body_hash
stringlengths 64
64
| body
stringlengths 23
109k
| docstring
stringlengths 1
57k
| path
stringlengths 4
198
| name
stringlengths 1
115
| repository_name
stringlengths 7
111
| repository_stars
float64 0
191k
| lang
stringclasses 1
value | body_without_docstring
stringlengths 14
108k
| unified
stringlengths 45
133k
|
---|---|---|---|---|---|---|---|---|---|
c1433d6dbcb4bc1e4bff9b994a2d07e1aa87990bbb5822ffe6838a201e45a8e5 | @task
def ngrok(c):
'\n Open the local web server with Ngrok\n '
subprocess.run('ngrok http -host-header=local.starfleet.app local.starfleet.app:443', shell=True) | Open the local web server with Ngrok | tasks.py | ngrok | jolicode/starfleet | 19 | python | @task
def ngrok(c):
'\n \n '
subprocess.run('ngrok http -host-header=local.starfleet.app local.starfleet.app:443', shell=True) | @task
def ngrok(c):
'\n \n '
subprocess.run('ngrok http -host-header=local.starfleet.app local.starfleet.app:443', shell=True)<|docstring|>Open the local web server with Ngrok<|endoftext|> |
77763ae9ed3fbdb5450a0206fc050d1d42cdaadf3849aa60dad78b15d254dfa8 | @task
def webpack_watch(c):
'\n Compile and watch CSS and JS files for dev env\n '
with Builder(c):
docker_compose_run(c, 'yarn run watch') | Compile and watch CSS and JS files for dev env | tasks.py | webpack_watch | jolicode/starfleet | 19 | python | @task
def webpack_watch(c):
'\n \n '
with Builder(c):
docker_compose_run(c, 'yarn run watch') | @task
def webpack_watch(c):
'\n \n '
with Builder(c):
docker_compose_run(c, 'yarn run watch')<|docstring|>Compile and watch CSS and JS files for dev env<|endoftext|> |
d572ff8e3907c92cc258816b18f3203db766571717ce8621ee2b6f52aabf7930 | @task
def webpack(c):
'\n Compile CSS and JS files for dev env\n '
with Builder(c):
docker_compose_run(c, 'yarn run dev') | Compile CSS and JS files for dev env | tasks.py | webpack | jolicode/starfleet | 19 | python | @task
def webpack(c):
'\n \n '
with Builder(c):
docker_compose_run(c, 'yarn run dev') | @task
def webpack(c):
'\n \n '
with Builder(c):
docker_compose_run(c, 'yarn run dev')<|docstring|>Compile CSS and JS files for dev env<|endoftext|> |
6203f6b10b270da0ab73cbf18ca66c764cea98e8eb61d65b0336026f3b07607a | @task
def builder(c, user='app'):
'\n Open a shell (bash) into a builder container\n '
with Builder(c):
docker_compose_run(c, 'bash', user=user) | Open a shell (bash) into a builder container | tasks.py | builder | jolicode/starfleet | 19 | python | @task
def builder(c, user='app'):
'\n \n '
with Builder(c):
docker_compose_run(c, 'bash', user=user) | @task
def builder(c, user='app'):
'\n \n '
with Builder(c):
docker_compose_run(c, 'bash', user=user)<|docstring|>Open a shell (bash) into a builder container<|endoftext|> |
860ae2c2faec9a2b48ecb2ae3dca1d382b423670a4652995a1fa69169a85fb9b | @task
def logs(c):
'\n Display infrastructure logs\n '
docker_compose(c, 'logs -f --tail=150') | Display infrastructure logs | tasks.py | logs | jolicode/starfleet | 19 | python | @task
def logs(c):
'\n \n '
docker_compose(c, 'logs -f --tail=150') | @task
def logs(c):
'\n \n '
docker_compose(c, 'logs -f --tail=150')<|docstring|>Display infrastructure logs<|endoftext|> |
8114bd9c33017e2e499cadc790576e5a860affdb4afe327eb282ef352f98873d | @task
def ps(c):
'\n List containers status\n '
docker_compose(c, 'ps --all') | List containers status | tasks.py | ps | jolicode/starfleet | 19 | python | @task
def ps(c):
'\n \n '
docker_compose(c, 'ps --all') | @task
def ps(c):
'\n \n '
docker_compose(c, 'ps --all')<|docstring|>List containers status<|endoftext|> |
bfb902f76cb9d215676a598ceec05bc7c5b0ba9a1821ae0a070f8e271d4a78f1 | @task
def stop(c):
'\n Stop the infrastructure\n '
docker_compose(c, 'stop') | Stop the infrastructure | tasks.py | stop | jolicode/starfleet | 19 | python | @task
def stop(c):
'\n \n '
docker_compose(c, 'stop') | @task
def stop(c):
'\n \n '
docker_compose(c, 'stop')<|docstring|>Stop the infrastructure<|endoftext|> |
df41852765d8c605a7ba752db59c321b8693446a180d38260b2e6d6469fcd06b | @task
def start_workers(c):
'\n Start the workers\n '
workers = get_workers(c)
if (len(workers) == 0):
return
c.start_workers = True
c.run(('docker update --restart=unless-stopped %s' % ' '.join(workers)), hide='both')
docker_compose(c, 'up --remove-orphans --detach') | Start the workers | tasks.py | start_workers | jolicode/starfleet | 19 | python | @task
def start_workers(c):
'\n \n '
workers = get_workers(c)
if (len(workers) == 0):
return
c.start_workers = True
c.run(('docker update --restart=unless-stopped %s' % ' '.join(workers)), hide='both')
docker_compose(c, 'up --remove-orphans --detach') | @task
def start_workers(c):
'\n \n '
workers = get_workers(c)
if (len(workers) == 0):
return
c.start_workers = True
c.run(('docker update --restart=unless-stopped %s' % ' '.join(workers)), hide='both')
docker_compose(c, 'up --remove-orphans --detach')<|docstring|>Start the workers<|endoftext|> |
45f5cf47dd9f9ae52360da4679c350b7f5a80e723e5f5d9297869617f93e874f | @task
def stop_workers(c):
'\n Stop the workers\n '
workers = get_workers(c)
if (len(workers) == 0):
return
c.start_workers = False
c.run(('docker update --restart=no %s' % ' '.join(workers)), hide='both')
c.run(('docker stop %s' % ' '.join(workers)), hide='both') | Stop the workers | tasks.py | stop_workers | jolicode/starfleet | 19 | python | @task
def stop_workers(c):
'\n \n '
workers = get_workers(c)
if (len(workers) == 0):
return
c.start_workers = False
c.run(('docker update --restart=no %s' % ' '.join(workers)), hide='both')
c.run(('docker stop %s' % ' '.join(workers)), hide='both') | @task
def stop_workers(c):
'\n \n '
workers = get_workers(c)
if (len(workers) == 0):
return
c.start_workers = False
c.run(('docker update --restart=no %s' % ' '.join(workers)), hide='both')
c.run(('docker stop %s' % ' '.join(workers)), hide='both')<|docstring|>Stop the workers<|endoftext|> |
2f5623a9f2a10a2e3507db418234ff8a6f1d23b80407d34841fcf14bfacb3f4d | @task
def destroy(c, force=False):
'\n Clean the infrastructure (remove container, volume, networks)\n '
if (not force):
ok = confirm_choice('Are you sure? This will permanently remove all containers, volumes, networks... created for this project.')
if (not ok):
return
with Builder(c):
docker_compose(c, 'down --remove-orphans --volumes --rmi=local') | Clean the infrastructure (remove container, volume, networks) | tasks.py | destroy | jolicode/starfleet | 19 | python | @task
def destroy(c, force=False):
'\n \n '
if (not force):
ok = confirm_choice('Are you sure? This will permanently remove all containers, volumes, networks... created for this project.')
if (not ok):
return
with Builder(c):
docker_compose(c, 'down --remove-orphans --volumes --rmi=local') | @task
def destroy(c, force=False):
'\n \n '
if (not force):
ok = confirm_choice('Are you sure? This will permanently remove all containers, volumes, networks... created for this project.')
if (not ok):
return
with Builder(c):
docker_compose(c, 'down --remove-orphans --volumes --rmi=local')<|docstring|>Clean the infrastructure (remove container, volume, networks)<|endoftext|> |
6ef9debec7d9b030dae0ccabdf51cca67bb5e408dc717d3710d2d473ee58c9fd | @task(default=True)
def help(c):
'\n Display some help and available urls for the current project\n '
print((((('Run ' + Fore.GREEN) + 'inv help') + Fore.RESET) + ' to display this help.'))
print('')
print((((('Run ' + Fore.GREEN) + 'inv --help') + Fore.RESET) + ' to display invoke help.'))
print('')
print((((('Run ' + Fore.GREEN) + 'inv -l') + Fore.RESET) + ' to list all the available tasks.'))
c.run('pipenv run inv --list')
print(((Fore.GREEN + 'Available URLs for this project:') + Fore.RESET))
for domain in ([c.root_domain] + c.extra_domains):
print((((('* ' + Fore.YELLOW) + 'https://') + domain) + Fore.RESET))
print(((((('* ' + Fore.YELLOW) + 'https://') + domain) + '/admin with [email protected]/password') + Fore.RESET))
try:
response = json.loads(requests.get(('http://%s:8080/api/http/routers' % c.root_domain)).text)
gen = (router for router in response if re.match(('^%s-(.*)@docker$' % c.project_name), router['name']))
for router in gen:
if (router['service'] != ('frontend-%s' % c.project_name)):
host = re.search('Host\\(\\`(?P<host>.*)\\`\\)', router['rule']).group('host')
if host:
scheme = ('https' if ('https' in router['using']) else router['using'][0])
print(((((('* ' + Fore.YELLOW) + scheme) + '://') + host) + Fore.RESET))
print('')
except:
pass | Display some help and available urls for the current project | tasks.py | help | jolicode/starfleet | 19 | python | @task(default=True)
def help(c):
'\n \n '
print((((('Run ' + Fore.GREEN) + 'inv help') + Fore.RESET) + ' to display this help.'))
print()
print((((('Run ' + Fore.GREEN) + 'inv --help') + Fore.RESET) + ' to display invoke help.'))
print()
print((((('Run ' + Fore.GREEN) + 'inv -l') + Fore.RESET) + ' to list all the available tasks.'))
c.run('pipenv run inv --list')
print(((Fore.GREEN + 'Available URLs for this project:') + Fore.RESET))
for domain in ([c.root_domain] + c.extra_domains):
print((((('* ' + Fore.YELLOW) + 'https://') + domain) + Fore.RESET))
print(((((('* ' + Fore.YELLOW) + 'https://') + domain) + '/admin with [email protected]/password') + Fore.RESET))
try:
response = json.loads(requests.get(('http://%s:8080/api/http/routers' % c.root_domain)).text)
gen = (router for router in response if re.match(('^%s-(.*)@docker$' % c.project_name), router['name']))
for router in gen:
if (router['service'] != ('frontend-%s' % c.project_name)):
host = re.search('Host\\(\\`(?P<host>.*)\\`\\)', router['rule']).group('host')
if host:
scheme = ('https' if ('https' in router['using']) else router['using'][0])
print(((((('* ' + Fore.YELLOW) + scheme) + '://') + host) + Fore.RESET))
print()
except:
pass | @task(default=True)
def help(c):
'\n \n '
print((((('Run ' + Fore.GREEN) + 'inv help') + Fore.RESET) + ' to display this help.'))
print()
print((((('Run ' + Fore.GREEN) + 'inv --help') + Fore.RESET) + ' to display invoke help.'))
print()
print((((('Run ' + Fore.GREEN) + 'inv -l') + Fore.RESET) + ' to list all the available tasks.'))
c.run('pipenv run inv --list')
print(((Fore.GREEN + 'Available URLs for this project:') + Fore.RESET))
for domain in ([c.root_domain] + c.extra_domains):
print((((('* ' + Fore.YELLOW) + 'https://') + domain) + Fore.RESET))
print(((((('* ' + Fore.YELLOW) + 'https://') + domain) + '/admin with [email protected]/password') + Fore.RESET))
try:
response = json.loads(requests.get(('http://%s:8080/api/http/routers' % c.root_domain)).text)
gen = (router for router in response if re.match(('^%s-(.*)@docker$' % c.project_name), router['name']))
for router in gen:
if (router['service'] != ('frontend-%s' % c.project_name)):
host = re.search('Host\\(\\`(?P<host>.*)\\`\\)', router['rule']).group('host')
if host:
scheme = ('https' if ('https' in router['using']) else router['using'][0])
print(((((('* ' + Fore.YELLOW) + scheme) + '://') + host) + Fore.RESET))
print()
except:
pass<|docstring|>Display some help and available urls for the current project<|endoftext|> |
20e90349ee073a974b0ad0a716f3dead80f4b3ae388b6967bd885ea37ec07392 | @task
def generate_certificates(c):
'\n Generates the cert.pem and cert-key.pem files\n '
with c.cd((c.project_directory + '/infrastructure/docker/services/router/etc/ssl/certs/')):
c.run('mkcert -cert-file cert.pem -key-file key.pem "*.starfleet.app"') | Generates the cert.pem and cert-key.pem files | tasks.py | generate_certificates | jolicode/starfleet | 19 | python | @task
def generate_certificates(c):
'\n \n '
with c.cd((c.project_directory + '/infrastructure/docker/services/router/etc/ssl/certs/')):
c.run('mkcert -cert-file cert.pem -key-file key.pem "*.starfleet.app"') | @task
def generate_certificates(c):
'\n \n '
with c.cd((c.project_directory + '/infrastructure/docker/services/router/etc/ssl/certs/')):
c.run('mkcert -cert-file cert.pem -key-file key.pem "*.starfleet.app"')<|docstring|>Generates the cert.pem and cert-key.pem files<|endoftext|> |
caeb1d2cb7654d462c5cf23e3e47abb562c472b9a1732e8519230fef7327ed52 | def run_in_docker_or_locally_for_dinghy(c, command, no_deps=False):
'\n Mac users have a lot of problems running Yarn / Webpack on the Docker stack so this func allow them to run these tools on their host\n '
if c.dinghy:
with c.cd(c.project_directory):
c.run(command)
else:
docker_compose_run(c, command, no_deps=no_deps) | Mac users have a lot of problems running Yarn / Webpack on the Docker stack so this func allow them to run these tools on their host | tasks.py | run_in_docker_or_locally_for_dinghy | jolicode/starfleet | 19 | python | def run_in_docker_or_locally_for_dinghy(c, command, no_deps=False):
'\n \n '
if c.dinghy:
with c.cd(c.project_directory):
c.run(command)
else:
docker_compose_run(c, command, no_deps=no_deps) | def run_in_docker_or_locally_for_dinghy(c, command, no_deps=False):
'\n \n '
if c.dinghy:
with c.cd(c.project_directory):
c.run(command)
else:
docker_compose_run(c, command, no_deps=no_deps)<|docstring|>Mac users have a lot of problems running Yarn / Webpack on the Docker stack so this func allow them to run these tools on their host<|endoftext|> |
198eba22cb7138ec47700a5283c1fc0026b6c9030a93dd6c226d8c89f092a909 | def get_workers(c):
'\n Find worker containers for the current project\n '
cmd = c.run(('docker ps -a --filter "label=docker-starter.worker.%s" --quiet' % c.project_name), hide='both')
return list(filter(None, cmd.stdout.rsplit('\n'))) | Find worker containers for the current project | tasks.py | get_workers | jolicode/starfleet | 19 | python | def get_workers(c):
'\n \n '
cmd = c.run(('docker ps -a --filter "label=docker-starter.worker.%s" --quiet' % c.project_name), hide='both')
return list(filter(None, cmd.stdout.rsplit('\n'))) | def get_workers(c):
'\n \n '
cmd = c.run(('docker ps -a --filter "label=docker-starter.worker.%s" --quiet' % c.project_name), hide='both')
return list(filter(None, cmd.stdout.rsplit('\n')))<|docstring|>Find worker containers for the current project<|endoftext|> |
f6b6e67bad1d79f129cf00244d73a2c3229822ba1facf0d8a5373db7d0c05406 | def add_metric_obj(self, metric_obj):
"Add a metric to the check's performance data from an existing Metric object"
self.metrics.append(metric_obj) | Add a metric to the check's performance data from an existing Metric object | plugnpy/check.py | add_metric_obj | opsview/plugnpy | 1 | python | def add_metric_obj(self, metric_obj):
self.metrics.append(metric_obj) | def add_metric_obj(self, metric_obj):
self.metrics.append(metric_obj)<|docstring|>Add a metric to the check's performance data from an existing Metric object<|endoftext|> |
3fb0a3b1e8d41f2e4f4f8b1999f254e5c4f35a6d4b4adc9fc8636da2b45038e3 | def add_metric(self, name, value, unit='', warning_threshold=None, critical_threshold=None, display_format='{name} is {value}{unit}', display_in_perf=True, display_in_summary=True, display_name=None, convert_metric=None, si_bytes_conversion=False, summary_precision=2, perf_data_precision=2, message=''):
'Add a metric to the check\'s performance data.\n\n Keyword Arguments:\n - name -- Name of the Metric\n - value -- Value of the Metric (note: do not include unit of measure)\n - unit -- Unit of Measure of the Metric\n - warning_threshold -- Warning threshold for the Metric (default: \'\')\n - see Monitoring Plugins Development Guidelines\n - critical_threshold -- Critical threshold for the Metric (default: \'\')\n - see Monitoring Plugins Development Guidelines\n - display_format -- Formatting string to print the Metric (default: "{name} is {value} {unit}")\n - display_name -- Name to be used in friendly output (default: value of name)\n - display_in_summary -- Whether to print the metric in the summary (default: True)\n - display_in_perf -- Whether to print the metric in performance data (default: True)\n - convert_metric -- Whether to convert the metric value to a more human friendly unit (default: False)\n - si_bytes_conversion -- Whether to convert values using the SI standard, uses IEC by default (default: False)\n - summary_precision -- The number of decimal places to round the metric value in the summary to (default 2)\n - per_data_precision -- The number of decimal places to round the metric value in the perf data to (default 2)\n - message -- Alternative message to print\n '
metric = Metric(name, value, unit, warning_threshold, critical_threshold, display_format=display_format, display_in_perf=display_in_perf, display_in_summary=display_in_summary, display_name=display_name, convert_metric=convert_metric, si_bytes_conversion=si_bytes_conversion, summary_precision=summary_precision, perf_data_precision=perf_data_precision, message=message)
self.metrics.append(metric) | Add a metric to the check's performance data.
Keyword Arguments:
- name -- Name of the Metric
- value -- Value of the Metric (note: do not include unit of measure)
- unit -- Unit of Measure of the Metric
- warning_threshold -- Warning threshold for the Metric (default: '')
- see Monitoring Plugins Development Guidelines
- critical_threshold -- Critical threshold for the Metric (default: '')
- see Monitoring Plugins Development Guidelines
- display_format -- Formatting string to print the Metric (default: "{name} is {value} {unit}")
- display_name -- Name to be used in friendly output (default: value of name)
- display_in_summary -- Whether to print the metric in the summary (default: True)
- display_in_perf -- Whether to print the metric in performance data (default: True)
- convert_metric -- Whether to convert the metric value to a more human friendly unit (default: False)
- si_bytes_conversion -- Whether to convert values using the SI standard, uses IEC by default (default: False)
- summary_precision -- The number of decimal places to round the metric value in the summary to (default 2)
- per_data_precision -- The number of decimal places to round the metric value in the perf data to (default 2)
- message -- Alternative message to print | plugnpy/check.py | add_metric | opsview/plugnpy | 1 | python | def add_metric(self, name, value, unit=, warning_threshold=None, critical_threshold=None, display_format='{name} is {value}{unit}', display_in_perf=True, display_in_summary=True, display_name=None, convert_metric=None, si_bytes_conversion=False, summary_precision=2, perf_data_precision=2, message=):
'Add a metric to the check\'s performance data.\n\n Keyword Arguments:\n - name -- Name of the Metric\n - value -- Value of the Metric (note: do not include unit of measure)\n - unit -- Unit of Measure of the Metric\n - warning_threshold -- Warning threshold for the Metric (default: \'\')\n - see Monitoring Plugins Development Guidelines\n - critical_threshold -- Critical threshold for the Metric (default: \'\')\n - see Monitoring Plugins Development Guidelines\n - display_format -- Formatting string to print the Metric (default: "{name} is {value} {unit}")\n - display_name -- Name to be used in friendly output (default: value of name)\n - display_in_summary -- Whether to print the metric in the summary (default: True)\n - display_in_perf -- Whether to print the metric in performance data (default: True)\n - convert_metric -- Whether to convert the metric value to a more human friendly unit (default: False)\n - si_bytes_conversion -- Whether to convert values using the SI standard, uses IEC by default (default: False)\n - summary_precision -- The number of decimal places to round the metric value in the summary to (default 2)\n - per_data_precision -- The number of decimal places to round the metric value in the perf data to (default 2)\n - message -- Alternative message to print\n '
metric = Metric(name, value, unit, warning_threshold, critical_threshold, display_format=display_format, display_in_perf=display_in_perf, display_in_summary=display_in_summary, display_name=display_name, convert_metric=convert_metric, si_bytes_conversion=si_bytes_conversion, summary_precision=summary_precision, perf_data_precision=perf_data_precision, message=message)
self.metrics.append(metric) | def add_metric(self, name, value, unit=, warning_threshold=None, critical_threshold=None, display_format='{name} is {value}{unit}', display_in_perf=True, display_in_summary=True, display_name=None, convert_metric=None, si_bytes_conversion=False, summary_precision=2, perf_data_precision=2, message=):
'Add a metric to the check\'s performance data.\n\n Keyword Arguments:\n - name -- Name of the Metric\n - value -- Value of the Metric (note: do not include unit of measure)\n - unit -- Unit of Measure of the Metric\n - warning_threshold -- Warning threshold for the Metric (default: \'\')\n - see Monitoring Plugins Development Guidelines\n - critical_threshold -- Critical threshold for the Metric (default: \'\')\n - see Monitoring Plugins Development Guidelines\n - display_format -- Formatting string to print the Metric (default: "{name} is {value} {unit}")\n - display_name -- Name to be used in friendly output (default: value of name)\n - display_in_summary -- Whether to print the metric in the summary (default: True)\n - display_in_perf -- Whether to print the metric in performance data (default: True)\n - convert_metric -- Whether to convert the metric value to a more human friendly unit (default: False)\n - si_bytes_conversion -- Whether to convert values using the SI standard, uses IEC by default (default: False)\n - summary_precision -- The number of decimal places to round the metric value in the summary to (default 2)\n - per_data_precision -- The number of decimal places to round the metric value in the perf data to (default 2)\n - message -- Alternative message to print\n '
metric = Metric(name, value, unit, warning_threshold, critical_threshold, display_format=display_format, display_in_perf=display_in_perf, display_in_summary=display_in_summary, display_name=display_name, convert_metric=convert_metric, si_bytes_conversion=si_bytes_conversion, summary_precision=summary_precision, perf_data_precision=perf_data_precision, message=message)
self.metrics.append(metric)<|docstring|>Add a metric to the check's performance data.
Keyword Arguments:
- name -- Name of the Metric
- value -- Value of the Metric (note: do not include unit of measure)
- unit -- Unit of Measure of the Metric
- warning_threshold -- Warning threshold for the Metric (default: '')
- see Monitoring Plugins Development Guidelines
- critical_threshold -- Critical threshold for the Metric (default: '')
- see Monitoring Plugins Development Guidelines
- display_format -- Formatting string to print the Metric (default: "{name} is {value} {unit}")
- display_name -- Name to be used in friendly output (default: value of name)
- display_in_summary -- Whether to print the metric in the summary (default: True)
- display_in_perf -- Whether to print the metric in performance data (default: True)
- convert_metric -- Whether to convert the metric value to a more human friendly unit (default: False)
- si_bytes_conversion -- Whether to convert values using the SI standard, uses IEC by default (default: False)
- summary_precision -- The number of decimal places to round the metric value in the summary to (default 2)
- per_data_precision -- The number of decimal places to round the metric value in the perf data to (default 2)
- message -- Alternative message to print<|endoftext|> |
f827919a0ac94b02101af1b980c4c4e7533a39e178a238f752515dc47888c1b4 | def add_message(self, message):
'Add a message'
self.metrics[(- 1)].message = message | Add a message | plugnpy/check.py | add_message | opsview/plugnpy | 1 | python | def add_message(self, message):
self.metrics[(- 1)].message = message | def add_message(self, message):
self.metrics[(- 1)].message = message<|docstring|>Add a message<|endoftext|> |
31424e3ab30f174e5c3307efe306224beece3938b2bb69bbb05d21e20443dc8c | def exit(self, code, message):
'Exits with specified message and specified exit status.\n Note: existing messages and metrics are discarded.\n '
print('{0} {1} - {2}'.format(self.state_type, Check.STATUS[code], message))
sys.exit(code) | Exits with specified message and specified exit status.
Note: existing messages and metrics are discarded. | plugnpy/check.py | exit | opsview/plugnpy | 1 | python | def exit(self, code, message):
'Exits with specified message and specified exit status.\n Note: existing messages and metrics are discarded.\n '
print('{0} {1} - {2}'.format(self.state_type, Check.STATUS[code], message))
sys.exit(code) | def exit(self, code, message):
'Exits with specified message and specified exit status.\n Note: existing messages and metrics are discarded.\n '
print('{0} {1} - {2}'.format(self.state_type, Check.STATUS[code], message))
sys.exit(code)<|docstring|>Exits with specified message and specified exit status.
Note: existing messages and metrics are discarded.<|endoftext|> |
361f410bb0ceb2b31e1b7ce5e4f35d5f316591e17e95b32ae1de7a3fa2966a88 | def exit_ok(self, message):
'Exits with specified message and OK exit status.\n Note: existing messages and metrics are discarded.\n '
self.exit(0, message) | Exits with specified message and OK exit status.
Note: existing messages and metrics are discarded. | plugnpy/check.py | exit_ok | opsview/plugnpy | 1 | python | def exit_ok(self, message):
'Exits with specified message and OK exit status.\n Note: existing messages and metrics are discarded.\n '
self.exit(0, message) | def exit_ok(self, message):
'Exits with specified message and OK exit status.\n Note: existing messages and metrics are discarded.\n '
self.exit(0, message)<|docstring|>Exits with specified message and OK exit status.
Note: existing messages and metrics are discarded.<|endoftext|> |
135f04462de6a389199d963945ecb9efa3dcdcf377bc8cdd1463c5c0b6610d5b | def exit_warning(self, message):
'Exits with specified message and WARNING exit status.\n Note: existing messages and metrics are discarded.\n '
self.exit(1, message) | Exits with specified message and WARNING exit status.
Note: existing messages and metrics are discarded. | plugnpy/check.py | exit_warning | opsview/plugnpy | 1 | python | def exit_warning(self, message):
'Exits with specified message and WARNING exit status.\n Note: existing messages and metrics are discarded.\n '
self.exit(1, message) | def exit_warning(self, message):
'Exits with specified message and WARNING exit status.\n Note: existing messages and metrics are discarded.\n '
self.exit(1, message)<|docstring|>Exits with specified message and WARNING exit status.
Note: existing messages and metrics are discarded.<|endoftext|> |
6f3bf2c6bcc0afd70f42b634e10cfc588771667c19b36815d4854f64d1a9249c | def exit_critical(self, message):
'Exits with specified message and CRITICAL exit status.\n Note: existing messages and metrics are discarded.\n '
self.exit(2, message) | Exits with specified message and CRITICAL exit status.
Note: existing messages and metrics are discarded. | plugnpy/check.py | exit_critical | opsview/plugnpy | 1 | python | def exit_critical(self, message):
'Exits with specified message and CRITICAL exit status.\n Note: existing messages and metrics are discarded.\n '
self.exit(2, message) | def exit_critical(self, message):
'Exits with specified message and CRITICAL exit status.\n Note: existing messages and metrics are discarded.\n '
self.exit(2, message)<|docstring|>Exits with specified message and CRITICAL exit status.
Note: existing messages and metrics are discarded.<|endoftext|> |
0943ba9282dbfacdb39af97552146fecd2aabd169867a52f14a1d9fe8322e369 | def exit_unknown(self, message):
'Exits with specified message and UNKNOWN exit status.\n Note: existing messages and metrics are discarded.\n '
self.exit(3, message) | Exits with specified message and UNKNOWN exit status.
Note: existing messages and metrics are discarded. | plugnpy/check.py | exit_unknown | opsview/plugnpy | 1 | python | def exit_unknown(self, message):
'Exits with specified message and UNKNOWN exit status.\n Note: existing messages and metrics are discarded.\n '
self.exit(3, message) | def exit_unknown(self, message):
'Exits with specified message and UNKNOWN exit status.\n Note: existing messages and metrics are discarded.\n '
self.exit(3, message)<|docstring|>Exits with specified message and UNKNOWN exit status.
Note: existing messages and metrics are discarded.<|endoftext|> |
83b68d3209d383a7efafe9cabb592eb793cdf5e1afd05977a2ab7d609034ab52 | def final(self):
'Calculates the final check output and exit status, prints and exits with the appropriate code.'
human_results = [str(metric) for metric in self.metrics if metric.display_in_summary]
perf_results = [metric.perf_data for metric in self.metrics if metric.display_in_perf]
summary = '{0}{1}{2}'.format(self.sep.join(human_results), (' | ' if perf_results else ''), ' '.join(perf_results))
exit_code = max([metric.state for metric in self.metrics])
print('{0} {1} - {2}'.format(self.state_type, Check.STATUS[exit_code], summary))
sys.exit(exit_code) | Calculates the final check output and exit status, prints and exits with the appropriate code. | plugnpy/check.py | final | opsview/plugnpy | 1 | python | def final(self):
human_results = [str(metric) for metric in self.metrics if metric.display_in_summary]
perf_results = [metric.perf_data for metric in self.metrics if metric.display_in_perf]
summary = '{0}{1}{2}'.format(self.sep.join(human_results), (' | ' if perf_results else ), ' '.join(perf_results))
exit_code = max([metric.state for metric in self.metrics])
print('{0} {1} - {2}'.format(self.state_type, Check.STATUS[exit_code], summary))
sys.exit(exit_code) | def final(self):
human_results = [str(metric) for metric in self.metrics if metric.display_in_summary]
perf_results = [metric.perf_data for metric in self.metrics if metric.display_in_perf]
summary = '{0}{1}{2}'.format(self.sep.join(human_results), (' | ' if perf_results else ), ' '.join(perf_results))
exit_code = max([metric.state for metric in self.metrics])
print('{0} {1} - {2}'.format(self.state_type, Check.STATUS[exit_code], summary))
sys.exit(exit_code)<|docstring|>Calculates the final check output and exit status, prints and exits with the appropriate code.<|endoftext|> |
e1080e52dac044e0c02c91a468e3f3e54949d0e1337f5f81502cf997e9957fe6 | @classmethod
def from_regions(cls, regions, **kwargs):
'\n Initialize group from sequence of regions.\n '
regions = map(mundi.region, regions)
new = EpidemicCurve.from_region
return cls({r.id: new(r, **kwargs) for r in regions}) | Initialize group from sequence of regions. | pydemic/empirical/epidemiology_group.py | from_regions | GCES-Pydemic/pydemic | 0 | python | @classmethod
def from_regions(cls, regions, **kwargs):
'\n \n '
regions = map(mundi.region, regions)
new = EpidemicCurve.from_region
return cls({r.id: new(r, **kwargs) for r in regions}) | @classmethod
def from_regions(cls, regions, **kwargs):
'\n \n '
regions = map(mundi.region, regions)
new = EpidemicCurve.from_region
return cls({r.id: new(r, **kwargs) for r in regions})<|docstring|>Initialize group from sequence of regions.<|endoftext|> |
4b415c9bbc73640effc96867c0797f5c80c007c089f1464e41f13d84a9842a86 | @classmethod
def from_query(cls, *args, disease=None, params=None, **kwargs):
'\n Initialize group from a mundi region query.\n '
regions = mundi.regions(*args, **kwargs)
return cls.from_regions(regions.index, disease=disease, params=params) | Initialize group from a mundi region query. | pydemic/empirical/epidemiology_group.py | from_query | GCES-Pydemic/pydemic | 0 | python | @classmethod
def from_query(cls, *args, disease=None, params=None, **kwargs):
'\n \n '
regions = mundi.regions(*args, **kwargs)
return cls.from_regions(regions.index, disease=disease, params=params) | @classmethod
def from_query(cls, *args, disease=None, params=None, **kwargs):
'\n \n '
regions = mundi.regions(*args, **kwargs)
return cls.from_regions(regions.index, disease=disease, params=params)<|docstring|>Initialize group from a mundi region query.<|endoftext|> |
f8ab65dac0a3281315541fdd62da5135b72ae829efdd68bc4adfde0d2ae0b5fd | def experiment_fn(output_dir):
"Creates an experiment using Alexnet applied to Oxford's 17 Category Flower Dataset.\n\n References:\n * Alex Krizhevsky, Ilya Sutskever & Geoffrey E. Hinton. ImageNet Classification with\n Deep Convolutional Neural Networks. NIPS, 2012.\n * 17 Category Flower Dataset. Maria-Elena Nilsback and Andrew Zisserman.\n\n Links:\n * [AlexNet Paper](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf) # noqa\n * [Flower Dataset (17)](http://www.robots.ox.ac.uk/~vgg/data/flowers/17/)\n "
plx.datasets.flowers17.prepare('../data/flowers17')
config = './yaml_configs/alexnet_flower17.yml'
config = './json_configs/alexnet_flower17.json'
experiment_config = plx.configs.ExperimentConfig.read_configs(config)
return plx.experiments.create_experiment(experiment_config) | Creates an experiment using Alexnet applied to Oxford's 17 Category Flower Dataset.
References:
* Alex Krizhevsky, Ilya Sutskever & Geoffrey E. Hinton. ImageNet Classification with
Deep Convolutional Neural Networks. NIPS, 2012.
* 17 Category Flower Dataset. Maria-Elena Nilsback and Andrew Zisserman.
Links:
* [AlexNet Paper](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf) # noqa
* [Flower Dataset (17)](http://www.robots.ox.ac.uk/~vgg/data/flowers/17/) | examples/configs_examples/alexnet_flowers17.py | experiment_fn | chandu088/p | 0 | python | def experiment_fn(output_dir):
"Creates an experiment using Alexnet applied to Oxford's 17 Category Flower Dataset.\n\n References:\n * Alex Krizhevsky, Ilya Sutskever & Geoffrey E. Hinton. ImageNet Classification with\n Deep Convolutional Neural Networks. NIPS, 2012.\n * 17 Category Flower Dataset. Maria-Elena Nilsback and Andrew Zisserman.\n\n Links:\n * [AlexNet Paper](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf) # noqa\n * [Flower Dataset (17)](http://www.robots.ox.ac.uk/~vgg/data/flowers/17/)\n "
plx.datasets.flowers17.prepare('../data/flowers17')
config = './yaml_configs/alexnet_flower17.yml'
config = './json_configs/alexnet_flower17.json'
experiment_config = plx.configs.ExperimentConfig.read_configs(config)
return plx.experiments.create_experiment(experiment_config) | def experiment_fn(output_dir):
"Creates an experiment using Alexnet applied to Oxford's 17 Category Flower Dataset.\n\n References:\n * Alex Krizhevsky, Ilya Sutskever & Geoffrey E. Hinton. ImageNet Classification with\n Deep Convolutional Neural Networks. NIPS, 2012.\n * 17 Category Flower Dataset. Maria-Elena Nilsback and Andrew Zisserman.\n\n Links:\n * [AlexNet Paper](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf) # noqa\n * [Flower Dataset (17)](http://www.robots.ox.ac.uk/~vgg/data/flowers/17/)\n "
plx.datasets.flowers17.prepare('../data/flowers17')
config = './yaml_configs/alexnet_flower17.yml'
config = './json_configs/alexnet_flower17.json'
experiment_config = plx.configs.ExperimentConfig.read_configs(config)
return plx.experiments.create_experiment(experiment_config)<|docstring|>Creates an experiment using Alexnet applied to Oxford's 17 Category Flower Dataset.
References:
* Alex Krizhevsky, Ilya Sutskever & Geoffrey E. Hinton. ImageNet Classification with
Deep Convolutional Neural Networks. NIPS, 2012.
* 17 Category Flower Dataset. Maria-Elena Nilsback and Andrew Zisserman.
Links:
* [AlexNet Paper](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf) # noqa
* [Flower Dataset (17)](http://www.robots.ox.ac.uk/~vgg/data/flowers/17/)<|endoftext|> |
39f05a8a88de11e5964a2d34eae3f5738f7418cedc58ec3cc8c7e8a0e74c8c53 | def current_user():
'\n 从session中获取当前用户id, 在数据库中找出用户数据\n '
uid = session.get('user_id')
if (uid is not None):
u = User.query.get(uid)
return u | 从session中获取当前用户id, 在数据库中找出用户数据 | routes/user.py | current_user | naturalwang/flask-blog | 0 | python | def current_user():
'\n \n '
uid = session.get('user_id')
if (uid is not None):
u = User.query.get(uid)
return u | def current_user():
'\n \n '
uid = session.get('user_id')
if (uid is not None):
u = User.query.get(uid)
return u<|docstring|>从session中获取当前用户id, 在数据库中找出用户数据<|endoftext|> |
46abb388a2a5d551755195d76c6c2b8a958331771de2e8c3f61251b75b12829c | def _helper_reraises_exception(ex):
'Pickle-able helper function for use by _guarded_task_generation.'
raise ex | Pickle-able helper function for use by _guarded_task_generation. | Lib/multiprocessing/pool.py | _helper_reraises_exception | tomKPZ/cpython | 52,316 | python | def _helper_reraises_exception(ex):
raise ex | def _helper_reraises_exception(ex):
raise ex<|docstring|>Pickle-able helper function for use by _guarded_task_generation.<|endoftext|> |
c1941aea94eacfe6a68cbf43bd05fe0165fd6c33fbd022a006bc03af0dc3450a | @staticmethod
def _join_exited_workers(pool):
'Cleanup after any worker processes which have exited due to reaching\n their specified lifetime. Returns True if any workers were cleaned up.\n '
cleaned = False
for i in reversed(range(len(pool))):
worker = pool[i]
if (worker.exitcode is not None):
util.debug(('cleaning up worker %d' % i))
worker.join()
cleaned = True
del pool[i]
return cleaned | Cleanup after any worker processes which have exited due to reaching
their specified lifetime. Returns True if any workers were cleaned up. | Lib/multiprocessing/pool.py | _join_exited_workers | tomKPZ/cpython | 52,316 | python | @staticmethod
def _join_exited_workers(pool):
'Cleanup after any worker processes which have exited due to reaching\n their specified lifetime. Returns True if any workers were cleaned up.\n '
cleaned = False
for i in reversed(range(len(pool))):
worker = pool[i]
if (worker.exitcode is not None):
util.debug(('cleaning up worker %d' % i))
worker.join()
cleaned = True
del pool[i]
return cleaned | @staticmethod
def _join_exited_workers(pool):
'Cleanup after any worker processes which have exited due to reaching\n their specified lifetime. Returns True if any workers were cleaned up.\n '
cleaned = False
for i in reversed(range(len(pool))):
worker = pool[i]
if (worker.exitcode is not None):
util.debug(('cleaning up worker %d' % i))
worker.join()
cleaned = True
del pool[i]
return cleaned<|docstring|>Cleanup after any worker processes which have exited due to reaching
their specified lifetime. Returns True if any workers were cleaned up.<|endoftext|> |
3ccfc2b8824e03899c620fed860967d8c37b26a4a733aaa71546c7f0e2b58130 | @staticmethod
def _repopulate_pool_static(ctx, Process, processes, pool, inqueue, outqueue, initializer, initargs, maxtasksperchild, wrap_exception):
'Bring the number of pool processes up to the specified number,\n for use after reaping workers which have exited.\n '
for i in range((processes - len(pool))):
w = Process(ctx, target=worker, args=(inqueue, outqueue, initializer, initargs, maxtasksperchild, wrap_exception))
w.name = w.name.replace('Process', 'PoolWorker')
w.daemon = True
w.start()
pool.append(w)
util.debug('added worker') | Bring the number of pool processes up to the specified number,
for use after reaping workers which have exited. | Lib/multiprocessing/pool.py | _repopulate_pool_static | tomKPZ/cpython | 52,316 | python | @staticmethod
def _repopulate_pool_static(ctx, Process, processes, pool, inqueue, outqueue, initializer, initargs, maxtasksperchild, wrap_exception):
'Bring the number of pool processes up to the specified number,\n for use after reaping workers which have exited.\n '
for i in range((processes - len(pool))):
w = Process(ctx, target=worker, args=(inqueue, outqueue, initializer, initargs, maxtasksperchild, wrap_exception))
w.name = w.name.replace('Process', 'PoolWorker')
w.daemon = True
w.start()
pool.append(w)
util.debug('added worker') | @staticmethod
def _repopulate_pool_static(ctx, Process, processes, pool, inqueue, outqueue, initializer, initargs, maxtasksperchild, wrap_exception):
'Bring the number of pool processes up to the specified number,\n for use after reaping workers which have exited.\n '
for i in range((processes - len(pool))):
w = Process(ctx, target=worker, args=(inqueue, outqueue, initializer, initargs, maxtasksperchild, wrap_exception))
w.name = w.name.replace('Process', 'PoolWorker')
w.daemon = True
w.start()
pool.append(w)
util.debug('added worker')<|docstring|>Bring the number of pool processes up to the specified number,
for use after reaping workers which have exited.<|endoftext|> |
3c64c42a4f5700cd49837af1a87d33f5bacfc45b80a2953d41f214e3b668e918 | @staticmethod
def _maintain_pool(ctx, Process, processes, pool, inqueue, outqueue, initializer, initargs, maxtasksperchild, wrap_exception):
'Clean up any exited workers and start replacements for them.\n '
if Pool._join_exited_workers(pool):
Pool._repopulate_pool_static(ctx, Process, processes, pool, inqueue, outqueue, initializer, initargs, maxtasksperchild, wrap_exception) | Clean up any exited workers and start replacements for them. | Lib/multiprocessing/pool.py | _maintain_pool | tomKPZ/cpython | 52,316 | python | @staticmethod
def _maintain_pool(ctx, Process, processes, pool, inqueue, outqueue, initializer, initargs, maxtasksperchild, wrap_exception):
'\n '
if Pool._join_exited_workers(pool):
Pool._repopulate_pool_static(ctx, Process, processes, pool, inqueue, outqueue, initializer, initargs, maxtasksperchild, wrap_exception) | @staticmethod
def _maintain_pool(ctx, Process, processes, pool, inqueue, outqueue, initializer, initargs, maxtasksperchild, wrap_exception):
'\n '
if Pool._join_exited_workers(pool):
Pool._repopulate_pool_static(ctx, Process, processes, pool, inqueue, outqueue, initializer, initargs, maxtasksperchild, wrap_exception)<|docstring|>Clean up any exited workers and start replacements for them.<|endoftext|> |
d3c8d548b828a913438cb4eed4b17a03dac8f65ae71d9447ec5c92b1e4bc759e | def apply(self, func, args=(), kwds={}):
'\n Equivalent of `func(*args, **kwds)`.\n Pool must be running.\n '
return self.apply_async(func, args, kwds).get() | Equivalent of `func(*args, **kwds)`.
Pool must be running. | Lib/multiprocessing/pool.py | apply | tomKPZ/cpython | 52,316 | python | def apply(self, func, args=(), kwds={}):
'\n Equivalent of `func(*args, **kwds)`.\n Pool must be running.\n '
return self.apply_async(func, args, kwds).get() | def apply(self, func, args=(), kwds={}):
'\n Equivalent of `func(*args, **kwds)`.\n Pool must be running.\n '
return self.apply_async(func, args, kwds).get()<|docstring|>Equivalent of `func(*args, **kwds)`.
Pool must be running.<|endoftext|> |
2fca1462109cbbe67b0285dbddb3fa4bead6046cdc3ea0017fc326f1dba6c6cc | def map(self, func, iterable, chunksize=None):
'\n Apply `func` to each element in `iterable`, collecting the results\n in a list that is returned.\n '
return self._map_async(func, iterable, mapstar, chunksize).get() | Apply `func` to each element in `iterable`, collecting the results
in a list that is returned. | Lib/multiprocessing/pool.py | map | tomKPZ/cpython | 52,316 | python | def map(self, func, iterable, chunksize=None):
'\n Apply `func` to each element in `iterable`, collecting the results\n in a list that is returned.\n '
return self._map_async(func, iterable, mapstar, chunksize).get() | def map(self, func, iterable, chunksize=None):
'\n Apply `func` to each element in `iterable`, collecting the results\n in a list that is returned.\n '
return self._map_async(func, iterable, mapstar, chunksize).get()<|docstring|>Apply `func` to each element in `iterable`, collecting the results
in a list that is returned.<|endoftext|> |
d39de38be68cca8f23a913dfb7ad89d8a80893d04cb0634854b1a2d115082ad9 | def starmap(self, func, iterable, chunksize=None):
'\n Like `map()` method but the elements of the `iterable` are expected to\n be iterables as well and will be unpacked as arguments. Hence\n `func` and (a, b) becomes func(a, b).\n '
return self._map_async(func, iterable, starmapstar, chunksize).get() | Like `map()` method but the elements of the `iterable` are expected to
be iterables as well and will be unpacked as arguments. Hence
`func` and (a, b) becomes func(a, b). | Lib/multiprocessing/pool.py | starmap | tomKPZ/cpython | 52,316 | python | def starmap(self, func, iterable, chunksize=None):
'\n Like `map()` method but the elements of the `iterable` are expected to\n be iterables as well and will be unpacked as arguments. Hence\n `func` and (a, b) becomes func(a, b).\n '
return self._map_async(func, iterable, starmapstar, chunksize).get() | def starmap(self, func, iterable, chunksize=None):
'\n Like `map()` method but the elements of the `iterable` are expected to\n be iterables as well and will be unpacked as arguments. Hence\n `func` and (a, b) becomes func(a, b).\n '
return self._map_async(func, iterable, starmapstar, chunksize).get()<|docstring|>Like `map()` method but the elements of the `iterable` are expected to
be iterables as well and will be unpacked as arguments. Hence
`func` and (a, b) becomes func(a, b).<|endoftext|> |
1af3456263f4661a15285a9d7f19cc3abfa1a9d35a81d85788586f435acf9ee8 | def starmap_async(self, func, iterable, chunksize=None, callback=None, error_callback=None):
'\n Asynchronous version of `starmap()` method.\n '
return self._map_async(func, iterable, starmapstar, chunksize, callback, error_callback) | Asynchronous version of `starmap()` method. | Lib/multiprocessing/pool.py | starmap_async | tomKPZ/cpython | 52,316 | python | def starmap_async(self, func, iterable, chunksize=None, callback=None, error_callback=None):
'\n \n '
return self._map_async(func, iterable, starmapstar, chunksize, callback, error_callback) | def starmap_async(self, func, iterable, chunksize=None, callback=None, error_callback=None):
'\n \n '
return self._map_async(func, iterable, starmapstar, chunksize, callback, error_callback)<|docstring|>Asynchronous version of `starmap()` method.<|endoftext|> |
b63c23cab800832b09fbb7f58b41f6870faef6133a688d344eac36925f6bf7cc | def _guarded_task_generation(self, result_job, func, iterable):
'Provides a generator of tasks for imap and imap_unordered with\n appropriate handling for iterables which throw exceptions during\n iteration.'
try:
i = (- 1)
for (i, x) in enumerate(iterable):
(yield (result_job, i, func, (x,), {}))
except Exception as e:
(yield (result_job, (i + 1), _helper_reraises_exception, (e,), {})) | Provides a generator of tasks for imap and imap_unordered with
appropriate handling for iterables which throw exceptions during
iteration. | Lib/multiprocessing/pool.py | _guarded_task_generation | tomKPZ/cpython | 52,316 | python | def _guarded_task_generation(self, result_job, func, iterable):
'Provides a generator of tasks for imap and imap_unordered with\n appropriate handling for iterables which throw exceptions during\n iteration.'
try:
i = (- 1)
for (i, x) in enumerate(iterable):
(yield (result_job, i, func, (x,), {}))
except Exception as e:
(yield (result_job, (i + 1), _helper_reraises_exception, (e,), {})) | def _guarded_task_generation(self, result_job, func, iterable):
'Provides a generator of tasks for imap and imap_unordered with\n appropriate handling for iterables which throw exceptions during\n iteration.'
try:
i = (- 1)
for (i, x) in enumerate(iterable):
(yield (result_job, i, func, (x,), {}))
except Exception as e:
(yield (result_job, (i + 1), _helper_reraises_exception, (e,), {}))<|docstring|>Provides a generator of tasks for imap and imap_unordered with
appropriate handling for iterables which throw exceptions during
iteration.<|endoftext|> |
26271f09239e832c179e37d2f902bec80e9bad697aca25b8777c42daf74f4ea9 | def imap(self, func, iterable, chunksize=1):
'\n Equivalent of `map()` -- can be MUCH slower than `Pool.map()`.\n '
self._check_running()
if (chunksize == 1):
result = IMapIterator(self)
self._taskqueue.put((self._guarded_task_generation(result._job, func, iterable), result._set_length))
return result
else:
if (chunksize < 1):
raise ValueError('Chunksize must be 1+, not {0:n}'.format(chunksize))
task_batches = Pool._get_tasks(func, iterable, chunksize)
result = IMapIterator(self)
self._taskqueue.put((self._guarded_task_generation(result._job, mapstar, task_batches), result._set_length))
return (item for chunk in result for item in chunk) | Equivalent of `map()` -- can be MUCH slower than `Pool.map()`. | Lib/multiprocessing/pool.py | imap | tomKPZ/cpython | 52,316 | python | def imap(self, func, iterable, chunksize=1):
'\n \n '
self._check_running()
if (chunksize == 1):
result = IMapIterator(self)
self._taskqueue.put((self._guarded_task_generation(result._job, func, iterable), result._set_length))
return result
else:
if (chunksize < 1):
raise ValueError('Chunksize must be 1+, not {0:n}'.format(chunksize))
task_batches = Pool._get_tasks(func, iterable, chunksize)
result = IMapIterator(self)
self._taskqueue.put((self._guarded_task_generation(result._job, mapstar, task_batches), result._set_length))
return (item for chunk in result for item in chunk) | def imap(self, func, iterable, chunksize=1):
'\n \n '
self._check_running()
if (chunksize == 1):
result = IMapIterator(self)
self._taskqueue.put((self._guarded_task_generation(result._job, func, iterable), result._set_length))
return result
else:
if (chunksize < 1):
raise ValueError('Chunksize must be 1+, not {0:n}'.format(chunksize))
task_batches = Pool._get_tasks(func, iterable, chunksize)
result = IMapIterator(self)
self._taskqueue.put((self._guarded_task_generation(result._job, mapstar, task_batches), result._set_length))
return (item for chunk in result for item in chunk)<|docstring|>Equivalent of `map()` -- can be MUCH slower than `Pool.map()`.<|endoftext|> |
1d9b168550abb8aa6191750ca23b099348860646594dd417162fff824b866fea | def imap_unordered(self, func, iterable, chunksize=1):
'\n Like `imap()` method but ordering of results is arbitrary.\n '
self._check_running()
if (chunksize == 1):
result = IMapUnorderedIterator(self)
self._taskqueue.put((self._guarded_task_generation(result._job, func, iterable), result._set_length))
return result
else:
if (chunksize < 1):
raise ValueError('Chunksize must be 1+, not {0!r}'.format(chunksize))
task_batches = Pool._get_tasks(func, iterable, chunksize)
result = IMapUnorderedIterator(self)
self._taskqueue.put((self._guarded_task_generation(result._job, mapstar, task_batches), result._set_length))
return (item for chunk in result for item in chunk) | Like `imap()` method but ordering of results is arbitrary. | Lib/multiprocessing/pool.py | imap_unordered | tomKPZ/cpython | 52,316 | python | def imap_unordered(self, func, iterable, chunksize=1):
'\n \n '
self._check_running()
if (chunksize == 1):
result = IMapUnorderedIterator(self)
self._taskqueue.put((self._guarded_task_generation(result._job, func, iterable), result._set_length))
return result
else:
if (chunksize < 1):
raise ValueError('Chunksize must be 1+, not {0!r}'.format(chunksize))
task_batches = Pool._get_tasks(func, iterable, chunksize)
result = IMapUnorderedIterator(self)
self._taskqueue.put((self._guarded_task_generation(result._job, mapstar, task_batches), result._set_length))
return (item for chunk in result for item in chunk) | def imap_unordered(self, func, iterable, chunksize=1):
'\n \n '
self._check_running()
if (chunksize == 1):
result = IMapUnorderedIterator(self)
self._taskqueue.put((self._guarded_task_generation(result._job, func, iterable), result._set_length))
return result
else:
if (chunksize < 1):
raise ValueError('Chunksize must be 1+, not {0!r}'.format(chunksize))
task_batches = Pool._get_tasks(func, iterable, chunksize)
result = IMapUnorderedIterator(self)
self._taskqueue.put((self._guarded_task_generation(result._job, mapstar, task_batches), result._set_length))
return (item for chunk in result for item in chunk)<|docstring|>Like `imap()` method but ordering of results is arbitrary.<|endoftext|> |
a30d8e2748b6834d95c746c1c4bdcb19fed201ffb7ed3c2738a8eabc9b0b783d | def apply_async(self, func, args=(), kwds={}, callback=None, error_callback=None):
'\n Asynchronous version of `apply()` method.\n '
self._check_running()
result = ApplyResult(self, callback, error_callback)
self._taskqueue.put(([(result._job, 0, func, args, kwds)], None))
return result | Asynchronous version of `apply()` method. | Lib/multiprocessing/pool.py | apply_async | tomKPZ/cpython | 52,316 | python | def apply_async(self, func, args=(), kwds={}, callback=None, error_callback=None):
'\n \n '
self._check_running()
result = ApplyResult(self, callback, error_callback)
self._taskqueue.put(([(result._job, 0, func, args, kwds)], None))
return result | def apply_async(self, func, args=(), kwds={}, callback=None, error_callback=None):
'\n \n '
self._check_running()
result = ApplyResult(self, callback, error_callback)
self._taskqueue.put(([(result._job, 0, func, args, kwds)], None))
return result<|docstring|>Asynchronous version of `apply()` method.<|endoftext|> |
3e14b0e8ad2dd7917ac1f5612f482ff90985bfa444e0fad8e23cd64877458b64 | def map_async(self, func, iterable, chunksize=None, callback=None, error_callback=None):
'\n Asynchronous version of `map()` method.\n '
return self._map_async(func, iterable, mapstar, chunksize, callback, error_callback) | Asynchronous version of `map()` method. | Lib/multiprocessing/pool.py | map_async | tomKPZ/cpython | 52,316 | python | def map_async(self, func, iterable, chunksize=None, callback=None, error_callback=None):
'\n \n '
return self._map_async(func, iterable, mapstar, chunksize, callback, error_callback) | def map_async(self, func, iterable, chunksize=None, callback=None, error_callback=None):
'\n \n '
return self._map_async(func, iterable, mapstar, chunksize, callback, error_callback)<|docstring|>Asynchronous version of `map()` method.<|endoftext|> |
88ebbf9f5183b9df6da970267162d50122f7ec0cc7f44d9fb07fe4390cc1b127 | def _map_async(self, func, iterable, mapper, chunksize=None, callback=None, error_callback=None):
'\n Helper function to implement map, starmap and their async counterparts.\n '
self._check_running()
if (not hasattr(iterable, '__len__')):
iterable = list(iterable)
if (chunksize is None):
(chunksize, extra) = divmod(len(iterable), (len(self._pool) * 4))
if extra:
chunksize += 1
if (len(iterable) == 0):
chunksize = 0
task_batches = Pool._get_tasks(func, iterable, chunksize)
result = MapResult(self, chunksize, len(iterable), callback, error_callback=error_callback)
self._taskqueue.put((self._guarded_task_generation(result._job, mapper, task_batches), None))
return result | Helper function to implement map, starmap and their async counterparts. | Lib/multiprocessing/pool.py | _map_async | tomKPZ/cpython | 52,316 | python | def _map_async(self, func, iterable, mapper, chunksize=None, callback=None, error_callback=None):
'\n \n '
self._check_running()
if (not hasattr(iterable, '__len__')):
iterable = list(iterable)
if (chunksize is None):
(chunksize, extra) = divmod(len(iterable), (len(self._pool) * 4))
if extra:
chunksize += 1
if (len(iterable) == 0):
chunksize = 0
task_batches = Pool._get_tasks(func, iterable, chunksize)
result = MapResult(self, chunksize, len(iterable), callback, error_callback=error_callback)
self._taskqueue.put((self._guarded_task_generation(result._job, mapper, task_batches), None))
return result | def _map_async(self, func, iterable, mapper, chunksize=None, callback=None, error_callback=None):
'\n \n '
self._check_running()
if (not hasattr(iterable, '__len__')):
iterable = list(iterable)
if (chunksize is None):
(chunksize, extra) = divmod(len(iterable), (len(self._pool) * 4))
if extra:
chunksize += 1
if (len(iterable) == 0):
chunksize = 0
task_batches = Pool._get_tasks(func, iterable, chunksize)
result = MapResult(self, chunksize, len(iterable), callback, error_callback=error_callback)
self._taskqueue.put((self._guarded_task_generation(result._job, mapper, task_batches), None))
return result<|docstring|>Helper function to implement map, starmap and their async counterparts.<|endoftext|> |
44459c36ec73392e293f7e2e205f9c89ba98c289a14c19d9b603f7e7fdee0c09 | def forwards(self, orm):
'Write your forwards methods here.'
for channel in orm.Channel.objects.all():
lockstring = channel.db_lock_storage
lockstring = lockstring.replace('admin:', 'control:')
channel.db_lock_storage = lockstring
channel.save() | Write your forwards methods here. | src/comms/migrations/0004_changing_lock_comm_admin2control.py | forwards | reddcoin-project/ReddConnect | 2 | python | def forwards(self, orm):
for channel in orm.Channel.objects.all():
lockstring = channel.db_lock_storage
lockstring = lockstring.replace('admin:', 'control:')
channel.db_lock_storage = lockstring
channel.save() | def forwards(self, orm):
for channel in orm.Channel.objects.all():
lockstring = channel.db_lock_storage
lockstring = lockstring.replace('admin:', 'control:')
channel.db_lock_storage = lockstring
channel.save()<|docstring|>Write your forwards methods here.<|endoftext|> |
d07ccc3e5babb54c5c47209cad176fce3acbab200016ee07c4a6885f281181fd | def backwards(self, orm):
'Write your backwards methods here.'
for channel in orm.Channel.objects.all():
lockstring = channel.db_lock_storage
lockstring = lockstring.replace('control:', 'admin:')
channel.db_lock_storage = lockstring
channel.save() | Write your backwards methods here. | src/comms/migrations/0004_changing_lock_comm_admin2control.py | backwards | reddcoin-project/ReddConnect | 2 | python | def backwards(self, orm):
for channel in orm.Channel.objects.all():
lockstring = channel.db_lock_storage
lockstring = lockstring.replace('control:', 'admin:')
channel.db_lock_storage = lockstring
channel.save() | def backwards(self, orm):
for channel in orm.Channel.objects.all():
lockstring = channel.db_lock_storage
lockstring = lockstring.replace('control:', 'admin:')
channel.db_lock_storage = lockstring
channel.save()<|docstring|>Write your backwards methods here.<|endoftext|> |
c484ce345880bfd259ee7038e5f1806a77f187c22b15d620a17d60ccab118429 | def register_mujoco_environments():
'Register softlearning mujoco environments.'
for mujoco_environment in MUJOCO_ENVIRONMENT_SPECS:
gym.register(**mujoco_environment)
gym_ids = tuple((environment_spec['id'] for environment_spec in MUJOCO_ENVIRONMENT_SPECS))
return gym_ids | Register softlearning mujoco environments. | softlearning/environments/gym/__init__.py | register_mujoco_environments | nflu/softlearning | 0 | python | def register_mujoco_environments():
for mujoco_environment in MUJOCO_ENVIRONMENT_SPECS:
gym.register(**mujoco_environment)
gym_ids = tuple((environment_spec['id'] for environment_spec in MUJOCO_ENVIRONMENT_SPECS))
return gym_ids | def register_mujoco_environments():
for mujoco_environment in MUJOCO_ENVIRONMENT_SPECS:
gym.register(**mujoco_environment)
gym_ids = tuple((environment_spec['id'] for environment_spec in MUJOCO_ENVIRONMENT_SPECS))
return gym_ids<|docstring|>Register softlearning mujoco environments.<|endoftext|> |
f868faaf01774d3245f43a3162a5521e3a651e6179ab1224916cf12074b6b878 | def register_general_environments():
"Register gym environments that don't fall under a specific category."
for general_environment in GENERAL_ENVIRONMENT_SPECS:
gym.register(**general_environment)
gym_ids = tuple((environment_spec['id'] for environment_spec in GENERAL_ENVIRONMENT_SPECS))
return gym_ids | Register gym environments that don't fall under a specific category. | softlearning/environments/gym/__init__.py | register_general_environments | nflu/softlearning | 0 | python | def register_general_environments():
for general_environment in GENERAL_ENVIRONMENT_SPECS:
gym.register(**general_environment)
gym_ids = tuple((environment_spec['id'] for environment_spec in GENERAL_ENVIRONMENT_SPECS))
return gym_ids | def register_general_environments():
for general_environment in GENERAL_ENVIRONMENT_SPECS:
gym.register(**general_environment)
gym_ids = tuple((environment_spec['id'] for environment_spec in GENERAL_ENVIRONMENT_SPECS))
return gym_ids<|docstring|>Register gym environments that don't fall under a specific category.<|endoftext|> |
a9677809e8d9b92675eebe59ba6ddb4e10125b6d9719e3037ca6220596d11b3f | def register_multiworld_environments():
'Register custom environments from multiworld package.'
for multiworld_environment in MULTIWORLD_ENVIRONMENT_SPECS:
gym.register(**multiworld_environment)
gym_ids = tuple((environment_spec['id'] for environment_spec in MULTIWORLD_ENVIRONMENT_SPECS))
return gym_ids | Register custom environments from multiworld package. | softlearning/environments/gym/__init__.py | register_multiworld_environments | nflu/softlearning | 0 | python | def register_multiworld_environments():
for multiworld_environment in MULTIWORLD_ENVIRONMENT_SPECS:
gym.register(**multiworld_environment)
gym_ids = tuple((environment_spec['id'] for environment_spec in MULTIWORLD_ENVIRONMENT_SPECS))
return gym_ids | def register_multiworld_environments():
for multiworld_environment in MULTIWORLD_ENVIRONMENT_SPECS:
gym.register(**multiworld_environment)
gym_ids = tuple((environment_spec['id'] for environment_spec in MULTIWORLD_ENVIRONMENT_SPECS))
return gym_ids<|docstring|>Register custom environments from multiworld package.<|endoftext|> |
74a17867325badc32f4ee8ab2e33a5c026582dfa030fc7d1a6c973726bd285d0 | def build_config(opt_level=2, required_pass=None, disabled_pass=None, trace=None):
'Configure the build behavior by setting config variables. This function\n will be deprecated in TVM v0.7. Instead, we should directly use\n tvm.transform.PassContext.\n\n Parameters\n ----------\n opt_level: int, optional\n Optimization level. The optimization pass name and level are as the\n following:\n\n .. code-block:: python\n\n OPT_PASS_LEVEL = {\n "SimplifyInference": 0,\n "OpFusion": 1,\n "FoldConstant": 2,\n "FoldScaleAxis": 3,\n "AlterOpLayout": 3,\n "CanonicalizeOps": 3,\n "CanonicalizeCast": 3,\n "EliminateCommonSubexpr": 3,\n "CombineParallelConv2D": 4,\n "CombineParallelDense": 4,\n "CombineParallelBatchMatmul": 4,\n "FastMath": 4\n }\n\n required_pass: set of str, optional\n Optimization passes that are required regardless of optimization level.\n\n disabled_pass: set of str, optional\n Optimization passes to be disabled during optimization.\n\n trace: Callable[[IRModule, PassInfo, bool], None]\n A tracing function for debugging or introspection.\n\n Returns\n -------\n pass_context: PassContext\n The pass context for optimizations.\n '
warnings.warn('relay.build_config will be deprecated. Please use tvm.transform.PassContext directly', DeprecationWarning)
return tvm.transform.PassContext(opt_level, required_pass, disabled_pass, trace) | Configure the build behavior by setting config variables. This function
will be deprecated in TVM v0.7. Instead, we should directly use
tvm.transform.PassContext.
Parameters
----------
opt_level: int, optional
Optimization level. The optimization pass name and level are as the
following:
.. code-block:: python
OPT_PASS_LEVEL = {
"SimplifyInference": 0,
"OpFusion": 1,
"FoldConstant": 2,
"FoldScaleAxis": 3,
"AlterOpLayout": 3,
"CanonicalizeOps": 3,
"CanonicalizeCast": 3,
"EliminateCommonSubexpr": 3,
"CombineParallelConv2D": 4,
"CombineParallelDense": 4,
"CombineParallelBatchMatmul": 4,
"FastMath": 4
}
required_pass: set of str, optional
Optimization passes that are required regardless of optimization level.
disabled_pass: set of str, optional
Optimization passes to be disabled during optimization.
trace: Callable[[IRModule, PassInfo, bool], None]
A tracing function for debugging or introspection.
Returns
-------
pass_context: PassContext
The pass context for optimizations. | python/tvm/relay/transform/transform.py | build_config | ryanstout/tvm | 2,084 | python | def build_config(opt_level=2, required_pass=None, disabled_pass=None, trace=None):
'Configure the build behavior by setting config variables. This function\n will be deprecated in TVM v0.7. Instead, we should directly use\n tvm.transform.PassContext.\n\n Parameters\n ----------\n opt_level: int, optional\n Optimization level. The optimization pass name and level are as the\n following:\n\n .. code-block:: python\n\n OPT_PASS_LEVEL = {\n "SimplifyInference": 0,\n "OpFusion": 1,\n "FoldConstant": 2,\n "FoldScaleAxis": 3,\n "AlterOpLayout": 3,\n "CanonicalizeOps": 3,\n "CanonicalizeCast": 3,\n "EliminateCommonSubexpr": 3,\n "CombineParallelConv2D": 4,\n "CombineParallelDense": 4,\n "CombineParallelBatchMatmul": 4,\n "FastMath": 4\n }\n\n required_pass: set of str, optional\n Optimization passes that are required regardless of optimization level.\n\n disabled_pass: set of str, optional\n Optimization passes to be disabled during optimization.\n\n trace: Callable[[IRModule, PassInfo, bool], None]\n A tracing function for debugging or introspection.\n\n Returns\n -------\n pass_context: PassContext\n The pass context for optimizations.\n '
warnings.warn('relay.build_config will be deprecated. Please use tvm.transform.PassContext directly', DeprecationWarning)
return tvm.transform.PassContext(opt_level, required_pass, disabled_pass, trace) | def build_config(opt_level=2, required_pass=None, disabled_pass=None, trace=None):
'Configure the build behavior by setting config variables. This function\n will be deprecated in TVM v0.7. Instead, we should directly use\n tvm.transform.PassContext.\n\n Parameters\n ----------\n opt_level: int, optional\n Optimization level. The optimization pass name and level are as the\n following:\n\n .. code-block:: python\n\n OPT_PASS_LEVEL = {\n "SimplifyInference": 0,\n "OpFusion": 1,\n "FoldConstant": 2,\n "FoldScaleAxis": 3,\n "AlterOpLayout": 3,\n "CanonicalizeOps": 3,\n "CanonicalizeCast": 3,\n "EliminateCommonSubexpr": 3,\n "CombineParallelConv2D": 4,\n "CombineParallelDense": 4,\n "CombineParallelBatchMatmul": 4,\n "FastMath": 4\n }\n\n required_pass: set of str, optional\n Optimization passes that are required regardless of optimization level.\n\n disabled_pass: set of str, optional\n Optimization passes to be disabled during optimization.\n\n trace: Callable[[IRModule, PassInfo, bool], None]\n A tracing function for debugging or introspection.\n\n Returns\n -------\n pass_context: PassContext\n The pass context for optimizations.\n '
warnings.warn('relay.build_config will be deprecated. Please use tvm.transform.PassContext directly', DeprecationWarning)
return tvm.transform.PassContext(opt_level, required_pass, disabled_pass, trace)<|docstring|>Configure the build behavior by setting config variables. This function
will be deprecated in TVM v0.7. Instead, we should directly use
tvm.transform.PassContext.
Parameters
----------
opt_level: int, optional
Optimization level. The optimization pass name and level are as the
following:
.. code-block:: python
OPT_PASS_LEVEL = {
"SimplifyInference": 0,
"OpFusion": 1,
"FoldConstant": 2,
"FoldScaleAxis": 3,
"AlterOpLayout": 3,
"CanonicalizeOps": 3,
"CanonicalizeCast": 3,
"EliminateCommonSubexpr": 3,
"CombineParallelConv2D": 4,
"CombineParallelDense": 4,
"CombineParallelBatchMatmul": 4,
"FastMath": 4
}
required_pass: set of str, optional
Optimization passes that are required regardless of optimization level.
disabled_pass: set of str, optional
Optimization passes to be disabled during optimization.
trace: Callable[[IRModule, PassInfo, bool], None]
A tracing function for debugging or introspection.
Returns
-------
pass_context: PassContext
The pass context for optimizations.<|endoftext|> |
115ffedf395eb19b8740d3a93e6e80d802af2538ce040bea59b39ed4b88b6c6f | def InferType():
'Infer the type of an expr.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered type inference pass.\n '
return _ffi_api.InferType() | Infer the type of an expr.
Returns
-------
ret : tvm.transform.Pass
The registered type inference pass. | python/tvm/relay/transform/transform.py | InferType | ryanstout/tvm | 2,084 | python | def InferType():
'Infer the type of an expr.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered type inference pass.\n '
return _ffi_api.InferType() | def InferType():
'Infer the type of an expr.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered type inference pass.\n '
return _ffi_api.InferType()<|docstring|>Infer the type of an expr.
Returns
-------
ret : tvm.transform.Pass
The registered type inference pass.<|endoftext|> |
981441dfddd88f2a00ed55c4424d60b895e9ea808355acdbd9819843031fc03b | def FoldScaleAxis():
'Fold the scaling of axis into weights of conv2d/dense. This pass will\n invoke both forward and backward scale folding.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass to fold expressions.\n\n Note\n ----\n Internally, we will call backward_fold_scale_axis before using\n forward_fold_scale_axis as backward folding targets the common conv->bn\n pattern.\n '
return _ffi_api.FoldScaleAxis() | Fold the scaling of axis into weights of conv2d/dense. This pass will
invoke both forward and backward scale folding.
Returns
-------
ret : tvm.transform.Pass
The registered pass to fold expressions.
Note
----
Internally, we will call backward_fold_scale_axis before using
forward_fold_scale_axis as backward folding targets the common conv->bn
pattern. | python/tvm/relay/transform/transform.py | FoldScaleAxis | ryanstout/tvm | 2,084 | python | def FoldScaleAxis():
'Fold the scaling of axis into weights of conv2d/dense. This pass will\n invoke both forward and backward scale folding.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass to fold expressions.\n\n Note\n ----\n Internally, we will call backward_fold_scale_axis before using\n forward_fold_scale_axis as backward folding targets the common conv->bn\n pattern.\n '
return _ffi_api.FoldScaleAxis() | def FoldScaleAxis():
'Fold the scaling of axis into weights of conv2d/dense. This pass will\n invoke both forward and backward scale folding.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass to fold expressions.\n\n Note\n ----\n Internally, we will call backward_fold_scale_axis before using\n forward_fold_scale_axis as backward folding targets the common conv->bn\n pattern.\n '
return _ffi_api.FoldScaleAxis()<|docstring|>Fold the scaling of axis into weights of conv2d/dense. This pass will
invoke both forward and backward scale folding.
Returns
-------
ret : tvm.transform.Pass
The registered pass to fold expressions.
Note
----
Internally, we will call backward_fold_scale_axis before using
forward_fold_scale_axis as backward folding targets the common conv->bn
pattern.<|endoftext|> |
1e5dc9bdedcce20121d7a0e04271b98a739eaa79b2e4347e5c0a0e6b3dc8204d | def BackwardFoldScaleAxis():
'Backward fold axis scaling into weights of conv2d/dense.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass to backward fold expressions.\n\n Note\n ----\n It is recommended to call backward_fold_scale_axis\n before using forward_fold_scale_axis as backward folding targets the common\n conv->bn pattern.\n '
return _ffi_api.BackwardFoldScaleAxis() | Backward fold axis scaling into weights of conv2d/dense.
Returns
-------
ret : tvm.transform.Pass
The registered pass to backward fold expressions.
Note
----
It is recommended to call backward_fold_scale_axis
before using forward_fold_scale_axis as backward folding targets the common
conv->bn pattern. | python/tvm/relay/transform/transform.py | BackwardFoldScaleAxis | ryanstout/tvm | 2,084 | python | def BackwardFoldScaleAxis():
'Backward fold axis scaling into weights of conv2d/dense.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass to backward fold expressions.\n\n Note\n ----\n It is recommended to call backward_fold_scale_axis\n before using forward_fold_scale_axis as backward folding targets the common\n conv->bn pattern.\n '
return _ffi_api.BackwardFoldScaleAxis() | def BackwardFoldScaleAxis():
'Backward fold axis scaling into weights of conv2d/dense.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass to backward fold expressions.\n\n Note\n ----\n It is recommended to call backward_fold_scale_axis\n before using forward_fold_scale_axis as backward folding targets the common\n conv->bn pattern.\n '
return _ffi_api.BackwardFoldScaleAxis()<|docstring|>Backward fold axis scaling into weights of conv2d/dense.
Returns
-------
ret : tvm.transform.Pass
The registered pass to backward fold expressions.
Note
----
It is recommended to call backward_fold_scale_axis
before using forward_fold_scale_axis as backward folding targets the common
conv->bn pattern.<|endoftext|> |
f113c151ac98226c0b5f52ecff69e874ba74c1499297bcf1346502d95a48252b | def RemoveUnusedFunctions(entry_functions=None):
'Remove unused global relay functions in a relay module.\n\n Parameters\n ----------\n entry_functions: list[string]\n The set of entry functions to start from.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass to remove unused functions.\n '
if (entry_functions is None):
entry_functions = ['main']
return _ffi_api.RemoveUnusedFunctions(entry_functions) | Remove unused global relay functions in a relay module.
Parameters
----------
entry_functions: list[string]
The set of entry functions to start from.
Returns
-------
ret : tvm.transform.Pass
The registered pass to remove unused functions. | python/tvm/relay/transform/transform.py | RemoveUnusedFunctions | ryanstout/tvm | 2,084 | python | def RemoveUnusedFunctions(entry_functions=None):
'Remove unused global relay functions in a relay module.\n\n Parameters\n ----------\n entry_functions: list[string]\n The set of entry functions to start from.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass to remove unused functions.\n '
if (entry_functions is None):
entry_functions = ['main']
return _ffi_api.RemoveUnusedFunctions(entry_functions) | def RemoveUnusedFunctions(entry_functions=None):
'Remove unused global relay functions in a relay module.\n\n Parameters\n ----------\n entry_functions: list[string]\n The set of entry functions to start from.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass to remove unused functions.\n '
if (entry_functions is None):
entry_functions = ['main']
return _ffi_api.RemoveUnusedFunctions(entry_functions)<|docstring|>Remove unused global relay functions in a relay module.
Parameters
----------
entry_functions: list[string]
The set of entry functions to start from.
Returns
-------
ret : tvm.transform.Pass
The registered pass to remove unused functions.<|endoftext|> |
905f9e994c14d1a781d54d7fd75e285306e12f2866f94a94200fb8ab0af5124e | def ForwardFoldScaleAxis():
'Fold the scaling of axis into weights of conv2d/dense.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass to forward fold expressions.\n\n Note\n ----\n It is recommended to call backward_fold_scale_axis\n before using forward_fold_scale_axis, as backward folding targets the\n common conv->bn pattern.\n '
return _ffi_api.ForwardFoldScaleAxis() | Fold the scaling of axis into weights of conv2d/dense.
Returns
-------
ret : tvm.transform.Pass
The registered pass to forward fold expressions.
Note
----
It is recommended to call backward_fold_scale_axis
before using forward_fold_scale_axis, as backward folding targets the
common conv->bn pattern. | python/tvm/relay/transform/transform.py | ForwardFoldScaleAxis | ryanstout/tvm | 2,084 | python | def ForwardFoldScaleAxis():
'Fold the scaling of axis into weights of conv2d/dense.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass to forward fold expressions.\n\n Note\n ----\n It is recommended to call backward_fold_scale_axis\n before using forward_fold_scale_axis, as backward folding targets the\n common conv->bn pattern.\n '
return _ffi_api.ForwardFoldScaleAxis() | def ForwardFoldScaleAxis():
'Fold the scaling of axis into weights of conv2d/dense.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass to forward fold expressions.\n\n Note\n ----\n It is recommended to call backward_fold_scale_axis\n before using forward_fold_scale_axis, as backward folding targets the\n common conv->bn pattern.\n '
return _ffi_api.ForwardFoldScaleAxis()<|docstring|>Fold the scaling of axis into weights of conv2d/dense.
Returns
-------
ret : tvm.transform.Pass
The registered pass to forward fold expressions.
Note
----
It is recommended to call backward_fold_scale_axis
before using forward_fold_scale_axis, as backward folding targets the
common conv->bn pattern.<|endoftext|> |
db9609bded525bd7f0a471dca003ed6c8cbe2530247ea4018cc6f86c2f83ece2 | def SimplifyInference():
'Simplify the data-flow graph for inference phase. An simplified expression\n which is semantically equal to the input expression will be returned.\n\n Note that batch norms will only be simplified if their result is indexed at\n tuple index 0.\n\n Returns\n -------\n ret: tvm.transform.Pass\n The registered pass to perform operator simplification.\n\n '
return _ffi_api.SimplifyInference() | Simplify the data-flow graph for inference phase. An simplified expression
which is semantically equal to the input expression will be returned.
Note that batch norms will only be simplified if their result is indexed at
tuple index 0.
Returns
-------
ret: tvm.transform.Pass
The registered pass to perform operator simplification. | python/tvm/relay/transform/transform.py | SimplifyInference | ryanstout/tvm | 2,084 | python | def SimplifyInference():
'Simplify the data-flow graph for inference phase. An simplified expression\n which is semantically equal to the input expression will be returned.\n\n Note that batch norms will only be simplified if their result is indexed at\n tuple index 0.\n\n Returns\n -------\n ret: tvm.transform.Pass\n The registered pass to perform operator simplification.\n\n '
return _ffi_api.SimplifyInference() | def SimplifyInference():
'Simplify the data-flow graph for inference phase. An simplified expression\n which is semantically equal to the input expression will be returned.\n\n Note that batch norms will only be simplified if their result is indexed at\n tuple index 0.\n\n Returns\n -------\n ret: tvm.transform.Pass\n The registered pass to perform operator simplification.\n\n '
return _ffi_api.SimplifyInference()<|docstring|>Simplify the data-flow graph for inference phase. An simplified expression
which is semantically equal to the input expression will be returned.
Note that batch norms will only be simplified if their result is indexed at
tuple index 0.
Returns
-------
ret: tvm.transform.Pass
The registered pass to perform operator simplification.<|endoftext|> |
e997f4b7d0596c1f9a4a5ac974b7ee034fd08dbfd9ebc3eb0f26bc90b2011e1b | def FastMath():
'Converts the expensive non linear functions to their fast but approximate counterparts.\n\n Returns\n -------\n ret: tvm.transform.Pass\n The registered pass to perform fast math operations.\n '
return _ffi_api.FastMath() | Converts the expensive non linear functions to their fast but approximate counterparts.
Returns
-------
ret: tvm.transform.Pass
The registered pass to perform fast math operations. | python/tvm/relay/transform/transform.py | FastMath | ryanstout/tvm | 2,084 | python | def FastMath():
'Converts the expensive non linear functions to their fast but approximate counterparts.\n\n Returns\n -------\n ret: tvm.transform.Pass\n The registered pass to perform fast math operations.\n '
return _ffi_api.FastMath() | def FastMath():
'Converts the expensive non linear functions to their fast but approximate counterparts.\n\n Returns\n -------\n ret: tvm.transform.Pass\n The registered pass to perform fast math operations.\n '
return _ffi_api.FastMath()<|docstring|>Converts the expensive non linear functions to their fast but approximate counterparts.
Returns
-------
ret: tvm.transform.Pass
The registered pass to perform fast math operations.<|endoftext|> |
625956641230efb70ca5ce41e805d40c9e8f6daebad0c9669104daf873fa3888 | def CanonicalizeOps():
'Canonicalize special operators to basic operators.\n This can simplify followed analysis, e.g. expanding bias_add to\n expand_dims and broadcast_add.\n\n Returns\n -------\n ret: tvm.transform.Pass\n The registered pass performing the canonicalization.\n '
return _ffi_api.CanonicalizeOps() | Canonicalize special operators to basic operators.
This can simplify followed analysis, e.g. expanding bias_add to
expand_dims and broadcast_add.
Returns
-------
ret: tvm.transform.Pass
The registered pass performing the canonicalization. | python/tvm/relay/transform/transform.py | CanonicalizeOps | ryanstout/tvm | 2,084 | python | def CanonicalizeOps():
'Canonicalize special operators to basic operators.\n This can simplify followed analysis, e.g. expanding bias_add to\n expand_dims and broadcast_add.\n\n Returns\n -------\n ret: tvm.transform.Pass\n The registered pass performing the canonicalization.\n '
return _ffi_api.CanonicalizeOps() | def CanonicalizeOps():
'Canonicalize special operators to basic operators.\n This can simplify followed analysis, e.g. expanding bias_add to\n expand_dims and broadcast_add.\n\n Returns\n -------\n ret: tvm.transform.Pass\n The registered pass performing the canonicalization.\n '
return _ffi_api.CanonicalizeOps()<|docstring|>Canonicalize special operators to basic operators.
This can simplify followed analysis, e.g. expanding bias_add to
expand_dims and broadcast_add.
Returns
-------
ret: tvm.transform.Pass
The registered pass performing the canonicalization.<|endoftext|> |
09675cd3535d64c1c8077bcac4535664ef8fbc7974e9145b2ce376a5fbf846b4 | def DeadCodeElimination(inline_once=False, ignore_impurity=False):
'Remove expressions that do not have any users (dead code).\n\n Parameters\n ----------\n inline_once: Optional[Bool]\n Whether to inline a binding that is referenced exactly once.\n ignore_impurity: Optional[Bool]\n Whether to ignore possible side-effects in let-bound expressions.\n\n Returns\n -------\n ret: tvm.transform.Pass\n The registered pass that eliminates the dead code in a Relay program.\n '
return _ffi_api.DeadCodeElimination(inline_once, ignore_impurity) | Remove expressions that do not have any users (dead code).
Parameters
----------
inline_once: Optional[Bool]
Whether to inline a binding that is referenced exactly once.
ignore_impurity: Optional[Bool]
Whether to ignore possible side-effects in let-bound expressions.
Returns
-------
ret: tvm.transform.Pass
The registered pass that eliminates the dead code in a Relay program. | python/tvm/relay/transform/transform.py | DeadCodeElimination | ryanstout/tvm | 2,084 | python | def DeadCodeElimination(inline_once=False, ignore_impurity=False):
'Remove expressions that do not have any users (dead code).\n\n Parameters\n ----------\n inline_once: Optional[Bool]\n Whether to inline a binding that is referenced exactly once.\n ignore_impurity: Optional[Bool]\n Whether to ignore possible side-effects in let-bound expressions.\n\n Returns\n -------\n ret: tvm.transform.Pass\n The registered pass that eliminates the dead code in a Relay program.\n '
return _ffi_api.DeadCodeElimination(inline_once, ignore_impurity) | def DeadCodeElimination(inline_once=False, ignore_impurity=False):
'Remove expressions that do not have any users (dead code).\n\n Parameters\n ----------\n inline_once: Optional[Bool]\n Whether to inline a binding that is referenced exactly once.\n ignore_impurity: Optional[Bool]\n Whether to ignore possible side-effects in let-bound expressions.\n\n Returns\n -------\n ret: tvm.transform.Pass\n The registered pass that eliminates the dead code in a Relay program.\n '
return _ffi_api.DeadCodeElimination(inline_once, ignore_impurity)<|docstring|>Remove expressions that do not have any users (dead code).
Parameters
----------
inline_once: Optional[Bool]
Whether to inline a binding that is referenced exactly once.
ignore_impurity: Optional[Bool]
Whether to ignore possible side-effects in let-bound expressions.
Returns
-------
ret: tvm.transform.Pass
The registered pass that eliminates the dead code in a Relay program.<|endoftext|> |
f85a5295b5efd7d4f1598d6bbb7664ff8a5cd3b3068668b930701fe4d5538916 | def LazyGradientInit():
'Reduces memory usage of gradient tensors\n\n Parameters\n ----------\n\n Returns\n -------\n ret: tvm.transform.Pass\n A pass which delays and/or reduces memory allocation,\n by lazily allocating 0 or one filled tensors.\n '
return _ffi_api.LazyGradientInit() | Reduces memory usage of gradient tensors
Parameters
----------
Returns
-------
ret: tvm.transform.Pass
A pass which delays and/or reduces memory allocation,
by lazily allocating 0 or one filled tensors. | python/tvm/relay/transform/transform.py | LazyGradientInit | ryanstout/tvm | 2,084 | python | def LazyGradientInit():
'Reduces memory usage of gradient tensors\n\n Parameters\n ----------\n\n Returns\n -------\n ret: tvm.transform.Pass\n A pass which delays and/or reduces memory allocation,\n by lazily allocating 0 or one filled tensors.\n '
return _ffi_api.LazyGradientInit() | def LazyGradientInit():
'Reduces memory usage of gradient tensors\n\n Parameters\n ----------\n\n Returns\n -------\n ret: tvm.transform.Pass\n A pass which delays and/or reduces memory allocation,\n by lazily allocating 0 or one filled tensors.\n '
return _ffi_api.LazyGradientInit()<|docstring|>Reduces memory usage of gradient tensors
Parameters
----------
Returns
-------
ret: tvm.transform.Pass
A pass which delays and/or reduces memory allocation,
by lazily allocating 0 or one filled tensors.<|endoftext|> |
30de09dc9f1035668dc035706dff445963606a02e6603c70c6453ae8077875ad | def FoldConstantExpr(expr, mod):
'Fold the constant expressions in a Relay program.\n Parameters\n ----------\n expr: Expr\n The expression to fold\n mod: IRModule\n The module the expr lives in (for global calls)\n\n Returns\n -------\n new_expr: Expr\n The expr after Constant Folding\n '
return _ffi_api.FoldConstantExpr(expr, mod) | Fold the constant expressions in a Relay program.
Parameters
----------
expr: Expr
The expression to fold
mod: IRModule
The module the expr lives in (for global calls)
Returns
-------
new_expr: Expr
The expr after Constant Folding | python/tvm/relay/transform/transform.py | FoldConstantExpr | ryanstout/tvm | 2,084 | python | def FoldConstantExpr(expr, mod):
'Fold the constant expressions in a Relay program.\n Parameters\n ----------\n expr: Expr\n The expression to fold\n mod: IRModule\n The module the expr lives in (for global calls)\n\n Returns\n -------\n new_expr: Expr\n The expr after Constant Folding\n '
return _ffi_api.FoldConstantExpr(expr, mod) | def FoldConstantExpr(expr, mod):
'Fold the constant expressions in a Relay program.\n Parameters\n ----------\n expr: Expr\n The expression to fold\n mod: IRModule\n The module the expr lives in (for global calls)\n\n Returns\n -------\n new_expr: Expr\n The expr after Constant Folding\n '
return _ffi_api.FoldConstantExpr(expr, mod)<|docstring|>Fold the constant expressions in a Relay program.
Parameters
----------
expr: Expr
The expression to fold
mod: IRModule
The module the expr lives in (for global calls)
Returns
-------
new_expr: Expr
The expr after Constant Folding<|endoftext|> |
d81c61e2c09d3f972ce3198bfcbfdb23980d4f4ae71d44b2dfa98a1802a84ce3 | def FoldConstant():
'Fold the constant expressions in a Relay program.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass for constant folding.\n '
return _ffi_api.FoldConstant() | Fold the constant expressions in a Relay program.
Returns
-------
ret : tvm.transform.Pass
The registered pass for constant folding. | python/tvm/relay/transform/transform.py | FoldConstant | ryanstout/tvm | 2,084 | python | def FoldConstant():
'Fold the constant expressions in a Relay program.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass for constant folding.\n '
return _ffi_api.FoldConstant() | def FoldConstant():
'Fold the constant expressions in a Relay program.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass for constant folding.\n '
return _ffi_api.FoldConstant()<|docstring|>Fold the constant expressions in a Relay program.
Returns
-------
ret : tvm.transform.Pass
The registered pass for constant folding.<|endoftext|> |
2988cc28473876109826d1005bf3a965300100e7f74d5e48c61d692f1746f5ba | def FuseOps(fuse_opt_level=(- 1)):
'Fuse operators in an expr to a larger operator according to some rules.\n\n Parameters\n ----------\n fuse_opt_level : int\n The level of fuse optimization. -1 indicates that the level will be\n inferred from pass context.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass for operator fusion.\n '
return _ffi_api.FuseOps(fuse_opt_level) | Fuse operators in an expr to a larger operator according to some rules.
Parameters
----------
fuse_opt_level : int
The level of fuse optimization. -1 indicates that the level will be
inferred from pass context.
Returns
-------
ret : tvm.transform.Pass
The registered pass for operator fusion. | python/tvm/relay/transform/transform.py | FuseOps | ryanstout/tvm | 2,084 | python | def FuseOps(fuse_opt_level=(- 1)):
'Fuse operators in an expr to a larger operator according to some rules.\n\n Parameters\n ----------\n fuse_opt_level : int\n The level of fuse optimization. -1 indicates that the level will be\n inferred from pass context.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass for operator fusion.\n '
return _ffi_api.FuseOps(fuse_opt_level) | def FuseOps(fuse_opt_level=(- 1)):
'Fuse operators in an expr to a larger operator according to some rules.\n\n Parameters\n ----------\n fuse_opt_level : int\n The level of fuse optimization. -1 indicates that the level will be\n inferred from pass context.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass for operator fusion.\n '
return _ffi_api.FuseOps(fuse_opt_level)<|docstring|>Fuse operators in an expr to a larger operator according to some rules.
Parameters
----------
fuse_opt_level : int
The level of fuse optimization. -1 indicates that the level will be
inferred from pass context.
Returns
-------
ret : tvm.transform.Pass
The registered pass for operator fusion.<|endoftext|> |
b1c909ad0baeb703b87dcb0e4b47def800633bfff77a2ccd2ed33f5fa40069e8 | def DefuseOps():
'The inverse operation of FuseOps. It transforms a fused program returned by FuseOps into the\n program before FuseOps. (i.e., x == DefuseOps(FuseOps(x)))\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass for operator defusion.\n '
return _ffi_api.DefuseOps() | The inverse operation of FuseOps. It transforms a fused program returned by FuseOps into the
program before FuseOps. (i.e., x == DefuseOps(FuseOps(x)))
Returns
-------
ret : tvm.transform.Pass
The registered pass for operator defusion. | python/tvm/relay/transform/transform.py | DefuseOps | ryanstout/tvm | 2,084 | python | def DefuseOps():
'The inverse operation of FuseOps. It transforms a fused program returned by FuseOps into the\n program before FuseOps. (i.e., x == DefuseOps(FuseOps(x)))\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass for operator defusion.\n '
return _ffi_api.DefuseOps() | def DefuseOps():
'The inverse operation of FuseOps. It transforms a fused program returned by FuseOps into the\n program before FuseOps. (i.e., x == DefuseOps(FuseOps(x)))\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass for operator defusion.\n '
return _ffi_api.DefuseOps()<|docstring|>The inverse operation of FuseOps. It transforms a fused program returned by FuseOps into the
program before FuseOps. (i.e., x == DefuseOps(FuseOps(x)))
Returns
-------
ret : tvm.transform.Pass
The registered pass for operator defusion.<|endoftext|> |
e484dce1e1e5734501033578d24043e97927f8ebf21f2748e75b5d134a29d2bf | def CombineParallelConv2D(min_num_branches=3):
'Combine multiple conv2d operators into one.\n\n Parameters\n ----------\n min_num_branches : int\n The minimum number of required parallel branches for performing this\n optimization.\n\n Returns\n -------\n ret: tvm.transform.Pass\n The registered pass that combines parallel conv2d operators.\n '
return _ffi_api.CombineParallelConv2D(min_num_branches) | Combine multiple conv2d operators into one.
Parameters
----------
min_num_branches : int
The minimum number of required parallel branches for performing this
optimization.
Returns
-------
ret: tvm.transform.Pass
The registered pass that combines parallel conv2d operators. | python/tvm/relay/transform/transform.py | CombineParallelConv2D | ryanstout/tvm | 2,084 | python | def CombineParallelConv2D(min_num_branches=3):
'Combine multiple conv2d operators into one.\n\n Parameters\n ----------\n min_num_branches : int\n The minimum number of required parallel branches for performing this\n optimization.\n\n Returns\n -------\n ret: tvm.transform.Pass\n The registered pass that combines parallel conv2d operators.\n '
return _ffi_api.CombineParallelConv2D(min_num_branches) | def CombineParallelConv2D(min_num_branches=3):
'Combine multiple conv2d operators into one.\n\n Parameters\n ----------\n min_num_branches : int\n The minimum number of required parallel branches for performing this\n optimization.\n\n Returns\n -------\n ret: tvm.transform.Pass\n The registered pass that combines parallel conv2d operators.\n '
return _ffi_api.CombineParallelConv2D(min_num_branches)<|docstring|>Combine multiple conv2d operators into one.
Parameters
----------
min_num_branches : int
The minimum number of required parallel branches for performing this
optimization.
Returns
-------
ret: tvm.transform.Pass
The registered pass that combines parallel conv2d operators.<|endoftext|> |
4bf3545776068b94bbb0f1c25730eb94a9f77bb2a36c549fdb381a2293c608a5 | def CombineParallelDense(min_num_branches=3, to_batch=True):
'Combine multiple dense operators into one. For example:\n\n .. code-block\n data\n / dense (2,2) dense (2,2)\n | |\n elemwise/bcast (2,2) elemwise/bcast (2,2)\n\n Would become:\n\n .. code-block\n\n data\n |\n batch_matmul+elemwise/bcast (2,2,2)\n\n or (if to_batch=False)\n\n .. code-block\n\n data\n |\n dense+elemwise/bcast (2,2+2)\n\n Parameters\n ----------\n min_num_branches : int\n The minimum number of required parallel branches for performing this\n optimization.\n\n to_batch_matmul : bool\n If True, combine parallel dense ops into batch_matmul op.\n If False, combine parallel dense ops into dense op.\n\n Returns\n -------\n ret: tvm.transform.Pass\n The registered pass that combines parallel dense operators.\n '
return _ffi_api.CombineParallelDense(min_num_branches, to_batch) | Combine multiple dense operators into one. For example:
.. code-block
data
/ dense (2,2) dense (2,2)
| |
elemwise/bcast (2,2) elemwise/bcast (2,2)
Would become:
.. code-block
data
|
batch_matmul+elemwise/bcast (2,2,2)
or (if to_batch=False)
.. code-block
data
|
dense+elemwise/bcast (2,2+2)
Parameters
----------
min_num_branches : int
The minimum number of required parallel branches for performing this
optimization.
to_batch_matmul : bool
If True, combine parallel dense ops into batch_matmul op.
If False, combine parallel dense ops into dense op.
Returns
-------
ret: tvm.transform.Pass
The registered pass that combines parallel dense operators. | python/tvm/relay/transform/transform.py | CombineParallelDense | ryanstout/tvm | 2,084 | python | def CombineParallelDense(min_num_branches=3, to_batch=True):
'Combine multiple dense operators into one. For example:\n\n .. code-block\n data\n / dense (2,2) dense (2,2)\n | |\n elemwise/bcast (2,2) elemwise/bcast (2,2)\n\n Would become:\n\n .. code-block\n\n data\n |\n batch_matmul+elemwise/bcast (2,2,2)\n\n or (if to_batch=False)\n\n .. code-block\n\n data\n |\n dense+elemwise/bcast (2,2+2)\n\n Parameters\n ----------\n min_num_branches : int\n The minimum number of required parallel branches for performing this\n optimization.\n\n to_batch_matmul : bool\n If True, combine parallel dense ops into batch_matmul op.\n If False, combine parallel dense ops into dense op.\n\n Returns\n -------\n ret: tvm.transform.Pass\n The registered pass that combines parallel dense operators.\n '
return _ffi_api.CombineParallelDense(min_num_branches, to_batch) | def CombineParallelDense(min_num_branches=3, to_batch=True):
'Combine multiple dense operators into one. For example:\n\n .. code-block\n data\n / dense (2,2) dense (2,2)\n | |\n elemwise/bcast (2,2) elemwise/bcast (2,2)\n\n Would become:\n\n .. code-block\n\n data\n |\n batch_matmul+elemwise/bcast (2,2,2)\n\n or (if to_batch=False)\n\n .. code-block\n\n data\n |\n dense+elemwise/bcast (2,2+2)\n\n Parameters\n ----------\n min_num_branches : int\n The minimum number of required parallel branches for performing this\n optimization.\n\n to_batch_matmul : bool\n If True, combine parallel dense ops into batch_matmul op.\n If False, combine parallel dense ops into dense op.\n\n Returns\n -------\n ret: tvm.transform.Pass\n The registered pass that combines parallel dense operators.\n '
return _ffi_api.CombineParallelDense(min_num_branches, to_batch)<|docstring|>Combine multiple dense operators into one. For example:
.. code-block
data
/ dense (2,2) dense (2,2)
| |
elemwise/bcast (2,2) elemwise/bcast (2,2)
Would become:
.. code-block
data
|
batch_matmul+elemwise/bcast (2,2,2)
or (if to_batch=False)
.. code-block
data
|
dense+elemwise/bcast (2,2+2)
Parameters
----------
min_num_branches : int
The minimum number of required parallel branches for performing this
optimization.
to_batch_matmul : bool
If True, combine parallel dense ops into batch_matmul op.
If False, combine parallel dense ops into dense op.
Returns
-------
ret: tvm.transform.Pass
The registered pass that combines parallel dense operators.<|endoftext|> |
46b833f561047d351619e98912b90bcd54971d3c10378cbef461a60a2f638176 | def CombineParallelBatchMatmul(min_num_branches=3):
'Combine multiple batch matmul operators into one. For example:\n\n .. code-block\n data (1, 2, 3)\n / batch_matmul(data, (1, 4, 3)) batch_matmul(data, (1, 5, 3))\n | |\n elemwise/bcast (1, 2, 4) elemwise/bcast (1, 2, 5)\n\n Would become:\n\n .. code-block\n\n data (1, 2, 3)\n |\n batch_matmul(data, (1, 4+5, 3))\n |\n elemwise/bcast (1 ,2, 4+5)\n\n Parameters\n ----------\n min_num_branches : int\n The minimum number of required parallel branches for performing this\n optimization.\n\n Returns\n -------\n ret: tvm.transform.Pass\n The registered pass that combines parallel dense operators.\n '
return _ffi_api.CombineParallelBatchMatmul(min_num_branches) | Combine multiple batch matmul operators into one. For example:
.. code-block
data (1, 2, 3)
/ batch_matmul(data, (1, 4, 3)) batch_matmul(data, (1, 5, 3))
| |
elemwise/bcast (1, 2, 4) elemwise/bcast (1, 2, 5)
Would become:
.. code-block
data (1, 2, 3)
|
batch_matmul(data, (1, 4+5, 3))
|
elemwise/bcast (1 ,2, 4+5)
Parameters
----------
min_num_branches : int
The minimum number of required parallel branches for performing this
optimization.
Returns
-------
ret: tvm.transform.Pass
The registered pass that combines parallel dense operators. | python/tvm/relay/transform/transform.py | CombineParallelBatchMatmul | ryanstout/tvm | 2,084 | python | def CombineParallelBatchMatmul(min_num_branches=3):
'Combine multiple batch matmul operators into one. For example:\n\n .. code-block\n data (1, 2, 3)\n / batch_matmul(data, (1, 4, 3)) batch_matmul(data, (1, 5, 3))\n | |\n elemwise/bcast (1, 2, 4) elemwise/bcast (1, 2, 5)\n\n Would become:\n\n .. code-block\n\n data (1, 2, 3)\n |\n batch_matmul(data, (1, 4+5, 3))\n |\n elemwise/bcast (1 ,2, 4+5)\n\n Parameters\n ----------\n min_num_branches : int\n The minimum number of required parallel branches for performing this\n optimization.\n\n Returns\n -------\n ret: tvm.transform.Pass\n The registered pass that combines parallel dense operators.\n '
return _ffi_api.CombineParallelBatchMatmul(min_num_branches) | def CombineParallelBatchMatmul(min_num_branches=3):
'Combine multiple batch matmul operators into one. For example:\n\n .. code-block\n data (1, 2, 3)\n / batch_matmul(data, (1, 4, 3)) batch_matmul(data, (1, 5, 3))\n | |\n elemwise/bcast (1, 2, 4) elemwise/bcast (1, 2, 5)\n\n Would become:\n\n .. code-block\n\n data (1, 2, 3)\n |\n batch_matmul(data, (1, 4+5, 3))\n |\n elemwise/bcast (1 ,2, 4+5)\n\n Parameters\n ----------\n min_num_branches : int\n The minimum number of required parallel branches for performing this\n optimization.\n\n Returns\n -------\n ret: tvm.transform.Pass\n The registered pass that combines parallel dense operators.\n '
return _ffi_api.CombineParallelBatchMatmul(min_num_branches)<|docstring|>Combine multiple batch matmul operators into one. For example:
.. code-block
data (1, 2, 3)
/ batch_matmul(data, (1, 4, 3)) batch_matmul(data, (1, 5, 3))
| |
elemwise/bcast (1, 2, 4) elemwise/bcast (1, 2, 5)
Would become:
.. code-block
data (1, 2, 3)
|
batch_matmul(data, (1, 4+5, 3))
|
elemwise/bcast (1 ,2, 4+5)
Parameters
----------
min_num_branches : int
The minimum number of required parallel branches for performing this
optimization.
Returns
-------
ret: tvm.transform.Pass
The registered pass that combines parallel dense operators.<|endoftext|> |
570d091df3999fe615544da69e3832b14d8cd95e4551b63187d3cbba48e8f105 | def BatchingOps():
'Batching parallel operators into one for Conv2D, Dense and BatchMatmul.\n\n Returns\n -------\n ret: tvm.transform.Pass\n The sequential pass which apply batching for different operator types.\n '
return tvm.transform.Sequential([CombineParallelConv2D(), CombineParallelDense(), CombineParallelBatchMatmul()]) | Batching parallel operators into one for Conv2D, Dense and BatchMatmul.
Returns
-------
ret: tvm.transform.Pass
The sequential pass which apply batching for different operator types. | python/tvm/relay/transform/transform.py | BatchingOps | ryanstout/tvm | 2,084 | python | def BatchingOps():
'Batching parallel operators into one for Conv2D, Dense and BatchMatmul.\n\n Returns\n -------\n ret: tvm.transform.Pass\n The sequential pass which apply batching for different operator types.\n '
return tvm.transform.Sequential([CombineParallelConv2D(), CombineParallelDense(), CombineParallelBatchMatmul()]) | def BatchingOps():
'Batching parallel operators into one for Conv2D, Dense and BatchMatmul.\n\n Returns\n -------\n ret: tvm.transform.Pass\n The sequential pass which apply batching for different operator types.\n '
return tvm.transform.Sequential([CombineParallelConv2D(), CombineParallelDense(), CombineParallelBatchMatmul()])<|docstring|>Batching parallel operators into one for Conv2D, Dense and BatchMatmul.
Returns
-------
ret: tvm.transform.Pass
The sequential pass which apply batching for different operator types.<|endoftext|> |
7da211ded90a8b449b03a67c7456131d89f1995ceeaf2c182e5313892854a0e5 | def AlterOpLayout():
'Alternate the layouts of operators or replace primitive operators with\n other expressions.\n This pass can be used for computing convolution in custom layouts or\n other general weight pre-transformation.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass that alters the layout of operators.\n '
return _ffi_api.AlterOpLayout() | Alternate the layouts of operators or replace primitive operators with
other expressions.
This pass can be used for computing convolution in custom layouts or
other general weight pre-transformation.
Returns
-------
ret : tvm.transform.Pass
The registered pass that alters the layout of operators. | python/tvm/relay/transform/transform.py | AlterOpLayout | ryanstout/tvm | 2,084 | python | def AlterOpLayout():
'Alternate the layouts of operators or replace primitive operators with\n other expressions.\n This pass can be used for computing convolution in custom layouts or\n other general weight pre-transformation.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass that alters the layout of operators.\n '
return _ffi_api.AlterOpLayout() | def AlterOpLayout():
'Alternate the layouts of operators or replace primitive operators with\n other expressions.\n This pass can be used for computing convolution in custom layouts or\n other general weight pre-transformation.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass that alters the layout of operators.\n '
return _ffi_api.AlterOpLayout()<|docstring|>Alternate the layouts of operators or replace primitive operators with
other expressions.
This pass can be used for computing convolution in custom layouts or
other general weight pre-transformation.
Returns
-------
ret : tvm.transform.Pass
The registered pass that alters the layout of operators.<|endoftext|> |
2abccd61482fe59a0b68773c36b332752ca2e46d37ab8dfd4e4ee6847df13c4e | def ConvertLayout(desired_layouts):
'Given a dest layout, this pass transforms the expr such that most of the ops input data\n layout is changed to the dest layout. In ideal situation, there are only 2 layout transforms,\n one at the start and one at the end.\n\n This pass is not a part of relay.build and is expected to be called between framework-relay\n parser and relay.build call. This is very helpful for hardware backends that support/prefer only\n type of data layout.\n\n RFC - https://discuss.tvm.apache.org/t/layout-conversion-pass/4009\n\n This pass uses most of the AlterOpLayout and InferCorrectLayout infrastructure. We can define\n new layouts for conv2d ops for now. Most of the other operators try to adapt to their input\n layout using the InferCorrectLayout infrastructure.\n\n Parameters\n ----------\n desired_layouts : map of op_name to list of layouts\n Specify a mapping of operator names to a list of layouts to convert to, in the order\n defined by the operator. An example for nn.conv2d could be: {"nn.conv2d", ["NHWC", "OHWI]},\n where the first item in the list specifies the data layout and the second specifies the\n kernel layout.\n\n Returns\n -------\n pass: FunctionPass\n The pass.\n '
return _ffi_api.ConvertLayout(desired_layouts) | Given a dest layout, this pass transforms the expr such that most of the ops input data
layout is changed to the dest layout. In ideal situation, there are only 2 layout transforms,
one at the start and one at the end.
This pass is not a part of relay.build and is expected to be called between framework-relay
parser and relay.build call. This is very helpful for hardware backends that support/prefer only
type of data layout.
RFC - https://discuss.tvm.apache.org/t/layout-conversion-pass/4009
This pass uses most of the AlterOpLayout and InferCorrectLayout infrastructure. We can define
new layouts for conv2d ops for now. Most of the other operators try to adapt to their input
layout using the InferCorrectLayout infrastructure.
Parameters
----------
desired_layouts : map of op_name to list of layouts
Specify a mapping of operator names to a list of layouts to convert to, in the order
defined by the operator. An example for nn.conv2d could be: {"nn.conv2d", ["NHWC", "OHWI]},
where the first item in the list specifies the data layout and the second specifies the
kernel layout.
Returns
-------
pass: FunctionPass
The pass. | python/tvm/relay/transform/transform.py | ConvertLayout | ryanstout/tvm | 2,084 | python | def ConvertLayout(desired_layouts):
'Given a dest layout, this pass transforms the expr such that most of the ops input data\n layout is changed to the dest layout. In ideal situation, there are only 2 layout transforms,\n one at the start and one at the end.\n\n This pass is not a part of relay.build and is expected to be called between framework-relay\n parser and relay.build call. This is very helpful for hardware backends that support/prefer only\n type of data layout.\n\n RFC - https://discuss.tvm.apache.org/t/layout-conversion-pass/4009\n\n This pass uses most of the AlterOpLayout and InferCorrectLayout infrastructure. We can define\n new layouts for conv2d ops for now. Most of the other operators try to adapt to their input\n layout using the InferCorrectLayout infrastructure.\n\n Parameters\n ----------\n desired_layouts : map of op_name to list of layouts\n Specify a mapping of operator names to a list of layouts to convert to, in the order\n defined by the operator. An example for nn.conv2d could be: {"nn.conv2d", ["NHWC", "OHWI]},\n where the first item in the list specifies the data layout and the second specifies the\n kernel layout.\n\n Returns\n -------\n pass: FunctionPass\n The pass.\n '
return _ffi_api.ConvertLayout(desired_layouts) | def ConvertLayout(desired_layouts):
'Given a dest layout, this pass transforms the expr such that most of the ops input data\n layout is changed to the dest layout. In ideal situation, there are only 2 layout transforms,\n one at the start and one at the end.\n\n This pass is not a part of relay.build and is expected to be called between framework-relay\n parser and relay.build call. This is very helpful for hardware backends that support/prefer only\n type of data layout.\n\n RFC - https://discuss.tvm.apache.org/t/layout-conversion-pass/4009\n\n This pass uses most of the AlterOpLayout and InferCorrectLayout infrastructure. We can define\n new layouts for conv2d ops for now. Most of the other operators try to adapt to their input\n layout using the InferCorrectLayout infrastructure.\n\n Parameters\n ----------\n desired_layouts : map of op_name to list of layouts\n Specify a mapping of operator names to a list of layouts to convert to, in the order\n defined by the operator. An example for nn.conv2d could be: {"nn.conv2d", ["NHWC", "OHWI]},\n where the first item in the list specifies the data layout and the second specifies the\n kernel layout.\n\n Returns\n -------\n pass: FunctionPass\n The pass.\n '
return _ffi_api.ConvertLayout(desired_layouts)<|docstring|>Given a dest layout, this pass transforms the expr such that most of the ops input data
layout is changed to the dest layout. In ideal situation, there are only 2 layout transforms,
one at the start and one at the end.
This pass is not a part of relay.build and is expected to be called between framework-relay
parser and relay.build call. This is very helpful for hardware backends that support/prefer only
type of data layout.
RFC - https://discuss.tvm.apache.org/t/layout-conversion-pass/4009
This pass uses most of the AlterOpLayout and InferCorrectLayout infrastructure. We can define
new layouts for conv2d ops for now. Most of the other operators try to adapt to their input
layout using the InferCorrectLayout infrastructure.
Parameters
----------
desired_layouts : map of op_name to list of layouts
Specify a mapping of operator names to a list of layouts to convert to, in the order
defined by the operator. An example for nn.conv2d could be: {"nn.conv2d", ["NHWC", "OHWI]},
where the first item in the list specifies the data layout and the second specifies the
kernel layout.
Returns
-------
pass: FunctionPass
The pass.<|endoftext|> |
d420744fb9853efc03870637d115c6c70f371dd12ba23777ba2e3fad9881ce64 | def Legalize(legalize_map_attr_name='FTVMLegalize'):
"Legalizes an expression with another expression.\n This pass can be used to replace an expr with another expr for target\n dependent optimizations. For example, one expr, though semnatically\n equivalent to the other, can have better performance on a target. This pass\n can be used to legalize the expr in a target-dependent manner.\n\n Parameters\n ----------\n legalize_map_attr_name : str\n The Op's attr name which corresponds to the legalize rule function.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass that rewrites an expr.\n "
return _ffi_api.Legalize(legalize_map_attr_name) | Legalizes an expression with another expression.
This pass can be used to replace an expr with another expr for target
dependent optimizations. For example, one expr, though semnatically
equivalent to the other, can have better performance on a target. This pass
can be used to legalize the expr in a target-dependent manner.
Parameters
----------
legalize_map_attr_name : str
The Op's attr name which corresponds to the legalize rule function.
Returns
-------
ret : tvm.transform.Pass
The registered pass that rewrites an expr. | python/tvm/relay/transform/transform.py | Legalize | ryanstout/tvm | 2,084 | python | def Legalize(legalize_map_attr_name='FTVMLegalize'):
"Legalizes an expression with another expression.\n This pass can be used to replace an expr with another expr for target\n dependent optimizations. For example, one expr, though semnatically\n equivalent to the other, can have better performance on a target. This pass\n can be used to legalize the expr in a target-dependent manner.\n\n Parameters\n ----------\n legalize_map_attr_name : str\n The Op's attr name which corresponds to the legalize rule function.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass that rewrites an expr.\n "
return _ffi_api.Legalize(legalize_map_attr_name) | def Legalize(legalize_map_attr_name='FTVMLegalize'):
"Legalizes an expression with another expression.\n This pass can be used to replace an expr with another expr for target\n dependent optimizations. For example, one expr, though semnatically\n equivalent to the other, can have better performance on a target. This pass\n can be used to legalize the expr in a target-dependent manner.\n\n Parameters\n ----------\n legalize_map_attr_name : str\n The Op's attr name which corresponds to the legalize rule function.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass that rewrites an expr.\n "
return _ffi_api.Legalize(legalize_map_attr_name)<|docstring|>Legalizes an expression with another expression.
This pass can be used to replace an expr with another expr for target
dependent optimizations. For example, one expr, though semnatically
equivalent to the other, can have better performance on a target. This pass
can be used to legalize the expr in a target-dependent manner.
Parameters
----------
legalize_map_attr_name : str
The Op's attr name which corresponds to the legalize rule function.
Returns
-------
ret : tvm.transform.Pass
The registered pass that rewrites an expr.<|endoftext|> |
4c181262edd2c26464714761f5608bd4ebabf078ded29eec6ef3354421ff6036 | def MergeComposite(pattern_table):
"Merge multiple operators into a single composite relay function.\n\n Parameters\n ----------\n pattern_table : List[Tuple[str, tvm.relay.dataflow_pattern.DFPattern, Function]]\n A list of (pattern_name, pattern, check) tuples.\n The order of the patterns in the list will determine the order\n of priority in which they are matched.\n 'check' is a function to check whether an extracted pattern matches.\n It can be implemented by pattern writer but if not specified it will\n always return True.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass that merges operators into a single composite\n relay function.\n "
pattern_names = []
patterns = []
checks = []
for tup in pattern_table:
if (len(tup) == 2):
(pattern_name, pattern) = tup
check = (lambda extract: True)
elif (len(tup) == 3):
(pattern_name, pattern, check) = tup
pattern_names.append(pattern_name)
patterns.append(pattern)
checks.append(check)
return _ffi_api.MergeComposite(pattern_names, patterns, *checks) | Merge multiple operators into a single composite relay function.
Parameters
----------
pattern_table : List[Tuple[str, tvm.relay.dataflow_pattern.DFPattern, Function]]
A list of (pattern_name, pattern, check) tuples.
The order of the patterns in the list will determine the order
of priority in which they are matched.
'check' is a function to check whether an extracted pattern matches.
It can be implemented by pattern writer but if not specified it will
always return True.
Returns
-------
ret : tvm.transform.Pass
The registered pass that merges operators into a single composite
relay function. | python/tvm/relay/transform/transform.py | MergeComposite | ryanstout/tvm | 2,084 | python | def MergeComposite(pattern_table):
"Merge multiple operators into a single composite relay function.\n\n Parameters\n ----------\n pattern_table : List[Tuple[str, tvm.relay.dataflow_pattern.DFPattern, Function]]\n A list of (pattern_name, pattern, check) tuples.\n The order of the patterns in the list will determine the order\n of priority in which they are matched.\n 'check' is a function to check whether an extracted pattern matches.\n It can be implemented by pattern writer but if not specified it will\n always return True.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass that merges operators into a single composite\n relay function.\n "
pattern_names = []
patterns = []
checks = []
for tup in pattern_table:
if (len(tup) == 2):
(pattern_name, pattern) = tup
check = (lambda extract: True)
elif (len(tup) == 3):
(pattern_name, pattern, check) = tup
pattern_names.append(pattern_name)
patterns.append(pattern)
checks.append(check)
return _ffi_api.MergeComposite(pattern_names, patterns, *checks) | def MergeComposite(pattern_table):
"Merge multiple operators into a single composite relay function.\n\n Parameters\n ----------\n pattern_table : List[Tuple[str, tvm.relay.dataflow_pattern.DFPattern, Function]]\n A list of (pattern_name, pattern, check) tuples.\n The order of the patterns in the list will determine the order\n of priority in which they are matched.\n 'check' is a function to check whether an extracted pattern matches.\n It can be implemented by pattern writer but if not specified it will\n always return True.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass that merges operators into a single composite\n relay function.\n "
pattern_names = []
patterns = []
checks = []
for tup in pattern_table:
if (len(tup) == 2):
(pattern_name, pattern) = tup
check = (lambda extract: True)
elif (len(tup) == 3):
(pattern_name, pattern, check) = tup
pattern_names.append(pattern_name)
patterns.append(pattern)
checks.append(check)
return _ffi_api.MergeComposite(pattern_names, patterns, *checks)<|docstring|>Merge multiple operators into a single composite relay function.
Parameters
----------
pattern_table : List[Tuple[str, tvm.relay.dataflow_pattern.DFPattern, Function]]
A list of (pattern_name, pattern, check) tuples.
The order of the patterns in the list will determine the order
of priority in which they are matched.
'check' is a function to check whether an extracted pattern matches.
It can be implemented by pattern writer but if not specified it will
always return True.
Returns
-------
ret : tvm.transform.Pass
The registered pass that merges operators into a single composite
relay function.<|endoftext|> |
88d938f1f8638ca6d7f76be7b1c20d20522849aa293bf455dd72fa605cf7dd3a | def MergeCompilerRegions():
'Merge together compiler regions.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass that merges compiler regions.\n '
return _ffi_api.MergeCompilerRegions() | Merge together compiler regions.
Returns
-------
ret : tvm.transform.Pass
The registered pass that merges compiler regions. | python/tvm/relay/transform/transform.py | MergeCompilerRegions | ryanstout/tvm | 2,084 | python | def MergeCompilerRegions():
'Merge together compiler regions.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass that merges compiler regions.\n '
return _ffi_api.MergeCompilerRegions() | def MergeCompilerRegions():
'Merge together compiler regions.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass that merges compiler regions.\n '
return _ffi_api.MergeCompilerRegions()<|docstring|>Merge together compiler regions.
Returns
-------
ret : tvm.transform.Pass
The registered pass that merges compiler regions.<|endoftext|> |
750fcb2cf12f9980201a0d17c1921e51c79b0690f987b90d688efa42bab39742 | def ToANormalForm():
"Turn Graph Normal Form expression into A Normal Form Expression.\n The scope of the root expression is the global scope.\n The scope of any non root expression is the least common ancestor of all it's scope.\n Values are ordered by post-DFS order in each scope.\n\n Returns\n -------\n ret : Union[tvm.transform.Pass, tvm.relay.Expr]\n The registered pass that transforms an expression into A Normal Form.\n "
return _ffi_api.ToANormalForm() | Turn Graph Normal Form expression into A Normal Form Expression.
The scope of the root expression is the global scope.
The scope of any non root expression is the least common ancestor of all it's scope.
Values are ordered by post-DFS order in each scope.
Returns
-------
ret : Union[tvm.transform.Pass, tvm.relay.Expr]
The registered pass that transforms an expression into A Normal Form. | python/tvm/relay/transform/transform.py | ToANormalForm | ryanstout/tvm | 2,084 | python | def ToANormalForm():
"Turn Graph Normal Form expression into A Normal Form Expression.\n The scope of the root expression is the global scope.\n The scope of any non root expression is the least common ancestor of all it's scope.\n Values are ordered by post-DFS order in each scope.\n\n Returns\n -------\n ret : Union[tvm.transform.Pass, tvm.relay.Expr]\n The registered pass that transforms an expression into A Normal Form.\n "
return _ffi_api.ToANormalForm() | def ToANormalForm():
"Turn Graph Normal Form expression into A Normal Form Expression.\n The scope of the root expression is the global scope.\n The scope of any non root expression is the least common ancestor of all it's scope.\n Values are ordered by post-DFS order in each scope.\n\n Returns\n -------\n ret : Union[tvm.transform.Pass, tvm.relay.Expr]\n The registered pass that transforms an expression into A Normal Form.\n "
return _ffi_api.ToANormalForm()<|docstring|>Turn Graph Normal Form expression into A Normal Form Expression.
The scope of the root expression is the global scope.
The scope of any non root expression is the least common ancestor of all it's scope.
Values are ordered by post-DFS order in each scope.
Returns
-------
ret : Union[tvm.transform.Pass, tvm.relay.Expr]
The registered pass that transforms an expression into A Normal Form.<|endoftext|> |
f1231ad5fb262d4cb04418e8b1c0322266ab8672cf4f3ea6b5b995e8c3c1b37e | def ToANormalFormExpr(e):
'ToANormalForm, but on expression level.\n\n Parameters\n ----------\n e : Expr\n The graph expression.\n\n Returns\n -------\n ret : Expr\n The transformed expresion.\n '
return _ffi_api.ToANormalFormExpr(e) | ToANormalForm, but on expression level.
Parameters
----------
e : Expr
The graph expression.
Returns
-------
ret : Expr
The transformed expresion. | python/tvm/relay/transform/transform.py | ToANormalFormExpr | ryanstout/tvm | 2,084 | python | def ToANormalFormExpr(e):
'ToANormalForm, but on expression level.\n\n Parameters\n ----------\n e : Expr\n The graph expression.\n\n Returns\n -------\n ret : Expr\n The transformed expresion.\n '
return _ffi_api.ToANormalFormExpr(e) | def ToANormalFormExpr(e):
'ToANormalForm, but on expression level.\n\n Parameters\n ----------\n e : Expr\n The graph expression.\n\n Returns\n -------\n ret : Expr\n The transformed expresion.\n '
return _ffi_api.ToANormalFormExpr(e)<|docstring|>ToANormalForm, but on expression level.
Parameters
----------
e : Expr
The graph expression.
Returns
-------
ret : Expr
The transformed expresion.<|endoftext|> |
bf45c26f6ce8abfe2313fb569e8152f453dc459fa46cadab09444b222bd9b5af | def ToBasicBlockNormalForm():
'Turn an expression to Basic Block Normal Form.\n We define a block as a group of expressions implied by the scope structure.\n Each graph node can only belong to a single block.\n For any value that is being used in multiple blocks, it has to be referred\n by a Var which is defined in a block, whose scope is the least common ancestor\n of blocks this value is used.\n\n Returns\n -------\n ret: tvm.transform.Pass\n The registered pass that transforms an expression into Basic Block Normal Form.\n '
return _ffi_api.ToBasicBlockNormalForm() | Turn an expression to Basic Block Normal Form.
We define a block as a group of expressions implied by the scope structure.
Each graph node can only belong to a single block.
For any value that is being used in multiple blocks, it has to be referred
by a Var which is defined in a block, whose scope is the least common ancestor
of blocks this value is used.
Returns
-------
ret: tvm.transform.Pass
The registered pass that transforms an expression into Basic Block Normal Form. | python/tvm/relay/transform/transform.py | ToBasicBlockNormalForm | ryanstout/tvm | 2,084 | python | def ToBasicBlockNormalForm():
'Turn an expression to Basic Block Normal Form.\n We define a block as a group of expressions implied by the scope structure.\n Each graph node can only belong to a single block.\n For any value that is being used in multiple blocks, it has to be referred\n by a Var which is defined in a block, whose scope is the least common ancestor\n of blocks this value is used.\n\n Returns\n -------\n ret: tvm.transform.Pass\n The registered pass that transforms an expression into Basic Block Normal Form.\n '
return _ffi_api.ToBasicBlockNormalForm() | def ToBasicBlockNormalForm():
'Turn an expression to Basic Block Normal Form.\n We define a block as a group of expressions implied by the scope structure.\n Each graph node can only belong to a single block.\n For any value that is being used in multiple blocks, it has to be referred\n by a Var which is defined in a block, whose scope is the least common ancestor\n of blocks this value is used.\n\n Returns\n -------\n ret: tvm.transform.Pass\n The registered pass that transforms an expression into Basic Block Normal Form.\n '
return _ffi_api.ToBasicBlockNormalForm()<|docstring|>Turn an expression to Basic Block Normal Form.
We define a block as a group of expressions implied by the scope structure.
Each graph node can only belong to a single block.
For any value that is being used in multiple blocks, it has to be referred
by a Var which is defined in a block, whose scope is the least common ancestor
of blocks this value is used.
Returns
-------
ret: tvm.transform.Pass
The registered pass that transforms an expression into Basic Block Normal Form.<|endoftext|> |
ef6db505eabe47bbf60602f50018ef9f1957f885d482ce0b9b4549adc677e897 | def ToCPS(expr, mod=None):
'\n Turn expression into continuation passing style(CPS).\n\n Every intermediate compute will be passed to a continuation.\n\n Returns\n -------\n result: tvm.transform.Pass\n The registered pass that transforms an expression into CPS.\n '
return _ffi_api.to_cps(expr, mod) | Turn expression into continuation passing style(CPS).
Every intermediate compute will be passed to a continuation.
Returns
-------
result: tvm.transform.Pass
The registered pass that transforms an expression into CPS. | python/tvm/relay/transform/transform.py | ToCPS | ryanstout/tvm | 2,084 | python | def ToCPS(expr, mod=None):
'\n Turn expression into continuation passing style(CPS).\n\n Every intermediate compute will be passed to a continuation.\n\n Returns\n -------\n result: tvm.transform.Pass\n The registered pass that transforms an expression into CPS.\n '
return _ffi_api.to_cps(expr, mod) | def ToCPS(expr, mod=None):
'\n Turn expression into continuation passing style(CPS).\n\n Every intermediate compute will be passed to a continuation.\n\n Returns\n -------\n result: tvm.transform.Pass\n The registered pass that transforms an expression into CPS.\n '
return _ffi_api.to_cps(expr, mod)<|docstring|>Turn expression into continuation passing style(CPS).
Every intermediate compute will be passed to a continuation.
Returns
-------
result: tvm.transform.Pass
The registered pass that transforms an expression into CPS.<|endoftext|> |
28eece49ac3c359d7da65e31ae75d4e395600c5500cd0be7c15141591da1c613 | def EtaExpand(expand_constructor=False, expand_global_var=False):
'Add abstraction over a constructor or global variable bound to a function\n\n Parameters\n ----------\n expand_constructor: bool\n Whether to expand constructors.\n\n expand_global_var: bool\n Whether to expand global variables.\n\n Returns\n -------\n ret: tvm.transform.Pass\n The registered pass that eta expands an expression.\n '
return _ffi_api.EtaExpand(expand_constructor, expand_global_var) | Add abstraction over a constructor or global variable bound to a function
Parameters
----------
expand_constructor: bool
Whether to expand constructors.
expand_global_var: bool
Whether to expand global variables.
Returns
-------
ret: tvm.transform.Pass
The registered pass that eta expands an expression. | python/tvm/relay/transform/transform.py | EtaExpand | ryanstout/tvm | 2,084 | python | def EtaExpand(expand_constructor=False, expand_global_var=False):
'Add abstraction over a constructor or global variable bound to a function\n\n Parameters\n ----------\n expand_constructor: bool\n Whether to expand constructors.\n\n expand_global_var: bool\n Whether to expand global variables.\n\n Returns\n -------\n ret: tvm.transform.Pass\n The registered pass that eta expands an expression.\n '
return _ffi_api.EtaExpand(expand_constructor, expand_global_var) | def EtaExpand(expand_constructor=False, expand_global_var=False):
'Add abstraction over a constructor or global variable bound to a function\n\n Parameters\n ----------\n expand_constructor: bool\n Whether to expand constructors.\n\n expand_global_var: bool\n Whether to expand global variables.\n\n Returns\n -------\n ret: tvm.transform.Pass\n The registered pass that eta expands an expression.\n '
return _ffi_api.EtaExpand(expand_constructor, expand_global_var)<|docstring|>Add abstraction over a constructor or global variable bound to a function
Parameters
----------
expand_constructor: bool
Whether to expand constructors.
expand_global_var: bool
Whether to expand global variables.
Returns
-------
ret: tvm.transform.Pass
The registered pass that eta expands an expression.<|endoftext|> |
ff42b8aea15fe85a462f463fa320a4b08c6f1258b9f8d45e5226d5bd73394543 | def ToGraphNormalForm():
'Turn a Relay program in A Normal Form into Graph Normal Form\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass that transforms an expression into Graph Normal Form.\n '
return _ffi_api.ToGraphNormalForm() | Turn a Relay program in A Normal Form into Graph Normal Form
Returns
-------
ret : tvm.transform.Pass
The registered pass that transforms an expression into Graph Normal Form. | python/tvm/relay/transform/transform.py | ToGraphNormalForm | ryanstout/tvm | 2,084 | python | def ToGraphNormalForm():
'Turn a Relay program in A Normal Form into Graph Normal Form\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass that transforms an expression into Graph Normal Form.\n '
return _ffi_api.ToGraphNormalForm() | def ToGraphNormalForm():
'Turn a Relay program in A Normal Form into Graph Normal Form\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass that transforms an expression into Graph Normal Form.\n '
return _ffi_api.ToGraphNormalForm()<|docstring|>Turn a Relay program in A Normal Form into Graph Normal Form
Returns
-------
ret : tvm.transform.Pass
The registered pass that transforms an expression into Graph Normal Form.<|endoftext|> |
be0613ec5f58ecab6b68791dda1ed06361efbc43487dbfdaa893e5c04c04080b | def EliminateCommonSubexpr(fskip=None):
'Eliminate common subexpressions.\n\n Parameters\n ----------\n fskip: Callable\n The callback function that decides whether an expression should be\n skipped.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass that eliminates common subexpressions.\n '
return _ffi_api.EliminateCommonSubexpr(fskip) | Eliminate common subexpressions.
Parameters
----------
fskip: Callable
The callback function that decides whether an expression should be
skipped.
Returns
-------
ret : tvm.transform.Pass
The registered pass that eliminates common subexpressions. | python/tvm/relay/transform/transform.py | EliminateCommonSubexpr | ryanstout/tvm | 2,084 | python | def EliminateCommonSubexpr(fskip=None):
'Eliminate common subexpressions.\n\n Parameters\n ----------\n fskip: Callable\n The callback function that decides whether an expression should be\n skipped.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass that eliminates common subexpressions.\n '
return _ffi_api.EliminateCommonSubexpr(fskip) | def EliminateCommonSubexpr(fskip=None):
'Eliminate common subexpressions.\n\n Parameters\n ----------\n fskip: Callable\n The callback function that decides whether an expression should be\n skipped.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass that eliminates common subexpressions.\n '
return _ffi_api.EliminateCommonSubexpr(fskip)<|docstring|>Eliminate common subexpressions.
Parameters
----------
fskip: Callable
The callback function that decides whether an expression should be
skipped.
Returns
-------
ret : tvm.transform.Pass
The registered pass that eliminates common subexpressions.<|endoftext|> |
7e6b22d6efa8577169e6ece8d2c9f08670188f3dc79e0e4a29e810f6f66f28a5 | def PartialEvaluate():
'Evaluate the static fragment of the code.\n\n Note\n ----\n This transformation could be either `Module -> Module` or `Expr -> Expr`.\n It will directly transform the input expression to a new one if the target\n expression is provided. Otherwise, it will rely on the pass manager to\n carry out transformation.\n\n Returns\n -------\n ret: tvm.transform.Pass\n The registered pass that performs partial evaluation on an expression.\n '
return _ffi_api.PartialEvaluate() | Evaluate the static fragment of the code.
Note
----
This transformation could be either `Module -> Module` or `Expr -> Expr`.
It will directly transform the input expression to a new one if the target
expression is provided. Otherwise, it will rely on the pass manager to
carry out transformation.
Returns
-------
ret: tvm.transform.Pass
The registered pass that performs partial evaluation on an expression. | python/tvm/relay/transform/transform.py | PartialEvaluate | ryanstout/tvm | 2,084 | python | def PartialEvaluate():
'Evaluate the static fragment of the code.\n\n Note\n ----\n This transformation could be either `Module -> Module` or `Expr -> Expr`.\n It will directly transform the input expression to a new one if the target\n expression is provided. Otherwise, it will rely on the pass manager to\n carry out transformation.\n\n Returns\n -------\n ret: tvm.transform.Pass\n The registered pass that performs partial evaluation on an expression.\n '
return _ffi_api.PartialEvaluate() | def PartialEvaluate():
'Evaluate the static fragment of the code.\n\n Note\n ----\n This transformation could be either `Module -> Module` or `Expr -> Expr`.\n It will directly transform the input expression to a new one if the target\n expression is provided. Otherwise, it will rely on the pass manager to\n carry out transformation.\n\n Returns\n -------\n ret: tvm.transform.Pass\n The registered pass that performs partial evaluation on an expression.\n '
return _ffi_api.PartialEvaluate()<|docstring|>Evaluate the static fragment of the code.
Note
----
This transformation could be either `Module -> Module` or `Expr -> Expr`.
It will directly transform the input expression to a new one if the target
expression is provided. Otherwise, it will rely on the pass manager to
carry out transformation.
Returns
-------
ret: tvm.transform.Pass
The registered pass that performs partial evaluation on an expression.<|endoftext|> |
a0b46e1bc2a094d3bc671c51556c77f953aab251232502048d73a6fe33261508 | def CanonicalizeCast():
'\n Canonicalize cast expressions to make operator fusion more efficient.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass that canonicalizes cast expression.\n '
return _ffi_api.CanonicalizeCast() | Canonicalize cast expressions to make operator fusion more efficient.
Returns
-------
ret : tvm.transform.Pass
The registered pass that canonicalizes cast expression. | python/tvm/relay/transform/transform.py | CanonicalizeCast | ryanstout/tvm | 2,084 | python | def CanonicalizeCast():
'\n Canonicalize cast expressions to make operator fusion more efficient.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass that canonicalizes cast expression.\n '
return _ffi_api.CanonicalizeCast() | def CanonicalizeCast():
'\n Canonicalize cast expressions to make operator fusion more efficient.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass that canonicalizes cast expression.\n '
return _ffi_api.CanonicalizeCast()<|docstring|>Canonicalize cast expressions to make operator fusion more efficient.
Returns
-------
ret : tvm.transform.Pass
The registered pass that canonicalizes cast expression.<|endoftext|> |
bcb2a0fb3ed792b5df7c76afc8b007723bca703b6dd73e8e60e359b9468eb2e4 | def LambdaLift():
'\n Lift the closure to global function.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass that lifts the lambda function.\n '
return _ffi_api.LambdaLift() | Lift the closure to global function.
Returns
-------
ret : tvm.transform.Pass
The registered pass that lifts the lambda function. | python/tvm/relay/transform/transform.py | LambdaLift | ryanstout/tvm | 2,084 | python | def LambdaLift():
'\n Lift the closure to global function.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass that lifts the lambda function.\n '
return _ffi_api.LambdaLift() | def LambdaLift():
'\n Lift the closure to global function.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass that lifts the lambda function.\n '
return _ffi_api.LambdaLift()<|docstring|>Lift the closure to global function.
Returns
-------
ret : tvm.transform.Pass
The registered pass that lifts the lambda function.<|endoftext|> |
8cca06485b237a836d3f37f6ba509c665872483ced9a10f4ef83d4c7853dc482 | def PartitionGraph(mod_name='default', bind_constants=True):
'Partition a Relay program into regions that can be executed on different\n backends.\n\n Parameters\n ----------\n mod_name : string\n Controls the prefix of the name of each partitioned subraph.\n If `mod_name` is None, then `tvmgen_` prefix is used.\n Otherwise, `tvmgen_mod_name_` prefix is used.\n\n bind_constants: bool\n Whether or not to bind constants in partitioned subgraphs. Note that the codegen needs\n to maintain the bound constants; Otherwise the constants will be maintained by\n the metadata module. So it is recommended for C-source based codegens to\n set bind_constants=False to avoid embedding large constants in a C source file.\n\n Returns\n -------\n ret: tvm.transform.Pass\n The registered pass that partitions the Relay program.\n '
mod_name = mangle_module_name(mod_name)
return _ffi_api.PartitionGraph(mod_name, bind_constants) | Partition a Relay program into regions that can be executed on different
backends.
Parameters
----------
mod_name : string
Controls the prefix of the name of each partitioned subraph.
If `mod_name` is None, then `tvmgen_` prefix is used.
Otherwise, `tvmgen_mod_name_` prefix is used.
bind_constants: bool
Whether or not to bind constants in partitioned subgraphs. Note that the codegen needs
to maintain the bound constants; Otherwise the constants will be maintained by
the metadata module. So it is recommended for C-source based codegens to
set bind_constants=False to avoid embedding large constants in a C source file.
Returns
-------
ret: tvm.transform.Pass
The registered pass that partitions the Relay program. | python/tvm/relay/transform/transform.py | PartitionGraph | ryanstout/tvm | 2,084 | python | def PartitionGraph(mod_name='default', bind_constants=True):
'Partition a Relay program into regions that can be executed on different\n backends.\n\n Parameters\n ----------\n mod_name : string\n Controls the prefix of the name of each partitioned subraph.\n If `mod_name` is None, then `tvmgen_` prefix is used.\n Otherwise, `tvmgen_mod_name_` prefix is used.\n\n bind_constants: bool\n Whether or not to bind constants in partitioned subgraphs. Note that the codegen needs\n to maintain the bound constants; Otherwise the constants will be maintained by\n the metadata module. So it is recommended for C-source based codegens to\n set bind_constants=False to avoid embedding large constants in a C source file.\n\n Returns\n -------\n ret: tvm.transform.Pass\n The registered pass that partitions the Relay program.\n '
mod_name = mangle_module_name(mod_name)
return _ffi_api.PartitionGraph(mod_name, bind_constants) | def PartitionGraph(mod_name='default', bind_constants=True):
'Partition a Relay program into regions that can be executed on different\n backends.\n\n Parameters\n ----------\n mod_name : string\n Controls the prefix of the name of each partitioned subraph.\n If `mod_name` is None, then `tvmgen_` prefix is used.\n Otherwise, `tvmgen_mod_name_` prefix is used.\n\n bind_constants: bool\n Whether or not to bind constants in partitioned subgraphs. Note that the codegen needs\n to maintain the bound constants; Otherwise the constants will be maintained by\n the metadata module. So it is recommended for C-source based codegens to\n set bind_constants=False to avoid embedding large constants in a C source file.\n\n Returns\n -------\n ret: tvm.transform.Pass\n The registered pass that partitions the Relay program.\n '
mod_name = mangle_module_name(mod_name)
return _ffi_api.PartitionGraph(mod_name, bind_constants)<|docstring|>Partition a Relay program into regions that can be executed on different
backends.
Parameters
----------
mod_name : string
Controls the prefix of the name of each partitioned subraph.
If `mod_name` is None, then `tvmgen_` prefix is used.
Otherwise, `tvmgen_mod_name_` prefix is used.
bind_constants: bool
Whether or not to bind constants in partitioned subgraphs. Note that the codegen needs
to maintain the bound constants; Otherwise the constants will be maintained by
the metadata module. So it is recommended for C-source based codegens to
set bind_constants=False to avoid embedding large constants in a C source file.
Returns
-------
ret: tvm.transform.Pass
The registered pass that partitions the Relay program.<|endoftext|> |
591cee9e53b1e4845d251302026e0aa0e811b20cedf7bf06f25a2d272471cb57 | def AnnotateTarget(targets, include_non_call_ops=True):
'Annotate ops in an experession with a provied compiler/target and then\n use it for codegen.\n\n Parameters\n ----------\n targets : str or List[str]\n The list of target compilers used for codegen.\n include_non_call_ops : boolean\n If True then non-call ops also will be annotated with targets\n If False then non-call ops will not be processed\n\n Returns\n -------\n ret : tvm.transform.Pass\n The annotated pass that wrapps ops with subgraph_start and\n subgraph_end.\n '
if isinstance(targets, str):
targets = [targets]
return _ffi_api.AnnotateTarget([tvm.runtime.container.String(t) for t in targets], include_non_call_ops) | Annotate ops in an experession with a provied compiler/target and then
use it for codegen.
Parameters
----------
targets : str or List[str]
The list of target compilers used for codegen.
include_non_call_ops : boolean
If True then non-call ops also will be annotated with targets
If False then non-call ops will not be processed
Returns
-------
ret : tvm.transform.Pass
The annotated pass that wrapps ops with subgraph_start and
subgraph_end. | python/tvm/relay/transform/transform.py | AnnotateTarget | ryanstout/tvm | 2,084 | python | def AnnotateTarget(targets, include_non_call_ops=True):
'Annotate ops in an experession with a provied compiler/target and then\n use it for codegen.\n\n Parameters\n ----------\n targets : str or List[str]\n The list of target compilers used for codegen.\n include_non_call_ops : boolean\n If True then non-call ops also will be annotated with targets\n If False then non-call ops will not be processed\n\n Returns\n -------\n ret : tvm.transform.Pass\n The annotated pass that wrapps ops with subgraph_start and\n subgraph_end.\n '
if isinstance(targets, str):
targets = [targets]
return _ffi_api.AnnotateTarget([tvm.runtime.container.String(t) for t in targets], include_non_call_ops) | def AnnotateTarget(targets, include_non_call_ops=True):
'Annotate ops in an experession with a provied compiler/target and then\n use it for codegen.\n\n Parameters\n ----------\n targets : str or List[str]\n The list of target compilers used for codegen.\n include_non_call_ops : boolean\n If True then non-call ops also will be annotated with targets\n If False then non-call ops will not be processed\n\n Returns\n -------\n ret : tvm.transform.Pass\n The annotated pass that wrapps ops with subgraph_start and\n subgraph_end.\n '
if isinstance(targets, str):
targets = [targets]
return _ffi_api.AnnotateTarget([tvm.runtime.container.String(t) for t in targets], include_non_call_ops)<|docstring|>Annotate ops in an experession with a provied compiler/target and then
use it for codegen.
Parameters
----------
targets : str or List[str]
The list of target compilers used for codegen.
include_non_call_ops : boolean
If True then non-call ops also will be annotated with targets
If False then non-call ops will not be processed
Returns
-------
ret : tvm.transform.Pass
The annotated pass that wrapps ops with subgraph_start and
subgraph_end.<|endoftext|> |
d5881bb56504386455de5e309dde66d100224556fcbc1b7e022c03b932eb6722 | def DynamicToStatic():
'If possible, convert tvm.relay.dynamic* ops to static versions\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass for dynamic->static conversion.\n '
return _ffi_api.DynamicToStatic() | If possible, convert tvm.relay.dynamic* ops to static versions
Returns
-------
ret : tvm.transform.Pass
The registered pass for dynamic->static conversion. | python/tvm/relay/transform/transform.py | DynamicToStatic | ryanstout/tvm | 2,084 | python | def DynamicToStatic():
'If possible, convert tvm.relay.dynamic* ops to static versions\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass for dynamic->static conversion.\n '
return _ffi_api.DynamicToStatic() | def DynamicToStatic():
'If possible, convert tvm.relay.dynamic* ops to static versions\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered pass for dynamic->static conversion.\n '
return _ffi_api.DynamicToStatic()<|docstring|>If possible, convert tvm.relay.dynamic* ops to static versions
Returns
-------
ret : tvm.transform.Pass
The registered pass for dynamic->static conversion.<|endoftext|> |
e41eb81ba196e0e5e2377a95e3233ab6cb9b15ee0559568f3270fec8865527d9 | def Inline():
'Perform inlining on the given Relay IR module. The global functions that\n are marked as `inline` should be always inlined. A cost model will be\n needed in the future to decide if it is profitable to inline the function.\n\n Returns\n -------\n ret: tvm.transform.Pass\n The registered pass that performs inlining for a Relay IR module.\n '
return _ffi_api.Inline() | Perform inlining on the given Relay IR module. The global functions that
are marked as `inline` should be always inlined. A cost model will be
needed in the future to decide if it is profitable to inline the function.
Returns
-------
ret: tvm.transform.Pass
The registered pass that performs inlining for a Relay IR module. | python/tvm/relay/transform/transform.py | Inline | ryanstout/tvm | 2,084 | python | def Inline():
'Perform inlining on the given Relay IR module. The global functions that\n are marked as `inline` should be always inlined. A cost model will be\n needed in the future to decide if it is profitable to inline the function.\n\n Returns\n -------\n ret: tvm.transform.Pass\n The registered pass that performs inlining for a Relay IR module.\n '
return _ffi_api.Inline() | def Inline():
'Perform inlining on the given Relay IR module. The global functions that\n are marked as `inline` should be always inlined. A cost model will be\n needed in the future to decide if it is profitable to inline the function.\n\n Returns\n -------\n ret: tvm.transform.Pass\n The registered pass that performs inlining for a Relay IR module.\n '
return _ffi_api.Inline()<|docstring|>Perform inlining on the given Relay IR module. The global functions that
are marked as `inline` should be always inlined. A cost model will be
needed in the future to decide if it is profitable to inline the function.
Returns
-------
ret: tvm.transform.Pass
The registered pass that performs inlining for a Relay IR module.<|endoftext|> |
14e2fd2cbb5c656b09f730fd195baaa764987e6ae9d0384fcfbff9ef6483d66b | def gradient(expr, mod=None, mode='higher_order'):
"\n Transform the input function,\n returning a function that calculate the original result,\n paired with gradient of the input.\n\n Parameters\n ----------\n expr : tvm.relay.Expr\n The input expression, which is a Function or a GlobalVar.\n\n mod : Optional[tvm.IRModule]\n\n mode : Optional[String]\n The mode of the automatic differentiation algorithm.\n 'first_order' only works on first order code, but will not produce\n reference nor closure.\n 'higher_order' works on all code using reference and closure.\n\n Returns\n -------\n expr : tvm.relay.Expr\n The transformed expression.\n "
if (mode == 'first_order'):
warnings.warn('using transform.gradient for first-order AD is deprecated, please use theFirstOrderGradient module pass', DeprecationWarning)
if (mod is not None):
raise RuntimeError('to run first-order AD on a module, please use the FirstOrderGradient module pass.')
return FirstOrderGradient()(tvm.IRModule.from_expr(expr))['main']
if (mode == 'higher_order'):
return _ffi_api.gradient(expr, mod)
raise Exception('unknown mode') | Transform the input function,
returning a function that calculate the original result,
paired with gradient of the input.
Parameters
----------
expr : tvm.relay.Expr
The input expression, which is a Function or a GlobalVar.
mod : Optional[tvm.IRModule]
mode : Optional[String]
The mode of the automatic differentiation algorithm.
'first_order' only works on first order code, but will not produce
reference nor closure.
'higher_order' works on all code using reference and closure.
Returns
-------
expr : tvm.relay.Expr
The transformed expression. | python/tvm/relay/transform/transform.py | gradient | ryanstout/tvm | 2,084 | python | def gradient(expr, mod=None, mode='higher_order'):
"\n Transform the input function,\n returning a function that calculate the original result,\n paired with gradient of the input.\n\n Parameters\n ----------\n expr : tvm.relay.Expr\n The input expression, which is a Function or a GlobalVar.\n\n mod : Optional[tvm.IRModule]\n\n mode : Optional[String]\n The mode of the automatic differentiation algorithm.\n 'first_order' only works on first order code, but will not produce\n reference nor closure.\n 'higher_order' works on all code using reference and closure.\n\n Returns\n -------\n expr : tvm.relay.Expr\n The transformed expression.\n "
if (mode == 'first_order'):
warnings.warn('using transform.gradient for first-order AD is deprecated, please use theFirstOrderGradient module pass', DeprecationWarning)
if (mod is not None):
raise RuntimeError('to run first-order AD on a module, please use the FirstOrderGradient module pass.')
return FirstOrderGradient()(tvm.IRModule.from_expr(expr))['main']
if (mode == 'higher_order'):
return _ffi_api.gradient(expr, mod)
raise Exception('unknown mode') | def gradient(expr, mod=None, mode='higher_order'):
"\n Transform the input function,\n returning a function that calculate the original result,\n paired with gradient of the input.\n\n Parameters\n ----------\n expr : tvm.relay.Expr\n The input expression, which is a Function or a GlobalVar.\n\n mod : Optional[tvm.IRModule]\n\n mode : Optional[String]\n The mode of the automatic differentiation algorithm.\n 'first_order' only works on first order code, but will not produce\n reference nor closure.\n 'higher_order' works on all code using reference and closure.\n\n Returns\n -------\n expr : tvm.relay.Expr\n The transformed expression.\n "
if (mode == 'first_order'):
warnings.warn('using transform.gradient for first-order AD is deprecated, please use theFirstOrderGradient module pass', DeprecationWarning)
if (mod is not None):
raise RuntimeError('to run first-order AD on a module, please use the FirstOrderGradient module pass.')
return FirstOrderGradient()(tvm.IRModule.from_expr(expr))['main']
if (mode == 'higher_order'):
return _ffi_api.gradient(expr, mod)
raise Exception('unknown mode')<|docstring|>Transform the input function,
returning a function that calculate the original result,
paired with gradient of the input.
Parameters
----------
expr : tvm.relay.Expr
The input expression, which is a Function or a GlobalVar.
mod : Optional[tvm.IRModule]
mode : Optional[String]
The mode of the automatic differentiation algorithm.
'first_order' only works on first order code, but will not produce
reference nor closure.
'higher_order' works on all code using reference and closure.
Returns
-------
expr : tvm.relay.Expr
The transformed expression.<|endoftext|> |
5844eac2ab3498f6ffca120bb0e20550f13963694688c7f91e6162d1e230253b | def FirstOrderGradient():
'\n Transforms all global functions in the module to return the original result, paired with the\n gradients of the inputs. This pass transforms each global function independently and does not\n support interprocedural AD. Additionally, this pass does not support any control-flow or\n references, and should only be used on pure data-flow graphs.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered FirstOrderGradient pass.\n '
return _ffi_api.FirstOrderGradient() | Transforms all global functions in the module to return the original result, paired with the
gradients of the inputs. This pass transforms each global function independently and does not
support interprocedural AD. Additionally, this pass does not support any control-flow or
references, and should only be used on pure data-flow graphs.
Returns
-------
ret : tvm.transform.Pass
The registered FirstOrderGradient pass. | python/tvm/relay/transform/transform.py | FirstOrderGradient | ryanstout/tvm | 2,084 | python | def FirstOrderGradient():
'\n Transforms all global functions in the module to return the original result, paired with the\n gradients of the inputs. This pass transforms each global function independently and does not\n support interprocedural AD. Additionally, this pass does not support any control-flow or\n references, and should only be used on pure data-flow graphs.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered FirstOrderGradient pass.\n '
return _ffi_api.FirstOrderGradient() | def FirstOrderGradient():
'\n Transforms all global functions in the module to return the original result, paired with the\n gradients of the inputs. This pass transforms each global function independently and does not\n support interprocedural AD. Additionally, this pass does not support any control-flow or\n references, and should only be used on pure data-flow graphs.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered FirstOrderGradient pass.\n '
return _ffi_api.FirstOrderGradient()<|docstring|>Transforms all global functions in the module to return the original result, paired with the
gradients of the inputs. This pass transforms each global function independently and does not
support interprocedural AD. Additionally, this pass does not support any control-flow or
references, and should only be used on pure data-flow graphs.
Returns
-------
ret : tvm.transform.Pass
The registered FirstOrderGradient pass.<|endoftext|> |
4e6377696240572ba9b334aa5a70156ed45055d6b48b6b9c2692e4323499910a | def Defunctionalization(func, mod):
"\n Performs defunctionalization on func,\n transforming func from a higher-order program to a first-order program.\n\n At each call site, the function is cloned and type parameters are substituted in.\n Function arguments are encoded as datatypes\n and additional apply functions are used for application.\n\n Parameters\n ----------\n func : tvm.relay.Function\n The input function, which should not be polymorphic or be higher-order.\n This is because all types must be known and we can't encode function arguments\n to the program itself.\n\n mod : tvm.IRModule\n The IRModule containing function and type definitions,\n which is also mutated during this pass.\n\n Returns\n -------\n expr : tvm.relay.Function\n The output function.\n "
return _ffi_api.Defunctionalization(func, mod) | Performs defunctionalization on func,
transforming func from a higher-order program to a first-order program.
At each call site, the function is cloned and type parameters are substituted in.
Function arguments are encoded as datatypes
and additional apply functions are used for application.
Parameters
----------
func : tvm.relay.Function
The input function, which should not be polymorphic or be higher-order.
This is because all types must be known and we can't encode function arguments
to the program itself.
mod : tvm.IRModule
The IRModule containing function and type definitions,
which is also mutated during this pass.
Returns
-------
expr : tvm.relay.Function
The output function. | python/tvm/relay/transform/transform.py | Defunctionalization | ryanstout/tvm | 2,084 | python | def Defunctionalization(func, mod):
"\n Performs defunctionalization on func,\n transforming func from a higher-order program to a first-order program.\n\n At each call site, the function is cloned and type parameters are substituted in.\n Function arguments are encoded as datatypes\n and additional apply functions are used for application.\n\n Parameters\n ----------\n func : tvm.relay.Function\n The input function, which should not be polymorphic or be higher-order.\n This is because all types must be known and we can't encode function arguments\n to the program itself.\n\n mod : tvm.IRModule\n The IRModule containing function and type definitions,\n which is also mutated during this pass.\n\n Returns\n -------\n expr : tvm.relay.Function\n The output function.\n "
return _ffi_api.Defunctionalization(func, mod) | def Defunctionalization(func, mod):
"\n Performs defunctionalization on func,\n transforming func from a higher-order program to a first-order program.\n\n At each call site, the function is cloned and type parameters are substituted in.\n Function arguments are encoded as datatypes\n and additional apply functions are used for application.\n\n Parameters\n ----------\n func : tvm.relay.Function\n The input function, which should not be polymorphic or be higher-order.\n This is because all types must be known and we can't encode function arguments\n to the program itself.\n\n mod : tvm.IRModule\n The IRModule containing function and type definitions,\n which is also mutated during this pass.\n\n Returns\n -------\n expr : tvm.relay.Function\n The output function.\n "
return _ffi_api.Defunctionalization(func, mod)<|docstring|>Performs defunctionalization on func,
transforming func from a higher-order program to a first-order program.
At each call site, the function is cloned and type parameters are substituted in.
Function arguments are encoded as datatypes
and additional apply functions are used for application.
Parameters
----------
func : tvm.relay.Function
The input function, which should not be polymorphic or be higher-order.
This is because all types must be known and we can't encode function arguments
to the program itself.
mod : tvm.IRModule
The IRModule containing function and type definitions,
which is also mutated during this pass.
Returns
-------
expr : tvm.relay.Function
The output function.<|endoftext|> |
017ce03cf7f978473286e8390f0bf222f964a648aeaf428e6bc6aab4ce62b441 | def to_cps(func, mod=None):
'\n Turn expression into CPS expression.\n\n Every intermediate compute will be passed to a continuation.\n\n Parameters\n ----------\n func: tvm.relay.Function\n The input function.\n\n mod: Optional[tvm.IRModule]\n The global module.\n\n Returns\n -------\n result: tvm.relay.Function\n The output function.\n '
use_mod = (mod if (mod is not None) else tvm.ir.IRModule())
return _ffi_api.to_cps(func, use_mod) | Turn expression into CPS expression.
Every intermediate compute will be passed to a continuation.
Parameters
----------
func: tvm.relay.Function
The input function.
mod: Optional[tvm.IRModule]
The global module.
Returns
-------
result: tvm.relay.Function
The output function. | python/tvm/relay/transform/transform.py | to_cps | ryanstout/tvm | 2,084 | python | def to_cps(func, mod=None):
'\n Turn expression into CPS expression.\n\n Every intermediate compute will be passed to a continuation.\n\n Parameters\n ----------\n func: tvm.relay.Function\n The input function.\n\n mod: Optional[tvm.IRModule]\n The global module.\n\n Returns\n -------\n result: tvm.relay.Function\n The output function.\n '
use_mod = (mod if (mod is not None) else tvm.ir.IRModule())
return _ffi_api.to_cps(func, use_mod) | def to_cps(func, mod=None):
'\n Turn expression into CPS expression.\n\n Every intermediate compute will be passed to a continuation.\n\n Parameters\n ----------\n func: tvm.relay.Function\n The input function.\n\n mod: Optional[tvm.IRModule]\n The global module.\n\n Returns\n -------\n result: tvm.relay.Function\n The output function.\n '
use_mod = (mod if (mod is not None) else tvm.ir.IRModule())
return _ffi_api.to_cps(func, use_mod)<|docstring|>Turn expression into CPS expression.
Every intermediate compute will be passed to a continuation.
Parameters
----------
func: tvm.relay.Function
The input function.
mod: Optional[tvm.IRModule]
The global module.
Returns
-------
result: tvm.relay.Function
The output function.<|endoftext|> |
27963b974b2912593046ec770e38c4801b7930194b879467d48725b47051c37a | def un_cps(func):
'\n Turn an cps function into a Function without the continuation argument.\n\n Note that this will not give the exact same interface as before cps:\n If the input/output is higher order, they will still be in cps form.\n\n Parameters\n ----------\n func: tvm.relay.Function\n The input function\n\n Returns\n -------\n result: tvm.relay.Function\n The output function\n '
return _ffi_api.un_cps(func) | Turn an cps function into a Function without the continuation argument.
Note that this will not give the exact same interface as before cps:
If the input/output is higher order, they will still be in cps form.
Parameters
----------
func: tvm.relay.Function
The input function
Returns
-------
result: tvm.relay.Function
The output function | python/tvm/relay/transform/transform.py | un_cps | ryanstout/tvm | 2,084 | python | def un_cps(func):
'\n Turn an cps function into a Function without the continuation argument.\n\n Note that this will not give the exact same interface as before cps:\n If the input/output is higher order, they will still be in cps form.\n\n Parameters\n ----------\n func: tvm.relay.Function\n The input function\n\n Returns\n -------\n result: tvm.relay.Function\n The output function\n '
return _ffi_api.un_cps(func) | def un_cps(func):
'\n Turn an cps function into a Function without the continuation argument.\n\n Note that this will not give the exact same interface as before cps:\n If the input/output is higher order, they will still be in cps form.\n\n Parameters\n ----------\n func: tvm.relay.Function\n The input function\n\n Returns\n -------\n result: tvm.relay.Function\n The output function\n '
return _ffi_api.un_cps(func)<|docstring|>Turn an cps function into a Function without the continuation argument.
Note that this will not give the exact same interface as before cps:
If the input/output is higher order, they will still be in cps form.
Parameters
----------
func: tvm.relay.Function
The input function
Returns
-------
result: tvm.relay.Function
The output function<|endoftext|> |
7224869d50e2cc0eb87d827dcfe477e1382f147e119fb6528dd88c10d8d0948b | def _wrap_class_function_pass(pass_cls, pass_info):
'Wrap a python class as function pass'
class PyFunctionPass(FunctionPass):
'Internal wrapper class to create a class instance.'
def __init__(self, *args, **kwargs):
self.handle = None
inst = pass_cls(*args, **kwargs)
def _pass_func(func, mod, ctx):
return inst.transform_function(func, mod, ctx)
self.__init_handle_by_constructor__(_ffi_api.MakeFunctionPass, _pass_func, pass_info)
self._inst = inst
def __getattr__(self, name):
return self._inst.__getattribute__(name)
functools.update_wrapper(PyFunctionPass.__init__, pass_cls.__init__)
PyFunctionPass.__name__ = pass_cls.__name__
PyFunctionPass.__doc__ = pass_cls.__doc__
PyFunctionPass.__module__ = pass_cls.__module__
return PyFunctionPass | Wrap a python class as function pass | python/tvm/relay/transform/transform.py | _wrap_class_function_pass | ryanstout/tvm | 2,084 | python | def _wrap_class_function_pass(pass_cls, pass_info):
class PyFunctionPass(FunctionPass):
'Internal wrapper class to create a class instance.'
def __init__(self, *args, **kwargs):
self.handle = None
inst = pass_cls(*args, **kwargs)
def _pass_func(func, mod, ctx):
return inst.transform_function(func, mod, ctx)
self.__init_handle_by_constructor__(_ffi_api.MakeFunctionPass, _pass_func, pass_info)
self._inst = inst
def __getattr__(self, name):
return self._inst.__getattribute__(name)
functools.update_wrapper(PyFunctionPass.__init__, pass_cls.__init__)
PyFunctionPass.__name__ = pass_cls.__name__
PyFunctionPass.__doc__ = pass_cls.__doc__
PyFunctionPass.__module__ = pass_cls.__module__
return PyFunctionPass | def _wrap_class_function_pass(pass_cls, pass_info):
class PyFunctionPass(FunctionPass):
'Internal wrapper class to create a class instance.'
def __init__(self, *args, **kwargs):
self.handle = None
inst = pass_cls(*args, **kwargs)
def _pass_func(func, mod, ctx):
return inst.transform_function(func, mod, ctx)
self.__init_handle_by_constructor__(_ffi_api.MakeFunctionPass, _pass_func, pass_info)
self._inst = inst
def __getattr__(self, name):
return self._inst.__getattribute__(name)
functools.update_wrapper(PyFunctionPass.__init__, pass_cls.__init__)
PyFunctionPass.__name__ = pass_cls.__name__
PyFunctionPass.__doc__ = pass_cls.__doc__
PyFunctionPass.__module__ = pass_cls.__module__
return PyFunctionPass<|docstring|>Wrap a python class as function pass<|endoftext|> |
488833a0ac98d3b60f2c1f541f150ef23de5253f4f135a176ef615d5eaa4e208 | def function_pass(pass_func=None, opt_level=None, name=None, required=None):
'Decorate a function pass.\n\n This function returns a callback when pass_func\n is provided. Otherwise, it returns the created function pass using the\n given optimization function.\n\n Parameters\n ----------\n pass_func : Optional[Callable[(Function, Module, PassContext) -> Function]]\n The transformation function or class.\n\n opt_level : int\n The optimization level of this module pass.\n\n name : Optional[str]\n The name of the function pass. The name could be empty. In this case, the\n name of the optimization function will be used as the pass name.\n\n required : Optional[List[str]]\n The list of passes that the module pass is dependent on.\n\n Returns\n -------\n create_function_pass : Union[Callable, FunctionPass]\n\n A decorator will be returned if pass_func is not provided,\n otherwise return the decorated result.\n The returned decorator has two behaviors depending on the input:\n A new FunctionPass will be returned when we decorate a pass function.\n A new FunctionPass class will be returned when we decorate a class type.\n\n Examples\n --------\n The following code block decorates a function pass class.\n\n .. code-block:: python\n\n @relay.transform.function_pass(opt_level=1)\n class TestReplaceFunc:\n def __init__(self, new_func):\n self.new_func = new_func\n\n def transform_function(self, func, mod, ctx):\n # just for demo purposes\n # transform func to new_func\n return self.new_func\n\n x = relay.var("x", shape=(10, 20))\n f1 = relay.Function([x], x)\n f2 = relay.Function([x], relay.log(x))\n # fpass is now a special pass that replaces every\n # function to f1\n fpass = TestReplaceFunc(f1)\n # now every function in input_mod is replaced by f1\n res_mod = fpass(input_mod)\n\n\n The following code creates a function pass by decorating\n a user defined transform function.\n\n .. code-block:: python\n\n @relay.transform.function_pass(opt_level=2)\n def transform(func, mod, ctx):\n # my transformations here.\n return func\n\n function_pass = transform\n assert isinstance(function_pass, transform.FunctionPass)\n assert function_pass.info.opt_level == 2\n\n # Given a module m, the optimization could be invoked as the follwoing:\n updated_mod = function_pass(m)\n # Now constant folding should have been applied to every function in\n # the provided module m. And the updated module will be returned.\n '
if (opt_level is None):
raise ValueError('Please provide opt_level for the function pass.')
required = (required if required else [])
if (not isinstance(required, (list, tuple))):
raise TypeError(('Required is expected to be the type of ' + 'list/tuple.'))
def create_function_pass(pass_arg):
'Internal function that creates a function pass'
fname = (name if name else pass_arg.__name__)
info = tvm.transform.PassInfo(opt_level, fname, required)
if inspect.isclass(pass_arg):
return _wrap_class_function_pass(pass_arg, info)
if (not isinstance(pass_arg, (types.FunctionType, types.LambdaType))):
raise TypeError('pass_func must be a callable for Module pass')
return _ffi_api.MakeFunctionPass(pass_arg, info)
if pass_func:
return create_function_pass(pass_func)
return create_function_pass | Decorate a function pass.
This function returns a callback when pass_func
is provided. Otherwise, it returns the created function pass using the
given optimization function.
Parameters
----------
pass_func : Optional[Callable[(Function, Module, PassContext) -> Function]]
The transformation function or class.
opt_level : int
The optimization level of this module pass.
name : Optional[str]
The name of the function pass. The name could be empty. In this case, the
name of the optimization function will be used as the pass name.
required : Optional[List[str]]
The list of passes that the module pass is dependent on.
Returns
-------
create_function_pass : Union[Callable, FunctionPass]
A decorator will be returned if pass_func is not provided,
otherwise return the decorated result.
The returned decorator has two behaviors depending on the input:
A new FunctionPass will be returned when we decorate a pass function.
A new FunctionPass class will be returned when we decorate a class type.
Examples
--------
The following code block decorates a function pass class.
.. code-block:: python
@relay.transform.function_pass(opt_level=1)
class TestReplaceFunc:
def __init__(self, new_func):
self.new_func = new_func
def transform_function(self, func, mod, ctx):
# just for demo purposes
# transform func to new_func
return self.new_func
x = relay.var("x", shape=(10, 20))
f1 = relay.Function([x], x)
f2 = relay.Function([x], relay.log(x))
# fpass is now a special pass that replaces every
# function to f1
fpass = TestReplaceFunc(f1)
# now every function in input_mod is replaced by f1
res_mod = fpass(input_mod)
The following code creates a function pass by decorating
a user defined transform function.
.. code-block:: python
@relay.transform.function_pass(opt_level=2)
def transform(func, mod, ctx):
# my transformations here.
return func
function_pass = transform
assert isinstance(function_pass, transform.FunctionPass)
assert function_pass.info.opt_level == 2
# Given a module m, the optimization could be invoked as the follwoing:
updated_mod = function_pass(m)
# Now constant folding should have been applied to every function in
# the provided module m. And the updated module will be returned. | python/tvm/relay/transform/transform.py | function_pass | ryanstout/tvm | 2,084 | python | def function_pass(pass_func=None, opt_level=None, name=None, required=None):
'Decorate a function pass.\n\n This function returns a callback when pass_func\n is provided. Otherwise, it returns the created function pass using the\n given optimization function.\n\n Parameters\n ----------\n pass_func : Optional[Callable[(Function, Module, PassContext) -> Function]]\n The transformation function or class.\n\n opt_level : int\n The optimization level of this module pass.\n\n name : Optional[str]\n The name of the function pass. The name could be empty. In this case, the\n name of the optimization function will be used as the pass name.\n\n required : Optional[List[str]]\n The list of passes that the module pass is dependent on.\n\n Returns\n -------\n create_function_pass : Union[Callable, FunctionPass]\n\n A decorator will be returned if pass_func is not provided,\n otherwise return the decorated result.\n The returned decorator has two behaviors depending on the input:\n A new FunctionPass will be returned when we decorate a pass function.\n A new FunctionPass class will be returned when we decorate a class type.\n\n Examples\n --------\n The following code block decorates a function pass class.\n\n .. code-block:: python\n\n @relay.transform.function_pass(opt_level=1)\n class TestReplaceFunc:\n def __init__(self, new_func):\n self.new_func = new_func\n\n def transform_function(self, func, mod, ctx):\n # just for demo purposes\n # transform func to new_func\n return self.new_func\n\n x = relay.var("x", shape=(10, 20))\n f1 = relay.Function([x], x)\n f2 = relay.Function([x], relay.log(x))\n # fpass is now a special pass that replaces every\n # function to f1\n fpass = TestReplaceFunc(f1)\n # now every function in input_mod is replaced by f1\n res_mod = fpass(input_mod)\n\n\n The following code creates a function pass by decorating\n a user defined transform function.\n\n .. code-block:: python\n\n @relay.transform.function_pass(opt_level=2)\n def transform(func, mod, ctx):\n # my transformations here.\n return func\n\n function_pass = transform\n assert isinstance(function_pass, transform.FunctionPass)\n assert function_pass.info.opt_level == 2\n\n # Given a module m, the optimization could be invoked as the follwoing:\n updated_mod = function_pass(m)\n # Now constant folding should have been applied to every function in\n # the provided module m. And the updated module will be returned.\n '
if (opt_level is None):
raise ValueError('Please provide opt_level for the function pass.')
required = (required if required else [])
if (not isinstance(required, (list, tuple))):
raise TypeError(('Required is expected to be the type of ' + 'list/tuple.'))
def create_function_pass(pass_arg):
'Internal function that creates a function pass'
fname = (name if name else pass_arg.__name__)
info = tvm.transform.PassInfo(opt_level, fname, required)
if inspect.isclass(pass_arg):
return _wrap_class_function_pass(pass_arg, info)
if (not isinstance(pass_arg, (types.FunctionType, types.LambdaType))):
raise TypeError('pass_func must be a callable for Module pass')
return _ffi_api.MakeFunctionPass(pass_arg, info)
if pass_func:
return create_function_pass(pass_func)
return create_function_pass | def function_pass(pass_func=None, opt_level=None, name=None, required=None):
'Decorate a function pass.\n\n This function returns a callback when pass_func\n is provided. Otherwise, it returns the created function pass using the\n given optimization function.\n\n Parameters\n ----------\n pass_func : Optional[Callable[(Function, Module, PassContext) -> Function]]\n The transformation function or class.\n\n opt_level : int\n The optimization level of this module pass.\n\n name : Optional[str]\n The name of the function pass. The name could be empty. In this case, the\n name of the optimization function will be used as the pass name.\n\n required : Optional[List[str]]\n The list of passes that the module pass is dependent on.\n\n Returns\n -------\n create_function_pass : Union[Callable, FunctionPass]\n\n A decorator will be returned if pass_func is not provided,\n otherwise return the decorated result.\n The returned decorator has two behaviors depending on the input:\n A new FunctionPass will be returned when we decorate a pass function.\n A new FunctionPass class will be returned when we decorate a class type.\n\n Examples\n --------\n The following code block decorates a function pass class.\n\n .. code-block:: python\n\n @relay.transform.function_pass(opt_level=1)\n class TestReplaceFunc:\n def __init__(self, new_func):\n self.new_func = new_func\n\n def transform_function(self, func, mod, ctx):\n # just for demo purposes\n # transform func to new_func\n return self.new_func\n\n x = relay.var("x", shape=(10, 20))\n f1 = relay.Function([x], x)\n f2 = relay.Function([x], relay.log(x))\n # fpass is now a special pass that replaces every\n # function to f1\n fpass = TestReplaceFunc(f1)\n # now every function in input_mod is replaced by f1\n res_mod = fpass(input_mod)\n\n\n The following code creates a function pass by decorating\n a user defined transform function.\n\n .. code-block:: python\n\n @relay.transform.function_pass(opt_level=2)\n def transform(func, mod, ctx):\n # my transformations here.\n return func\n\n function_pass = transform\n assert isinstance(function_pass, transform.FunctionPass)\n assert function_pass.info.opt_level == 2\n\n # Given a module m, the optimization could be invoked as the follwoing:\n updated_mod = function_pass(m)\n # Now constant folding should have been applied to every function in\n # the provided module m. And the updated module will be returned.\n '
if (opt_level is None):
raise ValueError('Please provide opt_level for the function pass.')
required = (required if required else [])
if (not isinstance(required, (list, tuple))):
raise TypeError(('Required is expected to be the type of ' + 'list/tuple.'))
def create_function_pass(pass_arg):
'Internal function that creates a function pass'
fname = (name if name else pass_arg.__name__)
info = tvm.transform.PassInfo(opt_level, fname, required)
if inspect.isclass(pass_arg):
return _wrap_class_function_pass(pass_arg, info)
if (not isinstance(pass_arg, (types.FunctionType, types.LambdaType))):
raise TypeError('pass_func must be a callable for Module pass')
return _ffi_api.MakeFunctionPass(pass_arg, info)
if pass_func:
return create_function_pass(pass_func)
return create_function_pass<|docstring|>Decorate a function pass.
This function returns a callback when pass_func
is provided. Otherwise, it returns the created function pass using the
given optimization function.
Parameters
----------
pass_func : Optional[Callable[(Function, Module, PassContext) -> Function]]
The transformation function or class.
opt_level : int
The optimization level of this module pass.
name : Optional[str]
The name of the function pass. The name could be empty. In this case, the
name of the optimization function will be used as the pass name.
required : Optional[List[str]]
The list of passes that the module pass is dependent on.
Returns
-------
create_function_pass : Union[Callable, FunctionPass]
A decorator will be returned if pass_func is not provided,
otherwise return the decorated result.
The returned decorator has two behaviors depending on the input:
A new FunctionPass will be returned when we decorate a pass function.
A new FunctionPass class will be returned when we decorate a class type.
Examples
--------
The following code block decorates a function pass class.
.. code-block:: python
@relay.transform.function_pass(opt_level=1)
class TestReplaceFunc:
def __init__(self, new_func):
self.new_func = new_func
def transform_function(self, func, mod, ctx):
# just for demo purposes
# transform func to new_func
return self.new_func
x = relay.var("x", shape=(10, 20))
f1 = relay.Function([x], x)
f2 = relay.Function([x], relay.log(x))
# fpass is now a special pass that replaces every
# function to f1
fpass = TestReplaceFunc(f1)
# now every function in input_mod is replaced by f1
res_mod = fpass(input_mod)
The following code creates a function pass by decorating
a user defined transform function.
.. code-block:: python
@relay.transform.function_pass(opt_level=2)
def transform(func, mod, ctx):
# my transformations here.
return func
function_pass = transform
assert isinstance(function_pass, transform.FunctionPass)
assert function_pass.info.opt_level == 2
# Given a module m, the optimization could be invoked as the follwoing:
updated_mod = function_pass(m)
# Now constant folding should have been applied to every function in
# the provided module m. And the updated module will be returned.<|endoftext|> |
7be60eab918d618241097c3566f0263c3e7b3bed7e0b16b3c04beb602d31cc70 | def DenseToSparse(weight_name, weight_shape):
'\n Rewrite qualified ```nn.dense operation``` to ```nn.sparse_dense```\n This pass is used in ```data_dep_optimization.bsr_dense```\n Parameters of this pass is generated by ```analysis.sparse_dense.process_params```\n\n Parameters\n ----------\n weight_name: Array[String]\n Names of weights which qualified sparse contrains\n\n weight_shape: Array[Array[IntImm]]\n Weights shape in BSR format.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered DenseToSparse pass.\n '
return _ffi_api.DenseToSparse(weight_name, weight_shape) | Rewrite qualified ```nn.dense operation``` to ```nn.sparse_dense```
This pass is used in ```data_dep_optimization.bsr_dense```
Parameters of this pass is generated by ```analysis.sparse_dense.process_params```
Parameters
----------
weight_name: Array[String]
Names of weights which qualified sparse contrains
weight_shape: Array[Array[IntImm]]
Weights shape in BSR format.
Returns
-------
ret : tvm.transform.Pass
The registered DenseToSparse pass. | python/tvm/relay/transform/transform.py | DenseToSparse | ryanstout/tvm | 2,084 | python | def DenseToSparse(weight_name, weight_shape):
'\n Rewrite qualified ```nn.dense operation``` to ```nn.sparse_dense```\n This pass is used in ```data_dep_optimization.bsr_dense```\n Parameters of this pass is generated by ```analysis.sparse_dense.process_params```\n\n Parameters\n ----------\n weight_name: Array[String]\n Names of weights which qualified sparse contrains\n\n weight_shape: Array[Array[IntImm]]\n Weights shape in BSR format.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered DenseToSparse pass.\n '
return _ffi_api.DenseToSparse(weight_name, weight_shape) | def DenseToSparse(weight_name, weight_shape):
'\n Rewrite qualified ```nn.dense operation``` to ```nn.sparse_dense```\n This pass is used in ```data_dep_optimization.bsr_dense```\n Parameters of this pass is generated by ```analysis.sparse_dense.process_params```\n\n Parameters\n ----------\n weight_name: Array[String]\n Names of weights which qualified sparse contrains\n\n weight_shape: Array[Array[IntImm]]\n Weights shape in BSR format.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered DenseToSparse pass.\n '
return _ffi_api.DenseToSparse(weight_name, weight_shape)<|docstring|>Rewrite qualified ```nn.dense operation``` to ```nn.sparse_dense```
This pass is used in ```data_dep_optimization.bsr_dense```
Parameters of this pass is generated by ```analysis.sparse_dense.process_params```
Parameters
----------
weight_name: Array[String]
Names of weights which qualified sparse contrains
weight_shape: Array[Array[IntImm]]
Weights shape in BSR format.
Returns
-------
ret : tvm.transform.Pass
The registered DenseToSparse pass.<|endoftext|> |
b5bc2928a76744a102ab48f4557e61a48e7f549f3cd5c900269d2965b4b610e2 | def Conv2dToSparse(weight_name, weight_shape, layout, kernel_size):
'\n Rewrite qualified ```nn.conv2d operation``` to ```nn.sparse_conv2d```\n\n Parameters\n ----------\n weight_name: Array[String]\n Names of weights which qualified sparse contrains\n\n weight_shape: Array[Array[IntImm]]\n Weights shape in BSR format.\n\n layout : str\n layout of data\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered DenseToSparse pass.\n '
return _ffi_api.Conv2dToSparse(weight_name, weight_shape, layout, kernel_size) | Rewrite qualified ```nn.conv2d operation``` to ```nn.sparse_conv2d```
Parameters
----------
weight_name: Array[String]
Names of weights which qualified sparse contrains
weight_shape: Array[Array[IntImm]]
Weights shape in BSR format.
layout : str
layout of data
Returns
-------
ret : tvm.transform.Pass
The registered DenseToSparse pass. | python/tvm/relay/transform/transform.py | Conv2dToSparse | ryanstout/tvm | 2,084 | python | def Conv2dToSparse(weight_name, weight_shape, layout, kernel_size):
'\n Rewrite qualified ```nn.conv2d operation``` to ```nn.sparse_conv2d```\n\n Parameters\n ----------\n weight_name: Array[String]\n Names of weights which qualified sparse contrains\n\n weight_shape: Array[Array[IntImm]]\n Weights shape in BSR format.\n\n layout : str\n layout of data\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered DenseToSparse pass.\n '
return _ffi_api.Conv2dToSparse(weight_name, weight_shape, layout, kernel_size) | def Conv2dToSparse(weight_name, weight_shape, layout, kernel_size):
'\n Rewrite qualified ```nn.conv2d operation``` to ```nn.sparse_conv2d```\n\n Parameters\n ----------\n weight_name: Array[String]\n Names of weights which qualified sparse contrains\n\n weight_shape: Array[Array[IntImm]]\n Weights shape in BSR format.\n\n layout : str\n layout of data\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered DenseToSparse pass.\n '
return _ffi_api.Conv2dToSparse(weight_name, weight_shape, layout, kernel_size)<|docstring|>Rewrite qualified ```nn.conv2d operation``` to ```nn.sparse_conv2d```
Parameters
----------
weight_name: Array[String]
Names of weights which qualified sparse contrains
weight_shape: Array[Array[IntImm]]
Weights shape in BSR format.
layout : str
layout of data
Returns
-------
ret : tvm.transform.Pass
The registered DenseToSparse pass.<|endoftext|> |
8b017cedebd2c0e5cb457a8dcedd415332f0e740b8d1567734044f5eb0f8d4fd | def Conv2dToSparse2(layout, kernel_size, blocksize, sparsity_threshold):
'\n Rewrite freezed ```nn.conv2d``` operation to ```nn.sparse_conv2d```\n\n Parameters\n ----------\n layout : str\n layout of data\n\n kernel_size : int\n kernel size of conv2d\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered DenseToSparse pass.\n '
return _ffi_api.Conv2dToSparse2(layout, kernel_size, *blocksize, sparsity_threshold) | Rewrite freezed ```nn.conv2d``` operation to ```nn.sparse_conv2d```
Parameters
----------
layout : str
layout of data
kernel_size : int
kernel size of conv2d
Returns
-------
ret : tvm.transform.Pass
The registered DenseToSparse pass. | python/tvm/relay/transform/transform.py | Conv2dToSparse2 | ryanstout/tvm | 2,084 | python | def Conv2dToSparse2(layout, kernel_size, blocksize, sparsity_threshold):
'\n Rewrite freezed ```nn.conv2d``` operation to ```nn.sparse_conv2d```\n\n Parameters\n ----------\n layout : str\n layout of data\n\n kernel_size : int\n kernel size of conv2d\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered DenseToSparse pass.\n '
return _ffi_api.Conv2dToSparse2(layout, kernel_size, *blocksize, sparsity_threshold) | def Conv2dToSparse2(layout, kernel_size, blocksize, sparsity_threshold):
'\n Rewrite freezed ```nn.conv2d``` operation to ```nn.sparse_conv2d```\n\n Parameters\n ----------\n layout : str\n layout of data\n\n kernel_size : int\n kernel size of conv2d\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered DenseToSparse pass.\n '
return _ffi_api.Conv2dToSparse2(layout, kernel_size, *blocksize, sparsity_threshold)<|docstring|>Rewrite freezed ```nn.conv2d``` operation to ```nn.sparse_conv2d```
Parameters
----------
layout : str
layout of data
kernel_size : int
kernel size of conv2d
Returns
-------
ret : tvm.transform.Pass
The registered DenseToSparse pass.<|endoftext|> |
6c9b4d9edb0e20b97dd129dc02d35a91ca5fa530324e9501481fd411c2d22f29 | def SimplifyFCTranspose(target_weight_name):
'\n Rewrite ```y = nn.dense(x, transpose(w, [1, 0]))``` to ```y = nn.dense(x, wt)```\n This pass is used in ```data_dep_optimization.simplify_fc_transpose```\n\n Parameters\n ----------\n weight_name: Array[String]\n Names of weights which qualified ```y = nn.dense(x, transpose(w, [1, 0]))```\n This parameter is generated by ```analysis.search_fc_transpose``` function\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered SimplifyFCTranspose pass.\n '
return _ffi_api.SimplifyFCTranspose(target_weight_name) | Rewrite ```y = nn.dense(x, transpose(w, [1, 0]))``` to ```y = nn.dense(x, wt)```
This pass is used in ```data_dep_optimization.simplify_fc_transpose```
Parameters
----------
weight_name: Array[String]
Names of weights which qualified ```y = nn.dense(x, transpose(w, [1, 0]))```
This parameter is generated by ```analysis.search_fc_transpose``` function
Returns
-------
ret : tvm.transform.Pass
The registered SimplifyFCTranspose pass. | python/tvm/relay/transform/transform.py | SimplifyFCTranspose | ryanstout/tvm | 2,084 | python | def SimplifyFCTranspose(target_weight_name):
'\n Rewrite ```y = nn.dense(x, transpose(w, [1, 0]))``` to ```y = nn.dense(x, wt)```\n This pass is used in ```data_dep_optimization.simplify_fc_transpose```\n\n Parameters\n ----------\n weight_name: Array[String]\n Names of weights which qualified ```y = nn.dense(x, transpose(w, [1, 0]))```\n This parameter is generated by ```analysis.search_fc_transpose``` function\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered SimplifyFCTranspose pass.\n '
return _ffi_api.SimplifyFCTranspose(target_weight_name) | def SimplifyFCTranspose(target_weight_name):
'\n Rewrite ```y = nn.dense(x, transpose(w, [1, 0]))``` to ```y = nn.dense(x, wt)```\n This pass is used in ```data_dep_optimization.simplify_fc_transpose```\n\n Parameters\n ----------\n weight_name: Array[String]\n Names of weights which qualified ```y = nn.dense(x, transpose(w, [1, 0]))```\n This parameter is generated by ```analysis.search_fc_transpose``` function\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered SimplifyFCTranspose pass.\n '
return _ffi_api.SimplifyFCTranspose(target_weight_name)<|docstring|>Rewrite ```y = nn.dense(x, transpose(w, [1, 0]))``` to ```y = nn.dense(x, wt)```
This pass is used in ```data_dep_optimization.simplify_fc_transpose```
Parameters
----------
weight_name: Array[String]
Names of weights which qualified ```y = nn.dense(x, transpose(w, [1, 0]))```
This parameter is generated by ```analysis.search_fc_transpose``` function
Returns
-------
ret : tvm.transform.Pass
The registered SimplifyFCTranspose pass.<|endoftext|> |
db61c367a5181906f60306a18d548003fad6fcb9b28868816f3bd4e7a8c579c0 | def SimplifyExpr():
'\n Simplify the Relay expression, including merging consecutive reshapes.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered SimplifyExpr pass.\n '
return _ffi_api.SimplifyExpr() | Simplify the Relay expression, including merging consecutive reshapes.
Returns
-------
ret : tvm.transform.Pass
The registered SimplifyExpr pass. | python/tvm/relay/transform/transform.py | SimplifyExpr | ryanstout/tvm | 2,084 | python | def SimplifyExpr():
'\n Simplify the Relay expression, including merging consecutive reshapes.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered SimplifyExpr pass.\n '
return _ffi_api.SimplifyExpr() | def SimplifyExpr():
'\n Simplify the Relay expression, including merging consecutive reshapes.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered SimplifyExpr pass.\n '
return _ffi_api.SimplifyExpr()<|docstring|>Simplify the Relay expression, including merging consecutive reshapes.
Returns
-------
ret : tvm.transform.Pass
The registered SimplifyExpr pass.<|endoftext|> |
4a62119ed36afb3d4f4a37946550c66e50fd7cead26951d5a068cb3352e8af09 | def PlanDevices(config):
'\n Uses existing "on_device" and "device_copy" calls to infer the virtual device on which\n every Relay sub-expression should run and the result stored. Captures the result of that\n analysis using new "on_device" and "device_copy" calls. Sub-expressions which are\n not otherwise constrained are assigned to the default primitive virtual device describe by\n config. However data and computations which must be hosted on a CPU (such as shapes and\n shape functions) use the host virtual device of the config.\n\n Parameters\n ----------\n config : tvm.CompilationConfig\n The compilation configuration, specifying available targets and default devices.\n\n Returns\n -------\n ret : tvm.transforms.Pass\n The pass.\n '
return _ffi_api.PlanDevices(config) | Uses existing "on_device" and "device_copy" calls to infer the virtual device on which
every Relay sub-expression should run and the result stored. Captures the result of that
analysis using new "on_device" and "device_copy" calls. Sub-expressions which are
not otherwise constrained are assigned to the default primitive virtual device describe by
config. However data and computations which must be hosted on a CPU (such as shapes and
shape functions) use the host virtual device of the config.
Parameters
----------
config : tvm.CompilationConfig
The compilation configuration, specifying available targets and default devices.
Returns
-------
ret : tvm.transforms.Pass
The pass. | python/tvm/relay/transform/transform.py | PlanDevices | ryanstout/tvm | 2,084 | python | def PlanDevices(config):
'\n Uses existing "on_device" and "device_copy" calls to infer the virtual device on which\n every Relay sub-expression should run and the result stored. Captures the result of that\n analysis using new "on_device" and "device_copy" calls. Sub-expressions which are\n not otherwise constrained are assigned to the default primitive virtual device describe by\n config. However data and computations which must be hosted on a CPU (such as shapes and\n shape functions) use the host virtual device of the config.\n\n Parameters\n ----------\n config : tvm.CompilationConfig\n The compilation configuration, specifying available targets and default devices.\n\n Returns\n -------\n ret : tvm.transforms.Pass\n The pass.\n '
return _ffi_api.PlanDevices(config) | def PlanDevices(config):
'\n Uses existing "on_device" and "device_copy" calls to infer the virtual device on which\n every Relay sub-expression should run and the result stored. Captures the result of that\n analysis using new "on_device" and "device_copy" calls. Sub-expressions which are\n not otherwise constrained are assigned to the default primitive virtual device describe by\n config. However data and computations which must be hosted on a CPU (such as shapes and\n shape functions) use the host virtual device of the config.\n\n Parameters\n ----------\n config : tvm.CompilationConfig\n The compilation configuration, specifying available targets and default devices.\n\n Returns\n -------\n ret : tvm.transforms.Pass\n The pass.\n '
return _ffi_api.PlanDevices(config)<|docstring|>Uses existing "on_device" and "device_copy" calls to infer the virtual device on which
every Relay sub-expression should run and the result stored. Captures the result of that
analysis using new "on_device" and "device_copy" calls. Sub-expressions which are
not otherwise constrained are assigned to the default primitive virtual device describe by
config. However data and computations which must be hosted on a CPU (such as shapes and
shape functions) use the host virtual device of the config.
Parameters
----------
config : tvm.CompilationConfig
The compilation configuration, specifying available targets and default devices.
Returns
-------
ret : tvm.transforms.Pass
The pass.<|endoftext|> |
0a0d1c0fb11eeb76ead8404f9baa86ee94755b63fbd423f3f4df66cb33d5297a | def FoldExplicitPadding():
'\n FoldExplicitPadding finds explict padding before an op that can support\n implicit padding and fuses them.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered ImplicitPadding pass.\n '
return _ffi_api.FoldExplicitPadding() | FoldExplicitPadding finds explict padding before an op that can support
implicit padding and fuses them.
Returns
-------
ret : tvm.transform.Pass
The registered ImplicitPadding pass. | python/tvm/relay/transform/transform.py | FoldExplicitPadding | ryanstout/tvm | 2,084 | python | def FoldExplicitPadding():
'\n FoldExplicitPadding finds explict padding before an op that can support\n implicit padding and fuses them.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered ImplicitPadding pass.\n '
return _ffi_api.FoldExplicitPadding() | def FoldExplicitPadding():
'\n FoldExplicitPadding finds explict padding before an op that can support\n implicit padding and fuses them.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered ImplicitPadding pass.\n '
return _ffi_api.FoldExplicitPadding()<|docstring|>FoldExplicitPadding finds explict padding before an op that can support
implicit padding and fuses them.
Returns
-------
ret : tvm.transform.Pass
The registered ImplicitPadding pass.<|endoftext|> |
5d82f6264b471ddb37bc342c7a2bd8fdbe3e7ec4f3511cd73003e691e53a1518 | def AnnotateSpans():
'\n Annotate a program with span information by first generating its textual\n representation and then parsing it back into a Relay AST annotated with\n span information.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered AnnotateSpans pass.\n '
return _ffi_api.AnnotateSpans() | Annotate a program with span information by first generating its textual
representation and then parsing it back into a Relay AST annotated with
span information.
Returns
-------
ret : tvm.transform.Pass
The registered AnnotateSpans pass. | python/tvm/relay/transform/transform.py | AnnotateSpans | ryanstout/tvm | 2,084 | python | def AnnotateSpans():
'\n Annotate a program with span information by first generating its textual\n representation and then parsing it back into a Relay AST annotated with\n span information.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered AnnotateSpans pass.\n '
return _ffi_api.AnnotateSpans() | def AnnotateSpans():
'\n Annotate a program with span information by first generating its textual\n representation and then parsing it back into a Relay AST annotated with\n span information.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered AnnotateSpans pass.\n '
return _ffi_api.AnnotateSpans()<|docstring|>Annotate a program with span information by first generating its textual
representation and then parsing it back into a Relay AST annotated with
span information.
Returns
-------
ret : tvm.transform.Pass
The registered AnnotateSpans pass.<|endoftext|> |
7316ffd50c72e91a76561ef03ccdc814dd47483bb4c882ee5b8b2705fcee25f5 | def FakeQuantizationToInteger(hard_fail=False):
'\n Find regions of the graph of the form\n\n .. code-block:: text\n\n x w\n | |\n dq dq\n \\ /\n op1\n |\n op2\n |\n q\n\n where ``q == qnn.quantize`` and ``dq = qnn.dequantize``\n and rewrite them into integer versions of ``op1`` and ``op2``\n\n Rules for rewriting indivdual ops are in fake_quantization_to_integer.py\n\n Parameters\n ----------\n hard_fail : boolean\n How do deal with errors during graph rewriting.\n If true, raise an error.\n If false, skip rewriting the subgraph.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered SimplifyExpr pass.\n '
return _ffi_api.FakeQuantizationToInteger(hard_fail) | Find regions of the graph of the form
.. code-block:: text
x w
| |
dq dq
\ /
op1
|
op2
|
q
where ``q == qnn.quantize`` and ``dq = qnn.dequantize``
and rewrite them into integer versions of ``op1`` and ``op2``
Rules for rewriting indivdual ops are in fake_quantization_to_integer.py
Parameters
----------
hard_fail : boolean
How do deal with errors during graph rewriting.
If true, raise an error.
If false, skip rewriting the subgraph.
Returns
-------
ret : tvm.transform.Pass
The registered SimplifyExpr pass. | python/tvm/relay/transform/transform.py | FakeQuantizationToInteger | ryanstout/tvm | 2,084 | python | def FakeQuantizationToInteger(hard_fail=False):
'\n Find regions of the graph of the form\n\n .. code-block:: text\n\n x w\n | |\n dq dq\n \\ /\n op1\n |\n op2\n |\n q\n\n where ``q == qnn.quantize`` and ``dq = qnn.dequantize``\n and rewrite them into integer versions of ``op1`` and ``op2``\n\n Rules for rewriting indivdual ops are in fake_quantization_to_integer.py\n\n Parameters\n ----------\n hard_fail : boolean\n How do deal with errors during graph rewriting.\n If true, raise an error.\n If false, skip rewriting the subgraph.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered SimplifyExpr pass.\n '
return _ffi_api.FakeQuantizationToInteger(hard_fail) | def FakeQuantizationToInteger(hard_fail=False):
'\n Find regions of the graph of the form\n\n .. code-block:: text\n\n x w\n | |\n dq dq\n \\ /\n op1\n |\n op2\n |\n q\n\n where ``q == qnn.quantize`` and ``dq = qnn.dequantize``\n and rewrite them into integer versions of ``op1`` and ``op2``\n\n Rules for rewriting indivdual ops are in fake_quantization_to_integer.py\n\n Parameters\n ----------\n hard_fail : boolean\n How do deal with errors during graph rewriting.\n If true, raise an error.\n If false, skip rewriting the subgraph.\n\n Returns\n -------\n ret : tvm.transform.Pass\n The registered SimplifyExpr pass.\n '
return _ffi_api.FakeQuantizationToInteger(hard_fail)<|docstring|>Find regions of the graph of the form
.. code-block:: text
x w
| |
dq dq
\ /
op1
|
op2
|
q
where ``q == qnn.quantize`` and ``dq = qnn.dequantize``
and rewrite them into integer versions of ``op1`` and ``op2``
Rules for rewriting indivdual ops are in fake_quantization_to_integer.py
Parameters
----------
hard_fail : boolean
How do deal with errors during graph rewriting.
If true, raise an error.
If false, skip rewriting the subgraph.
Returns
-------
ret : tvm.transform.Pass
The registered SimplifyExpr pass.<|endoftext|> |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.