body_hash
stringlengths 64
64
| body
stringlengths 23
109k
| docstring
stringlengths 1
57k
| path
stringlengths 4
198
| name
stringlengths 1
115
| repository_name
stringlengths 7
111
| repository_stars
float64 0
191k
| lang
stringclasses 1
value | body_without_docstring
stringlengths 14
108k
| unified
stringlengths 45
133k
|
---|---|---|---|---|---|---|---|---|---|
dfbb32565e802695cdc054c8e06f66ec55244968d2a96d74d139710fb5223ea3 | def simulate_highest_outlier(self, s_all, lpost, t0, max_post=True, seed=None):
'\n Simulate :math:`n` power spectra from a model and then find the highest\n data/model outlier in each.\n\n The data/model outlier is defined as\n\n .. math::\n\n \\max{(T_R = 2(\\mathrm{data}/\\mathrm{model}))} .\n\n Parameters\n ----------\n s_all : numpy.ndarray\n A list of parameter values derived either from an approximation of the\n likelihood surface, or from an MCMC run. Has dimensions ``(n, ndim)``, where\n ``n`` is the number of simulated power spectra to generate, and ``ndim`` the\n number of model parameters.\n\n lpost : instance of a :class:`Posterior` subclass\n an instance of class :class:`Posterior` or one of its subclasses\n that defines the function to be minimized (either in ``loglikelihood``\n or ``logposterior``)\n\n t0 : iterable\n list or array containing the starting parameters. Its length\n must match ``lpost.model.npar``.\n\n max_post: bool, optional, default ``False``\n If ``True``, do MAP fits on the power spectrum to find the highest data/model outlier\n Otherwise, do a Maximum Likelihood fit. If True, the simulated power spectra will\n be generated from an MCMC run, otherwise the method will employ the approximated\n covariance matrix for the parameters derived from the likelihood surface to generate\n samples from that likelihood function.\n\n seed : int, optional, default ``None``\n An optional number to seed the random number generator with, for reproducibility of\n the results obtained with this method.\n\n Returns\n -------\n max_y_all : numpy.ndarray\n An array of maximum outliers for each simulated power spectrum\n '
nsim = s_all.shape[0]
max_y_all = np.zeros(nsim)
rng = np.random.RandomState(seed)
for (i, s) in enumerate(s_all):
sim_ps = self._generate_data(lpost, s, rng=rng)
if (not max_post):
sim_lpost = PSDLogLikelihood(sim_ps.freq, sim_ps.power, model=lpost.model, m=sim_ps.m)
else:
sim_lpost = PSDPosterior(sim_ps.freq, sim_ps.power, lpost.model, m=sim_ps.m)
sim_lpost.logprior = lpost.logprior
parest_sim = PSDParEst(sim_ps, max_post=max_post)
try:
res = parest_sim.fit(sim_lpost, t0, neg=True)
(max_y_all[i], maxfreq, maxind) = self._compute_highest_outlier(sim_lpost, res, nmax=1)
except RuntimeError:
logging.warning('Fitting unsuccessful! Skipping this simulation!')
continue
return np.hstack(max_y_all) | Simulate :math:`n` power spectra from a model and then find the highest
data/model outlier in each.
The data/model outlier is defined as
.. math::
\max{(T_R = 2(\mathrm{data}/\mathrm{model}))} .
Parameters
----------
s_all : numpy.ndarray
A list of parameter values derived either from an approximation of the
likelihood surface, or from an MCMC run. Has dimensions ``(n, ndim)``, where
``n`` is the number of simulated power spectra to generate, and ``ndim`` the
number of model parameters.
lpost : instance of a :class:`Posterior` subclass
an instance of class :class:`Posterior` or one of its subclasses
that defines the function to be minimized (either in ``loglikelihood``
or ``logposterior``)
t0 : iterable
list or array containing the starting parameters. Its length
must match ``lpost.model.npar``.
max_post: bool, optional, default ``False``
If ``True``, do MAP fits on the power spectrum to find the highest data/model outlier
Otherwise, do a Maximum Likelihood fit. If True, the simulated power spectra will
be generated from an MCMC run, otherwise the method will employ the approximated
covariance matrix for the parameters derived from the likelihood surface to generate
samples from that likelihood function.
seed : int, optional, default ``None``
An optional number to seed the random number generator with, for reproducibility of
the results obtained with this method.
Returns
-------
max_y_all : numpy.ndarray
An array of maximum outliers for each simulated power spectrum | stingray/modeling/parameterestimation.py | simulate_highest_outlier | nimeshvashistha/stingray | 133 | python | def simulate_highest_outlier(self, s_all, lpost, t0, max_post=True, seed=None):
'\n Simulate :math:`n` power spectra from a model and then find the highest\n data/model outlier in each.\n\n The data/model outlier is defined as\n\n .. math::\n\n \\max{(T_R = 2(\\mathrm{data}/\\mathrm{model}))} .\n\n Parameters\n ----------\n s_all : numpy.ndarray\n A list of parameter values derived either from an approximation of the\n likelihood surface, or from an MCMC run. Has dimensions ``(n, ndim)``, where\n ``n`` is the number of simulated power spectra to generate, and ``ndim`` the\n number of model parameters.\n\n lpost : instance of a :class:`Posterior` subclass\n an instance of class :class:`Posterior` or one of its subclasses\n that defines the function to be minimized (either in ``loglikelihood``\n or ``logposterior``)\n\n t0 : iterable\n list or array containing the starting parameters. Its length\n must match ``lpost.model.npar``.\n\n max_post: bool, optional, default ``False``\n If ``True``, do MAP fits on the power spectrum to find the highest data/model outlier\n Otherwise, do a Maximum Likelihood fit. If True, the simulated power spectra will\n be generated from an MCMC run, otherwise the method will employ the approximated\n covariance matrix for the parameters derived from the likelihood surface to generate\n samples from that likelihood function.\n\n seed : int, optional, default ``None``\n An optional number to seed the random number generator with, for reproducibility of\n the results obtained with this method.\n\n Returns\n -------\n max_y_all : numpy.ndarray\n An array of maximum outliers for each simulated power spectrum\n '
nsim = s_all.shape[0]
max_y_all = np.zeros(nsim)
rng = np.random.RandomState(seed)
for (i, s) in enumerate(s_all):
sim_ps = self._generate_data(lpost, s, rng=rng)
if (not max_post):
sim_lpost = PSDLogLikelihood(sim_ps.freq, sim_ps.power, model=lpost.model, m=sim_ps.m)
else:
sim_lpost = PSDPosterior(sim_ps.freq, sim_ps.power, lpost.model, m=sim_ps.m)
sim_lpost.logprior = lpost.logprior
parest_sim = PSDParEst(sim_ps, max_post=max_post)
try:
res = parest_sim.fit(sim_lpost, t0, neg=True)
(max_y_all[i], maxfreq, maxind) = self._compute_highest_outlier(sim_lpost, res, nmax=1)
except RuntimeError:
logging.warning('Fitting unsuccessful! Skipping this simulation!')
continue
return np.hstack(max_y_all) | def simulate_highest_outlier(self, s_all, lpost, t0, max_post=True, seed=None):
'\n Simulate :math:`n` power spectra from a model and then find the highest\n data/model outlier in each.\n\n The data/model outlier is defined as\n\n .. math::\n\n \\max{(T_R = 2(\\mathrm{data}/\\mathrm{model}))} .\n\n Parameters\n ----------\n s_all : numpy.ndarray\n A list of parameter values derived either from an approximation of the\n likelihood surface, or from an MCMC run. Has dimensions ``(n, ndim)``, where\n ``n`` is the number of simulated power spectra to generate, and ``ndim`` the\n number of model parameters.\n\n lpost : instance of a :class:`Posterior` subclass\n an instance of class :class:`Posterior` or one of its subclasses\n that defines the function to be minimized (either in ``loglikelihood``\n or ``logposterior``)\n\n t0 : iterable\n list or array containing the starting parameters. Its length\n must match ``lpost.model.npar``.\n\n max_post: bool, optional, default ``False``\n If ``True``, do MAP fits on the power spectrum to find the highest data/model outlier\n Otherwise, do a Maximum Likelihood fit. If True, the simulated power spectra will\n be generated from an MCMC run, otherwise the method will employ the approximated\n covariance matrix for the parameters derived from the likelihood surface to generate\n samples from that likelihood function.\n\n seed : int, optional, default ``None``\n An optional number to seed the random number generator with, for reproducibility of\n the results obtained with this method.\n\n Returns\n -------\n max_y_all : numpy.ndarray\n An array of maximum outliers for each simulated power spectrum\n '
nsim = s_all.shape[0]
max_y_all = np.zeros(nsim)
rng = np.random.RandomState(seed)
for (i, s) in enumerate(s_all):
sim_ps = self._generate_data(lpost, s, rng=rng)
if (not max_post):
sim_lpost = PSDLogLikelihood(sim_ps.freq, sim_ps.power, model=lpost.model, m=sim_ps.m)
else:
sim_lpost = PSDPosterior(sim_ps.freq, sim_ps.power, lpost.model, m=sim_ps.m)
sim_lpost.logprior = lpost.logprior
parest_sim = PSDParEst(sim_ps, max_post=max_post)
try:
res = parest_sim.fit(sim_lpost, t0, neg=True)
(max_y_all[i], maxfreq, maxind) = self._compute_highest_outlier(sim_lpost, res, nmax=1)
except RuntimeError:
logging.warning('Fitting unsuccessful! Skipping this simulation!')
continue
return np.hstack(max_y_all)<|docstring|>Simulate :math:`n` power spectra from a model and then find the highest
data/model outlier in each.
The data/model outlier is defined as
.. math::
\max{(T_R = 2(\mathrm{data}/\mathrm{model}))} .
Parameters
----------
s_all : numpy.ndarray
A list of parameter values derived either from an approximation of the
likelihood surface, or from an MCMC run. Has dimensions ``(n, ndim)``, where
``n`` is the number of simulated power spectra to generate, and ``ndim`` the
number of model parameters.
lpost : instance of a :class:`Posterior` subclass
an instance of class :class:`Posterior` or one of its subclasses
that defines the function to be minimized (either in ``loglikelihood``
or ``logposterior``)
t0 : iterable
list or array containing the starting parameters. Its length
must match ``lpost.model.npar``.
max_post: bool, optional, default ``False``
If ``True``, do MAP fits on the power spectrum to find the highest data/model outlier
Otherwise, do a Maximum Likelihood fit. If True, the simulated power spectra will
be generated from an MCMC run, otherwise the method will employ the approximated
covariance matrix for the parameters derived from the likelihood surface to generate
samples from that likelihood function.
seed : int, optional, default ``None``
An optional number to seed the random number generator with, for reproducibility of
the results obtained with this method.
Returns
-------
max_y_all : numpy.ndarray
An array of maximum outliers for each simulated power spectrum<|endoftext|> |
8c162a907f11f84f8db0bcafa20588617686ba885a15dfb4e9f7f02760531d8d | def _compute_highest_outlier(self, lpost, res, nmax=1):
'\n Auxiliary method calculating the highest outlier statistic in\n a power spectrum.\n\n The maximum data/model outlier is defined as\n\n .. math::\n\n \\max{(T_R = 2(\\mathrm{data}/\\mathrm{model}))}\n\n Parameters\n ----------\n lpost : instance of a :class:`Posterior` subclass\n and instance of class :class:`Posterior` or one of its subclasses\n that defines the function to be minimized (either in ``loglikelihood``\n or ``logposterior``)\n\n res : :class:`OptimizationResults` object\n An object containing useful summaries of the fitting procedure.\n For details, see documentation of :class:`OptimizationResults`.\n\n nmax : int, optional, default ``1``\n The number of maxima to extract from the power spectra. By default,\n only the highest data/model outlier is extracted. This number allows\n to extract the ``nmax`` highest outliers, useful when looking for\n multiple signals in a power spectrum.\n\n Returns\n -------\n max_y : {float | numpy.ndarray}\n The ``nmax`` highest data/model outliers\n\n max_x : {float | numpy.ndarray}\n The frequencies corresponding to the outliers in ``max_y``\n\n max_ind : {int | numpy.ndarray}\n The indices corresponding to the outliers in ``max_y``\n '
residuals = ((2.0 * lpost.y) / res.mfit)
ratio_sort = copy.copy(residuals)
ratio_sort.sort()
max_y = ratio_sort[(- nmax):]
max_x = np.zeros(max_y.shape[0])
max_ind = np.zeros(max_y.shape[0])
for (i, my) in enumerate(max_y):
(max_x[i], max_ind[i]) = self._find_outlier(lpost.x, residuals, my)
return (max_y, max_x, max_ind) | Auxiliary method calculating the highest outlier statistic in
a power spectrum.
The maximum data/model outlier is defined as
.. math::
\max{(T_R = 2(\mathrm{data}/\mathrm{model}))}
Parameters
----------
lpost : instance of a :class:`Posterior` subclass
and instance of class :class:`Posterior` or one of its subclasses
that defines the function to be minimized (either in ``loglikelihood``
or ``logposterior``)
res : :class:`OptimizationResults` object
An object containing useful summaries of the fitting procedure.
For details, see documentation of :class:`OptimizationResults`.
nmax : int, optional, default ``1``
The number of maxima to extract from the power spectra. By default,
only the highest data/model outlier is extracted. This number allows
to extract the ``nmax`` highest outliers, useful when looking for
multiple signals in a power spectrum.
Returns
-------
max_y : {float | numpy.ndarray}
The ``nmax`` highest data/model outliers
max_x : {float | numpy.ndarray}
The frequencies corresponding to the outliers in ``max_y``
max_ind : {int | numpy.ndarray}
The indices corresponding to the outliers in ``max_y`` | stingray/modeling/parameterestimation.py | _compute_highest_outlier | nimeshvashistha/stingray | 133 | python | def _compute_highest_outlier(self, lpost, res, nmax=1):
'\n Auxiliary method calculating the highest outlier statistic in\n a power spectrum.\n\n The maximum data/model outlier is defined as\n\n .. math::\n\n \\max{(T_R = 2(\\mathrm{data}/\\mathrm{model}))}\n\n Parameters\n ----------\n lpost : instance of a :class:`Posterior` subclass\n and instance of class :class:`Posterior` or one of its subclasses\n that defines the function to be minimized (either in ``loglikelihood``\n or ``logposterior``)\n\n res : :class:`OptimizationResults` object\n An object containing useful summaries of the fitting procedure.\n For details, see documentation of :class:`OptimizationResults`.\n\n nmax : int, optional, default ``1``\n The number of maxima to extract from the power spectra. By default,\n only the highest data/model outlier is extracted. This number allows\n to extract the ``nmax`` highest outliers, useful when looking for\n multiple signals in a power spectrum.\n\n Returns\n -------\n max_y : {float | numpy.ndarray}\n The ``nmax`` highest data/model outliers\n\n max_x : {float | numpy.ndarray}\n The frequencies corresponding to the outliers in ``max_y``\n\n max_ind : {int | numpy.ndarray}\n The indices corresponding to the outliers in ``max_y``\n '
residuals = ((2.0 * lpost.y) / res.mfit)
ratio_sort = copy.copy(residuals)
ratio_sort.sort()
max_y = ratio_sort[(- nmax):]
max_x = np.zeros(max_y.shape[0])
max_ind = np.zeros(max_y.shape[0])
for (i, my) in enumerate(max_y):
(max_x[i], max_ind[i]) = self._find_outlier(lpost.x, residuals, my)
return (max_y, max_x, max_ind) | def _compute_highest_outlier(self, lpost, res, nmax=1):
'\n Auxiliary method calculating the highest outlier statistic in\n a power spectrum.\n\n The maximum data/model outlier is defined as\n\n .. math::\n\n \\max{(T_R = 2(\\mathrm{data}/\\mathrm{model}))}\n\n Parameters\n ----------\n lpost : instance of a :class:`Posterior` subclass\n and instance of class :class:`Posterior` or one of its subclasses\n that defines the function to be minimized (either in ``loglikelihood``\n or ``logposterior``)\n\n res : :class:`OptimizationResults` object\n An object containing useful summaries of the fitting procedure.\n For details, see documentation of :class:`OptimizationResults`.\n\n nmax : int, optional, default ``1``\n The number of maxima to extract from the power spectra. By default,\n only the highest data/model outlier is extracted. This number allows\n to extract the ``nmax`` highest outliers, useful when looking for\n multiple signals in a power spectrum.\n\n Returns\n -------\n max_y : {float | numpy.ndarray}\n The ``nmax`` highest data/model outliers\n\n max_x : {float | numpy.ndarray}\n The frequencies corresponding to the outliers in ``max_y``\n\n max_ind : {int | numpy.ndarray}\n The indices corresponding to the outliers in ``max_y``\n '
residuals = ((2.0 * lpost.y) / res.mfit)
ratio_sort = copy.copy(residuals)
ratio_sort.sort()
max_y = ratio_sort[(- nmax):]
max_x = np.zeros(max_y.shape[0])
max_ind = np.zeros(max_y.shape[0])
for (i, my) in enumerate(max_y):
(max_x[i], max_ind[i]) = self._find_outlier(lpost.x, residuals, my)
return (max_y, max_x, max_ind)<|docstring|>Auxiliary method calculating the highest outlier statistic in
a power spectrum.
The maximum data/model outlier is defined as
.. math::
\max{(T_R = 2(\mathrm{data}/\mathrm{model}))}
Parameters
----------
lpost : instance of a :class:`Posterior` subclass
and instance of class :class:`Posterior` or one of its subclasses
that defines the function to be minimized (either in ``loglikelihood``
or ``logposterior``)
res : :class:`OptimizationResults` object
An object containing useful summaries of the fitting procedure.
For details, see documentation of :class:`OptimizationResults`.
nmax : int, optional, default ``1``
The number of maxima to extract from the power spectra. By default,
only the highest data/model outlier is extracted. This number allows
to extract the ``nmax`` highest outliers, useful when looking for
multiple signals in a power spectrum.
Returns
-------
max_y : {float | numpy.ndarray}
The ``nmax`` highest data/model outliers
max_x : {float | numpy.ndarray}
The frequencies corresponding to the outliers in ``max_y``
max_ind : {int | numpy.ndarray}
The indices corresponding to the outliers in ``max_y``<|endoftext|> |
83ec51142c5a1cb0a2c6c24e5a97b956f19b380dbfe933b54c0df5f46aa0a37b | @staticmethod
def _find_outlier(xdata, ratio, max_y):
'\n Small auxiliary method that finds the index where an array has\n its maximum, and the corresponding value in ``xdata``.\n\n Parameters\n ----------\n xdata : numpy.ndarray\n A list of independent variables\n\n ratio : Numpy.ndarray\n A list of dependent variables corresponding to ``xdata``\n\n max_y : float\n The maximum value of ``ratio``\n\n Returns\n -------\n max_x : float\n The value in ``xdata`` corresponding to the entry in ``ratio`` where\n ``ratio == `max_y``\n\n max_ind : float\n The index of the entry in ``ratio`` where ``ratio == max_y``\n '
max_ind = np.where((ratio == max_y))[0][0]
max_x = xdata[max_ind]
return (max_x, max_ind) | Small auxiliary method that finds the index where an array has
its maximum, and the corresponding value in ``xdata``.
Parameters
----------
xdata : numpy.ndarray
A list of independent variables
ratio : Numpy.ndarray
A list of dependent variables corresponding to ``xdata``
max_y : float
The maximum value of ``ratio``
Returns
-------
max_x : float
The value in ``xdata`` corresponding to the entry in ``ratio`` where
``ratio == `max_y``
max_ind : float
The index of the entry in ``ratio`` where ``ratio == max_y`` | stingray/modeling/parameterestimation.py | _find_outlier | nimeshvashistha/stingray | 133 | python | @staticmethod
def _find_outlier(xdata, ratio, max_y):
'\n Small auxiliary method that finds the index where an array has\n its maximum, and the corresponding value in ``xdata``.\n\n Parameters\n ----------\n xdata : numpy.ndarray\n A list of independent variables\n\n ratio : Numpy.ndarray\n A list of dependent variables corresponding to ``xdata``\n\n max_y : float\n The maximum value of ``ratio``\n\n Returns\n -------\n max_x : float\n The value in ``xdata`` corresponding to the entry in ``ratio`` where\n ``ratio == `max_y``\n\n max_ind : float\n The index of the entry in ``ratio`` where ``ratio == max_y``\n '
max_ind = np.where((ratio == max_y))[0][0]
max_x = xdata[max_ind]
return (max_x, max_ind) | @staticmethod
def _find_outlier(xdata, ratio, max_y):
'\n Small auxiliary method that finds the index where an array has\n its maximum, and the corresponding value in ``xdata``.\n\n Parameters\n ----------\n xdata : numpy.ndarray\n A list of independent variables\n\n ratio : Numpy.ndarray\n A list of dependent variables corresponding to ``xdata``\n\n max_y : float\n The maximum value of ``ratio``\n\n Returns\n -------\n max_x : float\n The value in ``xdata`` corresponding to the entry in ``ratio`` where\n ``ratio == `max_y``\n\n max_ind : float\n The index of the entry in ``ratio`` where ``ratio == max_y``\n '
max_ind = np.where((ratio == max_y))[0][0]
max_x = xdata[max_ind]
return (max_x, max_ind)<|docstring|>Small auxiliary method that finds the index where an array has
its maximum, and the corresponding value in ``xdata``.
Parameters
----------
xdata : numpy.ndarray
A list of independent variables
ratio : Numpy.ndarray
A list of dependent variables corresponding to ``xdata``
max_y : float
The maximum value of ``ratio``
Returns
-------
max_x : float
The value in ``xdata`` corresponding to the entry in ``ratio`` where
``ratio == `max_y``
max_ind : float
The index of the entry in ``ratio`` where ``ratio == max_y``<|endoftext|> |
eb3ffc947aecf8cb6b71db818a4b0e7f55049c6ffc5385c4e95afe0b8dcce6fc | def plotfits(self, res1, res2=None, save_plot=False, namestr='test', log=False):
'\n Plotting method that allows to plot either one or two best-fit models\n with the data.\n\n Plots a power spectrum with the best-fit model, as well as the data/model\n residuals for each model.\n\n Parameters\n ----------\n res1 : :class:`OptimizationResults` object\n Output of a successful fitting procedure\n\n res2 : :class:`OptimizationResults` object, optional, default ``None``\n Optional output of a second successful fitting procedure, e.g. with a\n competing model\n\n save_plot : bool, optional, default ``False``\n If ``True``, the resulting figure will be saved to a file\n\n namestr : str, optional, default ``test``\n If ``save_plot`` is ``True``, this string defines the path and file name\n for the output plot\n\n log : bool, optional, default ``False``\n If ``True``, plot the axes logarithmically.\n '
if (not can_plot):
logging.info("No matplotlib imported. Can't plot!")
else:
f = plt.figure(figsize=(12, 10))
plt.subplots_adjust(hspace=0.0, wspace=0.4)
s1 = plt.subplot2grid((4, 1), (0, 0), rowspan=2)
if log:
logx = np.log10(self.ps.freq)
logy = np.log10(self.ps.power)
logpar1 = np.log10(res1.mfit)
(p1,) = s1.plot(logx, logy, color='black', drawstyle='steps-mid')
(p2,) = s1.plot(logx, logpar1, color='blue', lw=2)
s1.set_xlim([np.min(logx), np.max(logx)])
s1.set_ylim([(np.min(logy) - 1.0), (np.max(logy) + 1)])
if (self.ps.norm == 'leahy'):
s1.set_ylabel('log(Leahy-Normalized Power)', fontsize=18)
elif (self.ps.norm == 'rms'):
s1.set_ylabel('log(RMS-Normalized Power)', fontsize=18)
else:
s1.set_ylabel('log(Power)', fontsize=18)
else:
(p1,) = s1.plot(self.ps.freq, self.ps.power, color='black', drawstyle='steps-mid')
(p2,) = s1.plot(self.ps.freq, res1.mfit, color='blue', lw=2)
s1.set_xscale('log')
s1.set_yscale('log')
s1.set_xlim([np.min(self.ps.freq), np.max(self.ps.freq)])
s1.set_ylim([(np.min(self.ps.freq) / 10.0), (np.max(self.ps.power) * 10.0)])
if (self.ps.norm == 'leahy'):
s1.set_ylabel('Leahy-Normalized Power', fontsize=18)
elif (self.ps.norm == 'rms'):
s1.set_ylabel('RMS-Normalized Power', fontsize=18)
else:
s1.set_ylabel('Power', fontsize=18)
if (res2 is not None):
if log:
logpar2 = np.log10(res2.mfit)
(p3,) = s1.plot(logx, logpar2, color='red', lw=2)
else:
(p3,) = s1.plot(self.ps.freq, res2.mfit, color='red', lw=2)
s1.legend([p1, p2, p3], ['data', 'model 1 fit', 'model 2 fit'])
else:
s1.legend([p1, p2], ['data', 'model fit'])
s1.set_title(('Periodogram and fits for data set ' + namestr), fontsize=18)
s2 = plt.subplot2grid((4, 1), (2, 0), rowspan=1)
pldif = (self.ps.power / res1.mfit)
s2.set_ylabel('Residuals, \n first model', fontsize=18)
if log:
s2.plot(logx, pldif, color='black', drawstyle='steps-mid')
s2.plot(logx, np.ones(self.ps.freq.shape[0]), color='blue', lw=2)
s2.set_xlim([np.min(logx), np.max(logx)])
s2.set_ylim([np.min(pldif), np.max(pldif)])
else:
s2.plot(self.ps.freq, pldif, color='black', drawstyle='steps-mid')
s2.plot(self.ps.freq, np.ones_like(self.ps.power), color='blue', lw=2)
s2.set_xscale('log')
s2.set_yscale('log')
s2.set_xlim([np.min(self.ps.freq), np.max(self.ps.freq)])
s2.set_ylim([np.min(pldif), np.max(pldif)])
if (res2 is not None):
bpldif = (self.ps.power / res2.mfit)
s3 = plt.subplot2grid((4, 1), (3, 0), rowspan=1)
if log:
s3.plot(logx, bpldif, color='black', drawstyle='steps-mid')
s3.plot(logx, np.ones(len(self.ps.freq)), color='red', lw=2)
s3.axis([np.min(logx), np.max(logx), np.min(bpldif), np.max(bpldif)])
s3.set_xlabel('log(Frequency) [Hz]', fontsize=18)
else:
s3.plot(self.ps.freq, bpldif, color='black', drawstyle='steps-mid')
s3.plot(self.ps.freq, np.ones(len(self.ps.freq)), color='red', lw=2)
s3.set_xscale('log')
s3.set_yscale('log')
s3.set_xlim([np.min(self.ps.freq), np.max(self.ps.freq)])
s3.set_ylim([np.min(bpldif), np.max(bpldif)])
s3.set_xlabel('Frequency [Hz]', fontsize=18)
s3.set_ylabel('Residuals, \n second model', fontsize=18)
elif log:
s2.set_xlabel('log(Frequency) [Hz]', fontsize=18)
else:
s2.set_xlabel('Frequency [Hz]', fontsize=18)
ax = plt.gca()
for label in (ax.get_xticklabels() + ax.get_yticklabels()):
label.set_fontsize(14)
plt.setp(s1.get_xticklabels(), visible=False)
if save_plot:
plt.savefig((namestr + '_ps_fit.png'), format='png')
return | Plotting method that allows to plot either one or two best-fit models
with the data.
Plots a power spectrum with the best-fit model, as well as the data/model
residuals for each model.
Parameters
----------
res1 : :class:`OptimizationResults` object
Output of a successful fitting procedure
res2 : :class:`OptimizationResults` object, optional, default ``None``
Optional output of a second successful fitting procedure, e.g. with a
competing model
save_plot : bool, optional, default ``False``
If ``True``, the resulting figure will be saved to a file
namestr : str, optional, default ``test``
If ``save_plot`` is ``True``, this string defines the path and file name
for the output plot
log : bool, optional, default ``False``
If ``True``, plot the axes logarithmically. | stingray/modeling/parameterestimation.py | plotfits | nimeshvashistha/stingray | 133 | python | def plotfits(self, res1, res2=None, save_plot=False, namestr='test', log=False):
'\n Plotting method that allows to plot either one or two best-fit models\n with the data.\n\n Plots a power spectrum with the best-fit model, as well as the data/model\n residuals for each model.\n\n Parameters\n ----------\n res1 : :class:`OptimizationResults` object\n Output of a successful fitting procedure\n\n res2 : :class:`OptimizationResults` object, optional, default ``None``\n Optional output of a second successful fitting procedure, e.g. with a\n competing model\n\n save_plot : bool, optional, default ``False``\n If ``True``, the resulting figure will be saved to a file\n\n namestr : str, optional, default ``test``\n If ``save_plot`` is ``True``, this string defines the path and file name\n for the output plot\n\n log : bool, optional, default ``False``\n If ``True``, plot the axes logarithmically.\n '
if (not can_plot):
logging.info("No matplotlib imported. Can't plot!")
else:
f = plt.figure(figsize=(12, 10))
plt.subplots_adjust(hspace=0.0, wspace=0.4)
s1 = plt.subplot2grid((4, 1), (0, 0), rowspan=2)
if log:
logx = np.log10(self.ps.freq)
logy = np.log10(self.ps.power)
logpar1 = np.log10(res1.mfit)
(p1,) = s1.plot(logx, logy, color='black', drawstyle='steps-mid')
(p2,) = s1.plot(logx, logpar1, color='blue', lw=2)
s1.set_xlim([np.min(logx), np.max(logx)])
s1.set_ylim([(np.min(logy) - 1.0), (np.max(logy) + 1)])
if (self.ps.norm == 'leahy'):
s1.set_ylabel('log(Leahy-Normalized Power)', fontsize=18)
elif (self.ps.norm == 'rms'):
s1.set_ylabel('log(RMS-Normalized Power)', fontsize=18)
else:
s1.set_ylabel('log(Power)', fontsize=18)
else:
(p1,) = s1.plot(self.ps.freq, self.ps.power, color='black', drawstyle='steps-mid')
(p2,) = s1.plot(self.ps.freq, res1.mfit, color='blue', lw=2)
s1.set_xscale('log')
s1.set_yscale('log')
s1.set_xlim([np.min(self.ps.freq), np.max(self.ps.freq)])
s1.set_ylim([(np.min(self.ps.freq) / 10.0), (np.max(self.ps.power) * 10.0)])
if (self.ps.norm == 'leahy'):
s1.set_ylabel('Leahy-Normalized Power', fontsize=18)
elif (self.ps.norm == 'rms'):
s1.set_ylabel('RMS-Normalized Power', fontsize=18)
else:
s1.set_ylabel('Power', fontsize=18)
if (res2 is not None):
if log:
logpar2 = np.log10(res2.mfit)
(p3,) = s1.plot(logx, logpar2, color='red', lw=2)
else:
(p3,) = s1.plot(self.ps.freq, res2.mfit, color='red', lw=2)
s1.legend([p1, p2, p3], ['data', 'model 1 fit', 'model 2 fit'])
else:
s1.legend([p1, p2], ['data', 'model fit'])
s1.set_title(('Periodogram and fits for data set ' + namestr), fontsize=18)
s2 = plt.subplot2grid((4, 1), (2, 0), rowspan=1)
pldif = (self.ps.power / res1.mfit)
s2.set_ylabel('Residuals, \n first model', fontsize=18)
if log:
s2.plot(logx, pldif, color='black', drawstyle='steps-mid')
s2.plot(logx, np.ones(self.ps.freq.shape[0]), color='blue', lw=2)
s2.set_xlim([np.min(logx), np.max(logx)])
s2.set_ylim([np.min(pldif), np.max(pldif)])
else:
s2.plot(self.ps.freq, pldif, color='black', drawstyle='steps-mid')
s2.plot(self.ps.freq, np.ones_like(self.ps.power), color='blue', lw=2)
s2.set_xscale('log')
s2.set_yscale('log')
s2.set_xlim([np.min(self.ps.freq), np.max(self.ps.freq)])
s2.set_ylim([np.min(pldif), np.max(pldif)])
if (res2 is not None):
bpldif = (self.ps.power / res2.mfit)
s3 = plt.subplot2grid((4, 1), (3, 0), rowspan=1)
if log:
s3.plot(logx, bpldif, color='black', drawstyle='steps-mid')
s3.plot(logx, np.ones(len(self.ps.freq)), color='red', lw=2)
s3.axis([np.min(logx), np.max(logx), np.min(bpldif), np.max(bpldif)])
s3.set_xlabel('log(Frequency) [Hz]', fontsize=18)
else:
s3.plot(self.ps.freq, bpldif, color='black', drawstyle='steps-mid')
s3.plot(self.ps.freq, np.ones(len(self.ps.freq)), color='red', lw=2)
s3.set_xscale('log')
s3.set_yscale('log')
s3.set_xlim([np.min(self.ps.freq), np.max(self.ps.freq)])
s3.set_ylim([np.min(bpldif), np.max(bpldif)])
s3.set_xlabel('Frequency [Hz]', fontsize=18)
s3.set_ylabel('Residuals, \n second model', fontsize=18)
elif log:
s2.set_xlabel('log(Frequency) [Hz]', fontsize=18)
else:
s2.set_xlabel('Frequency [Hz]', fontsize=18)
ax = plt.gca()
for label in (ax.get_xticklabels() + ax.get_yticklabels()):
label.set_fontsize(14)
plt.setp(s1.get_xticklabels(), visible=False)
if save_plot:
plt.savefig((namestr + '_ps_fit.png'), format='png')
return | def plotfits(self, res1, res2=None, save_plot=False, namestr='test', log=False):
'\n Plotting method that allows to plot either one or two best-fit models\n with the data.\n\n Plots a power spectrum with the best-fit model, as well as the data/model\n residuals for each model.\n\n Parameters\n ----------\n res1 : :class:`OptimizationResults` object\n Output of a successful fitting procedure\n\n res2 : :class:`OptimizationResults` object, optional, default ``None``\n Optional output of a second successful fitting procedure, e.g. with a\n competing model\n\n save_plot : bool, optional, default ``False``\n If ``True``, the resulting figure will be saved to a file\n\n namestr : str, optional, default ``test``\n If ``save_plot`` is ``True``, this string defines the path and file name\n for the output plot\n\n log : bool, optional, default ``False``\n If ``True``, plot the axes logarithmically.\n '
if (not can_plot):
logging.info("No matplotlib imported. Can't plot!")
else:
f = plt.figure(figsize=(12, 10))
plt.subplots_adjust(hspace=0.0, wspace=0.4)
s1 = plt.subplot2grid((4, 1), (0, 0), rowspan=2)
if log:
logx = np.log10(self.ps.freq)
logy = np.log10(self.ps.power)
logpar1 = np.log10(res1.mfit)
(p1,) = s1.plot(logx, logy, color='black', drawstyle='steps-mid')
(p2,) = s1.plot(logx, logpar1, color='blue', lw=2)
s1.set_xlim([np.min(logx), np.max(logx)])
s1.set_ylim([(np.min(logy) - 1.0), (np.max(logy) + 1)])
if (self.ps.norm == 'leahy'):
s1.set_ylabel('log(Leahy-Normalized Power)', fontsize=18)
elif (self.ps.norm == 'rms'):
s1.set_ylabel('log(RMS-Normalized Power)', fontsize=18)
else:
s1.set_ylabel('log(Power)', fontsize=18)
else:
(p1,) = s1.plot(self.ps.freq, self.ps.power, color='black', drawstyle='steps-mid')
(p2,) = s1.plot(self.ps.freq, res1.mfit, color='blue', lw=2)
s1.set_xscale('log')
s1.set_yscale('log')
s1.set_xlim([np.min(self.ps.freq), np.max(self.ps.freq)])
s1.set_ylim([(np.min(self.ps.freq) / 10.0), (np.max(self.ps.power) * 10.0)])
if (self.ps.norm == 'leahy'):
s1.set_ylabel('Leahy-Normalized Power', fontsize=18)
elif (self.ps.norm == 'rms'):
s1.set_ylabel('RMS-Normalized Power', fontsize=18)
else:
s1.set_ylabel('Power', fontsize=18)
if (res2 is not None):
if log:
logpar2 = np.log10(res2.mfit)
(p3,) = s1.plot(logx, logpar2, color='red', lw=2)
else:
(p3,) = s1.plot(self.ps.freq, res2.mfit, color='red', lw=2)
s1.legend([p1, p2, p3], ['data', 'model 1 fit', 'model 2 fit'])
else:
s1.legend([p1, p2], ['data', 'model fit'])
s1.set_title(('Periodogram and fits for data set ' + namestr), fontsize=18)
s2 = plt.subplot2grid((4, 1), (2, 0), rowspan=1)
pldif = (self.ps.power / res1.mfit)
s2.set_ylabel('Residuals, \n first model', fontsize=18)
if log:
s2.plot(logx, pldif, color='black', drawstyle='steps-mid')
s2.plot(logx, np.ones(self.ps.freq.shape[0]), color='blue', lw=2)
s2.set_xlim([np.min(logx), np.max(logx)])
s2.set_ylim([np.min(pldif), np.max(pldif)])
else:
s2.plot(self.ps.freq, pldif, color='black', drawstyle='steps-mid')
s2.plot(self.ps.freq, np.ones_like(self.ps.power), color='blue', lw=2)
s2.set_xscale('log')
s2.set_yscale('log')
s2.set_xlim([np.min(self.ps.freq), np.max(self.ps.freq)])
s2.set_ylim([np.min(pldif), np.max(pldif)])
if (res2 is not None):
bpldif = (self.ps.power / res2.mfit)
s3 = plt.subplot2grid((4, 1), (3, 0), rowspan=1)
if log:
s3.plot(logx, bpldif, color='black', drawstyle='steps-mid')
s3.plot(logx, np.ones(len(self.ps.freq)), color='red', lw=2)
s3.axis([np.min(logx), np.max(logx), np.min(bpldif), np.max(bpldif)])
s3.set_xlabel('log(Frequency) [Hz]', fontsize=18)
else:
s3.plot(self.ps.freq, bpldif, color='black', drawstyle='steps-mid')
s3.plot(self.ps.freq, np.ones(len(self.ps.freq)), color='red', lw=2)
s3.set_xscale('log')
s3.set_yscale('log')
s3.set_xlim([np.min(self.ps.freq), np.max(self.ps.freq)])
s3.set_ylim([np.min(bpldif), np.max(bpldif)])
s3.set_xlabel('Frequency [Hz]', fontsize=18)
s3.set_ylabel('Residuals, \n second model', fontsize=18)
elif log:
s2.set_xlabel('log(Frequency) [Hz]', fontsize=18)
else:
s2.set_xlabel('Frequency [Hz]', fontsize=18)
ax = plt.gca()
for label in (ax.get_xticklabels() + ax.get_yticklabels()):
label.set_fontsize(14)
plt.setp(s1.get_xticklabels(), visible=False)
if save_plot:
plt.savefig((namestr + '_ps_fit.png'), format='png')
return<|docstring|>Plotting method that allows to plot either one or two best-fit models
with the data.
Plots a power spectrum with the best-fit model, as well as the data/model
residuals for each model.
Parameters
----------
res1 : :class:`OptimizationResults` object
Output of a successful fitting procedure
res2 : :class:`OptimizationResults` object, optional, default ``None``
Optional output of a second successful fitting procedure, e.g. with a
competing model
save_plot : bool, optional, default ``False``
If ``True``, the resulting figure will be saved to a file
namestr : str, optional, default ``test``
If ``save_plot`` is ``True``, this string defines the path and file name
for the output plot
log : bool, optional, default ``False``
If ``True``, plot the axes logarithmically.<|endoftext|> |
538d41151e7e3ba2606711975241ad9162c75ca573e054dee7e31c37bafffd88 | def _cosine_similarity(sentence_1, sentence_2):
'\n Calculates and returns cosine similarity using raw count tf-idf of two sentence objects\n '
numerator = 0
denominator_1 = 0
denominator_2 = 0
for i in sentence_1.tf_idf.keys():
numerator += (sentence_1.tf_idf.get(i) * sentence_2.tf_idf.get(i, 0.0))
denominator_1 += (sentence_1.tf_idf.get(i) ** 2)
for i in sentence_2.tf_idf.values():
denominator_2 += (i * i)
denominator = math.sqrt((denominator_1 * denominator_2))
if (denominator != 0):
return (numerator / denominator)
else:
return denominator | Calculates and returns cosine similarity using raw count tf-idf of two sentence objects | src/content_selection.py | _cosine_similarity | aventon1/text-summarizer | 0 | python | def _cosine_similarity(sentence_1, sentence_2):
'\n \n '
numerator = 0
denominator_1 = 0
denominator_2 = 0
for i in sentence_1.tf_idf.keys():
numerator += (sentence_1.tf_idf.get(i) * sentence_2.tf_idf.get(i, 0.0))
denominator_1 += (sentence_1.tf_idf.get(i) ** 2)
for i in sentence_2.tf_idf.values():
denominator_2 += (i * i)
denominator = math.sqrt((denominator_1 * denominator_2))
if (denominator != 0):
return (numerator / denominator)
else:
return denominator | def _cosine_similarity(sentence_1, sentence_2):
'\n \n '
numerator = 0
denominator_1 = 0
denominator_2 = 0
for i in sentence_1.tf_idf.keys():
numerator += (sentence_1.tf_idf.get(i) * sentence_2.tf_idf.get(i, 0.0))
denominator_1 += (sentence_1.tf_idf.get(i) ** 2)
for i in sentence_2.tf_idf.values():
denominator_2 += (i * i)
denominator = math.sqrt((denominator_1 * denominator_2))
if (denominator != 0):
return (numerator / denominator)
else:
return denominator<|docstring|>Calculates and returns cosine similarity using raw count tf-idf of two sentence objects<|endoftext|> |
5d1460f6daed088b5c5a426ee4a902de8fb0eb3b469d16a03e48babdd6027ef2 | def _build_sim_matrix(sent_list, intersent_threshold, intersent_formula, mle_lambda, k, topic):
'\n Builds and returns a 2D numpy matrix of inter-sentential similarity.\n '
num_sent = len(sent_list)
sim_matrix = np.zeros((num_sent, num_sent))
for i in range(num_sent):
sim_vals = []
for j in range(i, num_sent):
if (intersent_formula == 'norm'):
sim = _calc_norm_gen_prob(sent_list[i], sent_list[j], mle_lambda, topic)
sim_vals.append((i, j, sim))
elif (i != j):
sim = _cosine_similarity(sent_list[i], sent_list[j])
if (sim >= intersent_threshold):
sim_matrix[i][j] = sim
sim_matrix[j][i] = sim
else:
sim_matrix[i][i] = 1.0
if (intersent_formula == 'norm'):
sorted_sim_vals = sorted(sim_vals, key=itemgetter(2), reverse=True)[:k]
for (i, j, sim) in sorted_sim_vals:
sim_matrix[i][j] = sim
sim_matrix[j][i] = sim
row_sums = sim_matrix.sum(axis=1, keepdims=True)
sim_matrix = (sim_matrix / row_sums)
return sim_matrix | Builds and returns a 2D numpy matrix of inter-sentential similarity. | src/content_selection.py | _build_sim_matrix | aventon1/text-summarizer | 0 | python | def _build_sim_matrix(sent_list, intersent_threshold, intersent_formula, mle_lambda, k, topic):
'\n \n '
num_sent = len(sent_list)
sim_matrix = np.zeros((num_sent, num_sent))
for i in range(num_sent):
sim_vals = []
for j in range(i, num_sent):
if (intersent_formula == 'norm'):
sim = _calc_norm_gen_prob(sent_list[i], sent_list[j], mle_lambda, topic)
sim_vals.append((i, j, sim))
elif (i != j):
sim = _cosine_similarity(sent_list[i], sent_list[j])
if (sim >= intersent_threshold):
sim_matrix[i][j] = sim
sim_matrix[j][i] = sim
else:
sim_matrix[i][i] = 1.0
if (intersent_formula == 'norm'):
sorted_sim_vals = sorted(sim_vals, key=itemgetter(2), reverse=True)[:k]
for (i, j, sim) in sorted_sim_vals:
sim_matrix[i][j] = sim
sim_matrix[j][i] = sim
row_sums = sim_matrix.sum(axis=1, keepdims=True)
sim_matrix = (sim_matrix / row_sums)
return sim_matrix | def _build_sim_matrix(sent_list, intersent_threshold, intersent_formula, mle_lambda, k, topic):
'\n \n '
num_sent = len(sent_list)
sim_matrix = np.zeros((num_sent, num_sent))
for i in range(num_sent):
sim_vals = []
for j in range(i, num_sent):
if (intersent_formula == 'norm'):
sim = _calc_norm_gen_prob(sent_list[i], sent_list[j], mle_lambda, topic)
sim_vals.append((i, j, sim))
elif (i != j):
sim = _cosine_similarity(sent_list[i], sent_list[j])
if (sim >= intersent_threshold):
sim_matrix[i][j] = sim
sim_matrix[j][i] = sim
else:
sim_matrix[i][i] = 1.0
if (intersent_formula == 'norm'):
sorted_sim_vals = sorted(sim_vals, key=itemgetter(2), reverse=True)[:k]
for (i, j, sim) in sorted_sim_vals:
sim_matrix[i][j] = sim
sim_matrix[j][i] = sim
row_sums = sim_matrix.sum(axis=1, keepdims=True)
sim_matrix = (sim_matrix / row_sums)
return sim_matrix<|docstring|>Builds and returns a 2D numpy matrix of inter-sentential similarity.<|endoftext|> |
300c28843b14038664679bbb9378455b0a15a8a88af6ecdc813c9a14cf9818f0 | def _build_bias_vec(sent_list, topic_sent, include_narrative, bias_formula, mle_lambda, topic):
'\n Builds and returns a 1D numpy vector of the similarity between each sentence\n and the topic title. Additionally adds the similarity of the narrative if include_narrative.\n '
narrative = topic.narrative
if (narrative is None):
narrative = topic.category
num_sent = len(sent_list)
bias_vec = np.zeros(num_sent)
for i in range(num_sent):
if (bias_formula == 'rel'):
bias_vec[i] = _calc_relevance(sent_list[i], topic_sent, topic)
if include_narrative:
bias_vec[i] += _calc_relevance(sent_list[i], narrative, topic)
elif (bias_formula == 'gen'):
bias_vec[i] = _calc_gen_prob(topic_sent, sent_list[i], mle_lambda, topic)
if include_narrative:
bias_vec[i] += _calc_gen_prob(narrative, sent_list[i], mle_lambda, topic)
else:
bias_vec[i] = _cosine_similarity(sent_list[i], topic_sent)
if include_narrative:
bias_vec[i] += _cosine_similarity(sent_list[i], narrative)
bias_sum = np.sum(bias_vec)
if (bias_sum == 0):
bias_sum = 1
bias_vec = (bias_vec / bias_sum)
return bias_vec | Builds and returns a 1D numpy vector of the similarity between each sentence
and the topic title. Additionally adds the similarity of the narrative if include_narrative. | src/content_selection.py | _build_bias_vec | aventon1/text-summarizer | 0 | python | def _build_bias_vec(sent_list, topic_sent, include_narrative, bias_formula, mle_lambda, topic):
'\n Builds and returns a 1D numpy vector of the similarity between each sentence\n and the topic title. Additionally adds the similarity of the narrative if include_narrative.\n '
narrative = topic.narrative
if (narrative is None):
narrative = topic.category
num_sent = len(sent_list)
bias_vec = np.zeros(num_sent)
for i in range(num_sent):
if (bias_formula == 'rel'):
bias_vec[i] = _calc_relevance(sent_list[i], topic_sent, topic)
if include_narrative:
bias_vec[i] += _calc_relevance(sent_list[i], narrative, topic)
elif (bias_formula == 'gen'):
bias_vec[i] = _calc_gen_prob(topic_sent, sent_list[i], mle_lambda, topic)
if include_narrative:
bias_vec[i] += _calc_gen_prob(narrative, sent_list[i], mle_lambda, topic)
else:
bias_vec[i] = _cosine_similarity(sent_list[i], topic_sent)
if include_narrative:
bias_vec[i] += _cosine_similarity(sent_list[i], narrative)
bias_sum = np.sum(bias_vec)
if (bias_sum == 0):
bias_sum = 1
bias_vec = (bias_vec / bias_sum)
return bias_vec | def _build_bias_vec(sent_list, topic_sent, include_narrative, bias_formula, mle_lambda, topic):
'\n Builds and returns a 1D numpy vector of the similarity between each sentence\n and the topic title. Additionally adds the similarity of the narrative if include_narrative.\n '
narrative = topic.narrative
if (narrative is None):
narrative = topic.category
num_sent = len(sent_list)
bias_vec = np.zeros(num_sent)
for i in range(num_sent):
if (bias_formula == 'rel'):
bias_vec[i] = _calc_relevance(sent_list[i], topic_sent, topic)
if include_narrative:
bias_vec[i] += _calc_relevance(sent_list[i], narrative, topic)
elif (bias_formula == 'gen'):
bias_vec[i] = _calc_gen_prob(topic_sent, sent_list[i], mle_lambda, topic)
if include_narrative:
bias_vec[i] += _calc_gen_prob(narrative, sent_list[i], mle_lambda, topic)
else:
bias_vec[i] = _cosine_similarity(sent_list[i], topic_sent)
if include_narrative:
bias_vec[i] += _cosine_similarity(sent_list[i], narrative)
bias_sum = np.sum(bias_vec)
if (bias_sum == 0):
bias_sum = 1
bias_vec = (bias_vec / bias_sum)
return bias_vec<|docstring|>Builds and returns a 1D numpy vector of the similarity between each sentence
and the topic title. Additionally adds the similarity of the narrative if include_narrative.<|endoftext|> |
726fcaff19246c779050bf409be9cc4ed9adbdaf30032ec725f3f3ef4a34fde0 | def _calc_relevance(sent, topic_sent, topic):
'Calculates relevance for two sentences.'
rel_sum = 0
for i in topic_sent.raw_counts.keys():
rel_sum += ((math.log((sent.raw_counts.get(i, 0.0) + 1)) * math.log((topic_sent.raw_counts.get(i) + 1))) * topic.idf.get(i))
return rel_sum | Calculates relevance for two sentences. | src/content_selection.py | _calc_relevance | aventon1/text-summarizer | 0 | python | def _calc_relevance(sent, topic_sent, topic):
rel_sum = 0
for i in topic_sent.raw_counts.keys():
rel_sum += ((math.log((sent.raw_counts.get(i, 0.0) + 1)) * math.log((topic_sent.raw_counts.get(i) + 1))) * topic.idf.get(i))
return rel_sum | def _calc_relevance(sent, topic_sent, topic):
rel_sum = 0
for i in topic_sent.raw_counts.keys():
rel_sum += ((math.log((sent.raw_counts.get(i, 0.0) + 1)) * math.log((topic_sent.raw_counts.get(i) + 1))) * topic.idf.get(i))
return rel_sum<|docstring|>Calculates relevance for two sentences.<|endoftext|> |
3ce365cd8adc5423e1f0b5c533bca8304150b7ae0216bf27a9e225611d93ae59 | def _calc_smoothed_mle(word, sent, mle_lambda, topic):
'\n Calculates the smoothed MLE (Maximum Likelihood Estimate) for a word\n in a sentence, smoothing with the tf values from the entire topic cluster.\n Returns the smoothed MLE value.\n '
return (((1 - mle_lambda) * sent.tf_norm_values.get(word, 0)) + (mle_lambda * topic.tf_norm_values[word])) | Calculates the smoothed MLE (Maximum Likelihood Estimate) for a word
in a sentence, smoothing with the tf values from the entire topic cluster.
Returns the smoothed MLE value. | src/content_selection.py | _calc_smoothed_mle | aventon1/text-summarizer | 0 | python | def _calc_smoothed_mle(word, sent, mle_lambda, topic):
'\n Calculates the smoothed MLE (Maximum Likelihood Estimate) for a word\n in a sentence, smoothing with the tf values from the entire topic cluster.\n Returns the smoothed MLE value.\n '
return (((1 - mle_lambda) * sent.tf_norm_values.get(word, 0)) + (mle_lambda * topic.tf_norm_values[word])) | def _calc_smoothed_mle(word, sent, mle_lambda, topic):
'\n Calculates the smoothed MLE (Maximum Likelihood Estimate) for a word\n in a sentence, smoothing with the tf values from the entire topic cluster.\n Returns the smoothed MLE value.\n '
return (((1 - mle_lambda) * sent.tf_norm_values.get(word, 0)) + (mle_lambda * topic.tf_norm_values[word]))<|docstring|>Calculates the smoothed MLE (Maximum Likelihood Estimate) for a word
in a sentence, smoothing with the tf values from the entire topic cluster.
Returns the smoothed MLE value.<|endoftext|> |
213ab628b22277859c80a8044d95ac0e0f7a29ba26615492d1adc20a503148b0 | def _calc_gen_prob(sent_1, sent_2, mle_lambda, topic):
'\n Calculates and returns the generative probability of sent_1 given sent_2.\n '
gen_prod = 1
for word in sent_1.raw_counts:
gen_prod *= (_calc_smoothed_mle(word, sent_2, mle_lambda, topic) ** sent_1.raw_counts[word])
return gen_prod | Calculates and returns the generative probability of sent_1 given sent_2. | src/content_selection.py | _calc_gen_prob | aventon1/text-summarizer | 0 | python | def _calc_gen_prob(sent_1, sent_2, mle_lambda, topic):
'\n \n '
gen_prod = 1
for word in sent_1.raw_counts:
gen_prod *= (_calc_smoothed_mle(word, sent_2, mle_lambda, topic) ** sent_1.raw_counts[word])
return gen_prod | def _calc_gen_prob(sent_1, sent_2, mle_lambda, topic):
'\n \n '
gen_prod = 1
for word in sent_1.raw_counts:
gen_prod *= (_calc_smoothed_mle(word, sent_2, mle_lambda, topic) ** sent_1.raw_counts[word])
return gen_prod<|docstring|>Calculates and returns the generative probability of sent_1 given sent_2.<|endoftext|> |
6f461c779df92fcbb14da4aa0cbb67eb072cebd2812e6ee17346d0d16cbaa788 | def _calc_norm_gen_prob(sent_1, sent_2, mle_lambda, topic):
'\n Calculates and returns the length-normalized generative probability of sent_1 given sent_2.\n '
sent_1_len = sum([count for count in sent_1.raw_counts.values()])
return (_calc_gen_prob(sent_1, sent_2, mle_lambda, topic) ** (1.0 / sent_1_len)) | Calculates and returns the length-normalized generative probability of sent_1 given sent_2. | src/content_selection.py | _calc_norm_gen_prob | aventon1/text-summarizer | 0 | python | def _calc_norm_gen_prob(sent_1, sent_2, mle_lambda, topic):
'\n \n '
sent_1_len = sum([count for count in sent_1.raw_counts.values()])
return (_calc_gen_prob(sent_1, sent_2, mle_lambda, topic) ** (1.0 / sent_1_len)) | def _calc_norm_gen_prob(sent_1, sent_2, mle_lambda, topic):
'\n \n '
sent_1_len = sum([count for count in sent_1.raw_counts.values()])
return (_calc_gen_prob(sent_1, sent_2, mle_lambda, topic) ** (1.0 / sent_1_len))<|docstring|>Calculates and returns the length-normalized generative probability of sent_1 given sent_2.<|endoftext|> |
8d5963394c300f8a235cdc853a01aa8ee234f0321101b7d0a448dfe4ac9cce47 | def _build_markov_matrix(sim_matrix, bias_vec, d):
'\n Builds and returns the markov matrix (matrix to multiply by in the power method)\n using the Biased LexRank formula with cosine similarity.\n '
markov_matrix = ((d * bias_vec) + ((1 - d) * sim_matrix))
return markov_matrix | Builds and returns the markov matrix (matrix to multiply by in the power method)
using the Biased LexRank formula with cosine similarity. | src/content_selection.py | _build_markov_matrix | aventon1/text-summarizer | 0 | python | def _build_markov_matrix(sim_matrix, bias_vec, d):
'\n Builds and returns the markov matrix (matrix to multiply by in the power method)\n using the Biased LexRank formula with cosine similarity.\n '
markov_matrix = ((d * bias_vec) + ((1 - d) * sim_matrix))
return markov_matrix | def _build_markov_matrix(sim_matrix, bias_vec, d):
'\n Builds and returns the markov matrix (matrix to multiply by in the power method)\n using the Biased LexRank formula with cosine similarity.\n '
markov_matrix = ((d * bias_vec) + ((1 - d) * sim_matrix))
return markov_matrix<|docstring|>Builds and returns the markov matrix (matrix to multiply by in the power method)
using the Biased LexRank formula with cosine similarity.<|endoftext|> |
91dfaaf7aaf45cbe9bad2f859bd1f444a8a9a381dc7e96c5bc81defd74c6be7c | def _power_method(markov_matrix, epsilon):
'\n Uses the power method to find the LexRank values of each sentence\n and returns a 1D vector of the final LexRank values after convergence.\n '
num_sent = len(markov_matrix)
transition_matrix = markov_matrix.T
prob_vec = (np.ones(num_sent) / num_sent)
matrix_diff = 1.0
while (matrix_diff > epsilon):
updated_prob_vec = np.dot(transition_matrix, prob_vec)
matrix_diff = np.linalg.norm(np.subtract(updated_prob_vec, prob_vec))
prob_vec = updated_prob_vec
return prob_vec | Uses the power method to find the LexRank values of each sentence
and returns a 1D vector of the final LexRank values after convergence. | src/content_selection.py | _power_method | aventon1/text-summarizer | 0 | python | def _power_method(markov_matrix, epsilon):
'\n Uses the power method to find the LexRank values of each sentence\n and returns a 1D vector of the final LexRank values after convergence.\n '
num_sent = len(markov_matrix)
transition_matrix = markov_matrix.T
prob_vec = (np.ones(num_sent) / num_sent)
matrix_diff = 1.0
while (matrix_diff > epsilon):
updated_prob_vec = np.dot(transition_matrix, prob_vec)
matrix_diff = np.linalg.norm(np.subtract(updated_prob_vec, prob_vec))
prob_vec = updated_prob_vec
return prob_vec | def _power_method(markov_matrix, epsilon):
'\n Uses the power method to find the LexRank values of each sentence\n and returns a 1D vector of the final LexRank values after convergence.\n '
num_sent = len(markov_matrix)
transition_matrix = markov_matrix.T
prob_vec = (np.ones(num_sent) / num_sent)
matrix_diff = 1.0
while (matrix_diff > epsilon):
updated_prob_vec = np.dot(transition_matrix, prob_vec)
matrix_diff = np.linalg.norm(np.subtract(updated_prob_vec, prob_vec))
prob_vec = updated_prob_vec
return prob_vec<|docstring|>Uses the power method to find the LexRank values of each sentence
and returns a 1D vector of the final LexRank values after convergence.<|endoftext|> |
a80375e348afb5e65ce3484c79d88b982b1a42ca6eeb93c71496c741f6516eaf | def _select_sentences(sorted_sentences, summary_threshold):
' \n Takes a list of sentences sorted by LexRank value (descending)\n and selects the sentences to add to the summary greedily based on LexRank value\n while excluding sentences with cosine similarity >= summary_threshold (default = 0.5)\n to any sentence already in the summary.\n Returns a list of selected sentences.\n '
max_summary_size = 100
added_sents = []
summary_size = 0
for sent_index in range(len(sorted_sentences)):
if (sent_index == 0):
added_sents.append(sorted_sentences[sent_index])
summary_size += sorted_sentences[sent_index].sent_len
elif ((summary_size + sorted_sentences[sent_index].sent_len) <= max_summary_size):
cos_sim = [_cosine_similarity(sorted_sentences[sent_index], added_sent) for added_sent in added_sents]
similar = any(((cos_similarity >= summary_threshold) for cos_similarity in cos_sim))
if (not similar):
added_sents.append(sorted_sentences[sent_index])
summary_size += sorted_sentences[sent_index].sent_len
return added_sents | Takes a list of sentences sorted by LexRank value (descending)
and selects the sentences to add to the summary greedily based on LexRank value
while excluding sentences with cosine similarity >= summary_threshold (default = 0.5)
to any sentence already in the summary.
Returns a list of selected sentences. | src/content_selection.py | _select_sentences | aventon1/text-summarizer | 0 | python | def _select_sentences(sorted_sentences, summary_threshold):
' \n Takes a list of sentences sorted by LexRank value (descending)\n and selects the sentences to add to the summary greedily based on LexRank value\n while excluding sentences with cosine similarity >= summary_threshold (default = 0.5)\n to any sentence already in the summary.\n Returns a list of selected sentences.\n '
max_summary_size = 100
added_sents = []
summary_size = 0
for sent_index in range(len(sorted_sentences)):
if (sent_index == 0):
added_sents.append(sorted_sentences[sent_index])
summary_size += sorted_sentences[sent_index].sent_len
elif ((summary_size + sorted_sentences[sent_index].sent_len) <= max_summary_size):
cos_sim = [_cosine_similarity(sorted_sentences[sent_index], added_sent) for added_sent in added_sents]
similar = any(((cos_similarity >= summary_threshold) for cos_similarity in cos_sim))
if (not similar):
added_sents.append(sorted_sentences[sent_index])
summary_size += sorted_sentences[sent_index].sent_len
return added_sents | def _select_sentences(sorted_sentences, summary_threshold):
' \n Takes a list of sentences sorted by LexRank value (descending)\n and selects the sentences to add to the summary greedily based on LexRank value\n while excluding sentences with cosine similarity >= summary_threshold (default = 0.5)\n to any sentence already in the summary.\n Returns a list of selected sentences.\n '
max_summary_size = 100
added_sents = []
summary_size = 0
for sent_index in range(len(sorted_sentences)):
if (sent_index == 0):
added_sents.append(sorted_sentences[sent_index])
summary_size += sorted_sentences[sent_index].sent_len
elif ((summary_size + sorted_sentences[sent_index].sent_len) <= max_summary_size):
cos_sim = [_cosine_similarity(sorted_sentences[sent_index], added_sent) for added_sent in added_sents]
similar = any(((cos_similarity >= summary_threshold) for cos_similarity in cos_sim))
if (not similar):
added_sents.append(sorted_sentences[sent_index])
summary_size += sorted_sentences[sent_index].sent_len
return added_sents<|docstring|>Takes a list of sentences sorted by LexRank value (descending)
and selects the sentences to add to the summary greedily based on LexRank value
while excluding sentences with cosine similarity >= summary_threshold (default = 0.5)
to any sentence already in the summary.
Returns a list of selected sentences.<|endoftext|> |
cb778c36d162df755a08e90987107e06cb4e0d197948df7ca6fa9421bf19834f | def select_content(topics_list, d=0.7, intersent_threshold=0.0, summary_threshold=0.5, epsilon=0.1, mle_lambda=0.6, k=20, min_sent_len=5, include_narrative=False, bias_formula='cos', intersent_formula='cos'):
'\n For each topic, creates summaries of <= 100 words (full sentences only) \n using a Biased LexRank similarity graph algorithm\n with tf-idf cosine similarity and a bias for query topic.\n\n Args:\n topic_list: a list of Topic objects (which include Documents and Sentences)\n d: damping factor, amount to prioritize topic bias in Markov Matrix\n intersent_threshold: minimum amount of similarity required to include in Similarity Matrix\n summary_threshold: maximum amount of similarity between sentences in summary\n epsilon: minimum amount of difference between probabilities between rounds of power method\n mle_lambda: amount to prioritize topic MLE over sentence MLE \n k: maximum number of intersentential similarity nodes to connect when doing normalized generation probability\n min_sent_len: minimum number of words in a sentence to be used in the summary\n include_narrative: True if the narrative (in addition to title) should be in the bias\n bias_formula: which formula to use for sentence-topic similarity weighting - cos (cosine similarity), rel (relevance), or gen (generation probability)\n intersent_formula: which formula to use for inter-sentential similarity weighting - cos (cosine similarity) or norm (normalized generation probability)\n\n Returns:\n topic_list: the modified topic_list from the input, with a list of selected sentences\n in the topic.summary fields of each topic.\n\n '
topic_summaries = {}
for topic in topics_list:
topic_id = topic.topic_id
topic_title = topic.title
topic_docs_list = topic.document_list
total_sentences = [sent for doc in topic.document_list for sent in doc.sentence_list if (sent.sent_len >= min_sent_len)]
sim_matrix = _build_sim_matrix(total_sentences, intersent_threshold, intersent_formula, mle_lambda, k, topic)
bias_vec = _build_bias_vec(total_sentences, topic_title, include_narrative, bias_formula, mle_lambda, topic)
markov_matrix = _build_markov_matrix(sim_matrix, bias_vec, d)
lex_rank_vec = _power_method(markov_matrix, epsilon)
for i in range(len(total_sentences)):
total_sentences[i].score = lex_rank_vec[i]
sorted_sentences = sorted(total_sentences, reverse=True)
topic.summary = _select_sentences(sorted_sentences, summary_threshold)
return topics_list | For each topic, creates summaries of <= 100 words (full sentences only)
using a Biased LexRank similarity graph algorithm
with tf-idf cosine similarity and a bias for query topic.
Args:
topic_list: a list of Topic objects (which include Documents and Sentences)
d: damping factor, amount to prioritize topic bias in Markov Matrix
intersent_threshold: minimum amount of similarity required to include in Similarity Matrix
summary_threshold: maximum amount of similarity between sentences in summary
epsilon: minimum amount of difference between probabilities between rounds of power method
mle_lambda: amount to prioritize topic MLE over sentence MLE
k: maximum number of intersentential similarity nodes to connect when doing normalized generation probability
min_sent_len: minimum number of words in a sentence to be used in the summary
include_narrative: True if the narrative (in addition to title) should be in the bias
bias_formula: which formula to use for sentence-topic similarity weighting - cos (cosine similarity), rel (relevance), or gen (generation probability)
intersent_formula: which formula to use for inter-sentential similarity weighting - cos (cosine similarity) or norm (normalized generation probability)
Returns:
topic_list: the modified topic_list from the input, with a list of selected sentences
in the topic.summary fields of each topic. | src/content_selection.py | select_content | aventon1/text-summarizer | 0 | python | def select_content(topics_list, d=0.7, intersent_threshold=0.0, summary_threshold=0.5, epsilon=0.1, mle_lambda=0.6, k=20, min_sent_len=5, include_narrative=False, bias_formula='cos', intersent_formula='cos'):
'\n For each topic, creates summaries of <= 100 words (full sentences only) \n using a Biased LexRank similarity graph algorithm\n with tf-idf cosine similarity and a bias for query topic.\n\n Args:\n topic_list: a list of Topic objects (which include Documents and Sentences)\n d: damping factor, amount to prioritize topic bias in Markov Matrix\n intersent_threshold: minimum amount of similarity required to include in Similarity Matrix\n summary_threshold: maximum amount of similarity between sentences in summary\n epsilon: minimum amount of difference between probabilities between rounds of power method\n mle_lambda: amount to prioritize topic MLE over sentence MLE \n k: maximum number of intersentential similarity nodes to connect when doing normalized generation probability\n min_sent_len: minimum number of words in a sentence to be used in the summary\n include_narrative: True if the narrative (in addition to title) should be in the bias\n bias_formula: which formula to use for sentence-topic similarity weighting - cos (cosine similarity), rel (relevance), or gen (generation probability)\n intersent_formula: which formula to use for inter-sentential similarity weighting - cos (cosine similarity) or norm (normalized generation probability)\n\n Returns:\n topic_list: the modified topic_list from the input, with a list of selected sentences\n in the topic.summary fields of each topic.\n\n '
topic_summaries = {}
for topic in topics_list:
topic_id = topic.topic_id
topic_title = topic.title
topic_docs_list = topic.document_list
total_sentences = [sent for doc in topic.document_list for sent in doc.sentence_list if (sent.sent_len >= min_sent_len)]
sim_matrix = _build_sim_matrix(total_sentences, intersent_threshold, intersent_formula, mle_lambda, k, topic)
bias_vec = _build_bias_vec(total_sentences, topic_title, include_narrative, bias_formula, mle_lambda, topic)
markov_matrix = _build_markov_matrix(sim_matrix, bias_vec, d)
lex_rank_vec = _power_method(markov_matrix, epsilon)
for i in range(len(total_sentences)):
total_sentences[i].score = lex_rank_vec[i]
sorted_sentences = sorted(total_sentences, reverse=True)
topic.summary = _select_sentences(sorted_sentences, summary_threshold)
return topics_list | def select_content(topics_list, d=0.7, intersent_threshold=0.0, summary_threshold=0.5, epsilon=0.1, mle_lambda=0.6, k=20, min_sent_len=5, include_narrative=False, bias_formula='cos', intersent_formula='cos'):
'\n For each topic, creates summaries of <= 100 words (full sentences only) \n using a Biased LexRank similarity graph algorithm\n with tf-idf cosine similarity and a bias for query topic.\n\n Args:\n topic_list: a list of Topic objects (which include Documents and Sentences)\n d: damping factor, amount to prioritize topic bias in Markov Matrix\n intersent_threshold: minimum amount of similarity required to include in Similarity Matrix\n summary_threshold: maximum amount of similarity between sentences in summary\n epsilon: minimum amount of difference between probabilities between rounds of power method\n mle_lambda: amount to prioritize topic MLE over sentence MLE \n k: maximum number of intersentential similarity nodes to connect when doing normalized generation probability\n min_sent_len: minimum number of words in a sentence to be used in the summary\n include_narrative: True if the narrative (in addition to title) should be in the bias\n bias_formula: which formula to use for sentence-topic similarity weighting - cos (cosine similarity), rel (relevance), or gen (generation probability)\n intersent_formula: which formula to use for inter-sentential similarity weighting - cos (cosine similarity) or norm (normalized generation probability)\n\n Returns:\n topic_list: the modified topic_list from the input, with a list of selected sentences\n in the topic.summary fields of each topic.\n\n '
topic_summaries = {}
for topic in topics_list:
topic_id = topic.topic_id
topic_title = topic.title
topic_docs_list = topic.document_list
total_sentences = [sent for doc in topic.document_list for sent in doc.sentence_list if (sent.sent_len >= min_sent_len)]
sim_matrix = _build_sim_matrix(total_sentences, intersent_threshold, intersent_formula, mle_lambda, k, topic)
bias_vec = _build_bias_vec(total_sentences, topic_title, include_narrative, bias_formula, mle_lambda, topic)
markov_matrix = _build_markov_matrix(sim_matrix, bias_vec, d)
lex_rank_vec = _power_method(markov_matrix, epsilon)
for i in range(len(total_sentences)):
total_sentences[i].score = lex_rank_vec[i]
sorted_sentences = sorted(total_sentences, reverse=True)
topic.summary = _select_sentences(sorted_sentences, summary_threshold)
return topics_list<|docstring|>For each topic, creates summaries of <= 100 words (full sentences only)
using a Biased LexRank similarity graph algorithm
with tf-idf cosine similarity and a bias for query topic.
Args:
topic_list: a list of Topic objects (which include Documents and Sentences)
d: damping factor, amount to prioritize topic bias in Markov Matrix
intersent_threshold: minimum amount of similarity required to include in Similarity Matrix
summary_threshold: maximum amount of similarity between sentences in summary
epsilon: minimum amount of difference between probabilities between rounds of power method
mle_lambda: amount to prioritize topic MLE over sentence MLE
k: maximum number of intersentential similarity nodes to connect when doing normalized generation probability
min_sent_len: minimum number of words in a sentence to be used in the summary
include_narrative: True if the narrative (in addition to title) should be in the bias
bias_formula: which formula to use for sentence-topic similarity weighting - cos (cosine similarity), rel (relevance), or gen (generation probability)
intersent_formula: which formula to use for inter-sentential similarity weighting - cos (cosine similarity) or norm (normalized generation probability)
Returns:
topic_list: the modified topic_list from the input, with a list of selected sentences
in the topic.summary fields of each topic.<|endoftext|> |
1e0966f935ded95592f0d0d13deb349fcd0e5e0dd317eb6c93c69a308b936529 | def deprecated(func):
'This is a decorator which can be used to mark functions\n as deprecated. It will result in a warning being emitted\n when the function is used.'
@functools.wraps(func)
def new_func(*args, **kwargs):
warnings.simplefilter('always', DeprecationWarning)
warnings.warn('Call to deprecated function {}.'.format(func.__name__), category=DeprecationWarning, stacklevel=2)
warnings.simplefilter('default', DeprecationWarning)
return func(*args, **kwargs)
return new_func | This is a decorator which can be used to mark functions
as deprecated. It will result in a warning being emitted
when the function is used. | valorant/utils/helper.py | deprecated | vnpnh/Pyvalo | 0 | python | def deprecated(func):
'This is a decorator which can be used to mark functions\n as deprecated. It will result in a warning being emitted\n when the function is used.'
@functools.wraps(func)
def new_func(*args, **kwargs):
warnings.simplefilter('always', DeprecationWarning)
warnings.warn('Call to deprecated function {}.'.format(func.__name__), category=DeprecationWarning, stacklevel=2)
warnings.simplefilter('default', DeprecationWarning)
return func(*args, **kwargs)
return new_func | def deprecated(func):
'This is a decorator which can be used to mark functions\n as deprecated. It will result in a warning being emitted\n when the function is used.'
@functools.wraps(func)
def new_func(*args, **kwargs):
warnings.simplefilter('always', DeprecationWarning)
warnings.warn('Call to deprecated function {}.'.format(func.__name__), category=DeprecationWarning, stacklevel=2)
warnings.simplefilter('default', DeprecationWarning)
return func(*args, **kwargs)
return new_func<|docstring|>This is a decorator which can be used to mark functions
as deprecated. It will result in a warning being emitted
when the function is used.<|endoftext|> |
8552c9d0b1f65cb24eeedf59925dc56354a28c678c5428fdaa9fcdaf8f0ae034 | @responses.activate
def test_1000(self, gmn_client_v1_v2):
'MNCore.getCapabilities(): Returns a valid Node Registry document.'
with d1_gmn.tests.gmn_mock.disable_auth():
node = gmn_client_v1_v2.getCapabilities()
assert isinstance(node, gmn_client_v1_v2.pyxb_binding.Node) | MNCore.getCapabilities(): Returns a valid Node Registry document. | gmn/src/d1_gmn/tests/test_get_capabilities.py | test_1000 | DataONEorg/d1_python | 15 | python | @responses.activate
def test_1000(self, gmn_client_v1_v2):
with d1_gmn.tests.gmn_mock.disable_auth():
node = gmn_client_v1_v2.getCapabilities()
assert isinstance(node, gmn_client_v1_v2.pyxb_binding.Node) | @responses.activate
def test_1000(self, gmn_client_v1_v2):
with d1_gmn.tests.gmn_mock.disable_auth():
node = gmn_client_v1_v2.getCapabilities()
assert isinstance(node, gmn_client_v1_v2.pyxb_binding.Node)<|docstring|>MNCore.getCapabilities(): Returns a valid Node Registry document.<|endoftext|> |
7f589a8e9487eae09b7f02a1b7031d86f1296d3057b8114cdeb889e83e52b5cd | def get_dataset(identifier):
'Returns the correct CrepeDataset based on Id in `{ag,amazon,dbpedia,sogou,yahoo,yelp,yelp-polarity}`'
if (identifier == 'ag'):
dataset = AgNews
elif (identifier == 'amazon-polarity'):
dataset = AmazonReviewPolarity
elif (identifier == 'amazon'):
dataset = AmazonReview
elif (identifier == 'dbpedia'):
dataset = DbPedia
elif (identifier == 'sogou'):
dataset = SogouNews
elif (identifier == 'yahoo'):
dataset = YahooAnswers
elif (identifier == 'yelp'):
dataset = YelpReview
elif (identifier == 'yelp-polarity'):
dataset = YelpReviewPolarity
else:
raise ValueError('Unkown dataset identifier: {}'.format(identifier))
return dataset | Returns the correct CrepeDataset based on Id in `{ag,amazon,dbpedia,sogou,yahoo,yelp,yelp-polarity}` | evaluate/load/dataset.py | get_dataset | YannDubs/Hash-Embeddings | 159 | python | def get_dataset(identifier):
if (identifier == 'ag'):
dataset = AgNews
elif (identifier == 'amazon-polarity'):
dataset = AmazonReviewPolarity
elif (identifier == 'amazon'):
dataset = AmazonReview
elif (identifier == 'dbpedia'):
dataset = DbPedia
elif (identifier == 'sogou'):
dataset = SogouNews
elif (identifier == 'yahoo'):
dataset = YahooAnswers
elif (identifier == 'yelp'):
dataset = YelpReview
elif (identifier == 'yelp-polarity'):
dataset = YelpReviewPolarity
else:
raise ValueError('Unkown dataset identifier: {}'.format(identifier))
return dataset | def get_dataset(identifier):
if (identifier == 'ag'):
dataset = AgNews
elif (identifier == 'amazon-polarity'):
dataset = AmazonReviewPolarity
elif (identifier == 'amazon'):
dataset = AmazonReview
elif (identifier == 'dbpedia'):
dataset = DbPedia
elif (identifier == 'sogou'):
dataset = SogouNews
elif (identifier == 'yahoo'):
dataset = YahooAnswers
elif (identifier == 'yelp'):
dataset = YelpReview
elif (identifier == 'yelp-polarity'):
dataset = YelpReviewPolarity
else:
raise ValueError('Unkown dataset identifier: {}'.format(identifier))
return dataset<|docstring|>Returns the correct CrepeDataset based on Id in `{ag,amazon,dbpedia,sogou,yahoo,yelp,yelp-polarity}`<|endoftext|> |
28545d89b7c0ccd19730b1e2c3bc6b7affee242b20ade6e44122f2ff206ff319 | def get_path(identifier):
'Returns the correct root directory to dataset based on Id in `{ag,amazon,dbpedia,sogou,yahoo,yelp,yelp-polarity}`'
if (identifier == 'ag'):
path = '../../data/ag_news_csv'
elif (identifier == 'amazon-polarity'):
path = '../../data/amazon_review_polarity_csv'
elif (identifier == 'amazon'):
path = '../../data/amazon_review_full_csv'
elif (identifier == 'dbpedia'):
path = '../../data/dbpedia_csv'
elif (identifier == 'sogou'):
path = '../../data/sogou_news_csv'
elif (identifier == 'yahoo'):
path = '../../data/yahoo_answers_csv'
elif (identifier == 'yelp'):
path = '../../data/yelp_review_full_csv'
elif (identifier == 'yelp-polarity'):
path = '../../data/yelp_review_polarity_csv'
else:
raise ValueError('Unkown dataset identifier: {}'.format(identifier))
return os.path.abspath(os.path.join(os.path.dirname(__file__), path)) | Returns the correct root directory to dataset based on Id in `{ag,amazon,dbpedia,sogou,yahoo,yelp,yelp-polarity}` | evaluate/load/dataset.py | get_path | YannDubs/Hash-Embeddings | 159 | python | def get_path(identifier):
if (identifier == 'ag'):
path = '../../data/ag_news_csv'
elif (identifier == 'amazon-polarity'):
path = '../../data/amazon_review_polarity_csv'
elif (identifier == 'amazon'):
path = '../../data/amazon_review_full_csv'
elif (identifier == 'dbpedia'):
path = '../../data/dbpedia_csv'
elif (identifier == 'sogou'):
path = '../../data/sogou_news_csv'
elif (identifier == 'yahoo'):
path = '../../data/yahoo_answers_csv'
elif (identifier == 'yelp'):
path = '../../data/yelp_review_full_csv'
elif (identifier == 'yelp-polarity'):
path = '../../data/yelp_review_polarity_csv'
else:
raise ValueError('Unkown dataset identifier: {}'.format(identifier))
return os.path.abspath(os.path.join(os.path.dirname(__file__), path)) | def get_path(identifier):
if (identifier == 'ag'):
path = '../../data/ag_news_csv'
elif (identifier == 'amazon-polarity'):
path = '../../data/amazon_review_polarity_csv'
elif (identifier == 'amazon'):
path = '../../data/amazon_review_full_csv'
elif (identifier == 'dbpedia'):
path = '../../data/dbpedia_csv'
elif (identifier == 'sogou'):
path = '../../data/sogou_news_csv'
elif (identifier == 'yahoo'):
path = '../../data/yahoo_answers_csv'
elif (identifier == 'yelp'):
path = '../../data/yelp_review_full_csv'
elif (identifier == 'yelp-polarity'):
path = '../../data/yelp_review_polarity_csv'
else:
raise ValueError('Unkown dataset identifier: {}'.format(identifier))
return os.path.abspath(os.path.join(os.path.dirname(__file__), path))<|docstring|>Returns the correct root directory to dataset based on Id in `{ag,amazon,dbpedia,sogou,yahoo,yelp,yelp-polarity}`<|endoftext|> |
59d0ffbf432b12b6aff0426ae575bcddee3276ede9a6c0992664f8b8e4127c4a | def get_skin(self, request=None):
'Get skin matching this content' | Get skin matching this content | src/pyams_layer/interfaces.py | get_skin | Py-AMS/pyams-layer | 0 | python | def get_skin(self, request=None):
| def get_skin(self, request=None):
<|docstring|>Get skin matching this content<|endoftext|> |
190d9d3641cfaa44cfa4ba5ce3e70f73c7cdcb54035776d6dc22704623b2dc4a | @pytest.mark.parametrize('numpy_dtype', [np.int8, np.uint8, np.int16, np.uint16, np.int32, np.uint32, np.int64])
def test_torch_tensorable_types(numpy_dtype):
"Make sure that we 'sanitize' only integer types that can not be made into torch tensors natively"
value = np.zeros((2, 2), dtype=numpy_dtype)
dict_to_sanitize = {'value': value}
_sanitize_pytorch_types(dict_to_sanitize)
torchable = False
try:
torch.Tensor(value)
torchable = True
except TypeError:
pass
tensor = torch.as_tensor(dict_to_sanitize['value'])
tensor_and_back = tensor.numpy()
if (tensor_and_back.dtype != value.dtype):
assert (tensor_and_back.dtype.itemsize > value.dtype.itemsize)
assert (not torchable), '_sanitize_pytorch_types modified value of type {}, but it was possible to create a Tensor directly from a value with that type'.format(numpy_dtype) | Make sure that we 'sanitize' only integer types that can not be made into torch tensors natively | petastorm/tests/test_pytorch_dataloader.py | test_torch_tensorable_types | dongpohezui/petastorm | 0 | python | @pytest.mark.parametrize('numpy_dtype', [np.int8, np.uint8, np.int16, np.uint16, np.int32, np.uint32, np.int64])
def test_torch_tensorable_types(numpy_dtype):
value = np.zeros((2, 2), dtype=numpy_dtype)
dict_to_sanitize = {'value': value}
_sanitize_pytorch_types(dict_to_sanitize)
torchable = False
try:
torch.Tensor(value)
torchable = True
except TypeError:
pass
tensor = torch.as_tensor(dict_to_sanitize['value'])
tensor_and_back = tensor.numpy()
if (tensor_and_back.dtype != value.dtype):
assert (tensor_and_back.dtype.itemsize > value.dtype.itemsize)
assert (not torchable), '_sanitize_pytorch_types modified value of type {}, but it was possible to create a Tensor directly from a value with that type'.format(numpy_dtype) | @pytest.mark.parametrize('numpy_dtype', [np.int8, np.uint8, np.int16, np.uint16, np.int32, np.uint32, np.int64])
def test_torch_tensorable_types(numpy_dtype):
value = np.zeros((2, 2), dtype=numpy_dtype)
dict_to_sanitize = {'value': value}
_sanitize_pytorch_types(dict_to_sanitize)
torchable = False
try:
torch.Tensor(value)
torchable = True
except TypeError:
pass
tensor = torch.as_tensor(dict_to_sanitize['value'])
tensor_and_back = tensor.numpy()
if (tensor_and_back.dtype != value.dtype):
assert (tensor_and_back.dtype.itemsize > value.dtype.itemsize)
assert (not torchable), '_sanitize_pytorch_types modified value of type {}, but it was possible to create a Tensor directly from a value with that type'.format(numpy_dtype)<|docstring|>Make sure that we 'sanitize' only integer types that can not be made into torch tensors natively<|endoftext|> |
4e7aecb36a9df3e69a27231b1d72358ba7cc431ab23442e15428f6b48f8b14a4 | @pytest.mark.parametrize('shuffling_queue_capacity', [0, 3, 11, 1000])
@pytest.mark.parametrize('data_loader_type', ALL_DATA_LOADERS)
def test_with_batch_reader(scalar_dataset, shuffling_queue_capacity, data_loader_type):
'See if we are getting correct batch sizes when using DataLoader with make_batch_reader'
pytorch_compatible_fields = [k for (k, v) in scalar_dataset.data[0].items() if (not isinstance(v, (np.datetime64, np.unicode_)))]
with data_loader_type(make_batch_reader(scalar_dataset.url, schema_fields=pytorch_compatible_fields), batch_size=3, shuffling_queue_capacity=shuffling_queue_capacity) as loader:
batches = list(loader)
assert (len(scalar_dataset.data) == sum((batch['id'].shape[0] for batch in batches)))
if (pa.__version__ != '0.15.0'):
assert (len(scalar_dataset.data) == sum((batch['int_fixed_size_list'].shape[0] for batch in batches)))
assert (batches[0]['int_fixed_size_list'].shape[1] == len(scalar_dataset.data[0]['int_fixed_size_list'])) | See if we are getting correct batch sizes when using DataLoader with make_batch_reader | petastorm/tests/test_pytorch_dataloader.py | test_with_batch_reader | dongpohezui/petastorm | 0 | python | @pytest.mark.parametrize('shuffling_queue_capacity', [0, 3, 11, 1000])
@pytest.mark.parametrize('data_loader_type', ALL_DATA_LOADERS)
def test_with_batch_reader(scalar_dataset, shuffling_queue_capacity, data_loader_type):
pytorch_compatible_fields = [k for (k, v) in scalar_dataset.data[0].items() if (not isinstance(v, (np.datetime64, np.unicode_)))]
with data_loader_type(make_batch_reader(scalar_dataset.url, schema_fields=pytorch_compatible_fields), batch_size=3, shuffling_queue_capacity=shuffling_queue_capacity) as loader:
batches = list(loader)
assert (len(scalar_dataset.data) == sum((batch['id'].shape[0] for batch in batches)))
if (pa.__version__ != '0.15.0'):
assert (len(scalar_dataset.data) == sum((batch['int_fixed_size_list'].shape[0] for batch in batches)))
assert (batches[0]['int_fixed_size_list'].shape[1] == len(scalar_dataset.data[0]['int_fixed_size_list'])) | @pytest.mark.parametrize('shuffling_queue_capacity', [0, 3, 11, 1000])
@pytest.mark.parametrize('data_loader_type', ALL_DATA_LOADERS)
def test_with_batch_reader(scalar_dataset, shuffling_queue_capacity, data_loader_type):
pytorch_compatible_fields = [k for (k, v) in scalar_dataset.data[0].items() if (not isinstance(v, (np.datetime64, np.unicode_)))]
with data_loader_type(make_batch_reader(scalar_dataset.url, schema_fields=pytorch_compatible_fields), batch_size=3, shuffling_queue_capacity=shuffling_queue_capacity) as loader:
batches = list(loader)
assert (len(scalar_dataset.data) == sum((batch['id'].shape[0] for batch in batches)))
if (pa.__version__ != '0.15.0'):
assert (len(scalar_dataset.data) == sum((batch['int_fixed_size_list'].shape[0] for batch in batches)))
assert (batches[0]['int_fixed_size_list'].shape[1] == len(scalar_dataset.data[0]['int_fixed_size_list']))<|docstring|>See if we are getting correct batch sizes when using DataLoader with make_batch_reader<|endoftext|> |
db9eaf20cc4e18550506bdd3da2e0099b1d1eae7eb10da1b40363299e7b010b1 | def validate(self, data):
'validate data before we save '
confirmed_password = data.get('confirmed_password')
try:
validate_password(data['password'])
except ValidationError as e:
raise serializers.ValidationError({'password': str(e).replace('[, ).replace(]', '')})
if (not self.do_passwords_match(data['password'], confirmed_password)):
raise serializers.ValidationError({'passwords': 'Passwords do not match'})
return data | validate data before we save | authentication/serializers.py | validate | kelvinndmo/scholarship_system | 0 | python | def validate(self, data):
' '
confirmed_password = data.get('confirmed_password')
try:
validate_password(data['password'])
except ValidationError as e:
raise serializers.ValidationError({'password': str(e).replace('[, ).replace(]', )})
if (not self.do_passwords_match(data['password'], confirmed_password)):
raise serializers.ValidationError({'passwords': 'Passwords do not match'})
return data | def validate(self, data):
' '
confirmed_password = data.get('confirmed_password')
try:
validate_password(data['password'])
except ValidationError as e:
raise serializers.ValidationError({'password': str(e).replace('[, ).replace(]', )})
if (not self.do_passwords_match(data['password'], confirmed_password)):
raise serializers.ValidationError({'passwords': 'Passwords do not match'})
return data<|docstring|>validate data before we save<|endoftext|> |
6cc80fc473ed497c4f81c8412ddc4fb9c36e71b88523a1d3977752d6af7faf8f | def create(self, validated_data):
'Create a user.'
del validated_data['confirmed_password']
return User.objects.create_user(**validated_data) | Create a user. | authentication/serializers.py | create | kelvinndmo/scholarship_system | 0 | python | def create(self, validated_data):
del validated_data['confirmed_password']
return User.objects.create_user(**validated_data) | def create(self, validated_data):
del validated_data['confirmed_password']
return User.objects.create_user(**validated_data)<|docstring|>Create a user.<|endoftext|> |
91e4dfa418d86950e4f252bd6820f22b07ddaf8fb5a27b044c7fe618b480e092 | def do_passwords_match(self, password1, password2):
'Check if passwords match.'
return (password1 == password2) | Check if passwords match. | authentication/serializers.py | do_passwords_match | kelvinndmo/scholarship_system | 0 | python | def do_passwords_match(self, password1, password2):
return (password1 == password2) | def do_passwords_match(self, password1, password2):
return (password1 == password2)<|docstring|>Check if passwords match.<|endoftext|> |
676a33cfadfbdc179635c6432b0978d9b2821b4e9d6bdf0761b2cb90f59ff01d | def main():
'Reads in raw log files/pcap and writes entries to an sqlite database'
parser = argparse.ArgumentParser()
parser.add_argument('-e', '--endpoint', dest='host', type=str, required=False, help='endpoint, aka host ("client", "server", etc.)')
parser.add_argument('-c', '--cpu-file', dest='cpu_file', type=str, required=False, default=None, help='(uncompressed) cpu log file')
parser.add_argument('-d', '--disk-file', dest='disk_file', type=str, required=False, default=None, help='(uncompressed) disk log file')
parser.add_argument('-r', '--ram-file', dest='ram_file', type=str, required=False, default=None, help='(uncompressed) ram log file')
parser.add_argument('-n', '--network-file', dest='network_file', type=str, required=False, default=None, help='pcap file')
parser.add_argument('-m', '--network-map', dest='network_map', type=str, required=False, default=None, help='file containing map from IP address to host ("client")')
parser.add_argument('-o', '--output-file', dest='sqlite_file', type=str, required=True, help='sqlite3 file to write to')
options = parser.parse_args()
con = create_perf_db(options.sqlite_file)
if (options.cpu_file != None):
reader = CpuLogReader(handle=open(options.cpu_file), host=options.host)
reader.write_to_database(con)
if (options.disk_file != None):
reader = DiskLogReader(handle=open(options.disk_file), host=options.host)
reader.write_to_database(con)
if (options.ram_file != None):
reader = RamLogReader(handle=open(options.ram_file), host=options.host)
reader.write_to_database(con)
if (options.network_file != None):
if (options.network_map == None):
sys.stderr.write('Must include network map if parsing pcap files')
else:
mappings = get_mappings_from_handle(open(options.network_map))
reader = pcap_to_log(options.network_file, mappings)
reader.write_to_database(con) | Reads in raw log files/pcap and writes entries to an sqlite database | spar_python/perf_monitoring/perf_logs_to_db.py | main | nathanawmk/SPARTA | 37 | python | def main():
parser = argparse.ArgumentParser()
parser.add_argument('-e', '--endpoint', dest='host', type=str, required=False, help='endpoint, aka host ("client", "server", etc.)')
parser.add_argument('-c', '--cpu-file', dest='cpu_file', type=str, required=False, default=None, help='(uncompressed) cpu log file')
parser.add_argument('-d', '--disk-file', dest='disk_file', type=str, required=False, default=None, help='(uncompressed) disk log file')
parser.add_argument('-r', '--ram-file', dest='ram_file', type=str, required=False, default=None, help='(uncompressed) ram log file')
parser.add_argument('-n', '--network-file', dest='network_file', type=str, required=False, default=None, help='pcap file')
parser.add_argument('-m', '--network-map', dest='network_map', type=str, required=False, default=None, help='file containing map from IP address to host ("client")')
parser.add_argument('-o', '--output-file', dest='sqlite_file', type=str, required=True, help='sqlite3 file to write to')
options = parser.parse_args()
con = create_perf_db(options.sqlite_file)
if (options.cpu_file != None):
reader = CpuLogReader(handle=open(options.cpu_file), host=options.host)
reader.write_to_database(con)
if (options.disk_file != None):
reader = DiskLogReader(handle=open(options.disk_file), host=options.host)
reader.write_to_database(con)
if (options.ram_file != None):
reader = RamLogReader(handle=open(options.ram_file), host=options.host)
reader.write_to_database(con)
if (options.network_file != None):
if (options.network_map == None):
sys.stderr.write('Must include network map if parsing pcap files')
else:
mappings = get_mappings_from_handle(open(options.network_map))
reader = pcap_to_log(options.network_file, mappings)
reader.write_to_database(con) | def main():
parser = argparse.ArgumentParser()
parser.add_argument('-e', '--endpoint', dest='host', type=str, required=False, help='endpoint, aka host ("client", "server", etc.)')
parser.add_argument('-c', '--cpu-file', dest='cpu_file', type=str, required=False, default=None, help='(uncompressed) cpu log file')
parser.add_argument('-d', '--disk-file', dest='disk_file', type=str, required=False, default=None, help='(uncompressed) disk log file')
parser.add_argument('-r', '--ram-file', dest='ram_file', type=str, required=False, default=None, help='(uncompressed) ram log file')
parser.add_argument('-n', '--network-file', dest='network_file', type=str, required=False, default=None, help='pcap file')
parser.add_argument('-m', '--network-map', dest='network_map', type=str, required=False, default=None, help='file containing map from IP address to host ("client")')
parser.add_argument('-o', '--output-file', dest='sqlite_file', type=str, required=True, help='sqlite3 file to write to')
options = parser.parse_args()
con = create_perf_db(options.sqlite_file)
if (options.cpu_file != None):
reader = CpuLogReader(handle=open(options.cpu_file), host=options.host)
reader.write_to_database(con)
if (options.disk_file != None):
reader = DiskLogReader(handle=open(options.disk_file), host=options.host)
reader.write_to_database(con)
if (options.ram_file != None):
reader = RamLogReader(handle=open(options.ram_file), host=options.host)
reader.write_to_database(con)
if (options.network_file != None):
if (options.network_map == None):
sys.stderr.write('Must include network map if parsing pcap files')
else:
mappings = get_mappings_from_handle(open(options.network_map))
reader = pcap_to_log(options.network_file, mappings)
reader.write_to_database(con)<|docstring|>Reads in raw log files/pcap and writes entries to an sqlite database<|endoftext|> |
bf4981d8e131d914796245212a2de77c81c4e5821875e3b2b17f67e8b18fe1d5 | def on(self):
'\n Turns the device on.\n '
self._write(True) | Turns the device on. | gpiozero/output_devices.py | on | lurch/python-gpiozero | 0 | python | def on(self):
'\n \n '
self._write(True) | def on(self):
'\n \n '
self._write(True)<|docstring|>Turns the device on.<|endoftext|> |
e4b761944f334631b322a25ec017e7c0e4ce3626a022ed6703e6e027e43efbf3 | def off(self):
'\n Turns the device off.\n '
self._write(False) | Turns the device off. | gpiozero/output_devices.py | off | lurch/python-gpiozero | 0 | python | def off(self):
'\n \n '
self._write(False) | def off(self):
'\n \n '
self._write(False)<|docstring|>Turns the device off.<|endoftext|> |
9bea51fee3d5e19ab8069a9c87f54d9b719cfe411e07ea3becf42624221528fa | def toggle(self):
"\n Reverse the state of the device. If it's on, turn it off; if it's off,\n turn it on.\n "
with self._lock:
if self.is_active:
self.off()
else:
self.on() | Reverse the state of the device. If it's on, turn it off; if it's off,
turn it on. | gpiozero/output_devices.py | toggle | lurch/python-gpiozero | 0 | python | def toggle(self):
"\n Reverse the state of the device. If it's on, turn it off; if it's off,\n turn it on.\n "
with self._lock:
if self.is_active:
self.off()
else:
self.on() | def toggle(self):
"\n Reverse the state of the device. If it's on, turn it off; if it's off,\n turn it on.\n "
with self._lock:
if self.is_active:
self.off()
else:
self.on()<|docstring|>Reverse the state of the device. If it's on, turn it off; if it's off,
turn it on.<|endoftext|> |
9afa24e9c959fef1db0e5e3ddc79897fac6294398ef2a3e413bf507e753dc1f5 | @property
def value(self):
'\n Returns ``True`` if the device is currently active and ``False``\n otherwise. Setting this property changes the state of the device.\n '
return super(OutputDevice, self).value | Returns ``True`` if the device is currently active and ``False``
otherwise. Setting this property changes the state of the device. | gpiozero/output_devices.py | value | lurch/python-gpiozero | 0 | python | @property
def value(self):
'\n Returns ``True`` if the device is currently active and ``False``\n otherwise. Setting this property changes the state of the device.\n '
return super(OutputDevice, self).value | @property
def value(self):
'\n Returns ``True`` if the device is currently active and ``False``\n otherwise. Setting this property changes the state of the device.\n '
return super(OutputDevice, self).value<|docstring|>Returns ``True`` if the device is currently active and ``False``
otherwise. Setting this property changes the state of the device.<|endoftext|> |
4a2f1c0a9f6c47f1b4cae396b4d73204ad2b1854f517aa15d170c84996961a16 | @property
def active_high(self):
"\n When ``True``, the :attr:`value` property is ``True`` when the device's\n :attr:`pin` is high. When ``False`` the :attr:`value` property is\n ``True`` when the device's pin is low (i.e. the value is inverted).\n\n This property can be set after construction; be warned that changing it\n will invert :attr:`value` (i.e. changing this property doesn't change\n the device's pin state - it just changes how that state is\n interpreted).\n "
return self._active_state | When ``True``, the :attr:`value` property is ``True`` when the device's
:attr:`pin` is high. When ``False`` the :attr:`value` property is
``True`` when the device's pin is low (i.e. the value is inverted).
This property can be set after construction; be warned that changing it
will invert :attr:`value` (i.e. changing this property doesn't change
the device's pin state - it just changes how that state is
interpreted). | gpiozero/output_devices.py | active_high | lurch/python-gpiozero | 0 | python | @property
def active_high(self):
"\n When ``True``, the :attr:`value` property is ``True`` when the device's\n :attr:`pin` is high. When ``False`` the :attr:`value` property is\n ``True`` when the device's pin is low (i.e. the value is inverted).\n\n This property can be set after construction; be warned that changing it\n will invert :attr:`value` (i.e. changing this property doesn't change\n the device's pin state - it just changes how that state is\n interpreted).\n "
return self._active_state | @property
def active_high(self):
"\n When ``True``, the :attr:`value` property is ``True`` when the device's\n :attr:`pin` is high. When ``False`` the :attr:`value` property is\n ``True`` when the device's pin is low (i.e. the value is inverted).\n\n This property can be set after construction; be warned that changing it\n will invert :attr:`value` (i.e. changing this property doesn't change\n the device's pin state - it just changes how that state is\n interpreted).\n "
return self._active_state<|docstring|>When ``True``, the :attr:`value` property is ``True`` when the device's
:attr:`pin` is high. When ``False`` the :attr:`value` property is
``True`` when the device's pin is low (i.e. the value is inverted).
This property can be set after construction; be warned that changing it
will invert :attr:`value` (i.e. changing this property doesn't change
the device's pin state - it just changes how that state is
interpreted).<|endoftext|> |
f7e6118514b711ae28fc2d2206dbd32164251ed49f7b1f5f3e2b367132c2b601 | def blink(self, on_time=1, off_time=1, n=None, background=True):
'\n Make the device turn on and off repeatedly.\n\n :param float on_time:\n Number of seconds on. Defaults to 1 second.\n\n :param float off_time:\n Number of seconds off. Defaults to 1 second.\n\n :param int n:\n Number of times to blink; ``None`` (the default) means forever.\n\n :param bool background:\n If ``True`` (the default), start a background thread to continue\n blinking and return immediately. If ``False``, only return when the\n blink is finished (warning: the default value of *n* will result in\n this method never returning).\n '
self._stop_blink()
self._blink_thread = GPIOThread(target=self._blink_device, args=(on_time, off_time, n))
self._blink_thread.start()
if (not background):
self._blink_thread.join()
self._blink_thread = None | Make the device turn on and off repeatedly.
:param float on_time:
Number of seconds on. Defaults to 1 second.
:param float off_time:
Number of seconds off. Defaults to 1 second.
:param int n:
Number of times to blink; ``None`` (the default) means forever.
:param bool background:
If ``True`` (the default), start a background thread to continue
blinking and return immediately. If ``False``, only return when the
blink is finished (warning: the default value of *n* will result in
this method never returning). | gpiozero/output_devices.py | blink | lurch/python-gpiozero | 0 | python | def blink(self, on_time=1, off_time=1, n=None, background=True):
'\n Make the device turn on and off repeatedly.\n\n :param float on_time:\n Number of seconds on. Defaults to 1 second.\n\n :param float off_time:\n Number of seconds off. Defaults to 1 second.\n\n :param int n:\n Number of times to blink; ``None`` (the default) means forever.\n\n :param bool background:\n If ``True`` (the default), start a background thread to continue\n blinking and return immediately. If ``False``, only return when the\n blink is finished (warning: the default value of *n* will result in\n this method never returning).\n '
self._stop_blink()
self._blink_thread = GPIOThread(target=self._blink_device, args=(on_time, off_time, n))
self._blink_thread.start()
if (not background):
self._blink_thread.join()
self._blink_thread = None | def blink(self, on_time=1, off_time=1, n=None, background=True):
'\n Make the device turn on and off repeatedly.\n\n :param float on_time:\n Number of seconds on. Defaults to 1 second.\n\n :param float off_time:\n Number of seconds off. Defaults to 1 second.\n\n :param int n:\n Number of times to blink; ``None`` (the default) means forever.\n\n :param bool background:\n If ``True`` (the default), start a background thread to continue\n blinking and return immediately. If ``False``, only return when the\n blink is finished (warning: the default value of *n* will result in\n this method never returning).\n '
self._stop_blink()
self._blink_thread = GPIOThread(target=self._blink_device, args=(on_time, off_time, n))
self._blink_thread.start()
if (not background):
self._blink_thread.join()
self._blink_thread = None<|docstring|>Make the device turn on and off repeatedly.
:param float on_time:
Number of seconds on. Defaults to 1 second.
:param float off_time:
Number of seconds off. Defaults to 1 second.
:param int n:
Number of times to blink; ``None`` (the default) means forever.
:param bool background:
If ``True`` (the default), start a background thread to continue
blinking and return immediately. If ``False``, only return when the
blink is finished (warning: the default value of *n* will result in
this method never returning).<|endoftext|> |
9e313deae59eb8d3be9625a17e4ebab539a4402fbed737ba1ebad953bbf48a7a | @property
def value(self):
'\n The duty cycle of the PWM device. 0.0 is off, 1.0 is fully on. Values\n in between may be specified for varying levels of power in the device.\n '
return self._read() | The duty cycle of the PWM device. 0.0 is off, 1.0 is fully on. Values
in between may be specified for varying levels of power in the device. | gpiozero/output_devices.py | value | lurch/python-gpiozero | 0 | python | @property
def value(self):
'\n The duty cycle of the PWM device. 0.0 is off, 1.0 is fully on. Values\n in between may be specified for varying levels of power in the device.\n '
return self._read() | @property
def value(self):
'\n The duty cycle of the PWM device. 0.0 is off, 1.0 is fully on. Values\n in between may be specified for varying levels of power in the device.\n '
return self._read()<|docstring|>The duty cycle of the PWM device. 0.0 is off, 1.0 is fully on. Values
in between may be specified for varying levels of power in the device.<|endoftext|> |
0213df2fb3ae0466bb4bfa469a2c9de398929661bc259ccc179e1061ebc843de | def toggle(self):
'\n Toggle the state of the device. If the device is currently off\n (:attr:`value` is 0.0), this changes it to "fully" on (:attr:`value` is\n 1.0). If the device has a duty cycle (:attr:`value`) of 0.1, this will\n toggle it to 0.9, and so on.\n '
self._stop_blink()
self.value = (1 - self.value) | Toggle the state of the device. If the device is currently off
(:attr:`value` is 0.0), this changes it to "fully" on (:attr:`value` is
1.0). If the device has a duty cycle (:attr:`value`) of 0.1, this will
toggle it to 0.9, and so on. | gpiozero/output_devices.py | toggle | lurch/python-gpiozero | 0 | python | def toggle(self):
'\n Toggle the state of the device. If the device is currently off\n (:attr:`value` is 0.0), this changes it to "fully" on (:attr:`value` is\n 1.0). If the device has a duty cycle (:attr:`value`) of 0.1, this will\n toggle it to 0.9, and so on.\n '
self._stop_blink()
self.value = (1 - self.value) | def toggle(self):
'\n Toggle the state of the device. If the device is currently off\n (:attr:`value` is 0.0), this changes it to "fully" on (:attr:`value` is\n 1.0). If the device has a duty cycle (:attr:`value`) of 0.1, this will\n toggle it to 0.9, and so on.\n '
self._stop_blink()
self.value = (1 - self.value)<|docstring|>Toggle the state of the device. If the device is currently off
(:attr:`value` is 0.0), this changes it to "fully" on (:attr:`value` is
1.0). If the device has a duty cycle (:attr:`value`) of 0.1, this will
toggle it to 0.9, and so on.<|endoftext|> |
75bee28abce166cc7fe1be0cb6538da52876946303b72b518afdc4be1300ce07 | @property
def is_active(self):
'\n Returns ``True`` if the device is currently active (:attr:`value` is\n non-zero) and ``False`` otherwise.\n '
return (self.value != 0) | Returns ``True`` if the device is currently active (:attr:`value` is
non-zero) and ``False`` otherwise. | gpiozero/output_devices.py | is_active | lurch/python-gpiozero | 0 | python | @property
def is_active(self):
'\n Returns ``True`` if the device is currently active (:attr:`value` is\n non-zero) and ``False`` otherwise.\n '
return (self.value != 0) | @property
def is_active(self):
'\n Returns ``True`` if the device is currently active (:attr:`value` is\n non-zero) and ``False`` otherwise.\n '
return (self.value != 0)<|docstring|>Returns ``True`` if the device is currently active (:attr:`value` is
non-zero) and ``False`` otherwise.<|endoftext|> |
0c040a050b5d90233877468dd078cd893a08953b3414185a391f29c27aa166e1 | @property
def frequency(self):
'\n The frequency of the pulses used with the PWM device, in Hz. The\n default is 100Hz.\n '
return self.pin.frequency | The frequency of the pulses used with the PWM device, in Hz. The
default is 100Hz. | gpiozero/output_devices.py | frequency | lurch/python-gpiozero | 0 | python | @property
def frequency(self):
'\n The frequency of the pulses used with the PWM device, in Hz. The\n default is 100Hz.\n '
return self.pin.frequency | @property
def frequency(self):
'\n The frequency of the pulses used with the PWM device, in Hz. The\n default is 100Hz.\n '
return self.pin.frequency<|docstring|>The frequency of the pulses used with the PWM device, in Hz. The
default is 100Hz.<|endoftext|> |
96d7c5134b6bf485ec2bdc61f47ae3c2dfe749a6af4514a2a1308c2bb02f1146 | def blink(self, on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, n=None, background=True):
'\n Make the device turn on and off repeatedly.\n\n :param float on_time:\n Number of seconds on. Defaults to 1 second.\n\n :param float off_time:\n Number of seconds off. Defaults to 1 second.\n\n :param float fade_in_time:\n Number of seconds to spend fading in. Defaults to 0.\n\n :param float fade_out_time:\n Number of seconds to spend fading out. Defaults to 0.\n\n :param int n:\n Number of times to blink; ``None`` (the default) means forever.\n\n :param bool background:\n If ``True`` (the default), start a background thread to continue\n blinking and return immediately. If ``False``, only return when the\n blink is finished (warning: the default value of *n* will result in\n this method never returning).\n '
self._stop_blink()
self._blink_thread = GPIOThread(target=self._blink_device, args=(on_time, off_time, fade_in_time, fade_out_time, n))
self._blink_thread.start()
if (not background):
self._blink_thread.join()
self._blink_thread = None | Make the device turn on and off repeatedly.
:param float on_time:
Number of seconds on. Defaults to 1 second.
:param float off_time:
Number of seconds off. Defaults to 1 second.
:param float fade_in_time:
Number of seconds to spend fading in. Defaults to 0.
:param float fade_out_time:
Number of seconds to spend fading out. Defaults to 0.
:param int n:
Number of times to blink; ``None`` (the default) means forever.
:param bool background:
If ``True`` (the default), start a background thread to continue
blinking and return immediately. If ``False``, only return when the
blink is finished (warning: the default value of *n* will result in
this method never returning). | gpiozero/output_devices.py | blink | lurch/python-gpiozero | 0 | python | def blink(self, on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, n=None, background=True):
'\n Make the device turn on and off repeatedly.\n\n :param float on_time:\n Number of seconds on. Defaults to 1 second.\n\n :param float off_time:\n Number of seconds off. Defaults to 1 second.\n\n :param float fade_in_time:\n Number of seconds to spend fading in. Defaults to 0.\n\n :param float fade_out_time:\n Number of seconds to spend fading out. Defaults to 0.\n\n :param int n:\n Number of times to blink; ``None`` (the default) means forever.\n\n :param bool background:\n If ``True`` (the default), start a background thread to continue\n blinking and return immediately. If ``False``, only return when the\n blink is finished (warning: the default value of *n* will result in\n this method never returning).\n '
self._stop_blink()
self._blink_thread = GPIOThread(target=self._blink_device, args=(on_time, off_time, fade_in_time, fade_out_time, n))
self._blink_thread.start()
if (not background):
self._blink_thread.join()
self._blink_thread = None | def blink(self, on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, n=None, background=True):
'\n Make the device turn on and off repeatedly.\n\n :param float on_time:\n Number of seconds on. Defaults to 1 second.\n\n :param float off_time:\n Number of seconds off. Defaults to 1 second.\n\n :param float fade_in_time:\n Number of seconds to spend fading in. Defaults to 0.\n\n :param float fade_out_time:\n Number of seconds to spend fading out. Defaults to 0.\n\n :param int n:\n Number of times to blink; ``None`` (the default) means forever.\n\n :param bool background:\n If ``True`` (the default), start a background thread to continue\n blinking and return immediately. If ``False``, only return when the\n blink is finished (warning: the default value of *n* will result in\n this method never returning).\n '
self._stop_blink()
self._blink_thread = GPIOThread(target=self._blink_device, args=(on_time, off_time, fade_in_time, fade_out_time, n))
self._blink_thread.start()
if (not background):
self._blink_thread.join()
self._blink_thread = None<|docstring|>Make the device turn on and off repeatedly.
:param float on_time:
Number of seconds on. Defaults to 1 second.
:param float off_time:
Number of seconds off. Defaults to 1 second.
:param float fade_in_time:
Number of seconds to spend fading in. Defaults to 0.
:param float fade_out_time:
Number of seconds to spend fading out. Defaults to 0.
:param int n:
Number of times to blink; ``None`` (the default) means forever.
:param bool background:
If ``True`` (the default), start a background thread to continue
blinking and return immediately. If ``False``, only return when the
blink is finished (warning: the default value of *n* will result in
this method never returning).<|endoftext|> |
cdd1186bcf75b03c499ccde542e196cb3e01ac46d07de638a295b9aab485d5dc | def pulse(self, fade_in_time=1, fade_out_time=1, n=None, background=True):
'\n Make the device fade in and out repeatedly.\n\n :param float fade_in_time:\n Number of seconds to spend fading in. Defaults to 1.\n\n :param float fade_out_time:\n Number of seconds to spend fading out. Defaults to 1.\n\n :param int n:\n Number of times to pulse; ``None`` (the default) means forever.\n\n :param bool background:\n If ``True`` (the default), start a background thread to continue\n pulsing and return immediately. If ``False``, only return when the\n pulse is finished (warning: the default value of *n* will result in\n this method never returning).\n '
on_time = off_time = 0
self.blink(on_time, off_time, fade_in_time, fade_out_time, n, background) | Make the device fade in and out repeatedly.
:param float fade_in_time:
Number of seconds to spend fading in. Defaults to 1.
:param float fade_out_time:
Number of seconds to spend fading out. Defaults to 1.
:param int n:
Number of times to pulse; ``None`` (the default) means forever.
:param bool background:
If ``True`` (the default), start a background thread to continue
pulsing and return immediately. If ``False``, only return when the
pulse is finished (warning: the default value of *n* will result in
this method never returning). | gpiozero/output_devices.py | pulse | lurch/python-gpiozero | 0 | python | def pulse(self, fade_in_time=1, fade_out_time=1, n=None, background=True):
'\n Make the device fade in and out repeatedly.\n\n :param float fade_in_time:\n Number of seconds to spend fading in. Defaults to 1.\n\n :param float fade_out_time:\n Number of seconds to spend fading out. Defaults to 1.\n\n :param int n:\n Number of times to pulse; ``None`` (the default) means forever.\n\n :param bool background:\n If ``True`` (the default), start a background thread to continue\n pulsing and return immediately. If ``False``, only return when the\n pulse is finished (warning: the default value of *n* will result in\n this method never returning).\n '
on_time = off_time = 0
self.blink(on_time, off_time, fade_in_time, fade_out_time, n, background) | def pulse(self, fade_in_time=1, fade_out_time=1, n=None, background=True):
'\n Make the device fade in and out repeatedly.\n\n :param float fade_in_time:\n Number of seconds to spend fading in. Defaults to 1.\n\n :param float fade_out_time:\n Number of seconds to spend fading out. Defaults to 1.\n\n :param int n:\n Number of times to pulse; ``None`` (the default) means forever.\n\n :param bool background:\n If ``True`` (the default), start a background thread to continue\n pulsing and return immediately. If ``False``, only return when the\n pulse is finished (warning: the default value of *n* will result in\n this method never returning).\n '
on_time = off_time = 0
self.blink(on_time, off_time, fade_in_time, fade_out_time, n, background)<|docstring|>Make the device fade in and out repeatedly.
:param float fade_in_time:
Number of seconds to spend fading in. Defaults to 1.
:param float fade_out_time:
Number of seconds to spend fading out. Defaults to 1.
:param int n:
Number of times to pulse; ``None`` (the default) means forever.
:param bool background:
If ``True`` (the default), start a background thread to continue
pulsing and return immediately. If ``False``, only return when the
pulse is finished (warning: the default value of *n* will result in
this method never returning).<|endoftext|> |
8a233cd1fa58d83b282e33776c734ef5d6d44d844fd6289a066cffdd7d2bb7bb | @property
def value(self):
'\n Represents the color of the LED as an RGB 3-tuple of ``(red, green,\n blue)`` where each value is between 0 and 1 if ``pwm`` was ``True``\n when the class was constructed (and only 0 or 1 if not).\n\n For example, purple would be ``(1, 0, 1)`` and yellow would be ``(1, 1,\n 0)``, while orange would be ``(1, 0.5, 0)``.\n '
return (self.red, self.green, self.blue) | Represents the color of the LED as an RGB 3-tuple of ``(red, green,
blue)`` where each value is between 0 and 1 if ``pwm`` was ``True``
when the class was constructed (and only 0 or 1 if not).
For example, purple would be ``(1, 0, 1)`` and yellow would be ``(1, 1,
0)``, while orange would be ``(1, 0.5, 0)``. | gpiozero/output_devices.py | value | lurch/python-gpiozero | 0 | python | @property
def value(self):
'\n Represents the color of the LED as an RGB 3-tuple of ``(red, green,\n blue)`` where each value is between 0 and 1 if ``pwm`` was ``True``\n when the class was constructed (and only 0 or 1 if not).\n\n For example, purple would be ``(1, 0, 1)`` and yellow would be ``(1, 1,\n 0)``, while orange would be ``(1, 0.5, 0)``.\n '
return (self.red, self.green, self.blue) | @property
def value(self):
'\n Represents the color of the LED as an RGB 3-tuple of ``(red, green,\n blue)`` where each value is between 0 and 1 if ``pwm`` was ``True``\n when the class was constructed (and only 0 or 1 if not).\n\n For example, purple would be ``(1, 0, 1)`` and yellow would be ``(1, 1,\n 0)``, while orange would be ``(1, 0.5, 0)``.\n '
return (self.red, self.green, self.blue)<|docstring|>Represents the color of the LED as an RGB 3-tuple of ``(red, green,
blue)`` where each value is between 0 and 1 if ``pwm`` was ``True``
when the class was constructed (and only 0 or 1 if not).
For example, purple would be ``(1, 0, 1)`` and yellow would be ``(1, 1,
0)``, while orange would be ``(1, 0.5, 0)``.<|endoftext|> |
16b607cc81b48b65315aab218ea506402c95c039692689a64f1c5c016bcf5c38 | @property
def is_active(self):
'\n Returns ``True`` if the LED is currently active (not black) and\n ``False`` otherwise.\n '
return (self.value != (0, 0, 0)) | Returns ``True`` if the LED is currently active (not black) and
``False`` otherwise. | gpiozero/output_devices.py | is_active | lurch/python-gpiozero | 0 | python | @property
def is_active(self):
'\n Returns ``True`` if the LED is currently active (not black) and\n ``False`` otherwise.\n '
return (self.value != (0, 0, 0)) | @property
def is_active(self):
'\n Returns ``True`` if the LED is currently active (not black) and\n ``False`` otherwise.\n '
return (self.value != (0, 0, 0))<|docstring|>Returns ``True`` if the LED is currently active (not black) and
``False`` otherwise.<|endoftext|> |
8fea2b74b05ae68b379f2dfa3a4d73f2ef48657516834ac0a1c7bf1bf1928ab0 | def on(self):
'\n Turn the LED on. This equivalent to setting the LED color to white\n ``(1, 1, 1)``.\n '
self.value = (1, 1, 1) | Turn the LED on. This equivalent to setting the LED color to white
``(1, 1, 1)``. | gpiozero/output_devices.py | on | lurch/python-gpiozero | 0 | python | def on(self):
'\n Turn the LED on. This equivalent to setting the LED color to white\n ``(1, 1, 1)``.\n '
self.value = (1, 1, 1) | def on(self):
'\n Turn the LED on. This equivalent to setting the LED color to white\n ``(1, 1, 1)``.\n '
self.value = (1, 1, 1)<|docstring|>Turn the LED on. This equivalent to setting the LED color to white
``(1, 1, 1)``.<|endoftext|> |
5e0ba0b608f06959baf11927f7877da59c859ae1d40d6c8c0f22c511a1cbf354 | def off(self):
'\n Turn the LED off. This is equivalent to setting the LED color to black\n ``(0, 0, 0)``.\n '
self.value = (0, 0, 0) | Turn the LED off. This is equivalent to setting the LED color to black
``(0, 0, 0)``. | gpiozero/output_devices.py | off | lurch/python-gpiozero | 0 | python | def off(self):
'\n Turn the LED off. This is equivalent to setting the LED color to black\n ``(0, 0, 0)``.\n '
self.value = (0, 0, 0) | def off(self):
'\n Turn the LED off. This is equivalent to setting the LED color to black\n ``(0, 0, 0)``.\n '
self.value = (0, 0, 0)<|docstring|>Turn the LED off. This is equivalent to setting the LED color to black
``(0, 0, 0)``.<|endoftext|> |
923566da9952616fc66bb8fbc7262f7a49cfe1317bc63a2e4d3cbb4a554c5cd3 | def toggle(self):
'\n Toggle the state of the device. If the device is currently off\n (:attr:`value` is ``(0, 0, 0)``), this changes it to "fully" on\n (:attr:`value` is ``(1, 1, 1)``). If the device has a specific color,\n this method inverts the color.\n '
(r, g, b) = self.value
self.value = ((1 - r), (1 - g), (1 - b)) | Toggle the state of the device. If the device is currently off
(:attr:`value` is ``(0, 0, 0)``), this changes it to "fully" on
(:attr:`value` is ``(1, 1, 1)``). If the device has a specific color,
this method inverts the color. | gpiozero/output_devices.py | toggle | lurch/python-gpiozero | 0 | python | def toggle(self):
'\n Toggle the state of the device. If the device is currently off\n (:attr:`value` is ``(0, 0, 0)``), this changes it to "fully" on\n (:attr:`value` is ``(1, 1, 1)``). If the device has a specific color,\n this method inverts the color.\n '
(r, g, b) = self.value
self.value = ((1 - r), (1 - g), (1 - b)) | def toggle(self):
'\n Toggle the state of the device. If the device is currently off\n (:attr:`value` is ``(0, 0, 0)``), this changes it to "fully" on\n (:attr:`value` is ``(1, 1, 1)``). If the device has a specific color,\n this method inverts the color.\n '
(r, g, b) = self.value
self.value = ((1 - r), (1 - g), (1 - b))<|docstring|>Toggle the state of the device. If the device is currently off
(:attr:`value` is ``(0, 0, 0)``), this changes it to "fully" on
(:attr:`value` is ``(1, 1, 1)``). If the device has a specific color,
this method inverts the color.<|endoftext|> |
ca25742d1cc67cc3042b3ac92f721a4b05d06caa6f080ebb78bafb1ba4e1d78d | def blink(self, on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, on_color=(1, 1, 1), off_color=(0, 0, 0), n=None, background=True):
'\n Make the device turn on and off repeatedly.\n\n :param float on_time:\n Number of seconds on. Defaults to 1 second.\n\n :param float off_time:\n Number of seconds off. Defaults to 1 second.\n\n :param float fade_in_time:\n Number of seconds to spend fading in. Defaults to 0. Must be 0 if\n ``pwm`` was ``False`` when the class was constructed\n (:exc:`ValueError` will be raised if not).\n\n :param float fade_out_time:\n Number of seconds to spend fading out. Defaults to 0. Must be 0 if\n ``pwm`` was ``False`` when the class was constructed\n (:exc:`ValueError` will be raised if not).\n\n :param tuple on_color:\n The color to use when the LED is "on". Defaults to white.\n\n :param tuple off_color:\n The color to use when the LED is "off". Defaults to black.\n\n :param int n:\n Number of times to blink; ``None`` (the default) means forever.\n\n :param bool background:\n If ``True`` (the default), start a background thread to continue\n blinking and return immediately. If ``False``, only return when the\n blink is finished (warning: the default value of *n* will result in\n this method never returning).\n '
if isinstance(self._leds[0], LED):
if fade_in_time:
raise ValueError('fade_in_time must be 0 with non-PWM RGBLEDs')
if fade_out_time:
raise ValueError('fade_out_time must be 0 with non-PWM RGBLEDs')
self._stop_blink()
self._blink_thread = GPIOThread(target=self._blink_device, args=(on_time, off_time, fade_in_time, fade_out_time, on_color, off_color, n))
self._blink_thread.start()
if (not background):
self._blink_thread.join()
self._blink_thread = None | Make the device turn on and off repeatedly.
:param float on_time:
Number of seconds on. Defaults to 1 second.
:param float off_time:
Number of seconds off. Defaults to 1 second.
:param float fade_in_time:
Number of seconds to spend fading in. Defaults to 0. Must be 0 if
``pwm`` was ``False`` when the class was constructed
(:exc:`ValueError` will be raised if not).
:param float fade_out_time:
Number of seconds to spend fading out. Defaults to 0. Must be 0 if
``pwm`` was ``False`` when the class was constructed
(:exc:`ValueError` will be raised if not).
:param tuple on_color:
The color to use when the LED is "on". Defaults to white.
:param tuple off_color:
The color to use when the LED is "off". Defaults to black.
:param int n:
Number of times to blink; ``None`` (the default) means forever.
:param bool background:
If ``True`` (the default), start a background thread to continue
blinking and return immediately. If ``False``, only return when the
blink is finished (warning: the default value of *n* will result in
this method never returning). | gpiozero/output_devices.py | blink | lurch/python-gpiozero | 0 | python | def blink(self, on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, on_color=(1, 1, 1), off_color=(0, 0, 0), n=None, background=True):
'\n Make the device turn on and off repeatedly.\n\n :param float on_time:\n Number of seconds on. Defaults to 1 second.\n\n :param float off_time:\n Number of seconds off. Defaults to 1 second.\n\n :param float fade_in_time:\n Number of seconds to spend fading in. Defaults to 0. Must be 0 if\n ``pwm`` was ``False`` when the class was constructed\n (:exc:`ValueError` will be raised if not).\n\n :param float fade_out_time:\n Number of seconds to spend fading out. Defaults to 0. Must be 0 if\n ``pwm`` was ``False`` when the class was constructed\n (:exc:`ValueError` will be raised if not).\n\n :param tuple on_color:\n The color to use when the LED is "on". Defaults to white.\n\n :param tuple off_color:\n The color to use when the LED is "off". Defaults to black.\n\n :param int n:\n Number of times to blink; ``None`` (the default) means forever.\n\n :param bool background:\n If ``True`` (the default), start a background thread to continue\n blinking and return immediately. If ``False``, only return when the\n blink is finished (warning: the default value of *n* will result in\n this method never returning).\n '
if isinstance(self._leds[0], LED):
if fade_in_time:
raise ValueError('fade_in_time must be 0 with non-PWM RGBLEDs')
if fade_out_time:
raise ValueError('fade_out_time must be 0 with non-PWM RGBLEDs')
self._stop_blink()
self._blink_thread = GPIOThread(target=self._blink_device, args=(on_time, off_time, fade_in_time, fade_out_time, on_color, off_color, n))
self._blink_thread.start()
if (not background):
self._blink_thread.join()
self._blink_thread = None | def blink(self, on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, on_color=(1, 1, 1), off_color=(0, 0, 0), n=None, background=True):
'\n Make the device turn on and off repeatedly.\n\n :param float on_time:\n Number of seconds on. Defaults to 1 second.\n\n :param float off_time:\n Number of seconds off. Defaults to 1 second.\n\n :param float fade_in_time:\n Number of seconds to spend fading in. Defaults to 0. Must be 0 if\n ``pwm`` was ``False`` when the class was constructed\n (:exc:`ValueError` will be raised if not).\n\n :param float fade_out_time:\n Number of seconds to spend fading out. Defaults to 0. Must be 0 if\n ``pwm`` was ``False`` when the class was constructed\n (:exc:`ValueError` will be raised if not).\n\n :param tuple on_color:\n The color to use when the LED is "on". Defaults to white.\n\n :param tuple off_color:\n The color to use when the LED is "off". Defaults to black.\n\n :param int n:\n Number of times to blink; ``None`` (the default) means forever.\n\n :param bool background:\n If ``True`` (the default), start a background thread to continue\n blinking and return immediately. If ``False``, only return when the\n blink is finished (warning: the default value of *n* will result in\n this method never returning).\n '
if isinstance(self._leds[0], LED):
if fade_in_time:
raise ValueError('fade_in_time must be 0 with non-PWM RGBLEDs')
if fade_out_time:
raise ValueError('fade_out_time must be 0 with non-PWM RGBLEDs')
self._stop_blink()
self._blink_thread = GPIOThread(target=self._blink_device, args=(on_time, off_time, fade_in_time, fade_out_time, on_color, off_color, n))
self._blink_thread.start()
if (not background):
self._blink_thread.join()
self._blink_thread = None<|docstring|>Make the device turn on and off repeatedly.
:param float on_time:
Number of seconds on. Defaults to 1 second.
:param float off_time:
Number of seconds off. Defaults to 1 second.
:param float fade_in_time:
Number of seconds to spend fading in. Defaults to 0. Must be 0 if
``pwm`` was ``False`` when the class was constructed
(:exc:`ValueError` will be raised if not).
:param float fade_out_time:
Number of seconds to spend fading out. Defaults to 0. Must be 0 if
``pwm`` was ``False`` when the class was constructed
(:exc:`ValueError` will be raised if not).
:param tuple on_color:
The color to use when the LED is "on". Defaults to white.
:param tuple off_color:
The color to use when the LED is "off". Defaults to black.
:param int n:
Number of times to blink; ``None`` (the default) means forever.
:param bool background:
If ``True`` (the default), start a background thread to continue
blinking and return immediately. If ``False``, only return when the
blink is finished (warning: the default value of *n* will result in
this method never returning).<|endoftext|> |
db93cced240802ef8b77fdcd0fe6a4392aa787ac711161a838d0172240d777c3 | def pulse(self, fade_in_time=1, fade_out_time=1, on_color=(1, 1, 1), off_color=(0, 0, 0), n=None, background=True):
'\n Make the device fade in and out repeatedly.\n\n :param float fade_in_time:\n Number of seconds to spend fading in. Defaults to 1.\n\n :param float fade_out_time:\n Number of seconds to spend fading out. Defaults to 1.\n\n :param tuple on_color:\n The color to use when the LED is "on". Defaults to white.\n\n :param tuple off_color:\n The color to use when the LED is "off". Defaults to black.\n\n :param int n:\n Number of times to pulse; ``None`` (the default) means forever.\n\n :param bool background:\n If ``True`` (the default), start a background thread to continue\n pulsing and return immediately. If ``False``, only return when the\n pulse is finished (warning: the default value of *n* will result in\n this method never returning).\n '
on_time = off_time = 0
self.blink(on_time, off_time, fade_in_time, fade_out_time, on_color, off_color, n, background) | Make the device fade in and out repeatedly.
:param float fade_in_time:
Number of seconds to spend fading in. Defaults to 1.
:param float fade_out_time:
Number of seconds to spend fading out. Defaults to 1.
:param tuple on_color:
The color to use when the LED is "on". Defaults to white.
:param tuple off_color:
The color to use when the LED is "off". Defaults to black.
:param int n:
Number of times to pulse; ``None`` (the default) means forever.
:param bool background:
If ``True`` (the default), start a background thread to continue
pulsing and return immediately. If ``False``, only return when the
pulse is finished (warning: the default value of *n* will result in
this method never returning). | gpiozero/output_devices.py | pulse | lurch/python-gpiozero | 0 | python | def pulse(self, fade_in_time=1, fade_out_time=1, on_color=(1, 1, 1), off_color=(0, 0, 0), n=None, background=True):
'\n Make the device fade in and out repeatedly.\n\n :param float fade_in_time:\n Number of seconds to spend fading in. Defaults to 1.\n\n :param float fade_out_time:\n Number of seconds to spend fading out. Defaults to 1.\n\n :param tuple on_color:\n The color to use when the LED is "on". Defaults to white.\n\n :param tuple off_color:\n The color to use when the LED is "off". Defaults to black.\n\n :param int n:\n Number of times to pulse; ``None`` (the default) means forever.\n\n :param bool background:\n If ``True`` (the default), start a background thread to continue\n pulsing and return immediately. If ``False``, only return when the\n pulse is finished (warning: the default value of *n* will result in\n this method never returning).\n '
on_time = off_time = 0
self.blink(on_time, off_time, fade_in_time, fade_out_time, on_color, off_color, n, background) | def pulse(self, fade_in_time=1, fade_out_time=1, on_color=(1, 1, 1), off_color=(0, 0, 0), n=None, background=True):
'\n Make the device fade in and out repeatedly.\n\n :param float fade_in_time:\n Number of seconds to spend fading in. Defaults to 1.\n\n :param float fade_out_time:\n Number of seconds to spend fading out. Defaults to 1.\n\n :param tuple on_color:\n The color to use when the LED is "on". Defaults to white.\n\n :param tuple off_color:\n The color to use when the LED is "off". Defaults to black.\n\n :param int n:\n Number of times to pulse; ``None`` (the default) means forever.\n\n :param bool background:\n If ``True`` (the default), start a background thread to continue\n pulsing and return immediately. If ``False``, only return when the\n pulse is finished (warning: the default value of *n* will result in\n this method never returning).\n '
on_time = off_time = 0
self.blink(on_time, off_time, fade_in_time, fade_out_time, on_color, off_color, n, background)<|docstring|>Make the device fade in and out repeatedly.
:param float fade_in_time:
Number of seconds to spend fading in. Defaults to 1.
:param float fade_out_time:
Number of seconds to spend fading out. Defaults to 1.
:param tuple on_color:
The color to use when the LED is "on". Defaults to white.
:param tuple off_color:
The color to use when the LED is "off". Defaults to black.
:param int n:
Number of times to pulse; ``None`` (the default) means forever.
:param bool background:
If ``True`` (the default), start a background thread to continue
pulsing and return immediately. If ``False``, only return when the
pulse is finished (warning: the default value of *n* will result in
this method never returning).<|endoftext|> |
4c5a2b604c96344f7690346cdf699b51a8b2ca144be24dc616e0ac1b810c6431 | @property
def value(self):
'\n Represents the speed of the motor as a floating point value between -1\n (full speed backward) and 1 (full speed forward), with 0 representing\n stopped.\n '
return (self.forward_device.value - self.backward_device.value) | Represents the speed of the motor as a floating point value between -1
(full speed backward) and 1 (full speed forward), with 0 representing
stopped. | gpiozero/output_devices.py | value | lurch/python-gpiozero | 0 | python | @property
def value(self):
'\n Represents the speed of the motor as a floating point value between -1\n (full speed backward) and 1 (full speed forward), with 0 representing\n stopped.\n '
return (self.forward_device.value - self.backward_device.value) | @property
def value(self):
'\n Represents the speed of the motor as a floating point value between -1\n (full speed backward) and 1 (full speed forward), with 0 representing\n stopped.\n '
return (self.forward_device.value - self.backward_device.value)<|docstring|>Represents the speed of the motor as a floating point value between -1
(full speed backward) and 1 (full speed forward), with 0 representing
stopped.<|endoftext|> |
9c3c522d7fe9009b86cdffa7fb58d5ea6caf9a1444a76311a7c908164827d2a8 | @property
def is_active(self):
'\n Returns ``True`` if the motor is currently running and ``False``\n otherwise.\n '
return (self.value != 0) | Returns ``True`` if the motor is currently running and ``False``
otherwise. | gpiozero/output_devices.py | is_active | lurch/python-gpiozero | 0 | python | @property
def is_active(self):
'\n Returns ``True`` if the motor is currently running and ``False``\n otherwise.\n '
return (self.value != 0) | @property
def is_active(self):
'\n Returns ``True`` if the motor is currently running and ``False``\n otherwise.\n '
return (self.value != 0)<|docstring|>Returns ``True`` if the motor is currently running and ``False``
otherwise.<|endoftext|> |
4d6deef7e2b0183c8da46c3a35021b7316b4c6121563c863e291163454319503 | def forward(self, speed=1):
'\n Drive the motor forwards.\n\n :param float speed:\n The speed at which the motor should turn. Can be any value between\n 0 (stopped) and the default 1 (maximum speed) if ``pwm`` was\n ``True`` when the class was constructed (and only 0 or 1 if not).\n '
if (not (0 <= speed <= 1)):
raise ValueError('forward speed must be between 0 and 1')
if isinstance(self.forward_device, DigitalOutputDevice):
if (speed not in (0, 1)):
raise ValueError('forward speed must be 0 or 1 with non-PWM Motors')
self.backward_device.off()
self.forward_device.value = speed | Drive the motor forwards.
:param float speed:
The speed at which the motor should turn. Can be any value between
0 (stopped) and the default 1 (maximum speed) if ``pwm`` was
``True`` when the class was constructed (and only 0 or 1 if not). | gpiozero/output_devices.py | forward | lurch/python-gpiozero | 0 | python | def forward(self, speed=1):
'\n Drive the motor forwards.\n\n :param float speed:\n The speed at which the motor should turn. Can be any value between\n 0 (stopped) and the default 1 (maximum speed) if ``pwm`` was\n ``True`` when the class was constructed (and only 0 or 1 if not).\n '
if (not (0 <= speed <= 1)):
raise ValueError('forward speed must be between 0 and 1')
if isinstance(self.forward_device, DigitalOutputDevice):
if (speed not in (0, 1)):
raise ValueError('forward speed must be 0 or 1 with non-PWM Motors')
self.backward_device.off()
self.forward_device.value = speed | def forward(self, speed=1):
'\n Drive the motor forwards.\n\n :param float speed:\n The speed at which the motor should turn. Can be any value between\n 0 (stopped) and the default 1 (maximum speed) if ``pwm`` was\n ``True`` when the class was constructed (and only 0 or 1 if not).\n '
if (not (0 <= speed <= 1)):
raise ValueError('forward speed must be between 0 and 1')
if isinstance(self.forward_device, DigitalOutputDevice):
if (speed not in (0, 1)):
raise ValueError('forward speed must be 0 or 1 with non-PWM Motors')
self.backward_device.off()
self.forward_device.value = speed<|docstring|>Drive the motor forwards.
:param float speed:
The speed at which the motor should turn. Can be any value between
0 (stopped) and the default 1 (maximum speed) if ``pwm`` was
``True`` when the class was constructed (and only 0 or 1 if not).<|endoftext|> |
1605a5ddb5bd6a4c809686d017a97226c67f0d4678acb4c394cfa0750f72da1d | def backward(self, speed=1):
'\n Drive the motor backwards.\n\n :param float speed:\n The speed at which the motor should turn. Can be any value between\n 0 (stopped) and the default 1 (maximum speed) if ``pwm`` was\n ``True`` when the class was constructed (and only 0 or 1 if not).\n '
if (not (0 <= speed <= 1)):
raise ValueError('backward speed must be between 0 and 1')
if isinstance(self.backward_device, DigitalOutputDevice):
if (speed not in (0, 1)):
raise ValueError('backward speed must be 0 or 1 with non-PWM Motors')
self.forward_device.off()
self.backward_device.value = speed | Drive the motor backwards.
:param float speed:
The speed at which the motor should turn. Can be any value between
0 (stopped) and the default 1 (maximum speed) if ``pwm`` was
``True`` when the class was constructed (and only 0 or 1 if not). | gpiozero/output_devices.py | backward | lurch/python-gpiozero | 0 | python | def backward(self, speed=1):
'\n Drive the motor backwards.\n\n :param float speed:\n The speed at which the motor should turn. Can be any value between\n 0 (stopped) and the default 1 (maximum speed) if ``pwm`` was\n ``True`` when the class was constructed (and only 0 or 1 if not).\n '
if (not (0 <= speed <= 1)):
raise ValueError('backward speed must be between 0 and 1')
if isinstance(self.backward_device, DigitalOutputDevice):
if (speed not in (0, 1)):
raise ValueError('backward speed must be 0 or 1 with non-PWM Motors')
self.forward_device.off()
self.backward_device.value = speed | def backward(self, speed=1):
'\n Drive the motor backwards.\n\n :param float speed:\n The speed at which the motor should turn. Can be any value between\n 0 (stopped) and the default 1 (maximum speed) if ``pwm`` was\n ``True`` when the class was constructed (and only 0 or 1 if not).\n '
if (not (0 <= speed <= 1)):
raise ValueError('backward speed must be between 0 and 1')
if isinstance(self.backward_device, DigitalOutputDevice):
if (speed not in (0, 1)):
raise ValueError('backward speed must be 0 or 1 with non-PWM Motors')
self.forward_device.off()
self.backward_device.value = speed<|docstring|>Drive the motor backwards.
:param float speed:
The speed at which the motor should turn. Can be any value between
0 (stopped) and the default 1 (maximum speed) if ``pwm`` was
``True`` when the class was constructed (and only 0 or 1 if not).<|endoftext|> |
2139cfd07c83439c71e7c6649e92daf722ae03e631b81e483d6c7a0f4061e438 | def reverse(self):
"\n Reverse the current direction of the motor. If the motor is currently\n idle this does nothing. Otherwise, the motor's direction will be\n reversed at the current speed.\n "
self.value = (- self.value) | Reverse the current direction of the motor. If the motor is currently
idle this does nothing. Otherwise, the motor's direction will be
reversed at the current speed. | gpiozero/output_devices.py | reverse | lurch/python-gpiozero | 0 | python | def reverse(self):
"\n Reverse the current direction of the motor. If the motor is currently\n idle this does nothing. Otherwise, the motor's direction will be\n reversed at the current speed.\n "
self.value = (- self.value) | def reverse(self):
"\n Reverse the current direction of the motor. If the motor is currently\n idle this does nothing. Otherwise, the motor's direction will be\n reversed at the current speed.\n "
self.value = (- self.value)<|docstring|>Reverse the current direction of the motor. If the motor is currently
idle this does nothing. Otherwise, the motor's direction will be
reversed at the current speed.<|endoftext|> |
35d639d8b86f1328c7e86df48f9f9a2831bc8cc095e4bf3fa495fbb90e9beb23 | def stop(self):
'\n Stop the motor.\n '
self.forward_device.off()
self.backward_device.off() | Stop the motor. | gpiozero/output_devices.py | stop | lurch/python-gpiozero | 0 | python | def stop(self):
'\n \n '
self.forward_device.off()
self.backward_device.off() | def stop(self):
'\n \n '
self.forward_device.off()
self.backward_device.off()<|docstring|>Stop the motor.<|endoftext|> |
7575dd5cb669b4029dd7d93f02784a3eb9812d3a83cc0df23fb0b8ead5cce6af | @property
def frame_width(self):
'\n The time between control pulses, measured in seconds.\n '
return self._frame_width | The time between control pulses, measured in seconds. | gpiozero/output_devices.py | frame_width | lurch/python-gpiozero | 0 | python | @property
def frame_width(self):
'\n \n '
return self._frame_width | @property
def frame_width(self):
'\n \n '
return self._frame_width<|docstring|>The time between control pulses, measured in seconds.<|endoftext|> |
146081473f58777ffd536f10d4a5948d98210eb41abaed75237d68f45977d6e0 | @property
def min_pulse_width(self):
"\n The control pulse width corresponding to the servo's minimum position,\n measured in seconds.\n "
return (self._min_dc * self.frame_width) | The control pulse width corresponding to the servo's minimum position,
measured in seconds. | gpiozero/output_devices.py | min_pulse_width | lurch/python-gpiozero | 0 | python | @property
def min_pulse_width(self):
"\n The control pulse width corresponding to the servo's minimum position,\n measured in seconds.\n "
return (self._min_dc * self.frame_width) | @property
def min_pulse_width(self):
"\n The control pulse width corresponding to the servo's minimum position,\n measured in seconds.\n "
return (self._min_dc * self.frame_width)<|docstring|>The control pulse width corresponding to the servo's minimum position,
measured in seconds.<|endoftext|> |
a94f00be4208aa4e6c16ed88af80f2257af4550169c6dd09012f292c5a640a74 | @property
def max_pulse_width(self):
"\n The control pulse width corresponding to the servo's maximum position,\n measured in seconds.\n "
return ((self._dc_range * self.frame_width) + self.min_pulse_width) | The control pulse width corresponding to the servo's maximum position,
measured in seconds. | gpiozero/output_devices.py | max_pulse_width | lurch/python-gpiozero | 0 | python | @property
def max_pulse_width(self):
"\n The control pulse width corresponding to the servo's maximum position,\n measured in seconds.\n "
return ((self._dc_range * self.frame_width) + self.min_pulse_width) | @property
def max_pulse_width(self):
"\n The control pulse width corresponding to the servo's maximum position,\n measured in seconds.\n "
return ((self._dc_range * self.frame_width) + self.min_pulse_width)<|docstring|>The control pulse width corresponding to the servo's maximum position,
measured in seconds.<|endoftext|> |
0d945e4237d730290113d6831988ee32592b502691e575e114345b0059a5d877 | @property
def pulse_width(self):
'\n Returns the current pulse width controlling the servo.\n '
if (self.pwm_device.pin.frequency is None):
return None
else:
return (self.pwm_device.pin.state * self.frame_width) | Returns the current pulse width controlling the servo. | gpiozero/output_devices.py | pulse_width | lurch/python-gpiozero | 0 | python | @property
def pulse_width(self):
'\n \n '
if (self.pwm_device.pin.frequency is None):
return None
else:
return (self.pwm_device.pin.state * self.frame_width) | @property
def pulse_width(self):
'\n \n '
if (self.pwm_device.pin.frequency is None):
return None
else:
return (self.pwm_device.pin.state * self.frame_width)<|docstring|>Returns the current pulse width controlling the servo.<|endoftext|> |
90474062eaaab6393055369a0083c4fec2d97f951acb850f4b0cae301dcf2a8c | def min(self):
'\n Set the servo to its minimum position.\n '
self.value = (- 1) | Set the servo to its minimum position. | gpiozero/output_devices.py | min | lurch/python-gpiozero | 0 | python | def min(self):
'\n \n '
self.value = (- 1) | def min(self):
'\n \n '
self.value = (- 1)<|docstring|>Set the servo to its minimum position.<|endoftext|> |
266b0345e71b99fb05e599b80ef09a39b7e5918bf99dc68a0c4cc3eb4b0233ec | def mid(self):
'\n Set the servo to its mid-point position.\n '
self.value = 0 | Set the servo to its mid-point position. | gpiozero/output_devices.py | mid | lurch/python-gpiozero | 0 | python | def mid(self):
'\n \n '
self.value = 0 | def mid(self):
'\n \n '
self.value = 0<|docstring|>Set the servo to its mid-point position.<|endoftext|> |
95db6bb633030cc35777a616333515b83ae9599f148feef39ed694069e73fd0b | def max(self):
'\n Set the servo to its maximum position.\n '
self.value = 1 | Set the servo to its maximum position. | gpiozero/output_devices.py | max | lurch/python-gpiozero | 0 | python | def max(self):
'\n \n '
self.value = 1 | def max(self):
'\n \n '
self.value = 1<|docstring|>Set the servo to its maximum position.<|endoftext|> |
471e4322d224bdf3d917ee015c85657aee9f0de601010ebeabe5632952d80430 | def detach(self):
'\n Temporarily disable control of the servo. This is equivalent to\n setting :attr:`value` to ``None``.\n '
self.value = None | Temporarily disable control of the servo. This is equivalent to
setting :attr:`value` to ``None``. | gpiozero/output_devices.py | detach | lurch/python-gpiozero | 0 | python | def detach(self):
'\n Temporarily disable control of the servo. This is equivalent to\n setting :attr:`value` to ``None``.\n '
self.value = None | def detach(self):
'\n Temporarily disable control of the servo. This is equivalent to\n setting :attr:`value` to ``None``.\n '
self.value = None<|docstring|>Temporarily disable control of the servo. This is equivalent to
setting :attr:`value` to ``None``.<|endoftext|> |
b59fa5873924e2ac1a7166a58de9d78c0cfbff6781d2563cd221154aa486943d | @property
def value(self):
'\n Represents the position of the servo as a value between -1 (the minimum\n position) and +1 (the maximum position). This can also be the special\n value ``None`` indicating that the servo is currently "uncontrolled",\n i.e. that no control signal is being sent. Typically this means the\n servo\'s position remains unchanged, but that it can be moved by hand.\n '
result = self._get_value()
if (result is None):
return result
else:
return round(result, 14) | Represents the position of the servo as a value between -1 (the minimum
position) and +1 (the maximum position). This can also be the special
value ``None`` indicating that the servo is currently "uncontrolled",
i.e. that no control signal is being sent. Typically this means the
servo's position remains unchanged, but that it can be moved by hand. | gpiozero/output_devices.py | value | lurch/python-gpiozero | 0 | python | @property
def value(self):
'\n Represents the position of the servo as a value between -1 (the minimum\n position) and +1 (the maximum position). This can also be the special\n value ``None`` indicating that the servo is currently "uncontrolled",\n i.e. that no control signal is being sent. Typically this means the\n servo\'s position remains unchanged, but that it can be moved by hand.\n '
result = self._get_value()
if (result is None):
return result
else:
return round(result, 14) | @property
def value(self):
'\n Represents the position of the servo as a value between -1 (the minimum\n position) and +1 (the maximum position). This can also be the special\n value ``None`` indicating that the servo is currently "uncontrolled",\n i.e. that no control signal is being sent. Typically this means the\n servo\'s position remains unchanged, but that it can be moved by hand.\n '
result = self._get_value()
if (result is None):
return result
else:
return round(result, 14)<|docstring|>Represents the position of the servo as a value between -1 (the minimum
position) and +1 (the maximum position). This can also be the special
value ``None`` indicating that the servo is currently "uncontrolled",
i.e. that no control signal is being sent. Typically this means the
servo's position remains unchanged, but that it can be moved by hand.<|endoftext|> |
c656e676edb000b41109a7f17f9e2a9b1ca63fe59af28e8f15b658656bf0bab1 | @property
def min_angle(self):
'\n The minimum angle that the servo will rotate to when :meth:`min` is\n called.\n '
return self._min_angle | The minimum angle that the servo will rotate to when :meth:`min` is
called. | gpiozero/output_devices.py | min_angle | lurch/python-gpiozero | 0 | python | @property
def min_angle(self):
'\n The minimum angle that the servo will rotate to when :meth:`min` is\n called.\n '
return self._min_angle | @property
def min_angle(self):
'\n The minimum angle that the servo will rotate to when :meth:`min` is\n called.\n '
return self._min_angle<|docstring|>The minimum angle that the servo will rotate to when :meth:`min` is
called.<|endoftext|> |
a4c3e605b60bed82e1d6d2b38fcbd7d64482d63699bbf5dce19737cb01b5ccde | @property
def max_angle(self):
'\n The maximum angle that the servo will rotate to when :meth:`max` is\n called.\n '
return (self._min_angle + self._angular_range) | The maximum angle that the servo will rotate to when :meth:`max` is
called. | gpiozero/output_devices.py | max_angle | lurch/python-gpiozero | 0 | python | @property
def max_angle(self):
'\n The maximum angle that the servo will rotate to when :meth:`max` is\n called.\n '
return (self._min_angle + self._angular_range) | @property
def max_angle(self):
'\n The maximum angle that the servo will rotate to when :meth:`max` is\n called.\n '
return (self._min_angle + self._angular_range)<|docstring|>The maximum angle that the servo will rotate to when :meth:`max` is
called.<|endoftext|> |
4387e04ddfca88ab10bd1d6f83eb6c5f18b1c5623e34e925311bcc4a86755a1a | @property
def angle(self):
'\n The position of the servo as an angle measured in degrees. This will\n only be accurate if *min_angle* and *max_angle* have been set\n appropriately in the constructor.\n\n This can also be the special value ``None`` indicating that the servo\n is currently "uncontrolled", i.e. that no control signal is being sent.\n Typically this means the servo\'s position remains unchanged, but that\n it can be moved by hand.\n '
result = self._get_value()
if (result is None):
return None
else:
return round(((self._angular_range * ((result - self._min_value) / self._value_range)) + self._min_angle), 12) | The position of the servo as an angle measured in degrees. This will
only be accurate if *min_angle* and *max_angle* have been set
appropriately in the constructor.
This can also be the special value ``None`` indicating that the servo
is currently "uncontrolled", i.e. that no control signal is being sent.
Typically this means the servo's position remains unchanged, but that
it can be moved by hand. | gpiozero/output_devices.py | angle | lurch/python-gpiozero | 0 | python | @property
def angle(self):
'\n The position of the servo as an angle measured in degrees. This will\n only be accurate if *min_angle* and *max_angle* have been set\n appropriately in the constructor.\n\n This can also be the special value ``None`` indicating that the servo\n is currently "uncontrolled", i.e. that no control signal is being sent.\n Typically this means the servo\'s position remains unchanged, but that\n it can be moved by hand.\n '
result = self._get_value()
if (result is None):
return None
else:
return round(((self._angular_range * ((result - self._min_value) / self._value_range)) + self._min_angle), 12) | @property
def angle(self):
'\n The position of the servo as an angle measured in degrees. This will\n only be accurate if *min_angle* and *max_angle* have been set\n appropriately in the constructor.\n\n This can also be the special value ``None`` indicating that the servo\n is currently "uncontrolled", i.e. that no control signal is being sent.\n Typically this means the servo\'s position remains unchanged, but that\n it can be moved by hand.\n '
result = self._get_value()
if (result is None):
return None
else:
return round(((self._angular_range * ((result - self._min_value) / self._value_range)) + self._min_angle), 12)<|docstring|>The position of the servo as an angle measured in degrees. This will
only be accurate if *min_angle* and *max_angle* have been set
appropriately in the constructor.
This can also be the special value ``None`` indicating that the servo
is currently "uncontrolled", i.e. that no control signal is being sent.
Typically this means the servo's position remains unchanged, but that
it can be moved by hand.<|endoftext|> |
0c6bbe42f4a49d1979a3eaf66b50bf19eec214b7f88c5931c57b650fa665b0e7 | @pytest.fixture(scope='function')
def app(request):
'Provide instance for basic Flask app.'
app = flask.Flask(__name__)
app.config['TESTING'] = True
app.config['DEBUG'] = True
return app | Provide instance for basic Flask app. | tests/test_flask_pushjack.py | app | bugzzbunny007/flask-pushjack | 74 | python | @pytest.fixture(scope='function')
def app(request):
app = flask.Flask(__name__)
app.config['TESTING'] = True
app.config['DEBUG'] = True
return app | @pytest.fixture(scope='function')
def app(request):
app = flask.Flask(__name__)
app.config['TESTING'] = True
app.config['DEBUG'] = True
return app<|docstring|>Provide instance for basic Flask app.<|endoftext|> |
b5429ef3eaa9eda0bbf4c8858a6ee6ce9a783187a60706228444beb09b321fc4 | def setUp(self):
'Initializes the environment for each test.'
self._db = sqlite3.connect(':memory:')
self.add_data_into_db(self._db, random.randint(100, 10000)) | Initializes the environment for each test. | pycast/tests/timeseriesdatabasetest.py | setUp | yuvaraja2303/pycast | 76 | python | def setUp(self):
self._db = sqlite3.connect(':memory:')
self.add_data_into_db(self._db, random.randint(100, 10000)) | def setUp(self):
self._db = sqlite3.connect(':memory:')
self.add_data_into_db(self._db, random.randint(100, 10000))<|docstring|>Initializes the environment for each test.<|endoftext|> |
23569cbd3b83cb9ce15ff35766dfb17329df3c30e8b46f9bf9c8e7a906e9ab1c | def tearDown(self):
'This function gets called after each test function.'
self._db.close()
del self._db | This function gets called after each test function. | pycast/tests/timeseriesdatabasetest.py | tearDown | yuvaraja2303/pycast | 76 | python | def tearDown(self):
self._db.close()
del self._db | def tearDown(self):
self._db.close()
del self._db<|docstring|>This function gets called after each test function.<|endoftext|> |
a111f570ced226d3e731c5f32d96fae6ab6a24f80187469ec60624ed385b92f9 | def add_data_into_db(self, database, numberOfTuples):
'Inserts a numberOfTuples tuples into the given database.\n\n This automatically creates a table called TestTable with the following schema:\n timestamp REAL\n value REAL\n junk_one REAL\n junk_two TEXT\n\n The time stamps will be inserted as an ordered sequence.\n\n @param database dbapi2.connection Instance for the used database.\n @param numberOfTuples Number of tuples that have to be created.\n '
cur = database.cursor()
cur.execute('\n CREATE TABLE TestTable(\n timestamp REAL,\n value REAL,\n junk_one REAL,\n junk_two TEXT\n )\n ')
database.commit()
timestamp = 0
junk_two = ['test']
tuples = []
append = tuples.append
for item in xrange(numberOfTuples):
timestamp += random.random()
value = (random.random() * 1000)
junkOne = random.random()
junkTwo = random.choice(junk_two)
append([timestamp, value, junkOne, junkTwo])
cur.executemany('INSERT INTO TestTable VALUES (?,?,?,?)', tuples)
database.commit() | Inserts a numberOfTuples tuples into the given database.
This automatically creates a table called TestTable with the following schema:
timestamp REAL
value REAL
junk_one REAL
junk_two TEXT
The time stamps will be inserted as an ordered sequence.
@param database dbapi2.connection Instance for the used database.
@param numberOfTuples Number of tuples that have to be created. | pycast/tests/timeseriesdatabasetest.py | add_data_into_db | yuvaraja2303/pycast | 76 | python | def add_data_into_db(self, database, numberOfTuples):
'Inserts a numberOfTuples tuples into the given database.\n\n This automatically creates a table called TestTable with the following schema:\n timestamp REAL\n value REAL\n junk_one REAL\n junk_two TEXT\n\n The time stamps will be inserted as an ordered sequence.\n\n @param database dbapi2.connection Instance for the used database.\n @param numberOfTuples Number of tuples that have to be created.\n '
cur = database.cursor()
cur.execute('\n CREATE TABLE TestTable(\n timestamp REAL,\n value REAL,\n junk_one REAL,\n junk_two TEXT\n )\n ')
database.commit()
timestamp = 0
junk_two = ['test']
tuples = []
append = tuples.append
for item in xrange(numberOfTuples):
timestamp += random.random()
value = (random.random() * 1000)
junkOne = random.random()
junkTwo = random.choice(junk_two)
append([timestamp, value, junkOne, junkTwo])
cur.executemany('INSERT INTO TestTable VALUES (?,?,?,?)', tuples)
database.commit() | def add_data_into_db(self, database, numberOfTuples):
'Inserts a numberOfTuples tuples into the given database.\n\n This automatically creates a table called TestTable with the following schema:\n timestamp REAL\n value REAL\n junk_one REAL\n junk_two TEXT\n\n The time stamps will be inserted as an ordered sequence.\n\n @param database dbapi2.connection Instance for the used database.\n @param numberOfTuples Number of tuples that have to be created.\n '
cur = database.cursor()
cur.execute('\n CREATE TABLE TestTable(\n timestamp REAL,\n value REAL,\n junk_one REAL,\n junk_two TEXT\n )\n ')
database.commit()
timestamp = 0
junk_two = ['test']
tuples = []
append = tuples.append
for item in xrange(numberOfTuples):
timestamp += random.random()
value = (random.random() * 1000)
junkOne = random.random()
junkTwo = random.choice(junk_two)
append([timestamp, value, junkOne, junkTwo])
cur.executemany('INSERT INTO TestTable VALUES (?,?,?,?)', tuples)
database.commit()<|docstring|>Inserts a numberOfTuples tuples into the given database.
This automatically creates a table called TestTable with the following schema:
timestamp REAL
value REAL
junk_one REAL
junk_two TEXT
The time stamps will be inserted as an ordered sequence.
@param database dbapi2.connection Instance for the used database.
@param numberOfTuples Number of tuples that have to be created.<|endoftext|> |
21bd296b40f8564e88c63f57920f32da66d51fa07cd3fa96101901f5a3c68a93 | def select_to_many_attributes_test(self):
'SELECT timestamp, value, junk, FROM TestTable\n\n This function tests if statements like\n\n SELECT timestamp, value, junk, ... FROM\n\n can be used to initialize a TimeSeries instance. TimeSeries should therefore only\n take the first two attributes for data initialization, regardless of their names.\n '
cur = self._db.cursor().execute('SELECT COUNT(*) from TestTable')
nbrOfTuples = cur.fetchall()[0][0]
cur = self._db.cursor().execute('SELECT timestamp, value, junk_one, junk_two FROM TestTable')
ts = TimeSeries()
ts.initialize_from_sql_cursor(cur)
assert (len(ts) == nbrOfTuples) | SELECT timestamp, value, junk, FROM TestTable
This function tests if statements like
SELECT timestamp, value, junk, ... FROM
can be used to initialize a TimeSeries instance. TimeSeries should therefore only
take the first two attributes for data initialization, regardless of their names. | pycast/tests/timeseriesdatabasetest.py | select_to_many_attributes_test | yuvaraja2303/pycast | 76 | python | def select_to_many_attributes_test(self):
'SELECT timestamp, value, junk, FROM TestTable\n\n This function tests if statements like\n\n SELECT timestamp, value, junk, ... FROM\n\n can be used to initialize a TimeSeries instance. TimeSeries should therefore only\n take the first two attributes for data initialization, regardless of their names.\n '
cur = self._db.cursor().execute('SELECT COUNT(*) from TestTable')
nbrOfTuples = cur.fetchall()[0][0]
cur = self._db.cursor().execute('SELECT timestamp, value, junk_one, junk_two FROM TestTable')
ts = TimeSeries()
ts.initialize_from_sql_cursor(cur)
assert (len(ts) == nbrOfTuples) | def select_to_many_attributes_test(self):
'SELECT timestamp, value, junk, FROM TestTable\n\n This function tests if statements like\n\n SELECT timestamp, value, junk, ... FROM\n\n can be used to initialize a TimeSeries instance. TimeSeries should therefore only\n take the first two attributes for data initialization, regardless of their names.\n '
cur = self._db.cursor().execute('SELECT COUNT(*) from TestTable')
nbrOfTuples = cur.fetchall()[0][0]
cur = self._db.cursor().execute('SELECT timestamp, value, junk_one, junk_two FROM TestTable')
ts = TimeSeries()
ts.initialize_from_sql_cursor(cur)
assert (len(ts) == nbrOfTuples)<|docstring|>SELECT timestamp, value, junk, FROM TestTable
This function tests if statements like
SELECT timestamp, value, junk, ... FROM
can be used to initialize a TimeSeries instance. TimeSeries should therefore only
take the first two attributes for data initialization, regardless of their names.<|endoftext|> |
ff71eb748af5f24afa08d5e80f2c5c468ad614bcbeb977bf15bace08c3f12983 | def select_star_test(self):
'SELECT * FROM TestTable\n\n This function tests if statements like\n\n SELECT * FROM\n\n can be used to initialize a TimeSeries instance. TimeSeries should therefore only\n take the first two attributes for data initialization, regardless of their names.\n '
cur = self._db.cursor().execute('SELECT COUNT(*) from TestTable')
nbrOfTuples = cur.fetchall()[0][0]
cur = self._db.cursor().execute('SELECT * FROM TestTable')
ts = TimeSeries()
ts.initialize_from_sql_cursor(cur)
assert (len(ts) == nbrOfTuples) | SELECT * FROM TestTable
This function tests if statements like
SELECT * FROM
can be used to initialize a TimeSeries instance. TimeSeries should therefore only
take the first two attributes for data initialization, regardless of their names. | pycast/tests/timeseriesdatabasetest.py | select_star_test | yuvaraja2303/pycast | 76 | python | def select_star_test(self):
'SELECT * FROM TestTable\n\n This function tests if statements like\n\n SELECT * FROM\n\n can be used to initialize a TimeSeries instance. TimeSeries should therefore only\n take the first two attributes for data initialization, regardless of their names.\n '
cur = self._db.cursor().execute('SELECT COUNT(*) from TestTable')
nbrOfTuples = cur.fetchall()[0][0]
cur = self._db.cursor().execute('SELECT * FROM TestTable')
ts = TimeSeries()
ts.initialize_from_sql_cursor(cur)
assert (len(ts) == nbrOfTuples) | def select_star_test(self):
'SELECT * FROM TestTable\n\n This function tests if statements like\n\n SELECT * FROM\n\n can be used to initialize a TimeSeries instance. TimeSeries should therefore only\n take the first two attributes for data initialization, regardless of their names.\n '
cur = self._db.cursor().execute('SELECT COUNT(*) from TestTable')
nbrOfTuples = cur.fetchall()[0][0]
cur = self._db.cursor().execute('SELECT * FROM TestTable')
ts = TimeSeries()
ts.initialize_from_sql_cursor(cur)
assert (len(ts) == nbrOfTuples)<|docstring|>SELECT * FROM TestTable
This function tests if statements like
SELECT * FROM
can be used to initialize a TimeSeries instance. TimeSeries should therefore only
take the first two attributes for data initialization, regardless of their names.<|endoftext|> |
f3495d775cb2234835e23aa5a32b34442ac7704679cc33562067e044095aa902 | def multidimensionaltimeseries_test(self):
'Test the initialization of the MultiDimensionalTimeSeries.'
cur = self._db.cursor().execute('SELECT COUNT(*) from TestTable')
nbrOfTuples = cur.fetchall()[0][0]
cur = self._db.cursor().execute('SELECT timestamp, value, junk_one FROM TestTable')
ts = MultiDimensionalTimeSeries(dimensions=2)
ts.initialize_from_sql_cursor(cur)
assert (len(ts) == nbrOfTuples) | Test the initialization of the MultiDimensionalTimeSeries. | pycast/tests/timeseriesdatabasetest.py | multidimensionaltimeseries_test | yuvaraja2303/pycast | 76 | python | def multidimensionaltimeseries_test(self):
cur = self._db.cursor().execute('SELECT COUNT(*) from TestTable')
nbrOfTuples = cur.fetchall()[0][0]
cur = self._db.cursor().execute('SELECT timestamp, value, junk_one FROM TestTable')
ts = MultiDimensionalTimeSeries(dimensions=2)
ts.initialize_from_sql_cursor(cur)
assert (len(ts) == nbrOfTuples) | def multidimensionaltimeseries_test(self):
cur = self._db.cursor().execute('SELECT COUNT(*) from TestTable')
nbrOfTuples = cur.fetchall()[0][0]
cur = self._db.cursor().execute('SELECT timestamp, value, junk_one FROM TestTable')
ts = MultiDimensionalTimeSeries(dimensions=2)
ts.initialize_from_sql_cursor(cur)
assert (len(ts) == nbrOfTuples)<|docstring|>Test the initialization of the MultiDimensionalTimeSeries.<|endoftext|> |
e58da5917852c20f48e7cf2af100da82b9d501caf0ec2622cb11e1eeeb618ade | def check_for_consistency_test(self):
'Tests if database initialization and manual initialization create equal TimeSeries instances.'
cur = self._db.cursor().execute('SELECT COUNT(*) from TestTable')
nbrOfTuples = cur.fetchall()[0][0]
sqlstmt = 'SELECT timestamp, value FROM TestTable ORDER BY timestamp ASC'
tsManual = TimeSeries()
data = self._db.cursor().execute(sqlstmt).fetchall()
for entry in data:
tsManual.add_entry(str(entry[0]), entry[1])
tsAuto = TimeSeries()
tsAuto.initialize_from_sql_cursor(self._db.cursor().execute(sqlstmt))
assert (nbrOfTuples == len(tsManual))
assert (nbrOfTuples == len(tsAuto))
assert (len(tsManual) == len(tsAuto))
assert (tsManual == tsAuto) | Tests if database initialization and manual initialization create equal TimeSeries instances. | pycast/tests/timeseriesdatabasetest.py | check_for_consistency_test | yuvaraja2303/pycast | 76 | python | def check_for_consistency_test(self):
cur = self._db.cursor().execute('SELECT COUNT(*) from TestTable')
nbrOfTuples = cur.fetchall()[0][0]
sqlstmt = 'SELECT timestamp, value FROM TestTable ORDER BY timestamp ASC'
tsManual = TimeSeries()
data = self._db.cursor().execute(sqlstmt).fetchall()
for entry in data:
tsManual.add_entry(str(entry[0]), entry[1])
tsAuto = TimeSeries()
tsAuto.initialize_from_sql_cursor(self._db.cursor().execute(sqlstmt))
assert (nbrOfTuples == len(tsManual))
assert (nbrOfTuples == len(tsAuto))
assert (len(tsManual) == len(tsAuto))
assert (tsManual == tsAuto) | def check_for_consistency_test(self):
cur = self._db.cursor().execute('SELECT COUNT(*) from TestTable')
nbrOfTuples = cur.fetchall()[0][0]
sqlstmt = 'SELECT timestamp, value FROM TestTable ORDER BY timestamp ASC'
tsManual = TimeSeries()
data = self._db.cursor().execute(sqlstmt).fetchall()
for entry in data:
tsManual.add_entry(str(entry[0]), entry[1])
tsAuto = TimeSeries()
tsAuto.initialize_from_sql_cursor(self._db.cursor().execute(sqlstmt))
assert (nbrOfTuples == len(tsManual))
assert (nbrOfTuples == len(tsAuto))
assert (len(tsManual) == len(tsAuto))
assert (tsManual == tsAuto)<|docstring|>Tests if database initialization and manual initialization create equal TimeSeries instances.<|endoftext|> |
afa97195bd608ef2d6d9b11ac18c30bce46f20a900a8770e9138364cdb34a6ee | def hoverStiff(self, x_c, y_c, z_c, yaw_c, goal_r):
'\n Hovers the drone to an accurate global setpoint\n Drone will stay at setpoint until other function is called\n Stiff refers to optimization for global positional accuracy\n\n Parameters\n ----------\n x_c, y_c, z_c, yaw_c = reference setpoints\n goal_r = bounding radius for when drone is "close enough" to commanded setpoint\n '
print('Start hover controller')
pose = self.getPose(self.cf_name)
altitude_ctrl_phys = AltitudeControllerPhys()
xy_ctrl_phys = XYControllerPhys()
yaw_ctrl_phys = YawControllerPhys()
print('after class declarations')
while (not rospy.is_shutdown()):
pose_prev = pose
pose = self.pose
quat = [pose.transform.rotation.x, pose.transform.rotation.y, pose.transform.rotation.z, pose.transform.rotation.w]
x = pose.transform.translation.x
y = pose.transform.translation.y
z = pose.transform.translation.z
if math.isnan(pose.transform.translation.x):
pose = pose_prev
quat = [pose.orientation.x, pose.orientation.y, pose.orientation.z, pose.orientation.w]
R = Rotation.from_quat(quat)
x_global = R.apply([1, 0, 0])
yaw = np.arctan2(np.cross([1, 0, 0], x_global)[2], np.dot(x_global, [1, 0, 0]))
self.msg.linear.z = altitude_ctrl_phys.update(z_c, z)
(self.msg.linear.x, self.msg.linear.y) = xy_ctrl_phys.update(x_c, x, y_c, y, yaw)
self.msg.angular.z = yaw_ctrl_phys.update(yaw_c, yaw)
offset = 0.05
if (((x > (x_c - goal_r)) and (x < (x_c + goal_r))) and ((y > (y_c - goal_r)) and (y < (y_c + goal_r))) and ((z > ((z_c - goal_r) - offset)) and (z < ((z_c + goal_r) + offset)))):
print('Found the hover setpoint!')
self.pub.publish(self.msg)
self.rate.sleep() | Hovers the drone to an accurate global setpoint
Drone will stay at setpoint until other function is called
Stiff refers to optimization for global positional accuracy
Parameters
----------
x_c, y_c, z_c, yaw_c = reference setpoints
goal_r = bounding radius for when drone is "close enough" to commanded setpoint | crazyflie_demo/scripts/hover_stiff.py | hoverStiff | CooperControlsLab/crazyflie_cooper_ros | 3 | python | def hoverStiff(self, x_c, y_c, z_c, yaw_c, goal_r):
'\n Hovers the drone to an accurate global setpoint\n Drone will stay at setpoint until other function is called\n Stiff refers to optimization for global positional accuracy\n\n Parameters\n ----------\n x_c, y_c, z_c, yaw_c = reference setpoints\n goal_r = bounding radius for when drone is "close enough" to commanded setpoint\n '
print('Start hover controller')
pose = self.getPose(self.cf_name)
altitude_ctrl_phys = AltitudeControllerPhys()
xy_ctrl_phys = XYControllerPhys()
yaw_ctrl_phys = YawControllerPhys()
print('after class declarations')
while (not rospy.is_shutdown()):
pose_prev = pose
pose = self.pose
quat = [pose.transform.rotation.x, pose.transform.rotation.y, pose.transform.rotation.z, pose.transform.rotation.w]
x = pose.transform.translation.x
y = pose.transform.translation.y
z = pose.transform.translation.z
if math.isnan(pose.transform.translation.x):
pose = pose_prev
quat = [pose.orientation.x, pose.orientation.y, pose.orientation.z, pose.orientation.w]
R = Rotation.from_quat(quat)
x_global = R.apply([1, 0, 0])
yaw = np.arctan2(np.cross([1, 0, 0], x_global)[2], np.dot(x_global, [1, 0, 0]))
self.msg.linear.z = altitude_ctrl_phys.update(z_c, z)
(self.msg.linear.x, self.msg.linear.y) = xy_ctrl_phys.update(x_c, x, y_c, y, yaw)
self.msg.angular.z = yaw_ctrl_phys.update(yaw_c, yaw)
offset = 0.05
if (((x > (x_c - goal_r)) and (x < (x_c + goal_r))) and ((y > (y_c - goal_r)) and (y < (y_c + goal_r))) and ((z > ((z_c - goal_r) - offset)) and (z < ((z_c + goal_r) + offset)))):
print('Found the hover setpoint!')
self.pub.publish(self.msg)
self.rate.sleep() | def hoverStiff(self, x_c, y_c, z_c, yaw_c, goal_r):
'\n Hovers the drone to an accurate global setpoint\n Drone will stay at setpoint until other function is called\n Stiff refers to optimization for global positional accuracy\n\n Parameters\n ----------\n x_c, y_c, z_c, yaw_c = reference setpoints\n goal_r = bounding radius for when drone is "close enough" to commanded setpoint\n '
print('Start hover controller')
pose = self.getPose(self.cf_name)
altitude_ctrl_phys = AltitudeControllerPhys()
xy_ctrl_phys = XYControllerPhys()
yaw_ctrl_phys = YawControllerPhys()
print('after class declarations')
while (not rospy.is_shutdown()):
pose_prev = pose
pose = self.pose
quat = [pose.transform.rotation.x, pose.transform.rotation.y, pose.transform.rotation.z, pose.transform.rotation.w]
x = pose.transform.translation.x
y = pose.transform.translation.y
z = pose.transform.translation.z
if math.isnan(pose.transform.translation.x):
pose = pose_prev
quat = [pose.orientation.x, pose.orientation.y, pose.orientation.z, pose.orientation.w]
R = Rotation.from_quat(quat)
x_global = R.apply([1, 0, 0])
yaw = np.arctan2(np.cross([1, 0, 0], x_global)[2], np.dot(x_global, [1, 0, 0]))
self.msg.linear.z = altitude_ctrl_phys.update(z_c, z)
(self.msg.linear.x, self.msg.linear.y) = xy_ctrl_phys.update(x_c, x, y_c, y, yaw)
self.msg.angular.z = yaw_ctrl_phys.update(yaw_c, yaw)
offset = 0.05
if (((x > (x_c - goal_r)) and (x < (x_c + goal_r))) and ((y > (y_c - goal_r)) and (y < (y_c + goal_r))) and ((z > ((z_c - goal_r) - offset)) and (z < ((z_c + goal_r) + offset)))):
print('Found the hover setpoint!')
self.pub.publish(self.msg)
self.rate.sleep()<|docstring|>Hovers the drone to an accurate global setpoint
Drone will stay at setpoint until other function is called
Stiff refers to optimization for global positional accuracy
Parameters
----------
x_c, y_c, z_c, yaw_c = reference setpoints
goal_r = bounding radius for when drone is "close enough" to commanded setpoint<|endoftext|> |
7efc9c123630dccf5ba20be7dd68f8232ee30e8a47c56f9bb665e583963613db | def test_001_simple(self):
" Very simple functionality testing:\n - static equalizer\n - init channel state with all ones\n - transmit all ones\n - make sure we rx all ones\n - Tag check: put in frame length tag and one other random tag,\n make sure they're propagated\n "
fft_len = 8
equalizer = digital.ofdm_equalizer_static(fft_len)
n_syms = 3
tx_data = (((1,) * fft_len) * n_syms)
chan_tag = gr.tag_t()
chan_tag.offset = 0
chan_tag.key = pmt.string_to_symbol('ofdm_sync_chan_taps')
chan_tag.value = pmt.init_c32vector(fft_len, ((1,) * fft_len))
random_tag = gr.tag_t()
random_tag.offset = 1
random_tag.key = pmt.string_to_symbol('foo')
random_tag.value = pmt.from_long(42)
src = blocks.vector_source_c(tx_data, False, fft_len, (chan_tag, random_tag))
eq = digital.ofdm_frame_equalizer_vcvc(equalizer.base(), 0, self.tsb_key)
sink = blocks.tsb_vector_sink_c(fft_len, tsb_key=self.tsb_key)
self.tb.connect(src, blocks.stream_to_tagged_stream(gr.sizeof_gr_complex, fft_len, n_syms, self.tsb_key), eq, sink)
self.tb.run()
self.assertEqual(tx_data, sink.data()[0])
tag_dict = dict()
for tag in sink.tags():
ptag = gr.tag_to_python(tag)
tag_dict[ptag.key] = ptag.value
expected_dict = {'foo': 42}
self.assertEqual(tag_dict, expected_dict) | Very simple functionality testing:
- static equalizer
- init channel state with all ones
- transmit all ones
- make sure we rx all ones
- Tag check: put in frame length tag and one other random tag,
make sure they're propagated | gnuradio-3.7.13.4/gr-digital/python/digital/qa_ofdm_frame_equalizer_vcvc.py | test_001_simple | v1259397/cosmic-gnuradio | 1 | python | def test_001_simple(self):
" Very simple functionality testing:\n - static equalizer\n - init channel state with all ones\n - transmit all ones\n - make sure we rx all ones\n - Tag check: put in frame length tag and one other random tag,\n make sure they're propagated\n "
fft_len = 8
equalizer = digital.ofdm_equalizer_static(fft_len)
n_syms = 3
tx_data = (((1,) * fft_len) * n_syms)
chan_tag = gr.tag_t()
chan_tag.offset = 0
chan_tag.key = pmt.string_to_symbol('ofdm_sync_chan_taps')
chan_tag.value = pmt.init_c32vector(fft_len, ((1,) * fft_len))
random_tag = gr.tag_t()
random_tag.offset = 1
random_tag.key = pmt.string_to_symbol('foo')
random_tag.value = pmt.from_long(42)
src = blocks.vector_source_c(tx_data, False, fft_len, (chan_tag, random_tag))
eq = digital.ofdm_frame_equalizer_vcvc(equalizer.base(), 0, self.tsb_key)
sink = blocks.tsb_vector_sink_c(fft_len, tsb_key=self.tsb_key)
self.tb.connect(src, blocks.stream_to_tagged_stream(gr.sizeof_gr_complex, fft_len, n_syms, self.tsb_key), eq, sink)
self.tb.run()
self.assertEqual(tx_data, sink.data()[0])
tag_dict = dict()
for tag in sink.tags():
ptag = gr.tag_to_python(tag)
tag_dict[ptag.key] = ptag.value
expected_dict = {'foo': 42}
self.assertEqual(tag_dict, expected_dict) | def test_001_simple(self):
" Very simple functionality testing:\n - static equalizer\n - init channel state with all ones\n - transmit all ones\n - make sure we rx all ones\n - Tag check: put in frame length tag and one other random tag,\n make sure they're propagated\n "
fft_len = 8
equalizer = digital.ofdm_equalizer_static(fft_len)
n_syms = 3
tx_data = (((1,) * fft_len) * n_syms)
chan_tag = gr.tag_t()
chan_tag.offset = 0
chan_tag.key = pmt.string_to_symbol('ofdm_sync_chan_taps')
chan_tag.value = pmt.init_c32vector(fft_len, ((1,) * fft_len))
random_tag = gr.tag_t()
random_tag.offset = 1
random_tag.key = pmt.string_to_symbol('foo')
random_tag.value = pmt.from_long(42)
src = blocks.vector_source_c(tx_data, False, fft_len, (chan_tag, random_tag))
eq = digital.ofdm_frame_equalizer_vcvc(equalizer.base(), 0, self.tsb_key)
sink = blocks.tsb_vector_sink_c(fft_len, tsb_key=self.tsb_key)
self.tb.connect(src, blocks.stream_to_tagged_stream(gr.sizeof_gr_complex, fft_len, n_syms, self.tsb_key), eq, sink)
self.tb.run()
self.assertEqual(tx_data, sink.data()[0])
tag_dict = dict()
for tag in sink.tags():
ptag = gr.tag_to_python(tag)
tag_dict[ptag.key] = ptag.value
expected_dict = {'foo': 42}
self.assertEqual(tag_dict, expected_dict)<|docstring|>Very simple functionality testing:
- static equalizer
- init channel state with all ones
- transmit all ones
- make sure we rx all ones
- Tag check: put in frame length tag and one other random tag,
make sure they're propagated<|endoftext|> |
59496e9d50d4b1713da19342169d43e029fd186be6b994eaa0d601bf4db74ebb | def test_001b_simple_skip_nothing(self):
'\n Same as before, but put a skip-header in there\n '
fft_len = 8
equalizer = digital.ofdm_equalizer_static(fft_len, symbols_skipped=1)
n_syms = 3
tx_data = (((1,) * fft_len) * n_syms)
chan_tag = gr.tag_t()
chan_tag.offset = 0
chan_tag.key = pmt.string_to_symbol('ofdm_sync_chan_taps')
chan_tag.value = pmt.init_c32vector(fft_len, ((1,) * fft_len))
src = blocks.vector_source_c(tx_data, False, fft_len, (chan_tag,))
eq = digital.ofdm_frame_equalizer_vcvc(equalizer.base(), 0, self.tsb_key)
sink = blocks.tsb_vector_sink_c(fft_len, tsb_key=self.tsb_key)
self.tb.connect(src, blocks.stream_to_tagged_stream(gr.sizeof_gr_complex, fft_len, n_syms, self.tsb_key), eq, sink)
self.tb.run()
self.assertEqual(tx_data, sink.data()[0]) | Same as before, but put a skip-header in there | gnuradio-3.7.13.4/gr-digital/python/digital/qa_ofdm_frame_equalizer_vcvc.py | test_001b_simple_skip_nothing | v1259397/cosmic-gnuradio | 1 | python | def test_001b_simple_skip_nothing(self):
'\n \n '
fft_len = 8
equalizer = digital.ofdm_equalizer_static(fft_len, symbols_skipped=1)
n_syms = 3
tx_data = (((1,) * fft_len) * n_syms)
chan_tag = gr.tag_t()
chan_tag.offset = 0
chan_tag.key = pmt.string_to_symbol('ofdm_sync_chan_taps')
chan_tag.value = pmt.init_c32vector(fft_len, ((1,) * fft_len))
src = blocks.vector_source_c(tx_data, False, fft_len, (chan_tag,))
eq = digital.ofdm_frame_equalizer_vcvc(equalizer.base(), 0, self.tsb_key)
sink = blocks.tsb_vector_sink_c(fft_len, tsb_key=self.tsb_key)
self.tb.connect(src, blocks.stream_to_tagged_stream(gr.sizeof_gr_complex, fft_len, n_syms, self.tsb_key), eq, sink)
self.tb.run()
self.assertEqual(tx_data, sink.data()[0]) | def test_001b_simple_skip_nothing(self):
'\n \n '
fft_len = 8
equalizer = digital.ofdm_equalizer_static(fft_len, symbols_skipped=1)
n_syms = 3
tx_data = (((1,) * fft_len) * n_syms)
chan_tag = gr.tag_t()
chan_tag.offset = 0
chan_tag.key = pmt.string_to_symbol('ofdm_sync_chan_taps')
chan_tag.value = pmt.init_c32vector(fft_len, ((1,) * fft_len))
src = blocks.vector_source_c(tx_data, False, fft_len, (chan_tag,))
eq = digital.ofdm_frame_equalizer_vcvc(equalizer.base(), 0, self.tsb_key)
sink = blocks.tsb_vector_sink_c(fft_len, tsb_key=self.tsb_key)
self.tb.connect(src, blocks.stream_to_tagged_stream(gr.sizeof_gr_complex, fft_len, n_syms, self.tsb_key), eq, sink)
self.tb.run()
self.assertEqual(tx_data, sink.data()[0])<|docstring|>Same as before, but put a skip-header in there<|endoftext|> |
c7287557c4f0089e10465f4b48c2e60c63e3509b122b67eb906e3252acaca86b | def test_001c_carrier_offset_no_cp(self):
'\n Same as before, but put a carrier offset in there\n '
fft_len = 8
cp_len = 0
n_syms = 1
carr_offset = 1
occupied_carriers = (((- 2), (- 1), 1, 2),)
tx_data = (0, 0, 0, (- 1j), (- 1j), 0, (- 1j), (- 1j))
rx_expected = ((0, 0, 1, 1, 0, 1, 1, 0) * n_syms)
equalizer = digital.ofdm_equalizer_static(fft_len, occupied_carriers)
chan_tag = gr.tag_t()
chan_tag.offset = 0
chan_tag.key = pmt.string_to_symbol('ofdm_sync_chan_taps')
chan_tag.value = pmt.init_c32vector(fft_len, (0, 0, (- 1j), (- 1j), 0, (- 1j), (- 1j), 0))
offset_tag = gr.tag_t()
offset_tag.offset = 0
offset_tag.key = pmt.string_to_symbol('ofdm_sync_carr_offset')
offset_tag.value = pmt.from_long(carr_offset)
src = blocks.vector_source_c(tx_data, False, fft_len, (chan_tag, offset_tag))
eq = digital.ofdm_frame_equalizer_vcvc(equalizer.base(), cp_len, self.tsb_key)
sink = blocks.tsb_vector_sink_c(fft_len, tsb_key=self.tsb_key)
self.tb.connect(src, blocks.stream_to_tagged_stream(gr.sizeof_gr_complex, fft_len, n_syms, self.tsb_key), eq, sink)
self.tb.run()
self.assertComplexTuplesAlmostEqual(rx_expected, sink.data()[0], places=4) | Same as before, but put a carrier offset in there | gnuradio-3.7.13.4/gr-digital/python/digital/qa_ofdm_frame_equalizer_vcvc.py | test_001c_carrier_offset_no_cp | v1259397/cosmic-gnuradio | 1 | python | def test_001c_carrier_offset_no_cp(self):
'\n \n '
fft_len = 8
cp_len = 0
n_syms = 1
carr_offset = 1
occupied_carriers = (((- 2), (- 1), 1, 2),)
tx_data = (0, 0, 0, (- 1j), (- 1j), 0, (- 1j), (- 1j))
rx_expected = ((0, 0, 1, 1, 0, 1, 1, 0) * n_syms)
equalizer = digital.ofdm_equalizer_static(fft_len, occupied_carriers)
chan_tag = gr.tag_t()
chan_tag.offset = 0
chan_tag.key = pmt.string_to_symbol('ofdm_sync_chan_taps')
chan_tag.value = pmt.init_c32vector(fft_len, (0, 0, (- 1j), (- 1j), 0, (- 1j), (- 1j), 0))
offset_tag = gr.tag_t()
offset_tag.offset = 0
offset_tag.key = pmt.string_to_symbol('ofdm_sync_carr_offset')
offset_tag.value = pmt.from_long(carr_offset)
src = blocks.vector_source_c(tx_data, False, fft_len, (chan_tag, offset_tag))
eq = digital.ofdm_frame_equalizer_vcvc(equalizer.base(), cp_len, self.tsb_key)
sink = blocks.tsb_vector_sink_c(fft_len, tsb_key=self.tsb_key)
self.tb.connect(src, blocks.stream_to_tagged_stream(gr.sizeof_gr_complex, fft_len, n_syms, self.tsb_key), eq, sink)
self.tb.run()
self.assertComplexTuplesAlmostEqual(rx_expected, sink.data()[0], places=4) | def test_001c_carrier_offset_no_cp(self):
'\n \n '
fft_len = 8
cp_len = 0
n_syms = 1
carr_offset = 1
occupied_carriers = (((- 2), (- 1), 1, 2),)
tx_data = (0, 0, 0, (- 1j), (- 1j), 0, (- 1j), (- 1j))
rx_expected = ((0, 0, 1, 1, 0, 1, 1, 0) * n_syms)
equalizer = digital.ofdm_equalizer_static(fft_len, occupied_carriers)
chan_tag = gr.tag_t()
chan_tag.offset = 0
chan_tag.key = pmt.string_to_symbol('ofdm_sync_chan_taps')
chan_tag.value = pmt.init_c32vector(fft_len, (0, 0, (- 1j), (- 1j), 0, (- 1j), (- 1j), 0))
offset_tag = gr.tag_t()
offset_tag.offset = 0
offset_tag.key = pmt.string_to_symbol('ofdm_sync_carr_offset')
offset_tag.value = pmt.from_long(carr_offset)
src = blocks.vector_source_c(tx_data, False, fft_len, (chan_tag, offset_tag))
eq = digital.ofdm_frame_equalizer_vcvc(equalizer.base(), cp_len, self.tsb_key)
sink = blocks.tsb_vector_sink_c(fft_len, tsb_key=self.tsb_key)
self.tb.connect(src, blocks.stream_to_tagged_stream(gr.sizeof_gr_complex, fft_len, n_syms, self.tsb_key), eq, sink)
self.tb.run()
self.assertComplexTuplesAlmostEqual(rx_expected, sink.data()[0], places=4)<|docstring|>Same as before, but put a carrier offset in there<|endoftext|> |
2c41c85e45cabe0f3f20781fafe225212ec714b0321fa98bcee977ece8c9f185 | def test_001c_carrier_offset_cp(self):
'\n Same as before, but put a carrier offset in there and a CP\n '
fft_len = 8
cp_len = 2
n_syms = 3
occupied_carriers = (((- 2), (- 1), 1, 2),)
carr_offset = (- 1)
tx_data = (0, (- 1j), (- 1j), 0, (- 1j), (- 1j), 0, 0, 0, (- 1), (- 1), 0, (- 1), (- 1), 0, 0, 0, 1j, 1j, 0, 1j, 1j, 0, 0)
rx_expected = ((0, 0, 1, 1, 0, 1, 1, 0) * n_syms)
equalizer = digital.ofdm_equalizer_static(fft_len, occupied_carriers)
chan_tag = gr.tag_t()
chan_tag.offset = 0
chan_tag.key = pmt.string_to_symbol('ofdm_sync_chan_taps')
chan_tag.value = pmt.init_c32vector(fft_len, (0, 0, 1, 1, 0, 1, 1, 0))
offset_tag = gr.tag_t()
offset_tag.offset = 0
offset_tag.key = pmt.string_to_symbol('ofdm_sync_carr_offset')
offset_tag.value = pmt.from_long(carr_offset)
src = blocks.vector_source_c(tx_data, False, fft_len, (chan_tag, offset_tag))
eq = digital.ofdm_frame_equalizer_vcvc(equalizer.base(), cp_len, self.tsb_key)
sink = blocks.tsb_vector_sink_c(fft_len, tsb_key=self.tsb_key)
self.tb.connect(src, blocks.stream_to_tagged_stream(gr.sizeof_gr_complex, fft_len, n_syms, self.tsb_key), eq, sink)
self.tb.run()
self.assertComplexTuplesAlmostEqual(rx_expected, sink.data()[0], places=4) | Same as before, but put a carrier offset in there and a CP | gnuradio-3.7.13.4/gr-digital/python/digital/qa_ofdm_frame_equalizer_vcvc.py | test_001c_carrier_offset_cp | v1259397/cosmic-gnuradio | 1 | python | def test_001c_carrier_offset_cp(self):
'\n \n '
fft_len = 8
cp_len = 2
n_syms = 3
occupied_carriers = (((- 2), (- 1), 1, 2),)
carr_offset = (- 1)
tx_data = (0, (- 1j), (- 1j), 0, (- 1j), (- 1j), 0, 0, 0, (- 1), (- 1), 0, (- 1), (- 1), 0, 0, 0, 1j, 1j, 0, 1j, 1j, 0, 0)
rx_expected = ((0, 0, 1, 1, 0, 1, 1, 0) * n_syms)
equalizer = digital.ofdm_equalizer_static(fft_len, occupied_carriers)
chan_tag = gr.tag_t()
chan_tag.offset = 0
chan_tag.key = pmt.string_to_symbol('ofdm_sync_chan_taps')
chan_tag.value = pmt.init_c32vector(fft_len, (0, 0, 1, 1, 0, 1, 1, 0))
offset_tag = gr.tag_t()
offset_tag.offset = 0
offset_tag.key = pmt.string_to_symbol('ofdm_sync_carr_offset')
offset_tag.value = pmt.from_long(carr_offset)
src = blocks.vector_source_c(tx_data, False, fft_len, (chan_tag, offset_tag))
eq = digital.ofdm_frame_equalizer_vcvc(equalizer.base(), cp_len, self.tsb_key)
sink = blocks.tsb_vector_sink_c(fft_len, tsb_key=self.tsb_key)
self.tb.connect(src, blocks.stream_to_tagged_stream(gr.sizeof_gr_complex, fft_len, n_syms, self.tsb_key), eq, sink)
self.tb.run()
self.assertComplexTuplesAlmostEqual(rx_expected, sink.data()[0], places=4) | def test_001c_carrier_offset_cp(self):
'\n \n '
fft_len = 8
cp_len = 2
n_syms = 3
occupied_carriers = (((- 2), (- 1), 1, 2),)
carr_offset = (- 1)
tx_data = (0, (- 1j), (- 1j), 0, (- 1j), (- 1j), 0, 0, 0, (- 1), (- 1), 0, (- 1), (- 1), 0, 0, 0, 1j, 1j, 0, 1j, 1j, 0, 0)
rx_expected = ((0, 0, 1, 1, 0, 1, 1, 0) * n_syms)
equalizer = digital.ofdm_equalizer_static(fft_len, occupied_carriers)
chan_tag = gr.tag_t()
chan_tag.offset = 0
chan_tag.key = pmt.string_to_symbol('ofdm_sync_chan_taps')
chan_tag.value = pmt.init_c32vector(fft_len, (0, 0, 1, 1, 0, 1, 1, 0))
offset_tag = gr.tag_t()
offset_tag.offset = 0
offset_tag.key = pmt.string_to_symbol('ofdm_sync_carr_offset')
offset_tag.value = pmt.from_long(carr_offset)
src = blocks.vector_source_c(tx_data, False, fft_len, (chan_tag, offset_tag))
eq = digital.ofdm_frame_equalizer_vcvc(equalizer.base(), cp_len, self.tsb_key)
sink = blocks.tsb_vector_sink_c(fft_len, tsb_key=self.tsb_key)
self.tb.connect(src, blocks.stream_to_tagged_stream(gr.sizeof_gr_complex, fft_len, n_syms, self.tsb_key), eq, sink)
self.tb.run()
self.assertComplexTuplesAlmostEqual(rx_expected, sink.data()[0], places=4)<|docstring|>Same as before, but put a carrier offset in there and a CP<|endoftext|> |
0c788000d54012b7e5e1acca19f029e605decfc1c40ce0a7260ae1f398768487 | def test_002_static(self):
'\n - Add a simple channel\n - Make symbols QPSK\n '
fft_len = 8
tx_data = [(- 1), (- 1), 1, 2, (- 1), 3, 0, (- 1), (- 1), (- 1), 0, 2, (- 1), 2, 0, (- 1), (- 1), (- 1), 3, 0, (- 1), 1, 0, (- 1), (- 1), (- 1), 1, 1, (- 1), 0, 2, (- 1)]
cnst = digital.constellation_qpsk()
tx_signal = [(cnst.map_to_points_v(x)[0] if (x != (- 1)) else 0) for x in tx_data]
occupied_carriers = ((1, 2, 6, 7),)
pilot_carriers = ((), (), (1, 2, 6, 7), ())
pilot_symbols = ([], [], [cnst.map_to_points_v(x)[0] for x in (1, 0, 3, 0)], [])
equalizer = digital.ofdm_equalizer_static(fft_len, occupied_carriers, pilot_carriers, pilot_symbols)
channel = [0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1j, 1j, 0, 1j, 1j, 0, 0, 0, 1j, 1j, 0, 1j, 1j, 0]
channel = [0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1j, 1j, 0, 1j, 1j, 0, 0, 0, 1j, 1j, 0, 1j, 1j, 0]
for idx in range(fft_len, (2 * fft_len)):
channel[idx] = (channel[(idx - fft_len)] * numpy.exp((((1j * 0.1) * numpy.pi) * (numpy.random.rand() - 0.5))))
chan_tag = gr.tag_t()
chan_tag.offset = 0
chan_tag.key = pmt.string_to_symbol('ofdm_sync_chan_taps')
chan_tag.value = pmt.init_c32vector(fft_len, channel[:fft_len])
src = blocks.vector_source_c(numpy.multiply(tx_signal, channel), False, fft_len, (chan_tag,))
sink = blocks.tsb_vector_sink_c(vlen=fft_len, tsb_key=self.tsb_key)
eq = digital.ofdm_frame_equalizer_vcvc(equalizer.base(), 0, self.tsb_key, True)
self.tb.connect(src, blocks.stream_to_tagged_stream(gr.sizeof_gr_complex, fft_len, (len(tx_data) / fft_len), self.tsb_key), eq, sink)
self.tb.run()
rx_data = [(cnst.decision_maker_v((x,)) if (x != 0) else (- 1)) for x in sink.data()[0]]
self.assertEqual(tx_data, rx_data)
tag_dict = dict()
for tag in sink.tags():
ptag = gr.tag_to_python(tag)
tag_dict[ptag.key] = ptag.value
if (ptag.key == 'ofdm_sync_chan_taps'):
tag_dict[ptag.key] = list(pmt.c32vector_elements(tag.value))
else:
tag_dict[ptag.key] = pmt.to_python(tag.value)
expected_dict = {'ofdm_sync_chan_taps': channel[(- fft_len):]}
self.assertEqual(tag_dict, expected_dict) | - Add a simple channel
- Make symbols QPSK | gnuradio-3.7.13.4/gr-digital/python/digital/qa_ofdm_frame_equalizer_vcvc.py | test_002_static | v1259397/cosmic-gnuradio | 1 | python | def test_002_static(self):
'\n - Add a simple channel\n - Make symbols QPSK\n '
fft_len = 8
tx_data = [(- 1), (- 1), 1, 2, (- 1), 3, 0, (- 1), (- 1), (- 1), 0, 2, (- 1), 2, 0, (- 1), (- 1), (- 1), 3, 0, (- 1), 1, 0, (- 1), (- 1), (- 1), 1, 1, (- 1), 0, 2, (- 1)]
cnst = digital.constellation_qpsk()
tx_signal = [(cnst.map_to_points_v(x)[0] if (x != (- 1)) else 0) for x in tx_data]
occupied_carriers = ((1, 2, 6, 7),)
pilot_carriers = ((), (), (1, 2, 6, 7), ())
pilot_symbols = ([], [], [cnst.map_to_points_v(x)[0] for x in (1, 0, 3, 0)], [])
equalizer = digital.ofdm_equalizer_static(fft_len, occupied_carriers, pilot_carriers, pilot_symbols)
channel = [0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1j, 1j, 0, 1j, 1j, 0, 0, 0, 1j, 1j, 0, 1j, 1j, 0]
channel = [0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1j, 1j, 0, 1j, 1j, 0, 0, 0, 1j, 1j, 0, 1j, 1j, 0]
for idx in range(fft_len, (2 * fft_len)):
channel[idx] = (channel[(idx - fft_len)] * numpy.exp((((1j * 0.1) * numpy.pi) * (numpy.random.rand() - 0.5))))
chan_tag = gr.tag_t()
chan_tag.offset = 0
chan_tag.key = pmt.string_to_symbol('ofdm_sync_chan_taps')
chan_tag.value = pmt.init_c32vector(fft_len, channel[:fft_len])
src = blocks.vector_source_c(numpy.multiply(tx_signal, channel), False, fft_len, (chan_tag,))
sink = blocks.tsb_vector_sink_c(vlen=fft_len, tsb_key=self.tsb_key)
eq = digital.ofdm_frame_equalizer_vcvc(equalizer.base(), 0, self.tsb_key, True)
self.tb.connect(src, blocks.stream_to_tagged_stream(gr.sizeof_gr_complex, fft_len, (len(tx_data) / fft_len), self.tsb_key), eq, sink)
self.tb.run()
rx_data = [(cnst.decision_maker_v((x,)) if (x != 0) else (- 1)) for x in sink.data()[0]]
self.assertEqual(tx_data, rx_data)
tag_dict = dict()
for tag in sink.tags():
ptag = gr.tag_to_python(tag)
tag_dict[ptag.key] = ptag.value
if (ptag.key == 'ofdm_sync_chan_taps'):
tag_dict[ptag.key] = list(pmt.c32vector_elements(tag.value))
else:
tag_dict[ptag.key] = pmt.to_python(tag.value)
expected_dict = {'ofdm_sync_chan_taps': channel[(- fft_len):]}
self.assertEqual(tag_dict, expected_dict) | def test_002_static(self):
'\n - Add a simple channel\n - Make symbols QPSK\n '
fft_len = 8
tx_data = [(- 1), (- 1), 1, 2, (- 1), 3, 0, (- 1), (- 1), (- 1), 0, 2, (- 1), 2, 0, (- 1), (- 1), (- 1), 3, 0, (- 1), 1, 0, (- 1), (- 1), (- 1), 1, 1, (- 1), 0, 2, (- 1)]
cnst = digital.constellation_qpsk()
tx_signal = [(cnst.map_to_points_v(x)[0] if (x != (- 1)) else 0) for x in tx_data]
occupied_carriers = ((1, 2, 6, 7),)
pilot_carriers = ((), (), (1, 2, 6, 7), ())
pilot_symbols = ([], [], [cnst.map_to_points_v(x)[0] for x in (1, 0, 3, 0)], [])
equalizer = digital.ofdm_equalizer_static(fft_len, occupied_carriers, pilot_carriers, pilot_symbols)
channel = [0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1j, 1j, 0, 1j, 1j, 0, 0, 0, 1j, 1j, 0, 1j, 1j, 0]
channel = [0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1j, 1j, 0, 1j, 1j, 0, 0, 0, 1j, 1j, 0, 1j, 1j, 0]
for idx in range(fft_len, (2 * fft_len)):
channel[idx] = (channel[(idx - fft_len)] * numpy.exp((((1j * 0.1) * numpy.pi) * (numpy.random.rand() - 0.5))))
chan_tag = gr.tag_t()
chan_tag.offset = 0
chan_tag.key = pmt.string_to_symbol('ofdm_sync_chan_taps')
chan_tag.value = pmt.init_c32vector(fft_len, channel[:fft_len])
src = blocks.vector_source_c(numpy.multiply(tx_signal, channel), False, fft_len, (chan_tag,))
sink = blocks.tsb_vector_sink_c(vlen=fft_len, tsb_key=self.tsb_key)
eq = digital.ofdm_frame_equalizer_vcvc(equalizer.base(), 0, self.tsb_key, True)
self.tb.connect(src, blocks.stream_to_tagged_stream(gr.sizeof_gr_complex, fft_len, (len(tx_data) / fft_len), self.tsb_key), eq, sink)
self.tb.run()
rx_data = [(cnst.decision_maker_v((x,)) if (x != 0) else (- 1)) for x in sink.data()[0]]
self.assertEqual(tx_data, rx_data)
tag_dict = dict()
for tag in sink.tags():
ptag = gr.tag_to_python(tag)
tag_dict[ptag.key] = ptag.value
if (ptag.key == 'ofdm_sync_chan_taps'):
tag_dict[ptag.key] = list(pmt.c32vector_elements(tag.value))
else:
tag_dict[ptag.key] = pmt.to_python(tag.value)
expected_dict = {'ofdm_sync_chan_taps': channel[(- fft_len):]}
self.assertEqual(tag_dict, expected_dict)<|docstring|>- Add a simple channel
- Make symbols QPSK<|endoftext|> |
16e916e895b2530944a3104401cc471e1b566f722ab700a23d1fee135f66512d | def test_002_static_wo_tags(self):
' Same as before, but the input stream has no tag.\n We specify the frame size in the constructor.\n We also specify a tag key, so the output stream *should* have\n a TSB tag.\n '
fft_len = 8
n_syms = 4
tx_data = [(- 1), (- 1), 1, 2, (- 1), 3, 0, (- 1), (- 1), (- 1), 0, 2, (- 1), 2, 0, (- 1), (- 1), (- 1), 3, 0, (- 1), 1, 0, (- 1), (- 1), (- 1), 1, 1, (- 1), 0, 2, (- 1)]
cnst = digital.constellation_qpsk()
tx_signal = [(cnst.map_to_points_v(x)[0] if (x != (- 1)) else 0) for x in tx_data]
occupied_carriers = ((1, 2, 6, 7),)
pilot_carriers = ((), (), (1, 2, 6, 7), ())
pilot_symbols = ([], [], [cnst.map_to_points_v(x)[0] for x in (1, 0, 3, 0)], [])
equalizer = digital.ofdm_equalizer_static(fft_len, occupied_carriers, pilot_carriers, pilot_symbols)
channel = [0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1j, 1j, 0, 1j, 1j, 0, 0, 0, 1j, 1j, 0, 1j, 1j, 0]
for idx in range(fft_len, (2 * fft_len)):
channel[idx] = (channel[(idx - fft_len)] * numpy.exp((((1j * 0.1) * numpy.pi) * (numpy.random.rand() - 0.5))))
idx2 = (idx + (2 * fft_len))
channel[idx2] = (channel[idx2] * numpy.exp((((1j * 0) * numpy.pi) * (numpy.random.rand() - 0.5))))
src = blocks.vector_source_c(numpy.multiply(tx_signal, channel), False, fft_len)
eq = digital.ofdm_frame_equalizer_vcvc(equalizer.base(), 0, self.tsb_key, False, n_syms)
sink = blocks.tsb_vector_sink_c(vlen=fft_len, tsb_key=self.tsb_key)
self.tb.connect(src, blocks.stream_to_tagged_stream(gr.sizeof_gr_complex, fft_len, (len(tx_data) / fft_len), self.tsb_key), eq, sink)
self.tb.run()
rx_data = [(cnst.decision_maker_v((x,)) if (x != 0) else (- 1)) for x in sink.data()[0]]
self.assertEqual(tx_data, rx_data)
packets = sink.data()
self.assertEqual(len(packets), 1)
self.assertEqual(len(packets[0]), len(tx_data)) | Same as before, but the input stream has no tag.
We specify the frame size in the constructor.
We also specify a tag key, so the output stream *should* have
a TSB tag. | gnuradio-3.7.13.4/gr-digital/python/digital/qa_ofdm_frame_equalizer_vcvc.py | test_002_static_wo_tags | v1259397/cosmic-gnuradio | 1 | python | def test_002_static_wo_tags(self):
' Same as before, but the input stream has no tag.\n We specify the frame size in the constructor.\n We also specify a tag key, so the output stream *should* have\n a TSB tag.\n '
fft_len = 8
n_syms = 4
tx_data = [(- 1), (- 1), 1, 2, (- 1), 3, 0, (- 1), (- 1), (- 1), 0, 2, (- 1), 2, 0, (- 1), (- 1), (- 1), 3, 0, (- 1), 1, 0, (- 1), (- 1), (- 1), 1, 1, (- 1), 0, 2, (- 1)]
cnst = digital.constellation_qpsk()
tx_signal = [(cnst.map_to_points_v(x)[0] if (x != (- 1)) else 0) for x in tx_data]
occupied_carriers = ((1, 2, 6, 7),)
pilot_carriers = ((), (), (1, 2, 6, 7), ())
pilot_symbols = ([], [], [cnst.map_to_points_v(x)[0] for x in (1, 0, 3, 0)], [])
equalizer = digital.ofdm_equalizer_static(fft_len, occupied_carriers, pilot_carriers, pilot_symbols)
channel = [0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1j, 1j, 0, 1j, 1j, 0, 0, 0, 1j, 1j, 0, 1j, 1j, 0]
for idx in range(fft_len, (2 * fft_len)):
channel[idx] = (channel[(idx - fft_len)] * numpy.exp((((1j * 0.1) * numpy.pi) * (numpy.random.rand() - 0.5))))
idx2 = (idx + (2 * fft_len))
channel[idx2] = (channel[idx2] * numpy.exp((((1j * 0) * numpy.pi) * (numpy.random.rand() - 0.5))))
src = blocks.vector_source_c(numpy.multiply(tx_signal, channel), False, fft_len)
eq = digital.ofdm_frame_equalizer_vcvc(equalizer.base(), 0, self.tsb_key, False, n_syms)
sink = blocks.tsb_vector_sink_c(vlen=fft_len, tsb_key=self.tsb_key)
self.tb.connect(src, blocks.stream_to_tagged_stream(gr.sizeof_gr_complex, fft_len, (len(tx_data) / fft_len), self.tsb_key), eq, sink)
self.tb.run()
rx_data = [(cnst.decision_maker_v((x,)) if (x != 0) else (- 1)) for x in sink.data()[0]]
self.assertEqual(tx_data, rx_data)
packets = sink.data()
self.assertEqual(len(packets), 1)
self.assertEqual(len(packets[0]), len(tx_data)) | def test_002_static_wo_tags(self):
' Same as before, but the input stream has no tag.\n We specify the frame size in the constructor.\n We also specify a tag key, so the output stream *should* have\n a TSB tag.\n '
fft_len = 8
n_syms = 4
tx_data = [(- 1), (- 1), 1, 2, (- 1), 3, 0, (- 1), (- 1), (- 1), 0, 2, (- 1), 2, 0, (- 1), (- 1), (- 1), 3, 0, (- 1), 1, 0, (- 1), (- 1), (- 1), 1, 1, (- 1), 0, 2, (- 1)]
cnst = digital.constellation_qpsk()
tx_signal = [(cnst.map_to_points_v(x)[0] if (x != (- 1)) else 0) for x in tx_data]
occupied_carriers = ((1, 2, 6, 7),)
pilot_carriers = ((), (), (1, 2, 6, 7), ())
pilot_symbols = ([], [], [cnst.map_to_points_v(x)[0] for x in (1, 0, 3, 0)], [])
equalizer = digital.ofdm_equalizer_static(fft_len, occupied_carriers, pilot_carriers, pilot_symbols)
channel = [0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1j, 1j, 0, 1j, 1j, 0, 0, 0, 1j, 1j, 0, 1j, 1j, 0]
for idx in range(fft_len, (2 * fft_len)):
channel[idx] = (channel[(idx - fft_len)] * numpy.exp((((1j * 0.1) * numpy.pi) * (numpy.random.rand() - 0.5))))
idx2 = (idx + (2 * fft_len))
channel[idx2] = (channel[idx2] * numpy.exp((((1j * 0) * numpy.pi) * (numpy.random.rand() - 0.5))))
src = blocks.vector_source_c(numpy.multiply(tx_signal, channel), False, fft_len)
eq = digital.ofdm_frame_equalizer_vcvc(equalizer.base(), 0, self.tsb_key, False, n_syms)
sink = blocks.tsb_vector_sink_c(vlen=fft_len, tsb_key=self.tsb_key)
self.tb.connect(src, blocks.stream_to_tagged_stream(gr.sizeof_gr_complex, fft_len, (len(tx_data) / fft_len), self.tsb_key), eq, sink)
self.tb.run()
rx_data = [(cnst.decision_maker_v((x,)) if (x != 0) else (- 1)) for x in sink.data()[0]]
self.assertEqual(tx_data, rx_data)
packets = sink.data()
self.assertEqual(len(packets), 1)
self.assertEqual(len(packets[0]), len(tx_data))<|docstring|>Same as before, but the input stream has no tag.
We specify the frame size in the constructor.
We also specify a tag key, so the output stream *should* have
a TSB tag.<|endoftext|> |
8d35363dd73f32a84cf53d4457ee773800c9ab99c380fb15a46a72af10deb1b0 | def test_002_simpledfe(self):
' Use the simple DFE equalizer. '
fft_len = 8
tx_data = [(- 1), (- 1), 1, 2, (- 1), 3, 0, (- 1), (- 1), (- 1), 0, 2, (- 1), 2, 0, (- 1), (- 1), (- 1), 3, 0, (- 1), 1, 0, (- 1), (- 1), (- 1), 1, 1, (- 1), 0, 2, (- 1)]
cnst = digital.constellation_qpsk()
tx_signal = [(cnst.map_to_points_v(x)[0] if (x != (- 1)) else 0) for x in tx_data]
occupied_carriers = ((1, 2, 6, 7),)
pilot_carriers = ((), (), (1, 2, 6, 7), ())
pilot_symbols = ([], [], [cnst.map_to_points_v(x)[0] for x in (1, 0, 3, 0)], [])
equalizer = digital.ofdm_equalizer_simpledfe(fft_len, cnst.base(), occupied_carriers, pilot_carriers, pilot_symbols, 0, 0.01)
channel = [0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1j, 1j, 0, 1j, 1j, 0, 0, 0, 1j, 1j, 0, 1j, 1j, 0]
for idx in range(fft_len, (2 * fft_len)):
channel[idx] = (channel[(idx - fft_len)] * numpy.exp((((1j * 0.1) * numpy.pi) * (numpy.random.rand() - 0.5))))
idx2 = (idx + (2 * fft_len))
channel[idx2] = (channel[idx2] * numpy.exp((((1j * 0) * numpy.pi) * (numpy.random.rand() - 0.5))))
chan_tag = gr.tag_t()
chan_tag.offset = 0
chan_tag.key = pmt.string_to_symbol('ofdm_sync_chan_taps')
chan_tag.value = pmt.init_c32vector(fft_len, channel[:fft_len])
src = blocks.vector_source_c(numpy.multiply(tx_signal, channel), False, fft_len, (chan_tag,))
eq = digital.ofdm_frame_equalizer_vcvc(equalizer.base(), 0, self.tsb_key, True)
sink = blocks.tsb_vector_sink_c(fft_len, tsb_key=self.tsb_key)
self.tb.connect(src, blocks.stream_to_tagged_stream(gr.sizeof_gr_complex, fft_len, (len(tx_data) / fft_len), self.tsb_key), eq, sink)
self.tb.run()
rx_data = [(cnst.decision_maker_v((x,)) if (x != 0) else (- 1)) for x in sink.data()[0]]
self.assertEqual(tx_data, rx_data)
self.assertEqual(len(sink.tags()), 1)
tag = sink.tags()[0]
self.assertEqual(pmt.symbol_to_string(tag.key), 'ofdm_sync_chan_taps')
self.assertComplexTuplesAlmostEqual(list(pmt.c32vector_elements(tag.value)), channel[(- fft_len):], places=1) | Use the simple DFE equalizer. | gnuradio-3.7.13.4/gr-digital/python/digital/qa_ofdm_frame_equalizer_vcvc.py | test_002_simpledfe | v1259397/cosmic-gnuradio | 1 | python | def test_002_simpledfe(self):
' '
fft_len = 8
tx_data = [(- 1), (- 1), 1, 2, (- 1), 3, 0, (- 1), (- 1), (- 1), 0, 2, (- 1), 2, 0, (- 1), (- 1), (- 1), 3, 0, (- 1), 1, 0, (- 1), (- 1), (- 1), 1, 1, (- 1), 0, 2, (- 1)]
cnst = digital.constellation_qpsk()
tx_signal = [(cnst.map_to_points_v(x)[0] if (x != (- 1)) else 0) for x in tx_data]
occupied_carriers = ((1, 2, 6, 7),)
pilot_carriers = ((), (), (1, 2, 6, 7), ())
pilot_symbols = ([], [], [cnst.map_to_points_v(x)[0] for x in (1, 0, 3, 0)], [])
equalizer = digital.ofdm_equalizer_simpledfe(fft_len, cnst.base(), occupied_carriers, pilot_carriers, pilot_symbols, 0, 0.01)
channel = [0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1j, 1j, 0, 1j, 1j, 0, 0, 0, 1j, 1j, 0, 1j, 1j, 0]
for idx in range(fft_len, (2 * fft_len)):
channel[idx] = (channel[(idx - fft_len)] * numpy.exp((((1j * 0.1) * numpy.pi) * (numpy.random.rand() - 0.5))))
idx2 = (idx + (2 * fft_len))
channel[idx2] = (channel[idx2] * numpy.exp((((1j * 0) * numpy.pi) * (numpy.random.rand() - 0.5))))
chan_tag = gr.tag_t()
chan_tag.offset = 0
chan_tag.key = pmt.string_to_symbol('ofdm_sync_chan_taps')
chan_tag.value = pmt.init_c32vector(fft_len, channel[:fft_len])
src = blocks.vector_source_c(numpy.multiply(tx_signal, channel), False, fft_len, (chan_tag,))
eq = digital.ofdm_frame_equalizer_vcvc(equalizer.base(), 0, self.tsb_key, True)
sink = blocks.tsb_vector_sink_c(fft_len, tsb_key=self.tsb_key)
self.tb.connect(src, blocks.stream_to_tagged_stream(gr.sizeof_gr_complex, fft_len, (len(tx_data) / fft_len), self.tsb_key), eq, sink)
self.tb.run()
rx_data = [(cnst.decision_maker_v((x,)) if (x != 0) else (- 1)) for x in sink.data()[0]]
self.assertEqual(tx_data, rx_data)
self.assertEqual(len(sink.tags()), 1)
tag = sink.tags()[0]
self.assertEqual(pmt.symbol_to_string(tag.key), 'ofdm_sync_chan_taps')
self.assertComplexTuplesAlmostEqual(list(pmt.c32vector_elements(tag.value)), channel[(- fft_len):], places=1) | def test_002_simpledfe(self):
' '
fft_len = 8
tx_data = [(- 1), (- 1), 1, 2, (- 1), 3, 0, (- 1), (- 1), (- 1), 0, 2, (- 1), 2, 0, (- 1), (- 1), (- 1), 3, 0, (- 1), 1, 0, (- 1), (- 1), (- 1), 1, 1, (- 1), 0, 2, (- 1)]
cnst = digital.constellation_qpsk()
tx_signal = [(cnst.map_to_points_v(x)[0] if (x != (- 1)) else 0) for x in tx_data]
occupied_carriers = ((1, 2, 6, 7),)
pilot_carriers = ((), (), (1, 2, 6, 7), ())
pilot_symbols = ([], [], [cnst.map_to_points_v(x)[0] for x in (1, 0, 3, 0)], [])
equalizer = digital.ofdm_equalizer_simpledfe(fft_len, cnst.base(), occupied_carriers, pilot_carriers, pilot_symbols, 0, 0.01)
channel = [0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1j, 1j, 0, 1j, 1j, 0, 0, 0, 1j, 1j, 0, 1j, 1j, 0]
for idx in range(fft_len, (2 * fft_len)):
channel[idx] = (channel[(idx - fft_len)] * numpy.exp((((1j * 0.1) * numpy.pi) * (numpy.random.rand() - 0.5))))
idx2 = (idx + (2 * fft_len))
channel[idx2] = (channel[idx2] * numpy.exp((((1j * 0) * numpy.pi) * (numpy.random.rand() - 0.5))))
chan_tag = gr.tag_t()
chan_tag.offset = 0
chan_tag.key = pmt.string_to_symbol('ofdm_sync_chan_taps')
chan_tag.value = pmt.init_c32vector(fft_len, channel[:fft_len])
src = blocks.vector_source_c(numpy.multiply(tx_signal, channel), False, fft_len, (chan_tag,))
eq = digital.ofdm_frame_equalizer_vcvc(equalizer.base(), 0, self.tsb_key, True)
sink = blocks.tsb_vector_sink_c(fft_len, tsb_key=self.tsb_key)
self.tb.connect(src, blocks.stream_to_tagged_stream(gr.sizeof_gr_complex, fft_len, (len(tx_data) / fft_len), self.tsb_key), eq, sink)
self.tb.run()
rx_data = [(cnst.decision_maker_v((x,)) if (x != 0) else (- 1)) for x in sink.data()[0]]
self.assertEqual(tx_data, rx_data)
self.assertEqual(len(sink.tags()), 1)
tag = sink.tags()[0]
self.assertEqual(pmt.symbol_to_string(tag.key), 'ofdm_sync_chan_taps')
self.assertComplexTuplesAlmostEqual(list(pmt.c32vector_elements(tag.value)), channel[(- fft_len):], places=1)<|docstring|>Use the simple DFE equalizer.<|endoftext|> |
77ed5cb7ec9cd5e8188f2a12d256d44d065dc58b379bbcf79127d8331514fe93 | def main():
'Run all of the tests when run as a module with -m.'
suite = tests.get_suite()
runner = unittest.TextTestRunner()
runner.run(suite) | Run all of the tests when run as a module with -m. | mdx_picture/tests/__main__.py | main | speechkey/mdx_picture | 0 | python | def main():
suite = tests.get_suite()
runner = unittest.TextTestRunner()
runner.run(suite) | def main():
suite = tests.get_suite()
runner = unittest.TextTestRunner()
runner.run(suite)<|docstring|>Run all of the tests when run as a module with -m.<|endoftext|> |
e695571a2ac3d1b0383fe90ec6b4d92ff61e1752a9190c1099d334517ea527f4 | def add_contact(self, segment_id, contact_id):
'\n Add a contact to the segment\n\n :param segment_id: int Segment ID\n :param contact_id: int Contact ID\n :return: dict|str\n '
response = self._client.session.post('{url}/{segment_id}/contact/add/{contact_id}'.format(url=self.endpoint_url, segment_id=segment_id, contact_id=contact_id))
return self.process_response(response) | Add a contact to the segment
:param segment_id: int Segment ID
:param contact_id: int Contact ID
:return: dict|str | mautic/segments.py | add_contact | resumov/python-mautic | 18 | python | def add_contact(self, segment_id, contact_id):
'\n Add a contact to the segment\n\n :param segment_id: int Segment ID\n :param contact_id: int Contact ID\n :return: dict|str\n '
response = self._client.session.post('{url}/{segment_id}/contact/add/{contact_id}'.format(url=self.endpoint_url, segment_id=segment_id, contact_id=contact_id))
return self.process_response(response) | def add_contact(self, segment_id, contact_id):
'\n Add a contact to the segment\n\n :param segment_id: int Segment ID\n :param contact_id: int Contact ID\n :return: dict|str\n '
response = self._client.session.post('{url}/{segment_id}/contact/add/{contact_id}'.format(url=self.endpoint_url, segment_id=segment_id, contact_id=contact_id))
return self.process_response(response)<|docstring|>Add a contact to the segment
:param segment_id: int Segment ID
:param contact_id: int Contact ID
:return: dict|str<|endoftext|> |
41781b31ce9ecc80f5326f6e6808907201031b7c5a3cfb0b5cab547a99d8f994 | def train_preprocess(partition, file_list, max_len):
'\n Return processed data (ndarray) and original file length (list)\n '
corpus = []
pkeys = partition.keys()
for fn in file_list:
if (fn not in pkeys):
logging.critical((fn + ' not exists in partition'))
else:
data = partition[fn]['whole_bytes']
corpus.append(data)
len_list = None
seq = pad_sequences(corpus, maxlen=max_len, truncating='post', padding='post')
return (seq, len_list) | Return processed data (ndarray) and original file length (list) | src/utils/preprocess.py | train_preprocess | anandharaju/Echelon_TF2 | 0 | python | def train_preprocess(partition, file_list, max_len):
'\n \n '
corpus = []
pkeys = partition.keys()
for fn in file_list:
if (fn not in pkeys):
logging.critical((fn + ' not exists in partition'))
else:
data = partition[fn]['whole_bytes']
corpus.append(data)
len_list = None
seq = pad_sequences(corpus, maxlen=max_len, truncating='post', padding='post')
return (seq, len_list) | def train_preprocess(partition, file_list, max_len):
'\n \n '
corpus = []
pkeys = partition.keys()
for fn in file_list:
if (fn not in pkeys):
logging.critical((fn + ' not exists in partition'))
else:
data = partition[fn]['whole_bytes']
corpus.append(data)
len_list = None
seq = pad_sequences(corpus, maxlen=max_len, truncating='post', padding='post')
return (seq, len_list)<|docstring|>Return processed data (ndarray) and original file length (list)<|endoftext|> |
827ffa743ea17e895b1e0e21c79308b264b5906589541618dd4741fdb7b9e180 | def train_preprocess_by_section(spartition, file_list, max_len, sections):
'\n Return processed data (ndarray) and original section length (list)\n '
if (sections is None):
logging.critical('No sections supplied to process. Check if Q-criterion based selection completed successfully.')
corpus = []
pkeys = spartition.keys()
for fn in file_list:
if (fn not in pkeys):
logging.critical((fn + ' not exists in partition'))
else:
fjson = spartition[fn]
combined = np.zeros((fjson['whole_bytes_size'] if cnst.LINUX_ENV else (2 ** 20)))
try:
keys = fjson['section_info'].keys()
for section in sections:
if (section in keys):
start = fjson['section_info'][section]['section_bounds']['start_offset']
data = fjson['section_info'][section]['section_data']
combined[start:(start + len(data))] = data
corpus.append(combined)
except Exception as e:
logging.exception('Error in Module: preprocess/process_by_section.')
seq = pad_sequences(corpus, maxlen=max_len, padding='post', truncating='post')
return (seq, None) | Return processed data (ndarray) and original section length (list) | src/utils/preprocess.py | train_preprocess_by_section | anandharaju/Echelon_TF2 | 0 | python | def train_preprocess_by_section(spartition, file_list, max_len, sections):
'\n \n '
if (sections is None):
logging.critical('No sections supplied to process. Check if Q-criterion based selection completed successfully.')
corpus = []
pkeys = spartition.keys()
for fn in file_list:
if (fn not in pkeys):
logging.critical((fn + ' not exists in partition'))
else:
fjson = spartition[fn]
combined = np.zeros((fjson['whole_bytes_size'] if cnst.LINUX_ENV else (2 ** 20)))
try:
keys = fjson['section_info'].keys()
for section in sections:
if (section in keys):
start = fjson['section_info'][section]['section_bounds']['start_offset']
data = fjson['section_info'][section]['section_data']
combined[start:(start + len(data))] = data
corpus.append(combined)
except Exception as e:
logging.exception('Error in Module: preprocess/process_by_section.')
seq = pad_sequences(corpus, maxlen=max_len, padding='post', truncating='post')
return (seq, None) | def train_preprocess_by_section(spartition, file_list, max_len, sections):
'\n \n '
if (sections is None):
logging.critical('No sections supplied to process. Check if Q-criterion based selection completed successfully.')
corpus = []
pkeys = spartition.keys()
for fn in file_list:
if (fn not in pkeys):
logging.critical((fn + ' not exists in partition'))
else:
fjson = spartition[fn]
combined = np.zeros((fjson['whole_bytes_size'] if cnst.LINUX_ENV else (2 ** 20)))
try:
keys = fjson['section_info'].keys()
for section in sections:
if (section in keys):
start = fjson['section_info'][section]['section_bounds']['start_offset']
data = fjson['section_info'][section]['section_data']
combined[start:(start + len(data))] = data
corpus.append(combined)
except Exception as e:
logging.exception('Error in Module: preprocess/process_by_section.')
seq = pad_sequences(corpus, maxlen=max_len, padding='post', truncating='post')
return (seq, None)<|docstring|>Return processed data (ndarray) and original section length (list)<|endoftext|> |
275698f3c81a475e477d8b0e2a5e4e14c22fcbeb87c9d846eb153b5c074d677f | def preprocess(partition, file_list):
'\n Return processed data (ndarray) and original file length (list)\n '
a1 = time.time()
corpus = [partition[fn[:(- 4)]]['whole_bytes'] for fn in file_list]
b1 = time.time()
seq = pad_sequences(corpus, maxlen=cnst.MAX_FILE_SIZE_LIMIT, truncating='post', padding='post')
c1 = time.time()
return seq | Return processed data (ndarray) and original file length (list) | src/utils/preprocess.py | preprocess | anandharaju/Echelon_TF2 | 0 | python | def preprocess(partition, file_list):
'\n \n '
a1 = time.time()
corpus = [partition[fn[:(- 4)]]['whole_bytes'] for fn in file_list]
b1 = time.time()
seq = pad_sequences(corpus, maxlen=cnst.MAX_FILE_SIZE_LIMIT, truncating='post', padding='post')
c1 = time.time()
return seq | def preprocess(partition, file_list):
'\n \n '
a1 = time.time()
corpus = [partition[fn[:(- 4)]]['whole_bytes'] for fn in file_list]
b1 = time.time()
seq = pad_sequences(corpus, maxlen=cnst.MAX_FILE_SIZE_LIMIT, truncating='post', padding='post')
c1 = time.time()
return seq<|docstring|>Return processed data (ndarray) and original file length (list)<|endoftext|> |
b899e222924564ff95be7a4af326213c039cd140444e5ef989a87f0b5b1f9c38 | def preprocess_by_section_by_samples(file_list, max_len, sections):
'\n Return processed data (ndarray) and original section length (list)\n '
if (sections is None):
logging.critical('No sections supplied to process. Check if Q-criterion based selection completed successfully.')
corpus = []
for fn in file_list:
if (not os.path.isfile((((cnst.PKL_SOURCE_PATH + 't2') + cnst.ESC) + fn))):
print(fn, 'not exist')
else:
try:
with open((((cnst.PKL_SOURCE_PATH + 't2') + cnst.ESC) + fn), 'rb') as f:
fjson = pickle.load(f)
keys = fjson['section_info'].keys()
combined = np.zeros(cnst.MAX_FILE_SIZE_LIMIT)
for section in sections:
if (section in keys):
start = fjson['section_info'][section]['section_bounds']['start_offset']
data = fjson['section_info'][section]['section_data']
combined[start:(start + len(data))] = data
corpus.append(combined)
except Exception as e:
logging.exception('Error in Module: preprocess/process_by_section.')
corpus = [[byte for byte in doc] for doc in corpus]
seq = pad_sequences(corpus, maxlen=max_len, padding='post', truncating='post')
return seq | Return processed data (ndarray) and original section length (list) | src/utils/preprocess.py | preprocess_by_section_by_samples | anandharaju/Echelon_TF2 | 0 | python | def preprocess_by_section_by_samples(file_list, max_len, sections):
'\n \n '
if (sections is None):
logging.critical('No sections supplied to process. Check if Q-criterion based selection completed successfully.')
corpus = []
for fn in file_list:
if (not os.path.isfile((((cnst.PKL_SOURCE_PATH + 't2') + cnst.ESC) + fn))):
print(fn, 'not exist')
else:
try:
with open((((cnst.PKL_SOURCE_PATH + 't2') + cnst.ESC) + fn), 'rb') as f:
fjson = pickle.load(f)
keys = fjson['section_info'].keys()
combined = np.zeros(cnst.MAX_FILE_SIZE_LIMIT)
for section in sections:
if (section in keys):
start = fjson['section_info'][section]['section_bounds']['start_offset']
data = fjson['section_info'][section]['section_data']
combined[start:(start + len(data))] = data
corpus.append(combined)
except Exception as e:
logging.exception('Error in Module: preprocess/process_by_section.')
corpus = [[byte for byte in doc] for doc in corpus]
seq = pad_sequences(corpus, maxlen=max_len, padding='post', truncating='post')
return seq | def preprocess_by_section_by_samples(file_list, max_len, sections):
'\n \n '
if (sections is None):
logging.critical('No sections supplied to process. Check if Q-criterion based selection completed successfully.')
corpus = []
for fn in file_list:
if (not os.path.isfile((((cnst.PKL_SOURCE_PATH + 't2') + cnst.ESC) + fn))):
print(fn, 'not exist')
else:
try:
with open((((cnst.PKL_SOURCE_PATH + 't2') + cnst.ESC) + fn), 'rb') as f:
fjson = pickle.load(f)
keys = fjson['section_info'].keys()
combined = np.zeros(cnst.MAX_FILE_SIZE_LIMIT)
for section in sections:
if (section in keys):
start = fjson['section_info'][section]['section_bounds']['start_offset']
data = fjson['section_info'][section]['section_data']
combined[start:(start + len(data))] = data
corpus.append(combined)
except Exception as e:
logging.exception('Error in Module: preprocess/process_by_section.')
corpus = [[byte for byte in doc] for doc in corpus]
seq = pad_sequences(corpus, maxlen=max_len, padding='post', truncating='post')
return seq<|docstring|>Return processed data (ndarray) and original section length (list)<|endoftext|> |
6a8f0bf4fda9ef31891081e596b6dc287a31eeb2da211e89908c5372959f3d0f | def preprocess_by_section(spartition, file_list, sections):
'\n Return processed data (ndarray) and original section length (list)\n '
corpus = []
for fn in file_list:
fjson = spartition[fn[:(- 4)]]
combined = np.zeros(cnst.MAX_FILE_SIZE_LIMIT)
keys = fjson['section_info'].keys()
for section in sections:
if (section in keys):
start = fjson['section_info'][section]['section_bounds']['start_offset']
data = fjson['section_info'][section]['section_data']
combined[start:(start + len(data))] = data
corpus.append(combined)
'\n # Concatenation logic - non-uniform section ends are padded to meet nearest conv. window multiple\n combined = []\n try:\n keys = fjson["section_info"].keys()\n for section in sections:\n if section in keys:\n # print(np.shape(combined))\n # start = fjson["section_info"][section]["section_bounds"]["start_offset"]\n # end = fjson["section_info"][section]["section_bounds"]["end_offset"] + 1\n data = fjson["section_info"][section]["section_data"]\n # print(np.shape(data), np.shape(combined), np.shape(len(data)))\n combined = np.concatenate((combined, data, np.zeros(cnst.CONV_WINDOW_SIZE - (len(data) % cnst.CONV_WINDOW_SIZE))), axis=None)\n if len(data) % cnst.CONV_WINDOW_SIZE > 0:\n combined = np.concatenate((combined, data, np.zeros(cnst.CONV_WINDOW_SIZE - (len(data) % cnst.CONV_WINDOW_SIZE))), axis=None)\n else:\n combined = np.concatenate((combined, data), axis=None)\n if len(combined) > max_len:\n logging.debug("[CAUTION: LOSS_OF_DATA] Combined sections exceeded max sample length by " + str(\n len(combined) - max_len) + " bytes. #Sections:"+str(len(sections)))\n corpus.append(combined)\n '
seq = pad_sequences(corpus, maxlen=cnst.MAX_FILE_SIZE_LIMIT, padding='post', truncating='post')
return seq | Return processed data (ndarray) and original section length (list) | src/utils/preprocess.py | preprocess_by_section | anandharaju/Echelon_TF2 | 0 | python | def preprocess_by_section(spartition, file_list, sections):
'\n \n '
corpus = []
for fn in file_list:
fjson = spartition[fn[:(- 4)]]
combined = np.zeros(cnst.MAX_FILE_SIZE_LIMIT)
keys = fjson['section_info'].keys()
for section in sections:
if (section in keys):
start = fjson['section_info'][section]['section_bounds']['start_offset']
data = fjson['section_info'][section]['section_data']
combined[start:(start + len(data))] = data
corpus.append(combined)
'\n # Concatenation logic - non-uniform section ends are padded to meet nearest conv. window multiple\n combined = []\n try:\n keys = fjson["section_info"].keys()\n for section in sections:\n if section in keys:\n # print(np.shape(combined))\n # start = fjson["section_info"][section]["section_bounds"]["start_offset"]\n # end = fjson["section_info"][section]["section_bounds"]["end_offset"] + 1\n data = fjson["section_info"][section]["section_data"]\n # print(np.shape(data), np.shape(combined), np.shape(len(data)))\n combined = np.concatenate((combined, data, np.zeros(cnst.CONV_WINDOW_SIZE - (len(data) % cnst.CONV_WINDOW_SIZE))), axis=None)\n if len(data) % cnst.CONV_WINDOW_SIZE > 0:\n combined = np.concatenate((combined, data, np.zeros(cnst.CONV_WINDOW_SIZE - (len(data) % cnst.CONV_WINDOW_SIZE))), axis=None)\n else:\n combined = np.concatenate((combined, data), axis=None)\n if len(combined) > max_len:\n logging.debug("[CAUTION: LOSS_OF_DATA] Combined sections exceeded max sample length by " + str(\n len(combined) - max_len) + " bytes. #Sections:"+str(len(sections)))\n corpus.append(combined)\n '
seq = pad_sequences(corpus, maxlen=cnst.MAX_FILE_SIZE_LIMIT, padding='post', truncating='post')
return seq | def preprocess_by_section(spartition, file_list, sections):
'\n \n '
corpus = []
for fn in file_list:
fjson = spartition[fn[:(- 4)]]
combined = np.zeros(cnst.MAX_FILE_SIZE_LIMIT)
keys = fjson['section_info'].keys()
for section in sections:
if (section in keys):
start = fjson['section_info'][section]['section_bounds']['start_offset']
data = fjson['section_info'][section]['section_data']
combined[start:(start + len(data))] = data
corpus.append(combined)
'\n # Concatenation logic - non-uniform section ends are padded to meet nearest conv. window multiple\n combined = []\n try:\n keys = fjson["section_info"].keys()\n for section in sections:\n if section in keys:\n # print(np.shape(combined))\n # start = fjson["section_info"][section]["section_bounds"]["start_offset"]\n # end = fjson["section_info"][section]["section_bounds"]["end_offset"] + 1\n data = fjson["section_info"][section]["section_data"]\n # print(np.shape(data), np.shape(combined), np.shape(len(data)))\n combined = np.concatenate((combined, data, np.zeros(cnst.CONV_WINDOW_SIZE - (len(data) % cnst.CONV_WINDOW_SIZE))), axis=None)\n if len(data) % cnst.CONV_WINDOW_SIZE > 0:\n combined = np.concatenate((combined, data, np.zeros(cnst.CONV_WINDOW_SIZE - (len(data) % cnst.CONV_WINDOW_SIZE))), axis=None)\n else:\n combined = np.concatenate((combined, data), axis=None)\n if len(combined) > max_len:\n logging.debug("[CAUTION: LOSS_OF_DATA] Combined sections exceeded max sample length by " + str(\n len(combined) - max_len) + " bytes. #Sections:"+str(len(sections)))\n corpus.append(combined)\n '
seq = pad_sequences(corpus, maxlen=cnst.MAX_FILE_SIZE_LIMIT, padding='post', truncating='post')
return seq<|docstring|>Return processed data (ndarray) and original section length (list)<|endoftext|> |
105cb08ebfdbb575bef4211671567307609e675995ebb597ce72116f6c680e4a | def __init__(self, pattern, topleft):
u'コンストラクタ。\n '
super(_Operatable, self).__init__(pattern)
(self._left, self._top) = topleft | コンストラクタ。 | Source/pieces/falling.py | __init__ | LucXyMan/starseeker | 0 | python | def __init__(self, pattern, topleft):
u'\n '
super(_Operatable, self).__init__(pattern)
(self._left, self._top) = topleft | def __init__(self, pattern, topleft):
u'\n '
super(_Operatable, self).__init__(pattern)
(self._left, self._top) = topleft<|docstring|>コンストラクタ。<|endoftext|> |
c4be8b43fec8790768adb2fe5af148d5fdd6304f8d66f64bffacc13692345e16 | @property
def left(self):
u'左位置取得。\n '
return self._left | 左位置取得。 | Source/pieces/falling.py | left | LucXyMan/starseeker | 0 | python | @property
def left(self):
u'\n '
return self._left | @property
def left(self):
u'\n '
return self._left<|docstring|>左位置取得。<|endoftext|> |
42966b22b6894f87ef552852f6f33ebba7831dd6a410232bbe47d8614431283c | @left.setter
def left(self, value):
u'左位置設定。\n '
self.clear()
self._left = value
self._create() | 左位置設定。 | Source/pieces/falling.py | left | LucXyMan/starseeker | 0 | python | @left.setter
def left(self, value):
u'\n '
self.clear()
self._left = value
self._create() | @left.setter
def left(self, value):
u'\n '
self.clear()
self._left = value
self._create()<|docstring|>左位置設定。<|endoftext|> |
4291841eacca199d93dc3a124400297650b232ac972624937eb3e364947485c8 | @property
def top(self):
u'上位置取得。\n '
return self._top | 上位置取得。 | Source/pieces/falling.py | top | LucXyMan/starseeker | 0 | python | @property
def top(self):
u'\n '
return self._top | @property
def top(self):
u'\n '
return self._top<|docstring|>上位置取得。<|endoftext|> |
84ee7c721a91eed2f45e7b6bacdc8fae49d0401f5b9aa456f4be7cfac19923b6 | @top.setter
def top(self, value):
u'上位置設定。\n '
self.clear()
self._top = value
self._create() | 上位置設定。 | Source/pieces/falling.py | top | LucXyMan/starseeker | 0 | python | @top.setter
def top(self, value):
u'\n '
self.clear()
self._top = value
self._create() | @top.setter
def top(self, value):
u'\n '
self.clear()
self._top = value
self._create()<|docstring|>上位置設定。<|endoftext|> |
af2d594c199d507fd550f4e83fa4b252b4a5b63f32426b2afb75357b2a77fce7 | def __init__(self, pattern, pos=(0, 0), is_virtual=False):
u'コンストラクタ。\n '
super(Falling, self).__init__(pattern, pos)
self.__is_rested = False
self.__rotated = 0
self.__is_commanded = False
self.__is_t_spin = False
self.__is_virtual = is_virtual
self._create() | コンストラクタ。 | Source/pieces/falling.py | __init__ | LucXyMan/starseeker | 0 | python | def __init__(self, pattern, pos=(0, 0), is_virtual=False):
u'\n '
super(Falling, self).__init__(pattern, pos)
self.__is_rested = False
self.__rotated = 0
self.__is_commanded = False
self.__is_t_spin = False
self.__is_virtual = is_virtual
self._create() | def __init__(self, pattern, pos=(0, 0), is_virtual=False):
u'\n '
super(Falling, self).__init__(pattern, pos)
self.__is_rested = False
self.__rotated = 0
self.__is_commanded = False
self.__is_t_spin = False
self.__is_virtual = is_virtual
self._create()<|docstring|>コンストラクタ。<|endoftext|> |
4514d02500d0a6340afba837f984f726c6c10d90d74d588e615426eb7c81288c | def _create(self):
u'ブロック作成。\n '
for block in self._pattern.get_blocks((self.left, self.top), self.__is_virtual):
block.piece = self
self._blocks.append(block) | ブロック作成。 | Source/pieces/falling.py | _create | LucXyMan/starseeker | 0 | python | def _create(self):
u'\n '
for block in self._pattern.get_blocks((self.left, self.top), self.__is_virtual):
block.piece = self
self._blocks.append(block) | def _create(self):
u'\n '
for block in self._pattern.get_blocks((self.left, self.top), self.__is_virtual):
block.piece = self
self._blocks.append(block)<|docstring|>ブロック作成。<|endoftext|> |
d132679a0d6e8547991a78af23928a79eff987ce15e96c88acc4e633ad9891e1 | def remove(self, block):
u'ブロック削除。\n '
if (block in self._blocks[:]):
self._blocks.remove(block) | ブロック削除。 | Source/pieces/falling.py | remove | LucXyMan/starseeker | 0 | python | def remove(self, block):
u'\n '
if (block in self._blocks[:]):
self._blocks.remove(block) | def remove(self, block):
u'\n '
if (block in self._blocks[:]):
self._blocks.remove(block)<|docstring|>ブロック削除。<|endoftext|> |
387a4dbbcf86a68f486b93048caac060d6486ed91d7329479c73ff27c8e3fe58 | def clear(self):
u'ブロック消去。\n '
self._blocks = [] | ブロック消去。 | Source/pieces/falling.py | clear | LucXyMan/starseeker | 0 | python | def clear(self):
u'\n '
self._blocks = [] | def clear(self):
u'\n '
self._blocks = []<|docstring|>ブロック消去。<|endoftext|> |
24c56527fe9ec5aa71d609fc15ee88118bc947da5e0aaf03c6dd9b4d2a547eed | def stamp(self, field):
u'ピースをフィールドに転写。\n '
if (not self.__is_rested):
field.add(*self._pattern.get_blocks((self.left, self.top), self.__is_virtual))
self.clear() | ピースをフィールドに転写。 | Source/pieces/falling.py | stamp | LucXyMan/starseeker | 0 | python | def stamp(self, field):
u'\n '
if (not self.__is_rested):
field.add(*self._pattern.get_blocks((self.left, self.top), self.__is_virtual))
self.clear() | def stamp(self, field):
u'\n '
if (not self.__is_rested):
field.add(*self._pattern.get_blocks((self.left, self.top), self.__is_virtual))
self.clear()<|docstring|>ピースをフィールドに転写。<|endoftext|> |
d4426db95877125dbaf1d7cd752226e8071221203e281bcc6605b4458929d98f | def rest(self, field):
u'ピースの固着。\n '
if (not self.__is_rested):
self.stamp(field)
self.__is_rested = True | ピースの固着。 | Source/pieces/falling.py | rest | LucXyMan/starseeker | 0 | python | def rest(self, field):
u'\n '
if (not self.__is_rested):
self.stamp(field)
self.__is_rested = True | def rest(self, field):
u'\n '
if (not self.__is_rested):
self.stamp(field)
self.__is_rested = True<|docstring|>ピースの固着。<|endoftext|> |
aec38290ace9c8a31128d8c069b5319150e35bac7aba3881e2634d9fb1cdd1e3 | def skip(self):
u'ピースを消去して固着。\n '
self.clear()
self.__is_rested = True | ピースを消去して固着。 | Source/pieces/falling.py | skip | LucXyMan/starseeker | 0 | python | def skip(self):
u'\n '
self.clear()
self.__is_rested = True | def skip(self):
u'\n '
self.clear()
self.__is_rested = True<|docstring|>ピースを消去して固着。<|endoftext|> |
5478d69c2f153c834d3cbb59db98080faab195b624c6d1c189717178d72e3775 | def move(self, field, vector):
u'ピースの移動。\n '
if (not self.__is_rested):
old_topleft = (self.left, self.top)
self.clear()
self._left += vector[0]
self._top += vector[1]
self._create()
if self.is_collide(field):
self.topleft = old_topleft
return False
else:
self.__is_t_spin = False
return True
return False | ピースの移動。 | Source/pieces/falling.py | move | LucXyMan/starseeker | 0 | python | def move(self, field, vector):
u'\n '
if (not self.__is_rested):
old_topleft = (self.left, self.top)
self.clear()
self._left += vector[0]
self._top += vector[1]
self._create()
if self.is_collide(field):
self.topleft = old_topleft
return False
else:
self.__is_t_spin = False
return True
return False | def move(self, field, vector):
u'\n '
if (not self.__is_rested):
old_topleft = (self.left, self.top)
self.clear()
self._left += vector[0]
self._top += vector[1]
self._create()
if self.is_collide(field):
self.topleft = old_topleft
return False
else:
self.__is_t_spin = False
return True
return False<|docstring|>ピースの移動。<|endoftext|> |
4e78b2ef6f2574112d36a65bdcd3e18d214b0e2d56dd6a273dcf2f0a422aab52 | def slide(self, field, is_right):
u'左右移動。\n '
self.__is_commanded = True
return (self.move(field, _const.RIGHT) if is_right else self.move(field, _const.LEFT)) | 左右移動。 | Source/pieces/falling.py | slide | LucXyMan/starseeker | 0 | python | def slide(self, field, is_right):
u'\n '
self.__is_commanded = True
return (self.move(field, _const.RIGHT) if is_right else self.move(field, _const.LEFT)) | def slide(self, field, is_right):
u'\n '
self.__is_commanded = True
return (self.move(field, _const.RIGHT) if is_right else self.move(field, _const.LEFT))<|docstring|>左右移動。<|endoftext|> |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.