body_hash
stringlengths 64
64
| body
stringlengths 23
109k
| docstring
stringlengths 1
57k
| path
stringlengths 4
198
| name
stringlengths 1
115
| repository_name
stringlengths 7
111
| repository_stars
float64 0
191k
| lang
stringclasses 1
value | body_without_docstring
stringlengths 14
108k
| unified
stringlengths 45
133k
|
---|---|---|---|---|---|---|---|---|---|
49efe8e2b62956d4e7a80a04ad69832b505d38ef4ac50f446f051acfe410f7d0 | def jitter_point_cloud(batch_data, sigma=0.01, clip=0.05):
' Randomly jitter points. jittering is per point.\n Input:\n BxNx3 array, original batch of point clouds\n Return:\n BxNx3 array, jittered batch of point clouds\n '
(B, N, C) = batch_data.shape
assert (clip > 0)
jittered_data = np.clip((sigma * np.random.randn(B, N, C)), ((- 1) * clip), clip)
jittered_data += batch_data
return jittered_data | Randomly jitter points. jittering is per point.
Input:
BxNx3 array, original batch of point clouds
Return:
BxNx3 array, jittered batch of point clouds | torchpcp/datasets/S3DIS/utils/provider.py | jitter_point_cloud | Obarads/torch_point_cloud | 1 | python | def jitter_point_cloud(batch_data, sigma=0.01, clip=0.05):
' Randomly jitter points. jittering is per point.\n Input:\n BxNx3 array, original batch of point clouds\n Return:\n BxNx3 array, jittered batch of point clouds\n '
(B, N, C) = batch_data.shape
assert (clip > 0)
jittered_data = np.clip((sigma * np.random.randn(B, N, C)), ((- 1) * clip), clip)
jittered_data += batch_data
return jittered_data | def jitter_point_cloud(batch_data, sigma=0.01, clip=0.05):
' Randomly jitter points. jittering is per point.\n Input:\n BxNx3 array, original batch of point clouds\n Return:\n BxNx3 array, jittered batch of point clouds\n '
(B, N, C) = batch_data.shape
assert (clip > 0)
jittered_data = np.clip((sigma * np.random.randn(B, N, C)), ((- 1) * clip), clip)
jittered_data += batch_data
return jittered_data<|docstring|>Randomly jitter points. jittering is per point.
Input:
BxNx3 array, original batch of point clouds
Return:
BxNx3 array, jittered batch of point clouds<|endoftext|> |
caa8426af58ddbd818b02c638dc254846a249ac58a34dbcc925aba581b132721 | def simpledistance(seq_1, seq_2):
'From two binary sequences, compute their distance.'
differences = (1 for (a, b) in zip(seq_1, seq_2) if (a != b))
return sum(differences) | From two binary sequences, compute their distance. | phylogeny/.ipynb_checkpoints/clocklike_reconstruction-checkpoint.py | simpledistance | Ad115/Phylogeny | 2 | python | def simpledistance(seq_1, seq_2):
differences = (1 for (a, b) in zip(seq_1, seq_2) if (a != b))
return sum(differences) | def simpledistance(seq_1, seq_2):
differences = (1 for (a, b) in zip(seq_1, seq_2) if (a != b))
return sum(differences)<|docstring|>From two binary sequences, compute their distance.<|endoftext|> |
f16cbc0ae4cb0c3d584c1ce54ba623e571ac83a9a5fbb127367acac98dffbdc4 | def __getitem__(self, index):
'\n Args:\n index (int): Index\n\n Returns:\n tuple: (image, target) where target is index of the target class.\n '
(img, _) = (self.data[index], int(self.targets[index]))
if (self.train is False):
angle = self.rotations_legit[(index % len(self.rotations_legit))]
else:
angle = random.choice(self.rotations_legit)
angle_deg = ((angle * 180) / np.pi)
img = Image.fromarray(img.numpy(), mode='L')
img_rot = TF.rotate(img, angle_deg)
if (self.transform is not None):
img = self.transform(img)
img_rot = self.transform(img_rot)
return (img_rot, angle, img) | Args:
index (int): Index
Returns:
tuple: (image, target) where target is index of the target class. | src/dataset_utils.py | __getitem__ | kobybibas/CyroEM_rotation_invariant | 2 | python | def __getitem__(self, index):
'\n Args:\n index (int): Index\n\n Returns:\n tuple: (image, target) where target is index of the target class.\n '
(img, _) = (self.data[index], int(self.targets[index]))
if (self.train is False):
angle = self.rotations_legit[(index % len(self.rotations_legit))]
else:
angle = random.choice(self.rotations_legit)
angle_deg = ((angle * 180) / np.pi)
img = Image.fromarray(img.numpy(), mode='L')
img_rot = TF.rotate(img, angle_deg)
if (self.transform is not None):
img = self.transform(img)
img_rot = self.transform(img_rot)
return (img_rot, angle, img) | def __getitem__(self, index):
'\n Args:\n index (int): Index\n\n Returns:\n tuple: (image, target) where target is index of the target class.\n '
(img, _) = (self.data[index], int(self.targets[index]))
if (self.train is False):
angle = self.rotations_legit[(index % len(self.rotations_legit))]
else:
angle = random.choice(self.rotations_legit)
angle_deg = ((angle * 180) / np.pi)
img = Image.fromarray(img.numpy(), mode='L')
img_rot = TF.rotate(img, angle_deg)
if (self.transform is not None):
img = self.transform(img)
img_rot = self.transform(img_rot)
return (img_rot, angle, img)<|docstring|>Args:
index (int): Index
Returns:
tuple: (image, target) where target is index of the target class.<|endoftext|> |
6980fecca44f302f7663d412d7b38fca684c256a5f083a383cefc6d384ab8635 | def __getitem__(self, index):
'\n Args:\n index (int): Index\n\n Returns:\n tuple: (image, target) where target is index of the target class.\n '
(img_rot, angle_deg, img) = (self.imgs_rot[index], self.targets[index], self.imgs[index])
if (angle_deg > 180):
angle_deg = (- (360 - angle_deg))
img = Image.fromarray(img, mode='P')
img_rot = Image.fromarray(img_rot, mode='P')
if (self.transform is not None):
img = self.transform(img)
img_rot = self.transform(img_rot)
angle_rad = ((np.pi * angle_deg) / 180)
return (img_rot, angle_rad, img) | Args:
index (int): Index
Returns:
tuple: (image, target) where target is index of the target class. | src/dataset_utils.py | __getitem__ | kobybibas/CyroEM_rotation_invariant | 2 | python | def __getitem__(self, index):
'\n Args:\n index (int): Index\n\n Returns:\n tuple: (image, target) where target is index of the target class.\n '
(img_rot, angle_deg, img) = (self.imgs_rot[index], self.targets[index], self.imgs[index])
if (angle_deg > 180):
angle_deg = (- (360 - angle_deg))
img = Image.fromarray(img, mode='P')
img_rot = Image.fromarray(img_rot, mode='P')
if (self.transform is not None):
img = self.transform(img)
img_rot = self.transform(img_rot)
angle_rad = ((np.pi * angle_deg) / 180)
return (img_rot, angle_rad, img) | def __getitem__(self, index):
'\n Args:\n index (int): Index\n\n Returns:\n tuple: (image, target) where target is index of the target class.\n '
(img_rot, angle_deg, img) = (self.imgs_rot[index], self.targets[index], self.imgs[index])
if (angle_deg > 180):
angle_deg = (- (360 - angle_deg))
img = Image.fromarray(img, mode='P')
img_rot = Image.fromarray(img_rot, mode='P')
if (self.transform is not None):
img = self.transform(img)
img_rot = self.transform(img_rot)
angle_rad = ((np.pi * angle_deg) / 180)
return (img_rot, angle_rad, img)<|docstring|>Args:
index (int): Index
Returns:
tuple: (image, target) where target is index of the target class.<|endoftext|> |
47617a2ad61e511a4ca2ea90f688811e9ee93430f19ef1ad1fd3972b0ee06347 | def get_test_family():
'Get font family with actual size equal to given size\n '
for family in teek.Font.families():
font = teek.Font((family, 42))
if (font.size == 42):
return family
return teek.Font.families()[0] | Get font family with actual size equal to given size | tests/test_font.py | get_test_family | codetent/teek | 23 | python | def get_test_family():
'\n '
for family in teek.Font.families():
font = teek.Font((family, 42))
if (font.size == 42):
return family
return teek.Font.families()[0] | def get_test_family():
'\n '
for family in teek.Font.families():
font = teek.Font((family, 42))
if (font.size == 42):
return family
return teek.Font.families()[0]<|docstring|>Get font family with actual size equal to given size<|endoftext|> |
c8de05a95c713a3bdc965f028d1a934abdf02a2577fbf179da8a05891626ce00 | @classmethod
def import_handlers(cls, directory):
'A text file named "manifest" can be placed in the dir we are importing the handlers from.\n It can contain the list of the files to import, the bot will import only these\n modules as ordered in the manifest file.\n Inline comments are allowed, they must start by #'
paths_to_import = list()
manifest_modules = cls._load_manifest(os.path.join(directory, 'manifest'))
if manifest_modules:
target_dir_path = os.path.splitext(directory)[0]
target_dir_import_path_list = list()
while target_dir_path:
(target_dir_path, tail) = os.path.split(target_dir_path)
target_dir_import_path_list.insert(0, tail)
base_import_path = '.'.join(target_dir_import_path_list)
for module in manifest_modules:
import_path = (base_import_path + module)
logger.debug('importing module: %s', import_path)
paths_to_import.append(import_path)
else:
for path in sorted(Path(directory).rglob('*.py')):
file_path = os.path.splitext(str(path))[0]
import_path = []
while file_path:
(file_path, tail) = os.path.split(file_path)
import_path.insert(0, tail)
import_path = '.'.join(import_path)
paths_to_import.append(import_path)
for import_path in paths_to_import:
logger.debug('importing module: %s', import_path)
importlib.import_module(import_path) | A text file named "manifest" can be placed in the dir we are importing the handlers from.
It can contain the list of the files to import, the bot will import only these
modules as ordered in the manifest file.
Inline comments are allowed, they must start by # | bot/bot.py | import_handlers | cheriimoya/sticker-thief | 0 | python | @classmethod
def import_handlers(cls, directory):
'A text file named "manifest" can be placed in the dir we are importing the handlers from.\n It can contain the list of the files to import, the bot will import only these\n modules as ordered in the manifest file.\n Inline comments are allowed, they must start by #'
paths_to_import = list()
manifest_modules = cls._load_manifest(os.path.join(directory, 'manifest'))
if manifest_modules:
target_dir_path = os.path.splitext(directory)[0]
target_dir_import_path_list = list()
while target_dir_path:
(target_dir_path, tail) = os.path.split(target_dir_path)
target_dir_import_path_list.insert(0, tail)
base_import_path = '.'.join(target_dir_import_path_list)
for module in manifest_modules:
import_path = (base_import_path + module)
logger.debug('importing module: %s', import_path)
paths_to_import.append(import_path)
else:
for path in sorted(Path(directory).rglob('*.py')):
file_path = os.path.splitext(str(path))[0]
import_path = []
while file_path:
(file_path, tail) = os.path.split(file_path)
import_path.insert(0, tail)
import_path = '.'.join(import_path)
paths_to_import.append(import_path)
for import_path in paths_to_import:
logger.debug('importing module: %s', import_path)
importlib.import_module(import_path) | @classmethod
def import_handlers(cls, directory):
'A text file named "manifest" can be placed in the dir we are importing the handlers from.\n It can contain the list of the files to import, the bot will import only these\n modules as ordered in the manifest file.\n Inline comments are allowed, they must start by #'
paths_to_import = list()
manifest_modules = cls._load_manifest(os.path.join(directory, 'manifest'))
if manifest_modules:
target_dir_path = os.path.splitext(directory)[0]
target_dir_import_path_list = list()
while target_dir_path:
(target_dir_path, tail) = os.path.split(target_dir_path)
target_dir_import_path_list.insert(0, tail)
base_import_path = '.'.join(target_dir_import_path_list)
for module in manifest_modules:
import_path = (base_import_path + module)
logger.debug('importing module: %s', import_path)
paths_to_import.append(import_path)
else:
for path in sorted(Path(directory).rglob('*.py')):
file_path = os.path.splitext(str(path))[0]
import_path = []
while file_path:
(file_path, tail) = os.path.split(file_path)
import_path.insert(0, tail)
import_path = '.'.join(import_path)
paths_to_import.append(import_path)
for import_path in paths_to_import:
logger.debug('importing module: %s', import_path)
importlib.import_module(import_path)<|docstring|>A text file named "manifest" can be placed in the dir we are importing the handlers from.
It can contain the list of the files to import, the bot will import only these
modules as ordered in the manifest file.
Inline comments are allowed, they must start by #<|endoftext|> |
ad94a10c735d1ec4cf351cddad7c75a7d19c6551570fb3554e0193a8272bbf14 | def proc_test_match(self, status, entry):
'\n @status\n @entry\n '
self.amend_test_match(entry)
return self.status | @status
@entry | stage_check/stage_check/OutputDeviceState.py | proc_test_match | 128technology/stage_check | 2 | python | def proc_test_match(self, status, entry):
'\n @status\n @entry\n '
self.amend_test_match(entry)
return self.status | def proc_test_match(self, status, entry):
'\n @status\n @entry\n '
self.amend_test_match(entry)
return self.status<|docstring|>@status
@entry<|endoftext|> |
32c58283ffe95d94277b011d1710713f8c63b50ba6f728762a4c957889a2374f | def amend_test_match(self, entry):
'\n @status\n @entry\n '
return True | @status
@entry | stage_check/stage_check/OutputDeviceState.py | amend_test_match | 128technology/stage_check | 2 | python | def amend_test_match(self, entry):
'\n @status\n @entry\n '
return True | def amend_test_match(self, entry):
'\n @status\n @entry\n '
return True<|docstring|>@status
@entry<|endoftext|> |
4cfa23c6fd2b8c4b3149f8152da72b25b9112eeae1b744e995cabad6d3ffa8e2 | def proc_test_fail_result(self, count):
'\n @count\n '
self.status = Output.Status.FAIL
self.amend_test_fail_result(count)
return self.status | @count | stage_check/stage_check/OutputDeviceState.py | proc_test_fail_result | 128technology/stage_check | 2 | python | def proc_test_fail_result(self, count):
'\n \n '
self.status = Output.Status.FAIL
self.amend_test_fail_result(count)
return self.status | def proc_test_fail_result(self, count):
'\n \n '
self.status = Output.Status.FAIL
self.amend_test_fail_result(count)
return self.status<|docstring|>@count<|endoftext|> |
05e9bfa51dd4182466ca1e88e60fd7dd6e0b87159a52d7f5714d8319c31ea508 | def amend_test_fail_result(self, count):
'\n @count\n '
return True | @count | stage_check/stage_check/OutputDeviceState.py | amend_test_fail_result | 128technology/stage_check | 2 | python | def amend_test_fail_result(self, count):
'\n \n '
return True | def amend_test_fail_result(self, count):
'\n \n '
return True<|docstring|>@count<|endoftext|> |
a7d7e0999c01a32caee8dad61f78cb19d1eccd6f5e276f5496fe3b54c422a767 | def proc_test_warn_result(self, count):
'\n @count\n '
self.status = Output.Status.WARN
self.amend_test_warn_result(count)
return self.status | @count | stage_check/stage_check/OutputDeviceState.py | proc_test_warn_result | 128technology/stage_check | 2 | python | def proc_test_warn_result(self, count):
'\n \n '
self.status = Output.Status.WARN
self.amend_test_warn_result(count)
return self.status | def proc_test_warn_result(self, count):
'\n \n '
self.status = Output.Status.WARN
self.amend_test_warn_result(count)
return self.status<|docstring|>@count<|endoftext|> |
e6b4eb411503e050469424cbe667e161cff3a860402c3c6a67594be21ef732e2 | def amend_test_warn_result(self, count):
'\n @count\n '
return True | @count | stage_check/stage_check/OutputDeviceState.py | amend_test_warn_result | 128technology/stage_check | 2 | python | def amend_test_warn_result(self, count):
'\n \n '
return True | def amend_test_warn_result(self, count):
'\n \n '
return True<|docstring|>@count<|endoftext|> |
c8a3be1d99070ee5d140c5ae69a23add2dadbca1d432a8cc00d13c3e43e41d03 | def test_login_required(self):
'Test that login is required for retrieving tags'
res = self.client.get(TAGS_URL)
self.assertEqual(res.status_code, status.HTTP_401_UNAUTHORIZED) | Test that login is required for retrieving tags | app/recipe/tests/test_tags_api.py | test_login_required | ViniciusTaborda/recipe-app-api | 1 | python | def test_login_required(self):
res = self.client.get(TAGS_URL)
self.assertEqual(res.status_code, status.HTTP_401_UNAUTHORIZED) | def test_login_required(self):
res = self.client.get(TAGS_URL)
self.assertEqual(res.status_code, status.HTTP_401_UNAUTHORIZED)<|docstring|>Test that login is required for retrieving tags<|endoftext|> |
7dec0d303d6c808bd6abbb3c61989a2aa79cf2e9eedf4df938467843e2f56b0c | def test_retrieve_tags(self):
'Test retrieving tags'
Tag.objects.create(user=self.user, name='Vegan')
Tag.objects.create(user=self.user, name='Dessert')
res = self.client.get(TAGS_URL)
tags = Tag.objects.all().order_by('-name')
serializer = TagSerializer(tags, many=True)
self.assertEqual(res.status_code, status.HTTP_200_OK)
self.assertEqual(res.data, serializer.data) | Test retrieving tags | app/recipe/tests/test_tags_api.py | test_retrieve_tags | ViniciusTaborda/recipe-app-api | 1 | python | def test_retrieve_tags(self):
Tag.objects.create(user=self.user, name='Vegan')
Tag.objects.create(user=self.user, name='Dessert')
res = self.client.get(TAGS_URL)
tags = Tag.objects.all().order_by('-name')
serializer = TagSerializer(tags, many=True)
self.assertEqual(res.status_code, status.HTTP_200_OK)
self.assertEqual(res.data, serializer.data) | def test_retrieve_tags(self):
Tag.objects.create(user=self.user, name='Vegan')
Tag.objects.create(user=self.user, name='Dessert')
res = self.client.get(TAGS_URL)
tags = Tag.objects.all().order_by('-name')
serializer = TagSerializer(tags, many=True)
self.assertEqual(res.status_code, status.HTTP_200_OK)
self.assertEqual(res.data, serializer.data)<|docstring|>Test retrieving tags<|endoftext|> |
22e7c2d82547f62c7d08901e13b55b18a50073b2a1ed565b0433140e2f1bb77c | def test_tags_limited_to_user(self):
'Test that tags returned are for the authenticated user'
user2 = get_user_model().objects.create_user('[email protected]', 'testpass')
Tag.objects.create(user=user2, name='Fruity')
tag = Tag.objects.create(user=self.user, name='Comfort Food')
res = self.client.get(TAGS_URL)
self.assertEqual(res.status_code, status.HTTP_200_OK)
self.assertEqual(len(res.data), 1)
self.assertEqual(res.data[0]['name'], tag.name) | Test that tags returned are for the authenticated user | app/recipe/tests/test_tags_api.py | test_tags_limited_to_user | ViniciusTaborda/recipe-app-api | 1 | python | def test_tags_limited_to_user(self):
user2 = get_user_model().objects.create_user('[email protected]', 'testpass')
Tag.objects.create(user=user2, name='Fruity')
tag = Tag.objects.create(user=self.user, name='Comfort Food')
res = self.client.get(TAGS_URL)
self.assertEqual(res.status_code, status.HTTP_200_OK)
self.assertEqual(len(res.data), 1)
self.assertEqual(res.data[0]['name'], tag.name) | def test_tags_limited_to_user(self):
user2 = get_user_model().objects.create_user('[email protected]', 'testpass')
Tag.objects.create(user=user2, name='Fruity')
tag = Tag.objects.create(user=self.user, name='Comfort Food')
res = self.client.get(TAGS_URL)
self.assertEqual(res.status_code, status.HTTP_200_OK)
self.assertEqual(len(res.data), 1)
self.assertEqual(res.data[0]['name'], tag.name)<|docstring|>Test that tags returned are for the authenticated user<|endoftext|> |
726b888001375bce3e2cb87f9fadef5a077a264cbf1451f90aeabd487f476f46 | def handle_nan_entries(data, mean_cols=[], median_cols=[], mode_cols=[], n_cols=[], skip_cols=[]):
'\n Generic handling strategy for Nan entries in columns with 3 strategies\n fill with mean, \n fill with mode\n fill with "N"\n By default if no columns are provided in any of the options the following is assumed\n All numericals are filled with mean\n All categoricals and dates are filled with Mode\n All strings are filled with N\n\n skip_cols is for columns you want to manually handle with a different strategy and so should not be messed with in this run\n returns None. Is an inplace function\n '
l = _make_strategy_lists(data, mean_cols, median_cols, mode_cols, n_cols, skip_cols)
for (i, strategy) in enumerate(l):
for col in strategy:
val = None
if (i == 0):
val = data[col].mean()
elif (i == 1):
val = data[col].median()
elif (i == 2):
val = data[col].mode()
elif (i == 3):
val = 'N'
if (i == 4):
continue
else:
data[col].fillna(val, inplace=True)
return | Generic handling strategy for Nan entries in columns with 3 strategies
fill with mean,
fill with mode
fill with "N"
By default if no columns are provided in any of the options the following is assumed
All numericals are filled with mean
All categoricals and dates are filled with Mode
All strings are filled with N
skip_cols is for columns you want to manually handle with a different strategy and so should not be messed with in this run
returns None. Is an inplace function | KagglePipeline/preprocessing/cleanup/NanCleanup.py | handle_nan_entries | DhananjayAshok/KagglePipeline | 0 | python | def handle_nan_entries(data, mean_cols=[], median_cols=[], mode_cols=[], n_cols=[], skip_cols=[]):
'\n Generic handling strategy for Nan entries in columns with 3 strategies\n fill with mean, \n fill with mode\n fill with "N"\n By default if no columns are provided in any of the options the following is assumed\n All numericals are filled with mean\n All categoricals and dates are filled with Mode\n All strings are filled with N\n\n skip_cols is for columns you want to manually handle with a different strategy and so should not be messed with in this run\n returns None. Is an inplace function\n '
l = _make_strategy_lists(data, mean_cols, median_cols, mode_cols, n_cols, skip_cols)
for (i, strategy) in enumerate(l):
for col in strategy:
val = None
if (i == 0):
val = data[col].mean()
elif (i == 1):
val = data[col].median()
elif (i == 2):
val = data[col].mode()
elif (i == 3):
val = 'N'
if (i == 4):
continue
else:
data[col].fillna(val, inplace=True)
return | def handle_nan_entries(data, mean_cols=[], median_cols=[], mode_cols=[], n_cols=[], skip_cols=[]):
'\n Generic handling strategy for Nan entries in columns with 3 strategies\n fill with mean, \n fill with mode\n fill with "N"\n By default if no columns are provided in any of the options the following is assumed\n All numericals are filled with mean\n All categoricals and dates are filled with Mode\n All strings are filled with N\n\n skip_cols is for columns you want to manually handle with a different strategy and so should not be messed with in this run\n returns None. Is an inplace function\n '
l = _make_strategy_lists(data, mean_cols, median_cols, mode_cols, n_cols, skip_cols)
for (i, strategy) in enumerate(l):
for col in strategy:
val = None
if (i == 0):
val = data[col].mean()
elif (i == 1):
val = data[col].median()
elif (i == 2):
val = data[col].mode()
elif (i == 3):
val = 'N'
if (i == 4):
continue
else:
data[col].fillna(val, inplace=True)
return<|docstring|>Generic handling strategy for Nan entries in columns with 3 strategies
fill with mean,
fill with mode
fill with "N"
By default if no columns are provided in any of the options the following is assumed
All numericals are filled with mean
All categoricals and dates are filled with Mode
All strings are filled with N
skip_cols is for columns you want to manually handle with a different strategy and so should not be messed with in this run
returns None. Is an inplace function<|endoftext|> |
79072a3d33efd08916a38354df9f6866ad4fea44fa10306940c20035e061042e | def handle_test_nan_entries(train, test, mean_cols=[], median_cols=[], mode_cols=[], n_cols=[], skip_cols=[]):
'\n Same as handle nan entries but meant for testing data, this will use the mode/mean of the training data to fill testing data to ensure integrity of statistics\n Do this step before you encode the training data in order to ensure that the guessing of numericals, categoricals, strings and dates works\n\n Generic handling strategy for Nan entries in columns with 3 strategies\n fill with mean, \n fill with mode\n fill with "N"\n By default if no columns are provided in any of the options the following is assumed\n All numericals are filled with mean\n All categoricals and dates are filled with Mode\n All strings are filled with N\n\n skip_cols is for columns you want to manually handle with a different strategy and so should not be messed with in this run\n returns None. Is an inplace function\n '
l = _make_strategy_lists(train, mean_cols, median_cols, mode_cols, n_cols, skip_cols)
for (i, strategy) in enumerate(l):
for col in strategy:
val = None
if (i == 0):
val = train[col].mean()
elif (i == 1):
val = train[col].median()
elif (i == 2):
val = train[col].mode()
elif (i == 3):
val = 'N'
test[col].fillna(val, inplace=True)
return | Same as handle nan entries but meant for testing data, this will use the mode/mean of the training data to fill testing data to ensure integrity of statistics
Do this step before you encode the training data in order to ensure that the guessing of numericals, categoricals, strings and dates works
Generic handling strategy for Nan entries in columns with 3 strategies
fill with mean,
fill with mode
fill with "N"
By default if no columns are provided in any of the options the following is assumed
All numericals are filled with mean
All categoricals and dates are filled with Mode
All strings are filled with N
skip_cols is for columns you want to manually handle with a different strategy and so should not be messed with in this run
returns None. Is an inplace function | KagglePipeline/preprocessing/cleanup/NanCleanup.py | handle_test_nan_entries | DhananjayAshok/KagglePipeline | 0 | python | def handle_test_nan_entries(train, test, mean_cols=[], median_cols=[], mode_cols=[], n_cols=[], skip_cols=[]):
'\n Same as handle nan entries but meant for testing data, this will use the mode/mean of the training data to fill testing data to ensure integrity of statistics\n Do this step before you encode the training data in order to ensure that the guessing of numericals, categoricals, strings and dates works\n\n Generic handling strategy for Nan entries in columns with 3 strategies\n fill with mean, \n fill with mode\n fill with "N"\n By default if no columns are provided in any of the options the following is assumed\n All numericals are filled with mean\n All categoricals and dates are filled with Mode\n All strings are filled with N\n\n skip_cols is for columns you want to manually handle with a different strategy and so should not be messed with in this run\n returns None. Is an inplace function\n '
l = _make_strategy_lists(train, mean_cols, median_cols, mode_cols, n_cols, skip_cols)
for (i, strategy) in enumerate(l):
for col in strategy:
val = None
if (i == 0):
val = train[col].mean()
elif (i == 1):
val = train[col].median()
elif (i == 2):
val = train[col].mode()
elif (i == 3):
val = 'N'
test[col].fillna(val, inplace=True)
return | def handle_test_nan_entries(train, test, mean_cols=[], median_cols=[], mode_cols=[], n_cols=[], skip_cols=[]):
'\n Same as handle nan entries but meant for testing data, this will use the mode/mean of the training data to fill testing data to ensure integrity of statistics\n Do this step before you encode the training data in order to ensure that the guessing of numericals, categoricals, strings and dates works\n\n Generic handling strategy for Nan entries in columns with 3 strategies\n fill with mean, \n fill with mode\n fill with "N"\n By default if no columns are provided in any of the options the following is assumed\n All numericals are filled with mean\n All categoricals and dates are filled with Mode\n All strings are filled with N\n\n skip_cols is for columns you want to manually handle with a different strategy and so should not be messed with in this run\n returns None. Is an inplace function\n '
l = _make_strategy_lists(train, mean_cols, median_cols, mode_cols, n_cols, skip_cols)
for (i, strategy) in enumerate(l):
for col in strategy:
val = None
if (i == 0):
val = train[col].mean()
elif (i == 1):
val = train[col].median()
elif (i == 2):
val = train[col].mode()
elif (i == 3):
val = 'N'
test[col].fillna(val, inplace=True)
return<|docstring|>Same as handle nan entries but meant for testing data, this will use the mode/mean of the training data to fill testing data to ensure integrity of statistics
Do this step before you encode the training data in order to ensure that the guessing of numericals, categoricals, strings and dates works
Generic handling strategy for Nan entries in columns with 3 strategies
fill with mean,
fill with mode
fill with "N"
By default if no columns are provided in any of the options the following is assumed
All numericals are filled with mean
All categoricals and dates are filled with Mode
All strings are filled with N
skip_cols is for columns you want to manually handle with a different strategy and so should not be messed with in this run
returns None. Is an inplace function<|endoftext|> |
adf6e74fca8358ff762af3926623a6d6c5eec5c2aa69abcaa673d5fb000cde86 | def categorical_fillna(data, col, value='N'):
'\n Fills a categorical features Nan Values with the provided value, returns a new column. \n The pandas function sometimes does not work\n '
def helper(x):
if isinstance(x, float):
return value
return x
return data[col].apply(helper) | Fills a categorical features Nan Values with the provided value, returns a new column.
The pandas function sometimes does not work | KagglePipeline/preprocessing/cleanup/NanCleanup.py | categorical_fillna | DhananjayAshok/KagglePipeline | 0 | python | def categorical_fillna(data, col, value='N'):
'\n Fills a categorical features Nan Values with the provided value, returns a new column. \n The pandas function sometimes does not work\n '
def helper(x):
if isinstance(x, float):
return value
return x
return data[col].apply(helper) | def categorical_fillna(data, col, value='N'):
'\n Fills a categorical features Nan Values with the provided value, returns a new column. \n The pandas function sometimes does not work\n '
def helper(x):
if isinstance(x, float):
return value
return x
return data[col].apply(helper)<|docstring|>Fills a categorical features Nan Values with the provided value, returns a new column.
The pandas function sometimes does not work<|endoftext|> |
2b3fdd9873cf1c0a00b205eee0112e55467164daddf34624212c2b9542b905f1 | def drop_nan_columns(data, ratio=1.0):
"\n The ratio parameter (0.0<=ratio<1.0) lets you drop columns which has 'ratio'% of nans. (i.e if ratio is 0.8 then all columns with 80% or more entries being nan get dropped)\n Returns a new dataframe\n "
col_list = []
na_df = data.isna()
total_size = na_df.shape[0]
for col in na_df:
a = na_df[col].value_counts()
if (False not in a.keys()):
col_list.append(col)
elif (True not in a.keys()):
pass
elif ((a[True] / total_size) >= ratio):
col_list.append(col)
print(f'{len(col_list)} columns dropped- {col_list}')
return data.drop(col_list, axis=1) | The ratio parameter (0.0<=ratio<1.0) lets you drop columns which has 'ratio'% of nans. (i.e if ratio is 0.8 then all columns with 80% or more entries being nan get dropped)
Returns a new dataframe | KagglePipeline/preprocessing/cleanup/NanCleanup.py | drop_nan_columns | DhananjayAshok/KagglePipeline | 0 | python | def drop_nan_columns(data, ratio=1.0):
"\n The ratio parameter (0.0<=ratio<1.0) lets you drop columns which has 'ratio'% of nans. (i.e if ratio is 0.8 then all columns with 80% or more entries being nan get dropped)\n Returns a new dataframe\n "
col_list = []
na_df = data.isna()
total_size = na_df.shape[0]
for col in na_df:
a = na_df[col].value_counts()
if (False not in a.keys()):
col_list.append(col)
elif (True not in a.keys()):
pass
elif ((a[True] / total_size) >= ratio):
col_list.append(col)
print(f'{len(col_list)} columns dropped- {col_list}')
return data.drop(col_list, axis=1) | def drop_nan_columns(data, ratio=1.0):
"\n The ratio parameter (0.0<=ratio<1.0) lets you drop columns which has 'ratio'% of nans. (i.e if ratio is 0.8 then all columns with 80% or more entries being nan get dropped)\n Returns a new dataframe\n "
col_list = []
na_df = data.isna()
total_size = na_df.shape[0]
for col in na_df:
a = na_df[col].value_counts()
if (False not in a.keys()):
col_list.append(col)
elif (True not in a.keys()):
pass
elif ((a[True] / total_size) >= ratio):
col_list.append(col)
print(f'{len(col_list)} columns dropped- {col_list}')
return data.drop(col_list, axis=1)<|docstring|>The ratio parameter (0.0<=ratio<1.0) lets you drop columns which has 'ratio'% of nans. (i.e if ratio is 0.8 then all columns with 80% or more entries being nan get dropped)
Returns a new dataframe<|endoftext|> |
6a5e1c76c77b208da1abcb175b89875131ffa360d79e7b9ba9d54bbe705c30c6 | def xgb_fillna(train, test, col_to_fill, classification, target_col, real_test=None):
'\n Uses an XGB Regressor or Classifier to populate the Nan values of the dataframe.\n Returns a list with train, test, real_test new dataframes with the Nans filled. or if real_test is none just returns train and test\n\n -> Do this before splitting\n -> Every other column in the dataframes should be ready to put into an XGBoost Model\n -> If the column to fill is a classification / categorical then you must ensure that the non NaN values are numerically encoded and the NaN values are NaN (Not some constant N etc)\n -> Assumes there are more than 2 columns in data and also assumes that the ordering of columns is the same in train, test and real_test\n -> \n '
import pandas as pd
l = [train, test]
if (real_test is not None):
l.append(real_test)
for d in range(len(l)):
l[d] = l[d][_col_list_adapter(l[d].columns.tolist(), col_to_fill, target_col)]
model = None
if classification:
from xgboost import XGBClassifier
model = XGBClassifier()
else:
from xgboost import XGBRegressor
model = XGBRegressor()
temptotal = pd.concat(l, join='inner')
temptrain = temptotal.loc[temptotal[col_to_fill].notnull()]
y = temptrain[col_to_fill]
x = temptrain.drop(col_to_fill, axis=1)
model.fit(x, y)
for d in range(len(l)):
nans = l[d].loc[l[d][col_to_fill].isnull()]
nanx = nans.drop(col_to_fill, axis=1)
try:
nanx = nanx.drop(target_col, axis=1)
except:
pass
l[d].loc[(l[d][col_to_fill].isnull(), col_to_fill)] = model.predict(nanx)
return l | Uses an XGB Regressor or Classifier to populate the Nan values of the dataframe.
Returns a list with train, test, real_test new dataframes with the Nans filled. or if real_test is none just returns train and test
-> Do this before splitting
-> Every other column in the dataframes should be ready to put into an XGBoost Model
-> If the column to fill is a classification / categorical then you must ensure that the non NaN values are numerically encoded and the NaN values are NaN (Not some constant N etc)
-> Assumes there are more than 2 columns in data and also assumes that the ordering of columns is the same in train, test and real_test
-> | KagglePipeline/preprocessing/cleanup/NanCleanup.py | xgb_fillna | DhananjayAshok/KagglePipeline | 0 | python | def xgb_fillna(train, test, col_to_fill, classification, target_col, real_test=None):
'\n Uses an XGB Regressor or Classifier to populate the Nan values of the dataframe.\n Returns a list with train, test, real_test new dataframes with the Nans filled. or if real_test is none just returns train and test\n\n -> Do this before splitting\n -> Every other column in the dataframes should be ready to put into an XGBoost Model\n -> If the column to fill is a classification / categorical then you must ensure that the non NaN values are numerically encoded and the NaN values are NaN (Not some constant N etc)\n -> Assumes there are more than 2 columns in data and also assumes that the ordering of columns is the same in train, test and real_test\n -> \n '
import pandas as pd
l = [train, test]
if (real_test is not None):
l.append(real_test)
for d in range(len(l)):
l[d] = l[d][_col_list_adapter(l[d].columns.tolist(), col_to_fill, target_col)]
model = None
if classification:
from xgboost import XGBClassifier
model = XGBClassifier()
else:
from xgboost import XGBRegressor
model = XGBRegressor()
temptotal = pd.concat(l, join='inner')
temptrain = temptotal.loc[temptotal[col_to_fill].notnull()]
y = temptrain[col_to_fill]
x = temptrain.drop(col_to_fill, axis=1)
model.fit(x, y)
for d in range(len(l)):
nans = l[d].loc[l[d][col_to_fill].isnull()]
nanx = nans.drop(col_to_fill, axis=1)
try:
nanx = nanx.drop(target_col, axis=1)
except:
pass
l[d].loc[(l[d][col_to_fill].isnull(), col_to_fill)] = model.predict(nanx)
return l | def xgb_fillna(train, test, col_to_fill, classification, target_col, real_test=None):
'\n Uses an XGB Regressor or Classifier to populate the Nan values of the dataframe.\n Returns a list with train, test, real_test new dataframes with the Nans filled. or if real_test is none just returns train and test\n\n -> Do this before splitting\n -> Every other column in the dataframes should be ready to put into an XGBoost Model\n -> If the column to fill is a classification / categorical then you must ensure that the non NaN values are numerically encoded and the NaN values are NaN (Not some constant N etc)\n -> Assumes there are more than 2 columns in data and also assumes that the ordering of columns is the same in train, test and real_test\n -> \n '
import pandas as pd
l = [train, test]
if (real_test is not None):
l.append(real_test)
for d in range(len(l)):
l[d] = l[d][_col_list_adapter(l[d].columns.tolist(), col_to_fill, target_col)]
model = None
if classification:
from xgboost import XGBClassifier
model = XGBClassifier()
else:
from xgboost import XGBRegressor
model = XGBRegressor()
temptotal = pd.concat(l, join='inner')
temptrain = temptotal.loc[temptotal[col_to_fill].notnull()]
y = temptrain[col_to_fill]
x = temptrain.drop(col_to_fill, axis=1)
model.fit(x, y)
for d in range(len(l)):
nans = l[d].loc[l[d][col_to_fill].isnull()]
nanx = nans.drop(col_to_fill, axis=1)
try:
nanx = nanx.drop(target_col, axis=1)
except:
pass
l[d].loc[(l[d][col_to_fill].isnull(), col_to_fill)] = model.predict(nanx)
return l<|docstring|>Uses an XGB Regressor or Classifier to populate the Nan values of the dataframe.
Returns a list with train, test, real_test new dataframes with the Nans filled. or if real_test is none just returns train and test
-> Do this before splitting
-> Every other column in the dataframes should be ready to put into an XGBoost Model
-> If the column to fill is a classification / categorical then you must ensure that the non NaN values are numerically encoded and the NaN values are NaN (Not some constant N etc)
-> Assumes there are more than 2 columns in data and also assumes that the ordering of columns is the same in train, test and real_test
-><|endoftext|> |
200fd8cc68612a9995e38dec712eee4fddc199ac4d5cdad98b6f460dd46bdccd | @pytest.fixture(scope='session')
def ip_file(tmpdir_factory) -> Path:
'\n Generates the temporary ip file\n '
tmp_file = tmpdir_factory.mktemp(DEFAULT_DIR).join(TEST_IP_FILE)
tmp_file.write('8.8.8.8')
return tmp_file | Generates the temporary ip file | src/tests/test_ui.py | ip_file | t-a-y-l-o-r/checkip | 0 | python | @pytest.fixture(scope='session')
def ip_file(tmpdir_factory) -> Path:
'\n \n '
tmp_file = tmpdir_factory.mktemp(DEFAULT_DIR).join(TEST_IP_FILE)
tmp_file.write('8.8.8.8')
return tmp_file | @pytest.fixture(scope='session')
def ip_file(tmpdir_factory) -> Path:
'\n \n '
tmp_file = tmpdir_factory.mktemp(DEFAULT_DIR).join(TEST_IP_FILE)
tmp_file.write('8.8.8.8')
return tmp_file<|docstring|>Generates the temporary ip file<|endoftext|> |
8211d31ea2aa96f98409ada77d7e2336dafb062f5a4859e31bf2c0eedfc64fd0 | @pytest.fixture
def ui_obj() -> ui.UI:
'\n A simple ui test object\n '
conf = ui.UI_Config(testing=True, args=['-ip', '8.8.8.8'])
ui_obj = ui.UI(conf)
return ui_obj | A simple ui test object | src/tests/test_ui.py | ui_obj | t-a-y-l-o-r/checkip | 0 | python | @pytest.fixture
def ui_obj() -> ui.UI:
'\n \n '
conf = ui.UI_Config(testing=True, args=['-ip', '8.8.8.8'])
ui_obj = ui.UI(conf)
return ui_obj | @pytest.fixture
def ui_obj() -> ui.UI:
'\n \n '
conf = ui.UI_Config(testing=True, args=['-ip', '8.8.8.8'])
ui_obj = ui.UI(conf)
return ui_obj<|docstring|>A simple ui test object<|endoftext|> |
bf41d1745a02efb476d240e00073d04dc410cf348f149a422fbef1426ce03f0b | def test_argument_setup(ui_obj) -> None:
'\n Ensures the ui.UI class constructs the correct arguments\n '
args = set(ui_obj.args.keys())
message = ''.join([f'EXPECTED: {UI_EXPECTED_ARGS} does not match ', f'ACTUAL: {args} for UI(): {ui_obj}'])
assert (UI_EXPECTED_ARGS == args), message | Ensures the ui.UI class constructs the correct arguments | src/tests/test_ui.py | test_argument_setup | t-a-y-l-o-r/checkip | 0 | python | def test_argument_setup(ui_obj) -> None:
'\n \n '
args = set(ui_obj.args.keys())
message = .join([f'EXPECTED: {UI_EXPECTED_ARGS} does not match ', f'ACTUAL: {args} for UI(): {ui_obj}'])
assert (UI_EXPECTED_ARGS == args), message | def test_argument_setup(ui_obj) -> None:
'\n \n '
args = set(ui_obj.args.keys())
message = .join([f'EXPECTED: {UI_EXPECTED_ARGS} does not match ', f'ACTUAL: {args} for UI(): {ui_obj}'])
assert (UI_EXPECTED_ARGS == args), message<|docstring|>Ensures the ui.UI class constructs the correct arguments<|endoftext|> |
bc075a5df5f2b1fc814fc82e88e64f601de1b9b601a022256c22d03d8bcebc84 | def test_ip_already_set(ui_obj) -> None:
'\n Tests the base case for the ip property\n Ensuring the inner value is always provided when set\n '
ip_list = ['0.0.0.0', '1.1.1.1', '8.8.8.8', '127.0.0.1']
for ip in ip_list:
ui_obj._ip = ip
message = ''.join([f'EXPECTED: {ip} does not match ', f'ACTUAL: {ui_obj.ip} for UI(): {ui_obj}'])
assert (ui_obj.ip == ip), message | Tests the base case for the ip property
Ensuring the inner value is always provided when set | src/tests/test_ui.py | test_ip_already_set | t-a-y-l-o-r/checkip | 0 | python | def test_ip_already_set(ui_obj) -> None:
'\n Tests the base case for the ip property\n Ensuring the inner value is always provided when set\n '
ip_list = ['0.0.0.0', '1.1.1.1', '8.8.8.8', '127.0.0.1']
for ip in ip_list:
ui_obj._ip = ip
message = .join([f'EXPECTED: {ip} does not match ', f'ACTUAL: {ui_obj.ip} for UI(): {ui_obj}'])
assert (ui_obj.ip == ip), message | def test_ip_already_set(ui_obj) -> None:
'\n Tests the base case for the ip property\n Ensuring the inner value is always provided when set\n '
ip_list = ['0.0.0.0', '1.1.1.1', '8.8.8.8', '127.0.0.1']
for ip in ip_list:
ui_obj._ip = ip
message = .join([f'EXPECTED: {ip} does not match ', f'ACTUAL: {ui_obj.ip} for UI(): {ui_obj}'])
assert (ui_obj.ip == ip), message<|docstring|>Tests the base case for the ip property
Ensuring the inner value is always provided when set<|endoftext|> |
c8669b9ac7ed90e3dce31967c33842b5ddde9c3c2d35aca06c3d2caaee370a76 | def test_ip_raw_ip() -> None:
'\n Ensures that a raw ip address from the `user` is\n identical to the stored proptery\n '
ip_list = ['0.0.0.0', '1.1.1.1', '8.8.8.8', '127.0.0.1']
for ip in ip_list:
conf = ui.UI_Config(testing=True, args=['-ip', ip])
ui_obj = ui.UI(config=conf)
message = ''.join([f'EXPECTED: {ip} does not match ', f'ACTUAL: {ui_obj.ip} for UI(): {ui_obj}'])
assert (ui_obj.ip == ip), message | Ensures that a raw ip address from the `user` is
identical to the stored proptery | src/tests/test_ui.py | test_ip_raw_ip | t-a-y-l-o-r/checkip | 0 | python | def test_ip_raw_ip() -> None:
'\n Ensures that a raw ip address from the `user` is\n identical to the stored proptery\n '
ip_list = ['0.0.0.0', '1.1.1.1', '8.8.8.8', '127.0.0.1']
for ip in ip_list:
conf = ui.UI_Config(testing=True, args=['-ip', ip])
ui_obj = ui.UI(config=conf)
message = .join([f'EXPECTED: {ip} does not match ', f'ACTUAL: {ui_obj.ip} for UI(): {ui_obj}'])
assert (ui_obj.ip == ip), message | def test_ip_raw_ip() -> None:
'\n Ensures that a raw ip address from the `user` is\n identical to the stored proptery\n '
ip_list = ['0.0.0.0', '1.1.1.1', '8.8.8.8', '127.0.0.1']
for ip in ip_list:
conf = ui.UI_Config(testing=True, args=['-ip', ip])
ui_obj = ui.UI(config=conf)
message = .join([f'EXPECTED: {ip} does not match ', f'ACTUAL: {ui_obj.ip} for UI(): {ui_obj}'])
assert (ui_obj.ip == ip), message<|docstring|>Ensures that a raw ip address from the `user` is
identical to the stored proptery<|endoftext|> |
ab42c35727c3f96cd24726237deba39feeb50c85590566d7c316f6900321b7cb | def test_ip_from_host() -> None:
'\n Ensures the ip property is identical to the\n ip resolved for a user input url\n '
host_list = ['google.com', 'nmap.com', 'github.com', 'gitlab.com']
for host in host_list:
conf = ui.UI_Config(testing=True, args=['--host', host])
ip = socket.gethostbyname(host)
ui_obj = ui.UI(config=conf)
message = ''.join([f'EXPECTED: {ip} does not match ', f'ACTUAL: {ui_obj.ip} for UI(): {ui_obj}'])
assert (ui_obj.ip == ip), message | Ensures the ip property is identical to the
ip resolved for a user input url | src/tests/test_ui.py | test_ip_from_host | t-a-y-l-o-r/checkip | 0 | python | def test_ip_from_host() -> None:
'\n Ensures the ip property is identical to the\n ip resolved for a user input url\n '
host_list = ['google.com', 'nmap.com', 'github.com', 'gitlab.com']
for host in host_list:
conf = ui.UI_Config(testing=True, args=['--host', host])
ip = socket.gethostbyname(host)
ui_obj = ui.UI(config=conf)
message = .join([f'EXPECTED: {ip} does not match ', f'ACTUAL: {ui_obj.ip} for UI(): {ui_obj}'])
assert (ui_obj.ip == ip), message | def test_ip_from_host() -> None:
'\n Ensures the ip property is identical to the\n ip resolved for a user input url\n '
host_list = ['google.com', 'nmap.com', 'github.com', 'gitlab.com']
for host in host_list:
conf = ui.UI_Config(testing=True, args=['--host', host])
ip = socket.gethostbyname(host)
ui_obj = ui.UI(config=conf)
message = .join([f'EXPECTED: {ip} does not match ', f'ACTUAL: {ui_obj.ip} for UI(): {ui_obj}'])
assert (ui_obj.ip == ip), message<|docstring|>Ensures the ip property is identical to the
ip resolved for a user input url<|endoftext|> |
ca1e97e0f74517cc224d2d93906b852dbdf6e1c26ebc5d3c63ea1216a2da140e | def test_ip_from_host_failure() -> None:
'\n Ensures the ip property throws and error\n '
host_list = ['google///.com', 'nmap.comasdasldjnhasd', 'asdhajlsdnljsagithub.com']
for host in host_list:
conf = ui.UI_Config(testing=True, args=['--host', host])
ui_obj = ui.UI(config=conf)
with pytest.raises(ValueError):
ip = ui_obj.ip | Ensures the ip property throws and error | src/tests/test_ui.py | test_ip_from_host_failure | t-a-y-l-o-r/checkip | 0 | python | def test_ip_from_host_failure() -> None:
'\n \n '
host_list = ['google///.com', 'nmap.comasdasldjnhasd', 'asdhajlsdnljsagithub.com']
for host in host_list:
conf = ui.UI_Config(testing=True, args=['--host', host])
ui_obj = ui.UI(config=conf)
with pytest.raises(ValueError):
ip = ui_obj.ip | def test_ip_from_host_failure() -> None:
'\n \n '
host_list = ['google///.com', 'nmap.comasdasldjnhasd', 'asdhajlsdnljsagithub.com']
for host in host_list:
conf = ui.UI_Config(testing=True, args=['--host', host])
ui_obj = ui.UI(config=conf)
with pytest.raises(ValueError):
ip = ui_obj.ip<|docstring|>Ensures the ip property throws and error<|endoftext|> |
31251fdf5230975ba5dc293cfa80c5c612611dc20b5a5ba7b693720f742fc010 | def test_ip_no_ip_no_host(ui_obj) -> None:
'\n Ensures that `None` is returned when there is no\n appropriate ip / host found\n '
expected = None
ip_flag = ui.UI_Args.IP.value
host_flag = ui.UI_Args.HOST.value
ui_obj.args
ui_obj.args[ip_flag] = None
ui_obj.args[host_flag] = None
actual = ui_obj.ip
message = ''.join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message | Ensures that `None` is returned when there is no
appropriate ip / host found | src/tests/test_ui.py | test_ip_no_ip_no_host | t-a-y-l-o-r/checkip | 0 | python | def test_ip_no_ip_no_host(ui_obj) -> None:
'\n Ensures that `None` is returned when there is no\n appropriate ip / host found\n '
expected = None
ip_flag = ui.UI_Args.IP.value
host_flag = ui.UI_Args.HOST.value
ui_obj.args
ui_obj.args[ip_flag] = None
ui_obj.args[host_flag] = None
actual = ui_obj.ip
message = .join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message | def test_ip_no_ip_no_host(ui_obj) -> None:
'\n Ensures that `None` is returned when there is no\n appropriate ip / host found\n '
expected = None
ip_flag = ui.UI_Args.IP.value
host_flag = ui.UI_Args.HOST.value
ui_obj.args
ui_obj.args[ip_flag] = None
ui_obj.args[host_flag] = None
actual = ui_obj.ip
message = .join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message<|docstring|>Ensures that `None` is returned when there is no
appropriate ip / host found<|endoftext|> |
796494e2fe45d4e84f630a9a43574497fea2e74d257183666feacb7a38b942ee | def test_ip_file_set(ui_obj, ip_file) -> None:
'\n Ensures that the correct arument value is returned when\n the inner argument is already set\n '
file_str = str(ip_file)
ui_obj._ip_file = file_str
actual = ui_obj.ip_file
expected = file_str
message = ''.join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message | Ensures that the correct arument value is returned when
the inner argument is already set | src/tests/test_ui.py | test_ip_file_set | t-a-y-l-o-r/checkip | 0 | python | def test_ip_file_set(ui_obj, ip_file) -> None:
'\n Ensures that the correct arument value is returned when\n the inner argument is already set\n '
file_str = str(ip_file)
ui_obj._ip_file = file_str
actual = ui_obj.ip_file
expected = file_str
message = .join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message | def test_ip_file_set(ui_obj, ip_file) -> None:
'\n Ensures that the correct arument value is returned when\n the inner argument is already set\n '
file_str = str(ip_file)
ui_obj._ip_file = file_str
actual = ui_obj.ip_file
expected = file_str
message = .join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message<|docstring|>Ensures that the correct arument value is returned when
the inner argument is already set<|endoftext|> |
d067b712656cb4ae2d2cc98f4f5430ec9754726ea7c9c05fd0a73014c86106d9 | def test_ip_file_no_file(ui_obj) -> None:
'\n Ensures that the correct arument value is returned when\n the inner argument is empty\n '
actual = ui_obj.ip_file
expected = None
message = ''.join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message | Ensures that the correct arument value is returned when
the inner argument is empty | src/tests/test_ui.py | test_ip_file_no_file | t-a-y-l-o-r/checkip | 0 | python | def test_ip_file_no_file(ui_obj) -> None:
'\n Ensures that the correct arument value is returned when\n the inner argument is empty\n '
actual = ui_obj.ip_file
expected = None
message = .join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message | def test_ip_file_no_file(ui_obj) -> None:
'\n Ensures that the correct arument value is returned when\n the inner argument is empty\n '
actual = ui_obj.ip_file
expected = None
message = .join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message<|docstring|>Ensures that the correct arument value is returned when
the inner argument is empty<|endoftext|> |
9ed6b2c26d680506bac131f637b2109878d4700cf6a4628e16ae70d83899118c | def test_ip_file_has_file(ip_file) -> None:
'\n Ensures that the correct arument value is returned when\n the file is provided properly\n '
file_str = str(ip_file)
conf = ui.UI_Config(testing=True, args=['--input-file', str(file_str)])
ui_obj = ui.UI(config=conf)
actual = ui_obj.ip_file
expected = file_str
message = ''.join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message | Ensures that the correct arument value is returned when
the file is provided properly | src/tests/test_ui.py | test_ip_file_has_file | t-a-y-l-o-r/checkip | 0 | python | def test_ip_file_has_file(ip_file) -> None:
'\n Ensures that the correct arument value is returned when\n the file is provided properly\n '
file_str = str(ip_file)
conf = ui.UI_Config(testing=True, args=['--input-file', str(file_str)])
ui_obj = ui.UI(config=conf)
actual = ui_obj.ip_file
expected = file_str
message = .join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message | def test_ip_file_has_file(ip_file) -> None:
'\n Ensures that the correct arument value is returned when\n the file is provided properly\n '
file_str = str(ip_file)
conf = ui.UI_Config(testing=True, args=['--input-file', str(file_str)])
ui_obj = ui.UI(config=conf)
actual = ui_obj.ip_file
expected = file_str
message = .join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message<|docstring|>Ensures that the correct arument value is returned when
the file is provided properly<|endoftext|> |
5909cc4842a5a1df6bed381ff6953271ea70562ad4f9d6c35055adafd7169426 | def test_ip_file_invalid_file() -> None:
'\n Ensures that the correct arument value is returned when\n the file is invalid\n '
conf = ui.UI_Config(testing=True, args=['--input-file', 'hasldjhalsjdn'])
ui_obj = ui.UI(config=conf)
actual = ui_obj.ip_file
expected = None
message = ''.join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message | Ensures that the correct arument value is returned when
the file is invalid | src/tests/test_ui.py | test_ip_file_invalid_file | t-a-y-l-o-r/checkip | 0 | python | def test_ip_file_invalid_file() -> None:
'\n Ensures that the correct arument value is returned when\n the file is invalid\n '
conf = ui.UI_Config(testing=True, args=['--input-file', 'hasldjhalsjdn'])
ui_obj = ui.UI(config=conf)
actual = ui_obj.ip_file
expected = None
message = .join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message | def test_ip_file_invalid_file() -> None:
'\n Ensures that the correct arument value is returned when\n the file is invalid\n '
conf = ui.UI_Config(testing=True, args=['--input-file', 'hasldjhalsjdn'])
ui_obj = ui.UI(config=conf)
actual = ui_obj.ip_file
expected = None
message = .join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message<|docstring|>Ensures that the correct arument value is returned when
the file is invalid<|endoftext|> |
dd99a72d9b171654fcb2401e2f3f2f93287f0d63aee4bd39f610e3cd33749cb3 | def test_ui_args_unique() -> None:
'\n Ensures that all values for UI_Args is unique\n '
count_of_args: Dict[(Any, int)] = {}
for arg in ui.UI_Args:
message = ''.join([f'WARNING: {arg} was found in UI_Args more than once'])
assert (arg not in count_of_args), message
count_of_args.setdefault(arg, 1) | Ensures that all values for UI_Args is unique | src/tests/test_ui.py | test_ui_args_unique | t-a-y-l-o-r/checkip | 0 | python | def test_ui_args_unique() -> None:
'\n \n '
count_of_args: Dict[(Any, int)] = {}
for arg in ui.UI_Args:
message = .join([f'WARNING: {arg} was found in UI_Args more than once'])
assert (arg not in count_of_args), message
count_of_args.setdefault(arg, 1) | def test_ui_args_unique() -> None:
'\n \n '
count_of_args: Dict[(Any, int)] = {}
for arg in ui.UI_Args:
message = .join([f'WARNING: {arg} was found in UI_Args more than once'])
assert (arg not in count_of_args), message
count_of_args.setdefault(arg, 1)<|docstring|>Ensures that all values for UI_Args is unique<|endoftext|> |
2cf01ff5516605f474a830f56cf233c6e69fcb64d5c90780b297f4f510b4d498 | def test_ui_args_match_ui_args(ui_obj) -> None:
'\n Ensures that the UI_Args always exist within UI.args\n '
enum_args: Dict[(Any, int)] = {}
for arg in ui.UI_Args:
value = arg.value
enum_args[value] = (enum_args.setdefault(value, 0) + 1)
obj_args: Dict[(Any, int)] = {}
for arg in ui_obj.args:
obj_args[arg] = (obj_args.setdefault(arg, 0) + 1)
message = ''.join([f'EXPECTED: {enum_args} does not match ', f'ACTUAL: {obj_args} for UI(): {ui_obj}'])
assert (enum_args == obj_args), message | Ensures that the UI_Args always exist within UI.args | src/tests/test_ui.py | test_ui_args_match_ui_args | t-a-y-l-o-r/checkip | 0 | python | def test_ui_args_match_ui_args(ui_obj) -> None:
'\n \n '
enum_args: Dict[(Any, int)] = {}
for arg in ui.UI_Args:
value = arg.value
enum_args[value] = (enum_args.setdefault(value, 0) + 1)
obj_args: Dict[(Any, int)] = {}
for arg in ui_obj.args:
obj_args[arg] = (obj_args.setdefault(arg, 0) + 1)
message = .join([f'EXPECTED: {enum_args} does not match ', f'ACTUAL: {obj_args} for UI(): {ui_obj}'])
assert (enum_args == obj_args), message | def test_ui_args_match_ui_args(ui_obj) -> None:
'\n \n '
enum_args: Dict[(Any, int)] = {}
for arg in ui.UI_Args:
value = arg.value
enum_args[value] = (enum_args.setdefault(value, 0) + 1)
obj_args: Dict[(Any, int)] = {}
for arg in ui_obj.args:
obj_args[arg] = (obj_args.setdefault(arg, 0) + 1)
message = .join([f'EXPECTED: {enum_args} does not match ', f'ACTUAL: {obj_args} for UI(): {ui_obj}'])
assert (enum_args == obj_args), message<|docstring|>Ensures that the UI_Args always exist within UI.args<|endoftext|> |
cc25412584c449464bae53eee6a5ff7ea25563783ee847ca18ca405024d6afa6 | def test_force_manual(ui_obj) -> None:
'\n Ensures that all branches of the ui.force\n execute as expeted.\n Providing any existing value if there is one\n '
ui_obj._force = True
actual = ui_obj.force
expected = True
message = ''.join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message
ui_obj._force = False
actual = ui_obj.force
expected = False
message = ''.join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message | Ensures that all branches of the ui.force
execute as expeted.
Providing any existing value if there is one | src/tests/test_ui.py | test_force_manual | t-a-y-l-o-r/checkip | 0 | python | def test_force_manual(ui_obj) -> None:
'\n Ensures that all branches of the ui.force\n execute as expeted.\n Providing any existing value if there is one\n '
ui_obj._force = True
actual = ui_obj.force
expected = True
message = .join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message
ui_obj._force = False
actual = ui_obj.force
expected = False
message = .join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message | def test_force_manual(ui_obj) -> None:
'\n Ensures that all branches of the ui.force\n execute as expeted.\n Providing any existing value if there is one\n '
ui_obj._force = True
actual = ui_obj.force
expected = True
message = .join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message
ui_obj._force = False
actual = ui_obj.force
expected = False
message = .join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message<|docstring|>Ensures that all branches of the ui.force
execute as expeted.
Providing any existing value if there is one<|endoftext|> |
8f9cc8f5ac2b1e8b1eab6ec47dd3e89dd88976249e311d1ff913eeadce7079e1 | def test_force_args() -> None:
'\n Ensures that all branches of the ui.force\n execute as expeted.\n Given the value is NOT already in memory and must be calculated\n '
conf = ui.UI_Config(testing=True, args=['-ip', '8.8.8.8', '--force'])
ui_obj = ui.UI(conf)
actual = ui_obj.force
expected = True
message = ''.join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message
conf = ui.UI_Config(testing=True, args=['-ip', '8.8.8.8'])
ui_obj = ui.UI(conf)
actual = ui_obj.force
expected = False
message = ''.join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message | Ensures that all branches of the ui.force
execute as expeted.
Given the value is NOT already in memory and must be calculated | src/tests/test_ui.py | test_force_args | t-a-y-l-o-r/checkip | 0 | python | def test_force_args() -> None:
'\n Ensures that all branches of the ui.force\n execute as expeted.\n Given the value is NOT already in memory and must be calculated\n '
conf = ui.UI_Config(testing=True, args=['-ip', '8.8.8.8', '--force'])
ui_obj = ui.UI(conf)
actual = ui_obj.force
expected = True
message = .join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message
conf = ui.UI_Config(testing=True, args=['-ip', '8.8.8.8'])
ui_obj = ui.UI(conf)
actual = ui_obj.force
expected = False
message = .join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message | def test_force_args() -> None:
'\n Ensures that all branches of the ui.force\n execute as expeted.\n Given the value is NOT already in memory and must be calculated\n '
conf = ui.UI_Config(testing=True, args=['-ip', '8.8.8.8', '--force'])
ui_obj = ui.UI(conf)
actual = ui_obj.force
expected = True
message = .join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message
conf = ui.UI_Config(testing=True, args=['-ip', '8.8.8.8'])
ui_obj = ui.UI(conf)
actual = ui_obj.force
expected = False
message = .join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message<|docstring|>Ensures that all branches of the ui.force
execute as expeted.
Given the value is NOT already in memory and must be calculated<|endoftext|> |
4638cc35f5580e60c674ce02281ea1b4a3374303a2075bc89d1863199d8e0af9 | def test_validate_ip_empty() -> None:
'\n Ensures that the ui._validate_ip()\n call returns `False` when a falsey value is provided\n '
conf = ui.UI_Config(testing=True, args=['-ip', '8.8.8.8', '--force'])
ui_obj = ui.UI(conf)
falsey_values = ['', None]
expected = False
for value in falsey_values:
actual = ui_obj._validate_ip(value)
message = ''.join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message | Ensures that the ui._validate_ip()
call returns `False` when a falsey value is provided | src/tests/test_ui.py | test_validate_ip_empty | t-a-y-l-o-r/checkip | 0 | python | def test_validate_ip_empty() -> None:
'\n Ensures that the ui._validate_ip()\n call returns `False` when a falsey value is provided\n '
conf = ui.UI_Config(testing=True, args=['-ip', '8.8.8.8', '--force'])
ui_obj = ui.UI(conf)
falsey_values = [, None]
expected = False
for value in falsey_values:
actual = ui_obj._validate_ip(value)
message = .join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message | def test_validate_ip_empty() -> None:
'\n Ensures that the ui._validate_ip()\n call returns `False` when a falsey value is provided\n '
conf = ui.UI_Config(testing=True, args=['-ip', '8.8.8.8', '--force'])
ui_obj = ui.UI(conf)
falsey_values = [, None]
expected = False
for value in falsey_values:
actual = ui_obj._validate_ip(value)
message = .join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message<|docstring|>Ensures that the ui._validate_ip()
call returns `False` when a falsey value is provided<|endoftext|> |
7b85e3c1fff507871ef316d71dc50199b8d7d71bcc8cc8c5cf3753d4b8c2345a | def test_validate_ip_no_match() -> None:
'\n Ensures that the ui._validate_ip()\n call returns `False` when a a bad pattern is provided\n '
conf = ui.UI_Config(testing=True, args=['-ip', '8.8.8.8', '--force'])
ui_obj = ui.UI(conf)
bad_values = ['8.0', 'abc', '-1,000']
expected = False
for value in bad_values:
actual = ui_obj._validate_ip(value)
message = ''.join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message | Ensures that the ui._validate_ip()
call returns `False` when a a bad pattern is provided | src/tests/test_ui.py | test_validate_ip_no_match | t-a-y-l-o-r/checkip | 0 | python | def test_validate_ip_no_match() -> None:
'\n Ensures that the ui._validate_ip()\n call returns `False` when a a bad pattern is provided\n '
conf = ui.UI_Config(testing=True, args=['-ip', '8.8.8.8', '--force'])
ui_obj = ui.UI(conf)
bad_values = ['8.0', 'abc', '-1,000']
expected = False
for value in bad_values:
actual = ui_obj._validate_ip(value)
message = .join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message | def test_validate_ip_no_match() -> None:
'\n Ensures that the ui._validate_ip()\n call returns `False` when a a bad pattern is provided\n '
conf = ui.UI_Config(testing=True, args=['-ip', '8.8.8.8', '--force'])
ui_obj = ui.UI(conf)
bad_values = ['8.0', 'abc', '-1,000']
expected = False
for value in bad_values:
actual = ui_obj._validate_ip(value)
message = .join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message<|docstring|>Ensures that the ui._validate_ip()
call returns `False` when a a bad pattern is provided<|endoftext|> |
acbb3483ad545414bdc6d0848ad7419e430256a46f6093664178b7516a1753bf | def test_validate_ip_passes() -> None:
'\n Ensures that the ui._validate_ip()\n call returns `True` when a a good pattern is provided\n '
conf = ui.UI_Config(testing=True, args=['-ip', '8.8.8.8', '--force'])
ui_obj = ui.UI(conf)
bad_values = ['8.8.8.8', '127.0.0.1', '192.168.0.1']
expected = True
for value in bad_values:
actual = ui_obj._validate_ip(value)
message = ''.join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message | Ensures that the ui._validate_ip()
call returns `True` when a a good pattern is provided | src/tests/test_ui.py | test_validate_ip_passes | t-a-y-l-o-r/checkip | 0 | python | def test_validate_ip_passes() -> None:
'\n Ensures that the ui._validate_ip()\n call returns `True` when a a good pattern is provided\n '
conf = ui.UI_Config(testing=True, args=['-ip', '8.8.8.8', '--force'])
ui_obj = ui.UI(conf)
bad_values = ['8.8.8.8', '127.0.0.1', '192.168.0.1']
expected = True
for value in bad_values:
actual = ui_obj._validate_ip(value)
message = .join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message | def test_validate_ip_passes() -> None:
'\n Ensures that the ui._validate_ip()\n call returns `True` when a a good pattern is provided\n '
conf = ui.UI_Config(testing=True, args=['-ip', '8.8.8.8', '--force'])
ui_obj = ui.UI(conf)
bad_values = ['8.8.8.8', '127.0.0.1', '192.168.0.1']
expected = True
for value in bad_values:
actual = ui_obj._validate_ip(value)
message = .join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message<|docstring|>Ensures that the ui._validate_ip()
call returns `True` when a a good pattern is provided<|endoftext|> |
1dc0457f1ec981ddac157882b58657e8f7d8b358131490659ab2441ad00cea9f | def test_args_already_set(ui_obj) -> None:
'\n Ensures that the arugments provided are\n the values stored when already in memory\n '
args = {'ip': '1.1.1.1', 'input_file': None, 'host': None, 'force': False, 'silent': False, 'verbose': False}
ui_obj._args = args
actual = ui_obj.args
message = ''.join([f'EXPECTED: {args} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (args == actual), message | Ensures that the arugments provided are
the values stored when already in memory | src/tests/test_ui.py | test_args_already_set | t-a-y-l-o-r/checkip | 0 | python | def test_args_already_set(ui_obj) -> None:
'\n Ensures that the arugments provided are\n the values stored when already in memory\n '
args = {'ip': '1.1.1.1', 'input_file': None, 'host': None, 'force': False, 'silent': False, 'verbose': False}
ui_obj._args = args
actual = ui_obj.args
message = .join([f'EXPECTED: {args} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (args == actual), message | def test_args_already_set(ui_obj) -> None:
'\n Ensures that the arugments provided are\n the values stored when already in memory\n '
args = {'ip': '1.1.1.1', 'input_file': None, 'host': None, 'force': False, 'silent': False, 'verbose': False}
ui_obj._args = args
actual = ui_obj.args
message = .join([f'EXPECTED: {args} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (args == actual), message<|docstring|>Ensures that the arugments provided are
the values stored when already in memory<|endoftext|> |
06488c7cf208c42a2ff62d89e14bc42b31a1e8455245bf34fbb2e705c5a9ac20 | def test_args_from_config(ui_obj) -> None:
'\n Ensures that the arugments provided are\n the same as the config object passed in\n '
args = {'ip': '8.8.8.8', 'input_file': None, 'host': None, 'force': False, 'silent': False, 'verbose': False}
actual = ui_obj.args
message = ''.join([f'EXPECTED: {args} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (args == actual), message | Ensures that the arugments provided are
the same as the config object passed in | src/tests/test_ui.py | test_args_from_config | t-a-y-l-o-r/checkip | 0 | python | def test_args_from_config(ui_obj) -> None:
'\n Ensures that the arugments provided are\n the same as the config object passed in\n '
args = {'ip': '8.8.8.8', 'input_file': None, 'host': None, 'force': False, 'silent': False, 'verbose': False}
actual = ui_obj.args
message = .join([f'EXPECTED: {args} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (args == actual), message | def test_args_from_config(ui_obj) -> None:
'\n Ensures that the arugments provided are\n the same as the config object passed in\n '
args = {'ip': '8.8.8.8', 'input_file': None, 'host': None, 'force': False, 'silent': False, 'verbose': False}
actual = ui_obj.args
message = .join([f'EXPECTED: {args} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (args == actual), message<|docstring|>Ensures that the arugments provided are
the same as the config object passed in<|endoftext|> |
0b451dda8526dd0875a873c752974d412a1ec81f03a51584b914cd8c49a6fe8f | def test_args_from_user_input() -> None:
'\n Ensures that the arugments provided are\n the same as the config object passed in\n '
root = './src/checkip.py'
argument_list = [{'args': [root, '-ip', '8.8.8.8'], 'expected': {'ip': '8.8.8.8', 'input_file': None, 'host': None, 'force': False, 'silent': False, 'verbose': False}}, {'args': [root, '-ip', '1.1.1.1'], 'expected': {'ip': '1.1.1.1', 'input_file': None, 'host': None, 'force': False, 'silent': False, 'verbose': False}}, {'args': [root, '-u', 'google.com'], 'expected': {'ip': None, 'input_file': None, 'host': 'google.com', 'force': False, 'silent': False, 'verbose': False}}]
for arg_set in argument_list:
arguments = arg_set['args']
expected = arg_set['expected']
sys.argv = list(arguments)
conf = ui.UI_Config(testing=True, args=None)
ui_obj = ui.UI(conf)
actual = ui_obj.args
message = ''.join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message | Ensures that the arugments provided are
the same as the config object passed in | src/tests/test_ui.py | test_args_from_user_input | t-a-y-l-o-r/checkip | 0 | python | def test_args_from_user_input() -> None:
'\n Ensures that the arugments provided are\n the same as the config object passed in\n '
root = './src/checkip.py'
argument_list = [{'args': [root, '-ip', '8.8.8.8'], 'expected': {'ip': '8.8.8.8', 'input_file': None, 'host': None, 'force': False, 'silent': False, 'verbose': False}}, {'args': [root, '-ip', '1.1.1.1'], 'expected': {'ip': '1.1.1.1', 'input_file': None, 'host': None, 'force': False, 'silent': False, 'verbose': False}}, {'args': [root, '-u', 'google.com'], 'expected': {'ip': None, 'input_file': None, 'host': 'google.com', 'force': False, 'silent': False, 'verbose': False}}]
for arg_set in argument_list:
arguments = arg_set['args']
expected = arg_set['expected']
sys.argv = list(arguments)
conf = ui.UI_Config(testing=True, args=None)
ui_obj = ui.UI(conf)
actual = ui_obj.args
message = .join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message | def test_args_from_user_input() -> None:
'\n Ensures that the arugments provided are\n the same as the config object passed in\n '
root = './src/checkip.py'
argument_list = [{'args': [root, '-ip', '8.8.8.8'], 'expected': {'ip': '8.8.8.8', 'input_file': None, 'host': None, 'force': False, 'silent': False, 'verbose': False}}, {'args': [root, '-ip', '1.1.1.1'], 'expected': {'ip': '1.1.1.1', 'input_file': None, 'host': None, 'force': False, 'silent': False, 'verbose': False}}, {'args': [root, '-u', 'google.com'], 'expected': {'ip': None, 'input_file': None, 'host': 'google.com', 'force': False, 'silent': False, 'verbose': False}}]
for arg_set in argument_list:
arguments = arg_set['args']
expected = arg_set['expected']
sys.argv = list(arguments)
conf = ui.UI_Config(testing=True, args=None)
ui_obj = ui.UI(conf)
actual = ui_obj.args
message = .join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message<|docstring|>Ensures that the arugments provided are
the same as the config object passed in<|endoftext|> |
afde05a8d8ba49312002f7abf35c2b0f44ef5047ea1c7d1575d2719168672f74 | def test_bad_ip_exit_not_silent(capsys) -> None:
'\n Ensures appropriate input when silent is not passed\n '
ip = 'google.com'
conf = ui.UI_Config(testing=True, args=['-ip', ip])
ui_obj = ui.UI(conf)
ui_obj._silent = False
ui_obj._bad_ip_exit(ip)
actual = capsys.readouterr().out
expected = ''.join([f'{ui.RED}[*] Warning:{ui.CLEAR} ', f'''{ip} is an invalid ipv4 address
'''])
message = ''.join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message | Ensures appropriate input when silent is not passed | src/tests/test_ui.py | test_bad_ip_exit_not_silent | t-a-y-l-o-r/checkip | 0 | python | def test_bad_ip_exit_not_silent(capsys) -> None:
'\n \n '
ip = 'google.com'
conf = ui.UI_Config(testing=True, args=['-ip', ip])
ui_obj = ui.UI(conf)
ui_obj._silent = False
ui_obj._bad_ip_exit(ip)
actual = capsys.readouterr().out
expected = .join([f'{ui.RED}[*] Warning:{ui.CLEAR} ', f'{ip} is an invalid ipv4 address
'])
message = .join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message | def test_bad_ip_exit_not_silent(capsys) -> None:
'\n \n '
ip = 'google.com'
conf = ui.UI_Config(testing=True, args=['-ip', ip])
ui_obj = ui.UI(conf)
ui_obj._silent = False
ui_obj._bad_ip_exit(ip)
actual = capsys.readouterr().out
expected = .join([f'{ui.RED}[*] Warning:{ui.CLEAR} ', f'{ip} is an invalid ipv4 address
'])
message = .join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message<|docstring|>Ensures appropriate input when silent is not passed<|endoftext|> |
c3dd3efc65085de747f25c585e15a1482aa6b44ab5eb84fbcd336c88b8446f19 | def test_bad_ip_exit_silent(capsys) -> None:
'\n Ensures appropriate input when silent is not passed\n '
ip = 'google.com'
conf = ui.UI_Config(testing=True, args=['-ip', ip])
ui_obj = ui.UI(conf)
ui_obj._silent = True
ui_obj._bad_ip_exit(ip)
actual = capsys.readouterr().out
expected = ''
message = ''.join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message | Ensures appropriate input when silent is not passed | src/tests/test_ui.py | test_bad_ip_exit_silent | t-a-y-l-o-r/checkip | 0 | python | def test_bad_ip_exit_silent(capsys) -> None:
'\n \n '
ip = 'google.com'
conf = ui.UI_Config(testing=True, args=['-ip', ip])
ui_obj = ui.UI(conf)
ui_obj._silent = True
ui_obj._bad_ip_exit(ip)
actual = capsys.readouterr().out
expected =
message = .join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message | def test_bad_ip_exit_silent(capsys) -> None:
'\n \n '
ip = 'google.com'
conf = ui.UI_Config(testing=True, args=['-ip', ip])
ui_obj = ui.UI(conf)
ui_obj._silent = True
ui_obj._bad_ip_exit(ip)
actual = capsys.readouterr().out
expected =
message = .join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message<|docstring|>Ensures appropriate input when silent is not passed<|endoftext|> |
a51092bfd167847a397872a242641464d6cf84bf6d221203bf941232871fd248 | def test_bad_ip_exit_not_silent_not_testing() -> None:
'\n Ensures appropriate input when silent is not passed\n '
ip = 'google.com'
conf = ui.UI_Config(testing=False, args=['-ip', ip])
with pytest.raises(SystemExit):
ui_obj = ui.UI(conf)
ui_obj._silent = False
ui_obj._bad_ip_exit(ip) | Ensures appropriate input when silent is not passed | src/tests/test_ui.py | test_bad_ip_exit_not_silent_not_testing | t-a-y-l-o-r/checkip | 0 | python | def test_bad_ip_exit_not_silent_not_testing() -> None:
'\n \n '
ip = 'google.com'
conf = ui.UI_Config(testing=False, args=['-ip', ip])
with pytest.raises(SystemExit):
ui_obj = ui.UI(conf)
ui_obj._silent = False
ui_obj._bad_ip_exit(ip) | def test_bad_ip_exit_not_silent_not_testing() -> None:
'\n \n '
ip = 'google.com'
conf = ui.UI_Config(testing=False, args=['-ip', ip])
with pytest.raises(SystemExit):
ui_obj = ui.UI(conf)
ui_obj._silent = False
ui_obj._bad_ip_exit(ip)<|docstring|>Ensures appropriate input when silent is not passed<|endoftext|> |
c9e0111bba4716bc91a6e73067449fa9172c6413c2cb3204e0f3f31a67f932e2 | def test_silent_set(ui_obj) -> None:
'\n Ensures that an already set `silent`\n value is properly provided\n '
silent_sets = [{'bool': True, 'expected': True}, {'bool': False, 'expected': False}]
for pairs in silent_sets:
set_to = pairs['bool']
expected = pairs['expected']
ui_obj._silent = set_to
actual = ui_obj.silent
message = ''.join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message | Ensures that an already set `silent`
value is properly provided | src/tests/test_ui.py | test_silent_set | t-a-y-l-o-r/checkip | 0 | python | def test_silent_set(ui_obj) -> None:
'\n Ensures that an already set `silent`\n value is properly provided\n '
silent_sets = [{'bool': True, 'expected': True}, {'bool': False, 'expected': False}]
for pairs in silent_sets:
set_to = pairs['bool']
expected = pairs['expected']
ui_obj._silent = set_to
actual = ui_obj.silent
message = .join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message | def test_silent_set(ui_obj) -> None:
'\n Ensures that an already set `silent`\n value is properly provided\n '
silent_sets = [{'bool': True, 'expected': True}, {'bool': False, 'expected': False}]
for pairs in silent_sets:
set_to = pairs['bool']
expected = pairs['expected']
ui_obj._silent = set_to
actual = ui_obj.silent
message = .join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message<|docstring|>Ensures that an already set `silent`
value is properly provided<|endoftext|> |
ef3f2dc0e5e20bc06fdf8a9b71a3c8fb958d40c0a7d40b8b44dc20578809064b | def test_silent_not_set() -> None:
'\n Ensures that an already set `silent`\n value is properly provided\n '
silent_sets = [{'bool': True, 'expected': True}, {'bool': False, 'expected': False}]
for pairs in silent_sets:
silent = pairs['bool']
arg_list = ['-ip', '8.8.8.8']
if silent:
arg_list.append('--silent')
conf = ui.UI_Config(testing=True, args=arg_list)
ui_obj = ui.UI(conf)
expected = pairs['expected']
actual = ui_obj.silent
message = ''.join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message | Ensures that an already set `silent`
value is properly provided | src/tests/test_ui.py | test_silent_not_set | t-a-y-l-o-r/checkip | 0 | python | def test_silent_not_set() -> None:
'\n Ensures that an already set `silent`\n value is properly provided\n '
silent_sets = [{'bool': True, 'expected': True}, {'bool': False, 'expected': False}]
for pairs in silent_sets:
silent = pairs['bool']
arg_list = ['-ip', '8.8.8.8']
if silent:
arg_list.append('--silent')
conf = ui.UI_Config(testing=True, args=arg_list)
ui_obj = ui.UI(conf)
expected = pairs['expected']
actual = ui_obj.silent
message = .join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message | def test_silent_not_set() -> None:
'\n Ensures that an already set `silent`\n value is properly provided\n '
silent_sets = [{'bool': True, 'expected': True}, {'bool': False, 'expected': False}]
for pairs in silent_sets:
silent = pairs['bool']
arg_list = ['-ip', '8.8.8.8']
if silent:
arg_list.append('--silent')
conf = ui.UI_Config(testing=True, args=arg_list)
ui_obj = ui.UI(conf)
expected = pairs['expected']
actual = ui_obj.silent
message = .join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message<|docstring|>Ensures that an already set `silent`
value is properly provided<|endoftext|> |
3e0b37fd93d44de0612a0e95f1743a94696cc67bba3255f10ad720f27dafc78e | def test_bad_file_exit_not_silent(capsys) -> None:
'\n Ensures appropriate input when silent is not set\n '
ip = 'google.com'
conf = ui.UI_Config(testing=True, args=['--input-file', ip])
ui_obj = ui.UI(conf)
ui_obj._silent = False
ui_obj._bad_file_exit(ip)
actual = capsys.readouterr().out
expected = ''.join([f'{ui.RED}[*] Warning:{ui.CLEAR} ', f'''{ip} is an invalid file
'''])
message = ''.join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message | Ensures appropriate input when silent is not set | src/tests/test_ui.py | test_bad_file_exit_not_silent | t-a-y-l-o-r/checkip | 0 | python | def test_bad_file_exit_not_silent(capsys) -> None:
'\n \n '
ip = 'google.com'
conf = ui.UI_Config(testing=True, args=['--input-file', ip])
ui_obj = ui.UI(conf)
ui_obj._silent = False
ui_obj._bad_file_exit(ip)
actual = capsys.readouterr().out
expected = .join([f'{ui.RED}[*] Warning:{ui.CLEAR} ', f'{ip} is an invalid file
'])
message = .join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message | def test_bad_file_exit_not_silent(capsys) -> None:
'\n \n '
ip = 'google.com'
conf = ui.UI_Config(testing=True, args=['--input-file', ip])
ui_obj = ui.UI(conf)
ui_obj._silent = False
ui_obj._bad_file_exit(ip)
actual = capsys.readouterr().out
expected = .join([f'{ui.RED}[*] Warning:{ui.CLEAR} ', f'{ip} is an invalid file
'])
message = .join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message<|docstring|>Ensures appropriate input when silent is not set<|endoftext|> |
1ba99ccf3cf0f36ed5dff37d508bc387df0c7c616646ccf3d83bb8a600eef60f | def test_bad_file_exit_silent(capsys) -> None:
'\n Ensures appropriate input when silent is set\n '
ip = 'google.com'
conf = ui.UI_Config(testing=True, args=['--input-file', ip])
ui_obj = ui.UI(conf)
ui_obj._silent = True
ui_obj._bad_file_exit(ip)
actual = capsys.readouterr().out
expected = ''
message = ''.join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message | Ensures appropriate input when silent is set | src/tests/test_ui.py | test_bad_file_exit_silent | t-a-y-l-o-r/checkip | 0 | python | def test_bad_file_exit_silent(capsys) -> None:
'\n \n '
ip = 'google.com'
conf = ui.UI_Config(testing=True, args=['--input-file', ip])
ui_obj = ui.UI(conf)
ui_obj._silent = True
ui_obj._bad_file_exit(ip)
actual = capsys.readouterr().out
expected =
message = .join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message | def test_bad_file_exit_silent(capsys) -> None:
'\n \n '
ip = 'google.com'
conf = ui.UI_Config(testing=True, args=['--input-file', ip])
ui_obj = ui.UI(conf)
ui_obj._silent = True
ui_obj._bad_file_exit(ip)
actual = capsys.readouterr().out
expected =
message = .join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message<|docstring|>Ensures appropriate input when silent is set<|endoftext|> |
39ef73f8a84af85ab5d0dd17425a39cde3607e5f145700a171e11d39abbada16 | def test_bad_file_exit_not_silent_not_testing() -> None:
'\n Ensures appropriate input when silent is not passed\n '
ip = 'google.com'
conf = ui.UI_Config(testing=False, args=['--input-file', ip])
with pytest.raises(SystemExit):
ui_obj = ui.UI(conf)
ui_obj._silent = False
ui_obj._bad_file_exit(ip) | Ensures appropriate input when silent is not passed | src/tests/test_ui.py | test_bad_file_exit_not_silent_not_testing | t-a-y-l-o-r/checkip | 0 | python | def test_bad_file_exit_not_silent_not_testing() -> None:
'\n \n '
ip = 'google.com'
conf = ui.UI_Config(testing=False, args=['--input-file', ip])
with pytest.raises(SystemExit):
ui_obj = ui.UI(conf)
ui_obj._silent = False
ui_obj._bad_file_exit(ip) | def test_bad_file_exit_not_silent_not_testing() -> None:
'\n \n '
ip = 'google.com'
conf = ui.UI_Config(testing=False, args=['--input-file', ip])
with pytest.raises(SystemExit):
ui_obj = ui.UI(conf)
ui_obj._silent = False
ui_obj._bad_file_exit(ip)<|docstring|>Ensures appropriate input when silent is not passed<|endoftext|> |
ae2144eeb107c725bb5f5510d7ce71094209098b388efe00e62732564ad98b01 | def test_valid_ip_file_empty(ui_obj, capsys) -> None:
'\n Ensures that `False` is returned when a no file is provided\n Also ensure the propery message is provided\n '
provided_file = None
actual = ui_obj._valid_ip_file(provided_file)
expected: Any = False
message = ''.join([f'EXPECTED: {str(expected)} does not match ', f'ACTUAL: {str(actual)} for UI(): {ui_obj}'])
assert (expected == actual), message
actual = capsys.readouterr().out
expected = ''.join([f'{ui.RED}[*] Warning:{ui.CLEAR} ', f'''{provided_file} is not a valid file!
'''])
assert (expected == actual), message | Ensures that `False` is returned when a no file is provided
Also ensure the propery message is provided | src/tests/test_ui.py | test_valid_ip_file_empty | t-a-y-l-o-r/checkip | 0 | python | def test_valid_ip_file_empty(ui_obj, capsys) -> None:
'\n Ensures that `False` is returned when a no file is provided\n Also ensure the propery message is provided\n '
provided_file = None
actual = ui_obj._valid_ip_file(provided_file)
expected: Any = False
message = .join([f'EXPECTED: {str(expected)} does not match ', f'ACTUAL: {str(actual)} for UI(): {ui_obj}'])
assert (expected == actual), message
actual = capsys.readouterr().out
expected = .join([f'{ui.RED}[*] Warning:{ui.CLEAR} ', f'{provided_file} is not a valid file!
'])
assert (expected == actual), message | def test_valid_ip_file_empty(ui_obj, capsys) -> None:
'\n Ensures that `False` is returned when a no file is provided\n Also ensure the propery message is provided\n '
provided_file = None
actual = ui_obj._valid_ip_file(provided_file)
expected: Any = False
message = .join([f'EXPECTED: {str(expected)} does not match ', f'ACTUAL: {str(actual)} for UI(): {ui_obj}'])
assert (expected == actual), message
actual = capsys.readouterr().out
expected = .join([f'{ui.RED}[*] Warning:{ui.CLEAR} ', f'{provided_file} is not a valid file!
'])
assert (expected == actual), message<|docstring|>Ensures that `False` is returned when a no file is provided
Also ensure the propery message is provided<|endoftext|> |
43a7ad4d0274a59f8297491e357b056ff32eb932e636a4c25f42bf5bc7c4d4a4 | def test_valid_ip_file_doesnt_exist(ui_obj, capsys) -> None:
'\n Ensures that `False` is returned when a none existent file is provided\n Also ensure the propery message is provided\n '
provided_file = 'some_dumby_file.txt'
actual: Any = ui_obj._valid_ip_file(provided_file)
expected: Any = False
message = ''.join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message
actual = capsys.readouterr().out
expected = ''.join([f'{ui.RED}[*] Warning:{ui.CLEAR} ', f'''{provided_file} is not a valid file!
'''])
assert (expected == actual), message | Ensures that `False` is returned when a none existent file is provided
Also ensure the propery message is provided | src/tests/test_ui.py | test_valid_ip_file_doesnt_exist | t-a-y-l-o-r/checkip | 0 | python | def test_valid_ip_file_doesnt_exist(ui_obj, capsys) -> None:
'\n Ensures that `False` is returned when a none existent file is provided\n Also ensure the propery message is provided\n '
provided_file = 'some_dumby_file.txt'
actual: Any = ui_obj._valid_ip_file(provided_file)
expected: Any = False
message = .join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message
actual = capsys.readouterr().out
expected = .join([f'{ui.RED}[*] Warning:{ui.CLEAR} ', f'{provided_file} is not a valid file!
'])
assert (expected == actual), message | def test_valid_ip_file_doesnt_exist(ui_obj, capsys) -> None:
'\n Ensures that `False` is returned when a none existent file is provided\n Also ensure the propery message is provided\n '
provided_file = 'some_dumby_file.txt'
actual: Any = ui_obj._valid_ip_file(provided_file)
expected: Any = False
message = .join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message
actual = capsys.readouterr().out
expected = .join([f'{ui.RED}[*] Warning:{ui.CLEAR} ', f'{provided_file} is not a valid file!
'])
assert (expected == actual), message<|docstring|>Ensures that `False` is returned when a none existent file is provided
Also ensure the propery message is provided<|endoftext|> |
b7ff6a285bbb917a4f9bccde5b0091c4f29dee52d6f32bc7a672ed809cfb15ff | def test_valid_ip_file_does_exist(ui_obj, ip_file) -> None:
'\n Ensures that `True` is returned when a real file is provided\n '
actual = ui_obj._valid_ip_file(ip_file)
expected = True
message = ''.join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message | Ensures that `True` is returned when a real file is provided | src/tests/test_ui.py | test_valid_ip_file_does_exist | t-a-y-l-o-r/checkip | 0 | python | def test_valid_ip_file_does_exist(ui_obj, ip_file) -> None:
'\n \n '
actual = ui_obj._valid_ip_file(ip_file)
expected = True
message = .join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message | def test_valid_ip_file_does_exist(ui_obj, ip_file) -> None:
'\n \n '
actual = ui_obj._valid_ip_file(ip_file)
expected = True
message = .join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message<|docstring|>Ensures that `True` is returned when a real file is provided<|endoftext|> |
7ae736db2288b2474c313ab0462671aa1150058954d9297828308464a8050c69 | def test_display_silent(ui_obj, capsys) -> None:
'\n Ensures that there is NO output when silent is set\n '
ui_obj._silent = True
header = ''
ui_obj.display_report(header)
actual = capsys.readouterr().out
expected = ''
message = ''.join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message | Ensures that there is NO output when silent is set | src/tests/test_ui.py | test_display_silent | t-a-y-l-o-r/checkip | 0 | python | def test_display_silent(ui_obj, capsys) -> None:
'\n \n '
ui_obj._silent = True
header =
ui_obj.display_report(header)
actual = capsys.readouterr().out
expected =
message = .join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message | def test_display_silent(ui_obj, capsys) -> None:
'\n \n '
ui_obj._silent = True
header =
ui_obj.display_report(header)
actual = capsys.readouterr().out
expected =
message = .join([f'EXPECTED: {expected} does not match ', f'ACTUAL: {actual} for UI(): {ui_obj}'])
assert (expected == actual), message<|docstring|>Ensures that there is NO output when silent is set<|endoftext|> |
f1975f32a782a1e77c58503e55e85940b849774ca0334d032a373e77b3da35fc | def test_display_ip(ui_obj, capsys) -> None:
'\n Ensures that the correct output is printed when silent is set\n '
ui_obj._silent = False
ip = '8.8.8.8'
ui_obj.display_ip(ip)
actual = capsys.readouterr().out
expected = ''.join([f'''
{ui._TITLE_OFFSET}=============================
''', f'{ui._TITLE_OFFSET}[ip] {ip} [ip]', f'''
{ui._TITLE_OFFSET}=============================
'''])
message = ''.join([f'EXPECTED: {repr(expected)} does not match ', f'ACTUAL: {repr(actual)} for UI(): {ui_obj}'])
assert (expected == actual), message | Ensures that the correct output is printed when silent is set | src/tests/test_ui.py | test_display_ip | t-a-y-l-o-r/checkip | 0 | python | def test_display_ip(ui_obj, capsys) -> None:
'\n \n '
ui_obj._silent = False
ip = '8.8.8.8'
ui_obj.display_ip(ip)
actual = capsys.readouterr().out
expected = .join([f'
{ui._TITLE_OFFSET}=============================
', f'{ui._TITLE_OFFSET}[ip] {ip} [ip]', f'
{ui._TITLE_OFFSET}=============================
'])
message = .join([f'EXPECTED: {repr(expected)} does not match ', f'ACTUAL: {repr(actual)} for UI(): {ui_obj}'])
assert (expected == actual), message | def test_display_ip(ui_obj, capsys) -> None:
'\n \n '
ui_obj._silent = False
ip = '8.8.8.8'
ui_obj.display_ip(ip)
actual = capsys.readouterr().out
expected = .join([f'
{ui._TITLE_OFFSET}=============================
', f'{ui._TITLE_OFFSET}[ip] {ip} [ip]', f'
{ui._TITLE_OFFSET}=============================
'])
message = .join([f'EXPECTED: {repr(expected)} does not match ', f'ACTUAL: {repr(actual)} for UI(): {ui_obj}'])
assert (expected == actual), message<|docstring|>Ensures that the correct output is printed when silent is set<|endoftext|> |
d40f412aef1915aec8f45c347232f51b7820d05c409f05bac5767d415e3fd888 | def test_display_excluded_ips_silent(ui_obj, capsys) -> None:
'\n Ensures that nothing is printed when silent\n '
ui_obj._silent = True
ips = None
ui_obj.display_excluded_ips(ips)
actual = capsys.readouterr().out
expected = ''
message = ''.join([f'EXPECTED: {repr(expected)} does not match ', f'ACTUAL: {repr(actual)} for UI(): {ui_obj}'])
assert (expected == actual), message | Ensures that nothing is printed when silent | src/tests/test_ui.py | test_display_excluded_ips_silent | t-a-y-l-o-r/checkip | 0 | python | def test_display_excluded_ips_silent(ui_obj, capsys) -> None:
'\n \n '
ui_obj._silent = True
ips = None
ui_obj.display_excluded_ips(ips)
actual = capsys.readouterr().out
expected =
message = .join([f'EXPECTED: {repr(expected)} does not match ', f'ACTUAL: {repr(actual)} for UI(): {ui_obj}'])
assert (expected == actual), message | def test_display_excluded_ips_silent(ui_obj, capsys) -> None:
'\n \n '
ui_obj._silent = True
ips = None
ui_obj.display_excluded_ips(ips)
actual = capsys.readouterr().out
expected =
message = .join([f'EXPECTED: {repr(expected)} does not match ', f'ACTUAL: {repr(actual)} for UI(): {ui_obj}'])
assert (expected == actual), message<|docstring|>Ensures that nothing is printed when silent<|endoftext|> |
531e82ef1f6117433962fa7cae2627fac5d3144ecd0b60092df8407c4cffe555 | def test_display_excluded_ips_not_silent(ui_obj, capsys) -> None:
'\n Ensures that the dict is printed when ips are provided\n '
ui_obj._silent = False
notes = {'notes': 'N/A'}
ip_dict = {'8.8.8.8': notes, '1.1.1.1': notes, '2.2.2.2': notes}
ui_obj.display_excluded_ips(ip_dict)
actual = capsys.readouterr().out
ip_json = json.dumps(ip_dict, indent=4, sort_keys=True)
expected = ''.join([f'[*]{ui.YELLOW} Notice: {ui.CLEAR} ', f'''the following ips will NOT be scanned: {ip_json}
'''])
message = ''.join([f'EXPECTED: {repr(expected)} does not match ', f'ACTUAL: {repr(actual)} for UI(): {ui_obj}'])
assert (expected == actual), message | Ensures that the dict is printed when ips are provided | src/tests/test_ui.py | test_display_excluded_ips_not_silent | t-a-y-l-o-r/checkip | 0 | python | def test_display_excluded_ips_not_silent(ui_obj, capsys) -> None:
'\n \n '
ui_obj._silent = False
notes = {'notes': 'N/A'}
ip_dict = {'8.8.8.8': notes, '1.1.1.1': notes, '2.2.2.2': notes}
ui_obj.display_excluded_ips(ip_dict)
actual = capsys.readouterr().out
ip_json = json.dumps(ip_dict, indent=4, sort_keys=True)
expected = .join([f'[*]{ui.YELLOW} Notice: {ui.CLEAR} ', f'the following ips will NOT be scanned: {ip_json}
'])
message = .join([f'EXPECTED: {repr(expected)} does not match ', f'ACTUAL: {repr(actual)} for UI(): {ui_obj}'])
assert (expected == actual), message | def test_display_excluded_ips_not_silent(ui_obj, capsys) -> None:
'\n \n '
ui_obj._silent = False
notes = {'notes': 'N/A'}
ip_dict = {'8.8.8.8': notes, '1.1.1.1': notes, '2.2.2.2': notes}
ui_obj.display_excluded_ips(ip_dict)
actual = capsys.readouterr().out
ip_json = json.dumps(ip_dict, indent=4, sort_keys=True)
expected = .join([f'[*]{ui.YELLOW} Notice: {ui.CLEAR} ', f'the following ips will NOT be scanned: {ip_json}
'])
message = .join([f'EXPECTED: {repr(expected)} does not match ', f'ACTUAL: {repr(actual)} for UI(): {ui_obj}'])
assert (expected == actual), message<|docstring|>Ensures that the dict is printed when ips are provided<|endoftext|> |
610908d69b8821768fa16ccf94ae6eb5416be0f7cc313b0118a1564d2f70a54d | def test_display_help(ui_obj, capsys) -> None:
'\n Ensures that the proper output happens for\n help messages\n '
ui_obj.display_help()
actual = capsys.readouterr().out
expected = ui_obj._parser.format_help()
message = ''.join([f'EXPECTED: {repr(expected)} does not match ', f'ACTUAL: {repr(actual)} for UI(): {ui_obj}'])
assert (expected == actual), message | Ensures that the proper output happens for
help messages | src/tests/test_ui.py | test_display_help | t-a-y-l-o-r/checkip | 0 | python | def test_display_help(ui_obj, capsys) -> None:
'\n Ensures that the proper output happens for\n help messages\n '
ui_obj.display_help()
actual = capsys.readouterr().out
expected = ui_obj._parser.format_help()
message = .join([f'EXPECTED: {repr(expected)} does not match ', f'ACTUAL: {repr(actual)} for UI(): {ui_obj}'])
assert (expected == actual), message | def test_display_help(ui_obj, capsys) -> None:
'\n Ensures that the proper output happens for\n help messages\n '
ui_obj.display_help()
actual = capsys.readouterr().out
expected = ui_obj._parser.format_help()
message = .join([f'EXPECTED: {repr(expected)} does not match ', f'ACTUAL: {repr(actual)} for UI(): {ui_obj}'])
assert (expected == actual), message<|docstring|>Ensures that the proper output happens for
help messages<|endoftext|> |
f32958abae55b8a0abaaea9a203b5e0c71fee1329e31457337ec34bea3124733 | def words(text):
'An iterator over tokens (words) in text. Replace this with a\n stemmer or other smarter logic.\n '
for word in text.split():
normed = re.sub('[^a-z]', '', word.lower())
if normed:
(yield normed) | An iterator over tokens (words) in text. Replace this with a
stemmer or other smarter logic. | category_predictor/category_predictor.py | words | lenmorld/Yackathon_keyword_map | 1,008 | python | def words(text):
'An iterator over tokens (words) in text. Replace this with a\n stemmer or other smarter logic.\n '
for word in text.split():
normed = re.sub('[^a-z]', , word.lower())
if normed:
(yield normed) | def words(text):
'An iterator over tokens (words) in text. Replace this with a\n stemmer or other smarter logic.\n '
for word in text.split():
normed = re.sub('[^a-z]', , word.lower())
if normed:
(yield normed)<|docstring|>An iterator over tokens (words) in text. Replace this with a
stemmer or other smarter logic.<|endoftext|> |
5afc547265be030940c187f64a5b4a418068482d907c0ed2546f698ea62269b0 | def review_category_mapper(self, _, data):
'Visit reviews and businesses, yielding out (business_id,\n (review or category)).\n '
if (data['type'] == 'review'):
(yield (data['business_id'], ('review', data['text'])))
elif (data['type'] == 'business'):
(yield (data['business_id'], ('categories', data['categories']))) | Visit reviews and businesses, yielding out (business_id,
(review or category)). | category_predictor/category_predictor.py | review_category_mapper | lenmorld/Yackathon_keyword_map | 1,008 | python | def review_category_mapper(self, _, data):
'Visit reviews and businesses, yielding out (business_id,\n (review or category)).\n '
if (data['type'] == 'review'):
(yield (data['business_id'], ('review', data['text'])))
elif (data['type'] == 'business'):
(yield (data['business_id'], ('categories', data['categories']))) | def review_category_mapper(self, _, data):
'Visit reviews and businesses, yielding out (business_id,\n (review or category)).\n '
if (data['type'] == 'review'):
(yield (data['business_id'], ('review', data['text'])))
elif (data['type'] == 'business'):
(yield (data['business_id'], ('categories', data['categories'])))<|docstring|>Visit reviews and businesses, yielding out (business_id,
(review or category)).<|endoftext|> |
1c02246a9ec4f91976c9772c503f907bdc66ac9333744a11b5022b42eeeb1c64 | def add_categories_to_reviews_reducer(self, business_id, reviews_or_categories):
"Yield out (category, review) for each category-review\n pair. We'll do the actual review tokenizing in the next\n mapper, since you typically have much more map-capacity than\n reduce-capacity.\n "
categories = None
reviews = []
for (data_type, data) in reviews_or_categories:
if (data_type == 'review'):
reviews.append(data)
else:
categories = data
if (not categories):
return
(yield ('all', dict(((cat, len(reviews)) for cat in categories))))
for category in categories:
for review in reviews:
(yield (category, review)) | Yield out (category, review) for each category-review
pair. We'll do the actual review tokenizing in the next
mapper, since you typically have much more map-capacity than
reduce-capacity. | category_predictor/category_predictor.py | add_categories_to_reviews_reducer | lenmorld/Yackathon_keyword_map | 1,008 | python | def add_categories_to_reviews_reducer(self, business_id, reviews_or_categories):
"Yield out (category, review) for each category-review\n pair. We'll do the actual review tokenizing in the next\n mapper, since you typically have much more map-capacity than\n reduce-capacity.\n "
categories = None
reviews = []
for (data_type, data) in reviews_or_categories:
if (data_type == 'review'):
reviews.append(data)
else:
categories = data
if (not categories):
return
(yield ('all', dict(((cat, len(reviews)) for cat in categories))))
for category in categories:
for review in reviews:
(yield (category, review)) | def add_categories_to_reviews_reducer(self, business_id, reviews_or_categories):
"Yield out (category, review) for each category-review\n pair. We'll do the actual review tokenizing in the next\n mapper, since you typically have much more map-capacity than\n reduce-capacity.\n "
categories = None
reviews = []
for (data_type, data) in reviews_or_categories:
if (data_type == 'review'):
reviews.append(data)
else:
categories = data
if (not categories):
return
(yield ('all', dict(((cat, len(reviews)) for cat in categories))))
for category in categories:
for review in reviews:
(yield (category, review))<|docstring|>Yield out (category, review) for each category-review
pair. We'll do the actual review tokenizing in the next
mapper, since you typically have much more map-capacity than
reduce-capacity.<|endoftext|> |
be0c7774cef039e5a4aa54974678b273640973ca59b0d2cd8cbc3133c4c35ece | def tokenize_reviews_mapper(self, category, review):
"Split reviews into words, yielding out (category, {word: count}) and\n ('all', {word: count}). We yield out a dictionary of counts\n rather than a single entry per-word to reduce the amount of\n i/o between mapper and reducer.\n "
if (category == 'all'):
(yield (category, review))
return
counts = {}
for word in words(review):
counts[word] = (counts.get(word, 0) + 1)
(yield (category, counts)) | Split reviews into words, yielding out (category, {word: count}) and
('all', {word: count}). We yield out a dictionary of counts
rather than a single entry per-word to reduce the amount of
i/o between mapper and reducer. | category_predictor/category_predictor.py | tokenize_reviews_mapper | lenmorld/Yackathon_keyword_map | 1,008 | python | def tokenize_reviews_mapper(self, category, review):
"Split reviews into words, yielding out (category, {word: count}) and\n ('all', {word: count}). We yield out a dictionary of counts\n rather than a single entry per-word to reduce the amount of\n i/o between mapper and reducer.\n "
if (category == 'all'):
(yield (category, review))
return
counts = {}
for word in words(review):
counts[word] = (counts.get(word, 0) + 1)
(yield (category, counts)) | def tokenize_reviews_mapper(self, category, review):
"Split reviews into words, yielding out (category, {word: count}) and\n ('all', {word: count}). We yield out a dictionary of counts\n rather than a single entry per-word to reduce the amount of\n i/o between mapper and reducer.\n "
if (category == 'all'):
(yield (category, review))
return
counts = {}
for word in words(review):
counts[word] = (counts.get(word, 0) + 1)
(yield (category, counts))<|docstring|>Split reviews into words, yielding out (category, {word: count}) and
('all', {word: count}). We yield out a dictionary of counts
rather than a single entry per-word to reduce the amount of
i/o between mapper and reducer.<|endoftext|> |
971ea285542db688b7ed9e625d66f16a197ac3214aaf1cdad4c3b117c1c769cc | def sum_counts(self, category, counts):
'Sum up dictionaries of counts, filter out rare words\n (bucketing them into an unknown word bucket), and yield the\n counts.\n '
raw_count = {}
for word_count in counts:
for (word, count) in word_count.iteritems():
raw_count[word] = (raw_count.get(word, 0) + count)
if (category == 'all'):
(yield (category, raw_count))
return
filtered_counts = {}
for (word, count) in raw_count.iteritems():
if (count > MINIMUM_OCCURENCES):
filtered_counts[word] = count
if (not filtered_counts):
return
filtered_counts['UNK'] = 0.01
(yield (category, filtered_counts)) | Sum up dictionaries of counts, filter out rare words
(bucketing them into an unknown word bucket), and yield the
counts. | category_predictor/category_predictor.py | sum_counts | lenmorld/Yackathon_keyword_map | 1,008 | python | def sum_counts(self, category, counts):
'Sum up dictionaries of counts, filter out rare words\n (bucketing them into an unknown word bucket), and yield the\n counts.\n '
raw_count = {}
for word_count in counts:
for (word, count) in word_count.iteritems():
raw_count[word] = (raw_count.get(word, 0) + count)
if (category == 'all'):
(yield (category, raw_count))
return
filtered_counts = {}
for (word, count) in raw_count.iteritems():
if (count > MINIMUM_OCCURENCES):
filtered_counts[word] = count
if (not filtered_counts):
return
filtered_counts['UNK'] = 0.01
(yield (category, filtered_counts)) | def sum_counts(self, category, counts):
'Sum up dictionaries of counts, filter out rare words\n (bucketing them into an unknown word bucket), and yield the\n counts.\n '
raw_count = {}
for word_count in counts:
for (word, count) in word_count.iteritems():
raw_count[word] = (raw_count.get(word, 0) + count)
if (category == 'all'):
(yield (category, raw_count))
return
filtered_counts = {}
for (word, count) in raw_count.iteritems():
if (count > MINIMUM_OCCURENCES):
filtered_counts[word] = count
if (not filtered_counts):
return
filtered_counts['UNK'] = 0.01
(yield (category, filtered_counts))<|docstring|>Sum up dictionaries of counts, filter out rare words
(bucketing them into an unknown word bucket), and yield the
counts.<|endoftext|> |
0dc7a8b534b8ce0d84c32066dddb1d2db95924e80ce7358d92249348208bea3c | def LSTM_Model():
'\n :param x: inputs of size [T, batch_size, input_size]\n :param W: matrix of fully-connected output layer weights\n :param b: vector of fully-connected output layer biases\n '
cell = rnn_cell.BasicLSTMCell(hidden_dim)
(outputs, states) = rnn.dynamic_rnn(cell, x, dtype=tf.float32)
num_examples = tf.shape(x)[0]
W_repeated = tf.tile(tf.expand_dims(W_out, 0), [num_examples, 1, 1])
out = (tf.matmul(outputs, W_repeated) + b_out)
out = tf.squeeze(out)
return out | :param x: inputs of size [T, batch_size, input_size]
:param W: matrix of fully-connected output layer weights
:param b: vector of fully-connected output layer biases | Chapter09/LSTM_Time_Series/TimeSeriesPredictor.py | LSTM_Model | eric-erki/Predictive-Analytics-with-TensorFlow | 73 | python | def LSTM_Model():
'\n :param x: inputs of size [T, batch_size, input_size]\n :param W: matrix of fully-connected output layer weights\n :param b: vector of fully-connected output layer biases\n '
cell = rnn_cell.BasicLSTMCell(hidden_dim)
(outputs, states) = rnn.dynamic_rnn(cell, x, dtype=tf.float32)
num_examples = tf.shape(x)[0]
W_repeated = tf.tile(tf.expand_dims(W_out, 0), [num_examples, 1, 1])
out = (tf.matmul(outputs, W_repeated) + b_out)
out = tf.squeeze(out)
return out | def LSTM_Model():
'\n :param x: inputs of size [T, batch_size, input_size]\n :param W: matrix of fully-connected output layer weights\n :param b: vector of fully-connected output layer biases\n '
cell = rnn_cell.BasicLSTMCell(hidden_dim)
(outputs, states) = rnn.dynamic_rnn(cell, x, dtype=tf.float32)
num_examples = tf.shape(x)[0]
W_repeated = tf.tile(tf.expand_dims(W_out, 0), [num_examples, 1, 1])
out = (tf.matmul(outputs, W_repeated) + b_out)
out = tf.squeeze(out)
return out<|docstring|>:param x: inputs of size [T, batch_size, input_size]
:param W: matrix of fully-connected output layer weights
:param b: vector of fully-connected output layer biases<|endoftext|> |
f6c2390256d423d9946b10b5658c6fb71f3f56139990d21386e0d5179be2f933 | def __init__(self, model):
'\n Class to calculate probability (pmf) values specific to Bayesian Models\n\n Parameters\n ----------\n model: Bayesian Model\n model on which inference queries will be computed\n '
super(BayesianModelProbability, self).__init__(model) | Class to calculate probability (pmf) values specific to Bayesian Models
Parameters
----------
model: Bayesian Model
model on which inference queries will be computed | pgmpy/metrics/bn_inference.py | __init__ | vbob/pgmpy | 2,144 | python | def __init__(self, model):
'\n Class to calculate probability (pmf) values specific to Bayesian Models\n\n Parameters\n ----------\n model: Bayesian Model\n model on which inference queries will be computed\n '
super(BayesianModelProbability, self).__init__(model) | def __init__(self, model):
'\n Class to calculate probability (pmf) values specific to Bayesian Models\n\n Parameters\n ----------\n model: Bayesian Model\n model on which inference queries will be computed\n '
super(BayesianModelProbability, self).__init__(model)<|docstring|>Class to calculate probability (pmf) values specific to Bayesian Models
Parameters
----------
model: Bayesian Model
model on which inference queries will be computed<|endoftext|> |
3d22b9fc08f4cc3c40816b1a3c6d2d60864f8acc3d38b797ce1f3fe4c42dc0cb | def _log_probability_node(self, data, ordering, node):
'\n Evaluate the log probability of each datapoint for a specific node.\n\n Internal function used by log_probability().\n\n Parameters\n ----------\n data: array_like, shape (n_samples, n_features)\n List of n_features-dimensional data points. Each row\n corresponds to a single data point.\n\n ordering: list\n ordering of columns in data, used by the Bayesian model.\n default is topological ordering used by model.\n\n node: Bayesian Model Node\n node from the Bayesian network.\n\n Returns\n -------\n ndarray: having shape (n_samples,)\n The array of log(density) evaluations. These are normalized to be\n probability densities, so values will be low for high-dimensional\n data.\n '
def vec_translate(a, my_dict):
return np.vectorize(my_dict.__getitem__)(a)
cpd = self.model.get_cpds(node)
current = cpd.variables[0]
current_idx = ordering.index(current)
current_val = data[(:, current_idx)]
current_no = vec_translate(current_val, cpd.name_to_no[current])
evidence = cpd.variables[:0:(- 1)]
evidence_idx = [ordering.index(ev) for ev in evidence]
evidence_val = data[(:, evidence_idx)]
evidence_no = np.empty_like(evidence_val, dtype=int)
for (i, ev) in enumerate(evidence):
evidence_no[(:, i)] = vec_translate(evidence_val[(:, i)], cpd.name_to_no[ev])
if evidence:
(state_to_index, index_to_weight) = self.pre_compute_reduce_maps(variable=node)
(unique, inverse) = np.unique(evidence_no, axis=0, return_inverse=True)
weights = np.array([index_to_weight[state_to_index[tuple(u)]] for u in unique])[inverse]
else:
weights = np.array(([cpd.values] * len(data)))
probability_node = np.array([weights[i][cn] for (i, cn) in enumerate(current_no)])
return np.log(probability_node) | Evaluate the log probability of each datapoint for a specific node.
Internal function used by log_probability().
Parameters
----------
data: array_like, shape (n_samples, n_features)
List of n_features-dimensional data points. Each row
corresponds to a single data point.
ordering: list
ordering of columns in data, used by the Bayesian model.
default is topological ordering used by model.
node: Bayesian Model Node
node from the Bayesian network.
Returns
-------
ndarray: having shape (n_samples,)
The array of log(density) evaluations. These are normalized to be
probability densities, so values will be low for high-dimensional
data. | pgmpy/metrics/bn_inference.py | _log_probability_node | vbob/pgmpy | 2,144 | python | def _log_probability_node(self, data, ordering, node):
'\n Evaluate the log probability of each datapoint for a specific node.\n\n Internal function used by log_probability().\n\n Parameters\n ----------\n data: array_like, shape (n_samples, n_features)\n List of n_features-dimensional data points. Each row\n corresponds to a single data point.\n\n ordering: list\n ordering of columns in data, used by the Bayesian model.\n default is topological ordering used by model.\n\n node: Bayesian Model Node\n node from the Bayesian network.\n\n Returns\n -------\n ndarray: having shape (n_samples,)\n The array of log(density) evaluations. These are normalized to be\n probability densities, so values will be low for high-dimensional\n data.\n '
def vec_translate(a, my_dict):
return np.vectorize(my_dict.__getitem__)(a)
cpd = self.model.get_cpds(node)
current = cpd.variables[0]
current_idx = ordering.index(current)
current_val = data[(:, current_idx)]
current_no = vec_translate(current_val, cpd.name_to_no[current])
evidence = cpd.variables[:0:(- 1)]
evidence_idx = [ordering.index(ev) for ev in evidence]
evidence_val = data[(:, evidence_idx)]
evidence_no = np.empty_like(evidence_val, dtype=int)
for (i, ev) in enumerate(evidence):
evidence_no[(:, i)] = vec_translate(evidence_val[(:, i)], cpd.name_to_no[ev])
if evidence:
(state_to_index, index_to_weight) = self.pre_compute_reduce_maps(variable=node)
(unique, inverse) = np.unique(evidence_no, axis=0, return_inverse=True)
weights = np.array([index_to_weight[state_to_index[tuple(u)]] for u in unique])[inverse]
else:
weights = np.array(([cpd.values] * len(data)))
probability_node = np.array([weights[i][cn] for (i, cn) in enumerate(current_no)])
return np.log(probability_node) | def _log_probability_node(self, data, ordering, node):
'\n Evaluate the log probability of each datapoint for a specific node.\n\n Internal function used by log_probability().\n\n Parameters\n ----------\n data: array_like, shape (n_samples, n_features)\n List of n_features-dimensional data points. Each row\n corresponds to a single data point.\n\n ordering: list\n ordering of columns in data, used by the Bayesian model.\n default is topological ordering used by model.\n\n node: Bayesian Model Node\n node from the Bayesian network.\n\n Returns\n -------\n ndarray: having shape (n_samples,)\n The array of log(density) evaluations. These are normalized to be\n probability densities, so values will be low for high-dimensional\n data.\n '
def vec_translate(a, my_dict):
return np.vectorize(my_dict.__getitem__)(a)
cpd = self.model.get_cpds(node)
current = cpd.variables[0]
current_idx = ordering.index(current)
current_val = data[(:, current_idx)]
current_no = vec_translate(current_val, cpd.name_to_no[current])
evidence = cpd.variables[:0:(- 1)]
evidence_idx = [ordering.index(ev) for ev in evidence]
evidence_val = data[(:, evidence_idx)]
evidence_no = np.empty_like(evidence_val, dtype=int)
for (i, ev) in enumerate(evidence):
evidence_no[(:, i)] = vec_translate(evidence_val[(:, i)], cpd.name_to_no[ev])
if evidence:
(state_to_index, index_to_weight) = self.pre_compute_reduce_maps(variable=node)
(unique, inverse) = np.unique(evidence_no, axis=0, return_inverse=True)
weights = np.array([index_to_weight[state_to_index[tuple(u)]] for u in unique])[inverse]
else:
weights = np.array(([cpd.values] * len(data)))
probability_node = np.array([weights[i][cn] for (i, cn) in enumerate(current_no)])
return np.log(probability_node)<|docstring|>Evaluate the log probability of each datapoint for a specific node.
Internal function used by log_probability().
Parameters
----------
data: array_like, shape (n_samples, n_features)
List of n_features-dimensional data points. Each row
corresponds to a single data point.
ordering: list
ordering of columns in data, used by the Bayesian model.
default is topological ordering used by model.
node: Bayesian Model Node
node from the Bayesian network.
Returns
-------
ndarray: having shape (n_samples,)
The array of log(density) evaluations. These are normalized to be
probability densities, so values will be low for high-dimensional
data.<|endoftext|> |
73182a6e0a0a73d88c8cdefab3c2b7a7e69d24e0a994141dd5e8a1cadc6148a8 | def log_probability(self, data, ordering=None):
'\n Evaluate the logarithmic probability of each point in a data set.\n\n Parameters\n ----------\n data: pandas dataframe OR array_like, shape (n_samples, n_features)\n List of n_features-dimensional data points. Each row\n corresponds to a single data point.\n\n ordering: list\n ordering of columns in data, used by the Bayesian model.\n default is topological ordering used by model.\n\n Returns\n -------\n ndarray: having shape (n_samples,)\n The array of log(density) evaluations. These are normalized to be\n probability densities, so values will be low for high-dimensional\n data.\n '
if isinstance(data, pd.DataFrame):
ordering = data.columns.to_list()
data = data.values
if (ordering is None):
ordering = self.topological_order
data = data.loc[(:, ordering)].values
logp = np.array([self._log_probability_node(data, ordering, node) for node in ordering])
return np.sum(logp, axis=0) | Evaluate the logarithmic probability of each point in a data set.
Parameters
----------
data: pandas dataframe OR array_like, shape (n_samples, n_features)
List of n_features-dimensional data points. Each row
corresponds to a single data point.
ordering: list
ordering of columns in data, used by the Bayesian model.
default is topological ordering used by model.
Returns
-------
ndarray: having shape (n_samples,)
The array of log(density) evaluations. These are normalized to be
probability densities, so values will be low for high-dimensional
data. | pgmpy/metrics/bn_inference.py | log_probability | vbob/pgmpy | 2,144 | python | def log_probability(self, data, ordering=None):
'\n Evaluate the logarithmic probability of each point in a data set.\n\n Parameters\n ----------\n data: pandas dataframe OR array_like, shape (n_samples, n_features)\n List of n_features-dimensional data points. Each row\n corresponds to a single data point.\n\n ordering: list\n ordering of columns in data, used by the Bayesian model.\n default is topological ordering used by model.\n\n Returns\n -------\n ndarray: having shape (n_samples,)\n The array of log(density) evaluations. These are normalized to be\n probability densities, so values will be low for high-dimensional\n data.\n '
if isinstance(data, pd.DataFrame):
ordering = data.columns.to_list()
data = data.values
if (ordering is None):
ordering = self.topological_order
data = data.loc[(:, ordering)].values
logp = np.array([self._log_probability_node(data, ordering, node) for node in ordering])
return np.sum(logp, axis=0) | def log_probability(self, data, ordering=None):
'\n Evaluate the logarithmic probability of each point in a data set.\n\n Parameters\n ----------\n data: pandas dataframe OR array_like, shape (n_samples, n_features)\n List of n_features-dimensional data points. Each row\n corresponds to a single data point.\n\n ordering: list\n ordering of columns in data, used by the Bayesian model.\n default is topological ordering used by model.\n\n Returns\n -------\n ndarray: having shape (n_samples,)\n The array of log(density) evaluations. These are normalized to be\n probability densities, so values will be low for high-dimensional\n data.\n '
if isinstance(data, pd.DataFrame):
ordering = data.columns.to_list()
data = data.values
if (ordering is None):
ordering = self.topological_order
data = data.loc[(:, ordering)].values
logp = np.array([self._log_probability_node(data, ordering, node) for node in ordering])
return np.sum(logp, axis=0)<|docstring|>Evaluate the logarithmic probability of each point in a data set.
Parameters
----------
data: pandas dataframe OR array_like, shape (n_samples, n_features)
List of n_features-dimensional data points. Each row
corresponds to a single data point.
ordering: list
ordering of columns in data, used by the Bayesian model.
default is topological ordering used by model.
Returns
-------
ndarray: having shape (n_samples,)
The array of log(density) evaluations. These are normalized to be
probability densities, so values will be low for high-dimensional
data.<|endoftext|> |
0d86eab3838b8032a775f92bbab79831db72bb5e838a39a3aaaddbfe88b13d0c | def score(self, data, ordering=None):
'\n Compute the total log probability density under the model.\n\n Parameters\n ----------\n data: pandas dataframe OR array_like, shape (n_samples, n_features)\n List of n_features-dimensional data points. Each row\n corresponds to a single data point.\n\n ordering: list\n ordering of columns in data, used by the Bayesian model.\n default is topological ordering used by model.\n\n Returns\n -------\n float: total log-likelihood of the data in data.\n This is normalized to be a probability density, so the value\n will be low for high-dimensional data.\n '
return np.sum(self.log_probability(data, ordering)) | Compute the total log probability density under the model.
Parameters
----------
data: pandas dataframe OR array_like, shape (n_samples, n_features)
List of n_features-dimensional data points. Each row
corresponds to a single data point.
ordering: list
ordering of columns in data, used by the Bayesian model.
default is topological ordering used by model.
Returns
-------
float: total log-likelihood of the data in data.
This is normalized to be a probability density, so the value
will be low for high-dimensional data. | pgmpy/metrics/bn_inference.py | score | vbob/pgmpy | 2,144 | python | def score(self, data, ordering=None):
'\n Compute the total log probability density under the model.\n\n Parameters\n ----------\n data: pandas dataframe OR array_like, shape (n_samples, n_features)\n List of n_features-dimensional data points. Each row\n corresponds to a single data point.\n\n ordering: list\n ordering of columns in data, used by the Bayesian model.\n default is topological ordering used by model.\n\n Returns\n -------\n float: total log-likelihood of the data in data.\n This is normalized to be a probability density, so the value\n will be low for high-dimensional data.\n '
return np.sum(self.log_probability(data, ordering)) | def score(self, data, ordering=None):
'\n Compute the total log probability density under the model.\n\n Parameters\n ----------\n data: pandas dataframe OR array_like, shape (n_samples, n_features)\n List of n_features-dimensional data points. Each row\n corresponds to a single data point.\n\n ordering: list\n ordering of columns in data, used by the Bayesian model.\n default is topological ordering used by model.\n\n Returns\n -------\n float: total log-likelihood of the data in data.\n This is normalized to be a probability density, so the value\n will be low for high-dimensional data.\n '
return np.sum(self.log_probability(data, ordering))<|docstring|>Compute the total log probability density under the model.
Parameters
----------
data: pandas dataframe OR array_like, shape (n_samples, n_features)
List of n_features-dimensional data points. Each row
corresponds to a single data point.
ordering: list
ordering of columns in data, used by the Bayesian model.
default is topological ordering used by model.
Returns
-------
float: total log-likelihood of the data in data.
This is normalized to be a probability density, so the value
will be low for high-dimensional data.<|endoftext|> |
5a6febc13f6602e93dcea733c3c3c604ca34d39741188154293010d192e956a1 | def register_model(name: str, rest: str, body: ProtoModel, response: ProtoModel) -> None:
'\n Registers a new REST model.\n\n Parameters\n ----------\n name : str\n A regular expression describing the rest endpoint.\n rest : str\n The REST endpoint type.\n body : ProtoModel\n The REST query body model.\n response : ProtoModel\n The REST query response model.\n\n '
rest = rest.upper()
if ((name in __rest_models) and (rest in __rest_models[name])):
raise KeyError(f'Model name {name} already registered.')
if (name not in __rest_models):
__rest_models[name] = {}
__rest_models[name][rest] = (body, response) | Registers a new REST model.
Parameters
----------
name : str
A regular expression describing the rest endpoint.
rest : str
The REST endpoint type.
body : ProtoModel
The REST query body model.
response : ProtoModel
The REST query response model. | qcfractal/interface/models/rest_models.py | register_model | Lnaden/QCFractal | 113 | python | def register_model(name: str, rest: str, body: ProtoModel, response: ProtoModel) -> None:
'\n Registers a new REST model.\n\n Parameters\n ----------\n name : str\n A regular expression describing the rest endpoint.\n rest : str\n The REST endpoint type.\n body : ProtoModel\n The REST query body model.\n response : ProtoModel\n The REST query response model.\n\n '
rest = rest.upper()
if ((name in __rest_models) and (rest in __rest_models[name])):
raise KeyError(f'Model name {name} already registered.')
if (name not in __rest_models):
__rest_models[name] = {}
__rest_models[name][rest] = (body, response) | def register_model(name: str, rest: str, body: ProtoModel, response: ProtoModel) -> None:
'\n Registers a new REST model.\n\n Parameters\n ----------\n name : str\n A regular expression describing the rest endpoint.\n rest : str\n The REST endpoint type.\n body : ProtoModel\n The REST query body model.\n response : ProtoModel\n The REST query response model.\n\n '
rest = rest.upper()
if ((name in __rest_models) and (rest in __rest_models[name])):
raise KeyError(f'Model name {name} already registered.')
if (name not in __rest_models):
__rest_models[name] = {}
__rest_models[name][rest] = (body, response)<|docstring|>Registers a new REST model.
Parameters
----------
name : str
A regular expression describing the rest endpoint.
rest : str
The REST endpoint type.
body : ProtoModel
The REST query body model.
response : ProtoModel
The REST query response model.<|endoftext|> |
804466eafd16677e1eda478376e4e61e4b18f5f46d7c80e46933c8450e23677b | @functools.lru_cache(1000, typed=True)
def rest_model(resource: str, rest: str) -> Tuple[(ProtoModel, ProtoModel)]:
'\n Acquires a REST Model.\n\n Parameters\n ----------\n resource : str\n The REST endpoint resource name.\n rest : str\n The REST endpoint type: GET, POST, PUT, DELETE\n\n Returns\n -------\n Tuple[ProtoModel, ProtoModel]\n The (body, response) models of the REST request.\n\n '
rest = rest.upper()
matches = []
for model_re in __rest_models.keys():
if re.fullmatch(model_re, resource):
try:
matches.append(__rest_models[model_re][rest])
except KeyError:
pass
if (len(matches) == 0):
raise KeyError(f'REST Model for endpoint {resource} could not be found.')
if (len(matches) > 1):
warnings.warn(f'Multiple REST models were matched for {rest} request at endpoint {resource}. The following models will be used: {matches[0][0]}, {matches[0][1]}.', RuntimeWarning)
return matches[0] | Acquires a REST Model.
Parameters
----------
resource : str
The REST endpoint resource name.
rest : str
The REST endpoint type: GET, POST, PUT, DELETE
Returns
-------
Tuple[ProtoModel, ProtoModel]
The (body, response) models of the REST request. | qcfractal/interface/models/rest_models.py | rest_model | Lnaden/QCFractal | 113 | python | @functools.lru_cache(1000, typed=True)
def rest_model(resource: str, rest: str) -> Tuple[(ProtoModel, ProtoModel)]:
'\n Acquires a REST Model.\n\n Parameters\n ----------\n resource : str\n The REST endpoint resource name.\n rest : str\n The REST endpoint type: GET, POST, PUT, DELETE\n\n Returns\n -------\n Tuple[ProtoModel, ProtoModel]\n The (body, response) models of the REST request.\n\n '
rest = rest.upper()
matches = []
for model_re in __rest_models.keys():
if re.fullmatch(model_re, resource):
try:
matches.append(__rest_models[model_re][rest])
except KeyError:
pass
if (len(matches) == 0):
raise KeyError(f'REST Model for endpoint {resource} could not be found.')
if (len(matches) > 1):
warnings.warn(f'Multiple REST models were matched for {rest} request at endpoint {resource}. The following models will be used: {matches[0][0]}, {matches[0][1]}.', RuntimeWarning)
return matches[0] | @functools.lru_cache(1000, typed=True)
def rest_model(resource: str, rest: str) -> Tuple[(ProtoModel, ProtoModel)]:
'\n Acquires a REST Model.\n\n Parameters\n ----------\n resource : str\n The REST endpoint resource name.\n rest : str\n The REST endpoint type: GET, POST, PUT, DELETE\n\n Returns\n -------\n Tuple[ProtoModel, ProtoModel]\n The (body, response) models of the REST request.\n\n '
rest = rest.upper()
matches = []
for model_re in __rest_models.keys():
if re.fullmatch(model_re, resource):
try:
matches.append(__rest_models[model_re][rest])
except KeyError:
pass
if (len(matches) == 0):
raise KeyError(f'REST Model for endpoint {resource} could not be found.')
if (len(matches) > 1):
warnings.warn(f'Multiple REST models were matched for {rest} request at endpoint {resource}. The following models will be used: {matches[0][0]}, {matches[0][1]}.', RuntimeWarning)
return matches[0]<|docstring|>Acquires a REST Model.
Parameters
----------
resource : str
The REST endpoint resource name.
rest : str
The REST endpoint type: GET, POST, PUT, DELETE
Returns
-------
Tuple[ProtoModel, ProtoModel]
The (body, response) models of the REST request.<|endoftext|> |
f1bbea4d1a5e7fb674d025bf1b56225a11719b3c3e4d3676daf48dd97ca0a6b5 | def merge(self, other: 'ComputeResponse') -> 'ComputeResponse':
'Merges two ComputeResponse objects together. The first takes precedence and order is maintained.\n\n Parameters\n ----------\n other : ComputeResponse\n The compute response to merge\n\n Returns\n -------\n ComputeResponse\n The merged compute response\n '
return ComputeResponse(ids=(self.ids + other.ids), submitted=(self.submitted + other.submitted), existing=(self.existing + other.existing)) | Merges two ComputeResponse objects together. The first takes precedence and order is maintained.
Parameters
----------
other : ComputeResponse
The compute response to merge
Returns
-------
ComputeResponse
The merged compute response | qcfractal/interface/models/rest_models.py | merge | Lnaden/QCFractal | 113 | python | def merge(self, other: 'ComputeResponse') -> 'ComputeResponse':
'Merges two ComputeResponse objects together. The first takes precedence and order is maintained.\n\n Parameters\n ----------\n other : ComputeResponse\n The compute response to merge\n\n Returns\n -------\n ComputeResponse\n The merged compute response\n '
return ComputeResponse(ids=(self.ids + other.ids), submitted=(self.submitted + other.submitted), existing=(self.existing + other.existing)) | def merge(self, other: 'ComputeResponse') -> 'ComputeResponse':
'Merges two ComputeResponse objects together. The first takes precedence and order is maintained.\n\n Parameters\n ----------\n other : ComputeResponse\n The compute response to merge\n\n Returns\n -------\n ComputeResponse\n The merged compute response\n '
return ComputeResponse(ids=(self.ids + other.ids), submitted=(self.submitted + other.submitted), existing=(self.existing + other.existing))<|docstring|>Merges two ComputeResponse objects together. The first takes precedence and order is maintained.
Parameters
----------
other : ComputeResponse
The compute response to merge
Returns
-------
ComputeResponse
The merged compute response<|endoftext|> |
e5b854d099be30d6661acdf9f7cfdc96c19ddc6add87b6e65b115e8c1d0e0eed | @shared_task
def get_wpt_audit_configurations():
'gets all the available locations from WPT'
response = requests.get('https://www.webpagetest.org/getLocations.php?f=json&k=A')
if (response.status_code != 200):
logging.error('Invalid response from WebPageTest API: non-200 response code')
return
try:
data = response.json()['data']
except KeyError:
logging.error("Invalid response from WebPageTest API: 'data' key is not present")
return
for available_audit_parameter in AvailableAuditParameters.objects.all():
available_audit_parameter.is_active = False
available_audit_parameter.save()
for (location, location_data) in data.items():
browsers = location_data['Browsers'].split(',')
group = location_data['group']
label = location_data['labelShort']
for brower in browsers:
(configuration, created) = AvailableAuditParameters.objects.update_or_create(browser=brower, location=location, defaults={'location_label': label, 'location_group': group, 'is_active': True}) | gets all the available locations from WPT | backend/audits/tasks.py | get_wpt_audit_configurations | donroyco/falco | 1 | python | @shared_task
def get_wpt_audit_configurations():
response = requests.get('https://www.webpagetest.org/getLocations.php?f=json&k=A')
if (response.status_code != 200):
logging.error('Invalid response from WebPageTest API: non-200 response code')
return
try:
data = response.json()['data']
except KeyError:
logging.error("Invalid response from WebPageTest API: 'data' key is not present")
return
for available_audit_parameter in AvailableAuditParameters.objects.all():
available_audit_parameter.is_active = False
available_audit_parameter.save()
for (location, location_data) in data.items():
browsers = location_data['Browsers'].split(',')
group = location_data['group']
label = location_data['labelShort']
for brower in browsers:
(configuration, created) = AvailableAuditParameters.objects.update_or_create(browser=brower, location=location, defaults={'location_label': label, 'location_group': group, 'is_active': True}) | @shared_task
def get_wpt_audit_configurations():
response = requests.get('https://www.webpagetest.org/getLocations.php?f=json&k=A')
if (response.status_code != 200):
logging.error('Invalid response from WebPageTest API: non-200 response code')
return
try:
data = response.json()['data']
except KeyError:
logging.error("Invalid response from WebPageTest API: 'data' key is not present")
return
for available_audit_parameter in AvailableAuditParameters.objects.all():
available_audit_parameter.is_active = False
available_audit_parameter.save()
for (location, location_data) in data.items():
browsers = location_data['Browsers'].split(',')
group = location_data['group']
label = location_data['labelShort']
for brower in browsers:
(configuration, created) = AvailableAuditParameters.objects.update_or_create(browser=brower, location=location, defaults={'location_label': label, 'location_group': group, 'is_active': True})<|docstring|>gets all the available locations from WPT<|endoftext|> |
abca46c46a5bc542494a81a93265f5dead49df690aceaf76c125bd126968d401 | def testGetData(self):
'\n 测试getData\n :return:\n '
self.listTemplate1.set_background_image('http://back-img.com')
listTemplateItem1 = ListTemplateItem()
listTemplateItem1.set_image('http://item-img1.com', '123', '345')
listTemplateItem1.set_plain_primary_text('Plain Primary Text')
listTemplateItem1.set_plain_secondary_text('Plain Secondary Text')
listTemplateItem1.set_tertiary_text('Plain Tertiary Text')
listTemplateItem1.data['token'] = 'token'
listTemplateItem2 = ListTemplateItem()
listTemplateItem2.set_image('http://item-img2.com', '12', '45')
listTemplateItem2.set_plain_primary_text('Plain Primary Text')
listTemplateItem2.set_plain_secondary_text('Plain Secondary Text')
listTemplateItem2.set_tertiary_text('Plain Tertiary Text')
listTemplateItem2.data['token'] = 'token'
self.listTemplate1.add_item(listTemplateItem1)
self.listTemplate1.add_item(listTemplateItem2)
data = self.listTemplate1.get_data()
data['token'] = 'token'
ret = {'type': 'ListTemplate1', 'token': 'token', 'backgroundImage': {'url': 'http://back-img.com'}, 'listItems': [{'token': 'token', 'image': {'url': 'http://item-img1.com', 'widthPixels': '123', 'heightPixels': '345'}, 'textContent': {'primaryText': {'type': 'PlainText', 'text': 'Plain Primary Text'}, 'secondaryText': {'type': 'PlainText', 'text': 'Plain Secondary Text'}, 'tertiaryText': {'type': 'PlainText', 'text': 'Plain Tertiary Text'}}}, {'token': 'token', 'image': {'url': 'http://item-img2.com', 'widthPixels': '12', 'heightPixels': '45'}, 'textContent': {'primaryText': {'type': 'PlainText', 'text': 'Plain Primary Text'}, 'secondaryText': {'type': 'PlainText', 'text': 'Plain Secondary Text'}, 'tertiaryText': {'type': 'PlainText', 'text': 'Plain Tertiary Text'}}}]}
self.assertEqual(self.listTemplate1.get_data(), ret) | 测试getData
:return: | dueros/tests/directive/display/template/ListTemplate1Test.py | testGetData | ayxue/BaiduSaxoOpenAPI | 0 | python | def testGetData(self):
'\n 测试getData\n :return:\n '
self.listTemplate1.set_background_image('http://back-img.com')
listTemplateItem1 = ListTemplateItem()
listTemplateItem1.set_image('http://item-img1.com', '123', '345')
listTemplateItem1.set_plain_primary_text('Plain Primary Text')
listTemplateItem1.set_plain_secondary_text('Plain Secondary Text')
listTemplateItem1.set_tertiary_text('Plain Tertiary Text')
listTemplateItem1.data['token'] = 'token'
listTemplateItem2 = ListTemplateItem()
listTemplateItem2.set_image('http://item-img2.com', '12', '45')
listTemplateItem2.set_plain_primary_text('Plain Primary Text')
listTemplateItem2.set_plain_secondary_text('Plain Secondary Text')
listTemplateItem2.set_tertiary_text('Plain Tertiary Text')
listTemplateItem2.data['token'] = 'token'
self.listTemplate1.add_item(listTemplateItem1)
self.listTemplate1.add_item(listTemplateItem2)
data = self.listTemplate1.get_data()
data['token'] = 'token'
ret = {'type': 'ListTemplate1', 'token': 'token', 'backgroundImage': {'url': 'http://back-img.com'}, 'listItems': [{'token': 'token', 'image': {'url': 'http://item-img1.com', 'widthPixels': '123', 'heightPixels': '345'}, 'textContent': {'primaryText': {'type': 'PlainText', 'text': 'Plain Primary Text'}, 'secondaryText': {'type': 'PlainText', 'text': 'Plain Secondary Text'}, 'tertiaryText': {'type': 'PlainText', 'text': 'Plain Tertiary Text'}}}, {'token': 'token', 'image': {'url': 'http://item-img2.com', 'widthPixels': '12', 'heightPixels': '45'}, 'textContent': {'primaryText': {'type': 'PlainText', 'text': 'Plain Primary Text'}, 'secondaryText': {'type': 'PlainText', 'text': 'Plain Secondary Text'}, 'tertiaryText': {'type': 'PlainText', 'text': 'Plain Tertiary Text'}}}]}
self.assertEqual(self.listTemplate1.get_data(), ret) | def testGetData(self):
'\n 测试getData\n :return:\n '
self.listTemplate1.set_background_image('http://back-img.com')
listTemplateItem1 = ListTemplateItem()
listTemplateItem1.set_image('http://item-img1.com', '123', '345')
listTemplateItem1.set_plain_primary_text('Plain Primary Text')
listTemplateItem1.set_plain_secondary_text('Plain Secondary Text')
listTemplateItem1.set_tertiary_text('Plain Tertiary Text')
listTemplateItem1.data['token'] = 'token'
listTemplateItem2 = ListTemplateItem()
listTemplateItem2.set_image('http://item-img2.com', '12', '45')
listTemplateItem2.set_plain_primary_text('Plain Primary Text')
listTemplateItem2.set_plain_secondary_text('Plain Secondary Text')
listTemplateItem2.set_tertiary_text('Plain Tertiary Text')
listTemplateItem2.data['token'] = 'token'
self.listTemplate1.add_item(listTemplateItem1)
self.listTemplate1.add_item(listTemplateItem2)
data = self.listTemplate1.get_data()
data['token'] = 'token'
ret = {'type': 'ListTemplate1', 'token': 'token', 'backgroundImage': {'url': 'http://back-img.com'}, 'listItems': [{'token': 'token', 'image': {'url': 'http://item-img1.com', 'widthPixels': '123', 'heightPixels': '345'}, 'textContent': {'primaryText': {'type': 'PlainText', 'text': 'Plain Primary Text'}, 'secondaryText': {'type': 'PlainText', 'text': 'Plain Secondary Text'}, 'tertiaryText': {'type': 'PlainText', 'text': 'Plain Tertiary Text'}}}, {'token': 'token', 'image': {'url': 'http://item-img2.com', 'widthPixels': '12', 'heightPixels': '45'}, 'textContent': {'primaryText': {'type': 'PlainText', 'text': 'Plain Primary Text'}, 'secondaryText': {'type': 'PlainText', 'text': 'Plain Secondary Text'}, 'tertiaryText': {'type': 'PlainText', 'text': 'Plain Tertiary Text'}}}]}
self.assertEqual(self.listTemplate1.get_data(), ret)<|docstring|>测试getData
:return:<|endoftext|> |
1b3783de347bb9620deb04f90817aef81d0a5914ec74b30ae46ae3f108abf81b | def es_home():
'\n :return: Returns Urls for ElasticSearch services\n '
path = "Urls for ElasticSearch services:\n '/start/': 'elasticsearch_start'\n '/stop/': 'elasticsearch_stop'\n '/restart/': 'elasticsearch_restart'"
return path | :return: Returns Urls for ElasticSearch services | agent/src/ElasticSearch/run_es_services.py | es_home | ekbanasolutions/aditas | 2 | python | def es_home():
'\n \n '
path = "Urls for ElasticSearch services:\n '/start/': 'elasticsearch_start'\n '/stop/': 'elasticsearch_stop'\n '/restart/': 'elasticsearch_restart'"
return path | def es_home():
'\n \n '
path = "Urls for ElasticSearch services:\n '/start/': 'elasticsearch_start'\n '/stop/': 'elasticsearch_stop'\n '/restart/': 'elasticsearch_restart'"
return path<|docstring|>:return: Returns Urls for ElasticSearch services<|endoftext|> |
a2992f742e5fc0f5b64a7f91c2612b1870a38b2e5e053d2688b2b6cd22efcb56 | def elasticsearch_start():
'\n Starts \n :return: Returns success if es_start_cmd command executes successfully or error message is shown\n '
log.info('\nStarting elasticsearch\n')
header_key = request.headers.get('API-KEY')
api_status = check_apiKey(header_key)
if (api_status == 'success'):
loaded_json = json.loads(request.data.decode())
cluster_id = loaded_json['cluster_id']
return es_start(cluster_id)
else:
return api_status | Starts
:return: Returns success if es_start_cmd command executes successfully or error message is shown | agent/src/ElasticSearch/run_es_services.py | elasticsearch_start | ekbanasolutions/aditas | 2 | python | def elasticsearch_start():
'\n Starts \n :return: Returns success if es_start_cmd command executes successfully or error message is shown\n '
log.info('\nStarting elasticsearch\n')
header_key = request.headers.get('API-KEY')
api_status = check_apiKey(header_key)
if (api_status == 'success'):
loaded_json = json.loads(request.data.decode())
cluster_id = loaded_json['cluster_id']
return es_start(cluster_id)
else:
return api_status | def elasticsearch_start():
'\n Starts \n :return: Returns success if es_start_cmd command executes successfully or error message is shown\n '
log.info('\nStarting elasticsearch\n')
header_key = request.headers.get('API-KEY')
api_status = check_apiKey(header_key)
if (api_status == 'success'):
loaded_json = json.loads(request.data.decode())
cluster_id = loaded_json['cluster_id']
return es_start(cluster_id)
else:
return api_status<|docstring|>Starts
:return: Returns success if es_start_cmd command executes successfully or error message is shown<|endoftext|> |
dfa68d1df3cb3e23f745df4c4b9c3183b2df68863645ffcc662e7d022708182c | def elasticsearch_stop():
'\n Stops\n :return: Returns success if es_stop_cmd command executes successfully or error message is shown\n '
log.info('\nStopping elasticsearch\n')
header_key = request.headers.get('API-KEY')
api_status = check_apiKey(header_key)
if (api_status == 'success'):
loaded_json = json.loads(request.data.decode())
cluster_id = loaded_json['cluster_id']
return es_stop(cluster_id)
else:
return api_status | Stops
:return: Returns success if es_stop_cmd command executes successfully or error message is shown | agent/src/ElasticSearch/run_es_services.py | elasticsearch_stop | ekbanasolutions/aditas | 2 | python | def elasticsearch_stop():
'\n Stops\n :return: Returns success if es_stop_cmd command executes successfully or error message is shown\n '
log.info('\nStopping elasticsearch\n')
header_key = request.headers.get('API-KEY')
api_status = check_apiKey(header_key)
if (api_status == 'success'):
loaded_json = json.loads(request.data.decode())
cluster_id = loaded_json['cluster_id']
return es_stop(cluster_id)
else:
return api_status | def elasticsearch_stop():
'\n Stops\n :return: Returns success if es_stop_cmd command executes successfully or error message is shown\n '
log.info('\nStopping elasticsearch\n')
header_key = request.headers.get('API-KEY')
api_status = check_apiKey(header_key)
if (api_status == 'success'):
loaded_json = json.loads(request.data.decode())
cluster_id = loaded_json['cluster_id']
return es_stop(cluster_id)
else:
return api_status<|docstring|>Stops
:return: Returns success if es_stop_cmd command executes successfully or error message is shown<|endoftext|> |
3af917aa136f3a723d3922068d526e61121d66b59afe2077f42689eaa5428f26 | def elasticsearch_restart():
'\n Restarts elasticsearch\n '
log.info('\nRestarting ES\n')
header_key = request.headers.get('API-KEY')
api_status = check_apiKey(header_key)
if (api_status == 'success'):
loaded_json = json.loads(request.data.decode())
cluster_id = loaded_json['cluster_id']
stop = json.loads(es_stop(cluster_id))
if stop['success']:
start = json.loads(es_start(cluster_id))
if start['success']:
return '{"success": 1, "msg": ["Successfully Restarted Elasticsearch"]}'
else:
return '{"success": 0, "msg": ["Error Restarting Elasticsearch!!!"]}'
else:
return '{"success": 0, "msg": ["Error Restarting Elasticsearch!!!"]}'
else:
return api_status | Restarts elasticsearch | agent/src/ElasticSearch/run_es_services.py | elasticsearch_restart | ekbanasolutions/aditas | 2 | python | def elasticsearch_restart():
'\n \n '
log.info('\nRestarting ES\n')
header_key = request.headers.get('API-KEY')
api_status = check_apiKey(header_key)
if (api_status == 'success'):
loaded_json = json.loads(request.data.decode())
cluster_id = loaded_json['cluster_id']
stop = json.loads(es_stop(cluster_id))
if stop['success']:
start = json.loads(es_start(cluster_id))
if start['success']:
return '{"success": 1, "msg": ["Successfully Restarted Elasticsearch"]}'
else:
return '{"success": 0, "msg": ["Error Restarting Elasticsearch!!!"]}'
else:
return '{"success": 0, "msg": ["Error Restarting Elasticsearch!!!"]}'
else:
return api_status | def elasticsearch_restart():
'\n \n '
log.info('\nRestarting ES\n')
header_key = request.headers.get('API-KEY')
api_status = check_apiKey(header_key)
if (api_status == 'success'):
loaded_json = json.loads(request.data.decode())
cluster_id = loaded_json['cluster_id']
stop = json.loads(es_stop(cluster_id))
if stop['success']:
start = json.loads(es_start(cluster_id))
if start['success']:
return '{"success": 1, "msg": ["Successfully Restarted Elasticsearch"]}'
else:
return '{"success": 0, "msg": ["Error Restarting Elasticsearch!!!"]}'
else:
return '{"success": 0, "msg": ["Error Restarting Elasticsearch!!!"]}'
else:
return api_status<|docstring|>Restarts elasticsearch<|endoftext|> |
d1a014a6b61cbeabf7c2cb3b3ee36a6214dd7662999943dcb4b335c81fb503e2 | def count_lf_r10(z, loglir, area=0, zrange=[0.0, 0.0]):
'This is to count how many objects are above loglir\n area and zrange must be set simultaneously\n '
if (area > 0):
skyfrac = (float(area) / 41253.0)
k = (0.0089 * ((1 + z) ** 1.1))
sigma = 0.7
lstar = (1770000000.0 * ((1 + z) ** 2.7))
lf = np.zeros((len(z), len(loglir)), dtype='float32')
for i in np.arange(len(z)):
lf[(i, :)] = ((k[i] * (((10 ** loglir) / lstar[i]) ** (1 - 1.2))) * np.exp((((- 1) / (2 * (sigma ** 2))) * (np.log10((1 + ((10 ** loglir) / lstar[i]))) ** 2))))
return lf | This is to count how many objects are above loglir
area and zrange must be set simultaneously | ctc_lf.py | count_lf_r10 | CTJChen/ctc_astropylib | 0 | python | def count_lf_r10(z, loglir, area=0, zrange=[0.0, 0.0]):
'This is to count how many objects are above loglir\n area and zrange must be set simultaneously\n '
if (area > 0):
skyfrac = (float(area) / 41253.0)
k = (0.0089 * ((1 + z) ** 1.1))
sigma = 0.7
lstar = (1770000000.0 * ((1 + z) ** 2.7))
lf = np.zeros((len(z), len(loglir)), dtype='float32')
for i in np.arange(len(z)):
lf[(i, :)] = ((k[i] * (((10 ** loglir) / lstar[i]) ** (1 - 1.2))) * np.exp((((- 1) / (2 * (sigma ** 2))) * (np.log10((1 + ((10 ** loglir) / lstar[i]))) ** 2))))
return lf | def count_lf_r10(z, loglir, area=0, zrange=[0.0, 0.0]):
'This is to count how many objects are above loglir\n area and zrange must be set simultaneously\n '
if (area > 0):
skyfrac = (float(area) / 41253.0)
k = (0.0089 * ((1 + z) ** 1.1))
sigma = 0.7
lstar = (1770000000.0 * ((1 + z) ** 2.7))
lf = np.zeros((len(z), len(loglir)), dtype='float32')
for i in np.arange(len(z)):
lf[(i, :)] = ((k[i] * (((10 ** loglir) / lstar[i]) ** (1 - 1.2))) * np.exp((((- 1) / (2 * (sigma ** 2))) * (np.log10((1 + ((10 ** loglir) / lstar[i]))) ** 2))))
return lf<|docstring|>This is to count how many objects are above loglir
area and zrange must be set simultaneously<|endoftext|> |
01d6f638d017063965dc3332676ff628b6db0b4c22c24fc93933ada4ae4d7250 | def Start(self):
'Get information about the file from the client.'
self.state.max_chunk_number = max(2, (self.args.read_length // self.CHUNK_SIZE))
self.state.current_chunk_number = 0
self.state.file_size = 0
self.state.blobs = []
self.state.stat_entry = None
self.state.num_bytes_collected = 0
self.state.target_pathspec = self.args.pathspec.Copy()
if ((not self.client_version) or (self.client_version >= 3221)):
stub = server_stubs.GetFileStat
request = rdf_client_action.GetFileStatRequest(pathspec=self.state.target_pathspec, follow_symlink=True)
else:
stub = server_stubs.StatFile
request = rdf_client_action.ListDirRequest(pathspec=self.state.target_pathspec)
self.CallClient(stub, request, next_state=compatibility.GetName(self.Stat)) | Get information about the file from the client. | grr/server/grr_response_server/flows/general/transfer.py | Start | max-vogler/grr | 4,238 | python | def Start(self):
self.state.max_chunk_number = max(2, (self.args.read_length // self.CHUNK_SIZE))
self.state.current_chunk_number = 0
self.state.file_size = 0
self.state.blobs = []
self.state.stat_entry = None
self.state.num_bytes_collected = 0
self.state.target_pathspec = self.args.pathspec.Copy()
if ((not self.client_version) or (self.client_version >= 3221)):
stub = server_stubs.GetFileStat
request = rdf_client_action.GetFileStatRequest(pathspec=self.state.target_pathspec, follow_symlink=True)
else:
stub = server_stubs.StatFile
request = rdf_client_action.ListDirRequest(pathspec=self.state.target_pathspec)
self.CallClient(stub, request, next_state=compatibility.GetName(self.Stat)) | def Start(self):
self.state.max_chunk_number = max(2, (self.args.read_length // self.CHUNK_SIZE))
self.state.current_chunk_number = 0
self.state.file_size = 0
self.state.blobs = []
self.state.stat_entry = None
self.state.num_bytes_collected = 0
self.state.target_pathspec = self.args.pathspec.Copy()
if ((not self.client_version) or (self.client_version >= 3221)):
stub = server_stubs.GetFileStat
request = rdf_client_action.GetFileStatRequest(pathspec=self.state.target_pathspec, follow_symlink=True)
else:
stub = server_stubs.StatFile
request = rdf_client_action.ListDirRequest(pathspec=self.state.target_pathspec)
self.CallClient(stub, request, next_state=compatibility.GetName(self.Stat))<|docstring|>Get information about the file from the client.<|endoftext|> |
4fa52a20d0acf625655a1a5c07a84778299a15215b579aa469ffa132e21085fa | def Stat(self, responses):
'Fix up the pathspec of the file.'
response = responses.First()
file_size_known = True
if (responses.success and response):
if stat.S_ISDIR(int(response.st_mode)):
raise ValueError('`GetFile` called on a directory')
if ((not stat.S_ISREG(int(response.st_mode))) and (response.st_size == 0)):
file_size_known = False
self.state.stat_entry = response
else:
if (not self.args.ignore_stat_failure):
raise IOError(('Error: %s' % responses.status))
self.state.stat_entry = rdf_client_fs.StatEntry(pathspec=self.state.target_pathspec)
file_size_known = False
if (not file_size_known):
if ((not self.state.target_pathspec.HasField('file_size_override')) and (not self.args.read_length)):
raise ValueError("The file couldn't be stat-ed. Either read_length or pathspec.file_size_override has to be provided.")
if (self.args.read_length == 0):
self.state.stat_entry.st_size = self.state.target_pathspec.file_size_override
else:
self.state.stat_entry.st_size = (self.state.target_pathspec.offset + self.args.read_length)
if (self.args.read_length == 0):
self.state.file_size = max(0, (self.state.stat_entry.st_size - self.state.stat_entry.pathspec.offset))
else:
self.state.file_size = self.args.read_length
if (not self.state.target_pathspec.HasField('file_size_override')):
self.state.target_pathspec.file_size_override = (self.state.target_pathspec.offset + self.args.read_length)
self.state.max_chunk_number = ((self.state.file_size // self.CHUNK_SIZE) + 1)
self.FetchWindow(min(self.WINDOW_SIZE, (self.state.max_chunk_number - self.state['current_chunk_number']))) | Fix up the pathspec of the file. | grr/server/grr_response_server/flows/general/transfer.py | Stat | max-vogler/grr | 4,238 | python | def Stat(self, responses):
response = responses.First()
file_size_known = True
if (responses.success and response):
if stat.S_ISDIR(int(response.st_mode)):
raise ValueError('`GetFile` called on a directory')
if ((not stat.S_ISREG(int(response.st_mode))) and (response.st_size == 0)):
file_size_known = False
self.state.stat_entry = response
else:
if (not self.args.ignore_stat_failure):
raise IOError(('Error: %s' % responses.status))
self.state.stat_entry = rdf_client_fs.StatEntry(pathspec=self.state.target_pathspec)
file_size_known = False
if (not file_size_known):
if ((not self.state.target_pathspec.HasField('file_size_override')) and (not self.args.read_length)):
raise ValueError("The file couldn't be stat-ed. Either read_length or pathspec.file_size_override has to be provided.")
if (self.args.read_length == 0):
self.state.stat_entry.st_size = self.state.target_pathspec.file_size_override
else:
self.state.stat_entry.st_size = (self.state.target_pathspec.offset + self.args.read_length)
if (self.args.read_length == 0):
self.state.file_size = max(0, (self.state.stat_entry.st_size - self.state.stat_entry.pathspec.offset))
else:
self.state.file_size = self.args.read_length
if (not self.state.target_pathspec.HasField('file_size_override')):
self.state.target_pathspec.file_size_override = (self.state.target_pathspec.offset + self.args.read_length)
self.state.max_chunk_number = ((self.state.file_size // self.CHUNK_SIZE) + 1)
self.FetchWindow(min(self.WINDOW_SIZE, (self.state.max_chunk_number - self.state['current_chunk_number']))) | def Stat(self, responses):
response = responses.First()
file_size_known = True
if (responses.success and response):
if stat.S_ISDIR(int(response.st_mode)):
raise ValueError('`GetFile` called on a directory')
if ((not stat.S_ISREG(int(response.st_mode))) and (response.st_size == 0)):
file_size_known = False
self.state.stat_entry = response
else:
if (not self.args.ignore_stat_failure):
raise IOError(('Error: %s' % responses.status))
self.state.stat_entry = rdf_client_fs.StatEntry(pathspec=self.state.target_pathspec)
file_size_known = False
if (not file_size_known):
if ((not self.state.target_pathspec.HasField('file_size_override')) and (not self.args.read_length)):
raise ValueError("The file couldn't be stat-ed. Either read_length or pathspec.file_size_override has to be provided.")
if (self.args.read_length == 0):
self.state.stat_entry.st_size = self.state.target_pathspec.file_size_override
else:
self.state.stat_entry.st_size = (self.state.target_pathspec.offset + self.args.read_length)
if (self.args.read_length == 0):
self.state.file_size = max(0, (self.state.stat_entry.st_size - self.state.stat_entry.pathspec.offset))
else:
self.state.file_size = self.args.read_length
if (not self.state.target_pathspec.HasField('file_size_override')):
self.state.target_pathspec.file_size_override = (self.state.target_pathspec.offset + self.args.read_length)
self.state.max_chunk_number = ((self.state.file_size // self.CHUNK_SIZE) + 1)
self.FetchWindow(min(self.WINDOW_SIZE, (self.state.max_chunk_number - self.state['current_chunk_number'])))<|docstring|>Fix up the pathspec of the file.<|endoftext|> |
3fe70c30b2527830d0d02f16650ef030320cc341ab024c052b9bc3d768df6e4a | def FetchWindow(self, number_of_chunks_to_readahead):
'Read ahead a number of buffers to fill the window.'
for _ in range(number_of_chunks_to_readahead):
next_offset = (self.state.current_chunk_number * self.CHUNK_SIZE)
if (next_offset >= self.state.file_size):
return
request = rdf_client.BufferReference(pathspec=self.state.target_pathspec, offset=next_offset, length=min((self.state.file_size - next_offset), self.CHUNK_SIZE))
self.CallClient(server_stubs.TransferBuffer, request, next_state=compatibility.GetName(self.ReadBuffer))
self.state.current_chunk_number += 1 | Read ahead a number of buffers to fill the window. | grr/server/grr_response_server/flows/general/transfer.py | FetchWindow | max-vogler/grr | 4,238 | python | def FetchWindow(self, number_of_chunks_to_readahead):
for _ in range(number_of_chunks_to_readahead):
next_offset = (self.state.current_chunk_number * self.CHUNK_SIZE)
if (next_offset >= self.state.file_size):
return
request = rdf_client.BufferReference(pathspec=self.state.target_pathspec, offset=next_offset, length=min((self.state.file_size - next_offset), self.CHUNK_SIZE))
self.CallClient(server_stubs.TransferBuffer, request, next_state=compatibility.GetName(self.ReadBuffer))
self.state.current_chunk_number += 1 | def FetchWindow(self, number_of_chunks_to_readahead):
for _ in range(number_of_chunks_to_readahead):
next_offset = (self.state.current_chunk_number * self.CHUNK_SIZE)
if (next_offset >= self.state.file_size):
return
request = rdf_client.BufferReference(pathspec=self.state.target_pathspec, offset=next_offset, length=min((self.state.file_size - next_offset), self.CHUNK_SIZE))
self.CallClient(server_stubs.TransferBuffer, request, next_state=compatibility.GetName(self.ReadBuffer))
self.state.current_chunk_number += 1<|docstring|>Read ahead a number of buffers to fill the window.<|endoftext|> |
21529f1abfbb13110f1273fe265762950e64ffa1128633fa83a9e08fdaf07942 | def ReadBuffer(self, responses):
'Read the buffer and write to the file.'
if (not responses.success):
return
response = responses.First()
if (not response):
raise IOError(('Missing hash for offset %s missing' % response.offset))
self.state.num_bytes_collected += response.length
if (response.offset <= (self.state.max_chunk_number * self.CHUNK_SIZE)):
self.state.blobs.append((response.data, response.length))
self.Log('Received blob hash %s', text.Hexify(response.data))
self.FetchWindow(1) | Read the buffer and write to the file. | grr/server/grr_response_server/flows/general/transfer.py | ReadBuffer | max-vogler/grr | 4,238 | python | def ReadBuffer(self, responses):
if (not responses.success):
return
response = responses.First()
if (not response):
raise IOError(('Missing hash for offset %s missing' % response.offset))
self.state.num_bytes_collected += response.length
if (response.offset <= (self.state.max_chunk_number * self.CHUNK_SIZE)):
self.state.blobs.append((response.data, response.length))
self.Log('Received blob hash %s', text.Hexify(response.data))
self.FetchWindow(1) | def ReadBuffer(self, responses):
if (not responses.success):
return
response = responses.First()
if (not response):
raise IOError(('Missing hash for offset %s missing' % response.offset))
self.state.num_bytes_collected += response.length
if (response.offset <= (self.state.max_chunk_number * self.CHUNK_SIZE)):
self.state.blobs.append((response.data, response.length))
self.Log('Received blob hash %s', text.Hexify(response.data))
self.FetchWindow(1)<|docstring|>Read the buffer and write to the file.<|endoftext|> |
8832cb1896dd1fb7210bc64698caa56865932e14268acf8a97edabf6a6155c5a | def End(self, responses):
'Finalize reading the file.'
if (self.state.num_bytes_collected >= 0):
self._AddFileToFileStore()
stat_entry = self.state.stat_entry
if (self.state.num_bytes_collected >= self.state.file_size):
self.Log('File %s transferred successfully.', stat_entry.AFF4Path(self.client_urn))
else:
self.Log('File %s transferred partially (%d bytes out of %d).', stat_entry.AFF4Path(self.client_urn), self.state.num_bytes_collected, self.state.file_size)
self.SendReply(stat_entry)
else:
self.Log('File transfer failed.')
super().End(responses) | Finalize reading the file. | grr/server/grr_response_server/flows/general/transfer.py | End | max-vogler/grr | 4,238 | python | def End(self, responses):
if (self.state.num_bytes_collected >= 0):
self._AddFileToFileStore()
stat_entry = self.state.stat_entry
if (self.state.num_bytes_collected >= self.state.file_size):
self.Log('File %s transferred successfully.', stat_entry.AFF4Path(self.client_urn))
else:
self.Log('File %s transferred partially (%d bytes out of %d).', stat_entry.AFF4Path(self.client_urn), self.state.num_bytes_collected, self.state.file_size)
self.SendReply(stat_entry)
else:
self.Log('File transfer failed.')
super().End(responses) | def End(self, responses):
if (self.state.num_bytes_collected >= 0):
self._AddFileToFileStore()
stat_entry = self.state.stat_entry
if (self.state.num_bytes_collected >= self.state.file_size):
self.Log('File %s transferred successfully.', stat_entry.AFF4Path(self.client_urn))
else:
self.Log('File %s transferred partially (%d bytes out of %d).', stat_entry.AFF4Path(self.client_urn), self.state.num_bytes_collected, self.state.file_size)
self.SendReply(stat_entry)
else:
self.Log('File transfer failed.')
super().End(responses)<|docstring|>Finalize reading the file.<|endoftext|> |
48ed430c306a3bfc844cea0536f55caa7757dd79509c7117642a9e1f94f7e442 | def Start(self, file_size=0, maximum_pending_files=1000, use_external_stores=False):
'Initialize our state.'
super().Start()
self.state.files_hashed = 0
self.state.use_external_stores = use_external_stores
self.state.file_size = file_size
self.state.files_to_fetch = 0
self.state.files_fetched = 0
self.state.files_skipped = 0
self.state.files_failed = 0
self.state.files_hashed_since_check = 0
self.state.pending_hashes = {}
self.state.pending_files = {}
self.state.maximum_pending_files = maximum_pending_files
self.state.indexed_pathspecs = []
self.state.request_data_list = []
self.state.next_pathspec_to_start = 0
self.state.blob_hashes_pending = 0 | Initialize our state. | grr/server/grr_response_server/flows/general/transfer.py | Start | max-vogler/grr | 4,238 | python | def Start(self, file_size=0, maximum_pending_files=1000, use_external_stores=False):
super().Start()
self.state.files_hashed = 0
self.state.use_external_stores = use_external_stores
self.state.file_size = file_size
self.state.files_to_fetch = 0
self.state.files_fetched = 0
self.state.files_skipped = 0
self.state.files_failed = 0
self.state.files_hashed_since_check = 0
self.state.pending_hashes = {}
self.state.pending_files = {}
self.state.maximum_pending_files = maximum_pending_files
self.state.indexed_pathspecs = []
self.state.request_data_list = []
self.state.next_pathspec_to_start = 0
self.state.blob_hashes_pending = 0 | def Start(self, file_size=0, maximum_pending_files=1000, use_external_stores=False):
super().Start()
self.state.files_hashed = 0
self.state.use_external_stores = use_external_stores
self.state.file_size = file_size
self.state.files_to_fetch = 0
self.state.files_fetched = 0
self.state.files_skipped = 0
self.state.files_failed = 0
self.state.files_hashed_since_check = 0
self.state.pending_hashes = {}
self.state.pending_files = {}
self.state.maximum_pending_files = maximum_pending_files
self.state.indexed_pathspecs = []
self.state.request_data_list = []
self.state.next_pathspec_to_start = 0
self.state.blob_hashes_pending = 0<|docstring|>Initialize our state.<|endoftext|> |
cd4fba73e969650f1fc8c7d6639fd3eb6163e5fe28473ade1ea7565a49460917 | def StartFileFetch(self, pathspec, request_data=None):
'The entry point for this flow mixin - Schedules new file transfer.'
self.state.indexed_pathspecs.append(pathspec)
self.state.request_data_list.append(request_data)
self._TryToStartNextPathspec() | The entry point for this flow mixin - Schedules new file transfer. | grr/server/grr_response_server/flows/general/transfer.py | StartFileFetch | max-vogler/grr | 4,238 | python | def StartFileFetch(self, pathspec, request_data=None):
self.state.indexed_pathspecs.append(pathspec)
self.state.request_data_list.append(request_data)
self._TryToStartNextPathspec() | def StartFileFetch(self, pathspec, request_data=None):
self.state.indexed_pathspecs.append(pathspec)
self.state.request_data_list.append(request_data)
self._TryToStartNextPathspec()<|docstring|>The entry point for this flow mixin - Schedules new file transfer.<|endoftext|> |
7f279996bde43873d31e397783ab9fa210cf269361dc7a341f792bb2bdce9aeb | def _TryToStartNextPathspec(self):
'Try to schedule the next pathspec if there is enough capacity.'
if (self.state.maximum_pending_files <= len(self.state.pending_files)):
return
if (self.state.maximum_pending_files <= len(self.state.pending_hashes)):
return
try:
index = self.state.next_pathspec_to_start
pathspec = self.state.indexed_pathspecs[index]
self.state.next_pathspec_to_start = (index + 1)
except IndexError:
return
self.state.pending_hashes[index] = {'index': index}
if ((not self.client_version) or (self.client_version >= 3221)):
stub = server_stubs.GetFileStat
request = rdf_client_action.GetFileStatRequest(pathspec=pathspec)
request.follow_symlink = True
request_name = 'GetFileStat'
else:
stub = server_stubs.StatFile
request = rdf_client_action.ListDirRequest(pathspec=pathspec)
request_name = 'StatFile'
self.CallClient(stub, request, next_state=compatibility.GetName(self._StoreStat), request_data=dict(index=index, request_name=request_name))
request = rdf_client_action.FingerprintRequest(pathspec=pathspec, max_filesize=self.state.file_size)
request.AddRequest(fp_type=rdf_client_action.FingerprintTuple.Type.FPT_GENERIC, hashers=[rdf_client_action.FingerprintTuple.HashType.MD5, rdf_client_action.FingerprintTuple.HashType.SHA1, rdf_client_action.FingerprintTuple.HashType.SHA256])
self.CallClient(server_stubs.HashFile, request, next_state=compatibility.GetName(self._ReceiveFileHash), request_data=dict(index=index)) | Try to schedule the next pathspec if there is enough capacity. | grr/server/grr_response_server/flows/general/transfer.py | _TryToStartNextPathspec | max-vogler/grr | 4,238 | python | def _TryToStartNextPathspec(self):
if (self.state.maximum_pending_files <= len(self.state.pending_files)):
return
if (self.state.maximum_pending_files <= len(self.state.pending_hashes)):
return
try:
index = self.state.next_pathspec_to_start
pathspec = self.state.indexed_pathspecs[index]
self.state.next_pathspec_to_start = (index + 1)
except IndexError:
return
self.state.pending_hashes[index] = {'index': index}
if ((not self.client_version) or (self.client_version >= 3221)):
stub = server_stubs.GetFileStat
request = rdf_client_action.GetFileStatRequest(pathspec=pathspec)
request.follow_symlink = True
request_name = 'GetFileStat'
else:
stub = server_stubs.StatFile
request = rdf_client_action.ListDirRequest(pathspec=pathspec)
request_name = 'StatFile'
self.CallClient(stub, request, next_state=compatibility.GetName(self._StoreStat), request_data=dict(index=index, request_name=request_name))
request = rdf_client_action.FingerprintRequest(pathspec=pathspec, max_filesize=self.state.file_size)
request.AddRequest(fp_type=rdf_client_action.FingerprintTuple.Type.FPT_GENERIC, hashers=[rdf_client_action.FingerprintTuple.HashType.MD5, rdf_client_action.FingerprintTuple.HashType.SHA1, rdf_client_action.FingerprintTuple.HashType.SHA256])
self.CallClient(server_stubs.HashFile, request, next_state=compatibility.GetName(self._ReceiveFileHash), request_data=dict(index=index)) | def _TryToStartNextPathspec(self):
if (self.state.maximum_pending_files <= len(self.state.pending_files)):
return
if (self.state.maximum_pending_files <= len(self.state.pending_hashes)):
return
try:
index = self.state.next_pathspec_to_start
pathspec = self.state.indexed_pathspecs[index]
self.state.next_pathspec_to_start = (index + 1)
except IndexError:
return
self.state.pending_hashes[index] = {'index': index}
if ((not self.client_version) or (self.client_version >= 3221)):
stub = server_stubs.GetFileStat
request = rdf_client_action.GetFileStatRequest(pathspec=pathspec)
request.follow_symlink = True
request_name = 'GetFileStat'
else:
stub = server_stubs.StatFile
request = rdf_client_action.ListDirRequest(pathspec=pathspec)
request_name = 'StatFile'
self.CallClient(stub, request, next_state=compatibility.GetName(self._StoreStat), request_data=dict(index=index, request_name=request_name))
request = rdf_client_action.FingerprintRequest(pathspec=pathspec, max_filesize=self.state.file_size)
request.AddRequest(fp_type=rdf_client_action.FingerprintTuple.Type.FPT_GENERIC, hashers=[rdf_client_action.FingerprintTuple.HashType.MD5, rdf_client_action.FingerprintTuple.HashType.SHA1, rdf_client_action.FingerprintTuple.HashType.SHA256])
self.CallClient(server_stubs.HashFile, request, next_state=compatibility.GetName(self._ReceiveFileHash), request_data=dict(index=index))<|docstring|>Try to schedule the next pathspec if there is enough capacity.<|endoftext|> |
018b884e16fa9029614220cbf6274c01ad30e6f76c416459d6e30c38a2f354c6 | def _RemoveCompletedPathspec(self, index):
'Removes a pathspec from the list of pathspecs.'
pathspec = self.state.indexed_pathspecs[index]
request_data = self.state.request_data_list[index]
self.state.indexed_pathspecs[index] = None
self.state.request_data_list[index] = None
self.state.pending_hashes.pop(index, None)
self.state.pending_files.pop(index, None)
self._TryToStartNextPathspec()
return (pathspec, request_data) | Removes a pathspec from the list of pathspecs. | grr/server/grr_response_server/flows/general/transfer.py | _RemoveCompletedPathspec | max-vogler/grr | 4,238 | python | def _RemoveCompletedPathspec(self, index):
pathspec = self.state.indexed_pathspecs[index]
request_data = self.state.request_data_list[index]
self.state.indexed_pathspecs[index] = None
self.state.request_data_list[index] = None
self.state.pending_hashes.pop(index, None)
self.state.pending_files.pop(index, None)
self._TryToStartNextPathspec()
return (pathspec, request_data) | def _RemoveCompletedPathspec(self, index):
pathspec = self.state.indexed_pathspecs[index]
request_data = self.state.request_data_list[index]
self.state.indexed_pathspecs[index] = None
self.state.request_data_list[index] = None
self.state.pending_hashes.pop(index, None)
self.state.pending_files.pop(index, None)
self._TryToStartNextPathspec()
return (pathspec, request_data)<|docstring|>Removes a pathspec from the list of pathspecs.<|endoftext|> |
bcc3f1af6927af70716f6f8138e942209962bdaa39d975f277780adeebf20fab | def _ReceiveFetchedFile(self, tracker, is_duplicate=False):
'Remove pathspec for this index and call the ReceiveFetchedFile method.'
index = tracker['index']
(_, request_data) = self._RemoveCompletedPathspec(index)
self.ReceiveFetchedFile(tracker['stat_entry'], tracker['hash_obj'], request_data=request_data, is_duplicate=is_duplicate) | Remove pathspec for this index and call the ReceiveFetchedFile method. | grr/server/grr_response_server/flows/general/transfer.py | _ReceiveFetchedFile | max-vogler/grr | 4,238 | python | def _ReceiveFetchedFile(self, tracker, is_duplicate=False):
index = tracker['index']
(_, request_data) = self._RemoveCompletedPathspec(index)
self.ReceiveFetchedFile(tracker['stat_entry'], tracker['hash_obj'], request_data=request_data, is_duplicate=is_duplicate) | def _ReceiveFetchedFile(self, tracker, is_duplicate=False):
index = tracker['index']
(_, request_data) = self._RemoveCompletedPathspec(index)
self.ReceiveFetchedFile(tracker['stat_entry'], tracker['hash_obj'], request_data=request_data, is_duplicate=is_duplicate)<|docstring|>Remove pathspec for this index and call the ReceiveFetchedFile method.<|endoftext|> |
0ebc0d8dfca9f05f06bd967c4c5454c6e9dcc26efb2e290165698d7a72e33981 | def ReceiveFetchedFile(self, stat_entry, file_hash, request_data=None, is_duplicate=False):
"This method will be called for each new file successfully fetched.\n\n Args:\n stat_entry: rdf_client_fs.StatEntry object describing the file.\n file_hash: rdf_crypto.Hash object with file hashes.\n request_data: Arbitrary dictionary that was passed to the corresponding\n StartFileFetch call.\n is_duplicate: If True, the file wasn't actually collected as its hash was\n found in the filestore.\n " | This method will be called for each new file successfully fetched.
Args:
stat_entry: rdf_client_fs.StatEntry object describing the file.
file_hash: rdf_crypto.Hash object with file hashes.
request_data: Arbitrary dictionary that was passed to the corresponding
StartFileFetch call.
is_duplicate: If True, the file wasn't actually collected as its hash was
found in the filestore. | grr/server/grr_response_server/flows/general/transfer.py | ReceiveFetchedFile | max-vogler/grr | 4,238 | python | def ReceiveFetchedFile(self, stat_entry, file_hash, request_data=None, is_duplicate=False):
"This method will be called for each new file successfully fetched.\n\n Args:\n stat_entry: rdf_client_fs.StatEntry object describing the file.\n file_hash: rdf_crypto.Hash object with file hashes.\n request_data: Arbitrary dictionary that was passed to the corresponding\n StartFileFetch call.\n is_duplicate: If True, the file wasn't actually collected as its hash was\n found in the filestore.\n " | def ReceiveFetchedFile(self, stat_entry, file_hash, request_data=None, is_duplicate=False):
"This method will be called for each new file successfully fetched.\n\n Args:\n stat_entry: rdf_client_fs.StatEntry object describing the file.\n file_hash: rdf_crypto.Hash object with file hashes.\n request_data: Arbitrary dictionary that was passed to the corresponding\n StartFileFetch call.\n is_duplicate: If True, the file wasn't actually collected as its hash was\n found in the filestore.\n "<|docstring|>This method will be called for each new file successfully fetched.
Args:
stat_entry: rdf_client_fs.StatEntry object describing the file.
file_hash: rdf_crypto.Hash object with file hashes.
request_data: Arbitrary dictionary that was passed to the corresponding
StartFileFetch call.
is_duplicate: If True, the file wasn't actually collected as its hash was
found in the filestore.<|endoftext|> |
c2c953719fab389c940f4fe3172c577c51e8670d3a4cf9e834b926a938ad0001 | def _FileFetchFailed(self, index: int, status: Optional[rdf_flow_objects.FlowStatus]):
'Remove pathspec for this index and call the FileFetchFailed method.'
(pathspec, request_data) = self._RemoveCompletedPathspec(index)
if (pathspec is None):
return
self.state.files_failed += 1
self.FileFetchFailed(pathspec, request_data=request_data, status=status) | Remove pathspec for this index and call the FileFetchFailed method. | grr/server/grr_response_server/flows/general/transfer.py | _FileFetchFailed | max-vogler/grr | 4,238 | python | def _FileFetchFailed(self, index: int, status: Optional[rdf_flow_objects.FlowStatus]):
(pathspec, request_data) = self._RemoveCompletedPathspec(index)
if (pathspec is None):
return
self.state.files_failed += 1
self.FileFetchFailed(pathspec, request_data=request_data, status=status) | def _FileFetchFailed(self, index: int, status: Optional[rdf_flow_objects.FlowStatus]):
(pathspec, request_data) = self._RemoveCompletedPathspec(index)
if (pathspec is None):
return
self.state.files_failed += 1
self.FileFetchFailed(pathspec, request_data=request_data, status=status)<|docstring|>Remove pathspec for this index and call the FileFetchFailed method.<|endoftext|> |
736be75cd4e9c86b5e62c83641237fecd1ee00222c8aaa6828b79e4f31301fe3 | def FileFetchFailed(self, pathspec: rdf_paths.PathSpec, request_data: Any=None, status: Optional[rdf_flow_objects.FlowStatus]=None):
'This method will be called when stat or hash requests fail.\n\n Args:\n pathspec: Pathspec of a file that failed to be fetched.\n request_data: Arbitrary dictionary that was passed to the corresponding\n StartFileFetch call.\n status: FlowStatus that contains more error details.\n ' | This method will be called when stat or hash requests fail.
Args:
pathspec: Pathspec of a file that failed to be fetched.
request_data: Arbitrary dictionary that was passed to the corresponding
StartFileFetch call.
status: FlowStatus that contains more error details. | grr/server/grr_response_server/flows/general/transfer.py | FileFetchFailed | max-vogler/grr | 4,238 | python | def FileFetchFailed(self, pathspec: rdf_paths.PathSpec, request_data: Any=None, status: Optional[rdf_flow_objects.FlowStatus]=None):
'This method will be called when stat or hash requests fail.\n\n Args:\n pathspec: Pathspec of a file that failed to be fetched.\n request_data: Arbitrary dictionary that was passed to the corresponding\n StartFileFetch call.\n status: FlowStatus that contains more error details.\n ' | def FileFetchFailed(self, pathspec: rdf_paths.PathSpec, request_data: Any=None, status: Optional[rdf_flow_objects.FlowStatus]=None):
'This method will be called when stat or hash requests fail.\n\n Args:\n pathspec: Pathspec of a file that failed to be fetched.\n request_data: Arbitrary dictionary that was passed to the corresponding\n StartFileFetch call.\n status: FlowStatus that contains more error details.\n '<|docstring|>This method will be called when stat or hash requests fail.
Args:
pathspec: Pathspec of a file that failed to be fetched.
request_data: Arbitrary dictionary that was passed to the corresponding
StartFileFetch call.
status: FlowStatus that contains more error details.<|endoftext|> |
04b2842c912c468285345f9962fc8f7535e321a761c6fe7c5fa052e312f7fb2b | def _StoreStat(self, responses):
"Stores stat entry in the flow's state."
index = responses.request_data['index']
if (not responses.success):
self.Log('Failed to stat file: %s', responses.status)
self._FileFetchFailed(index, status=responses.status)
return
tracker = self.state.pending_hashes[index]
tracker['stat_entry'] = responses.First() | Stores stat entry in the flow's state. | grr/server/grr_response_server/flows/general/transfer.py | _StoreStat | max-vogler/grr | 4,238 | python | def _StoreStat(self, responses):
index = responses.request_data['index']
if (not responses.success):
self.Log('Failed to stat file: %s', responses.status)
self._FileFetchFailed(index, status=responses.status)
return
tracker = self.state.pending_hashes[index]
tracker['stat_entry'] = responses.First() | def _StoreStat(self, responses):
index = responses.request_data['index']
if (not responses.success):
self.Log('Failed to stat file: %s', responses.status)
self._FileFetchFailed(index, status=responses.status)
return
tracker = self.state.pending_hashes[index]
tracker['stat_entry'] = responses.First()<|docstring|>Stores stat entry in the flow's state.<|endoftext|> |
85e06a2997d641f1e7c773d83c8dd24a0bdf06964bd0959401eabdb22fd4a611 | def _ReceiveFileHash(self, responses):
'Add hash digest to tracker and check with filestore.'
index = responses.request_data['index']
if (not responses.success):
self.Log('Failed to hash file: %s', responses.status)
self.state.pending_hashes.pop(index, None)
self._FileFetchFailed(index, status=responses.status)
return
self.state.files_hashed += 1
response = responses.First()
if response.HasField('hash'):
hash_obj = response.hash
else:
hash_obj = rdf_crypto.Hash()
if ((len(response.results) < 1) or (response.results[0]['name'] != 'generic')):
self.Log('Failed to hash file: %s', self.state.indexed_pathspecs[index])
self.state.pending_hashes.pop(index, None)
return
result = response.results[0]
try:
for hash_type in ['md5', 'sha1', 'sha256']:
value = result.GetItem(hash_type)
setattr(hash_obj, hash_type, value)
except AttributeError:
self.Log('Failed to hash file: %s', self.state.indexed_pathspecs[index])
self.state.pending_hashes.pop(index, None)
return
try:
tracker = self.state.pending_hashes[index]
except KeyError:
self._FileFetchFailed(index, status=responses.status)
return
tracker['hash_obj'] = hash_obj
tracker['bytes_read'] = response.bytes_read
self.state.files_hashed_since_check += 1
if (self.state.files_hashed_since_check >= self.MIN_CALL_TO_FILE_STORE):
self._CheckHashesWithFileStore() | Add hash digest to tracker and check with filestore. | grr/server/grr_response_server/flows/general/transfer.py | _ReceiveFileHash | max-vogler/grr | 4,238 | python | def _ReceiveFileHash(self, responses):
index = responses.request_data['index']
if (not responses.success):
self.Log('Failed to hash file: %s', responses.status)
self.state.pending_hashes.pop(index, None)
self._FileFetchFailed(index, status=responses.status)
return
self.state.files_hashed += 1
response = responses.First()
if response.HasField('hash'):
hash_obj = response.hash
else:
hash_obj = rdf_crypto.Hash()
if ((len(response.results) < 1) or (response.results[0]['name'] != 'generic')):
self.Log('Failed to hash file: %s', self.state.indexed_pathspecs[index])
self.state.pending_hashes.pop(index, None)
return
result = response.results[0]
try:
for hash_type in ['md5', 'sha1', 'sha256']:
value = result.GetItem(hash_type)
setattr(hash_obj, hash_type, value)
except AttributeError:
self.Log('Failed to hash file: %s', self.state.indexed_pathspecs[index])
self.state.pending_hashes.pop(index, None)
return
try:
tracker = self.state.pending_hashes[index]
except KeyError:
self._FileFetchFailed(index, status=responses.status)
return
tracker['hash_obj'] = hash_obj
tracker['bytes_read'] = response.bytes_read
self.state.files_hashed_since_check += 1
if (self.state.files_hashed_since_check >= self.MIN_CALL_TO_FILE_STORE):
self._CheckHashesWithFileStore() | def _ReceiveFileHash(self, responses):
index = responses.request_data['index']
if (not responses.success):
self.Log('Failed to hash file: %s', responses.status)
self.state.pending_hashes.pop(index, None)
self._FileFetchFailed(index, status=responses.status)
return
self.state.files_hashed += 1
response = responses.First()
if response.HasField('hash'):
hash_obj = response.hash
else:
hash_obj = rdf_crypto.Hash()
if ((len(response.results) < 1) or (response.results[0]['name'] != 'generic')):
self.Log('Failed to hash file: %s', self.state.indexed_pathspecs[index])
self.state.pending_hashes.pop(index, None)
return
result = response.results[0]
try:
for hash_type in ['md5', 'sha1', 'sha256']:
value = result.GetItem(hash_type)
setattr(hash_obj, hash_type, value)
except AttributeError:
self.Log('Failed to hash file: %s', self.state.indexed_pathspecs[index])
self.state.pending_hashes.pop(index, None)
return
try:
tracker = self.state.pending_hashes[index]
except KeyError:
self._FileFetchFailed(index, status=responses.status)
return
tracker['hash_obj'] = hash_obj
tracker['bytes_read'] = response.bytes_read
self.state.files_hashed_since_check += 1
if (self.state.files_hashed_since_check >= self.MIN_CALL_TO_FILE_STORE):
self._CheckHashesWithFileStore()<|docstring|>Add hash digest to tracker and check with filestore.<|endoftext|> |
4fe0a0bb8127e7ff18a7b0619171914297a0c4e493b8e9db4504ecbc66e940b1 | def _CheckHashesWithFileStore(self):
"Check all queued up hashes for existence in file store.\n\n Hashes which do not exist in the file store will be downloaded. This\n function flushes the entire queue (self.state.pending_hashes) in order to\n minimize the round trips to the file store.\n\n If a file was found in the file store it is not scheduled for collection\n and its PathInfo is written to the datastore pointing to the file store's\n hash. Otherwise, we request the client to hash every block in the file,\n and add it to the file tracking queue (self.state.pending_files).\n "
if (not self.state.pending_hashes):
return
file_hashes = {}
hash_to_tracker = {}
for (index, tracker) in self.state.pending_hashes.items():
if (tracker.get('hash_obj') is None):
continue
hash_obj = tracker['hash_obj']
digest = hash_obj.sha256
file_hashes[index] = hash_obj
hash_to_tracker.setdefault(rdf_objects.SHA256HashID(digest), []).append(tracker)
files_in_filestore = set()
statuses = file_store.CheckHashes([rdf_objects.SHA256HashID.FromSerializedBytes(ho.sha256.AsBytes()) for ho in file_hashes.values()])
for (hash_id, status) in statuses.items():
self.HeartBeat()
if (not status):
continue
for tracker in hash_to_tracker[hash_id]:
self.state.files_skipped += 1
file_hashes.pop(tracker['index'])
files_in_filestore.add(hash_id)
self.state.pending_hashes.pop(tracker['index'])
self.state.files_hashed_since_check = 0
for hash_id in files_in_filestore:
for file_tracker in hash_to_tracker.get(hash_id, []):
stat_entry = file_tracker['stat_entry']
path_info = rdf_objects.PathInfo.FromStatEntry(stat_entry)
path_info.hash_entry = file_tracker['hash_obj']
data_store.REL_DB.WritePathInfos(self.client_id, [path_info])
self._ReceiveFetchedFile(file_tracker, is_duplicate=True)
for index in file_hashes:
file_tracker = self.state.pending_hashes.pop(index)
self.state.pending_files[index] = file_tracker
if (file_tracker['bytes_read'] > 0):
file_tracker['size_to_download'] = file_tracker['bytes_read']
else:
file_tracker['size_to_download'] = file_tracker['stat_entry'].st_size
expected_number_of_hashes = file_tracker['expected_chunks'] = ((file_tracker['size_to_download'] // self.CHUNK_SIZE) + 1)
self.state.files_to_fetch += 1
for i in range(expected_number_of_hashes):
if (i == (expected_number_of_hashes - 1)):
length = (file_tracker['size_to_download'] % self.CHUNK_SIZE)
else:
length = self.CHUNK_SIZE
self.CallClient(server_stubs.HashBuffer, pathspec=file_tracker['stat_entry'].pathspec, offset=(i * self.CHUNK_SIZE), length=length, next_state=compatibility.GetName(self._CheckHash), request_data=dict(index=index))
if ((self.state.files_hashed % 100) == 0):
self.Log('Hashed %d files, skipped %s already stored.', self.state.files_hashed, self.state.files_skipped) | Check all queued up hashes for existence in file store.
Hashes which do not exist in the file store will be downloaded. This
function flushes the entire queue (self.state.pending_hashes) in order to
minimize the round trips to the file store.
If a file was found in the file store it is not scheduled for collection
and its PathInfo is written to the datastore pointing to the file store's
hash. Otherwise, we request the client to hash every block in the file,
and add it to the file tracking queue (self.state.pending_files). | grr/server/grr_response_server/flows/general/transfer.py | _CheckHashesWithFileStore | max-vogler/grr | 4,238 | python | def _CheckHashesWithFileStore(self):
"Check all queued up hashes for existence in file store.\n\n Hashes which do not exist in the file store will be downloaded. This\n function flushes the entire queue (self.state.pending_hashes) in order to\n minimize the round trips to the file store.\n\n If a file was found in the file store it is not scheduled for collection\n and its PathInfo is written to the datastore pointing to the file store's\n hash. Otherwise, we request the client to hash every block in the file,\n and add it to the file tracking queue (self.state.pending_files).\n "
if (not self.state.pending_hashes):
return
file_hashes = {}
hash_to_tracker = {}
for (index, tracker) in self.state.pending_hashes.items():
if (tracker.get('hash_obj') is None):
continue
hash_obj = tracker['hash_obj']
digest = hash_obj.sha256
file_hashes[index] = hash_obj
hash_to_tracker.setdefault(rdf_objects.SHA256HashID(digest), []).append(tracker)
files_in_filestore = set()
statuses = file_store.CheckHashes([rdf_objects.SHA256HashID.FromSerializedBytes(ho.sha256.AsBytes()) for ho in file_hashes.values()])
for (hash_id, status) in statuses.items():
self.HeartBeat()
if (not status):
continue
for tracker in hash_to_tracker[hash_id]:
self.state.files_skipped += 1
file_hashes.pop(tracker['index'])
files_in_filestore.add(hash_id)
self.state.pending_hashes.pop(tracker['index'])
self.state.files_hashed_since_check = 0
for hash_id in files_in_filestore:
for file_tracker in hash_to_tracker.get(hash_id, []):
stat_entry = file_tracker['stat_entry']
path_info = rdf_objects.PathInfo.FromStatEntry(stat_entry)
path_info.hash_entry = file_tracker['hash_obj']
data_store.REL_DB.WritePathInfos(self.client_id, [path_info])
self._ReceiveFetchedFile(file_tracker, is_duplicate=True)
for index in file_hashes:
file_tracker = self.state.pending_hashes.pop(index)
self.state.pending_files[index] = file_tracker
if (file_tracker['bytes_read'] > 0):
file_tracker['size_to_download'] = file_tracker['bytes_read']
else:
file_tracker['size_to_download'] = file_tracker['stat_entry'].st_size
expected_number_of_hashes = file_tracker['expected_chunks'] = ((file_tracker['size_to_download'] // self.CHUNK_SIZE) + 1)
self.state.files_to_fetch += 1
for i in range(expected_number_of_hashes):
if (i == (expected_number_of_hashes - 1)):
length = (file_tracker['size_to_download'] % self.CHUNK_SIZE)
else:
length = self.CHUNK_SIZE
self.CallClient(server_stubs.HashBuffer, pathspec=file_tracker['stat_entry'].pathspec, offset=(i * self.CHUNK_SIZE), length=length, next_state=compatibility.GetName(self._CheckHash), request_data=dict(index=index))
if ((self.state.files_hashed % 100) == 0):
self.Log('Hashed %d files, skipped %s already stored.', self.state.files_hashed, self.state.files_skipped) | def _CheckHashesWithFileStore(self):
"Check all queued up hashes for existence in file store.\n\n Hashes which do not exist in the file store will be downloaded. This\n function flushes the entire queue (self.state.pending_hashes) in order to\n minimize the round trips to the file store.\n\n If a file was found in the file store it is not scheduled for collection\n and its PathInfo is written to the datastore pointing to the file store's\n hash. Otherwise, we request the client to hash every block in the file,\n and add it to the file tracking queue (self.state.pending_files).\n "
if (not self.state.pending_hashes):
return
file_hashes = {}
hash_to_tracker = {}
for (index, tracker) in self.state.pending_hashes.items():
if (tracker.get('hash_obj') is None):
continue
hash_obj = tracker['hash_obj']
digest = hash_obj.sha256
file_hashes[index] = hash_obj
hash_to_tracker.setdefault(rdf_objects.SHA256HashID(digest), []).append(tracker)
files_in_filestore = set()
statuses = file_store.CheckHashes([rdf_objects.SHA256HashID.FromSerializedBytes(ho.sha256.AsBytes()) for ho in file_hashes.values()])
for (hash_id, status) in statuses.items():
self.HeartBeat()
if (not status):
continue
for tracker in hash_to_tracker[hash_id]:
self.state.files_skipped += 1
file_hashes.pop(tracker['index'])
files_in_filestore.add(hash_id)
self.state.pending_hashes.pop(tracker['index'])
self.state.files_hashed_since_check = 0
for hash_id in files_in_filestore:
for file_tracker in hash_to_tracker.get(hash_id, []):
stat_entry = file_tracker['stat_entry']
path_info = rdf_objects.PathInfo.FromStatEntry(stat_entry)
path_info.hash_entry = file_tracker['hash_obj']
data_store.REL_DB.WritePathInfos(self.client_id, [path_info])
self._ReceiveFetchedFile(file_tracker, is_duplicate=True)
for index in file_hashes:
file_tracker = self.state.pending_hashes.pop(index)
self.state.pending_files[index] = file_tracker
if (file_tracker['bytes_read'] > 0):
file_tracker['size_to_download'] = file_tracker['bytes_read']
else:
file_tracker['size_to_download'] = file_tracker['stat_entry'].st_size
expected_number_of_hashes = file_tracker['expected_chunks'] = ((file_tracker['size_to_download'] // self.CHUNK_SIZE) + 1)
self.state.files_to_fetch += 1
for i in range(expected_number_of_hashes):
if (i == (expected_number_of_hashes - 1)):
length = (file_tracker['size_to_download'] % self.CHUNK_SIZE)
else:
length = self.CHUNK_SIZE
self.CallClient(server_stubs.HashBuffer, pathspec=file_tracker['stat_entry'].pathspec, offset=(i * self.CHUNK_SIZE), length=length, next_state=compatibility.GetName(self._CheckHash), request_data=dict(index=index))
if ((self.state.files_hashed % 100) == 0):
self.Log('Hashed %d files, skipped %s already stored.', self.state.files_hashed, self.state.files_skipped)<|docstring|>Check all queued up hashes for existence in file store.
Hashes which do not exist in the file store will be downloaded. This
function flushes the entire queue (self.state.pending_hashes) in order to
minimize the round trips to the file store.
If a file was found in the file store it is not scheduled for collection
and its PathInfo is written to the datastore pointing to the file store's
hash. Otherwise, we request the client to hash every block in the file,
and add it to the file tracking queue (self.state.pending_files).<|endoftext|> |
33555bd9174c3c9d7e0216169079446f2d5e74f815e2df63b1fc8a661ed8fa5e | def _CheckHash(self, responses):
'Adds the block hash to the file tracker responsible for this vfs URN.'
index = responses.request_data['index']
if (index not in self.state.pending_files):
return
file_tracker = self.state.pending_files[index]
hash_response = responses.First()
if ((not responses.success) or (not hash_response)):
urn = file_tracker['stat_entry'].pathspec.AFF4Path(self.client_urn)
self.Log('Failed to read %s: %s', urn, responses.status)
self._FileFetchFailed(index, status=responses.status)
return
file_tracker.setdefault('hash_list', []).append(hash_response)
self.state.blob_hashes_pending += 1
if (self.state.blob_hashes_pending > self.MIN_CALL_TO_FILE_STORE):
self._FetchFileContent() | Adds the block hash to the file tracker responsible for this vfs URN. | grr/server/grr_response_server/flows/general/transfer.py | _CheckHash | max-vogler/grr | 4,238 | python | def _CheckHash(self, responses):
index = responses.request_data['index']
if (index not in self.state.pending_files):
return
file_tracker = self.state.pending_files[index]
hash_response = responses.First()
if ((not responses.success) or (not hash_response)):
urn = file_tracker['stat_entry'].pathspec.AFF4Path(self.client_urn)
self.Log('Failed to read %s: %s', urn, responses.status)
self._FileFetchFailed(index, status=responses.status)
return
file_tracker.setdefault('hash_list', []).append(hash_response)
self.state.blob_hashes_pending += 1
if (self.state.blob_hashes_pending > self.MIN_CALL_TO_FILE_STORE):
self._FetchFileContent() | def _CheckHash(self, responses):
index = responses.request_data['index']
if (index not in self.state.pending_files):
return
file_tracker = self.state.pending_files[index]
hash_response = responses.First()
if ((not responses.success) or (not hash_response)):
urn = file_tracker['stat_entry'].pathspec.AFF4Path(self.client_urn)
self.Log('Failed to read %s: %s', urn, responses.status)
self._FileFetchFailed(index, status=responses.status)
return
file_tracker.setdefault('hash_list', []).append(hash_response)
self.state.blob_hashes_pending += 1
if (self.state.blob_hashes_pending > self.MIN_CALL_TO_FILE_STORE):
self._FetchFileContent()<|docstring|>Adds the block hash to the file tracker responsible for this vfs URN.<|endoftext|> |
4cc80f03b049cc419aaa7210ec47b6f1da3b40d1e31edd6c69b90d3db7232140 | def _FetchFileContent(self):
"Fetch as much as the file's content as possible.\n\n This drains the pending_files store by checking which blobs we already have\n in the store and issuing calls to the client to receive outstanding blobs.\n "
if (not self.state.pending_files):
return
blob_hashes = []
for file_tracker in self.state.pending_files.values():
for hash_response in file_tracker.get('hash_list', []):
blob_hashes.append(rdf_objects.BlobID.FromSerializedBytes(hash_response.data))
existing_blobs = data_store.BLOBS.CheckBlobsExist(blob_hashes)
self.state.blob_hashes_pending = 0
for (index, file_tracker) in list(self.state.pending_files.items()):
for (i, hash_response) in enumerate(file_tracker.get('hash_list', [])):
hash_response.pathspec = file_tracker['stat_entry'].pathspec
if existing_blobs[rdf_objects.BlobID.FromSerializedBytes(hash_response.data)]:
self.CallStateInline(messages=[hash_response], next_state=compatibility.GetName(self._WriteBuffer), request_data=dict(index=index, blob_index=i))
else:
self.CallClient(server_stubs.TransferBuffer, hash_response, next_state=compatibility.GetName(self._WriteBuffer), request_data=dict(index=index, blob_index=i)) | Fetch as much as the file's content as possible.
This drains the pending_files store by checking which blobs we already have
in the store and issuing calls to the client to receive outstanding blobs. | grr/server/grr_response_server/flows/general/transfer.py | _FetchFileContent | max-vogler/grr | 4,238 | python | def _FetchFileContent(self):
"Fetch as much as the file's content as possible.\n\n This drains the pending_files store by checking which blobs we already have\n in the store and issuing calls to the client to receive outstanding blobs.\n "
if (not self.state.pending_files):
return
blob_hashes = []
for file_tracker in self.state.pending_files.values():
for hash_response in file_tracker.get('hash_list', []):
blob_hashes.append(rdf_objects.BlobID.FromSerializedBytes(hash_response.data))
existing_blobs = data_store.BLOBS.CheckBlobsExist(blob_hashes)
self.state.blob_hashes_pending = 0
for (index, file_tracker) in list(self.state.pending_files.items()):
for (i, hash_response) in enumerate(file_tracker.get('hash_list', [])):
hash_response.pathspec = file_tracker['stat_entry'].pathspec
if existing_blobs[rdf_objects.BlobID.FromSerializedBytes(hash_response.data)]:
self.CallStateInline(messages=[hash_response], next_state=compatibility.GetName(self._WriteBuffer), request_data=dict(index=index, blob_index=i))
else:
self.CallClient(server_stubs.TransferBuffer, hash_response, next_state=compatibility.GetName(self._WriteBuffer), request_data=dict(index=index, blob_index=i)) | def _FetchFileContent(self):
"Fetch as much as the file's content as possible.\n\n This drains the pending_files store by checking which blobs we already have\n in the store and issuing calls to the client to receive outstanding blobs.\n "
if (not self.state.pending_files):
return
blob_hashes = []
for file_tracker in self.state.pending_files.values():
for hash_response in file_tracker.get('hash_list', []):
blob_hashes.append(rdf_objects.BlobID.FromSerializedBytes(hash_response.data))
existing_blobs = data_store.BLOBS.CheckBlobsExist(blob_hashes)
self.state.blob_hashes_pending = 0
for (index, file_tracker) in list(self.state.pending_files.items()):
for (i, hash_response) in enumerate(file_tracker.get('hash_list', [])):
hash_response.pathspec = file_tracker['stat_entry'].pathspec
if existing_blobs[rdf_objects.BlobID.FromSerializedBytes(hash_response.data)]:
self.CallStateInline(messages=[hash_response], next_state=compatibility.GetName(self._WriteBuffer), request_data=dict(index=index, blob_index=i))
else:
self.CallClient(server_stubs.TransferBuffer, hash_response, next_state=compatibility.GetName(self._WriteBuffer), request_data=dict(index=index, blob_index=i))<|docstring|>Fetch as much as the file's content as possible.
This drains the pending_files store by checking which blobs we already have
in the store and issuing calls to the client to receive outstanding blobs.<|endoftext|> |
ba2583451d17ce8f4fbfde4b9969be15363422d960f537bf4e84c72d72d3af77 | def _WriteBuffer(self, responses):
'Write the hash received to the blob image.'
index = responses.request_data['index']
if (index not in self.state.pending_files):
return
if (not responses.success):
self._FileFetchFailed(index, status=responses.status)
return
response = responses.First()
file_tracker = self.state.pending_files.get(index)
if (not file_tracker):
return
blob_dict = file_tracker.setdefault('blobs', {})
blob_index = responses.request_data['blob_index']
blob_dict[blob_index] = (response.data, response.length)
if (len(blob_dict) != file_tracker['expected_chunks']):
return
stat_entry = file_tracker['stat_entry']
path_info = rdf_objects.PathInfo.FromStatEntry(stat_entry)
blob_refs = []
offset = 0
for index in sorted(blob_dict):
(digest, size) = blob_dict[index]
blob_refs.append(rdf_objects.BlobReference(offset=offset, size=size, blob_id=rdf_objects.BlobID.FromSerializedBytes(digest)))
offset += size
hash_obj = file_tracker['hash_obj']
client_path = db.ClientPath.FromPathInfo(self.client_id, path_info)
hash_id = file_store.AddFileWithUnknownHash(client_path, blob_refs, use_external_stores=self.state.use_external_stores)
if (hash_id.AsBytes() == hash_obj.sha256):
path_info.hash_entry = hash_obj
else:
path_info.hash_entry.sha256 = hash_id.AsBytes()
path_info.hash_entry.num_bytes = offset
data_store.REL_DB.WritePathInfos(self.client_id, [path_info])
del file_tracker['blobs']
del file_tracker['hash_list']
self._ReceiveFetchedFile(file_tracker)
self.state.files_fetched += 1
if (not (self.state.files_fetched % 100)):
self.Log('Fetched %d of %d files.', self.state.files_fetched, self.state.files_to_fetch) | Write the hash received to the blob image. | grr/server/grr_response_server/flows/general/transfer.py | _WriteBuffer | max-vogler/grr | 4,238 | python | def _WriteBuffer(self, responses):
index = responses.request_data['index']
if (index not in self.state.pending_files):
return
if (not responses.success):
self._FileFetchFailed(index, status=responses.status)
return
response = responses.First()
file_tracker = self.state.pending_files.get(index)
if (not file_tracker):
return
blob_dict = file_tracker.setdefault('blobs', {})
blob_index = responses.request_data['blob_index']
blob_dict[blob_index] = (response.data, response.length)
if (len(blob_dict) != file_tracker['expected_chunks']):
return
stat_entry = file_tracker['stat_entry']
path_info = rdf_objects.PathInfo.FromStatEntry(stat_entry)
blob_refs = []
offset = 0
for index in sorted(blob_dict):
(digest, size) = blob_dict[index]
blob_refs.append(rdf_objects.BlobReference(offset=offset, size=size, blob_id=rdf_objects.BlobID.FromSerializedBytes(digest)))
offset += size
hash_obj = file_tracker['hash_obj']
client_path = db.ClientPath.FromPathInfo(self.client_id, path_info)
hash_id = file_store.AddFileWithUnknownHash(client_path, blob_refs, use_external_stores=self.state.use_external_stores)
if (hash_id.AsBytes() == hash_obj.sha256):
path_info.hash_entry = hash_obj
else:
path_info.hash_entry.sha256 = hash_id.AsBytes()
path_info.hash_entry.num_bytes = offset
data_store.REL_DB.WritePathInfos(self.client_id, [path_info])
del file_tracker['blobs']
del file_tracker['hash_list']
self._ReceiveFetchedFile(file_tracker)
self.state.files_fetched += 1
if (not (self.state.files_fetched % 100)):
self.Log('Fetched %d of %d files.', self.state.files_fetched, self.state.files_to_fetch) | def _WriteBuffer(self, responses):
index = responses.request_data['index']
if (index not in self.state.pending_files):
return
if (not responses.success):
self._FileFetchFailed(index, status=responses.status)
return
response = responses.First()
file_tracker = self.state.pending_files.get(index)
if (not file_tracker):
return
blob_dict = file_tracker.setdefault('blobs', {})
blob_index = responses.request_data['blob_index']
blob_dict[blob_index] = (response.data, response.length)
if (len(blob_dict) != file_tracker['expected_chunks']):
return
stat_entry = file_tracker['stat_entry']
path_info = rdf_objects.PathInfo.FromStatEntry(stat_entry)
blob_refs = []
offset = 0
for index in sorted(blob_dict):
(digest, size) = blob_dict[index]
blob_refs.append(rdf_objects.BlobReference(offset=offset, size=size, blob_id=rdf_objects.BlobID.FromSerializedBytes(digest)))
offset += size
hash_obj = file_tracker['hash_obj']
client_path = db.ClientPath.FromPathInfo(self.client_id, path_info)
hash_id = file_store.AddFileWithUnknownHash(client_path, blob_refs, use_external_stores=self.state.use_external_stores)
if (hash_id.AsBytes() == hash_obj.sha256):
path_info.hash_entry = hash_obj
else:
path_info.hash_entry.sha256 = hash_id.AsBytes()
path_info.hash_entry.num_bytes = offset
data_store.REL_DB.WritePathInfos(self.client_id, [path_info])
del file_tracker['blobs']
del file_tracker['hash_list']
self._ReceiveFetchedFile(file_tracker)
self.state.files_fetched += 1
if (not (self.state.files_fetched % 100)):
self.Log('Fetched %d of %d files.', self.state.files_fetched, self.state.files_to_fetch)<|docstring|>Write the hash received to the blob image.<|endoftext|> |
fedeeee9f146cf45e1cd48e6c7dc2246969b357c51f1fc4e947bbb7eefea4dd4 | def Start(self):
'Start state of the flow.'
super().Start(file_size=self.args.file_size, maximum_pending_files=self.args.maximum_pending_files, use_external_stores=self.args.use_external_stores)
unique_paths = set()
self.state.pathspecs_progress = [PathSpecProgress(pathspec=p, status=PathSpecProgress.Status.IN_PROGRESS) for p in self.args.pathspecs]
for (i, pathspec) in enumerate(self.args.pathspecs):
vfs_urn = pathspec.AFF4Path(self.client_urn)
if (vfs_urn not in unique_paths):
unique_paths.add(vfs_urn)
self.StartFileFetch(pathspec, request_data=i) | Start state of the flow. | grr/server/grr_response_server/flows/general/transfer.py | Start | max-vogler/grr | 4,238 | python | def Start(self):
super().Start(file_size=self.args.file_size, maximum_pending_files=self.args.maximum_pending_files, use_external_stores=self.args.use_external_stores)
unique_paths = set()
self.state.pathspecs_progress = [PathSpecProgress(pathspec=p, status=PathSpecProgress.Status.IN_PROGRESS) for p in self.args.pathspecs]
for (i, pathspec) in enumerate(self.args.pathspecs):
vfs_urn = pathspec.AFF4Path(self.client_urn)
if (vfs_urn not in unique_paths):
unique_paths.add(vfs_urn)
self.StartFileFetch(pathspec, request_data=i) | def Start(self):
super().Start(file_size=self.args.file_size, maximum_pending_files=self.args.maximum_pending_files, use_external_stores=self.args.use_external_stores)
unique_paths = set()
self.state.pathspecs_progress = [PathSpecProgress(pathspec=p, status=PathSpecProgress.Status.IN_PROGRESS) for p in self.args.pathspecs]
for (i, pathspec) in enumerate(self.args.pathspecs):
vfs_urn = pathspec.AFF4Path(self.client_urn)
if (vfs_urn not in unique_paths):
unique_paths.add(vfs_urn)
self.StartFileFetch(pathspec, request_data=i)<|docstring|>Start state of the flow.<|endoftext|> |
adf2422a92937e83cbb57882e81e84100f25cb812aa91fcd83fb307c47b0af18 | def ReceiveFetchedFile(self, stat_entry, unused_hash_obj, request_data=None, is_duplicate=False):
'This method will be called for each new file successfully fetched.'
if is_duplicate:
status = PathSpecProgress.Status.SKIPPED
else:
status = PathSpecProgress.Status.COLLECTED
self.state.pathspecs_progress[request_data].status = status
self.SendReply(stat_entry) | This method will be called for each new file successfully fetched. | grr/server/grr_response_server/flows/general/transfer.py | ReceiveFetchedFile | max-vogler/grr | 4,238 | python | def ReceiveFetchedFile(self, stat_entry, unused_hash_obj, request_data=None, is_duplicate=False):
if is_duplicate:
status = PathSpecProgress.Status.SKIPPED
else:
status = PathSpecProgress.Status.COLLECTED
self.state.pathspecs_progress[request_data].status = status
self.SendReply(stat_entry) | def ReceiveFetchedFile(self, stat_entry, unused_hash_obj, request_data=None, is_duplicate=False):
if is_duplicate:
status = PathSpecProgress.Status.SKIPPED
else:
status = PathSpecProgress.Status.COLLECTED
self.state.pathspecs_progress[request_data].status = status
self.SendReply(stat_entry)<|docstring|>This method will be called for each new file successfully fetched.<|endoftext|> |
6003a8fb64b64782768dcbb4a01d4c1073a7f675ea3970d100acd798a1e044e9 | def FileFetchFailed(self, pathspec, request_data=None, status=None):
'This method will be called when stat or hash requests fail.'
self.state.pathspecs_progress[request_data].status = PathSpecProgress.Status.FAILED | This method will be called when stat or hash requests fail. | grr/server/grr_response_server/flows/general/transfer.py | FileFetchFailed | max-vogler/grr | 4,238 | python | def FileFetchFailed(self, pathspec, request_data=None, status=None):
self.state.pathspecs_progress[request_data].status = PathSpecProgress.Status.FAILED | def FileFetchFailed(self, pathspec, request_data=None, status=None):
self.state.pathspecs_progress[request_data].status = PathSpecProgress.Status.FAILED<|docstring|>This method will be called when stat or hash requests fail.<|endoftext|> |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.