body_hash
stringlengths
64
64
body
stringlengths
23
109k
docstring
stringlengths
1
57k
path
stringlengths
4
198
name
stringlengths
1
115
repository_name
stringlengths
7
111
repository_stars
float64
0
191k
lang
stringclasses
1 value
body_without_docstring
stringlengths
14
108k
unified
stringlengths
45
133k
ed32e35895df97d157702dc7b851f84eb6553dd6022effb03081071731636e69
def test_get_current_grade(self): '\n Test for get_current_grade method\n ' mmtrack = MMTrack(user=self.user, program=self.program, edx_user_data=self.cached_edx_user_data) assert (mmtrack.get_current_grade('course-v1:edX+DemoX+Demo_Course') == 77.0) assert (mmtrack.get_current_grade('course-v1:MITx+8.MechCX+2014_T1') == 3.0) assert (mmtrack.get_current_grade('course-v1:odl+FOO101+CR-FALL15') is None) with patch('edx_api.grades.models.CurrentGradesByUser.get_current_grade', return_value=None): assert (mmtrack.get_current_grade('course-v1:MITx+8.MechCX+2014_T1') is None)
Test for get_current_grade method
dashboard/utils_test.py
test_get_current_grade
mitodl/micromasters
32
python
def test_get_current_grade(self): '\n \n ' mmtrack = MMTrack(user=self.user, program=self.program, edx_user_data=self.cached_edx_user_data) assert (mmtrack.get_current_grade('course-v1:edX+DemoX+Demo_Course') == 77.0) assert (mmtrack.get_current_grade('course-v1:MITx+8.MechCX+2014_T1') == 3.0) assert (mmtrack.get_current_grade('course-v1:odl+FOO101+CR-FALL15') is None) with patch('edx_api.grades.models.CurrentGradesByUser.get_current_grade', return_value=None): assert (mmtrack.get_current_grade('course-v1:MITx+8.MechCX+2014_T1') is None)
def test_get_current_grade(self): '\n \n ' mmtrack = MMTrack(user=self.user, program=self.program, edx_user_data=self.cached_edx_user_data) assert (mmtrack.get_current_grade('course-v1:edX+DemoX+Demo_Course') == 77.0) assert (mmtrack.get_current_grade('course-v1:MITx+8.MechCX+2014_T1') == 3.0) assert (mmtrack.get_current_grade('course-v1:odl+FOO101+CR-FALL15') is None) with patch('edx_api.grades.models.CurrentGradesByUser.get_current_grade', return_value=None): assert (mmtrack.get_current_grade('course-v1:MITx+8.MechCX+2014_T1') is None)<|docstring|>Test for get_current_grade method<|endoftext|>
42afe185376d650b4ec42c614dfd589106ff6d0e4b5cbc213b23f2a3e233c77c
def test_count_courses_passed_normal(self): '\n Assert that count_courses_passed works in case of normal program.\n ' mmtrack = MMTrack(user=self.user, program=self.program, edx_user_data=self.cached_edx_user_data) assert (mmtrack.count_courses_passed() == 0) course_run = self.cruns[0] FinalGradeFactory.create(user=self.user, course_run=course_run, passed=True) assert (mmtrack.count_courses_passed() == 1) course = CourseFactory.create(program=self.program) final_grade = FinalGradeFactory.create(user=self.user, course_run__course=course, passed=True) mmtrack.edx_course_keys.add(final_grade.course_run.edx_course_key) assert (mmtrack.count_courses_passed() == 2)
Assert that count_courses_passed works in case of normal program.
dashboard/utils_test.py
test_count_courses_passed_normal
mitodl/micromasters
32
python
def test_count_courses_passed_normal(self): '\n \n ' mmtrack = MMTrack(user=self.user, program=self.program, edx_user_data=self.cached_edx_user_data) assert (mmtrack.count_courses_passed() == 0) course_run = self.cruns[0] FinalGradeFactory.create(user=self.user, course_run=course_run, passed=True) assert (mmtrack.count_courses_passed() == 1) course = CourseFactory.create(program=self.program) final_grade = FinalGradeFactory.create(user=self.user, course_run__course=course, passed=True) mmtrack.edx_course_keys.add(final_grade.course_run.edx_course_key) assert (mmtrack.count_courses_passed() == 2)
def test_count_courses_passed_normal(self): '\n \n ' mmtrack = MMTrack(user=self.user, program=self.program, edx_user_data=self.cached_edx_user_data) assert (mmtrack.count_courses_passed() == 0) course_run = self.cruns[0] FinalGradeFactory.create(user=self.user, course_run=course_run, passed=True) assert (mmtrack.count_courses_passed() == 1) course = CourseFactory.create(program=self.program) final_grade = FinalGradeFactory.create(user=self.user, course_run__course=course, passed=True) mmtrack.edx_course_keys.add(final_grade.course_run.edx_course_key) assert (mmtrack.count_courses_passed() == 2)<|docstring|>Assert that count_courses_passed works in case of normal program.<|endoftext|>
2c44a65d3eca532c58cd9aa66088347841107498ceab8af67495a3c039cdcbe0
def test_count_courses_passed_fa(self): '\n Assert that count_courses_passed works in case of fa program.\n ' mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=self.cached_edx_user_data) with patch('courses.models.Course.has_exam', new_callable=PropertyMock, return_value=True): assert (mmtrack.count_courses_passed() == 0) CombinedFinalGrade.objects.create(user=self.user, course=self.crun_fa.course, grade=0.6) assert (mmtrack.count_courses_passed() == 1)
Assert that count_courses_passed works in case of fa program.
dashboard/utils_test.py
test_count_courses_passed_fa
mitodl/micromasters
32
python
def test_count_courses_passed_fa(self): '\n \n ' mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=self.cached_edx_user_data) with patch('courses.models.Course.has_exam', new_callable=PropertyMock, return_value=True): assert (mmtrack.count_courses_passed() == 0) CombinedFinalGrade.objects.create(user=self.user, course=self.crun_fa.course, grade=0.6) assert (mmtrack.count_courses_passed() == 1)
def test_count_courses_passed_fa(self): '\n \n ' mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=self.cached_edx_user_data) with patch('courses.models.Course.has_exam', new_callable=PropertyMock, return_value=True): assert (mmtrack.count_courses_passed() == 0) CombinedFinalGrade.objects.create(user=self.user, course=self.crun_fa.course, grade=0.6) assert (mmtrack.count_courses_passed() == 1)<|docstring|>Assert that count_courses_passed works in case of fa program.<|endoftext|>
b316e4b565aefdab03f37cda62dbf25f2be01f910a51ac846e3ef9de8149b13f
def test_count_courses_mixed_fa(self): '\n Test count_courses_passed with mixed course-exam configuration\n ' mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=self.cached_edx_user_data) course_with_exam_1 = CourseFactory.create(program=self.program_financial_aid) ExamRunFactory.create(course=course_with_exam_1, date_grades_available=(now_in_utc() - timedelta(weeks=1))) CombinedFinalGrade.objects.create(user=self.user, course=course_with_exam_1, grade=0.7) ExamRunFactory.create(course__program=self.program_financial_aid, date_grades_available=(now_in_utc() - timedelta(weeks=1))) FinalGradeFactory.create(user=self.user, course_run=self.crun_fa, passed=True) assert (mmtrack.count_courses_passed() == 2)
Test count_courses_passed with mixed course-exam configuration
dashboard/utils_test.py
test_count_courses_mixed_fa
mitodl/micromasters
32
python
def test_count_courses_mixed_fa(self): '\n \n ' mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=self.cached_edx_user_data) course_with_exam_1 = CourseFactory.create(program=self.program_financial_aid) ExamRunFactory.create(course=course_with_exam_1, date_grades_available=(now_in_utc() - timedelta(weeks=1))) CombinedFinalGrade.objects.create(user=self.user, course=course_with_exam_1, grade=0.7) ExamRunFactory.create(course__program=self.program_financial_aid, date_grades_available=(now_in_utc() - timedelta(weeks=1))) FinalGradeFactory.create(user=self.user, course_run=self.crun_fa, passed=True) assert (mmtrack.count_courses_passed() == 2)
def test_count_courses_mixed_fa(self): '\n \n ' mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=self.cached_edx_user_data) course_with_exam_1 = CourseFactory.create(program=self.program_financial_aid) ExamRunFactory.create(course=course_with_exam_1, date_grades_available=(now_in_utc() - timedelta(weeks=1))) CombinedFinalGrade.objects.create(user=self.user, course=course_with_exam_1, grade=0.7) ExamRunFactory.create(course__program=self.program_financial_aid, date_grades_available=(now_in_utc() - timedelta(weeks=1))) FinalGradeFactory.create(user=self.user, course_run=self.crun_fa, passed=True) assert (mmtrack.count_courses_passed() == 2)<|docstring|>Test count_courses_passed with mixed course-exam configuration<|endoftext|>
7ea0d31559f197d63dd4753e164a98bfc47ce840f23504d5ddebd24b288842ef
def test_get_number_of_passed_courses_for_completion(self): '\n Assert that get_number_of_passed_courses_for_completion computes a number of courses passed for\n programs with elective sets\n ' course_run = self.cruns[0] FinalGradeFactory.create(user=self.user, course_run=course_run, passed=True) electives_set = ElectivesSet.objects.create(program=self.program, required_number=1) elective_cruns = [] for _ in range(2): run = CourseRunFactory.create(course__program=self.program) FinalGradeFactory.create(user=self.user, course_run=run, passed=True, status='complete', grade=0.7) elective_cruns.append(run) CourseRunGradingStatus.objects.create(course_run=run, status='complete') ElectiveCourse.objects.create(course=run.course, electives_set=electives_set) mmtrack = MMTrack(user=self.user, program=self.program, edx_user_data=self.cached_edx_user_data) assert (mmtrack.count_courses_passed() == 3) assert (mmtrack.get_number_of_passed_courses_for_completion() == 2)
Assert that get_number_of_passed_courses_for_completion computes a number of courses passed for programs with elective sets
dashboard/utils_test.py
test_get_number_of_passed_courses_for_completion
mitodl/micromasters
32
python
def test_get_number_of_passed_courses_for_completion(self): '\n Assert that get_number_of_passed_courses_for_completion computes a number of courses passed for\n programs with elective sets\n ' course_run = self.cruns[0] FinalGradeFactory.create(user=self.user, course_run=course_run, passed=True) electives_set = ElectivesSet.objects.create(program=self.program, required_number=1) elective_cruns = [] for _ in range(2): run = CourseRunFactory.create(course__program=self.program) FinalGradeFactory.create(user=self.user, course_run=run, passed=True, status='complete', grade=0.7) elective_cruns.append(run) CourseRunGradingStatus.objects.create(course_run=run, status='complete') ElectiveCourse.objects.create(course=run.course, electives_set=electives_set) mmtrack = MMTrack(user=self.user, program=self.program, edx_user_data=self.cached_edx_user_data) assert (mmtrack.count_courses_passed() == 3) assert (mmtrack.get_number_of_passed_courses_for_completion() == 2)
def test_get_number_of_passed_courses_for_completion(self): '\n Assert that get_number_of_passed_courses_for_completion computes a number of courses passed for\n programs with elective sets\n ' course_run = self.cruns[0] FinalGradeFactory.create(user=self.user, course_run=course_run, passed=True) electives_set = ElectivesSet.objects.create(program=self.program, required_number=1) elective_cruns = [] for _ in range(2): run = CourseRunFactory.create(course__program=self.program) FinalGradeFactory.create(user=self.user, course_run=run, passed=True, status='complete', grade=0.7) elective_cruns.append(run) CourseRunGradingStatus.objects.create(course_run=run, status='complete') ElectiveCourse.objects.create(course=run.course, electives_set=electives_set) mmtrack = MMTrack(user=self.user, program=self.program, edx_user_data=self.cached_edx_user_data) assert (mmtrack.count_courses_passed() == 3) assert (mmtrack.get_number_of_passed_courses_for_completion() == 2)<|docstring|>Assert that get_number_of_passed_courses_for_completion computes a number of courses passed for programs with elective sets<|endoftext|>
bd2b70d6ef32a17da36562ee9b5dc280eb85c97e3366db00d051f6f9a6f6d9ea
def test_get_number_of_passed_courses_for_completion_no_electives(self): '\n test get_number_of_passed_courses_for_completion returns number of passed courses if no electives\n ' mmtrack = MMTrack(user=self.user, program=self.program, edx_user_data=self.cached_edx_user_data) for course_run in self.cruns: FinalGradeFactory.create(user=self.user, course_run=course_run, passed=True) assert (mmtrack.get_number_of_passed_courses_for_completion() == 1)
test get_number_of_passed_courses_for_completion returns number of passed courses if no electives
dashboard/utils_test.py
test_get_number_of_passed_courses_for_completion_no_electives
mitodl/micromasters
32
python
def test_get_number_of_passed_courses_for_completion_no_electives(self): '\n \n ' mmtrack = MMTrack(user=self.user, program=self.program, edx_user_data=self.cached_edx_user_data) for course_run in self.cruns: FinalGradeFactory.create(user=self.user, course_run=course_run, passed=True) assert (mmtrack.get_number_of_passed_courses_for_completion() == 1)
def test_get_number_of_passed_courses_for_completion_no_electives(self): '\n \n ' mmtrack = MMTrack(user=self.user, program=self.program, edx_user_data=self.cached_edx_user_data) for course_run in self.cruns: FinalGradeFactory.create(user=self.user, course_run=course_run, passed=True) assert (mmtrack.get_number_of_passed_courses_for_completion() == 1)<|docstring|>test get_number_of_passed_courses_for_completion returns number of passed courses if no electives<|endoftext|>
606e73baee990403c6af4df10ed0ec7a048154fa065b9a684bec1a93952c9c32
def test_count_passing_courses_for_keys(self): '\n Assert that count_courses_passed works in case of normal program.\n ' mmtrack = MMTrack(user=self.user, program=self.program, edx_user_data=self.cached_edx_user_data) assert (mmtrack.count_passing_courses_for_keys(mmtrack.edx_course_keys) == 0) for crun_index in [0, 1]: course_run = self.cruns[crun_index] FinalGradeFactory.create(user=self.user, course_run=course_run, passed=True) assert (mmtrack.count_passing_courses_for_keys(mmtrack.edx_course_keys) == 1) final_grade = FinalGradeFactory.create(user=self.user, course_run__course__program=self.program, passed=True) mmtrack.edx_course_keys.add(final_grade.course_run.edx_course_key) assert (mmtrack.count_passing_courses_for_keys(mmtrack.edx_course_keys) == 2)
Assert that count_courses_passed works in case of normal program.
dashboard/utils_test.py
test_count_passing_courses_for_keys
mitodl/micromasters
32
python
def test_count_passing_courses_for_keys(self): '\n \n ' mmtrack = MMTrack(user=self.user, program=self.program, edx_user_data=self.cached_edx_user_data) assert (mmtrack.count_passing_courses_for_keys(mmtrack.edx_course_keys) == 0) for crun_index in [0, 1]: course_run = self.cruns[crun_index] FinalGradeFactory.create(user=self.user, course_run=course_run, passed=True) assert (mmtrack.count_passing_courses_for_keys(mmtrack.edx_course_keys) == 1) final_grade = FinalGradeFactory.create(user=self.user, course_run__course__program=self.program, passed=True) mmtrack.edx_course_keys.add(final_grade.course_run.edx_course_key) assert (mmtrack.count_passing_courses_for_keys(mmtrack.edx_course_keys) == 2)
def test_count_passing_courses_for_keys(self): '\n \n ' mmtrack = MMTrack(user=self.user, program=self.program, edx_user_data=self.cached_edx_user_data) assert (mmtrack.count_passing_courses_for_keys(mmtrack.edx_course_keys) == 0) for crun_index in [0, 1]: course_run = self.cruns[crun_index] FinalGradeFactory.create(user=self.user, course_run=course_run, passed=True) assert (mmtrack.count_passing_courses_for_keys(mmtrack.edx_course_keys) == 1) final_grade = FinalGradeFactory.create(user=self.user, course_run__course__program=self.program, passed=True) mmtrack.edx_course_keys.add(final_grade.course_run.edx_course_key) assert (mmtrack.count_passing_courses_for_keys(mmtrack.edx_course_keys) == 2)<|docstring|>Assert that count_courses_passed works in case of normal program.<|endoftext|>
79f75fbe5b64a263d6a9b2bdd2a4f0d2e9aa7d3d8e5868e06ae05647e4cef3c0
def test_has_paid_fa_no_final_grade(self): '\n Assert that has_paid works for FA programs in case there is no final grade\n ' mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=self.cached_edx_user_data) key = self.crun_fa.edx_course_key assert (mmtrack.has_paid(key) is False) self.pay_for_fa_course(key) mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=self.cached_edx_user_data) assert (mmtrack.has_paid(key) is True)
Assert that has_paid works for FA programs in case there is no final grade
dashboard/utils_test.py
test_has_paid_fa_no_final_grade
mitodl/micromasters
32
python
def test_has_paid_fa_no_final_grade(self): '\n \n ' mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=self.cached_edx_user_data) key = self.crun_fa.edx_course_key assert (mmtrack.has_paid(key) is False) self.pay_for_fa_course(key) mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=self.cached_edx_user_data) assert (mmtrack.has_paid(key) is True)
def test_has_paid_fa_no_final_grade(self): '\n \n ' mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=self.cached_edx_user_data) key = self.crun_fa.edx_course_key assert (mmtrack.has_paid(key) is False) self.pay_for_fa_course(key) mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=self.cached_edx_user_data) assert (mmtrack.has_paid(key) is True)<|docstring|>Assert that has_paid works for FA programs in case there is no final grade<|endoftext|>
5dbff100f2ed205e845169e2edccedf8fae3669958e444ab5cbd6d847c40c5db
def test_has_paid_for_entire_course(self): '\n Tests that the .has_paid method returns true if\n any of the course runs in the course have been paid for\n ' self.pay_for_fa_course(self.crun_fa.edx_course_key) mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=self.cached_edx_user_data) assert (mmtrack.has_paid(self.crun_fa2.edx_course_key) is True)
Tests that the .has_paid method returns true if any of the course runs in the course have been paid for
dashboard/utils_test.py
test_has_paid_for_entire_course
mitodl/micromasters
32
python
def test_has_paid_for_entire_course(self): '\n Tests that the .has_paid method returns true if\n any of the course runs in the course have been paid for\n ' self.pay_for_fa_course(self.crun_fa.edx_course_key) mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=self.cached_edx_user_data) assert (mmtrack.has_paid(self.crun_fa2.edx_course_key) is True)
def test_has_paid_for_entire_course(self): '\n Tests that the .has_paid method returns true if\n any of the course runs in the course have been paid for\n ' self.pay_for_fa_course(self.crun_fa.edx_course_key) mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=self.cached_edx_user_data) assert (mmtrack.has_paid(self.crun_fa2.edx_course_key) is True)<|docstring|>Tests that the .has_paid method returns true if any of the course runs in the course have been paid for<|endoftext|>
877931c25a3966a19e96ca623646212d9901c11fab7974b65cd9524c8c9d3879
def test_not_paid_fa_with_course_run_paid_on_edx(self): '\n Test for has_paid is False for FA programs even in case\n there is a final grade with course_run_paid_on_edx=True\n ' mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=self.cached_edx_user_data) key = self.crun_fa.edx_course_key assert (mmtrack.has_paid(key) is False) final_grade = FinalGradeFactory.create(user=self.user, course_run=self.crun_fa, course_run_paid_on_edx=True) assert (mmtrack.has_paid(key) is False) final_grade.course_run_paid_on_edx = False final_grade.save() assert (mmtrack.has_paid(key) is False)
Test for has_paid is False for FA programs even in case there is a final grade with course_run_paid_on_edx=True
dashboard/utils_test.py
test_not_paid_fa_with_course_run_paid_on_edx
mitodl/micromasters
32
python
def test_not_paid_fa_with_course_run_paid_on_edx(self): '\n Test for has_paid is False for FA programs even in case\n there is a final grade with course_run_paid_on_edx=True\n ' mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=self.cached_edx_user_data) key = self.crun_fa.edx_course_key assert (mmtrack.has_paid(key) is False) final_grade = FinalGradeFactory.create(user=self.user, course_run=self.crun_fa, course_run_paid_on_edx=True) assert (mmtrack.has_paid(key) is False) final_grade.course_run_paid_on_edx = False final_grade.save() assert (mmtrack.has_paid(key) is False)
def test_not_paid_fa_with_course_run_paid_on_edx(self): '\n Test for has_paid is False for FA programs even in case\n there is a final grade with course_run_paid_on_edx=True\n ' mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=self.cached_edx_user_data) key = self.crun_fa.edx_course_key assert (mmtrack.has_paid(key) is False) final_grade = FinalGradeFactory.create(user=self.user, course_run=self.crun_fa, course_run_paid_on_edx=True) assert (mmtrack.has_paid(key) is False) final_grade.course_run_paid_on_edx = False final_grade.save() assert (mmtrack.has_paid(key) is False)<|docstring|>Test for has_paid is False for FA programs even in case there is a final grade with course_run_paid_on_edx=True<|endoftext|>
197179a1ccd3c57e4302786a95d41503a039c0cd17c0e6363a2227d54fd6d9f2
def test_has_paid_fa_with_course_run_paid_on_mm(self): '\n Test for has_paid is True for FA programs when the course has been paid on MicroMasters\n ' mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=self.cached_edx_user_data) key = self.crun_fa.edx_course_key assert (mmtrack.has_paid(key) is False) self.pay_for_fa_course(key) mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=self.cached_edx_user_data) assert (mmtrack.has_paid(key) is True)
Test for has_paid is True for FA programs when the course has been paid on MicroMasters
dashboard/utils_test.py
test_has_paid_fa_with_course_run_paid_on_mm
mitodl/micromasters
32
python
def test_has_paid_fa_with_course_run_paid_on_mm(self): '\n \n ' mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=self.cached_edx_user_data) key = self.crun_fa.edx_course_key assert (mmtrack.has_paid(key) is False) self.pay_for_fa_course(key) mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=self.cached_edx_user_data) assert (mmtrack.has_paid(key) is True)
def test_has_paid_fa_with_course_run_paid_on_mm(self): '\n \n ' mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=self.cached_edx_user_data) key = self.crun_fa.edx_course_key assert (mmtrack.has_paid(key) is False) self.pay_for_fa_course(key) mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=self.cached_edx_user_data) assert (mmtrack.has_paid(key) is True)<|docstring|>Test for has_paid is True for FA programs when the course has been paid on MicroMasters<|endoftext|>
37e934b85ba2f87b453677cde5267b8cb8558269597f29aea1a439b219923134
def test_has_paid_not_fa_no_final_grade(self): '\n Assert that has_paid works for non-FA programs in case there is no final grade\n ' mmtrack = MMTrack(user=self.user, program=self.program, edx_user_data=self.cached_edx_user_data) key = 'course-v1:edX+DemoX+Demo_Course' assert (mmtrack.has_paid(key) is True)
Assert that has_paid works for non-FA programs in case there is no final grade
dashboard/utils_test.py
test_has_paid_not_fa_no_final_grade
mitodl/micromasters
32
python
def test_has_paid_not_fa_no_final_grade(self): '\n \n ' mmtrack = MMTrack(user=self.user, program=self.program, edx_user_data=self.cached_edx_user_data) key = 'course-v1:edX+DemoX+Demo_Course' assert (mmtrack.has_paid(key) is True)
def test_has_paid_not_fa_no_final_grade(self): '\n \n ' mmtrack = MMTrack(user=self.user, program=self.program, edx_user_data=self.cached_edx_user_data) key = 'course-v1:edX+DemoX+Demo_Course' assert (mmtrack.has_paid(key) is True)<|docstring|>Assert that has_paid works for non-FA programs in case there is no final grade<|endoftext|>
c660108bec5a974ff90770fb776d6872e2d84e4646560c5130c7d8168fb87527
def test_has_paid_not_fa_with_final_grade(self): '\n Assert that has_paid works for non-FA programs in case there is a final grade\n ' mmtrack = MMTrack(user=self.user, program=self.program, edx_user_data=self.cached_edx_user_data) key = 'course-v1:odl+FOO102+CR-FALL16' assert (mmtrack.has_paid(key) is False) course_run = self.cruns[(- 1)] final_grade = FinalGradeFactory.create(user=self.user, course_run=course_run, course_run_paid_on_edx=True) assert (mmtrack.has_paid(key) is True) final_grade.course_run_paid_on_edx = False final_grade.save() assert (mmtrack.has_paid(key) is False)
Assert that has_paid works for non-FA programs in case there is a final grade
dashboard/utils_test.py
test_has_paid_not_fa_with_final_grade
mitodl/micromasters
32
python
def test_has_paid_not_fa_with_final_grade(self): '\n \n ' mmtrack = MMTrack(user=self.user, program=self.program, edx_user_data=self.cached_edx_user_data) key = 'course-v1:odl+FOO102+CR-FALL16' assert (mmtrack.has_paid(key) is False) course_run = self.cruns[(- 1)] final_grade = FinalGradeFactory.create(user=self.user, course_run=course_run, course_run_paid_on_edx=True) assert (mmtrack.has_paid(key) is True) final_grade.course_run_paid_on_edx = False final_grade.save() assert (mmtrack.has_paid(key) is False)
def test_has_paid_not_fa_with_final_grade(self): '\n \n ' mmtrack = MMTrack(user=self.user, program=self.program, edx_user_data=self.cached_edx_user_data) key = 'course-v1:odl+FOO102+CR-FALL16' assert (mmtrack.has_paid(key) is False) course_run = self.cruns[(- 1)] final_grade = FinalGradeFactory.create(user=self.user, course_run=course_run, course_run_paid_on_edx=True) assert (mmtrack.has_paid(key) is True) final_grade.course_run_paid_on_edx = False final_grade.save() assert (mmtrack.has_paid(key) is False)<|docstring|>Assert that has_paid works for non-FA programs in case there is a final grade<|endoftext|>
a6a8c42bc4f7b9ed99d06ef765ccdcd33b9cd258f3d7ae46aa45d66f9590608a
def test_has_paid_for_any_in_program(self): '\n Assert that has_paid_for_any_in_program returns True if any CourseRun associated with a Program has been\n paid for.\n ' new_program = ProgramFactory.create() new_course_runs = CourseRunFactory.create_batch(2, course__program=new_program) mmtrack = MMTrack(user=self.user, program=new_program, edx_user_data=self.cached_edx_user_data) assert (mmtrack.has_paid_for_any_in_program() is False) fg = FinalGradeFactory.create(user=self.user, course_run=new_course_runs[0], course_run_paid_on_edx=True) assert (mmtrack.has_paid_for_any_in_program() is True) fg.delete() FinalGradeFactory.create(user=self.user, course_run=new_course_runs[1], course_run_paid_on_edx=True) assert (mmtrack.has_paid_for_any_in_program() is True)
Assert that has_paid_for_any_in_program returns True if any CourseRun associated with a Program has been paid for.
dashboard/utils_test.py
test_has_paid_for_any_in_program
mitodl/micromasters
32
python
def test_has_paid_for_any_in_program(self): '\n Assert that has_paid_for_any_in_program returns True if any CourseRun associated with a Program has been\n paid for.\n ' new_program = ProgramFactory.create() new_course_runs = CourseRunFactory.create_batch(2, course__program=new_program) mmtrack = MMTrack(user=self.user, program=new_program, edx_user_data=self.cached_edx_user_data) assert (mmtrack.has_paid_for_any_in_program() is False) fg = FinalGradeFactory.create(user=self.user, course_run=new_course_runs[0], course_run_paid_on_edx=True) assert (mmtrack.has_paid_for_any_in_program() is True) fg.delete() FinalGradeFactory.create(user=self.user, course_run=new_course_runs[1], course_run_paid_on_edx=True) assert (mmtrack.has_paid_for_any_in_program() is True)
def test_has_paid_for_any_in_program(self): '\n Assert that has_paid_for_any_in_program returns True if any CourseRun associated with a Program has been\n paid for.\n ' new_program = ProgramFactory.create() new_course_runs = CourseRunFactory.create_batch(2, course__program=new_program) mmtrack = MMTrack(user=self.user, program=new_program, edx_user_data=self.cached_edx_user_data) assert (mmtrack.has_paid_for_any_in_program() is False) fg = FinalGradeFactory.create(user=self.user, course_run=new_course_runs[0], course_run_paid_on_edx=True) assert (mmtrack.has_paid_for_any_in_program() is True) fg.delete() FinalGradeFactory.create(user=self.user, course_run=new_course_runs[1], course_run_paid_on_edx=True) assert (mmtrack.has_paid_for_any_in_program() is True)<|docstring|>Assert that has_paid_for_any_in_program returns True if any CourseRun associated with a Program has been paid for.<|endoftext|>
d37b9c2012716b1793d4bb916c0f1b69c2832cb40e6b3916da77c532e39deaf5
@ddt.data(('verified', True, True), ('audit', False, False), ('verified', False, False)) @ddt.unpack def test_has_passing_certificate(self, certificate_type, is_passing, expected_result): '\n Test for has_passing_certificate method with different type of certificates\n ' course_key = self.crun_fa.edx_course_key cert_json = {'username': 'staff', 'course_id': course_key, 'certificate_type': certificate_type, 'is_passing': is_passing, 'status': 'downloadable', 'download_url': 'http://www.example.com/demo.pdf', 'grade': '0.98'} cached_edx_user_data = MagicMock(spec=CachedEdxUserData, enrollments=CachedEnrollment.deserialize_edx_data(self.enrollments_json), certificates=CachedCertificate.deserialize_edx_data((self.certificates_json + [cert_json])), current_grades=CachedCurrentGrade.deserialize_edx_data(self.current_grades_json)) mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=cached_edx_user_data) assert (mmtrack.has_passing_certificate(course_key) is expected_result)
Test for has_passing_certificate method with different type of certificates
dashboard/utils_test.py
test_has_passing_certificate
mitodl/micromasters
32
python
@ddt.data(('verified', True, True), ('audit', False, False), ('verified', False, False)) @ddt.unpack def test_has_passing_certificate(self, certificate_type, is_passing, expected_result): '\n \n ' course_key = self.crun_fa.edx_course_key cert_json = {'username': 'staff', 'course_id': course_key, 'certificate_type': certificate_type, 'is_passing': is_passing, 'status': 'downloadable', 'download_url': 'http://www.example.com/demo.pdf', 'grade': '0.98'} cached_edx_user_data = MagicMock(spec=CachedEdxUserData, enrollments=CachedEnrollment.deserialize_edx_data(self.enrollments_json), certificates=CachedCertificate.deserialize_edx_data((self.certificates_json + [cert_json])), current_grades=CachedCurrentGrade.deserialize_edx_data(self.current_grades_json)) mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=cached_edx_user_data) assert (mmtrack.has_passing_certificate(course_key) is expected_result)
@ddt.data(('verified', True, True), ('audit', False, False), ('verified', False, False)) @ddt.unpack def test_has_passing_certificate(self, certificate_type, is_passing, expected_result): '\n \n ' course_key = self.crun_fa.edx_course_key cert_json = {'username': 'staff', 'course_id': course_key, 'certificate_type': certificate_type, 'is_passing': is_passing, 'status': 'downloadable', 'download_url': 'http://www.example.com/demo.pdf', 'grade': '0.98'} cached_edx_user_data = MagicMock(spec=CachedEdxUserData, enrollments=CachedEnrollment.deserialize_edx_data(self.enrollments_json), certificates=CachedCertificate.deserialize_edx_data((self.certificates_json + [cert_json])), current_grades=CachedCurrentGrade.deserialize_edx_data(self.current_grades_json)) mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=cached_edx_user_data) assert (mmtrack.has_passing_certificate(course_key) is expected_result)<|docstring|>Test for has_passing_certificate method with different type of certificates<|endoftext|>
380ed7f0555bbef10c3ea75adef67e95270d18758845ee7f978492338ac77d32
def test_has_passing_certificate_fa(self): '\n Assert that has_passing_certificate is true if user has a cert even if has_paid is false for FA programs\n ' mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=self.cached_edx_user_data) key = self.crun_fa.edx_course_key assert (mmtrack.has_passing_certificate(key) is False) assert (mmtrack.has_paid(key) is False) cert_json = {'username': 'staff', 'course_id': self.crun_fa.edx_course_key, 'certificate_type': 'verified', 'status': 'downloadable', 'is_passing': True, 'download_url': 'http://www.example.com/demo.pdf', 'grade': '0.98'} cached_edx_user_data = MagicMock(spec=CachedEdxUserData, enrollments=CachedEnrollment.deserialize_edx_data(self.enrollments_json), certificates=CachedCertificate.deserialize_edx_data((self.certificates_json + [cert_json])), current_grades=CachedCurrentGrade.deserialize_edx_data(self.current_grades_json)) mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=cached_edx_user_data) assert (mmtrack.has_passing_certificate(key) is True) assert (mmtrack.has_paid(key) is False)
Assert that has_passing_certificate is true if user has a cert even if has_paid is false for FA programs
dashboard/utils_test.py
test_has_passing_certificate_fa
mitodl/micromasters
32
python
def test_has_passing_certificate_fa(self): '\n \n ' mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=self.cached_edx_user_data) key = self.crun_fa.edx_course_key assert (mmtrack.has_passing_certificate(key) is False) assert (mmtrack.has_paid(key) is False) cert_json = {'username': 'staff', 'course_id': self.crun_fa.edx_course_key, 'certificate_type': 'verified', 'status': 'downloadable', 'is_passing': True, 'download_url': 'http://www.example.com/demo.pdf', 'grade': '0.98'} cached_edx_user_data = MagicMock(spec=CachedEdxUserData, enrollments=CachedEnrollment.deserialize_edx_data(self.enrollments_json), certificates=CachedCertificate.deserialize_edx_data((self.certificates_json + [cert_json])), current_grades=CachedCurrentGrade.deserialize_edx_data(self.current_grades_json)) mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=cached_edx_user_data) assert (mmtrack.has_passing_certificate(key) is True) assert (mmtrack.has_paid(key) is False)
def test_has_passing_certificate_fa(self): '\n \n ' mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=self.cached_edx_user_data) key = self.crun_fa.edx_course_key assert (mmtrack.has_passing_certificate(key) is False) assert (mmtrack.has_paid(key) is False) cert_json = {'username': 'staff', 'course_id': self.crun_fa.edx_course_key, 'certificate_type': 'verified', 'status': 'downloadable', 'is_passing': True, 'download_url': 'http://www.example.com/demo.pdf', 'grade': '0.98'} cached_edx_user_data = MagicMock(spec=CachedEdxUserData, enrollments=CachedEnrollment.deserialize_edx_data(self.enrollments_json), certificates=CachedCertificate.deserialize_edx_data((self.certificates_json + [cert_json])), current_grades=CachedCurrentGrade.deserialize_edx_data(self.current_grades_json)) mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=cached_edx_user_data) assert (mmtrack.has_passing_certificate(key) is True) assert (mmtrack.has_paid(key) is False)<|docstring|>Assert that has_passing_certificate is true if user has a cert even if has_paid is false for FA programs<|endoftext|>
b9479722d576c1b3d8b6ff00447936e0635479d0af799ceb6cb9c619ee290730
def test_get_program_certificate_url(self): '\n Test get_program_certificate_url\n ' mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=self.cached_edx_user_data) assert (mmtrack.get_program_certificate_url() == '') certificate = MicromastersProgramCertificate.objects.create(user=self.user, program=self.program_financial_aid) assert (mmtrack.get_program_certificate_url() == '') ProgramCertificateSignatoriesFactory.create(program_page__program=certificate.program) assert (mmtrack.get_program_certificate_url() == reverse('program-certificate', args=[certificate.hash]))
Test get_program_certificate_url
dashboard/utils_test.py
test_get_program_certificate_url
mitodl/micromasters
32
python
def test_get_program_certificate_url(self): '\n \n ' mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=self.cached_edx_user_data) assert (mmtrack.get_program_certificate_url() == ) certificate = MicromastersProgramCertificate.objects.create(user=self.user, program=self.program_financial_aid) assert (mmtrack.get_program_certificate_url() == ) ProgramCertificateSignatoriesFactory.create(program_page__program=certificate.program) assert (mmtrack.get_program_certificate_url() == reverse('program-certificate', args=[certificate.hash]))
def test_get_program_certificate_url(self): '\n \n ' mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=self.cached_edx_user_data) assert (mmtrack.get_program_certificate_url() == ) certificate = MicromastersProgramCertificate.objects.create(user=self.user, program=self.program_financial_aid) assert (mmtrack.get_program_certificate_url() == ) ProgramCertificateSignatoriesFactory.create(program_page__program=certificate.program) assert (mmtrack.get_program_certificate_url() == reverse('program-certificate', args=[certificate.hash]))<|docstring|>Test get_program_certificate_url<|endoftext|>
cbcf2a1dad811b2a72619073fb55848e6d102df207880b29d8528d4257628581
def test_get_program_letter_url(self): '\n Test get_program_letter_url\n ' mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=self.cached_edx_user_data) assert (mmtrack.get_program_letter_url() == '') letter = MicromastersProgramCommendation.objects.create(user=self.user, program=self.program_financial_aid) assert (mmtrack.get_program_letter_url() == '') signatory = ProgramLetterSignatoryFactory.create(program_page__program=letter.program) assert (mmtrack.get_program_letter_url() == '') program_page = signatory.program_page program_page.program_letter_text = '<p> Some example test </p>' program_page.save() assert (mmtrack.get_program_letter_url() == '') program_page.program_letter_logo = ImageFactory() program_page.save() assert (mmtrack.get_program_letter_url() == reverse('program_letter', args=[letter.uuid]))
Test get_program_letter_url
dashboard/utils_test.py
test_get_program_letter_url
mitodl/micromasters
32
python
def test_get_program_letter_url(self): '\n \n ' mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=self.cached_edx_user_data) assert (mmtrack.get_program_letter_url() == ) letter = MicromastersProgramCommendation.objects.create(user=self.user, program=self.program_financial_aid) assert (mmtrack.get_program_letter_url() == ) signatory = ProgramLetterSignatoryFactory.create(program_page__program=letter.program) assert (mmtrack.get_program_letter_url() == ) program_page = signatory.program_page program_page.program_letter_text = '<p> Some example test </p>' program_page.save() assert (mmtrack.get_program_letter_url() == ) program_page.program_letter_logo = ImageFactory() program_page.save() assert (mmtrack.get_program_letter_url() == reverse('program_letter', args=[letter.uuid]))
def test_get_program_letter_url(self): '\n \n ' mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=self.cached_edx_user_data) assert (mmtrack.get_program_letter_url() == ) letter = MicromastersProgramCommendation.objects.create(user=self.user, program=self.program_financial_aid) assert (mmtrack.get_program_letter_url() == ) signatory = ProgramLetterSignatoryFactory.create(program_page__program=letter.program) assert (mmtrack.get_program_letter_url() == ) program_page = signatory.program_page program_page.program_letter_text = '<p> Some example test </p>' program_page.save() assert (mmtrack.get_program_letter_url() == ) program_page.program_letter_logo = ImageFactory() program_page.save() assert (mmtrack.get_program_letter_url() == reverse('program_letter', args=[letter.uuid]))<|docstring|>Test get_program_letter_url<|endoftext|>
856e950f27c009060638386032b8815990d8360e90340e0ea60676e53d23fbf8
def test_get_best_final_grade_for_course(self): '\n Test for get_best_final_grade_for_course to return the highest grade over all course runs\n ' mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=self.cached_edx_user_data) finaid_course = self.crun_fa.course FinalGradeFactory.create(user=self.user, course_run=self.crun_fa, grade=0.3, passed=False) assert (mmtrack.get_best_final_grade_for_course(finaid_course) is None) for grade in [0.3, 0.5, 0.8]: course_run = CourseRunFactory.create(course=finaid_course) FinalGradeFactory.create(user=self.user, course_run=course_run, grade=grade, passed=True) assert (mmtrack.get_best_final_grade_for_course(finaid_course).grade == 0.8)
Test for get_best_final_grade_for_course to return the highest grade over all course runs
dashboard/utils_test.py
test_get_best_final_grade_for_course
mitodl/micromasters
32
python
def test_get_best_final_grade_for_course(self): '\n \n ' mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=self.cached_edx_user_data) finaid_course = self.crun_fa.course FinalGradeFactory.create(user=self.user, course_run=self.crun_fa, grade=0.3, passed=False) assert (mmtrack.get_best_final_grade_for_course(finaid_course) is None) for grade in [0.3, 0.5, 0.8]: course_run = CourseRunFactory.create(course=finaid_course) FinalGradeFactory.create(user=self.user, course_run=course_run, grade=grade, passed=True) assert (mmtrack.get_best_final_grade_for_course(finaid_course).grade == 0.8)
def test_get_best_final_grade_for_course(self): '\n \n ' mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=self.cached_edx_user_data) finaid_course = self.crun_fa.course FinalGradeFactory.create(user=self.user, course_run=self.crun_fa, grade=0.3, passed=False) assert (mmtrack.get_best_final_grade_for_course(finaid_course) is None) for grade in [0.3, 0.5, 0.8]: course_run = CourseRunFactory.create(course=finaid_course) FinalGradeFactory.create(user=self.user, course_run=course_run, grade=grade, passed=True) assert (mmtrack.get_best_final_grade_for_course(finaid_course).grade == 0.8)<|docstring|>Test for get_best_final_grade_for_course to return the highest grade over all course runs<|endoftext|>
db87ee58fc53f0d28695ce32404346287ba53ed26a5b15a9270fd1f0120d8e74
def test_get_overall_final_grade_for_course(self): '\n Test for get_overall_final_grade_for_course to return CombinedFinalGrade for course\n ' mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=self.cached_edx_user_data) finaid_course = self.crun_fa.course assert (mmtrack.get_overall_final_grade_for_course(finaid_course) == '') FinalGradeFactory.create(user=self.user, course_run=self.crun_fa, passed=True, grade=0.8) assert (mmtrack.get_overall_final_grade_for_course(finaid_course) == '80') ExamRunFactory.create(course=finaid_course) CombinedFinalGrade.objects.create(user=self.user, course=finaid_course, grade='74') assert (mmtrack.get_overall_final_grade_for_course(finaid_course) == '74')
Test for get_overall_final_grade_for_course to return CombinedFinalGrade for course
dashboard/utils_test.py
test_get_overall_final_grade_for_course
mitodl/micromasters
32
python
def test_get_overall_final_grade_for_course(self): '\n \n ' mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=self.cached_edx_user_data) finaid_course = self.crun_fa.course assert (mmtrack.get_overall_final_grade_for_course(finaid_course) == ) FinalGradeFactory.create(user=self.user, course_run=self.crun_fa, passed=True, grade=0.8) assert (mmtrack.get_overall_final_grade_for_course(finaid_course) == '80') ExamRunFactory.create(course=finaid_course) CombinedFinalGrade.objects.create(user=self.user, course=finaid_course, grade='74') assert (mmtrack.get_overall_final_grade_for_course(finaid_course) == '74')
def test_get_overall_final_grade_for_course(self): '\n \n ' mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=self.cached_edx_user_data) finaid_course = self.crun_fa.course assert (mmtrack.get_overall_final_grade_for_course(finaid_course) == ) FinalGradeFactory.create(user=self.user, course_run=self.crun_fa, passed=True, grade=0.8) assert (mmtrack.get_overall_final_grade_for_course(finaid_course) == '80') ExamRunFactory.create(course=finaid_course) CombinedFinalGrade.objects.create(user=self.user, course=finaid_course, grade='74') assert (mmtrack.get_overall_final_grade_for_course(finaid_course) == '74')<|docstring|>Test for get_overall_final_grade_for_course to return CombinedFinalGrade for course<|endoftext|>
3bd2da0fa74f367cc107089c14fc3ed3fce213e3dd9c10575f7741d78b458dc9
def test_get_best_proctored_exam_grade(self): '\n Test get_best_proctorate_exam_grade to return a passed exam with the highest score\n ' mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=self.cached_edx_user_data) finaid_course = self.crun_fa.course last_week = (now_in_utc() - timedelta(weeks=1)) ProctoredExamGradeFactory.create(user=self.user, course=finaid_course, passed=False, percentage_grade=0.6) assert (mmtrack.get_best_proctored_exam_grade(finaid_course) is None) best_exam = ProctoredExamGradeFactory.create(user=self.user, course=finaid_course, passed=True, percentage_grade=0.9, exam_run__date_grades_available=last_week) assert (mmtrack.get_best_proctored_exam_grade(finaid_course) == best_exam) ProctoredExamGradeFactory.create(user=self.user, course=finaid_course, passed=True, percentage_grade=0.8, exam_run__date_grades_available=last_week) assert (mmtrack.get_best_proctored_exam_grade(finaid_course) == best_exam)
Test get_best_proctorate_exam_grade to return a passed exam with the highest score
dashboard/utils_test.py
test_get_best_proctored_exam_grade
mitodl/micromasters
32
python
def test_get_best_proctored_exam_grade(self): '\n \n ' mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=self.cached_edx_user_data) finaid_course = self.crun_fa.course last_week = (now_in_utc() - timedelta(weeks=1)) ProctoredExamGradeFactory.create(user=self.user, course=finaid_course, passed=False, percentage_grade=0.6) assert (mmtrack.get_best_proctored_exam_grade(finaid_course) is None) best_exam = ProctoredExamGradeFactory.create(user=self.user, course=finaid_course, passed=True, percentage_grade=0.9, exam_run__date_grades_available=last_week) assert (mmtrack.get_best_proctored_exam_grade(finaid_course) == best_exam) ProctoredExamGradeFactory.create(user=self.user, course=finaid_course, passed=True, percentage_grade=0.8, exam_run__date_grades_available=last_week) assert (mmtrack.get_best_proctored_exam_grade(finaid_course) == best_exam)
def test_get_best_proctored_exam_grade(self): '\n \n ' mmtrack = MMTrack(user=self.user, program=self.program_financial_aid, edx_user_data=self.cached_edx_user_data) finaid_course = self.crun_fa.course last_week = (now_in_utc() - timedelta(weeks=1)) ProctoredExamGradeFactory.create(user=self.user, course=finaid_course, passed=False, percentage_grade=0.6) assert (mmtrack.get_best_proctored_exam_grade(finaid_course) is None) best_exam = ProctoredExamGradeFactory.create(user=self.user, course=finaid_course, passed=True, percentage_grade=0.9, exam_run__date_grades_available=last_week) assert (mmtrack.get_best_proctored_exam_grade(finaid_course) == best_exam) ProctoredExamGradeFactory.create(user=self.user, course=finaid_course, passed=True, percentage_grade=0.8, exam_run__date_grades_available=last_week) assert (mmtrack.get_best_proctored_exam_grade(finaid_course) == best_exam)<|docstring|>Test get_best_proctorate_exam_grade to return a passed exam with the highest score<|endoftext|>
5e523d16df59a7748f68a2d1cd343cac0284d89d335bf00676c208afa4168857
def test_get_mmtrack(self): '\n test creation of mmtrack(dashboard.utils.MMTrack) object.\n ' self.pay_for_fa_course(self.crun_fa.edx_course_key) mmtrack = get_mmtrack(self.user, self.program_financial_aid) key = self.crun_fa.edx_course_key assert (mmtrack.user == self.user) assert (mmtrack.has_paid(key) is True)
test creation of mmtrack(dashboard.utils.MMTrack) object.
dashboard/utils_test.py
test_get_mmtrack
mitodl/micromasters
32
python
def test_get_mmtrack(self): '\n \n ' self.pay_for_fa_course(self.crun_fa.edx_course_key) mmtrack = get_mmtrack(self.user, self.program_financial_aid) key = self.crun_fa.edx_course_key assert (mmtrack.user == self.user) assert (mmtrack.has_paid(key) is True)
def test_get_mmtrack(self): '\n \n ' self.pay_for_fa_course(self.crun_fa.edx_course_key) mmtrack = get_mmtrack(self.user, self.program_financial_aid) key = self.crun_fa.edx_course_key assert (mmtrack.user == self.user) assert (mmtrack.has_paid(key) is True)<|docstring|>test creation of mmtrack(dashboard.utils.MMTrack) object.<|endoftext|>
2ce077c515e0285da3792e73986246b4869d6778d25d76659622f4c27c5467e4
@ddt.data(['', '', False, False, False], ['', ExamProfile.PROFILE_ABSENT, True, False, False], [ExamProfile.PROFILE_INVALID, ExamProfile.PROFILE_SUCCESS, True, True, False], [ExamProfile.PROFILE_FAILED, ExamProfile.PROFILE_SUCCESS, True, True, False], ['', ExamProfile.PROFILE_SUCCESS, True, True, False], [ExamProfile.PROFILE_IN_PROGRESS, ExamProfile.PROFILE_SUCCESS, True, True, False], [ExamProfile.PROFILE_SUCCESS, ExamProfile.PROFILE_SUCCESS, True, True, False], [ExamProfile.PROFILE_SUCCESS, ExamProfile.PROFILE_SCHEDULABLE, True, True, True]) @ddt.unpack def test_get_exam_card_status_for_edx_exams(self, profile_status, expected_status, make_exam_run, make_profile, make_auth): '\n test get_exam_card_status\n ' now = now_in_utc() exam_run = None if make_exam_run: exam_run = ExamRunFactory.create(course=self.course, date_first_eligible=(now - timedelta(weeks=1)), date_last_eligible=(now + timedelta(weeks=1))) if make_profile: ExamProfileFactory.create(profile=self.user.profile, status=profile_status) if make_auth: ExamAuthorizationFactory.create(user=self.user, status=ExamAuthorization.STATUS_SUCCESS, exam_run=exam_run) mmtrack = MMTrack(user=self.user, program=self.program, edx_user_data=self.cached_edx_user_data) assert (mmtrack.get_exam_card_status() == expected_status)
test get_exam_card_status
dashboard/utils_test.py
test_get_exam_card_status_for_edx_exams
mitodl/micromasters
32
python
@ddt.data([, , False, False, False], [, ExamProfile.PROFILE_ABSENT, True, False, False], [ExamProfile.PROFILE_INVALID, ExamProfile.PROFILE_SUCCESS, True, True, False], [ExamProfile.PROFILE_FAILED, ExamProfile.PROFILE_SUCCESS, True, True, False], [, ExamProfile.PROFILE_SUCCESS, True, True, False], [ExamProfile.PROFILE_IN_PROGRESS, ExamProfile.PROFILE_SUCCESS, True, True, False], [ExamProfile.PROFILE_SUCCESS, ExamProfile.PROFILE_SUCCESS, True, True, False], [ExamProfile.PROFILE_SUCCESS, ExamProfile.PROFILE_SCHEDULABLE, True, True, True]) @ddt.unpack def test_get_exam_card_status_for_edx_exams(self, profile_status, expected_status, make_exam_run, make_profile, make_auth): '\n \n ' now = now_in_utc() exam_run = None if make_exam_run: exam_run = ExamRunFactory.create(course=self.course, date_first_eligible=(now - timedelta(weeks=1)), date_last_eligible=(now + timedelta(weeks=1))) if make_profile: ExamProfileFactory.create(profile=self.user.profile, status=profile_status) if make_auth: ExamAuthorizationFactory.create(user=self.user, status=ExamAuthorization.STATUS_SUCCESS, exam_run=exam_run) mmtrack = MMTrack(user=self.user, program=self.program, edx_user_data=self.cached_edx_user_data) assert (mmtrack.get_exam_card_status() == expected_status)
@ddt.data([, , False, False, False], [, ExamProfile.PROFILE_ABSENT, True, False, False], [ExamProfile.PROFILE_INVALID, ExamProfile.PROFILE_SUCCESS, True, True, False], [ExamProfile.PROFILE_FAILED, ExamProfile.PROFILE_SUCCESS, True, True, False], [, ExamProfile.PROFILE_SUCCESS, True, True, False], [ExamProfile.PROFILE_IN_PROGRESS, ExamProfile.PROFILE_SUCCESS, True, True, False], [ExamProfile.PROFILE_SUCCESS, ExamProfile.PROFILE_SUCCESS, True, True, False], [ExamProfile.PROFILE_SUCCESS, ExamProfile.PROFILE_SCHEDULABLE, True, True, True]) @ddt.unpack def test_get_exam_card_status_for_edx_exams(self, profile_status, expected_status, make_exam_run, make_profile, make_auth): '\n \n ' now = now_in_utc() exam_run = None if make_exam_run: exam_run = ExamRunFactory.create(course=self.course, date_first_eligible=(now - timedelta(weeks=1)), date_last_eligible=(now + timedelta(weeks=1))) if make_profile: ExamProfileFactory.create(profile=self.user.profile, status=profile_status) if make_auth: ExamAuthorizationFactory.create(user=self.user, status=ExamAuthorization.STATUS_SUCCESS, exam_run=exam_run) mmtrack = MMTrack(user=self.user, program=self.program, edx_user_data=self.cached_edx_user_data) assert (mmtrack.get_exam_card_status() == expected_status)<|docstring|>test get_exam_card_status<|endoftext|>
6dc21bb83b4ffec8d2075490fcb4c9f14730d2aa201ce154617a4f25eb150f4d
def test_get_exam_card_status_eligible(self): '\n test get_exam_card_status against valid eligibility dates\n ' ExamProfileFactory.create(profile=self.user.profile, status=ExamProfile.PROFILE_SUCCESS) now = datetime(2016, 3, 15, tzinfo=pytz.UTC) past = datetime(2016, 3, 10, tzinfo=pytz.UTC) future = datetime(2016, 3, 20, tzinfo=pytz.UTC) valid_dates = [(past - timedelta(days=1)), past, now, future] invalid_dates = [(future + timedelta(days=1))] ExamAuthorizationFactory.create(user=self.user, status=ExamAuthorization.STATUS_SUCCESS, exam_run__course=self.course, exam_run__date_first_eligible=past.date(), exam_run__date_last_eligible=future.date()) mmtrack = MMTrack(user=self.user, program=self.program, edx_user_data=self.cached_edx_user_data) for now_value in valid_dates: mmtrack.now = now_value assert (mmtrack.get_exam_card_status() == ExamProfile.PROFILE_SCHEDULABLE) for now_value in invalid_dates: mmtrack.now = now_value assert (mmtrack.get_exam_card_status() == ExamProfile.PROFILE_SUCCESS)
test get_exam_card_status against valid eligibility dates
dashboard/utils_test.py
test_get_exam_card_status_eligible
mitodl/micromasters
32
python
def test_get_exam_card_status_eligible(self): '\n \n ' ExamProfileFactory.create(profile=self.user.profile, status=ExamProfile.PROFILE_SUCCESS) now = datetime(2016, 3, 15, tzinfo=pytz.UTC) past = datetime(2016, 3, 10, tzinfo=pytz.UTC) future = datetime(2016, 3, 20, tzinfo=pytz.UTC) valid_dates = [(past - timedelta(days=1)), past, now, future] invalid_dates = [(future + timedelta(days=1))] ExamAuthorizationFactory.create(user=self.user, status=ExamAuthorization.STATUS_SUCCESS, exam_run__course=self.course, exam_run__date_first_eligible=past.date(), exam_run__date_last_eligible=future.date()) mmtrack = MMTrack(user=self.user, program=self.program, edx_user_data=self.cached_edx_user_data) for now_value in valid_dates: mmtrack.now = now_value assert (mmtrack.get_exam_card_status() == ExamProfile.PROFILE_SCHEDULABLE) for now_value in invalid_dates: mmtrack.now = now_value assert (mmtrack.get_exam_card_status() == ExamProfile.PROFILE_SUCCESS)
def test_get_exam_card_status_eligible(self): '\n \n ' ExamProfileFactory.create(profile=self.user.profile, status=ExamProfile.PROFILE_SUCCESS) now = datetime(2016, 3, 15, tzinfo=pytz.UTC) past = datetime(2016, 3, 10, tzinfo=pytz.UTC) future = datetime(2016, 3, 20, tzinfo=pytz.UTC) valid_dates = [(past - timedelta(days=1)), past, now, future] invalid_dates = [(future + timedelta(days=1))] ExamAuthorizationFactory.create(user=self.user, status=ExamAuthorization.STATUS_SUCCESS, exam_run__course=self.course, exam_run__date_first_eligible=past.date(), exam_run__date_last_eligible=future.date()) mmtrack = MMTrack(user=self.user, program=self.program, edx_user_data=self.cached_edx_user_data) for now_value in valid_dates: mmtrack.now = now_value assert (mmtrack.get_exam_card_status() == ExamProfile.PROFILE_SCHEDULABLE) for now_value in invalid_dates: mmtrack.now = now_value assert (mmtrack.get_exam_card_status() == ExamProfile.PROFILE_SUCCESS)<|docstring|>test get_exam_card_status against valid eligibility dates<|endoftext|>
ea0446a9fc4915b71d6d782dad1733d5465381e75e73223a7edc3fa28d740c49
@ddt.data((82.5, 'A'), (82.0, 'B'), (64.9, 'C'), (55, 'C'), (54.5, 'D'), (49.5, 'F')) @ddt.unpack def test_convert_to_letter(self, grade, letter): 'Test that convert_to_letter is correct' assert (convert_to_letter(grade) == letter)
Test that convert_to_letter is correct
dashboard/utils_test.py
test_convert_to_letter
mitodl/micromasters
32
python
@ddt.data((82.5, 'A'), (82.0, 'B'), (64.9, 'C'), (55, 'C'), (54.5, 'D'), (49.5, 'F')) @ddt.unpack def test_convert_to_letter(self, grade, letter): assert (convert_to_letter(grade) == letter)
@ddt.data((82.5, 'A'), (82.0, 'B'), (64.9, 'C'), (55, 'C'), (54.5, 'D'), (49.5, 'F')) @ddt.unpack def test_convert_to_letter(self, grade, letter): assert (convert_to_letter(grade) == letter)<|docstring|>Test that convert_to_letter is correct<|endoftext|>
e2e52719a35ff4056dd595c2c715d40ae190bd5914c78a750b10ced26541aeba
def __init__(self, cat: Catalog, work_space: str): '\n\n @param cat: cat 实例\n @param work_space: 工作区名称\n ' self.cat = cat self.work_space = Workspace(cat, work_space)
@param cat: cat 实例 @param work_space: 工作区名称
src/geoserver/customer_base.py
__init__
evaseemefly/gsconfig
4
python
def __init__(self, cat: Catalog, work_space: str): '\n\n @param cat: cat 实例\n @param work_space: 工作区名称\n ' self.cat = cat self.work_space = Workspace(cat, work_space)
def __init__(self, cat: Catalog, work_space: str): '\n\n @param cat: cat 实例\n @param work_space: 工作区名称\n ' self.cat = cat self.work_space = Workspace(cat, work_space)<|docstring|>@param cat: cat 实例 @param work_space: 工作区名称<|endoftext|>
b3532eb0161294dfcc0effab78c413df4ff6777ce8458e8c9b571a21dbcb73f8
def get(self): '\n Health endpoint\n ' return (None, 200)
Health endpoint
wk-sentiment/app/main/api/health/controller.py
get
wkabbani/microservices
4
python
def get(self): '\n \n ' return (None, 200)
def get(self): '\n \n ' return (None, 200)<|docstring|>Health endpoint<|endoftext|>
d44e711920fd49eae59b54ae9232ed2ced16a4bee8c0148dac5cb03f924c2604
def get(self): '\n Readiness endpoint\n ' return (None, 200)
Readiness endpoint
wk-sentiment/app/main/api/health/controller.py
get
wkabbani/microservices
4
python
def get(self): '\n \n ' return (None, 200)
def get(self): '\n \n ' return (None, 200)<|docstring|>Readiness endpoint<|endoftext|>
8d6b180be7ac2e50e4b7bf9753541c2c8534bb2f284095b40f6c40eb58905266
def PositionIsValid(self, x, y): 'find out if position is valid' ret = self.GroupIsValid(self.matList[(x, :)]) ret &= self.GroupIsValid(self.matList[(:, y)]) ret &= self.GroupIsValid(self.matList[(self.matPos == self.matPos[(x, y)])]) return ret
find out if position is valid
sudoku/sudoku2.py
PositionIsValid
ac2sherry/AlgorithmTest
1
python
def PositionIsValid(self, x, y): ret = self.GroupIsValid(self.matList[(x, :)]) ret &= self.GroupIsValid(self.matList[(:, y)]) ret &= self.GroupIsValid(self.matList[(self.matPos == self.matPos[(x, y)])]) return ret
def PositionIsValid(self, x, y): ret = self.GroupIsValid(self.matList[(x, :)]) ret &= self.GroupIsValid(self.matList[(:, y)]) ret &= self.GroupIsValid(self.matList[(self.matPos == self.matPos[(x, y)])]) return ret<|docstring|>find out if position is valid<|endoftext|>
de28dbe3a614d3e4d258748224231065e6ee75081dfea319b3cc28afdd95a63a
def _genPos(self, loc): 'recursion function cal each position' if (loc >= MAX_POS): return 'end' (x, y) = ((loc // 9), (loc % 9)) validVal = self.FindValidVal(x, y) for val in validVal: self.matList[(x, y)] = val if self.PositionIsValid(x, y): flag = self._genPos((loc + 1)) if (flag == 'end'): return 'end' self.matList[(x, y)] = None return
recursion function cal each position
sudoku/sudoku2.py
_genPos
ac2sherry/AlgorithmTest
1
python
def _genPos(self, loc): if (loc >= MAX_POS): return 'end' (x, y) = ((loc // 9), (loc % 9)) validVal = self.FindValidVal(x, y) for val in validVal: self.matList[(x, y)] = val if self.PositionIsValid(x, y): flag = self._genPos((loc + 1)) if (flag == 'end'): return 'end' self.matList[(x, y)] = None return
def _genPos(self, loc): if (loc >= MAX_POS): return 'end' (x, y) = ((loc // 9), (loc % 9)) validVal = self.FindValidVal(x, y) for val in validVal: self.matList[(x, y)] = val if self.PositionIsValid(x, y): flag = self._genPos((loc + 1)) if (flag == 'end'): return 'end' self.matList[(x, y)] = None return<|docstring|>recursion function cal each position<|endoftext|>
ba227e304961d1edb8f830947653d51400396f13ed102955ad5125addd179099
def construct_optimizer(model): 'Constructs the optimizer.\n\n Note that the momentum update in PyTorch differs from the one in Caffe2.\n In particular,\n\n Caffe2:\n V := mu * V + lr * g\n p := p - V\n\n PyTorch:\n V := mu * V + g\n p := p - lr * V\n\n where V is the velocity, mu is the momentum factor, lr is the learning rate,\n g is the gradient and p are the parameters.\n\n Since V is defined independently of the learning rate in PyTorch,\n when the learning rate is changed there is no need to perform the\n momentum correction by scaling V (unlike in the Caffe2 case).\n ' bn_params = [] non_bn_parameters = [] for (name, p) in model.named_parameters(): if ('bn' in name): bn_params.append(p) else: non_bn_parameters.append(p) bn_weight_decay = (cfg.BN.CUSTOM_WEIGHT_DECAY if cfg.BN.USE_CUSTOM_WEIGHT_DECAY else cfg.OPTIM.WEIGHT_DECAY) optim_params = [{'params': bn_params, 'weight_decay': bn_weight_decay}, {'params': non_bn_parameters, 'weight_decay': cfg.OPTIM.WEIGHT_DECAY}] assert (len(list(model.parameters())) == (len(non_bn_parameters) + len(bn_params))), 'parameter size does not match: {} + {} != {}'.format(len(non_bn_parameters), len(bn_params), len(list(model.parameters()))) return torch.optim.SGD(optim_params, lr=cfg.OPTIM.BASE_LR, momentum=cfg.OPTIM.MOMENTUM, weight_decay=cfg.OPTIM.WEIGHT_DECAY, dampening=cfg.OPTIM.DAMPENING, nesterov=cfg.OPTIM.NESTEROV)
Constructs the optimizer. Note that the momentum update in PyTorch differs from the one in Caffe2. In particular, Caffe2: V := mu * V + lr * g p := p - V PyTorch: V := mu * V + g p := p - lr * V where V is the velocity, mu is the momentum factor, lr is the learning rate, g is the gradient and p are the parameters. Since V is defined independently of the learning rate in PyTorch, when the learning rate is changed there is no need to perform the momentum correction by scaling V (unlike in the Caffe2 case).
pycls/core/optimizer.py
construct_optimizer
blackfeather-wang/GFNet-Pytorch
164
python
def construct_optimizer(model): 'Constructs the optimizer.\n\n Note that the momentum update in PyTorch differs from the one in Caffe2.\n In particular,\n\n Caffe2:\n V := mu * V + lr * g\n p := p - V\n\n PyTorch:\n V := mu * V + g\n p := p - lr * V\n\n where V is the velocity, mu is the momentum factor, lr is the learning rate,\n g is the gradient and p are the parameters.\n\n Since V is defined independently of the learning rate in PyTorch,\n when the learning rate is changed there is no need to perform the\n momentum correction by scaling V (unlike in the Caffe2 case).\n ' bn_params = [] non_bn_parameters = [] for (name, p) in model.named_parameters(): if ('bn' in name): bn_params.append(p) else: non_bn_parameters.append(p) bn_weight_decay = (cfg.BN.CUSTOM_WEIGHT_DECAY if cfg.BN.USE_CUSTOM_WEIGHT_DECAY else cfg.OPTIM.WEIGHT_DECAY) optim_params = [{'params': bn_params, 'weight_decay': bn_weight_decay}, {'params': non_bn_parameters, 'weight_decay': cfg.OPTIM.WEIGHT_DECAY}] assert (len(list(model.parameters())) == (len(non_bn_parameters) + len(bn_params))), 'parameter size does not match: {} + {} != {}'.format(len(non_bn_parameters), len(bn_params), len(list(model.parameters()))) return torch.optim.SGD(optim_params, lr=cfg.OPTIM.BASE_LR, momentum=cfg.OPTIM.MOMENTUM, weight_decay=cfg.OPTIM.WEIGHT_DECAY, dampening=cfg.OPTIM.DAMPENING, nesterov=cfg.OPTIM.NESTEROV)
def construct_optimizer(model): 'Constructs the optimizer.\n\n Note that the momentum update in PyTorch differs from the one in Caffe2.\n In particular,\n\n Caffe2:\n V := mu * V + lr * g\n p := p - V\n\n PyTorch:\n V := mu * V + g\n p := p - lr * V\n\n where V is the velocity, mu is the momentum factor, lr is the learning rate,\n g is the gradient and p are the parameters.\n\n Since V is defined independently of the learning rate in PyTorch,\n when the learning rate is changed there is no need to perform the\n momentum correction by scaling V (unlike in the Caffe2 case).\n ' bn_params = [] non_bn_parameters = [] for (name, p) in model.named_parameters(): if ('bn' in name): bn_params.append(p) else: non_bn_parameters.append(p) bn_weight_decay = (cfg.BN.CUSTOM_WEIGHT_DECAY if cfg.BN.USE_CUSTOM_WEIGHT_DECAY else cfg.OPTIM.WEIGHT_DECAY) optim_params = [{'params': bn_params, 'weight_decay': bn_weight_decay}, {'params': non_bn_parameters, 'weight_decay': cfg.OPTIM.WEIGHT_DECAY}] assert (len(list(model.parameters())) == (len(non_bn_parameters) + len(bn_params))), 'parameter size does not match: {} + {} != {}'.format(len(non_bn_parameters), len(bn_params), len(list(model.parameters()))) return torch.optim.SGD(optim_params, lr=cfg.OPTIM.BASE_LR, momentum=cfg.OPTIM.MOMENTUM, weight_decay=cfg.OPTIM.WEIGHT_DECAY, dampening=cfg.OPTIM.DAMPENING, nesterov=cfg.OPTIM.NESTEROV)<|docstring|>Constructs the optimizer. Note that the momentum update in PyTorch differs from the one in Caffe2. In particular, Caffe2: V := mu * V + lr * g p := p - V PyTorch: V := mu * V + g p := p - lr * V where V is the velocity, mu is the momentum factor, lr is the learning rate, g is the gradient and p are the parameters. Since V is defined independently of the learning rate in PyTorch, when the learning rate is changed there is no need to perform the momentum correction by scaling V (unlike in the Caffe2 case).<|endoftext|>
97ec77a0b57fce7f3de9ef8bf74d8fdd8840e118548a604e3c5a2658140d8380
def get_epoch_lr(cur_epoch): 'Retrieves the lr for the given epoch (as specified by the lr policy).' return lr_policy.get_epoch_lr(cur_epoch)
Retrieves the lr for the given epoch (as specified by the lr policy).
pycls/core/optimizer.py
get_epoch_lr
blackfeather-wang/GFNet-Pytorch
164
python
def get_epoch_lr(cur_epoch): return lr_policy.get_epoch_lr(cur_epoch)
def get_epoch_lr(cur_epoch): return lr_policy.get_epoch_lr(cur_epoch)<|docstring|>Retrieves the lr for the given epoch (as specified by the lr policy).<|endoftext|>
6cd8f98d0bc6e6627fe3bdfcbce2fa2e479ed93ebe07c50295f7ffb8f68e8a51
def set_lr(optimizer, new_lr): 'Sets the optimizer lr to the specified value.' for param_group in optimizer.param_groups: param_group['lr'] = new_lr
Sets the optimizer lr to the specified value.
pycls/core/optimizer.py
set_lr
blackfeather-wang/GFNet-Pytorch
164
python
def set_lr(optimizer, new_lr): for param_group in optimizer.param_groups: param_group['lr'] = new_lr
def set_lr(optimizer, new_lr): for param_group in optimizer.param_groups: param_group['lr'] = new_lr<|docstring|>Sets the optimizer lr to the specified value.<|endoftext|>
2217cd0ff6907daeb83daf7dbd451d60751e551887cf561e0679c2713ca2abab
def draw_sin(): 'raw a circle of sin' t = np.arange(1, Number, 1) y = np.sin(((((2 * np.pi) * frequency) * t) / Number)) plt.plot(t, y) plt.grid(True) plt.text(900, 0.75, ('Frequency is ' + str(frequency))) plt.show()
raw a circle of sin
mainSpace/files/TkinterDemo1.py
draw_sin
hanzhi713/ibcs-wd
0
python
def draw_sin(): t = np.arange(1, Number, 1) y = np.sin(((((2 * np.pi) * frequency) * t) / Number)) plt.plot(t, y) plt.grid(True) plt.text(900, 0.75, ('Frequency is ' + str(frequency))) plt.show()
def draw_sin(): t = np.arange(1, Number, 1) y = np.sin(((((2 * np.pi) * frequency) * t) / Number)) plt.plot(t, y) plt.grid(True) plt.text(900, 0.75, ('Frequency is ' + str(frequency))) plt.show()<|docstring|>raw a circle of sin<|endoftext|>
f619c91fb425259b6ddd52e371787911aa3344d2802bb629e970c75d4acc3515
def frequency_plus(): 'function of add the frequency and plot the signal' global frequency frequency = (frequency + 1) plt.clf() draw_sin()
function of add the frequency and plot the signal
mainSpace/files/TkinterDemo1.py
frequency_plus
hanzhi713/ibcs-wd
0
python
def frequency_plus(): global frequency frequency = (frequency + 1) plt.clf() draw_sin()
def frequency_plus(): global frequency frequency = (frequency + 1) plt.clf() draw_sin()<|docstring|>function of add the frequency and plot the signal<|endoftext|>
4893f45e1f5cebfafc881d671f752ed86873e210dfd7d7c81aca31c1aa55b4e4
def my_button(root, label_text, button_text, button_func): 'function of creat label and button' label = Label(root) label['text'] = label_text label.pack() button = Button(root) button['text'] = button_text button['command'] = button_func button.pack()
function of creat label and button
mainSpace/files/TkinterDemo1.py
my_button
hanzhi713/ibcs-wd
0
python
def my_button(root, label_text, button_text, button_func): label = Label(root) label['text'] = label_text label.pack() button = Button(root) button['text'] = button_text button['command'] = button_func button.pack()
def my_button(root, label_text, button_text, button_func): label = Label(root) label['text'] = label_text label.pack() button = Button(root) button['text'] = button_text button['command'] = button_func button.pack()<|docstring|>function of creat label and button<|endoftext|>
ad1c95040230915962fc942a3f3738f1fb422e38a8a548f113a033076437fe92
def main(): 'main function' root = Tk(className='DrawSin') my_button(root, 'Draw sin', 'click to Draw', draw_sin) my_button(root, 'Freq Plus', 'click to Plus', frequency_plus) root.mainloop()
main function
mainSpace/files/TkinterDemo1.py
main
hanzhi713/ibcs-wd
0
python
def main(): root = Tk(className='DrawSin') my_button(root, 'Draw sin', 'click to Draw', draw_sin) my_button(root, 'Freq Plus', 'click to Plus', frequency_plus) root.mainloop()
def main(): root = Tk(className='DrawSin') my_button(root, 'Draw sin', 'click to Draw', draw_sin) my_button(root, 'Freq Plus', 'click to Plus', frequency_plus) root.mainloop()<|docstring|>main function<|endoftext|>
107a3beed0bdd461d2f9e533d3d15335d4f99ab154402eccc0aeb2e2dfc2fc4c
def run_classifier(vec_model_name, classifier, classifier_details): 'Given the name of the word vector model, a sklearn classifier instance, and a dictionary of the classifier details,\n load the dataset and run the classification algorithm. The results are then saved to a JSON file. ' (training_data, training_labels) = get_training_info(vec_model_name) (test_data, test_labels) = get_test_info(vec_model_name) if (type(classifier) is ComplementNB): training_data = minmax_scale(training_data, feature_range=(0, 1)) test_data = minmax_scale(test_data, feature_range=(0, 1)) classifier.fit(training_data, training_labels) predictions = classifier.predict(test_data) calculate_classifier_metrics(test_labels, predictions, classifier_details) title = '{} w/{} Confusion Matrix'.format(classifier_details['Model'], vec_model_name) show_confusion_matrix(test_labels, predictions)
Given the name of the word vector model, a sklearn classifier instance, and a dictionary of the classifier details, load the dataset and run the classification algorithm. The results are then saved to a JSON file.
Scripts/run_classification.py
run_classifier
MathewTWilliams/News-Category-Classifiers
0
python
def run_classifier(vec_model_name, classifier, classifier_details): 'Given the name of the word vector model, a sklearn classifier instance, and a dictionary of the classifier details,\n load the dataset and run the classification algorithm. The results are then saved to a JSON file. ' (training_data, training_labels) = get_training_info(vec_model_name) (test_data, test_labels) = get_test_info(vec_model_name) if (type(classifier) is ComplementNB): training_data = minmax_scale(training_data, feature_range=(0, 1)) test_data = minmax_scale(test_data, feature_range=(0, 1)) classifier.fit(training_data, training_labels) predictions = classifier.predict(test_data) calculate_classifier_metrics(test_labels, predictions, classifier_details) title = '{} w/{} Confusion Matrix'.format(classifier_details['Model'], vec_model_name) show_confusion_matrix(test_labels, predictions)
def run_classifier(vec_model_name, classifier, classifier_details): 'Given the name of the word vector model, a sklearn classifier instance, and a dictionary of the classifier details,\n load the dataset and run the classification algorithm. The results are then saved to a JSON file. ' (training_data, training_labels) = get_training_info(vec_model_name) (test_data, test_labels) = get_test_info(vec_model_name) if (type(classifier) is ComplementNB): training_data = minmax_scale(training_data, feature_range=(0, 1)) test_data = minmax_scale(test_data, feature_range=(0, 1)) classifier.fit(training_data, training_labels) predictions = classifier.predict(test_data) calculate_classifier_metrics(test_labels, predictions, classifier_details) title = '{} w/{} Confusion Matrix'.format(classifier_details['Model'], vec_model_name) show_confusion_matrix(test_labels, predictions)<|docstring|>Given the name of the word vector model, a sklearn classifier instance, and a dictionary of the classifier details, load the dataset and run the classification algorithm. The results are then saved to a JSON file.<|endoftext|>
3f9c453f2c4e222c611435a350f54b8998b52488b06ec4da3b5967ece07cabf1
@staticmethod def Args(parser): 'Register flags for this command.\n\n Args:\n parser: An argparse.ArgumentParser-like object. It is mocked out in order\n to capture some information, but behaves like an ArgumentParser.\n ' parser.add_argument('build', help='The build to describe. The ID of the build is printed at the end of the build submission process, or in the ID column when listing builds.')
Register flags for this command. Args: parser: An argparse.ArgumentParser-like object. It is mocked out in order to capture some information, but behaves like an ArgumentParser.
google-cloud-sdk/lib/surface/container/builds/describe.py
Args
KaranToor/MA450
1
python
@staticmethod def Args(parser): 'Register flags for this command.\n\n Args:\n parser: An argparse.ArgumentParser-like object. It is mocked out in order\n to capture some information, but behaves like an ArgumentParser.\n ' parser.add_argument('build', help='The build to describe. The ID of the build is printed at the end of the build submission process, or in the ID column when listing builds.')
@staticmethod def Args(parser): 'Register flags for this command.\n\n Args:\n parser: An argparse.ArgumentParser-like object. It is mocked out in order\n to capture some information, but behaves like an ArgumentParser.\n ' parser.add_argument('build', help='The build to describe. The ID of the build is printed at the end of the build submission process, or in the ID column when listing builds.')<|docstring|>Register flags for this command. Args: parser: An argparse.ArgumentParser-like object. It is mocked out in order to capture some information, but behaves like an ArgumentParser.<|endoftext|>
f0db12eb7c6a03942c681d014fccdabd064d04d518c4440cb58c8cc9b6cd28cb
def Run(self, args): 'This is what gets called when the user runs this command.\n\n Args:\n args: an argparse namespace. All the arguments that were provided to this\n command invocation.\n\n Returns:\n Some value that we want to have printed later.\n ' client = cloudbuild_util.GetClientInstance() resources = self.context['registry'] build_ref = resources.Parse(args.build, collection='cloudbuild.projects.builds') return client.projects_builds.Get(client.MESSAGES_MODULE.CloudbuildProjectsBuildsGetRequest(projectId=build_ref.projectId, id=build_ref.id))
This is what gets called when the user runs this command. Args: args: an argparse namespace. All the arguments that were provided to this command invocation. Returns: Some value that we want to have printed later.
google-cloud-sdk/lib/surface/container/builds/describe.py
Run
KaranToor/MA450
1
python
def Run(self, args): 'This is what gets called when the user runs this command.\n\n Args:\n args: an argparse namespace. All the arguments that were provided to this\n command invocation.\n\n Returns:\n Some value that we want to have printed later.\n ' client = cloudbuild_util.GetClientInstance() resources = self.context['registry'] build_ref = resources.Parse(args.build, collection='cloudbuild.projects.builds') return client.projects_builds.Get(client.MESSAGES_MODULE.CloudbuildProjectsBuildsGetRequest(projectId=build_ref.projectId, id=build_ref.id))
def Run(self, args): 'This is what gets called when the user runs this command.\n\n Args:\n args: an argparse namespace. All the arguments that were provided to this\n command invocation.\n\n Returns:\n Some value that we want to have printed later.\n ' client = cloudbuild_util.GetClientInstance() resources = self.context['registry'] build_ref = resources.Parse(args.build, collection='cloudbuild.projects.builds') return client.projects_builds.Get(client.MESSAGES_MODULE.CloudbuildProjectsBuildsGetRequest(projectId=build_ref.projectId, id=build_ref.id))<|docstring|>This is what gets called when the user runs this command. Args: args: an argparse namespace. All the arguments that were provided to this command invocation. Returns: Some value that we want to have printed later.<|endoftext|>
07b2da25e17ab393aa1606124b773c844a23a7eaebcf37495163628a2033d91f
def start(self): 'Starts the watch.' self._started_at = compat.monotonic() return self
Starts the watch.
ddtrace/internal/utils/time.py
start
mastizada/dd-trace-py
308
python
def start(self): self._started_at = compat.monotonic() return self
def start(self): self._started_at = compat.monotonic() return self<|docstring|>Starts the watch.<|endoftext|>
02fc6b5518b4ba4d9a47fc77a302f835cb0f7131d55d94ca5bef6ae338a9ab9b
def elapsed(self): 'Get how many seconds have elapsed.\n\n :return: Number of seconds elapsed\n :rtype: float\n ' if (self._started_at is None): raise RuntimeError('Can not get the elapsed time of a stopwatch if it has not been started/stopped') if (self._stopped_at is None): now = compat.monotonic() else: now = self._stopped_at return (now - self._started_at)
Get how many seconds have elapsed. :return: Number of seconds elapsed :rtype: float
ddtrace/internal/utils/time.py
elapsed
mastizada/dd-trace-py
308
python
def elapsed(self): 'Get how many seconds have elapsed.\n\n :return: Number of seconds elapsed\n :rtype: float\n ' if (self._started_at is None): raise RuntimeError('Can not get the elapsed time of a stopwatch if it has not been started/stopped') if (self._stopped_at is None): now = compat.monotonic() else: now = self._stopped_at return (now - self._started_at)
def elapsed(self): 'Get how many seconds have elapsed.\n\n :return: Number of seconds elapsed\n :rtype: float\n ' if (self._started_at is None): raise RuntimeError('Can not get the elapsed time of a stopwatch if it has not been started/stopped') if (self._stopped_at is None): now = compat.monotonic() else: now = self._stopped_at return (now - self._started_at)<|docstring|>Get how many seconds have elapsed. :return: Number of seconds elapsed :rtype: float<|endoftext|>
373eaa0d3ea692f8a23d5732ad306bde3457bc7be54a55bd553222831ba10cc7
def __enter__(self): 'Starts the watch.' self.start() return self
Starts the watch.
ddtrace/internal/utils/time.py
__enter__
mastizada/dd-trace-py
308
python
def __enter__(self): self.start() return self
def __enter__(self): self.start() return self<|docstring|>Starts the watch.<|endoftext|>
82eaae39f5de3c45cc3bfc1681be2181aaf6e370a02438c5f5e88dfdefcf63f5
def __exit__(self, tp, value, traceback): 'Stops the watch.' self.stop()
Stops the watch.
ddtrace/internal/utils/time.py
__exit__
mastizada/dd-trace-py
308
python
def __exit__(self, tp, value, traceback): self.stop()
def __exit__(self, tp, value, traceback): self.stop()<|docstring|>Stops the watch.<|endoftext|>
5558d0224696fde1bd43f888262a40e7f991b75c24d47c072c4714a93b003f87
def stop(self): 'Stops the watch.' if (self._started_at is None): raise RuntimeError('Can not stop a stopwatch that has not been started') self._stopped_at = compat.monotonic() return self
Stops the watch.
ddtrace/internal/utils/time.py
stop
mastizada/dd-trace-py
308
python
def stop(self): if (self._started_at is None): raise RuntimeError('Can not stop a stopwatch that has not been started') self._stopped_at = compat.monotonic() return self
def stop(self): if (self._started_at is None): raise RuntimeError('Can not stop a stopwatch that has not been started') self._stopped_at = compat.monotonic() return self<|docstring|>Stops the watch.<|endoftext|>
70cd35de5b788bf7bda57bd4878bdadc0e5fc068a02e42381c69cd0b4dfdecf2
@pytest.mark.parametrize('field', EXPECTED_FIELDS) def test_read(self, field, mock_bower_environment, snapshot): '\n Test reading default config values and testing property getter functions.\n ' snapshot.assert_match(getattr(CONFIG.BOWER, field))
Test reading default config values and testing property getter functions.
ixian_docker/tests/modules/bower/test_config.py
test_read
kreneskyp/ixian-docker
0
python
@pytest.mark.parametrize('field', EXPECTED_FIELDS) def test_read(self, field, mock_bower_environment, snapshot): '\n \n ' snapshot.assert_match(getattr(CONFIG.BOWER, field))
@pytest.mark.parametrize('field', EXPECTED_FIELDS) def test_read(self, field, mock_bower_environment, snapshot): '\n \n ' snapshot.assert_match(getattr(CONFIG.BOWER, field))<|docstring|>Test reading default config values and testing property getter functions.<|endoftext|>
6abe263c64ba4f339a91cbccaa7e8dd6f2b3fc1bfd7efc757f794126c761422b
def __init__(self, last_transition_time=None, message=None, reason=None, status=None, type=None): '\n V1beta1ReplicaSetCondition - a model defined in Swagger\n\n :param dict swaggerTypes: The key is attribute name\n and the value is attribute type.\n :param dict attributeMap: The key is attribute name\n and the value is json key in definition.\n ' self.swagger_types = {'last_transition_time': 'datetime', 'message': 'str', 'reason': 'str', 'status': 'str', 'type': 'str'} self.attribute_map = {'last_transition_time': 'lastTransitionTime', 'message': 'message', 'reason': 'reason', 'status': 'status', 'type': 'type'} self._last_transition_time = last_transition_time self._message = message self._reason = reason self._status = status self._type = type
V1beta1ReplicaSetCondition - a model defined in Swagger :param dict swaggerTypes: The key is attribute name and the value is attribute type. :param dict attributeMap: The key is attribute name and the value is json key in definition.
src/kubernetes/client/models/v1beta1_replica_set_condition.py
__init__
MarletteFunding/aws-kube-codesuite
184
python
def __init__(self, last_transition_time=None, message=None, reason=None, status=None, type=None): '\n V1beta1ReplicaSetCondition - a model defined in Swagger\n\n :param dict swaggerTypes: The key is attribute name\n and the value is attribute type.\n :param dict attributeMap: The key is attribute name\n and the value is json key in definition.\n ' self.swagger_types = {'last_transition_time': 'datetime', 'message': 'str', 'reason': 'str', 'status': 'str', 'type': 'str'} self.attribute_map = {'last_transition_time': 'lastTransitionTime', 'message': 'message', 'reason': 'reason', 'status': 'status', 'type': 'type'} self._last_transition_time = last_transition_time self._message = message self._reason = reason self._status = status self._type = type
def __init__(self, last_transition_time=None, message=None, reason=None, status=None, type=None): '\n V1beta1ReplicaSetCondition - a model defined in Swagger\n\n :param dict swaggerTypes: The key is attribute name\n and the value is attribute type.\n :param dict attributeMap: The key is attribute name\n and the value is json key in definition.\n ' self.swagger_types = {'last_transition_time': 'datetime', 'message': 'str', 'reason': 'str', 'status': 'str', 'type': 'str'} self.attribute_map = {'last_transition_time': 'lastTransitionTime', 'message': 'message', 'reason': 'reason', 'status': 'status', 'type': 'type'} self._last_transition_time = last_transition_time self._message = message self._reason = reason self._status = status self._type = type<|docstring|>V1beta1ReplicaSetCondition - a model defined in Swagger :param dict swaggerTypes: The key is attribute name and the value is attribute type. :param dict attributeMap: The key is attribute name and the value is json key in definition.<|endoftext|>
7c4a00689c90d4883001772f671cffe52547466857c6bac7dae22946ae941c7f
@property def last_transition_time(self): '\n Gets the last_transition_time of this V1beta1ReplicaSetCondition.\n The last time the condition transitioned from one status to another.\n\n :return: The last_transition_time of this V1beta1ReplicaSetCondition.\n :rtype: datetime\n ' return self._last_transition_time
Gets the last_transition_time of this V1beta1ReplicaSetCondition. The last time the condition transitioned from one status to another. :return: The last_transition_time of this V1beta1ReplicaSetCondition. :rtype: datetime
src/kubernetes/client/models/v1beta1_replica_set_condition.py
last_transition_time
MarletteFunding/aws-kube-codesuite
184
python
@property def last_transition_time(self): '\n Gets the last_transition_time of this V1beta1ReplicaSetCondition.\n The last time the condition transitioned from one status to another.\n\n :return: The last_transition_time of this V1beta1ReplicaSetCondition.\n :rtype: datetime\n ' return self._last_transition_time
@property def last_transition_time(self): '\n Gets the last_transition_time of this V1beta1ReplicaSetCondition.\n The last time the condition transitioned from one status to another.\n\n :return: The last_transition_time of this V1beta1ReplicaSetCondition.\n :rtype: datetime\n ' return self._last_transition_time<|docstring|>Gets the last_transition_time of this V1beta1ReplicaSetCondition. The last time the condition transitioned from one status to another. :return: The last_transition_time of this V1beta1ReplicaSetCondition. :rtype: datetime<|endoftext|>
3c227f9c100a89bc34701bb354c4bfe946af1a30385c27fe8efdf2c85c137306
@last_transition_time.setter def last_transition_time(self, last_transition_time): '\n Sets the last_transition_time of this V1beta1ReplicaSetCondition.\n The last time the condition transitioned from one status to another.\n\n :param last_transition_time: The last_transition_time of this V1beta1ReplicaSetCondition.\n :type: datetime\n ' self._last_transition_time = last_transition_time
Sets the last_transition_time of this V1beta1ReplicaSetCondition. The last time the condition transitioned from one status to another. :param last_transition_time: The last_transition_time of this V1beta1ReplicaSetCondition. :type: datetime
src/kubernetes/client/models/v1beta1_replica_set_condition.py
last_transition_time
MarletteFunding/aws-kube-codesuite
184
python
@last_transition_time.setter def last_transition_time(self, last_transition_time): '\n Sets the last_transition_time of this V1beta1ReplicaSetCondition.\n The last time the condition transitioned from one status to another.\n\n :param last_transition_time: The last_transition_time of this V1beta1ReplicaSetCondition.\n :type: datetime\n ' self._last_transition_time = last_transition_time
@last_transition_time.setter def last_transition_time(self, last_transition_time): '\n Sets the last_transition_time of this V1beta1ReplicaSetCondition.\n The last time the condition transitioned from one status to another.\n\n :param last_transition_time: The last_transition_time of this V1beta1ReplicaSetCondition.\n :type: datetime\n ' self._last_transition_time = last_transition_time<|docstring|>Sets the last_transition_time of this V1beta1ReplicaSetCondition. The last time the condition transitioned from one status to another. :param last_transition_time: The last_transition_time of this V1beta1ReplicaSetCondition. :type: datetime<|endoftext|>
60028ef2590bd103ae404fa1e0127018888790c465c34fe0051bc8d5c0635c34
@property def message(self): '\n Gets the message of this V1beta1ReplicaSetCondition.\n A human readable message indicating details about the transition.\n\n :return: The message of this V1beta1ReplicaSetCondition.\n :rtype: str\n ' return self._message
Gets the message of this V1beta1ReplicaSetCondition. A human readable message indicating details about the transition. :return: The message of this V1beta1ReplicaSetCondition. :rtype: str
src/kubernetes/client/models/v1beta1_replica_set_condition.py
message
MarletteFunding/aws-kube-codesuite
184
python
@property def message(self): '\n Gets the message of this V1beta1ReplicaSetCondition.\n A human readable message indicating details about the transition.\n\n :return: The message of this V1beta1ReplicaSetCondition.\n :rtype: str\n ' return self._message
@property def message(self): '\n Gets the message of this V1beta1ReplicaSetCondition.\n A human readable message indicating details about the transition.\n\n :return: The message of this V1beta1ReplicaSetCondition.\n :rtype: str\n ' return self._message<|docstring|>Gets the message of this V1beta1ReplicaSetCondition. A human readable message indicating details about the transition. :return: The message of this V1beta1ReplicaSetCondition. :rtype: str<|endoftext|>
e1ece4f467cb202ce33742f934320484ccdbb529407e37f700110dfa0fca5270
@message.setter def message(self, message): '\n Sets the message of this V1beta1ReplicaSetCondition.\n A human readable message indicating details about the transition.\n\n :param message: The message of this V1beta1ReplicaSetCondition.\n :type: str\n ' self._message = message
Sets the message of this V1beta1ReplicaSetCondition. A human readable message indicating details about the transition. :param message: The message of this V1beta1ReplicaSetCondition. :type: str
src/kubernetes/client/models/v1beta1_replica_set_condition.py
message
MarletteFunding/aws-kube-codesuite
184
python
@message.setter def message(self, message): '\n Sets the message of this V1beta1ReplicaSetCondition.\n A human readable message indicating details about the transition.\n\n :param message: The message of this V1beta1ReplicaSetCondition.\n :type: str\n ' self._message = message
@message.setter def message(self, message): '\n Sets the message of this V1beta1ReplicaSetCondition.\n A human readable message indicating details about the transition.\n\n :param message: The message of this V1beta1ReplicaSetCondition.\n :type: str\n ' self._message = message<|docstring|>Sets the message of this V1beta1ReplicaSetCondition. A human readable message indicating details about the transition. :param message: The message of this V1beta1ReplicaSetCondition. :type: str<|endoftext|>
b40f27fe66b23b9dc88ba945a1523720d287c4d8affdce429f314cacf10d21e3
@property def reason(self): "\n Gets the reason of this V1beta1ReplicaSetCondition.\n The reason for the condition's last transition.\n\n :return: The reason of this V1beta1ReplicaSetCondition.\n :rtype: str\n " return self._reason
Gets the reason of this V1beta1ReplicaSetCondition. The reason for the condition's last transition. :return: The reason of this V1beta1ReplicaSetCondition. :rtype: str
src/kubernetes/client/models/v1beta1_replica_set_condition.py
reason
MarletteFunding/aws-kube-codesuite
184
python
@property def reason(self): "\n Gets the reason of this V1beta1ReplicaSetCondition.\n The reason for the condition's last transition.\n\n :return: The reason of this V1beta1ReplicaSetCondition.\n :rtype: str\n " return self._reason
@property def reason(self): "\n Gets the reason of this V1beta1ReplicaSetCondition.\n The reason for the condition's last transition.\n\n :return: The reason of this V1beta1ReplicaSetCondition.\n :rtype: str\n " return self._reason<|docstring|>Gets the reason of this V1beta1ReplicaSetCondition. The reason for the condition's last transition. :return: The reason of this V1beta1ReplicaSetCondition. :rtype: str<|endoftext|>
9737fb7cedcca870ed457381fa7f78d07025a71044cef35321ed6cfe9e6343a5
@reason.setter def reason(self, reason): "\n Sets the reason of this V1beta1ReplicaSetCondition.\n The reason for the condition's last transition.\n\n :param reason: The reason of this V1beta1ReplicaSetCondition.\n :type: str\n " self._reason = reason
Sets the reason of this V1beta1ReplicaSetCondition. The reason for the condition's last transition. :param reason: The reason of this V1beta1ReplicaSetCondition. :type: str
src/kubernetes/client/models/v1beta1_replica_set_condition.py
reason
MarletteFunding/aws-kube-codesuite
184
python
@reason.setter def reason(self, reason): "\n Sets the reason of this V1beta1ReplicaSetCondition.\n The reason for the condition's last transition.\n\n :param reason: The reason of this V1beta1ReplicaSetCondition.\n :type: str\n " self._reason = reason
@reason.setter def reason(self, reason): "\n Sets the reason of this V1beta1ReplicaSetCondition.\n The reason for the condition's last transition.\n\n :param reason: The reason of this V1beta1ReplicaSetCondition.\n :type: str\n " self._reason = reason<|docstring|>Sets the reason of this V1beta1ReplicaSetCondition. The reason for the condition's last transition. :param reason: The reason of this V1beta1ReplicaSetCondition. :type: str<|endoftext|>
6d4a64fe18b4560a60e6c4f5a94a92f2776afb609d509e54a501143947994946
@property def status(self): '\n Gets the status of this V1beta1ReplicaSetCondition.\n Status of the condition, one of True, False, Unknown.\n\n :return: The status of this V1beta1ReplicaSetCondition.\n :rtype: str\n ' return self._status
Gets the status of this V1beta1ReplicaSetCondition. Status of the condition, one of True, False, Unknown. :return: The status of this V1beta1ReplicaSetCondition. :rtype: str
src/kubernetes/client/models/v1beta1_replica_set_condition.py
status
MarletteFunding/aws-kube-codesuite
184
python
@property def status(self): '\n Gets the status of this V1beta1ReplicaSetCondition.\n Status of the condition, one of True, False, Unknown.\n\n :return: The status of this V1beta1ReplicaSetCondition.\n :rtype: str\n ' return self._status
@property def status(self): '\n Gets the status of this V1beta1ReplicaSetCondition.\n Status of the condition, one of True, False, Unknown.\n\n :return: The status of this V1beta1ReplicaSetCondition.\n :rtype: str\n ' return self._status<|docstring|>Gets the status of this V1beta1ReplicaSetCondition. Status of the condition, one of True, False, Unknown. :return: The status of this V1beta1ReplicaSetCondition. :rtype: str<|endoftext|>
7044ad81335a0f1eed1da58de4f41daa75b325dbf317f8ef68e2b5735b5773c8
@status.setter def status(self, status): '\n Sets the status of this V1beta1ReplicaSetCondition.\n Status of the condition, one of True, False, Unknown.\n\n :param status: The status of this V1beta1ReplicaSetCondition.\n :type: str\n ' if (status is None): raise ValueError('Invalid value for `status`, must not be `None`') self._status = status
Sets the status of this V1beta1ReplicaSetCondition. Status of the condition, one of True, False, Unknown. :param status: The status of this V1beta1ReplicaSetCondition. :type: str
src/kubernetes/client/models/v1beta1_replica_set_condition.py
status
MarletteFunding/aws-kube-codesuite
184
python
@status.setter def status(self, status): '\n Sets the status of this V1beta1ReplicaSetCondition.\n Status of the condition, one of True, False, Unknown.\n\n :param status: The status of this V1beta1ReplicaSetCondition.\n :type: str\n ' if (status is None): raise ValueError('Invalid value for `status`, must not be `None`') self._status = status
@status.setter def status(self, status): '\n Sets the status of this V1beta1ReplicaSetCondition.\n Status of the condition, one of True, False, Unknown.\n\n :param status: The status of this V1beta1ReplicaSetCondition.\n :type: str\n ' if (status is None): raise ValueError('Invalid value for `status`, must not be `None`') self._status = status<|docstring|>Sets the status of this V1beta1ReplicaSetCondition. Status of the condition, one of True, False, Unknown. :param status: The status of this V1beta1ReplicaSetCondition. :type: str<|endoftext|>
523552f95ce3ec90033296caba18eba17fa1a5d44501532ce6a9d07ddb2f581c
@property def type(self): '\n Gets the type of this V1beta1ReplicaSetCondition.\n Type of replica set condition.\n\n :return: The type of this V1beta1ReplicaSetCondition.\n :rtype: str\n ' return self._type
Gets the type of this V1beta1ReplicaSetCondition. Type of replica set condition. :return: The type of this V1beta1ReplicaSetCondition. :rtype: str
src/kubernetes/client/models/v1beta1_replica_set_condition.py
type
MarletteFunding/aws-kube-codesuite
184
python
@property def type(self): '\n Gets the type of this V1beta1ReplicaSetCondition.\n Type of replica set condition.\n\n :return: The type of this V1beta1ReplicaSetCondition.\n :rtype: str\n ' return self._type
@property def type(self): '\n Gets the type of this V1beta1ReplicaSetCondition.\n Type of replica set condition.\n\n :return: The type of this V1beta1ReplicaSetCondition.\n :rtype: str\n ' return self._type<|docstring|>Gets the type of this V1beta1ReplicaSetCondition. Type of replica set condition. :return: The type of this V1beta1ReplicaSetCondition. :rtype: str<|endoftext|>
0a0b7b4ede7ace54003b8e0d6267d01c3dbd656be54a71a0ec93211fed9758ce
@type.setter def type(self, type): '\n Sets the type of this V1beta1ReplicaSetCondition.\n Type of replica set condition.\n\n :param type: The type of this V1beta1ReplicaSetCondition.\n :type: str\n ' if (type is None): raise ValueError('Invalid value for `type`, must not be `None`') self._type = type
Sets the type of this V1beta1ReplicaSetCondition. Type of replica set condition. :param type: The type of this V1beta1ReplicaSetCondition. :type: str
src/kubernetes/client/models/v1beta1_replica_set_condition.py
type
MarletteFunding/aws-kube-codesuite
184
python
@type.setter def type(self, type): '\n Sets the type of this V1beta1ReplicaSetCondition.\n Type of replica set condition.\n\n :param type: The type of this V1beta1ReplicaSetCondition.\n :type: str\n ' if (type is None): raise ValueError('Invalid value for `type`, must not be `None`') self._type = type
@type.setter def type(self, type): '\n Sets the type of this V1beta1ReplicaSetCondition.\n Type of replica set condition.\n\n :param type: The type of this V1beta1ReplicaSetCondition.\n :type: str\n ' if (type is None): raise ValueError('Invalid value for `type`, must not be `None`') self._type = type<|docstring|>Sets the type of this V1beta1ReplicaSetCondition. Type of replica set condition. :param type: The type of this V1beta1ReplicaSetCondition. :type: str<|endoftext|>
f92515cd38effc7eee4069f2288d78a0f0836df932fb36a84e3b4f7e14233415
def to_dict(self): '\n Returns the model properties as a dict\n ' result = {} for (attr, _) in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map((lambda x: (x.to_dict() if hasattr(x, 'to_dict') else x)), value)) elif hasattr(value, 'to_dict'): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map((lambda item: ((item[0], item[1].to_dict()) if hasattr(item[1], 'to_dict') else item)), value.items())) else: result[attr] = value return result
Returns the model properties as a dict
src/kubernetes/client/models/v1beta1_replica_set_condition.py
to_dict
MarletteFunding/aws-kube-codesuite
184
python
def to_dict(self): '\n \n ' result = {} for (attr, _) in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map((lambda x: (x.to_dict() if hasattr(x, 'to_dict') else x)), value)) elif hasattr(value, 'to_dict'): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map((lambda item: ((item[0], item[1].to_dict()) if hasattr(item[1], 'to_dict') else item)), value.items())) else: result[attr] = value return result
def to_dict(self): '\n \n ' result = {} for (attr, _) in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map((lambda x: (x.to_dict() if hasattr(x, 'to_dict') else x)), value)) elif hasattr(value, 'to_dict'): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map((lambda item: ((item[0], item[1].to_dict()) if hasattr(item[1], 'to_dict') else item)), value.items())) else: result[attr] = value return result<|docstring|>Returns the model properties as a dict<|endoftext|>
c373d87dd29c1e96dce460ab571bff86e58edb298ba83c85d8cc7603a6505de4
def to_str(self): '\n Returns the string representation of the model\n ' return pformat(self.to_dict())
Returns the string representation of the model
src/kubernetes/client/models/v1beta1_replica_set_condition.py
to_str
MarletteFunding/aws-kube-codesuite
184
python
def to_str(self): '\n \n ' return pformat(self.to_dict())
def to_str(self): '\n \n ' return pformat(self.to_dict())<|docstring|>Returns the string representation of the model<|endoftext|>
1034ff7dd2eef24d21e3c2fa7409b793ab5cbb8cd75a2eb0ab3e62604b26264d
def __repr__(self): '\n For `print` and `pprint`\n ' return self.to_str()
For `print` and `pprint`
src/kubernetes/client/models/v1beta1_replica_set_condition.py
__repr__
MarletteFunding/aws-kube-codesuite
184
python
def __repr__(self): '\n \n ' return self.to_str()
def __repr__(self): '\n \n ' return self.to_str()<|docstring|>For `print` and `pprint`<|endoftext|>
a34fd6eea58293fbb4758996c0ae1f7ee3122428bbdb3b4371e15aa5926723a7
def __eq__(self, other): '\n Returns true if both objects are equal\n ' if (not isinstance(other, V1beta1ReplicaSetCondition)): return False return (self.__dict__ == other.__dict__)
Returns true if both objects are equal
src/kubernetes/client/models/v1beta1_replica_set_condition.py
__eq__
MarletteFunding/aws-kube-codesuite
184
python
def __eq__(self, other): '\n \n ' if (not isinstance(other, V1beta1ReplicaSetCondition)): return False return (self.__dict__ == other.__dict__)
def __eq__(self, other): '\n \n ' if (not isinstance(other, V1beta1ReplicaSetCondition)): return False return (self.__dict__ == other.__dict__)<|docstring|>Returns true if both objects are equal<|endoftext|>
e5050f8e1402e3a4c90d6c6e229c4c9e2b8ec61e0be457915ea9d976f7e6b0b4
def __ne__(self, other): '\n Returns true if both objects are not equal\n ' return (not (self == other))
Returns true if both objects are not equal
src/kubernetes/client/models/v1beta1_replica_set_condition.py
__ne__
MarletteFunding/aws-kube-codesuite
184
python
def __ne__(self, other): '\n \n ' return (not (self == other))
def __ne__(self, other): '\n \n ' return (not (self == other))<|docstring|>Returns true if both objects are not equal<|endoftext|>
d26ec986fb0991aea04ff3d732b3022d547fc5f74261e820b953f13ed473fe04
def get_homedir(): 'determine home directory of current user' global _HOME if (_HOME is not None): return _HOME home = None try: from pathlib import Path home = str(Path.home()) except: pass if (home is None): home = os.path.expanduser('~') if (home is None): home = os.environ.get('HOME', os.path.abspath('..')) _HOME = home return home
determine home directory of current user
pycrosskit/platforms/linux.py
get_homedir
jiri-otoupal/py-cross-kit
4
python
def get_homedir(): global _HOME if (_HOME is not None): return _HOME home = None try: from pathlib import Path home = str(Path.home()) except: pass if (home is None): home = os.path.expanduser('~') if (home is None): home = os.environ.get('HOME', os.path.abspath('..')) _HOME = home return home
def get_homedir(): global _HOME if (_HOME is not None): return _HOME home = None try: from pathlib import Path home = str(Path.home()) except: pass if (home is None): home = os.path.expanduser('~') if (home is None): home = os.environ.get('HOME', os.path.abspath('..')) _HOME = home return home<|docstring|>determine home directory of current user<|endoftext|>
f525ba7f02961c78e2c44c11962672570d4fd0a68d0c6ace97391c023c4b2607
def get_desktop(): 'get desktop location' homedir = get_homedir() desktop = os.path.join(homedir, 'Desktop') ud_file = os.path.join(homedir, '.config', 'user-dirs.dirs') if os.path.exists(ud_file): val = desktop with open(ud_file, 'r') as fh: text = fh.readlines() for line in text: if ('DESKTOP' in line): line = line.replace('$HOME', homedir)[:(- 1)] (key, val) = line.split('=') val = val.replace('"', '').replace("'", '') desktop = val return desktop
get desktop location
pycrosskit/platforms/linux.py
get_desktop
jiri-otoupal/py-cross-kit
4
python
def get_desktop(): homedir = get_homedir() desktop = os.path.join(homedir, 'Desktop') ud_file = os.path.join(homedir, '.config', 'user-dirs.dirs') if os.path.exists(ud_file): val = desktop with open(ud_file, 'r') as fh: text = fh.readlines() for line in text: if ('DESKTOP' in line): line = line.replace('$HOME', homedir)[:(- 1)] (key, val) = line.split('=') val = val.replace('"', ).replace("'", ) desktop = val return desktop
def get_desktop(): homedir = get_homedir() desktop = os.path.join(homedir, 'Desktop') ud_file = os.path.join(homedir, '.config', 'user-dirs.dirs') if os.path.exists(ud_file): val = desktop with open(ud_file, 'r') as fh: text = fh.readlines() for line in text: if ('DESKTOP' in line): line = line.replace('$HOME', homedir)[:(- 1)] (key, val) = line.split('=') val = val.replace('"', ).replace("'", ) desktop = val return desktop<|docstring|>get desktop location<|endoftext|>
47440977781543b8dc1bc35c1689e0214a3fd69bf9a5c0127bf96b742168f1de
def get_startmenu(): 'get start menu location' homedir = get_homedir() return os.path.join(homedir, '.local', 'share', 'applications')
get start menu location
pycrosskit/platforms/linux.py
get_startmenu
jiri-otoupal/py-cross-kit
4
python
def get_startmenu(): homedir = get_homedir() return os.path.join(homedir, '.local', 'share', 'applications')
def get_startmenu(): homedir = get_homedir() return os.path.join(homedir, '.local', 'share', 'applications')<|docstring|>get start menu location<|endoftext|>
bb31632040c54badf1766b36cb8a1509b87bd8cf7cca42eab50179aa457f634e
def create_shortcut(shortcut_instance, desktop=False, startmenu=False): '\n Create Shortcut\n :param shortcut_instance: Shortcut Instance\n :param startmenu: True to create Start Menu Shortcut\n :param desktop: True to create Desktop Shortcut\n :return: desktop icon path, start menu path\n :rtype: str, str\n ' text = DESKTOP_FORM.format(name=shortcut_instance.shortcut_name, desc=shortcut_instance.description, exe=shortcut_instance.exec_path, icon=shortcut_instance.icon_path, args=shortcut_instance.arguments) user_folders = get_folders() for (create, folder) in ((desktop, user_folders.desktop), (startmenu, user_folders.startmenu)): if create: if (not os.path.exists(folder)): os.makedirs(folder) dest = os.path.join(folder, shortcut_instance.exec_path) with open(dest, 'w') as fout: fout.write(text) os.chmod(dest, stat.S_IWRITE) return (user_folders.desktop, user_folders.startmenu)
Create Shortcut :param shortcut_instance: Shortcut Instance :param startmenu: True to create Start Menu Shortcut :param desktop: True to create Desktop Shortcut :return: desktop icon path, start menu path :rtype: str, str
pycrosskit/platforms/linux.py
create_shortcut
jiri-otoupal/py-cross-kit
4
python
def create_shortcut(shortcut_instance, desktop=False, startmenu=False): '\n Create Shortcut\n :param shortcut_instance: Shortcut Instance\n :param startmenu: True to create Start Menu Shortcut\n :param desktop: True to create Desktop Shortcut\n :return: desktop icon path, start menu path\n :rtype: str, str\n ' text = DESKTOP_FORM.format(name=shortcut_instance.shortcut_name, desc=shortcut_instance.description, exe=shortcut_instance.exec_path, icon=shortcut_instance.icon_path, args=shortcut_instance.arguments) user_folders = get_folders() for (create, folder) in ((desktop, user_folders.desktop), (startmenu, user_folders.startmenu)): if create: if (not os.path.exists(folder)): os.makedirs(folder) dest = os.path.join(folder, shortcut_instance.exec_path) with open(dest, 'w') as fout: fout.write(text) os.chmod(dest, stat.S_IWRITE) return (user_folders.desktop, user_folders.startmenu)
def create_shortcut(shortcut_instance, desktop=False, startmenu=False): '\n Create Shortcut\n :param shortcut_instance: Shortcut Instance\n :param startmenu: True to create Start Menu Shortcut\n :param desktop: True to create Desktop Shortcut\n :return: desktop icon path, start menu path\n :rtype: str, str\n ' text = DESKTOP_FORM.format(name=shortcut_instance.shortcut_name, desc=shortcut_instance.description, exe=shortcut_instance.exec_path, icon=shortcut_instance.icon_path, args=shortcut_instance.arguments) user_folders = get_folders() for (create, folder) in ((desktop, user_folders.desktop), (startmenu, user_folders.startmenu)): if create: if (not os.path.exists(folder)): os.makedirs(folder) dest = os.path.join(folder, shortcut_instance.exec_path) with open(dest, 'w') as fout: fout.write(text) os.chmod(dest, stat.S_IWRITE) return (user_folders.desktop, user_folders.startmenu)<|docstring|>Create Shortcut :param shortcut_instance: Shortcut Instance :param startmenu: True to create Start Menu Shortcut :param desktop: True to create Desktop Shortcut :return: desktop icon path, start menu path :rtype: str, str<|endoftext|>
099a4694a9c3f44d4acfdc297760bfbdfc3f48e908bda739cec461a64db06ccd
def delete_shortcut(shortcut_name, desktop=False, startmenu=False): '\n Delete Shortcut\n :param shortcut_name: Name of Shortcut\n :param startmenu: True to create Start Menu Shortcut\n :param desktop: True to create Desktop Shortcut\n :return: desktop icon path, start menu path\n :rtype: str, str\n ' user_folders = get_folders() (desktop_path, startmenu_path) = ('', '') if startmenu: startmenu_path = (((user_folders.startmenu + '/') + shortcut_name) + scut_ext) if os.path.exists(startmenu_path): os.chmod(startmenu_path, stat.S_IWRITE) os.remove(startmenu_path) if desktop: desktop_path = (((user_folders.desktop + '/') + shortcut_name) + scut_ext) if os.path.exists(desktop_path): os.chmod(desktop_path, stat.S_IWRITE) os.remove(desktop_path) return (desktop_path, startmenu_path)
Delete Shortcut :param shortcut_name: Name of Shortcut :param startmenu: True to create Start Menu Shortcut :param desktop: True to create Desktop Shortcut :return: desktop icon path, start menu path :rtype: str, str
pycrosskit/platforms/linux.py
delete_shortcut
jiri-otoupal/py-cross-kit
4
python
def delete_shortcut(shortcut_name, desktop=False, startmenu=False): '\n Delete Shortcut\n :param shortcut_name: Name of Shortcut\n :param startmenu: True to create Start Menu Shortcut\n :param desktop: True to create Desktop Shortcut\n :return: desktop icon path, start menu path\n :rtype: str, str\n ' user_folders = get_folders() (desktop_path, startmenu_path) = (, ) if startmenu: startmenu_path = (((user_folders.startmenu + '/') + shortcut_name) + scut_ext) if os.path.exists(startmenu_path): os.chmod(startmenu_path, stat.S_IWRITE) os.remove(startmenu_path) if desktop: desktop_path = (((user_folders.desktop + '/') + shortcut_name) + scut_ext) if os.path.exists(desktop_path): os.chmod(desktop_path, stat.S_IWRITE) os.remove(desktop_path) return (desktop_path, startmenu_path)
def delete_shortcut(shortcut_name, desktop=False, startmenu=False): '\n Delete Shortcut\n :param shortcut_name: Name of Shortcut\n :param startmenu: True to create Start Menu Shortcut\n :param desktop: True to create Desktop Shortcut\n :return: desktop icon path, start menu path\n :rtype: str, str\n ' user_folders = get_folders() (desktop_path, startmenu_path) = (, ) if startmenu: startmenu_path = (((user_folders.startmenu + '/') + shortcut_name) + scut_ext) if os.path.exists(startmenu_path): os.chmod(startmenu_path, stat.S_IWRITE) os.remove(startmenu_path) if desktop: desktop_path = (((user_folders.desktop + '/') + shortcut_name) + scut_ext) if os.path.exists(desktop_path): os.chmod(desktop_path, stat.S_IWRITE) os.remove(desktop_path) return (desktop_path, startmenu_path)<|docstring|>Delete Shortcut :param shortcut_name: Name of Shortcut :param startmenu: True to create Start Menu Shortcut :param desktop: True to create Desktop Shortcut :return: desktop icon path, start menu path :rtype: str, str<|endoftext|>
55461661e900d35613d29fd9a99e84011c9119d92d4ecfcb08a1487311074a10
def __init__(self, app, parent=None): '\n\n :param app: The application this tool will run in.\n :type app: App\n :param parent: Qt Parent\n :return: FlatCAMTool\n ' QtWidgets.QWidget.__init__(self, parent) self.layout = QtWidgets.QVBoxLayout() self.setLayout(self.layout) self.app = app self.menuAction = None
:param app: The application this tool will run in. :type app: App :param parent: Qt Parent :return: FlatCAMTool
FlatCAMTool.py
__init__
JuanoVenegas/flatcam
1
python
def __init__(self, app, parent=None): '\n\n :param app: The application this tool will run in.\n :type app: App\n :param parent: Qt Parent\n :return: FlatCAMTool\n ' QtWidgets.QWidget.__init__(self, parent) self.layout = QtWidgets.QVBoxLayout() self.setLayout(self.layout) self.app = app self.menuAction = None
def __init__(self, app, parent=None): '\n\n :param app: The application this tool will run in.\n :type app: App\n :param parent: Qt Parent\n :return: FlatCAMTool\n ' QtWidgets.QWidget.__init__(self, parent) self.layout = QtWidgets.QVBoxLayout() self.setLayout(self.layout) self.app = app self.menuAction = None<|docstring|>:param app: The application this tool will run in. :type app: App :param parent: Qt Parent :return: FlatCAMTool<|endoftext|>
27efab4cbcc1c857d2eed2a394c0f076d1601267c0c12f6d0fe5c3a458cb7682
def test_ieee_grids(): '\n Checks the .RAW files of IEEE grids against the PSS/e results\n This test checks 2 things:\n - PSS/e import fidelity\n - PSS/e vs GridCal results\n :return: Nothing, fails if not ok\n ' files = [('IEEE 14 bus.raw', 'IEEE 14 bus.sav.xlsx'), ('IEEE 30 bus.raw', 'IEEE 30 bus.sav.xlsx'), ('IEEE 118 Bus v2.raw', 'IEEE 118 Bus.sav.xlsx')] options = PowerFlowOptions(SolverType.NR, verbose=False, initialize_with_existing_solution=False, multi_core=False, dispatch_storage=True, control_q=ReactivePowerControlMode.NoControl, control_p=True) for (f1, f2) in files: print(f1, end=' ') fname = os.path.join('data', f1) main_circuit = FileOpen(fname).open() power_flow = PowerFlowDriver(main_circuit, options) power_flow.run() df_v = pd.read_excel(os.path.join('data', f2), sheet_name='Vabs', index_col=0) df_p = pd.read_excel(os.path.join('data', f2), sheet_name='Pbranch', index_col=0) v_gc = np.abs(power_flow.results.voltage) v_psse = df_v.values[(:, 0)] p_gc = power_flow.results.Sbranch.real p_psse = df_p.values[(:, 0)] assert np.allclose(v_gc, v_psse, atol=0.001) assert np.allclose(p_gc, p_psse, atol=0.1) print('ok')
Checks the .RAW files of IEEE grids against the PSS/e results This test checks 2 things: - PSS/e import fidelity - PSS/e vs GridCal results :return: Nothing, fails if not ok
src/tests/test_power_flow.py
test_ieee_grids
vineetjnair9/GridCal
0
python
def test_ieee_grids(): '\n Checks the .RAW files of IEEE grids against the PSS/e results\n This test checks 2 things:\n - PSS/e import fidelity\n - PSS/e vs GridCal results\n :return: Nothing, fails if not ok\n ' files = [('IEEE 14 bus.raw', 'IEEE 14 bus.sav.xlsx'), ('IEEE 30 bus.raw', 'IEEE 30 bus.sav.xlsx'), ('IEEE 118 Bus v2.raw', 'IEEE 118 Bus.sav.xlsx')] options = PowerFlowOptions(SolverType.NR, verbose=False, initialize_with_existing_solution=False, multi_core=False, dispatch_storage=True, control_q=ReactivePowerControlMode.NoControl, control_p=True) for (f1, f2) in files: print(f1, end=' ') fname = os.path.join('data', f1) main_circuit = FileOpen(fname).open() power_flow = PowerFlowDriver(main_circuit, options) power_flow.run() df_v = pd.read_excel(os.path.join('data', f2), sheet_name='Vabs', index_col=0) df_p = pd.read_excel(os.path.join('data', f2), sheet_name='Pbranch', index_col=0) v_gc = np.abs(power_flow.results.voltage) v_psse = df_v.values[(:, 0)] p_gc = power_flow.results.Sbranch.real p_psse = df_p.values[(:, 0)] assert np.allclose(v_gc, v_psse, atol=0.001) assert np.allclose(p_gc, p_psse, atol=0.1) print('ok')
def test_ieee_grids(): '\n Checks the .RAW files of IEEE grids against the PSS/e results\n This test checks 2 things:\n - PSS/e import fidelity\n - PSS/e vs GridCal results\n :return: Nothing, fails if not ok\n ' files = [('IEEE 14 bus.raw', 'IEEE 14 bus.sav.xlsx'), ('IEEE 30 bus.raw', 'IEEE 30 bus.sav.xlsx'), ('IEEE 118 Bus v2.raw', 'IEEE 118 Bus.sav.xlsx')] options = PowerFlowOptions(SolverType.NR, verbose=False, initialize_with_existing_solution=False, multi_core=False, dispatch_storage=True, control_q=ReactivePowerControlMode.NoControl, control_p=True) for (f1, f2) in files: print(f1, end=' ') fname = os.path.join('data', f1) main_circuit = FileOpen(fname).open() power_flow = PowerFlowDriver(main_circuit, options) power_flow.run() df_v = pd.read_excel(os.path.join('data', f2), sheet_name='Vabs', index_col=0) df_p = pd.read_excel(os.path.join('data', f2), sheet_name='Pbranch', index_col=0) v_gc = np.abs(power_flow.results.voltage) v_psse = df_v.values[(:, 0)] p_gc = power_flow.results.Sbranch.real p_psse = df_p.values[(:, 0)] assert np.allclose(v_gc, v_psse, atol=0.001) assert np.allclose(p_gc, p_psse, atol=0.1) print('ok')<|docstring|>Checks the .RAW files of IEEE grids against the PSS/e results This test checks 2 things: - PSS/e import fidelity - PSS/e vs GridCal results :return: Nothing, fails if not ok<|endoftext|>
baeb86e191f16db257ab0e24af274d81b22f8441da5c1d99eae267b4ab065f0a
def add_payment_info(body=None): 'Processes Credit Card Payments\n\n Adds an item to the system # noqa: E501\n\n :param body: Payment item to add\n :type body: dict | bytes\n\n :rtype: None\n ' if connexion.request.is_json: body = PaymentItem.from_dict(connexion.request.get_json()) return 'do some magic!'
Processes Credit Card Payments Adds an item to the system # noqa: E501 :param body: Payment item to add :type body: dict | bytes :rtype: None
swagger_server/controllers/admins_controller.py
add_payment_info
sbalasa/ProcessPayment
0
python
def add_payment_info(body=None): 'Processes Credit Card Payments\n\n Adds an item to the system # noqa: E501\n\n :param body: Payment item to add\n :type body: dict | bytes\n\n :rtype: None\n ' if connexion.request.is_json: body = PaymentItem.from_dict(connexion.request.get_json()) return 'do some magic!'
def add_payment_info(body=None): 'Processes Credit Card Payments\n\n Adds an item to the system # noqa: E501\n\n :param body: Payment item to add\n :type body: dict | bytes\n\n :rtype: None\n ' if connexion.request.is_json: body = PaymentItem.from_dict(connexion.request.get_json()) return 'do some magic!'<|docstring|>Processes Credit Card Payments Adds an item to the system # noqa: E501 :param body: Payment item to add :type body: dict | bytes :rtype: None<|endoftext|>
5e1ecce345a8040b54584cb27a0d69a79ce26fa78e6eca2b7a803609a368aac9
def convert_estimator(est, min_version=None): ' Convert scikit-learn estimator to its pure_sklearn counterpart ' est_name = est.__class__.__name__ pure_est_name = MAPPING.get(est_name) if (pure_est_name is None): raise ValueError("Cannot find 'pure_sklearn' counterpart for {}".format(est_name)) module = '.'.join(pure_est_name.split('.')[:(- 1)]) name = pure_est_name.split('.')[(- 1)] return _instantiate_class(module, name)(est)
Convert scikit-learn estimator to its pure_sklearn counterpart
pure_sklearn/map.py
convert_estimator
ashetty1-m/pure-predict
62
python
def convert_estimator(est, min_version=None): ' ' est_name = est.__class__.__name__ pure_est_name = MAPPING.get(est_name) if (pure_est_name is None): raise ValueError("Cannot find 'pure_sklearn' counterpart for {}".format(est_name)) module = '.'.join(pure_est_name.split('.')[:(- 1)]) name = pure_est_name.split('.')[(- 1)] return _instantiate_class(module, name)(est)
def convert_estimator(est, min_version=None): ' ' est_name = est.__class__.__name__ pure_est_name = MAPPING.get(est_name) if (pure_est_name is None): raise ValueError("Cannot find 'pure_sklearn' counterpart for {}".format(est_name)) module = '.'.join(pure_est_name.split('.')[:(- 1)]) name = pure_est_name.split('.')[(- 1)] return _instantiate_class(module, name)(est)<|docstring|>Convert scikit-learn estimator to its pure_sklearn counterpart<|endoftext|>
3783a59500ba0de94e622a669a55263285d7d7873fc20a093deca4d0c809f876
def show(): 'Shows the sidebar components for the template and returns\n user inputs as dict.' with st.sidebar: pass (col1, col2) = st.columns((2, 3)) st.write('\n #####\n Analyze the results with most widely used metrics such as\n AUC ROC curve, precision-recall curve and confusion matrix.\n ') result_df = utils.load_df('Choose a CSV file with predictions:') st.write(result_df) result_df_colnames = result_df.columns.tolist() label = st.selectbox('Select the label', result_df_colnames) evaluate = st.button('Evaluate!') if evaluate: evaluator = Evaluator(result_df=result_df, target=label, result_dir=config.RESULT_DIR) evaluator.evaluate() st.write(evaluator.plot_roc_curve_all()) st.write(evaluator.plot_confusion_matrix_all()) st.write(f''' The best performing model in terms of AUC ROC in 5-fold cross-validation is ***{evaluator.best_model_name}**. This model is evaluated on the test set: ''') st.write(evaluator.plot_test())
Shows the sidebar components for the template and returns user inputs as dict.
webapp/templates/Binary classification/3. Evaluation.py
show
piotrekwoznicki/Radiomics
1
python
def show(): 'Shows the sidebar components for the template and returns\n user inputs as dict.' with st.sidebar: pass (col1, col2) = st.columns((2, 3)) st.write('\n #####\n Analyze the results with most widely used metrics such as\n AUC ROC curve, precision-recall curve and confusion matrix.\n ') result_df = utils.load_df('Choose a CSV file with predictions:') st.write(result_df) result_df_colnames = result_df.columns.tolist() label = st.selectbox('Select the label', result_df_colnames) evaluate = st.button('Evaluate!') if evaluate: evaluator = Evaluator(result_df=result_df, target=label, result_dir=config.RESULT_DIR) evaluator.evaluate() st.write(evaluator.plot_roc_curve_all()) st.write(evaluator.plot_confusion_matrix_all()) st.write(f' The best performing model in terms of AUC ROC in 5-fold cross-validation is ***{evaluator.best_model_name}**. This model is evaluated on the test set: ') st.write(evaluator.plot_test())
def show(): 'Shows the sidebar components for the template and returns\n user inputs as dict.' with st.sidebar: pass (col1, col2) = st.columns((2, 3)) st.write('\n #####\n Analyze the results with most widely used metrics such as\n AUC ROC curve, precision-recall curve and confusion matrix.\n ') result_df = utils.load_df('Choose a CSV file with predictions:') st.write(result_df) result_df_colnames = result_df.columns.tolist() label = st.selectbox('Select the label', result_df_colnames) evaluate = st.button('Evaluate!') if evaluate: evaluator = Evaluator(result_df=result_df, target=label, result_dir=config.RESULT_DIR) evaluator.evaluate() st.write(evaluator.plot_roc_curve_all()) st.write(evaluator.plot_confusion_matrix_all()) st.write(f' The best performing model in terms of AUC ROC in 5-fold cross-validation is ***{evaluator.best_model_name}**. This model is evaluated on the test set: ') st.write(evaluator.plot_test())<|docstring|>Shows the sidebar components for the template and returns user inputs as dict.<|endoftext|>
5b9b87816442b7caf4c53c6da66c07274ff787273707c58bf6982be167917d00
def create_mlflow_experiment_by_name(name: str) -> Any: 'Create mlflow experiment by specified name.\n Returns experiment ID (existing or created).' if (str is None): raise Exception('Experiment name is empty!') experiment = mlflow.get_experiment_by_name(name) if (experiment is not None): return experiment.experiment_id experiment_id = mlflow.create_experiment(name) print(f'created experiment ID: {experiment_id}') return experiment_id
Create mlflow experiment by specified name. Returns experiment ID (existing or created).
9_evaluation_selection/src/forest_ml/utils/mlflow_utils.py
create_mlflow_experiment_by_name
aslamovyura/ml-python
0
python
def create_mlflow_experiment_by_name(name: str) -> Any: 'Create mlflow experiment by specified name.\n Returns experiment ID (existing or created).' if (str is None): raise Exception('Experiment name is empty!') experiment = mlflow.get_experiment_by_name(name) if (experiment is not None): return experiment.experiment_id experiment_id = mlflow.create_experiment(name) print(f'created experiment ID: {experiment_id}') return experiment_id
def create_mlflow_experiment_by_name(name: str) -> Any: 'Create mlflow experiment by specified name.\n Returns experiment ID (existing or created).' if (str is None): raise Exception('Experiment name is empty!') experiment = mlflow.get_experiment_by_name(name) if (experiment is not None): return experiment.experiment_id experiment_id = mlflow.create_experiment(name) print(f'created experiment ID: {experiment_id}') return experiment_id<|docstring|>Create mlflow experiment by specified name. Returns experiment ID (existing or created).<|endoftext|>
008914a86a828de7519cf3582c1325346ede9dc095dd1d398f787cf3898df538
def run(metadata_file_path: str) -> str: '\n Transforms a metadatafile from the input model to the SIKT\n metadata model that is stored in the datastore.\n Returns the path of the transformed metadata file.\n ' try: logger.info(f'Transforming metadata {metadata_file_path}') transformed_metadata_file_path = _transform_metadata(metadata_file_path) logger.info(f'Transformed metadata and wrote to {transformed_metadata_file_path}') return transformed_metadata_file_path except Exception as e: logger.error(f'Error during transformation: {str(e)}') raise BuilderStepError('Failed to transform dataset')
Transforms a metadatafile from the input model to the SIKT metadata model that is stored in the datastore. Returns the path of the transformed metadata file.
dataset_builder/steps/dataset_transformer.py
run
statisticsnorway/microdata-dataset-builder
0
python
def run(metadata_file_path: str) -> str: '\n Transforms a metadatafile from the input model to the SIKT\n metadata model that is stored in the datastore.\n Returns the path of the transformed metadata file.\n ' try: logger.info(f'Transforming metadata {metadata_file_path}') transformed_metadata_file_path = _transform_metadata(metadata_file_path) logger.info(f'Transformed metadata and wrote to {transformed_metadata_file_path}') return transformed_metadata_file_path except Exception as e: logger.error(f'Error during transformation: {str(e)}') raise BuilderStepError('Failed to transform dataset')
def run(metadata_file_path: str) -> str: '\n Transforms a metadatafile from the input model to the SIKT\n metadata model that is stored in the datastore.\n Returns the path of the transformed metadata file.\n ' try: logger.info(f'Transforming metadata {metadata_file_path}') transformed_metadata_file_path = _transform_metadata(metadata_file_path) logger.info(f'Transformed metadata and wrote to {transformed_metadata_file_path}') return transformed_metadata_file_path except Exception as e: logger.error(f'Error during transformation: {str(e)}') raise BuilderStepError('Failed to transform dataset')<|docstring|>Transforms a metadatafile from the input model to the SIKT metadata model that is stored in the datastore. Returns the path of the transformed metadata file.<|endoftext|>
53dc36b9cc0d8c480bc3550071b9bb991e61f3fca3c4000b7ecc8b56466644fa
def manual_args(args: Namespace) -> Namespace: 'function only called if no arguments have been passed to the script - mostly used for dev/debugging' args.trials = 20 args.split_seed_init = 0 args.experiment_name = 'hiv_tn_4096_test4' args.tracking_uri = os.getenv('TRACKING_URI', default='http://localhost:5000') args.gradient_clip_val = 1.0 args.max_steps = 1000 args.seed = 0 args.patience = 50 args.data_name = 'hiv' args.batch_size = 2048 args.split_type = 'random' args.split_seed = 0 args.n_bits = 4096 args.radius = 4 args.chirality = True args.features = True args.featurizer_name = 'ecfp' args.num_workers = 4 args.cache_dir = ('../../../' + 'data/molnet/hiv/') args.decision_size = 128 args.feature_size = (args.decision_size * 2) args.nr_layers = 2 args.nr_shared_layers = 2 args.nr_steps = 3 args.gamma = 1.2 args.lambda_sparse = 0.0 args.virtual_batch_size = (- 1) args.normalize_input = False args.lr = 0.00044816616909224065 args.optimizer = 'adam' args.scheduler = 'linear_with_warmup' args.scheduler_params = {'warmup_steps': 10} args.log_sparsity = True args.log_parameters = False return args
function only called if no arguments have been passed to the script - mostly used for dev/debugging
src/experiments/molnet/tn_splits.py
manual_args
clemens33/thesis
0
python
def manual_args(args: Namespace) -> Namespace: args.trials = 20 args.split_seed_init = 0 args.experiment_name = 'hiv_tn_4096_test4' args.tracking_uri = os.getenv('TRACKING_URI', default='http://localhost:5000') args.gradient_clip_val = 1.0 args.max_steps = 1000 args.seed = 0 args.patience = 50 args.data_name = 'hiv' args.batch_size = 2048 args.split_type = 'random' args.split_seed = 0 args.n_bits = 4096 args.radius = 4 args.chirality = True args.features = True args.featurizer_name = 'ecfp' args.num_workers = 4 args.cache_dir = ('../../../' + 'data/molnet/hiv/') args.decision_size = 128 args.feature_size = (args.decision_size * 2) args.nr_layers = 2 args.nr_shared_layers = 2 args.nr_steps = 3 args.gamma = 1.2 args.lambda_sparse = 0.0 args.virtual_batch_size = (- 1) args.normalize_input = False args.lr = 0.00044816616909224065 args.optimizer = 'adam' args.scheduler = 'linear_with_warmup' args.scheduler_params = {'warmup_steps': 10} args.log_sparsity = True args.log_parameters = False return args
def manual_args(args: Namespace) -> Namespace: args.trials = 20 args.split_seed_init = 0 args.experiment_name = 'hiv_tn_4096_test4' args.tracking_uri = os.getenv('TRACKING_URI', default='http://localhost:5000') args.gradient_clip_val = 1.0 args.max_steps = 1000 args.seed = 0 args.patience = 50 args.data_name = 'hiv' args.batch_size = 2048 args.split_type = 'random' args.split_seed = 0 args.n_bits = 4096 args.radius = 4 args.chirality = True args.features = True args.featurizer_name = 'ecfp' args.num_workers = 4 args.cache_dir = ('../../../' + 'data/molnet/hiv/') args.decision_size = 128 args.feature_size = (args.decision_size * 2) args.nr_layers = 2 args.nr_shared_layers = 2 args.nr_steps = 3 args.gamma = 1.2 args.lambda_sparse = 0.0 args.virtual_batch_size = (- 1) args.normalize_input = False args.lr = 0.00044816616909224065 args.optimizer = 'adam' args.scheduler = 'linear_with_warmup' args.scheduler_params = {'warmup_steps': 10} args.log_sparsity = True args.log_parameters = False return args<|docstring|>function only called if no arguments have been passed to the script - mostly used for dev/debugging<|endoftext|>
96bf6b38e3a7d0ee39a39820cae93bb13f7341dfcfdf7a855b44d21c2d3f5b56
def to_dict(self): 'Returns the serialized form of the :class:`GraphObjectBase`\n as a dict. All sub-objects that are based off of :class:`GraphObjectBase`\n are also serialized and inserted into the dict\n \n Returns:\n dict: The serialized form of the :class:`GraphObjectBase`\n ' serialized = {} for prop in self._prop_dict: if isinstance(self._prop_dict[prop], GraphObjectBase): serialized[prop] = self._prop_dict[prop].to_dict() else: serialized[prop] = self._prop_dict[prop] return serialized
Returns the serialized form of the :class:`GraphObjectBase` as a dict. All sub-objects that are based off of :class:`GraphObjectBase` are also serialized and inserted into the dict Returns: dict: The serialized form of the :class:`GraphObjectBase`
src/msgraph/graph_object_base.py
to_dict
microsoftarchive/msgraph-sdk-python
7
python
def to_dict(self): 'Returns the serialized form of the :class:`GraphObjectBase`\n as a dict. All sub-objects that are based off of :class:`GraphObjectBase`\n are also serialized and inserted into the dict\n \n Returns:\n dict: The serialized form of the :class:`GraphObjectBase`\n ' serialized = {} for prop in self._prop_dict: if isinstance(self._prop_dict[prop], GraphObjectBase): serialized[prop] = self._prop_dict[prop].to_dict() else: serialized[prop] = self._prop_dict[prop] return serialized
def to_dict(self): 'Returns the serialized form of the :class:`GraphObjectBase`\n as a dict. All sub-objects that are based off of :class:`GraphObjectBase`\n are also serialized and inserted into the dict\n \n Returns:\n dict: The serialized form of the :class:`GraphObjectBase`\n ' serialized = {} for prop in self._prop_dict: if isinstance(self._prop_dict[prop], GraphObjectBase): serialized[prop] = self._prop_dict[prop].to_dict() else: serialized[prop] = self._prop_dict[prop] return serialized<|docstring|>Returns the serialized form of the :class:`GraphObjectBase` as a dict. All sub-objects that are based off of :class:`GraphObjectBase` are also serialized and inserted into the dict Returns: dict: The serialized form of the :class:`GraphObjectBase`<|endoftext|>
1a9900a3cc1da156304f2c9eb05700152505e510cef344874464efe81ee1de16
def parse_organism(x): "\n The taxonomy ID is returned based on the provided 'Taxid interactor' value eg. taxid:10090(mouse)|taxid:10090(Mus musculus)\n " if (x == '-'): return None x = (x.split('|')[1] if (len(x.split('|')) > 1) else x) organism_id = re.search('taxid:(-*\\d+)', x).group(1) return organism_id
The taxonomy ID is returned based on the provided 'Taxid interactor' value eg. taxid:10090(mouse)|taxid:10090(Mus musculus)
src/parsers/intact_parser.py
parse_organism
thehyve/ot_covid19
1
python
def parse_organism(x): "\n \n " if (x == '-'): return None x = (x.split('|')[1] if (len(x.split('|')) > 1) else x) organism_id = re.search('taxid:(-*\\d+)', x).group(1) return organism_id
def parse_organism(x): "\n \n " if (x == '-'): return None x = (x.split('|')[1] if (len(x.split('|')) > 1) else x) organism_id = re.search('taxid:(-*\\d+)', x).group(1) return organism_id<|docstring|>The taxonomy ID is returned based on the provided 'Taxid interactor' value eg. taxid:10090(mouse)|taxid:10090(Mus musculus)<|endoftext|>
82ef8905399b9bf972c888f40377daced1f8633eeeb50dbbd39bef0fe61a035d
def get_direct_interactors(input_df): '\n This function reads the covid19 intact release\n\n Output: pd.DataFrame\n id: uniprot identifiers\n Covid_direct_interactions: Intact network identifiers\n ' taxonomy_ids = ['2697049', '694009', '9606'] filtered_interact = network_df.loc[(network_df['taxid_b'].isin(taxonomy_ids) & network_df['taxid_a'].isin(taxonomy_ids))] filtered_interact = filtered_interact.loc[(~ ((filtered_interact['taxid_b'] == '9606') & (filtered_interact['taxid_a'] == '9606')))] filtered_interact = filtered_interact.drop_duplicates() interactors = filtered_interact.id_a.append(filtered_interact.id_b).unique() aggregated_interactions = [] for interactor in interactors: interaction_ids = filtered_interact.loc[(((filtered_interact.id_a == interactor) | (filtered_interact.id_b == interactor)), 'interaction_id')].unique().tolist() try: tax_id = filtered_interact.loc[(filtered_interact.id_a == interactor)].taxid_a.tolist()[0] except: tax_id = filtered_interact.loc[(filtered_interact.id_b == interactor)].taxid_b.tolist()[0] aggregated_interactions.append({'uniprot_id': interactor.split('-')[0], 'Covid_direct_interactions': interaction_ids, 'tax_id': tax_id}) return pd.DataFrame(aggregated_interactions)
This function reads the covid19 intact release Output: pd.DataFrame id: uniprot identifiers Covid_direct_interactions: Intact network identifiers
src/parsers/intact_parser.py
get_direct_interactors
thehyve/ot_covid19
1
python
def get_direct_interactors(input_df): '\n This function reads the covid19 intact release\n\n Output: pd.DataFrame\n id: uniprot identifiers\n Covid_direct_interactions: Intact network identifiers\n ' taxonomy_ids = ['2697049', '694009', '9606'] filtered_interact = network_df.loc[(network_df['taxid_b'].isin(taxonomy_ids) & network_df['taxid_a'].isin(taxonomy_ids))] filtered_interact = filtered_interact.loc[(~ ((filtered_interact['taxid_b'] == '9606') & (filtered_interact['taxid_a'] == '9606')))] filtered_interact = filtered_interact.drop_duplicates() interactors = filtered_interact.id_a.append(filtered_interact.id_b).unique() aggregated_interactions = [] for interactor in interactors: interaction_ids = filtered_interact.loc[(((filtered_interact.id_a == interactor) | (filtered_interact.id_b == interactor)), 'interaction_id')].unique().tolist() try: tax_id = filtered_interact.loc[(filtered_interact.id_a == interactor)].taxid_a.tolist()[0] except: tax_id = filtered_interact.loc[(filtered_interact.id_b == interactor)].taxid_b.tolist()[0] aggregated_interactions.append({'uniprot_id': interactor.split('-')[0], 'Covid_direct_interactions': interaction_ids, 'tax_id': tax_id}) return pd.DataFrame(aggregated_interactions)
def get_direct_interactors(input_df): '\n This function reads the covid19 intact release\n\n Output: pd.DataFrame\n id: uniprot identifiers\n Covid_direct_interactions: Intact network identifiers\n ' taxonomy_ids = ['2697049', '694009', '9606'] filtered_interact = network_df.loc[(network_df['taxid_b'].isin(taxonomy_ids) & network_df['taxid_a'].isin(taxonomy_ids))] filtered_interact = filtered_interact.loc[(~ ((filtered_interact['taxid_b'] == '9606') & (filtered_interact['taxid_a'] == '9606')))] filtered_interact = filtered_interact.drop_duplicates() interactors = filtered_interact.id_a.append(filtered_interact.id_b).unique() aggregated_interactions = [] for interactor in interactors: interaction_ids = filtered_interact.loc[(((filtered_interact.id_a == interactor) | (filtered_interact.id_b == interactor)), 'interaction_id')].unique().tolist() try: tax_id = filtered_interact.loc[(filtered_interact.id_a == interactor)].taxid_a.tolist()[0] except: tax_id = filtered_interact.loc[(filtered_interact.id_b == interactor)].taxid_b.tolist()[0] aggregated_interactions.append({'uniprot_id': interactor.split('-')[0], 'Covid_direct_interactions': interaction_ids, 'tax_id': tax_id}) return pd.DataFrame(aggregated_interactions)<|docstring|>This function reads the covid19 intact release Output: pd.DataFrame id: uniprot identifiers Covid_direct_interactions: Intact network identifiers<|endoftext|>
817740f3c8b614ed2ad852acca30c88a2650fba382308c96699bf4444c24f186
def pool_arrays(s): '\n pd.Series -> serialized json\n ' x = set() for e in s: try: for a in e: x.add(a) except TypeError: continue if (len(x) > 0): return json.dumps(list(x)) else: return np.nan
pd.Series -> serialized json
src/parsers/intact_parser.py
pool_arrays
thehyve/ot_covid19
1
python
def pool_arrays(s): '\n \n ' x = set() for e in s: try: for a in e: x.add(a) except TypeError: continue if (len(x) > 0): return json.dumps(list(x)) else: return np.nan
def pool_arrays(s): '\n \n ' x = set() for e in s: try: for a in e: x.add(a) except TypeError: continue if (len(x) > 0): return json.dumps(list(x)) else: return np.nan<|docstring|>pd.Series -> serialized json<|endoftext|>
3bb33e1db07b9630b9f7929c9c739c490bef042a3f97755edb52f0d277424b54
def read_human_interactions(human_interactions_file): '\n Based on the Intact JSON dump file, a dataframe is built with all \n human protein-protein interactions.\n\n Columns:\n interactor_a str uniprot id\n interactor_b str uniprot id\n interaction_identifier str intact id\n ' all_human_interactions = [] with open(human_interactions_file, 'r') as f: for line in f: interaction = json.loads(line) if ((not interaction['interactorB']) or (not interaction['interactorA'])): continue if (interaction['interactorA']['id_source'] != 'uniprotkb'): continue if (interaction['interactorB']['id_source'] != 'uniprotkb'): continue if (not interaction['interaction']['interaction_score']): continue if (interaction['interaction']['interaction_score'] < 0.45): continue for evidence in interaction['interaction']['evidence']: all_human_interactions.append({'interactor_a': interaction['interactorA']['id'].split('-')[0], 'interactor_b': interaction['interactorB']['id'].split('-')[0], 'interaction_identifier': evidence['interaction_identifier']}) return pd.DataFrame(all_human_interactions)
Based on the Intact JSON dump file, a dataframe is built with all human protein-protein interactions. Columns: interactor_a str uniprot id interactor_b str uniprot id interaction_identifier str intact id
src/parsers/intact_parser.py
read_human_interactions
thehyve/ot_covid19
1
python
def read_human_interactions(human_interactions_file): '\n Based on the Intact JSON dump file, a dataframe is built with all \n human protein-protein interactions.\n\n Columns:\n interactor_a str uniprot id\n interactor_b str uniprot id\n interaction_identifier str intact id\n ' all_human_interactions = [] with open(human_interactions_file, 'r') as f: for line in f: interaction = json.loads(line) if ((not interaction['interactorB']) or (not interaction['interactorA'])): continue if (interaction['interactorA']['id_source'] != 'uniprotkb'): continue if (interaction['interactorB']['id_source'] != 'uniprotkb'): continue if (not interaction['interaction']['interaction_score']): continue if (interaction['interaction']['interaction_score'] < 0.45): continue for evidence in interaction['interaction']['evidence']: all_human_interactions.append({'interactor_a': interaction['interactorA']['id'].split('-')[0], 'interactor_b': interaction['interactorB']['id'].split('-')[0], 'interaction_identifier': evidence['interaction_identifier']}) return pd.DataFrame(all_human_interactions)
def read_human_interactions(human_interactions_file): '\n Based on the Intact JSON dump file, a dataframe is built with all \n human protein-protein interactions.\n\n Columns:\n interactor_a str uniprot id\n interactor_b str uniprot id\n interaction_identifier str intact id\n ' all_human_interactions = [] with open(human_interactions_file, 'r') as f: for line in f: interaction = json.loads(line) if ((not interaction['interactorB']) or (not interaction['interactorA'])): continue if (interaction['interactorA']['id_source'] != 'uniprotkb'): continue if (interaction['interactorB']['id_source'] != 'uniprotkb'): continue if (not interaction['interaction']['interaction_score']): continue if (interaction['interaction']['interaction_score'] < 0.45): continue for evidence in interaction['interaction']['evidence']: all_human_interactions.append({'interactor_a': interaction['interactorA']['id'].split('-')[0], 'interactor_b': interaction['interactorB']['id'].split('-')[0], 'interaction_identifier': evidence['interaction_identifier']}) return pd.DataFrame(all_human_interactions)<|docstring|>Based on the Intact JSON dump file, a dataframe is built with all human protein-protein interactions. Columns: interactor_a str uniprot id interactor_b str uniprot id interaction_identifier str intact id<|endoftext|>
5b000ae5c264ac4a138e4877ac35c80e3bf260afc878434a62c9083c554e7afa
def __init__(self, layers, num_classes, obj_name, exp_name='default', tb_log=True): '\n\n :param layers:\n :param num_classes:\n :param obj_name: like \'C\', \'A\'\n :param tb_log: boolean; if true then log to tensorboard\n :param exp_name: for example "v5_per_class" as in training on yeast_v5 with per class normalization\n ' self.arch = f'ResNet{len(layers)}' date = datetime.now().strftime('%m-%d_%H-%M') self.tag = f'{self.arch}_{exp_name}_{date}' if tb_log: base_dir = ('./results/' + 'tensorboardx/') if (not os.path.isdir(base_dir)): os.makedirs(base_dir) self.writer = SummaryWriter((((base_dir + obj_name) + '/') + self.tag)) super().__init__() self.conv1 = nn.Conv2d(2, 10, kernel_size=5, stride=1, padding=2) self.layers = nn.ModuleList([BnLayer(layers[i], layers[(i + 1)]) for i in range((len(layers) - 1))]) self.layers2 = nn.ModuleList([ResnetLayer(layers[(i + 1)], layers[(i + 1)], 1) for i in range((len(layers) - 1))]) self.layers3 = nn.ModuleList([ResnetLayer(layers[(i + 1)], layers[(i + 1)], 1, log=(True if (i == (len(layers) - 2)) else False)) for i in range((len(layers) - 1))]) self.out = nn.Linear(layers[(- 1)], num_classes)
:param layers: :param num_classes: :param obj_name: like 'C', 'A' :param tb_log: boolean; if true then log to tensorboard :param exp_name: for example "v5_per_class" as in training on yeast_v5 with per class normalization
YNet_dev/models/ResNet.py
__init__
OBA9k/Test_dev
4
python
def __init__(self, layers, num_classes, obj_name, exp_name='default', tb_log=True): '\n\n :param layers:\n :param num_classes:\n :param obj_name: like \'C\', \'A\'\n :param tb_log: boolean; if true then log to tensorboard\n :param exp_name: for example "v5_per_class" as in training on yeast_v5 with per class normalization\n ' self.arch = f'ResNet{len(layers)}' date = datetime.now().strftime('%m-%d_%H-%M') self.tag = f'{self.arch}_{exp_name}_{date}' if tb_log: base_dir = ('./results/' + 'tensorboardx/') if (not os.path.isdir(base_dir)): os.makedirs(base_dir) self.writer = SummaryWriter((((base_dir + obj_name) + '/') + self.tag)) super().__init__() self.conv1 = nn.Conv2d(2, 10, kernel_size=5, stride=1, padding=2) self.layers = nn.ModuleList([BnLayer(layers[i], layers[(i + 1)]) for i in range((len(layers) - 1))]) self.layers2 = nn.ModuleList([ResnetLayer(layers[(i + 1)], layers[(i + 1)], 1) for i in range((len(layers) - 1))]) self.layers3 = nn.ModuleList([ResnetLayer(layers[(i + 1)], layers[(i + 1)], 1, log=(True if (i == (len(layers) - 2)) else False)) for i in range((len(layers) - 1))]) self.out = nn.Linear(layers[(- 1)], num_classes)
def __init__(self, layers, num_classes, obj_name, exp_name='default', tb_log=True): '\n\n :param layers:\n :param num_classes:\n :param obj_name: like \'C\', \'A\'\n :param tb_log: boolean; if true then log to tensorboard\n :param exp_name: for example "v5_per_class" as in training on yeast_v5 with per class normalization\n ' self.arch = f'ResNet{len(layers)}' date = datetime.now().strftime('%m-%d_%H-%M') self.tag = f'{self.arch}_{exp_name}_{date}' if tb_log: base_dir = ('./results/' + 'tensorboardx/') if (not os.path.isdir(base_dir)): os.makedirs(base_dir) self.writer = SummaryWriter((((base_dir + obj_name) + '/') + self.tag)) super().__init__() self.conv1 = nn.Conv2d(2, 10, kernel_size=5, stride=1, padding=2) self.layers = nn.ModuleList([BnLayer(layers[i], layers[(i + 1)]) for i in range((len(layers) - 1))]) self.layers2 = nn.ModuleList([ResnetLayer(layers[(i + 1)], layers[(i + 1)], 1) for i in range((len(layers) - 1))]) self.layers3 = nn.ModuleList([ResnetLayer(layers[(i + 1)], layers[(i + 1)], 1, log=(True if (i == (len(layers) - 2)) else False)) for i in range((len(layers) - 1))]) self.out = nn.Linear(layers[(- 1)], num_classes)<|docstring|>:param layers: :param num_classes: :param obj_name: like 'C', 'A' :param tb_log: boolean; if true then log to tensorboard :param exp_name: for example "v5_per_class" as in training on yeast_v5 with per class normalization<|endoftext|>
bf56cd0eb53dee2697d398e4732af9661894e2845e50d3e459cda9d6af434a5a
def is_white(pixel_val): 'tuple with (r, g, b) values' return (pixel_val > 250)
tuple with (r, g, b) values
Backend Code/blank_init.py
is_white
kristian-georgiev/EasyFill
1
python
def is_white(pixel_val): return (pixel_val > 250)
def is_white(pixel_val): return (pixel_val > 250)<|docstring|>tuple with (r, g, b) values<|endoftext|>
23f8451a568bb7467f82d33ed99a15d059ce6f666af50bfc958b75d3bb42fb3e
def __init__(self, kash_model: BaseModel, valid_x, valid_y, step=5, batch_size=256, average='weighted'): '\n Evaluate callback, calculate precision, recall and f1\n Args:\n kash_model: the kashgari model to evaluate\n valid_x: feature data\n valid_y: label data\n step: step, default 5\n batch_size: batch size, default 256\n ' super(EvalCallBack, self).__init__() self.kash_model = kash_model self.valid_x = valid_x self.valid_y = valid_y self.step = step self.batch_size = batch_size self.average = average self.logs = []
Evaluate callback, calculate precision, recall and f1 Args: kash_model: the kashgari model to evaluate valid_x: feature data valid_y: label data step: step, default 5 batch_size: batch size, default 256
kashgari/callbacks.py
__init__
SunYanCN/Kashgari
0
python
def __init__(self, kash_model: BaseModel, valid_x, valid_y, step=5, batch_size=256, average='weighted'): '\n Evaluate callback, calculate precision, recall and f1\n Args:\n kash_model: the kashgari model to evaluate\n valid_x: feature data\n valid_y: label data\n step: step, default 5\n batch_size: batch size, default 256\n ' super(EvalCallBack, self).__init__() self.kash_model = kash_model self.valid_x = valid_x self.valid_y = valid_y self.step = step self.batch_size = batch_size self.average = average self.logs = []
def __init__(self, kash_model: BaseModel, valid_x, valid_y, step=5, batch_size=256, average='weighted'): '\n Evaluate callback, calculate precision, recall and f1\n Args:\n kash_model: the kashgari model to evaluate\n valid_x: feature data\n valid_y: label data\n step: step, default 5\n batch_size: batch size, default 256\n ' super(EvalCallBack, self).__init__() self.kash_model = kash_model self.valid_x = valid_x self.valid_y = valid_y self.step = step self.batch_size = batch_size self.average = average self.logs = []<|docstring|>Evaluate callback, calculate precision, recall and f1 Args: kash_model: the kashgari model to evaluate valid_x: feature data valid_y: label data step: step, default 5 batch_size: batch size, default 256<|endoftext|>
aa41519e2c65f07dfe74a4e28ff12bed9014a01fc2062c13d596b202b2c54573
def _save_model(self, epoch, logs): 'Saves the model.\n\n Arguments:\n epoch: the epoch this iteration is in.\n logs: the `logs` dict passed in to `on_batch_end` or `on_epoch_end`.\n ' logs = (logs or {}) if (isinstance(self.save_freq, int) or (self.epochs_since_last_save >= self.period)): self.epochs_since_last_save = 0 (file_handle, filepath) = self._get_file_handle_and_path(epoch, logs) if self.save_best_only: current = logs.get(self.monitor) if (current is None): logging.warning('Can save best model only with %s available, skipping.', self.monitor) elif self.monitor_op(current, self.best): if (self.verbose > 0): print(('\nEpoch %05d: %s improved from %0.5f to %0.5f, saving model to %s' % ((epoch + 1), self.monitor, self.best, current, filepath))) self.best = current if self.save_weights_only: filepath = os.path.join(filepath, 'cp') self.model.save_weights(filepath, overwrite=True) else: self.kash_model.save(filepath) elif (self.verbose > 0): print(('\nEpoch %05d: %s did not improve from %0.5f' % ((epoch + 1), self.monitor, self.best))) else: if (self.verbose > 0): print(('\nEpoch %05d: saving model to %s' % ((epoch + 1), filepath))) if self.save_weights_only: if K.in_multi_worker_mode(): self.model._ckpt_saved_epoch = epoch filepath = os.path.join(filepath, 'cp') self.model.save_weights(filepath, overwrite=True) else: self.kash_model.save(filepath) self._maybe_remove_file(file_handle, filepath)
Saves the model. Arguments: epoch: the epoch this iteration is in. logs: the `logs` dict passed in to `on_batch_end` or `on_epoch_end`.
kashgari/callbacks.py
_save_model
SunYanCN/Kashgari
0
python
def _save_model(self, epoch, logs): 'Saves the model.\n\n Arguments:\n epoch: the epoch this iteration is in.\n logs: the `logs` dict passed in to `on_batch_end` or `on_epoch_end`.\n ' logs = (logs or {}) if (isinstance(self.save_freq, int) or (self.epochs_since_last_save >= self.period)): self.epochs_since_last_save = 0 (file_handle, filepath) = self._get_file_handle_and_path(epoch, logs) if self.save_best_only: current = logs.get(self.monitor) if (current is None): logging.warning('Can save best model only with %s available, skipping.', self.monitor) elif self.monitor_op(current, self.best): if (self.verbose > 0): print(('\nEpoch %05d: %s improved from %0.5f to %0.5f, saving model to %s' % ((epoch + 1), self.monitor, self.best, current, filepath))) self.best = current if self.save_weights_only: filepath = os.path.join(filepath, 'cp') self.model.save_weights(filepath, overwrite=True) else: self.kash_model.save(filepath) elif (self.verbose > 0): print(('\nEpoch %05d: %s did not improve from %0.5f' % ((epoch + 1), self.monitor, self.best))) else: if (self.verbose > 0): print(('\nEpoch %05d: saving model to %s' % ((epoch + 1), filepath))) if self.save_weights_only: if K.in_multi_worker_mode(): self.model._ckpt_saved_epoch = epoch filepath = os.path.join(filepath, 'cp') self.model.save_weights(filepath, overwrite=True) else: self.kash_model.save(filepath) self._maybe_remove_file(file_handle, filepath)
def _save_model(self, epoch, logs): 'Saves the model.\n\n Arguments:\n epoch: the epoch this iteration is in.\n logs: the `logs` dict passed in to `on_batch_end` or `on_epoch_end`.\n ' logs = (logs or {}) if (isinstance(self.save_freq, int) or (self.epochs_since_last_save >= self.period)): self.epochs_since_last_save = 0 (file_handle, filepath) = self._get_file_handle_and_path(epoch, logs) if self.save_best_only: current = logs.get(self.monitor) if (current is None): logging.warning('Can save best model only with %s available, skipping.', self.monitor) elif self.monitor_op(current, self.best): if (self.verbose > 0): print(('\nEpoch %05d: %s improved from %0.5f to %0.5f, saving model to %s' % ((epoch + 1), self.monitor, self.best, current, filepath))) self.best = current if self.save_weights_only: filepath = os.path.join(filepath, 'cp') self.model.save_weights(filepath, overwrite=True) else: self.kash_model.save(filepath) elif (self.verbose > 0): print(('\nEpoch %05d: %s did not improve from %0.5f' % ((epoch + 1), self.monitor, self.best))) else: if (self.verbose > 0): print(('\nEpoch %05d: saving model to %s' % ((epoch + 1), filepath))) if self.save_weights_only: if K.in_multi_worker_mode(): self.model._ckpt_saved_epoch = epoch filepath = os.path.join(filepath, 'cp') self.model.save_weights(filepath, overwrite=True) else: self.kash_model.save(filepath) self._maybe_remove_file(file_handle, filepath)<|docstring|>Saves the model. Arguments: epoch: the epoch this iteration is in. logs: the `logs` dict passed in to `on_batch_end` or `on_epoch_end`.<|endoftext|>
e8df5146bf21ee175a57f155d8727fc095061f86dd489c313733f2acfefacda9
@transformation def get_subgraph_by_annotations(graph, annotations, or_=None): 'Induce a sub-graph given an annotations filter.\n\n :param graph: pybel.BELGraph graph: A BEL graph\n :param dict[str,iter[str]] annotations: Annotation filters (match all with :func:`pybel.utils.subdict_matches`)\n :param boolean or_: if True any annotation should be present, if False all annotations should be present in the\n edge. Defaults to True.\n :return: A subgraph of the original BEL graph\n :rtype: pybel.BELGraph\n ' edge_filter_builder = (build_annotation_dict_any_filter if ((or_ is None) or or_) else build_annotation_dict_all_filter) return get_subgraph_by_edge_filter(graph, edge_filter_builder(annotations))
Induce a sub-graph given an annotations filter. :param graph: pybel.BELGraph graph: A BEL graph :param dict[str,iter[str]] annotations: Annotation filters (match all with :func:`pybel.utils.subdict_matches`) :param boolean or_: if True any annotation should be present, if False all annotations should be present in the edge. Defaults to True. :return: A subgraph of the original BEL graph :rtype: pybel.BELGraph
src/pybel/struct/mutation/induction/annotations.py
get_subgraph_by_annotations
djinnome/pybel
0
python
@transformation def get_subgraph_by_annotations(graph, annotations, or_=None): 'Induce a sub-graph given an annotations filter.\n\n :param graph: pybel.BELGraph graph: A BEL graph\n :param dict[str,iter[str]] annotations: Annotation filters (match all with :func:`pybel.utils.subdict_matches`)\n :param boolean or_: if True any annotation should be present, if False all annotations should be present in the\n edge. Defaults to True.\n :return: A subgraph of the original BEL graph\n :rtype: pybel.BELGraph\n ' edge_filter_builder = (build_annotation_dict_any_filter if ((or_ is None) or or_) else build_annotation_dict_all_filter) return get_subgraph_by_edge_filter(graph, edge_filter_builder(annotations))
@transformation def get_subgraph_by_annotations(graph, annotations, or_=None): 'Induce a sub-graph given an annotations filter.\n\n :param graph: pybel.BELGraph graph: A BEL graph\n :param dict[str,iter[str]] annotations: Annotation filters (match all with :func:`pybel.utils.subdict_matches`)\n :param boolean or_: if True any annotation should be present, if False all annotations should be present in the\n edge. Defaults to True.\n :return: A subgraph of the original BEL graph\n :rtype: pybel.BELGraph\n ' edge_filter_builder = (build_annotation_dict_any_filter if ((or_ is None) or or_) else build_annotation_dict_all_filter) return get_subgraph_by_edge_filter(graph, edge_filter_builder(annotations))<|docstring|>Induce a sub-graph given an annotations filter. :param graph: pybel.BELGraph graph: A BEL graph :param dict[str,iter[str]] annotations: Annotation filters (match all with :func:`pybel.utils.subdict_matches`) :param boolean or_: if True any annotation should be present, if False all annotations should be present in the edge. Defaults to True. :return: A subgraph of the original BEL graph :rtype: pybel.BELGraph<|endoftext|>
850f8799dd3aefd3b8baca9133bf94f8891dcd6d749db0998dd2ff913c4bed89
@transformation def get_subgraph_by_annotation_value(graph, annotation, values): 'Induce a sub-graph over all edges whose annotations match the given key and value.\n\n :param pybel.BELGraph graph: A BEL graph\n :param str annotation: The annotation to group by\n :param values: The value(s) for the annotation\n :type values: str or iter[str]\n :return: A subgraph of the original BEL graph\n :rtype: pybel.BELGraph\n ' if isinstance(values, str): values = {values} return get_subgraph_by_annotations(graph, {annotation: values})
Induce a sub-graph over all edges whose annotations match the given key and value. :param pybel.BELGraph graph: A BEL graph :param str annotation: The annotation to group by :param values: The value(s) for the annotation :type values: str or iter[str] :return: A subgraph of the original BEL graph :rtype: pybel.BELGraph
src/pybel/struct/mutation/induction/annotations.py
get_subgraph_by_annotation_value
djinnome/pybel
0
python
@transformation def get_subgraph_by_annotation_value(graph, annotation, values): 'Induce a sub-graph over all edges whose annotations match the given key and value.\n\n :param pybel.BELGraph graph: A BEL graph\n :param str annotation: The annotation to group by\n :param values: The value(s) for the annotation\n :type values: str or iter[str]\n :return: A subgraph of the original BEL graph\n :rtype: pybel.BELGraph\n ' if isinstance(values, str): values = {values} return get_subgraph_by_annotations(graph, {annotation: values})
@transformation def get_subgraph_by_annotation_value(graph, annotation, values): 'Induce a sub-graph over all edges whose annotations match the given key and value.\n\n :param pybel.BELGraph graph: A BEL graph\n :param str annotation: The annotation to group by\n :param values: The value(s) for the annotation\n :type values: str or iter[str]\n :return: A subgraph of the original BEL graph\n :rtype: pybel.BELGraph\n ' if isinstance(values, str): values = {values} return get_subgraph_by_annotations(graph, {annotation: values})<|docstring|>Induce a sub-graph over all edges whose annotations match the given key and value. :param pybel.BELGraph graph: A BEL graph :param str annotation: The annotation to group by :param values: The value(s) for the annotation :type values: str or iter[str] :return: A subgraph of the original BEL graph :rtype: pybel.BELGraph<|endoftext|>
59556a9f188ec39a59858222b73429dcac8628a66e71dcc4b1701e7d67253fc7
@task def build(c): '\n Build the infrastructure\n ' command = 'build' command += (' --build-arg PROJECT_NAME=%s' % c.project_name) command += (' --build-arg USER_ID=%s' % c.user_id) with Builder(c): for service in c.services_to_build_first: docker_compose(c, ('%s %s' % (command, service))) docker_compose(c, command)
Build the infrastructure
tasks.py
build
jolicode/starfleet
19
python
@task def build(c): '\n \n ' command = 'build' command += (' --build-arg PROJECT_NAME=%s' % c.project_name) command += (' --build-arg USER_ID=%s' % c.user_id) with Builder(c): for service in c.services_to_build_first: docker_compose(c, ('%s %s' % (command, service))) docker_compose(c, command)
@task def build(c): '\n \n ' command = 'build' command += (' --build-arg PROJECT_NAME=%s' % c.project_name) command += (' --build-arg USER_ID=%s' % c.user_id) with Builder(c): for service in c.services_to_build_first: docker_compose(c, ('%s %s' % (command, service))) docker_compose(c, command)<|docstring|>Build the infrastructure<|endoftext|>
6fa11905b2d5a26a9dcc88f89db6b9cf063e2656567186f00a78f6bfe15b945c
@task def up(c): '\n Build and start the infrastructure\n ' build(c) docker_compose(c, 'up --remove-orphans --detach')
Build and start the infrastructure
tasks.py
up
jolicode/starfleet
19
python
@task def up(c): '\n \n ' build(c) docker_compose(c, 'up --remove-orphans --detach')
@task def up(c): '\n \n ' build(c) docker_compose(c, 'up --remove-orphans --detach')<|docstring|>Build and start the infrastructure<|endoftext|>
8748df99d9e671c4aaf68f1e25c77501c56477fa5a21ac643799211552501b66
@task def start(c): '\n Build and start the infrastructure, then install the application (composer, yarn, ...)\n ' if c.dinghy: machine_running = c.run('dinghy status', hide=True).stdout if (machine_running.splitlines()[0].strip() != 'VM: running'): c.run('dinghy up --no-proxy') c.run('docker-machine ssh dinghy "echo \'nameserver 8.8.8.8\' | sudo tee -a /etc/resolv.conf && sudo /etc/init.d/docker restart"') stop_workers(c) up(c) cache_clear(c) install(c) migrate(c) start_workers(c) print((Fore.GREEN + 'The stack is now up and running.')) help(c)
Build and start the infrastructure, then install the application (composer, yarn, ...)
tasks.py
start
jolicode/starfleet
19
python
@task def start(c): '\n \n ' if c.dinghy: machine_running = c.run('dinghy status', hide=True).stdout if (machine_running.splitlines()[0].strip() != 'VM: running'): c.run('dinghy up --no-proxy') c.run('docker-machine ssh dinghy "echo \'nameserver 8.8.8.8\' | sudo tee -a /etc/resolv.conf && sudo /etc/init.d/docker restart"') stop_workers(c) up(c) cache_clear(c) install(c) migrate(c) start_workers(c) print((Fore.GREEN + 'The stack is now up and running.')) help(c)
@task def start(c): '\n \n ' if c.dinghy: machine_running = c.run('dinghy status', hide=True).stdout if (machine_running.splitlines()[0].strip() != 'VM: running'): c.run('dinghy up --no-proxy') c.run('docker-machine ssh dinghy "echo \'nameserver 8.8.8.8\' | sudo tee -a /etc/resolv.conf && sudo /etc/init.d/docker restart"') stop_workers(c) up(c) cache_clear(c) install(c) migrate(c) start_workers(c) print((Fore.GREEN + 'The stack is now up and running.')) help(c)<|docstring|>Build and start the infrastructure, then install the application (composer, yarn, ...)<|endoftext|>
2d8a3ad02163a56db175afff646abc9c11e3220623ec0863c7a3a0a75f6badb3
@task def install(c): '\n Install the application (composer, yarn, ...)\n ' with Builder(c): docker_compose_run(c, 'composer install -n --prefer-dist --optimize-autoloader', no_deps=True) run_in_docker_or_locally_for_dinghy(c, 'yarn', no_deps=True) run_in_docker_or_locally_for_dinghy(c, 'yarn run dev', no_deps=True)
Install the application (composer, yarn, ...)
tasks.py
install
jolicode/starfleet
19
python
@task def install(c): '\n \n ' with Builder(c): docker_compose_run(c, 'composer install -n --prefer-dist --optimize-autoloader', no_deps=True) run_in_docker_or_locally_for_dinghy(c, 'yarn', no_deps=True) run_in_docker_or_locally_for_dinghy(c, 'yarn run dev', no_deps=True)
@task def install(c): '\n \n ' with Builder(c): docker_compose_run(c, 'composer install -n --prefer-dist --optimize-autoloader', no_deps=True) run_in_docker_or_locally_for_dinghy(c, 'yarn', no_deps=True) run_in_docker_or_locally_for_dinghy(c, 'yarn run dev', no_deps=True)<|docstring|>Install the application (composer, yarn, ...)<|endoftext|>
5c5a5dfebbcae48aadc6a97b0b0279d619c86f86040ff0ea6c3304e326e6ea25
@task def cache_clear(c): '\n Clear the application cache\n ' with Builder(c): docker_compose_run(c, 'rm -rf var/cache/ && php bin/console cache:warmup', no_deps=True)
Clear the application cache
tasks.py
cache_clear
jolicode/starfleet
19
python
@task def cache_clear(c): '\n \n ' with Builder(c): docker_compose_run(c, 'rm -rf var/cache/ && php bin/console cache:warmup', no_deps=True)
@task def cache_clear(c): '\n \n ' with Builder(c): docker_compose_run(c, 'rm -rf var/cache/ && php bin/console cache:warmup', no_deps=True)<|docstring|>Clear the application cache<|endoftext|>
2fc718cd82318960911880ab3d7b0f286dc74a197870e4c967fa408793401f18
@task def migrate(c): '\n Migrate database schema\n ' with Builder(c): docker_compose_run(c, 'php bin/console doctrine:database:create --if-not-exists') docker_compose_run(c, 'php bin/console doctrine:migration:migrate -n --allow-no-migration')
Migrate database schema
tasks.py
migrate
jolicode/starfleet
19
python
@task def migrate(c): '\n \n ' with Builder(c): docker_compose_run(c, 'php bin/console doctrine:database:create --if-not-exists') docker_compose_run(c, 'php bin/console doctrine:migration:migrate -n --allow-no-migration')
@task def migrate(c): '\n \n ' with Builder(c): docker_compose_run(c, 'php bin/console doctrine:database:create --if-not-exists') docker_compose_run(c, 'php bin/console doctrine:migration:migrate -n --allow-no-migration')<|docstring|>Migrate database schema<|endoftext|>
7c00ec36b6621620c102fba180d10d39250584a428715e90859137497a93f365
@task def generate_migration(c): '\n Generate database migration\n ' with Builder(c): docker_compose_run(c, 'php bin/console make:migration -n')
Generate database migration
tasks.py
generate_migration
jolicode/starfleet
19
python
@task def generate_migration(c): '\n \n ' with Builder(c): docker_compose_run(c, 'php bin/console make:migration -n')
@task def generate_migration(c): '\n \n ' with Builder(c): docker_compose_run(c, 'php bin/console make:migration -n')<|docstring|>Generate database migration<|endoftext|>
7476279896117e11ae24bf5dfdcdf2a78d74d97a3f1bbd7eaad56d194bfbdffc
@task def fixtures(c): '\n Load fixtures into database\n ' with Builder(c): docker_compose_run(c, 'php bin/console doctrine:database:drop --force --if-exists') docker_compose_run(c, 'php bin/console doctrine:database:create --if-not-exists') migrate(c) docker_compose_run(c, 'php bin/console doctrine:fixtures:load -n')
Load fixtures into database
tasks.py
fixtures
jolicode/starfleet
19
python
@task def fixtures(c): '\n \n ' with Builder(c): docker_compose_run(c, 'php bin/console doctrine:database:drop --force --if-exists') docker_compose_run(c, 'php bin/console doctrine:database:create --if-not-exists') migrate(c) docker_compose_run(c, 'php bin/console doctrine:fixtures:load -n')
@task def fixtures(c): '\n \n ' with Builder(c): docker_compose_run(c, 'php bin/console doctrine:database:drop --force --if-exists') docker_compose_run(c, 'php bin/console doctrine:database:create --if-not-exists') migrate(c) docker_compose_run(c, 'php bin/console doctrine:fixtures:load -n')<|docstring|>Load fixtures into database<|endoftext|>
f2a709eef36ce47037512191cbed6473ef1c5f6aedc94b33d9ce338db89dc28d
@task def fetch_conferences(c): '\n Fetch conferences from all sources\n ' with Builder(c): docker_compose_run(c, 'php bin/console starfleet:conferences:fetch -vv')
Fetch conferences from all sources
tasks.py
fetch_conferences
jolicode/starfleet
19
python
@task def fetch_conferences(c): '\n \n ' with Builder(c): docker_compose_run(c, 'php bin/console starfleet:conferences:fetch -vv')
@task def fetch_conferences(c): '\n \n ' with Builder(c): docker_compose_run(c, 'php bin/console starfleet:conferences:fetch -vv')<|docstring|>Fetch conferences from all sources<|endoftext|>
9dd1a7664acde2adc1e11d7f26c95e4a4746f08348a5cc1756196d6487d8e054
@task def remind_cfp_ending(c): "\n Remind CFP's ending\n " with Builder(c): docker_compose_run(c, 'php bin/console starfleet:conferences:remind-cfp-ending-soon')
Remind CFP's ending
tasks.py
remind_cfp_ending
jolicode/starfleet
19
python
@task def remind_cfp_ending(c): "\n \n " with Builder(c): docker_compose_run(c, 'php bin/console starfleet:conferences:remind-cfp-ending-soon')
@task def remind_cfp_ending(c): "\n \n " with Builder(c): docker_compose_run(c, 'php bin/console starfleet:conferences:remind-cfp-ending-soon')<|docstring|>Remind CFP's ending<|endoftext|>
6cd962362fffee1c3a25ffc65862c1c8edfa8b59b7631c590035857f4e2ec4c5
@task def reset(c): '\n Reset database\n ' with Builder(c): docker_compose_run(c, 'php bin/console doctrine:database:drop --if-exists --force') migrate(c)
Reset database
tasks.py
reset
jolicode/starfleet
19
python
@task def reset(c): '\n \n ' with Builder(c): docker_compose_run(c, 'php bin/console doctrine:database:drop --if-exists --force') migrate(c)
@task def reset(c): '\n \n ' with Builder(c): docker_compose_run(c, 'php bin/console doctrine:database:drop --if-exists --force') migrate(c)<|docstring|>Reset database<|endoftext|>
d7cc08c406cfa96c1b499cf065bd70badfc974b4f2cec9091f7d5c811486f05e
@task def phpcs(c, dry_run=False): '\n Fix coding standards in code\n ' with Builder(c): docker_compose_run(c, 'php bin/console lint:yaml --parse-tags config/') docker_compose_run(c, 'php bin/console lint:twig templates/') if dry_run: docker_compose_run(c, 'php ./vendor/bin/php-cs-fixer fix --config=.php-cs-fixer.php --dry-run --diff') else: docker_compose_run(c, 'php ./vendor/bin/php-cs-fixer fix --config=.php-cs-fixer.php')
Fix coding standards in code
tasks.py
phpcs
jolicode/starfleet
19
python
@task def phpcs(c, dry_run=False): '\n \n ' with Builder(c): docker_compose_run(c, 'php bin/console lint:yaml --parse-tags config/') docker_compose_run(c, 'php bin/console lint:twig templates/') if dry_run: docker_compose_run(c, 'php ./vendor/bin/php-cs-fixer fix --config=.php-cs-fixer.php --dry-run --diff') else: docker_compose_run(c, 'php ./vendor/bin/php-cs-fixer fix --config=.php-cs-fixer.php')
@task def phpcs(c, dry_run=False): '\n \n ' with Builder(c): docker_compose_run(c, 'php bin/console lint:yaml --parse-tags config/') docker_compose_run(c, 'php bin/console lint:twig templates/') if dry_run: docker_compose_run(c, 'php ./vendor/bin/php-cs-fixer fix --config=.php-cs-fixer.php --dry-run --diff') else: docker_compose_run(c, 'php ./vendor/bin/php-cs-fixer fix --config=.php-cs-fixer.php')<|docstring|>Fix coding standards in code<|endoftext|>
84afb4887b67aaade7ab030880bdf0d72ff086982c91c459b196c5ee0593eae5
@task def tests(c): '\n Launch unit and functional tests\n ' with Builder(c): reset(c) docker_compose_run(c, 'php ./vendor/bin/simple-phpunit')
Launch unit and functional tests
tasks.py
tests
jolicode/starfleet
19
python
@task def tests(c): '\n \n ' with Builder(c): reset(c) docker_compose_run(c, 'php ./vendor/bin/simple-phpunit')
@task def tests(c): '\n \n ' with Builder(c): reset(c) docker_compose_run(c, 'php ./vendor/bin/simple-phpunit')<|docstring|>Launch unit and functional tests<|endoftext|>
360f6f510d3312a36a8f7bc4a9dcb66f0650bfa9c1c67c5726eaef355eb39fa6
@task def phpstan(c): '\n Runs PHPStan\n ' with Builder(c): docker_compose_run(c, 'php ./vendor/bin/phpstan analyse')
Runs PHPStan
tasks.py
phpstan
jolicode/starfleet
19
python
@task def phpstan(c): '\n \n ' with Builder(c): docker_compose_run(c, 'php ./vendor/bin/phpstan analyse')
@task def phpstan(c): '\n \n ' with Builder(c): docker_compose_run(c, 'php ./vendor/bin/phpstan analyse')<|docstring|>Runs PHPStan<|endoftext|>