg self.membership = (self.get_num_atoms() * [0]) self._deg_sort() self.deg_id_list = (np.array(self.deg_list) - min_deg) deg_size = [self.get_num_atoms_with_deg(deg) for deg in range(self.min_deg, (self.max_deg + 1))] self.deg_start = cumulative_sum(deg_size) deg_block_indices = [(i - self.deg_start[self.deg_list[i]]) for i in range(self.n_atoms)] self.deg_block_indices = np.array(deg_block_indices)<|docstring|>Parameters ---------- atom_features: np.ndarray Has shape (n_atoms, n_feat) canon_adj_list: list List of length n_atoms, with neighor indices of each atom. max_deg: int, optional Maximum degree of any atom. min_deg: int, optional Minimum degree of any atom.<|endoftext|>
d5cd78eff2bf038a17034f881190013fd046f6cb159a8e7634c1fa84a7c85902
def get_atoms_with_deg(self, deg): 'Retrieves atom_features with the specific degree' start_ind = self.deg_slice[((deg - self.min_deg), 0)] size = self.deg_slice[((deg - self.min_deg), 1)] return self.atom_features[(start_ind:(start_ind + size), :)]
Retrieves atom_features with the specific degree
dcCustom/feat/mol_graphs.py
get_atoms_with_deg
simonfqy/DTI_prediction
31
python
def get_atoms_with_deg(self, deg): start_ind = self.deg_slice[((deg - self.min_deg), 0)] size = self.deg_slice[((deg - self.min_deg), 1)] return self.atom_features[(start_ind:(start_ind + size), :)]
def get_atoms_with_deg(self, deg): start_ind = self.deg_slice[((deg - self.min_deg), 0)] size = self.deg_slice[((deg - self.min_deg), 1)] return self.atom_features[(start_ind:(start_ind + size), :)]<|docstring|>Retrieves atom_features with the specific degree<|endoftext|>
78741cae9dd904c8b7e7f08917e8c291c414a087b19b63b099731b47736c0b39
def get_num_atoms_with_deg(self, deg): 'Returns the number of atoms with the given degree' return self.deg_slice[((deg - self.min_deg), 1)]
Returns the number of atoms with the given degree
dcCustom/feat/mol_graphs.py
get_num_atoms_with_deg
simonfqy/DTI_prediction
31
python
def get_num_atoms_with_deg(self, deg): return self.deg_slice[((deg - self.min_deg), 1)]
def get_num_atoms_with_deg(self, deg): return self.deg_slice[((deg - self.min_deg), 1)]<|docstring|>Returns the number of atoms with the given degree<|endoftext|>
a0d09c51a034ec95651671807a769a64461a9df13537a3430e7f82c47104f4b5
def _deg_sort(self): 'Sorts atoms by degree and reorders internal data structures.\n\n Sort the order of the atom_features by degree, maintaining original order\n whenever two atom_features have the same degree. \n ' old_ind = range(self.get_num_atoms()) deg_list = self.deg_list new_ind = list(np.lexsort((old_ind, deg_list))) num_atoms = self.get_num_atoms() self.atom_features = self.atom_features[(new_ind, :)] self.deg_list = [self.deg_list[i] for i in new_ind] self.membership = [self.membership[i] for i in new_ind] old_to_new = dict(zip(new_ind, old_ind)) self.canon_adj_list = [self.canon_adj_list[i] for i in new_ind] self.canon_adj_list = [[old_to_new[k] for k in self.canon_adj_list[i]] for i in range(len(new_ind))] deg_array = np.array(self.deg_list) self.deg_adj_lists = (((self.max_deg + 1) - self.min_deg) * [0]) for deg in range(self.min_deg, (self.max_deg + 1)): rng = np.array(range(num_atoms)) indices = rng[(deg_array == deg)] to_cat = [self.canon_adj_list[i] for i in indices] if (len(to_cat) > 0): adj_list = np.vstack([self.canon_adj_list[i] for i in indices]) self.deg_adj_lists[(deg - self.min_deg)] = adj_list else: self.deg_adj_lists[(deg - self.min_deg)] = np.zeros([0, deg], dtype=np.int32) deg_slice = np.zeros([((self.max_deg + 1) - self.min_deg), 2], dtype=np.int32) for deg in range(self.min_deg, (self.max_deg + 1)): if (deg == 0): deg_size = np.sum((deg_array == deg)) else: deg_size = self.deg_adj_lists[(deg - self.min_deg)].shape[0] deg_slice[((deg - self.min_deg), 1)] = deg_size if (deg > self.min_deg): deg_slice[((deg - self.min_deg), 0)] = (deg_slice[(((deg - self.min_deg) - 1), 0)] + deg_slice[(((deg - self.min_deg) - 1), 1)]) deg_slice[(:, 0)] *= (deg_slice[(:, 1)] != 0) self.deg_slice = deg_slice
Sorts atoms by degree and reorders internal data structures. Sort the order of the atom_features by degree, maintaining original order whenever two atom_features have the same degree.
dcCustom/feat/mol_graphs.py
_deg_sort
simonfqy/DTI_prediction
31
python
def _deg_sort(self): 'Sorts atoms by degree and reorders internal data structures.\n\n Sort the order of the atom_features by degree, maintaining original order\n whenever two atom_features have the same degree. \n ' old_ind = range(self.get_num_atoms()) deg_list = self.deg_list new_ind = list(np.lexsort((old_ind, deg_list))) num_atoms = self.get_num_atoms() self.atom_features = self.atom_features[(new_ind, :)] self.deg_list = [self.deg_list[i] for i in new_ind] self.membership = [self.membership[i] for i in new_ind] old_to_new = dict(zip(new_ind, old_ind)) self.canon_adj_list = [self.canon_adj_list[i] for i in new_ind] self.canon_adj_list = [[old_to_new[k] for k in self.canon_adj_list[i]] for i in range(len(new_ind))] deg_array = np.array(self.deg_list) self.deg_adj_lists = (((self.max_deg + 1) - self.min_deg) * [0]) for deg in range(self.min_deg, (self.max_deg + 1)): rng = np.array(range(num_atoms)) indices = rng[(deg_array == deg)] to_cat = [self.canon_adj_list[i] for i in indices] if (len(to_cat) > 0): adj_list = np.vstack([self.canon_adj_list[i] for i in indices]) self.deg_adj_lists[(deg - self.min_deg)] = adj_list else: self.deg_adj_lists[(deg - self.min_deg)] = np.zeros([0, deg], dtype=np.int32) deg_slice = np.zeros([((self.max_deg + 1) - self.min_deg), 2], dtype=np.int32) for deg in range(self.min_deg, (self.max_deg + 1)): if (deg == 0): deg_size = np.sum((deg_array == deg)) else: deg_size = self.deg_adj_lists[(deg - self.min_deg)].shape[0] deg_slice[((deg - self.min_deg), 1)] = deg_size if (deg > self.min_deg): deg_slice[((deg - self.min_deg), 0)] = (deg_slice[(((deg - self.min_deg) - 1), 0)] + deg_slice[(((deg - self.min_deg) - 1), 1)]) deg_slice[(:, 0)] *= (deg_slice[(:, 1)] != 0) self.deg_slice = deg_slice
def _deg_sort(self): 'Sorts atoms by degree and reorders internal data structures.\n\n Sort the order of the atom_features by degree, maintaining original order\n whenever two atom_features have the same degree. \n ' old_ind = range(self.get_num_atoms()) deg_list = self.deg_list new_ind = list(np.lexsort((old_ind, deg_list))) num_atoms = self.get_num_atoms() self.atom_features = self.atom_features[(new_ind, :)] self.deg_list = [self.deg_list[i] for i in new_ind] self.membership = [self.membership[i] for i in new_ind] old_to_new = dict(zip(new_ind, old_ind)) self.canon_adj_list = [self.canon_adj_list[i] for i in new_ind] self.canon_adj_list = [[old_to_new[k] for k in self.canon_adj_list[i]] for i in range(len(new_ind))] deg_array = np.array(self.deg_list) self.deg_adj_lists = (((self.max_deg + 1) - self.min_deg) * [0]) for deg in range(self.min_deg, (self.max_deg + 1)): rng = np.array(range(num_atoms)) indices = rng[(deg_array == deg)] to_cat = [self.canon_adj_list[i] for i in indices] if (len(to_cat) > 0): adj_list = np.vstack([self.canon_adj_list[i] for i in indices]) self.deg_adj_lists[(deg - self.min_deg)] = adj_list else: self.deg_adj_lists[(deg - self.min_deg)] = np.zeros([0, deg], dtype=np.int32) deg_slice = np.zeros([((self.max_deg + 1) - self.min_deg), 2], dtype=np.int32) for deg in range(self.min_deg, (self.max_deg + 1)): if (deg == 0): deg_size = np.sum((deg_array == deg)) else: deg_size = self.deg_adj_lists[(deg - self.min_deg)].shape[0] deg_slice[((deg - self.min_deg), 1)] = deg_size if (deg > self.min_deg): deg_slice[((deg - self.min_deg), 0)] = (deg_slice[(((deg - self.min_deg) - 1), 0)] + deg_slice[(((deg - self.min_deg) - 1), 1)]) deg_slice[(:, 0)] *= (deg_slice[(:, 1)] != 0) self.deg_slice = deg_slice<|docstring|>Sorts atoms by degree and reorders internal data structures. Sort the order of the atom_features by degree, maintaining original order whenever two atom_features have the same degree.<|endoftext|>
ef00b610a2e35c1a6d1787628085c754e9197546a3552fbf547d7f2280a0bb6c
def get_atom_features(self): 'Returns canonicalized version of atom features.\n\n Features are sorted by atom degree, with original order maintained when\n degrees are same.\n ' return self.atom_features
Returns canonicalized version of atom features. Features are sorted by atom degree, with original order maintained when degrees are same.
dcCustom/feat/mol_graphs.py
get_atom_features
simonfqy/DTI_prediction
31
python
def get_atom_features(self): 'Returns canonicalized version of atom features.\n\n Features are sorted by atom degree, with original order maintained when\n degrees are same.\n ' return self.atom_features
def get_atom_features(self): 'Returns canonicalized version of atom features.\n\n Features are sorted by atom degree, with original order maintained when\n degrees are same.\n ' return self.atom_features<|docstring|>Returns canonicalized version of atom features. Features are sorted by atom degree, with original order maintained when degrees are same.<|endoftext|>
cb5dc576f0f84cd602e50eb972e03294bfbd058c5e2e994a242bdbece0112771
def get_adjacency_list(self): 'Returns a canonicalized adjacency list.\n\n Canonicalized means that the atoms are re-ordered by degree.\n\n Returns\n -------\n list\n Canonicalized form of adjacency list.\n ' return self.canon_adj_list
Returns a canonicalized adjacency list. Canonicalized means that the atoms are re-ordered by degree. Returns ------- list Canonicalized form of adjacency list.
dcCustom/feat/mol_graphs.py
get_adjacency_list
simonfqy/DTI_prediction
31
python
def get_adjacency_list(self): 'Returns a canonicalized adjacency list.\n\n Canonicalized means that the atoms are re-ordered by degree.\n\n Returns\n -------\n list\n Canonicalized form of adjacency list.\n ' return self.canon_adj_list
def get_adjacency_list(self): 'Returns a canonicalized adjacency list.\n\n Canonicalized means that the atoms are re-ordered by degree.\n\n Returns\n -------\n list\n Canonicalized form of adjacency list.\n ' return self.canon_adj_list<|docstring|>Returns a canonicalized adjacency list. Canonicalized means that the atoms are re-ordered by degree. Returns ------- list Canonicalized form of adjacency list.<|endoftext|>
189f343f5711a1beaaa809d3280a0bba710a7f8cf6b707f843c15f5e11cc8fee
def get_deg_adjacency_lists(self): 'Returns adjacency lists grouped by atom degree.\n\n Returns\n -------\n list\n Has length (max_deg+1-min_deg). The element at position deg is\n itself a list of the neighbor-lists for atoms with degree deg.\n ' return self.deg_adj_lists
Returns adjacency lists grouped by atom degree. Returns ------- list Has length (max_deg+1-min_deg). The element at position deg is itself a list of the neighbor-lists for atoms with degree deg.
dcCustom/feat/mol_graphs.py
get_deg_adjacency_lists
simonfqy/DTI_prediction
31
python
def get_deg_adjacency_lists(self): 'Returns adjacency lists grouped by atom degree.\n\n Returns\n -------\n list\n Has length (max_deg+1-min_deg). The element at position deg is\n itself a list of the neighbor-lists for atoms with degree deg.\n ' return self.deg_adj_lists
def get_deg_adjacency_lists(self): 'Returns adjacency lists grouped by atom degree.\n\n Returns\n -------\n list\n Has length (max_deg+1-min_deg). The element at position deg is\n itself a list of the neighbor-lists for atoms with degree deg.\n ' return self.deg_adj_lists<|docstring|>Returns adjacency lists grouped by atom degree. Returns ------- list Has length (max_deg+1-min_deg). The element at position deg is itself a list of the neighbor-lists for atoms with degree deg.<|endoftext|>
7f5e166f22f7912dd53667a2f51e496b6caa52c23779dbc1f869d17f30c58a8f
def get_deg_slice(self): "Returns degree-slice tensor.\n \n The deg_slice tensor allows indexing into a flattened version of the\n molecule's atoms. Assume atoms are sorted in order of degree. Then\n deg_slice[deg][0] is the starting position for atoms of degree deg in\n flattened list, and deg_slice[deg][1] is the number of atoms with degree deg.\n\n Note deg_slice has shape (max_deg+1-min_deg, 2).\n\n Returns\n -------\n deg_slice: np.ndarray \n Shape (max_deg+1-min_deg, 2)\n " return self.deg_slice
Returns degree-slice tensor. The deg_slice tensor allows indexing into a flattened version of the molecule's atoms. Assume atoms are sorted in order of degree. Then deg_slice[deg][0] is the starting position for atoms of degree deg in flattened list, and deg_slice[deg][1] is the number of atoms with degree deg. Note deg_slice has shape (max_deg+1-min_deg, 2). Returns ------- deg_slice: np.ndarray Shape (max_deg+1-min_deg, 2)
dcCustom/feat/mol_graphs.py
get_deg_slice
simonfqy/DTI_prediction
31
python
def get_deg_slice(self): "Returns degree-slice tensor.\n \n The deg_slice tensor allows indexing into a flattened version of the\n molecule's atoms. Assume atoms are sorted in order of degree. Then\n deg_slice[deg][0] is the starting position for atoms of degree deg in\n flattened list, and deg_slice[deg][1] is the number of atoms with degree deg.\n\n Note deg_slice has shape (max_deg+1-min_deg, 2).\n\n Returns\n -------\n deg_slice: np.ndarray \n Shape (max_deg+1-min_deg, 2)\n " return self.deg_slice
def get_deg_slice(self): "Returns degree-slice tensor.\n \n The deg_slice tensor allows indexing into a flattened version of the\n molecule's atoms. Assume atoms are sorted in order of degree. Then\n deg_slice[deg][0] is the starting position for atoms of degree deg in\n flattened list, and deg_slice[deg][1] is the number of atoms with degree deg.\n\n Note deg_slice has shape (max_deg+1-min_deg, 2).\n\n Returns\n -------\n deg_slice: np.ndarray \n Shape (max_deg+1-min_deg, 2)\n " return self.deg_slice<|docstring|>Returns degree-slice tensor. The deg_slice tensor allows indexing into a flattened version of the molecule's atoms. Assume atoms are sorted in order of degree. Then deg_slice[deg][0] is the starting position for atoms of degree deg in flattened list, and deg_slice[deg][1] is the number of atoms with degree deg. Note deg_slice has shape (max_deg+1-min_deg, 2). Returns ------- deg_slice: np.ndarray Shape (max_deg+1-min_deg, 2)<|endoftext|>
7956509d9c996527bc0e9dac0764163fc73d3971c1455350fe3e6d1349135376
@staticmethod def get_null_mol(n_feat, max_deg=10, min_deg=0): 'Constructs a null molecules\n\n Get one molecule with one atom of each degree, with all the atoms \n connected to themselves, and containing n_feat features.\n \n Parameters \n ----------\n n_feat : int\n number of features for the nodes in the null molecule\n ' atom_features = np.random.uniform(0, 1, [((max_deg + 1) - min_deg), n_feat]) canon_adj_list = [(deg * [(deg - min_deg)]) for deg in range(min_deg, (max_deg + 1))] return ConvMol(atom_features, canon_adj_list)
Constructs a null molecules Get one molecule with one atom of each degree, with all the atoms connected to themselves, and containing n_feat features. Parameters ---------- n_feat : int number of features for the nodes in the null molecule
dcCustom/feat/mol_graphs.py
get_null_mol
simonfqy/DTI_prediction
31
python
@staticmethod def get_null_mol(n_feat, max_deg=10, min_deg=0): 'Constructs a null molecules\n\n Get one molecule with one atom of each degree, with all the atoms \n connected to themselves, and containing n_feat features.\n \n Parameters \n ----------\n n_feat : int\n number of features for the nodes in the null molecule\n ' atom_features = np.random.uniform(0, 1, [((max_deg + 1) - min_deg), n_feat]) canon_adj_list = [(deg * [(deg - min_deg)]) for deg in range(min_deg, (max_deg + 1))] return ConvMol(atom_features, canon_adj_list)
@staticmethod def get_null_mol(n_feat, max_deg=10, min_deg=0): 'Constructs a null molecules\n\n Get one molecule with one atom of each degree, with all the atoms \n connected to themselves, and containing n_feat features.\n \n Parameters \n ----------\n n_feat : int\n number of features for the nodes in the null molecule\n ' atom_features = np.random.uniform(0, 1, [((max_deg + 1) - min_deg), n_feat]) canon_adj_list = [(deg * [(deg - min_deg)]) for deg in range(min_deg, (max_deg + 1))] return ConvMol(atom_features, canon_adj_list)<|docstring|>Constructs a null molecules Get one molecule with one atom of each degree, with all the atoms connected to themselves, and containing n_feat features. Parameters ---------- n_feat : int number of features for the nodes in the null molecule<|endoftext|>
ee42d244ca5de7ca0be930f713b549c3f4799e9095cbbce8a49a47907e57d0b9
@staticmethod def agglomerate_mols(mols, max_deg=10, min_deg=0): "Concatenates list of ConvMol's into one mol object that can be used to feed \n into tensorflow placeholders. The indexing of the molecules are preserved during the\n combination, but the indexing of the atoms are greatly changed.\n \n Parameters \n ----\n mols: list\n ConvMol objects to be combined into one molecule." num_mols = len(mols) atoms_per_mol = [mol.get_num_atoms() for mol in mols] smiles_per_mol = [mol.get_smiles() for mol in mols] atoms_by_deg = [mol.get_atoms_with_deg(deg) for deg in range(min_deg, (max_deg + 1)) for mol in mols] all_atoms = np.vstack(atoms_by_deg) mol_deg_sz = [[mol.get_num_atoms_with_deg(deg) for mol in mols] for deg in range(min_deg, (max_deg + 1))] deg_sizes = list(map(np.sum, mol_deg_sz)) deg_start = cumulative_sum_minus_last(deg_sizes) deg_slice = np.array(list(zip(deg_start, deg_sizes))) membership = [k for deg in range(min_deg, (max_deg + 1)) for k in range(num_mols) for i in range(mol_deg_sz[deg][k])] start_by_deg = np.vstack([cumulative_sum_minus_last(l) for l in mol_deg_sz]) deg_block_indices = [mol.deg_block_indices for mol in mols] deg_id_lists = [mol.deg_id_list for mol in mols] start_per_mol = (deg_start[(:, np.newaxis)] + start_by_deg) def to_final_id(mol_atom_id, mol_id): deg_id = deg_id_lists[mol_id][mol_atom_id] return (start_per_mol[(deg_id, mol_id)] + deg_block_indices[mol_id][mol_atom_id]) deg_adj_lists = [np.zeros([deg_sizes[deg], deg], dtype=np.int32) for deg in range(min_deg, (max_deg + 1))] for deg in range(min_deg, (max_deg + 1)): row = 0 deg_id = (deg - min_deg) for mol_id in range(num_mols): nbr_list = mols[mol_id].deg_adj_lists[deg_id] for i in range(nbr_list.shape[0]): for j in range(nbr_list.shape[1]): deg_adj_lists[deg_id][(row, j)] = to_final_id(nbr_list[(i, j)], mol_id) row += 1 concat_mol = MultiConvMol(all_atoms, deg_adj_lists, deg_slice, membership, num_mols, smiles_list=smiles_per_mol) return concat_mol
Concatenates list of ConvMol's into one mol object that can be used to feed into tensorflow placeholders. The indexing of the molecules are preserved during the combination, but the indexing of the atoms are greatly changed. Parameters ---- mols: list ConvMol objects to be combined into one molecule.
dcCustom/feat/mol_graphs.py
agglomerate_mols
simonfqy/DTI_prediction
31
python
@staticmethod def agglomerate_mols(mols, max_deg=10, min_deg=0): "Concatenates list of ConvMol's into one mol object that can be used to feed \n into tensorflow placeholders. The indexing of the molecules are preserved during the\n combination, but the indexing of the atoms are greatly changed.\n \n Parameters \n ----\n mols: list\n ConvMol objects to be combined into one molecule." num_mols = len(mols) atoms_per_mol = [mol.get_num_atoms() for mol in mols] smiles_per_mol = [mol.get_smiles() for mol in mols] atoms_by_deg = [mol.get_atoms_with_deg(deg) for deg in range(min_deg, (max_deg + 1)) for mol in mols] all_atoms = np.vstack(atoms_by_deg) mol_deg_sz = [[mol.get_num_atoms_with_deg(deg) for mol in mols] for deg in range(min_deg, (max_deg + 1))] deg_sizes = list(map(np.sum, mol_deg_sz)) deg_start = cumulative_sum_minus_last(deg_sizes) deg_slice = np.array(list(zip(deg_start, deg_sizes))) membership = [k for deg in range(min_deg, (max_deg + 1)) for k in range(num_mols) for i in range(mol_deg_sz[deg][k])] start_by_deg = np.vstack([cumulative_sum_minus_last(l) for l in mol_deg_sz]) deg_block_indices = [mol.deg_block_indices for mol in mols] deg_id_lists = [mol.deg_id_list for mol in mols] start_per_mol = (deg_start[(:, np.newaxis)] + start_by_deg) def to_final_id(mol_atom_id, mol_id): deg_id = deg_id_lists[mol_id][mol_atom_id] return (start_per_mol[(deg_id, mol_id)] + deg_block_indices[mol_id][mol_atom_id]) deg_adj_lists = [np.zeros([deg_sizes[deg], deg], dtype=np.int32) for deg in range(min_deg, (max_deg + 1))] for deg in range(min_deg, (max_deg + 1)): row = 0 deg_id = (deg - min_deg) for mol_id in range(num_mols): nbr_list = mols[mol_id].deg_adj_lists[deg_id] for i in range(nbr_list.shape[0]): for j in range(nbr_list.shape[1]): deg_adj_lists[deg_id][(row, j)] = to_final_id(nbr_list[(i, j)], mol_id) row += 1 concat_mol = MultiConvMol(all_atoms, deg_adj_lists, deg_slice, membership, num_mols, smiles_list=smiles_per_mol) return concat_mol
@staticmethod def agglomerate_mols(mols, max_deg=10, min_deg=0): "Concatenates list of ConvMol's into one mol object that can be used to feed \n into tensorflow placeholders. The indexing of the molecules are preserved during the\n combination, but the indexing of the atoms are greatly changed.\n \n Parameters \n ----\n mols: list\n ConvMol objects to be combined into one molecule." num_mols = len(mols) atoms_per_mol = [mol.get_num_atoms() for mol in mols] smiles_per_mol = [mol.get_smiles() for mol in mols] atoms_by_deg = [mol.get_atoms_with_deg(deg) for deg in range(min_deg, (max_deg + 1)) for mol in mols] all_atoms = np.vstack(atoms_by_deg) mol_deg_sz = [[mol.get_num_atoms_with_deg(deg) for mol in mols] for deg in range(min_deg, (max_deg + 1))] deg_sizes = list(map(np.sum, mol_deg_sz)) deg_start = cumulative_sum_minus_last(deg_sizes) deg_slice = np.array(list(zip(deg_start, deg_sizes))) membership = [k for deg in range(min_deg, (max_deg + 1)) for k in range(num_mols) for i in range(mol_deg_sz[deg][k])] start_by_deg = np.vstack([cumulative_sum_minus_last(l) for l in mol_deg_sz]) deg_block_indices = [mol.deg_block_indices for mol in mols] deg_id_lists = [mol.deg_id_list for mol in mols] start_per_mol = (deg_start[(:, np.newaxis)] + start_by_deg) def to_final_id(mol_atom_id, mol_id): deg_id = deg_id_lists[mol_id][mol_atom_id] return (start_per_mol[(deg_id, mol_id)] + deg_block_indices[mol_id][mol_atom_id]) deg_adj_lists = [np.zeros([deg_sizes[deg], deg], dtype=np.int32) for deg in range(min_deg, (max_deg + 1))] for deg in range(min_deg, (max_deg + 1)): row = 0 deg_id = (deg - min_deg) for mol_id in range(num_mols): nbr_list = mols[mol_id].deg_adj_lists[deg_id] for i in range(nbr_list.shape[0]): for j in range(nbr_list.shape[1]): deg_adj_lists[deg_id][(row, j)] = to_final_id(nbr_list[(i, j)], mol_id) row += 1 concat_mol = MultiConvMol(all_atoms, deg_adj_lists, deg_slice, membership, num_mols, smiles_list=smiles_per_mol) return concat_mol<|docstring|>Concatenates list of ConvMol's into one mol object that can be used to feed into tensorflow placeholders. The indexing of the molecules are preserved during the combination, but the indexing of the atoms are greatly changed. Parameters ---- mols: list ConvMol objects to be combined into one molecule.<|endoftext|>
2685e744e30a413d93b3d5c2d18ca438fcc7dbb80a0e5ab72e340265f115bbea
@pytest.fixture(scope='session', autouse=True) def torch_single_threaded(): 'Make PyTorch execute code single-threaded.\n\n This allows us to run the test suite with greater across-test parallelism.\n This is faster, since:\n - There are diminishing returns to more threads within a test.\n - Many tests cannot be multi-threaded (e.g. most not using PyTorch training),\n and we have to set between-test parallelism based on peak resource\n consumption of tests to avoid spurious failures.\n ' torch.set_num_threads(1) torch.set_num_interop_threads(1)
Make PyTorch execute code single-threaded. This allows us to run the test suite with greater across-test parallelism. This is faster, since: - There are diminishing returns to more threads within a test. - Many tests cannot be multi-threaded (e.g. most not using PyTorch training), and we have to set between-test parallelism based on peak resource consumption of tests to avoid spurious failures.
tests/conftest.py
torch_single_threaded
NJFreymuth/imitation
438
python
@pytest.fixture(scope='session', autouse=True) def torch_single_threaded(): 'Make PyTorch execute code single-threaded.\n\n This allows us to run the test suite with greater across-test parallelism.\n This is faster, since:\n - There are diminishing returns to more threads within a test.\n - Many tests cannot be multi-threaded (e.g. most not using PyTorch training),\n and we have to set between-test parallelism based on peak resource\n consumption of tests to avoid spurious failures.\n ' torch.set_num_threads(1) torch.set_num_interop_threads(1)
@pytest.fixture(scope='session', autouse=True) def torch_single_threaded(): 'Make PyTorch execute code single-threaded.\n\n This allows us to run the test suite with greater across-test parallelism.\n This is faster, since:\n - There are diminishing returns to more threads within a test.\n - Many tests cannot be multi-threaded (e.g. most not using PyTorch training),\n and we have to set between-test parallelism based on peak resource\n consumption of tests to avoid spurious failures.\n ' torch.set_num_threads(1) torch.set_num_interop_threads(1)<|docstring|>Make PyTorch execute code single-threaded. This allows us to run the test suite with greater across-test parallelism. This is faster, since: - There are diminishing returns to more threads within a test. - Many tests cannot be multi-threaded (e.g. most not using PyTorch training), and we have to set between-test parallelism based on peak resource consumption of tests to avoid spurious failures.<|endoftext|>
c28bdd0dd852bff848f1eeca0235def561cd4e2cd3260d3c85af4d535e687876
def speech_transcription(input_uri): 'Transcribe speech from a video stored on GCS.' from google.cloud import videointelligence_v1p1beta1 as videointelligence video_client = videointelligence.VideoIntelligenceServiceClient() features = [videointelligence.enums.Feature.SPEECH_TRANSCRIPTION] config = videointelligence.types.SpeechTranscriptionConfig(language_code='en-US', enable_automatic_punctuation=True) video_context = videointelligence.types.VideoContext(speech_transcription_config=config) operation = video_client.annotate_video(input_uri, features=features, video_context=video_context) print('\nProcessing video for speech transcription.') result = operation.result(timeout=180) annotation_results = result.annotation_results[0] for speech_transcription in annotation_results.speech_transcriptions: for alternative in speech_transcription.alternatives: print('Alternative level information:') print('Transcript: {}'.format(alternative.transcript)) print('Confidence: {}\n'.format(alternative.confidence)) print('Word level information:') for word_info in alternative.words: word = word_info.word start_time = word_info.start_time end_time = word_info.end_time print('\t{}s - {}s: {}'.format((start_time.seconds + (start_time.nanos * 1e-09)), (end_time.seconds + (end_time.nanos * 1e-09)), word))
Transcribe speech from a video stored on GCS.
video/cloud-client/analyze/beta_snippets.py
speech_transcription
namrathaPullalarevu/python-docs-samples
3
python
def speech_transcription(input_uri): from google.cloud import videointelligence_v1p1beta1 as videointelligence video_client = videointelligence.VideoIntelligenceServiceClient() features = [videointelligence.enums.Feature.SPEECH_TRANSCRIPTION] config = videointelligence.types.SpeechTranscriptionConfig(language_code='en-US', enable_automatic_punctuation=True) video_context = videointelligence.types.VideoContext(speech_transcription_config=config) operation = video_client.annotate_video(input_uri, features=features, video_context=video_context) print('\nProcessing video for speech transcription.') result = operation.result(timeout=180) annotation_results = result.annotation_results[0] for speech_transcription in annotation_results.speech_transcriptions: for alternative in speech_transcription.alternatives: print('Alternative level information:') print('Transcript: {}'.format(alternative.transcript)) print('Confidence: {}\n'.format(alternative.confidence)) print('Word level information:') for word_info in alternative.words: word = word_info.word start_time = word_info.start_time end_time = word_info.end_time print('\t{}s - {}s: {}'.format((start_time.seconds + (start_time.nanos * 1e-09)), (end_time.seconds + (end_time.nanos * 1e-09)), word))
def speech_transcription(input_uri): from google.cloud import videointelligence_v1p1beta1 as videointelligence video_client = videointelligence.VideoIntelligenceServiceClient() features = [videointelligence.enums.Feature.SPEECH_TRANSCRIPTION] config = videointelligence.types.SpeechTranscriptionConfig(language_code='en-US', enable_automatic_punctuation=True) video_context = videointelligence.types.VideoContext(speech_transcription_config=config) operation = video_client.annotate_video(input_uri, features=features, video_context=video_context) print('\nProcessing video for speech transcription.') result = operation.result(timeout=180) annotation_results = result.annotation_results[0] for speech_transcription in annotation_results.speech_transcriptions: for alternative in speech_transcription.alternatives: print('Alternative level information:') print('Transcript: {}'.format(alternative.transcript)) print('Confidence: {}\n'.format(alternative.confidence)) print('Word level information:') for word_info in alternative.words: word = word_info.word start_time = word_info.start_time end_time = word_info.end_time print('\t{}s - {}s: {}'.format((start_time.seconds + (start_time.nanos * 1e-09)), (end_time.seconds + (end_time.nanos * 1e-09)), word))<|docstring|>Transcribe speech from a video stored on GCS.<|endoftext|>
77581943d67c81bb1902f4810e3349cc6f837701ef7243171165f95e1e021d5a
def video_detect_text_gcs(input_uri): 'Detect text in a video stored on GCS.' from google.cloud import videointelligence_v1p2beta1 as videointelligence video_client = videointelligence.VideoIntelligenceServiceClient() features = [videointelligence.enums.Feature.TEXT_DETECTION] operation = video_client.annotate_video(input_uri=input_uri, features=features) print('\nProcessing video for text detection.') result = operation.result(timeout=300) annotation_result = result.annotation_results[0] text_annotation = annotation_result.text_annotations[0] print('\nText: {}'.format(text_annotation.text)) text_segment = text_annotation.segments[0] start_time = text_segment.segment.start_time_offset end_time = text_segment.segment.end_time_offset print('start_time: {}, end_time: {}'.format((start_time.seconds + (start_time.nanos * 1e-09)), (end_time.seconds + (end_time.nanos * 1e-09)))) print('Confidence: {}'.format(text_segment.confidence)) frame = text_segment.frames[0] time_offset = frame.time_offset print('Time offset for the first frame: {}'.format((time_offset.seconds + (time_offset.nanos * 1e-09)))) print('Rotated Bounding Box Vertices:') for vertex in frame.rotated_bounding_box.vertices: print('\tVertex.x: {}, Vertex.y: {}'.format(vertex.x, vertex.y)) return annotation_result.text_annotations
Detect text in a video stored on GCS.
video/cloud-client/analyze/beta_snippets.py
video_detect_text_gcs
namrathaPullalarevu/python-docs-samples
3
python
def video_detect_text_gcs(input_uri): from google.cloud import videointelligence_v1p2beta1 as videointelligence video_client = videointelligence.VideoIntelligenceServiceClient() features = [videointelligence.enums.Feature.TEXT_DETECTION] operation = video_client.annotate_video(input_uri=input_uri, features=features) print('\nProcessing video for text detection.') result = operation.result(timeout=300) annotation_result = result.annotation_results[0] text_annotation = annotation_result.text_annotations[0] print('\nText: {}'.format(text_annotation.text)) text_segment = text_annotation.segments[0] start_time = text_segment.segment.start_time_offset end_time = text_segment.segment.end_time_offset print('start_time: {}, end_time: {}'.format((start_time.seconds + (start_time.nanos * 1e-09)), (end_time.seconds + (end_time.nanos * 1e-09)))) print('Confidence: {}'.format(text_segment.confidence)) frame = text_segment.frames[0] time_offset = frame.time_offset print('Time offset for the first frame: {}'.format((time_offset.seconds + (time_offset.nanos * 1e-09)))) print('Rotated Bounding Box Vertices:') for vertex in frame.rotated_bounding_box.vertices: print('\tVertex.x: {}, Vertex.y: {}'.format(vertex.x, vertex.y)) return annotation_result.text_annotations
def video_detect_text_gcs(input_uri): from google.cloud import videointelligence_v1p2beta1 as videointelligence video_client = videointelligence.VideoIntelligenceServiceClient() features = [videointelligence.enums.Feature.TEXT_DETECTION] operation = video_client.annotate_video(input_uri=input_uri, features=features) print('\nProcessing video for text detection.') result = operation.result(timeout=300) annotation_result = result.annotation_results[0] text_annotation = annotation_result.text_annotations[0] print('\nText: {}'.format(text_annotation.text)) text_segment = text_annotation.segments[0] start_time = text_segment.segment.start_time_offset end_time = text_segment.segment.end_time_offset print('start_time: {}, end_time: {}'.format((start_time.seconds + (start_time.nanos * 1e-09)), (end_time.seconds + (end_time.nanos * 1e-09)))) print('Confidence: {}'.format(text_segment.confidence)) frame = text_segment.frames[0] time_offset = frame.time_offset print('Time offset for the first frame: {}'.format((time_offset.seconds + (time_offset.nanos * 1e-09)))) print('Rotated Bounding Box Vertices:') for vertex in frame.rotated_bounding_box.vertices: print('\tVertex.x: {}, Vertex.y: {}'.format(vertex.x, vertex.y)) return annotation_result.text_annotations<|docstring|>Detect text in a video stored on GCS.<|endoftext|>
c43af4577a8d63a8b0f5fdc3a12ef052017cdbef2d40832bcb712bc5dd75ba1a
def video_detect_text(path): 'Detect text in a local video.' from google.cloud import videointelligence_v1p2beta1 as videointelligence video_client = videointelligence.VideoIntelligenceServiceClient() features = [videointelligence.enums.Feature.TEXT_DETECTION] video_context = videointelligence.types.VideoContext() with io.open(path, 'rb') as file: input_content = file.read() operation = video_client.annotate_video(input_content=input_content, features=features, video_context=video_context) print('\nProcessing video for text detection.') result = operation.result(timeout=300) annotation_result = result.annotation_results[0] text_annotation = annotation_result.text_annotations[0] print('\nText: {}'.format(text_annotation.text)) text_segment = text_annotation.segments[0] start_time = text_segment.segment.start_time_offset end_time = text_segment.segment.end_time_offset print('start_time: {}, end_time: {}'.format((start_time.seconds + (start_time.nanos * 1e-09)), (end_time.seconds + (end_time.nanos * 1e-09)))) print('Confidence: {}'.format(text_segment.confidence)) frame = text_segment.frames[0] time_offset = frame.time_offset print('Time offset for the first frame: {}'.format((time_offset.seconds + (time_offset.nanos * 1e-09)))) print('Rotated Bounding Box Vertices:') for vertex in frame.rotated_bounding_box.vertices: print('\tVertex.x: {}, Vertex.y: {}'.format(vertex.x, vertex.y)) return annotation_result.text_annotations
Detect text in a local video.
video/cloud-client/analyze/beta_snippets.py
video_detect_text
namrathaPullalarevu/python-docs-samples
3
python
def video_detect_text(path): from google.cloud import videointelligence_v1p2beta1 as videointelligence video_client = videointelligence.VideoIntelligenceServiceClient() features = [videointelligence.enums.Feature.TEXT_DETECTION] video_context = videointelligence.types.VideoContext() with io.open(path, 'rb') as file: input_content = file.read() operation = video_client.annotate_video(input_content=input_content, features=features, video_context=video_context) print('\nProcessing video for text detection.') result = operation.result(timeout=300) annotation_result = result.annotation_results[0] text_annotation = annotation_result.text_annotations[0] print('\nText: {}'.format(text_annotation.text)) text_segment = text_annotation.segments[0] start_time = text_segment.segment.start_time_offset end_time = text_segment.segment.end_time_offset print('start_time: {}, end_time: {}'.format((start_time.seconds + (start_time.nanos * 1e-09)), (end_time.seconds + (end_time.nanos * 1e-09)))) print('Confidence: {}'.format(text_segment.confidence)) frame = text_segment.frames[0] time_offset = frame.time_offset print('Time offset for the first frame: {}'.format((time_offset.seconds + (time_offset.nanos * 1e-09)))) print('Rotated Bounding Box Vertices:') for vertex in frame.rotated_bounding_box.vertices: print('\tVertex.x: {}, Vertex.y: {}'.format(vertex.x, vertex.y)) return annotation_result.text_annotations
def video_detect_text(path): from google.cloud import videointelligence_v1p2beta1 as videointelligence video_client = videointelligence.VideoIntelligenceServiceClient() features = [videointelligence.enums.Feature.TEXT_DETECTION] video_context = videointelligence.types.VideoContext() with io.open(path, 'rb') as file: input_content = file.read() operation = video_client.annotate_video(input_content=input_content, features=features, video_context=video_context) print('\nProcessing video for text detection.') result = operation.result(timeout=300) annotation_result = result.annotation_results[0] text_annotation = annotation_result.text_annotations[0] print('\nText: {}'.format(text_annotation.text)) text_segment = text_annotation.segments[0] start_time = text_segment.segment.start_time_offset end_time = text_segment.segment.end_time_offset print('start_time: {}, end_time: {}'.format((start_time.seconds + (start_time.nanos * 1e-09)), (end_time.seconds + (end_time.nanos * 1e-09)))) print('Confidence: {}'.format(text_segment.confidence)) frame = text_segment.frames[0] time_offset = frame.time_offset print('Time offset for the first frame: {}'.format((time_offset.seconds + (time_offset.nanos * 1e-09)))) print('Rotated Bounding Box Vertices:') for vertex in frame.rotated_bounding_box.vertices: print('\tVertex.x: {}, Vertex.y: {}'.format(vertex.x, vertex.y)) return annotation_result.text_annotations<|docstring|>Detect text in a local video.<|endoftext|>
a06a1061dc364fd1a84cf1cad6ed24a5586072f108a7d0693910a18eb8a45b7c
def track_objects_gcs(gcs_uri): 'Object Tracking.' from google.cloud import videointelligence_v1p2beta1 as videointelligence video_client = videointelligence.VideoIntelligenceServiceClient() features = [videointelligence.enums.Feature.OBJECT_TRACKING] operation = video_client.annotate_video(input_uri=gcs_uri, features=features, location_id='us-east1') print('\nProcessing video for object annotations.') result = operation.result(timeout=300) print('\nFinished processing.\n') object_annotations = result.annotation_results[0].object_annotations object_annotation = object_annotations[0] print(u'Entity description: {}'.format(object_annotation.entity.description)) if object_annotation.entity.entity_id: print('Entity id: {}'.format(object_annotation.entity.entity_id)) print('Segment: {}s to {}s'.format((object_annotation.segment.start_time_offset.seconds + (object_annotation.segment.start_time_offset.nanos / 1000000000.0)), (object_annotation.segment.end_time_offset.seconds + (object_annotation.segment.end_time_offset.nanos / 1000000000.0)))) print('Confidence: {}'.format(object_annotation.confidence)) frame = object_annotation.frames[0] box = frame.normalized_bounding_box print('Time offset of the first frame: {}s'.format((frame.time_offset.seconds + (frame.time_offset.nanos / 1000000000.0)))) print('Bounding box position:') print('\tleft : {}'.format(box.left)) print('\ttop : {}'.format(box.top)) print('\tright : {}'.format(box.right)) print('\tbottom: {}'.format(box.bottom)) print('\n') return object_annotations
Object Tracking.
video/cloud-client/analyze/beta_snippets.py
track_objects_gcs
namrathaPullalarevu/python-docs-samples
3
python
def track_objects_gcs(gcs_uri): from google.cloud import videointelligence_v1p2beta1 as videointelligence video_client = videointelligence.VideoIntelligenceServiceClient() features = [videointelligence.enums.Feature.OBJECT_TRACKING] operation = video_client.annotate_video(input_uri=gcs_uri, features=features, location_id='us-east1') print('\nProcessing video for object annotations.') result = operation.result(timeout=300) print('\nFinished processing.\n') object_annotations = result.annotation_results[0].object_annotations object_annotation = object_annotations[0] print(u'Entity description: {}'.format(object_annotation.entity.description)) if object_annotation.entity.entity_id: print('Entity id: {}'.format(object_annotation.entity.entity_id)) print('Segment: {}s to {}s'.format((object_annotation.segment.start_time_offset.seconds + (object_annotation.segment.start_time_offset.nanos / 1000000000.0)), (object_annotation.segment.end_time_offset.seconds + (object_annotation.segment.end_time_offset.nanos / 1000000000.0)))) print('Confidence: {}'.format(object_annotation.confidence)) frame = object_annotation.frames[0] box = frame.normalized_bounding_box print('Time offset of the first frame: {}s'.format((frame.time_offset.seconds + (frame.time_offset.nanos / 1000000000.0)))) print('Bounding box position:') print('\tleft : {}'.format(box.left)) print('\ttop : {}'.format(box.top)) print('\tright : {}'.format(box.right)) print('\tbottom: {}'.format(box.bottom)) print('\n') return object_annotations
def track_objects_gcs(gcs_uri): from google.cloud import videointelligence_v1p2beta1 as videointelligence video_client = videointelligence.VideoIntelligenceServiceClient() features = [videointelligence.enums.Feature.OBJECT_TRACKING] operation = video_client.annotate_video(input_uri=gcs_uri, features=features, location_id='us-east1') print('\nProcessing video for object annotations.') result = operation.result(timeout=300) print('\nFinished processing.\n') object_annotations = result.annotation_results[0].object_annotations object_annotation = object_annotations[0] print(u'Entity description: {}'.format(object_annotation.entity.description)) if object_annotation.entity.entity_id: print('Entity id: {}'.format(object_annotation.entity.entity_id)) print('Segment: {}s to {}s'.format((object_annotation.segment.start_time_offset.seconds + (object_annotation.segment.start_time_offset.nanos / 1000000000.0)), (object_annotation.segment.end_time_offset.seconds + (object_annotation.segment.end_time_offset.nanos / 1000000000.0)))) print('Confidence: {}'.format(object_annotation.confidence)) frame = object_annotation.frames[0] box = frame.normalized_bounding_box print('Time offset of the first frame: {}s'.format((frame.time_offset.seconds + (frame.time_offset.nanos / 1000000000.0)))) print('Bounding box position:') print('\tleft : {}'.format(box.left)) print('\ttop : {}'.format(box.top)) print('\tright : {}'.format(box.right)) print('\tbottom: {}'.format(box.bottom)) print('\n') return object_annotations<|docstring|>Object Tracking.<|endoftext|>
80b27b10ae7b98517bcc746b6a8365be5c0d27ec4bf504cbc0f545e93384ca11
def track_objects(path): 'Object Tracking.' from google.cloud import videointelligence_v1p2beta1 as videointelligence video_client = videointelligence.VideoIntelligenceServiceClient() features = [videointelligence.enums.Feature.OBJECT_TRACKING] with io.open(path, 'rb') as file: input_content = file.read() operation = video_client.annotate_video(input_content=input_content, features=features, location_id='us-east1') print('\nProcessing video for object annotations.') result = operation.result(timeout=300) print('\nFinished processing.\n') object_annotations = result.annotation_results[0].object_annotations object_annotation = object_annotations[0] print(u'Entity description: {}'.format(object_annotation.entity.description)) if object_annotation.entity.entity_id: print('Entity id: {}'.format(object_annotation.entity.entity_id)) print('Segment: {}s to {}s'.format((object_annotation.segment.start_time_offset.seconds + (object_annotation.segment.start_time_offset.nanos / 1000000000.0)), (object_annotation.segment.end_time_offset.seconds + (object_annotation.segment.end_time_offset.nanos / 1000000000.0)))) print('Confidence: {}'.format(object_annotation.confidence)) frame = object_annotation.frames[0] box = frame.normalized_bounding_box print('Time offset of the first frame: {}s'.format((frame.time_offset.seconds + (frame.time_offset.nanos / 1000000000.0)))) print('Bounding box position:') print('\tleft : {}'.format(box.left)) print('\ttop : {}'.format(box.top)) print('\tright : {}'.format(box.right)) print('\tbottom: {}'.format(box.bottom)) print('\n') return object_annotations
Object Tracking.
video/cloud-client/analyze/beta_snippets.py
track_objects
namrathaPullalarevu/python-docs-samples
3
python
def track_objects(path): from google.cloud import videointelligence_v1p2beta1 as videointelligence video_client = videointelligence.VideoIntelligenceServiceClient() features = [videointelligence.enums.Feature.OBJECT_TRACKING] with io.open(path, 'rb') as file: input_content = file.read() operation = video_client.annotate_video(input_content=input_content, features=features, location_id='us-east1') print('\nProcessing video for object annotations.') result = operation.result(timeout=300) print('\nFinished processing.\n') object_annotations = result.annotation_results[0].object_annotations object_annotation = object_annotations[0] print(u'Entity description: {}'.format(object_annotation.entity.description)) if object_annotation.entity.entity_id: print('Entity id: {}'.format(object_annotation.entity.entity_id)) print('Segment: {}s to {}s'.format((object_annotation.segment.start_time_offset.seconds + (object_annotation.segment.start_time_offset.nanos / 1000000000.0)), (object_annotation.segment.end_time_offset.seconds + (object_annotation.segment.end_time_offset.nanos / 1000000000.0)))) print('Confidence: {}'.format(object_annotation.confidence)) frame = object_annotation.frames[0] box = frame.normalized_bounding_box print('Time offset of the first frame: {}s'.format((frame.time_offset.seconds + (frame.time_offset.nanos / 1000000000.0)))) print('Bounding box position:') print('\tleft : {}'.format(box.left)) print('\ttop : {}'.format(box.top)) print('\tright : {}'.format(box.right)) print('\tbottom: {}'.format(box.bottom)) print('\n') return object_annotations
def track_objects(path): from google.cloud import videointelligence_v1p2beta1 as videointelligence video_client = videointelligence.VideoIntelligenceServiceClient() features = [videointelligence.enums.Feature.OBJECT_TRACKING] with io.open(path, 'rb') as file: input_content = file.read() operation = video_client.annotate_video(input_content=input_content, features=features, location_id='us-east1') print('\nProcessing video for object annotations.') result = operation.result(timeout=300) print('\nFinished processing.\n') object_annotations = result.annotation_results[0].object_annotations object_annotation = object_annotations[0] print(u'Entity description: {}'.format(object_annotation.entity.description)) if object_annotation.entity.entity_id: print('Entity id: {}'.format(object_annotation.entity.entity_id)) print('Segment: {}s to {}s'.format((object_annotation.segment.start_time_offset.seconds + (object_annotation.segment.start_time_offset.nanos / 1000000000.0)), (object_annotation.segment.end_time_offset.seconds + (object_annotation.segment.end_time_offset.nanos / 1000000000.0)))) print('Confidence: {}'.format(object_annotation.confidence)) frame = object_annotation.frames[0] box = frame.normalized_bounding_box print('Time offset of the first frame: {}s'.format((frame.time_offset.seconds + (frame.time_offset.nanos / 1000000000.0)))) print('Bounding box position:') print('\tleft : {}'.format(box.left)) print('\ttop : {}'.format(box.top)) print('\tright : {}'.format(box.right)) print('\tbottom: {}'.format(box.bottom)) print('\n') return object_annotations<|docstring|>Object Tracking.<|endoftext|>
da2ef139a3a78549d7166f3fa69b0e0e3413c70d8a83f288ab40a432d9c5a5ee
def decision_function(self, history, point, **configuration): '\n Return False while number of measurements less than max_repeats_of_experiment (inherited from abstract class).\n In other case - compute result as average between all experiments.\n :param history: history class object that stores all experiments results\n :param point: concrete experiment configuration that is evaluating\n :return: result or False\n ' all_experiments = history.get(point) if (len(all_experiments) < self.max_repeats_of_experiment): return False else: result = [0 for x in range(len(all_experiments[0]))] for experiment in all_experiments: for (index, value) in enumerate(experiment): result[index] += value for (index, value) in enumerate(result): result[index] = eval(self.WSClient.results_data_types[index])(round((value / len(all_experiments)), 2)) return result
Return False while number of measurements less than max_repeats_of_experiment (inherited from abstract class). In other case - compute result as average between all experiments. :param history: history class object that stores all experiments results :param point: concrete experiment configuration that is evaluating :return: result or False
main-node/repeater/default_repeater.py
decision_function
Valavanca/benchmark
0
python
def decision_function(self, history, point, **configuration): '\n Return False while number of measurements less than max_repeats_of_experiment (inherited from abstract class).\n In other case - compute result as average between all experiments.\n :param history: history class object that stores all experiments results\n :param point: concrete experiment configuration that is evaluating\n :return: result or False\n ' all_experiments = history.get(point) if (len(all_experiments) < self.max_repeats_of_experiment): return False else: result = [0 for x in range(len(all_experiments[0]))] for experiment in all_experiments: for (index, value) in enumerate(experiment): result[index] += value for (index, value) in enumerate(result): result[index] = eval(self.WSClient.results_data_types[index])(round((value / len(all_experiments)), 2)) return result
def decision_function(self, history, point, **configuration): '\n Return False while number of measurements less than max_repeats_of_experiment (inherited from abstract class).\n In other case - compute result as average between all experiments.\n :param history: history class object that stores all experiments results\n :param point: concrete experiment configuration that is evaluating\n :return: result or False\n ' all_experiments = history.get(point) if (len(all_experiments) < self.max_repeats_of_experiment): return False else: result = [0 for x in range(len(all_experiments[0]))] for experiment in all_experiments: for (index, value) in enumerate(experiment): result[index] += value for (index, value) in enumerate(result): result[index] = eval(self.WSClient.results_data_types[index])(round((value / len(all_experiments)), 2)) return result<|docstring|>Return False while number of measurements less than max_repeats_of_experiment (inherited from abstract class). In other case - compute result as average between all experiments. :param history: history class object that stores all experiments results :param point: concrete experiment configuration that is evaluating :return: result or False<|endoftext|>
c755b6a1dcedc7bbd8b192cc6eda298505b2c3530e325d90e6b46c1e4b9bbb14
def get_all_data(): "\n Main routine that grabs all COVID and covariate data and\n returns them as a single dataframe that contains:\n\n * count of cumulative cases and deaths by country (by today's date)\n * days since first case for each country\n * CPI gov't transparency index\n * World Bank data on population, healthcare, etc. by country\n " all_covid_data = _get_latest_covid_timeseries() covid_cases_rollup = _rollup_by_country(all_covid_data['Confirmed']) covid_deaths_rollup = _rollup_by_country(all_covid_data['Deaths']) todays_date = covid_cases_rollup.columns.max() df_out = pd.DataFrame({'cases': covid_cases_rollup[todays_date], 'deaths': covid_deaths_rollup[todays_date]}) _clean_country_list(df_out) _clean_country_list(covid_cases_rollup) df_out['death_rate_observed'] = df_out.apply((lambda row: (row['deaths'] / float(row['cases']))), axis=1) df_out['days_since_first_case'] = _compute_days_since_first_case(covid_cases_rollup) _add_cpi_data(df_out) _add_wb_data(df_out) num_null = df_out.isnull().sum(axis=1) to_drop_idx = df_out.index[(num_null > 1)] print(('Dropping %i/%i countries due to lack of data' % (len(to_drop_idx), len(df_out)))) df_out.drop(to_drop_idx, axis=0, inplace=True) return (df_out, todays_date)
Main routine that grabs all COVID and covariate data and returns them as a single dataframe that contains: * count of cumulative cases and deaths by country (by today's date) * days since first case for each country * CPI gov't transparency index * World Bank data on population, healthcare, etc. by country
services/server/dashboard/nb_mortality_rate.py
get_all_data
adriangrepo/covid-19_virus
0
python
def get_all_data(): "\n Main routine that grabs all COVID and covariate data and\n returns them as a single dataframe that contains:\n\n * count of cumulative cases and deaths by country (by today's date)\n * days since first case for each country\n * CPI gov't transparency index\n * World Bank data on population, healthcare, etc. by country\n " all_covid_data = _get_latest_covid_timeseries() covid_cases_rollup = _rollup_by_country(all_covid_data['Confirmed']) covid_deaths_rollup = _rollup_by_country(all_covid_data['Deaths']) todays_date = covid_cases_rollup.columns.max() df_out = pd.DataFrame({'cases': covid_cases_rollup[todays_date], 'deaths': covid_deaths_rollup[todays_date]}) _clean_country_list(df_out) _clean_country_list(covid_cases_rollup) df_out['death_rate_observed'] = df_out.apply((lambda row: (row['deaths'] / float(row['cases']))), axis=1) df_out['days_since_first_case'] = _compute_days_since_first_case(covid_cases_rollup) _add_cpi_data(df_out) _add_wb_data(df_out) num_null = df_out.isnull().sum(axis=1) to_drop_idx = df_out.index[(num_null > 1)] print(('Dropping %i/%i countries due to lack of data' % (len(to_drop_idx), len(df_out)))) df_out.drop(to_drop_idx, axis=0, inplace=True) return (df_out, todays_date)
def get_all_data(): "\n Main routine that grabs all COVID and covariate data and\n returns them as a single dataframe that contains:\n\n * count of cumulative cases and deaths by country (by today's date)\n * days since first case for each country\n * CPI gov't transparency index\n * World Bank data on population, healthcare, etc. by country\n " all_covid_data = _get_latest_covid_timeseries() covid_cases_rollup = _rollup_by_country(all_covid_data['Confirmed']) covid_deaths_rollup = _rollup_by_country(all_covid_data['Deaths']) todays_date = covid_cases_rollup.columns.max() df_out = pd.DataFrame({'cases': covid_cases_rollup[todays_date], 'deaths': covid_deaths_rollup[todays_date]}) _clean_country_list(df_out) _clean_country_list(covid_cases_rollup) df_out['death_rate_observed'] = df_out.apply((lambda row: (row['deaths'] / float(row['cases']))), axis=1) df_out['days_since_first_case'] = _compute_days_since_first_case(covid_cases_rollup) _add_cpi_data(df_out) _add_wb_data(df_out) num_null = df_out.isnull().sum(axis=1) to_drop_idx = df_out.index[(num_null > 1)] print(('Dropping %i/%i countries due to lack of data' % (len(to_drop_idx), len(df_out)))) df_out.drop(to_drop_idx, axis=0, inplace=True) return (df_out, todays_date)<|docstring|>Main routine that grabs all COVID and covariate data and returns them as a single dataframe that contains: * count of cumulative cases and deaths by country (by today's date) * days since first case for each country * CPI gov't transparency index * World Bank data on population, healthcare, etc. by country<|endoftext|>
132eff4bde34f35537df2ebe22c74518d7eeda189883a5b546a2d4544a6c8ece
def _get_latest_covid_timeseries(): ' Pull latest time-series data from JHU CSSE database ' repo = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/' data_path = 'csse_covid_19_data/csse_covid_19_time_series/' all_data = {} for status in ['Confirmed', 'Deaths', 'Recovered']: file_name = ('time_series_19-covid-%s.csv' % status) all_data[status] = pd.read_csv(('%s%s%s' % (repo, data_path, file_name))) return all_data
Pull latest time-series data from JHU CSSE database
services/server/dashboard/nb_mortality_rate.py
_get_latest_covid_timeseries
adriangrepo/covid-19_virus
0
python
def _get_latest_covid_timeseries(): ' ' repo = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/' data_path = 'csse_covid_19_data/csse_covid_19_time_series/' all_data = {} for status in ['Confirmed', 'Deaths', 'Recovered']: file_name = ('time_series_19-covid-%s.csv' % status) all_data[status] = pd.read_csv(('%s%s%s' % (repo, data_path, file_name))) return all_data
def _get_latest_covid_timeseries(): ' ' repo = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/' data_path = 'csse_covid_19_data/csse_covid_19_time_series/' all_data = {} for status in ['Confirmed', 'Deaths', 'Recovered']: file_name = ('time_series_19-covid-%s.csv' % status) all_data[status] = pd.read_csv(('%s%s%s' % (repo, data_path, file_name))) return all_data<|docstring|>Pull latest time-series data from JHU CSSE database<|endoftext|>
d7d5325c0b0471e5d190136f2e58e660eb53a8e6971a47fccc0f47adaeaeff68
def _rollup_by_country(df): '\n Roll up each raw time-series by country, adding up the cases\n across the individual states/provinces within the country\n\n :param df: Pandas DataFrame of raw data from CSSE\n :return: DataFrame of country counts\n ' gb = df.groupby('Country/Region') df_rollup = gb.sum() df_rollup.drop(['Lat', 'Long'], axis=1, inplace=True, errors='ignore') df_rollup.drop(df_rollup.columns[(df_rollup.sum(axis=0) == 0)], axis=1, inplace=True) idx_as_dt = [datetime.strptime(x, '%m/%d/%y') for x in df_rollup.columns] df_rollup.columns = idx_as_dt return df_rollup
Roll up each raw time-series by country, adding up the cases across the individual states/provinces within the country :param df: Pandas DataFrame of raw data from CSSE :return: DataFrame of country counts
services/server/dashboard/nb_mortality_rate.py
_rollup_by_country
adriangrepo/covid-19_virus
0
python
def _rollup_by_country(df): '\n Roll up each raw time-series by country, adding up the cases\n across the individual states/provinces within the country\n\n :param df: Pandas DataFrame of raw data from CSSE\n :return: DataFrame of country counts\n ' gb = df.groupby('Country/Region') df_rollup = gb.sum() df_rollup.drop(['Lat', 'Long'], axis=1, inplace=True, errors='ignore') df_rollup.drop(df_rollup.columns[(df_rollup.sum(axis=0) == 0)], axis=1, inplace=True) idx_as_dt = [datetime.strptime(x, '%m/%d/%y') for x in df_rollup.columns] df_rollup.columns = idx_as_dt return df_rollup
def _rollup_by_country(df): '\n Roll up each raw time-series by country, adding up the cases\n across the individual states/provinces within the country\n\n :param df: Pandas DataFrame of raw data from CSSE\n :return: DataFrame of country counts\n ' gb = df.groupby('Country/Region') df_rollup = gb.sum() df_rollup.drop(['Lat', 'Long'], axis=1, inplace=True, errors='ignore') df_rollup.drop(df_rollup.columns[(df_rollup.sum(axis=0) == 0)], axis=1, inplace=True) idx_as_dt = [datetime.strptime(x, '%m/%d/%y') for x in df_rollup.columns] df_rollup.columns = idx_as_dt return df_rollup<|docstring|>Roll up each raw time-series by country, adding up the cases across the individual states/provinces within the country :param df: Pandas DataFrame of raw data from CSSE :return: DataFrame of country counts<|endoftext|>
5b84092b028444bec87e27e597fa7ff0d0c563c69ec8ab2336f6d61d7a3db599
def _clean_country_list(df): ' Clean up input country list in df ' country_rename = {'Hong Kong SAR': 'Hong Kong', 'Taiwan*': 'Taiwan', 'Czechia': 'Czech Republic', 'Brunei': 'Brunei Darussalam', 'Iran (Islamic Republic of)': 'Iran', 'Viet Nam': 'Vietnam', 'Russian Federation': 'Russia', 'Republic of Korea': 'South Korea', 'Republic of Moldova': 'Moldova', 'China': 'Mainland China'} df.rename(country_rename, axis=0, inplace=True) df.drop(ignore_countries, axis=0, inplace=True, errors='ignore')
Clean up input country list in df
services/server/dashboard/nb_mortality_rate.py
_clean_country_list
adriangrepo/covid-19_virus
0
python
def _clean_country_list(df): ' ' country_rename = {'Hong Kong SAR': 'Hong Kong', 'Taiwan*': 'Taiwan', 'Czechia': 'Czech Republic', 'Brunei': 'Brunei Darussalam', 'Iran (Islamic Republic of)': 'Iran', 'Viet Nam': 'Vietnam', 'Russian Federation': 'Russia', 'Republic of Korea': 'South Korea', 'Republic of Moldova': 'Moldova', 'China': 'Mainland China'} df.rename(country_rename, axis=0, inplace=True) df.drop(ignore_countries, axis=0, inplace=True, errors='ignore')
def _clean_country_list(df): ' ' country_rename = {'Hong Kong SAR': 'Hong Kong', 'Taiwan*': 'Taiwan', 'Czechia': 'Czech Republic', 'Brunei': 'Brunei Darussalam', 'Iran (Islamic Republic of)': 'Iran', 'Viet Nam': 'Vietnam', 'Russian Federation': 'Russia', 'Republic of Korea': 'South Korea', 'Republic of Moldova': 'Moldova', 'China': 'Mainland China'} df.rename(country_rename, axis=0, inplace=True) df.drop(ignore_countries, axis=0, inplace=True, errors='ignore')<|docstring|>Clean up input country list in df<|endoftext|>
39390b4d55630026e1e2fc7c5d9263b84437aac31b10c089d354dcc112460e1d
def _compute_days_since_first_case(df_cases): ' Compute the country-wise days since first confirmed case\n\n :param df_cases: country-wise time-series of confirmed case counts\n :return: Series of country-wise days since first case\n ' date_first_case = df_cases[(df_cases > 0)].idxmin(axis=1) days_since_first_case = date_first_case.apply((lambda x: (df_cases.columns.max() - x).days)) days_since_first_case.loc['Mainland China'] += 30 return days_since_first_case
Compute the country-wise days since first confirmed case :param df_cases: country-wise time-series of confirmed case counts :return: Series of country-wise days since first case
services/server/dashboard/nb_mortality_rate.py
_compute_days_since_first_case
adriangrepo/covid-19_virus
0
python
def _compute_days_since_first_case(df_cases): ' Compute the country-wise days since first confirmed case\n\n :param df_cases: country-wise time-series of confirmed case counts\n :return: Series of country-wise days since first case\n ' date_first_case = df_cases[(df_cases > 0)].idxmin(axis=1) days_since_first_case = date_first_case.apply((lambda x: (df_cases.columns.max() - x).days)) days_since_first_case.loc['Mainland China'] += 30 return days_since_first_case
def _compute_days_since_first_case(df_cases): ' Compute the country-wise days since first confirmed case\n\n :param df_cases: country-wise time-series of confirmed case counts\n :return: Series of country-wise days since first case\n ' date_first_case = df_cases[(df_cases > 0)].idxmin(axis=1) days_since_first_case = date_first_case.apply((lambda x: (df_cases.columns.max() - x).days)) days_since_first_case.loc['Mainland China'] += 30 return days_since_first_case<|docstring|>Compute the country-wise days since first confirmed case :param df_cases: country-wise time-series of confirmed case counts :return: Series of country-wise days since first case<|endoftext|>
e78bbecdff62922c0d284811ffec0ea84d7e9aec01a919deaca0ef60cee990d3
def _add_cpi_data(df_input): '\n Add the Government transparency (CPI - corruption perceptions index)\n data (by country) as a column in the COVID cases dataframe.\n\n :param df_input: COVID-19 data rolled up country-wise\n :return: None, add CPI data to df_input in place\n ' cpi_data = pd.read_excel('https://github.com/jwrichar/COVID19-mortality/blob/master/data/CPI2019.xlsx?raw=true', skiprows=2) cpi_data.set_index('Country', inplace=True, drop=True) cpi_data.rename(cpi_country_mapping, axis=0, inplace=True) df_input['cpi_score_2019'] = cpi_data['CPI score 2019']
Add the Government transparency (CPI - corruption perceptions index) data (by country) as a column in the COVID cases dataframe. :param df_input: COVID-19 data rolled up country-wise :return: None, add CPI data to df_input in place
services/server/dashboard/nb_mortality_rate.py
_add_cpi_data
adriangrepo/covid-19_virus
0
python
def _add_cpi_data(df_input): '\n Add the Government transparency (CPI - corruption perceptions index)\n data (by country) as a column in the COVID cases dataframe.\n\n :param df_input: COVID-19 data rolled up country-wise\n :return: None, add CPI data to df_input in place\n ' cpi_data = pd.read_excel('https://github.com/jwrichar/COVID19-mortality/blob/master/data/CPI2019.xlsx?raw=true', skiprows=2) cpi_data.set_index('Country', inplace=True, drop=True) cpi_data.rename(cpi_country_mapping, axis=0, inplace=True) df_input['cpi_score_2019'] = cpi_data['CPI score 2019']
def _add_cpi_data(df_input): '\n Add the Government transparency (CPI - corruption perceptions index)\n data (by country) as a column in the COVID cases dataframe.\n\n :param df_input: COVID-19 data rolled up country-wise\n :return: None, add CPI data to df_input in place\n ' cpi_data = pd.read_excel('https://github.com/jwrichar/COVID19-mortality/blob/master/data/CPI2019.xlsx?raw=true', skiprows=2) cpi_data.set_index('Country', inplace=True, drop=True) cpi_data.rename(cpi_country_mapping, axis=0, inplace=True) df_input['cpi_score_2019'] = cpi_data['CPI score 2019']<|docstring|>Add the Government transparency (CPI - corruption perceptions index) data (by country) as a column in the COVID cases dataframe. :param df_input: COVID-19 data rolled up country-wise :return: None, add CPI data to df_input in place<|endoftext|>
7f1e73413ca814c6f1c193d152f597239f2079364dadc7926cd6287f1a98100f
def _add_wb_data(df_input): '\n Add the World Bank data covariates as columns in the COVID cases dataframe.\n\n :param df_input: COVID-19 data rolled up country-wise\n :return: None, add World Bank data to df_input in place\n ' wb_data = pd.read_csv('https://raw.githubusercontent.com/jwrichar/COVID19-mortality/master/data/world_bank_data.csv', na_values='..') for (wb_name, var_name) in wb_covariates: wb_series = wb_data.loc[(wb_data['Series Code'] == wb_name)] wb_series.set_index('Country Name', inplace=True, drop=True) wb_series.rename(wb_country_mapping, axis=0, inplace=True) df_input[var_name] = _get_most_recent_value(wb_series)
Add the World Bank data covariates as columns in the COVID cases dataframe. :param df_input: COVID-19 data rolled up country-wise :return: None, add World Bank data to df_input in place
services/server/dashboard/nb_mortality_rate.py
_add_wb_data
adriangrepo/covid-19_virus
0
python
def _add_wb_data(df_input): '\n Add the World Bank data covariates as columns in the COVID cases dataframe.\n\n :param df_input: COVID-19 data rolled up country-wise\n :return: None, add World Bank data to df_input in place\n ' wb_data = pd.read_csv('https://raw.githubusercontent.com/jwrichar/COVID19-mortality/master/data/world_bank_data.csv', na_values='..') for (wb_name, var_name) in wb_covariates: wb_series = wb_data.loc[(wb_data['Series Code'] == wb_name)] wb_series.set_index('Country Name', inplace=True, drop=True) wb_series.rename(wb_country_mapping, axis=0, inplace=True) df_input[var_name] = _get_most_recent_value(wb_series)
def _add_wb_data(df_input): '\n Add the World Bank data covariates as columns in the COVID cases dataframe.\n\n :param df_input: COVID-19 data rolled up country-wise\n :return: None, add World Bank data to df_input in place\n ' wb_data = pd.read_csv('https://raw.githubusercontent.com/jwrichar/COVID19-mortality/master/data/world_bank_data.csv', na_values='..') for (wb_name, var_name) in wb_covariates: wb_series = wb_data.loc[(wb_data['Series Code'] == wb_name)] wb_series.set_index('Country Name', inplace=True, drop=True) wb_series.rename(wb_country_mapping, axis=0, inplace=True) df_input[var_name] = _get_most_recent_value(wb_series)<|docstring|>Add the World Bank data covariates as columns in the COVID cases dataframe. :param df_input: COVID-19 data rolled up country-wise :return: None, add World Bank data to df_input in place<|endoftext|>
786eba64a752f381df6e388801c16009391bf59026a8a0deb17a1d82a85c4e65
def _get_most_recent_value(wb_series): '\n Get most recent non-null value for each country in the World Bank\n time-series data\n ' ts_data = wb_series[wb_series.columns[3:]] def _helper(row): row_nn = row[row.notnull()] if len(row_nn): return row_nn[(- 1)] else: return np.nan return ts_data.apply(_helper, axis=1)
Get most recent non-null value for each country in the World Bank time-series data
services/server/dashboard/nb_mortality_rate.py
_get_most_recent_value
adriangrepo/covid-19_virus
0
python
def _get_most_recent_value(wb_series): '\n Get most recent non-null value for each country in the World Bank\n time-series data\n ' ts_data = wb_series[wb_series.columns[3:]] def _helper(row): row_nn = row[row.notnull()] if len(row_nn): return row_nn[(- 1)] else: return np.nan return ts_data.apply(_helper, axis=1)
def _get_most_recent_value(wb_series): '\n Get most recent non-null value for each country in the World Bank\n time-series data\n ' ts_data = wb_series[wb_series.columns[3:]] def _helper(row): row_nn = row[row.notnull()] if len(row_nn): return row_nn[(- 1)] else: return np.nan return ts_data.apply(_helper, axis=1)<|docstring|>Get most recent non-null value for each country in the World Bank time-series data<|endoftext|>
b5d2703d552c479852c92a87fcd8686a95d86d9bcb154535a4ba036b6d9ccbe2
def _normalize_col(df, colname, how='mean'): '\n Normalize an input column in one of 3 ways:\n\n * how=mean: unit normal N(0,1)\n * how=upper: normalize to [-1, 0] with highest value set to 0\n * how=lower: normalize to [0, 1] with lowest value set to 0\n\n Returns df modified in place with extra column added.\n ' colname_new = ('%s_normalized' % colname) if (how == 'mean'): mu = df[colname].mean() sig = df[colname].std() df[colname_new] = ((df[colname] - mu) / sig) elif (how == 'upper'): maxval = df[colname].max() minval = df[colname].min() df[colname_new] = ((df[colname] - maxval) / (maxval - minval)) elif (how == 'lower'): maxval = df[colname].max() minval = df[colname].min() df[colname_new] = ((df[colname] - minval) / (maxval - minval))
Normalize an input column in one of 3 ways: * how=mean: unit normal N(0,1) * how=upper: normalize to [-1, 0] with highest value set to 0 * how=lower: normalize to [0, 1] with lowest value set to 0 Returns df modified in place with extra column added.
services/server/dashboard/nb_mortality_rate.py
_normalize_col
adriangrepo/covid-19_virus
0
python
def _normalize_col(df, colname, how='mean'): '\n Normalize an input column in one of 3 ways:\n\n * how=mean: unit normal N(0,1)\n * how=upper: normalize to [-1, 0] with highest value set to 0\n * how=lower: normalize to [0, 1] with lowest value set to 0\n\n Returns df modified in place with extra column added.\n ' colname_new = ('%s_normalized' % colname) if (how == 'mean'): mu = df[colname].mean() sig = df[colname].std() df[colname_new] = ((df[colname] - mu) / sig) elif (how == 'upper'): maxval = df[colname].max() minval = df[colname].min() df[colname_new] = ((df[colname] - maxval) / (maxval - minval)) elif (how == 'lower'): maxval = df[colname].max() minval = df[colname].min() df[colname_new] = ((df[colname] - minval) / (maxval - minval))
def _normalize_col(df, colname, how='mean'): '\n Normalize an input column in one of 3 ways:\n\n * how=mean: unit normal N(0,1)\n * how=upper: normalize to [-1, 0] with highest value set to 0\n * how=lower: normalize to [0, 1] with lowest value set to 0\n\n Returns df modified in place with extra column added.\n ' colname_new = ('%s_normalized' % colname) if (how == 'mean'): mu = df[colname].mean() sig = df[colname].std() df[colname_new] = ((df[colname] - mu) / sig) elif (how == 'upper'): maxval = df[colname].max() minval = df[colname].min() df[colname_new] = ((df[colname] - maxval) / (maxval - minval)) elif (how == 'lower'): maxval = df[colname].max() minval = df[colname].min() df[colname_new] = ((df[colname] - minval) / (maxval - minval))<|docstring|>Normalize an input column in one of 3 ways: * how=mean: unit normal N(0,1) * how=upper: normalize to [-1, 0] with highest value set to 0 * how=lower: normalize to [0, 1] with lowest value set to 0 Returns df modified in place with extra column added.<|endoftext|>
ec94e2fa135f62bc0895421bde1b1afed04f8ee215c2e778aaacf6d7c2ba6695
def getDisplay(self): 'Retrieve the currently-bound, or the default, display' from OpenGL.EGL import eglGetCurrentDisplay, eglGetDisplay, EGL_DEFAULT_DISPLAY return (eglGetCurrentDisplay() or eglGetDisplay(EGL_DEFAULT_DISPLAY))
Retrieve the currently-bound, or the default, display
OpenGL/raw/EGL/_types.py
getDisplay
keunhong/pyopengl
210
python
def getDisplay(self): from OpenGL.EGL import eglGetCurrentDisplay, eglGetDisplay, EGL_DEFAULT_DISPLAY return (eglGetCurrentDisplay() or eglGetDisplay(EGL_DEFAULT_DISPLAY))
def getDisplay(self): from OpenGL.EGL import eglGetCurrentDisplay, eglGetDisplay, EGL_DEFAULT_DISPLAY return (eglGetCurrentDisplay() or eglGetDisplay(EGL_DEFAULT_DISPLAY))<|docstring|>Retrieve the currently-bound, or the default, display<|endoftext|>
3f3dedb8c6cb1a656d5efe797d27f5dc56eb803f48a1ffd6ea92147ba25ca538
def set_size(width, fraction=1): ' Set figure dimensions to avoid scaling in LaTeX.\n\n Parameters\n ----------\n width: float\n Document textwidth or columnwidth in pts\n fraction: float, optional\n Fraction of the width which you wish the figure to occupy\n\n Returns\n -------\n fig_dim: tuple\n Dimensions of figure in inches\n ' fig_width_pt = (width * fraction) inches_per_pt = (1 / 72.27) golden_ratio = (((5 ** 0.5) - 1) / 2) fig_width_in = (fig_width_pt * inches_per_pt) fig_height_in = (fig_width_in * golden_ratio) fig_dim = (fig_width_in, fig_height_in) return fig_dim
Set figure dimensions to avoid scaling in LaTeX. Parameters ---------- width: float Document textwidth or columnwidth in pts fraction: float, optional Fraction of the width which you wish the figure to occupy Returns ------- fig_dim: tuple Dimensions of figure in inches
src/utils/plot-results-aug-resisc.py
set_size
Berkeley-Data/hpt
1
python
def set_size(width, fraction=1): ' Set figure dimensions to avoid scaling in LaTeX.\n\n Parameters\n ----------\n width: float\n Document textwidth or columnwidth in pts\n fraction: float, optional\n Fraction of the width which you wish the figure to occupy\n\n Returns\n -------\n fig_dim: tuple\n Dimensions of figure in inches\n ' fig_width_pt = (width * fraction) inches_per_pt = (1 / 72.27) golden_ratio = (((5 ** 0.5) - 1) / 2) fig_width_in = (fig_width_pt * inches_per_pt) fig_height_in = (fig_width_in * golden_ratio) fig_dim = (fig_width_in, fig_height_in) return fig_dim
def set_size(width, fraction=1): ' Set figure dimensions to avoid scaling in LaTeX.\n\n Parameters\n ----------\n width: float\n Document textwidth or columnwidth in pts\n fraction: float, optional\n Fraction of the width which you wish the figure to occupy\n\n Returns\n -------\n fig_dim: tuple\n Dimensions of figure in inches\n ' fig_width_pt = (width * fraction) inches_per_pt = (1 / 72.27) golden_ratio = (((5 ** 0.5) - 1) / 2) fig_width_in = (fig_width_pt * inches_per_pt) fig_height_in = (fig_width_in * golden_ratio) fig_dim = (fig_width_in, fig_height_in) return fig_dim<|docstring|>Set figure dimensions to avoid scaling in LaTeX. Parameters ---------- width: float Document textwidth or columnwidth in pts fraction: float, optional Fraction of the width which you wish the figure to occupy Returns ------- fig_dim: tuple Dimensions of figure in inches<|endoftext|>
8bb3506bac41b4845d9320c5bacf5d50f660608c7e10ab20c57053fc7b230840
@register.assignment_tag(takes_context=True) def feincms_nav_reverse(context, feincms_page, level=1, depth=1): '\n Saves a list of pages into the given context variable.\n ' if isinstance(feincms_page, HttpRequest): try: feincms_page = Page.objects.for_request(feincms_page, best_match=True) except Page.DoesNotExist: return [] mptt_opts = feincms_page._mptt_meta mptt_level_range = [(level - 1), ((level + depth) - 1)] queryset = feincms_page.__class__._default_manager.active().filter(in_navigation=False).filter(**{('%s__gte' % mptt_opts.level_attr): mptt_level_range[0], ('%s__lt' % mptt_opts.level_attr): mptt_level_range[1]}) page_level = getattr(feincms_page, mptt_opts.level_attr) parent = None if (level > 1): if ((level - 2) == page_level): parent = feincms_page elif ((level - 2) < page_level): parent = feincms_page.get_ancestors()[(level - 2)] elif ((level - 1) > page_level): queryset = Page.objects.none() if parent: if getattr(parent, 'navigation_extension', None): return list(parent.extended_navigation(depth=depth, request=context.get('request'))) queryset &= parent.get_descendants() if (depth > 1): parents = set([None]) if parent: parents.add(parent.id) def _parentactive_filter(iterable): for elem in iterable: if (elem.parent_id in parents): (yield elem) parents.add(elem.id) queryset = _parentactive_filter(queryset) if hasattr(feincms_page, 'navigation_extension'): def _navext_filter(iterable): current_navextension_node = None for elem in iterable: if ((current_navextension_node is not None) and current_navextension_node.is_ancestor_of(elem)): continue (yield elem) if getattr(elem, 'navigation_extension', None): current_navextension_node = elem try: for extended in elem.extended_navigation(depth=depth, request=context.get('request')): this_level = getattr(extended, mptt_opts.level_attr, 0) if (this_level < ((level + depth) - 1)): (yield extended) except Exception as e: logger.warn('feincms_nav caught exception in navigation extension for page %d: %s', current_navextension_node.id, format_exception(e)) else: current_navextension_node = None queryset = _navext_filter(queryset) return list(queryset)
Saves a list of pages into the given context variable.
website/templatetags/website_tags.py
feincms_nav_reverse
acaciawater/wfn
0
python
@register.assignment_tag(takes_context=True) def feincms_nav_reverse(context, feincms_page, level=1, depth=1): '\n \n ' if isinstance(feincms_page, HttpRequest): try: feincms_page = Page.objects.for_request(feincms_page, best_match=True) except Page.DoesNotExist: return [] mptt_opts = feincms_page._mptt_meta mptt_level_range = [(level - 1), ((level + depth) - 1)] queryset = feincms_page.__class__._default_manager.active().filter(in_navigation=False).filter(**{('%s__gte' % mptt_opts.level_attr): mptt_level_range[0], ('%s__lt' % mptt_opts.level_attr): mptt_level_range[1]}) page_level = getattr(feincms_page, mptt_opts.level_attr) parent = None if (level > 1): if ((level - 2) == page_level): parent = feincms_page elif ((level - 2) < page_level): parent = feincms_page.get_ancestors()[(level - 2)] elif ((level - 1) > page_level): queryset = Page.objects.none() if parent: if getattr(parent, 'navigation_extension', None): return list(parent.extended_navigation(depth=depth, request=context.get('request'))) queryset &= parent.get_descendants() if (depth > 1): parents = set([None]) if parent: parents.add(parent.id) def _parentactive_filter(iterable): for elem in iterable: if (elem.parent_id in parents): (yield elem) parents.add(elem.id) queryset = _parentactive_filter(queryset) if hasattr(feincms_page, 'navigation_extension'): def _navext_filter(iterable): current_navextension_node = None for elem in iterable: if ((current_navextension_node is not None) and current_navextension_node.is_ancestor_of(elem)): continue (yield elem) if getattr(elem, 'navigation_extension', None): current_navextension_node = elem try: for extended in elem.extended_navigation(depth=depth, request=context.get('request')): this_level = getattr(extended, mptt_opts.level_attr, 0) if (this_level < ((level + depth) - 1)): (yield extended) except Exception as e: logger.warn('feincms_nav caught exception in navigation extension for page %d: %s', current_navextension_node.id, format_exception(e)) else: current_navextension_node = None queryset = _navext_filter(queryset) return list(queryset)
@register.assignment_tag(takes_context=True) def feincms_nav_reverse(context, feincms_page, level=1, depth=1): '\n \n ' if isinstance(feincms_page, HttpRequest): try: feincms_page = Page.objects.for_request(feincms_page, best_match=True) except Page.DoesNotExist: return [] mptt_opts = feincms_page._mptt_meta mptt_level_range = [(level - 1), ((level + depth) - 1)] queryset = feincms_page.__class__._default_manager.active().filter(in_navigation=False).filter(**{('%s__gte' % mptt_opts.level_attr): mptt_level_range[0], ('%s__lt' % mptt_opts.level_attr): mptt_level_range[1]}) page_level = getattr(feincms_page, mptt_opts.level_attr) parent = None if (level > 1): if ((level - 2) == page_level): parent = feincms_page elif ((level - 2) < page_level): parent = feincms_page.get_ancestors()[(level - 2)] elif ((level - 1) > page_level): queryset = Page.objects.none() if parent: if getattr(parent, 'navigation_extension', None): return list(parent.extended_navigation(depth=depth, request=context.get('request'))) queryset &= parent.get_descendants() if (depth > 1): parents = set([None]) if parent: parents.add(parent.id) def _parentactive_filter(iterable): for elem in iterable: if (elem.parent_id in parents): (yield elem) parents.add(elem.id) queryset = _parentactive_filter(queryset) if hasattr(feincms_page, 'navigation_extension'): def _navext_filter(iterable): current_navextension_node = None for elem in iterable: if ((current_navextension_node is not None) and current_navextension_node.is_ancestor_of(elem)): continue (yield elem) if getattr(elem, 'navigation_extension', None): current_navextension_node = elem try: for extended in elem.extended_navigation(depth=depth, request=context.get('request')): this_level = getattr(extended, mptt_opts.level_attr, 0) if (this_level < ((level + depth) - 1)): (yield extended) except Exception as e: logger.warn('feincms_nav caught exception in navigation extension for page %d: %s', current_navextension_node.id, format_exception(e)) else: current_navextension_node = None queryset = _navext_filter(queryset) return list(queryset)<|docstring|>Saves a list of pages into the given context variable.<|endoftext|>
0fe7d14222e4b863be08b5745a90f9428128c78e34cb865932a94671ee877ed6
def relative_dispersion(x: np.ndarray) -> float: ' Relative dispersion of vector\n ' out = (np.std(x) / np.std(np.diff(x))) return out
Relative dispersion of vector
vest/aggregations/relative_dispersion.py
relative_dispersion
vcerqueira/vest-python
5
python
def relative_dispersion(x: np.ndarray) -> float: ' \n ' out = (np.std(x) / np.std(np.diff(x))) return out
def relative_dispersion(x: np.ndarray) -> float: ' \n ' out = (np.std(x) / np.std(np.diff(x))) return out<|docstring|>Relative dispersion of vector<|endoftext|>
83802d7de66dd77fbf44b24dc569289ce6b20c243d6dd9ec3835b07f81405289
@callback def exclude_attributes(hass: HomeAssistant) -> set[str]: 'Exclude large and chatty update attributes from being recorded in the database.' return {ATTR_ENTITY_PICTURE, ATTR_IN_PROGRESS, ATTR_RELEASE_SUMMARY}
Exclude large and chatty update attributes from being recorded in the database.
homeassistant/components/update/recorder.py
exclude_attributes
a-p-z/core
30,023
python
@callback def exclude_attributes(hass: HomeAssistant) -> set[str]: return {ATTR_ENTITY_PICTURE, ATTR_IN_PROGRESS, ATTR_RELEASE_SUMMARY}
@callback def exclude_attributes(hass: HomeAssistant) -> set[str]: return {ATTR_ENTITY_PICTURE, ATTR_IN_PROGRESS, ATTR_RELEASE_SUMMARY}<|docstring|>Exclude large and chatty update attributes from being recorded in the database.<|endoftext|>
20ccd210266b8119f335b06aed48a02f75b21a1f8edb9ee7d0360a6397780d7b
@mock.patch('coverage.get_json_from_url', return_value={'fuzzer_stats_dir': 'gs://oss-fuzz-coverage/systemd/fuzzer_stats/20210303'}) def test_get_valid_project(self, mocked_get_json_from_url): 'Tests that a project\'s coverage report can be downloaded and parsed.\n\n NOTE: This test relies on the PROJECT_NAME repo\'s coverage report.\n The "example" project was not used because it has no coverage reports.\n ' result = coverage._get_fuzzer_stats_dir_url(PROJECT_NAME) ((url,), _) = mocked_get_json_from_url.call_args self.assertEqual('https://storage.googleapis.com/oss-fuzz-coverage/latest_report_info/curl.json', url) expected_result = 'https://storage.googleapis.com/oss-fuzz-coverage/systemd/fuzzer_stats/20210303' self.assertEqual(result, expected_result)
Tests that a project's coverage report can be downloaded and parsed. NOTE: This test relies on the PROJECT_NAME repo's coverage report. The "example" project was not used because it has no coverage reports.
infra/cifuzz/coverage_test.py
test_get_valid_project
mejo1024/oss-fuzz
3
python
@mock.patch('coverage.get_json_from_url', return_value={'fuzzer_stats_dir': 'gs://oss-fuzz-coverage/systemd/fuzzer_stats/20210303'}) def test_get_valid_project(self, mocked_get_json_from_url): 'Tests that a project\'s coverage report can be downloaded and parsed.\n\n NOTE: This test relies on the PROJECT_NAME repo\'s coverage report.\n The "example" project was not used because it has no coverage reports.\n ' result = coverage._get_fuzzer_stats_dir_url(PROJECT_NAME) ((url,), _) = mocked_get_json_from_url.call_args self.assertEqual('https://storage.googleapis.com/oss-fuzz-coverage/latest_report_info/curl.json', url) expected_result = 'https://storage.googleapis.com/oss-fuzz-coverage/systemd/fuzzer_stats/20210303' self.assertEqual(result, expected_result)
@mock.patch('coverage.get_json_from_url', return_value={'fuzzer_stats_dir': 'gs://oss-fuzz-coverage/systemd/fuzzer_stats/20210303'}) def test_get_valid_project(self, mocked_get_json_from_url): 'Tests that a project\'s coverage report can be downloaded and parsed.\n\n NOTE: This test relies on the PROJECT_NAME repo\'s coverage report.\n The "example" project was not used because it has no coverage reports.\n ' result = coverage._get_fuzzer_stats_dir_url(PROJECT_NAME) ((url,), _) = mocked_get_json_from_url.call_args self.assertEqual('https://storage.googleapis.com/oss-fuzz-coverage/latest_report_info/curl.json', url) expected_result = 'https://storage.googleapis.com/oss-fuzz-coverage/systemd/fuzzer_stats/20210303' self.assertEqual(result, expected_result)<|docstring|>Tests that a project's coverage report can be downloaded and parsed. NOTE: This test relies on the PROJECT_NAME repo's coverage report. The "example" project was not used because it has no coverage reports.<|endoftext|>
10ba315cef0ec60d5b85dd7100618909557767f1995732be564f4c85ef38cf15
def test_get_invalid_project(self): 'Tests that passing a bad project returns None.' self.assertIsNone(coverage._get_fuzzer_stats_dir_url('not-a-proj'))
Tests that passing a bad project returns None.
infra/cifuzz/coverage_test.py
test_get_invalid_project
mejo1024/oss-fuzz
3
python
def test_get_invalid_project(self): self.assertIsNone(coverage._get_fuzzer_stats_dir_url('not-a-proj'))
def test_get_invalid_project(self): self.assertIsNone(coverage._get_fuzzer_stats_dir_url('not-a-proj'))<|docstring|>Tests that passing a bad project returns None.<|endoftext|>
6eee18a836a7b7b4c67c98251a2135ed8b4f95b1312cce0df246783f94cb92ff
@mock.patch('coverage.get_json_from_url', return_value={}) def test_valid_target(self, mocked_get_json_from_url): "Tests that a target's coverage report can be downloaded and parsed." self.coverage_getter.get_target_coverage_report(FUZZ_TARGET) ((url,), _) = mocked_get_json_from_url.call_args self.assertEqual('https://storage.googleapis.com/oss-fuzz-coverage/curl/fuzzer_stats/20200226/curl_fuzzer.json', url)
Tests that a target's coverage report can be downloaded and parsed.
infra/cifuzz/coverage_test.py
test_valid_target
mejo1024/oss-fuzz
3
python
@mock.patch('coverage.get_json_from_url', return_value={}) def test_valid_target(self, mocked_get_json_from_url): self.coverage_getter.get_target_coverage_report(FUZZ_TARGET) ((url,), _) = mocked_get_json_from_url.call_args self.assertEqual('https://storage.googleapis.com/oss-fuzz-coverage/curl/fuzzer_stats/20200226/curl_fuzzer.json', url)
@mock.patch('coverage.get_json_from_url', return_value={}) def test_valid_target(self, mocked_get_json_from_url): self.coverage_getter.get_target_coverage_report(FUZZ_TARGET) ((url,), _) = mocked_get_json_from_url.call_args self.assertEqual('https://storage.googleapis.com/oss-fuzz-coverage/curl/fuzzer_stats/20200226/curl_fuzzer.json', url)<|docstring|>Tests that a target's coverage report can be downloaded and parsed.<|endoftext|>
0ca69591285e95505f3e773a1b8fb9b43f1037db5eac90327e8cc057a29cc9ed
def test_invalid_target(self): 'Tests that passing an invalid target coverage report returns None.' self.assertIsNone(self.coverage_getter.get_target_coverage_report(INVALID_TARGET))
Tests that passing an invalid target coverage report returns None.
infra/cifuzz/coverage_test.py
test_invalid_target
mejo1024/oss-fuzz
3
python
def test_invalid_target(self): self.assertIsNone(self.coverage_getter.get_target_coverage_report(INVALID_TARGET))
def test_invalid_target(self): self.assertIsNone(self.coverage_getter.get_target_coverage_report(INVALID_TARGET))<|docstring|>Tests that passing an invalid target coverage report returns None.<|endoftext|>
ced573ecb1759378dc45d1e9af86a33a8314ba5382d81e197978a9254df41c98
@mock.patch('coverage._get_latest_cov_report_info', return_value=None) def test_invalid_project_json(self, _): 'Tests an invalid project JSON results in None being returned.' coverage_getter = coverage.OssFuzzCoverageGetter(PROJECT_NAME, REPO_PATH) self.assertIsNone(coverage_getter.get_target_coverage_report(FUZZ_TARGET))
Tests an invalid project JSON results in None being returned.
infra/cifuzz/coverage_test.py
test_invalid_project_json
mejo1024/oss-fuzz
3
python
@mock.patch('coverage._get_latest_cov_report_info', return_value=None) def test_invalid_project_json(self, _): coverage_getter = coverage.OssFuzzCoverageGetter(PROJECT_NAME, REPO_PATH) self.assertIsNone(coverage_getter.get_target_coverage_report(FUZZ_TARGET))
@mock.patch('coverage._get_latest_cov_report_info', return_value=None) def test_invalid_project_json(self, _): coverage_getter = coverage.OssFuzzCoverageGetter(PROJECT_NAME, REPO_PATH) self.assertIsNone(coverage_getter.get_target_coverage_report(FUZZ_TARGET))<|docstring|>Tests an invalid project JSON results in None being returned.<|endoftext|>
cfc9a7655980de607ff34771e9cc7ae46e92a7546c28f768efdbd588420f2bab
def test_valid_target(self): 'Tests that covered files can be retrieved from a coverage report.' with open(os.path.join(TEST_DATA_PATH, FUZZ_TARGET_COV_JSON_FILENAME)) as file_handle: fuzzer_cov_info = json.loads(file_handle.read()) with mock.patch('coverage.OssFuzzCoverageGetter.get_target_coverage_report', return_value=fuzzer_cov_info): file_list = self.coverage_getter.get_files_covered_by_target(FUZZ_TARGET) curl_files_list_path = os.path.join(TEST_DATA_PATH, 'example_curl_file_list.json') with open(curl_files_list_path) as file_handle: expected_file_list = json.loads(file_handle.read()) self.assertCountEqual(file_list, expected_file_list)
Tests that covered files can be retrieved from a coverage report.
infra/cifuzz/coverage_test.py
test_valid_target
mejo1024/oss-fuzz
3
python
def test_valid_target(self): with open(os.path.join(TEST_DATA_PATH, FUZZ_TARGET_COV_JSON_FILENAME)) as file_handle: fuzzer_cov_info = json.loads(file_handle.read()) with mock.patch('coverage.OssFuzzCoverageGetter.get_target_coverage_report', return_value=fuzzer_cov_info): file_list = self.coverage_getter.get_files_covered_by_target(FUZZ_TARGET) curl_files_list_path = os.path.join(TEST_DATA_PATH, 'example_curl_file_list.json') with open(curl_files_list_path) as file_handle: expected_file_list = json.loads(file_handle.read()) self.assertCountEqual(file_list, expected_file_list)
def test_valid_target(self): with open(os.path.join(TEST_DATA_PATH, FUZZ_TARGET_COV_JSON_FILENAME)) as file_handle: fuzzer_cov_info = json.loads(file_handle.read()) with mock.patch('coverage.OssFuzzCoverageGetter.get_target_coverage_report', return_value=fuzzer_cov_info): file_list = self.coverage_getter.get_files_covered_by_target(FUZZ_TARGET) curl_files_list_path = os.path.join(TEST_DATA_PATH, 'example_curl_file_list.json') with open(curl_files_list_path) as file_handle: expected_file_list = json.loads(file_handle.read()) self.assertCountEqual(file_list, expected_file_list)<|docstring|>Tests that covered files can be retrieved from a coverage report.<|endoftext|>
a99a0336d2866035b9d2194e88bc7a777e4480dcdeb39e8ffc2105ed20ed10ca
def test_invalid_target(self): 'Tests passing invalid fuzz target returns None.' self.assertIsNone(self.coverage_getter.get_files_covered_by_target(INVALID_TARGET))
Tests passing invalid fuzz target returns None.
infra/cifuzz/coverage_test.py
test_invalid_target
mejo1024/oss-fuzz
3
python
def test_invalid_target(self): self.assertIsNone(self.coverage_getter.get_files_covered_by_target(INVALID_TARGET))
def test_invalid_target(self): self.assertIsNone(self.coverage_getter.get_files_covered_by_target(INVALID_TARGET))<|docstring|>Tests passing invalid fuzz target returns None.<|endoftext|>
0a38fe62000a1bed932be7d1e84b9b9b398460a8952d1d1049f60610cb85707d
def test_is_file_covered_covered(self): 'Tests that is_file_covered returns True for a covered file.' file_coverage = {'filename': '/src/systemd/src/basic/locale-util.c', 'summary': {'regions': {'count': 204, 'covered': 200, 'notcovered': 200, 'percent': 98.03}}} self.assertTrue(coverage.is_file_covered(file_coverage))
Tests that is_file_covered returns True for a covered file.
infra/cifuzz/coverage_test.py
test_is_file_covered_covered
mejo1024/oss-fuzz
3
python
def test_is_file_covered_covered(self): file_coverage = {'filename': '/src/systemd/src/basic/locale-util.c', 'summary': {'regions': {'count': 204, 'covered': 200, 'notcovered': 200, 'percent': 98.03}}} self.assertTrue(coverage.is_file_covered(file_coverage))
def test_is_file_covered_covered(self): file_coverage = {'filename': '/src/systemd/src/basic/locale-util.c', 'summary': {'regions': {'count': 204, 'covered': 200, 'notcovered': 200, 'percent': 98.03}}} self.assertTrue(coverage.is_file_covered(file_coverage))<|docstring|>Tests that is_file_covered returns True for a covered file.<|endoftext|>
63fcc25d361e49f98005480cbc683d63aebee62ea1b6aeb1cfeaa86019bf85b6
def test_is_file_covered_not_covered(self): 'Tests that is_file_covered returns False for a not covered file.' file_coverage = {'filename': '/src/systemd/src/basic/locale-util.c', 'summary': {'regions': {'count': 204, 'covered': 0, 'notcovered': 0, 'percent': 0}}} self.assertFalse(coverage.is_file_covered(file_coverage))
Tests that is_file_covered returns False for a not covered file.
infra/cifuzz/coverage_test.py
test_is_file_covered_not_covered
mejo1024/oss-fuzz
3
python
def test_is_file_covered_not_covered(self): file_coverage = {'filename': '/src/systemd/src/basic/locale-util.c', 'summary': {'regions': {'count': 204, 'covered': 0, 'notcovered': 0, 'percent': 0}}} self.assertFalse(coverage.is_file_covered(file_coverage))
def test_is_file_covered_not_covered(self): file_coverage = {'filename': '/src/systemd/src/basic/locale-util.c', 'summary': {'regions': {'count': 204, 'covered': 0, 'notcovered': 0, 'percent': 0}}} self.assertFalse(coverage.is_file_covered(file_coverage))<|docstring|>Tests that is_file_covered returns False for a not covered file.<|endoftext|>
11c496b3e1ade9a1a91cd3d866efb7cd97d12e9fd9143d1d66317067ca04d9d3
@mock.patch('logging.error') @mock.patch('coverage.get_json_from_url', return_value={'coverage': 1}) def test_get_latest_cov_report_info(self, mocked_get_json_from_url, mocked_error): 'Tests that _get_latest_cov_report_info works as intended.' result = coverage._get_latest_cov_report_info(self.PROJECT) self.assertEqual(result, {'coverage': 1}) mocked_error.assert_not_called() mocked_get_json_from_url.assert_called_with(self.LATEST_REPORT_INFO_URL)
Tests that _get_latest_cov_report_info works as intended.
infra/cifuzz/coverage_test.py
test_get_latest_cov_report_info
mejo1024/oss-fuzz
3
python
@mock.patch('logging.error') @mock.patch('coverage.get_json_from_url', return_value={'coverage': 1}) def test_get_latest_cov_report_info(self, mocked_get_json_from_url, mocked_error): result = coverage._get_latest_cov_report_info(self.PROJECT) self.assertEqual(result, {'coverage': 1}) mocked_error.assert_not_called() mocked_get_json_from_url.assert_called_with(self.LATEST_REPORT_INFO_URL)
@mock.patch('logging.error') @mock.patch('coverage.get_json_from_url', return_value={'coverage': 1}) def test_get_latest_cov_report_info(self, mocked_get_json_from_url, mocked_error): result = coverage._get_latest_cov_report_info(self.PROJECT) self.assertEqual(result, {'coverage': 1}) mocked_error.assert_not_called() mocked_get_json_from_url.assert_called_with(self.LATEST_REPORT_INFO_URL)<|docstring|>Tests that _get_latest_cov_report_info works as intended.<|endoftext|>
c9e8da8b539a9d1bde1621dd112978cd9d15e9228003fb78ac8e6729ee3c67bd
@mock.patch('logging.error') @mock.patch('coverage.get_json_from_url', return_value=None) def test_get_latest_cov_report_info_fail(self, _, mocked_error): "Tests that _get_latest_cov_report_info works as intended when we can't\n get latest report info." result = coverage._get_latest_cov_report_info('project') self.assertIsNone(result) mocked_error.assert_called_with('Could not get the coverage report json from url: %s.', self.LATEST_REPORT_INFO_URL)
Tests that _get_latest_cov_report_info works as intended when we can't get latest report info.
infra/cifuzz/coverage_test.py
test_get_latest_cov_report_info_fail
mejo1024/oss-fuzz
3
python
@mock.patch('logging.error') @mock.patch('coverage.get_json_from_url', return_value=None) def test_get_latest_cov_report_info_fail(self, _, mocked_error): "Tests that _get_latest_cov_report_info works as intended when we can't\n get latest report info." result = coverage._get_latest_cov_report_info('project') self.assertIsNone(result) mocked_error.assert_called_with('Could not get the coverage report json from url: %s.', self.LATEST_REPORT_INFO_URL)
@mock.patch('logging.error') @mock.patch('coverage.get_json_from_url', return_value=None) def test_get_latest_cov_report_info_fail(self, _, mocked_error): "Tests that _get_latest_cov_report_info works as intended when we can't\n get latest report info." result = coverage._get_latest_cov_report_info('project') self.assertIsNone(result) mocked_error.assert_called_with('Could not get the coverage report json from url: %s.', self.LATEST_REPORT_INFO_URL)<|docstring|>Tests that _get_latest_cov_report_info works as intended when we can't get latest report info.<|endoftext|>
434413146874aeca1d00e26201ef72641d3fe574ea3b04bd62fa0d610731752e
def logging_function(_=None): 'Logs start, sleeps for 0.5s, logs end' logging.info(multiprocessing.current_process().name) time.sleep(0.5) logging.info(multiprocessing.current_process().name)
Logs start, sleeps for 0.5s, logs end
core/eolearn/tests/test_eoexecutor.py
logging_function
chorng/eo-learn
0
python
def logging_function(_=None): logging.info(multiprocessing.current_process().name) time.sleep(0.5) logging.info(multiprocessing.current_process().name)
def logging_function(_=None): logging.info(multiprocessing.current_process().name) time.sleep(0.5) logging.info(multiprocessing.current_process().name)<|docstring|>Logs start, sleeps for 0.5s, logs end<|endoftext|>
f59fd177e38fe1a2fcfa4e4aaf7c36f1bd2270b1680bd0decb74ea41786a84eb
def as_atom(document_or_set: Union[(Error, DocumentSet, Document)], query: Optional[ClassicAPIQuery]=None) -> str: 'Serialize a :class:`DocumentSet` as Atom.' if isinstance(document_or_set, Error): return AtomXMLSerializer().serialize_error(document_or_set, query=query) elif ('paper_id' in document_or_set): return AtomXMLSerializer().serialize_document(document_or_set, query=query) return AtomXMLSerializer().serialize(document_or_set, query=query)
Serialize a :class:`DocumentSet` as Atom.
search/serialize/atom.py
as_atom
f380cedric/arxiv-search
35
python
def as_atom(document_or_set: Union[(Error, DocumentSet, Document)], query: Optional[ClassicAPIQuery]=None) -> str: if isinstance(document_or_set, Error): return AtomXMLSerializer().serialize_error(document_or_set, query=query) elif ('paper_id' in document_or_set): return AtomXMLSerializer().serialize_document(document_or_set, query=query) return AtomXMLSerializer().serialize(document_or_set, query=query)
def as_atom(document_or_set: Union[(Error, DocumentSet, Document)], query: Optional[ClassicAPIQuery]=None) -> str: if isinstance(document_or_set, Error): return AtomXMLSerializer().serialize_error(document_or_set, query=query) elif ('paper_id' in document_or_set): return AtomXMLSerializer().serialize_document(document_or_set, query=query) return AtomXMLSerializer().serialize(document_or_set, query=query)<|docstring|>Serialize a :class:`DocumentSet` as Atom.<|endoftext|>
3bb442890697bce2e790fa3603f48411b47bbc8c3338405cb843b2e6fd44ffe2
def transform_document(self, fg: FeedGenerator, doc: Document, query: Optional[ClassicAPIQuery]=None) -> None: 'Select a subset of :class:`Document` properties for public API.' entry = fg.add_entry() entry.id(self._fix_url(url_for('abs', paper_id=doc['paper_id'], version=doc['version'], _external=True))) entry.title(doc['title']) entry.summary(doc['abstract']) entry.published(to_utc((doc['submitted_date_first'] or doc['submitted_date']))) entry.updated(to_utc((doc['updated_date'] or doc['modified_date'] or doc['submitted_date']))) entry.link({'href': self._fix_url(url_for('abs', paper_id=doc['paper_id'], version=doc['version'], _external=True)), 'type': 'text/html'}) entry.link({'href': self._fix_url(url_for('pdf', paper_id=doc['paper_id'], version=doc['version'], _external=True)), 'type': 'application/pdf', 'rel': 'related', 'title': 'pdf'}) if doc.get('comments'): entry.arxiv.comment(doc['comments']) if doc.get('journal_ref'): entry.arxiv.journal_ref(doc['journal_ref']) if doc.get('doi'): entry.arxiv.doi(doc['doi']) if (doc['primary_classification']['category'] is not None): entry.arxiv.primary_category(doc['primary_classification']['category']['id']) entry.category(term=doc['primary_classification']['category']['id'], scheme=ARXIV_NS) for category in doc['secondary_classification']: entry.category(term=category['category']['id'], scheme=ARXIV_NS) for author in doc['authors']: author_data: Dict[(str, Any)] = {'name': author['full_name']} if author.get('affiliation'): author_data['affiliation'] = author['affiliation'] entry.arxiv.author(author_data)
Select a subset of :class:`Document` properties for public API.
search/serialize/atom.py
transform_document
f380cedric/arxiv-search
35
python
def transform_document(self, fg: FeedGenerator, doc: Document, query: Optional[ClassicAPIQuery]=None) -> None: entry = fg.add_entry() entry.id(self._fix_url(url_for('abs', paper_id=doc['paper_id'], version=doc['version'], _external=True))) entry.title(doc['title']) entry.summary(doc['abstract']) entry.published(to_utc((doc['submitted_date_first'] or doc['submitted_date']))) entry.updated(to_utc((doc['updated_date'] or doc['modified_date'] or doc['submitted_date']))) entry.link({'href': self._fix_url(url_for('abs', paper_id=doc['paper_id'], version=doc['version'], _external=True)), 'type': 'text/html'}) entry.link({'href': self._fix_url(url_for('pdf', paper_id=doc['paper_id'], version=doc['version'], _external=True)), 'type': 'application/pdf', 'rel': 'related', 'title': 'pdf'}) if doc.get('comments'): entry.arxiv.comment(doc['comments']) if doc.get('journal_ref'): entry.arxiv.journal_ref(doc['journal_ref']) if doc.get('doi'): entry.arxiv.doi(doc['doi']) if (doc['primary_classification']['category'] is not None): entry.arxiv.primary_category(doc['primary_classification']['category']['id']) entry.category(term=doc['primary_classification']['category']['id'], scheme=ARXIV_NS) for category in doc['secondary_classification']: entry.category(term=category['category']['id'], scheme=ARXIV_NS) for author in doc['authors']: author_data: Dict[(str, Any)] = {'name': author['full_name']} if author.get('affiliation'): author_data['affiliation'] = author['affiliation'] entry.arxiv.author(author_data)
def transform_document(self, fg: FeedGenerator, doc: Document, query: Optional[ClassicAPIQuery]=None) -> None: entry = fg.add_entry() entry.id(self._fix_url(url_for('abs', paper_id=doc['paper_id'], version=doc['version'], _external=True))) entry.title(doc['title']) entry.summary(doc['abstract']) entry.published(to_utc((doc['submitted_date_first'] or doc['submitted_date']))) entry.updated(to_utc((doc['updated_date'] or doc['modified_date'] or doc['submitted_date']))) entry.link({'href': self._fix_url(url_for('abs', paper_id=doc['paper_id'], version=doc['version'], _external=True)), 'type': 'text/html'}) entry.link({'href': self._fix_url(url_for('pdf', paper_id=doc['paper_id'], version=doc['version'], _external=True)), 'type': 'application/pdf', 'rel': 'related', 'title': 'pdf'}) if doc.get('comments'): entry.arxiv.comment(doc['comments']) if doc.get('journal_ref'): entry.arxiv.journal_ref(doc['journal_ref']) if doc.get('doi'): entry.arxiv.doi(doc['doi']) if (doc['primary_classification']['category'] is not None): entry.arxiv.primary_category(doc['primary_classification']['category']['id']) entry.category(term=doc['primary_classification']['category']['id'], scheme=ARXIV_NS) for category in doc['secondary_classification']: entry.category(term=category['category']['id'], scheme=ARXIV_NS) for author in doc['authors']: author_data: Dict[(str, Any)] = {'name': author['full_name']} if author.get('affiliation'): author_data['affiliation'] = author['affiliation'] entry.arxiv.author(author_data)<|docstring|>Select a subset of :class:`Document` properties for public API.<|endoftext|>
38ac6003b3abce233b4529658702a89e48ce78d6ed5c5ff781081f52e43a7d0a
def serialize(self, document_set: DocumentSet, query: Optional[ClassicAPIQuery]=None) -> str: 'Generate Atom response for a :class:`DocumentSet`.' fg = self._get_feed(query) fg.opensearch.totalResults(document_set['metadata'].get('total_results')) fg.opensearch.itemsPerPage(document_set['metadata'].get('size')) fg.opensearch.startIndex(document_set['metadata'].get('start')) for doc in reversed(document_set['results']): self.transform_document(fg, doc, query=query) return safe_str(fg.atom_str(pretty=True))
Generate Atom response for a :class:`DocumentSet`.
search/serialize/atom.py
serialize
f380cedric/arxiv-search
35
python
def serialize(self, document_set: DocumentSet, query: Optional[ClassicAPIQuery]=None) -> str: fg = self._get_feed(query) fg.opensearch.totalResults(document_set['metadata'].get('total_results')) fg.opensearch.itemsPerPage(document_set['metadata'].get('size')) fg.opensearch.startIndex(document_set['metadata'].get('start')) for doc in reversed(document_set['results']): self.transform_document(fg, doc, query=query) return safe_str(fg.atom_str(pretty=True))
def serialize(self, document_set: DocumentSet, query: Optional[ClassicAPIQuery]=None) -> str: fg = self._get_feed(query) fg.opensearch.totalResults(document_set['metadata'].get('total_results')) fg.opensearch.itemsPerPage(document_set['metadata'].get('size')) fg.opensearch.startIndex(document_set['metadata'].get('start')) for doc in reversed(document_set['results']): self.transform_document(fg, doc, query=query) return safe_str(fg.atom_str(pretty=True))<|docstring|>Generate Atom response for a :class:`DocumentSet`.<|endoftext|>
be5116e96fe170c80ca4887d01df986ff0958b2e6df4d5203567221fb4d81bfc
def serialize_error(self, error: Error, query: Optional[ClassicAPIQuery]=None) -> str: 'Generate Atom error response.' fg = self._get_feed(query) fg.opensearch.totalResults(1) fg.opensearch.itemsPerPage(1) fg.opensearch.startIndex(0) entry = fg.add_entry() entry.id(error.id) entry.title('Error') entry.summary(error.error) entry.updated(to_utc(error.created)) entry.link({'href': self._fix_url(error.link), 'rel': 'alternate', 'type': 'text/html'}) entry.arxiv.author({'name': error.author}) return safe_str(fg.atom_str(pretty=True))
Generate Atom error response.
search/serialize/atom.py
serialize_error
f380cedric/arxiv-search
35
python
def serialize_error(self, error: Error, query: Optional[ClassicAPIQuery]=None) -> str: fg = self._get_feed(query) fg.opensearch.totalResults(1) fg.opensearch.itemsPerPage(1) fg.opensearch.startIndex(0) entry = fg.add_entry() entry.id(error.id) entry.title('Error') entry.summary(error.error) entry.updated(to_utc(error.created)) entry.link({'href': self._fix_url(error.link), 'rel': 'alternate', 'type': 'text/html'}) entry.arxiv.author({'name': error.author}) return safe_str(fg.atom_str(pretty=True))
def serialize_error(self, error: Error, query: Optional[ClassicAPIQuery]=None) -> str: fg = self._get_feed(query) fg.opensearch.totalResults(1) fg.opensearch.itemsPerPage(1) fg.opensearch.startIndex(0) entry = fg.add_entry() entry.id(error.id) entry.title('Error') entry.summary(error.error) entry.updated(to_utc(error.created)) entry.link({'href': self._fix_url(error.link), 'rel': 'alternate', 'type': 'text/html'}) entry.arxiv.author({'name': error.author}) return safe_str(fg.atom_str(pretty=True))<|docstring|>Generate Atom error response.<|endoftext|>
c1e74618f11a8af2354cf63502c77e7c857b9022b5e4dedacc94b7aa20d777db
def serialize_document(self, document: Document, query: Optional[ClassicAPIQuery]=None) -> str: 'Generate Atom feed for a single :class:`Document`.' document_set = document_set_from_documents([document]) return self.serialize(document_set, query=query)
Generate Atom feed for a single :class:`Document`.
search/serialize/atom.py
serialize_document
f380cedric/arxiv-search
35
python
def serialize_document(self, document: Document, query: Optional[ClassicAPIQuery]=None) -> str: document_set = document_set_from_documents([document]) return self.serialize(document_set, query=query)
def serialize_document(self, document: Document, query: Optional[ClassicAPIQuery]=None) -> str: document_set = document_set_from_documents([document]) return self.serialize(document_set, query=query)<|docstring|>Generate Atom feed for a single :class:`Document`.<|endoftext|>
1cca491b754c1ee7cfa28a1bf4f39a8a5442680a4ba9240229817685f7d012a1
def _compute_covariance(self, lpost, res): "\n Compute the covariance of the parameters using inverse of the Hessian, i.e.\n the second-order derivative of the log-likelihood. Also calculates an estimate\n of the standard deviation in the parameters, using the square root of the diagonal\n of the covariance matrix.\n\n The Hessian is either estimated directly by the chosen method of fitting, or\n approximated using the ``statsmodel`` ``approx_hess`` function.\n\n Parameters\n ----------\n lpost: instance of :class:`Posterior` or one of its subclasses\n The object containing the function that is being optimized\n in the regression\n\n res: instance of ``scipy``'s ``OptimizeResult`` class\n The object containing the results from a optimization run\n " if hasattr(res, 'hess_inv'): if (not isinstance(res.hess_inv, np.ndarray)): self.cov = np.asarray(res.hess_inv.todense()) else: self.cov = res.hess_inv self.err = np.sqrt(np.diag(self.cov)) elif comp_hessian: self.log.info('Approximating Hessian with finite differences ...') phess = approx_hess(np.atleast_1d(self.p_opt), lpost) self.cov = np.linalg.inv(phess) self.err = np.sqrt(np.diag(np.abs(self.cov))) else: self.cov = None self.err = None
Compute the covariance of the parameters using inverse of the Hessian, i.e. the second-order derivative of the log-likelihood. Also calculates an estimate of the standard deviation in the parameters, using the square root of the diagonal of the covariance matrix. The Hessian is either estimated directly by the chosen method of fitting, or approximated using the ``statsmodel`` ``approx_hess`` function. Parameters ---------- lpost: instance of :class:`Posterior` or one of its subclasses The object containing the function that is being optimized in the regression res: instance of ``scipy``'s ``OptimizeResult`` class The object containing the results from a optimization run
stingray/modeling/parameterestimation.py
_compute_covariance
nimeshvashistha/stingray
133
python
def _compute_covariance(self, lpost, res): "\n Compute the covariance of the parameters using inverse of the Hessian, i.e.\n the second-order derivative of the log-likelihood. Also calculates an estimate\n of the standard deviation in the parameters, using the square root of the diagonal\n of the covariance matrix.\n\n The Hessian is either estimated directly by the chosen method of fitting, or\n approximated using the ``statsmodel`` ``approx_hess`` function.\n\n Parameters\n ----------\n lpost: instance of :class:`Posterior` or one of its subclasses\n The object containing the function that is being optimized\n in the regression\n\n res: instance of ``scipy``'s ``OptimizeResult`` class\n The object containing the results from a optimization run\n " if hasattr(res, 'hess_inv'): if (not isinstance(res.hess_inv, np.ndarray)): self.cov = np.asarray(res.hess_inv.todense()) else: self.cov = res.hess_inv self.err = np.sqrt(np.diag(self.cov)) elif comp_hessian: self.log.info('Approximating Hessian with finite differences ...') phess = approx_hess(np.atleast_1d(self.p_opt), lpost) self.cov = np.linalg.inv(phess) self.err = np.sqrt(np.diag(np.abs(self.cov))) else: self.cov = None self.err = None
def _compute_covariance(self, lpost, res): "\n Compute the covariance of the parameters using inverse of the Hessian, i.e.\n the second-order derivative of the log-likelihood. Also calculates an estimate\n of the standard deviation in the parameters, using the square root of the diagonal\n of the covariance matrix.\n\n The Hessian is either estimated directly by the chosen method of fitting, or\n approximated using the ``statsmodel`` ``approx_hess`` function.\n\n Parameters\n ----------\n lpost: instance of :class:`Posterior` or one of its subclasses\n The object containing the function that is being optimized\n in the regression\n\n res: instance of ``scipy``'s ``OptimizeResult`` class\n The object containing the results from a optimization run\n " if hasattr(res, 'hess_inv'): if (not isinstance(res.hess_inv, np.ndarray)): self.cov = np.asarray(res.hess_inv.todense()) else: self.cov = res.hess_inv self.err = np.sqrt(np.diag(self.cov)) elif comp_hessian: self.log.info('Approximating Hessian with finite differences ...') phess = approx_hess(np.atleast_1d(self.p_opt), lpost) self.cov = np.linalg.inv(phess) self.err = np.sqrt(np.diag(np.abs(self.cov))) else: self.cov = None self.err = None<|docstring|>Compute the covariance of the parameters using inverse of the Hessian, i.e. the second-order derivative of the log-likelihood. Also calculates an estimate of the standard deviation in the parameters, using the square root of the diagonal of the covariance matrix. The Hessian is either estimated directly by the chosen method of fitting, or approximated using the ``statsmodel`` ``approx_hess`` function. Parameters ---------- lpost: instance of :class:`Posterior` or one of its subclasses The object containing the function that is being optimized in the regression res: instance of ``scipy``'s ``OptimizeResult`` class The object containing the results from a optimization run<|endoftext|>
ec871b78411320124d1520ffb89b07d35179bb0b4442558121a96b6810f2111b
def _compute_model(self, lpost): '\n Compute the values of the best-fit model for all ``x``.\n\n Parameters\n ----------\n lpost: instance of :class:`Posterior` or one of its subclasses\n The object containing the function that is being optimized\n in the regression\n ' _fitter_to_model_params(lpost.model, self.p_opt) self.mfit = lpost.model(lpost.x)
Compute the values of the best-fit model for all ``x``. Parameters ---------- lpost: instance of :class:`Posterior` or one of its subclasses The object containing the function that is being optimized in the regression
stingray/modeling/parameterestimation.py
_compute_model
nimeshvashistha/stingray
133
python
def _compute_model(self, lpost): '\n Compute the values of the best-fit model for all ``x``.\n\n Parameters\n ----------\n lpost: instance of :class:`Posterior` or one of its subclasses\n The object containing the function that is being optimized\n in the regression\n ' _fitter_to_model_params(lpost.model, self.p_opt) self.mfit = lpost.model(lpost.x)
def _compute_model(self, lpost): '\n Compute the values of the best-fit model for all ``x``.\n\n Parameters\n ----------\n lpost: instance of :class:`Posterior` or one of its subclasses\n The object containing the function that is being optimized\n in the regression\n ' _fitter_to_model_params(lpost.model, self.p_opt) self.mfit = lpost.model(lpost.x)<|docstring|>Compute the values of the best-fit model for all ``x``. Parameters ---------- lpost: instance of :class:`Posterior` or one of its subclasses The object containing the function that is being optimized in the regression<|endoftext|>
4b55a418e39850d945eefce59d6c123d9d342cceab31506c622f5afab7511c8c
def _compute_criteria(self, lpost): '\n Compute various information criteria useful for model comparison in\n non-nested models.\n\n Currently implemented are the Akaike Information Criterion [#]_ and the\n Bayesian Information Criterion [#]_.\n\n Parameters\n ----------\n lpost: instance of :class:`Posterior` or one of its subclasses\n The object containing the function that is being optimized\n in the regression\n\n References\n ----------\n .. [#] http://ieeexplore.ieee.org/document/1100705/?reload=true\n .. [#] https://projecteuclid.org/euclid.aos/1176344136\n\n ' if isinstance(lpost, Posterior): self.deviance = ((- 2.0) * lpost.loglikelihood(self.p_opt, neg=False)) elif isinstance(lpost, LogLikelihood): self.deviance = (2.0 * self.result) self.aic = (self.result + (2.0 * self.p_opt.shape[0])) self.bic = (self.result + (self.p_opt.shape[0] * np.log(lpost.x.shape[0])))
Compute various information criteria useful for model comparison in non-nested models. Currently implemented are the Akaike Information Criterion [#]_ and the Bayesian Information Criterion [#]_. Parameters ---------- lpost: instance of :class:`Posterior` or one of its subclasses The object containing the function that is being optimized in the regression References ---------- .. [#] http://ieeexplore.ieee.org/document/1100705/?reload=true .. [#] https://projecteuclid.org/euclid.aos/1176344136
stingray/modeling/parameterestimation.py
_compute_criteria
nimeshvashistha/stingray
133
python
def _compute_criteria(self, lpost): '\n Compute various information criteria useful for model comparison in\n non-nested models.\n\n Currently implemented are the Akaike Information Criterion [#]_ and the\n Bayesian Information Criterion [#]_.\n\n Parameters\n ----------\n lpost: instance of :class:`Posterior` or one of its subclasses\n The object containing the function that is being optimized\n in the regression\n\n References\n ----------\n .. [#] http://ieeexplore.ieee.org/document/1100705/?reload=true\n .. [#] https://projecteuclid.org/euclid.aos/1176344136\n\n ' if isinstance(lpost, Posterior): self.deviance = ((- 2.0) * lpost.loglikelihood(self.p_opt, neg=False)) elif isinstance(lpost, LogLikelihood): self.deviance = (2.0 * self.result) self.aic = (self.result + (2.0 * self.p_opt.shape[0])) self.bic = (self.result + (self.p_opt.shape[0] * np.log(lpost.x.shape[0])))
def _compute_criteria(self, lpost): '\n Compute various information criteria useful for model comparison in\n non-nested models.\n\n Currently implemented are the Akaike Information Criterion [#]_ and the\n Bayesian Information Criterion [#]_.\n\n Parameters\n ----------\n lpost: instance of :class:`Posterior` or one of its subclasses\n The object containing the function that is being optimized\n in the regression\n\n References\n ----------\n .. [#] http://ieeexplore.ieee.org/document/1100705/?reload=true\n .. [#] https://projecteuclid.org/euclid.aos/1176344136\n\n ' if isinstance(lpost, Posterior): self.deviance = ((- 2.0) * lpost.loglikelihood(self.p_opt, neg=False)) elif isinstance(lpost, LogLikelihood): self.deviance = (2.0 * self.result) self.aic = (self.result + (2.0 * self.p_opt.shape[0])) self.bic = (self.result + (self.p_opt.shape[0] * np.log(lpost.x.shape[0])))<|docstring|>Compute various information criteria useful for model comparison in non-nested models. Currently implemented are the Akaike Information Criterion [#]_ and the Bayesian Information Criterion [#]_. Parameters ---------- lpost: instance of :class:`Posterior` or one of its subclasses The object containing the function that is being optimized in the regression References ---------- .. [#] http://ieeexplore.ieee.org/document/1100705/?reload=true .. [#] https://projecteuclid.org/euclid.aos/1176344136<|endoftext|>
dc240bc66aaa50b64afc4839f7345b7e7b8398362c453a7f95e30517a6de5adc
def _compute_statistics(self, lpost): '\n Compute some useful fit statistics, like the degrees of freedom and the\n figure of merit.\n\n Parameters\n ----------\n lpost: instance of :class:`Posterior` or one of its subclasses\n The object containing the function that is being optimized\n in the regression\n ' try: self.mfit except AttributeError: self._compute_model(lpost) self.merit = np.sum((((lpost.y - self.mfit) / self.mfit) ** 2.0)) self.dof = (lpost.y.shape[0] - float(self.p_opt.shape[0])) self.sexp = ((2.0 * len(lpost.x)) * len(self.p_opt)) self.ssd = np.sqrt((2.0 * self.sexp)) self.sobs = np.sum((lpost.y - self.mfit))
Compute some useful fit statistics, like the degrees of freedom and the figure of merit. Parameters ---------- lpost: instance of :class:`Posterior` or one of its subclasses The object containing the function that is being optimized in the regression
stingray/modeling/parameterestimation.py
_compute_statistics
nimeshvashistha/stingray
133
python
def _compute_statistics(self, lpost): '\n Compute some useful fit statistics, like the degrees of freedom and the\n figure of merit.\n\n Parameters\n ----------\n lpost: instance of :class:`Posterior` or one of its subclasses\n The object containing the function that is being optimized\n in the regression\n ' try: self.mfit except AttributeError: self._compute_model(lpost) self.merit = np.sum((((lpost.y - self.mfit) / self.mfit) ** 2.0)) self.dof = (lpost.y.shape[0] - float(self.p_opt.shape[0])) self.sexp = ((2.0 * len(lpost.x)) * len(self.p_opt)) self.ssd = np.sqrt((2.0 * self.sexp)) self.sobs = np.sum((lpost.y - self.mfit))
def _compute_statistics(self, lpost): '\n Compute some useful fit statistics, like the degrees of freedom and the\n figure of merit.\n\n Parameters\n ----------\n lpost: instance of :class:`Posterior` or one of its subclasses\n The object containing the function that is being optimized\n in the regression\n ' try: self.mfit except AttributeError: self._compute_model(lpost) self.merit = np.sum((((lpost.y - self.mfit) / self.mfit) ** 2.0)) self.dof = (lpost.y.shape[0] - float(self.p_opt.shape[0])) self.sexp = ((2.0 * len(lpost.x)) * len(self.p_opt)) self.ssd = np.sqrt((2.0 * self.sexp)) self.sobs = np.sum((lpost.y - self.mfit))<|docstring|>Compute some useful fit statistics, like the degrees of freedom and the figure of merit. Parameters ---------- lpost: instance of :class:`Posterior` or one of its subclasses The object containing the function that is being optimized in the regression<|endoftext|>
c9f72c279d38f7dbd54cd411ed5d6a81023bfafd1dc712546dcdad82052527f3
def print_summary(self, lpost): '\n Print a useful summary of the fitting procedure to screen or\n a log file.\n\n Parameters\n ----------\n lpost : instance of :class:`Posterior` or one of its subclasses\n The object containing the function that is being optimized\n in the regression\n ' self.log.info('The best-fit model parameters plus errors are:') fixed = [lpost.model.fixed[n] for n in lpost.model.param_names] tied = [lpost.model.tied[n] for n in lpost.model.param_names] bounds = [lpost.model.bounds[n] for n in lpost.model.param_names] parnames = [n for (n, f) in zip(lpost.model.param_names, np.logical_or(fixed, tied)) if (not f)] all_parnames = [n for n in lpost.model.param_names] for (i, par) in enumerate(all_parnames): self.log.info('{:3}) Parameter {:<20}: '.format(i, par)) if (par in parnames): idx = parnames.index(par) err_info = ' (no error estimate)' if (self.err is not None): err_info = ' +/- {:<20.5f}'.format(self.err[idx]) self.log.info('{:<20.5f}{} '.format(self.p_opt[idx], err_info)) self.log.info('[{:>10} {:>10}]'.format(str(bounds[i][0]), str(bounds[i][1]))) elif fixed[i]: self.log.info('{:<20.5f} (Fixed) '.format(lpost.model.parameters[i])) elif tied[i]: self.log.info('{:<20.5f} (Tied) '.format(lpost.model.parameters[i])) self.log.info('\n') self.log.info('Fitting statistics: ') self.log.info((' -- number of data points: %i' % len(lpost.x))) try: self.deviance except AttributeError: self._compute_criteria(lpost) self.log.info((' -- Deviance [-2 log L] D = %f.3' % self.deviance)) self.log.info(((' -- The Akaike Information Criterion of the model is: ' + str(self.aic)) + '.')) self.log.info(((' -- The Bayesian Information Criterion of the model is: ' + str(self.bic)) + '.')) try: self.merit except AttributeError: self._compute_statistics(lpost) self.log.info(((' -- The figure-of-merit function for this model ' + (' is: %f.5f' % self.merit)) + (' and the fit for %i dof is %f.3f' % (self.dof, (self.merit / self.dof))))) self.log.info((' -- Summed Residuals S = %f.5f' % self.sobs)) self.log.info((' -- Expected S ~ %f.5 +/- %f.5' % (self.sexp, self.ssd))) return
Print a useful summary of the fitting procedure to screen or a log file. Parameters ---------- lpost : instance of :class:`Posterior` or one of its subclasses The object containing the function that is being optimized in the regression
stingray/modeling/parameterestimation.py
print_summary
nimeshvashistha/stingray
133
python
def print_summary(self, lpost): '\n Print a useful summary of the fitting procedure to screen or\n a log file.\n\n Parameters\n ----------\n lpost : instance of :class:`Posterior` or one of its subclasses\n The object containing the function that is being optimized\n in the regression\n ' self.log.info('The best-fit model parameters plus errors are:') fixed = [lpost.model.fixed[n] for n in lpost.model.param_names] tied = [lpost.model.tied[n] for n in lpost.model.param_names] bounds = [lpost.model.bounds[n] for n in lpost.model.param_names] parnames = [n for (n, f) in zip(lpost.model.param_names, np.logical_or(fixed, tied)) if (not f)] all_parnames = [n for n in lpost.model.param_names] for (i, par) in enumerate(all_parnames): self.log.info('{:3}) Parameter {:<20}: '.format(i, par)) if (par in parnames): idx = parnames.index(par) err_info = ' (no error estimate)' if (self.err is not None): err_info = ' +/- {:<20.5f}'.format(self.err[idx]) self.log.info('{:<20.5f}{} '.format(self.p_opt[idx], err_info)) self.log.info('[{:>10} {:>10}]'.format(str(bounds[i][0]), str(bounds[i][1]))) elif fixed[i]: self.log.info('{:<20.5f} (Fixed) '.format(lpost.model.parameters[i])) elif tied[i]: self.log.info('{:<20.5f} (Tied) '.format(lpost.model.parameters[i])) self.log.info('\n') self.log.info('Fitting statistics: ') self.log.info((' -- number of data points: %i' % len(lpost.x))) try: self.deviance except AttributeError: self._compute_criteria(lpost) self.log.info((' -- Deviance [-2 log L] D = %f.3' % self.deviance)) self.log.info(((' -- The Akaike Information Criterion of the model is: ' + str(self.aic)) + '.')) self.log.info(((' -- The Bayesian Information Criterion of the model is: ' + str(self.bic)) + '.')) try: self.merit except AttributeError: self._compute_statistics(lpost) self.log.info(((' -- The figure-of-merit function for this model ' + (' is: %f.5f' % self.merit)) + (' and the fit for %i dof is %f.3f' % (self.dof, (self.merit / self.dof))))) self.log.info((' -- Summed Residuals S = %f.5f' % self.sobs)) self.log.info((' -- Expected S ~ %f.5 +/- %f.5' % (self.sexp, self.ssd))) return
def print_summary(self, lpost): '\n Print a useful summary of the fitting procedure to screen or\n a log file.\n\n Parameters\n ----------\n lpost : instance of :class:`Posterior` or one of its subclasses\n The object containing the function that is being optimized\n in the regression\n ' self.log.info('The best-fit model parameters plus errors are:') fixed = [lpost.model.fixed[n] for n in lpost.model.param_names] tied = [lpost.model.tied[n] for n in lpost.model.param_names] bounds = [lpost.model.bounds[n] for n in lpost.model.param_names] parnames = [n for (n, f) in zip(lpost.model.param_names, np.logical_or(fixed, tied)) if (not f)] all_parnames = [n for n in lpost.model.param_names] for (i, par) in enumerate(all_parnames): self.log.info('{:3}) Parameter {:<20}: '.format(i, par)) if (par in parnames): idx = parnames.index(par) err_info = ' (no error estimate)' if (self.err is not None): err_info = ' +/- {:<20.5f}'.format(self.err[idx]) self.log.info('{:<20.5f}{} '.format(self.p_opt[idx], err_info)) self.log.info('[{:>10} {:>10}]'.format(str(bounds[i][0]), str(bounds[i][1]))) elif fixed[i]: self.log.info('{:<20.5f} (Fixed) '.format(lpost.model.parameters[i])) elif tied[i]: self.log.info('{:<20.5f} (Tied) '.format(lpost.model.parameters[i])) self.log.info('\n') self.log.info('Fitting statistics: ') self.log.info((' -- number of data points: %i' % len(lpost.x))) try: self.deviance except AttributeError: self._compute_criteria(lpost) self.log.info((' -- Deviance [-2 log L] D = %f.3' % self.deviance)) self.log.info(((' -- The Akaike Information Criterion of the model is: ' + str(self.aic)) + '.')) self.log.info(((' -- The Bayesian Information Criterion of the model is: ' + str(self.bic)) + '.')) try: self.merit except AttributeError: self._compute_statistics(lpost) self.log.info(((' -- The figure-of-merit function for this model ' + (' is: %f.5f' % self.merit)) + (' and the fit for %i dof is %f.3f' % (self.dof, (self.merit / self.dof))))) self.log.info((' -- Summed Residuals S = %f.5f' % self.sobs)) self.log.info((' -- Expected S ~ %f.5 +/- %f.5' % (self.sexp, self.ssd))) return<|docstring|>Print a useful summary of the fitting procedure to screen or a log file. Parameters ---------- lpost : instance of :class:`Posterior` or one of its subclasses The object containing the function that is being optimized in the regression<|endoftext|>
747f356f060d0bbe24582e77ec37bc131cd98aad8232158befa3f0e9bdbc75e9
def fit(self, lpost, t0, neg=True, scipy_optimize_options=None): '\n Do either a Maximum-A-Posteriori (MAP) or Maximum Likelihood (ML)\n fit to the data.\n\n MAP fits include priors, ML fits do not.\n\n Parameters\n -----------\n lpost : :class:`Posterior` (or subclass) instance\n and instance of class :class:`Posterior` or one of its subclasses\n that defines the function to be minimized (either in ``loglikelihood``\n or ``logposterior``)\n\n t0 : {``list`` | ``numpy.ndarray``}\n List/array with set of initial parameters\n\n neg : bool, optional, default ``True``\n Boolean to be passed to ``lpost``, setting whether to use the\n *negative* posterior or the *negative* log-likelihood. Useful for\n optimization routines, which are generally defined as *minimization* routines.\n\n scipy_optimize_options : dict, optional, default ``None``\n A dictionary with options for ``scipy.optimize.minimize``,\n directly passed on as keyword arguments.\n\n Returns\n --------\n res : :class:`OptimizationResults` object\n An object containing useful summaries of the fitting procedure.\n For details, see documentation of class:`OptimizationResults`.\n ' if ((not isinstance(lpost, Posterior)) and (not isinstance(lpost, LogLikelihood))): raise TypeError('lpost must be a subclass of Posterior or LogLikelihoood.') newmod = lpost.model.copy() p0 = t0 if (not (len(p0) == lpost.npar)): raise ValueError('Parameter set t0 must be of right length for model in lpost.') if (scipy.__version__ < '0.10.0'): args = [neg] else: args = (neg,) if (not scipy_optimize_options): scipy_optimize_options = {} funcval = 100.0 i = 0 while ((funcval == 100) or (funcval == 200) or (funcval == 0.0) or (not np.isfinite(funcval))): if (i > 20): raise RuntimeError('Fitting unsuccessful!') t0_p = np.random.multivariate_normal(p0, np.diag((np.abs(p0) / 100.0))) params = [getattr(newmod, name) for name in newmod.param_names] bounds = np.array([p.bounds for p in params if (not np.any([p.tied, p.fixed]))]) if (any(((elem is not None) for elem in np.hstack(bounds))) and (self.fitmethod not in ['L-BFGS-B', 'TNC', 'SLSQP'])): logging.warning((('Fitting method %s ' % self.fitmethod) + 'cannot incorporate the bounds you set!')) if (any(((elem is not None) for elem in np.hstack(bounds))) or (self.fitmethod not in ['L-BFGS-B', 'TNC', 'SLSQP'])): use_bounds = False else: use_bounds = True if self.max_post: if use_bounds: opt = scipy.optimize.minimize(lpost, t0_p, method=self.fitmethod, args=args, tol=1e-10, bounds=bounds, **scipy_optimize_options) else: opt = scipy.optimize.minimize(lpost, t0_p, method=self.fitmethod, args=args, tol=1e-10, **scipy_optimize_options) elif isinstance(lpost, Posterior): if use_bounds: opt = scipy.optimize.minimize(lpost.loglikelihood, t0_p, method=self.fitmethod, args=args, tol=1e-10, bounds=bounds, **scipy_optimize_options) else: opt = scipy.optimize.minimize(lpost.loglikelihood, t0_p, method=self.fitmethod, args=args, tol=1e-10, **scipy_optimize_options) elif isinstance(lpost, LogLikelihood): if use_bounds: opt = scipy.optimize.minimize(lpost.evaluate, t0_p, method=self.fitmethod, args=args, tol=1e-10, **scipy_optimize_options) else: opt = scipy.optimize.minimize(lpost.evaluate, t0_p, method=self.fitmethod, args=args, tol=1e-10, **scipy_optimize_options) funcval = opt.fun if (np.isclose(opt.fun, logmin) or np.isclose(opt.fun, (2 * logmin))): funcval = 100 i += 1 res = OptimizationResults(lpost, opt, neg=neg) return res
Do either a Maximum-A-Posteriori (MAP) or Maximum Likelihood (ML) fit to the data. MAP fits include priors, ML fits do not. Parameters ----------- lpost : :class:`Posterior` (or subclass) instance and instance of class :class:`Posterior` or one of its subclasses that defines the function to be minimized (either in ``loglikelihood`` or ``logposterior``) t0 : {``list`` | ``numpy.ndarray``} List/array with set of initial parameters neg : bool, optional, default ``True`` Boolean to be passed to ``lpost``, setting whether to use the *negative* posterior or the *negative* log-likelihood. Useful for optimization routines, which are generally defined as *minimization* routines. scipy_optimize_options : dict, optional, default ``None`` A dictionary with options for ``scipy.optimize.minimize``, directly passed on as keyword arguments. Returns -------- res : :class:`OptimizationResults` object An object containing useful summaries of the fitting procedure. For details, see documentation of class:`OptimizationResults`.
stingray/modeling/parameterestimation.py
fit
nimeshvashistha/stingray
133
python
def fit(self, lpost, t0, neg=True, scipy_optimize_options=None): '\n Do either a Maximum-A-Posteriori (MAP) or Maximum Likelihood (ML)\n fit to the data.\n\n MAP fits include priors, ML fits do not.\n\n Parameters\n -----------\n lpost : :class:`Posterior` (or subclass) instance\n and instance of class :class:`Posterior` or one of its subclasses\n that defines the function to be minimized (either in ``loglikelihood``\n or ``logposterior``)\n\n t0 : {``list`` | ``numpy.ndarray``}\n List/array with set of initial parameters\n\n neg : bool, optional, default ``True``\n Boolean to be passed to ``lpost``, setting whether to use the\n *negative* posterior or the *negative* log-likelihood. Useful for\n optimization routines, which are generally defined as *minimization* routines.\n\n scipy_optimize_options : dict, optional, default ``None``\n A dictionary with options for ``scipy.optimize.minimize``,\n directly passed on as keyword arguments.\n\n Returns\n --------\n res : :class:`OptimizationResults` object\n An object containing useful summaries of the fitting procedure.\n For details, see documentation of class:`OptimizationResults`.\n ' if ((not isinstance(lpost, Posterior)) and (not isinstance(lpost, LogLikelihood))): raise TypeError('lpost must be a subclass of Posterior or LogLikelihoood.') newmod = lpost.model.copy() p0 = t0 if (not (len(p0) == lpost.npar)): raise ValueError('Parameter set t0 must be of right length for model in lpost.') if (scipy.__version__ < '0.10.0'): args = [neg] else: args = (neg,) if (not scipy_optimize_options): scipy_optimize_options = {} funcval = 100.0 i = 0 while ((funcval == 100) or (funcval == 200) or (funcval == 0.0) or (not np.isfinite(funcval))): if (i > 20): raise RuntimeError('Fitting unsuccessful!') t0_p = np.random.multivariate_normal(p0, np.diag((np.abs(p0) / 100.0))) params = [getattr(newmod, name) for name in newmod.param_names] bounds = np.array([p.bounds for p in params if (not np.any([p.tied, p.fixed]))]) if (any(((elem is not None) for elem in np.hstack(bounds))) and (self.fitmethod not in ['L-BFGS-B', 'TNC', 'SLSQP'])): logging.warning((('Fitting method %s ' % self.fitmethod) + 'cannot incorporate the bounds you set!')) if (any(((elem is not None) for elem in np.hstack(bounds))) or (self.fitmethod not in ['L-BFGS-B', 'TNC', 'SLSQP'])): use_bounds = False else: use_bounds = True if self.max_post: if use_bounds: opt = scipy.optimize.minimize(lpost, t0_p, method=self.fitmethod, args=args, tol=1e-10, bounds=bounds, **scipy_optimize_options) else: opt = scipy.optimize.minimize(lpost, t0_p, method=self.fitmethod, args=args, tol=1e-10, **scipy_optimize_options) elif isinstance(lpost, Posterior): if use_bounds: opt = scipy.optimize.minimize(lpost.loglikelihood, t0_p, method=self.fitmethod, args=args, tol=1e-10, bounds=bounds, **scipy_optimize_options) else: opt = scipy.optimize.minimize(lpost.loglikelihood, t0_p, method=self.fitmethod, args=args, tol=1e-10, **scipy_optimize_options) elif isinstance(lpost, LogLikelihood): if use_bounds: opt = scipy.optimize.minimize(lpost.evaluate, t0_p, method=self.fitmethod, args=args, tol=1e-10, **scipy_optimize_options) else: opt = scipy.optimize.minimize(lpost.evaluate, t0_p, method=self.fitmethod, args=args, tol=1e-10, **scipy_optimize_options) funcval = opt.fun if (np.isclose(opt.fun, logmin) or np.isclose(opt.fun, (2 * logmin))): funcval = 100 i += 1 res = OptimizationResults(lpost, opt, neg=neg) return res
def fit(self, lpost, t0, neg=True, scipy_optimize_options=None): '\n Do either a Maximum-A-Posteriori (MAP) or Maximum Likelihood (ML)\n fit to the data.\n\n MAP fits include priors, ML fits do not.\n\n Parameters\n -----------\n lpost : :class:`Posterior` (or subclass) instance\n and instance of class :class:`Posterior` or one of its subclasses\n that defines the function to be minimized (either in ``loglikelihood``\n or ``logposterior``)\n\n t0 : {``list`` | ``numpy.ndarray``}\n List/array with set of initial parameters\n\n neg : bool, optional, default ``True``\n Boolean to be passed to ``lpost``, setting whether to use the\n *negative* posterior or the *negative* log-likelihood. Useful for\n optimization routines, which are generally defined as *minimization* routines.\n\n scipy_optimize_options : dict, optional, default ``None``\n A dictionary with options for ``scipy.optimize.minimize``,\n directly passed on as keyword arguments.\n\n Returns\n --------\n res : :class:`OptimizationResults` object\n An object containing useful summaries of the fitting procedure.\n For details, see documentation of class:`OptimizationResults`.\n ' if ((not isinstance(lpost, Posterior)) and (not isinstance(lpost, LogLikelihood))): raise TypeError('lpost must be a subclass of Posterior or LogLikelihoood.') newmod = lpost.model.copy() p0 = t0 if (not (len(p0) == lpost.npar)): raise ValueError('Parameter set t0 must be of right length for model in lpost.') if (scipy.__version__ < '0.10.0'): args = [neg] else: args = (neg,) if (not scipy_optimize_options): scipy_optimize_options = {} funcval = 100.0 i = 0 while ((funcval == 100) or (funcval == 200) or (funcval == 0.0) or (not np.isfinite(funcval))): if (i > 20): raise RuntimeError('Fitting unsuccessful!') t0_p = np.random.multivariate_normal(p0, np.diag((np.abs(p0) / 100.0))) params = [getattr(newmod, name) for name in newmod.param_names] bounds = np.array([p.bounds for p in params if (not np.any([p.tied, p.fixed]))]) if (any(((elem is not None) for elem in np.hstack(bounds))) and (self.fitmethod not in ['L-BFGS-B', 'TNC', 'SLSQP'])): logging.warning((('Fitting method %s ' % self.fitmethod) + 'cannot incorporate the bounds you set!')) if (any(((elem is not None) for elem in np.hstack(bounds))) or (self.fitmethod not in ['L-BFGS-B', 'TNC', 'SLSQP'])): use_bounds = False else: use_bounds = True if self.max_post: if use_bounds: opt = scipy.optimize.minimize(lpost, t0_p, method=self.fitmethod, args=args, tol=1e-10, bounds=bounds, **scipy_optimize_options) else: opt = scipy.optimize.minimize(lpost, t0_p, method=self.fitmethod, args=args, tol=1e-10, **scipy_optimize_options) elif isinstance(lpost, Posterior): if use_bounds: opt = scipy.optimize.minimize(lpost.loglikelihood, t0_p, method=self.fitmethod, args=args, tol=1e-10, bounds=bounds, **scipy_optimize_options) else: opt = scipy.optimize.minimize(lpost.loglikelihood, t0_p, method=self.fitmethod, args=args, tol=1e-10, **scipy_optimize_options) elif isinstance(lpost, LogLikelihood): if use_bounds: opt = scipy.optimize.minimize(lpost.evaluate, t0_p, method=self.fitmethod, args=args, tol=1e-10, **scipy_optimize_options) else: opt = scipy.optimize.minimize(lpost.evaluate, t0_p, method=self.fitmethod, args=args, tol=1e-10, **scipy_optimize_options) funcval = opt.fun if (np.isclose(opt.fun, logmin) or np.isclose(opt.fun, (2 * logmin))): funcval = 100 i += 1 res = OptimizationResults(lpost, opt, neg=neg) return res<|docstring|>Do either a Maximum-A-Posteriori (MAP) or Maximum Likelihood (ML) fit to the data. MAP fits include priors, ML fits do not. Parameters ----------- lpost : :class:`Posterior` (or subclass) instance and instance of class :class:`Posterior` or one of its subclasses that defines the function to be minimized (either in ``loglikelihood`` or ``logposterior``) t0 : {``list`` | ``numpy.ndarray``} List/array with set of initial parameters neg : bool, optional, default ``True`` Boolean to be passed to ``lpost``, setting whether to use the *negative* posterior or the *negative* log-likelihood. Useful for optimization routines, which are generally defined as *minimization* routines. scipy_optimize_options : dict, optional, default ``None`` A dictionary with options for ``scipy.optimize.minimize``, directly passed on as keyword arguments. Returns -------- res : :class:`OptimizationResults` object An object containing useful summaries of the fitting procedure. For details, see documentation of class:`OptimizationResults`.<|endoftext|>
6bf741c549b1a46f72e0667086c23812782a5d280c33dd5acbd52f66c11d9a85
def compute_lrt(self, lpost1, t1, lpost2, t2, neg=True, max_post=False): '\n This function computes the Likelihood Ratio Test between two\n nested models.\n\n Parameters\n ----------\n lpost1 : object of a subclass of :class:`Posterior`\n The :class:`Posterior` object for model 1\n\n t1 : iterable\n The starting parameters for model 1\n\n lpost2 : object of a subclass of :class:`Posterior`\n The :class:`Posterior` object for model 2\n\n t2 : iterable\n The starting parameters for model 2\n\n neg : bool, optional, default ``True``\n Boolean flag to decide whether to use the negative log-likelihood\n or log-posterior\n\n max_post: bool, optional, default ``False``\n If ``True``, set the internal state to do the optimization with the\n log-likelihood rather than the log-posterior.\n\n Returns\n -------\n lrt : float\n The likelihood ratio for model 2 and model 1\n\n res1 : OptimizationResults object\n Contains the result of fitting ``lpost1``\n\n res2 : OptimizationResults object\n Contains the results of fitting ``lpost2``\n\n ' self.max_post = max_post res1 = self.fit(lpost1, t1, neg=neg) res2 = self.fit(lpost2, t2, neg=neg) lrt = (res1.deviance - res2.deviance) return (lrt, res1, res2)
This function computes the Likelihood Ratio Test between two nested models. Parameters ---------- lpost1 : object of a subclass of :class:`Posterior` The :class:`Posterior` object for model 1 t1 : iterable The starting parameters for model 1 lpost2 : object of a subclass of :class:`Posterior` The :class:`Posterior` object for model 2 t2 : iterable The starting parameters for model 2 neg : bool, optional, default ``True`` Boolean flag to decide whether to use the negative log-likelihood or log-posterior max_post: bool, optional, default ``False`` If ``True``, set the internal state to do the optimization with the log-likelihood rather than the log-posterior. Returns ------- lrt : float The likelihood ratio for model 2 and model 1 res1 : OptimizationResults object Contains the result of fitting ``lpost1`` res2 : OptimizationResults object Contains the results of fitting ``lpost2``
stingray/modeling/parameterestimation.py
compute_lrt
nimeshvashistha/stingray
133
python
def compute_lrt(self, lpost1, t1, lpost2, t2, neg=True, max_post=False): '\n This function computes the Likelihood Ratio Test between two\n nested models.\n\n Parameters\n ----------\n lpost1 : object of a subclass of :class:`Posterior`\n The :class:`Posterior` object for model 1\n\n t1 : iterable\n The starting parameters for model 1\n\n lpost2 : object of a subclass of :class:`Posterior`\n The :class:`Posterior` object for model 2\n\n t2 : iterable\n The starting parameters for model 2\n\n neg : bool, optional, default ``True``\n Boolean flag to decide whether to use the negative log-likelihood\n or log-posterior\n\n max_post: bool, optional, default ``False``\n If ``True``, set the internal state to do the optimization with the\n log-likelihood rather than the log-posterior.\n\n Returns\n -------\n lrt : float\n The likelihood ratio for model 2 and model 1\n\n res1 : OptimizationResults object\n Contains the result of fitting ``lpost1``\n\n res2 : OptimizationResults object\n Contains the results of fitting ``lpost2``\n\n ' self.max_post = max_post res1 = self.fit(lpost1, t1, neg=neg) res2 = self.fit(lpost2, t2, neg=neg) lrt = (res1.deviance - res2.deviance) return (lrt, res1, res2)
def compute_lrt(self, lpost1, t1, lpost2, t2, neg=True, max_post=False): '\n This function computes the Likelihood Ratio Test between two\n nested models.\n\n Parameters\n ----------\n lpost1 : object of a subclass of :class:`Posterior`\n The :class:`Posterior` object for model 1\n\n t1 : iterable\n The starting parameters for model 1\n\n lpost2 : object of a subclass of :class:`Posterior`\n The :class:`Posterior` object for model 2\n\n t2 : iterable\n The starting parameters for model 2\n\n neg : bool, optional, default ``True``\n Boolean flag to decide whether to use the negative log-likelihood\n or log-posterior\n\n max_post: bool, optional, default ``False``\n If ``True``, set the internal state to do the optimization with the\n log-likelihood rather than the log-posterior.\n\n Returns\n -------\n lrt : float\n The likelihood ratio for model 2 and model 1\n\n res1 : OptimizationResults object\n Contains the result of fitting ``lpost1``\n\n res2 : OptimizationResults object\n Contains the results of fitting ``lpost2``\n\n ' self.max_post = max_post res1 = self.fit(lpost1, t1, neg=neg) res2 = self.fit(lpost2, t2, neg=neg) lrt = (res1.deviance - res2.deviance) return (lrt, res1, res2)<|docstring|>This function computes the Likelihood Ratio Test between two nested models. Parameters ---------- lpost1 : object of a subclass of :class:`Posterior` The :class:`Posterior` object for model 1 t1 : iterable The starting parameters for model 1 lpost2 : object of a subclass of :class:`Posterior` The :class:`Posterior` object for model 2 t2 : iterable The starting parameters for model 2 neg : bool, optional, default ``True`` Boolean flag to decide whether to use the negative log-likelihood or log-posterior max_post: bool, optional, default ``False`` If ``True``, set the internal state to do the optimization with the log-likelihood rather than the log-posterior. Returns ------- lrt : float The likelihood ratio for model 2 and model 1 res1 : OptimizationResults object Contains the result of fitting ``lpost1`` res2 : OptimizationResults object Contains the results of fitting ``lpost2``<|endoftext|>
5849c5a0176bbd70c8ce3ee81e16282ff4c7a7c61cde2af8873a0c326225071c
def sample(self, lpost, t0, cov=None, nwalkers=500, niter=100, burnin=100, threads=1, print_results=True, plot=False, namestr='test', pool=False): '\n Sample the :class:`Posterior` distribution defined in ``lpost`` using MCMC.\n Here we use the ``emcee`` package, but other implementations could\n in principle be used.\n\n Parameters\n ----------\n lpost : instance of a :class:`Posterior` subclass\n and instance of class :class:`Posterior` or one of its subclasses\n that defines the function to be minimized (either in ``loglikelihood``\n or ``logposterior``)\n\n t0 : iterable\n list or array containing the starting parameters. Its length\n must match ``lpost.model.npar``.\n\n nwalkers : int, optional, default 500\n The number of walkers (chains) to use during the MCMC procedure.\n The more walkers are used, the slower the estimation will be, but\n the better the final distribution is likely to be.\n\n niter : int, optional, default 100\n The number of iterations to run the MCMC chains for. The larger this\n number, the longer the estimation will take, but the higher the\n chance that the walkers have actually converged on the true\n posterior distribution.\n\n burnin : int, optional, default 100\n The number of iterations to run the walkers before convergence is\n assumed to have occurred. This part of the chain will be discarded\n before sampling from what is then assumed to be the posterior\n distribution desired.\n\n threads : **DEPRECATED** int, optional, default 1\n The number of threads for parallelization.\n Default is ``1``, i.e. no parallelization\n With the change to the new emcee version 3, threads is\n deprecated. Use the `pool` keyword argument instead.\n This will no longer have any effect.\n\n print_results : bool, optional, default ``True``\n Boolean flag setting whether the results of the MCMC run should\n be printed to standard output. Default: True\n\n plot : bool, optional, default ``False``\n Boolean flag setting whether summary plots of the MCMC chains\n should be produced. Default: False\n\n namestr : str, optional, default ``test``\n Optional string for output file names for the plotting.\n\n pool : bool, default False\n If True, use pooling to parallelize the operation.\n\n Returns\n -------\n\n res : class:`SamplingResults` object\n An object of class :class:`SamplingResults` summarizing the\n results of the MCMC run.\n\n ' if (threads > 1): raise DeprecationWarning("Keyword 'threads' is deprecated. Please use 'pool' instead.") if (not can_sample): raise ImportError("emcee not installed! Can't sample!") ndim = len(t0) if (cov is None): res = self.fit(lpost, t0, neg=True) cov = res.cov p0 = np.array([np.random.multivariate_normal(t0, cov) for i in range(nwalkers)]) if pool: with Pool() as pooling: sampler = emcee.EnsembleSampler(nwalkers, ndim, lpost, args=[False], pool=pooling) (pos, prob, state) = sampler.run_mcmc(p0, burnin) sampler.reset() (_, _, _) = sampler.run_mcmc(pos, niter, rstate0=state) else: sampler = emcee.EnsembleSampler(nwalkers, ndim, lpost, args=[False]) (pos, prob, state) = sampler.run_mcmc(p0, burnin) sampler.reset() (_, _, _) = sampler.run_mcmc(pos, niter, rstate0=state) res = SamplingResults(sampler) if print_results: res.print_results() if plot: fig = res.plot_results(fig=None, save_plot=True, filename=(namestr + '_corner.pdf')) return res
Sample the :class:`Posterior` distribution defined in ``lpost`` using MCMC. Here we use the ``emcee`` package, but other implementations could in principle be used. Parameters ---------- lpost : instance of a :class:`Posterior` subclass and instance of class :class:`Posterior` or one of its subclasses that defines the function to be minimized (either in ``loglikelihood`` or ``logposterior``) t0 : iterable list or array containing the starting parameters. Its length must match ``lpost.model.npar``. nwalkers : int, optional, default 500 The number of walkers (chains) to use during the MCMC procedure. The more walkers are used, the slower the estimation will be, but the better the final distribution is likely to be. niter : int, optional, default 100 The number of iterations to run the MCMC chains for. The larger this number, the longer the estimation will take, but the higher the chance that the walkers have actually converged on the true posterior distribution. burnin : int, optional, default 100 The number of iterations to run the walkers before convergence is assumed to have occurred. This part of the chain will be discarded before sampling from what is then assumed to be the posterior distribution desired. threads : **DEPRECATED** int, optional, default 1 The number of threads for parallelization. Default is ``1``, i.e. no parallelization With the change to the new emcee version 3, threads is deprecated. Use the `pool` keyword argument instead. This will no longer have any effect. print_results : bool, optional, default ``True`` Boolean flag setting whether the results of the MCMC run should be printed to standard output. Default: True plot : bool, optional, default ``False`` Boolean flag setting whether summary plots of the MCMC chains should be produced. Default: False namestr : str, optional, default ``test`` Optional string for output file names for the plotting. pool : bool, default False If True, use pooling to parallelize the operation. Returns ------- res : class:`SamplingResults` object An object of class :class:`SamplingResults` summarizing the results of the MCMC run.
stingray/modeling/parameterestimation.py
sample
nimeshvashistha/stingray
133
python
def sample(self, lpost, t0, cov=None, nwalkers=500, niter=100, burnin=100, threads=1, print_results=True, plot=False, namestr='test', pool=False): '\n Sample the :class:`Posterior` distribution defined in ``lpost`` using MCMC.\n Here we use the ``emcee`` package, but other implementations could\n in principle be used.\n\n Parameters\n ----------\n lpost : instance of a :class:`Posterior` subclass\n and instance of class :class:`Posterior` or one of its subclasses\n that defines the function to be minimized (either in ``loglikelihood``\n or ``logposterior``)\n\n t0 : iterable\n list or array containing the starting parameters. Its length\n must match ``lpost.model.npar``.\n\n nwalkers : int, optional, default 500\n The number of walkers (chains) to use during the MCMC procedure.\n The more walkers are used, the slower the estimation will be, but\n the better the final distribution is likely to be.\n\n niter : int, optional, default 100\n The number of iterations to run the MCMC chains for. The larger this\n number, the longer the estimation will take, but the higher the\n chance that the walkers have actually converged on the true\n posterior distribution.\n\n burnin : int, optional, default 100\n The number of iterations to run the walkers before convergence is\n assumed to have occurred. This part of the chain will be discarded\n before sampling from what is then assumed to be the posterior\n distribution desired.\n\n threads : **DEPRECATED** int, optional, default 1\n The number of threads for parallelization.\n Default is ``1``, i.e. no parallelization\n With the change to the new emcee version 3, threads is\n deprecated. Use the `pool` keyword argument instead.\n This will no longer have any effect.\n\n print_results : bool, optional, default ``True``\n Boolean flag setting whether the results of the MCMC run should\n be printed to standard output. Default: True\n\n plot : bool, optional, default ``False``\n Boolean flag setting whether summary plots of the MCMC chains\n should be produced. Default: False\n\n namestr : str, optional, default ``test``\n Optional string for output file names for the plotting.\n\n pool : bool, default False\n If True, use pooling to parallelize the operation.\n\n Returns\n -------\n\n res : class:`SamplingResults` object\n An object of class :class:`SamplingResults` summarizing the\n results of the MCMC run.\n\n ' if (threads > 1): raise DeprecationWarning("Keyword 'threads' is deprecated. Please use 'pool' instead.") if (not can_sample): raise ImportError("emcee not installed! Can't sample!") ndim = len(t0) if (cov is None): res = self.fit(lpost, t0, neg=True) cov = res.cov p0 = np.array([np.random.multivariate_normal(t0, cov) for i in range(nwalkers)]) if pool: with Pool() as pooling: sampler = emcee.EnsembleSampler(nwalkers, ndim, lpost, args=[False], pool=pooling) (pos, prob, state) = sampler.run_mcmc(p0, burnin) sampler.reset() (_, _, _) = sampler.run_mcmc(pos, niter, rstate0=state) else: sampler = emcee.EnsembleSampler(nwalkers, ndim, lpost, args=[False]) (pos, prob, state) = sampler.run_mcmc(p0, burnin) sampler.reset() (_, _, _) = sampler.run_mcmc(pos, niter, rstate0=state) res = SamplingResults(sampler) if print_results: res.print_results() if plot: fig = res.plot_results(fig=None, save_plot=True, filename=(namestr + '_corner.pdf')) return res
def sample(self, lpost, t0, cov=None, nwalkers=500, niter=100, burnin=100, threads=1, print_results=True, plot=False, namestr='test', pool=False): '\n Sample the :class:`Posterior` distribution defined in ``lpost`` using MCMC.\n Here we use the ``emcee`` package, but other implementations could\n in principle be used.\n\n Parameters\n ----------\n lpost : instance of a :class:`Posterior` subclass\n and instance of class :class:`Posterior` or one of its subclasses\n that defines the function to be minimized (either in ``loglikelihood``\n or ``logposterior``)\n\n t0 : iterable\n list or array containing the starting parameters. Its length\n must match ``lpost.model.npar``.\n\n nwalkers : int, optional, default 500\n The number of walkers (chains) to use during the MCMC procedure.\n The more walkers are used, the slower the estimation will be, but\n the better the final distribution is likely to be.\n\n niter : int, optional, default 100\n The number of iterations to run the MCMC chains for. The larger this\n number, the longer the estimation will take, but the higher the\n chance that the walkers have actually converged on the true\n posterior distribution.\n\n burnin : int, optional, default 100\n The number of iterations to run the walkers before convergence is\n assumed to have occurred. This part of the chain will be discarded\n before sampling from what is then assumed to be the posterior\n distribution desired.\n\n threads : **DEPRECATED** int, optional, default 1\n The number of threads for parallelization.\n Default is ``1``, i.e. no parallelization\n With the change to the new emcee version 3, threads is\n deprecated. Use the `pool` keyword argument instead.\n This will no longer have any effect.\n\n print_results : bool, optional, default ``True``\n Boolean flag setting whether the results of the MCMC run should\n be printed to standard output. Default: True\n\n plot : bool, optional, default ``False``\n Boolean flag setting whether summary plots of the MCMC chains\n should be produced. Default: False\n\n namestr : str, optional, default ``test``\n Optional string for output file names for the plotting.\n\n pool : bool, default False\n If True, use pooling to parallelize the operation.\n\n Returns\n -------\n\n res : class:`SamplingResults` object\n An object of class :class:`SamplingResults` summarizing the\n results of the MCMC run.\n\n ' if (threads > 1): raise DeprecationWarning("Keyword 'threads' is deprecated. Please use 'pool' instead.") if (not can_sample): raise ImportError("emcee not installed! Can't sample!") ndim = len(t0) if (cov is None): res = self.fit(lpost, t0, neg=True) cov = res.cov p0 = np.array([np.random.multivariate_normal(t0, cov) for i in range(nwalkers)]) if pool: with Pool() as pooling: sampler = emcee.EnsembleSampler(nwalkers, ndim, lpost, args=[False], pool=pooling) (pos, prob, state) = sampler.run_mcmc(p0, burnin) sampler.reset() (_, _, _) = sampler.run_mcmc(pos, niter, rstate0=state) else: sampler = emcee.EnsembleSampler(nwalkers, ndim, lpost, args=[False]) (pos, prob, state) = sampler.run_mcmc(p0, burnin) sampler.reset() (_, _, _) = sampler.run_mcmc(pos, niter, rstate0=state) res = SamplingResults(sampler) if print_results: res.print_results() if plot: fig = res.plot_results(fig=None, save_plot=True, filename=(namestr + '_corner.pdf')) return res<|docstring|>Sample the :class:`Posterior` distribution defined in ``lpost`` using MCMC. Here we use the ``emcee`` package, but other implementations could in principle be used. Parameters ---------- lpost : instance of a :class:`Posterior` subclass and instance of class :class:`Posterior` or one of its subclasses that defines the function to be minimized (either in ``loglikelihood`` or ``logposterior``) t0 : iterable list or array containing the starting parameters. Its length must match ``lpost.model.npar``. nwalkers : int, optional, default 500 The number of walkers (chains) to use during the MCMC procedure. The more walkers are used, the slower the estimation will be, but the better the final distribution is likely to be. niter : int, optional, default 100 The number of iterations to run the MCMC chains for. The larger this number, the longer the estimation will take, but the higher the chance that the walkers have actually converged on the true posterior distribution. burnin : int, optional, default 100 The number of iterations to run the walkers before convergence is assumed to have occurred. This part of the chain will be discarded before sampling from what is then assumed to be the posterior distribution desired. threads : **DEPRECATED** int, optional, default 1 The number of threads for parallelization. Default is ``1``, i.e. no parallelization With the change to the new emcee version 3, threads is deprecated. Use the `pool` keyword argument instead. This will no longer have any effect. print_results : bool, optional, default ``True`` Boolean flag setting whether the results of the MCMC run should be printed to standard output. Default: True plot : bool, optional, default ``False`` Boolean flag setting whether summary plots of the MCMC chains should be produced. Default: False namestr : str, optional, default ``test`` Optional string for output file names for the plotting. pool : bool, default False If True, use pooling to parallelize the operation. Returns ------- res : class:`SamplingResults` object An object of class :class:`SamplingResults` summarizing the results of the MCMC run.<|endoftext|>
e55394ec781e30ebeb79b3ea7dfff04830426c01fcfffbbfc1fe21dd0f9284b8
def _generate_model(self, lpost, pars): '\n Helper function that generates a fake PSD similar to the\n one in the data, but with different parameters.\n\n Parameters\n ----------\n lpost : instance of a :class:`Posterior` or :class:`LogLikelihood` subclass\n The object containing the relevant information about the\n data and the model\n\n pars : iterable\n A list of parameters to be passed to ``lpost.model`` in oder\n to generate a model data set.\n\n Returns:\n --------\n model_data : numpy.ndarray\n An array of model values for each bin in ``lpost.x``\n\n ' assert (isinstance(lpost, LogLikelihood) or isinstance(lpost, Posterior)), 'lpost must be of type LogLikelihood or Posterior or one of its subclasses!' assert (len(pars) == lpost.npar), ('pars must be a list of %i parameters' % lpost.npar) m = lpost.model _fitter_to_model_params(m, pars) model_data = lpost.model(lpost.x) return model_data
Helper function that generates a fake PSD similar to the one in the data, but with different parameters. Parameters ---------- lpost : instance of a :class:`Posterior` or :class:`LogLikelihood` subclass The object containing the relevant information about the data and the model pars : iterable A list of parameters to be passed to ``lpost.model`` in oder to generate a model data set. Returns: -------- model_data : numpy.ndarray An array of model values for each bin in ``lpost.x``
stingray/modeling/parameterestimation.py
_generate_model
nimeshvashistha/stingray
133
python
def _generate_model(self, lpost, pars): '\n Helper function that generates a fake PSD similar to the\n one in the data, but with different parameters.\n\n Parameters\n ----------\n lpost : instance of a :class:`Posterior` or :class:`LogLikelihood` subclass\n The object containing the relevant information about the\n data and the model\n\n pars : iterable\n A list of parameters to be passed to ``lpost.model`` in oder\n to generate a model data set.\n\n Returns:\n --------\n model_data : numpy.ndarray\n An array of model values for each bin in ``lpost.x``\n\n ' assert (isinstance(lpost, LogLikelihood) or isinstance(lpost, Posterior)), 'lpost must be of type LogLikelihood or Posterior or one of its subclasses!' assert (len(pars) == lpost.npar), ('pars must be a list of %i parameters' % lpost.npar) m = lpost.model _fitter_to_model_params(m, pars) model_data = lpost.model(lpost.x) return model_data
def _generate_model(self, lpost, pars): '\n Helper function that generates a fake PSD similar to the\n one in the data, but with different parameters.\n\n Parameters\n ----------\n lpost : instance of a :class:`Posterior` or :class:`LogLikelihood` subclass\n The object containing the relevant information about the\n data and the model\n\n pars : iterable\n A list of parameters to be passed to ``lpost.model`` in oder\n to generate a model data set.\n\n Returns:\n --------\n model_data : numpy.ndarray\n An array of model values for each bin in ``lpost.x``\n\n ' assert (isinstance(lpost, LogLikelihood) or isinstance(lpost, Posterior)), 'lpost must be of type LogLikelihood or Posterior or one of its subclasses!' assert (len(pars) == lpost.npar), ('pars must be a list of %i parameters' % lpost.npar) m = lpost.model _fitter_to_model_params(m, pars) model_data = lpost.model(lpost.x) return model_data<|docstring|>Helper function that generates a fake PSD similar to the one in the data, but with different parameters. Parameters ---------- lpost : instance of a :class:`Posterior` or :class:`LogLikelihood` subclass The object containing the relevant information about the data and the model pars : iterable A list of parameters to be passed to ``lpost.model`` in oder to generate a model data set. Returns: -------- model_data : numpy.ndarray An array of model values for each bin in ``lpost.x``<|endoftext|>
d8929f8b77c16e860ddbd7d569057edd556c97458256b53912268859935e4d15
@staticmethod def _compute_pvalue(obs_val, sim): '\n Compute the p-value given an observed value of a test statistic\n and some simulations of that same test statistic.\n\n Parameters\n ----------\n obs_value : float\n The observed value of the test statistic in question\n\n sim: iterable\n A list or array of simulated values for the test statistic\n\n Returns\n -------\n pval : float in range [0, 1]\n The p-value for the test statistic given the simulations.\n\n ' sim = np.array(sim) ntail = sim[(sim > obs_val)].shape[0] pval = (float(ntail) / float(sim.shape[0])) return pval
Compute the p-value given an observed value of a test statistic and some simulations of that same test statistic. Parameters ---------- obs_value : float The observed value of the test statistic in question sim: iterable A list or array of simulated values for the test statistic Returns ------- pval : float in range [0, 1] The p-value for the test statistic given the simulations.
stingray/modeling/parameterestimation.py
_compute_pvalue
nimeshvashistha/stingray
133
python
@staticmethod def _compute_pvalue(obs_val, sim): '\n Compute the p-value given an observed value of a test statistic\n and some simulations of that same test statistic.\n\n Parameters\n ----------\n obs_value : float\n The observed value of the test statistic in question\n\n sim: iterable\n A list or array of simulated values for the test statistic\n\n Returns\n -------\n pval : float in range [0, 1]\n The p-value for the test statistic given the simulations.\n\n ' sim = np.array(sim) ntail = sim[(sim > obs_val)].shape[0] pval = (float(ntail) / float(sim.shape[0])) return pval
@staticmethod def _compute_pvalue(obs_val, sim): '\n Compute the p-value given an observed value of a test statistic\n and some simulations of that same test statistic.\n\n Parameters\n ----------\n obs_value : float\n The observed value of the test statistic in question\n\n sim: iterable\n A list or array of simulated values for the test statistic\n\n Returns\n -------\n pval : float in range [0, 1]\n The p-value for the test statistic given the simulations.\n\n ' sim = np.array(sim) ntail = sim[(sim > obs_val)].shape[0] pval = (float(ntail) / float(sim.shape[0])) return pval<|docstring|>Compute the p-value given an observed value of a test statistic and some simulations of that same test statistic. Parameters ---------- obs_value : float The observed value of the test statistic in question sim: iterable A list or array of simulated values for the test statistic Returns ------- pval : float in range [0, 1] The p-value for the test statistic given the simulations.<|endoftext|>
ece94194c86392914bec07b1f0563b365edee6f083b60ef6fbb003fb42252bc1
def simulate_lrts(self, s_all, lpost1, t1, lpost2, t2, max_post=True, seed=None): '\n Simulate likelihood ratios.\n For details, see definitions in the subclasses that implement this\n task.\n ' raise NotImplementedError('The behaviour of `simulate_lrts` should be defined in the subclass appropriate for your problem, not in this super class!')
Simulate likelihood ratios. For details, see definitions in the subclasses that implement this task.
stingray/modeling/parameterestimation.py
simulate_lrts
nimeshvashistha/stingray
133
python
def simulate_lrts(self, s_all, lpost1, t1, lpost2, t2, max_post=True, seed=None): '\n Simulate likelihood ratios.\n For details, see definitions in the subclasses that implement this\n task.\n ' raise NotImplementedError('The behaviour of `simulate_lrts` should be defined in the subclass appropriate for your problem, not in this super class!')
def simulate_lrts(self, s_all, lpost1, t1, lpost2, t2, max_post=True, seed=None): '\n Simulate likelihood ratios.\n For details, see definitions in the subclasses that implement this\n task.\n ' raise NotImplementedError('The behaviour of `simulate_lrts` should be defined in the subclass appropriate for your problem, not in this super class!')<|docstring|>Simulate likelihood ratios. For details, see definitions in the subclasses that implement this task.<|endoftext|>
f603631119a631a834427079e5bcdc8eb3a79b04e8e3eafa6aed104f55d387cc
def calibrate_lrt(self, lpost1, t1, lpost2, t2, sample=None, neg=True, max_post=False, nsim=1000, niter=200, nwalkers=500, burnin=200, namestr='test', seed=None): "Calibrate the outcome of a Likelihood Ratio Test via MCMC.\n\n In order to compare models via likelihood ratio test, one generally\n aims to compute a p-value for the null hypothesis (generally the\n simpler model). There are two special cases where the theoretical\n distribution used to compute that p-value analytically given the\n observed likelihood ratio (a chi-square distribution) is not\n applicable:\n\n * the models are not nested (i.e. Model 1 is not a special, simpler\n case of Model 2),\n * the parameter values fixed in Model 2 to retrieve Model 1 are at the\n edges of parameter space (e.g. if one must set, say, an amplitude to\n zero in order to remove a component in the more complex model, and\n negative amplitudes are excluded a priori)\n\n In these cases, the observed likelihood ratio must be calibrated via\n simulations of the simpler model (Model 1), using MCMC to take into\n account the uncertainty in the parameters. This function does\n exactly that: it computes the likelihood ratio for the observed data,\n and produces simulations to calibrate the likelihood ratio and\n compute a p-value for observing the data under the assumption that\n Model 1 istrue.\n\n If ``max_post=True``, the code will use MCMC to sample the posterior\n of the parameters and simulate fake data from there.\n\n If ``max_post=False``, the code will use the covariance matrix derived\n from the fit to simulate data sets for comparison.\n\n Parameters\n ----------\n lpost1 : object of a subclass of :class:`Posterior`\n The :class:`Posterior` object for model 1\n\n t1 : iterable\n The starting parameters for model 1\n\n lpost2 : object of a subclass of :class:`Posterior`\n The :class:`Posterior` object for model 2\n\n t2 : iterable\n The starting parameters for model 2\n\n neg : bool, optional, default ``True``\n Boolean flag to decide whether to use the negative\n log-likelihood or log-posterior\n\n max_post: bool, optional, default ``False``\n If ``True``, set the internal state to do the optimization with the\n log-likelihood rather than the log-posterior.\n\n Returns\n -------\n pvalue : float [0,1]\n p-value 'n stuff\n " (lrt_obs, res1, res2) = self.compute_lrt(lpost1, t1, lpost2, t2, neg=neg, max_post=max_post) rng = np.random.RandomState(seed) if (sample is None): if (not max_post): mvn = scipy.stats.multivariate_normal(mean=res1.p_opt, cov=res1.cov, seed=seed) s_all = mvn.rvs(size=nsim) if (lpost1.npar == 1): s_all = np.atleast_2d(s_all).T else: s_mcmc = self.sample(lpost1, res1.p_opt, cov=res1.cov, nwalkers=nwalkers, niter=niter, burnin=burnin, namestr=namestr) s_all = s_mcmc.samples[rng.choice(s_mcmc.samples.shape[0], nsim, replace=False)] else: s_all = sample[rng.choice(sample.shape[0], nsim, replace=False)] lrt_sim = self.simulate_lrts(s_all, lpost1, t1, lpost2, t2, seed=seed) pval = ParameterEstimation._compute_pvalue(lrt_obs, lrt_sim) return pval
Calibrate the outcome of a Likelihood Ratio Test via MCMC. In order to compare models via likelihood ratio test, one generally aims to compute a p-value for the null hypothesis (generally the simpler model). There are two special cases where the theoretical distribution used to compute that p-value analytically given the observed likelihood ratio (a chi-square distribution) is not applicable: * the models are not nested (i.e. Model 1 is not a special, simpler case of Model 2), * the parameter values fixed in Model 2 to retrieve Model 1 are at the edges of parameter space (e.g. if one must set, say, an amplitude to zero in order to remove a component in the more complex model, and negative amplitudes are excluded a priori) In these cases, the observed likelihood ratio must be calibrated via simulations of the simpler model (Model 1), using MCMC to take into account the uncertainty in the parameters. This function does exactly that: it computes the likelihood ratio for the observed data, and produces simulations to calibrate the likelihood ratio and compute a p-value for observing the data under the assumption that Model 1 istrue. If ``max_post=True``, the code will use MCMC to sample the posterior of the parameters and simulate fake data from there. If ``max_post=False``, the code will use the covariance matrix derived from the fit to simulate data sets for comparison. Parameters ---------- lpost1 : object of a subclass of :class:`Posterior` The :class:`Posterior` object for model 1 t1 : iterable The starting parameters for model 1 lpost2 : object of a subclass of :class:`Posterior` The :class:`Posterior` object for model 2 t2 : iterable The starting parameters for model 2 neg : bool, optional, default ``True`` Boolean flag to decide whether to use the negative log-likelihood or log-posterior max_post: bool, optional, default ``False`` If ``True``, set the internal state to do the optimization with the log-likelihood rather than the log-posterior. Returns ------- pvalue : float [0,1] p-value 'n stuff
stingray/modeling/parameterestimation.py
calibrate_lrt
nimeshvashistha/stingray
133
python
def calibrate_lrt(self, lpost1, t1, lpost2, t2, sample=None, neg=True, max_post=False, nsim=1000, niter=200, nwalkers=500, burnin=200, namestr='test', seed=None): "Calibrate the outcome of a Likelihood Ratio Test via MCMC.\n\n In order to compare models via likelihood ratio test, one generally\n aims to compute a p-value for the null hypothesis (generally the\n simpler model). There are two special cases where the theoretical\n distribution used to compute that p-value analytically given the\n observed likelihood ratio (a chi-square distribution) is not\n applicable:\n\n * the models are not nested (i.e. Model 1 is not a special, simpler\n case of Model 2),\n * the parameter values fixed in Model 2 to retrieve Model 1 are at the\n edges of parameter space (e.g. if one must set, say, an amplitude to\n zero in order to remove a component in the more complex model, and\n negative amplitudes are excluded a priori)\n\n In these cases, the observed likelihood ratio must be calibrated via\n simulations of the simpler model (Model 1), using MCMC to take into\n account the uncertainty in the parameters. This function does\n exactly that: it computes the likelihood ratio for the observed data,\n and produces simulations to calibrate the likelihood ratio and\n compute a p-value for observing the data under the assumption that\n Model 1 istrue.\n\n If ``max_post=True``, the code will use MCMC to sample the posterior\n of the parameters and simulate fake data from there.\n\n If ``max_post=False``, the code will use the covariance matrix derived\n from the fit to simulate data sets for comparison.\n\n Parameters\n ----------\n lpost1 : object of a subclass of :class:`Posterior`\n The :class:`Posterior` object for model 1\n\n t1 : iterable\n The starting parameters for model 1\n\n lpost2 : object of a subclass of :class:`Posterior`\n The :class:`Posterior` object for model 2\n\n t2 : iterable\n The starting parameters for model 2\n\n neg : bool, optional, default ``True``\n Boolean flag to decide whether to use the negative\n log-likelihood or log-posterior\n\n max_post: bool, optional, default ``False``\n If ``True``, set the internal state to do the optimization with the\n log-likelihood rather than the log-posterior.\n\n Returns\n -------\n pvalue : float [0,1]\n p-value 'n stuff\n " (lrt_obs, res1, res2) = self.compute_lrt(lpost1, t1, lpost2, t2, neg=neg, max_post=max_post) rng = np.random.RandomState(seed) if (sample is None): if (not max_post): mvn = scipy.stats.multivariate_normal(mean=res1.p_opt, cov=res1.cov, seed=seed) s_all = mvn.rvs(size=nsim) if (lpost1.npar == 1): s_all = np.atleast_2d(s_all).T else: s_mcmc = self.sample(lpost1, res1.p_opt, cov=res1.cov, nwalkers=nwalkers, niter=niter, burnin=burnin, namestr=namestr) s_all = s_mcmc.samples[rng.choice(s_mcmc.samples.shape[0], nsim, replace=False)] else: s_all = sample[rng.choice(sample.shape[0], nsim, replace=False)] lrt_sim = self.simulate_lrts(s_all, lpost1, t1, lpost2, t2, seed=seed) pval = ParameterEstimation._compute_pvalue(lrt_obs, lrt_sim) return pval
def calibrate_lrt(self, lpost1, t1, lpost2, t2, sample=None, neg=True, max_post=False, nsim=1000, niter=200, nwalkers=500, burnin=200, namestr='test', seed=None): "Calibrate the outcome of a Likelihood Ratio Test via MCMC.\n\n In order to compare models via likelihood ratio test, one generally\n aims to compute a p-value for the null hypothesis (generally the\n simpler model). There are two special cases where the theoretical\n distribution used to compute that p-value analytically given the\n observed likelihood ratio (a chi-square distribution) is not\n applicable:\n\n * the models are not nested (i.e. Model 1 is not a special, simpler\n case of Model 2),\n * the parameter values fixed in Model 2 to retrieve Model 1 are at the\n edges of parameter space (e.g. if one must set, say, an amplitude to\n zero in order to remove a component in the more complex model, and\n negative amplitudes are excluded a priori)\n\n In these cases, the observed likelihood ratio must be calibrated via\n simulations of the simpler model (Model 1), using MCMC to take into\n account the uncertainty in the parameters. This function does\n exactly that: it computes the likelihood ratio for the observed data,\n and produces simulations to calibrate the likelihood ratio and\n compute a p-value for observing the data under the assumption that\n Model 1 istrue.\n\n If ``max_post=True``, the code will use MCMC to sample the posterior\n of the parameters and simulate fake data from there.\n\n If ``max_post=False``, the code will use the covariance matrix derived\n from the fit to simulate data sets for comparison.\n\n Parameters\n ----------\n lpost1 : object of a subclass of :class:`Posterior`\n The :class:`Posterior` object for model 1\n\n t1 : iterable\n The starting parameters for model 1\n\n lpost2 : object of a subclass of :class:`Posterior`\n The :class:`Posterior` object for model 2\n\n t2 : iterable\n The starting parameters for model 2\n\n neg : bool, optional, default ``True``\n Boolean flag to decide whether to use the negative\n log-likelihood or log-posterior\n\n max_post: bool, optional, default ``False``\n If ``True``, set the internal state to do the optimization with the\n log-likelihood rather than the log-posterior.\n\n Returns\n -------\n pvalue : float [0,1]\n p-value 'n stuff\n " (lrt_obs, res1, res2) = self.compute_lrt(lpost1, t1, lpost2, t2, neg=neg, max_post=max_post) rng = np.random.RandomState(seed) if (sample is None): if (not max_post): mvn = scipy.stats.multivariate_normal(mean=res1.p_opt, cov=res1.cov, seed=seed) s_all = mvn.rvs(size=nsim) if (lpost1.npar == 1): s_all = np.atleast_2d(s_all).T else: s_mcmc = self.sample(lpost1, res1.p_opt, cov=res1.cov, nwalkers=nwalkers, niter=niter, burnin=burnin, namestr=namestr) s_all = s_mcmc.samples[rng.choice(s_mcmc.samples.shape[0], nsim, replace=False)] else: s_all = sample[rng.choice(sample.shape[0], nsim, replace=False)] lrt_sim = self.simulate_lrts(s_all, lpost1, t1, lpost2, t2, seed=seed) pval = ParameterEstimation._compute_pvalue(lrt_obs, lrt_sim) return pval<|docstring|>Calibrate the outcome of a Likelihood Ratio Test via MCMC. In order to compare models via likelihood ratio test, one generally aims to compute a p-value for the null hypothesis (generally the simpler model). There are two special cases where the theoretical distribution used to compute that p-value analytically given the observed likelihood ratio (a chi-square distribution) is not applicable: * the models are not nested (i.e. Model 1 is not a special, simpler case of Model 2), * the parameter values fixed in Model 2 to retrieve Model 1 are at the edges of parameter space (e.g. if one must set, say, an amplitude to zero in order to remove a component in the more complex model, and negative amplitudes are excluded a priori) In these cases, the observed likelihood ratio must be calibrated via simulations of the simpler model (Model 1), using MCMC to take into account the uncertainty in the parameters. This function does exactly that: it computes the likelihood ratio for the observed data, and produces simulations to calibrate the likelihood ratio and compute a p-value for observing the data under the assumption that Model 1 istrue. If ``max_post=True``, the code will use MCMC to sample the posterior of the parameters and simulate fake data from there. If ``max_post=False``, the code will use the covariance matrix derived from the fit to simulate data sets for comparison. Parameters ---------- lpost1 : object of a subclass of :class:`Posterior` The :class:`Posterior` object for model 1 t1 : iterable The starting parameters for model 1 lpost2 : object of a subclass of :class:`Posterior` The :class:`Posterior` object for model 2 t2 : iterable The starting parameters for model 2 neg : bool, optional, default ``True`` Boolean flag to decide whether to use the negative log-likelihood or log-posterior max_post: bool, optional, default ``False`` If ``True``, set the internal state to do the optimization with the log-likelihood rather than the log-posterior. Returns ------- pvalue : float [0,1] p-value 'n stuff<|endoftext|>
f05a2040d651f68acc0ffab9ac780d69f32fdc684293ab109a9ffcc458597ced
def _check_convergence(self, sampler): '\n Compute common statistics for convergence of the MCMC\n chains. While you can never be completely sure that your chains\n converged, these present reasonable heuristics to give an\n indication whether convergence is very far off or reasonably close.\n\n Currently implemented are the autocorrelation time [#]_ and the\n Gelman-Rubin convergence criterion [#]_.\n\n Parameters\n ----------\n sampler : an ``emcee.EnsembleSampler`` object\n\n References\n ----------\n .. [#] https://arxiv.org/abs/1202.3665\n .. [#] https://projecteuclid.org/euclid.ss/1177011136\n ' try: self.acor = sampler.get_autocorr_time() except emcee.autocorr.AutocorrError: self.log.info('Chains too short to compute autocorrelation lengths.') self.rhat = self._compute_rhat(sampler)
Compute common statistics for convergence of the MCMC chains. While you can never be completely sure that your chains converged, these present reasonable heuristics to give an indication whether convergence is very far off or reasonably close. Currently implemented are the autocorrelation time [#]_ and the Gelman-Rubin convergence criterion [#]_. Parameters ---------- sampler : an ``emcee.EnsembleSampler`` object References ---------- .. [#] https://arxiv.org/abs/1202.3665 .. [#] https://projecteuclid.org/euclid.ss/1177011136
stingray/modeling/parameterestimation.py
_check_convergence
nimeshvashistha/stingray
133
python
def _check_convergence(self, sampler): '\n Compute common statistics for convergence of the MCMC\n chains. While you can never be completely sure that your chains\n converged, these present reasonable heuristics to give an\n indication whether convergence is very far off or reasonably close.\n\n Currently implemented are the autocorrelation time [#]_ and the\n Gelman-Rubin convergence criterion [#]_.\n\n Parameters\n ----------\n sampler : an ``emcee.EnsembleSampler`` object\n\n References\n ----------\n .. [#] https://arxiv.org/abs/1202.3665\n .. [#] https://projecteuclid.org/euclid.ss/1177011136\n ' try: self.acor = sampler.get_autocorr_time() except emcee.autocorr.AutocorrError: self.log.info('Chains too short to compute autocorrelation lengths.') self.rhat = self._compute_rhat(sampler)
def _check_convergence(self, sampler): '\n Compute common statistics for convergence of the MCMC\n chains. While you can never be completely sure that your chains\n converged, these present reasonable heuristics to give an\n indication whether convergence is very far off or reasonably close.\n\n Currently implemented are the autocorrelation time [#]_ and the\n Gelman-Rubin convergence criterion [#]_.\n\n Parameters\n ----------\n sampler : an ``emcee.EnsembleSampler`` object\n\n References\n ----------\n .. [#] https://arxiv.org/abs/1202.3665\n .. [#] https://projecteuclid.org/euclid.ss/1177011136\n ' try: self.acor = sampler.get_autocorr_time() except emcee.autocorr.AutocorrError: self.log.info('Chains too short to compute autocorrelation lengths.') self.rhat = self._compute_rhat(sampler)<|docstring|>Compute common statistics for convergence of the MCMC chains. While you can never be completely sure that your chains converged, these present reasonable heuristics to give an indication whether convergence is very far off or reasonably close. Currently implemented are the autocorrelation time [#]_ and the Gelman-Rubin convergence criterion [#]_. Parameters ---------- sampler : an ``emcee.EnsembleSampler`` object References ---------- .. [#] https://arxiv.org/abs/1202.3665 .. [#] https://projecteuclid.org/euclid.ss/1177011136<|endoftext|>
a086717be2f372e4efe0a4e171213ae55c470ea64e1e58dfb19ae0a30941031b
def _compute_rhat(self, sampler): '\n Compute Gelman-Rubin convergence criterion [#]_.\n\n Parameters\n ----------\n sampler : an `emcee.EnsembleSampler` object\n\n References\n ----------\n .. [#] https://projecteuclid.org/euclid.ss/1177011136\n ' chain = sampler.get_chain() mean_samples_iter = np.nanmean(chain, axis=1) mean_samples = np.nanmean(chain, axis=(0, 1)) bb = ((self.niter / (self.nwalkers - 1)) * np.sum(((mean_samples_iter - mean_samples) ** 2.0), axis=0)) var_samples = np.nanvar(chain, axis=1) ww = np.nanmean(var_samples, axis=0) rhat = ((((self.niter - 1) / self.niter) * ww) + ((1 / self.niter) * bb)) return rhat
Compute Gelman-Rubin convergence criterion [#]_. Parameters ---------- sampler : an `emcee.EnsembleSampler` object References ---------- .. [#] https://projecteuclid.org/euclid.ss/1177011136
stingray/modeling/parameterestimation.py
_compute_rhat
nimeshvashistha/stingray
133
python
def _compute_rhat(self, sampler): '\n Compute Gelman-Rubin convergence criterion [#]_.\n\n Parameters\n ----------\n sampler : an `emcee.EnsembleSampler` object\n\n References\n ----------\n .. [#] https://projecteuclid.org/euclid.ss/1177011136\n ' chain = sampler.get_chain() mean_samples_iter = np.nanmean(chain, axis=1) mean_samples = np.nanmean(chain, axis=(0, 1)) bb = ((self.niter / (self.nwalkers - 1)) * np.sum(((mean_samples_iter - mean_samples) ** 2.0), axis=0)) var_samples = np.nanvar(chain, axis=1) ww = np.nanmean(var_samples, axis=0) rhat = ((((self.niter - 1) / self.niter) * ww) + ((1 / self.niter) * bb)) return rhat
def _compute_rhat(self, sampler): '\n Compute Gelman-Rubin convergence criterion [#]_.\n\n Parameters\n ----------\n sampler : an `emcee.EnsembleSampler` object\n\n References\n ----------\n .. [#] https://projecteuclid.org/euclid.ss/1177011136\n ' chain = sampler.get_chain() mean_samples_iter = np.nanmean(chain, axis=1) mean_samples = np.nanmean(chain, axis=(0, 1)) bb = ((self.niter / (self.nwalkers - 1)) * np.sum(((mean_samples_iter - mean_samples) ** 2.0), axis=0)) var_samples = np.nanvar(chain, axis=1) ww = np.nanmean(var_samples, axis=0) rhat = ((((self.niter - 1) / self.niter) * ww) + ((1 / self.niter) * bb)) return rhat<|docstring|>Compute Gelman-Rubin convergence criterion [#]_. Parameters ---------- sampler : an `emcee.EnsembleSampler` object References ---------- .. [#] https://projecteuclid.org/euclid.ss/1177011136<|endoftext|>
07263bd8b894cfca38551dca6e81f6c3777baf29ae6ef686aae3ebbd613a11cd
def _infer(self, ci_min=5, ci_max=95): '\n Infer the :class:`Posterior` means, standard deviations and credible intervals\n (i.e. the Bayesian equivalent to confidence intervals) from the :class:`Posterior` samples\n for each parameter.\n\n Parameters\n ----------\n ci_min : float\n Lower bound to the credible interval, given as percentage between\n 0 and 100\n\n ci_max : float\n Upper bound to the credible interval, given as percentage between\n 0 and 100\n ' self.mean = np.mean(self.samples, axis=0) self.std = np.std(self.samples, axis=0) self.ci = np.percentile(self.samples, [ci_min, ci_max], axis=0)
Infer the :class:`Posterior` means, standard deviations and credible intervals (i.e. the Bayesian equivalent to confidence intervals) from the :class:`Posterior` samples for each parameter. Parameters ---------- ci_min : float Lower bound to the credible interval, given as percentage between 0 and 100 ci_max : float Upper bound to the credible interval, given as percentage between 0 and 100
stingray/modeling/parameterestimation.py
_infer
nimeshvashistha/stingray
133
python
def _infer(self, ci_min=5, ci_max=95): '\n Infer the :class:`Posterior` means, standard deviations and credible intervals\n (i.e. the Bayesian equivalent to confidence intervals) from the :class:`Posterior` samples\n for each parameter.\n\n Parameters\n ----------\n ci_min : float\n Lower bound to the credible interval, given as percentage between\n 0 and 100\n\n ci_max : float\n Upper bound to the credible interval, given as percentage between\n 0 and 100\n ' self.mean = np.mean(self.samples, axis=0) self.std = np.std(self.samples, axis=0) self.ci = np.percentile(self.samples, [ci_min, ci_max], axis=0)
def _infer(self, ci_min=5, ci_max=95): '\n Infer the :class:`Posterior` means, standard deviations and credible intervals\n (i.e. the Bayesian equivalent to confidence intervals) from the :class:`Posterior` samples\n for each parameter.\n\n Parameters\n ----------\n ci_min : float\n Lower bound to the credible interval, given as percentage between\n 0 and 100\n\n ci_max : float\n Upper bound to the credible interval, given as percentage between\n 0 and 100\n ' self.mean = np.mean(self.samples, axis=0) self.std = np.std(self.samples, axis=0) self.ci = np.percentile(self.samples, [ci_min, ci_max], axis=0)<|docstring|>Infer the :class:`Posterior` means, standard deviations and credible intervals (i.e. the Bayesian equivalent to confidence intervals) from the :class:`Posterior` samples for each parameter. Parameters ---------- ci_min : float Lower bound to the credible interval, given as percentage between 0 and 100 ci_max : float Upper bound to the credible interval, given as percentage between 0 and 100<|endoftext|>
e17f198a74da30a15c95eb60f700053b6ca5a067e5f2dcd47aef79b7ec49d9a8
def print_results(self): '\n Print results of the MCMC run on screen or to a log-file.\n\n\n ' self.log.info(('-- The acceptance fraction is: %f.5' % self.acceptance)) try: self.log.info('-- The autocorrelation time is: {}'.format(self.acor)) except AttributeError: pass self.log.info(('R_hat for the parameters is: ' + str(self.rhat))) self.log.info('-- Posterior Summary of Parameters: \n') self.log.info('parameter \t mean \t\t sd \t\t 5% \t\t 95% \n') self.log.info('---------------------------------------------\n') for i in range(self.ndim): self.log.info((((((((((('theta[' + str(i)) + '] \t ') + str(self.mean[i])) + '\t') + str(self.std[i])) + '\t') + str(self.ci[(0, i)])) + '\t') + str(self.ci[(1, i)])) + '\n')) return
Print results of the MCMC run on screen or to a log-file.
stingray/modeling/parameterestimation.py
print_results
nimeshvashistha/stingray
133
python
def print_results(self): '\n \n\n\n ' self.log.info(('-- The acceptance fraction is: %f.5' % self.acceptance)) try: self.log.info('-- The autocorrelation time is: {}'.format(self.acor)) except AttributeError: pass self.log.info(('R_hat for the parameters is: ' + str(self.rhat))) self.log.info('-- Posterior Summary of Parameters: \n') self.log.info('parameter \t mean \t\t sd \t\t 5% \t\t 95% \n') self.log.info('---------------------------------------------\n') for i in range(self.ndim): self.log.info((((((((((('theta[' + str(i)) + '] \t ') + str(self.mean[i])) + '\t') + str(self.std[i])) + '\t') + str(self.ci[(0, i)])) + '\t') + str(self.ci[(1, i)])) + '\n')) return
def print_results(self): '\n \n\n\n ' self.log.info(('-- The acceptance fraction is: %f.5' % self.acceptance)) try: self.log.info('-- The autocorrelation time is: {}'.format(self.acor)) except AttributeError: pass self.log.info(('R_hat for the parameters is: ' + str(self.rhat))) self.log.info('-- Posterior Summary of Parameters: \n') self.log.info('parameter \t mean \t\t sd \t\t 5% \t\t 95% \n') self.log.info('---------------------------------------------\n') for i in range(self.ndim): self.log.info((((((((((('theta[' + str(i)) + '] \t ') + str(self.mean[i])) + '\t') + str(self.std[i])) + '\t') + str(self.ci[(0, i)])) + '\t') + str(self.ci[(1, i)])) + '\n')) return<|docstring|>Print results of the MCMC run on screen or to a log-file.<|endoftext|>
65091dbd2960bd93e884ce1d4381c42651244623ec667c28c1290bb825248aae
def plot_results(self, nsamples=1000, fig=None, save_plot=False, filename='test.pdf'): '\n Plot some results in a triangle plot.\n If installed, will use [corner]_\n for the plotting, if not,\n uses its own code to make a triangle plot.\n\n By default, this method returns a ``matplotlib.Figure`` object, but\n if ``save_plot=True`` the plot can be saved to file automatically,\n\n Parameters\n ----------\n\n nsamples : int, default 1000\n The maximum number of samples used for plotting.\n\n fig : matplotlib.Figure instance, default None\n If created externally, you can pass a Figure instance to this method.\n If none is passed, the method will create one internally.\n\n save_plot : bool, default ``False``\n If ``True`` save the plot to file with a file name specified by the\n keyword ``filename``. If ``False`` just return the ``Figure`` object\n\n filename : str\n Name of the output file with the figure\n\n References\n ----------\n .. [corner] https://github.com/dfm/corner.py\n ' assert can_plot, 'Need to have matplotlib installed for plotting' if use_corner: fig = corner.corner(self.samples, labels=None, fig=fig, bins=int(20), quantiles=[0.16, 0.5, 0.84], show_titles=True, title_args={'fontsize': 12}) else: if (fig is None): fig = plt.figure(figsize=(15, 15)) plt.subplots_adjust(top=0.925, bottom=0.025, left=0.025, right=0.975, wspace=0.2, hspace=0.2) ind_all = np.random.choice(np.arange(self.samples.shape[0]), size=nsamples) samples = self.samples[ind_all] for i in range(self.ndim): for j in range(self.ndim): (xmin, xmax) = (samples[(:, j)].min(), samples[(:, j)].max()) (ymin, ymax) = (samples[(:, i)].min(), samples[(:, i)].max()) ax = fig.add_subplot(self.ndim, self.ndim, (((i * self.ndim) + j) + 1)) ax.xaxis.set_major_locator(MaxNLocator(5)) ax.ticklabel_format(style='sci', scilimits=((- 2), 2)) if (i == j): (ntemp, binstemp, patchestemp) = ax.hist(samples[(:, i)], 30, density=True, histtype='stepfilled') ax.axis([ymin, ymax, 0, (np.max(ntemp) * 1.2)]) else: ax.axis([xmin, xmax, ymin, ymax]) ax.scatter(samples[(:, j)], samples[(:, i)], s=7) (xmin, xmax) = (samples[(:, j)].min(), samples[(:, j)].max()) (ymin, ymax) = (samples[(:, i)].min(), samples[(:, i)].max()) try: (xx, yy) = np.mgrid[(xmin:xmax:100j, ymin:ymax:100j)] positions = np.vstack([xx.ravel(), yy.ravel()]) values = np.vstack([samples[(:, j)], samples[(:, i)]]) kernel = scipy.stats.gaussian_kde(values) zz = np.reshape(kernel(positions).T, xx.shape) ax.contour(xx, yy, zz, 7) except ValueError: logging.info('Not making contours.') if save_plot: plt.savefig(filename, format='pdf') return fig
Plot some results in a triangle plot. If installed, will use [corner]_ for the plotting, if not, uses its own code to make a triangle plot. By default, this method returns a ``matplotlib.Figure`` object, but if ``save_plot=True`` the plot can be saved to file automatically, Parameters ---------- nsamples : int, default 1000 The maximum number of samples used for plotting. fig : matplotlib.Figure instance, default None If created externally, you can pass a Figure instance to this method. If none is passed, the method will create one internally. save_plot : bool, default ``False`` If ``True`` save the plot to file with a file name specified by the keyword ``filename``. If ``False`` just return the ``Figure`` object filename : str Name of the output file with the figure References ---------- .. [corner] https://github.com/dfm/corner.py
stingray/modeling/parameterestimation.py
plot_results
nimeshvashistha/stingray
133
python
def plot_results(self, nsamples=1000, fig=None, save_plot=False, filename='test.pdf'): '\n Plot some results in a triangle plot.\n If installed, will use [corner]_\n for the plotting, if not,\n uses its own code to make a triangle plot.\n\n By default, this method returns a ``matplotlib.Figure`` object, but\n if ``save_plot=True`` the plot can be saved to file automatically,\n\n Parameters\n ----------\n\n nsamples : int, default 1000\n The maximum number of samples used for plotting.\n\n fig : matplotlib.Figure instance, default None\n If created externally, you can pass a Figure instance to this method.\n If none is passed, the method will create one internally.\n\n save_plot : bool, default ``False``\n If ``True`` save the plot to file with a file name specified by the\n keyword ``filename``. If ``False`` just return the ``Figure`` object\n\n filename : str\n Name of the output file with the figure\n\n References\n ----------\n .. [corner] https://github.com/dfm/corner.py\n ' assert can_plot, 'Need to have matplotlib installed for plotting' if use_corner: fig = corner.corner(self.samples, labels=None, fig=fig, bins=int(20), quantiles=[0.16, 0.5, 0.84], show_titles=True, title_args={'fontsize': 12}) else: if (fig is None): fig = plt.figure(figsize=(15, 15)) plt.subplots_adjust(top=0.925, bottom=0.025, left=0.025, right=0.975, wspace=0.2, hspace=0.2) ind_all = np.random.choice(np.arange(self.samples.shape[0]), size=nsamples) samples = self.samples[ind_all] for i in range(self.ndim): for j in range(self.ndim): (xmin, xmax) = (samples[(:, j)].min(), samples[(:, j)].max()) (ymin, ymax) = (samples[(:, i)].min(), samples[(:, i)].max()) ax = fig.add_subplot(self.ndim, self.ndim, (((i * self.ndim) + j) + 1)) ax.xaxis.set_major_locator(MaxNLocator(5)) ax.ticklabel_format(style='sci', scilimits=((- 2), 2)) if (i == j): (ntemp, binstemp, patchestemp) = ax.hist(samples[(:, i)], 30, density=True, histtype='stepfilled') ax.axis([ymin, ymax, 0, (np.max(ntemp) * 1.2)]) else: ax.axis([xmin, xmax, ymin, ymax]) ax.scatter(samples[(:, j)], samples[(:, i)], s=7) (xmin, xmax) = (samples[(:, j)].min(), samples[(:, j)].max()) (ymin, ymax) = (samples[(:, i)].min(), samples[(:, i)].max()) try: (xx, yy) = np.mgrid[(xmin:xmax:100j, ymin:ymax:100j)] positions = np.vstack([xx.ravel(), yy.ravel()]) values = np.vstack([samples[(:, j)], samples[(:, i)]]) kernel = scipy.stats.gaussian_kde(values) zz = np.reshape(kernel(positions).T, xx.shape) ax.contour(xx, yy, zz, 7) except ValueError: logging.info('Not making contours.') if save_plot: plt.savefig(filename, format='pdf') return fig
def plot_results(self, nsamples=1000, fig=None, save_plot=False, filename='test.pdf'): '\n Plot some results in a triangle plot.\n If installed, will use [corner]_\n for the plotting, if not,\n uses its own code to make a triangle plot.\n\n By default, this method returns a ``matplotlib.Figure`` object, but\n if ``save_plot=True`` the plot can be saved to file automatically,\n\n Parameters\n ----------\n\n nsamples : int, default 1000\n The maximum number of samples used for plotting.\n\n fig : matplotlib.Figure instance, default None\n If created externally, you can pass a Figure instance to this method.\n If none is passed, the method will create one internally.\n\n save_plot : bool, default ``False``\n If ``True`` save the plot to file with a file name specified by the\n keyword ``filename``. If ``False`` just return the ``Figure`` object\n\n filename : str\n Name of the output file with the figure\n\n References\n ----------\n .. [corner] https://github.com/dfm/corner.py\n ' assert can_plot, 'Need to have matplotlib installed for plotting' if use_corner: fig = corner.corner(self.samples, labels=None, fig=fig, bins=int(20), quantiles=[0.16, 0.5, 0.84], show_titles=True, title_args={'fontsize': 12}) else: if (fig is None): fig = plt.figure(figsize=(15, 15)) plt.subplots_adjust(top=0.925, bottom=0.025, left=0.025, right=0.975, wspace=0.2, hspace=0.2) ind_all = np.random.choice(np.arange(self.samples.shape[0]), size=nsamples) samples = self.samples[ind_all] for i in range(self.ndim): for j in range(self.ndim): (xmin, xmax) = (samples[(:, j)].min(), samples[(:, j)].max()) (ymin, ymax) = (samples[(:, i)].min(), samples[(:, i)].max()) ax = fig.add_subplot(self.ndim, self.ndim, (((i * self.ndim) + j) + 1)) ax.xaxis.set_major_locator(MaxNLocator(5)) ax.ticklabel_format(style='sci', scilimits=((- 2), 2)) if (i == j): (ntemp, binstemp, patchestemp) = ax.hist(samples[(:, i)], 30, density=True, histtype='stepfilled') ax.axis([ymin, ymax, 0, (np.max(ntemp) * 1.2)]) else: ax.axis([xmin, xmax, ymin, ymax]) ax.scatter(samples[(:, j)], samples[(:, i)], s=7) (xmin, xmax) = (samples[(:, j)].min(), samples[(:, j)].max()) (ymin, ymax) = (samples[(:, i)].min(), samples[(:, i)].max()) try: (xx, yy) = np.mgrid[(xmin:xmax:100j, ymin:ymax:100j)] positions = np.vstack([xx.ravel(), yy.ravel()]) values = np.vstack([samples[(:, j)], samples[(:, i)]]) kernel = scipy.stats.gaussian_kde(values) zz = np.reshape(kernel(positions).T, xx.shape) ax.contour(xx, yy, zz, 7) except ValueError: logging.info('Not making contours.') if save_plot: plt.savefig(filename, format='pdf') return fig<|docstring|>Plot some results in a triangle plot. If installed, will use [corner]_ for the plotting, if not, uses its own code to make a triangle plot. By default, this method returns a ``matplotlib.Figure`` object, but if ``save_plot=True`` the plot can be saved to file automatically, Parameters ---------- nsamples : int, default 1000 The maximum number of samples used for plotting. fig : matplotlib.Figure instance, default None If created externally, you can pass a Figure instance to this method. If none is passed, the method will create one internally. save_plot : bool, default ``False`` If ``True`` save the plot to file with a file name specified by the keyword ``filename``. If ``False`` just return the ``Figure`` object filename : str Name of the output file with the figure References ---------- .. [corner] https://github.com/dfm/corner.py<|endoftext|>
f5406800dbbd884f72104109991ebd9203311ab5975a010a3d5eb565894efb35
def fit(self, lpost, t0, neg=True, scipy_optimize_options=None): '\n Do either a Maximum-A-Posteriori (MAP) or Maximum Likelihood (ML)\n fit to the power spectrum.\n\n MAP fits include priors, ML fits do not.\n\n Parameters\n -----------\n lpost : :class:`stingray.modeling.PSDPosterior` object\n An instance of class :class:`stingray.modeling.PSDPosterior` that defines the\n function to be minimized (either in ``loglikelihood`` or ``logposterior``)\n\n t0 : {list | numpy.ndarray}\n List/array with set of initial parameters\n\n neg : bool, optional, default ``True``\n Boolean to be passed to ``lpost``, setting whether to use the\n *negative* posterior or the *negative* log-likelihood.\n\n scipy_optimize_options : dict, optional, default None\n A dictionary with options for ``scipy.optimize.minimize``,\n directly passed on as keyword arguments.\n\n Returns\n --------\n res : :class:`OptimizationResults` object\n An object containing useful summaries of the fitting procedure.\n For details, see documentation of :class:`OptimizationResults`.\n ' self.lpost = lpost res = ParameterEstimation.fit(self, self.lpost, t0, neg=neg, scipy_optimize_options=scipy_optimize_options) (res.maxpow, res.maxfreq, res.maxind) = self._compute_highest_outlier(self.lpost, res) return res
Do either a Maximum-A-Posteriori (MAP) or Maximum Likelihood (ML) fit to the power spectrum. MAP fits include priors, ML fits do not. Parameters ----------- lpost : :class:`stingray.modeling.PSDPosterior` object An instance of class :class:`stingray.modeling.PSDPosterior` that defines the function to be minimized (either in ``loglikelihood`` or ``logposterior``) t0 : {list | numpy.ndarray} List/array with set of initial parameters neg : bool, optional, default ``True`` Boolean to be passed to ``lpost``, setting whether to use the *negative* posterior or the *negative* log-likelihood. scipy_optimize_options : dict, optional, default None A dictionary with options for ``scipy.optimize.minimize``, directly passed on as keyword arguments. Returns -------- res : :class:`OptimizationResults` object An object containing useful summaries of the fitting procedure. For details, see documentation of :class:`OptimizationResults`.
stingray/modeling/parameterestimation.py
fit
nimeshvashistha/stingray
133
python
def fit(self, lpost, t0, neg=True, scipy_optimize_options=None): '\n Do either a Maximum-A-Posteriori (MAP) or Maximum Likelihood (ML)\n fit to the power spectrum.\n\n MAP fits include priors, ML fits do not.\n\n Parameters\n -----------\n lpost : :class:`stingray.modeling.PSDPosterior` object\n An instance of class :class:`stingray.modeling.PSDPosterior` that defines the\n function to be minimized (either in ``loglikelihood`` or ``logposterior``)\n\n t0 : {list | numpy.ndarray}\n List/array with set of initial parameters\n\n neg : bool, optional, default ``True``\n Boolean to be passed to ``lpost``, setting whether to use the\n *negative* posterior or the *negative* log-likelihood.\n\n scipy_optimize_options : dict, optional, default None\n A dictionary with options for ``scipy.optimize.minimize``,\n directly passed on as keyword arguments.\n\n Returns\n --------\n res : :class:`OptimizationResults` object\n An object containing useful summaries of the fitting procedure.\n For details, see documentation of :class:`OptimizationResults`.\n ' self.lpost = lpost res = ParameterEstimation.fit(self, self.lpost, t0, neg=neg, scipy_optimize_options=scipy_optimize_options) (res.maxpow, res.maxfreq, res.maxind) = self._compute_highest_outlier(self.lpost, res) return res
def fit(self, lpost, t0, neg=True, scipy_optimize_options=None): '\n Do either a Maximum-A-Posteriori (MAP) or Maximum Likelihood (ML)\n fit to the power spectrum.\n\n MAP fits include priors, ML fits do not.\n\n Parameters\n -----------\n lpost : :class:`stingray.modeling.PSDPosterior` object\n An instance of class :class:`stingray.modeling.PSDPosterior` that defines the\n function to be minimized (either in ``loglikelihood`` or ``logposterior``)\n\n t0 : {list | numpy.ndarray}\n List/array with set of initial parameters\n\n neg : bool, optional, default ``True``\n Boolean to be passed to ``lpost``, setting whether to use the\n *negative* posterior or the *negative* log-likelihood.\n\n scipy_optimize_options : dict, optional, default None\n A dictionary with options for ``scipy.optimize.minimize``,\n directly passed on as keyword arguments.\n\n Returns\n --------\n res : :class:`OptimizationResults` object\n An object containing useful summaries of the fitting procedure.\n For details, see documentation of :class:`OptimizationResults`.\n ' self.lpost = lpost res = ParameterEstimation.fit(self, self.lpost, t0, neg=neg, scipy_optimize_options=scipy_optimize_options) (res.maxpow, res.maxfreq, res.maxind) = self._compute_highest_outlier(self.lpost, res) return res<|docstring|>Do either a Maximum-A-Posteriori (MAP) or Maximum Likelihood (ML) fit to the power spectrum. MAP fits include priors, ML fits do not. Parameters ----------- lpost : :class:`stingray.modeling.PSDPosterior` object An instance of class :class:`stingray.modeling.PSDPosterior` that defines the function to be minimized (either in ``loglikelihood`` or ``logposterior``) t0 : {list | numpy.ndarray} List/array with set of initial parameters neg : bool, optional, default ``True`` Boolean to be passed to ``lpost``, setting whether to use the *negative* posterior or the *negative* log-likelihood. scipy_optimize_options : dict, optional, default None A dictionary with options for ``scipy.optimize.minimize``, directly passed on as keyword arguments. Returns -------- res : :class:`OptimizationResults` object An object containing useful summaries of the fitting procedure. For details, see documentation of :class:`OptimizationResults`.<|endoftext|>
f2336a72e1d51dbb986c9970e6f8fb407428513cd4a5eacbaa48ac425b557d7d
def sample(self, lpost, t0, cov=None, nwalkers=500, niter=100, burnin=100, threads=1, print_results=True, plot=False, namestr='test'): '\n Sample the posterior distribution defined in ``lpost`` using MCMC.\n Here we use the ``emcee`` package, but other implementations could\n in principle be used.\n\n Parameters\n ----------\n lpost : instance of a :class:`Posterior` subclass\n and instance of class :class:`Posterior` or one of its subclasses\n that defines the function to be minimized (either in ``loglikelihood``\n or ``logposterior``)\n\n t0 : iterable\n list or array containing the starting parameters. Its length\n must match ``lpost.model.npar``.\n\n nwalkers : int, optional, default 500\n The number of walkers (chains) to use during the MCMC procedure.\n The more walkers are used, the slower the estimation will be, but\n the better the final distribution is likely to be.\n\n niter : int, optional, default 100\n The number of iterations to run the MCMC chains for. The larger this\n number, the longer the estimation will take, but the higher the\n chance that the walkers have actually converged on the true\n posterior distribution.\n\n burnin : int, optional, default 100\n The number of iterations to run the walkers before convergence is\n assumed to have occurred. This part of the chain will be discarded\n before sampling from what is then assumed to be the posterior\n distribution desired.\n\n threads : int, optional, default 1\n The number of threads for parallelization.\n Default is ``1``, i.e. no parallelization\n\n print_results : bool, optional, default True\n Boolean flag setting whether the results of the MCMC run should\n be printed to standard output\n\n plot : bool, optional, default False\n Boolean flag setting whether summary plots of the MCMC chains\n should be produced\n\n namestr : str, optional, default ``test``\n Optional string for output file names for the plotting.\n\n Returns\n -------\n\n res : :class:`SamplingResults` object\n An object containing useful summaries of the\n sampling procedure. For details see documentation of :class:`SamplingResults`.\n\n ' self.lpost = lpost if (cov is None): fit_res = ParameterEstimation.fit(self, self.lpost, t0, neg=True) cov = fit_res.cov t0 = fit_res.p_opt res = ParameterEstimation.sample(self, self.lpost, t0, cov=cov, nwalkers=nwalkers, niter=niter, burnin=burnin, threads=threads, print_results=print_results, plot=plot, namestr=namestr) return res
Sample the posterior distribution defined in ``lpost`` using MCMC. Here we use the ``emcee`` package, but other implementations could in principle be used. Parameters ---------- lpost : instance of a :class:`Posterior` subclass and instance of class :class:`Posterior` or one of its subclasses that defines the function to be minimized (either in ``loglikelihood`` or ``logposterior``) t0 : iterable list or array containing the starting parameters. Its length must match ``lpost.model.npar``. nwalkers : int, optional, default 500 The number of walkers (chains) to use during the MCMC procedure. The more walkers are used, the slower the estimation will be, but the better the final distribution is likely to be. niter : int, optional, default 100 The number of iterations to run the MCMC chains for. The larger this number, the longer the estimation will take, but the higher the chance that the walkers have actually converged on the true posterior distribution. burnin : int, optional, default 100 The number of iterations to run the walkers before convergence is assumed to have occurred. This part of the chain will be discarded before sampling from what is then assumed to be the posterior distribution desired. threads : int, optional, default 1 The number of threads for parallelization. Default is ``1``, i.e. no parallelization print_results : bool, optional, default True Boolean flag setting whether the results of the MCMC run should be printed to standard output plot : bool, optional, default False Boolean flag setting whether summary plots of the MCMC chains should be produced namestr : str, optional, default ``test`` Optional string for output file names for the plotting. Returns ------- res : :class:`SamplingResults` object An object containing useful summaries of the sampling procedure. For details see documentation of :class:`SamplingResults`.
stingray/modeling/parameterestimation.py
sample
nimeshvashistha/stingray
133
python
def sample(self, lpost, t0, cov=None, nwalkers=500, niter=100, burnin=100, threads=1, print_results=True, plot=False, namestr='test'): '\n Sample the posterior distribution defined in ``lpost`` using MCMC.\n Here we use the ``emcee`` package, but other implementations could\n in principle be used.\n\n Parameters\n ----------\n lpost : instance of a :class:`Posterior` subclass\n and instance of class :class:`Posterior` or one of its subclasses\n that defines the function to be minimized (either in ``loglikelihood``\n or ``logposterior``)\n\n t0 : iterable\n list or array containing the starting parameters. Its length\n must match ``lpost.model.npar``.\n\n nwalkers : int, optional, default 500\n The number of walkers (chains) to use during the MCMC procedure.\n The more walkers are used, the slower the estimation will be, but\n the better the final distribution is likely to be.\n\n niter : int, optional, default 100\n The number of iterations to run the MCMC chains for. The larger this\n number, the longer the estimation will take, but the higher the\n chance that the walkers have actually converged on the true\n posterior distribution.\n\n burnin : int, optional, default 100\n The number of iterations to run the walkers before convergence is\n assumed to have occurred. This part of the chain will be discarded\n before sampling from what is then assumed to be the posterior\n distribution desired.\n\n threads : int, optional, default 1\n The number of threads for parallelization.\n Default is ``1``, i.e. no parallelization\n\n print_results : bool, optional, default True\n Boolean flag setting whether the results of the MCMC run should\n be printed to standard output\n\n plot : bool, optional, default False\n Boolean flag setting whether summary plots of the MCMC chains\n should be produced\n\n namestr : str, optional, default ``test``\n Optional string for output file names for the plotting.\n\n Returns\n -------\n\n res : :class:`SamplingResults` object\n An object containing useful summaries of the\n sampling procedure. For details see documentation of :class:`SamplingResults`.\n\n ' self.lpost = lpost if (cov is None): fit_res = ParameterEstimation.fit(self, self.lpost, t0, neg=True) cov = fit_res.cov t0 = fit_res.p_opt res = ParameterEstimation.sample(self, self.lpost, t0, cov=cov, nwalkers=nwalkers, niter=niter, burnin=burnin, threads=threads, print_results=print_results, plot=plot, namestr=namestr) return res
def sample(self, lpost, t0, cov=None, nwalkers=500, niter=100, burnin=100, threads=1, print_results=True, plot=False, namestr='test'): '\n Sample the posterior distribution defined in ``lpost`` using MCMC.\n Here we use the ``emcee`` package, but other implementations could\n in principle be used.\n\n Parameters\n ----------\n lpost : instance of a :class:`Posterior` subclass\n and instance of class :class:`Posterior` or one of its subclasses\n that defines the function to be minimized (either in ``loglikelihood``\n or ``logposterior``)\n\n t0 : iterable\n list or array containing the starting parameters. Its length\n must match ``lpost.model.npar``.\n\n nwalkers : int, optional, default 500\n The number of walkers (chains) to use during the MCMC procedure.\n The more walkers are used, the slower the estimation will be, but\n the better the final distribution is likely to be.\n\n niter : int, optional, default 100\n The number of iterations to run the MCMC chains for. The larger this\n number, the longer the estimation will take, but the higher the\n chance that the walkers have actually converged on the true\n posterior distribution.\n\n burnin : int, optional, default 100\n The number of iterations to run the walkers before convergence is\n assumed to have occurred. This part of the chain will be discarded\n before sampling from what is then assumed to be the posterior\n distribution desired.\n\n threads : int, optional, default 1\n The number of threads for parallelization.\n Default is ``1``, i.e. no parallelization\n\n print_results : bool, optional, default True\n Boolean flag setting whether the results of the MCMC run should\n be printed to standard output\n\n plot : bool, optional, default False\n Boolean flag setting whether summary plots of the MCMC chains\n should be produced\n\n namestr : str, optional, default ``test``\n Optional string for output file names for the plotting.\n\n Returns\n -------\n\n res : :class:`SamplingResults` object\n An object containing useful summaries of the\n sampling procedure. For details see documentation of :class:`SamplingResults`.\n\n ' self.lpost = lpost if (cov is None): fit_res = ParameterEstimation.fit(self, self.lpost, t0, neg=True) cov = fit_res.cov t0 = fit_res.p_opt res = ParameterEstimation.sample(self, self.lpost, t0, cov=cov, nwalkers=nwalkers, niter=niter, burnin=burnin, threads=threads, print_results=print_results, plot=plot, namestr=namestr) return res<|docstring|>Sample the posterior distribution defined in ``lpost`` using MCMC. Here we use the ``emcee`` package, but other implementations could in principle be used. Parameters ---------- lpost : instance of a :class:`Posterior` subclass and instance of class :class:`Posterior` or one of its subclasses that defines the function to be minimized (either in ``loglikelihood`` or ``logposterior``) t0 : iterable list or array containing the starting parameters. Its length must match ``lpost.model.npar``. nwalkers : int, optional, default 500 The number of walkers (chains) to use during the MCMC procedure. The more walkers are used, the slower the estimation will be, but the better the final distribution is likely to be. niter : int, optional, default 100 The number of iterations to run the MCMC chains for. The larger this number, the longer the estimation will take, but the higher the chance that the walkers have actually converged on the true posterior distribution. burnin : int, optional, default 100 The number of iterations to run the walkers before convergence is assumed to have occurred. This part of the chain will be discarded before sampling from what is then assumed to be the posterior distribution desired. threads : int, optional, default 1 The number of threads for parallelization. Default is ``1``, i.e. no parallelization print_results : bool, optional, default True Boolean flag setting whether the results of the MCMC run should be printed to standard output plot : bool, optional, default False Boolean flag setting whether summary plots of the MCMC chains should be produced namestr : str, optional, default ``test`` Optional string for output file names for the plotting. Returns ------- res : :class:`SamplingResults` object An object containing useful summaries of the sampling procedure. For details see documentation of :class:`SamplingResults`.<|endoftext|>
1297afd13e1e45212fc1f2845edc7dc5b87c55e2cc9f4b8aa59b324dac8fd58b
def _generate_data(self, lpost, pars, rng=None): '\n Generate a fake power spectrum from a model.\n\n Parameters\n ----------\n lpost : instance of a :class:`Posterior` or :class:`LogLikelihood` subclass\n The object containing the relevant information about the\n data and the model\n\n pars : iterable\n A list of parameters to be passed to ``lpost.model`` in oder\n to generate a model data set.\n\n Returns:\n --------\n sim_ps : :class:`stingray.Powerspectrum` object\n The simulated :class:`Powerspectrum` object\n\n ' if (rng is None): rng = np.random.RandomState(None) model_spectrum = self._generate_model(lpost, pars) model_powers = ((model_spectrum * rng.chisquare((2 * self.ps.m), size=model_spectrum.shape[0])) / (2.0 * self.ps.m)) sim_ps = copy.copy(self.ps) sim_ps.power = model_powers return sim_ps
Generate a fake power spectrum from a model. Parameters ---------- lpost : instance of a :class:`Posterior` or :class:`LogLikelihood` subclass The object containing the relevant information about the data and the model pars : iterable A list of parameters to be passed to ``lpost.model`` in oder to generate a model data set. Returns: -------- sim_ps : :class:`stingray.Powerspectrum` object The simulated :class:`Powerspectrum` object
stingray/modeling/parameterestimation.py
_generate_data
nimeshvashistha/stingray
133
python
def _generate_data(self, lpost, pars, rng=None): '\n Generate a fake power spectrum from a model.\n\n Parameters\n ----------\n lpost : instance of a :class:`Posterior` or :class:`LogLikelihood` subclass\n The object containing the relevant information about the\n data and the model\n\n pars : iterable\n A list of parameters to be passed to ``lpost.model`` in oder\n to generate a model data set.\n\n Returns:\n --------\n sim_ps : :class:`stingray.Powerspectrum` object\n The simulated :class:`Powerspectrum` object\n\n ' if (rng is None): rng = np.random.RandomState(None) model_spectrum = self._generate_model(lpost, pars) model_powers = ((model_spectrum * rng.chisquare((2 * self.ps.m), size=model_spectrum.shape[0])) / (2.0 * self.ps.m)) sim_ps = copy.copy(self.ps) sim_ps.power = model_powers return sim_ps
def _generate_data(self, lpost, pars, rng=None): '\n Generate a fake power spectrum from a model.\n\n Parameters\n ----------\n lpost : instance of a :class:`Posterior` or :class:`LogLikelihood` subclass\n The object containing the relevant information about the\n data and the model\n\n pars : iterable\n A list of parameters to be passed to ``lpost.model`` in oder\n to generate a model data set.\n\n Returns:\n --------\n sim_ps : :class:`stingray.Powerspectrum` object\n The simulated :class:`Powerspectrum` object\n\n ' if (rng is None): rng = np.random.RandomState(None) model_spectrum = self._generate_model(lpost, pars) model_powers = ((model_spectrum * rng.chisquare((2 * self.ps.m), size=model_spectrum.shape[0])) / (2.0 * self.ps.m)) sim_ps = copy.copy(self.ps) sim_ps.power = model_powers return sim_ps<|docstring|>Generate a fake power spectrum from a model. Parameters ---------- lpost : instance of a :class:`Posterior` or :class:`LogLikelihood` subclass The object containing the relevant information about the data and the model pars : iterable A list of parameters to be passed to ``lpost.model`` in oder to generate a model data set. Returns: -------- sim_ps : :class:`stingray.Powerspectrum` object The simulated :class:`Powerspectrum` object<|endoftext|>
7b84feaf5f53163cdd09bd20cb038f4754f3fc4c0e856f3818a92ab22f0ead1f
def simulate_lrts(self, s_all, lpost1, t1, lpost2, t2, seed=None): '\n Simulate likelihood ratios for two given models based on MCMC samples\n for the simpler model (i.e. the null hypothesis).\n\n Parameters\n ----------\n s_all : numpy.ndarray of shape ``(nsamples, lpost1.npar)``\n An array with MCMC samples derived from the null hypothesis model in\n ``lpost1``. Its second dimension must match the number of free\n parameters in ``lpost1.model``.\n\n lpost1 : :class:`LogLikelihood` or :class:`Posterior` subclass object\n Object containing the null hypothesis model\n\n t1 : iterable of length ``lpost1.npar``\n A starting guess for fitting the model in ``lpost1``\n\n lpost2 : :class:`LogLikelihood` or :class:`Posterior` subclass object\n Object containing the alternative hypothesis model\n\n t2 : iterable of length ``lpost2.npar``\n A starting guess for fitting the model in ``lpost2``\n\n max_post : bool, optional, default ``True``\n If ``True``, then ``lpost1`` and ``lpost2`` should be :class:`Posterior` subclass\n objects; if ``False``, then ``lpost1`` and ``lpost2`` should be\n :class:`LogLikelihood` subclass objects\n\n seed : int, optional default ``None``\n A seed to initialize the ``numpy.random.RandomState`` object to be\n passed on to ``_generate_data``. Useful for producing exactly\n reproducible results\n\n Returns\n -------\n lrt_sim : numpy.ndarray\n An array with the simulated likelihood ratios for the simulated\n data\n ' assert (lpost1.__class__ == lpost2.__class__), 'Both LogLikelihood or Posterior objects must be of the same class!' nsim = s_all.shape[0] lrt_sim = np.zeros(nsim) rng = np.random.RandomState(seed) for (i, s) in enumerate(s_all): sim_ps = self._generate_data(lpost1, s, rng) neg = True if isinstance(lpost1, LogLikelihood): sim_lpost1 = PSDLogLikelihood(sim_ps.freq, sim_ps.power, model=lpost1.model) sim_lpost2 = PSDLogLikelihood(sim_ps.freq, sim_ps.power, model=lpost2.model, m=sim_ps.m) max_post = False else: sim_lpost1 = PSDPosterior(sim_ps.freq, sim_ps.power, lpost1.model, m=sim_ps.m) sim_lpost1.logprior = lpost1.logprior sim_lpost2 = PSDPosterior(sim_ps.freq, sim_ps.power, lpost2.model, m=sim_ps.m) sim_lpost2.logprior = lpost2.logprior max_post = True parest_sim = PSDParEst(sim_ps, max_post=max_post, fitmethod=self.fitmethod) try: (lrt_sim[i], _, _) = parest_sim.compute_lrt(sim_lpost1, t1, sim_lpost2, t2, neg=neg, max_post=max_post) except RuntimeError: logging.warning('Fitting was unsuccessful. Skipping this simulation!') continue return lrt_sim
Simulate likelihood ratios for two given models based on MCMC samples for the simpler model (i.e. the null hypothesis). Parameters ---------- s_all : numpy.ndarray of shape ``(nsamples, lpost1.npar)`` An array with MCMC samples derived from the null hypothesis model in ``lpost1``. Its second dimension must match the number of free parameters in ``lpost1.model``. lpost1 : :class:`LogLikelihood` or :class:`Posterior` subclass object Object containing the null hypothesis model t1 : iterable of length ``lpost1.npar`` A starting guess for fitting the model in ``lpost1`` lpost2 : :class:`LogLikelihood` or :class:`Posterior` subclass object Object containing the alternative hypothesis model t2 : iterable of length ``lpost2.npar`` A starting guess for fitting the model in ``lpost2`` max_post : bool, optional, default ``True`` If ``True``, then ``lpost1`` and ``lpost2`` should be :class:`Posterior` subclass objects; if ``False``, then ``lpost1`` and ``lpost2`` should be :class:`LogLikelihood` subclass objects seed : int, optional default ``None`` A seed to initialize the ``numpy.random.RandomState`` object to be passed on to ``_generate_data``. Useful for producing exactly reproducible results Returns ------- lrt_sim : numpy.ndarray An array with the simulated likelihood ratios for the simulated data
stingray/modeling/parameterestimation.py
simulate_lrts
nimeshvashistha/stingray
133
python
def simulate_lrts(self, s_all, lpost1, t1, lpost2, t2, seed=None): '\n Simulate likelihood ratios for two given models based on MCMC samples\n for the simpler model (i.e. the null hypothesis).\n\n Parameters\n ----------\n s_all : numpy.ndarray of shape ``(nsamples, lpost1.npar)``\n An array with MCMC samples derived from the null hypothesis model in\n ``lpost1``. Its second dimension must match the number of free\n parameters in ``lpost1.model``.\n\n lpost1 : :class:`LogLikelihood` or :class:`Posterior` subclass object\n Object containing the null hypothesis model\n\n t1 : iterable of length ``lpost1.npar``\n A starting guess for fitting the model in ``lpost1``\n\n lpost2 : :class:`LogLikelihood` or :class:`Posterior` subclass object\n Object containing the alternative hypothesis model\n\n t2 : iterable of length ``lpost2.npar``\n A starting guess for fitting the model in ``lpost2``\n\n max_post : bool, optional, default ``True``\n If ``True``, then ``lpost1`` and ``lpost2`` should be :class:`Posterior` subclass\n objects; if ``False``, then ``lpost1`` and ``lpost2`` should be\n :class:`LogLikelihood` subclass objects\n\n seed : int, optional default ``None``\n A seed to initialize the ``numpy.random.RandomState`` object to be\n passed on to ``_generate_data``. Useful for producing exactly\n reproducible results\n\n Returns\n -------\n lrt_sim : numpy.ndarray\n An array with the simulated likelihood ratios for the simulated\n data\n ' assert (lpost1.__class__ == lpost2.__class__), 'Both LogLikelihood or Posterior objects must be of the same class!' nsim = s_all.shape[0] lrt_sim = np.zeros(nsim) rng = np.random.RandomState(seed) for (i, s) in enumerate(s_all): sim_ps = self._generate_data(lpost1, s, rng) neg = True if isinstance(lpost1, LogLikelihood): sim_lpost1 = PSDLogLikelihood(sim_ps.freq, sim_ps.power, model=lpost1.model) sim_lpost2 = PSDLogLikelihood(sim_ps.freq, sim_ps.power, model=lpost2.model, m=sim_ps.m) max_post = False else: sim_lpost1 = PSDPosterior(sim_ps.freq, sim_ps.power, lpost1.model, m=sim_ps.m) sim_lpost1.logprior = lpost1.logprior sim_lpost2 = PSDPosterior(sim_ps.freq, sim_ps.power, lpost2.model, m=sim_ps.m) sim_lpost2.logprior = lpost2.logprior max_post = True parest_sim = PSDParEst(sim_ps, max_post=max_post, fitmethod=self.fitmethod) try: (lrt_sim[i], _, _) = parest_sim.compute_lrt(sim_lpost1, t1, sim_lpost2, t2, neg=neg, max_post=max_post) except RuntimeError: logging.warning('Fitting was unsuccessful. Skipping this simulation!') continue return lrt_sim
def simulate_lrts(self, s_all, lpost1, t1, lpost2, t2, seed=None): '\n Simulate likelihood ratios for two given models based on MCMC samples\n for the simpler model (i.e. the null hypothesis).\n\n Parameters\n ----------\n s_all : numpy.ndarray of shape ``(nsamples, lpost1.npar)``\n An array with MCMC samples derived from the null hypothesis model in\n ``lpost1``. Its second dimension must match the number of free\n parameters in ``lpost1.model``.\n\n lpost1 : :class:`LogLikelihood` or :class:`Posterior` subclass object\n Object containing the null hypothesis model\n\n t1 : iterable of length ``lpost1.npar``\n A starting guess for fitting the model in ``lpost1``\n\n lpost2 : :class:`LogLikelihood` or :class:`Posterior` subclass object\n Object containing the alternative hypothesis model\n\n t2 : iterable of length ``lpost2.npar``\n A starting guess for fitting the model in ``lpost2``\n\n max_post : bool, optional, default ``True``\n If ``True``, then ``lpost1`` and ``lpost2`` should be :class:`Posterior` subclass\n objects; if ``False``, then ``lpost1`` and ``lpost2`` should be\n :class:`LogLikelihood` subclass objects\n\n seed : int, optional default ``None``\n A seed to initialize the ``numpy.random.RandomState`` object to be\n passed on to ``_generate_data``. Useful for producing exactly\n reproducible results\n\n Returns\n -------\n lrt_sim : numpy.ndarray\n An array with the simulated likelihood ratios for the simulated\n data\n ' assert (lpost1.__class__ == lpost2.__class__), 'Both LogLikelihood or Posterior objects must be of the same class!' nsim = s_all.shape[0] lrt_sim = np.zeros(nsim) rng = np.random.RandomState(seed) for (i, s) in enumerate(s_all): sim_ps = self._generate_data(lpost1, s, rng) neg = True if isinstance(lpost1, LogLikelihood): sim_lpost1 = PSDLogLikelihood(sim_ps.freq, sim_ps.power, model=lpost1.model) sim_lpost2 = PSDLogLikelihood(sim_ps.freq, sim_ps.power, model=lpost2.model, m=sim_ps.m) max_post = False else: sim_lpost1 = PSDPosterior(sim_ps.freq, sim_ps.power, lpost1.model, m=sim_ps.m) sim_lpost1.logprior = lpost1.logprior sim_lpost2 = PSDPosterior(sim_ps.freq, sim_ps.power, lpost2.model, m=sim_ps.m) sim_lpost2.logprior = lpost2.logprior max_post = True parest_sim = PSDParEst(sim_ps, max_post=max_post, fitmethod=self.fitmethod) try: (lrt_sim[i], _, _) = parest_sim.compute_lrt(sim_lpost1, t1, sim_lpost2, t2, neg=neg, max_post=max_post) except RuntimeError: logging.warning('Fitting was unsuccessful. Skipping this simulation!') continue return lrt_sim<|docstring|>Simulate likelihood ratios for two given models based on MCMC samples for the simpler model (i.e. the null hypothesis). Parameters ---------- s_all : numpy.ndarray of shape ``(nsamples, lpost1.npar)`` An array with MCMC samples derived from the null hypothesis model in ``lpost1``. Its second dimension must match the number of free parameters in ``lpost1.model``. lpost1 : :class:`LogLikelihood` or :class:`Posterior` subclass object Object containing the null hypothesis model t1 : iterable of length ``lpost1.npar`` A starting guess for fitting the model in ``lpost1`` lpost2 : :class:`LogLikelihood` or :class:`Posterior` subclass object Object containing the alternative hypothesis model t2 : iterable of length ``lpost2.npar`` A starting guess for fitting the model in ``lpost2`` max_post : bool, optional, default ``True`` If ``True``, then ``lpost1`` and ``lpost2`` should be :class:`Posterior` subclass objects; if ``False``, then ``lpost1`` and ``lpost2`` should be :class:`LogLikelihood` subclass objects seed : int, optional default ``None`` A seed to initialize the ``numpy.random.RandomState`` object to be passed on to ``_generate_data``. Useful for producing exactly reproducible results Returns ------- lrt_sim : numpy.ndarray An array with the simulated likelihood ratios for the simulated data<|endoftext|>
a2887d7aeb0a90a7b59b7759eaa19d965c9f5a3b44071fc7bc501309eb2fca98
def calibrate_highest_outlier(self, lpost, t0, sample=None, max_post=False, nsim=1000, niter=200, nwalkers=500, burnin=200, namestr='test', seed=None): '\n Calibrate the highest outlier in a data set using MCMC-simulated\n power spectra.\n\n In short, the procedure does a MAP fit to the data, computes the\n statistic\n\n .. math::\n\n \\max{(T_R = 2(\\mathrm{data}/\\mathrm{model}))}\n\n and then does an MCMC run using the data and the model, or generates parameter samples\n from the likelihood distribution using the derived covariance in a Maximum Likelihood\n fit.\n From the (posterior) samples, it generates fake power spectra. Each fake spectrum is fit\n in the same way as the data, and the highest data/model outlier extracted as for the data.\n The observed value of :math:`T_R` can then be directly compared to the simulated\n distribution of :math:`T_R` values in order to derive a p-value of the null\n hypothesis that the observed :math:`T_R` is compatible with being generated by\n noise.\n\n Parameters\n ----------\n lpost : :class:`stingray.modeling.PSDPosterior` object\n An instance of class :class:`stingray.modeling.PSDPosterior` that defines the\n function to be minimized (either in ``loglikelihood`` or ``logposterior``)\n\n t0 : {list | numpy.ndarray}\n List/array with set of initial parameters\n\n sample : :class:`SamplingResults` instance, optional, default ``None``\n If a sampler has already been run, the :class:`SamplingResults` instance can be\n fed into this method here, otherwise this method will run a sampler\n automatically\n\n max_post: bool, optional, default ``False``\n If ``True``, do MAP fits on the power spectrum to find the highest data/model outlier\n Otherwise, do a Maximum Likelihood fit. If ``True``, the simulated power spectra will\n be generated from an MCMC run, otherwise the method will employ the approximated\n covariance matrix for the parameters derived from the likelihood surface to generate\n samples from that likelihood function.\n\n nsim : int, optional, default ``1000``\n Number of fake power spectra to simulate from the posterior sample. Note that this\n number sets the resolution of the resulting p-value. For ``nsim=1000``, the highest\n resolution that can be achieved is :math:`10^{-3}`.\n\n niter : int, optional, default 200\n If ``sample`` is ``None``, this variable will be used to set the number of steps in the\n MCMC procedure *after* burn-in.\n\n nwalkers : int, optional, default 500\n If ``sample`` is ``None``, this variable will be used to set the number of MCMC chains\n run in parallel in the sampler.\n\n burnin : int, optional, default 200\n If ``sample`` is ``None``, this variable will be used to set the number of burn-in steps\n to be discarded in the initial phase of the MCMC run\n\n namestr : str, optional, default ``test``\n A string to be used for storing MCMC output and plots to disk\n\n seed : int, optional, default ``None``\n An optional number to seed the random number generator with, for reproducibility of\n the results obtained with this method.\n\n Returns\n -------\n pval : float\n The p-value that the highest data/model outlier is produced by random noise, calibrated\n using simulated power spectra from an MCMC run.\n\n References\n ----------\n For more details on the procedure employed here, see\n\n * Vaughan, 2010: https://arxiv.org/abs/0910.2706\n * Huppenkothen et al, 2013: https://arxiv.org/abs/1212.1011\n ' res = self.fit(lpost, t0, neg=True) rng = np.random.RandomState(seed) (out_high, _, _) = self._compute_highest_outlier(lpost, res) if (not max_post): mvn = scipy.stats.multivariate_normal(mean=res.p_opt, cov=res.cov, seed=seed) if (lpost.npar == 1): s_all = np.atleast_2d(mvn.rvs(size=nsim)).T else: s_all = mvn.rvs(size=nsim) else: if (sample is None): sample = self.sample(lpost, res.p_opt, cov=res.cov, nwalkers=nwalkers, niter=niter, burnin=burnin, namestr=namestr) s_all = sample.samples[rng.choice(sample.samples.shape[0], nsim, replace=False)] out_high_sim = self.simulate_highest_outlier(s_all, lpost, t0, max_post=max_post, seed=seed) pval = ParameterEstimation._compute_pvalue(out_high, out_high_sim) return pval
Calibrate the highest outlier in a data set using MCMC-simulated power spectra. In short, the procedure does a MAP fit to the data, computes the statistic .. math:: \max{(T_R = 2(\mathrm{data}/\mathrm{model}))} and then does an MCMC run using the data and the model, or generates parameter samples from the likelihood distribution using the derived covariance in a Maximum Likelihood fit. From the (posterior) samples, it generates fake power spectra. Each fake spectrum is fit in the same way as the data, and the highest data/model outlier extracted as for the data. The observed value of :math:`T_R` can then be directly compared to the simulated distribution of :math:`T_R` values in order to derive a p-value of the null hypothesis that the observed :math:`T_R` is compatible with being generated by noise. Parameters ---------- lpost : :class:`stingray.modeling.PSDPosterior` object An instance of class :class:`stingray.modeling.PSDPosterior` that defines the function to be minimized (either in ``loglikelihood`` or ``logposterior``) t0 : {list | numpy.ndarray} List/array with set of initial parameters sample : :class:`SamplingResults` instance, optional, default ``None`` If a sampler has already been run, the :class:`SamplingResults` instance can be fed into this method here, otherwise this method will run a sampler automatically max_post: bool, optional, default ``False`` If ``True``, do MAP fits on the power spectrum to find the highest data/model outlier Otherwise, do a Maximum Likelihood fit. If ``True``, the simulated power spectra will be generated from an MCMC run, otherwise the method will employ the approximated covariance matrix for the parameters derived from the likelihood surface to generate samples from that likelihood function. nsim : int, optional, default ``1000`` Number of fake power spectra to simulate from the posterior sample. Note that this number sets the resolution of the resulting p-value. For ``nsim=1000``, the highest resolution that can be achieved is :math:`10^{-3}`. niter : int, optional, default 200 If ``sample`` is ``None``, this variable will be used to set the number of steps in the MCMC procedure *after* burn-in. nwalkers : int, optional, default 500 If ``sample`` is ``None``, this variable will be used to set the number of MCMC chains run in parallel in the sampler. burnin : int, optional, default 200 If ``sample`` is ``None``, this variable will be used to set the number of burn-in steps to be discarded in the initial phase of the MCMC run namestr : str, optional, default ``test`` A string to be used for storing MCMC output and plots to disk seed : int, optional, default ``None`` An optional number to seed the random number generator with, for reproducibility of the results obtained with this method. Returns ------- pval : float The p-value that the highest data/model outlier is produced by random noise, calibrated using simulated power spectra from an MCMC run. References ---------- For more details on the procedure employed here, see * Vaughan, 2010: https://arxiv.org/abs/0910.2706 * Huppenkothen et al, 2013: https://arxiv.org/abs/1212.1011
stingray/modeling/parameterestimation.py
calibrate_highest_outlier
nimeshvashistha/stingray
133
python
def calibrate_highest_outlier(self, lpost, t0, sample=None, max_post=False, nsim=1000, niter=200, nwalkers=500, burnin=200, namestr='test', seed=None): '\n Calibrate the highest outlier in a data set using MCMC-simulated\n power spectra.\n\n In short, the procedure does a MAP fit to the data, computes the\n statistic\n\n .. math::\n\n \\max{(T_R = 2(\\mathrm{data}/\\mathrm{model}))}\n\n and then does an MCMC run using the data and the model, or generates parameter samples\n from the likelihood distribution using the derived covariance in a Maximum Likelihood\n fit.\n From the (posterior) samples, it generates fake power spectra. Each fake spectrum is fit\n in the same way as the data, and the highest data/model outlier extracted as for the data.\n The observed value of :math:`T_R` can then be directly compared to the simulated\n distribution of :math:`T_R` values in order to derive a p-value of the null\n hypothesis that the observed :math:`T_R` is compatible with being generated by\n noise.\n\n Parameters\n ----------\n lpost : :class:`stingray.modeling.PSDPosterior` object\n An instance of class :class:`stingray.modeling.PSDPosterior` that defines the\n function to be minimized (either in ``loglikelihood`` or ``logposterior``)\n\n t0 : {list | numpy.ndarray}\n List/array with set of initial parameters\n\n sample : :class:`SamplingResults` instance, optional, default ``None``\n If a sampler has already been run, the :class:`SamplingResults` instance can be\n fed into this method here, otherwise this method will run a sampler\n automatically\n\n max_post: bool, optional, default ``False``\n If ``True``, do MAP fits on the power spectrum to find the highest data/model outlier\n Otherwise, do a Maximum Likelihood fit. If ``True``, the simulated power spectra will\n be generated from an MCMC run, otherwise the method will employ the approximated\n covariance matrix for the parameters derived from the likelihood surface to generate\n samples from that likelihood function.\n\n nsim : int, optional, default ``1000``\n Number of fake power spectra to simulate from the posterior sample. Note that this\n number sets the resolution of the resulting p-value. For ``nsim=1000``, the highest\n resolution that can be achieved is :math:`10^{-3}`.\n\n niter : int, optional, default 200\n If ``sample`` is ``None``, this variable will be used to set the number of steps in the\n MCMC procedure *after* burn-in.\n\n nwalkers : int, optional, default 500\n If ``sample`` is ``None``, this variable will be used to set the number of MCMC chains\n run in parallel in the sampler.\n\n burnin : int, optional, default 200\n If ``sample`` is ``None``, this variable will be used to set the number of burn-in steps\n to be discarded in the initial phase of the MCMC run\n\n namestr : str, optional, default ``test``\n A string to be used for storing MCMC output and plots to disk\n\n seed : int, optional, default ``None``\n An optional number to seed the random number generator with, for reproducibility of\n the results obtained with this method.\n\n Returns\n -------\n pval : float\n The p-value that the highest data/model outlier is produced by random noise, calibrated\n using simulated power spectra from an MCMC run.\n\n References\n ----------\n For more details on the procedure employed here, see\n\n * Vaughan, 2010: https://arxiv.org/abs/0910.2706\n * Huppenkothen et al, 2013: https://arxiv.org/abs/1212.1011\n ' res = self.fit(lpost, t0, neg=True) rng = np.random.RandomState(seed) (out_high, _, _) = self._compute_highest_outlier(lpost, res) if (not max_post): mvn = scipy.stats.multivariate_normal(mean=res.p_opt, cov=res.cov, seed=seed) if (lpost.npar == 1): s_all = np.atleast_2d(mvn.rvs(size=nsim)).T else: s_all = mvn.rvs(size=nsim) else: if (sample is None): sample = self.sample(lpost, res.p_opt, cov=res.cov, nwalkers=nwalkers, niter=niter, burnin=burnin, namestr=namestr) s_all = sample.samples[rng.choice(sample.samples.shape[0], nsim, replace=False)] out_high_sim = self.simulate_highest_outlier(s_all, lpost, t0, max_post=max_post, seed=seed) pval = ParameterEstimation._compute_pvalue(out_high, out_high_sim) return pval
def calibrate_highest_outlier(self, lpost, t0, sample=None, max_post=False, nsim=1000, niter=200, nwalkers=500, burnin=200, namestr='test', seed=None): '\n Calibrate the highest outlier in a data set using MCMC-simulated\n power spectra.\n\n In short, the procedure does a MAP fit to the data, computes the\n statistic\n\n .. math::\n\n \\max{(T_R = 2(\\mathrm{data}/\\mathrm{model}))}\n\n and then does an MCMC run using the data and the model, or generates parameter samples\n from the likelihood distribution using the derived covariance in a Maximum Likelihood\n fit.\n From the (posterior) samples, it generates fake power spectra. Each fake spectrum is fit\n in the same way as the data, and the highest data/model outlier extracted as for the data.\n The observed value of :math:`T_R` can then be directly compared to the simulated\n distribution of :math:`T_R` values in order to derive a p-value of the null\n hypothesis that the observed :math:`T_R` is compatible with being generated by\n noise.\n\n Parameters\n ----------\n lpost : :class:`stingray.modeling.PSDPosterior` object\n An instance of class :class:`stingray.modeling.PSDPosterior` that defines the\n function to be minimized (either in ``loglikelihood`` or ``logposterior``)\n\n t0 : {list | numpy.ndarray}\n List/array with set of initial parameters\n\n sample : :class:`SamplingResults` instance, optional, default ``None``\n If a sampler has already been run, the :class:`SamplingResults` instance can be\n fed into this method here, otherwise this method will run a sampler\n automatically\n\n max_post: bool, optional, default ``False``\n If ``True``, do MAP fits on the power spectrum to find the highest data/model outlier\n Otherwise, do a Maximum Likelihood fit. If ``True``, the simulated power spectra will\n be generated from an MCMC run, otherwise the method will employ the approximated\n covariance matrix for the parameters derived from the likelihood surface to generate\n samples from that likelihood function.\n\n nsim : int, optional, default ``1000``\n Number of fake power spectra to simulate from the posterior sample. Note that this\n number sets the resolution of the resulting p-value. For ``nsim=1000``, the highest\n resolution that can be achieved is :math:`10^{-3}`.\n\n niter : int, optional, default 200\n If ``sample`` is ``None``, this variable will be used to set the number of steps in the\n MCMC procedure *after* burn-in.\n\n nwalkers : int, optional, default 500\n If ``sample`` is ``None``, this variable will be used to set the number of MCMC chains\n run in parallel in the sampler.\n\n burnin : int, optional, default 200\n If ``sample`` is ``None``, this variable will be used to set the number of burn-in steps\n to be discarded in the initial phase of the MCMC run\n\n namestr : str, optional, default ``test``\n A string to be used for storing MCMC output and plots to disk\n\n seed : int, optional, default ``None``\n An optional number to seed the random number generator with, for reproducibility of\n the results obtained with this method.\n\n Returns\n -------\n pval : float\n The p-value that the highest data/model outlier is produced by random noise, calibrated\n using simulated power spectra from an MCMC run.\n\n References\n ----------\n For more details on the procedure employed here, see\n\n * Vaughan, 2010: https://arxiv.org/abs/0910.2706\n * Huppenkothen et al, 2013: https://arxiv.org/abs/1212.1011\n ' res = self.fit(lpost, t0, neg=True) rng = np.random.RandomState(seed) (out_high, _, _) = self._compute_highest_outlier(lpost, res) if (not max_post): mvn = scipy.stats.multivariate_normal(mean=res.p_opt, cov=res.cov, seed=seed) if (lpost.npar == 1): s_all = np.atleast_2d(mvn.rvs(size=nsim)).T else: s_all = mvn.rvs(size=nsim) else: if (sample is None): sample = self.sample(lpost, res.p_opt, cov=res.cov, nwalkers=nwalkers, niter=niter, burnin=burnin, namestr=namestr) s_all = sample.samples[rng.choice(sample.samples.shape[0], nsim, replace=False)] out_high_sim = self.simulate_highest_outlier(s_all, lpost, t0, max_post=max_post, seed=seed) pval = ParameterEstimation._compute_pvalue(out_high, out_high_sim) return pval<|docstring|>Calibrate the highest outlier in a data set using MCMC-simulated power spectra. In short, the procedure does a MAP fit to the data, computes the statistic .. math:: \max{(T_R = 2(\mathrm{data}/\mathrm{model}))} and then does an MCMC run using the data and the model, or generates parameter samples from the likelihood distribution using the derived covariance in a Maximum Likelihood fit. From the (posterior) samples, it generates fake power spectra. Each fake spectrum is fit in the same way as the data, and the highest data/model outlier extracted as for the data. The observed value of :math:`T_R` can then be directly compared to the simulated distribution of :math:`T_R` values in order to derive a p-value of the null hypothesis that the observed :math:`T_R` is compatible with being generated by noise. Parameters ---------- lpost : :class:`stingray.modeling.PSDPosterior` object An instance of class :class:`stingray.modeling.PSDPosterior` that defines the function to be minimized (either in ``loglikelihood`` or ``logposterior``) t0 : {list | numpy.ndarray} List/array with set of initial parameters sample : :class:`SamplingResults` instance, optional, default ``None`` If a sampler has already been run, the :class:`SamplingResults` instance can be fed into this method here, otherwise this method will run a sampler automatically max_post: bool, optional, default ``False`` If ``True``, do MAP fits on the power spectrum to find the highest data/model outlier Otherwise, do a Maximum Likelihood fit. If ``True``, the simulated power spectra will be generated from an MCMC run, otherwise the method will employ the approximated covariance matrix for the parameters derived from the likelihood surface to generate samples from that likelihood function. nsim : int, optional, default ``1000`` Number of fake power spectra to simulate from the posterior sample. Note that this number sets the resolution of the resulting p-value. For ``nsim=1000``, the highest resolution that can be achieved is :math:`10^{-3}`. niter : int, optional, default 200 If ``sample`` is ``None``, this variable will be used to set the number of steps in the MCMC procedure *after* burn-in. nwalkers : int, optional, default 500 If ``sample`` is ``None``, this variable will be used to set the number of MCMC chains run in parallel in the sampler. burnin : int, optional, default 200 If ``sample`` is ``None``, this variable will be used to set the number of burn-in steps to be discarded in the initial phase of the MCMC run namestr : str, optional, default ``test`` A string to be used for storing MCMC output and plots to disk seed : int, optional, default ``None`` An optional number to seed the random number generator with, for reproducibility of the results obtained with this method. Returns ------- pval : float The p-value that the highest data/model outlier is produced by random noise, calibrated using simulated power spectra from an MCMC run. References ---------- For more details on the procedure employed here, see * Vaughan, 2010: https://arxiv.org/abs/0910.2706 * Huppenkothen et al, 2013: https://arxiv.org/abs/1212.1011<|endoftext|>