body_hash
stringlengths 64
64
| body
stringlengths 23
109k
| docstring
stringlengths 1
57k
| path
stringlengths 4
198
| name
stringlengths 1
115
| repository_name
stringlengths 7
111
| repository_stars
float64 0
191k
| lang
stringclasses 1
value | body_without_docstring
stringlengths 14
108k
| unified
stringlengths 45
133k
|
---|---|---|---|---|---|---|---|---|---|
0ee5b6155418c826e06c8e6f57998720d81afb77e686d50abc57e9b7adac33e9 | @requests_mock.mock()
def test_dump_to_ckan_package_create_streaming_resource_fail(self, mock_request):
'Create package with streaming resource, which failed to create\n resource.'
base_url = 'https://demo.ckan.org/api/3/action/'
package_create_url = '{}package_create'.format(base_url)
resource_create_url = '{}resource_create'.format(base_url)
mock_request.post(package_create_url, json={'success': True, 'result': {'id': 'ckan-package-id'}})
mock_request.post(resource_create_url, json={'success': False, 'error': {'__type': 'Validation Error', 'name': ['Some validation error.']}})
datapackage = {'name': 'my-datapackage', 'project': 'my-project', 'resources': [{'dpp:streamedFrom': 'https://example.com/file.csv', 'dpp:streaming': True, 'name': 'resource_streamed.csv', 'path': 'data/file.csv', 'schema': {'fields': [{'name': 'first', 'type': 'string'}, {'name': 'last', 'type': 'string'}]}}, {'dpp:streamedFrom': 'https://example.com/file_02.csv', 'name': 'resource_not_streamed.csv', 'path': '.'}]}
params = {'ckan-host': 'https://demo.ckan.org', 'ckan-api-key': 'my-api-key', 'overwrite_existing': True, 'force-format': True}
processor_dir = os.path.dirname(datapackage_pipelines_ckan.processors.__file__)
processor_path = os.path.join(processor_dir, 'dump/to_ckan.py')
json_file = {'first': 'Fred', 'last': 'Smith'}
json_file = json.dumps(json_file)
(spew_args, _) = mock_dump_test(processor_path, (params, datapackage, iter([ResourceIterator(io.StringIO(json_file), datapackage['resources'][0], {'schema': {'fields': []}})])))
spew_res_iter = spew_args[1]
with self.assertRaises(Exception):
for r in spew_res_iter:
list(r) | Create package with streaming resource, which failed to create
resource. | tests/test_dump_to_ckan.py | test_dump_to_ckan_package_create_streaming_resource_fail | OriHoch/datapackage-pipelines-ckan | 0 | python | @requests_mock.mock()
def test_dump_to_ckan_package_create_streaming_resource_fail(self, mock_request):
'Create package with streaming resource, which failed to create\n resource.'
base_url = 'https://demo.ckan.org/api/3/action/'
package_create_url = '{}package_create'.format(base_url)
resource_create_url = '{}resource_create'.format(base_url)
mock_request.post(package_create_url, json={'success': True, 'result': {'id': 'ckan-package-id'}})
mock_request.post(resource_create_url, json={'success': False, 'error': {'__type': 'Validation Error', 'name': ['Some validation error.']}})
datapackage = {'name': 'my-datapackage', 'project': 'my-project', 'resources': [{'dpp:streamedFrom': 'https://example.com/file.csv', 'dpp:streaming': True, 'name': 'resource_streamed.csv', 'path': 'data/file.csv', 'schema': {'fields': [{'name': 'first', 'type': 'string'}, {'name': 'last', 'type': 'string'}]}}, {'dpp:streamedFrom': 'https://example.com/file_02.csv', 'name': 'resource_not_streamed.csv', 'path': '.'}]}
params = {'ckan-host': 'https://demo.ckan.org', 'ckan-api-key': 'my-api-key', 'overwrite_existing': True, 'force-format': True}
processor_dir = os.path.dirname(datapackage_pipelines_ckan.processors.__file__)
processor_path = os.path.join(processor_dir, 'dump/to_ckan.py')
json_file = {'first': 'Fred', 'last': 'Smith'}
json_file = json.dumps(json_file)
(spew_args, _) = mock_dump_test(processor_path, (params, datapackage, iter([ResourceIterator(io.StringIO(json_file), datapackage['resources'][0], {'schema': {'fields': []}})])))
spew_res_iter = spew_args[1]
with self.assertRaises(Exception):
for r in spew_res_iter:
list(r) | @requests_mock.mock()
def test_dump_to_ckan_package_create_streaming_resource_fail(self, mock_request):
'Create package with streaming resource, which failed to create\n resource.'
base_url = 'https://demo.ckan.org/api/3/action/'
package_create_url = '{}package_create'.format(base_url)
resource_create_url = '{}resource_create'.format(base_url)
mock_request.post(package_create_url, json={'success': True, 'result': {'id': 'ckan-package-id'}})
mock_request.post(resource_create_url, json={'success': False, 'error': {'__type': 'Validation Error', 'name': ['Some validation error.']}})
datapackage = {'name': 'my-datapackage', 'project': 'my-project', 'resources': [{'dpp:streamedFrom': 'https://example.com/file.csv', 'dpp:streaming': True, 'name': 'resource_streamed.csv', 'path': 'data/file.csv', 'schema': {'fields': [{'name': 'first', 'type': 'string'}, {'name': 'last', 'type': 'string'}]}}, {'dpp:streamedFrom': 'https://example.com/file_02.csv', 'name': 'resource_not_streamed.csv', 'path': '.'}]}
params = {'ckan-host': 'https://demo.ckan.org', 'ckan-api-key': 'my-api-key', 'overwrite_existing': True, 'force-format': True}
processor_dir = os.path.dirname(datapackage_pipelines_ckan.processors.__file__)
processor_path = os.path.join(processor_dir, 'dump/to_ckan.py')
json_file = {'first': 'Fred', 'last': 'Smith'}
json_file = json.dumps(json_file)
(spew_args, _) = mock_dump_test(processor_path, (params, datapackage, iter([ResourceIterator(io.StringIO(json_file), datapackage['resources'][0], {'schema': {'fields': []}})])))
spew_res_iter = spew_args[1]
with self.assertRaises(Exception):
for r in spew_res_iter:
list(r)<|docstring|>Create package with streaming resource, which failed to create
resource.<|endoftext|> |
12caa0c4be2a07649c7c4d7e2a43b68995f137c8f30292e70aa8e6d70a76250c | @requests_mock.mock()
def test_dump_to_ckan_package_create_streaming_resource_datastore(self, mock_request):
'Create package with streaming resource, and pushing to datastore.'
package_id = 'ckan-package-id'
base_url = 'https://demo.ckan.org/api/3/action/'
package_create_url = '{}package_create'.format(base_url)
resource_create_url = '{}resource_create'.format(base_url)
package_show_url = '{}package_show?id={}'.format(base_url, package_id)
datastore_search_url = '{}datastore_search?resource_id=_table_metadata'.format(base_url)
datastore_create_url = '{}datastore_create'.format(base_url)
datastore_upsert_url = '{}datastore_upsert'.format(base_url)
mock_request.post(package_create_url, json={'success': True, 'result': {'id': package_id}})
mock_request.post(resource_create_url, json={'success': True, 'result': {'id': 'ckan-resource-id'}})
mock_request.get(package_show_url, json={'success': True, 'result': {'id': '7766839b-face-4336-8e1a-3c51c5e7634d', 'resources': [{'name': 'co2-mm-mlo_csv_not_streamed', 'format': 'CSV', 'url': 'https://pkgstore.datahub.io/core/co2-ppm:co2-mm-mlo_csv/data/co2-mm-mlo_csv.csv', 'datastore_active': False, 'cache_last_updated': None, 'package_id': '7766839b-face-4336-8e1a-3c51c5e7634d', 'id': '329e4271-8cc3-48c9-a219-c8eab52acc65'}, {'name': 'co2-mm-mlo_csv_streamed', 'encoding': 'utf-8', 'url': 'https://demo.ckan.org/dataset/7766839b-face-4336-8e1a-3c51c5e7634d/resource/723380d7-688a-465f-b0bd-ff6d1ec25680/download/co2-mm-mlo_csv_streamed.csv', 'datastore_active': False, 'format': 'CSV', 'package_id': '7766839b-face-4336-8e1a-3c51c5e7634d', 'id': '723380d7-688a-465f-b0bd-ff6d1ec25680'}], 'num_resources': 2, 'name': 'test-dataset-010203', 'title': 'Test Dataset'}})
mock_request.get(datastore_search_url, json={'success': True, 'result': {'resource_id': '_table_metadata', 'records': []}})
mock_request.post(datastore_create_url, json={'success': True, 'result': {'resource_id': '7564690e-86ec-44de-a3f5-2cff9cbb521f'}})
mock_request.post(datastore_upsert_url, json={'success': True})
datapackage = {'name': 'my-datapackage', 'project': 'my-project', 'resources': [{'dpp:streamedFrom': 'https://example.com/file.csv', 'dpp:streaming': True, 'name': 'resource_streamed.csv', 'path': 'data/file.csv', 'schema': {'fields': [{'name': 'first', 'type': 'string'}, {'name': 'last', 'type': 'string'}]}}, {'dpp:streamedFrom': 'https://example.com/file_02.csv', 'name': 'resource_not_streamed.csv', 'path': '.'}]}
params = {'ckan-host': 'https://demo.ckan.org', 'ckan-api-key': 'my-api-key', 'overwrite_existing': True, 'force-format': True, 'push_resources_to_datastore': True}
processor_dir = os.path.dirname(datapackage_pipelines_ckan.processors.__file__)
processor_path = os.path.join(processor_dir, 'dump/to_ckan.py')
json_file = {'first': 'Fred', 'last': 'Smith'}
json_file = json.dumps(json_file)
(spew_args, _) = mock_dump_test(processor_path, (params, datapackage, iter([ResourceIterator(io.StringIO(json_file), datapackage['resources'][0], {'schema': {'fields': []}})])))
spew_res_iter = spew_args[1]
for r in spew_res_iter:
list(r)
requests = mock_request.request_history
assert (len(requests) == 7)
assert (requests[0].url == package_create_url)
assert (requests[1].url == resource_create_url)
assert (requests[2].url == resource_create_url)
assert (requests[3].url == package_show_url)
assert requests[4].url.startswith(datastore_search_url)
assert (requests[5].url == datastore_create_url)
assert (requests[6].url == datastore_upsert_url) | Create package with streaming resource, and pushing to datastore. | tests/test_dump_to_ckan.py | test_dump_to_ckan_package_create_streaming_resource_datastore | OriHoch/datapackage-pipelines-ckan | 0 | python | @requests_mock.mock()
def test_dump_to_ckan_package_create_streaming_resource_datastore(self, mock_request):
package_id = 'ckan-package-id'
base_url = 'https://demo.ckan.org/api/3/action/'
package_create_url = '{}package_create'.format(base_url)
resource_create_url = '{}resource_create'.format(base_url)
package_show_url = '{}package_show?id={}'.format(base_url, package_id)
datastore_search_url = '{}datastore_search?resource_id=_table_metadata'.format(base_url)
datastore_create_url = '{}datastore_create'.format(base_url)
datastore_upsert_url = '{}datastore_upsert'.format(base_url)
mock_request.post(package_create_url, json={'success': True, 'result': {'id': package_id}})
mock_request.post(resource_create_url, json={'success': True, 'result': {'id': 'ckan-resource-id'}})
mock_request.get(package_show_url, json={'success': True, 'result': {'id': '7766839b-face-4336-8e1a-3c51c5e7634d', 'resources': [{'name': 'co2-mm-mlo_csv_not_streamed', 'format': 'CSV', 'url': 'https://pkgstore.datahub.io/core/co2-ppm:co2-mm-mlo_csv/data/co2-mm-mlo_csv.csv', 'datastore_active': False, 'cache_last_updated': None, 'package_id': '7766839b-face-4336-8e1a-3c51c5e7634d', 'id': '329e4271-8cc3-48c9-a219-c8eab52acc65'}, {'name': 'co2-mm-mlo_csv_streamed', 'encoding': 'utf-8', 'url': 'https://demo.ckan.org/dataset/7766839b-face-4336-8e1a-3c51c5e7634d/resource/723380d7-688a-465f-b0bd-ff6d1ec25680/download/co2-mm-mlo_csv_streamed.csv', 'datastore_active': False, 'format': 'CSV', 'package_id': '7766839b-face-4336-8e1a-3c51c5e7634d', 'id': '723380d7-688a-465f-b0bd-ff6d1ec25680'}], 'num_resources': 2, 'name': 'test-dataset-010203', 'title': 'Test Dataset'}})
mock_request.get(datastore_search_url, json={'success': True, 'result': {'resource_id': '_table_metadata', 'records': []}})
mock_request.post(datastore_create_url, json={'success': True, 'result': {'resource_id': '7564690e-86ec-44de-a3f5-2cff9cbb521f'}})
mock_request.post(datastore_upsert_url, json={'success': True})
datapackage = {'name': 'my-datapackage', 'project': 'my-project', 'resources': [{'dpp:streamedFrom': 'https://example.com/file.csv', 'dpp:streaming': True, 'name': 'resource_streamed.csv', 'path': 'data/file.csv', 'schema': {'fields': [{'name': 'first', 'type': 'string'}, {'name': 'last', 'type': 'string'}]}}, {'dpp:streamedFrom': 'https://example.com/file_02.csv', 'name': 'resource_not_streamed.csv', 'path': '.'}]}
params = {'ckan-host': 'https://demo.ckan.org', 'ckan-api-key': 'my-api-key', 'overwrite_existing': True, 'force-format': True, 'push_resources_to_datastore': True}
processor_dir = os.path.dirname(datapackage_pipelines_ckan.processors.__file__)
processor_path = os.path.join(processor_dir, 'dump/to_ckan.py')
json_file = {'first': 'Fred', 'last': 'Smith'}
json_file = json.dumps(json_file)
(spew_args, _) = mock_dump_test(processor_path, (params, datapackage, iter([ResourceIterator(io.StringIO(json_file), datapackage['resources'][0], {'schema': {'fields': []}})])))
spew_res_iter = spew_args[1]
for r in spew_res_iter:
list(r)
requests = mock_request.request_history
assert (len(requests) == 7)
assert (requests[0].url == package_create_url)
assert (requests[1].url == resource_create_url)
assert (requests[2].url == resource_create_url)
assert (requests[3].url == package_show_url)
assert requests[4].url.startswith(datastore_search_url)
assert (requests[5].url == datastore_create_url)
assert (requests[6].url == datastore_upsert_url) | @requests_mock.mock()
def test_dump_to_ckan_package_create_streaming_resource_datastore(self, mock_request):
package_id = 'ckan-package-id'
base_url = 'https://demo.ckan.org/api/3/action/'
package_create_url = '{}package_create'.format(base_url)
resource_create_url = '{}resource_create'.format(base_url)
package_show_url = '{}package_show?id={}'.format(base_url, package_id)
datastore_search_url = '{}datastore_search?resource_id=_table_metadata'.format(base_url)
datastore_create_url = '{}datastore_create'.format(base_url)
datastore_upsert_url = '{}datastore_upsert'.format(base_url)
mock_request.post(package_create_url, json={'success': True, 'result': {'id': package_id}})
mock_request.post(resource_create_url, json={'success': True, 'result': {'id': 'ckan-resource-id'}})
mock_request.get(package_show_url, json={'success': True, 'result': {'id': '7766839b-face-4336-8e1a-3c51c5e7634d', 'resources': [{'name': 'co2-mm-mlo_csv_not_streamed', 'format': 'CSV', 'url': 'https://pkgstore.datahub.io/core/co2-ppm:co2-mm-mlo_csv/data/co2-mm-mlo_csv.csv', 'datastore_active': False, 'cache_last_updated': None, 'package_id': '7766839b-face-4336-8e1a-3c51c5e7634d', 'id': '329e4271-8cc3-48c9-a219-c8eab52acc65'}, {'name': 'co2-mm-mlo_csv_streamed', 'encoding': 'utf-8', 'url': 'https://demo.ckan.org/dataset/7766839b-face-4336-8e1a-3c51c5e7634d/resource/723380d7-688a-465f-b0bd-ff6d1ec25680/download/co2-mm-mlo_csv_streamed.csv', 'datastore_active': False, 'format': 'CSV', 'package_id': '7766839b-face-4336-8e1a-3c51c5e7634d', 'id': '723380d7-688a-465f-b0bd-ff6d1ec25680'}], 'num_resources': 2, 'name': 'test-dataset-010203', 'title': 'Test Dataset'}})
mock_request.get(datastore_search_url, json={'success': True, 'result': {'resource_id': '_table_metadata', 'records': []}})
mock_request.post(datastore_create_url, json={'success': True, 'result': {'resource_id': '7564690e-86ec-44de-a3f5-2cff9cbb521f'}})
mock_request.post(datastore_upsert_url, json={'success': True})
datapackage = {'name': 'my-datapackage', 'project': 'my-project', 'resources': [{'dpp:streamedFrom': 'https://example.com/file.csv', 'dpp:streaming': True, 'name': 'resource_streamed.csv', 'path': 'data/file.csv', 'schema': {'fields': [{'name': 'first', 'type': 'string'}, {'name': 'last', 'type': 'string'}]}}, {'dpp:streamedFrom': 'https://example.com/file_02.csv', 'name': 'resource_not_streamed.csv', 'path': '.'}]}
params = {'ckan-host': 'https://demo.ckan.org', 'ckan-api-key': 'my-api-key', 'overwrite_existing': True, 'force-format': True, 'push_resources_to_datastore': True}
processor_dir = os.path.dirname(datapackage_pipelines_ckan.processors.__file__)
processor_path = os.path.join(processor_dir, 'dump/to_ckan.py')
json_file = {'first': 'Fred', 'last': 'Smith'}
json_file = json.dumps(json_file)
(spew_args, _) = mock_dump_test(processor_path, (params, datapackage, iter([ResourceIterator(io.StringIO(json_file), datapackage['resources'][0], {'schema': {'fields': []}})])))
spew_res_iter = spew_args[1]
for r in spew_res_iter:
list(r)
requests = mock_request.request_history
assert (len(requests) == 7)
assert (requests[0].url == package_create_url)
assert (requests[1].url == resource_create_url)
assert (requests[2].url == resource_create_url)
assert (requests[3].url == package_show_url)
assert requests[4].url.startswith(datastore_search_url)
assert (requests[5].url == datastore_create_url)
assert (requests[6].url == datastore_upsert_url)<|docstring|>Create package with streaming resource, and pushing to datastore.<|endoftext|> |
411617de1442840d3eeeff65e64d39852e19fa47a2fec0013d97f7cbe2b073a7 | @requests_mock.mock()
def test_dump_to_ckan_package_create_streaming_resource_datastore_method_invalid(self, mock_request):
'Create package with streaming resource, and pushing to datastore,\n with an invalid method.'
datapackage = {'name': 'my-datapackage', 'project': 'my-project', 'resources': [{'dpp:streamedFrom': 'https://example.com/file.csv', 'dpp:streaming': True, 'name': 'resource_streamed.csv', 'path': 'data/file.csv', 'schema': {'fields': [{'name': 'first', 'type': 'string'}, {'name': 'last', 'type': 'string'}]}}, {'dpp:streamedFrom': 'https://example.com/file_02.csv', 'name': 'resource_not_streamed.csv', 'path': '.'}]}
params = {'ckan-host': 'https://demo.ckan.org', 'ckan-api-key': 'my-api-key', 'overwrite_existing': True, 'force-format': True, 'push_resources_to_datastore': True, 'push_resources_to_datastore_method': 'invalid'}
processor_dir = os.path.dirname(datapackage_pipelines_ckan.processors.__file__)
processor_path = os.path.join(processor_dir, 'dump/to_ckan.py')
json_file = {'first': 'Fred', 'last': 'Smith'}
json_file = json.dumps(json_file)
with self.assertRaises(RuntimeError):
(spew_args, _) = mock_dump_test(processor_path, (params, datapackage, iter([ResourceIterator(io.StringIO(json_file), datapackage['resources'][0], {'schema': {'fields': []}})]))) | Create package with streaming resource, and pushing to datastore,
with an invalid method. | tests/test_dump_to_ckan.py | test_dump_to_ckan_package_create_streaming_resource_datastore_method_invalid | OriHoch/datapackage-pipelines-ckan | 0 | python | @requests_mock.mock()
def test_dump_to_ckan_package_create_streaming_resource_datastore_method_invalid(self, mock_request):
'Create package with streaming resource, and pushing to datastore,\n with an invalid method.'
datapackage = {'name': 'my-datapackage', 'project': 'my-project', 'resources': [{'dpp:streamedFrom': 'https://example.com/file.csv', 'dpp:streaming': True, 'name': 'resource_streamed.csv', 'path': 'data/file.csv', 'schema': {'fields': [{'name': 'first', 'type': 'string'}, {'name': 'last', 'type': 'string'}]}}, {'dpp:streamedFrom': 'https://example.com/file_02.csv', 'name': 'resource_not_streamed.csv', 'path': '.'}]}
params = {'ckan-host': 'https://demo.ckan.org', 'ckan-api-key': 'my-api-key', 'overwrite_existing': True, 'force-format': True, 'push_resources_to_datastore': True, 'push_resources_to_datastore_method': 'invalid'}
processor_dir = os.path.dirname(datapackage_pipelines_ckan.processors.__file__)
processor_path = os.path.join(processor_dir, 'dump/to_ckan.py')
json_file = {'first': 'Fred', 'last': 'Smith'}
json_file = json.dumps(json_file)
with self.assertRaises(RuntimeError):
(spew_args, _) = mock_dump_test(processor_path, (params, datapackage, iter([ResourceIterator(io.StringIO(json_file), datapackage['resources'][0], {'schema': {'fields': []}})]))) | @requests_mock.mock()
def test_dump_to_ckan_package_create_streaming_resource_datastore_method_invalid(self, mock_request):
'Create package with streaming resource, and pushing to datastore,\n with an invalid method.'
datapackage = {'name': 'my-datapackage', 'project': 'my-project', 'resources': [{'dpp:streamedFrom': 'https://example.com/file.csv', 'dpp:streaming': True, 'name': 'resource_streamed.csv', 'path': 'data/file.csv', 'schema': {'fields': [{'name': 'first', 'type': 'string'}, {'name': 'last', 'type': 'string'}]}}, {'dpp:streamedFrom': 'https://example.com/file_02.csv', 'name': 'resource_not_streamed.csv', 'path': '.'}]}
params = {'ckan-host': 'https://demo.ckan.org', 'ckan-api-key': 'my-api-key', 'overwrite_existing': True, 'force-format': True, 'push_resources_to_datastore': True, 'push_resources_to_datastore_method': 'invalid'}
processor_dir = os.path.dirname(datapackage_pipelines_ckan.processors.__file__)
processor_path = os.path.join(processor_dir, 'dump/to_ckan.py')
json_file = {'first': 'Fred', 'last': 'Smith'}
json_file = json.dumps(json_file)
with self.assertRaises(RuntimeError):
(spew_args, _) = mock_dump_test(processor_path, (params, datapackage, iter([ResourceIterator(io.StringIO(json_file), datapackage['resources'][0], {'schema': {'fields': []}})])))<|docstring|>Create package with streaming resource, and pushing to datastore,
with an invalid method.<|endoftext|> |
b15de31dc9318c0ab0937da6d46ec0ad77d604df52e3a10394ef679603910114 | def __init__(self, num_features, training_window, training_interval):
'\n num_features: the length of the feature vector\n training_window: the number of previous data points to train on\n training_interval: the number of data points between training periods\n '
self.num_features = num_features
self.training_interval = training_interval
self.training_window = training_window
self.samples = deque(maxlen=training_window)
self.targets = deque(maxlen=training_window)
self.model = BayesianRidge()
self.severity = blr.Severity()
self.alpha = 1.0
self.parameters = 0
self.train_count = 0
self.have_trained = False
self.pred_range = [0.0, np.inf] | num_features: the length of the feature vector
training_window: the number of previous data points to train on
training_interval: the number of data points between training periods | modules/algo.py | __init__ | apadin1/Merit-Smart-Grid-Analytics | 10 | python | def __init__(self, num_features, training_window, training_interval):
'\n num_features: the length of the feature vector\n training_window: the number of previous data points to train on\n training_interval: the number of data points between training periods\n '
self.num_features = num_features
self.training_interval = training_interval
self.training_window = training_window
self.samples = deque(maxlen=training_window)
self.targets = deque(maxlen=training_window)
self.model = BayesianRidge()
self.severity = blr.Severity()
self.alpha = 1.0
self.parameters = 0
self.train_count = 0
self.have_trained = False
self.pred_range = [0.0, np.inf] | def __init__(self, num_features, training_window, training_interval):
'\n num_features: the length of the feature vector\n training_window: the number of previous data points to train on\n training_interval: the number of data points between training periods\n '
self.num_features = num_features
self.training_interval = training_interval
self.training_window = training_window
self.samples = deque(maxlen=training_window)
self.targets = deque(maxlen=training_window)
self.model = BayesianRidge()
self.severity = blr.Severity()
self.alpha = 1.0
self.parameters = 0
self.train_count = 0
self.have_trained = False
self.pred_range = [0.0, np.inf]<|docstring|>num_features: the length of the feature vector
training_window: the number of previous data points to train on
training_interval: the number of data points between training periods<|endoftext|> |
f1ba96c08a9301c3251d4abd63184380b1536e04548485ed80ff6a7ba3c97b0b | def run(self, sample):
'\n Add a single sample to the data pool.\n The sample should be a feature vector: {x_1, x_2, x_3, ..., x_n, y}\n Where x_1->x_n are features and y is the target value\n '
try:
assert (len(sample) == (self.num_features + 1))
except AssertionError:
raise RuntimeError('sample length {} does not match number of features {}'.format(len(sample), (self.num_features + 1)))
sample = np.array(sample).flatten()
target = sample[(- 1)]
prediction = None
anomaly = None
p_value = None
self.targets.append(target)
sample[(- 1)] = 1
if (len(self.samples) > 0):
sample = ewma(sample, self.samples[(- 1)], self.alpha)
self.samples.append(sample)
self.train_count += 1
if self.have_trained:
prediction = float(self.model.predict(sample.reshape(1, (- 1))))
prediction = np.clip(prediction, self.pred_range[0], self.pred_range[1])
(anomaly, p_value) = [float(i) for i in self.severity.check((target - prediction), sample)]
if ((self.train_count >= self.training_interval) and (len(self.samples) >= self.training_window)):
self.train()
self.have_trained = True
self.train_count = 0
return (target, prediction, anomaly, p_value) | Add a single sample to the data pool.
The sample should be a feature vector: {x_1, x_2, x_3, ..., x_n, y}
Where x_1->x_n are features and y is the target value | modules/algo.py | run | apadin1/Merit-Smart-Grid-Analytics | 10 | python | def run(self, sample):
'\n Add a single sample to the data pool.\n The sample should be a feature vector: {x_1, x_2, x_3, ..., x_n, y}\n Where x_1->x_n are features and y is the target value\n '
try:
assert (len(sample) == (self.num_features + 1))
except AssertionError:
raise RuntimeError('sample length {} does not match number of features {}'.format(len(sample), (self.num_features + 1)))
sample = np.array(sample).flatten()
target = sample[(- 1)]
prediction = None
anomaly = None
p_value = None
self.targets.append(target)
sample[(- 1)] = 1
if (len(self.samples) > 0):
sample = ewma(sample, self.samples[(- 1)], self.alpha)
self.samples.append(sample)
self.train_count += 1
if self.have_trained:
prediction = float(self.model.predict(sample.reshape(1, (- 1))))
prediction = np.clip(prediction, self.pred_range[0], self.pred_range[1])
(anomaly, p_value) = [float(i) for i in self.severity.check((target - prediction), sample)]
if ((self.train_count >= self.training_interval) and (len(self.samples) >= self.training_window)):
self.train()
self.have_trained = True
self.train_count = 0
return (target, prediction, anomaly, p_value) | def run(self, sample):
'\n Add a single sample to the data pool.\n The sample should be a feature vector: {x_1, x_2, x_3, ..., x_n, y}\n Where x_1->x_n are features and y is the target value\n '
try:
assert (len(sample) == (self.num_features + 1))
except AssertionError:
raise RuntimeError('sample length {} does not match number of features {}'.format(len(sample), (self.num_features + 1)))
sample = np.array(sample).flatten()
target = sample[(- 1)]
prediction = None
anomaly = None
p_value = None
self.targets.append(target)
sample[(- 1)] = 1
if (len(self.samples) > 0):
sample = ewma(sample, self.samples[(- 1)], self.alpha)
self.samples.append(sample)
self.train_count += 1
if self.have_trained:
prediction = float(self.model.predict(sample.reshape(1, (- 1))))
prediction = np.clip(prediction, self.pred_range[0], self.pred_range[1])
(anomaly, p_value) = [float(i) for i in self.severity.check((target - prediction), sample)]
if ((self.train_count >= self.training_interval) and (len(self.samples) >= self.training_window)):
self.train()
self.have_trained = True
self.train_count = 0
return (target, prediction, anomaly, p_value)<|docstring|>Add a single sample to the data pool.
The sample should be a feature vector: {x_1, x_2, x_3, ..., x_n, y}
Where x_1->x_n are features and y is the target value<|endoftext|> |
3b2685ea48265d2b9dea3e77b55f4c0c9a7c37a6ef2a775ac7020d5ab35df883 | def train(self):
'Train the prediction and anomaly detection models'
X = np.matrix(self.samples)
y = np.array(self.targets).flatten()
(w_opt, alpha, beta, S_N) = blr.sklearn_train(X, y)
self.model.fit(X, y)
self.severity.update_params(beta, S_N) | Train the prediction and anomaly detection models | modules/algo.py | train | apadin1/Merit-Smart-Grid-Analytics | 10 | python | def train(self):
X = np.matrix(self.samples)
y = np.array(self.targets).flatten()
(w_opt, alpha, beta, S_N) = blr.sklearn_train(X, y)
self.model.fit(X, y)
self.severity.update_params(beta, S_N) | def train(self):
X = np.matrix(self.samples)
y = np.array(self.targets).flatten()
(w_opt, alpha, beta, S_N) = blr.sklearn_train(X, y)
self.model.fit(X, y)
self.severity.update_params(beta, S_N)<|docstring|>Train the prediction and anomaly detection models<|endoftext|> |
8812e77a7246ac1e7d850c33f04c67b7fc19824d5d94af3ddd53b501acfb40d3 | def set_severity(self, w, L):
'Change the severity parameters'
self.severity.set_wL(w, L) | Change the severity parameters | modules/algo.py | set_severity | apadin1/Merit-Smart-Grid-Analytics | 10 | python | def set_severity(self, w, L):
self.severity.set_wL(w, L) | def set_severity(self, w, L):
self.severity.set_wL(w, L)<|docstring|>Change the severity parameters<|endoftext|> |
becf1fb31f43e6327ae590b8af3952a97b53baca8d1a2f0100b8648b6fde1ba0 | def set_EWMA(self, alpha):
'Change the EWMA (exponential weighted moving average) weight'
self.alpha = alpha | Change the EWMA (exponential weighted moving average) weight | modules/algo.py | set_EWMA | apadin1/Merit-Smart-Grid-Analytics | 10 | python | def set_EWMA(self, alpha):
self.alpha = alpha | def set_EWMA(self, alpha):
self.alpha = alpha<|docstring|>Change the EWMA (exponential weighted moving average) weight<|endoftext|> |
93371873268052aa436a894b3a1e49894373fb1442bedc0b87ead9a14ae6d6be | def main(training_data_file_path, test_data_file_path, grid_results_file_path, image_plot_file_path):
'\n Entry point for script. Takes in training_data_file_path, test_data_file_path\n and image_plot_file_path from commandline, and runs a pre-optimized linear regression\n model. \n\n Arguments:\n ----------\n training_data_file_path \n - file path where training data is located. Assumes data is a .csv file in same\n format as data/data_train.csv (output of download_data.py script)\n test_data_file_path \n - file path where training data is located. Assumes data is a .csv file in same\n format as data/data_train.csv (output of download_data.py script)\n grid_results_file_path\n - file path where grid search results are saved\n image_plot_file_path\n - file path where image of results plot will be saved\n\n Returns\n -------\n None, but saves a plot to the specified file path\n '
plot_results(training_data_file_path, test_data_file_path, grid_results_file_path, image_plot_file_path) | Entry point for script. Takes in training_data_file_path, test_data_file_path
and image_plot_file_path from commandline, and runs a pre-optimized linear regression
model.
Arguments:
----------
training_data_file_path
- file path where training data is located. Assumes data is a .csv file in same
format as data/data_train.csv (output of download_data.py script)
test_data_file_path
- file path where training data is located. Assumes data is a .csv file in same
format as data/data_train.csv (output of download_data.py script)
grid_results_file_path
- file path where grid search results are saved
image_plot_file_path
- file path where image of results plot will be saved
Returns
-------
None, but saves a plot to the specified file path | src/linear_model.py | main | RobBlumberg/DSCI_522_Group_302 | 1 | python | def main(training_data_file_path, test_data_file_path, grid_results_file_path, image_plot_file_path):
'\n Entry point for script. Takes in training_data_file_path, test_data_file_path\n and image_plot_file_path from commandline, and runs a pre-optimized linear regression\n model. \n\n Arguments:\n ----------\n training_data_file_path \n - file path where training data is located. Assumes data is a .csv file in same\n format as data/data_train.csv (output of download_data.py script)\n test_data_file_path \n - file path where training data is located. Assumes data is a .csv file in same\n format as data/data_train.csv (output of download_data.py script)\n grid_results_file_path\n - file path where grid search results are saved\n image_plot_file_path\n - file path where image of results plot will be saved\n\n Returns\n -------\n None, but saves a plot to the specified file path\n '
plot_results(training_data_file_path, test_data_file_path, grid_results_file_path, image_plot_file_path) | def main(training_data_file_path, test_data_file_path, grid_results_file_path, image_plot_file_path):
'\n Entry point for script. Takes in training_data_file_path, test_data_file_path\n and image_plot_file_path from commandline, and runs a pre-optimized linear regression\n model. \n\n Arguments:\n ----------\n training_data_file_path \n - file path where training data is located. Assumes data is a .csv file in same\n format as data/data_train.csv (output of download_data.py script)\n test_data_file_path \n - file path where training data is located. Assumes data is a .csv file in same\n format as data/data_train.csv (output of download_data.py script)\n grid_results_file_path\n - file path where grid search results are saved\n image_plot_file_path\n - file path where image of results plot will be saved\n\n Returns\n -------\n None, but saves a plot to the specified file path\n '
plot_results(training_data_file_path, test_data_file_path, grid_results_file_path, image_plot_file_path)<|docstring|>Entry point for script. Takes in training_data_file_path, test_data_file_path
and image_plot_file_path from commandline, and runs a pre-optimized linear regression
model.
Arguments:
----------
training_data_file_path
- file path where training data is located. Assumes data is a .csv file in same
format as data/data_train.csv (output of download_data.py script)
test_data_file_path
- file path where training data is located. Assumes data is a .csv file in same
format as data/data_train.csv (output of download_data.py script)
grid_results_file_path
- file path where grid search results are saved
image_plot_file_path
- file path where image of results plot will be saved
Returns
-------
None, but saves a plot to the specified file path<|endoftext|> |
de3dd6c01579a6c3f1234d03ad66123509a4c9921d361de2686952aead6e2346 | def time_parser(input_time):
'\n Function which converts a time string of form mm.ss.SS to seconds\n \n Arguments:\n ----------\n input_time \n (str) - input time as string of form "d.dd.dd" where d is a digit\n\n Returns:\n --------\n float representing input time in seconds\n '
assert re.match('\\d\\.\\d{2}\\.\\d{2}', input_time), 'Only strings of format d.dd.dd can be parsed'
parsed_time = input_time.split('.')
mins = int(parsed_time[0])
secs = int(parsed_time[1])
ss = int(parsed_time[2])
time_in_sec = (((mins * 60.0) + secs) + (ss / 100))
return time_in_sec | Function which converts a time string of form mm.ss.SS to seconds
Arguments:
----------
input_time
(str) - input time as string of form "d.dd.dd" where d is a digit
Returns:
--------
float representing input time in seconds | src/linear_model.py | time_parser | RobBlumberg/DSCI_522_Group_302 | 1 | python | def time_parser(input_time):
'\n Function which converts a time string of form mm.ss.SS to seconds\n \n Arguments:\n ----------\n input_time \n (str) - input time as string of form "d.dd.dd" where d is a digit\n\n Returns:\n --------\n float representing input time in seconds\n '
assert re.match('\\d\\.\\d{2}\\.\\d{2}', input_time), 'Only strings of format d.dd.dd can be parsed'
parsed_time = input_time.split('.')
mins = int(parsed_time[0])
secs = int(parsed_time[1])
ss = int(parsed_time[2])
time_in_sec = (((mins * 60.0) + secs) + (ss / 100))
return time_in_sec | def time_parser(input_time):
'\n Function which converts a time string of form mm.ss.SS to seconds\n \n Arguments:\n ----------\n input_time \n (str) - input time as string of form "d.dd.dd" where d is a digit\n\n Returns:\n --------\n float representing input time in seconds\n '
assert re.match('\\d\\.\\d{2}\\.\\d{2}', input_time), 'Only strings of format d.dd.dd can be parsed'
parsed_time = input_time.split('.')
mins = int(parsed_time[0])
secs = int(parsed_time[1])
ss = int(parsed_time[2])
time_in_sec = (((mins * 60.0) + secs) + (ss / 100))
return time_in_sec<|docstring|>Function which converts a time string of form mm.ss.SS to seconds
Arguments:
----------
input_time
(str) - input time as string of form "d.dd.dd" where d is a digit
Returns:
--------
float representing input time in seconds<|endoftext|> |
866c40d27dc9d37d25b8c448cff1fc5af999098417641a213e3c97d5e340af1a | def load_and_parse_data(training_data_file_path, test_data_file_path):
'\n Data loading and cleaning function. Converts finishtime column to seconds\n and drops rows where finishtime is 0. \n\n Arguments:\n ----------\n training_data_file_path \n - file path where training data is located. Assumes data is a .csv file in same\n format as data/data_train.csv (output of download_data.py script)\n test_data_file_path \n - file path where training data is located. Assumes data is a .csv file in same\n format as data/data_train.csv (output of download_data.py script)\n\n Returns\n -------\n X_train, X_test, y_train, y_test \n (np.array) - Split training/test features and targets\n '
training_data = pd.read_csv(training_data_file_path)
test_data = pd.read_csv(test_data_file_path)
assert (('finishtime' in training_data.columns) and ('finishtime' in test_data.columns)), "Missing column 'finishtime'"
y_train = training_data['finishtime']
y_train.fillna('0.00.00', inplace=True)
y_train[(~ y_train.str.contains('\\d\\.\\d{2}\\.\\d{2}'))] = '0.00.00'
y_train = np.array(list(map((lambda x: time_parser(x)), y_train)))
training_data['finishtime'] = y_train
training_data = training_data[(training_data['finishtime'] != 0.0)]
X_train = training_data.drop('finishtime', axis=1)
y_train = training_data['finishtime']
y_test = test_data['finishtime']
y_test.fillna('0.00.00', inplace=True)
y_test[(~ y_test.str.contains('\\d\\.\\d{2}\\.\\d{2}'))] = '0.00.00'
y_test = np.array(list(map((lambda x: time_parser(x)), y_test)))
test_data['finishtime'] = y_test
test_data = test_data[(test_data['finishtime'] != 0.0)]
X_test = test_data.drop('finishtime', axis=1)
y_test = test_data['finishtime']
return (X_train, X_test, y_train, y_test) | Data loading and cleaning function. Converts finishtime column to seconds
and drops rows where finishtime is 0.
Arguments:
----------
training_data_file_path
- file path where training data is located. Assumes data is a .csv file in same
format as data/data_train.csv (output of download_data.py script)
test_data_file_path
- file path where training data is located. Assumes data is a .csv file in same
format as data/data_train.csv (output of download_data.py script)
Returns
-------
X_train, X_test, y_train, y_test
(np.array) - Split training/test features and targets | src/linear_model.py | load_and_parse_data | RobBlumberg/DSCI_522_Group_302 | 1 | python | def load_and_parse_data(training_data_file_path, test_data_file_path):
'\n Data loading and cleaning function. Converts finishtime column to seconds\n and drops rows where finishtime is 0. \n\n Arguments:\n ----------\n training_data_file_path \n - file path where training data is located. Assumes data is a .csv file in same\n format as data/data_train.csv (output of download_data.py script)\n test_data_file_path \n - file path where training data is located. Assumes data is a .csv file in same\n format as data/data_train.csv (output of download_data.py script)\n\n Returns\n -------\n X_train, X_test, y_train, y_test \n (np.array) - Split training/test features and targets\n '
training_data = pd.read_csv(training_data_file_path)
test_data = pd.read_csv(test_data_file_path)
assert (('finishtime' in training_data.columns) and ('finishtime' in test_data.columns)), "Missing column 'finishtime'"
y_train = training_data['finishtime']
y_train.fillna('0.00.00', inplace=True)
y_train[(~ y_train.str.contains('\\d\\.\\d{2}\\.\\d{2}'))] = '0.00.00'
y_train = np.array(list(map((lambda x: time_parser(x)), y_train)))
training_data['finishtime'] = y_train
training_data = training_data[(training_data['finishtime'] != 0.0)]
X_train = training_data.drop('finishtime', axis=1)
y_train = training_data['finishtime']
y_test = test_data['finishtime']
y_test.fillna('0.00.00', inplace=True)
y_test[(~ y_test.str.contains('\\d\\.\\d{2}\\.\\d{2}'))] = '0.00.00'
y_test = np.array(list(map((lambda x: time_parser(x)), y_test)))
test_data['finishtime'] = y_test
test_data = test_data[(test_data['finishtime'] != 0.0)]
X_test = test_data.drop('finishtime', axis=1)
y_test = test_data['finishtime']
return (X_train, X_test, y_train, y_test) | def load_and_parse_data(training_data_file_path, test_data_file_path):
'\n Data loading and cleaning function. Converts finishtime column to seconds\n and drops rows where finishtime is 0. \n\n Arguments:\n ----------\n training_data_file_path \n - file path where training data is located. Assumes data is a .csv file in same\n format as data/data_train.csv (output of download_data.py script)\n test_data_file_path \n - file path where training data is located. Assumes data is a .csv file in same\n format as data/data_train.csv (output of download_data.py script)\n\n Returns\n -------\n X_train, X_test, y_train, y_test \n (np.array) - Split training/test features and targets\n '
training_data = pd.read_csv(training_data_file_path)
test_data = pd.read_csv(test_data_file_path)
assert (('finishtime' in training_data.columns) and ('finishtime' in test_data.columns)), "Missing column 'finishtime'"
y_train = training_data['finishtime']
y_train.fillna('0.00.00', inplace=True)
y_train[(~ y_train.str.contains('\\d\\.\\d{2}\\.\\d{2}'))] = '0.00.00'
y_train = np.array(list(map((lambda x: time_parser(x)), y_train)))
training_data['finishtime'] = y_train
training_data = training_data[(training_data['finishtime'] != 0.0)]
X_train = training_data.drop('finishtime', axis=1)
y_train = training_data['finishtime']
y_test = test_data['finishtime']
y_test.fillna('0.00.00', inplace=True)
y_test[(~ y_test.str.contains('\\d\\.\\d{2}\\.\\d{2}'))] = '0.00.00'
y_test = np.array(list(map((lambda x: time_parser(x)), y_test)))
test_data['finishtime'] = y_test
test_data = test_data[(test_data['finishtime'] != 0.0)]
X_test = test_data.drop('finishtime', axis=1)
y_test = test_data['finishtime']
return (X_train, X_test, y_train, y_test)<|docstring|>Data loading and cleaning function. Converts finishtime column to seconds
and drops rows where finishtime is 0.
Arguments:
----------
training_data_file_path
- file path where training data is located. Assumes data is a .csv file in same
format as data/data_train.csv (output of download_data.py script)
test_data_file_path
- file path where training data is located. Assumes data is a .csv file in same
format as data/data_train.csv (output of download_data.py script)
Returns
-------
X_train, X_test, y_train, y_test
(np.array) - Split training/test features and targets<|endoftext|> |
350e8bfb6d7c6d9af2299823f339d1f723cc7a8870ec7567adffece06a4ec2f0 | def data_preprocessing(training_data_file_path, test_data_file_path):
'\n Data preprocessing for linear regression. Applies imputer (mean), \n and polynomial order 5 tranformation to numeric features. Applies \n imputer (fill with "not_specified" constant value) and one-hot encoding\n to categorical features. Uses output of load_and_parse_data() function.\n\n Arguments:\n ----------\n training_data_file_path \n - file path where training data is located. Assumes data is a .csv file in same\n format as data/data_train.csv (output of download_data.py script)\n test_data_file_path \n - file path where training data is located. Assumes data is a .csv file in same\n format as data/data_train.csv (output of download_data.py script)\n\n Returns\n -------\n X_train_preprocessed, X_test_preprocessed, y_train, y_test \n (np.array) - Preprocessed training/test features and targets\n '
(X_train, X_test, y_train, y_test) = load_and_parse_data(training_data_file_path, test_data_file_path)
assert all([(x in X_train.columns) for x in ['country', 'dataset']]), "Must have colums 'country', 'dataset'"
assert all([(x in X_train.columns) for x in ['declarwt', 'age', 'winodds', 'stake', 'distance']]), "Must have colums 'declarwt', 'age', 'winodds', 'stake', 'distance'"
numeric_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='mean')), ('poly', PolynomialFeatures(degree=5))])
categorical_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='constant', fill_value='not_specified')), ('one_hot_encoder', OneHotEncoder())])
categorical_features = ['country', 'dataset']
numeric_features = ['declarwt', 'age', 'winodds', 'stake', 'distance']
preprocessing = ColumnTransformer(transformers=[('num', numeric_transformer, numeric_features), ('cat', categorical_transformer, categorical_features)])
full_pipeline = Pipeline([('data_preprocessing', preprocessing)])
X_train_preprocessed = full_pipeline.fit_transform(X_train)
X_test_preprocessed = full_pipeline.transform(X_test)
return (X_train_preprocessed, X_test_preprocessed, y_train, y_test) | Data preprocessing for linear regression. Applies imputer (mean),
and polynomial order 5 tranformation to numeric features. Applies
imputer (fill with "not_specified" constant value) and one-hot encoding
to categorical features. Uses output of load_and_parse_data() function.
Arguments:
----------
training_data_file_path
- file path where training data is located. Assumes data is a .csv file in same
format as data/data_train.csv (output of download_data.py script)
test_data_file_path
- file path where training data is located. Assumes data is a .csv file in same
format as data/data_train.csv (output of download_data.py script)
Returns
-------
X_train_preprocessed, X_test_preprocessed, y_train, y_test
(np.array) - Preprocessed training/test features and targets | src/linear_model.py | data_preprocessing | RobBlumberg/DSCI_522_Group_302 | 1 | python | def data_preprocessing(training_data_file_path, test_data_file_path):
'\n Data preprocessing for linear regression. Applies imputer (mean), \n and polynomial order 5 tranformation to numeric features. Applies \n imputer (fill with "not_specified" constant value) and one-hot encoding\n to categorical features. Uses output of load_and_parse_data() function.\n\n Arguments:\n ----------\n training_data_file_path \n - file path where training data is located. Assumes data is a .csv file in same\n format as data/data_train.csv (output of download_data.py script)\n test_data_file_path \n - file path where training data is located. Assumes data is a .csv file in same\n format as data/data_train.csv (output of download_data.py script)\n\n Returns\n -------\n X_train_preprocessed, X_test_preprocessed, y_train, y_test \n (np.array) - Preprocessed training/test features and targets\n '
(X_train, X_test, y_train, y_test) = load_and_parse_data(training_data_file_path, test_data_file_path)
assert all([(x in X_train.columns) for x in ['country', 'dataset']]), "Must have colums 'country', 'dataset'"
assert all([(x in X_train.columns) for x in ['declarwt', 'age', 'winodds', 'stake', 'distance']]), "Must have colums 'declarwt', 'age', 'winodds', 'stake', 'distance'"
numeric_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='mean')), ('poly', PolynomialFeatures(degree=5))])
categorical_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='constant', fill_value='not_specified')), ('one_hot_encoder', OneHotEncoder())])
categorical_features = ['country', 'dataset']
numeric_features = ['declarwt', 'age', 'winodds', 'stake', 'distance']
preprocessing = ColumnTransformer(transformers=[('num', numeric_transformer, numeric_features), ('cat', categorical_transformer, categorical_features)])
full_pipeline = Pipeline([('data_preprocessing', preprocessing)])
X_train_preprocessed = full_pipeline.fit_transform(X_train)
X_test_preprocessed = full_pipeline.transform(X_test)
return (X_train_preprocessed, X_test_preprocessed, y_train, y_test) | def data_preprocessing(training_data_file_path, test_data_file_path):
'\n Data preprocessing for linear regression. Applies imputer (mean), \n and polynomial order 5 tranformation to numeric features. Applies \n imputer (fill with "not_specified" constant value) and one-hot encoding\n to categorical features. Uses output of load_and_parse_data() function.\n\n Arguments:\n ----------\n training_data_file_path \n - file path where training data is located. Assumes data is a .csv file in same\n format as data/data_train.csv (output of download_data.py script)\n test_data_file_path \n - file path where training data is located. Assumes data is a .csv file in same\n format as data/data_train.csv (output of download_data.py script)\n\n Returns\n -------\n X_train_preprocessed, X_test_preprocessed, y_train, y_test \n (np.array) - Preprocessed training/test features and targets\n '
(X_train, X_test, y_train, y_test) = load_and_parse_data(training_data_file_path, test_data_file_path)
assert all([(x in X_train.columns) for x in ['country', 'dataset']]), "Must have colums 'country', 'dataset'"
assert all([(x in X_train.columns) for x in ['declarwt', 'age', 'winodds', 'stake', 'distance']]), "Must have colums 'declarwt', 'age', 'winodds', 'stake', 'distance'"
numeric_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='mean')), ('poly', PolynomialFeatures(degree=5))])
categorical_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='constant', fill_value='not_specified')), ('one_hot_encoder', OneHotEncoder())])
categorical_features = ['country', 'dataset']
numeric_features = ['declarwt', 'age', 'winodds', 'stake', 'distance']
preprocessing = ColumnTransformer(transformers=[('num', numeric_transformer, numeric_features), ('cat', categorical_transformer, categorical_features)])
full_pipeline = Pipeline([('data_preprocessing', preprocessing)])
X_train_preprocessed = full_pipeline.fit_transform(X_train)
X_test_preprocessed = full_pipeline.transform(X_test)
return (X_train_preprocessed, X_test_preprocessed, y_train, y_test)<|docstring|>Data preprocessing for linear regression. Applies imputer (mean),
and polynomial order 5 tranformation to numeric features. Applies
imputer (fill with "not_specified" constant value) and one-hot encoding
to categorical features. Uses output of load_and_parse_data() function.
Arguments:
----------
training_data_file_path
- file path where training data is located. Assumes data is a .csv file in same
format as data/data_train.csv (output of download_data.py script)
test_data_file_path
- file path where training data is located. Assumes data is a .csv file in same
format as data/data_train.csv (output of download_data.py script)
Returns
-------
X_train_preprocessed, X_test_preprocessed, y_train, y_test
(np.array) - Preprocessed training/test features and targets<|endoftext|> |
7fd59b2b4b07e653bffe874e597c889982b1fc1a83c5dca3a47f050dbca6a999 | def linear_model_results(training_data_file_path, test_data_file_path, grid_results_file_path):
'\n Fits pre-optimized linear regression model on training data,\n and makes predictions on test data. Uses output of \n data_preprocessing() function.\n\n Arguments:\n ----------\n training_data_file_path \n - file path where training data is located. Assumes data is a .csv file in same\n format as data/data_train.csv (output of download_data.py script)\n test_data_file_path \n - file path where training data is located. Assumes data is a .csv file in same\n format as data/data_train.csv (output of download_data.py script)\n\n Returns\n -------\n test_results \n (pd.DataFrame) - Data frame containing test set predictions and actual values\n '
grid_results = pd.read_csv(grid_results_file_path)
n_features_to_select = grid_results['n_features_to_select'][0]
(X_train_preprocessed, X_test_preprocessed, y_train, y_test) = data_preprocessing(training_data_file_path, test_data_file_path)
rfe = RFE(LinearRegression(), n_features_to_select=n_features_to_select)
rfe.fit(X_train_preprocessed, y_train)
lr = LinearRegression()
lr.fit(rfe.transform(X_train_preprocessed), y_train)
test_results = pd.DataFrame({'Actual finish time': y_test, 'Predicted finish time': lr.predict(rfe.transform(X_test_preprocessed))})
return test_results | Fits pre-optimized linear regression model on training data,
and makes predictions on test data. Uses output of
data_preprocessing() function.
Arguments:
----------
training_data_file_path
- file path where training data is located. Assumes data is a .csv file in same
format as data/data_train.csv (output of download_data.py script)
test_data_file_path
- file path where training data is located. Assumes data is a .csv file in same
format as data/data_train.csv (output of download_data.py script)
Returns
-------
test_results
(pd.DataFrame) - Data frame containing test set predictions and actual values | src/linear_model.py | linear_model_results | RobBlumberg/DSCI_522_Group_302 | 1 | python | def linear_model_results(training_data_file_path, test_data_file_path, grid_results_file_path):
'\n Fits pre-optimized linear regression model on training data,\n and makes predictions on test data. Uses output of \n data_preprocessing() function.\n\n Arguments:\n ----------\n training_data_file_path \n - file path where training data is located. Assumes data is a .csv file in same\n format as data/data_train.csv (output of download_data.py script)\n test_data_file_path \n - file path where training data is located. Assumes data is a .csv file in same\n format as data/data_train.csv (output of download_data.py script)\n\n Returns\n -------\n test_results \n (pd.DataFrame) - Data frame containing test set predictions and actual values\n '
grid_results = pd.read_csv(grid_results_file_path)
n_features_to_select = grid_results['n_features_to_select'][0]
(X_train_preprocessed, X_test_preprocessed, y_train, y_test) = data_preprocessing(training_data_file_path, test_data_file_path)
rfe = RFE(LinearRegression(), n_features_to_select=n_features_to_select)
rfe.fit(X_train_preprocessed, y_train)
lr = LinearRegression()
lr.fit(rfe.transform(X_train_preprocessed), y_train)
test_results = pd.DataFrame({'Actual finish time': y_test, 'Predicted finish time': lr.predict(rfe.transform(X_test_preprocessed))})
return test_results | def linear_model_results(training_data_file_path, test_data_file_path, grid_results_file_path):
'\n Fits pre-optimized linear regression model on training data,\n and makes predictions on test data. Uses output of \n data_preprocessing() function.\n\n Arguments:\n ----------\n training_data_file_path \n - file path where training data is located. Assumes data is a .csv file in same\n format as data/data_train.csv (output of download_data.py script)\n test_data_file_path \n - file path where training data is located. Assumes data is a .csv file in same\n format as data/data_train.csv (output of download_data.py script)\n\n Returns\n -------\n test_results \n (pd.DataFrame) - Data frame containing test set predictions and actual values\n '
grid_results = pd.read_csv(grid_results_file_path)
n_features_to_select = grid_results['n_features_to_select'][0]
(X_train_preprocessed, X_test_preprocessed, y_train, y_test) = data_preprocessing(training_data_file_path, test_data_file_path)
rfe = RFE(LinearRegression(), n_features_to_select=n_features_to_select)
rfe.fit(X_train_preprocessed, y_train)
lr = LinearRegression()
lr.fit(rfe.transform(X_train_preprocessed), y_train)
test_results = pd.DataFrame({'Actual finish time': y_test, 'Predicted finish time': lr.predict(rfe.transform(X_test_preprocessed))})
return test_results<|docstring|>Fits pre-optimized linear regression model on training data,
and makes predictions on test data. Uses output of
data_preprocessing() function.
Arguments:
----------
training_data_file_path
- file path where training data is located. Assumes data is a .csv file in same
format as data/data_train.csv (output of download_data.py script)
test_data_file_path
- file path where training data is located. Assumes data is a .csv file in same
format as data/data_train.csv (output of download_data.py script)
Returns
-------
test_results
(pd.DataFrame) - Data frame containing test set predictions and actual values<|endoftext|> |
d13ae664411753906bba0ae3483541e1d2a84c048b80207600fb134cc434b6b8 | def plot_results(training_data_file_path, test_data_file_path, grid_results_file_path, image_plot_file_path):
'\n Plots results from linear regression on test set. Uses output of \n linear_model_results() function. Saves plot to specified file path.\n\n Arguments:\n ----------\n training_data_file_path \n - file path where training data is located. Assumes data is a .csv file in same\n format as data/data_train.csv (output of download_data.py script)\n test_data_file_path \n - file path where training data is located. Assumes data is a .csv file in same\n format as data/data_train.csv (output of download_data.py script)\n image_plot_file_path\n - file path where image of results plot will be saved\n\n Returns\n -------\n None\n '
test_results = linear_model_results(training_data_file_path, test_data_file_path, grid_results_file_path)
(fig, ax) = plt.subplots(1, 1, figsize=(8, 8))
ax.scatter(test_results['Predicted finish time'], test_results['Actual finish time'], alpha=0.5)
ax.plot([min(test_results['Actual finish time']), max(test_results['Actual finish time'])], [min(test_results['Actual finish time']), max(test_results['Actual finish time'])], linestyle='--', color='red')
ax.set_xlabel('Predicted finish time (s)', size=14)
ax.set_ylabel('Actual finish time (s)', size=14)
ax.set_title('Actual vs predicted finish times \non test set from optimized linear model', size=15)
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
plt.savefig(image_plot_file_path) | Plots results from linear regression on test set. Uses output of
linear_model_results() function. Saves plot to specified file path.
Arguments:
----------
training_data_file_path
- file path where training data is located. Assumes data is a .csv file in same
format as data/data_train.csv (output of download_data.py script)
test_data_file_path
- file path where training data is located. Assumes data is a .csv file in same
format as data/data_train.csv (output of download_data.py script)
image_plot_file_path
- file path where image of results plot will be saved
Returns
-------
None | src/linear_model.py | plot_results | RobBlumberg/DSCI_522_Group_302 | 1 | python | def plot_results(training_data_file_path, test_data_file_path, grid_results_file_path, image_plot_file_path):
'\n Plots results from linear regression on test set. Uses output of \n linear_model_results() function. Saves plot to specified file path.\n\n Arguments:\n ----------\n training_data_file_path \n - file path where training data is located. Assumes data is a .csv file in same\n format as data/data_train.csv (output of download_data.py script)\n test_data_file_path \n - file path where training data is located. Assumes data is a .csv file in same\n format as data/data_train.csv (output of download_data.py script)\n image_plot_file_path\n - file path where image of results plot will be saved\n\n Returns\n -------\n None\n '
test_results = linear_model_results(training_data_file_path, test_data_file_path, grid_results_file_path)
(fig, ax) = plt.subplots(1, 1, figsize=(8, 8))
ax.scatter(test_results['Predicted finish time'], test_results['Actual finish time'], alpha=0.5)
ax.plot([min(test_results['Actual finish time']), max(test_results['Actual finish time'])], [min(test_results['Actual finish time']), max(test_results['Actual finish time'])], linestyle='--', color='red')
ax.set_xlabel('Predicted finish time (s)', size=14)
ax.set_ylabel('Actual finish time (s)', size=14)
ax.set_title('Actual vs predicted finish times \non test set from optimized linear model', size=15)
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
plt.savefig(image_plot_file_path) | def plot_results(training_data_file_path, test_data_file_path, grid_results_file_path, image_plot_file_path):
'\n Plots results from linear regression on test set. Uses output of \n linear_model_results() function. Saves plot to specified file path.\n\n Arguments:\n ----------\n training_data_file_path \n - file path where training data is located. Assumes data is a .csv file in same\n format as data/data_train.csv (output of download_data.py script)\n test_data_file_path \n - file path where training data is located. Assumes data is a .csv file in same\n format as data/data_train.csv (output of download_data.py script)\n image_plot_file_path\n - file path where image of results plot will be saved\n\n Returns\n -------\n None\n '
test_results = linear_model_results(training_data_file_path, test_data_file_path, grid_results_file_path)
(fig, ax) = plt.subplots(1, 1, figsize=(8, 8))
ax.scatter(test_results['Predicted finish time'], test_results['Actual finish time'], alpha=0.5)
ax.plot([min(test_results['Actual finish time']), max(test_results['Actual finish time'])], [min(test_results['Actual finish time']), max(test_results['Actual finish time'])], linestyle='--', color='red')
ax.set_xlabel('Predicted finish time (s)', size=14)
ax.set_ylabel('Actual finish time (s)', size=14)
ax.set_title('Actual vs predicted finish times \non test set from optimized linear model', size=15)
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
plt.savefig(image_plot_file_path)<|docstring|>Plots results from linear regression on test set. Uses output of
linear_model_results() function. Saves plot to specified file path.
Arguments:
----------
training_data_file_path
- file path where training data is located. Assumes data is a .csv file in same
format as data/data_train.csv (output of download_data.py script)
test_data_file_path
- file path where training data is located. Assumes data is a .csv file in same
format as data/data_train.csv (output of download_data.py script)
image_plot_file_path
- file path where image of results plot will be saved
Returns
-------
None<|endoftext|> |
1836b3db7b85cdeaadbbe9acc1b70764bd6d4e777f20ed40bb5fd67570cb1e69 | def setup() -> None:
'Set up loggers.'
logging.TRACE = TRACE_LEVEL
logging.addLevelName(TRACE_LEVEL, 'TRACE')
Logger.trace = _monkeypatch_trace
log_level = (TRACE_LEVEL if constants.DEBUG_MODE else logging.INFO)
format_string = '%(asctime)s | %(name)s | %(levelname)s | %(message)s'
log_format = logging.Formatter(format_string)
log_file = Path('logs', 'bot.log')
log_file.parent.mkdir(exist_ok=True)
file_handler = handlers.RotatingFileHandler(log_file, maxBytes=5242880, backupCount=7, encoding='utf8')
file_handler.setFormatter(log_format)
root_log = logging.getLogger()
root_log.setLevel(log_level)
root_log.addHandler(file_handler)
if ('COLOREDLOGS_LEVEL_STYLES' not in os.environ):
coloredlogs.DEFAULT_LEVEL_STYLES = {**coloredlogs.DEFAULT_LEVEL_STYLES, 'trace': {'color': 246}, 'critical': {'background': 'red'}, 'debug': coloredlogs.DEFAULT_LEVEL_STYLES['info']}
if ('COLOREDLOGS_LOG_FORMAT' not in os.environ):
coloredlogs.DEFAULT_LOG_FORMAT = format_string
if ('COLOREDLOGS_LOG_LEVEL' not in os.environ):
coloredlogs.DEFAULT_LOG_LEVEL = log_level
coloredlogs.install(logger=root_log, stream=sys.stdout)
logging.getLogger('discord').setLevel(logging.WARNING) | Set up loggers. | griffinbot/logging.py | setup | MrAwesomeRocks/griffinbot | 2 | python | def setup() -> None:
logging.TRACE = TRACE_LEVEL
logging.addLevelName(TRACE_LEVEL, 'TRACE')
Logger.trace = _monkeypatch_trace
log_level = (TRACE_LEVEL if constants.DEBUG_MODE else logging.INFO)
format_string = '%(asctime)s | %(name)s | %(levelname)s | %(message)s'
log_format = logging.Formatter(format_string)
log_file = Path('logs', 'bot.log')
log_file.parent.mkdir(exist_ok=True)
file_handler = handlers.RotatingFileHandler(log_file, maxBytes=5242880, backupCount=7, encoding='utf8')
file_handler.setFormatter(log_format)
root_log = logging.getLogger()
root_log.setLevel(log_level)
root_log.addHandler(file_handler)
if ('COLOREDLOGS_LEVEL_STYLES' not in os.environ):
coloredlogs.DEFAULT_LEVEL_STYLES = {**coloredlogs.DEFAULT_LEVEL_STYLES, 'trace': {'color': 246}, 'critical': {'background': 'red'}, 'debug': coloredlogs.DEFAULT_LEVEL_STYLES['info']}
if ('COLOREDLOGS_LOG_FORMAT' not in os.environ):
coloredlogs.DEFAULT_LOG_FORMAT = format_string
if ('COLOREDLOGS_LOG_LEVEL' not in os.environ):
coloredlogs.DEFAULT_LOG_LEVEL = log_level
coloredlogs.install(logger=root_log, stream=sys.stdout)
logging.getLogger('discord').setLevel(logging.WARNING) | def setup() -> None:
logging.TRACE = TRACE_LEVEL
logging.addLevelName(TRACE_LEVEL, 'TRACE')
Logger.trace = _monkeypatch_trace
log_level = (TRACE_LEVEL if constants.DEBUG_MODE else logging.INFO)
format_string = '%(asctime)s | %(name)s | %(levelname)s | %(message)s'
log_format = logging.Formatter(format_string)
log_file = Path('logs', 'bot.log')
log_file.parent.mkdir(exist_ok=True)
file_handler = handlers.RotatingFileHandler(log_file, maxBytes=5242880, backupCount=7, encoding='utf8')
file_handler.setFormatter(log_format)
root_log = logging.getLogger()
root_log.setLevel(log_level)
root_log.addHandler(file_handler)
if ('COLOREDLOGS_LEVEL_STYLES' not in os.environ):
coloredlogs.DEFAULT_LEVEL_STYLES = {**coloredlogs.DEFAULT_LEVEL_STYLES, 'trace': {'color': 246}, 'critical': {'background': 'red'}, 'debug': coloredlogs.DEFAULT_LEVEL_STYLES['info']}
if ('COLOREDLOGS_LOG_FORMAT' not in os.environ):
coloredlogs.DEFAULT_LOG_FORMAT = format_string
if ('COLOREDLOGS_LOG_LEVEL' not in os.environ):
coloredlogs.DEFAULT_LOG_LEVEL = log_level
coloredlogs.install(logger=root_log, stream=sys.stdout)
logging.getLogger('discord').setLevel(logging.WARNING)<|docstring|>Set up loggers.<|endoftext|> |
50d8bb4a88ade8b215abb73fe2e1ef22d085dfa6251c059b02e092829a49a54c | def _monkeypatch_trace(self: logging.Logger, msg: str, *args, **kwargs) -> None:
'\n Log \'msg % args\' with severity \'TRACE\'.\n\n To pass exception information, use the keyword argument exc_info with\n a true value, e.g.\n logger.trace("Houston, we have an %s", "interesting problem", exc_info=1)\n '
if self.isEnabledFor(TRACE_LEVEL):
self._log(TRACE_LEVEL, msg, args, **kwargs) | Log 'msg % args' with severity 'TRACE'.
To pass exception information, use the keyword argument exc_info with
a true value, e.g.
logger.trace("Houston, we have an %s", "interesting problem", exc_info=1) | griffinbot/logging.py | _monkeypatch_trace | MrAwesomeRocks/griffinbot | 2 | python | def _monkeypatch_trace(self: logging.Logger, msg: str, *args, **kwargs) -> None:
'\n Log \'msg % args\' with severity \'TRACE\'.\n\n To pass exception information, use the keyword argument exc_info with\n a true value, e.g.\n logger.trace("Houston, we have an %s", "interesting problem", exc_info=1)\n '
if self.isEnabledFor(TRACE_LEVEL):
self._log(TRACE_LEVEL, msg, args, **kwargs) | def _monkeypatch_trace(self: logging.Logger, msg: str, *args, **kwargs) -> None:
'\n Log \'msg % args\' with severity \'TRACE\'.\n\n To pass exception information, use the keyword argument exc_info with\n a true value, e.g.\n logger.trace("Houston, we have an %s", "interesting problem", exc_info=1)\n '
if self.isEnabledFor(TRACE_LEVEL):
self._log(TRACE_LEVEL, msg, args, **kwargs)<|docstring|>Log 'msg % args' with severity 'TRACE'.
To pass exception information, use the keyword argument exc_info with
a true value, e.g.
logger.trace("Houston, we have an %s", "interesting problem", exc_info=1)<|endoftext|> |
5ca93845bb0f5878a4477faaa81d753303838d4e425b4d14300f76226936d115 | def box_to_point8(boxes):
'\n Args:\n boxes: nx4\n\n Returns:\n (nx4)x2\n '
b = boxes[(:, [0, 1, 2, 3, 0, 3, 2, 1])]
b = b.reshape(((- 1), 2))
return b | Args:
boxes: nx4
Returns:
(nx4)x2 | official/vision/detection/GSOC 21/Mask RCNN/Experiments/Experiment 01/Custom Code Base/common.py | box_to_point8 | Anustup900/models | 0 | python | def box_to_point8(boxes):
'\n Args:\n boxes: nx4\n\n Returns:\n (nx4)x2\n '
b = boxes[(:, [0, 1, 2, 3, 0, 3, 2, 1])]
b = b.reshape(((- 1), 2))
return b | def box_to_point8(boxes):
'\n Args:\n boxes: nx4\n\n Returns:\n (nx4)x2\n '
b = boxes[(:, [0, 1, 2, 3, 0, 3, 2, 1])]
b = b.reshape(((- 1), 2))
return b<|docstring|>Args:
boxes: nx4
Returns:
(nx4)x2<|endoftext|> |
145b3e556a0d30f6a9f11b19f5a5a241091c9b9bb6f2ab33a1819112669a27f1 | def point8_to_box(points):
'\n Args:\n points: (nx4)x2\n Returns:\n nx4 boxes (x1y1x2y2)\n '
p = points.reshape(((- 1), 4, 2))
minxy = p.min(axis=1)
maxxy = p.max(axis=1)
return np.concatenate((minxy, maxxy), axis=1) | Args:
points: (nx4)x2
Returns:
nx4 boxes (x1y1x2y2) | official/vision/detection/GSOC 21/Mask RCNN/Experiments/Experiment 01/Custom Code Base/common.py | point8_to_box | Anustup900/models | 0 | python | def point8_to_box(points):
'\n Args:\n points: (nx4)x2\n Returns:\n nx4 boxes (x1y1x2y2)\n '
p = points.reshape(((- 1), 4, 2))
minxy = p.min(axis=1)
maxxy = p.max(axis=1)
return np.concatenate((minxy, maxxy), axis=1) | def point8_to_box(points):
'\n Args:\n points: (nx4)x2\n Returns:\n nx4 boxes (x1y1x2y2)\n '
p = points.reshape(((- 1), 4, 2))
minxy = p.min(axis=1)
maxxy = p.max(axis=1)
return np.concatenate((minxy, maxxy), axis=1)<|docstring|>Args:
points: (nx4)x2
Returns:
nx4 boxes (x1y1x2y2)<|endoftext|> |
630b9dd4851d42e554f68f7ee013c01d756c4a3a1de9c170693e4298be952640 | def segmentation_to_mask(polys, height, width):
'\n Convert polygons to binary masks.\n\n Args:\n polys: a list of nx2 float array. Each array contains many (x, y) coordinates.\n\n Returns:\n a binary matrix of (height, width)\n '
polys = [p.flatten().tolist() for p in polys]
assert (len(polys) > 0), 'Polygons are empty!'
import pycocotools.mask as cocomask
rles = cocomask.frPyObjects(polys, height, width)
rle = cocomask.merge(rles)
return cocomask.decode(rle) | Convert polygons to binary masks.
Args:
polys: a list of nx2 float array. Each array contains many (x, y) coordinates.
Returns:
a binary matrix of (height, width) | official/vision/detection/GSOC 21/Mask RCNN/Experiments/Experiment 01/Custom Code Base/common.py | segmentation_to_mask | Anustup900/models | 0 | python | def segmentation_to_mask(polys, height, width):
'\n Convert polygons to binary masks.\n\n Args:\n polys: a list of nx2 float array. Each array contains many (x, y) coordinates.\n\n Returns:\n a binary matrix of (height, width)\n '
polys = [p.flatten().tolist() for p in polys]
assert (len(polys) > 0), 'Polygons are empty!'
import pycocotools.mask as cocomask
rles = cocomask.frPyObjects(polys, height, width)
rle = cocomask.merge(rles)
return cocomask.decode(rle) | def segmentation_to_mask(polys, height, width):
'\n Convert polygons to binary masks.\n\n Args:\n polys: a list of nx2 float array. Each array contains many (x, y) coordinates.\n\n Returns:\n a binary matrix of (height, width)\n '
polys = [p.flatten().tolist() for p in polys]
assert (len(polys) > 0), 'Polygons are empty!'
import pycocotools.mask as cocomask
rles = cocomask.frPyObjects(polys, height, width)
rle = cocomask.merge(rles)
return cocomask.decode(rle)<|docstring|>Convert polygons to binary masks.
Args:
polys: a list of nx2 float array. Each array contains many (x, y) coordinates.
Returns:
a binary matrix of (height, width)<|endoftext|> |
d9d36c0afb29100c1a40af457fc05eec463fd383254775fe9181f2bc08272413 | def clip_boxes(boxes, shape):
'\n Args:\n boxes: (...)x4, float\n shape: h, w\n '
orig_shape = boxes.shape
boxes = boxes.reshape([(- 1), 4])
(h, w) = shape
boxes[(:, [0, 1])] = np.maximum(boxes[(:, [0, 1])], 0)
boxes[(:, 2)] = np.minimum(boxes[(:, 2)], w)
boxes[(:, 3)] = np.minimum(boxes[(:, 3)], h)
return boxes.reshape(orig_shape) | Args:
boxes: (...)x4, float
shape: h, w | official/vision/detection/GSOC 21/Mask RCNN/Experiments/Experiment 01/Custom Code Base/common.py | clip_boxes | Anustup900/models | 0 | python | def clip_boxes(boxes, shape):
'\n Args:\n boxes: (...)x4, float\n shape: h, w\n '
orig_shape = boxes.shape
boxes = boxes.reshape([(- 1), 4])
(h, w) = shape
boxes[(:, [0, 1])] = np.maximum(boxes[(:, [0, 1])], 0)
boxes[(:, 2)] = np.minimum(boxes[(:, 2)], w)
boxes[(:, 3)] = np.minimum(boxes[(:, 3)], h)
return boxes.reshape(orig_shape) | def clip_boxes(boxes, shape):
'\n Args:\n boxes: (...)x4, float\n shape: h, w\n '
orig_shape = boxes.shape
boxes = boxes.reshape([(- 1), 4])
(h, w) = shape
boxes[(:, [0, 1])] = np.maximum(boxes[(:, [0, 1])], 0)
boxes[(:, 2)] = np.minimum(boxes[(:, 2)], w)
boxes[(:, 3)] = np.minimum(boxes[(:, 3)], h)
return boxes.reshape(orig_shape)<|docstring|>Args:
boxes: (...)x4, float
shape: h, w<|endoftext|> |
1f0324be435ce4f142789645a5f974b9f26a050363d1b4843a4283c0ff2795f8 | def filter_boxes_inside_shape(boxes, shape):
'\n Args:\n boxes: (nx4), float\n shape: (h, w)\n\n Returns:\n indices: (k, )\n selection: (kx4)\n '
assert (boxes.ndim == 2), boxes.shape
assert (len(shape) == 2), shape
(h, w) = shape
indices = np.where(((((boxes[(:, 0)] >= 0) & (boxes[(:, 1)] >= 0)) & (boxes[(:, 2)] <= w)) & (boxes[(:, 3)] <= h)))[0]
return (indices, boxes[(indices, :)]) | Args:
boxes: (nx4), float
shape: (h, w)
Returns:
indices: (k, )
selection: (kx4) | official/vision/detection/GSOC 21/Mask RCNN/Experiments/Experiment 01/Custom Code Base/common.py | filter_boxes_inside_shape | Anustup900/models | 0 | python | def filter_boxes_inside_shape(boxes, shape):
'\n Args:\n boxes: (nx4), float\n shape: (h, w)\n\n Returns:\n indices: (k, )\n selection: (kx4)\n '
assert (boxes.ndim == 2), boxes.shape
assert (len(shape) == 2), shape
(h, w) = shape
indices = np.where(((((boxes[(:, 0)] >= 0) & (boxes[(:, 1)] >= 0)) & (boxes[(:, 2)] <= w)) & (boxes[(:, 3)] <= h)))[0]
return (indices, boxes[(indices, :)]) | def filter_boxes_inside_shape(boxes, shape):
'\n Args:\n boxes: (nx4), float\n shape: (h, w)\n\n Returns:\n indices: (k, )\n selection: (kx4)\n '
assert (boxes.ndim == 2), boxes.shape
assert (len(shape) == 2), shape
(h, w) = shape
indices = np.where(((((boxes[(:, 0)] >= 0) & (boxes[(:, 1)] >= 0)) & (boxes[(:, 2)] <= w)) & (boxes[(:, 3)] <= h)))[0]
return (indices, boxes[(indices, :)])<|docstring|>Args:
boxes: (nx4), float
shape: (h, w)
Returns:
indices: (k, )
selection: (kx4)<|endoftext|> |
126d71a0b7dcc437f2bb54725d84e2c48f7205021c26ec9778fd5f6fa97599d9 | def __init__(self, short_edge_length, max_size, interp=cv2.INTER_LINEAR):
'\n Args:\n short_edge_length ([int, int]): a [min, max] interval from which to sample the\n shortest edge length.\n max_size (int): maximum allowed longest edge length.\n '
super(CustomResize, self).__init__()
if isinstance(short_edge_length, int):
short_edge_length = (short_edge_length, short_edge_length)
self._init(locals()) | Args:
short_edge_length ([int, int]): a [min, max] interval from which to sample the
shortest edge length.
max_size (int): maximum allowed longest edge length. | official/vision/detection/GSOC 21/Mask RCNN/Experiments/Experiment 01/Custom Code Base/common.py | __init__ | Anustup900/models | 0 | python | def __init__(self, short_edge_length, max_size, interp=cv2.INTER_LINEAR):
'\n Args:\n short_edge_length ([int, int]): a [min, max] interval from which to sample the\n shortest edge length.\n max_size (int): maximum allowed longest edge length.\n '
super(CustomResize, self).__init__()
if isinstance(short_edge_length, int):
short_edge_length = (short_edge_length, short_edge_length)
self._init(locals()) | def __init__(self, short_edge_length, max_size, interp=cv2.INTER_LINEAR):
'\n Args:\n short_edge_length ([int, int]): a [min, max] interval from which to sample the\n shortest edge length.\n max_size (int): maximum allowed longest edge length.\n '
super(CustomResize, self).__init__()
if isinstance(short_edge_length, int):
short_edge_length = (short_edge_length, short_edge_length)
self._init(locals())<|docstring|>Args:
short_edge_length ([int, int]): a [min, max] interval from which to sample the
shortest edge length.
max_size (int): maximum allowed longest edge length.<|endoftext|> |
37aa7d3b7de8ab9cdad95fe60a5d38c0b413948061bdfde71748a7783c277ade | def __init__(self, filename=None):
'Create a Document instance.'
self.filename = filename
self.filepath = None
self.filedir = None
self.filebase = None
self.fileext = None
if self.filename:
self.filepath = os.path.realpath(self.filename)
(self.filedir, self.filename) = os.path.split(self.filepath)
(self.filebase, self.fileext) = os.path.splitext(self.filename) | Create a Document instance. | Lib/site-packages/wx-2.8-msw-unicode/wx/py/document.py | __init__ | William22FM/RobotTest | 27 | python | def __init__(self, filename=None):
self.filename = filename
self.filepath = None
self.filedir = None
self.filebase = None
self.fileext = None
if self.filename:
self.filepath = os.path.realpath(self.filename)
(self.filedir, self.filename) = os.path.split(self.filepath)
(self.filebase, self.fileext) = os.path.splitext(self.filename) | def __init__(self, filename=None):
self.filename = filename
self.filepath = None
self.filedir = None
self.filebase = None
self.fileext = None
if self.filename:
self.filepath = os.path.realpath(self.filename)
(self.filedir, self.filename) = os.path.split(self.filepath)
(self.filebase, self.fileext) = os.path.splitext(self.filename)<|docstring|>Create a Document instance.<|endoftext|> |
1c766bba7dc0d9cd00337dead08a8d3bc13721724acb313d30cc19e65a4657ee | def read(self):
'Return contents of file.'
if (self.filepath and os.path.exists(self.filepath)):
f = file(self.filepath, 'rb')
try:
return f.read()
finally:
f.close()
else:
return '' | Return contents of file. | Lib/site-packages/wx-2.8-msw-unicode/wx/py/document.py | read | William22FM/RobotTest | 27 | python | def read(self):
if (self.filepath and os.path.exists(self.filepath)):
f = file(self.filepath, 'rb')
try:
return f.read()
finally:
f.close()
else:
return | def read(self):
if (self.filepath and os.path.exists(self.filepath)):
f = file(self.filepath, 'rb')
try:
return f.read()
finally:
f.close()
else:
return <|docstring|>Return contents of file.<|endoftext|> |
aa7503244b15d4a1395a9d9fa5946d44f5e63a21ca9a6fa61f4ff62baf745c20 | def write(self, text):
'Write text to file.'
try:
f = file(self.filepath, 'wb')
f.write(text)
finally:
if f:
f.close() | Write text to file. | Lib/site-packages/wx-2.8-msw-unicode/wx/py/document.py | write | William22FM/RobotTest | 27 | python | def write(self, text):
try:
f = file(self.filepath, 'wb')
f.write(text)
finally:
if f:
f.close() | def write(self, text):
try:
f = file(self.filepath, 'wb')
f.write(text)
finally:
if f:
f.close()<|docstring|>Write text to file.<|endoftext|> |
93d10f6357bf6a9f343c8a652daa16621f3e7cea10843e6b69450519feb97096 | @quo.group()
def scan():
'Scan an IP/ netblock using Shodan.'
pass | Scan an IP/ netblock using Shodan. | src/expositor/cli/scan.py | scan | secretuminc/expositor | 1 | python | @quo.group()
def scan():
pass | @quo.group()
def scan():
pass<|docstring|>Scan an IP/ netblock using Shodan.<|endoftext|> |
e063526a878eaf774cc423d56ec0d9e4e698cabbffae00b22ffd293cc9625107 | @scan.command(name='list')
def scan_list():
'Show recently launched scans'
key = get_api_key()
api = shodan.Shodan(key)
try:
scans = api.scans()
except shodan.APIError as e:
raise quo.QuoException(e.value)
if (len(scans) > 0):
quo.echo(u'# {} Scans Total - Showing 10 most recent scans:'.format(scans['total']))
quo.echo(u'# {:20} {:<15} {:<10} {:<15s}'.format('Scan ID', 'Status', 'Size', 'Timestamp'))
for scan in scans['matches'][:10]:
quo.echo(u'{:31} {:<24} {:<10} {:<15s}'.format(quo.style(scan['id'], fg='yellow'), quo.style(scan['status'], fg='cyan'), scan['size'], scan['created']))
else:
quo.echo("You haven't yet launched any scans.") | Show recently launched scans | src/expositor/cli/scan.py | scan_list | secretuminc/expositor | 1 | python | @scan.command(name='list')
def scan_list():
key = get_api_key()
api = shodan.Shodan(key)
try:
scans = api.scans()
except shodan.APIError as e:
raise quo.QuoException(e.value)
if (len(scans) > 0):
quo.echo(u'# {} Scans Total - Showing 10 most recent scans:'.format(scans['total']))
quo.echo(u'# {:20} {:<15} {:<10} {:<15s}'.format('Scan ID', 'Status', 'Size', 'Timestamp'))
for scan in scans['matches'][:10]:
quo.echo(u'{:31} {:<24} {:<10} {:<15s}'.format(quo.style(scan['id'], fg='yellow'), quo.style(scan['status'], fg='cyan'), scan['size'], scan['created']))
else:
quo.echo("You haven't yet launched any scans.") | @scan.command(name='list')
def scan_list():
key = get_api_key()
api = shodan.Shodan(key)
try:
scans = api.scans()
except shodan.APIError as e:
raise quo.QuoException(e.value)
if (len(scans) > 0):
quo.echo(u'# {} Scans Total - Showing 10 most recent scans:'.format(scans['total']))
quo.echo(u'# {:20} {:<15} {:<10} {:<15s}'.format('Scan ID', 'Status', 'Size', 'Timestamp'))
for scan in scans['matches'][:10]:
quo.echo(u'{:31} {:<24} {:<10} {:<15s}'.format(quo.style(scan['id'], fg='yellow'), quo.style(scan['status'], fg='cyan'), scan['size'], scan['created']))
else:
quo.echo("You haven't yet launched any scans.")<|docstring|>Show recently launched scans<|endoftext|> |
3b9ef00015e6ccabb6c1a541fba09ab4b486bfb5cf4901d55bff4459452f98b3 | @scan.command(name='internet')
@quo.option('--quiet', help='Disable the printing of information to the screen.', default=False, is_flag=True)
@quo.argument('port', type=int)
@quo.argument('protocol', type=str)
def scan_internet(quiet, port, protocol):
'Scan the Internet for a specific port and protocol using the Shodan infrastructure.'
key = get_api_key()
api = shodan.Shodan(key)
try:
quo.echo('Submitting Internet scan to Shodan...', nl=False)
scan = api.scan_internet(port, protocol)
quo.echo('Done')
official_ports = api.ports()
if (port in official_ports):
quo.echo('The requested port is already indexed by Shodan. A new scan for the port has been launched, please subscribe to the real-time stream for results.')
else:
filename = '{0}-{1}.json.gz'.format(port, protocol)
counter = 0
with helpers.open_file(filename, 'w') as fout:
quo.echo('Saving results to file: {0}'.format(filename))
done = False
quo.echo('Waiting for data, please stand by...')
while (not done):
try:
for banner in api.stream.ports([port], timeout=90):
counter += 1
helpers.write_banner(fout, banner)
if (not quiet):
quo.echo('{0:<40} {1:<20} {2}'.format(quo.style(helpers.get_ip(banner), fg=COLORIZE_FIELDS['ip_str']), quo.style(str(banner['port']), fg=COLORIZE_FIELDS['port']), ';'.join(banner['hostnames'])))
except shodan.APIError:
if done:
break
scan = api.scan_status(scan['id'])
if (scan['status'] == 'DONE'):
done = True
except socket.timeout:
if done:
break
scan = api.scan_status(scan['id'])
if (scan['status'] == 'DONE'):
done = True
except Exception as e:
raise quo.QuoException(repr(e))
quo.echo('Scan finished: {0} devices found'.format(counter))
except shodan.APIError as e:
raise quo.QuoException(e.value) | Scan the Internet for a specific port and protocol using the Shodan infrastructure. | src/expositor/cli/scan.py | scan_internet | secretuminc/expositor | 1 | python | @scan.command(name='internet')
@quo.option('--quiet', help='Disable the printing of information to the screen.', default=False, is_flag=True)
@quo.argument('port', type=int)
@quo.argument('protocol', type=str)
def scan_internet(quiet, port, protocol):
key = get_api_key()
api = shodan.Shodan(key)
try:
quo.echo('Submitting Internet scan to Shodan...', nl=False)
scan = api.scan_internet(port, protocol)
quo.echo('Done')
official_ports = api.ports()
if (port in official_ports):
quo.echo('The requested port is already indexed by Shodan. A new scan for the port has been launched, please subscribe to the real-time stream for results.')
else:
filename = '{0}-{1}.json.gz'.format(port, protocol)
counter = 0
with helpers.open_file(filename, 'w') as fout:
quo.echo('Saving results to file: {0}'.format(filename))
done = False
quo.echo('Waiting for data, please stand by...')
while (not done):
try:
for banner in api.stream.ports([port], timeout=90):
counter += 1
helpers.write_banner(fout, banner)
if (not quiet):
quo.echo('{0:<40} {1:<20} {2}'.format(quo.style(helpers.get_ip(banner), fg=COLORIZE_FIELDS['ip_str']), quo.style(str(banner['port']), fg=COLORIZE_FIELDS['port']), ';'.join(banner['hostnames'])))
except shodan.APIError:
if done:
break
scan = api.scan_status(scan['id'])
if (scan['status'] == 'DONE'):
done = True
except socket.timeout:
if done:
break
scan = api.scan_status(scan['id'])
if (scan['status'] == 'DONE'):
done = True
except Exception as e:
raise quo.QuoException(repr(e))
quo.echo('Scan finished: {0} devices found'.format(counter))
except shodan.APIError as e:
raise quo.QuoException(e.value) | @scan.command(name='internet')
@quo.option('--quiet', help='Disable the printing of information to the screen.', default=False, is_flag=True)
@quo.argument('port', type=int)
@quo.argument('protocol', type=str)
def scan_internet(quiet, port, protocol):
key = get_api_key()
api = shodan.Shodan(key)
try:
quo.echo('Submitting Internet scan to Shodan...', nl=False)
scan = api.scan_internet(port, protocol)
quo.echo('Done')
official_ports = api.ports()
if (port in official_ports):
quo.echo('The requested port is already indexed by Shodan. A new scan for the port has been launched, please subscribe to the real-time stream for results.')
else:
filename = '{0}-{1}.json.gz'.format(port, protocol)
counter = 0
with helpers.open_file(filename, 'w') as fout:
quo.echo('Saving results to file: {0}'.format(filename))
done = False
quo.echo('Waiting for data, please stand by...')
while (not done):
try:
for banner in api.stream.ports([port], timeout=90):
counter += 1
helpers.write_banner(fout, banner)
if (not quiet):
quo.echo('{0:<40} {1:<20} {2}'.format(quo.style(helpers.get_ip(banner), fg=COLORIZE_FIELDS['ip_str']), quo.style(str(banner['port']), fg=COLORIZE_FIELDS['port']), ';'.join(banner['hostnames'])))
except shodan.APIError:
if done:
break
scan = api.scan_status(scan['id'])
if (scan['status'] == 'DONE'):
done = True
except socket.timeout:
if done:
break
scan = api.scan_status(scan['id'])
if (scan['status'] == 'DONE'):
done = True
except Exception as e:
raise quo.QuoException(repr(e))
quo.echo('Scan finished: {0} devices found'.format(counter))
except shodan.APIError as e:
raise quo.QuoException(e.value)<|docstring|>Scan the Internet for a specific port and protocol using the Shodan infrastructure.<|endoftext|> |
0c389d7e4cb6df782dfb3988dace0fff92abd9ad41a4ebfc7376a6c9c7498054 | @scan.command(name='protocols')
def scan_protocols():
'List the protocols that you can scan with using Shodan.'
key = get_api_key()
api = shodan.Shodan(key)
try:
protocols = api.protocols()
for (name, description) in iter(protocols.items()):
quo.echo((quo.style('{0:<30}'.format(name), fg='cyan') + description))
except shodan.APIError as e:
raise quo.QuoException(e.value) | List the protocols that you can scan with using Shodan. | src/expositor/cli/scan.py | scan_protocols | secretuminc/expositor | 1 | python | @scan.command(name='protocols')
def scan_protocols():
key = get_api_key()
api = shodan.Shodan(key)
try:
protocols = api.protocols()
for (name, description) in iter(protocols.items()):
quo.echo((quo.style('{0:<30}'.format(name), fg='cyan') + description))
except shodan.APIError as e:
raise quo.QuoException(e.value) | @scan.command(name='protocols')
def scan_protocols():
key = get_api_key()
api = shodan.Shodan(key)
try:
protocols = api.protocols()
for (name, description) in iter(protocols.items()):
quo.echo((quo.style('{0:<30}'.format(name), fg='cyan') + description))
except shodan.APIError as e:
raise quo.QuoException(e.value)<|docstring|>List the protocols that you can scan with using Shodan.<|endoftext|> |
af72eaafcda9a8fba06f7131865920087593d578b0cb6feddaa5641a24b397a4 | @scan.command(name='submit')
@quo.option('--wait', help='How long to wait for results to come back. If this is set to "0" or below return immediately.', default=20, type=int)
@quo.option('--filename', help='Save the results in the given file.', default='', type=str)
@quo.option('--force', default=False, is_flag=True)
@quo.option('--verbose', default=False, is_flag=True)
@quo.argument('netblocks', metavar='<ip address>', nargs=(- 1))
def scan_submit(wait, filename, force, verbose, netblocks):
'Scan an IP/ netblock using Shodan.'
key = get_api_key()
api = shodan.Shodan(key)
alert = None
try:
scan = api.scan(netblocks, force=force)
now = datetime.datetime.now().strftime('%Y-%m-%d %H:%M')
quo.echo('')
quo.echo('Starting Shodan scan at {} - {} scan credits left'.format(now, scan['credits_left']))
if verbose:
quo.echo('# Scan ID: {}'.format(scan['id']))
if (wait <= 0):
quo.echo('Exiting now, not waiting for results. Use the API or website to retrieve the results of the scan.')
else:
alert = api.create_alert('Scan: {}'.format(', '.join(netblocks)), netblocks)
filename = filename.strip()
fout = None
if (filename != ''):
if (not filename.endswith('.json.gz')):
filename += '.json.gz'
fout = helpers.open_file(filename, 'w')
finished_event = threading.Event()
progress_bar_thread = threading.Thread(target=async_spinner, args=(finished_event,))
progress_bar_thread.start()
hosts = collections.defaultdict(dict)
done = False
scan_start = time.time()
cache = {}
while (not done):
try:
for banner in api.stream.alert(aid=alert['id'], timeout=wait):
ip = banner.get('ip', banner.get('ipv6', None))
if (not ip):
continue
cache_key = '{}:{}'.format(ip, banner['port'])
if (cache_key not in cache):
hosts[helpers.get_ip(banner)][banner['port']] = banner
cache[cache_key] = True
if ((time.time() - scan_start) >= 60):
scan = api.scan_status(scan['id'])
if verbose:
quo.echo('# Scan status: {}'.format(scan['status']))
if (scan['status'] == 'DONE'):
done = True
break
except shodan.APIError:
if ((time.time() - scan_start) < wait):
time.sleep(0.5)
continue
if done:
break
scan = api.scan_status(scan['id'])
if (scan['status'] == 'DONE'):
done = True
if verbose:
quo.echo('# Scan status: {}'.format(scan['status']))
except socket.timeout:
if ((time.time() - scan_start) < wait):
continue
done = True
except Exception as e:
finished_event.set()
progress_bar_thread.join()
raise quo.QuoException(repr(e))
finished_event.set()
progress_bar_thread.join()
def print_field(name, value):
quo.echo(' {:25s}{}'.format(name, value))
def print_banner(banner):
quo.echo(' {:20s}'.format(((quo.style(str(banner['port']), fg='green') + '/') + banner['transport'])), nl=False)
if ('product' in banner):
quo.echo(banner['product'], nl=False)
if ('version' in banner):
quo.echo(' ({})'.format(banner['version']), nl=False)
quo.echo('')
if ('ssl' in banner):
if ('versions' in banner['ssl']):
versions = [version for version in sorted(banner['ssl']['versions']) if (not version.startswith('-'))]
if (len(versions) > 0):
quo.echo(' |-- SSL Versions: {}'.format(', '.join(versions)))
if (('dhparams' in banner['ssl']) and banner['ssl']['dhparams']):
quo.echo(' |-- Diffie-Hellman Parameters:')
quo.echo(' {:15s}{}\n {:15s}{}'.format('Bits:', banner['ssl']['dhparams']['bits'], 'Generator:', banner['ssl']['dhparams']['generator']))
if ('fingerprint' in banner['ssl']['dhparams']):
quo.echo(' {:15s}{}'.format('Fingerprint:', banner['ssl']['dhparams']['fingerprint']))
if hosts:
quo.echo('\x08 ')
for ip in sorted(hosts):
host = next(iter(hosts[ip].items()))[1]
quo.echo(quo.style(ip, fg='cyan'), nl=False)
if (('hostnames' in host) and host['hostnames']):
quo.echo(' ({})'.format(', '.join(host['hostnames'])), nl=False)
quo.echo('')
if (('location' in host) and ('country_name' in host['location']) and host['location']['country_name']):
print_field('Country', host['location']['country_name'])
if (('city' in host['location']) and host['location']['city']):
print_field('City', host['location']['city'])
if (('org' in host) and host['org']):
print_field('Organization', host['org'])
if (('os' in host) and host['os']):
print_field('Operating System', host['os'])
quo.echo('')
if (('vulns' in host) and (len(host['vulns']) > 0)):
vulns = []
for vuln in host['vulns']:
if vuln.startswith('!'):
continue
if (vuln.upper() == 'CVE-2014-0160'):
vulns.append(quo.style('Heartbleed', fg='red'))
else:
vulns.append(quo.style(vuln, fg='red'))
if (len(vulns) > 0):
quo.echo(' {:25s}'.format('Vulnerabilities:'), nl=False)
for vuln in vulns:
quo.echo((vuln + '\t'), nl=False)
quo.echo('')
quo.echo(' Open Ports:')
for port in sorted(hosts[ip]):
print_banner(hosts[ip][port])
if fout:
helpers.write_banner(fout, hosts[ip][port])
quo.echo('')
else:
quo.echo('\x08No open ports found or the host has been recently crawled and cant get scanned again so soon.')
except shodan.APIError as e:
raise quo.QuoException(e.value)
finally:
if alert:
api.delete_alert(alert['id']) | Scan an IP/ netblock using Shodan. | src/expositor/cli/scan.py | scan_submit | secretuminc/expositor | 1 | python | @scan.command(name='submit')
@quo.option('--wait', help='How long to wait for results to come back. If this is set to "0" or below return immediately.', default=20, type=int)
@quo.option('--filename', help='Save the results in the given file.', default=, type=str)
@quo.option('--force', default=False, is_flag=True)
@quo.option('--verbose', default=False, is_flag=True)
@quo.argument('netblocks', metavar='<ip address>', nargs=(- 1))
def scan_submit(wait, filename, force, verbose, netblocks):
key = get_api_key()
api = shodan.Shodan(key)
alert = None
try:
scan = api.scan(netblocks, force=force)
now = datetime.datetime.now().strftime('%Y-%m-%d %H:%M')
quo.echo()
quo.echo('Starting Shodan scan at {} - {} scan credits left'.format(now, scan['credits_left']))
if verbose:
quo.echo('# Scan ID: {}'.format(scan['id']))
if (wait <= 0):
quo.echo('Exiting now, not waiting for results. Use the API or website to retrieve the results of the scan.')
else:
alert = api.create_alert('Scan: {}'.format(', '.join(netblocks)), netblocks)
filename = filename.strip()
fout = None
if (filename != ):
if (not filename.endswith('.json.gz')):
filename += '.json.gz'
fout = helpers.open_file(filename, 'w')
finished_event = threading.Event()
progress_bar_thread = threading.Thread(target=async_spinner, args=(finished_event,))
progress_bar_thread.start()
hosts = collections.defaultdict(dict)
done = False
scan_start = time.time()
cache = {}
while (not done):
try:
for banner in api.stream.alert(aid=alert['id'], timeout=wait):
ip = banner.get('ip', banner.get('ipv6', None))
if (not ip):
continue
cache_key = '{}:{}'.format(ip, banner['port'])
if (cache_key not in cache):
hosts[helpers.get_ip(banner)][banner['port']] = banner
cache[cache_key] = True
if ((time.time() - scan_start) >= 60):
scan = api.scan_status(scan['id'])
if verbose:
quo.echo('# Scan status: {}'.format(scan['status']))
if (scan['status'] == 'DONE'):
done = True
break
except shodan.APIError:
if ((time.time() - scan_start) < wait):
time.sleep(0.5)
continue
if done:
break
scan = api.scan_status(scan['id'])
if (scan['status'] == 'DONE'):
done = True
if verbose:
quo.echo('# Scan status: {}'.format(scan['status']))
except socket.timeout:
if ((time.time() - scan_start) < wait):
continue
done = True
except Exception as e:
finished_event.set()
progress_bar_thread.join()
raise quo.QuoException(repr(e))
finished_event.set()
progress_bar_thread.join()
def print_field(name, value):
quo.echo(' {:25s}{}'.format(name, value))
def print_banner(banner):
quo.echo(' {:20s}'.format(((quo.style(str(banner['port']), fg='green') + '/') + banner['transport'])), nl=False)
if ('product' in banner):
quo.echo(banner['product'], nl=False)
if ('version' in banner):
quo.echo(' ({})'.format(banner['version']), nl=False)
quo.echo()
if ('ssl' in banner):
if ('versions' in banner['ssl']):
versions = [version for version in sorted(banner['ssl']['versions']) if (not version.startswith('-'))]
if (len(versions) > 0):
quo.echo(' |-- SSL Versions: {}'.format(', '.join(versions)))
if (('dhparams' in banner['ssl']) and banner['ssl']['dhparams']):
quo.echo(' |-- Diffie-Hellman Parameters:')
quo.echo(' {:15s}{}\n {:15s}{}'.format('Bits:', banner['ssl']['dhparams']['bits'], 'Generator:', banner['ssl']['dhparams']['generator']))
if ('fingerprint' in banner['ssl']['dhparams']):
quo.echo(' {:15s}{}'.format('Fingerprint:', banner['ssl']['dhparams']['fingerprint']))
if hosts:
quo.echo('\x08 ')
for ip in sorted(hosts):
host = next(iter(hosts[ip].items()))[1]
quo.echo(quo.style(ip, fg='cyan'), nl=False)
if (('hostnames' in host) and host['hostnames']):
quo.echo(' ({})'.format(', '.join(host['hostnames'])), nl=False)
quo.echo()
if (('location' in host) and ('country_name' in host['location']) and host['location']['country_name']):
print_field('Country', host['location']['country_name'])
if (('city' in host['location']) and host['location']['city']):
print_field('City', host['location']['city'])
if (('org' in host) and host['org']):
print_field('Organization', host['org'])
if (('os' in host) and host['os']):
print_field('Operating System', host['os'])
quo.echo()
if (('vulns' in host) and (len(host['vulns']) > 0)):
vulns = []
for vuln in host['vulns']:
if vuln.startswith('!'):
continue
if (vuln.upper() == 'CVE-2014-0160'):
vulns.append(quo.style('Heartbleed', fg='red'))
else:
vulns.append(quo.style(vuln, fg='red'))
if (len(vulns) > 0):
quo.echo(' {:25s}'.format('Vulnerabilities:'), nl=False)
for vuln in vulns:
quo.echo((vuln + '\t'), nl=False)
quo.echo()
quo.echo(' Open Ports:')
for port in sorted(hosts[ip]):
print_banner(hosts[ip][port])
if fout:
helpers.write_banner(fout, hosts[ip][port])
quo.echo()
else:
quo.echo('\x08No open ports found or the host has been recently crawled and cant get scanned again so soon.')
except shodan.APIError as e:
raise quo.QuoException(e.value)
finally:
if alert:
api.delete_alert(alert['id']) | @scan.command(name='submit')
@quo.option('--wait', help='How long to wait for results to come back. If this is set to "0" or below return immediately.', default=20, type=int)
@quo.option('--filename', help='Save the results in the given file.', default=, type=str)
@quo.option('--force', default=False, is_flag=True)
@quo.option('--verbose', default=False, is_flag=True)
@quo.argument('netblocks', metavar='<ip address>', nargs=(- 1))
def scan_submit(wait, filename, force, verbose, netblocks):
key = get_api_key()
api = shodan.Shodan(key)
alert = None
try:
scan = api.scan(netblocks, force=force)
now = datetime.datetime.now().strftime('%Y-%m-%d %H:%M')
quo.echo()
quo.echo('Starting Shodan scan at {} - {} scan credits left'.format(now, scan['credits_left']))
if verbose:
quo.echo('# Scan ID: {}'.format(scan['id']))
if (wait <= 0):
quo.echo('Exiting now, not waiting for results. Use the API or website to retrieve the results of the scan.')
else:
alert = api.create_alert('Scan: {}'.format(', '.join(netblocks)), netblocks)
filename = filename.strip()
fout = None
if (filename != ):
if (not filename.endswith('.json.gz')):
filename += '.json.gz'
fout = helpers.open_file(filename, 'w')
finished_event = threading.Event()
progress_bar_thread = threading.Thread(target=async_spinner, args=(finished_event,))
progress_bar_thread.start()
hosts = collections.defaultdict(dict)
done = False
scan_start = time.time()
cache = {}
while (not done):
try:
for banner in api.stream.alert(aid=alert['id'], timeout=wait):
ip = banner.get('ip', banner.get('ipv6', None))
if (not ip):
continue
cache_key = '{}:{}'.format(ip, banner['port'])
if (cache_key not in cache):
hosts[helpers.get_ip(banner)][banner['port']] = banner
cache[cache_key] = True
if ((time.time() - scan_start) >= 60):
scan = api.scan_status(scan['id'])
if verbose:
quo.echo('# Scan status: {}'.format(scan['status']))
if (scan['status'] == 'DONE'):
done = True
break
except shodan.APIError:
if ((time.time() - scan_start) < wait):
time.sleep(0.5)
continue
if done:
break
scan = api.scan_status(scan['id'])
if (scan['status'] == 'DONE'):
done = True
if verbose:
quo.echo('# Scan status: {}'.format(scan['status']))
except socket.timeout:
if ((time.time() - scan_start) < wait):
continue
done = True
except Exception as e:
finished_event.set()
progress_bar_thread.join()
raise quo.QuoException(repr(e))
finished_event.set()
progress_bar_thread.join()
def print_field(name, value):
quo.echo(' {:25s}{}'.format(name, value))
def print_banner(banner):
quo.echo(' {:20s}'.format(((quo.style(str(banner['port']), fg='green') + '/') + banner['transport'])), nl=False)
if ('product' in banner):
quo.echo(banner['product'], nl=False)
if ('version' in banner):
quo.echo(' ({})'.format(banner['version']), nl=False)
quo.echo()
if ('ssl' in banner):
if ('versions' in banner['ssl']):
versions = [version for version in sorted(banner['ssl']['versions']) if (not version.startswith('-'))]
if (len(versions) > 0):
quo.echo(' |-- SSL Versions: {}'.format(', '.join(versions)))
if (('dhparams' in banner['ssl']) and banner['ssl']['dhparams']):
quo.echo(' |-- Diffie-Hellman Parameters:')
quo.echo(' {:15s}{}\n {:15s}{}'.format('Bits:', banner['ssl']['dhparams']['bits'], 'Generator:', banner['ssl']['dhparams']['generator']))
if ('fingerprint' in banner['ssl']['dhparams']):
quo.echo(' {:15s}{}'.format('Fingerprint:', banner['ssl']['dhparams']['fingerprint']))
if hosts:
quo.echo('\x08 ')
for ip in sorted(hosts):
host = next(iter(hosts[ip].items()))[1]
quo.echo(quo.style(ip, fg='cyan'), nl=False)
if (('hostnames' in host) and host['hostnames']):
quo.echo(' ({})'.format(', '.join(host['hostnames'])), nl=False)
quo.echo()
if (('location' in host) and ('country_name' in host['location']) and host['location']['country_name']):
print_field('Country', host['location']['country_name'])
if (('city' in host['location']) and host['location']['city']):
print_field('City', host['location']['city'])
if (('org' in host) and host['org']):
print_field('Organization', host['org'])
if (('os' in host) and host['os']):
print_field('Operating System', host['os'])
quo.echo()
if (('vulns' in host) and (len(host['vulns']) > 0)):
vulns = []
for vuln in host['vulns']:
if vuln.startswith('!'):
continue
if (vuln.upper() == 'CVE-2014-0160'):
vulns.append(quo.style('Heartbleed', fg='red'))
else:
vulns.append(quo.style(vuln, fg='red'))
if (len(vulns) > 0):
quo.echo(' {:25s}'.format('Vulnerabilities:'), nl=False)
for vuln in vulns:
quo.echo((vuln + '\t'), nl=False)
quo.echo()
quo.echo(' Open Ports:')
for port in sorted(hosts[ip]):
print_banner(hosts[ip][port])
if fout:
helpers.write_banner(fout, hosts[ip][port])
quo.echo()
else:
quo.echo('\x08No open ports found or the host has been recently crawled and cant get scanned again so soon.')
except shodan.APIError as e:
raise quo.QuoException(e.value)
finally:
if alert:
api.delete_alert(alert['id'])<|docstring|>Scan an IP/ netblock using Shodan.<|endoftext|> |
2ae2f2e49ee4ce90a477cdfabbf51be71a73c358256379e4a991511c14a55d02 | @scan.command(name='status')
@quo.argument('scan_id', type=str)
def scan_status(scan_id):
'Check the status of an on-demand scan.'
key = get_api_key()
api = shodan.Shodan(key)
try:
scan = api.scan_status(scan_id)
quo.echo(scan['status'])
except shodan.APIError as e:
raise quo.QuoException(e.value) | Check the status of an on-demand scan. | src/expositor/cli/scan.py | scan_status | secretuminc/expositor | 1 | python | @scan.command(name='status')
@quo.argument('scan_id', type=str)
def scan_status(scan_id):
key = get_api_key()
api = shodan.Shodan(key)
try:
scan = api.scan_status(scan_id)
quo.echo(scan['status'])
except shodan.APIError as e:
raise quo.QuoException(e.value) | @scan.command(name='status')
@quo.argument('scan_id', type=str)
def scan_status(scan_id):
key = get_api_key()
api = shodan.Shodan(key)
try:
scan = api.scan_status(scan_id)
quo.echo(scan['status'])
except shodan.APIError as e:
raise quo.QuoException(e.value)<|docstring|>Check the status of an on-demand scan.<|endoftext|> |
edbeafc48750dad5450a25cba564d344f2e0bb7f19a27d59ab40b01f4202b6f1 | def spheric_to_cartesian(phi, theta, rho):
' Spheric to cartesian coordinates '
if hasattr(phi, '__iter__'):
n = len(phi)
elif hasattr(theta, '__iter__'):
n = len(theta)
elif hasattr(rho, '__iter__'):
n = len(rho)
P = np.empty((n, 3), dtype=np.float32)
sin_theta = np.sin(theta)
P[(:, 0)] = ((sin_theta * np.sin(phi)) * rho)
P[(:, 1)] = ((sin_theta * np.cos(phi)) * rho)
P[(:, 2)] = (np.cos(theta) * rho)
return P | Spheric to cartesian coordinates | examples/earth.py | spheric_to_cartesian | CodeDoes/glumpy | 1,074 | python | def spheric_to_cartesian(phi, theta, rho):
' '
if hasattr(phi, '__iter__'):
n = len(phi)
elif hasattr(theta, '__iter__'):
n = len(theta)
elif hasattr(rho, '__iter__'):
n = len(rho)
P = np.empty((n, 3), dtype=np.float32)
sin_theta = np.sin(theta)
P[(:, 0)] = ((sin_theta * np.sin(phi)) * rho)
P[(:, 1)] = ((sin_theta * np.cos(phi)) * rho)
P[(:, 2)] = (np.cos(theta) * rho)
return P | def spheric_to_cartesian(phi, theta, rho):
' '
if hasattr(phi, '__iter__'):
n = len(phi)
elif hasattr(theta, '__iter__'):
n = len(theta)
elif hasattr(rho, '__iter__'):
n = len(rho)
P = np.empty((n, 3), dtype=np.float32)
sin_theta = np.sin(theta)
P[(:, 0)] = ((sin_theta * np.sin(phi)) * rho)
P[(:, 1)] = ((sin_theta * np.cos(phi)) * rho)
P[(:, 2)] = (np.cos(theta) * rho)
return P<|docstring|>Spheric to cartesian coordinates<|endoftext|> |
21991ae8a1567b5d1257b269d1f966300b217ba4c4d6b2e64edeafb14d386148 | def get_data_element_impls(reload_modules=False):
'\n Discover and return discovered ``DataElement`` classes. Keys in the\n returned map are the names of the discovered classes, and the paired values\n are the actual class type objects.\n\n We search for implementation classes in:\n - modules next to this file this function is defined in (ones that begin\n with an alphanumeric character),\n - python modules listed in the environment variable\n ``DATA_ELEMENT_PATH``\n - This variable should contain a sequence of python module\n specifications, separated by the platform specific PATH separator\n character (``;`` for Windows, ``:`` for unix)\n\n Within a module we first look for a helper variable by the name\n ``DATA_ELEMENT_CLASS``, which can either be a single class object or\n an iterable of class objects, to be specifically exported. If the variable\n is set to None, we skip that module and do not import anything. If the\n variable is not present, we look at attributes defined in that module for\n classes that descend from the given base class type. If none of the above\n are found, or if an exception occurs, the module is skipped.\n\n :param reload_modules: Explicitly reload discovered modules from source.\n :type reload_modules: bool\n\n :return: Map of discovered class object of type ``DataElement``\n whose keys are the string names of the classes.\n :rtype: dict[str, type]\n\n '
this_dir = os.path.abspath(os.path.dirname(__file__))
env_var = 'DATA_ELEMENT_PATH'
helper_var = 'DATA_ELEMENT_CLASS'
return plugin.get_plugins(__name__, this_dir, env_var, helper_var, DataElement, reload_modules=reload_modules) | Discover and return discovered ``DataElement`` classes. Keys in the
returned map are the names of the discovered classes, and the paired values
are the actual class type objects.
We search for implementation classes in:
- modules next to this file this function is defined in (ones that begin
with an alphanumeric character),
- python modules listed in the environment variable
``DATA_ELEMENT_PATH``
- This variable should contain a sequence of python module
specifications, separated by the platform specific PATH separator
character (``;`` for Windows, ``:`` for unix)
Within a module we first look for a helper variable by the name
``DATA_ELEMENT_CLASS``, which can either be a single class object or
an iterable of class objects, to be specifically exported. If the variable
is set to None, we skip that module and do not import anything. If the
variable is not present, we look at attributes defined in that module for
classes that descend from the given base class type. If none of the above
are found, or if an exception occurs, the module is skipped.
:param reload_modules: Explicitly reload discovered modules from source.
:type reload_modules: bool
:return: Map of discovered class object of type ``DataElement``
whose keys are the string names of the classes.
:rtype: dict[str, type] | python/smqtk/representation/data_element/__init__.py | get_data_element_impls | jbeezley/SMQTK | 1 | python | def get_data_element_impls(reload_modules=False):
'\n Discover and return discovered ``DataElement`` classes. Keys in the\n returned map are the names of the discovered classes, and the paired values\n are the actual class type objects.\n\n We search for implementation classes in:\n - modules next to this file this function is defined in (ones that begin\n with an alphanumeric character),\n - python modules listed in the environment variable\n ``DATA_ELEMENT_PATH``\n - This variable should contain a sequence of python module\n specifications, separated by the platform specific PATH separator\n character (``;`` for Windows, ``:`` for unix)\n\n Within a module we first look for a helper variable by the name\n ``DATA_ELEMENT_CLASS``, which can either be a single class object or\n an iterable of class objects, to be specifically exported. If the variable\n is set to None, we skip that module and do not import anything. If the\n variable is not present, we look at attributes defined in that module for\n classes that descend from the given base class type. If none of the above\n are found, or if an exception occurs, the module is skipped.\n\n :param reload_modules: Explicitly reload discovered modules from source.\n :type reload_modules: bool\n\n :return: Map of discovered class object of type ``DataElement``\n whose keys are the string names of the classes.\n :rtype: dict[str, type]\n\n '
this_dir = os.path.abspath(os.path.dirname(__file__))
env_var = 'DATA_ELEMENT_PATH'
helper_var = 'DATA_ELEMENT_CLASS'
return plugin.get_plugins(__name__, this_dir, env_var, helper_var, DataElement, reload_modules=reload_modules) | def get_data_element_impls(reload_modules=False):
'\n Discover and return discovered ``DataElement`` classes. Keys in the\n returned map are the names of the discovered classes, and the paired values\n are the actual class type objects.\n\n We search for implementation classes in:\n - modules next to this file this function is defined in (ones that begin\n with an alphanumeric character),\n - python modules listed in the environment variable\n ``DATA_ELEMENT_PATH``\n - This variable should contain a sequence of python module\n specifications, separated by the platform specific PATH separator\n character (``;`` for Windows, ``:`` for unix)\n\n Within a module we first look for a helper variable by the name\n ``DATA_ELEMENT_CLASS``, which can either be a single class object or\n an iterable of class objects, to be specifically exported. If the variable\n is set to None, we skip that module and do not import anything. If the\n variable is not present, we look at attributes defined in that module for\n classes that descend from the given base class type. If none of the above\n are found, or if an exception occurs, the module is skipped.\n\n :param reload_modules: Explicitly reload discovered modules from source.\n :type reload_modules: bool\n\n :return: Map of discovered class object of type ``DataElement``\n whose keys are the string names of the classes.\n :rtype: dict[str, type]\n\n '
this_dir = os.path.abspath(os.path.dirname(__file__))
env_var = 'DATA_ELEMENT_PATH'
helper_var = 'DATA_ELEMENT_CLASS'
return plugin.get_plugins(__name__, this_dir, env_var, helper_var, DataElement, reload_modules=reload_modules)<|docstring|>Discover and return discovered ``DataElement`` classes. Keys in the
returned map are the names of the discovered classes, and the paired values
are the actual class type objects.
We search for implementation classes in:
- modules next to this file this function is defined in (ones that begin
with an alphanumeric character),
- python modules listed in the environment variable
``DATA_ELEMENT_PATH``
- This variable should contain a sequence of python module
specifications, separated by the platform specific PATH separator
character (``;`` for Windows, ``:`` for unix)
Within a module we first look for a helper variable by the name
``DATA_ELEMENT_CLASS``, which can either be a single class object or
an iterable of class objects, to be specifically exported. If the variable
is set to None, we skip that module and do not import anything. If the
variable is not present, we look at attributes defined in that module for
classes that descend from the given base class type. If none of the above
are found, or if an exception occurs, the module is skipped.
:param reload_modules: Explicitly reload discovered modules from source.
:type reload_modules: bool
:return: Map of discovered class object of type ``DataElement``
whose keys are the string names of the classes.
:rtype: dict[str, type]<|endoftext|> |
e11f072aa5f7bd92fb0ef3d528aab65cb11b397bb794efe3ac897fd74e5fc9ff | def from_uri(uri, impl_generator=get_data_element_impls):
'\n Create a data element instance from available plugin implementations.\n\n The first implementation that can resolve the URI is what is returned. If no\n implementations can resolve the URL, an ``InvalidUriError`` is raised.\n\n :param uri: URI to try to resolve into a DataElement instance.\n :type uri: str\n\n :param impl_generator: Function that returns a dictionary mapping\n implementation type names to the class type. By default this refers to\n the standard ``get_data_element_impls`` function, however this can be\n changed to refer to a custom set of classes if desired.\n :type impl_generator: () -> dict[str, type]\n\n :raises smqtk.exceptions.InvalidUriError: No data element implementations\n could resolve the given URI.\n\n :return: New data element instance providing access to the data pointed to\n by the input URI.\n :rtype: DataElement\n\n '
log = logging.getLogger(__name__)
log.debug("Trying to parse URI: '%s'", uri)
de_type_iter = six.itervalues(impl_generator())
inst = None
for de_type in de_type_iter:
try:
inst = de_type.from_uri(uri)
except NoUriResolutionError:
pass
except InvalidUriError as ex:
log.debug("Implementation '%s' failed to parse URI: %s", de_type.__name__, ex.reason)
if (inst is not None):
break
if (inst is None):
raise InvalidUriError(uri, 'No available implementation to handle URI.')
return inst | Create a data element instance from available plugin implementations.
The first implementation that can resolve the URI is what is returned. If no
implementations can resolve the URL, an ``InvalidUriError`` is raised.
:param uri: URI to try to resolve into a DataElement instance.
:type uri: str
:param impl_generator: Function that returns a dictionary mapping
implementation type names to the class type. By default this refers to
the standard ``get_data_element_impls`` function, however this can be
changed to refer to a custom set of classes if desired.
:type impl_generator: () -> dict[str, type]
:raises smqtk.exceptions.InvalidUriError: No data element implementations
could resolve the given URI.
:return: New data element instance providing access to the data pointed to
by the input URI.
:rtype: DataElement | python/smqtk/representation/data_element/__init__.py | from_uri | jbeezley/SMQTK | 1 | python | def from_uri(uri, impl_generator=get_data_element_impls):
'\n Create a data element instance from available plugin implementations.\n\n The first implementation that can resolve the URI is what is returned. If no\n implementations can resolve the URL, an ``InvalidUriError`` is raised.\n\n :param uri: URI to try to resolve into a DataElement instance.\n :type uri: str\n\n :param impl_generator: Function that returns a dictionary mapping\n implementation type names to the class type. By default this refers to\n the standard ``get_data_element_impls`` function, however this can be\n changed to refer to a custom set of classes if desired.\n :type impl_generator: () -> dict[str, type]\n\n :raises smqtk.exceptions.InvalidUriError: No data element implementations\n could resolve the given URI.\n\n :return: New data element instance providing access to the data pointed to\n by the input URI.\n :rtype: DataElement\n\n '
log = logging.getLogger(__name__)
log.debug("Trying to parse URI: '%s'", uri)
de_type_iter = six.itervalues(impl_generator())
inst = None
for de_type in de_type_iter:
try:
inst = de_type.from_uri(uri)
except NoUriResolutionError:
pass
except InvalidUriError as ex:
log.debug("Implementation '%s' failed to parse URI: %s", de_type.__name__, ex.reason)
if (inst is not None):
break
if (inst is None):
raise InvalidUriError(uri, 'No available implementation to handle URI.')
return inst | def from_uri(uri, impl_generator=get_data_element_impls):
'\n Create a data element instance from available plugin implementations.\n\n The first implementation that can resolve the URI is what is returned. If no\n implementations can resolve the URL, an ``InvalidUriError`` is raised.\n\n :param uri: URI to try to resolve into a DataElement instance.\n :type uri: str\n\n :param impl_generator: Function that returns a dictionary mapping\n implementation type names to the class type. By default this refers to\n the standard ``get_data_element_impls`` function, however this can be\n changed to refer to a custom set of classes if desired.\n :type impl_generator: () -> dict[str, type]\n\n :raises smqtk.exceptions.InvalidUriError: No data element implementations\n could resolve the given URI.\n\n :return: New data element instance providing access to the data pointed to\n by the input URI.\n :rtype: DataElement\n\n '
log = logging.getLogger(__name__)
log.debug("Trying to parse URI: '%s'", uri)
de_type_iter = six.itervalues(impl_generator())
inst = None
for de_type in de_type_iter:
try:
inst = de_type.from_uri(uri)
except NoUriResolutionError:
pass
except InvalidUriError as ex:
log.debug("Implementation '%s' failed to parse URI: %s", de_type.__name__, ex.reason)
if (inst is not None):
break
if (inst is None):
raise InvalidUriError(uri, 'No available implementation to handle URI.')
return inst<|docstring|>Create a data element instance from available plugin implementations.
The first implementation that can resolve the URI is what is returned. If no
implementations can resolve the URL, an ``InvalidUriError`` is raised.
:param uri: URI to try to resolve into a DataElement instance.
:type uri: str
:param impl_generator: Function that returns a dictionary mapping
implementation type names to the class type. By default this refers to
the standard ``get_data_element_impls`` function, however this can be
changed to refer to a custom set of classes if desired.
:type impl_generator: () -> dict[str, type]
:raises smqtk.exceptions.InvalidUriError: No data element implementations
could resolve the given URI.
:return: New data element instance providing access to the data pointed to
by the input URI.
:rtype: DataElement<|endoftext|> |
e9c93a8e8229862da58e19dce9f0287b4814a06a2cef39b7cf63edf1a4c2a345 | @classmethod
def from_uri(cls, uri):
'\n Construct a new instance based on the given URI.\n\n This function may not be implemented for all DataElement types.\n\n :param uri: URI string to resolve into an element instance\n :type uri: str\n\n :raises NoUriResolutionError: This element type does not implement URI\n resolution.\n :raises smqtk.exceptions.InvalidUriError: This element type could not\n resolve the provided URI string.\n\n :return: New element instance of our type.\n :rtype: DataElement\n\n '
raise NoUriResolutionError() | Construct a new instance based on the given URI.
This function may not be implemented for all DataElement types.
:param uri: URI string to resolve into an element instance
:type uri: str
:raises NoUriResolutionError: This element type does not implement URI
resolution.
:raises smqtk.exceptions.InvalidUriError: This element type could not
resolve the provided URI string.
:return: New element instance of our type.
:rtype: DataElement | python/smqtk/representation/data_element/__init__.py | from_uri | jbeezley/SMQTK | 1 | python | @classmethod
def from_uri(cls, uri):
'\n Construct a new instance based on the given URI.\n\n This function may not be implemented for all DataElement types.\n\n :param uri: URI string to resolve into an element instance\n :type uri: str\n\n :raises NoUriResolutionError: This element type does not implement URI\n resolution.\n :raises smqtk.exceptions.InvalidUriError: This element type could not\n resolve the provided URI string.\n\n :return: New element instance of our type.\n :rtype: DataElement\n\n '
raise NoUriResolutionError() | @classmethod
def from_uri(cls, uri):
'\n Construct a new instance based on the given URI.\n\n This function may not be implemented for all DataElement types.\n\n :param uri: URI string to resolve into an element instance\n :type uri: str\n\n :raises NoUriResolutionError: This element type does not implement URI\n resolution.\n :raises smqtk.exceptions.InvalidUriError: This element type could not\n resolve the provided URI string.\n\n :return: New element instance of our type.\n :rtype: DataElement\n\n '
raise NoUriResolutionError()<|docstring|>Construct a new instance based on the given URI.
This function may not be implemented for all DataElement types.
:param uri: URI string to resolve into an element instance
:type uri: str
:raises NoUriResolutionError: This element type does not implement URI
resolution.
:raises smqtk.exceptions.InvalidUriError: This element type could not
resolve the provided URI string.
:return: New element instance of our type.
:rtype: DataElement<|endoftext|> |
cacee0461d35c9438b13166c00c6dd51df3febdcbc2d6bcecb7645950499666b | def _write_new_temp(self, d):
'\n Actually write our bytes to a new temp file\n Always creates new file.\n\n :param d: directory to write temp file in or None to use system default.\n :returns: path to file written\n\n '
if d:
file_utils.safe_create_dir(d)
ext = MIMETYPES.guess_extension((self.content_type() or ''))
if (ext in {'.jpe', '.jfif'}):
ext = '.jpg'
(fd, fp) = tempfile.mkstemp(suffix=(ext or ''), dir=d)
os.close(fd)
with open(fp, 'wb') as f:
f.write(self.get_bytes())
return fp | Actually write our bytes to a new temp file
Always creates new file.
:param d: directory to write temp file in or None to use system default.
:returns: path to file written | python/smqtk/representation/data_element/__init__.py | _write_new_temp | jbeezley/SMQTK | 1 | python | def _write_new_temp(self, d):
'\n Actually write our bytes to a new temp file\n Always creates new file.\n\n :param d: directory to write temp file in or None to use system default.\n :returns: path to file written\n\n '
if d:
file_utils.safe_create_dir(d)
ext = MIMETYPES.guess_extension((self.content_type() or ))
if (ext in {'.jpe', '.jfif'}):
ext = '.jpg'
(fd, fp) = tempfile.mkstemp(suffix=(ext or ), dir=d)
os.close(fd)
with open(fp, 'wb') as f:
f.write(self.get_bytes())
return fp | def _write_new_temp(self, d):
'\n Actually write our bytes to a new temp file\n Always creates new file.\n\n :param d: directory to write temp file in or None to use system default.\n :returns: path to file written\n\n '
if d:
file_utils.safe_create_dir(d)
ext = MIMETYPES.guess_extension((self.content_type() or ))
if (ext in {'.jpe', '.jfif'}):
ext = '.jpg'
(fd, fp) = tempfile.mkstemp(suffix=(ext or ), dir=d)
os.close(fd)
with open(fp, 'wb') as f:
f.write(self.get_bytes())
return fp<|docstring|>Actually write our bytes to a new temp file
Always creates new file.
:param d: directory to write temp file in or None to use system default.
:returns: path to file written<|endoftext|> |
38a030a70d121d5d146838d673b636f5996d914fb49227b047f8b49fe2043127 | def _clear_no_exist(self):
"\n Clear paths in temp stack that don't exist on the system.\n "
no_exist_paths = deque()
for fp in self._temp_filepath_stack:
if (not osp.isfile(fp)):
no_exist_paths.append(fp)
for fp in no_exist_paths:
self._temp_filepath_stack.remove(fp) | Clear paths in temp stack that don't exist on the system. | python/smqtk/representation/data_element/__init__.py | _clear_no_exist | jbeezley/SMQTK | 1 | python | def _clear_no_exist(self):
"\n \n "
no_exist_paths = deque()
for fp in self._temp_filepath_stack:
if (not osp.isfile(fp)):
no_exist_paths.append(fp)
for fp in no_exist_paths:
self._temp_filepath_stack.remove(fp) | def _clear_no_exist(self):
"\n \n "
no_exist_paths = deque()
for fp in self._temp_filepath_stack:
if (not osp.isfile(fp)):
no_exist_paths.append(fp)
for fp in no_exist_paths:
self._temp_filepath_stack.remove(fp)<|docstring|>Clear paths in temp stack that don't exist on the system.<|endoftext|> |
7aa6aefa0f2e0074287f0823e9d78631427d587db56440517a936a3a0b2c73ed | def md5(self):
"\n Get the MD5 checksum of this element's binary content.\n\n :return: MD5 hex checksum of the data content.\n :rtype: str\n "
return hashlib.md5(self.get_bytes()).hexdigest() | Get the MD5 checksum of this element's binary content.
:return: MD5 hex checksum of the data content.
:rtype: str | python/smqtk/representation/data_element/__init__.py | md5 | jbeezley/SMQTK | 1 | python | def md5(self):
"\n Get the MD5 checksum of this element's binary content.\n\n :return: MD5 hex checksum of the data content.\n :rtype: str\n "
return hashlib.md5(self.get_bytes()).hexdigest() | def md5(self):
"\n Get the MD5 checksum of this element's binary content.\n\n :return: MD5 hex checksum of the data content.\n :rtype: str\n "
return hashlib.md5(self.get_bytes()).hexdigest()<|docstring|>Get the MD5 checksum of this element's binary content.
:return: MD5 hex checksum of the data content.
:rtype: str<|endoftext|> |
2d6aeafeb571856eb701e73bac665227c86f6d48cdc89c2a98eced9307d073de | def sha1(self):
"\n Get the SHA1 checksum of this element's binary content.\n\n :return: SHA1 hex checksum of the data content.\n :rtype: str\n "
return hashlib.sha1(self.get_bytes()).hexdigest() | Get the SHA1 checksum of this element's binary content.
:return: SHA1 hex checksum of the data content.
:rtype: str | python/smqtk/representation/data_element/__init__.py | sha1 | jbeezley/SMQTK | 1 | python | def sha1(self):
"\n Get the SHA1 checksum of this element's binary content.\n\n :return: SHA1 hex checksum of the data content.\n :rtype: str\n "
return hashlib.sha1(self.get_bytes()).hexdigest() | def sha1(self):
"\n Get the SHA1 checksum of this element's binary content.\n\n :return: SHA1 hex checksum of the data content.\n :rtype: str\n "
return hashlib.sha1(self.get_bytes()).hexdigest()<|docstring|>Get the SHA1 checksum of this element's binary content.
:return: SHA1 hex checksum of the data content.
:rtype: str<|endoftext|> |
c134778b9a3c42b1a3327a346d04545fc6f5ff257a47cfe58ebbb2fd4502b416 | def sha512(self):
"\n Get the SHA512 checksum of this element's binary content.\n\n :return: SHA512 hex checksum of the data content.\n :rtype: str\n "
return hashlib.sha512(self.get_bytes()).hexdigest() | Get the SHA512 checksum of this element's binary content.
:return: SHA512 hex checksum of the data content.
:rtype: str | python/smqtk/representation/data_element/__init__.py | sha512 | jbeezley/SMQTK | 1 | python | def sha512(self):
"\n Get the SHA512 checksum of this element's binary content.\n\n :return: SHA512 hex checksum of the data content.\n :rtype: str\n "
return hashlib.sha512(self.get_bytes()).hexdigest() | def sha512(self):
"\n Get the SHA512 checksum of this element's binary content.\n\n :return: SHA512 hex checksum of the data content.\n :rtype: str\n "
return hashlib.sha512(self.get_bytes()).hexdigest()<|docstring|>Get the SHA512 checksum of this element's binary content.
:return: SHA512 hex checksum of the data content.
:rtype: str<|endoftext|> |
79a9c3acd440794cdff6c01da2c858ee71cb0645f4a5719b0a1a7da792054710 | def write_temp(self, temp_dir=None):
"\n Write this data's bytes to a temporary file on disk, returning the path\n to the written file, whose extension is guessed based on this data's\n content type.\n\n It is not guaranteed that the returned file path does not point to the\n original data, i.e. writing to the returned filepath may modify the\n original data.\n\n NOTE:\n The file path returned should not be explicitly removed by the user.\n Instead, the ``clean_temp()`` method should be called on this\n object.\n\n :param temp_dir: Optional directory to write temporary file in,\n otherwise we use the platform default temporary files directory.\n If this is an empty string, we count it the same as having provided\n None.\n :type temp_dir: None or str\n\n :return: Path to the temporary file\n :rtype: str\n\n "
self._clear_no_exist()
if temp_dir:
abs_temp_dir = osp.abspath(osp.expanduser(temp_dir))
for tf in self._temp_filepath_stack:
if (osp.dirname(tf) == abs_temp_dir):
return tf
self._temp_filepath_stack.append(self._write_new_temp(temp_dir))
elif (not self._temp_filepath_stack):
self._temp_filepath_stack.append(self._write_new_temp(None))
return self._temp_filepath_stack[(- 1)] | Write this data's bytes to a temporary file on disk, returning the path
to the written file, whose extension is guessed based on this data's
content type.
It is not guaranteed that the returned file path does not point to the
original data, i.e. writing to the returned filepath may modify the
original data.
NOTE:
The file path returned should not be explicitly removed by the user.
Instead, the ``clean_temp()`` method should be called on this
object.
:param temp_dir: Optional directory to write temporary file in,
otherwise we use the platform default temporary files directory.
If this is an empty string, we count it the same as having provided
None.
:type temp_dir: None or str
:return: Path to the temporary file
:rtype: str | python/smqtk/representation/data_element/__init__.py | write_temp | jbeezley/SMQTK | 1 | python | def write_temp(self, temp_dir=None):
"\n Write this data's bytes to a temporary file on disk, returning the path\n to the written file, whose extension is guessed based on this data's\n content type.\n\n It is not guaranteed that the returned file path does not point to the\n original data, i.e. writing to the returned filepath may modify the\n original data.\n\n NOTE:\n The file path returned should not be explicitly removed by the user.\n Instead, the ``clean_temp()`` method should be called on this\n object.\n\n :param temp_dir: Optional directory to write temporary file in,\n otherwise we use the platform default temporary files directory.\n If this is an empty string, we count it the same as having provided\n None.\n :type temp_dir: None or str\n\n :return: Path to the temporary file\n :rtype: str\n\n "
self._clear_no_exist()
if temp_dir:
abs_temp_dir = osp.abspath(osp.expanduser(temp_dir))
for tf in self._temp_filepath_stack:
if (osp.dirname(tf) == abs_temp_dir):
return tf
self._temp_filepath_stack.append(self._write_new_temp(temp_dir))
elif (not self._temp_filepath_stack):
self._temp_filepath_stack.append(self._write_new_temp(None))
return self._temp_filepath_stack[(- 1)] | def write_temp(self, temp_dir=None):
"\n Write this data's bytes to a temporary file on disk, returning the path\n to the written file, whose extension is guessed based on this data's\n content type.\n\n It is not guaranteed that the returned file path does not point to the\n original data, i.e. writing to the returned filepath may modify the\n original data.\n\n NOTE:\n The file path returned should not be explicitly removed by the user.\n Instead, the ``clean_temp()`` method should be called on this\n object.\n\n :param temp_dir: Optional directory to write temporary file in,\n otherwise we use the platform default temporary files directory.\n If this is an empty string, we count it the same as having provided\n None.\n :type temp_dir: None or str\n\n :return: Path to the temporary file\n :rtype: str\n\n "
self._clear_no_exist()
if temp_dir:
abs_temp_dir = osp.abspath(osp.expanduser(temp_dir))
for tf in self._temp_filepath_stack:
if (osp.dirname(tf) == abs_temp_dir):
return tf
self._temp_filepath_stack.append(self._write_new_temp(temp_dir))
elif (not self._temp_filepath_stack):
self._temp_filepath_stack.append(self._write_new_temp(None))
return self._temp_filepath_stack[(- 1)]<|docstring|>Write this data's bytes to a temporary file on disk, returning the path
to the written file, whose extension is guessed based on this data's
content type.
It is not guaranteed that the returned file path does not point to the
original data, i.e. writing to the returned filepath may modify the
original data.
NOTE:
The file path returned should not be explicitly removed by the user.
Instead, the ``clean_temp()`` method should be called on this
object.
:param temp_dir: Optional directory to write temporary file in,
otherwise we use the platform default temporary files directory.
If this is an empty string, we count it the same as having provided
None.
:type temp_dir: None or str
:return: Path to the temporary file
:rtype: str<|endoftext|> |
190e0efc39fb31660e541b3d388131abb92b6fdc0bb8a96e1b6d8cab414810d8 | def clean_temp(self):
'\n Clean any temporary files created by this element. This does nothing if\n no temporary files have been generated for this element yet.\n '
if len(self._temp_filepath_stack):
for fp in self._temp_filepath_stack:
if os.path.isfile(fp):
os.remove(fp)
self._temp_filepath_stack = [] | Clean any temporary files created by this element. This does nothing if
no temporary files have been generated for this element yet. | python/smqtk/representation/data_element/__init__.py | clean_temp | jbeezley/SMQTK | 1 | python | def clean_temp(self):
'\n Clean any temporary files created by this element. This does nothing if\n no temporary files have been generated for this element yet.\n '
if len(self._temp_filepath_stack):
for fp in self._temp_filepath_stack:
if os.path.isfile(fp):
os.remove(fp)
self._temp_filepath_stack = [] | def clean_temp(self):
'\n Clean any temporary files created by this element. This does nothing if\n no temporary files have been generated for this element yet.\n '
if len(self._temp_filepath_stack):
for fp in self._temp_filepath_stack:
if os.path.isfile(fp):
os.remove(fp)
self._temp_filepath_stack = []<|docstring|>Clean any temporary files created by this element. This does nothing if
no temporary files have been generated for this element yet.<|endoftext|> |
aa6d757b53d5b6d530f1ab54052e4d65aacb165ce7b6a7403b6e701444462faa | def uuid(self):
"\n UUID for this data element.\n\n This many take different forms from integers to strings to a uuid.UUID\n instance. This must return a hashable data type.\n\n By default, this ends up being the hex stringification of the SHA1 hash\n of this data's bytes. Specific implementations may provide other UUIDs,\n however.\n\n :return: UUID value for this data element. This return value should be\n hashable.\n :rtype: collections.Hashable\n\n "
return self.sha1() | UUID for this data element.
This many take different forms from integers to strings to a uuid.UUID
instance. This must return a hashable data type.
By default, this ends up being the hex stringification of the SHA1 hash
of this data's bytes. Specific implementations may provide other UUIDs,
however.
:return: UUID value for this data element. This return value should be
hashable.
:rtype: collections.Hashable | python/smqtk/representation/data_element/__init__.py | uuid | jbeezley/SMQTK | 1 | python | def uuid(self):
"\n UUID for this data element.\n\n This many take different forms from integers to strings to a uuid.UUID\n instance. This must return a hashable data type.\n\n By default, this ends up being the hex stringification of the SHA1 hash\n of this data's bytes. Specific implementations may provide other UUIDs,\n however.\n\n :return: UUID value for this data element. This return value should be\n hashable.\n :rtype: collections.Hashable\n\n "
return self.sha1() | def uuid(self):
"\n UUID for this data element.\n\n This many take different forms from integers to strings to a uuid.UUID\n instance. This must return a hashable data type.\n\n By default, this ends up being the hex stringification of the SHA1 hash\n of this data's bytes. Specific implementations may provide other UUIDs,\n however.\n\n :return: UUID value for this data element. This return value should be\n hashable.\n :rtype: collections.Hashable\n\n "
return self.sha1()<|docstring|>UUID for this data element.
This many take different forms from integers to strings to a uuid.UUID
instance. This must return a hashable data type.
By default, this ends up being the hex stringification of the SHA1 hash
of this data's bytes. Specific implementations may provide other UUIDs,
however.
:return: UUID value for this data element. This return value should be
hashable.
:rtype: collections.Hashable<|endoftext|> |
c39f3a54199a58a99258644d47ad1fb12381418e79814aafc6f7273912f93977 | def to_buffered_reader(self):
"\n Wrap this element's bytes in a ``io.BufferedReader`` instance for use as\n file-like object for reading.\n\n As we use the ``get_bytes`` function, this element's bytes must safely\n fit in memory for this method to be usable.\n\n :return: New BufferedReader instance\n :rtype: io.BufferedReader\n\n "
return io.BufferedReader(io.BytesIO(self.get_bytes())) | Wrap this element's bytes in a ``io.BufferedReader`` instance for use as
file-like object for reading.
As we use the ``get_bytes`` function, this element's bytes must safely
fit in memory for this method to be usable.
:return: New BufferedReader instance
:rtype: io.BufferedReader | python/smqtk/representation/data_element/__init__.py | to_buffered_reader | jbeezley/SMQTK | 1 | python | def to_buffered_reader(self):
"\n Wrap this element's bytes in a ``io.BufferedReader`` instance for use as\n file-like object for reading.\n\n As we use the ``get_bytes`` function, this element's bytes must safely\n fit in memory for this method to be usable.\n\n :return: New BufferedReader instance\n :rtype: io.BufferedReader\n\n "
return io.BufferedReader(io.BytesIO(self.get_bytes())) | def to_buffered_reader(self):
"\n Wrap this element's bytes in a ``io.BufferedReader`` instance for use as\n file-like object for reading.\n\n As we use the ``get_bytes`` function, this element's bytes must safely\n fit in memory for this method to be usable.\n\n :return: New BufferedReader instance\n :rtype: io.BufferedReader\n\n "
return io.BufferedReader(io.BytesIO(self.get_bytes()))<|docstring|>Wrap this element's bytes in a ``io.BufferedReader`` instance for use as
file-like object for reading.
As we use the ``get_bytes`` function, this element's bytes must safely
fit in memory for this method to be usable.
:return: New BufferedReader instance
:rtype: io.BufferedReader<|endoftext|> |
92df7dce4909d01fd1a7b5f34359d34f82115992ea9be0719290f77ec043f360 | def is_read_only(self):
'\n :return: If this element can only be read from.\n :rtype: bool\n '
return (not self.writable()) | :return: If this element can only be read from.
:rtype: bool | python/smqtk/representation/data_element/__init__.py | is_read_only | jbeezley/SMQTK | 1 | python | def is_read_only(self):
'\n :return: If this element can only be read from.\n :rtype: bool\n '
return (not self.writable()) | def is_read_only(self):
'\n :return: If this element can only be read from.\n :rtype: bool\n '
return (not self.writable())<|docstring|>:return: If this element can only be read from.
:rtype: bool<|endoftext|> |
29eff2eb1db49def565062c584d5d9f7012df757f65b685546dbecbbd43fd69a | @abc.abstractmethod
def content_type(self):
'\n :return: Standard type/subtype string for this data element, or None if\n the content type is unknown.\n :rtype: str or None\n ' | :return: Standard type/subtype string for this data element, or None if
the content type is unknown.
:rtype: str or None | python/smqtk/representation/data_element/__init__.py | content_type | jbeezley/SMQTK | 1 | python | @abc.abstractmethod
def content_type(self):
'\n :return: Standard type/subtype string for this data element, or None if\n the content type is unknown.\n :rtype: str or None\n ' | @abc.abstractmethod
def content_type(self):
'\n :return: Standard type/subtype string for this data element, or None if\n the content type is unknown.\n :rtype: str or None\n '<|docstring|>:return: Standard type/subtype string for this data element, or None if
the content type is unknown.
:rtype: str or None<|endoftext|> |
4e5e51cf90d71c8e9d5b6b7a3d7c5bc75ec25547a7faf8c5f5d9049cab8ae76e | @abc.abstractmethod
def is_empty(self):
'\n Check if this element contains no bytes.\n\n The intend of this method is to quickly check if there is any data\n behind this element, ideally without having to read all/any of the\n underlying data.\n\n :return: If this element contains 0 bytes.\n :rtype: bool\n\n ' | Check if this element contains no bytes.
The intend of this method is to quickly check if there is any data
behind this element, ideally without having to read all/any of the
underlying data.
:return: If this element contains 0 bytes.
:rtype: bool | python/smqtk/representation/data_element/__init__.py | is_empty | jbeezley/SMQTK | 1 | python | @abc.abstractmethod
def is_empty(self):
'\n Check if this element contains no bytes.\n\n The intend of this method is to quickly check if there is any data\n behind this element, ideally without having to read all/any of the\n underlying data.\n\n :return: If this element contains 0 bytes.\n :rtype: bool\n\n ' | @abc.abstractmethod
def is_empty(self):
'\n Check if this element contains no bytes.\n\n The intend of this method is to quickly check if there is any data\n behind this element, ideally without having to read all/any of the\n underlying data.\n\n :return: If this element contains 0 bytes.\n :rtype: bool\n\n '<|docstring|>Check if this element contains no bytes.
The intend of this method is to quickly check if there is any data
behind this element, ideally without having to read all/any of the
underlying data.
:return: If this element contains 0 bytes.
:rtype: bool<|endoftext|> |
1ef59d911695f76ec92d9cffdf152b5e20d604dc7063f42e5d6051ede22189fa | @abc.abstractmethod
def get_bytes(self):
'\n :return: Get the bytes for this data element.\n :rtype: bytes\n ' | :return: Get the bytes for this data element.
:rtype: bytes | python/smqtk/representation/data_element/__init__.py | get_bytes | jbeezley/SMQTK | 1 | python | @abc.abstractmethod
def get_bytes(self):
'\n :return: Get the bytes for this data element.\n :rtype: bytes\n ' | @abc.abstractmethod
def get_bytes(self):
'\n :return: Get the bytes for this data element.\n :rtype: bytes\n '<|docstring|>:return: Get the bytes for this data element.
:rtype: bytes<|endoftext|> |
aa89b96096f48199bb07298eaf33ad177a03b3d41debb62ccbe264fb7b66887e | @abc.abstractmethod
def writable(self):
'\n :return: if this instance supports setting bytes.\n :rtype: bool\n ' | :return: if this instance supports setting bytes.
:rtype: bool | python/smqtk/representation/data_element/__init__.py | writable | jbeezley/SMQTK | 1 | python | @abc.abstractmethod
def writable(self):
'\n :return: if this instance supports setting bytes.\n :rtype: bool\n ' | @abc.abstractmethod
def writable(self):
'\n :return: if this instance supports setting bytes.\n :rtype: bool\n '<|docstring|>:return: if this instance supports setting bytes.
:rtype: bool<|endoftext|> |
467ff0f77f61707f26a31aa124b9b84fb5a915a9e4a14c75f1f09fdd13f130fe | @abc.abstractmethod
def set_bytes(self, b):
'\n Set bytes to this data element.\n\n Not all implementations may support setting bytes (check ``writable``\n method return).\n\n This base abstract method should be called by sub-class implementations\n first. We check for mutability based on ``writable()`` method return and\n invalidate checksum caches.\n\n :param b: bytes to set.\n :type b: str\n\n :raises ReadOnlyError: This data element can only be read from / does\n not support writing.\n\n '
if (not self.writable()):
raise ReadOnlyError(('This %s element is read only.' % self)) | Set bytes to this data element.
Not all implementations may support setting bytes (check ``writable``
method return).
This base abstract method should be called by sub-class implementations
first. We check for mutability based on ``writable()`` method return and
invalidate checksum caches.
:param b: bytes to set.
:type b: str
:raises ReadOnlyError: This data element can only be read from / does
not support writing. | python/smqtk/representation/data_element/__init__.py | set_bytes | jbeezley/SMQTK | 1 | python | @abc.abstractmethod
def set_bytes(self, b):
'\n Set bytes to this data element.\n\n Not all implementations may support setting bytes (check ``writable``\n method return).\n\n This base abstract method should be called by sub-class implementations\n first. We check for mutability based on ``writable()`` method return and\n invalidate checksum caches.\n\n :param b: bytes to set.\n :type b: str\n\n :raises ReadOnlyError: This data element can only be read from / does\n not support writing.\n\n '
if (not self.writable()):
raise ReadOnlyError(('This %s element is read only.' % self)) | @abc.abstractmethod
def set_bytes(self, b):
'\n Set bytes to this data element.\n\n Not all implementations may support setting bytes (check ``writable``\n method return).\n\n This base abstract method should be called by sub-class implementations\n first. We check for mutability based on ``writable()`` method return and\n invalidate checksum caches.\n\n :param b: bytes to set.\n :type b: str\n\n :raises ReadOnlyError: This data element can only be read from / does\n not support writing.\n\n '
if (not self.writable()):
raise ReadOnlyError(('This %s element is read only.' % self))<|docstring|>Set bytes to this data element.
Not all implementations may support setting bytes (check ``writable``
method return).
This base abstract method should be called by sub-class implementations
first. We check for mutability based on ``writable()`` method return and
invalidate checksum caches.
:param b: bytes to set.
:type b: str
:raises ReadOnlyError: This data element can only be read from / does
not support writing.<|endoftext|> |
64344056a62ba9f59ace1d50b83e6b20c11ee44689ddbfa3874284b7274eb18c | def DB_loss_function(estimator, X, y_true=None):
'\n Computes Davis-Bolding Index for a fitted KMeans\n\n args:\n model: Fitted KMeans object\n x: input data for evaluation \n '
preds = estimator.predict(X)
n_clusters = (int(np.max(preds)) + 1)
db_values = []
for i in range(n_clusters):
for j in range((i + 1), n_clusters):
cluster_i = X[(preds == i)]
cluster_j = X[(preds == j)]
avg_cluster_i = (((2 * np.sum(euclidean_distances(cluster_i, cluster_i))) / len(cluster_i)) * (len(cluster_i) - 1))
avg_cluster_j = (((2 * np.sum(euclidean_distances(cluster_j, cluster_j))) / len(cluster_j)) * (len(cluster_j) - 1))
u_cluster_i = (np.sum(cluster_i, axis=0) / len(cluster_i))
u_cluster_j = (np.sum(cluster_j, axis=0) / len(cluster_j))
db = ((avg_cluster_i + avg_cluster_j) / np.sum(euclidean_distances(u_cluster_i.reshape((- 1), 1), u_cluster_j.reshape((- 1), 1))))
db_values.append(db)
dbi = (np.sum(np.array(db_values)) / n_clusters)
return dbi | Computes Davis-Bolding Index for a fitted KMeans
args:
model: Fitted KMeans object
x: input data for evaluation | HW02/HW02.py | DB_loss_function | iust-projects/Data-Mining-IUST | 0 | python | def DB_loss_function(estimator, X, y_true=None):
'\n Computes Davis-Bolding Index for a fitted KMeans\n\n args:\n model: Fitted KMeans object\n x: input data for evaluation \n '
preds = estimator.predict(X)
n_clusters = (int(np.max(preds)) + 1)
db_values = []
for i in range(n_clusters):
for j in range((i + 1), n_clusters):
cluster_i = X[(preds == i)]
cluster_j = X[(preds == j)]
avg_cluster_i = (((2 * np.sum(euclidean_distances(cluster_i, cluster_i))) / len(cluster_i)) * (len(cluster_i) - 1))
avg_cluster_j = (((2 * np.sum(euclidean_distances(cluster_j, cluster_j))) / len(cluster_j)) * (len(cluster_j) - 1))
u_cluster_i = (np.sum(cluster_i, axis=0) / len(cluster_i))
u_cluster_j = (np.sum(cluster_j, axis=0) / len(cluster_j))
db = ((avg_cluster_i + avg_cluster_j) / np.sum(euclidean_distances(u_cluster_i.reshape((- 1), 1), u_cluster_j.reshape((- 1), 1))))
db_values.append(db)
dbi = (np.sum(np.array(db_values)) / n_clusters)
return dbi | def DB_loss_function(estimator, X, y_true=None):
'\n Computes Davis-Bolding Index for a fitted KMeans\n\n args:\n model: Fitted KMeans object\n x: input data for evaluation \n '
preds = estimator.predict(X)
n_clusters = (int(np.max(preds)) + 1)
db_values = []
for i in range(n_clusters):
for j in range((i + 1), n_clusters):
cluster_i = X[(preds == i)]
cluster_j = X[(preds == j)]
avg_cluster_i = (((2 * np.sum(euclidean_distances(cluster_i, cluster_i))) / len(cluster_i)) * (len(cluster_i) - 1))
avg_cluster_j = (((2 * np.sum(euclidean_distances(cluster_j, cluster_j))) / len(cluster_j)) * (len(cluster_j) - 1))
u_cluster_i = (np.sum(cluster_i, axis=0) / len(cluster_i))
u_cluster_j = (np.sum(cluster_j, axis=0) / len(cluster_j))
db = ((avg_cluster_i + avg_cluster_j) / np.sum(euclidean_distances(u_cluster_i.reshape((- 1), 1), u_cluster_j.reshape((- 1), 1))))
db_values.append(db)
dbi = (np.sum(np.array(db_values)) / n_clusters)
return dbi<|docstring|>Computes Davis-Bolding Index for a fitted KMeans
args:
model: Fitted KMeans object
x: input data for evaluation<|endoftext|> |
a5e1a3c2192782c301313653808ede9732dec11e9f0737d07a9648ad7a1dca3e | def __init__(self, min_samples, eps):
'\n Constructs DBSCAN given parameters of neighborhood\n\n :param min_samples: Minimum samples within eps radius to be consider as a core point\n :param eps: Radius of core point\n '
self.min_samples = min_samples
self.eps = eps
self.labels = None
self.core_points = None | Constructs DBSCAN given parameters of neighborhood
:param min_samples: Minimum samples within eps radius to be consider as a core point
:param eps: Radius of core point | HW02/HW02.py | __init__ | iust-projects/Data-Mining-IUST | 0 | python | def __init__(self, min_samples, eps):
'\n Constructs DBSCAN given parameters of neighborhood\n\n :param min_samples: Minimum samples within eps radius to be consider as a core point\n :param eps: Radius of core point\n '
self.min_samples = min_samples
self.eps = eps
self.labels = None
self.core_points = None | def __init__(self, min_samples, eps):
'\n Constructs DBSCAN given parameters of neighborhood\n\n :param min_samples: Minimum samples within eps radius to be consider as a core point\n :param eps: Radius of core point\n '
self.min_samples = min_samples
self.eps = eps
self.labels = None
self.core_points = None<|docstring|>Constructs DBSCAN given parameters of neighborhood
:param min_samples: Minimum samples within eps radius to be consider as a core point
:param eps: Radius of core point<|endoftext|> |
d5888a2012962e1bb80605ec07bf96a4e049987931e3a65f4251848ab50d5969 | def fit_predict(self, x, *args, **kwargs):
'\n Fits the data using DBSCAN and returns labels and core points\n Order of data matter!\n\n Algorithm:\n 1. Consider a list of points that have not been seen yet\n 2. Read an arbitrary point until there is no unseen point left\n 3. If there are at least ``min_samples`` points within a radius of ``eps``\n then all these points are from same cluster\n 4. Expand this cluster for its all core points for all neighbors\n 5. Repeat\n\n :param x: N-dimensional numpy array\n\n :return: A tuple of labels of each point and index of core points\n where label=-1 corresponds to noise data and label=N N>=1 demonstrates cluster label\n '
self.labels = np.zeros((len(x),))
self.core_points = np.zeros((len(x),))
current_cluster = 1
for pnt in range(len(x)):
if (self.labels[pnt] == 0):
neighbor_indices = self.__nearest_neighbors(x, x[pnt])
if (len(neighbor_indices) >= self.min_samples):
self.__expand(x, pnt, current_cluster)
current_cluster += 1
else:
self.labels[pnt] = (- 1)
return (self.labels, self.core_points) | Fits the data using DBSCAN and returns labels and core points
Order of data matter!
Algorithm:
1. Consider a list of points that have not been seen yet
2. Read an arbitrary point until there is no unseen point left
3. If there are at least ``min_samples`` points within a radius of ``eps``
then all these points are from same cluster
4. Expand this cluster for its all core points for all neighbors
5. Repeat
:param x: N-dimensional numpy array
:return: A tuple of labels of each point and index of core points
where label=-1 corresponds to noise data and label=N N>=1 demonstrates cluster label | HW02/HW02.py | fit_predict | iust-projects/Data-Mining-IUST | 0 | python | def fit_predict(self, x, *args, **kwargs):
'\n Fits the data using DBSCAN and returns labels and core points\n Order of data matter!\n\n Algorithm:\n 1. Consider a list of points that have not been seen yet\n 2. Read an arbitrary point until there is no unseen point left\n 3. If there are at least ``min_samples`` points within a radius of ``eps``\n then all these points are from same cluster\n 4. Expand this cluster for its all core points for all neighbors\n 5. Repeat\n\n :param x: N-dimensional numpy array\n\n :return: A tuple of labels of each point and index of core points\n where label=-1 corresponds to noise data and label=N N>=1 demonstrates cluster label\n '
self.labels = np.zeros((len(x),))
self.core_points = np.zeros((len(x),))
current_cluster = 1
for pnt in range(len(x)):
if (self.labels[pnt] == 0):
neighbor_indices = self.__nearest_neighbors(x, x[pnt])
if (len(neighbor_indices) >= self.min_samples):
self.__expand(x, pnt, current_cluster)
current_cluster += 1
else:
self.labels[pnt] = (- 1)
return (self.labels, self.core_points) | def fit_predict(self, x, *args, **kwargs):
'\n Fits the data using DBSCAN and returns labels and core points\n Order of data matter!\n\n Algorithm:\n 1. Consider a list of points that have not been seen yet\n 2. Read an arbitrary point until there is no unseen point left\n 3. If there are at least ``min_samples`` points within a radius of ``eps``\n then all these points are from same cluster\n 4. Expand this cluster for its all core points for all neighbors\n 5. Repeat\n\n :param x: N-dimensional numpy array\n\n :return: A tuple of labels of each point and index of core points\n where label=-1 corresponds to noise data and label=N N>=1 demonstrates cluster label\n '
self.labels = np.zeros((len(x),))
self.core_points = np.zeros((len(x),))
current_cluster = 1
for pnt in range(len(x)):
if (self.labels[pnt] == 0):
neighbor_indices = self.__nearest_neighbors(x, x[pnt])
if (len(neighbor_indices) >= self.min_samples):
self.__expand(x, pnt, current_cluster)
current_cluster += 1
else:
self.labels[pnt] = (- 1)
return (self.labels, self.core_points)<|docstring|>Fits the data using DBSCAN and returns labels and core points
Order of data matter!
Algorithm:
1. Consider a list of points that have not been seen yet
2. Read an arbitrary point until there is no unseen point left
3. If there are at least ``min_samples`` points within a radius of ``eps``
then all these points are from same cluster
4. Expand this cluster for its all core points for all neighbors
5. Repeat
:param x: N-dimensional numpy array
:return: A tuple of labels of each point and index of core points
where label=-1 corresponds to noise data and label=N N>=1 demonstrates cluster label<|endoftext|> |
d1d1570ca0ae2de329fa09d4df4a21773bfc9a31f9c7383481bf17fcac9b3bf2 | def __nearest_neighbors(self, data, point):
'\n Finds points near to the point ``point`` within the range of ``eps``\n\n :param point: A point\n :param: All points\n\n :return: Indices of nearest neighbor points\n '
distances = euclidean_distances(data, point.reshape(1, (- 1)))
neighbors = (distances <= self.eps)
topk = np.argsort(distances, axis=0)
neighbors_idx = (np.max(neighbors[topk].nonzero()[0]) + 1)
return topk[:neighbors_idx].flatten() | Finds points near to the point ``point`` within the range of ``eps``
:param point: A point
:param: All points
:return: Indices of nearest neighbor points | HW02/HW02.py | __nearest_neighbors | iust-projects/Data-Mining-IUST | 0 | python | def __nearest_neighbors(self, data, point):
'\n Finds points near to the point ``point`` within the range of ``eps``\n\n :param point: A point\n :param: All points\n\n :return: Indices of nearest neighbor points\n '
distances = euclidean_distances(data, point.reshape(1, (- 1)))
neighbors = (distances <= self.eps)
topk = np.argsort(distances, axis=0)
neighbors_idx = (np.max(neighbors[topk].nonzero()[0]) + 1)
return topk[:neighbors_idx].flatten() | def __nearest_neighbors(self, data, point):
'\n Finds points near to the point ``point`` within the range of ``eps``\n\n :param point: A point\n :param: All points\n\n :return: Indices of nearest neighbor points\n '
distances = euclidean_distances(data, point.reshape(1, (- 1)))
neighbors = (distances <= self.eps)
topk = np.argsort(distances, axis=0)
neighbors_idx = (np.max(neighbors[topk].nonzero()[0]) + 1)
return topk[:neighbors_idx].flatten()<|docstring|>Finds points near to the point ``point`` within the range of ``eps``
:param point: A point
:param: All points
:return: Indices of nearest neighbor points<|endoftext|> |
b4b4a98dbab9b3e16c156528af444146dd24a096548fd1c95d70a2bbabb663ec | def __expand(self, data, point_idx, current_cluster):
'\n Expands ``current_cluster`` using given point w.r.t. ``eps`` and ``min_samples``\n Algorithm:\n 1. Get a point as the start point for ``current_cluster``\n 2. Get its neighbors and go through them one by one using queue logic\n 3. If the neighbor is noise, then add it to the current cluster, if it is unseen, get all its neighbors\n then add them to the list of neighbors of original point\n 4. Repeat step 2 and 3 until all points in the list of neighbors are processed.\n\n :param data: Whole data to be clustered\n :param point_idx: The index of a point of the current cluster as the start point for expansion\n :param current_cluster: The label of current cluster\n :return: None\n '
self.labels[point_idx] = current_cluster
neighbors_indices = deepcopy(self.__nearest_neighbors(data, data[point_idx]))
while (len(neighbors_indices) > 0):
neighbor_point = neighbors_indices[0]
neighbors_indices = np.delete(neighbors_indices, 0, 0)
if (self.labels[neighbor_point] == (- 1)):
self.labels[neighbor_point] = current_cluster
elif (self.labels[neighbor_point] == 0):
self.labels[neighbor_point] = current_cluster
neighbors_indices_neighbor_point = self.__nearest_neighbors(data, data[neighbor_point])
if (len(neighbors_indices_neighbor_point) >= self.min_samples):
neighbors_indices = np.concatenate((neighbors_indices, neighbors_indices_neighbor_point))
self.core_points[neighbor_point] = 1 | Expands ``current_cluster`` using given point w.r.t. ``eps`` and ``min_samples``
Algorithm:
1. Get a point as the start point for ``current_cluster``
2. Get its neighbors and go through them one by one using queue logic
3. If the neighbor is noise, then add it to the current cluster, if it is unseen, get all its neighbors
then add them to the list of neighbors of original point
4. Repeat step 2 and 3 until all points in the list of neighbors are processed.
:param data: Whole data to be clustered
:param point_idx: The index of a point of the current cluster as the start point for expansion
:param current_cluster: The label of current cluster
:return: None | HW02/HW02.py | __expand | iust-projects/Data-Mining-IUST | 0 | python | def __expand(self, data, point_idx, current_cluster):
'\n Expands ``current_cluster`` using given point w.r.t. ``eps`` and ``min_samples``\n Algorithm:\n 1. Get a point as the start point for ``current_cluster``\n 2. Get its neighbors and go through them one by one using queue logic\n 3. If the neighbor is noise, then add it to the current cluster, if it is unseen, get all its neighbors\n then add them to the list of neighbors of original point\n 4. Repeat step 2 and 3 until all points in the list of neighbors are processed.\n\n :param data: Whole data to be clustered\n :param point_idx: The index of a point of the current cluster as the start point for expansion\n :param current_cluster: The label of current cluster\n :return: None\n '
self.labels[point_idx] = current_cluster
neighbors_indices = deepcopy(self.__nearest_neighbors(data, data[point_idx]))
while (len(neighbors_indices) > 0):
neighbor_point = neighbors_indices[0]
neighbors_indices = np.delete(neighbors_indices, 0, 0)
if (self.labels[neighbor_point] == (- 1)):
self.labels[neighbor_point] = current_cluster
elif (self.labels[neighbor_point] == 0):
self.labels[neighbor_point] = current_cluster
neighbors_indices_neighbor_point = self.__nearest_neighbors(data, data[neighbor_point])
if (len(neighbors_indices_neighbor_point) >= self.min_samples):
neighbors_indices = np.concatenate((neighbors_indices, neighbors_indices_neighbor_point))
self.core_points[neighbor_point] = 1 | def __expand(self, data, point_idx, current_cluster):
'\n Expands ``current_cluster`` using given point w.r.t. ``eps`` and ``min_samples``\n Algorithm:\n 1. Get a point as the start point for ``current_cluster``\n 2. Get its neighbors and go through them one by one using queue logic\n 3. If the neighbor is noise, then add it to the current cluster, if it is unseen, get all its neighbors\n then add them to the list of neighbors of original point\n 4. Repeat step 2 and 3 until all points in the list of neighbors are processed.\n\n :param data: Whole data to be clustered\n :param point_idx: The index of a point of the current cluster as the start point for expansion\n :param current_cluster: The label of current cluster\n :return: None\n '
self.labels[point_idx] = current_cluster
neighbors_indices = deepcopy(self.__nearest_neighbors(data, data[point_idx]))
while (len(neighbors_indices) > 0):
neighbor_point = neighbors_indices[0]
neighbors_indices = np.delete(neighbors_indices, 0, 0)
if (self.labels[neighbor_point] == (- 1)):
self.labels[neighbor_point] = current_cluster
elif (self.labels[neighbor_point] == 0):
self.labels[neighbor_point] = current_cluster
neighbors_indices_neighbor_point = self.__nearest_neighbors(data, data[neighbor_point])
if (len(neighbors_indices_neighbor_point) >= self.min_samples):
neighbors_indices = np.concatenate((neighbors_indices, neighbors_indices_neighbor_point))
self.core_points[neighbor_point] = 1<|docstring|>Expands ``current_cluster`` using given point w.r.t. ``eps`` and ``min_samples``
Algorithm:
1. Get a point as the start point for ``current_cluster``
2. Get its neighbors and go through them one by one using queue logic
3. If the neighbor is noise, then add it to the current cluster, if it is unseen, get all its neighbors
then add them to the list of neighbors of original point
4. Repeat step 2 and 3 until all points in the list of neighbors are processed.
:param data: Whole data to be clustered
:param point_idx: The index of a point of the current cluster as the start point for expansion
:param current_cluster: The label of current cluster
:return: None<|endoftext|> |
068d6fd4d4c026d8c6f0544da21de53bcdfe2441989db66cb370ad87e34e63f1 | def __init__(self, amqp_client, zookeeper_client, db_conn, args, dm_logger):
'Initialize ZooKeeper, RabbitMQ, Sandesh, DB conn etc.'
DeviceJobManager._instance = self
self._amqp_client = amqp_client
self._zookeeper_client = zookeeper_client
self._db_conn = db_conn
self._args = args
self._job_mgr_statistics = {'max_job_count': self._args.max_job_count, 'running_job_count': 0}
self.job_status = {}
self._job_mgr_running_instances = {}
job_args = {'collectors': self._args.collectors, 'fabric_ansible_conf_file': self._args.fabric_ansible_conf_file, 'host_ip': self._args.host_ip, 'zk_server_ip': self._args.zk_server_ip, 'cluster_id': self._args.cluster_id}
self._job_args = json.dumps(job_args)
self._job_log_utils = JobLogUtils(sandesh_instance_id=('DeviceJobManager' + str(time.time())), config_args=self._job_args, sandesh_instance=dm_logger._sandesh)
self._logger = self._job_log_utils.config_logger
self._sandesh = self._logger._sandesh
self._amqp_client.add_exchange(self.JOB_STATUS_EXCHANGE, type='direct')
self._amqp_client.add_consumer((self.JOB_STATUS_CONSUMER + 'dummy'), self.JOB_STATUS_EXCHANGE, routing_key=(self.JOB_STATUS_ROUTING_KEY + 'dummy'), auto_delete=True)
self._amqp_client.add_exchange(self.JOB_REQUEST_EXCHANGE, type='direct')
self._amqp_client.add_consumer(self.JOB_REQUEST_CONSUMER, self.JOB_REQUEST_EXCHANGE, routing_key=self.JOB_REQUEST_ROUTING_KEY, callback=self.handle_execute_job_request)
abort_q_name = '.'.join([self.JOB_ABORT_CONSUMER, socket.getfqdn(self._args.host_ip)])
self._amqp_client.add_consumer(abort_q_name, self.JOB_REQUEST_EXCHANGE, routing_key=self.JOB_ABORT_ROUTING_KEY, callback=self.handle_abort_job_request) | Initialize ZooKeeper, RabbitMQ, Sandesh, DB conn etc. | src/config/device-manager/device_manager/device_job_manager.py | __init__ | pltf/contrail-controller | 0 | python | def __init__(self, amqp_client, zookeeper_client, db_conn, args, dm_logger):
DeviceJobManager._instance = self
self._amqp_client = amqp_client
self._zookeeper_client = zookeeper_client
self._db_conn = db_conn
self._args = args
self._job_mgr_statistics = {'max_job_count': self._args.max_job_count, 'running_job_count': 0}
self.job_status = {}
self._job_mgr_running_instances = {}
job_args = {'collectors': self._args.collectors, 'fabric_ansible_conf_file': self._args.fabric_ansible_conf_file, 'host_ip': self._args.host_ip, 'zk_server_ip': self._args.zk_server_ip, 'cluster_id': self._args.cluster_id}
self._job_args = json.dumps(job_args)
self._job_log_utils = JobLogUtils(sandesh_instance_id=('DeviceJobManager' + str(time.time())), config_args=self._job_args, sandesh_instance=dm_logger._sandesh)
self._logger = self._job_log_utils.config_logger
self._sandesh = self._logger._sandesh
self._amqp_client.add_exchange(self.JOB_STATUS_EXCHANGE, type='direct')
self._amqp_client.add_consumer((self.JOB_STATUS_CONSUMER + 'dummy'), self.JOB_STATUS_EXCHANGE, routing_key=(self.JOB_STATUS_ROUTING_KEY + 'dummy'), auto_delete=True)
self._amqp_client.add_exchange(self.JOB_REQUEST_EXCHANGE, type='direct')
self._amqp_client.add_consumer(self.JOB_REQUEST_CONSUMER, self.JOB_REQUEST_EXCHANGE, routing_key=self.JOB_REQUEST_ROUTING_KEY, callback=self.handle_execute_job_request)
abort_q_name = '.'.join([self.JOB_ABORT_CONSUMER, socket.getfqdn(self._args.host_ip)])
self._amqp_client.add_consumer(abort_q_name, self.JOB_REQUEST_EXCHANGE, routing_key=self.JOB_ABORT_ROUTING_KEY, callback=self.handle_abort_job_request) | def __init__(self, amqp_client, zookeeper_client, db_conn, args, dm_logger):
DeviceJobManager._instance = self
self._amqp_client = amqp_client
self._zookeeper_client = zookeeper_client
self._db_conn = db_conn
self._args = args
self._job_mgr_statistics = {'max_job_count': self._args.max_job_count, 'running_job_count': 0}
self.job_status = {}
self._job_mgr_running_instances = {}
job_args = {'collectors': self._args.collectors, 'fabric_ansible_conf_file': self._args.fabric_ansible_conf_file, 'host_ip': self._args.host_ip, 'zk_server_ip': self._args.zk_server_ip, 'cluster_id': self._args.cluster_id}
self._job_args = json.dumps(job_args)
self._job_log_utils = JobLogUtils(sandesh_instance_id=('DeviceJobManager' + str(time.time())), config_args=self._job_args, sandesh_instance=dm_logger._sandesh)
self._logger = self._job_log_utils.config_logger
self._sandesh = self._logger._sandesh
self._amqp_client.add_exchange(self.JOB_STATUS_EXCHANGE, type='direct')
self._amqp_client.add_consumer((self.JOB_STATUS_CONSUMER + 'dummy'), self.JOB_STATUS_EXCHANGE, routing_key=(self.JOB_STATUS_ROUTING_KEY + 'dummy'), auto_delete=True)
self._amqp_client.add_exchange(self.JOB_REQUEST_EXCHANGE, type='direct')
self._amqp_client.add_consumer(self.JOB_REQUEST_CONSUMER, self.JOB_REQUEST_EXCHANGE, routing_key=self.JOB_REQUEST_ROUTING_KEY, callback=self.handle_execute_job_request)
abort_q_name = '.'.join([self.JOB_ABORT_CONSUMER, socket.getfqdn(self._args.host_ip)])
self._amqp_client.add_consumer(abort_q_name, self.JOB_REQUEST_EXCHANGE, routing_key=self.JOB_ABORT_ROUTING_KEY, callback=self.handle_abort_job_request)<|docstring|>Initialize ZooKeeper, RabbitMQ, Sandesh, DB conn etc.<|endoftext|> |
d2b1a97b65f14baa4ea5c2d168fe8f94d5d74fef8b81e18004cd705bdc7dca76 | def setup(bot: Bot) -> None:
'Load the Information cog.'
bot.add_cog(Information(bot)) | Load the Information cog. | bot/exts/info/information.py | setup | Zedeldi/bot | 2 | python | def setup(bot: Bot) -> None:
bot.add_cog(Information(bot)) | def setup(bot: Bot) -> None:
bot.add_cog(Information(bot))<|docstring|>Load the Information cog.<|endoftext|> |
87241dad735b33a2ded0a005fb359d96a32c7622b30b5ba3cc00dfa20603a92f | @staticmethod
def get_channel_type_counts(guild: Guild) -> DefaultDict[(str, int)]:
'Return the total amounts of the various types of channels in `guild`.'
channel_counter = defaultdict(int)
for channel in guild.channels:
if is_staff_channel(channel):
channel_counter['staff'] += 1
else:
channel_counter[str(channel.type)] += 1
return channel_counter | Return the total amounts of the various types of channels in `guild`. | bot/exts/info/information.py | get_channel_type_counts | Zedeldi/bot | 2 | python | @staticmethod
def get_channel_type_counts(guild: Guild) -> DefaultDict[(str, int)]:
channel_counter = defaultdict(int)
for channel in guild.channels:
if is_staff_channel(channel):
channel_counter['staff'] += 1
else:
channel_counter[str(channel.type)] += 1
return channel_counter | @staticmethod
def get_channel_type_counts(guild: Guild) -> DefaultDict[(str, int)]:
channel_counter = defaultdict(int)
for channel in guild.channels:
if is_staff_channel(channel):
channel_counter['staff'] += 1
else:
channel_counter[str(channel.type)] += 1
return channel_counter<|docstring|>Return the total amounts of the various types of channels in `guild`.<|endoftext|> |
981445dddccced083b4dca643d52a467eb71eac3ee2379571f9fe09e62279b31 | @staticmethod
def get_member_counts(guild: Guild) -> Dict[(str, int)]:
'Return the total number of members for certain roles in `guild`.'
roles = (guild.get_role(role_id) for role_id in (constants.Roles.helpers, constants.Roles.mod_team, constants.Roles.admins, constants.Roles.owners, constants.Roles.contributors))
return {role.name.title(): len(role.members) for role in roles} | Return the total number of members for certain roles in `guild`. | bot/exts/info/information.py | get_member_counts | Zedeldi/bot | 2 | python | @staticmethod
def get_member_counts(guild: Guild) -> Dict[(str, int)]:
roles = (guild.get_role(role_id) for role_id in (constants.Roles.helpers, constants.Roles.mod_team, constants.Roles.admins, constants.Roles.owners, constants.Roles.contributors))
return {role.name.title(): len(role.members) for role in roles} | @staticmethod
def get_member_counts(guild: Guild) -> Dict[(str, int)]:
roles = (guild.get_role(role_id) for role_id in (constants.Roles.helpers, constants.Roles.mod_team, constants.Roles.admins, constants.Roles.owners, constants.Roles.contributors))
return {role.name.title(): len(role.members) for role in roles}<|docstring|>Return the total number of members for certain roles in `guild`.<|endoftext|> |
5dd6300e1f201a410162c2128d9568d1f1adef767467b5af2db4b4a561819ae3 | def get_extended_server_info(self, ctx: Context) -> str:
'Return additional server info only visible in moderation channels.'
talentpool_info = ''
if (cog := self.bot.get_cog('Talentpool')):
talentpool_info = f'''Nominated: {len(cog.watched_users)}
'''
bb_info = ''
if (cog := self.bot.get_cog('Big Brother')):
bb_info = f'''BB-watched: {len(cog.watched_users)}
'''
defcon_info = ''
if (cog := self.bot.get_cog('Defcon')):
threshold = (humanize_delta(cog.threshold) if cog.threshold else '-')
defcon_info = f'''Defcon threshold: {threshold}
'''
verification = f'''Verification level: {ctx.guild.verification_level.name}
'''
python_general = self.bot.get_channel(constants.Channels.python_general)
return textwrap.dedent(f'''
{talentpool_info} {bb_info} {defcon_info} {verification} {python_general.mention} cooldown: {python_general.slowmode_delay}s
''') | Return additional server info only visible in moderation channels. | bot/exts/info/information.py | get_extended_server_info | Zedeldi/bot | 2 | python | def get_extended_server_info(self, ctx: Context) -> str:
talentpool_info =
if (cog := self.bot.get_cog('Talentpool')):
talentpool_info = f'Nominated: {len(cog.watched_users)}
'
bb_info =
if (cog := self.bot.get_cog('Big Brother')):
bb_info = f'BB-watched: {len(cog.watched_users)}
'
defcon_info =
if (cog := self.bot.get_cog('Defcon')):
threshold = (humanize_delta(cog.threshold) if cog.threshold else '-')
defcon_info = f'Defcon threshold: {threshold}
'
verification = f'Verification level: {ctx.guild.verification_level.name}
'
python_general = self.bot.get_channel(constants.Channels.python_general)
return textwrap.dedent(f'
{talentpool_info} {bb_info} {defcon_info} {verification} {python_general.mention} cooldown: {python_general.slowmode_delay}s
') | def get_extended_server_info(self, ctx: Context) -> str:
talentpool_info =
if (cog := self.bot.get_cog('Talentpool')):
talentpool_info = f'Nominated: {len(cog.watched_users)}
'
bb_info =
if (cog := self.bot.get_cog('Big Brother')):
bb_info = f'BB-watched: {len(cog.watched_users)}
'
defcon_info =
if (cog := self.bot.get_cog('Defcon')):
threshold = (humanize_delta(cog.threshold) if cog.threshold else '-')
defcon_info = f'Defcon threshold: {threshold}
'
verification = f'Verification level: {ctx.guild.verification_level.name}
'
python_general = self.bot.get_channel(constants.Channels.python_general)
return textwrap.dedent(f'
{talentpool_info} {bb_info} {defcon_info} {verification} {python_general.mention} cooldown: {python_general.slowmode_delay}s
')<|docstring|>Return additional server info only visible in moderation channels.<|endoftext|> |
a7944e546f7c38afdc994c95a590e34aea3fdaccf0fc6f17bf6a8a3a88729eaa | @has_any_role(*constants.STAFF_ROLES)
@command(name='roles')
async def roles_info(self, ctx: Context) -> None:
'Returns a list of all roles and their corresponding IDs.'
roles = sorted(ctx.guild.roles[1:], key=(lambda role: role.name))
role_list = []
for role in roles:
role_list.append(f'`{role.id}` - {role.mention}')
embed = Embed(title=f"Role information (Total {len(roles)} role{('s' * (len(role_list) > 1))})", colour=Colour.blurple())
(await LinePaginator.paginate(role_list, ctx, embed, empty=False)) | Returns a list of all roles and their corresponding IDs. | bot/exts/info/information.py | roles_info | Zedeldi/bot | 2 | python | @has_any_role(*constants.STAFF_ROLES)
@command(name='roles')
async def roles_info(self, ctx: Context) -> None:
roles = sorted(ctx.guild.roles[1:], key=(lambda role: role.name))
role_list = []
for role in roles:
role_list.append(f'`{role.id}` - {role.mention}')
embed = Embed(title=f"Role information (Total {len(roles)} role{('s' * (len(role_list) > 1))})", colour=Colour.blurple())
(await LinePaginator.paginate(role_list, ctx, embed, empty=False)) | @has_any_role(*constants.STAFF_ROLES)
@command(name='roles')
async def roles_info(self, ctx: Context) -> None:
roles = sorted(ctx.guild.roles[1:], key=(lambda role: role.name))
role_list = []
for role in roles:
role_list.append(f'`{role.id}` - {role.mention}')
embed = Embed(title=f"Role information (Total {len(roles)} role{('s' * (len(role_list) > 1))})", colour=Colour.blurple())
(await LinePaginator.paginate(role_list, ctx, embed, empty=False))<|docstring|>Returns a list of all roles and their corresponding IDs.<|endoftext|> |
dd85bf178c6fa127ecf91f3c52845bb5fe47b9d9a50dd1662d6ea9706fde4324 | @has_any_role(*constants.STAFF_ROLES)
@command(name='role')
async def role_info(self, ctx: Context, *roles: Union[(Role, str)]) -> None:
'\n Return information on a role or list of roles.\n\n To specify multiple roles just add to the arguments, delimit roles with spaces in them using quotation marks.\n '
parsed_roles = set()
failed_roles = set()
all_roles = {role.id: role.name for role in ctx.guild.roles}
for role_name in roles:
if isinstance(role_name, Role):
parsed_roles.add(role_name)
continue
match = rapidfuzz.process.extractOne(role_name, all_roles, score_cutoff=80, scorer=rapidfuzz.fuzz.ratio)
if (not match):
failed_roles.add(role_name)
continue
role = ctx.guild.get_role(match[2])
parsed_roles.add(role)
if failed_roles:
(await ctx.send(f":x: Could not retrieve the following roles: {', '.join(failed_roles)}"))
for role in parsed_roles:
(h, s, v) = colorsys.rgb_to_hsv(*role.colour.to_rgb())
embed = Embed(title=f'{role.name} info', colour=role.colour)
embed.add_field(name='ID', value=role.id, inline=True)
embed.add_field(name='Colour (RGB)', value=f'#{role.colour.value:0>6x}', inline=True)
embed.add_field(name='Colour (HSV)', value=f'{h:.2f} {s:.2f} {v}', inline=True)
embed.add_field(name='Member count', value=len(role.members), inline=True)
embed.add_field(name='Position', value=role.position)
embed.add_field(name='Permission code', value=role.permissions.value, inline=True)
(await ctx.send(embed=embed)) | Return information on a role or list of roles.
To specify multiple roles just add to the arguments, delimit roles with spaces in them using quotation marks. | bot/exts/info/information.py | role_info | Zedeldi/bot | 2 | python | @has_any_role(*constants.STAFF_ROLES)
@command(name='role')
async def role_info(self, ctx: Context, *roles: Union[(Role, str)]) -> None:
'\n Return information on a role or list of roles.\n\n To specify multiple roles just add to the arguments, delimit roles with spaces in them using quotation marks.\n '
parsed_roles = set()
failed_roles = set()
all_roles = {role.id: role.name for role in ctx.guild.roles}
for role_name in roles:
if isinstance(role_name, Role):
parsed_roles.add(role_name)
continue
match = rapidfuzz.process.extractOne(role_name, all_roles, score_cutoff=80, scorer=rapidfuzz.fuzz.ratio)
if (not match):
failed_roles.add(role_name)
continue
role = ctx.guild.get_role(match[2])
parsed_roles.add(role)
if failed_roles:
(await ctx.send(f":x: Could not retrieve the following roles: {', '.join(failed_roles)}"))
for role in parsed_roles:
(h, s, v) = colorsys.rgb_to_hsv(*role.colour.to_rgb())
embed = Embed(title=f'{role.name} info', colour=role.colour)
embed.add_field(name='ID', value=role.id, inline=True)
embed.add_field(name='Colour (RGB)', value=f'#{role.colour.value:0>6x}', inline=True)
embed.add_field(name='Colour (HSV)', value=f'{h:.2f} {s:.2f} {v}', inline=True)
embed.add_field(name='Member count', value=len(role.members), inline=True)
embed.add_field(name='Position', value=role.position)
embed.add_field(name='Permission code', value=role.permissions.value, inline=True)
(await ctx.send(embed=embed)) | @has_any_role(*constants.STAFF_ROLES)
@command(name='role')
async def role_info(self, ctx: Context, *roles: Union[(Role, str)]) -> None:
'\n Return information on a role or list of roles.\n\n To specify multiple roles just add to the arguments, delimit roles with spaces in them using quotation marks.\n '
parsed_roles = set()
failed_roles = set()
all_roles = {role.id: role.name for role in ctx.guild.roles}
for role_name in roles:
if isinstance(role_name, Role):
parsed_roles.add(role_name)
continue
match = rapidfuzz.process.extractOne(role_name, all_roles, score_cutoff=80, scorer=rapidfuzz.fuzz.ratio)
if (not match):
failed_roles.add(role_name)
continue
role = ctx.guild.get_role(match[2])
parsed_roles.add(role)
if failed_roles:
(await ctx.send(f":x: Could not retrieve the following roles: {', '.join(failed_roles)}"))
for role in parsed_roles:
(h, s, v) = colorsys.rgb_to_hsv(*role.colour.to_rgb())
embed = Embed(title=f'{role.name} info', colour=role.colour)
embed.add_field(name='ID', value=role.id, inline=True)
embed.add_field(name='Colour (RGB)', value=f'#{role.colour.value:0>6x}', inline=True)
embed.add_field(name='Colour (HSV)', value=f'{h:.2f} {s:.2f} {v}', inline=True)
embed.add_field(name='Member count', value=len(role.members), inline=True)
embed.add_field(name='Position', value=role.position)
embed.add_field(name='Permission code', value=role.permissions.value, inline=True)
(await ctx.send(embed=embed))<|docstring|>Return information on a role or list of roles.
To specify multiple roles just add to the arguments, delimit roles with spaces in them using quotation marks.<|endoftext|> |
a64bec3ba6c3e30bbaec06b5573408e0c2453acf47d1dae3201ea6b144c63ebb | @command(name='server', aliases=['server_info', 'guild', 'guild_info'])
async def server_info(self, ctx: Context) -> None:
'Returns an embed full of server information.'
embed = Embed(colour=Colour.blurple(), title='Server Information')
created = discord_timestamp(ctx.guild.created_at, TimestampFormats.RELATIVE)
region = ctx.guild.region
num_roles = (len(ctx.guild.roles) - 1)
if (ctx.channel.id in (*constants.MODERATION_CHANNELS, constants.Channels.dev_core, constants.Channels.dev_contrib)):
features = f'''
Features: {', '.join(ctx.guild.features)}'''
else:
features = ''
py_invite = (await self.bot.fetch_invite(constants.Guild.invite))
online_presences = py_invite.approximate_presence_count
offline_presences = (py_invite.approximate_member_count - online_presences)
member_status = f'{constants.Emojis.status_online} {online_presences} {constants.Emojis.status_offline} {offline_presences}'
embed.description = textwrap.dedent(f'''
Created: {created}
Voice region: {region} {features}
Roles: {num_roles}
Member status: {member_status}
''')
embed.set_thumbnail(url=ctx.guild.icon_url)
total_members = ctx.guild.member_count
member_counts = self.get_member_counts(ctx.guild)
member_info = '\n'.join((f'{role}: {count}' for (role, count) in member_counts.items()))
embed.add_field(name=f'Members: {total_members}', value=member_info)
total_channels = len(ctx.guild.channels)
channel_counts = self.get_channel_type_counts(ctx.guild)
channel_info = '\n'.join((f'{channel.title()}: {count}' for (channel, count) in sorted(channel_counts.items())))
embed.add_field(name=f'Channels: {total_channels}', value=channel_info)
if is_mod_channel(ctx.channel):
embed.add_field(name='Moderation:', value=self.get_extended_server_info(ctx))
(await ctx.send(embed=embed)) | Returns an embed full of server information. | bot/exts/info/information.py | server_info | Zedeldi/bot | 2 | python | @command(name='server', aliases=['server_info', 'guild', 'guild_info'])
async def server_info(self, ctx: Context) -> None:
embed = Embed(colour=Colour.blurple(), title='Server Information')
created = discord_timestamp(ctx.guild.created_at, TimestampFormats.RELATIVE)
region = ctx.guild.region
num_roles = (len(ctx.guild.roles) - 1)
if (ctx.channel.id in (*constants.MODERATION_CHANNELS, constants.Channels.dev_core, constants.Channels.dev_contrib)):
features = f'
Features: {', '.join(ctx.guild.features)}'
else:
features =
py_invite = (await self.bot.fetch_invite(constants.Guild.invite))
online_presences = py_invite.approximate_presence_count
offline_presences = (py_invite.approximate_member_count - online_presences)
member_status = f'{constants.Emojis.status_online} {online_presences} {constants.Emojis.status_offline} {offline_presences}'
embed.description = textwrap.dedent(f'
Created: {created}
Voice region: {region} {features}
Roles: {num_roles}
Member status: {member_status}
')
embed.set_thumbnail(url=ctx.guild.icon_url)
total_members = ctx.guild.member_count
member_counts = self.get_member_counts(ctx.guild)
member_info = '\n'.join((f'{role}: {count}' for (role, count) in member_counts.items()))
embed.add_field(name=f'Members: {total_members}', value=member_info)
total_channels = len(ctx.guild.channels)
channel_counts = self.get_channel_type_counts(ctx.guild)
channel_info = '\n'.join((f'{channel.title()}: {count}' for (channel, count) in sorted(channel_counts.items())))
embed.add_field(name=f'Channels: {total_channels}', value=channel_info)
if is_mod_channel(ctx.channel):
embed.add_field(name='Moderation:', value=self.get_extended_server_info(ctx))
(await ctx.send(embed=embed)) | @command(name='server', aliases=['server_info', 'guild', 'guild_info'])
async def server_info(self, ctx: Context) -> None:
embed = Embed(colour=Colour.blurple(), title='Server Information')
created = discord_timestamp(ctx.guild.created_at, TimestampFormats.RELATIVE)
region = ctx.guild.region
num_roles = (len(ctx.guild.roles) - 1)
if (ctx.channel.id in (*constants.MODERATION_CHANNELS, constants.Channels.dev_core, constants.Channels.dev_contrib)):
features = f'
Features: {', '.join(ctx.guild.features)}'
else:
features =
py_invite = (await self.bot.fetch_invite(constants.Guild.invite))
online_presences = py_invite.approximate_presence_count
offline_presences = (py_invite.approximate_member_count - online_presences)
member_status = f'{constants.Emojis.status_online} {online_presences} {constants.Emojis.status_offline} {offline_presences}'
embed.description = textwrap.dedent(f'
Created: {created}
Voice region: {region} {features}
Roles: {num_roles}
Member status: {member_status}
')
embed.set_thumbnail(url=ctx.guild.icon_url)
total_members = ctx.guild.member_count
member_counts = self.get_member_counts(ctx.guild)
member_info = '\n'.join((f'{role}: {count}' for (role, count) in member_counts.items()))
embed.add_field(name=f'Members: {total_members}', value=member_info)
total_channels = len(ctx.guild.channels)
channel_counts = self.get_channel_type_counts(ctx.guild)
channel_info = '\n'.join((f'{channel.title()}: {count}' for (channel, count) in sorted(channel_counts.items())))
embed.add_field(name=f'Channels: {total_channels}', value=channel_info)
if is_mod_channel(ctx.channel):
embed.add_field(name='Moderation:', value=self.get_extended_server_info(ctx))
(await ctx.send(embed=embed))<|docstring|>Returns an embed full of server information.<|endoftext|> |
ede5ddca53d4b7fcba91db9ce73ee8b3f18ca67c47b500fd384393b1c780cc44 | @command(name='user', aliases=['user_info', 'member', 'member_info', 'u'])
async def user_info(self, ctx: Context, user: FetchedMember=None) -> None:
'Returns info about a user.'
if (user is None):
user = ctx.author
elif ((user != ctx.author) and (await has_no_roles_check(ctx, *constants.MODERATION_ROLES))):
(await ctx.send('You may not use this command on users other than yourself.'))
return
if in_whitelist_check(ctx, roles=constants.STAFF_ROLES):
embed = (await self.create_user_embed(ctx, user))
(await ctx.send(embed=embed)) | Returns info about a user. | bot/exts/info/information.py | user_info | Zedeldi/bot | 2 | python | @command(name='user', aliases=['user_info', 'member', 'member_info', 'u'])
async def user_info(self, ctx: Context, user: FetchedMember=None) -> None:
if (user is None):
user = ctx.author
elif ((user != ctx.author) and (await has_no_roles_check(ctx, *constants.MODERATION_ROLES))):
(await ctx.send('You may not use this command on users other than yourself.'))
return
if in_whitelist_check(ctx, roles=constants.STAFF_ROLES):
embed = (await self.create_user_embed(ctx, user))
(await ctx.send(embed=embed)) | @command(name='user', aliases=['user_info', 'member', 'member_info', 'u'])
async def user_info(self, ctx: Context, user: FetchedMember=None) -> None:
if (user is None):
user = ctx.author
elif ((user != ctx.author) and (await has_no_roles_check(ctx, *constants.MODERATION_ROLES))):
(await ctx.send('You may not use this command on users other than yourself.'))
return
if in_whitelist_check(ctx, roles=constants.STAFF_ROLES):
embed = (await self.create_user_embed(ctx, user))
(await ctx.send(embed=embed))<|docstring|>Returns info about a user.<|endoftext|> |
2e9bf0c12f6a911be3a80701b87f7bf03e17d7e488406b632900a66b0d5f557c | async def create_user_embed(self, ctx: Context, user: FetchedMember) -> Embed:
'Creates an embed containing information on the `user`.'
on_server = bool(ctx.guild.get_member(user.id))
created = discord_timestamp(user.created_at, TimestampFormats.RELATIVE)
name = str(user)
if (on_server and user.nick):
name = f'{user.nick} ({name})'
if user.public_flags.verified_bot:
name += f' {constants.Emojis.verified_bot}'
elif user.bot:
name += f' {constants.Emojis.bot}'
badges = []
for (badge, is_set) in user.public_flags:
if (is_set and (emoji := getattr(constants.Emojis, f'badge_{badge}', None))):
badges.append(emoji)
if on_server:
joined = discord_timestamp(user.joined_at, TimestampFormats.RELATIVE)
roles = ', '.join((role.mention for role in user.roles[1:]))
membership = {'Joined': joined, 'Verified': (not user.pending), 'Roles': (roles or None)}
if (not is_mod_channel(ctx.channel)):
membership.pop('Verified')
membership = textwrap.dedent('\n'.join([f'{key}: {value}' for (key, value) in membership.items()]))
else:
roles = None
membership = 'The user is not a member of the server'
fields = [('User information', textwrap.dedent(f'''
Created: {created}
Profile: {user.mention}
ID: {user.id}
''').strip()), ('Member information', membership)]
if is_mod_channel(ctx.channel):
fields.append((await self.user_messages(user)))
fields.append((await self.expanded_user_infraction_counts(user)))
fields.append((await self.user_nomination_counts(user)))
else:
fields.append((await self.basic_user_infraction_counts(user)))
embed = Embed(title=name, description=' '.join(badges))
for (field_name, field_content) in fields:
embed.add_field(name=field_name, value=field_content, inline=False)
embed.set_thumbnail(url=user.avatar_url_as(static_format='png'))
embed.colour = (user.colour if (user.colour != Colour.default()) else Colour.blurple())
return embed | Creates an embed containing information on the `user`. | bot/exts/info/information.py | create_user_embed | Zedeldi/bot | 2 | python | async def create_user_embed(self, ctx: Context, user: FetchedMember) -> Embed:
on_server = bool(ctx.guild.get_member(user.id))
created = discord_timestamp(user.created_at, TimestampFormats.RELATIVE)
name = str(user)
if (on_server and user.nick):
name = f'{user.nick} ({name})'
if user.public_flags.verified_bot:
name += f' {constants.Emojis.verified_bot}'
elif user.bot:
name += f' {constants.Emojis.bot}'
badges = []
for (badge, is_set) in user.public_flags:
if (is_set and (emoji := getattr(constants.Emojis, f'badge_{badge}', None))):
badges.append(emoji)
if on_server:
joined = discord_timestamp(user.joined_at, TimestampFormats.RELATIVE)
roles = ', '.join((role.mention for role in user.roles[1:]))
membership = {'Joined': joined, 'Verified': (not user.pending), 'Roles': (roles or None)}
if (not is_mod_channel(ctx.channel)):
membership.pop('Verified')
membership = textwrap.dedent('\n'.join([f'{key}: {value}' for (key, value) in membership.items()]))
else:
roles = None
membership = 'The user is not a member of the server'
fields = [('User information', textwrap.dedent(f'
Created: {created}
Profile: {user.mention}
ID: {user.id}
').strip()), ('Member information', membership)]
if is_mod_channel(ctx.channel):
fields.append((await self.user_messages(user)))
fields.append((await self.expanded_user_infraction_counts(user)))
fields.append((await self.user_nomination_counts(user)))
else:
fields.append((await self.basic_user_infraction_counts(user)))
embed = Embed(title=name, description=' '.join(badges))
for (field_name, field_content) in fields:
embed.add_field(name=field_name, value=field_content, inline=False)
embed.set_thumbnail(url=user.avatar_url_as(static_format='png'))
embed.colour = (user.colour if (user.colour != Colour.default()) else Colour.blurple())
return embed | async def create_user_embed(self, ctx: Context, user: FetchedMember) -> Embed:
on_server = bool(ctx.guild.get_member(user.id))
created = discord_timestamp(user.created_at, TimestampFormats.RELATIVE)
name = str(user)
if (on_server and user.nick):
name = f'{user.nick} ({name})'
if user.public_flags.verified_bot:
name += f' {constants.Emojis.verified_bot}'
elif user.bot:
name += f' {constants.Emojis.bot}'
badges = []
for (badge, is_set) in user.public_flags:
if (is_set and (emoji := getattr(constants.Emojis, f'badge_{badge}', None))):
badges.append(emoji)
if on_server:
joined = discord_timestamp(user.joined_at, TimestampFormats.RELATIVE)
roles = ', '.join((role.mention for role in user.roles[1:]))
membership = {'Joined': joined, 'Verified': (not user.pending), 'Roles': (roles or None)}
if (not is_mod_channel(ctx.channel)):
membership.pop('Verified')
membership = textwrap.dedent('\n'.join([f'{key}: {value}' for (key, value) in membership.items()]))
else:
roles = None
membership = 'The user is not a member of the server'
fields = [('User information', textwrap.dedent(f'
Created: {created}
Profile: {user.mention}
ID: {user.id}
').strip()), ('Member information', membership)]
if is_mod_channel(ctx.channel):
fields.append((await self.user_messages(user)))
fields.append((await self.expanded_user_infraction_counts(user)))
fields.append((await self.user_nomination_counts(user)))
else:
fields.append((await self.basic_user_infraction_counts(user)))
embed = Embed(title=name, description=' '.join(badges))
for (field_name, field_content) in fields:
embed.add_field(name=field_name, value=field_content, inline=False)
embed.set_thumbnail(url=user.avatar_url_as(static_format='png'))
embed.colour = (user.colour if (user.colour != Colour.default()) else Colour.blurple())
return embed<|docstring|>Creates an embed containing information on the `user`.<|endoftext|> |
f366387ac891cad88180e9ad0fd2f50f54c6e80366d03436c02c0003b2f68c5b | async def basic_user_infraction_counts(self, user: FetchedMember) -> Tuple[(str, str)]:
'Gets the total and active infraction counts for the given `member`.'
infractions = (await self.bot.api_client.get('bot/infractions', params={'hidden': 'False', 'user__id': str(user.id)}))
total_infractions = len(infractions)
active_infractions = sum((infraction['active'] for infraction in infractions))
infraction_output = f'''Total: {total_infractions}
Active: {active_infractions}'''
return ('Infractions', infraction_output) | Gets the total and active infraction counts for the given `member`. | bot/exts/info/information.py | basic_user_infraction_counts | Zedeldi/bot | 2 | python | async def basic_user_infraction_counts(self, user: FetchedMember) -> Tuple[(str, str)]:
infractions = (await self.bot.api_client.get('bot/infractions', params={'hidden': 'False', 'user__id': str(user.id)}))
total_infractions = len(infractions)
active_infractions = sum((infraction['active'] for infraction in infractions))
infraction_output = f'Total: {total_infractions}
Active: {active_infractions}'
return ('Infractions', infraction_output) | async def basic_user_infraction_counts(self, user: FetchedMember) -> Tuple[(str, str)]:
infractions = (await self.bot.api_client.get('bot/infractions', params={'hidden': 'False', 'user__id': str(user.id)}))
total_infractions = len(infractions)
active_infractions = sum((infraction['active'] for infraction in infractions))
infraction_output = f'Total: {total_infractions}
Active: {active_infractions}'
return ('Infractions', infraction_output)<|docstring|>Gets the total and active infraction counts for the given `member`.<|endoftext|> |
9411489fe773250c5e72b62b48e62402bb99db363f4a64b791c05fe28862ff79 | async def expanded_user_infraction_counts(self, user: FetchedMember) -> Tuple[(str, str)]:
'\n Gets expanded infraction counts for the given `member`.\n\n The counts will be split by infraction type and the number of active infractions for each type will indicated\n in the output as well.\n '
infractions = (await self.bot.api_client.get('bot/infractions', params={'user__id': str(user.id)}))
infraction_output = []
if (not infractions):
infraction_output.append('No infractions')
else:
infraction_types = set()
infraction_counter = defaultdict(int)
for infraction in infractions:
infraction_type = infraction['type']
infraction_active = ('active' if infraction['active'] else 'inactive')
infraction_types.add(infraction_type)
infraction_counter[f'{infraction_active} {infraction_type}'] += 1
for infraction_type in sorted(infraction_types):
active_count = infraction_counter[f'active {infraction_type}']
total_count = (active_count + infraction_counter[f'inactive {infraction_type}'])
line = f'{infraction_type.capitalize()}s: {total_count}'
if active_count:
line += f' ({active_count} active)'
infraction_output.append(line)
return ('Infractions', '\n'.join(infraction_output)) | Gets expanded infraction counts for the given `member`.
The counts will be split by infraction type and the number of active infractions for each type will indicated
in the output as well. | bot/exts/info/information.py | expanded_user_infraction_counts | Zedeldi/bot | 2 | python | async def expanded_user_infraction_counts(self, user: FetchedMember) -> Tuple[(str, str)]:
'\n Gets expanded infraction counts for the given `member`.\n\n The counts will be split by infraction type and the number of active infractions for each type will indicated\n in the output as well.\n '
infractions = (await self.bot.api_client.get('bot/infractions', params={'user__id': str(user.id)}))
infraction_output = []
if (not infractions):
infraction_output.append('No infractions')
else:
infraction_types = set()
infraction_counter = defaultdict(int)
for infraction in infractions:
infraction_type = infraction['type']
infraction_active = ('active' if infraction['active'] else 'inactive')
infraction_types.add(infraction_type)
infraction_counter[f'{infraction_active} {infraction_type}'] += 1
for infraction_type in sorted(infraction_types):
active_count = infraction_counter[f'active {infraction_type}']
total_count = (active_count + infraction_counter[f'inactive {infraction_type}'])
line = f'{infraction_type.capitalize()}s: {total_count}'
if active_count:
line += f' ({active_count} active)'
infraction_output.append(line)
return ('Infractions', '\n'.join(infraction_output)) | async def expanded_user_infraction_counts(self, user: FetchedMember) -> Tuple[(str, str)]:
'\n Gets expanded infraction counts for the given `member`.\n\n The counts will be split by infraction type and the number of active infractions for each type will indicated\n in the output as well.\n '
infractions = (await self.bot.api_client.get('bot/infractions', params={'user__id': str(user.id)}))
infraction_output = []
if (not infractions):
infraction_output.append('No infractions')
else:
infraction_types = set()
infraction_counter = defaultdict(int)
for infraction in infractions:
infraction_type = infraction['type']
infraction_active = ('active' if infraction['active'] else 'inactive')
infraction_types.add(infraction_type)
infraction_counter[f'{infraction_active} {infraction_type}'] += 1
for infraction_type in sorted(infraction_types):
active_count = infraction_counter[f'active {infraction_type}']
total_count = (active_count + infraction_counter[f'inactive {infraction_type}'])
line = f'{infraction_type.capitalize()}s: {total_count}'
if active_count:
line += f' ({active_count} active)'
infraction_output.append(line)
return ('Infractions', '\n'.join(infraction_output))<|docstring|>Gets expanded infraction counts for the given `member`.
The counts will be split by infraction type and the number of active infractions for each type will indicated
in the output as well.<|endoftext|> |
392e7645a90bb782f57eaaee71e6c121b14adbc15d881672fb2915f6ca5ffe32 | async def user_nomination_counts(self, user: FetchedMember) -> Tuple[(str, str)]:
'Gets the active and historical nomination counts for the given `member`.'
nominations = (await self.bot.api_client.get('bot/nominations', params={'user__id': str(user.id)}))
output = []
if (not nominations):
output.append('No nominations')
else:
count = len(nominations)
is_currently_nominated = any((nomination['active'] for nomination in nominations))
nomination_noun = ('nomination' if (count == 1) else 'nominations')
if is_currently_nominated:
output.append(f'''This user is **currently** nominated
({count} {nomination_noun} in total)''')
else:
output.append(f'This user has {count} historical {nomination_noun}, but is currently not nominated.')
return ('Nominations', '\n'.join(output)) | Gets the active and historical nomination counts for the given `member`. | bot/exts/info/information.py | user_nomination_counts | Zedeldi/bot | 2 | python | async def user_nomination_counts(self, user: FetchedMember) -> Tuple[(str, str)]:
nominations = (await self.bot.api_client.get('bot/nominations', params={'user__id': str(user.id)}))
output = []
if (not nominations):
output.append('No nominations')
else:
count = len(nominations)
is_currently_nominated = any((nomination['active'] for nomination in nominations))
nomination_noun = ('nomination' if (count == 1) else 'nominations')
if is_currently_nominated:
output.append(f'This user is **currently** nominated
({count} {nomination_noun} in total)')
else:
output.append(f'This user has {count} historical {nomination_noun}, but is currently not nominated.')
return ('Nominations', '\n'.join(output)) | async def user_nomination_counts(self, user: FetchedMember) -> Tuple[(str, str)]:
nominations = (await self.bot.api_client.get('bot/nominations', params={'user__id': str(user.id)}))
output = []
if (not nominations):
output.append('No nominations')
else:
count = len(nominations)
is_currently_nominated = any((nomination['active'] for nomination in nominations))
nomination_noun = ('nomination' if (count == 1) else 'nominations')
if is_currently_nominated:
output.append(f'This user is **currently** nominated
({count} {nomination_noun} in total)')
else:
output.append(f'This user has {count} historical {nomination_noun}, but is currently not nominated.')
return ('Nominations', '\n'.join(output))<|docstring|>Gets the active and historical nomination counts for the given `member`.<|endoftext|> |
f8720bc1c0a2a4a3c26659cc1b72c17a7a07998416ad41916c8cb8072b32a7b8 | async def user_messages(self, user: FetchedMember) -> Tuple[(Union[(bool, str)], Tuple[(str, str)])]:
"\n Gets the amount of messages for `member`.\n\n Fetches information from the metricity database that's hosted by the site.\n If the database returns a code besides a 404, then many parts of the bot are broken including this one.\n "
activity_output = []
try:
user_activity = (await self.bot.api_client.get(f'bot/users/{user.id}/metricity_data'))
except ResponseCodeError as e:
if (e.status == 404):
activity_output = 'No activity'
else:
activity_output.append((user_activity['total_messages'] or 'No messages'))
activity_output.append((user_activity['activity_blocks'] or 'No activity'))
activity_output = '\n'.join((f'{name}: {metric}' for (name, metric) in zip(['Messages', 'Activity blocks'], activity_output)))
return ('Activity', activity_output) | Gets the amount of messages for `member`.
Fetches information from the metricity database that's hosted by the site.
If the database returns a code besides a 404, then many parts of the bot are broken including this one. | bot/exts/info/information.py | user_messages | Zedeldi/bot | 2 | python | async def user_messages(self, user: FetchedMember) -> Tuple[(Union[(bool, str)], Tuple[(str, str)])]:
"\n Gets the amount of messages for `member`.\n\n Fetches information from the metricity database that's hosted by the site.\n If the database returns a code besides a 404, then many parts of the bot are broken including this one.\n "
activity_output = []
try:
user_activity = (await self.bot.api_client.get(f'bot/users/{user.id}/metricity_data'))
except ResponseCodeError as e:
if (e.status == 404):
activity_output = 'No activity'
else:
activity_output.append((user_activity['total_messages'] or 'No messages'))
activity_output.append((user_activity['activity_blocks'] or 'No activity'))
activity_output = '\n'.join((f'{name}: {metric}' for (name, metric) in zip(['Messages', 'Activity blocks'], activity_output)))
return ('Activity', activity_output) | async def user_messages(self, user: FetchedMember) -> Tuple[(Union[(bool, str)], Tuple[(str, str)])]:
"\n Gets the amount of messages for `member`.\n\n Fetches information from the metricity database that's hosted by the site.\n If the database returns a code besides a 404, then many parts of the bot are broken including this one.\n "
activity_output = []
try:
user_activity = (await self.bot.api_client.get(f'bot/users/{user.id}/metricity_data'))
except ResponseCodeError as e:
if (e.status == 404):
activity_output = 'No activity'
else:
activity_output.append((user_activity['total_messages'] or 'No messages'))
activity_output.append((user_activity['activity_blocks'] or 'No activity'))
activity_output = '\n'.join((f'{name}: {metric}' for (name, metric) in zip(['Messages', 'Activity blocks'], activity_output)))
return ('Activity', activity_output)<|docstring|>Gets the amount of messages for `member`.
Fetches information from the metricity database that's hosted by the site.
If the database returns a code besides a 404, then many parts of the bot are broken including this one.<|endoftext|> |
b44d9e5d2dcbd7e742bcc759c71454fc3c91e72b960c835de846998d1d8c22f7 | def format_fields(self, mapping: Mapping[(str, Any)], field_width: Optional[int]=None) -> str:
'Format a mapping to be readable to a human.'
fields = sorted(mapping.items(), key=(lambda item: item[0]))
if (field_width is None):
field_width = len(max(mapping.keys(), key=len))
out = ''
for (key, val) in fields:
if isinstance(val, dict):
inner_width = int((field_width * 1.6))
val = ('\n' + self.format_fields(val, field_width=inner_width))
elif isinstance(val, str):
text = textwrap.fill(val, width=100, replace_whitespace=False)
val = textwrap.indent(text, (' ' * (field_width + len(': '))))
val = val.lstrip()
if (key == 'color'):
val = hex(val)
out += '{0:>{width}}: {1}\n'.format(key, val, width=field_width)
return out.rstrip() | Format a mapping to be readable to a human. | bot/exts/info/information.py | format_fields | Zedeldi/bot | 2 | python | def format_fields(self, mapping: Mapping[(str, Any)], field_width: Optional[int]=None) -> str:
fields = sorted(mapping.items(), key=(lambda item: item[0]))
if (field_width is None):
field_width = len(max(mapping.keys(), key=len))
out =
for (key, val) in fields:
if isinstance(val, dict):
inner_width = int((field_width * 1.6))
val = ('\n' + self.format_fields(val, field_width=inner_width))
elif isinstance(val, str):
text = textwrap.fill(val, width=100, replace_whitespace=False)
val = textwrap.indent(text, (' ' * (field_width + len(': '))))
val = val.lstrip()
if (key == 'color'):
val = hex(val)
out += '{0:>{width}}: {1}\n'.format(key, val, width=field_width)
return out.rstrip() | def format_fields(self, mapping: Mapping[(str, Any)], field_width: Optional[int]=None) -> str:
fields = sorted(mapping.items(), key=(lambda item: item[0]))
if (field_width is None):
field_width = len(max(mapping.keys(), key=len))
out =
for (key, val) in fields:
if isinstance(val, dict):
inner_width = int((field_width * 1.6))
val = ('\n' + self.format_fields(val, field_width=inner_width))
elif isinstance(val, str):
text = textwrap.fill(val, width=100, replace_whitespace=False)
val = textwrap.indent(text, (' ' * (field_width + len(': '))))
val = val.lstrip()
if (key == 'color'):
val = hex(val)
out += '{0:>{width}}: {1}\n'.format(key, val, width=field_width)
return out.rstrip()<|docstring|>Format a mapping to be readable to a human.<|endoftext|> |
a28f585d1f6e82e45c35aaa7f32689f08700ed6b3022077a0f129f4eb798e5aa | @cooldown_with_role_bypass(2, (60 * 3), BucketType.member, bypass_roles=constants.STAFF_ROLES)
@group(invoke_without_command=True)
@in_whitelist(channels=(constants.Channels.bot_commands,), roles=constants.STAFF_ROLES)
async def raw(self, ctx: Context, *, message: Message, json: bool=False) -> None:
'Shows information about the raw API response.'
if (ctx.author not in message.channel.members):
(await ctx.send(':x: You do not have permissions to see the channel this message is in.'))
return
raw_data = (await ctx.bot.http.get_message(message.channel.id, message.id))
paginator = Paginator()
def add_content(title: str, content: str) -> None:
paginator.add_line(f'''== {title} ==
''')
paginator.add_line(content.replace('`', '`\u200b'))
paginator.close_page()
if message.content:
add_content('Raw message', message.content)
transformer = (pprint.pformat if json else self.format_fields)
for field_name in ('embeds', 'attachments'):
data = raw_data[field_name]
if (not data):
continue
total = len(data)
for (current, item) in enumerate(data, start=1):
title = f'Raw {field_name} ({current}/{total})'
add_content(title, transformer(item))
for page in paginator.pages:
(await ctx.send(page, allowed_mentions=AllowedMentions.none())) | Shows information about the raw API response. | bot/exts/info/information.py | raw | Zedeldi/bot | 2 | python | @cooldown_with_role_bypass(2, (60 * 3), BucketType.member, bypass_roles=constants.STAFF_ROLES)
@group(invoke_without_command=True)
@in_whitelist(channels=(constants.Channels.bot_commands,), roles=constants.STAFF_ROLES)
async def raw(self, ctx: Context, *, message: Message, json: bool=False) -> None:
if (ctx.author not in message.channel.members):
(await ctx.send(':x: You do not have permissions to see the channel this message is in.'))
return
raw_data = (await ctx.bot.http.get_message(message.channel.id, message.id))
paginator = Paginator()
def add_content(title: str, content: str) -> None:
paginator.add_line(f'== {title} ==
')
paginator.add_line(content.replace('`', '`\u200b'))
paginator.close_page()
if message.content:
add_content('Raw message', message.content)
transformer = (pprint.pformat if json else self.format_fields)
for field_name in ('embeds', 'attachments'):
data = raw_data[field_name]
if (not data):
continue
total = len(data)
for (current, item) in enumerate(data, start=1):
title = f'Raw {field_name} ({current}/{total})'
add_content(title, transformer(item))
for page in paginator.pages:
(await ctx.send(page, allowed_mentions=AllowedMentions.none())) | @cooldown_with_role_bypass(2, (60 * 3), BucketType.member, bypass_roles=constants.STAFF_ROLES)
@group(invoke_without_command=True)
@in_whitelist(channels=(constants.Channels.bot_commands,), roles=constants.STAFF_ROLES)
async def raw(self, ctx: Context, *, message: Message, json: bool=False) -> None:
if (ctx.author not in message.channel.members):
(await ctx.send(':x: You do not have permissions to see the channel this message is in.'))
return
raw_data = (await ctx.bot.http.get_message(message.channel.id, message.id))
paginator = Paginator()
def add_content(title: str, content: str) -> None:
paginator.add_line(f'== {title} ==
')
paginator.add_line(content.replace('`', '`\u200b'))
paginator.close_page()
if message.content:
add_content('Raw message', message.content)
transformer = (pprint.pformat if json else self.format_fields)
for field_name in ('embeds', 'attachments'):
data = raw_data[field_name]
if (not data):
continue
total = len(data)
for (current, item) in enumerate(data, start=1):
title = f'Raw {field_name} ({current}/{total})'
add_content(title, transformer(item))
for page in paginator.pages:
(await ctx.send(page, allowed_mentions=AllowedMentions.none()))<|docstring|>Shows information about the raw API response.<|endoftext|> |
e26eee32d4733b5c94a2b089e982789205674a6fadb5975b4326f6b2a299f99e | @raw.command()
async def json(self, ctx: Context, message: Message) -> None:
'Shows information about the raw API response in a copy-pasteable Python format.'
(await ctx.invoke(self.raw, message=message, json=True)) | Shows information about the raw API response in a copy-pasteable Python format. | bot/exts/info/information.py | json | Zedeldi/bot | 2 | python | @raw.command()
async def json(self, ctx: Context, message: Message) -> None:
(await ctx.invoke(self.raw, message=message, json=True)) | @raw.command()
async def json(self, ctx: Context, message: Message) -> None:
(await ctx.invoke(self.raw, message=message, json=True))<|docstring|>Shows information about the raw API response in a copy-pasteable Python format.<|endoftext|> |
d413feb2da389047bc286243bf152b0e79ffcdc6d61ca450c1668f58e0c91350 | def setUp(self):
'Initialize test values.'
self.type = 'user'
self.name = 'test'
self.principal = 'user:test'
self.repr_type = "<Principal(type='user')>"
self.repr_name = "<Principal(name='test')>"
self.repr_all = "<Principal(type='user', name='test')>" | Initialize test values. | tests/test_principal.py | setUp | BlueDragonX/pyramid_couchauth | 1 | python | def setUp(self):
self.type = 'user'
self.name = 'test'
self.principal = 'user:test'
self.repr_type = "<Principal(type='user')>"
self.repr_name = "<Principal(name='test')>"
self.repr_all = "<Principal(type='user', name='test')>" | def setUp(self):
self.type = 'user'
self.name = 'test'
self.principal = 'user:test'
self.repr_type = "<Principal(type='user')>"
self.repr_name = "<Principal(name='test')>"
self.repr_all = "<Principal(type='user', name='test')>"<|docstring|>Initialize test values.<|endoftext|> |
bba8f4111810ea3c86d4902d053d8c1deba4d15fbfdf6c758c88c7e50c325b31 | def test_init_empty(self):
'Test __init__ method with no params.'
pobj = Principal()
self.assertTrue((pobj.type is None))
self.assertTrue((pobj.name is None)) | Test __init__ method with no params. | tests/test_principal.py | test_init_empty | BlueDragonX/pyramid_couchauth | 1 | python | def test_init_empty(self):
pobj = Principal()
self.assertTrue((pobj.type is None))
self.assertTrue((pobj.name is None)) | def test_init_empty(self):
pobj = Principal()
self.assertTrue((pobj.type is None))
self.assertTrue((pobj.name is None))<|docstring|>Test __init__ method with no params.<|endoftext|> |
b6c0b17c735b8f400c05c6178a7c5af9a6462ae8a465017ad6ff5b64a10d1b37 | def test_init_type_name(self):
'Test __init__ method with type and name params.'
pobj = Principal(type=self.type, name=self.name)
self.assertEqual(pobj.type, self.type)
self.assertEqual(pobj.name, self.name) | Test __init__ method with type and name params. | tests/test_principal.py | test_init_type_name | BlueDragonX/pyramid_couchauth | 1 | python | def test_init_type_name(self):
pobj = Principal(type=self.type, name=self.name)
self.assertEqual(pobj.type, self.type)
self.assertEqual(pobj.name, self.name) | def test_init_type_name(self):
pobj = Principal(type=self.type, name=self.name)
self.assertEqual(pobj.type, self.type)
self.assertEqual(pobj.name, self.name)<|docstring|>Test __init__ method with type and name params.<|endoftext|> |
5430a4c7b32f48181596cbdac041c48450a8a765642e43c541c18550658f3adc | def test_init_principal(self):
'Test __init__ method with principal param.'
pobj = Principal(self.principal)
self.assertEqual(pobj.type, self.type)
self.assertEqual(pobj.name, self.name) | Test __init__ method with principal param. | tests/test_principal.py | test_init_principal | BlueDragonX/pyramid_couchauth | 1 | python | def test_init_principal(self):
pobj = Principal(self.principal)
self.assertEqual(pobj.type, self.type)
self.assertEqual(pobj.name, self.name) | def test_init_principal(self):
pobj = Principal(self.principal)
self.assertEqual(pobj.type, self.type)
self.assertEqual(pobj.name, self.name)<|docstring|>Test __init__ method with principal param.<|endoftext|> |
9b80a3bdb6a9a3ad78f78bfdd7efb52130fa8c84097519a1e1eda612ba685614 | def test_init_type_principal(self):
'Test __init__ method with type and principal params.'
pobj = Principal(self.name, self.type)
self.assertEqual(pobj.type, self.type)
self.assertEqual(pobj.name, self.name) | Test __init__ method with type and principal params. | tests/test_principal.py | test_init_type_principal | BlueDragonX/pyramid_couchauth | 1 | python | def test_init_type_principal(self):
pobj = Principal(self.name, self.type)
self.assertEqual(pobj.type, self.type)
self.assertEqual(pobj.name, self.name) | def test_init_type_principal(self):
pobj = Principal(self.name, self.type)
self.assertEqual(pobj.type, self.type)
self.assertEqual(pobj.name, self.name)<|docstring|>Test __init__ method with type and principal params.<|endoftext|> |
d8f7c9cb7b0ec683bd69ae8bdaabc89e651039017d6bcc0321b90e49bd8b44ef | def test_parse(self):
'Test parse method.'
pobj = Principal()
pobj.parse(self.principal)
self.assertEqual(pobj.type, self.type)
self.assertEqual(pobj.name, self.name) | Test parse method. | tests/test_principal.py | test_parse | BlueDragonX/pyramid_couchauth | 1 | python | def test_parse(self):
pobj = Principal()
pobj.parse(self.principal)
self.assertEqual(pobj.type, self.type)
self.assertEqual(pobj.name, self.name) | def test_parse(self):
pobj = Principal()
pobj.parse(self.principal)
self.assertEqual(pobj.type, self.type)
self.assertEqual(pobj.name, self.name)<|docstring|>Test parse method.<|endoftext|> |
1bf7c05cf3c42703b07ba35c17d30f933d213894e035e92683110cecebe61419 | def test_str(self):
'Test __str__ method.'
pobj = Principal(self.principal)
self.assertEqual(pobj.__str__(), self.principal) | Test __str__ method. | tests/test_principal.py | test_str | BlueDragonX/pyramid_couchauth | 1 | python | def test_str(self):
pobj = Principal(self.principal)
self.assertEqual(pobj.__str__(), self.principal) | def test_str(self):
pobj = Principal(self.principal)
self.assertEqual(pobj.__str__(), self.principal)<|docstring|>Test __str__ method.<|endoftext|> |
4b36e27c7cbff4183dc130df57ee1244fb953d49003f64362b49c62dead766ac | def test_repr_type(self):
'Test __repr__ method when type is set.'
pobj = Principal(type=self.type)
self.assertEqual(pobj.__repr__(), self.repr_type) | Test __repr__ method when type is set. | tests/test_principal.py | test_repr_type | BlueDragonX/pyramid_couchauth | 1 | python | def test_repr_type(self):
pobj = Principal(type=self.type)
self.assertEqual(pobj.__repr__(), self.repr_type) | def test_repr_type(self):
pobj = Principal(type=self.type)
self.assertEqual(pobj.__repr__(), self.repr_type)<|docstring|>Test __repr__ method when type is set.<|endoftext|> |
c8d48cd081992a2f877da40ff9fbbe58ccc240009a6f4284aa44ff3d72f2557a | def test_repr_name(self):
'Test __repr__ method when name is set.'
pobj = Principal(name=self.name)
self.assertEqual(pobj.__repr__(), self.repr_name) | Test __repr__ method when name is set. | tests/test_principal.py | test_repr_name | BlueDragonX/pyramid_couchauth | 1 | python | def test_repr_name(self):
pobj = Principal(name=self.name)
self.assertEqual(pobj.__repr__(), self.repr_name) | def test_repr_name(self):
pobj = Principal(name=self.name)
self.assertEqual(pobj.__repr__(), self.repr_name)<|docstring|>Test __repr__ method when name is set.<|endoftext|> |
e16e932f99b1913bd1e06628ad134e370969c73b31b90c50168bd428ba636877 | def test_repr_all(self):
'Test __repr__ method when principal is set.'
pobj = Principal(self.principal)
self.assertEqual(pobj.__repr__(), self.repr_all) | Test __repr__ method when principal is set. | tests/test_principal.py | test_repr_all | BlueDragonX/pyramid_couchauth | 1 | python | def test_repr_all(self):
pobj = Principal(self.principal)
self.assertEqual(pobj.__repr__(), self.repr_all) | def test_repr_all(self):
pobj = Principal(self.principal)
self.assertEqual(pobj.__repr__(), self.repr_all)<|docstring|>Test __repr__ method when principal is set.<|endoftext|> |
dad3516a1fe334dcf3fbd65dd70e97d25d1cd661383dabb03572a9cbbed278a3 | def session_preparation(self):
'Prepare the session after the connection has been established.'
self.ansi_escape_codes = True
self._test_channel_read()
self.set_base_prompt()
self.disable_paging()
time.sleep((0.3 * self.global_delay_factor))
self.clear_buffer() | Prepare the session after the connection has been established. | netmiko/dlink/dlink_ds.py | session_preparation | benmcbenben/netmiko | 2 | python | def session_preparation(self):
self.ansi_escape_codes = True
self._test_channel_read()
self.set_base_prompt()
self.disable_paging()
time.sleep((0.3 * self.global_delay_factor))
self.clear_buffer() | def session_preparation(self):
self.ansi_escape_codes = True
self._test_channel_read()
self.set_base_prompt()
self.disable_paging()
time.sleep((0.3 * self.global_delay_factor))
self.clear_buffer()<|docstring|>Prepare the session after the connection has been established.<|endoftext|> |
603a8de8b6580a89d9a64ca68b5a9744f7b1d37fbaf11bbc1cfa794c364d4a34 | def enable(self, *args, **kwargs):
'No implemented enable mode on D-Link yet'
return '' | No implemented enable mode on D-Link yet | netmiko/dlink/dlink_ds.py | enable | benmcbenben/netmiko | 2 | python | def enable(self, *args, **kwargs):
return | def enable(self, *args, **kwargs):
return <|docstring|>No implemented enable mode on D-Link yet<|endoftext|> |
7189c7ef3a93d99860dff801bec4c986b909839b52fb63c4f9862841de4b5b70 | def check_enable_mode(self, *args, **kwargs):
'No implemented enable mode on D-Link yet'
return True | No implemented enable mode on D-Link yet | netmiko/dlink/dlink_ds.py | check_enable_mode | benmcbenben/netmiko | 2 | python | def check_enable_mode(self, *args, **kwargs):
return True | def check_enable_mode(self, *args, **kwargs):
return True<|docstring|>No implemented enable mode on D-Link yet<|endoftext|> |
e8004935534715e6a928b176ab23254cc92e6f71af0230d1dc93952425023083 | def exit_enable_mode(self, *args, **kwargs):
'No implemented enable mode on D-Link yet'
return '' | No implemented enable mode on D-Link yet | netmiko/dlink/dlink_ds.py | exit_enable_mode | benmcbenben/netmiko | 2 | python | def exit_enable_mode(self, *args, **kwargs):
return | def exit_enable_mode(self, *args, **kwargs):
return <|docstring|>No implemented enable mode on D-Link yet<|endoftext|> |
b6e4cbe928cb0b2834e25a78207a2debbc44f75f893c3cc2b549a7182dbb86cd | def check_config_mode(self, *args, **kwargs):
'No config mode on D-Link'
return False | No config mode on D-Link | netmiko/dlink/dlink_ds.py | check_config_mode | benmcbenben/netmiko | 2 | python | def check_config_mode(self, *args, **kwargs):
return False | def check_config_mode(self, *args, **kwargs):
return False<|docstring|>No config mode on D-Link<|endoftext|> |
77a4597659ca8963d5a4e49d28da3733366a44daf2c045862f79b24701e7b965 | def config_mode(self, *args, **kwargs):
'No config mode on D-Link'
return '' | No config mode on D-Link | netmiko/dlink/dlink_ds.py | config_mode | benmcbenben/netmiko | 2 | python | def config_mode(self, *args, **kwargs):
return | def config_mode(self, *args, **kwargs):
return <|docstring|>No config mode on D-Link<|endoftext|> |
91f871f2c481b51a097e5a26efdb974dba8ffff89d3a78575b3f3b3dde1ce7de | def exit_config_mode(self, *args, **kwargs):
'No config mode on D-Link'
return '' | No config mode on D-Link | netmiko/dlink/dlink_ds.py | exit_config_mode | benmcbenben/netmiko | 2 | python | def exit_config_mode(self, *args, **kwargs):
return | def exit_config_mode(self, *args, **kwargs):
return <|docstring|>No config mode on D-Link<|endoftext|> |
91bebc59c8d889783919998dde4483ef2ede0cf357ef77006d5d73f6b3b948ae | def save_config(self, cmd='save', confirm=False, confirm_response=''):
'Saves configuration.'
return super().save_config(cmd=cmd, confirm=confirm, confirm_response=confirm_response) | Saves configuration. | netmiko/dlink/dlink_ds.py | save_config | benmcbenben/netmiko | 2 | python | def save_config(self, cmd='save', confirm=False, confirm_response=):
return super().save_config(cmd=cmd, confirm=confirm, confirm_response=confirm_response) | def save_config(self, cmd='save', confirm=False, confirm_response=):
return super().save_config(cmd=cmd, confirm=confirm, confirm_response=confirm_response)<|docstring|>Saves configuration.<|endoftext|> |
70d65a8001f401ba4e27db90670392d7805ad76584d7333369294e916bb90f96 | def cleanup(self):
'Return paging before disconnect'
self.send_command_timing('enable clipaging')
return super().cleanup() | Return paging before disconnect | netmiko/dlink/dlink_ds.py | cleanup | benmcbenben/netmiko | 2 | python | def cleanup(self):
self.send_command_timing('enable clipaging')
return super().cleanup() | def cleanup(self):
self.send_command_timing('enable clipaging')
return super().cleanup()<|docstring|>Return paging before disconnect<|endoftext|> |
1bf1e4a9ae1d2818658fb54d36e0f7f3a8783b5a4adb02af03e2dade16e3ab23 | def neighbors(adata, n_neighbors=15, key_added=None, **kwargs):
'\n Wrapper function for sc.pp.neighbors(), for supporting multiple n_neighbors\n '
if (not isinstance(n_neighbors, (list, tuple))):
sc.pp.neighbors(adata, n_neighbors=n_neighbors, key_added=key_added, **kwargs)
else:
for (i, n_nb) in enumerate(n_neighbors):
if (key_added is None):
graph_key = f'k{n_nb}'
elif (not isinstance(key_added, (list, tuple))):
graph_key = f'{key_added}_k{n_nb}'
elif (len(key_added) == len(n_neighbors)):
graph_key = key_added[i]
else:
raise ValueError('`key_added` can only be None, a scalar, or an iterable of the same length as `n_neighbors`.')
neighbors(adata, n_neighbors=n_nb, key_added=graph_key, **kwargs)
return adata | Wrapper function for sc.pp.neighbors(), for supporting multiple n_neighbors | scanpy_scripts/lib/_neighbors.py | neighbors | ksenia007/scanpy-scripts | 21 | python | def neighbors(adata, n_neighbors=15, key_added=None, **kwargs):
'\n \n '
if (not isinstance(n_neighbors, (list, tuple))):
sc.pp.neighbors(adata, n_neighbors=n_neighbors, key_added=key_added, **kwargs)
else:
for (i, n_nb) in enumerate(n_neighbors):
if (key_added is None):
graph_key = f'k{n_nb}'
elif (not isinstance(key_added, (list, tuple))):
graph_key = f'{key_added}_k{n_nb}'
elif (len(key_added) == len(n_neighbors)):
graph_key = key_added[i]
else:
raise ValueError('`key_added` can only be None, a scalar, or an iterable of the same length as `n_neighbors`.')
neighbors(adata, n_neighbors=n_nb, key_added=graph_key, **kwargs)
return adata | def neighbors(adata, n_neighbors=15, key_added=None, **kwargs):
'\n \n '
if (not isinstance(n_neighbors, (list, tuple))):
sc.pp.neighbors(adata, n_neighbors=n_neighbors, key_added=key_added, **kwargs)
else:
for (i, n_nb) in enumerate(n_neighbors):
if (key_added is None):
graph_key = f'k{n_nb}'
elif (not isinstance(key_added, (list, tuple))):
graph_key = f'{key_added}_k{n_nb}'
elif (len(key_added) == len(n_neighbors)):
graph_key = key_added[i]
else:
raise ValueError('`key_added` can only be None, a scalar, or an iterable of the same length as `n_neighbors`.')
neighbors(adata, n_neighbors=n_nb, key_added=graph_key, **kwargs)
return adata<|docstring|>Wrapper function for sc.pp.neighbors(), for supporting multiple n_neighbors<|endoftext|> |
0d1f45b02ccd7ebe99d7b0563b1fc5e69312ae3871b3c4c006c5bd3f69b2ee1e | def plot_samples(X_images, img_height, img_width, figsize=(5, 5), transpose=True, shuffle=True):
'\n Args:\n X_images: A 2-D ndarray (matrix) each row of which holds the pixels as features\n of one image. The row number will be the number of all input images.\n img_height: The pixel numbers of the input image in height.\n img_width: The pixel numbers of the input image in width.\n figsize: Optional. The size of each small figure.\n transpose: Optional. Whether to transpose the image array. When the image attributes\n come from matlab, it needs to be transposed by default.\n shuffle: Optional. Whether to shuffle the input array.\n '
(img_cnt, feature_cnt) = X_images.shape
assert (feature_cnt == (img_height * img_width))
if shuffle:
images = np.random.permutation(X_images)
else:
images = X_images
if (img_cnt >= 100):
(n_row, n_col, samp_cnt) = (10, 10, 100)
elif (img_cnt >= 64):
(n_row, n_col, samp_cnt) = (8, 8, 64)
else:
(n_row, n_col, samp_cnt) = (0, 0, 0)
if (img_cnt >= samp_cnt > 0):
samps = images[0:samp_cnt]
plt.figure(figsize=figsize)
gs = gridspec.GridSpec(n_row, n_col, wspace=0.0, hspace=0.0)
for i in range(0, n_row):
for j in range(0, n_col):
ax = plt.subplot(gs[(i, j)])
idx = ((i * n_col) + j)
img = samps[idx].reshape(img_height, img_width)
if transpose:
img = img.T
fig = ax.imshow(img, interpolation='nearest')
fig.axes.get_xaxis().set_visible(False)
fig.axes.get_yaxis().set_visible(False)
plt.suptitle('{} out of {} Samples'.format(samp_cnt, img_cnt), size=12, x=0.515, y=0.935)
plt.show()
else:
samps = images
n_col = math.ceil(math.sqrt(img_cnt))
n_row = math.ceil((img_cnt / n_col))
fig = plt.figure(figsize=figsize)
for i in range(0, img_cnt):
ax = fig.add_subplot(n_row, n_col, (i + 1))
if transpose:
img = ax.imshow(samps[i].reshape(img_height, img_width).T)
else:
img = ax.imshow(samps[i].reshape(img_height, img_width))
img.axes.get_xaxis().set_visible(False)
img.axes.get_yaxis().set_visible(False)
plt.suptitle('All {} Samples'.format(img_cnt), size=12, x=0.518, y=0.935)
plt.show() | Args:
X_images: A 2-D ndarray (matrix) each row of which holds the pixels as features
of one image. The row number will be the number of all input images.
img_height: The pixel numbers of the input image in height.
img_width: The pixel numbers of the input image in width.
figsize: Optional. The size of each small figure.
transpose: Optional. Whether to transpose the image array. When the image attributes
come from matlab, it needs to be transposed by default.
shuffle: Optional. Whether to shuffle the input array. | misc/imgreader.py | plot_samples | bshao001/DmsMsgRcg | 19 | python | def plot_samples(X_images, img_height, img_width, figsize=(5, 5), transpose=True, shuffle=True):
'\n Args:\n X_images: A 2-D ndarray (matrix) each row of which holds the pixels as features\n of one image. The row number will be the number of all input images.\n img_height: The pixel numbers of the input image in height.\n img_width: The pixel numbers of the input image in width.\n figsize: Optional. The size of each small figure.\n transpose: Optional. Whether to transpose the image array. When the image attributes\n come from matlab, it needs to be transposed by default.\n shuffle: Optional. Whether to shuffle the input array.\n '
(img_cnt, feature_cnt) = X_images.shape
assert (feature_cnt == (img_height * img_width))
if shuffle:
images = np.random.permutation(X_images)
else:
images = X_images
if (img_cnt >= 100):
(n_row, n_col, samp_cnt) = (10, 10, 100)
elif (img_cnt >= 64):
(n_row, n_col, samp_cnt) = (8, 8, 64)
else:
(n_row, n_col, samp_cnt) = (0, 0, 0)
if (img_cnt >= samp_cnt > 0):
samps = images[0:samp_cnt]
plt.figure(figsize=figsize)
gs = gridspec.GridSpec(n_row, n_col, wspace=0.0, hspace=0.0)
for i in range(0, n_row):
for j in range(0, n_col):
ax = plt.subplot(gs[(i, j)])
idx = ((i * n_col) + j)
img = samps[idx].reshape(img_height, img_width)
if transpose:
img = img.T
fig = ax.imshow(img, interpolation='nearest')
fig.axes.get_xaxis().set_visible(False)
fig.axes.get_yaxis().set_visible(False)
plt.suptitle('{} out of {} Samples'.format(samp_cnt, img_cnt), size=12, x=0.515, y=0.935)
plt.show()
else:
samps = images
n_col = math.ceil(math.sqrt(img_cnt))
n_row = math.ceil((img_cnt / n_col))
fig = plt.figure(figsize=figsize)
for i in range(0, img_cnt):
ax = fig.add_subplot(n_row, n_col, (i + 1))
if transpose:
img = ax.imshow(samps[i].reshape(img_height, img_width).T)
else:
img = ax.imshow(samps[i].reshape(img_height, img_width))
img.axes.get_xaxis().set_visible(False)
img.axes.get_yaxis().set_visible(False)
plt.suptitle('All {} Samples'.format(img_cnt), size=12, x=0.518, y=0.935)
plt.show() | def plot_samples(X_images, img_height, img_width, figsize=(5, 5), transpose=True, shuffle=True):
'\n Args:\n X_images: A 2-D ndarray (matrix) each row of which holds the pixels as features\n of one image. The row number will be the number of all input images.\n img_height: The pixel numbers of the input image in height.\n img_width: The pixel numbers of the input image in width.\n figsize: Optional. The size of each small figure.\n transpose: Optional. Whether to transpose the image array. When the image attributes\n come from matlab, it needs to be transposed by default.\n shuffle: Optional. Whether to shuffle the input array.\n '
(img_cnt, feature_cnt) = X_images.shape
assert (feature_cnt == (img_height * img_width))
if shuffle:
images = np.random.permutation(X_images)
else:
images = X_images
if (img_cnt >= 100):
(n_row, n_col, samp_cnt) = (10, 10, 100)
elif (img_cnt >= 64):
(n_row, n_col, samp_cnt) = (8, 8, 64)
else:
(n_row, n_col, samp_cnt) = (0, 0, 0)
if (img_cnt >= samp_cnt > 0):
samps = images[0:samp_cnt]
plt.figure(figsize=figsize)
gs = gridspec.GridSpec(n_row, n_col, wspace=0.0, hspace=0.0)
for i in range(0, n_row):
for j in range(0, n_col):
ax = plt.subplot(gs[(i, j)])
idx = ((i * n_col) + j)
img = samps[idx].reshape(img_height, img_width)
if transpose:
img = img.T
fig = ax.imshow(img, interpolation='nearest')
fig.axes.get_xaxis().set_visible(False)
fig.axes.get_yaxis().set_visible(False)
plt.suptitle('{} out of {} Samples'.format(samp_cnt, img_cnt), size=12, x=0.515, y=0.935)
plt.show()
else:
samps = images
n_col = math.ceil(math.sqrt(img_cnt))
n_row = math.ceil((img_cnt / n_col))
fig = plt.figure(figsize=figsize)
for i in range(0, img_cnt):
ax = fig.add_subplot(n_row, n_col, (i + 1))
if transpose:
img = ax.imshow(samps[i].reshape(img_height, img_width).T)
else:
img = ax.imshow(samps[i].reshape(img_height, img_width))
img.axes.get_xaxis().set_visible(False)
img.axes.get_yaxis().set_visible(False)
plt.suptitle('All {} Samples'.format(img_cnt), size=12, x=0.518, y=0.935)
plt.show()<|docstring|>Args:
X_images: A 2-D ndarray (matrix) each row of which holds the pixels as features
of one image. The row number will be the number of all input images.
img_height: The pixel numbers of the input image in height.
img_width: The pixel numbers of the input image in width.
figsize: Optional. The size of each small figure.
transpose: Optional. Whether to transpose the image array. When the image attributes
come from matlab, it needs to be transposed by default.
shuffle: Optional. Whether to shuffle the input array.<|endoftext|> |
66d414c2bdc85ec5e0bb73a42e95985efd726897fef5b2a2a417c1971ae07062 | def get_features_all_images(self, img_dir, ext_filter=['.jpg', '.png'], stride=5, padding=True, data_augm=False):
'\n Output the features extracted from all images in one folder. This method is designed only\n for the trainers.\n Args:\n img_dir: The full path to the images to be feature-extracted.\n ext_filter: Optional. File name filter.\n stride: Optional. The stride of the sliding.\n padding: Optional. Whether to pad the image to fit the feature space size or to\n discard the extra pixels if padding is False.\n data_augm: Optional. Whether to perform data augmentation for the given image. The\n only data augmentation approach applied here is to rotate 20 degree clockwise\n and rotate 20 degree anti-clockwise so that 1 image becomes 3 images.\n Returns:\n A matrix (python list), in which each row contains the features of the sampling sliding\n window, while the number of rows depends on the number of the images in the given folder\n and the image size of the input, and other parameters.\n '
all_features = []
for img_file in os.listdir(img_dir):
full_path_name = os.path.join(img_dir, img_file)
if (os.path.isfile(full_path_name) and img_file.lower().endswith(tuple(ext_filter))):
img = cv2.imread(full_path_name)
img_arr = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
(_, features) = self.get_image_array_features(img_arr, stride, padding)
if (len(features) > 0):
all_features.extend(features)
if data_augm:
(rows, cols) = img_arr.shape
mat1 = cv2.getRotationMatrix2D(((cols / 2), (rows / 2)), (- 25), 1)
left_arr = cv2.warpAffine(img_arr, mat1, (cols, rows))
(_, left_feats) = self.get_image_array_features(left_arr, stride, padding)
if (len(left_feats) > 0):
all_features.extend(left_feats)
mat2 = cv2.getRotationMatrix2D(((cols / 2), (rows / 2)), 25, 1)
right_arr = cv2.warpAffine(img_arr, mat2, (cols, rows))
(_, right_feats) = self.get_image_array_features(right_arr, stride, padding)
if (len(right_feats) > 0):
all_features.extend(right_feats)
return all_features | Output the features extracted from all images in one folder. This method is designed only
for the trainers.
Args:
img_dir: The full path to the images to be feature-extracted.
ext_filter: Optional. File name filter.
stride: Optional. The stride of the sliding.
padding: Optional. Whether to pad the image to fit the feature space size or to
discard the extra pixels if padding is False.
data_augm: Optional. Whether to perform data augmentation for the given image. The
only data augmentation approach applied here is to rotate 20 degree clockwise
and rotate 20 degree anti-clockwise so that 1 image becomes 3 images.
Returns:
A matrix (python list), in which each row contains the features of the sampling sliding
window, while the number of rows depends on the number of the images in the given folder
and the image size of the input, and other parameters. | misc/imgreader.py | get_features_all_images | bshao001/DmsMsgRcg | 19 | python | def get_features_all_images(self, img_dir, ext_filter=['.jpg', '.png'], stride=5, padding=True, data_augm=False):
'\n Output the features extracted from all images in one folder. This method is designed only\n for the trainers.\n Args:\n img_dir: The full path to the images to be feature-extracted.\n ext_filter: Optional. File name filter.\n stride: Optional. The stride of the sliding.\n padding: Optional. Whether to pad the image to fit the feature space size or to\n discard the extra pixels if padding is False.\n data_augm: Optional. Whether to perform data augmentation for the given image. The\n only data augmentation approach applied here is to rotate 20 degree clockwise\n and rotate 20 degree anti-clockwise so that 1 image becomes 3 images.\n Returns:\n A matrix (python list), in which each row contains the features of the sampling sliding\n window, while the number of rows depends on the number of the images in the given folder\n and the image size of the input, and other parameters.\n '
all_features = []
for img_file in os.listdir(img_dir):
full_path_name = os.path.join(img_dir, img_file)
if (os.path.isfile(full_path_name) and img_file.lower().endswith(tuple(ext_filter))):
img = cv2.imread(full_path_name)
img_arr = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
(_, features) = self.get_image_array_features(img_arr, stride, padding)
if (len(features) > 0):
all_features.extend(features)
if data_augm:
(rows, cols) = img_arr.shape
mat1 = cv2.getRotationMatrix2D(((cols / 2), (rows / 2)), (- 25), 1)
left_arr = cv2.warpAffine(img_arr, mat1, (cols, rows))
(_, left_feats) = self.get_image_array_features(left_arr, stride, padding)
if (len(left_feats) > 0):
all_features.extend(left_feats)
mat2 = cv2.getRotationMatrix2D(((cols / 2), (rows / 2)), 25, 1)
right_arr = cv2.warpAffine(img_arr, mat2, (cols, rows))
(_, right_feats) = self.get_image_array_features(right_arr, stride, padding)
if (len(right_feats) > 0):
all_features.extend(right_feats)
return all_features | def get_features_all_images(self, img_dir, ext_filter=['.jpg', '.png'], stride=5, padding=True, data_augm=False):
'\n Output the features extracted from all images in one folder. This method is designed only\n for the trainers.\n Args:\n img_dir: The full path to the images to be feature-extracted.\n ext_filter: Optional. File name filter.\n stride: Optional. The stride of the sliding.\n padding: Optional. Whether to pad the image to fit the feature space size or to\n discard the extra pixels if padding is False.\n data_augm: Optional. Whether to perform data augmentation for the given image. The\n only data augmentation approach applied here is to rotate 20 degree clockwise\n and rotate 20 degree anti-clockwise so that 1 image becomes 3 images.\n Returns:\n A matrix (python list), in which each row contains the features of the sampling sliding\n window, while the number of rows depends on the number of the images in the given folder\n and the image size of the input, and other parameters.\n '
all_features = []
for img_file in os.listdir(img_dir):
full_path_name = os.path.join(img_dir, img_file)
if (os.path.isfile(full_path_name) and img_file.lower().endswith(tuple(ext_filter))):
img = cv2.imread(full_path_name)
img_arr = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
(_, features) = self.get_image_array_features(img_arr, stride, padding)
if (len(features) > 0):
all_features.extend(features)
if data_augm:
(rows, cols) = img_arr.shape
mat1 = cv2.getRotationMatrix2D(((cols / 2), (rows / 2)), (- 25), 1)
left_arr = cv2.warpAffine(img_arr, mat1, (cols, rows))
(_, left_feats) = self.get_image_array_features(left_arr, stride, padding)
if (len(left_feats) > 0):
all_features.extend(left_feats)
mat2 = cv2.getRotationMatrix2D(((cols / 2), (rows / 2)), 25, 1)
right_arr = cv2.warpAffine(img_arr, mat2, (cols, rows))
(_, right_feats) = self.get_image_array_features(right_arr, stride, padding)
if (len(right_feats) > 0):
all_features.extend(right_feats)
return all_features<|docstring|>Output the features extracted from all images in one folder. This method is designed only
for the trainers.
Args:
img_dir: The full path to the images to be feature-extracted.
ext_filter: Optional. File name filter.
stride: Optional. The stride of the sliding.
padding: Optional. Whether to pad the image to fit the feature space size or to
discard the extra pixels if padding is False.
data_augm: Optional. Whether to perform data augmentation for the given image. The
only data augmentation approach applied here is to rotate 20 degree clockwise
and rotate 20 degree anti-clockwise so that 1 image becomes 3 images.
Returns:
A matrix (python list), in which each row contains the features of the sampling sliding
window, while the number of rows depends on the number of the images in the given folder
and the image size of the input, and other parameters.<|endoftext|> |
26008085a73bc8fd3209f5f010686830faf426c68fad7ce3df1f052ad411a825 | def get_image_features(self, img_file, stride=5, padding=True):
'\n Take an image file as input, and output an array of image features whose matrix size is\n based on the image size. When no padding, and the image size is smaller than the required\n feature space size (in x or y direction), the image is not checked, and this method will\n return a tuple of two empty lists; When padding is True, and the image size is more than\n 4 pixels smaller than the require feature space size (in x or y direction), the image is\n not checked either. This method can be used by both the trainer and predictor.\n Args:\n img_file: The file name of the image.\n stride: Optional. The stride of the sliding.\n padding: Optional. Whether to pad the image to fit the feature space size or to\n discard the extra pixels if padding is False.\n Returns:\n coordinates: A list of coordinates, each of which contains y and x that are the top\n left corner offsets of the sliding window.\n features: A matrix (python list), in which each row contains the features of the\n sampling sliding window, while the number of rows depends on the image size of\n the input.\n '
img = cv2.imread(img_file)
img_arr = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
return self.get_image_array_features(img_arr, stride, padding) | Take an image file as input, and output an array of image features whose matrix size is
based on the image size. When no padding, and the image size is smaller than the required
feature space size (in x or y direction), the image is not checked, and this method will
return a tuple of two empty lists; When padding is True, and the image size is more than
4 pixels smaller than the require feature space size (in x or y direction), the image is
not checked either. This method can be used by both the trainer and predictor.
Args:
img_file: The file name of the image.
stride: Optional. The stride of the sliding.
padding: Optional. Whether to pad the image to fit the feature space size or to
discard the extra pixels if padding is False.
Returns:
coordinates: A list of coordinates, each of which contains y and x that are the top
left corner offsets of the sliding window.
features: A matrix (python list), in which each row contains the features of the
sampling sliding window, while the number of rows depends on the image size of
the input. | misc/imgreader.py | get_image_features | bshao001/DmsMsgRcg | 19 | python | def get_image_features(self, img_file, stride=5, padding=True):
'\n Take an image file as input, and output an array of image features whose matrix size is\n based on the image size. When no padding, and the image size is smaller than the required\n feature space size (in x or y direction), the image is not checked, and this method will\n return a tuple of two empty lists; When padding is True, and the image size is more than\n 4 pixels smaller than the require feature space size (in x or y direction), the image is\n not checked either. This method can be used by both the trainer and predictor.\n Args:\n img_file: The file name of the image.\n stride: Optional. The stride of the sliding.\n padding: Optional. Whether to pad the image to fit the feature space size or to\n discard the extra pixels if padding is False.\n Returns:\n coordinates: A list of coordinates, each of which contains y and x that are the top\n left corner offsets of the sliding window.\n features: A matrix (python list), in which each row contains the features of the\n sampling sliding window, while the number of rows depends on the image size of\n the input.\n '
img = cv2.imread(img_file)
img_arr = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
return self.get_image_array_features(img_arr, stride, padding) | def get_image_features(self, img_file, stride=5, padding=True):
'\n Take an image file as input, and output an array of image features whose matrix size is\n based on the image size. When no padding, and the image size is smaller than the required\n feature space size (in x or y direction), the image is not checked, and this method will\n return a tuple of two empty lists; When padding is True, and the image size is more than\n 4 pixels smaller than the require feature space size (in x or y direction), the image is\n not checked either. This method can be used by both the trainer and predictor.\n Args:\n img_file: The file name of the image.\n stride: Optional. The stride of the sliding.\n padding: Optional. Whether to pad the image to fit the feature space size or to\n discard the extra pixels if padding is False.\n Returns:\n coordinates: A list of coordinates, each of which contains y and x that are the top\n left corner offsets of the sliding window.\n features: A matrix (python list), in which each row contains the features of the\n sampling sliding window, while the number of rows depends on the image size of\n the input.\n '
img = cv2.imread(img_file)
img_arr = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
return self.get_image_array_features(img_arr, stride, padding)<|docstring|>Take an image file as input, and output an array of image features whose matrix size is
based on the image size. When no padding, and the image size is smaller than the required
feature space size (in x or y direction), the image is not checked, and this method will
return a tuple of two empty lists; When padding is True, and the image size is more than
4 pixels smaller than the require feature space size (in x or y direction), the image is
not checked either. This method can be used by both the trainer and predictor.
Args:
img_file: The file name of the image.
stride: Optional. The stride of the sliding.
padding: Optional. Whether to pad the image to fit the feature space size or to
discard the extra pixels if padding is False.
Returns:
coordinates: A list of coordinates, each of which contains y and x that are the top
left corner offsets of the sliding window.
features: A matrix (python list), in which each row contains the features of the
sampling sliding window, while the number of rows depends on the image size of
the input.<|endoftext|> |
3013104b6a5a2bbb44f32070f29af9faf57c4683ff69edd926b471359c7f98c6 | def get_image_array_features(self, img_arr, stride=5, padding=True):
'\n Take an image file as input, and output an array of image features whose matrix size is\n based on the image size. When no padding, and the image size is smaller than the required\n feature space size (in x or y direction), the image is not checked, and this method will\n return a tuple of two empty lists; When padding is True, and the image size is more than\n 4 pixels smaller than the require feature space size (in x or y direction), the image is\n not checked either. This method can be used by both the trainer and predictor.\n Note that when stride is greater than 5, padding is not supported, and it will be reset\n to False regardless of the input.\n Args:\n img_arr: The image array (a numpy ndarray) read from the image file. It has already\n been changed to gray scale.\n stride: Optional. The stride of the sliding.\n padding: Optional. Whether to pad the image to fit the feature space size or to\n discard the extra pixels if padding is False.\n Returns:\n coordinates: A list of coordinates, each of which contains y and x that are the top\n left corner offsets of the sliding window.\n features: A matrix (python list), in which each row contains the features of the\n sampling sliding window, while the number of rows depends on the image size of\n the input.\n '
assert (stride >= 1)
if (stride > 5):
padding = False
(coordinates, features) = ([], [])
(img_height, img_width) = img_arr.shape
(padding_top, padding_left) = (0, 0)
if (not padding):
if ((img_height < self.feature_height) or (img_width < self.feature_width)):
print('Image with size: {}x{} is too small. Ignored in when no padding.'.format(img_width, img_height))
return (coordinates, features)
else:
if (((img_height + 4) < self.feature_height) or ((img_width + 4) < self.feature_width)):
print('Image with size: {}x{} is too small. Ignored in padding mode.'.format(img_width, img_height))
return (coordinates, features)
if (img_height > self.feature_height):
extra_y = ((img_height - self.feature_height) % stride)
if (extra_y > 0):
padding_y = (stride - extra_y)
else:
padding_y = 0
elif (img_height < self.feature_height):
padding_y = (self.feature_height - img_height)
else:
padding_y = 0
if (img_width > self.feature_width):
extra_x = ((img_width - self.feature_width) % stride)
if (extra_x > 0):
padding_x = (stride - extra_x)
else:
padding_x = 0
elif (img_width < self.feature_width):
padding_x = (self.feature_width - img_width)
else:
padding_x = 0
if ((padding_y > 0) or (padding_x > 0)):
padding_top = math.floor((padding_y / 2))
padding_left = math.floor((padding_x / 2))
(new_y, new_x) = ((img_height + padding_y), (img_width + padding_x))
new_img = np.zeros((new_y, new_x))
new_img[(padding_top:(padding_top + img_height), padding_left:(padding_left + img_width))] = img_arr
img_arr = new_img
(img_height, img_width) = img_arr.shape
for y in range(0, ((img_height - self.feature_height) + 1), stride):
for x in range(0, ((img_width - self.feature_width) + 1), stride):
orig_x = (x - padding_left)
orig_y = (y - padding_top)
coordinates.append((orig_y, orig_x))
this_win = img_arr[(y:(y + self.feature_height), x:(x + self.feature_width))]
features.append(this_win.reshape((- 1)))
return (coordinates, features) | Take an image file as input, and output an array of image features whose matrix size is
based on the image size. When no padding, and the image size is smaller than the required
feature space size (in x or y direction), the image is not checked, and this method will
return a tuple of two empty lists; When padding is True, and the image size is more than
4 pixels smaller than the require feature space size (in x or y direction), the image is
not checked either. This method can be used by both the trainer and predictor.
Note that when stride is greater than 5, padding is not supported, and it will be reset
to False regardless of the input.
Args:
img_arr: The image array (a numpy ndarray) read from the image file. It has already
been changed to gray scale.
stride: Optional. The stride of the sliding.
padding: Optional. Whether to pad the image to fit the feature space size or to
discard the extra pixels if padding is False.
Returns:
coordinates: A list of coordinates, each of which contains y and x that are the top
left corner offsets of the sliding window.
features: A matrix (python list), in which each row contains the features of the
sampling sliding window, while the number of rows depends on the image size of
the input. | misc/imgreader.py | get_image_array_features | bshao001/DmsMsgRcg | 19 | python | def get_image_array_features(self, img_arr, stride=5, padding=True):
'\n Take an image file as input, and output an array of image features whose matrix size is\n based on the image size. When no padding, and the image size is smaller than the required\n feature space size (in x or y direction), the image is not checked, and this method will\n return a tuple of two empty lists; When padding is True, and the image size is more than\n 4 pixels smaller than the require feature space size (in x or y direction), the image is\n not checked either. This method can be used by both the trainer and predictor.\n Note that when stride is greater than 5, padding is not supported, and it will be reset\n to False regardless of the input.\n Args:\n img_arr: The image array (a numpy ndarray) read from the image file. It has already\n been changed to gray scale.\n stride: Optional. The stride of the sliding.\n padding: Optional. Whether to pad the image to fit the feature space size or to\n discard the extra pixels if padding is False.\n Returns:\n coordinates: A list of coordinates, each of which contains y and x that are the top\n left corner offsets of the sliding window.\n features: A matrix (python list), in which each row contains the features of the\n sampling sliding window, while the number of rows depends on the image size of\n the input.\n '
assert (stride >= 1)
if (stride > 5):
padding = False
(coordinates, features) = ([], [])
(img_height, img_width) = img_arr.shape
(padding_top, padding_left) = (0, 0)
if (not padding):
if ((img_height < self.feature_height) or (img_width < self.feature_width)):
print('Image with size: {}x{} is too small. Ignored in when no padding.'.format(img_width, img_height))
return (coordinates, features)
else:
if (((img_height + 4) < self.feature_height) or ((img_width + 4) < self.feature_width)):
print('Image with size: {}x{} is too small. Ignored in padding mode.'.format(img_width, img_height))
return (coordinates, features)
if (img_height > self.feature_height):
extra_y = ((img_height - self.feature_height) % stride)
if (extra_y > 0):
padding_y = (stride - extra_y)
else:
padding_y = 0
elif (img_height < self.feature_height):
padding_y = (self.feature_height - img_height)
else:
padding_y = 0
if (img_width > self.feature_width):
extra_x = ((img_width - self.feature_width) % stride)
if (extra_x > 0):
padding_x = (stride - extra_x)
else:
padding_x = 0
elif (img_width < self.feature_width):
padding_x = (self.feature_width - img_width)
else:
padding_x = 0
if ((padding_y > 0) or (padding_x > 0)):
padding_top = math.floor((padding_y / 2))
padding_left = math.floor((padding_x / 2))
(new_y, new_x) = ((img_height + padding_y), (img_width + padding_x))
new_img = np.zeros((new_y, new_x))
new_img[(padding_top:(padding_top + img_height), padding_left:(padding_left + img_width))] = img_arr
img_arr = new_img
(img_height, img_width) = img_arr.shape
for y in range(0, ((img_height - self.feature_height) + 1), stride):
for x in range(0, ((img_width - self.feature_width) + 1), stride):
orig_x = (x - padding_left)
orig_y = (y - padding_top)
coordinates.append((orig_y, orig_x))
this_win = img_arr[(y:(y + self.feature_height), x:(x + self.feature_width))]
features.append(this_win.reshape((- 1)))
return (coordinates, features) | def get_image_array_features(self, img_arr, stride=5, padding=True):
'\n Take an image file as input, and output an array of image features whose matrix size is\n based on the image size. When no padding, and the image size is smaller than the required\n feature space size (in x or y direction), the image is not checked, and this method will\n return a tuple of two empty lists; When padding is True, and the image size is more than\n 4 pixels smaller than the require feature space size (in x or y direction), the image is\n not checked either. This method can be used by both the trainer and predictor.\n Note that when stride is greater than 5, padding is not supported, and it will be reset\n to False regardless of the input.\n Args:\n img_arr: The image array (a numpy ndarray) read from the image file. It has already\n been changed to gray scale.\n stride: Optional. The stride of the sliding.\n padding: Optional. Whether to pad the image to fit the feature space size or to\n discard the extra pixels if padding is False.\n Returns:\n coordinates: A list of coordinates, each of which contains y and x that are the top\n left corner offsets of the sliding window.\n features: A matrix (python list), in which each row contains the features of the\n sampling sliding window, while the number of rows depends on the image size of\n the input.\n '
assert (stride >= 1)
if (stride > 5):
padding = False
(coordinates, features) = ([], [])
(img_height, img_width) = img_arr.shape
(padding_top, padding_left) = (0, 0)
if (not padding):
if ((img_height < self.feature_height) or (img_width < self.feature_width)):
print('Image with size: {}x{} is too small. Ignored in when no padding.'.format(img_width, img_height))
return (coordinates, features)
else:
if (((img_height + 4) < self.feature_height) or ((img_width + 4) < self.feature_width)):
print('Image with size: {}x{} is too small. Ignored in padding mode.'.format(img_width, img_height))
return (coordinates, features)
if (img_height > self.feature_height):
extra_y = ((img_height - self.feature_height) % stride)
if (extra_y > 0):
padding_y = (stride - extra_y)
else:
padding_y = 0
elif (img_height < self.feature_height):
padding_y = (self.feature_height - img_height)
else:
padding_y = 0
if (img_width > self.feature_width):
extra_x = ((img_width - self.feature_width) % stride)
if (extra_x > 0):
padding_x = (stride - extra_x)
else:
padding_x = 0
elif (img_width < self.feature_width):
padding_x = (self.feature_width - img_width)
else:
padding_x = 0
if ((padding_y > 0) or (padding_x > 0)):
padding_top = math.floor((padding_y / 2))
padding_left = math.floor((padding_x / 2))
(new_y, new_x) = ((img_height + padding_y), (img_width + padding_x))
new_img = np.zeros((new_y, new_x))
new_img[(padding_top:(padding_top + img_height), padding_left:(padding_left + img_width))] = img_arr
img_arr = new_img
(img_height, img_width) = img_arr.shape
for y in range(0, ((img_height - self.feature_height) + 1), stride):
for x in range(0, ((img_width - self.feature_width) + 1), stride):
orig_x = (x - padding_left)
orig_y = (y - padding_top)
coordinates.append((orig_y, orig_x))
this_win = img_arr[(y:(y + self.feature_height), x:(x + self.feature_width))]
features.append(this_win.reshape((- 1)))
return (coordinates, features)<|docstring|>Take an image file as input, and output an array of image features whose matrix size is
based on the image size. When no padding, and the image size is smaller than the required
feature space size (in x or y direction), the image is not checked, and this method will
return a tuple of two empty lists; When padding is True, and the image size is more than
4 pixels smaller than the require feature space size (in x or y direction), the image is
not checked either. This method can be used by both the trainer and predictor.
Note that when stride is greater than 5, padding is not supported, and it will be reset
to False regardless of the input.
Args:
img_arr: The image array (a numpy ndarray) read from the image file. It has already
been changed to gray scale.
stride: Optional. The stride of the sliding.
padding: Optional. Whether to pad the image to fit the feature space size or to
discard the extra pixels if padding is False.
Returns:
coordinates: A list of coordinates, each of which contains y and x that are the top
left corner offsets of the sliding window.
features: A matrix (python list), in which each row contains the features of the
sampling sliding window, while the number of rows depends on the image size of
the input.<|endoftext|> |
24b18eb0b6c624c820d1b3777f2fd9c393bdf870c82a086f517ce793d0bdd357 | def shuffle_data(data, labels):
' Shuffle data and labels.\n Input:\n data: B,N,... numpy array\n label: B,... numpy array\n Return:\n shuffled data, label and shuffle indices\n '
idx = np.arange(len(labels))
np.random.shuffle(idx)
return (data[(idx, ...)], labels[idx], idx) | Shuffle data and labels.
Input:
data: B,N,... numpy array
label: B,... numpy array
Return:
shuffled data, label and shuffle indices | torchpcp/datasets/S3DIS/utils/provider.py | shuffle_data | Obarads/torch_point_cloud | 1 | python | def shuffle_data(data, labels):
' Shuffle data and labels.\n Input:\n data: B,N,... numpy array\n label: B,... numpy array\n Return:\n shuffled data, label and shuffle indices\n '
idx = np.arange(len(labels))
np.random.shuffle(idx)
return (data[(idx, ...)], labels[idx], idx) | def shuffle_data(data, labels):
' Shuffle data and labels.\n Input:\n data: B,N,... numpy array\n label: B,... numpy array\n Return:\n shuffled data, label and shuffle indices\n '
idx = np.arange(len(labels))
np.random.shuffle(idx)
return (data[(idx, ...)], labels[idx], idx)<|docstring|>Shuffle data and labels.
Input:
data: B,N,... numpy array
label: B,... numpy array
Return:
shuffled data, label and shuffle indices<|endoftext|> |
cc4e9e89a324ac40add425d25b2b61c623d1408d98a8472d1a32dbdb6966ec46 | def rotate_point_cloud_ndim(batch_xyzc, degree=None):
' Randomly rotate the point clouds to augument the dataset\n rotation is per shape based along up direction\n Input:\n BxNxC array, original batch of point clouds\n Return:\n BxNxC array, rotated batch of point clouds\n '
batch_data = batch_xyzc[(:, :, :3)]
rotated_data = np.zeros(batch_data.shape, dtype=np.float32)
for k in range(batch_data.shape[0]):
if (degree is not None):
rotation_angle = ((degree / 180) * np.pi)
else:
rotation_angle = ((np.random.uniform() * 2) * np.pi)
cosval = np.cos(rotation_angle)
sinval = np.sin(rotation_angle)
rotation_matrix = np.array([[cosval, (- sinval), 0], [sinval, cosval, 0], [0, 0, 1]])
shape_pc = batch_data[(k, ...)]
rotated_data[(k, ...)] = np.dot(shape_pc.reshape(((- 1), 3)), rotation_matrix)
res = np.concatenate([rotated_data[(:, :, :3)], batch_xyzc[(:, :, 3:)]], axis=(- 1))
return res | Randomly rotate the point clouds to augument the dataset
rotation is per shape based along up direction
Input:
BxNxC array, original batch of point clouds
Return:
BxNxC array, rotated batch of point clouds | torchpcp/datasets/S3DIS/utils/provider.py | rotate_point_cloud_ndim | Obarads/torch_point_cloud | 1 | python | def rotate_point_cloud_ndim(batch_xyzc, degree=None):
' Randomly rotate the point clouds to augument the dataset\n rotation is per shape based along up direction\n Input:\n BxNxC array, original batch of point clouds\n Return:\n BxNxC array, rotated batch of point clouds\n '
batch_data = batch_xyzc[(:, :, :3)]
rotated_data = np.zeros(batch_data.shape, dtype=np.float32)
for k in range(batch_data.shape[0]):
if (degree is not None):
rotation_angle = ((degree / 180) * np.pi)
else:
rotation_angle = ((np.random.uniform() * 2) * np.pi)
cosval = np.cos(rotation_angle)
sinval = np.sin(rotation_angle)
rotation_matrix = np.array([[cosval, (- sinval), 0], [sinval, cosval, 0], [0, 0, 1]])
shape_pc = batch_data[(k, ...)]
rotated_data[(k, ...)] = np.dot(shape_pc.reshape(((- 1), 3)), rotation_matrix)
res = np.concatenate([rotated_data[(:, :, :3)], batch_xyzc[(:, :, 3:)]], axis=(- 1))
return res | def rotate_point_cloud_ndim(batch_xyzc, degree=None):
' Randomly rotate the point clouds to augument the dataset\n rotation is per shape based along up direction\n Input:\n BxNxC array, original batch of point clouds\n Return:\n BxNxC array, rotated batch of point clouds\n '
batch_data = batch_xyzc[(:, :, :3)]
rotated_data = np.zeros(batch_data.shape, dtype=np.float32)
for k in range(batch_data.shape[0]):
if (degree is not None):
rotation_angle = ((degree / 180) * np.pi)
else:
rotation_angle = ((np.random.uniform() * 2) * np.pi)
cosval = np.cos(rotation_angle)
sinval = np.sin(rotation_angle)
rotation_matrix = np.array([[cosval, (- sinval), 0], [sinval, cosval, 0], [0, 0, 1]])
shape_pc = batch_data[(k, ...)]
rotated_data[(k, ...)] = np.dot(shape_pc.reshape(((- 1), 3)), rotation_matrix)
res = np.concatenate([rotated_data[(:, :, :3)], batch_xyzc[(:, :, 3:)]], axis=(- 1))
return res<|docstring|>Randomly rotate the point clouds to augument the dataset
rotation is per shape based along up direction
Input:
BxNxC array, original batch of point clouds
Return:
BxNxC array, rotated batch of point clouds<|endoftext|> |
bc3a9d784919c08a53ebbd0fa3cf512e012cb65e021f05d4c8266f706d0e126e | def rotate_point_cloud(batch_data):
' Randomly rotate the point clouds to augument the dataset\n rotation is per shape based along up direction\n Input:\n BxNx3 array, original batch of point clouds\n Return:\n BxNx3 array, rotated batch of point clouds\n '
rotated_data = np.zeros(batch_data.shape, dtype=np.float32)
for k in range(batch_data.shape[0]):
rotation_angle = ((np.random.uniform() * 2) * np.pi)
cosval = np.cos(rotation_angle)
sinval = np.sin(rotation_angle)
rotation_matrix = np.array([[cosval, 0, sinval], [0, 1, 0], [(- sinval), 0, cosval]])
shape_pc = batch_data[(k, ...)]
rotated_data[(k, ...)] = np.dot(shape_pc.reshape(((- 1), 3)), rotation_matrix)
return rotated_data | Randomly rotate the point clouds to augument the dataset
rotation is per shape based along up direction
Input:
BxNx3 array, original batch of point clouds
Return:
BxNx3 array, rotated batch of point clouds | torchpcp/datasets/S3DIS/utils/provider.py | rotate_point_cloud | Obarads/torch_point_cloud | 1 | python | def rotate_point_cloud(batch_data):
' Randomly rotate the point clouds to augument the dataset\n rotation is per shape based along up direction\n Input:\n BxNx3 array, original batch of point clouds\n Return:\n BxNx3 array, rotated batch of point clouds\n '
rotated_data = np.zeros(batch_data.shape, dtype=np.float32)
for k in range(batch_data.shape[0]):
rotation_angle = ((np.random.uniform() * 2) * np.pi)
cosval = np.cos(rotation_angle)
sinval = np.sin(rotation_angle)
rotation_matrix = np.array([[cosval, 0, sinval], [0, 1, 0], [(- sinval), 0, cosval]])
shape_pc = batch_data[(k, ...)]
rotated_data[(k, ...)] = np.dot(shape_pc.reshape(((- 1), 3)), rotation_matrix)
return rotated_data | def rotate_point_cloud(batch_data):
' Randomly rotate the point clouds to augument the dataset\n rotation is per shape based along up direction\n Input:\n BxNx3 array, original batch of point clouds\n Return:\n BxNx3 array, rotated batch of point clouds\n '
rotated_data = np.zeros(batch_data.shape, dtype=np.float32)
for k in range(batch_data.shape[0]):
rotation_angle = ((np.random.uniform() * 2) * np.pi)
cosval = np.cos(rotation_angle)
sinval = np.sin(rotation_angle)
rotation_matrix = np.array([[cosval, 0, sinval], [0, 1, 0], [(- sinval), 0, cosval]])
shape_pc = batch_data[(k, ...)]
rotated_data[(k, ...)] = np.dot(shape_pc.reshape(((- 1), 3)), rotation_matrix)
return rotated_data<|docstring|>Randomly rotate the point clouds to augument the dataset
rotation is per shape based along up direction
Input:
BxNx3 array, original batch of point clouds
Return:
BxNx3 array, rotated batch of point clouds<|endoftext|> |
260a163552aa67b0009b0a0d44379fd73cf6dbee4faef3a6af339fefac03187c | def rotate_point_cloud_by_angle(batch_data, rotation_angle):
' Rotate the point cloud along up direction with certain angle.\n Input:\n BxNx3 array, original batch of point clouds\n Return:\n BxNx3 array, rotated batch of point clouds\n '
rotated_data = np.zeros(batch_data.shape, dtype=np.float32)
for k in range(batch_data.shape[0]):
cosval = np.cos(rotation_angle)
sinval = np.sin(rotation_angle)
rotation_matrix = np.array([[cosval, 0, sinval], [0, 1, 0], [(- sinval), 0, cosval]])
shape_pc = batch_data[(k, ...)]
rotated_data[(k, ...)] = np.dot(shape_pc.reshape(((- 1), 3)), rotation_matrix)
return rotated_data | Rotate the point cloud along up direction with certain angle.
Input:
BxNx3 array, original batch of point clouds
Return:
BxNx3 array, rotated batch of point clouds | torchpcp/datasets/S3DIS/utils/provider.py | rotate_point_cloud_by_angle | Obarads/torch_point_cloud | 1 | python | def rotate_point_cloud_by_angle(batch_data, rotation_angle):
' Rotate the point cloud along up direction with certain angle.\n Input:\n BxNx3 array, original batch of point clouds\n Return:\n BxNx3 array, rotated batch of point clouds\n '
rotated_data = np.zeros(batch_data.shape, dtype=np.float32)
for k in range(batch_data.shape[0]):
cosval = np.cos(rotation_angle)
sinval = np.sin(rotation_angle)
rotation_matrix = np.array([[cosval, 0, sinval], [0, 1, 0], [(- sinval), 0, cosval]])
shape_pc = batch_data[(k, ...)]
rotated_data[(k, ...)] = np.dot(shape_pc.reshape(((- 1), 3)), rotation_matrix)
return rotated_data | def rotate_point_cloud_by_angle(batch_data, rotation_angle):
' Rotate the point cloud along up direction with certain angle.\n Input:\n BxNx3 array, original batch of point clouds\n Return:\n BxNx3 array, rotated batch of point clouds\n '
rotated_data = np.zeros(batch_data.shape, dtype=np.float32)
for k in range(batch_data.shape[0]):
cosval = np.cos(rotation_angle)
sinval = np.sin(rotation_angle)
rotation_matrix = np.array([[cosval, 0, sinval], [0, 1, 0], [(- sinval), 0, cosval]])
shape_pc = batch_data[(k, ...)]
rotated_data[(k, ...)] = np.dot(shape_pc.reshape(((- 1), 3)), rotation_matrix)
return rotated_data<|docstring|>Rotate the point cloud along up direction with certain angle.
Input:
BxNx3 array, original batch of point clouds
Return:
BxNx3 array, rotated batch of point clouds<|endoftext|> |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.