body_hash
stringlengths 64
64
| body
stringlengths 23
109k
| docstring
stringlengths 1
57k
| path
stringlengths 4
198
| name
stringlengths 1
115
| repository_name
stringlengths 7
111
| repository_stars
float64 0
191k
| lang
stringclasses 1
value | body_without_docstring
stringlengths 14
108k
| unified
stringlengths 45
133k
|
---|---|---|---|---|---|---|---|---|---|
5f76fffd49f07232339a9dd4552029f0d3a34d5578de17d33a93b8d159c0a2a3 | def test_promote_user(self):
'Test error raised when accessing nonexisting user'
response = self.app.put('/api/v2/auth/users/{}'.format(User.query.order_by(User.created_at).first().id), content_type='application/json', headers={'x-access-token': self.admintoken})
self.assertEqual(response.status_code, 200)
response_msg = json.loads(response.data.decode('UTF-8'))
self.assertIn('admin', response_msg['Message']) | Test error raised when accessing nonexisting user | tests/v2/test_user.py | test_promote_user | ThaDeveloper/weConnect | 1 | python | def test_promote_user(self):
response = self.app.put('/api/v2/auth/users/{}'.format(User.query.order_by(User.created_at).first().id), content_type='application/json', headers={'x-access-token': self.admintoken})
self.assertEqual(response.status_code, 200)
response_msg = json.loads(response.data.decode('UTF-8'))
self.assertIn('admin', response_msg['Message']) | def test_promote_user(self):
response = self.app.put('/api/v2/auth/users/{}'.format(User.query.order_by(User.created_at).first().id), content_type='application/json', headers={'x-access-token': self.admintoken})
self.assertEqual(response.status_code, 200)
response_msg = json.loads(response.data.decode('UTF-8'))
self.assertIn('admin', response_msg['Message'])<|docstring|>Test error raised when accessing nonexisting user<|endoftext|> |
342b88b2a63b3702545dd32606570c61f0e1dd15fa85c977f86a2a163eeb478d | def test_unauthorized_promote_user(self):
'Test error raised for unauthorized user promotion'
response = self.app.put('/api/v2/auth/users/{}'.format(User.query.order_by(User.created_at).first().id), content_type='application/json', headers={'x-access-token': self.token})
self.assertEqual(response.status_code, 401)
response_msg = json.loads(response.data.decode('UTF-8'))
self.assertIn('Cannot perform', response_msg['Message']) | Test error raised for unauthorized user promotion | tests/v2/test_user.py | test_unauthorized_promote_user | ThaDeveloper/weConnect | 1 | python | def test_unauthorized_promote_user(self):
response = self.app.put('/api/v2/auth/users/{}'.format(User.query.order_by(User.created_at).first().id), content_type='application/json', headers={'x-access-token': self.token})
self.assertEqual(response.status_code, 401)
response_msg = json.loads(response.data.decode('UTF-8'))
self.assertIn('Cannot perform', response_msg['Message']) | def test_unauthorized_promote_user(self):
response = self.app.put('/api/v2/auth/users/{}'.format(User.query.order_by(User.created_at).first().id), content_type='application/json', headers={'x-access-token': self.token})
self.assertEqual(response.status_code, 401)
response_msg = json.loads(response.data.decode('UTF-8'))
self.assertIn('Cannot perform', response_msg['Message'])<|docstring|>Test error raised for unauthorized user promotion<|endoftext|> |
dd5159a04267a132b314da2dc584564c53cde638a94c24ff1756b91f4359c0bf | def test_delete_user(self):
'Tests deleting user from db'
response = self.app.delete('/api/v2/auth/users/{}'.format(User.query.order_by(User.created_at).first().id), content_type='application/json', headers={'x-access-token': self.admintoken})
self.assertEqual(response.status_code, 200)
response_msg = json.loads(response.data.decode('UTF-8'))
self.assertIn('deleted', response_msg['Message']) | Tests deleting user from db | tests/v2/test_user.py | test_delete_user | ThaDeveloper/weConnect | 1 | python | def test_delete_user(self):
response = self.app.delete('/api/v2/auth/users/{}'.format(User.query.order_by(User.created_at).first().id), content_type='application/json', headers={'x-access-token': self.admintoken})
self.assertEqual(response.status_code, 200)
response_msg = json.loads(response.data.decode('UTF-8'))
self.assertIn('deleted', response_msg['Message']) | def test_delete_user(self):
response = self.app.delete('/api/v2/auth/users/{}'.format(User.query.order_by(User.created_at).first().id), content_type='application/json', headers={'x-access-token': self.admintoken})
self.assertEqual(response.status_code, 200)
response_msg = json.loads(response.data.decode('UTF-8'))
self.assertIn('deleted', response_msg['Message'])<|docstring|>Tests deleting user from db<|endoftext|> |
53d8cd2e50cc03d5039c54a3e6149fc8d117b74b7afde366202fc1d1394c923a | def test_unauthorized_user_delete(self):
'Tests error raised for unauthorized user delete from db'
response = self.app.delete('/api/v2/auth/users/{}'.format(User.query.order_by(User.created_at).first().id), content_type='application/json', headers={'x-access-token': self.token})
self.assertEqual(response.status_code, 401)
response_msg = json.loads(response.data.decode('UTF-8'))
self.assertIn('Cannot perform', response_msg['Message']) | Tests error raised for unauthorized user delete from db | tests/v2/test_user.py | test_unauthorized_user_delete | ThaDeveloper/weConnect | 1 | python | def test_unauthorized_user_delete(self):
response = self.app.delete('/api/v2/auth/users/{}'.format(User.query.order_by(User.created_at).first().id), content_type='application/json', headers={'x-access-token': self.token})
self.assertEqual(response.status_code, 401)
response_msg = json.loads(response.data.decode('UTF-8'))
self.assertIn('Cannot perform', response_msg['Message']) | def test_unauthorized_user_delete(self):
response = self.app.delete('/api/v2/auth/users/{}'.format(User.query.order_by(User.created_at).first().id), content_type='application/json', headers={'x-access-token': self.token})
self.assertEqual(response.status_code, 401)
response_msg = json.loads(response.data.decode('UTF-8'))
self.assertIn('Cannot perform', response_msg['Message'])<|docstring|>Tests error raised for unauthorized user delete from db<|endoftext|> |
56f6aa568a433e646d4a9703cb9a81d057eff5cbfb3ed7604e658a4d4c64bf67 | def test_read_user_businesses(self):
'Tests user can read the businesses of a particular user'
response = self.app.get('/api/v2/auth/users/{}/businesses'.format(User.query.order_by(User.created_at).first().id), content_type='application/json')
self.assertEqual(response.status_code, 200) | Tests user can read the businesses of a particular user | tests/v2/test_user.py | test_read_user_businesses | ThaDeveloper/weConnect | 1 | python | def test_read_user_businesses(self):
response = self.app.get('/api/v2/auth/users/{}/businesses'.format(User.query.order_by(User.created_at).first().id), content_type='application/json')
self.assertEqual(response.status_code, 200) | def test_read_user_businesses(self):
response = self.app.get('/api/v2/auth/users/{}/businesses'.format(User.query.order_by(User.created_at).first().id), content_type='application/json')
self.assertEqual(response.status_code, 200)<|docstring|>Tests user can read the businesses of a particular user<|endoftext|> |
6c83967a47408d57f8dd08a65b7de29663ed40d614607a8cf2164b170cd0f60d | def gauss_image(shape=(101, 101), wcs=None, factor=1, gauss=None, center=None, flux=1.0, fwhm=(1.0, 1.0), peak=False, rot=0.0, cont=0, unit_center=u.deg, unit_fwhm=u.arcsec, unit=u.dimensionless_unscaled):
'Create a new image from a 2D gaussian.\n\n Parameters\n ----------\n shape : int or (int,int)\n Lengths of the image in Y and X with python notation: (ny,nx).\n (101,101) by default. If wcs object contains dimensions, shape is\n ignored and wcs dimensions are used.\n wcs : `mpdaf.obj.WCS`\n World coordinates.\n factor : int\n If factor<=1, gaussian value is computed in the center of each pixel.\n If factor>1, for each pixel, gaussian value is the sum of the gaussian\n values on the factor*factor pixels divided by the pixel area.\n gauss : `mpdaf.obj.Gauss2D`\n Object that contains all Gaussian parameters. If it is present, the\n following parameters are not used.\n center : (float,float)\n Gaussian center (y_peak, x_peak). If None the center of the image is\n used. The unit is given by the unit_center parameter (degrees by\n default).\n flux : float\n Integrated gaussian flux or gaussian peak value if peak is True.\n fwhm : (float,float)\n Gaussian fwhm (fwhm_y,fwhm_x).\n The unit is given by the unit_fwhm parameter (arcseconds by default).\n peak : bool\n If true, flux contains a gaussian peak value.\n rot : float\n Angle position in degree.\n cont : float\n Continuum value. 0 by default.\n unit_center : `astropy.units.Unit`\n type of the center and position coordinates.\n Degrees by default (use None for coordinates in pixels).\n unit_fwhm : `astropy.units.Unit`\n FWHM unit. Arcseconds by default (use None for radius in pixels)\n\n Returns\n -------\n out : `~mpdaf.obj.Image`\n\n '
if is_int(shape):
shape = (shape, shape)
shape = np.array(shape)
wcs = (wcs or WCS())
if ((wcs.naxis1 == 1.0) and (wcs.naxis2 == 1.0)):
wcs.naxis1 = shape[1]
wcs.naxis2 = shape[0]
elif ((wcs.naxis1 != 0.0) or (wcs.naxis2 != 0.0)):
shape[1] = wcs.naxis1
shape[0] = wcs.naxis2
if (gauss is not None):
center = gauss.center
flux = gauss.flux
fwhm = gauss.fwhm
peak = False
rot = gauss.rot
cont = gauss.cont
if (center is None):
center = ((np.array(shape) - 1) / 2.0)
elif (unit_center is not None):
center = wcs.sky2pix(center, unit=unit_center)[0]
if (unit_fwhm is not None):
fwhm = (np.array(fwhm) / wcs.get_step(unit=unit_fwhm))
if ((fwhm[1] == 0) or (fwhm[0] == 0)):
raise ValueError('fwhm equal to 0')
p_width = (fwhm[0] * gaussian_fwhm_to_sigma)
q_width = (fwhm[1] * gaussian_fwhm_to_sigma)
theta = ((np.pi * rot) / 180.0)
if (peak is True):
norm = ((((flux * 2) * np.pi) * p_width) * q_width)
else:
norm = flux
def gauss(p, q):
cost = np.cos(theta)
sint = np.sin(theta)
xdiff = (p - center[0])
ydiff = (q - center[1])
return (((norm / (((2 * np.pi) * p_width) * q_width)) * np.exp(((- (((xdiff * cost) - (ydiff * sint)) ** 2)) / (2 * (p_width ** 2))))) * np.exp(((- (((xdiff * sint) + (ydiff * cost)) ** 2)) / (2 * (q_width ** 2)))))
if (factor > 1):
if (rot == 0):
from scipy import special
(X, Y) = np.meshgrid(range(shape[0]), range(shape[1]))
pixcrd_min = (np.array(list(zip(X.ravel(), Y.ravel()))) - 0.5)
xmin = (((pixcrd_min[(:, 1)] - center[1]) / np.sqrt(2.0)) / q_width)
ymin = (((pixcrd_min[(:, 0)] - center[0]) / np.sqrt(2.0)) / p_width)
pixcrd_max = (np.array(list(zip(X.ravel(), Y.ravel()))) + 0.5)
xmax = (((pixcrd_max[(:, 1)] - center[1]) / np.sqrt(2.0)) / q_width)
ymax = (((pixcrd_max[(:, 0)] - center[0]) / np.sqrt(2.0)) / p_width)
dx = (pixcrd_max[(:, 1)] - pixcrd_min[(:, 1)])
dy = (pixcrd_max[(:, 0)] - pixcrd_min[(:, 0)])
data = (((((norm * 0.25) / dx) / dy) * (special.erf(xmax) - special.erf(xmin))) * (special.erf(ymax) - special.erf(ymin)))
data = np.reshape(data, (shape[1], shape[0])).T
else:
(yy, xx) = (np.mgrid[(:(shape[0] * factor), :(shape[1] * factor))] / factor)
data = gauss(yy, xx)
data = data.reshape(shape[0], 2, shape[1], 2).sum(axis=(1, 3))
data /= (factor ** 2)
else:
(yy, xx) = np.mgrid[(:shape[0], :shape[1])]
data = gauss(yy, xx)
return Image(data=(data + cont), wcs=wcs, unit=unit, copy=False, dtype=None) | Create a new image from a 2D gaussian.
Parameters
----------
shape : int or (int,int)
Lengths of the image in Y and X with python notation: (ny,nx).
(101,101) by default. If wcs object contains dimensions, shape is
ignored and wcs dimensions are used.
wcs : `mpdaf.obj.WCS`
World coordinates.
factor : int
If factor<=1, gaussian value is computed in the center of each pixel.
If factor>1, for each pixel, gaussian value is the sum of the gaussian
values on the factor*factor pixels divided by the pixel area.
gauss : `mpdaf.obj.Gauss2D`
Object that contains all Gaussian parameters. If it is present, the
following parameters are not used.
center : (float,float)
Gaussian center (y_peak, x_peak). If None the center of the image is
used. The unit is given by the unit_center parameter (degrees by
default).
flux : float
Integrated gaussian flux or gaussian peak value if peak is True.
fwhm : (float,float)
Gaussian fwhm (fwhm_y,fwhm_x).
The unit is given by the unit_fwhm parameter (arcseconds by default).
peak : bool
If true, flux contains a gaussian peak value.
rot : float
Angle position in degree.
cont : float
Continuum value. 0 by default.
unit_center : `astropy.units.Unit`
type of the center and position coordinates.
Degrees by default (use None for coordinates in pixels).
unit_fwhm : `astropy.units.Unit`
FWHM unit. Arcseconds by default (use None for radius in pixels)
Returns
-------
out : `~mpdaf.obj.Image` | lib/mpdaf/obj/image.py | gauss_image | musevlt/mpdaf | 4 | python | def gauss_image(shape=(101, 101), wcs=None, factor=1, gauss=None, center=None, flux=1.0, fwhm=(1.0, 1.0), peak=False, rot=0.0, cont=0, unit_center=u.deg, unit_fwhm=u.arcsec, unit=u.dimensionless_unscaled):
'Create a new image from a 2D gaussian.\n\n Parameters\n ----------\n shape : int or (int,int)\n Lengths of the image in Y and X with python notation: (ny,nx).\n (101,101) by default. If wcs object contains dimensions, shape is\n ignored and wcs dimensions are used.\n wcs : `mpdaf.obj.WCS`\n World coordinates.\n factor : int\n If factor<=1, gaussian value is computed in the center of each pixel.\n If factor>1, for each pixel, gaussian value is the sum of the gaussian\n values on the factor*factor pixels divided by the pixel area.\n gauss : `mpdaf.obj.Gauss2D`\n Object that contains all Gaussian parameters. If it is present, the\n following parameters are not used.\n center : (float,float)\n Gaussian center (y_peak, x_peak). If None the center of the image is\n used. The unit is given by the unit_center parameter (degrees by\n default).\n flux : float\n Integrated gaussian flux or gaussian peak value if peak is True.\n fwhm : (float,float)\n Gaussian fwhm (fwhm_y,fwhm_x).\n The unit is given by the unit_fwhm parameter (arcseconds by default).\n peak : bool\n If true, flux contains a gaussian peak value.\n rot : float\n Angle position in degree.\n cont : float\n Continuum value. 0 by default.\n unit_center : `astropy.units.Unit`\n type of the center and position coordinates.\n Degrees by default (use None for coordinates in pixels).\n unit_fwhm : `astropy.units.Unit`\n FWHM unit. Arcseconds by default (use None for radius in pixels)\n\n Returns\n -------\n out : `~mpdaf.obj.Image`\n\n '
if is_int(shape):
shape = (shape, shape)
shape = np.array(shape)
wcs = (wcs or WCS())
if ((wcs.naxis1 == 1.0) and (wcs.naxis2 == 1.0)):
wcs.naxis1 = shape[1]
wcs.naxis2 = shape[0]
elif ((wcs.naxis1 != 0.0) or (wcs.naxis2 != 0.0)):
shape[1] = wcs.naxis1
shape[0] = wcs.naxis2
if (gauss is not None):
center = gauss.center
flux = gauss.flux
fwhm = gauss.fwhm
peak = False
rot = gauss.rot
cont = gauss.cont
if (center is None):
center = ((np.array(shape) - 1) / 2.0)
elif (unit_center is not None):
center = wcs.sky2pix(center, unit=unit_center)[0]
if (unit_fwhm is not None):
fwhm = (np.array(fwhm) / wcs.get_step(unit=unit_fwhm))
if ((fwhm[1] == 0) or (fwhm[0] == 0)):
raise ValueError('fwhm equal to 0')
p_width = (fwhm[0] * gaussian_fwhm_to_sigma)
q_width = (fwhm[1] * gaussian_fwhm_to_sigma)
theta = ((np.pi * rot) / 180.0)
if (peak is True):
norm = ((((flux * 2) * np.pi) * p_width) * q_width)
else:
norm = flux
def gauss(p, q):
cost = np.cos(theta)
sint = np.sin(theta)
xdiff = (p - center[0])
ydiff = (q - center[1])
return (((norm / (((2 * np.pi) * p_width) * q_width)) * np.exp(((- (((xdiff * cost) - (ydiff * sint)) ** 2)) / (2 * (p_width ** 2))))) * np.exp(((- (((xdiff * sint) + (ydiff * cost)) ** 2)) / (2 * (q_width ** 2)))))
if (factor > 1):
if (rot == 0):
from scipy import special
(X, Y) = np.meshgrid(range(shape[0]), range(shape[1]))
pixcrd_min = (np.array(list(zip(X.ravel(), Y.ravel()))) - 0.5)
xmin = (((pixcrd_min[(:, 1)] - center[1]) / np.sqrt(2.0)) / q_width)
ymin = (((pixcrd_min[(:, 0)] - center[0]) / np.sqrt(2.0)) / p_width)
pixcrd_max = (np.array(list(zip(X.ravel(), Y.ravel()))) + 0.5)
xmax = (((pixcrd_max[(:, 1)] - center[1]) / np.sqrt(2.0)) / q_width)
ymax = (((pixcrd_max[(:, 0)] - center[0]) / np.sqrt(2.0)) / p_width)
dx = (pixcrd_max[(:, 1)] - pixcrd_min[(:, 1)])
dy = (pixcrd_max[(:, 0)] - pixcrd_min[(:, 0)])
data = (((((norm * 0.25) / dx) / dy) * (special.erf(xmax) - special.erf(xmin))) * (special.erf(ymax) - special.erf(ymin)))
data = np.reshape(data, (shape[1], shape[0])).T
else:
(yy, xx) = (np.mgrid[(:(shape[0] * factor), :(shape[1] * factor))] / factor)
data = gauss(yy, xx)
data = data.reshape(shape[0], 2, shape[1], 2).sum(axis=(1, 3))
data /= (factor ** 2)
else:
(yy, xx) = np.mgrid[(:shape[0], :shape[1])]
data = gauss(yy, xx)
return Image(data=(data + cont), wcs=wcs, unit=unit, copy=False, dtype=None) | def gauss_image(shape=(101, 101), wcs=None, factor=1, gauss=None, center=None, flux=1.0, fwhm=(1.0, 1.0), peak=False, rot=0.0, cont=0, unit_center=u.deg, unit_fwhm=u.arcsec, unit=u.dimensionless_unscaled):
'Create a new image from a 2D gaussian.\n\n Parameters\n ----------\n shape : int or (int,int)\n Lengths of the image in Y and X with python notation: (ny,nx).\n (101,101) by default. If wcs object contains dimensions, shape is\n ignored and wcs dimensions are used.\n wcs : `mpdaf.obj.WCS`\n World coordinates.\n factor : int\n If factor<=1, gaussian value is computed in the center of each pixel.\n If factor>1, for each pixel, gaussian value is the sum of the gaussian\n values on the factor*factor pixels divided by the pixel area.\n gauss : `mpdaf.obj.Gauss2D`\n Object that contains all Gaussian parameters. If it is present, the\n following parameters are not used.\n center : (float,float)\n Gaussian center (y_peak, x_peak). If None the center of the image is\n used. The unit is given by the unit_center parameter (degrees by\n default).\n flux : float\n Integrated gaussian flux or gaussian peak value if peak is True.\n fwhm : (float,float)\n Gaussian fwhm (fwhm_y,fwhm_x).\n The unit is given by the unit_fwhm parameter (arcseconds by default).\n peak : bool\n If true, flux contains a gaussian peak value.\n rot : float\n Angle position in degree.\n cont : float\n Continuum value. 0 by default.\n unit_center : `astropy.units.Unit`\n type of the center and position coordinates.\n Degrees by default (use None for coordinates in pixels).\n unit_fwhm : `astropy.units.Unit`\n FWHM unit. Arcseconds by default (use None for radius in pixels)\n\n Returns\n -------\n out : `~mpdaf.obj.Image`\n\n '
if is_int(shape):
shape = (shape, shape)
shape = np.array(shape)
wcs = (wcs or WCS())
if ((wcs.naxis1 == 1.0) and (wcs.naxis2 == 1.0)):
wcs.naxis1 = shape[1]
wcs.naxis2 = shape[0]
elif ((wcs.naxis1 != 0.0) or (wcs.naxis2 != 0.0)):
shape[1] = wcs.naxis1
shape[0] = wcs.naxis2
if (gauss is not None):
center = gauss.center
flux = gauss.flux
fwhm = gauss.fwhm
peak = False
rot = gauss.rot
cont = gauss.cont
if (center is None):
center = ((np.array(shape) - 1) / 2.0)
elif (unit_center is not None):
center = wcs.sky2pix(center, unit=unit_center)[0]
if (unit_fwhm is not None):
fwhm = (np.array(fwhm) / wcs.get_step(unit=unit_fwhm))
if ((fwhm[1] == 0) or (fwhm[0] == 0)):
raise ValueError('fwhm equal to 0')
p_width = (fwhm[0] * gaussian_fwhm_to_sigma)
q_width = (fwhm[1] * gaussian_fwhm_to_sigma)
theta = ((np.pi * rot) / 180.0)
if (peak is True):
norm = ((((flux * 2) * np.pi) * p_width) * q_width)
else:
norm = flux
def gauss(p, q):
cost = np.cos(theta)
sint = np.sin(theta)
xdiff = (p - center[0])
ydiff = (q - center[1])
return (((norm / (((2 * np.pi) * p_width) * q_width)) * np.exp(((- (((xdiff * cost) - (ydiff * sint)) ** 2)) / (2 * (p_width ** 2))))) * np.exp(((- (((xdiff * sint) + (ydiff * cost)) ** 2)) / (2 * (q_width ** 2)))))
if (factor > 1):
if (rot == 0):
from scipy import special
(X, Y) = np.meshgrid(range(shape[0]), range(shape[1]))
pixcrd_min = (np.array(list(zip(X.ravel(), Y.ravel()))) - 0.5)
xmin = (((pixcrd_min[(:, 1)] - center[1]) / np.sqrt(2.0)) / q_width)
ymin = (((pixcrd_min[(:, 0)] - center[0]) / np.sqrt(2.0)) / p_width)
pixcrd_max = (np.array(list(zip(X.ravel(), Y.ravel()))) + 0.5)
xmax = (((pixcrd_max[(:, 1)] - center[1]) / np.sqrt(2.0)) / q_width)
ymax = (((pixcrd_max[(:, 0)] - center[0]) / np.sqrt(2.0)) / p_width)
dx = (pixcrd_max[(:, 1)] - pixcrd_min[(:, 1)])
dy = (pixcrd_max[(:, 0)] - pixcrd_min[(:, 0)])
data = (((((norm * 0.25) / dx) / dy) * (special.erf(xmax) - special.erf(xmin))) * (special.erf(ymax) - special.erf(ymin)))
data = np.reshape(data, (shape[1], shape[0])).T
else:
(yy, xx) = (np.mgrid[(:(shape[0] * factor), :(shape[1] * factor))] / factor)
data = gauss(yy, xx)
data = data.reshape(shape[0], 2, shape[1], 2).sum(axis=(1, 3))
data /= (factor ** 2)
else:
(yy, xx) = np.mgrid[(:shape[0], :shape[1])]
data = gauss(yy, xx)
return Image(data=(data + cont), wcs=wcs, unit=unit, copy=False, dtype=None)<|docstring|>Create a new image from a 2D gaussian.
Parameters
----------
shape : int or (int,int)
Lengths of the image in Y and X with python notation: (ny,nx).
(101,101) by default. If wcs object contains dimensions, shape is
ignored and wcs dimensions are used.
wcs : `mpdaf.obj.WCS`
World coordinates.
factor : int
If factor<=1, gaussian value is computed in the center of each pixel.
If factor>1, for each pixel, gaussian value is the sum of the gaussian
values on the factor*factor pixels divided by the pixel area.
gauss : `mpdaf.obj.Gauss2D`
Object that contains all Gaussian parameters. If it is present, the
following parameters are not used.
center : (float,float)
Gaussian center (y_peak, x_peak). If None the center of the image is
used. The unit is given by the unit_center parameter (degrees by
default).
flux : float
Integrated gaussian flux or gaussian peak value if peak is True.
fwhm : (float,float)
Gaussian fwhm (fwhm_y,fwhm_x).
The unit is given by the unit_fwhm parameter (arcseconds by default).
peak : bool
If true, flux contains a gaussian peak value.
rot : float
Angle position in degree.
cont : float
Continuum value. 0 by default.
unit_center : `astropy.units.Unit`
type of the center and position coordinates.
Degrees by default (use None for coordinates in pixels).
unit_fwhm : `astropy.units.Unit`
FWHM unit. Arcseconds by default (use None for radius in pixels)
Returns
-------
out : `~mpdaf.obj.Image`<|endoftext|> |
b5b3171dcf7ffebc8e9718a571758048f542faf56bd0d30d09aa15fff9c7a7ac | def moffat_image(shape=(101, 101), wcs=None, factor=1, moffat=None, center=None, flux=1.0, fwhm=(1.0, 1.0), peak=False, n=2, rot=0.0, cont=0, unit_center=u.deg, unit_fwhm=u.arcsec, unit=u.dimensionless_unscaled):
'Create a new image from a 2D Moffat function.\n\n Parameters\n ----------\n shape : int or (int,int)\n Lengths of the image in Y and X with python notation: (ny,nx).\n (101,101) by default. If wcs object contains dimensions, shape is\n ignored and wcs dimensions are used.\n wcs : `mpdaf.obj.WCS`\n World coordinates.\n factor : int\n If factor<=1, moffat value is computed in the center of each pixel.\n If factor>1, for each pixel, moffat value is the sum\n of the moffat values on the factor*factor pixels divided\n by the pixel area.\n moffat : `mpdaf.obj.Moffat2D`\n object that contains all moffat parameters.\n If it is present, following parameters are not used.\n center : (float,float)\n Peak center (x_peak, y_peak). The unit is genven byt the parameter\n unit_center (degrees by default). If None the center of the image is\n used.\n flux : float\n Integrated gaussian flux or gaussian peak value\n if peak is True.\n fwhm : (float,float)\n Gaussian fwhm (fwhm_y,fwhm_x).\n The unit is given by the parameter unit_fwhm (arcseconds by default)\n peak : bool\n If true, flux contains a gaussian peak value.\n n : int\n Atmospheric scattering coefficient. 2 by default.\n rot : float\n Angle position in degree.\n cont : float\n Continuum value. 0 by default.\n unit_center : `astropy.units.Unit`\n type of the center and position coordinates.\n Degrees by default (use None for coordinates in pixels).\n unit_fwhm : `astropy.units.Unit`\n FWHM unit. Arcseconds by default (use None for radius in pixels)\n\n Returns\n -------\n out : `~mpdaf.obj.Image`\n\n '
n = float(n)
if is_int(shape):
shape = (shape, shape)
shape = np.array(shape)
wcs = (wcs or WCS())
if ((wcs.naxis1 == 1.0) and (wcs.naxis2 == 1.0)):
wcs.naxis1 = shape[1]
wcs.naxis2 = shape[0]
elif ((wcs.naxis1 != 0.0) or (wcs.naxis2 != 0.0)):
shape[1] = wcs.naxis1
shape[0] = wcs.naxis2
if (moffat is not None):
center = moffat.center
flux = moffat.flux
fwhm = moffat.fwhm
peak = False
n = moffat.n
rot = moffat.rot
cont = moffat.cont
fwhm = np.array(fwhm)
a = (fwhm[0] / (2 * np.sqrt(((2 ** (1.0 / n)) - 1.0))))
e = (fwhm[1] / fwhm[0])
if (unit_fwhm is not None):
a = (a / wcs.get_step(unit=unit_fwhm)[0])
if peak:
norm = flux
else:
norm = ((flux * (n - 1)) / (((np.pi * a) * a) * e))
if (center is None):
center = np.array([((shape[0] - 1) / 2.0), ((shape[1] - 1) / 2.0)])
elif (unit_center is not None):
center = wcs.sky2pix(center, unit=unit_center)[0]
theta = ((np.pi * rot) / 180.0)
def moffat(p, q):
cost = np.cos(theta)
sint = np.sin(theta)
xdiff = (p - center[0])
ydiff = (q - center[1])
return (norm * (((1 + ((((xdiff * cost) - (ydiff * sint)) / a) ** 2)) + (((((xdiff * sint) + (ydiff * cost)) / a) / e) ** 2)) ** (- n)))
if (factor > 1):
(X, Y) = np.meshgrid(range((shape[0] * factor)), range((shape[1] * factor)))
factor = float(factor)
pixcrd = np.array(list(zip((X.ravel() / factor), (Y.ravel() / factor))))
data = moffat(pixcrd[(:, 0)], pixcrd[(:, 1)])
data = ((data.reshape(shape[1], factor, shape[0], factor).sum(1).sum(2) / factor) / factor).T
else:
(yy, xx) = np.mgrid[(:shape[0], :shape[1])]
data = moffat(yy, xx)
return Image(data=(data + cont), wcs=wcs, unit=unit, copy=False, dtype=None) | Create a new image from a 2D Moffat function.
Parameters
----------
shape : int or (int,int)
Lengths of the image in Y and X with python notation: (ny,nx).
(101,101) by default. If wcs object contains dimensions, shape is
ignored and wcs dimensions are used.
wcs : `mpdaf.obj.WCS`
World coordinates.
factor : int
If factor<=1, moffat value is computed in the center of each pixel.
If factor>1, for each pixel, moffat value is the sum
of the moffat values on the factor*factor pixels divided
by the pixel area.
moffat : `mpdaf.obj.Moffat2D`
object that contains all moffat parameters.
If it is present, following parameters are not used.
center : (float,float)
Peak center (x_peak, y_peak). The unit is genven byt the parameter
unit_center (degrees by default). If None the center of the image is
used.
flux : float
Integrated gaussian flux or gaussian peak value
if peak is True.
fwhm : (float,float)
Gaussian fwhm (fwhm_y,fwhm_x).
The unit is given by the parameter unit_fwhm (arcseconds by default)
peak : bool
If true, flux contains a gaussian peak value.
n : int
Atmospheric scattering coefficient. 2 by default.
rot : float
Angle position in degree.
cont : float
Continuum value. 0 by default.
unit_center : `astropy.units.Unit`
type of the center and position coordinates.
Degrees by default (use None for coordinates in pixels).
unit_fwhm : `astropy.units.Unit`
FWHM unit. Arcseconds by default (use None for radius in pixels)
Returns
-------
out : `~mpdaf.obj.Image` | lib/mpdaf/obj/image.py | moffat_image | musevlt/mpdaf | 4 | python | def moffat_image(shape=(101, 101), wcs=None, factor=1, moffat=None, center=None, flux=1.0, fwhm=(1.0, 1.0), peak=False, n=2, rot=0.0, cont=0, unit_center=u.deg, unit_fwhm=u.arcsec, unit=u.dimensionless_unscaled):
'Create a new image from a 2D Moffat function.\n\n Parameters\n ----------\n shape : int or (int,int)\n Lengths of the image in Y and X with python notation: (ny,nx).\n (101,101) by default. If wcs object contains dimensions, shape is\n ignored and wcs dimensions are used.\n wcs : `mpdaf.obj.WCS`\n World coordinates.\n factor : int\n If factor<=1, moffat value is computed in the center of each pixel.\n If factor>1, for each pixel, moffat value is the sum\n of the moffat values on the factor*factor pixels divided\n by the pixel area.\n moffat : `mpdaf.obj.Moffat2D`\n object that contains all moffat parameters.\n If it is present, following parameters are not used.\n center : (float,float)\n Peak center (x_peak, y_peak). The unit is genven byt the parameter\n unit_center (degrees by default). If None the center of the image is\n used.\n flux : float\n Integrated gaussian flux or gaussian peak value\n if peak is True.\n fwhm : (float,float)\n Gaussian fwhm (fwhm_y,fwhm_x).\n The unit is given by the parameter unit_fwhm (arcseconds by default)\n peak : bool\n If true, flux contains a gaussian peak value.\n n : int\n Atmospheric scattering coefficient. 2 by default.\n rot : float\n Angle position in degree.\n cont : float\n Continuum value. 0 by default.\n unit_center : `astropy.units.Unit`\n type of the center and position coordinates.\n Degrees by default (use None for coordinates in pixels).\n unit_fwhm : `astropy.units.Unit`\n FWHM unit. Arcseconds by default (use None for radius in pixels)\n\n Returns\n -------\n out : `~mpdaf.obj.Image`\n\n '
n = float(n)
if is_int(shape):
shape = (shape, shape)
shape = np.array(shape)
wcs = (wcs or WCS())
if ((wcs.naxis1 == 1.0) and (wcs.naxis2 == 1.0)):
wcs.naxis1 = shape[1]
wcs.naxis2 = shape[0]
elif ((wcs.naxis1 != 0.0) or (wcs.naxis2 != 0.0)):
shape[1] = wcs.naxis1
shape[0] = wcs.naxis2
if (moffat is not None):
center = moffat.center
flux = moffat.flux
fwhm = moffat.fwhm
peak = False
n = moffat.n
rot = moffat.rot
cont = moffat.cont
fwhm = np.array(fwhm)
a = (fwhm[0] / (2 * np.sqrt(((2 ** (1.0 / n)) - 1.0))))
e = (fwhm[1] / fwhm[0])
if (unit_fwhm is not None):
a = (a / wcs.get_step(unit=unit_fwhm)[0])
if peak:
norm = flux
else:
norm = ((flux * (n - 1)) / (((np.pi * a) * a) * e))
if (center is None):
center = np.array([((shape[0] - 1) / 2.0), ((shape[1] - 1) / 2.0)])
elif (unit_center is not None):
center = wcs.sky2pix(center, unit=unit_center)[0]
theta = ((np.pi * rot) / 180.0)
def moffat(p, q):
cost = np.cos(theta)
sint = np.sin(theta)
xdiff = (p - center[0])
ydiff = (q - center[1])
return (norm * (((1 + ((((xdiff * cost) - (ydiff * sint)) / a) ** 2)) + (((((xdiff * sint) + (ydiff * cost)) / a) / e) ** 2)) ** (- n)))
if (factor > 1):
(X, Y) = np.meshgrid(range((shape[0] * factor)), range((shape[1] * factor)))
factor = float(factor)
pixcrd = np.array(list(zip((X.ravel() / factor), (Y.ravel() / factor))))
data = moffat(pixcrd[(:, 0)], pixcrd[(:, 1)])
data = ((data.reshape(shape[1], factor, shape[0], factor).sum(1).sum(2) / factor) / factor).T
else:
(yy, xx) = np.mgrid[(:shape[0], :shape[1])]
data = moffat(yy, xx)
return Image(data=(data + cont), wcs=wcs, unit=unit, copy=False, dtype=None) | def moffat_image(shape=(101, 101), wcs=None, factor=1, moffat=None, center=None, flux=1.0, fwhm=(1.0, 1.0), peak=False, n=2, rot=0.0, cont=0, unit_center=u.deg, unit_fwhm=u.arcsec, unit=u.dimensionless_unscaled):
'Create a new image from a 2D Moffat function.\n\n Parameters\n ----------\n shape : int or (int,int)\n Lengths of the image in Y and X with python notation: (ny,nx).\n (101,101) by default. If wcs object contains dimensions, shape is\n ignored and wcs dimensions are used.\n wcs : `mpdaf.obj.WCS`\n World coordinates.\n factor : int\n If factor<=1, moffat value is computed in the center of each pixel.\n If factor>1, for each pixel, moffat value is the sum\n of the moffat values on the factor*factor pixels divided\n by the pixel area.\n moffat : `mpdaf.obj.Moffat2D`\n object that contains all moffat parameters.\n If it is present, following parameters are not used.\n center : (float,float)\n Peak center (x_peak, y_peak). The unit is genven byt the parameter\n unit_center (degrees by default). If None the center of the image is\n used.\n flux : float\n Integrated gaussian flux or gaussian peak value\n if peak is True.\n fwhm : (float,float)\n Gaussian fwhm (fwhm_y,fwhm_x).\n The unit is given by the parameter unit_fwhm (arcseconds by default)\n peak : bool\n If true, flux contains a gaussian peak value.\n n : int\n Atmospheric scattering coefficient. 2 by default.\n rot : float\n Angle position in degree.\n cont : float\n Continuum value. 0 by default.\n unit_center : `astropy.units.Unit`\n type of the center and position coordinates.\n Degrees by default (use None for coordinates in pixels).\n unit_fwhm : `astropy.units.Unit`\n FWHM unit. Arcseconds by default (use None for radius in pixels)\n\n Returns\n -------\n out : `~mpdaf.obj.Image`\n\n '
n = float(n)
if is_int(shape):
shape = (shape, shape)
shape = np.array(shape)
wcs = (wcs or WCS())
if ((wcs.naxis1 == 1.0) and (wcs.naxis2 == 1.0)):
wcs.naxis1 = shape[1]
wcs.naxis2 = shape[0]
elif ((wcs.naxis1 != 0.0) or (wcs.naxis2 != 0.0)):
shape[1] = wcs.naxis1
shape[0] = wcs.naxis2
if (moffat is not None):
center = moffat.center
flux = moffat.flux
fwhm = moffat.fwhm
peak = False
n = moffat.n
rot = moffat.rot
cont = moffat.cont
fwhm = np.array(fwhm)
a = (fwhm[0] / (2 * np.sqrt(((2 ** (1.0 / n)) - 1.0))))
e = (fwhm[1] / fwhm[0])
if (unit_fwhm is not None):
a = (a / wcs.get_step(unit=unit_fwhm)[0])
if peak:
norm = flux
else:
norm = ((flux * (n - 1)) / (((np.pi * a) * a) * e))
if (center is None):
center = np.array([((shape[0] - 1) / 2.0), ((shape[1] - 1) / 2.0)])
elif (unit_center is not None):
center = wcs.sky2pix(center, unit=unit_center)[0]
theta = ((np.pi * rot) / 180.0)
def moffat(p, q):
cost = np.cos(theta)
sint = np.sin(theta)
xdiff = (p - center[0])
ydiff = (q - center[1])
return (norm * (((1 + ((((xdiff * cost) - (ydiff * sint)) / a) ** 2)) + (((((xdiff * sint) + (ydiff * cost)) / a) / e) ** 2)) ** (- n)))
if (factor > 1):
(X, Y) = np.meshgrid(range((shape[0] * factor)), range((shape[1] * factor)))
factor = float(factor)
pixcrd = np.array(list(zip((X.ravel() / factor), (Y.ravel() / factor))))
data = moffat(pixcrd[(:, 0)], pixcrd[(:, 1)])
data = ((data.reshape(shape[1], factor, shape[0], factor).sum(1).sum(2) / factor) / factor).T
else:
(yy, xx) = np.mgrid[(:shape[0], :shape[1])]
data = moffat(yy, xx)
return Image(data=(data + cont), wcs=wcs, unit=unit, copy=False, dtype=None)<|docstring|>Create a new image from a 2D Moffat function.
Parameters
----------
shape : int or (int,int)
Lengths of the image in Y and X with python notation: (ny,nx).
(101,101) by default. If wcs object contains dimensions, shape is
ignored and wcs dimensions are used.
wcs : `mpdaf.obj.WCS`
World coordinates.
factor : int
If factor<=1, moffat value is computed in the center of each pixel.
If factor>1, for each pixel, moffat value is the sum
of the moffat values on the factor*factor pixels divided
by the pixel area.
moffat : `mpdaf.obj.Moffat2D`
object that contains all moffat parameters.
If it is present, following parameters are not used.
center : (float,float)
Peak center (x_peak, y_peak). The unit is genven byt the parameter
unit_center (degrees by default). If None the center of the image is
used.
flux : float
Integrated gaussian flux or gaussian peak value
if peak is True.
fwhm : (float,float)
Gaussian fwhm (fwhm_y,fwhm_x).
The unit is given by the parameter unit_fwhm (arcseconds by default)
peak : bool
If true, flux contains a gaussian peak value.
n : int
Atmospheric scattering coefficient. 2 by default.
rot : float
Angle position in degree.
cont : float
Continuum value. 0 by default.
unit_center : `astropy.units.Unit`
type of the center and position coordinates.
Degrees by default (use None for coordinates in pixels).
unit_fwhm : `astropy.units.Unit`
FWHM unit. Arcseconds by default (use None for radius in pixels)
Returns
-------
out : `~mpdaf.obj.Image`<|endoftext|> |
1313520c0591c3193254dbb398ca62ac5a02f9d5c84dd4d64add07d7b94bc2b6 | def _antialias_filter_image(data, oldstep, newstep, oldfmax=None, window='blackman'):
'Apply an anti-aliasing prefilter to an image to prepare\n it for subsampling.\n\n Parameters\n ----------\n data : np.ndimage\n The 2D image to be filtered.\n oldstep: float or (float, float)\n The cell size of the input image. This can be a single\n number for both the X and Y axes, or it can be two\n numbers in an iterable, ordered like (ystep,xstep)\n newstep: float or (float, float)\n The cell size of the output image. This can be a single\n number for both the X and Y axes, or it can be two\n numbers in an iterable, ordered like (ystep,xstep)\n oldfmax : float,float or None\n When an image has previously been filtered, this\n argument can be used to indicate the frequency cutoffs\n that were applied at that time along the Y and X axes,\n respectively, in units of cycles per the unit of oldstep\n and newstep. Image axes that have already been sufficiently\n filtered will then not be refiltered redundantly. If no\n band-limits have previously been established, pass this\n argument as None.\n window : str\n The type of window function to use to filter the\n FFT, chosen from:\n\n blackman\n This window suppresses ringing better than any other\n window, at the expense of lowered image resolution. In\n the image plane, the PSF of this window is\n approximately gaussian, with a standard deviation of\n around 0.96*newstep, and a FWHM of about 2.3*newstep.\n\n gaussian\n A truncated gaussian window. This has a smaller PSF\n than the blackman window, however gaussians never fall\n to zero, so either significant ringing will be seen due\n to truncation of the gaussian, or low-level aliasing\n will occur, depending on the spatial frequency coverage\n of the image beyond the folding frequency. It can be a\n good choice for images that only contain smoothly\n varying features. It is equivalent to a convolution of\n the image with both an airy profile and a gaussian of\n standard deviation 0.724*newstep (FWHM 1.704*newstep).\n\n rectangle\n This window simply zeros all spatial frequencies above\n the highest that can be correctly sampled by the new\n pixel size. This gives the best resolution of any of\n the windows, but this is marred by the strong sidelobes\n of the resulting airy-profile, especially near bright\n point sources and CCD saturation lines.\n\n Returns\n -------\n out : numpy.ndarray, numpy.ndarray\n The filtered version of the 2D input image, followed by\n a 2-element array that contains the new band-limits\n along the Y and X axes, respectively.\n\n '
if is_number(oldstep):
oldstep = (oldstep, oldstep)
oldstep = abs(np.asarray(oldstep, dtype=float))
if is_number(newstep):
newstep = (newstep, newstep)
newstep = abs(np.asarray(newstep, dtype=float))
if (oldfmax is None):
oldfmax = (0.5 / oldstep)
else:
oldfmax = np.minimum(oldfmax, (0.5 / oldstep))
newfmax = (0.5 / newstep)
filter_axes = (newfmax < oldfmax)
if np.all(np.logical_not(filter_axes)):
return (data, oldfmax)
image_slice = (slice(0, data.shape[0]), slice(0, data.shape[1]))
shape = (2 ** np.ceil((np.log(np.asarray(data.shape)) / np.log(2.0))).astype(int))
if ((data.shape[0] != shape[0]) or (data.shape[1] != shape[1])):
tmp = np.zeros(shape)
tmp[image_slice] = data
data = tmp
(ny, nx) = shape
fft = np.fft.rfft2(data)
del data
(fycut, fxcut) = newfmax
wr = np.sqrt((((np.fft.rfftfreq(nx, oldstep[1]) / fxcut) ** 2) + ((np.fft.fftfreq(ny, oldstep[0]) / fycut)[(np.newaxis, :)].T ** 2)))
if ((window is None) or (window == 'blackman')):
winfn = (lambda r: np.where((r <= 1.0), ((0.42 + (0.5 * np.cos((np.pi * r)))) + (0.08 * np.cos(((2 * np.pi) * r)))), 0.0))
elif (window == 'gaussian'):
sigma = 0.44
winfn = (lambda r: np.exp(((- 0.5) * ((r / sigma) ** 2))))
elif (window == 'rectangle'):
winfn = (lambda r: np.where((r <= 1.0), 1.0, 0.0))
fft *= winfn(wr)
del wr
data = np.fft.irfft2(fft)
del fft
return (data[image_slice], np.where(filter_axes, newfmax, oldfmax)) | Apply an anti-aliasing prefilter to an image to prepare
it for subsampling.
Parameters
----------
data : np.ndimage
The 2D image to be filtered.
oldstep: float or (float, float)
The cell size of the input image. This can be a single
number for both the X and Y axes, or it can be two
numbers in an iterable, ordered like (ystep,xstep)
newstep: float or (float, float)
The cell size of the output image. This can be a single
number for both the X and Y axes, or it can be two
numbers in an iterable, ordered like (ystep,xstep)
oldfmax : float,float or None
When an image has previously been filtered, this
argument can be used to indicate the frequency cutoffs
that were applied at that time along the Y and X axes,
respectively, in units of cycles per the unit of oldstep
and newstep. Image axes that have already been sufficiently
filtered will then not be refiltered redundantly. If no
band-limits have previously been established, pass this
argument as None.
window : str
The type of window function to use to filter the
FFT, chosen from:
blackman
This window suppresses ringing better than any other
window, at the expense of lowered image resolution. In
the image plane, the PSF of this window is
approximately gaussian, with a standard deviation of
around 0.96*newstep, and a FWHM of about 2.3*newstep.
gaussian
A truncated gaussian window. This has a smaller PSF
than the blackman window, however gaussians never fall
to zero, so either significant ringing will be seen due
to truncation of the gaussian, or low-level aliasing
will occur, depending on the spatial frequency coverage
of the image beyond the folding frequency. It can be a
good choice for images that only contain smoothly
varying features. It is equivalent to a convolution of
the image with both an airy profile and a gaussian of
standard deviation 0.724*newstep (FWHM 1.704*newstep).
rectangle
This window simply zeros all spatial frequencies above
the highest that can be correctly sampled by the new
pixel size. This gives the best resolution of any of
the windows, but this is marred by the strong sidelobes
of the resulting airy-profile, especially near bright
point sources and CCD saturation lines.
Returns
-------
out : numpy.ndarray, numpy.ndarray
The filtered version of the 2D input image, followed by
a 2-element array that contains the new band-limits
along the Y and X axes, respectively. | lib/mpdaf/obj/image.py | _antialias_filter_image | musevlt/mpdaf | 4 | python | def _antialias_filter_image(data, oldstep, newstep, oldfmax=None, window='blackman'):
'Apply an anti-aliasing prefilter to an image to prepare\n it for subsampling.\n\n Parameters\n ----------\n data : np.ndimage\n The 2D image to be filtered.\n oldstep: float or (float, float)\n The cell size of the input image. This can be a single\n number for both the X and Y axes, or it can be two\n numbers in an iterable, ordered like (ystep,xstep)\n newstep: float or (float, float)\n The cell size of the output image. This can be a single\n number for both the X and Y axes, or it can be two\n numbers in an iterable, ordered like (ystep,xstep)\n oldfmax : float,float or None\n When an image has previously been filtered, this\n argument can be used to indicate the frequency cutoffs\n that were applied at that time along the Y and X axes,\n respectively, in units of cycles per the unit of oldstep\n and newstep. Image axes that have already been sufficiently\n filtered will then not be refiltered redundantly. If no\n band-limits have previously been established, pass this\n argument as None.\n window : str\n The type of window function to use to filter the\n FFT, chosen from:\n\n blackman\n This window suppresses ringing better than any other\n window, at the expense of lowered image resolution. In\n the image plane, the PSF of this window is\n approximately gaussian, with a standard deviation of\n around 0.96*newstep, and a FWHM of about 2.3*newstep.\n\n gaussian\n A truncated gaussian window. This has a smaller PSF\n than the blackman window, however gaussians never fall\n to zero, so either significant ringing will be seen due\n to truncation of the gaussian, or low-level aliasing\n will occur, depending on the spatial frequency coverage\n of the image beyond the folding frequency. It can be a\n good choice for images that only contain smoothly\n varying features. It is equivalent to a convolution of\n the image with both an airy profile and a gaussian of\n standard deviation 0.724*newstep (FWHM 1.704*newstep).\n\n rectangle\n This window simply zeros all spatial frequencies above\n the highest that can be correctly sampled by the new\n pixel size. This gives the best resolution of any of\n the windows, but this is marred by the strong sidelobes\n of the resulting airy-profile, especially near bright\n point sources and CCD saturation lines.\n\n Returns\n -------\n out : numpy.ndarray, numpy.ndarray\n The filtered version of the 2D input image, followed by\n a 2-element array that contains the new band-limits\n along the Y and X axes, respectively.\n\n '
if is_number(oldstep):
oldstep = (oldstep, oldstep)
oldstep = abs(np.asarray(oldstep, dtype=float))
if is_number(newstep):
newstep = (newstep, newstep)
newstep = abs(np.asarray(newstep, dtype=float))
if (oldfmax is None):
oldfmax = (0.5 / oldstep)
else:
oldfmax = np.minimum(oldfmax, (0.5 / oldstep))
newfmax = (0.5 / newstep)
filter_axes = (newfmax < oldfmax)
if np.all(np.logical_not(filter_axes)):
return (data, oldfmax)
image_slice = (slice(0, data.shape[0]), slice(0, data.shape[1]))
shape = (2 ** np.ceil((np.log(np.asarray(data.shape)) / np.log(2.0))).astype(int))
if ((data.shape[0] != shape[0]) or (data.shape[1] != shape[1])):
tmp = np.zeros(shape)
tmp[image_slice] = data
data = tmp
(ny, nx) = shape
fft = np.fft.rfft2(data)
del data
(fycut, fxcut) = newfmax
wr = np.sqrt((((np.fft.rfftfreq(nx, oldstep[1]) / fxcut) ** 2) + ((np.fft.fftfreq(ny, oldstep[0]) / fycut)[(np.newaxis, :)].T ** 2)))
if ((window is None) or (window == 'blackman')):
winfn = (lambda r: np.where((r <= 1.0), ((0.42 + (0.5 * np.cos((np.pi * r)))) + (0.08 * np.cos(((2 * np.pi) * r)))), 0.0))
elif (window == 'gaussian'):
sigma = 0.44
winfn = (lambda r: np.exp(((- 0.5) * ((r / sigma) ** 2))))
elif (window == 'rectangle'):
winfn = (lambda r: np.where((r <= 1.0), 1.0, 0.0))
fft *= winfn(wr)
del wr
data = np.fft.irfft2(fft)
del fft
return (data[image_slice], np.where(filter_axes, newfmax, oldfmax)) | def _antialias_filter_image(data, oldstep, newstep, oldfmax=None, window='blackman'):
'Apply an anti-aliasing prefilter to an image to prepare\n it for subsampling.\n\n Parameters\n ----------\n data : np.ndimage\n The 2D image to be filtered.\n oldstep: float or (float, float)\n The cell size of the input image. This can be a single\n number for both the X and Y axes, or it can be two\n numbers in an iterable, ordered like (ystep,xstep)\n newstep: float or (float, float)\n The cell size of the output image. This can be a single\n number for both the X and Y axes, or it can be two\n numbers in an iterable, ordered like (ystep,xstep)\n oldfmax : float,float or None\n When an image has previously been filtered, this\n argument can be used to indicate the frequency cutoffs\n that were applied at that time along the Y and X axes,\n respectively, in units of cycles per the unit of oldstep\n and newstep. Image axes that have already been sufficiently\n filtered will then not be refiltered redundantly. If no\n band-limits have previously been established, pass this\n argument as None.\n window : str\n The type of window function to use to filter the\n FFT, chosen from:\n\n blackman\n This window suppresses ringing better than any other\n window, at the expense of lowered image resolution. In\n the image plane, the PSF of this window is\n approximately gaussian, with a standard deviation of\n around 0.96*newstep, and a FWHM of about 2.3*newstep.\n\n gaussian\n A truncated gaussian window. This has a smaller PSF\n than the blackman window, however gaussians never fall\n to zero, so either significant ringing will be seen due\n to truncation of the gaussian, or low-level aliasing\n will occur, depending on the spatial frequency coverage\n of the image beyond the folding frequency. It can be a\n good choice for images that only contain smoothly\n varying features. It is equivalent to a convolution of\n the image with both an airy profile and a gaussian of\n standard deviation 0.724*newstep (FWHM 1.704*newstep).\n\n rectangle\n This window simply zeros all spatial frequencies above\n the highest that can be correctly sampled by the new\n pixel size. This gives the best resolution of any of\n the windows, but this is marred by the strong sidelobes\n of the resulting airy-profile, especially near bright\n point sources and CCD saturation lines.\n\n Returns\n -------\n out : numpy.ndarray, numpy.ndarray\n The filtered version of the 2D input image, followed by\n a 2-element array that contains the new band-limits\n along the Y and X axes, respectively.\n\n '
if is_number(oldstep):
oldstep = (oldstep, oldstep)
oldstep = abs(np.asarray(oldstep, dtype=float))
if is_number(newstep):
newstep = (newstep, newstep)
newstep = abs(np.asarray(newstep, dtype=float))
if (oldfmax is None):
oldfmax = (0.5 / oldstep)
else:
oldfmax = np.minimum(oldfmax, (0.5 / oldstep))
newfmax = (0.5 / newstep)
filter_axes = (newfmax < oldfmax)
if np.all(np.logical_not(filter_axes)):
return (data, oldfmax)
image_slice = (slice(0, data.shape[0]), slice(0, data.shape[1]))
shape = (2 ** np.ceil((np.log(np.asarray(data.shape)) / np.log(2.0))).astype(int))
if ((data.shape[0] != shape[0]) or (data.shape[1] != shape[1])):
tmp = np.zeros(shape)
tmp[image_slice] = data
data = tmp
(ny, nx) = shape
fft = np.fft.rfft2(data)
del data
(fycut, fxcut) = newfmax
wr = np.sqrt((((np.fft.rfftfreq(nx, oldstep[1]) / fxcut) ** 2) + ((np.fft.fftfreq(ny, oldstep[0]) / fycut)[(np.newaxis, :)].T ** 2)))
if ((window is None) or (window == 'blackman')):
winfn = (lambda r: np.where((r <= 1.0), ((0.42 + (0.5 * np.cos((np.pi * r)))) + (0.08 * np.cos(((2 * np.pi) * r)))), 0.0))
elif (window == 'gaussian'):
sigma = 0.44
winfn = (lambda r: np.exp(((- 0.5) * ((r / sigma) ** 2))))
elif (window == 'rectangle'):
winfn = (lambda r: np.where((r <= 1.0), 1.0, 0.0))
fft *= winfn(wr)
del wr
data = np.fft.irfft2(fft)
del fft
return (data[image_slice], np.where(filter_axes, newfmax, oldfmax))<|docstring|>Apply an anti-aliasing prefilter to an image to prepare
it for subsampling.
Parameters
----------
data : np.ndimage
The 2D image to be filtered.
oldstep: float or (float, float)
The cell size of the input image. This can be a single
number for both the X and Y axes, or it can be two
numbers in an iterable, ordered like (ystep,xstep)
newstep: float or (float, float)
The cell size of the output image. This can be a single
number for both the X and Y axes, or it can be two
numbers in an iterable, ordered like (ystep,xstep)
oldfmax : float,float or None
When an image has previously been filtered, this
argument can be used to indicate the frequency cutoffs
that were applied at that time along the Y and X axes,
respectively, in units of cycles per the unit of oldstep
and newstep. Image axes that have already been sufficiently
filtered will then not be refiltered redundantly. If no
band-limits have previously been established, pass this
argument as None.
window : str
The type of window function to use to filter the
FFT, chosen from:
blackman
This window suppresses ringing better than any other
window, at the expense of lowered image resolution. In
the image plane, the PSF of this window is
approximately gaussian, with a standard deviation of
around 0.96*newstep, and a FWHM of about 2.3*newstep.
gaussian
A truncated gaussian window. This has a smaller PSF
than the blackman window, however gaussians never fall
to zero, so either significant ringing will be seen due
to truncation of the gaussian, or low-level aliasing
will occur, depending on the spatial frequency coverage
of the image beyond the folding frequency. It can be a
good choice for images that only contain smoothly
varying features. It is equivalent to a convolution of
the image with both an airy profile and a gaussian of
standard deviation 0.724*newstep (FWHM 1.704*newstep).
rectangle
This window simply zeros all spatial frequencies above
the highest that can be correctly sampled by the new
pixel size. This gives the best resolution of any of
the windows, but this is marred by the strong sidelobes
of the resulting airy-profile, especially near bright
point sources and CCD saturation lines.
Returns
-------
out : numpy.ndarray, numpy.ndarray
The filtered version of the 2D input image, followed by
a 2-element array that contains the new band-limits
along the Y and X axes, respectively.<|endoftext|> |
c1a791cef8948a940b891e6a6069c481066dbdf914d966a2568fdc4e8284d196 | def _find_quadratic_peak(y):
'Given an array of 3 numbers in which the first and last numbers are\n less than the central number, determine the array index at which a\n quadratic curve through the 3 points reaches its peak value.\n\n Parameters\n ----------\n y : float,float,float\n The values of the curve at x=0,1,2 respectively. Note that y[1]\n must be greater than both y[0] and y[2]. Otherwise +/- infinity\n will be returned.\n\n Returns\n -------\n xpeak : float\n The floating point array index of the peak of the quadratic. This\n will always be in the range 0.0 to 2.0, provided that y[0]<y[1] and\n y[2]<y[1].\n\n '
a = (((0.5 * y[0]) - y[1]) + (0.5 * y[2]))
b = ((((- 1.5) * y[0]) + (2.0 * y[1])) - (0.5 * y[2]))
return ((- b) / (2 * a)) | Given an array of 3 numbers in which the first and last numbers are
less than the central number, determine the array index at which a
quadratic curve through the 3 points reaches its peak value.
Parameters
----------
y : float,float,float
The values of the curve at x=0,1,2 respectively. Note that y[1]
must be greater than both y[0] and y[2]. Otherwise +/- infinity
will be returned.
Returns
-------
xpeak : float
The floating point array index of the peak of the quadratic. This
will always be in the range 0.0 to 2.0, provided that y[0]<y[1] and
y[2]<y[1]. | lib/mpdaf/obj/image.py | _find_quadratic_peak | musevlt/mpdaf | 4 | python | def _find_quadratic_peak(y):
'Given an array of 3 numbers in which the first and last numbers are\n less than the central number, determine the array index at which a\n quadratic curve through the 3 points reaches its peak value.\n\n Parameters\n ----------\n y : float,float,float\n The values of the curve at x=0,1,2 respectively. Note that y[1]\n must be greater than both y[0] and y[2]. Otherwise +/- infinity\n will be returned.\n\n Returns\n -------\n xpeak : float\n The floating point array index of the peak of the quadratic. This\n will always be in the range 0.0 to 2.0, provided that y[0]<y[1] and\n y[2]<y[1].\n\n '
a = (((0.5 * y[0]) - y[1]) + (0.5 * y[2]))
b = ((((- 1.5) * y[0]) + (2.0 * y[1])) - (0.5 * y[2]))
return ((- b) / (2 * a)) | def _find_quadratic_peak(y):
'Given an array of 3 numbers in which the first and last numbers are\n less than the central number, determine the array index at which a\n quadratic curve through the 3 points reaches its peak value.\n\n Parameters\n ----------\n y : float,float,float\n The values of the curve at x=0,1,2 respectively. Note that y[1]\n must be greater than both y[0] and y[2]. Otherwise +/- infinity\n will be returned.\n\n Returns\n -------\n xpeak : float\n The floating point array index of the peak of the quadratic. This\n will always be in the range 0.0 to 2.0, provided that y[0]<y[1] and\n y[2]<y[1].\n\n '
a = (((0.5 * y[0]) - y[1]) + (0.5 * y[2]))
b = ((((- 1.5) * y[0]) + (2.0 * y[1])) - (0.5 * y[2]))
return ((- b) / (2 * a))<|docstring|>Given an array of 3 numbers in which the first and last numbers are
less than the central number, determine the array index at which a
quadratic curve through the 3 points reaches its peak value.
Parameters
----------
y : float,float,float
The values of the curve at x=0,1,2 respectively. Note that y[1]
must be greater than both y[0] and y[2]. Otherwise +/- infinity
will be returned.
Returns
-------
xpeak : float
The floating point array index of the peak of the quadratic. This
will always be in the range 0.0 to 2.0, provided that y[0]<y[1] and
y[2]<y[1].<|endoftext|> |
7199eaf312bdc4c3be02558bfd77f2bbca402f06de164fa755fb8f3012da852c | def copy(self):
'Return a new copy of an Image object.'
obj = super(Image, self).copy()
if (self._spflims is not None):
obj._spflims = self._spflims.deepcopy()
return obj | Return a new copy of an Image object. | lib/mpdaf/obj/image.py | copy | musevlt/mpdaf | 4 | python | def copy(self):
obj = super(Image, self).copy()
if (self._spflims is not None):
obj._spflims = self._spflims.deepcopy()
return obj | def copy(self):
obj = super(Image, self).copy()
if (self._spflims is not None):
obj._spflims = self._spflims.deepcopy()
return obj<|docstring|>Return a new copy of an Image object.<|endoftext|> |
fff9857ada8dddfa7f79900053d75831166c80fd2f6e12568e973203d20ddd5e | def get_step(self, unit=None):
"Return the angular height and width of a pixel along the\n Y and X axes of the image array.\n\n In MPDAF, images are sampled on a regular grid of square\n pixels that represent a flat projection of the celestial\n sphere. The get_step() method returns the angular width and\n height of these pixels on the sky.\n\n See also get_axis_increments().\n\n Parameters\n ----------\n unit : `astropy.units.Unit`\n The angular units of the returned values.\n\n Returns\n -------\n out : numpy.ndarray\n (dy,dx). These are the angular height and width of pixels\n along the Y and X axes of the image. The returned values are\n either in the unit specified by the 'unit' input parameter,\n or in the unit specified by the self.unit property.\n "
if (self.wcs is not None):
return self.wcs.get_step(unit) | Return the angular height and width of a pixel along the
Y and X axes of the image array.
In MPDAF, images are sampled on a regular grid of square
pixels that represent a flat projection of the celestial
sphere. The get_step() method returns the angular width and
height of these pixels on the sky.
See also get_axis_increments().
Parameters
----------
unit : `astropy.units.Unit`
The angular units of the returned values.
Returns
-------
out : numpy.ndarray
(dy,dx). These are the angular height and width of pixels
along the Y and X axes of the image. The returned values are
either in the unit specified by the 'unit' input parameter,
or in the unit specified by the self.unit property. | lib/mpdaf/obj/image.py | get_step | musevlt/mpdaf | 4 | python | def get_step(self, unit=None):
"Return the angular height and width of a pixel along the\n Y and X axes of the image array.\n\n In MPDAF, images are sampled on a regular grid of square\n pixels that represent a flat projection of the celestial\n sphere. The get_step() method returns the angular width and\n height of these pixels on the sky.\n\n See also get_axis_increments().\n\n Parameters\n ----------\n unit : `astropy.units.Unit`\n The angular units of the returned values.\n\n Returns\n -------\n out : numpy.ndarray\n (dy,dx). These are the angular height and width of pixels\n along the Y and X axes of the image. The returned values are\n either in the unit specified by the 'unit' input parameter,\n or in the unit specified by the self.unit property.\n "
if (self.wcs is not None):
return self.wcs.get_step(unit) | def get_step(self, unit=None):
"Return the angular height and width of a pixel along the\n Y and X axes of the image array.\n\n In MPDAF, images are sampled on a regular grid of square\n pixels that represent a flat projection of the celestial\n sphere. The get_step() method returns the angular width and\n height of these pixels on the sky.\n\n See also get_axis_increments().\n\n Parameters\n ----------\n unit : `astropy.units.Unit`\n The angular units of the returned values.\n\n Returns\n -------\n out : numpy.ndarray\n (dy,dx). These are the angular height and width of pixels\n along the Y and X axes of the image. The returned values are\n either in the unit specified by the 'unit' input parameter,\n or in the unit specified by the self.unit property.\n "
if (self.wcs is not None):
return self.wcs.get_step(unit)<|docstring|>Return the angular height and width of a pixel along the
Y and X axes of the image array.
In MPDAF, images are sampled on a regular grid of square
pixels that represent a flat projection of the celestial
sphere. The get_step() method returns the angular width and
height of these pixels on the sky.
See also get_axis_increments().
Parameters
----------
unit : `astropy.units.Unit`
The angular units of the returned values.
Returns
-------
out : numpy.ndarray
(dy,dx). These are the angular height and width of pixels
along the Y and X axes of the image. The returned values are
either in the unit specified by the 'unit' input parameter,
or in the unit specified by the self.unit property.<|endoftext|> |
1e0469f187e1d230c5919ec16e2a2ac0605e1ecf7cd0562e70a85a707fadc3ee | def get_axis_increments(self, unit=None):
"Return the displacements on the sky that result from\n incrementing the array indexes of the image by one along the Y\n and X axes, respectively.\n\n In MPDAF, images are sampled on a regular grid of square\n pixels that represent a flat projection of the celestial\n sphere. The get_axis_increments() method returns the angular\n width and height of these pixels on the sky, with signs that\n indicate whether the angle increases or decreases as one\n increments the array indexes. To keep plots consistent,\n regardless of the rotation angle of the image on the sky, the\n returned height is always positive, but the returned width is\n negative if a plot of the image with pixel 0,0 at the bottom\n left would place east anticlockwise of north, and positive\n otherwise.\n\n Parameters\n ----------\n unit : `astropy.units.Unit`\n The angular units of the returned values.\n\n Returns\n -------\n out : numpy.ndarray\n (dy,dx). These are the angular increments of pixels along\n the Y and X axes of the image. The returned values are\n either in the unit specified by the 'unit' input parameter,\n or in the unit specified by the self.unit property.\n\n "
if (self.wcs is not None):
return self.wcs.get_axis_increments(unit) | Return the displacements on the sky that result from
incrementing the array indexes of the image by one along the Y
and X axes, respectively.
In MPDAF, images are sampled on a regular grid of square
pixels that represent a flat projection of the celestial
sphere. The get_axis_increments() method returns the angular
width and height of these pixels on the sky, with signs that
indicate whether the angle increases or decreases as one
increments the array indexes. To keep plots consistent,
regardless of the rotation angle of the image on the sky, the
returned height is always positive, but the returned width is
negative if a plot of the image with pixel 0,0 at the bottom
left would place east anticlockwise of north, and positive
otherwise.
Parameters
----------
unit : `astropy.units.Unit`
The angular units of the returned values.
Returns
-------
out : numpy.ndarray
(dy,dx). These are the angular increments of pixels along
the Y and X axes of the image. The returned values are
either in the unit specified by the 'unit' input parameter,
or in the unit specified by the self.unit property. | lib/mpdaf/obj/image.py | get_axis_increments | musevlt/mpdaf | 4 | python | def get_axis_increments(self, unit=None):
"Return the displacements on the sky that result from\n incrementing the array indexes of the image by one along the Y\n and X axes, respectively.\n\n In MPDAF, images are sampled on a regular grid of square\n pixels that represent a flat projection of the celestial\n sphere. The get_axis_increments() method returns the angular\n width and height of these pixels on the sky, with signs that\n indicate whether the angle increases or decreases as one\n increments the array indexes. To keep plots consistent,\n regardless of the rotation angle of the image on the sky, the\n returned height is always positive, but the returned width is\n negative if a plot of the image with pixel 0,0 at the bottom\n left would place east anticlockwise of north, and positive\n otherwise.\n\n Parameters\n ----------\n unit : `astropy.units.Unit`\n The angular units of the returned values.\n\n Returns\n -------\n out : numpy.ndarray\n (dy,dx). These are the angular increments of pixels along\n the Y and X axes of the image. The returned values are\n either in the unit specified by the 'unit' input parameter,\n or in the unit specified by the self.unit property.\n\n "
if (self.wcs is not None):
return self.wcs.get_axis_increments(unit) | def get_axis_increments(self, unit=None):
"Return the displacements on the sky that result from\n incrementing the array indexes of the image by one along the Y\n and X axes, respectively.\n\n In MPDAF, images are sampled on a regular grid of square\n pixels that represent a flat projection of the celestial\n sphere. The get_axis_increments() method returns the angular\n width and height of these pixels on the sky, with signs that\n indicate whether the angle increases or decreases as one\n increments the array indexes. To keep plots consistent,\n regardless of the rotation angle of the image on the sky, the\n returned height is always positive, but the returned width is\n negative if a plot of the image with pixel 0,0 at the bottom\n left would place east anticlockwise of north, and positive\n otherwise.\n\n Parameters\n ----------\n unit : `astropy.units.Unit`\n The angular units of the returned values.\n\n Returns\n -------\n out : numpy.ndarray\n (dy,dx). These are the angular increments of pixels along\n the Y and X axes of the image. The returned values are\n either in the unit specified by the 'unit' input parameter,\n or in the unit specified by the self.unit property.\n\n "
if (self.wcs is not None):
return self.wcs.get_axis_increments(unit)<|docstring|>Return the displacements on the sky that result from
incrementing the array indexes of the image by one along the Y
and X axes, respectively.
In MPDAF, images are sampled on a regular grid of square
pixels that represent a flat projection of the celestial
sphere. The get_axis_increments() method returns the angular
width and height of these pixels on the sky, with signs that
indicate whether the angle increases or decreases as one
increments the array indexes. To keep plots consistent,
regardless of the rotation angle of the image on the sky, the
returned height is always positive, but the returned width is
negative if a plot of the image with pixel 0,0 at the bottom
left would place east anticlockwise of north, and positive
otherwise.
Parameters
----------
unit : `astropy.units.Unit`
The angular units of the returned values.
Returns
-------
out : numpy.ndarray
(dy,dx). These are the angular increments of pixels along
the Y and X axes of the image. The returned values are
either in the unit specified by the 'unit' input parameter,
or in the unit specified by the self.unit property.<|endoftext|> |
c513ef4730fcaaf4f16d452ecbca080a75e9b5d5f762cfa7148719259001e27f | def get_range(self, unit=None):
"Return the minimum and maximum right-ascensions and declinations\n in the image array.\n\n Specifically a list is returned with the following contents:\n\n [dec_min, ra_min, dec_max, ra_max]\n\n Note that if the Y axis of the image is not parallel to the\n declination axis, then the 4 returned values will all come\n from different corners of the image. In particular, note that\n this means that the coordinates [dec_min,ra_min] and\n [dec_max,ra_max] will only coincide with pixels in the image\n if the Y axis is aligned with the declination axis. Otherwise\n they will be outside the bounds of the image.\n\n Parameters\n ----------\n unit : `astropy.units.Unit`\n The units of the returned angles.\n\n Returns\n -------\n out : numpy.ndarray\n The range of right ascensions and declinations, arranged as\n [dec_min, ra_min, dec_max, ra_max]. The returned values are\n either in the units specified in the 'unit' input parameter,\n or in the units stored in the self.unit property.\n\n\n "
if (self.wcs is not None):
return self.wcs.get_range(unit) | Return the minimum and maximum right-ascensions and declinations
in the image array.
Specifically a list is returned with the following contents:
[dec_min, ra_min, dec_max, ra_max]
Note that if the Y axis of the image is not parallel to the
declination axis, then the 4 returned values will all come
from different corners of the image. In particular, note that
this means that the coordinates [dec_min,ra_min] and
[dec_max,ra_max] will only coincide with pixels in the image
if the Y axis is aligned with the declination axis. Otherwise
they will be outside the bounds of the image.
Parameters
----------
unit : `astropy.units.Unit`
The units of the returned angles.
Returns
-------
out : numpy.ndarray
The range of right ascensions and declinations, arranged as
[dec_min, ra_min, dec_max, ra_max]. The returned values are
either in the units specified in the 'unit' input parameter,
or in the units stored in the self.unit property. | lib/mpdaf/obj/image.py | get_range | musevlt/mpdaf | 4 | python | def get_range(self, unit=None):
"Return the minimum and maximum right-ascensions and declinations\n in the image array.\n\n Specifically a list is returned with the following contents:\n\n [dec_min, ra_min, dec_max, ra_max]\n\n Note that if the Y axis of the image is not parallel to the\n declination axis, then the 4 returned values will all come\n from different corners of the image. In particular, note that\n this means that the coordinates [dec_min,ra_min] and\n [dec_max,ra_max] will only coincide with pixels in the image\n if the Y axis is aligned with the declination axis. Otherwise\n they will be outside the bounds of the image.\n\n Parameters\n ----------\n unit : `astropy.units.Unit`\n The units of the returned angles.\n\n Returns\n -------\n out : numpy.ndarray\n The range of right ascensions and declinations, arranged as\n [dec_min, ra_min, dec_max, ra_max]. The returned values are\n either in the units specified in the 'unit' input parameter,\n or in the units stored in the self.unit property.\n\n\n "
if (self.wcs is not None):
return self.wcs.get_range(unit) | def get_range(self, unit=None):
"Return the minimum and maximum right-ascensions and declinations\n in the image array.\n\n Specifically a list is returned with the following contents:\n\n [dec_min, ra_min, dec_max, ra_max]\n\n Note that if the Y axis of the image is not parallel to the\n declination axis, then the 4 returned values will all come\n from different corners of the image. In particular, note that\n this means that the coordinates [dec_min,ra_min] and\n [dec_max,ra_max] will only coincide with pixels in the image\n if the Y axis is aligned with the declination axis. Otherwise\n they will be outside the bounds of the image.\n\n Parameters\n ----------\n unit : `astropy.units.Unit`\n The units of the returned angles.\n\n Returns\n -------\n out : numpy.ndarray\n The range of right ascensions and declinations, arranged as\n [dec_min, ra_min, dec_max, ra_max]. The returned values are\n either in the units specified in the 'unit' input parameter,\n or in the units stored in the self.unit property.\n\n\n "
if (self.wcs is not None):
return self.wcs.get_range(unit)<|docstring|>Return the minimum and maximum right-ascensions and declinations
in the image array.
Specifically a list is returned with the following contents:
[dec_min, ra_min, dec_max, ra_max]
Note that if the Y axis of the image is not parallel to the
declination axis, then the 4 returned values will all come
from different corners of the image. In particular, note that
this means that the coordinates [dec_min,ra_min] and
[dec_max,ra_max] will only coincide with pixels in the image
if the Y axis is aligned with the declination axis. Otherwise
they will be outside the bounds of the image.
Parameters
----------
unit : `astropy.units.Unit`
The units of the returned angles.
Returns
-------
out : numpy.ndarray
The range of right ascensions and declinations, arranged as
[dec_min, ra_min, dec_max, ra_max]. The returned values are
either in the units specified in the 'unit' input parameter,
or in the units stored in the self.unit property.<|endoftext|> |
0de4e2b912a5579c27e301a234bc48b2a168d68e13e84678eba4633f1c403227 | def get_start(self, unit=None):
'Return [y,x] corresponding to pixel (0,0).\n\n Parameters\n ----------\n unit : `astropy.units.Unit`\n type of the world coordinates\n\n Returns\n -------\n out : float array\n '
if (self.wcs is not None):
return self.wcs.get_start(unit) | Return [y,x] corresponding to pixel (0,0).
Parameters
----------
unit : `astropy.units.Unit`
type of the world coordinates
Returns
-------
out : float array | lib/mpdaf/obj/image.py | get_start | musevlt/mpdaf | 4 | python | def get_start(self, unit=None):
'Return [y,x] corresponding to pixel (0,0).\n\n Parameters\n ----------\n unit : `astropy.units.Unit`\n type of the world coordinates\n\n Returns\n -------\n out : float array\n '
if (self.wcs is not None):
return self.wcs.get_start(unit) | def get_start(self, unit=None):
'Return [y,x] corresponding to pixel (0,0).\n\n Parameters\n ----------\n unit : `astropy.units.Unit`\n type of the world coordinates\n\n Returns\n -------\n out : float array\n '
if (self.wcs is not None):
return self.wcs.get_start(unit)<|docstring|>Return [y,x] corresponding to pixel (0,0).
Parameters
----------
unit : `astropy.units.Unit`
type of the world coordinates
Returns
-------
out : float array<|endoftext|> |
71be15f4c8fbb29b845243c9d233d2a0ce1909987ef3441e7fe5b97db3fdc7f3 | def get_end(self, unit=None):
'Return [y,x] corresponding to pixel (-1,-1).\n\n Parameters\n ----------\n unit : `astropy.units.Unit`\n type of the world coordinates\n\n Returns\n -------\n out : float array\n '
if (self.wcs is not None):
return self.wcs.get_end(unit) | Return [y,x] corresponding to pixel (-1,-1).
Parameters
----------
unit : `astropy.units.Unit`
type of the world coordinates
Returns
-------
out : float array | lib/mpdaf/obj/image.py | get_end | musevlt/mpdaf | 4 | python | def get_end(self, unit=None):
'Return [y,x] corresponding to pixel (-1,-1).\n\n Parameters\n ----------\n unit : `astropy.units.Unit`\n type of the world coordinates\n\n Returns\n -------\n out : float array\n '
if (self.wcs is not None):
return self.wcs.get_end(unit) | def get_end(self, unit=None):
'Return [y,x] corresponding to pixel (-1,-1).\n\n Parameters\n ----------\n unit : `astropy.units.Unit`\n type of the world coordinates\n\n Returns\n -------\n out : float array\n '
if (self.wcs is not None):
return self.wcs.get_end(unit)<|docstring|>Return [y,x] corresponding to pixel (-1,-1).
Parameters
----------
unit : `astropy.units.Unit`
type of the world coordinates
Returns
-------
out : float array<|endoftext|> |
88df5816365793a84653588b6537cc57f06ade138f6a4a72a40e0dca149c66d8 | def get_rot(self, unit=u.deg):
'Return the rotation angle of the image, defined such that a\n rotation angle of zero aligns north along the positive Y axis,\n and a positive rotation angle rotates north away from the Y\n axis, in the sense of a rotation from north to east.\n\n Note that the rotation angle is defined in a flat\n map-projection of the sky. It is what would be seen if\n the pixels of the image were drawn with their pixel\n widths scaled by the angular pixel increments returned\n by the get_axis_increments() method.\n\n Parameters\n ----------\n unit : `astropy.units.Unit`\n The unit to give the returned angle (degrees by default).\n\n Returns\n -------\n out : float\n The angle between celestial north and the Y axis of\n the image, in the sense of an eastward rotation of\n celestial north from the Y-axis.\n\n '
if (self.wcs is not None):
return self.wcs.get_rot(unit) | Return the rotation angle of the image, defined such that a
rotation angle of zero aligns north along the positive Y axis,
and a positive rotation angle rotates north away from the Y
axis, in the sense of a rotation from north to east.
Note that the rotation angle is defined in a flat
map-projection of the sky. It is what would be seen if
the pixels of the image were drawn with their pixel
widths scaled by the angular pixel increments returned
by the get_axis_increments() method.
Parameters
----------
unit : `astropy.units.Unit`
The unit to give the returned angle (degrees by default).
Returns
-------
out : float
The angle between celestial north and the Y axis of
the image, in the sense of an eastward rotation of
celestial north from the Y-axis. | lib/mpdaf/obj/image.py | get_rot | musevlt/mpdaf | 4 | python | def get_rot(self, unit=u.deg):
'Return the rotation angle of the image, defined such that a\n rotation angle of zero aligns north along the positive Y axis,\n and a positive rotation angle rotates north away from the Y\n axis, in the sense of a rotation from north to east.\n\n Note that the rotation angle is defined in a flat\n map-projection of the sky. It is what would be seen if\n the pixels of the image were drawn with their pixel\n widths scaled by the angular pixel increments returned\n by the get_axis_increments() method.\n\n Parameters\n ----------\n unit : `astropy.units.Unit`\n The unit to give the returned angle (degrees by default).\n\n Returns\n -------\n out : float\n The angle between celestial north and the Y axis of\n the image, in the sense of an eastward rotation of\n celestial north from the Y-axis.\n\n '
if (self.wcs is not None):
return self.wcs.get_rot(unit) | def get_rot(self, unit=u.deg):
'Return the rotation angle of the image, defined such that a\n rotation angle of zero aligns north along the positive Y axis,\n and a positive rotation angle rotates north away from the Y\n axis, in the sense of a rotation from north to east.\n\n Note that the rotation angle is defined in a flat\n map-projection of the sky. It is what would be seen if\n the pixels of the image were drawn with their pixel\n widths scaled by the angular pixel increments returned\n by the get_axis_increments() method.\n\n Parameters\n ----------\n unit : `astropy.units.Unit`\n The unit to give the returned angle (degrees by default).\n\n Returns\n -------\n out : float\n The angle between celestial north and the Y axis of\n the image, in the sense of an eastward rotation of\n celestial north from the Y-axis.\n\n '
if (self.wcs is not None):
return self.wcs.get_rot(unit)<|docstring|>Return the rotation angle of the image, defined such that a
rotation angle of zero aligns north along the positive Y axis,
and a positive rotation angle rotates north away from the Y
axis, in the sense of a rotation from north to east.
Note that the rotation angle is defined in a flat
map-projection of the sky. It is what would be seen if
the pixels of the image were drawn with their pixel
widths scaled by the angular pixel increments returned
by the get_axis_increments() method.
Parameters
----------
unit : `astropy.units.Unit`
The unit to give the returned angle (degrees by default).
Returns
-------
out : float
The angle between celestial north and the Y axis of
the image, in the sense of an eastward rotation of
celestial north from the Y-axis.<|endoftext|> |
43249c194d221f552ed63c2231553f453dc7226c1357d8170381fec578d66a8f | def mask_region(self, center, radius, unit_center=u.deg, unit_radius=u.arcsec, inside=True, posangle=0.0):
'Mask values inside or outside a circular or rectangular region.\n\n Parameters\n ----------\n center : (float,float)\n Center (y,x) of the region, where y,x are usually celestial\n coordinates along the Y and X axes of the image, but are\n interpretted as Y,X array-indexes if unit_center is changed\n to None.\n radius : float or (float,float)\n The radius of a circular region, or the half-width and\n half-height of a rectangular region, respectively.\n unit_center : `astropy.units.Unit`\n The units of the coordinates of the center argument\n (degrees by default). If None, the units of the center\n argument are assumed to be pixels.\n unit_radius : `astropy.units.Unit`\n The units of the radius argument (arcseconds by default).\n If None, the units are assumed to be pixels.\n inside : bool\n If inside is True, pixels inside the region are masked.\n If inside is False, pixels outside the region are masked.\n posangle : float\n When the region is rectangular, this is the counter-clockwise\n rotation angle of the rectangle in degrees. When posangle is\n 0.0 (the default), the X and Y axes of the ellipse are along\n the X and Y axes of the image.\n\n '
center = np.array(center)
if np.isscalar(radius):
return self.mask_ellipse(center=center, radius=radius, posangle=0.0, unit_center=unit_center, unit_radius=unit_radius, inside=inside)
if (unit_center is not None):
center = self.wcs.sky2pix(center, unit=unit_center)[0]
if (unit_radius is None):
step = np.array([1.0, 1.0])
else:
step = self.wcs.get_step(unit=unit_radius)
if (not np.isclose(posangle, 0.0)):
cos = np.cos(np.radians(posangle))
sin = np.sin(np.radians(posangle))
(hw, hh) = radius
poly = np.array([[(((- hw) * sin) - (hh * cos)), (((- hw) * cos) + (hh * sin))], [(((- hw) * sin) + (hh * cos)), (((- hw) * cos) - (hh * sin))], [(((+ hw) * sin) + (hh * cos)), (((+ hw) * cos) - (hh * sin))], [(((+ hw) * sin) - (hh * cos)), (((+ hw) * cos) + (hh * sin))]])
return self.mask_polygon(((poly / step) + center), unit=None, inside=inside)
(sy, sx) = bounding_box(form='rectangle', center=center, radii=radius, shape=self.shape, step=step)[0]
if inside:
self.data[(sy, sx)] = np.ma.masked
else:
self.data[(0:sy.start, :)] = np.ma.masked
self.data[(sy.stop:, :)] = np.ma.masked
self.data[(sy, 0:sx.start)] = np.ma.masked
self.data[(sy, sx.stop:)] = np.ma.masked | Mask values inside or outside a circular or rectangular region.
Parameters
----------
center : (float,float)
Center (y,x) of the region, where y,x are usually celestial
coordinates along the Y and X axes of the image, but are
interpretted as Y,X array-indexes if unit_center is changed
to None.
radius : float or (float,float)
The radius of a circular region, or the half-width and
half-height of a rectangular region, respectively.
unit_center : `astropy.units.Unit`
The units of the coordinates of the center argument
(degrees by default). If None, the units of the center
argument are assumed to be pixels.
unit_radius : `astropy.units.Unit`
The units of the radius argument (arcseconds by default).
If None, the units are assumed to be pixels.
inside : bool
If inside is True, pixels inside the region are masked.
If inside is False, pixels outside the region are masked.
posangle : float
When the region is rectangular, this is the counter-clockwise
rotation angle of the rectangle in degrees. When posangle is
0.0 (the default), the X and Y axes of the ellipse are along
the X and Y axes of the image. | lib/mpdaf/obj/image.py | mask_region | musevlt/mpdaf | 4 | python | def mask_region(self, center, radius, unit_center=u.deg, unit_radius=u.arcsec, inside=True, posangle=0.0):
'Mask values inside or outside a circular or rectangular region.\n\n Parameters\n ----------\n center : (float,float)\n Center (y,x) of the region, where y,x are usually celestial\n coordinates along the Y and X axes of the image, but are\n interpretted as Y,X array-indexes if unit_center is changed\n to None.\n radius : float or (float,float)\n The radius of a circular region, or the half-width and\n half-height of a rectangular region, respectively.\n unit_center : `astropy.units.Unit`\n The units of the coordinates of the center argument\n (degrees by default). If None, the units of the center\n argument are assumed to be pixels.\n unit_radius : `astropy.units.Unit`\n The units of the radius argument (arcseconds by default).\n If None, the units are assumed to be pixels.\n inside : bool\n If inside is True, pixels inside the region are masked.\n If inside is False, pixels outside the region are masked.\n posangle : float\n When the region is rectangular, this is the counter-clockwise\n rotation angle of the rectangle in degrees. When posangle is\n 0.0 (the default), the X and Y axes of the ellipse are along\n the X and Y axes of the image.\n\n '
center = np.array(center)
if np.isscalar(radius):
return self.mask_ellipse(center=center, radius=radius, posangle=0.0, unit_center=unit_center, unit_radius=unit_radius, inside=inside)
if (unit_center is not None):
center = self.wcs.sky2pix(center, unit=unit_center)[0]
if (unit_radius is None):
step = np.array([1.0, 1.0])
else:
step = self.wcs.get_step(unit=unit_radius)
if (not np.isclose(posangle, 0.0)):
cos = np.cos(np.radians(posangle))
sin = np.sin(np.radians(posangle))
(hw, hh) = radius
poly = np.array([[(((- hw) * sin) - (hh * cos)), (((- hw) * cos) + (hh * sin))], [(((- hw) * sin) + (hh * cos)), (((- hw) * cos) - (hh * sin))], [(((+ hw) * sin) + (hh * cos)), (((+ hw) * cos) - (hh * sin))], [(((+ hw) * sin) - (hh * cos)), (((+ hw) * cos) + (hh * sin))]])
return self.mask_polygon(((poly / step) + center), unit=None, inside=inside)
(sy, sx) = bounding_box(form='rectangle', center=center, radii=radius, shape=self.shape, step=step)[0]
if inside:
self.data[(sy, sx)] = np.ma.masked
else:
self.data[(0:sy.start, :)] = np.ma.masked
self.data[(sy.stop:, :)] = np.ma.masked
self.data[(sy, 0:sx.start)] = np.ma.masked
self.data[(sy, sx.stop:)] = np.ma.masked | def mask_region(self, center, radius, unit_center=u.deg, unit_radius=u.arcsec, inside=True, posangle=0.0):
'Mask values inside or outside a circular or rectangular region.\n\n Parameters\n ----------\n center : (float,float)\n Center (y,x) of the region, where y,x are usually celestial\n coordinates along the Y and X axes of the image, but are\n interpretted as Y,X array-indexes if unit_center is changed\n to None.\n radius : float or (float,float)\n The radius of a circular region, or the half-width and\n half-height of a rectangular region, respectively.\n unit_center : `astropy.units.Unit`\n The units of the coordinates of the center argument\n (degrees by default). If None, the units of the center\n argument are assumed to be pixels.\n unit_radius : `astropy.units.Unit`\n The units of the radius argument (arcseconds by default).\n If None, the units are assumed to be pixels.\n inside : bool\n If inside is True, pixels inside the region are masked.\n If inside is False, pixels outside the region are masked.\n posangle : float\n When the region is rectangular, this is the counter-clockwise\n rotation angle of the rectangle in degrees. When posangle is\n 0.0 (the default), the X and Y axes of the ellipse are along\n the X and Y axes of the image.\n\n '
center = np.array(center)
if np.isscalar(radius):
return self.mask_ellipse(center=center, radius=radius, posangle=0.0, unit_center=unit_center, unit_radius=unit_radius, inside=inside)
if (unit_center is not None):
center = self.wcs.sky2pix(center, unit=unit_center)[0]
if (unit_radius is None):
step = np.array([1.0, 1.0])
else:
step = self.wcs.get_step(unit=unit_radius)
if (not np.isclose(posangle, 0.0)):
cos = np.cos(np.radians(posangle))
sin = np.sin(np.radians(posangle))
(hw, hh) = radius
poly = np.array([[(((- hw) * sin) - (hh * cos)), (((- hw) * cos) + (hh * sin))], [(((- hw) * sin) + (hh * cos)), (((- hw) * cos) - (hh * sin))], [(((+ hw) * sin) + (hh * cos)), (((+ hw) * cos) - (hh * sin))], [(((+ hw) * sin) - (hh * cos)), (((+ hw) * cos) + (hh * sin))]])
return self.mask_polygon(((poly / step) + center), unit=None, inside=inside)
(sy, sx) = bounding_box(form='rectangle', center=center, radii=radius, shape=self.shape, step=step)[0]
if inside:
self.data[(sy, sx)] = np.ma.masked
else:
self.data[(0:sy.start, :)] = np.ma.masked
self.data[(sy.stop:, :)] = np.ma.masked
self.data[(sy, 0:sx.start)] = np.ma.masked
self.data[(sy, sx.stop:)] = np.ma.masked<|docstring|>Mask values inside or outside a circular or rectangular region.
Parameters
----------
center : (float,float)
Center (y,x) of the region, where y,x are usually celestial
coordinates along the Y and X axes of the image, but are
interpretted as Y,X array-indexes if unit_center is changed
to None.
radius : float or (float,float)
The radius of a circular region, or the half-width and
half-height of a rectangular region, respectively.
unit_center : `astropy.units.Unit`
The units of the coordinates of the center argument
(degrees by default). If None, the units of the center
argument are assumed to be pixels.
unit_radius : `astropy.units.Unit`
The units of the radius argument (arcseconds by default).
If None, the units are assumed to be pixels.
inside : bool
If inside is True, pixels inside the region are masked.
If inside is False, pixels outside the region are masked.
posangle : float
When the region is rectangular, this is the counter-clockwise
rotation angle of the rectangle in degrees. When posangle is
0.0 (the default), the X and Y axes of the ellipse are along
the X and Y axes of the image.<|endoftext|> |
8ba0e99d38f58fe33ff4d8b162041eb3a626526b266a18343c29f350d162beb9 | def mask_ellipse(self, center, radius, posangle, unit_center=u.deg, unit_radius=u.arcsec, inside=True):
'Mask values inside or outside an elliptical region.\n\n Parameters\n ----------\n center : (float,float)\n Center (y,x) of the region, where y,x are usually celestial\n coordinates along the Y and X axes of the image, but are\n interpretted as Y,X array-indexes if unit_center is changed\n to None.\n radius : (float,float)\n The radii of the two orthogonal axes of the ellipse.\n When posangle is zero, radius[0] is the radius along\n the X axis of the image-array, and radius[1] is\n the radius along the Y axis of the image-array.\n posangle : float\n The counter-clockwise rotation angle of the ellipse in\n degrees. When posangle is zero, the X and Y axes of the\n ellipse are along the X and Y axes of the image.\n unit_center : `astropy.units.Unit`\n The units of the center coordinates.\n Degrees by default (use None for coordinates in pixels).\n unit_radius : `astropy.units.Unit`\n The units of the radius argument. Arcseconds by default.\n (use None for radius in pixels)\n inside : bool\n If inside is True, pixels inside the described region are masked.\n If inside is False, pixels outside the described region are masked.\n\n '
center = np.array(center)
if (unit_center is not None):
center = self.wcs.sky2pix(center, unit=unit_center)[0]
if (unit_radius is None):
step = np.array([1.0, 1.0])
else:
step = self.wcs.get_step(unit=unit_radius)
if np.isscalar(radius):
radii = np.array([radius, radius])
else:
radii = np.asarray(radius)
([sy, sx], _, center) = bounding_box(form='ellipse', center=center, radii=radii, shape=self.shape, posangle=posangle, step=step)
cospa = np.cos(np.radians(posangle))
sinpa = np.sin(np.radians(posangle))
(x, y) = np.meshgrid(((np.arange(sx.start, sx.stop) - center[1]) * step[1]), ((np.arange(sy.start, sy.stop) - center[0]) * step[0]))
ksel = (((((x * cospa) + (y * sinpa)) / radii[0]) ** 2) + ((((y * cospa) - (x * sinpa)) / radii[1]) ** 2))
if inside:
self.data[(sy, sx)][(ksel < 1)] = np.ma.masked
else:
self.data[(0:sy.start, :)] = np.ma.masked
self.data[(sy.stop:, :)] = np.ma.masked
self.data[(sy, 0:sx.start)] = np.ma.masked
self.data[(sy, sx.stop:)] = np.ma.masked
self.data[(sy, sx)][(ksel > 1)] = np.ma.masked | Mask values inside or outside an elliptical region.
Parameters
----------
center : (float,float)
Center (y,x) of the region, where y,x are usually celestial
coordinates along the Y and X axes of the image, but are
interpretted as Y,X array-indexes if unit_center is changed
to None.
radius : (float,float)
The radii of the two orthogonal axes of the ellipse.
When posangle is zero, radius[0] is the radius along
the X axis of the image-array, and radius[1] is
the radius along the Y axis of the image-array.
posangle : float
The counter-clockwise rotation angle of the ellipse in
degrees. When posangle is zero, the X and Y axes of the
ellipse are along the X and Y axes of the image.
unit_center : `astropy.units.Unit`
The units of the center coordinates.
Degrees by default (use None for coordinates in pixels).
unit_radius : `astropy.units.Unit`
The units of the radius argument. Arcseconds by default.
(use None for radius in pixels)
inside : bool
If inside is True, pixels inside the described region are masked.
If inside is False, pixels outside the described region are masked. | lib/mpdaf/obj/image.py | mask_ellipse | musevlt/mpdaf | 4 | python | def mask_ellipse(self, center, radius, posangle, unit_center=u.deg, unit_radius=u.arcsec, inside=True):
'Mask values inside or outside an elliptical region.\n\n Parameters\n ----------\n center : (float,float)\n Center (y,x) of the region, where y,x are usually celestial\n coordinates along the Y and X axes of the image, but are\n interpretted as Y,X array-indexes if unit_center is changed\n to None.\n radius : (float,float)\n The radii of the two orthogonal axes of the ellipse.\n When posangle is zero, radius[0] is the radius along\n the X axis of the image-array, and radius[1] is\n the radius along the Y axis of the image-array.\n posangle : float\n The counter-clockwise rotation angle of the ellipse in\n degrees. When posangle is zero, the X and Y axes of the\n ellipse are along the X and Y axes of the image.\n unit_center : `astropy.units.Unit`\n The units of the center coordinates.\n Degrees by default (use None for coordinates in pixels).\n unit_radius : `astropy.units.Unit`\n The units of the radius argument. Arcseconds by default.\n (use None for radius in pixels)\n inside : bool\n If inside is True, pixels inside the described region are masked.\n If inside is False, pixels outside the described region are masked.\n\n '
center = np.array(center)
if (unit_center is not None):
center = self.wcs.sky2pix(center, unit=unit_center)[0]
if (unit_radius is None):
step = np.array([1.0, 1.0])
else:
step = self.wcs.get_step(unit=unit_radius)
if np.isscalar(radius):
radii = np.array([radius, radius])
else:
radii = np.asarray(radius)
([sy, sx], _, center) = bounding_box(form='ellipse', center=center, radii=radii, shape=self.shape, posangle=posangle, step=step)
cospa = np.cos(np.radians(posangle))
sinpa = np.sin(np.radians(posangle))
(x, y) = np.meshgrid(((np.arange(sx.start, sx.stop) - center[1]) * step[1]), ((np.arange(sy.start, sy.stop) - center[0]) * step[0]))
ksel = (((((x * cospa) + (y * sinpa)) / radii[0]) ** 2) + ((((y * cospa) - (x * sinpa)) / radii[1]) ** 2))
if inside:
self.data[(sy, sx)][(ksel < 1)] = np.ma.masked
else:
self.data[(0:sy.start, :)] = np.ma.masked
self.data[(sy.stop:, :)] = np.ma.masked
self.data[(sy, 0:sx.start)] = np.ma.masked
self.data[(sy, sx.stop:)] = np.ma.masked
self.data[(sy, sx)][(ksel > 1)] = np.ma.masked | def mask_ellipse(self, center, radius, posangle, unit_center=u.deg, unit_radius=u.arcsec, inside=True):
'Mask values inside or outside an elliptical region.\n\n Parameters\n ----------\n center : (float,float)\n Center (y,x) of the region, where y,x are usually celestial\n coordinates along the Y and X axes of the image, but are\n interpretted as Y,X array-indexes if unit_center is changed\n to None.\n radius : (float,float)\n The radii of the two orthogonal axes of the ellipse.\n When posangle is zero, radius[0] is the radius along\n the X axis of the image-array, and radius[1] is\n the radius along the Y axis of the image-array.\n posangle : float\n The counter-clockwise rotation angle of the ellipse in\n degrees. When posangle is zero, the X and Y axes of the\n ellipse are along the X and Y axes of the image.\n unit_center : `astropy.units.Unit`\n The units of the center coordinates.\n Degrees by default (use None for coordinates in pixels).\n unit_radius : `astropy.units.Unit`\n The units of the radius argument. Arcseconds by default.\n (use None for radius in pixels)\n inside : bool\n If inside is True, pixels inside the described region are masked.\n If inside is False, pixels outside the described region are masked.\n\n '
center = np.array(center)
if (unit_center is not None):
center = self.wcs.sky2pix(center, unit=unit_center)[0]
if (unit_radius is None):
step = np.array([1.0, 1.0])
else:
step = self.wcs.get_step(unit=unit_radius)
if np.isscalar(radius):
radii = np.array([radius, radius])
else:
radii = np.asarray(radius)
([sy, sx], _, center) = bounding_box(form='ellipse', center=center, radii=radii, shape=self.shape, posangle=posangle, step=step)
cospa = np.cos(np.radians(posangle))
sinpa = np.sin(np.radians(posangle))
(x, y) = np.meshgrid(((np.arange(sx.start, sx.stop) - center[1]) * step[1]), ((np.arange(sy.start, sy.stop) - center[0]) * step[0]))
ksel = (((((x * cospa) + (y * sinpa)) / radii[0]) ** 2) + ((((y * cospa) - (x * sinpa)) / radii[1]) ** 2))
if inside:
self.data[(sy, sx)][(ksel < 1)] = np.ma.masked
else:
self.data[(0:sy.start, :)] = np.ma.masked
self.data[(sy.stop:, :)] = np.ma.masked
self.data[(sy, 0:sx.start)] = np.ma.masked
self.data[(sy, sx.stop:)] = np.ma.masked
self.data[(sy, sx)][(ksel > 1)] = np.ma.masked<|docstring|>Mask values inside or outside an elliptical region.
Parameters
----------
center : (float,float)
Center (y,x) of the region, where y,x are usually celestial
coordinates along the Y and X axes of the image, but are
interpretted as Y,X array-indexes if unit_center is changed
to None.
radius : (float,float)
The radii of the two orthogonal axes of the ellipse.
When posangle is zero, radius[0] is the radius along
the X axis of the image-array, and radius[1] is
the radius along the Y axis of the image-array.
posangle : float
The counter-clockwise rotation angle of the ellipse in
degrees. When posangle is zero, the X and Y axes of the
ellipse are along the X and Y axes of the image.
unit_center : `astropy.units.Unit`
The units of the center coordinates.
Degrees by default (use None for coordinates in pixels).
unit_radius : `astropy.units.Unit`
The units of the radius argument. Arcseconds by default.
(use None for radius in pixels)
inside : bool
If inside is True, pixels inside the described region are masked.
If inside is False, pixels outside the described region are masked.<|endoftext|> |
42860fdb00e194dfefae82c118f1eb3821dd5cc78e949ec1bad97b72527418dd | def mask_polygon(self, poly, unit=u.deg, inside=True):
'Mask values inside or outside a polygonal region.\n\n Parameters\n ----------\n poly : (float, float)\n An array of (float,float) containing a set of (p,q) or (dec,ra)\n values for the polygon vertices.\n unit : `astropy.units.Unit`\n The units of the polygon coordinates (by default in degrees).\n Use unit=None to have polygon coordinates in pixels.\n inside : bool\n If inside is True, pixels inside the polygonal region are masked.\n If inside is False, pixels outside the polygonal region are masked.\n\n '
if (unit is not None):
poly = np.array([[self.wcs.sky2pix((val[0], val[1]), unit=unit)[0][0], self.wcs.sky2pix((val[0], val[1]), unit=unit)[0][1]] for val in poly])
b = np.mgrid[(:self.shape[0], :self.shape[1])].reshape(2, (- 1)).T
from matplotlib.path import Path
polymask = Path(poly)
c = polymask.contains_points(b)
if (not inside):
c = (~ c)
self._mask |= c.reshape(self.shape)
return poly | Mask values inside or outside a polygonal region.
Parameters
----------
poly : (float, float)
An array of (float,float) containing a set of (p,q) or (dec,ra)
values for the polygon vertices.
unit : `astropy.units.Unit`
The units of the polygon coordinates (by default in degrees).
Use unit=None to have polygon coordinates in pixels.
inside : bool
If inside is True, pixels inside the polygonal region are masked.
If inside is False, pixels outside the polygonal region are masked. | lib/mpdaf/obj/image.py | mask_polygon | musevlt/mpdaf | 4 | python | def mask_polygon(self, poly, unit=u.deg, inside=True):
'Mask values inside or outside a polygonal region.\n\n Parameters\n ----------\n poly : (float, float)\n An array of (float,float) containing a set of (p,q) or (dec,ra)\n values for the polygon vertices.\n unit : `astropy.units.Unit`\n The units of the polygon coordinates (by default in degrees).\n Use unit=None to have polygon coordinates in pixels.\n inside : bool\n If inside is True, pixels inside the polygonal region are masked.\n If inside is False, pixels outside the polygonal region are masked.\n\n '
if (unit is not None):
poly = np.array([[self.wcs.sky2pix((val[0], val[1]), unit=unit)[0][0], self.wcs.sky2pix((val[0], val[1]), unit=unit)[0][1]] for val in poly])
b = np.mgrid[(:self.shape[0], :self.shape[1])].reshape(2, (- 1)).T
from matplotlib.path import Path
polymask = Path(poly)
c = polymask.contains_points(b)
if (not inside):
c = (~ c)
self._mask |= c.reshape(self.shape)
return poly | def mask_polygon(self, poly, unit=u.deg, inside=True):
'Mask values inside or outside a polygonal region.\n\n Parameters\n ----------\n poly : (float, float)\n An array of (float,float) containing a set of (p,q) or (dec,ra)\n values for the polygon vertices.\n unit : `astropy.units.Unit`\n The units of the polygon coordinates (by default in degrees).\n Use unit=None to have polygon coordinates in pixels.\n inside : bool\n If inside is True, pixels inside the polygonal region are masked.\n If inside is False, pixels outside the polygonal region are masked.\n\n '
if (unit is not None):
poly = np.array([[self.wcs.sky2pix((val[0], val[1]), unit=unit)[0][0], self.wcs.sky2pix((val[0], val[1]), unit=unit)[0][1]] for val in poly])
b = np.mgrid[(:self.shape[0], :self.shape[1])].reshape(2, (- 1)).T
from matplotlib.path import Path
polymask = Path(poly)
c = polymask.contains_points(b)
if (not inside):
c = (~ c)
self._mask |= c.reshape(self.shape)
return poly<|docstring|>Mask values inside or outside a polygonal region.
Parameters
----------
poly : (float, float)
An array of (float,float) containing a set of (p,q) or (dec,ra)
values for the polygon vertices.
unit : `astropy.units.Unit`
The units of the polygon coordinates (by default in degrees).
Use unit=None to have polygon coordinates in pixels.
inside : bool
If inside is True, pixels inside the polygonal region are masked.
If inside is False, pixels outside the polygonal region are masked.<|endoftext|> |
236808df98925d12d49e7d9f985803df2d1248a77c26e3b20b63c40b4a0c294e | def truncate(self, y_min, y_max, x_min, x_max, mask=True, unit=u.deg, inplace=False):
'Return a sub-image that contains a specified area of the sky.\n\n The ranges x_min to x_max and y_min to y_max, specify a rectangular\n region of the sky in world coordinates. The truncate function returns\n the sub-image that just encloses this region. Note that if the world\n coordinate axes are not parallel to the array axes, the region will\n appear to be a rotated rectangle within the sub-image. In such cases,\n the corners of the sub-image will contain pixels that are outside the\n region. By default these pixels are masked. However this can be\n disabled by changing the optional mask argument to False.\n\n Parameters\n ----------\n y_min : float\n The minimum Y-axis world-coordinate of the selected\n region. The Y-axis is usually Declination, which may not\n be parallel to the Y-axis of the image array.\n y_max : float\n The maximum Y-axis world coordinate of the selected region.\n x_min : float\n The minimum X-axis world-coordinate of the selected\n region. The X-axis is usually Right Ascension, which may\n not be parallel to the X-axis of the image array.\n x_max : float\n The maximum X-axis world coordinate of the selected region.\n mask : bool\n If True, any pixels in the sub-image that remain outside the\n range x_min to x_max and y_min to y_max, will be masked.\n unit : `astropy.units.Unit`\n The units of the X and Y world-coordinates (degrees by default).\n inplace : bool\n If False, return a truncated copy of the image (the default).\n If True, truncate the original image in-place, and return that.\n\n Returns\n -------\n out : `~mpdaf.obj.Image`\n\n '
skycrd = np.array([[y_min, x_min], [y_min, x_max], [y_max, x_min], [y_max, x_max]])
if (unit is not None):
pixcrd = self.wcs.sky2pix(skycrd, unit=unit)
else:
pixcrd = skycrd
imin = max(0, int((np.min(pixcrd[(:, 0)]) + 0.5)))
imax = min(self.shape[0], (int((np.max(pixcrd[(:, 0)]) + 0.5)) + 1))
jmin = max(0, int((np.min(pixcrd[(:, 1)]) + 0.5)))
jmax = min(self.shape[1], (int((np.max(pixcrd[(:, 1)]) + 0.5)) + 1))
subima = self[(imin:imax, jmin:jmax)]
if inplace:
self._data = subima._data
if (self._var is not None):
self._var = subima._var
self._mask = subima._mask
self.wcs = subima.wcs
out = self
else:
out = subima.copy()
if mask:
pixcrd = np.mgrid[(:out.shape[0], :out.shape[1])].reshape(2, (- 1)).T
if (unit is None):
skycrd = pixcrd
else:
skycrd = np.array(out.wcs.pix2sky(pixcrd, unit=unit))
x = skycrd[(:, 1)].reshape(out.shape)
y = skycrd[(:, 0)].reshape(out.shape)
test_x = np.logical_or((x < x_min), (x > x_max))
test_y = np.logical_or((y < y_min), (y > y_max))
test = np.logical_or(test_x, test_y)
out._mask = np.logical_or(out._mask, test)
out.crop()
return out | Return a sub-image that contains a specified area of the sky.
The ranges x_min to x_max and y_min to y_max, specify a rectangular
region of the sky in world coordinates. The truncate function returns
the sub-image that just encloses this region. Note that if the world
coordinate axes are not parallel to the array axes, the region will
appear to be a rotated rectangle within the sub-image. In such cases,
the corners of the sub-image will contain pixels that are outside the
region. By default these pixels are masked. However this can be
disabled by changing the optional mask argument to False.
Parameters
----------
y_min : float
The minimum Y-axis world-coordinate of the selected
region. The Y-axis is usually Declination, which may not
be parallel to the Y-axis of the image array.
y_max : float
The maximum Y-axis world coordinate of the selected region.
x_min : float
The minimum X-axis world-coordinate of the selected
region. The X-axis is usually Right Ascension, which may
not be parallel to the X-axis of the image array.
x_max : float
The maximum X-axis world coordinate of the selected region.
mask : bool
If True, any pixels in the sub-image that remain outside the
range x_min to x_max and y_min to y_max, will be masked.
unit : `astropy.units.Unit`
The units of the X and Y world-coordinates (degrees by default).
inplace : bool
If False, return a truncated copy of the image (the default).
If True, truncate the original image in-place, and return that.
Returns
-------
out : `~mpdaf.obj.Image` | lib/mpdaf/obj/image.py | truncate | musevlt/mpdaf | 4 | python | def truncate(self, y_min, y_max, x_min, x_max, mask=True, unit=u.deg, inplace=False):
'Return a sub-image that contains a specified area of the sky.\n\n The ranges x_min to x_max and y_min to y_max, specify a rectangular\n region of the sky in world coordinates. The truncate function returns\n the sub-image that just encloses this region. Note that if the world\n coordinate axes are not parallel to the array axes, the region will\n appear to be a rotated rectangle within the sub-image. In such cases,\n the corners of the sub-image will contain pixels that are outside the\n region. By default these pixels are masked. However this can be\n disabled by changing the optional mask argument to False.\n\n Parameters\n ----------\n y_min : float\n The minimum Y-axis world-coordinate of the selected\n region. The Y-axis is usually Declination, which may not\n be parallel to the Y-axis of the image array.\n y_max : float\n The maximum Y-axis world coordinate of the selected region.\n x_min : float\n The minimum X-axis world-coordinate of the selected\n region. The X-axis is usually Right Ascension, which may\n not be parallel to the X-axis of the image array.\n x_max : float\n The maximum X-axis world coordinate of the selected region.\n mask : bool\n If True, any pixels in the sub-image that remain outside the\n range x_min to x_max and y_min to y_max, will be masked.\n unit : `astropy.units.Unit`\n The units of the X and Y world-coordinates (degrees by default).\n inplace : bool\n If False, return a truncated copy of the image (the default).\n If True, truncate the original image in-place, and return that.\n\n Returns\n -------\n out : `~mpdaf.obj.Image`\n\n '
skycrd = np.array([[y_min, x_min], [y_min, x_max], [y_max, x_min], [y_max, x_max]])
if (unit is not None):
pixcrd = self.wcs.sky2pix(skycrd, unit=unit)
else:
pixcrd = skycrd
imin = max(0, int((np.min(pixcrd[(:, 0)]) + 0.5)))
imax = min(self.shape[0], (int((np.max(pixcrd[(:, 0)]) + 0.5)) + 1))
jmin = max(0, int((np.min(pixcrd[(:, 1)]) + 0.5)))
jmax = min(self.shape[1], (int((np.max(pixcrd[(:, 1)]) + 0.5)) + 1))
subima = self[(imin:imax, jmin:jmax)]
if inplace:
self._data = subima._data
if (self._var is not None):
self._var = subima._var
self._mask = subima._mask
self.wcs = subima.wcs
out = self
else:
out = subima.copy()
if mask:
pixcrd = np.mgrid[(:out.shape[0], :out.shape[1])].reshape(2, (- 1)).T
if (unit is None):
skycrd = pixcrd
else:
skycrd = np.array(out.wcs.pix2sky(pixcrd, unit=unit))
x = skycrd[(:, 1)].reshape(out.shape)
y = skycrd[(:, 0)].reshape(out.shape)
test_x = np.logical_or((x < x_min), (x > x_max))
test_y = np.logical_or((y < y_min), (y > y_max))
test = np.logical_or(test_x, test_y)
out._mask = np.logical_or(out._mask, test)
out.crop()
return out | def truncate(self, y_min, y_max, x_min, x_max, mask=True, unit=u.deg, inplace=False):
'Return a sub-image that contains a specified area of the sky.\n\n The ranges x_min to x_max and y_min to y_max, specify a rectangular\n region of the sky in world coordinates. The truncate function returns\n the sub-image that just encloses this region. Note that if the world\n coordinate axes are not parallel to the array axes, the region will\n appear to be a rotated rectangle within the sub-image. In such cases,\n the corners of the sub-image will contain pixels that are outside the\n region. By default these pixels are masked. However this can be\n disabled by changing the optional mask argument to False.\n\n Parameters\n ----------\n y_min : float\n The minimum Y-axis world-coordinate of the selected\n region. The Y-axis is usually Declination, which may not\n be parallel to the Y-axis of the image array.\n y_max : float\n The maximum Y-axis world coordinate of the selected region.\n x_min : float\n The minimum X-axis world-coordinate of the selected\n region. The X-axis is usually Right Ascension, which may\n not be parallel to the X-axis of the image array.\n x_max : float\n The maximum X-axis world coordinate of the selected region.\n mask : bool\n If True, any pixels in the sub-image that remain outside the\n range x_min to x_max and y_min to y_max, will be masked.\n unit : `astropy.units.Unit`\n The units of the X and Y world-coordinates (degrees by default).\n inplace : bool\n If False, return a truncated copy of the image (the default).\n If True, truncate the original image in-place, and return that.\n\n Returns\n -------\n out : `~mpdaf.obj.Image`\n\n '
skycrd = np.array([[y_min, x_min], [y_min, x_max], [y_max, x_min], [y_max, x_max]])
if (unit is not None):
pixcrd = self.wcs.sky2pix(skycrd, unit=unit)
else:
pixcrd = skycrd
imin = max(0, int((np.min(pixcrd[(:, 0)]) + 0.5)))
imax = min(self.shape[0], (int((np.max(pixcrd[(:, 0)]) + 0.5)) + 1))
jmin = max(0, int((np.min(pixcrd[(:, 1)]) + 0.5)))
jmax = min(self.shape[1], (int((np.max(pixcrd[(:, 1)]) + 0.5)) + 1))
subima = self[(imin:imax, jmin:jmax)]
if inplace:
self._data = subima._data
if (self._var is not None):
self._var = subima._var
self._mask = subima._mask
self.wcs = subima.wcs
out = self
else:
out = subima.copy()
if mask:
pixcrd = np.mgrid[(:out.shape[0], :out.shape[1])].reshape(2, (- 1)).T
if (unit is None):
skycrd = pixcrd
else:
skycrd = np.array(out.wcs.pix2sky(pixcrd, unit=unit))
x = skycrd[(:, 1)].reshape(out.shape)
y = skycrd[(:, 0)].reshape(out.shape)
test_x = np.logical_or((x < x_min), (x > x_max))
test_y = np.logical_or((y < y_min), (y > y_max))
test = np.logical_or(test_x, test_y)
out._mask = np.logical_or(out._mask, test)
out.crop()
return out<|docstring|>Return a sub-image that contains a specified area of the sky.
The ranges x_min to x_max and y_min to y_max, specify a rectangular
region of the sky in world coordinates. The truncate function returns
the sub-image that just encloses this region. Note that if the world
coordinate axes are not parallel to the array axes, the region will
appear to be a rotated rectangle within the sub-image. In such cases,
the corners of the sub-image will contain pixels that are outside the
region. By default these pixels are masked. However this can be
disabled by changing the optional mask argument to False.
Parameters
----------
y_min : float
The minimum Y-axis world-coordinate of the selected
region. The Y-axis is usually Declination, which may not
be parallel to the Y-axis of the image array.
y_max : float
The maximum Y-axis world coordinate of the selected region.
x_min : float
The minimum X-axis world-coordinate of the selected
region. The X-axis is usually Right Ascension, which may
not be parallel to the X-axis of the image array.
x_max : float
The maximum X-axis world coordinate of the selected region.
mask : bool
If True, any pixels in the sub-image that remain outside the
range x_min to x_max and y_min to y_max, will be masked.
unit : `astropy.units.Unit`
The units of the X and Y world-coordinates (degrees by default).
inplace : bool
If False, return a truncated copy of the image (the default).
If True, truncate the original image in-place, and return that.
Returns
-------
out : `~mpdaf.obj.Image`<|endoftext|> |
4b28541d41a1e94bb554d258d94a5c4f077fe34b7eb50854265986f59a778fd7 | def subimage(self, center, size, unit_center=u.deg, unit_size=u.arcsec, minsize=2.0):
'Return a view on a square or rectangular part.\n\n This method returns a square or rectangular sub-image whose center and\n size are specified in world coordinates. Note that this is a view on\n the original map and that both will be modified at the same time. If\n you need to modify only the sub-image, copy() the result of the\n method.\n\n Parameters\n ----------\n center : (float,float)\n The center (dec, ra) of the square region. If this position\n is not within the parent image, None is returned.\n size : float or (float,float)\n The width of a square region, or the width and height of\n a rectangular region.\n unit_center : `astropy.units.Unit`\n The units of the center coordinates.\n Degrees are assumed by default. To specify the center\n in pixels, assign None to unit_center.\n unit_size : `astropy.units.Unit`\n The units of the size and minsize arguments.\n Arcseconds are assumed by default (use None to specify\n sizes in pixels).\n minsize : float\n The minimum width of the output image along both the Y and\n X axes. This function returns None if size is smaller than\n minsize, or if the part of the square that lies within the\n parent image is smaller than minsize along either axis.\n\n Returns\n -------\n out : `~mpdaf.obj.Image`\n\n '
if np.isscalar(size):
size = np.array([size, size])
else:
size = np.asarray(size)
if ((size[0] <= 0) or (size[1] <= 0)):
raise ValueError('Size must be positive')
center = np.asarray(center)
if (unit_center is not None):
center = self.wcs.sky2pix(center, unit=unit_center)[0]
if (unit_size is None):
step = np.array([1.0, 1.0])
else:
step = self.wcs.get_step(unit=unit_size)
minsize /= step
radius = (size / 2.0)
([sy, sx], [uy, ux], center) = bounding_box(form='rectangle', center=center, radii=radius, shape=self.shape, step=step)
if ((sx.start >= self.shape[1]) or (sx.stop < 0) or (sx.start == sx.stop) or (sy.start >= self.shape[0]) or (sy.stop < 0) or (sy.start == sy.stop)):
raise ValueError('Sub-image boundaries are outside the cube: center: {}, shape: {}, size: {}'.format(center, self.shape, size))
if ((((sy.stop - sy.start) + 1) < minsize[0]) or (((sx.stop - sx.start) + 1) < minsize[1])):
self.logger.warning('extracted image is too small')
return
res = self[(sy, sx)]
if ((sy == uy) and (sx == ux)):
return res
shape = ((uy.stop - uy.start), (ux.stop - ux.start))
data = np.zeros(shape, dtype=self.data.dtype)
if (self._var is None):
var = None
else:
var = np.zeros(shape)
if (self._mask is ma.nomask):
mask = ma.nomask
data[:] = (np.nan if (self.dtype.kind == 'f') else self.data.fill_value)
if (var is not None):
var[:] = np.nan
else:
mask = np.ones(shape, dtype=bool)
slices = (slice((sy.start - uy.start), (sy.stop - uy.start)), slice((sx.start - ux.start), (sx.stop - ux.start)))
data[slices] = res._data[:]
if (var is not None):
var[slices] = res._var[:]
if ((mask is not None) and (mask is not ma.nomask)):
mask[slices] = res._mask[:]
wcs = res.wcs
wcs.set_crpix1((wcs.wcs.wcs.crpix[0] + slices[1].start))
wcs.set_crpix2((wcs.wcs.wcs.crpix[1] + slices[0].start))
wcs.naxis1 = shape[1]
wcs.naxis2 = shape[0]
return Image(wcs=wcs, unit=self.unit, copy=False, data=data, var=var, mask=mask, data_header=fits.Header(self.data_header), primary_header=fits.Header(self.primary_header), filename=self.filename) | Return a view on a square or rectangular part.
This method returns a square or rectangular sub-image whose center and
size are specified in world coordinates. Note that this is a view on
the original map and that both will be modified at the same time. If
you need to modify only the sub-image, copy() the result of the
method.
Parameters
----------
center : (float,float)
The center (dec, ra) of the square region. If this position
is not within the parent image, None is returned.
size : float or (float,float)
The width of a square region, or the width and height of
a rectangular region.
unit_center : `astropy.units.Unit`
The units of the center coordinates.
Degrees are assumed by default. To specify the center
in pixels, assign None to unit_center.
unit_size : `astropy.units.Unit`
The units of the size and minsize arguments.
Arcseconds are assumed by default (use None to specify
sizes in pixels).
minsize : float
The minimum width of the output image along both the Y and
X axes. This function returns None if size is smaller than
minsize, or if the part of the square that lies within the
parent image is smaller than minsize along either axis.
Returns
-------
out : `~mpdaf.obj.Image` | lib/mpdaf/obj/image.py | subimage | musevlt/mpdaf | 4 | python | def subimage(self, center, size, unit_center=u.deg, unit_size=u.arcsec, minsize=2.0):
'Return a view on a square or rectangular part.\n\n This method returns a square or rectangular sub-image whose center and\n size are specified in world coordinates. Note that this is a view on\n the original map and that both will be modified at the same time. If\n you need to modify only the sub-image, copy() the result of the\n method.\n\n Parameters\n ----------\n center : (float,float)\n The center (dec, ra) of the square region. If this position\n is not within the parent image, None is returned.\n size : float or (float,float)\n The width of a square region, or the width and height of\n a rectangular region.\n unit_center : `astropy.units.Unit`\n The units of the center coordinates.\n Degrees are assumed by default. To specify the center\n in pixels, assign None to unit_center.\n unit_size : `astropy.units.Unit`\n The units of the size and minsize arguments.\n Arcseconds are assumed by default (use None to specify\n sizes in pixels).\n minsize : float\n The minimum width of the output image along both the Y and\n X axes. This function returns None if size is smaller than\n minsize, or if the part of the square that lies within the\n parent image is smaller than minsize along either axis.\n\n Returns\n -------\n out : `~mpdaf.obj.Image`\n\n '
if np.isscalar(size):
size = np.array([size, size])
else:
size = np.asarray(size)
if ((size[0] <= 0) or (size[1] <= 0)):
raise ValueError('Size must be positive')
center = np.asarray(center)
if (unit_center is not None):
center = self.wcs.sky2pix(center, unit=unit_center)[0]
if (unit_size is None):
step = np.array([1.0, 1.0])
else:
step = self.wcs.get_step(unit=unit_size)
minsize /= step
radius = (size / 2.0)
([sy, sx], [uy, ux], center) = bounding_box(form='rectangle', center=center, radii=radius, shape=self.shape, step=step)
if ((sx.start >= self.shape[1]) or (sx.stop < 0) or (sx.start == sx.stop) or (sy.start >= self.shape[0]) or (sy.stop < 0) or (sy.start == sy.stop)):
raise ValueError('Sub-image boundaries are outside the cube: center: {}, shape: {}, size: {}'.format(center, self.shape, size))
if ((((sy.stop - sy.start) + 1) < minsize[0]) or (((sx.stop - sx.start) + 1) < minsize[1])):
self.logger.warning('extracted image is too small')
return
res = self[(sy, sx)]
if ((sy == uy) and (sx == ux)):
return res
shape = ((uy.stop - uy.start), (ux.stop - ux.start))
data = np.zeros(shape, dtype=self.data.dtype)
if (self._var is None):
var = None
else:
var = np.zeros(shape)
if (self._mask is ma.nomask):
mask = ma.nomask
data[:] = (np.nan if (self.dtype.kind == 'f') else self.data.fill_value)
if (var is not None):
var[:] = np.nan
else:
mask = np.ones(shape, dtype=bool)
slices = (slice((sy.start - uy.start), (sy.stop - uy.start)), slice((sx.start - ux.start), (sx.stop - ux.start)))
data[slices] = res._data[:]
if (var is not None):
var[slices] = res._var[:]
if ((mask is not None) and (mask is not ma.nomask)):
mask[slices] = res._mask[:]
wcs = res.wcs
wcs.set_crpix1((wcs.wcs.wcs.crpix[0] + slices[1].start))
wcs.set_crpix2((wcs.wcs.wcs.crpix[1] + slices[0].start))
wcs.naxis1 = shape[1]
wcs.naxis2 = shape[0]
return Image(wcs=wcs, unit=self.unit, copy=False, data=data, var=var, mask=mask, data_header=fits.Header(self.data_header), primary_header=fits.Header(self.primary_header), filename=self.filename) | def subimage(self, center, size, unit_center=u.deg, unit_size=u.arcsec, minsize=2.0):
'Return a view on a square or rectangular part.\n\n This method returns a square or rectangular sub-image whose center and\n size are specified in world coordinates. Note that this is a view on\n the original map and that both will be modified at the same time. If\n you need to modify only the sub-image, copy() the result of the\n method.\n\n Parameters\n ----------\n center : (float,float)\n The center (dec, ra) of the square region. If this position\n is not within the parent image, None is returned.\n size : float or (float,float)\n The width of a square region, or the width and height of\n a rectangular region.\n unit_center : `astropy.units.Unit`\n The units of the center coordinates.\n Degrees are assumed by default. To specify the center\n in pixels, assign None to unit_center.\n unit_size : `astropy.units.Unit`\n The units of the size and minsize arguments.\n Arcseconds are assumed by default (use None to specify\n sizes in pixels).\n minsize : float\n The minimum width of the output image along both the Y and\n X axes. This function returns None if size is smaller than\n minsize, or if the part of the square that lies within the\n parent image is smaller than minsize along either axis.\n\n Returns\n -------\n out : `~mpdaf.obj.Image`\n\n '
if np.isscalar(size):
size = np.array([size, size])
else:
size = np.asarray(size)
if ((size[0] <= 0) or (size[1] <= 0)):
raise ValueError('Size must be positive')
center = np.asarray(center)
if (unit_center is not None):
center = self.wcs.sky2pix(center, unit=unit_center)[0]
if (unit_size is None):
step = np.array([1.0, 1.0])
else:
step = self.wcs.get_step(unit=unit_size)
minsize /= step
radius = (size / 2.0)
([sy, sx], [uy, ux], center) = bounding_box(form='rectangle', center=center, radii=radius, shape=self.shape, step=step)
if ((sx.start >= self.shape[1]) or (sx.stop < 0) or (sx.start == sx.stop) or (sy.start >= self.shape[0]) or (sy.stop < 0) or (sy.start == sy.stop)):
raise ValueError('Sub-image boundaries are outside the cube: center: {}, shape: {}, size: {}'.format(center, self.shape, size))
if ((((sy.stop - sy.start) + 1) < minsize[0]) or (((sx.stop - sx.start) + 1) < minsize[1])):
self.logger.warning('extracted image is too small')
return
res = self[(sy, sx)]
if ((sy == uy) and (sx == ux)):
return res
shape = ((uy.stop - uy.start), (ux.stop - ux.start))
data = np.zeros(shape, dtype=self.data.dtype)
if (self._var is None):
var = None
else:
var = np.zeros(shape)
if (self._mask is ma.nomask):
mask = ma.nomask
data[:] = (np.nan if (self.dtype.kind == 'f') else self.data.fill_value)
if (var is not None):
var[:] = np.nan
else:
mask = np.ones(shape, dtype=bool)
slices = (slice((sy.start - uy.start), (sy.stop - uy.start)), slice((sx.start - ux.start), (sx.stop - ux.start)))
data[slices] = res._data[:]
if (var is not None):
var[slices] = res._var[:]
if ((mask is not None) and (mask is not ma.nomask)):
mask[slices] = res._mask[:]
wcs = res.wcs
wcs.set_crpix1((wcs.wcs.wcs.crpix[0] + slices[1].start))
wcs.set_crpix2((wcs.wcs.wcs.crpix[1] + slices[0].start))
wcs.naxis1 = shape[1]
wcs.naxis2 = shape[0]
return Image(wcs=wcs, unit=self.unit, copy=False, data=data, var=var, mask=mask, data_header=fits.Header(self.data_header), primary_header=fits.Header(self.primary_header), filename=self.filename)<|docstring|>Return a view on a square or rectangular part.
This method returns a square or rectangular sub-image whose center and
size are specified in world coordinates. Note that this is a view on
the original map and that both will be modified at the same time. If
you need to modify only the sub-image, copy() the result of the
method.
Parameters
----------
center : (float,float)
The center (dec, ra) of the square region. If this position
is not within the parent image, None is returned.
size : float or (float,float)
The width of a square region, or the width and height of
a rectangular region.
unit_center : `astropy.units.Unit`
The units of the center coordinates.
Degrees are assumed by default. To specify the center
in pixels, assign None to unit_center.
unit_size : `astropy.units.Unit`
The units of the size and minsize arguments.
Arcseconds are assumed by default (use None to specify
sizes in pixels).
minsize : float
The minimum width of the output image along both the Y and
X axes. This function returns None if size is smaller than
minsize, or if the part of the square that lies within the
parent image is smaller than minsize along either axis.
Returns
-------
out : `~mpdaf.obj.Image`<|endoftext|> |
2bedd89a648b2bd2f16f99f5c0a26d2b47b86a63d996f5e3523ec8d24983a490 | def rotate(self, theta=0.0, interp='no', reshape=False, order=1, pivot=None, unit=u.deg, regrid=None, flux=False, cutoff=0.25, inplace=False):
"Rotate the sky within an image in the sense of a rotation from\n north to east.\n\n For example if the image rotation angle that is currently\n returned by image.get_rot() is zero, image.rotate(10.0) will\n rotate the northward direction of the image 10 degrees\n eastward of where it was, and self.get_rot() will thereafter\n return 10.0.\n\n Uses `scipy.ndimage.affine_transform`.\n\n Parameters\n ----------\n theta : float\n The angle to rotate the image (degrees). Positive\n angles rotate features in the image in the sense of a\n rotation from north to east.\n interp : 'no' | 'linear' | 'spline'\n If 'no', replace masked data with the median value of the\n image. This is the default.\n If 'linear', replace masked values using a linear\n interpolation between neighboring values.\n if 'spline', replace masked values using a spline\n interpolation between neighboring values.\n reshape : bool\n If True, the size of the output image array is adjusted\n so that the input image is contained completely in the\n output. The default is False.\n order : int\n The order of the prefilter that is applied by the affine\n transform function. Prefiltering is not really needed for\n band-limited images, but this option is retained for\n backwards compatibility with an older version of the\n image.rotate method. In general orders > 1 tend to\n generate ringing at sharp edges, such as those of CCD\n saturation spikes, so this argument is best left with\n its default value of 1.\n pivot : float,float or None\n When the reshape option is True, or the pivot argument is\n None, the image is rotated around its center.\n Alternatively, when the reshape option is False, the pivot\n argument can be used to indicate which pixel index [y,x]\n the image will be rotated around. Integer pixel indexes\n specify the centers of pixels. Non-integer values can be\n used to indicate positions between pixel centers.\n\n On the sky, the rotation always occurs around the\n coordinate reference position of the observation. However\n the rotated sky is then mapped onto the pixel array of the\n image in such a way as to keep the sky position of the\n pivot pixel at the same place. This makes the image appear\n to rotate around that pixel.\n unit : `astropy.units.Unit`\n The angular units of the rotation angle, theta.\n regrid : bool\n When this option is True, the pixel sizes along each axis\n are adjusted to avoid undersampling or oversampling any\n direction in the original image that would otherwise be\n rotated onto a lower or higher resolution axis. This is\n particularly important for images whose pixels have\n different angular dimensions along the X and Y axes, but\n it can also be important for images with square pixels,\n because the diagonal of an image with square pixels has\n higher resolution than the axes of that image.\n\n If this option is left with its default value of None,\n then it is given the value of the reshape option.\n flux : bool\n This tells the function whether the pixel units of the\n image are flux densities (flux=True), such as\n erg/s/cm2/Hz, or whether they are per-steradian brightness\n units (flux=False), such as erg/s/cm2/Hz/steradian. It\n needs to know this when it changes the pixel size, because\n when pixel sizes change, resampled flux densities need to\n be corrected for the change in the area per pixel, where\n resampled brightnesses don't.\n cutoff : float\n Mask each output pixel where at least this fraction of the\n pixel was interpolated from dummy values given to masked\n input pixels.\n inplace : bool\n If False, return a rotated copy of the image (the default).\n If True, rotate the original image in-place, and return that.\n\n Returns\n -------\n out : `~mpdaf.obj.Image`\n\n "
res = (self if inplace else self.copy())
res._rotate(theta=theta, interp=interp, reshape=reshape, order=order, pivot=pivot, unit=unit, regrid=regrid, flux=flux, cutoff=cutoff)
return res | Rotate the sky within an image in the sense of a rotation from
north to east.
For example if the image rotation angle that is currently
returned by image.get_rot() is zero, image.rotate(10.0) will
rotate the northward direction of the image 10 degrees
eastward of where it was, and self.get_rot() will thereafter
return 10.0.
Uses `scipy.ndimage.affine_transform`.
Parameters
----------
theta : float
The angle to rotate the image (degrees). Positive
angles rotate features in the image in the sense of a
rotation from north to east.
interp : 'no' | 'linear' | 'spline'
If 'no', replace masked data with the median value of the
image. This is the default.
If 'linear', replace masked values using a linear
interpolation between neighboring values.
if 'spline', replace masked values using a spline
interpolation between neighboring values.
reshape : bool
If True, the size of the output image array is adjusted
so that the input image is contained completely in the
output. The default is False.
order : int
The order of the prefilter that is applied by the affine
transform function. Prefiltering is not really needed for
band-limited images, but this option is retained for
backwards compatibility with an older version of the
image.rotate method. In general orders > 1 tend to
generate ringing at sharp edges, such as those of CCD
saturation spikes, so this argument is best left with
its default value of 1.
pivot : float,float or None
When the reshape option is True, or the pivot argument is
None, the image is rotated around its center.
Alternatively, when the reshape option is False, the pivot
argument can be used to indicate which pixel index [y,x]
the image will be rotated around. Integer pixel indexes
specify the centers of pixels. Non-integer values can be
used to indicate positions between pixel centers.
On the sky, the rotation always occurs around the
coordinate reference position of the observation. However
the rotated sky is then mapped onto the pixel array of the
image in such a way as to keep the sky position of the
pivot pixel at the same place. This makes the image appear
to rotate around that pixel.
unit : `astropy.units.Unit`
The angular units of the rotation angle, theta.
regrid : bool
When this option is True, the pixel sizes along each axis
are adjusted to avoid undersampling or oversampling any
direction in the original image that would otherwise be
rotated onto a lower or higher resolution axis. This is
particularly important for images whose pixels have
different angular dimensions along the X and Y axes, but
it can also be important for images with square pixels,
because the diagonal of an image with square pixels has
higher resolution than the axes of that image.
If this option is left with its default value of None,
then it is given the value of the reshape option.
flux : bool
This tells the function whether the pixel units of the
image are flux densities (flux=True), such as
erg/s/cm2/Hz, or whether they are per-steradian brightness
units (flux=False), such as erg/s/cm2/Hz/steradian. It
needs to know this when it changes the pixel size, because
when pixel sizes change, resampled flux densities need to
be corrected for the change in the area per pixel, where
resampled brightnesses don't.
cutoff : float
Mask each output pixel where at least this fraction of the
pixel was interpolated from dummy values given to masked
input pixels.
inplace : bool
If False, return a rotated copy of the image (the default).
If True, rotate the original image in-place, and return that.
Returns
-------
out : `~mpdaf.obj.Image` | lib/mpdaf/obj/image.py | rotate | musevlt/mpdaf | 4 | python | def rotate(self, theta=0.0, interp='no', reshape=False, order=1, pivot=None, unit=u.deg, regrid=None, flux=False, cutoff=0.25, inplace=False):
"Rotate the sky within an image in the sense of a rotation from\n north to east.\n\n For example if the image rotation angle that is currently\n returned by image.get_rot() is zero, image.rotate(10.0) will\n rotate the northward direction of the image 10 degrees\n eastward of where it was, and self.get_rot() will thereafter\n return 10.0.\n\n Uses `scipy.ndimage.affine_transform`.\n\n Parameters\n ----------\n theta : float\n The angle to rotate the image (degrees). Positive\n angles rotate features in the image in the sense of a\n rotation from north to east.\n interp : 'no' | 'linear' | 'spline'\n If 'no', replace masked data with the median value of the\n image. This is the default.\n If 'linear', replace masked values using a linear\n interpolation between neighboring values.\n if 'spline', replace masked values using a spline\n interpolation between neighboring values.\n reshape : bool\n If True, the size of the output image array is adjusted\n so that the input image is contained completely in the\n output. The default is False.\n order : int\n The order of the prefilter that is applied by the affine\n transform function. Prefiltering is not really needed for\n band-limited images, but this option is retained for\n backwards compatibility with an older version of the\n image.rotate method. In general orders > 1 tend to\n generate ringing at sharp edges, such as those of CCD\n saturation spikes, so this argument is best left with\n its default value of 1.\n pivot : float,float or None\n When the reshape option is True, or the pivot argument is\n None, the image is rotated around its center.\n Alternatively, when the reshape option is False, the pivot\n argument can be used to indicate which pixel index [y,x]\n the image will be rotated around. Integer pixel indexes\n specify the centers of pixels. Non-integer values can be\n used to indicate positions between pixel centers.\n\n On the sky, the rotation always occurs around the\n coordinate reference position of the observation. However\n the rotated sky is then mapped onto the pixel array of the\n image in such a way as to keep the sky position of the\n pivot pixel at the same place. This makes the image appear\n to rotate around that pixel.\n unit : `astropy.units.Unit`\n The angular units of the rotation angle, theta.\n regrid : bool\n When this option is True, the pixel sizes along each axis\n are adjusted to avoid undersampling or oversampling any\n direction in the original image that would otherwise be\n rotated onto a lower or higher resolution axis. This is\n particularly important for images whose pixels have\n different angular dimensions along the X and Y axes, but\n it can also be important for images with square pixels,\n because the diagonal of an image with square pixels has\n higher resolution than the axes of that image.\n\n If this option is left with its default value of None,\n then it is given the value of the reshape option.\n flux : bool\n This tells the function whether the pixel units of the\n image are flux densities (flux=True), such as\n erg/s/cm2/Hz, or whether they are per-steradian brightness\n units (flux=False), such as erg/s/cm2/Hz/steradian. It\n needs to know this when it changes the pixel size, because\n when pixel sizes change, resampled flux densities need to\n be corrected for the change in the area per pixel, where\n resampled brightnesses don't.\n cutoff : float\n Mask each output pixel where at least this fraction of the\n pixel was interpolated from dummy values given to masked\n input pixels.\n inplace : bool\n If False, return a rotated copy of the image (the default).\n If True, rotate the original image in-place, and return that.\n\n Returns\n -------\n out : `~mpdaf.obj.Image`\n\n "
res = (self if inplace else self.copy())
res._rotate(theta=theta, interp=interp, reshape=reshape, order=order, pivot=pivot, unit=unit, regrid=regrid, flux=flux, cutoff=cutoff)
return res | def rotate(self, theta=0.0, interp='no', reshape=False, order=1, pivot=None, unit=u.deg, regrid=None, flux=False, cutoff=0.25, inplace=False):
"Rotate the sky within an image in the sense of a rotation from\n north to east.\n\n For example if the image rotation angle that is currently\n returned by image.get_rot() is zero, image.rotate(10.0) will\n rotate the northward direction of the image 10 degrees\n eastward of where it was, and self.get_rot() will thereafter\n return 10.0.\n\n Uses `scipy.ndimage.affine_transform`.\n\n Parameters\n ----------\n theta : float\n The angle to rotate the image (degrees). Positive\n angles rotate features in the image in the sense of a\n rotation from north to east.\n interp : 'no' | 'linear' | 'spline'\n If 'no', replace masked data with the median value of the\n image. This is the default.\n If 'linear', replace masked values using a linear\n interpolation between neighboring values.\n if 'spline', replace masked values using a spline\n interpolation between neighboring values.\n reshape : bool\n If True, the size of the output image array is adjusted\n so that the input image is contained completely in the\n output. The default is False.\n order : int\n The order of the prefilter that is applied by the affine\n transform function. Prefiltering is not really needed for\n band-limited images, but this option is retained for\n backwards compatibility with an older version of the\n image.rotate method. In general orders > 1 tend to\n generate ringing at sharp edges, such as those of CCD\n saturation spikes, so this argument is best left with\n its default value of 1.\n pivot : float,float or None\n When the reshape option is True, or the pivot argument is\n None, the image is rotated around its center.\n Alternatively, when the reshape option is False, the pivot\n argument can be used to indicate which pixel index [y,x]\n the image will be rotated around. Integer pixel indexes\n specify the centers of pixels. Non-integer values can be\n used to indicate positions between pixel centers.\n\n On the sky, the rotation always occurs around the\n coordinate reference position of the observation. However\n the rotated sky is then mapped onto the pixel array of the\n image in such a way as to keep the sky position of the\n pivot pixel at the same place. This makes the image appear\n to rotate around that pixel.\n unit : `astropy.units.Unit`\n The angular units of the rotation angle, theta.\n regrid : bool\n When this option is True, the pixel sizes along each axis\n are adjusted to avoid undersampling or oversampling any\n direction in the original image that would otherwise be\n rotated onto a lower or higher resolution axis. This is\n particularly important for images whose pixels have\n different angular dimensions along the X and Y axes, but\n it can also be important for images with square pixels,\n because the diagonal of an image with square pixels has\n higher resolution than the axes of that image.\n\n If this option is left with its default value of None,\n then it is given the value of the reshape option.\n flux : bool\n This tells the function whether the pixel units of the\n image are flux densities (flux=True), such as\n erg/s/cm2/Hz, or whether they are per-steradian brightness\n units (flux=False), such as erg/s/cm2/Hz/steradian. It\n needs to know this when it changes the pixel size, because\n when pixel sizes change, resampled flux densities need to\n be corrected for the change in the area per pixel, where\n resampled brightnesses don't.\n cutoff : float\n Mask each output pixel where at least this fraction of the\n pixel was interpolated from dummy values given to masked\n input pixels.\n inplace : bool\n If False, return a rotated copy of the image (the default).\n If True, rotate the original image in-place, and return that.\n\n Returns\n -------\n out : `~mpdaf.obj.Image`\n\n "
res = (self if inplace else self.copy())
res._rotate(theta=theta, interp=interp, reshape=reshape, order=order, pivot=pivot, unit=unit, regrid=regrid, flux=flux, cutoff=cutoff)
return res<|docstring|>Rotate the sky within an image in the sense of a rotation from
north to east.
For example if the image rotation angle that is currently
returned by image.get_rot() is zero, image.rotate(10.0) will
rotate the northward direction of the image 10 degrees
eastward of where it was, and self.get_rot() will thereafter
return 10.0.
Uses `scipy.ndimage.affine_transform`.
Parameters
----------
theta : float
The angle to rotate the image (degrees). Positive
angles rotate features in the image in the sense of a
rotation from north to east.
interp : 'no' | 'linear' | 'spline'
If 'no', replace masked data with the median value of the
image. This is the default.
If 'linear', replace masked values using a linear
interpolation between neighboring values.
if 'spline', replace masked values using a spline
interpolation between neighboring values.
reshape : bool
If True, the size of the output image array is adjusted
so that the input image is contained completely in the
output. The default is False.
order : int
The order of the prefilter that is applied by the affine
transform function. Prefiltering is not really needed for
band-limited images, but this option is retained for
backwards compatibility with an older version of the
image.rotate method. In general orders > 1 tend to
generate ringing at sharp edges, such as those of CCD
saturation spikes, so this argument is best left with
its default value of 1.
pivot : float,float or None
When the reshape option is True, or the pivot argument is
None, the image is rotated around its center.
Alternatively, when the reshape option is False, the pivot
argument can be used to indicate which pixel index [y,x]
the image will be rotated around. Integer pixel indexes
specify the centers of pixels. Non-integer values can be
used to indicate positions between pixel centers.
On the sky, the rotation always occurs around the
coordinate reference position of the observation. However
the rotated sky is then mapped onto the pixel array of the
image in such a way as to keep the sky position of the
pivot pixel at the same place. This makes the image appear
to rotate around that pixel.
unit : `astropy.units.Unit`
The angular units of the rotation angle, theta.
regrid : bool
When this option is True, the pixel sizes along each axis
are adjusted to avoid undersampling or oversampling any
direction in the original image that would otherwise be
rotated onto a lower or higher resolution axis. This is
particularly important for images whose pixels have
different angular dimensions along the X and Y axes, but
it can also be important for images with square pixels,
because the diagonal of an image with square pixels has
higher resolution than the axes of that image.
If this option is left with its default value of None,
then it is given the value of the reshape option.
flux : bool
This tells the function whether the pixel units of the
image are flux densities (flux=True), such as
erg/s/cm2/Hz, or whether they are per-steradian brightness
units (flux=False), such as erg/s/cm2/Hz/steradian. It
needs to know this when it changes the pixel size, because
when pixel sizes change, resampled flux densities need to
be corrected for the change in the area per pixel, where
resampled brightnesses don't.
cutoff : float
Mask each output pixel where at least this fraction of the
pixel was interpolated from dummy values given to masked
input pixels.
inplace : bool
If False, return a rotated copy of the image (the default).
If True, rotate the original image in-place, and return that.
Returns
-------
out : `~mpdaf.obj.Image`<|endoftext|> |
edd9237b9cf72d7c67df234aae223466c830f610e24770dd9e3f27a0cb60d0ec | def norm(self, typ='flux', value=1.0):
"Normalize in place total flux to value (default 1).\n\n Parameters\n ----------\n type : 'flux' | 'sum' | 'max'\n If 'flux',the flux is normalized and\n the pixel area is taken into account.\n\n If 'sum', the flux is normalized to the sum\n of flux independently of pixel size.\n\n If 'max', the flux is normalized so that\n the maximum of intensity will be 'value'.\n value : float\n Normalized value (default 1).\n "
if (typ == 'flux'):
norm = (value / (self.get_step().prod() * self.data.sum()))
elif (typ == 'sum'):
norm = (value / self.data.sum())
elif (typ == 'max'):
norm = (value / self.data.max())
else:
raise ValueError('Error in type: only flux,sum,max permitted')
self._data *= norm
if (self._var is not None):
self._var *= (norm * norm) | Normalize in place total flux to value (default 1).
Parameters
----------
type : 'flux' | 'sum' | 'max'
If 'flux',the flux is normalized and
the pixel area is taken into account.
If 'sum', the flux is normalized to the sum
of flux independently of pixel size.
If 'max', the flux is normalized so that
the maximum of intensity will be 'value'.
value : float
Normalized value (default 1). | lib/mpdaf/obj/image.py | norm | musevlt/mpdaf | 4 | python | def norm(self, typ='flux', value=1.0):
"Normalize in place total flux to value (default 1).\n\n Parameters\n ----------\n type : 'flux' | 'sum' | 'max'\n If 'flux',the flux is normalized and\n the pixel area is taken into account.\n\n If 'sum', the flux is normalized to the sum\n of flux independently of pixel size.\n\n If 'max', the flux is normalized so that\n the maximum of intensity will be 'value'.\n value : float\n Normalized value (default 1).\n "
if (typ == 'flux'):
norm = (value / (self.get_step().prod() * self.data.sum()))
elif (typ == 'sum'):
norm = (value / self.data.sum())
elif (typ == 'max'):
norm = (value / self.data.max())
else:
raise ValueError('Error in type: only flux,sum,max permitted')
self._data *= norm
if (self._var is not None):
self._var *= (norm * norm) | def norm(self, typ='flux', value=1.0):
"Normalize in place total flux to value (default 1).\n\n Parameters\n ----------\n type : 'flux' | 'sum' | 'max'\n If 'flux',the flux is normalized and\n the pixel area is taken into account.\n\n If 'sum', the flux is normalized to the sum\n of flux independently of pixel size.\n\n If 'max', the flux is normalized so that\n the maximum of intensity will be 'value'.\n value : float\n Normalized value (default 1).\n "
if (typ == 'flux'):
norm = (value / (self.get_step().prod() * self.data.sum()))
elif (typ == 'sum'):
norm = (value / self.data.sum())
elif (typ == 'max'):
norm = (value / self.data.max())
else:
raise ValueError('Error in type: only flux,sum,max permitted')
self._data *= norm
if (self._var is not None):
self._var *= (norm * norm)<|docstring|>Normalize in place total flux to value (default 1).
Parameters
----------
type : 'flux' | 'sum' | 'max'
If 'flux',the flux is normalized and
the pixel area is taken into account.
If 'sum', the flux is normalized to the sum
of flux independently of pixel size.
If 'max', the flux is normalized so that
the maximum of intensity will be 'value'.
value : float
Normalized value (default 1).<|endoftext|> |
48d23a4abc0841f2aaeda8102d950c5307bdecff4cdcf25787c1d2e5044f4961 | def background(self, niter=3, sigma=3.0):
'Compute the image background with sigma-clipping.\n\n Returns the background value and its standard deviation.\n\n Parameters\n ----------\n niter : int\n Number of iterations.\n sigma : float\n Number of sigma used for the clipping.\n\n Returns\n -------\n out : 2-dim float array\n '
tab = self.data.compressed()
for n in range((niter + 1)):
tab = tab[(tab <= (tab.mean() + (sigma * tab.std())))]
return (tab.mean(), tab.std()) | Compute the image background with sigma-clipping.
Returns the background value and its standard deviation.
Parameters
----------
niter : int
Number of iterations.
sigma : float
Number of sigma used for the clipping.
Returns
-------
out : 2-dim float array | lib/mpdaf/obj/image.py | background | musevlt/mpdaf | 4 | python | def background(self, niter=3, sigma=3.0):
'Compute the image background with sigma-clipping.\n\n Returns the background value and its standard deviation.\n\n Parameters\n ----------\n niter : int\n Number of iterations.\n sigma : float\n Number of sigma used for the clipping.\n\n Returns\n -------\n out : 2-dim float array\n '
tab = self.data.compressed()
for n in range((niter + 1)):
tab = tab[(tab <= (tab.mean() + (sigma * tab.std())))]
return (tab.mean(), tab.std()) | def background(self, niter=3, sigma=3.0):
'Compute the image background with sigma-clipping.\n\n Returns the background value and its standard deviation.\n\n Parameters\n ----------\n niter : int\n Number of iterations.\n sigma : float\n Number of sigma used for the clipping.\n\n Returns\n -------\n out : 2-dim float array\n '
tab = self.data.compressed()
for n in range((niter + 1)):
tab = tab[(tab <= (tab.mean() + (sigma * tab.std())))]
return (tab.mean(), tab.std())<|docstring|>Compute the image background with sigma-clipping.
Returns the background value and its standard deviation.
Parameters
----------
niter : int
Number of iterations.
sigma : float
Number of sigma used for the clipping.
Returns
-------
out : 2-dim float array<|endoftext|> |
5cee9db0255daec95f24edafe747917331cb509332e94b4b2b864efedc13e488 | def peak_detection(self, nstruct, niter, threshold=None):
'Return a list of peak locations.\n\n Parameters\n ----------\n nstruct : int\n Size of the structuring element used for the erosion.\n niter : int\n Number of iterations used for the erosion and the dilatation.\n threshold : float\n Threshold value. If None, it is initialized with background value.\n\n Returns\n -------\n out : np.array\n\n '
if (threshold is None):
(background, std) = self.background()
threshold = (background + (10 * std))
def _struct(n):
struct = np.zeros([n, n])
for i in range(0, n):
dist = abs((i - (n // 2)))
struct[i][dist:abs((n - dist))] = 1
return struct
selec = (self.data > threshold)
selec.fill_value = False
struct = _struct(nstruct)
selec = ndi.binary_erosion(selec, structure=struct, iterations=niter)
selec = ndi.binary_dilation(selec, structure=struct, iterations=niter)
selec = ndi.binary_fill_holes(selec)
structure = ndi.generate_binary_structure(2, 2)
label = ndi.measurements.label(selec, structure)
pos = ndi.measurements.center_of_mass(self.data, label[0], (np.arange(label[1]) + 1))
return np.array(pos) | Return a list of peak locations.
Parameters
----------
nstruct : int
Size of the structuring element used for the erosion.
niter : int
Number of iterations used for the erosion and the dilatation.
threshold : float
Threshold value. If None, it is initialized with background value.
Returns
-------
out : np.array | lib/mpdaf/obj/image.py | peak_detection | musevlt/mpdaf | 4 | python | def peak_detection(self, nstruct, niter, threshold=None):
'Return a list of peak locations.\n\n Parameters\n ----------\n nstruct : int\n Size of the structuring element used for the erosion.\n niter : int\n Number of iterations used for the erosion and the dilatation.\n threshold : float\n Threshold value. If None, it is initialized with background value.\n\n Returns\n -------\n out : np.array\n\n '
if (threshold is None):
(background, std) = self.background()
threshold = (background + (10 * std))
def _struct(n):
struct = np.zeros([n, n])
for i in range(0, n):
dist = abs((i - (n // 2)))
struct[i][dist:abs((n - dist))] = 1
return struct
selec = (self.data > threshold)
selec.fill_value = False
struct = _struct(nstruct)
selec = ndi.binary_erosion(selec, structure=struct, iterations=niter)
selec = ndi.binary_dilation(selec, structure=struct, iterations=niter)
selec = ndi.binary_fill_holes(selec)
structure = ndi.generate_binary_structure(2, 2)
label = ndi.measurements.label(selec, structure)
pos = ndi.measurements.center_of_mass(self.data, label[0], (np.arange(label[1]) + 1))
return np.array(pos) | def peak_detection(self, nstruct, niter, threshold=None):
'Return a list of peak locations.\n\n Parameters\n ----------\n nstruct : int\n Size of the structuring element used for the erosion.\n niter : int\n Number of iterations used for the erosion and the dilatation.\n threshold : float\n Threshold value. If None, it is initialized with background value.\n\n Returns\n -------\n out : np.array\n\n '
if (threshold is None):
(background, std) = self.background()
threshold = (background + (10 * std))
def _struct(n):
struct = np.zeros([n, n])
for i in range(0, n):
dist = abs((i - (n // 2)))
struct[i][dist:abs((n - dist))] = 1
return struct
selec = (self.data > threshold)
selec.fill_value = False
struct = _struct(nstruct)
selec = ndi.binary_erosion(selec, structure=struct, iterations=niter)
selec = ndi.binary_dilation(selec, structure=struct, iterations=niter)
selec = ndi.binary_fill_holes(selec)
structure = ndi.generate_binary_structure(2, 2)
label = ndi.measurements.label(selec, structure)
pos = ndi.measurements.center_of_mass(self.data, label[0], (np.arange(label[1]) + 1))
return np.array(pos)<|docstring|>Return a list of peak locations.
Parameters
----------
nstruct : int
Size of the structuring element used for the erosion.
niter : int
Number of iterations used for the erosion and the dilatation.
threshold : float
Threshold value. If None, it is initialized with background value.
Returns
-------
out : np.array<|endoftext|> |
ee2e49f99544b36818a312efc44ef3f63091d46fcf3e27520482663892b592ce | def peak(self, center=None, radius=0, unit_center=u.deg, unit_radius=u.arcsec, dpix=2, background=None, plot=False):
"Find image peak location.\n\n Used `scipy.ndimage.measurements.maximum_position` and\n `scipy.ndimage.measurements.center_of_mass`.\n\n Parameters\n ----------\n center : (float,float)\n Center (y,x) of the explored region.\n If center is None, the full image is explored.\n radius : float or (float,float)\n Radius defined the explored region.\n unit_center : `astropy.units.Unit`\n Type of the center coordinates.\n Degrees by default (use None for coordinates in pixels).\n unit_radius : `astropy.units.Unit`\n Radius unit.\n Arcseconds by default (use None for radius in pixels)\n dpix : int\n Half size of the window (in pixels) to compute the center of\n gravity.\n background : float\n Background value. If None, it is computed.\n plot : bool\n If True, the peak center is overplotted on the image.\n\n Returns\n -------\n out : dict {'y', 'x', 'p', 'q', 'data'}\n Containing the peak position and the peak intensity.\n\n "
if ((center is None) or (radius == 0)):
d = self.data
imin = 0
jmin = 0
else:
if is_number(radius):
radius = (radius, radius)
if (unit_center is not None):
center = self.wcs.sky2pix(center, unit=unit_center)[0]
if (unit_radius is not None):
radius = (radius / self.wcs.get_step(unit=unit_radius))
imin = max(0, int((center[0] - radius[0])))
imax = min(self.shape[0], int(((center[0] + radius[0]) + 1)))
jmin = max(0, int((center[1] - radius[1])))
jmax = min(self.shape[1], int(((center[1] + radius[1]) + 1)))
d = self.data[(imin:imax, jmin:jmax)]
if ((np.shape(d)[0] == 0) or (np.shape(d)[1] == 0)):
raise ValueError('Coord area outside image limits')
(ic, jc) = ndi.measurements.maximum_position(d)
if (dpix == 0):
di = 0
dj = 0
else:
if (background is None):
background = self.background()[0]
(di, dj) = ndi.measurements.center_of_mass((d[(max(0, (ic - dpix)):((ic + dpix) + 1), max(0, (jc - dpix)):((jc + dpix) + 1))] - background))
ic = ((imin + max(0, (ic - dpix))) + di)
jc = ((jmin + max(0, (jc - dpix))) + dj)
(iic, jjc) = (int(round(ic)), int(round(jc)))
if ((iic < 0) or (jjc < 0) or (iic >= self.data.shape[0]) or (jjc >= self.data.shape[1])):
return None
[[dec, ra]] = self.wcs.pix2sky([[ic, jc]])
maxv = self.data[(int(round(ic)), int(round(jc)))]
if plot:
self._ax.plot(jc, ic, 'r+')
try:
_str = ('center (%g,%g) radius (%g,%g) dpix %i peak: %g %g' % (center[0], center[1], radius[0], radius[1], dpix, jc, ic))
except Exception:
_str = ('dpix %i peak: %g %g' % (dpix, ic, jc))
self._ax.title(_str)
return {'x': ra, 'y': dec, 'p': ic, 'q': jc, 'data': maxv} | Find image peak location.
Used `scipy.ndimage.measurements.maximum_position` and
`scipy.ndimage.measurements.center_of_mass`.
Parameters
----------
center : (float,float)
Center (y,x) of the explored region.
If center is None, the full image is explored.
radius : float or (float,float)
Radius defined the explored region.
unit_center : `astropy.units.Unit`
Type of the center coordinates.
Degrees by default (use None for coordinates in pixels).
unit_radius : `astropy.units.Unit`
Radius unit.
Arcseconds by default (use None for radius in pixels)
dpix : int
Half size of the window (in pixels) to compute the center of
gravity.
background : float
Background value. If None, it is computed.
plot : bool
If True, the peak center is overplotted on the image.
Returns
-------
out : dict {'y', 'x', 'p', 'q', 'data'}
Containing the peak position and the peak intensity. | lib/mpdaf/obj/image.py | peak | musevlt/mpdaf | 4 | python | def peak(self, center=None, radius=0, unit_center=u.deg, unit_radius=u.arcsec, dpix=2, background=None, plot=False):
"Find image peak location.\n\n Used `scipy.ndimage.measurements.maximum_position` and\n `scipy.ndimage.measurements.center_of_mass`.\n\n Parameters\n ----------\n center : (float,float)\n Center (y,x) of the explored region.\n If center is None, the full image is explored.\n radius : float or (float,float)\n Radius defined the explored region.\n unit_center : `astropy.units.Unit`\n Type of the center coordinates.\n Degrees by default (use None for coordinates in pixels).\n unit_radius : `astropy.units.Unit`\n Radius unit.\n Arcseconds by default (use None for radius in pixels)\n dpix : int\n Half size of the window (in pixels) to compute the center of\n gravity.\n background : float\n Background value. If None, it is computed.\n plot : bool\n If True, the peak center is overplotted on the image.\n\n Returns\n -------\n out : dict {'y', 'x', 'p', 'q', 'data'}\n Containing the peak position and the peak intensity.\n\n "
if ((center is None) or (radius == 0)):
d = self.data
imin = 0
jmin = 0
else:
if is_number(radius):
radius = (radius, radius)
if (unit_center is not None):
center = self.wcs.sky2pix(center, unit=unit_center)[0]
if (unit_radius is not None):
radius = (radius / self.wcs.get_step(unit=unit_radius))
imin = max(0, int((center[0] - radius[0])))
imax = min(self.shape[0], int(((center[0] + radius[0]) + 1)))
jmin = max(0, int((center[1] - radius[1])))
jmax = min(self.shape[1], int(((center[1] + radius[1]) + 1)))
d = self.data[(imin:imax, jmin:jmax)]
if ((np.shape(d)[0] == 0) or (np.shape(d)[1] == 0)):
raise ValueError('Coord area outside image limits')
(ic, jc) = ndi.measurements.maximum_position(d)
if (dpix == 0):
di = 0
dj = 0
else:
if (background is None):
background = self.background()[0]
(di, dj) = ndi.measurements.center_of_mass((d[(max(0, (ic - dpix)):((ic + dpix) + 1), max(0, (jc - dpix)):((jc + dpix) + 1))] - background))
ic = ((imin + max(0, (ic - dpix))) + di)
jc = ((jmin + max(0, (jc - dpix))) + dj)
(iic, jjc) = (int(round(ic)), int(round(jc)))
if ((iic < 0) or (jjc < 0) or (iic >= self.data.shape[0]) or (jjc >= self.data.shape[1])):
return None
[[dec, ra]] = self.wcs.pix2sky([[ic, jc]])
maxv = self.data[(int(round(ic)), int(round(jc)))]
if plot:
self._ax.plot(jc, ic, 'r+')
try:
_str = ('center (%g,%g) radius (%g,%g) dpix %i peak: %g %g' % (center[0], center[1], radius[0], radius[1], dpix, jc, ic))
except Exception:
_str = ('dpix %i peak: %g %g' % (dpix, ic, jc))
self._ax.title(_str)
return {'x': ra, 'y': dec, 'p': ic, 'q': jc, 'data': maxv} | def peak(self, center=None, radius=0, unit_center=u.deg, unit_radius=u.arcsec, dpix=2, background=None, plot=False):
"Find image peak location.\n\n Used `scipy.ndimage.measurements.maximum_position` and\n `scipy.ndimage.measurements.center_of_mass`.\n\n Parameters\n ----------\n center : (float,float)\n Center (y,x) of the explored region.\n If center is None, the full image is explored.\n radius : float or (float,float)\n Radius defined the explored region.\n unit_center : `astropy.units.Unit`\n Type of the center coordinates.\n Degrees by default (use None for coordinates in pixels).\n unit_radius : `astropy.units.Unit`\n Radius unit.\n Arcseconds by default (use None for radius in pixels)\n dpix : int\n Half size of the window (in pixels) to compute the center of\n gravity.\n background : float\n Background value. If None, it is computed.\n plot : bool\n If True, the peak center is overplotted on the image.\n\n Returns\n -------\n out : dict {'y', 'x', 'p', 'q', 'data'}\n Containing the peak position and the peak intensity.\n\n "
if ((center is None) or (radius == 0)):
d = self.data
imin = 0
jmin = 0
else:
if is_number(radius):
radius = (radius, radius)
if (unit_center is not None):
center = self.wcs.sky2pix(center, unit=unit_center)[0]
if (unit_radius is not None):
radius = (radius / self.wcs.get_step(unit=unit_radius))
imin = max(0, int((center[0] - radius[0])))
imax = min(self.shape[0], int(((center[0] + radius[0]) + 1)))
jmin = max(0, int((center[1] - radius[1])))
jmax = min(self.shape[1], int(((center[1] + radius[1]) + 1)))
d = self.data[(imin:imax, jmin:jmax)]
if ((np.shape(d)[0] == 0) or (np.shape(d)[1] == 0)):
raise ValueError('Coord area outside image limits')
(ic, jc) = ndi.measurements.maximum_position(d)
if (dpix == 0):
di = 0
dj = 0
else:
if (background is None):
background = self.background()[0]
(di, dj) = ndi.measurements.center_of_mass((d[(max(0, (ic - dpix)):((ic + dpix) + 1), max(0, (jc - dpix)):((jc + dpix) + 1))] - background))
ic = ((imin + max(0, (ic - dpix))) + di)
jc = ((jmin + max(0, (jc - dpix))) + dj)
(iic, jjc) = (int(round(ic)), int(round(jc)))
if ((iic < 0) or (jjc < 0) or (iic >= self.data.shape[0]) or (jjc >= self.data.shape[1])):
return None
[[dec, ra]] = self.wcs.pix2sky([[ic, jc]])
maxv = self.data[(int(round(ic)), int(round(jc)))]
if plot:
self._ax.plot(jc, ic, 'r+')
try:
_str = ('center (%g,%g) radius (%g,%g) dpix %i peak: %g %g' % (center[0], center[1], radius[0], radius[1], dpix, jc, ic))
except Exception:
_str = ('dpix %i peak: %g %g' % (dpix, ic, jc))
self._ax.title(_str)
return {'x': ra, 'y': dec, 'p': ic, 'q': jc, 'data': maxv}<|docstring|>Find image peak location.
Used `scipy.ndimage.measurements.maximum_position` and
`scipy.ndimage.measurements.center_of_mass`.
Parameters
----------
center : (float,float)
Center (y,x) of the explored region.
If center is None, the full image is explored.
radius : float or (float,float)
Radius defined the explored region.
unit_center : `astropy.units.Unit`
Type of the center coordinates.
Degrees by default (use None for coordinates in pixels).
unit_radius : `astropy.units.Unit`
Radius unit.
Arcseconds by default (use None for radius in pixels)
dpix : int
Half size of the window (in pixels) to compute the center of
gravity.
background : float
Background value. If None, it is computed.
plot : bool
If True, the peak center is overplotted on the image.
Returns
-------
out : dict {'y', 'x', 'p', 'q', 'data'}
Containing the peak position and the peak intensity.<|endoftext|> |
25cb2e81adfb65854e6ad7a74b516434135b0dc9fd8f7ad1fbcc406a747a4149 | def fwhm(self, center=None, radius=0, unit_center=u.deg, unit_radius=u.arcsec):
'Compute the fwhm.\n\n Parameters\n ----------\n center : (float,float)\n Center of the explored region.\n If center is None, the full image is explored.\n radius : float or (float,float)\n Radius defined the explored region.\n unit_center : `astropy.units.Unit`\n type of the center coordinates.\n Degrees by default (use None for coordinates in pixels).\n unit_radius : `astropy.units.Unit`\n Radius unit. Arcseconds by default (use None for radius in pixels)\n\n Returns\n -------\n out : array of float\n [fwhm_y,fwhm_x], returned in unit_radius (arcseconds by default).\n\n '
if ((center is None) or (radius == 0)):
img = self
else:
size = (((radius * 2), (radius * 2)) if is_number(radius) else ((radius[0] * 2), (radius[1] * 2)))
img = self.subimage(center, size, unit_center=unit_center, unit_size=unit_radius)
width = img.moments(unit=unit_radius)
return ((width / 2) * gaussian_sigma_to_fwhm) | Compute the fwhm.
Parameters
----------
center : (float,float)
Center of the explored region.
If center is None, the full image is explored.
radius : float or (float,float)
Radius defined the explored region.
unit_center : `astropy.units.Unit`
type of the center coordinates.
Degrees by default (use None for coordinates in pixels).
unit_radius : `astropy.units.Unit`
Radius unit. Arcseconds by default (use None for radius in pixels)
Returns
-------
out : array of float
[fwhm_y,fwhm_x], returned in unit_radius (arcseconds by default). | lib/mpdaf/obj/image.py | fwhm | musevlt/mpdaf | 4 | python | def fwhm(self, center=None, radius=0, unit_center=u.deg, unit_radius=u.arcsec):
'Compute the fwhm.\n\n Parameters\n ----------\n center : (float,float)\n Center of the explored region.\n If center is None, the full image is explored.\n radius : float or (float,float)\n Radius defined the explored region.\n unit_center : `astropy.units.Unit`\n type of the center coordinates.\n Degrees by default (use None for coordinates in pixels).\n unit_radius : `astropy.units.Unit`\n Radius unit. Arcseconds by default (use None for radius in pixels)\n\n Returns\n -------\n out : array of float\n [fwhm_y,fwhm_x], returned in unit_radius (arcseconds by default).\n\n '
if ((center is None) or (radius == 0)):
img = self
else:
size = (((radius * 2), (radius * 2)) if is_number(radius) else ((radius[0] * 2), (radius[1] * 2)))
img = self.subimage(center, size, unit_center=unit_center, unit_size=unit_radius)
width = img.moments(unit=unit_radius)
return ((width / 2) * gaussian_sigma_to_fwhm) | def fwhm(self, center=None, radius=0, unit_center=u.deg, unit_radius=u.arcsec):
'Compute the fwhm.\n\n Parameters\n ----------\n center : (float,float)\n Center of the explored region.\n If center is None, the full image is explored.\n radius : float or (float,float)\n Radius defined the explored region.\n unit_center : `astropy.units.Unit`\n type of the center coordinates.\n Degrees by default (use None for coordinates in pixels).\n unit_radius : `astropy.units.Unit`\n Radius unit. Arcseconds by default (use None for radius in pixels)\n\n Returns\n -------\n out : array of float\n [fwhm_y,fwhm_x], returned in unit_radius (arcseconds by default).\n\n '
if ((center is None) or (radius == 0)):
img = self
else:
size = (((radius * 2), (radius * 2)) if is_number(radius) else ((radius[0] * 2), (radius[1] * 2)))
img = self.subimage(center, size, unit_center=unit_center, unit_size=unit_radius)
width = img.moments(unit=unit_radius)
return ((width / 2) * gaussian_sigma_to_fwhm)<|docstring|>Compute the fwhm.
Parameters
----------
center : (float,float)
Center of the explored region.
If center is None, the full image is explored.
radius : float or (float,float)
Radius defined the explored region.
unit_center : `astropy.units.Unit`
type of the center coordinates.
Degrees by default (use None for coordinates in pixels).
unit_radius : `astropy.units.Unit`
Radius unit. Arcseconds by default (use None for radius in pixels)
Returns
-------
out : array of float
[fwhm_y,fwhm_x], returned in unit_radius (arcseconds by default).<|endoftext|> |
0e0d8f0d58bb8efdb3826b11876e1e0908bda704832e7ee0fd2d638a58a37a8f | def ee(self, center=None, radius=0, unit_center=u.deg, unit_radius=u.arcsec, frac=False, cont=0):
'Compute ensquared/encircled energy.\n\n Parameters\n ----------\n center : (float,float)\n Center of the explored region.\n If center is None, the full image is explored.\n radius : float or (float,float)\n Radius defined the explored region.\n If float, it defined a circular region (encircled energy).\n If (float,float), it defined a rectangular region (ensquared\n energy).\n unit_center : `astropy.units.Unit`\n Type of the center coordinates.\n Degrees by default (use None for coordinates in pixels).\n unit_radius : `astropy.units.Unit`\n Radius unit. Arcseconds by default (use None for radius in pixels)\n frac : bool\n If frac is True, result is given relative to the total energy of\n the full image.\n cont : float\n Continuum value.\n\n Returns\n -------\n out : float\n Ensquared/encircled flux.\n\n '
if ((center is None) or (radius == 0)):
if frac:
return 1.0
else:
return (self.data - cont).sum()
else:
if is_number(radius):
circular = True
radius2 = (radius * radius)
radius = (radius, radius)
else:
circular = False
if (unit_center is not None):
center = self.wcs.sky2pix(center, unit=unit_center)[0]
if (unit_radius is not None):
radius = (radius / self.wcs.get_step(unit=unit_radius))
radius2 = (radius[0] * radius[1])
imin = max(0, (center[0] - radius[0]))
imax = min(((center[0] + radius[0]) + 1), self.shape[0])
jmin = max(0, (center[1] - radius[1]))
jmax = min(((center[1] + radius[1]) + 1), self.shape[1])
ima = self[(imin:imax, jmin:jmax)]
if circular:
xaxis = (np.arange(ima.shape[0], dtype=float) - (ima.shape[0] / 2.0))
yaxis = (np.arange(ima.shape[1], dtype=float) - (ima.shape[1] / 2.0))
gridx = np.empty(ima.shape, dtype=float)
gridy = np.empty(ima.shape, dtype=float)
for j in range(ima.shape[1]):
gridx[(:, j)] = xaxis
for i in range(ima.shape[0]):
gridy[(i, :)] = yaxis
r2 = ((gridx * gridx) + (gridy * gridy))
ksel = np.where((r2 < radius2))
if frac:
return ((ima.data[ksel] - cont).sum() / (self.data - cont).sum())
else:
return (ima.data[ksel] - cont).sum()
elif frac:
return ((ima.data - cont).sum() / (self.data - cont).sum())
else:
return (ima.data - cont).sum() | Compute ensquared/encircled energy.
Parameters
----------
center : (float,float)
Center of the explored region.
If center is None, the full image is explored.
radius : float or (float,float)
Radius defined the explored region.
If float, it defined a circular region (encircled energy).
If (float,float), it defined a rectangular region (ensquared
energy).
unit_center : `astropy.units.Unit`
Type of the center coordinates.
Degrees by default (use None for coordinates in pixels).
unit_radius : `astropy.units.Unit`
Radius unit. Arcseconds by default (use None for radius in pixels)
frac : bool
If frac is True, result is given relative to the total energy of
the full image.
cont : float
Continuum value.
Returns
-------
out : float
Ensquared/encircled flux. | lib/mpdaf/obj/image.py | ee | musevlt/mpdaf | 4 | python | def ee(self, center=None, radius=0, unit_center=u.deg, unit_radius=u.arcsec, frac=False, cont=0):
'Compute ensquared/encircled energy.\n\n Parameters\n ----------\n center : (float,float)\n Center of the explored region.\n If center is None, the full image is explored.\n radius : float or (float,float)\n Radius defined the explored region.\n If float, it defined a circular region (encircled energy).\n If (float,float), it defined a rectangular region (ensquared\n energy).\n unit_center : `astropy.units.Unit`\n Type of the center coordinates.\n Degrees by default (use None for coordinates in pixels).\n unit_radius : `astropy.units.Unit`\n Radius unit. Arcseconds by default (use None for radius in pixels)\n frac : bool\n If frac is True, result is given relative to the total energy of\n the full image.\n cont : float\n Continuum value.\n\n Returns\n -------\n out : float\n Ensquared/encircled flux.\n\n '
if ((center is None) or (radius == 0)):
if frac:
return 1.0
else:
return (self.data - cont).sum()
else:
if is_number(radius):
circular = True
radius2 = (radius * radius)
radius = (radius, radius)
else:
circular = False
if (unit_center is not None):
center = self.wcs.sky2pix(center, unit=unit_center)[0]
if (unit_radius is not None):
radius = (radius / self.wcs.get_step(unit=unit_radius))
radius2 = (radius[0] * radius[1])
imin = max(0, (center[0] - radius[0]))
imax = min(((center[0] + radius[0]) + 1), self.shape[0])
jmin = max(0, (center[1] - radius[1]))
jmax = min(((center[1] + radius[1]) + 1), self.shape[1])
ima = self[(imin:imax, jmin:jmax)]
if circular:
xaxis = (np.arange(ima.shape[0], dtype=float) - (ima.shape[0] / 2.0))
yaxis = (np.arange(ima.shape[1], dtype=float) - (ima.shape[1] / 2.0))
gridx = np.empty(ima.shape, dtype=float)
gridy = np.empty(ima.shape, dtype=float)
for j in range(ima.shape[1]):
gridx[(:, j)] = xaxis
for i in range(ima.shape[0]):
gridy[(i, :)] = yaxis
r2 = ((gridx * gridx) + (gridy * gridy))
ksel = np.where((r2 < radius2))
if frac:
return ((ima.data[ksel] - cont).sum() / (self.data - cont).sum())
else:
return (ima.data[ksel] - cont).sum()
elif frac:
return ((ima.data - cont).sum() / (self.data - cont).sum())
else:
return (ima.data - cont).sum() | def ee(self, center=None, radius=0, unit_center=u.deg, unit_radius=u.arcsec, frac=False, cont=0):
'Compute ensquared/encircled energy.\n\n Parameters\n ----------\n center : (float,float)\n Center of the explored region.\n If center is None, the full image is explored.\n radius : float or (float,float)\n Radius defined the explored region.\n If float, it defined a circular region (encircled energy).\n If (float,float), it defined a rectangular region (ensquared\n energy).\n unit_center : `astropy.units.Unit`\n Type of the center coordinates.\n Degrees by default (use None for coordinates in pixels).\n unit_radius : `astropy.units.Unit`\n Radius unit. Arcseconds by default (use None for radius in pixels)\n frac : bool\n If frac is True, result is given relative to the total energy of\n the full image.\n cont : float\n Continuum value.\n\n Returns\n -------\n out : float\n Ensquared/encircled flux.\n\n '
if ((center is None) or (radius == 0)):
if frac:
return 1.0
else:
return (self.data - cont).sum()
else:
if is_number(radius):
circular = True
radius2 = (radius * radius)
radius = (radius, radius)
else:
circular = False
if (unit_center is not None):
center = self.wcs.sky2pix(center, unit=unit_center)[0]
if (unit_radius is not None):
radius = (radius / self.wcs.get_step(unit=unit_radius))
radius2 = (radius[0] * radius[1])
imin = max(0, (center[0] - radius[0]))
imax = min(((center[0] + radius[0]) + 1), self.shape[0])
jmin = max(0, (center[1] - radius[1]))
jmax = min(((center[1] + radius[1]) + 1), self.shape[1])
ima = self[(imin:imax, jmin:jmax)]
if circular:
xaxis = (np.arange(ima.shape[0], dtype=float) - (ima.shape[0] / 2.0))
yaxis = (np.arange(ima.shape[1], dtype=float) - (ima.shape[1] / 2.0))
gridx = np.empty(ima.shape, dtype=float)
gridy = np.empty(ima.shape, dtype=float)
for j in range(ima.shape[1]):
gridx[(:, j)] = xaxis
for i in range(ima.shape[0]):
gridy[(i, :)] = yaxis
r2 = ((gridx * gridx) + (gridy * gridy))
ksel = np.where((r2 < radius2))
if frac:
return ((ima.data[ksel] - cont).sum() / (self.data - cont).sum())
else:
return (ima.data[ksel] - cont).sum()
elif frac:
return ((ima.data - cont).sum() / (self.data - cont).sum())
else:
return (ima.data - cont).sum()<|docstring|>Compute ensquared/encircled energy.
Parameters
----------
center : (float,float)
Center of the explored region.
If center is None, the full image is explored.
radius : float or (float,float)
Radius defined the explored region.
If float, it defined a circular region (encircled energy).
If (float,float), it defined a rectangular region (ensquared
energy).
unit_center : `astropy.units.Unit`
Type of the center coordinates.
Degrees by default (use None for coordinates in pixels).
unit_radius : `astropy.units.Unit`
Radius unit. Arcseconds by default (use None for radius in pixels)
frac : bool
If frac is True, result is given relative to the total energy of
the full image.
cont : float
Continuum value.
Returns
-------
out : float
Ensquared/encircled flux.<|endoftext|> |
f837873776f51f00ad91f8cd0172891c18b4295c2787cf3aca6d98d331426915 | def eer_curve(self, center=None, unit_center=u.deg, unit_radius=u.arcsec, etot=None, cont=0):
'Return containing enclosed energy as function of radius.\n\n The enclosed energy ratio (EER) shows how much light is concentrated\n within a certain radius around the image-center.\n\n\n Parameters\n ----------\n center : (float,float)\n Center of the explored region.\n If center is None, center of the image is used.\n unit_center : `astropy.units.Unit`\n Type of the center coordinates.\n Degrees by default (use None for coordinates in pixels).\n unit_radius : `astropy.units.Unit`\n Radius units (arcseconds by default)/\n etot : float\n Total energy used to comute the ratio.\n If etot is not set, it is computed from the full image.\n cont : float\n Continuum value.\n\n Returns\n -------\n out : (float array, float array)\n Radius array, EER array\n '
if (center is None):
i = (self.shape[0] // 2)
j = (self.shape[1] // 2)
elif (unit_center is None):
i = center[0]
j = center[1]
else:
pixcrd = self.wcs.sky2pix([center[0], center[1]], nearest=True, unit=unit_center)
i = pixcrd[0][0]
j = pixcrd[0][1]
nmax = min((self.shape[0] - i), (self.shape[1] - j), i, j)
if (etot is None):
etot = (self.data - cont).sum()
if (nmax <= 1):
raise ValueError('Coord area outside image limits')
ee = np.empty(nmax)
for d in range(0, nmax):
ee[d] = ((self.data[((i - d):((i + d) + 1), (j - d):((j + d) + 1))] - cont).sum() / etot)
radius = np.arange(0, nmax)
if (unit_radius is not None):
step = np.mean(self.get_step(unit=unit_radius))
radius = (radius * step)
return (radius, ee) | Return containing enclosed energy as function of radius.
The enclosed energy ratio (EER) shows how much light is concentrated
within a certain radius around the image-center.
Parameters
----------
center : (float,float)
Center of the explored region.
If center is None, center of the image is used.
unit_center : `astropy.units.Unit`
Type of the center coordinates.
Degrees by default (use None for coordinates in pixels).
unit_radius : `astropy.units.Unit`
Radius units (arcseconds by default)/
etot : float
Total energy used to comute the ratio.
If etot is not set, it is computed from the full image.
cont : float
Continuum value.
Returns
-------
out : (float array, float array)
Radius array, EER array | lib/mpdaf/obj/image.py | eer_curve | musevlt/mpdaf | 4 | python | def eer_curve(self, center=None, unit_center=u.deg, unit_radius=u.arcsec, etot=None, cont=0):
'Return containing enclosed energy as function of radius.\n\n The enclosed energy ratio (EER) shows how much light is concentrated\n within a certain radius around the image-center.\n\n\n Parameters\n ----------\n center : (float,float)\n Center of the explored region.\n If center is None, center of the image is used.\n unit_center : `astropy.units.Unit`\n Type of the center coordinates.\n Degrees by default (use None for coordinates in pixels).\n unit_radius : `astropy.units.Unit`\n Radius units (arcseconds by default)/\n etot : float\n Total energy used to comute the ratio.\n If etot is not set, it is computed from the full image.\n cont : float\n Continuum value.\n\n Returns\n -------\n out : (float array, float array)\n Radius array, EER array\n '
if (center is None):
i = (self.shape[0] // 2)
j = (self.shape[1] // 2)
elif (unit_center is None):
i = center[0]
j = center[1]
else:
pixcrd = self.wcs.sky2pix([center[0], center[1]], nearest=True, unit=unit_center)
i = pixcrd[0][0]
j = pixcrd[0][1]
nmax = min((self.shape[0] - i), (self.shape[1] - j), i, j)
if (etot is None):
etot = (self.data - cont).sum()
if (nmax <= 1):
raise ValueError('Coord area outside image limits')
ee = np.empty(nmax)
for d in range(0, nmax):
ee[d] = ((self.data[((i - d):((i + d) + 1), (j - d):((j + d) + 1))] - cont).sum() / etot)
radius = np.arange(0, nmax)
if (unit_radius is not None):
step = np.mean(self.get_step(unit=unit_radius))
radius = (radius * step)
return (radius, ee) | def eer_curve(self, center=None, unit_center=u.deg, unit_radius=u.arcsec, etot=None, cont=0):
'Return containing enclosed energy as function of radius.\n\n The enclosed energy ratio (EER) shows how much light is concentrated\n within a certain radius around the image-center.\n\n\n Parameters\n ----------\n center : (float,float)\n Center of the explored region.\n If center is None, center of the image is used.\n unit_center : `astropy.units.Unit`\n Type of the center coordinates.\n Degrees by default (use None for coordinates in pixels).\n unit_radius : `astropy.units.Unit`\n Radius units (arcseconds by default)/\n etot : float\n Total energy used to comute the ratio.\n If etot is not set, it is computed from the full image.\n cont : float\n Continuum value.\n\n Returns\n -------\n out : (float array, float array)\n Radius array, EER array\n '
if (center is None):
i = (self.shape[0] // 2)
j = (self.shape[1] // 2)
elif (unit_center is None):
i = center[0]
j = center[1]
else:
pixcrd = self.wcs.sky2pix([center[0], center[1]], nearest=True, unit=unit_center)
i = pixcrd[0][0]
j = pixcrd[0][1]
nmax = min((self.shape[0] - i), (self.shape[1] - j), i, j)
if (etot is None):
etot = (self.data - cont).sum()
if (nmax <= 1):
raise ValueError('Coord area outside image limits')
ee = np.empty(nmax)
for d in range(0, nmax):
ee[d] = ((self.data[((i - d):((i + d) + 1), (j - d):((j + d) + 1))] - cont).sum() / etot)
radius = np.arange(0, nmax)
if (unit_radius is not None):
step = np.mean(self.get_step(unit=unit_radius))
radius = (radius * step)
return (radius, ee)<|docstring|>Return containing enclosed energy as function of radius.
The enclosed energy ratio (EER) shows how much light is concentrated
within a certain radius around the image-center.
Parameters
----------
center : (float,float)
Center of the explored region.
If center is None, center of the image is used.
unit_center : `astropy.units.Unit`
Type of the center coordinates.
Degrees by default (use None for coordinates in pixels).
unit_radius : `astropy.units.Unit`
Radius units (arcseconds by default)/
etot : float
Total energy used to comute the ratio.
If etot is not set, it is computed from the full image.
cont : float
Continuum value.
Returns
-------
out : (float array, float array)
Radius array, EER array<|endoftext|> |
4fc89064d43eb0c22d530d7df2d21e5bd5ade552486793d62275fed8646c8baa | def ee_size(self, center=None, unit_center=u.deg, etot=None, frac=0.9, cont=0, unit_size=u.arcsec):
'Compute the size of the square centered on (y,x) containing the\n fraction of the energy.\n\n Parameters\n ----------\n center : (float,float)\n Center (y,x) of the explored region.\n If center is None, center of the image is used.\n unit : `astropy.units.Unit`\n Type of the center coordinates.\n Degrees by default (use None for coordinates in pixels).\n etot : float\n Total energy used to comute the ratio.\n If etot is not set, it is computed from the full image.\n frac : float in ]0,1]\n Fraction of energy.\n cont : float\n continuum value\n unit_center : `astropy.units.Unit`\n Type of the center coordinates.\n Degrees by default (use None for coordinates in pixels).\n unit_size : `astropy.units.Unit`\n Size unit. Arcseconds by default (use None for sier in pixels).\n\n Returns\n -------\n out : float array\n '
if (center is None):
i = (self.shape[0] // 2)
j = (self.shape[1] // 2)
elif (unit_center is None):
i = center[0]
j = center[1]
else:
pixcrd = self.wcs.sky2pix([[center[0], center[1]]], unit=unit_center)
i = int((pixcrd[0][0] + 0.5))
j = int((pixcrd[0][1] + 0.5))
nmax = min((self.shape[0] - i), (self.shape[1] - j), i, j)
if (etot is None):
etot = (self.data - cont).sum()
if (nmax <= 1):
if (unit_size is None):
return np.array([1, 1])
else:
return self.get_step(unit_size)
for d in range(1, nmax):
ee2 = ((self.data[((i - d):((i + d) + 1), (j - d):((j + d) + 1))] - cont).sum() / etot)
if (ee2 > frac):
break
d -= 1
ee1 = ((self.data[((i - d):((i + d) + 1), (i - d):((i + d) + 1))] - cont).sum() / etot)
d += ((frac - ee1) / (ee2 - ee1))
d *= 2
if (unit_size is None):
return np.array([d, d])
else:
step = self.get_step(unit_size)
return np.array([(d * step[0]), (d * step[1])]) | Compute the size of the square centered on (y,x) containing the
fraction of the energy.
Parameters
----------
center : (float,float)
Center (y,x) of the explored region.
If center is None, center of the image is used.
unit : `astropy.units.Unit`
Type of the center coordinates.
Degrees by default (use None for coordinates in pixels).
etot : float
Total energy used to comute the ratio.
If etot is not set, it is computed from the full image.
frac : float in ]0,1]
Fraction of energy.
cont : float
continuum value
unit_center : `astropy.units.Unit`
Type of the center coordinates.
Degrees by default (use None for coordinates in pixels).
unit_size : `astropy.units.Unit`
Size unit. Arcseconds by default (use None for sier in pixels).
Returns
-------
out : float array | lib/mpdaf/obj/image.py | ee_size | musevlt/mpdaf | 4 | python | def ee_size(self, center=None, unit_center=u.deg, etot=None, frac=0.9, cont=0, unit_size=u.arcsec):
'Compute the size of the square centered on (y,x) containing the\n fraction of the energy.\n\n Parameters\n ----------\n center : (float,float)\n Center (y,x) of the explored region.\n If center is None, center of the image is used.\n unit : `astropy.units.Unit`\n Type of the center coordinates.\n Degrees by default (use None for coordinates in pixels).\n etot : float\n Total energy used to comute the ratio.\n If etot is not set, it is computed from the full image.\n frac : float in ]0,1]\n Fraction of energy.\n cont : float\n continuum value\n unit_center : `astropy.units.Unit`\n Type of the center coordinates.\n Degrees by default (use None for coordinates in pixels).\n unit_size : `astropy.units.Unit`\n Size unit. Arcseconds by default (use None for sier in pixels).\n\n Returns\n -------\n out : float array\n '
if (center is None):
i = (self.shape[0] // 2)
j = (self.shape[1] // 2)
elif (unit_center is None):
i = center[0]
j = center[1]
else:
pixcrd = self.wcs.sky2pix([[center[0], center[1]]], unit=unit_center)
i = int((pixcrd[0][0] + 0.5))
j = int((pixcrd[0][1] + 0.5))
nmax = min((self.shape[0] - i), (self.shape[1] - j), i, j)
if (etot is None):
etot = (self.data - cont).sum()
if (nmax <= 1):
if (unit_size is None):
return np.array([1, 1])
else:
return self.get_step(unit_size)
for d in range(1, nmax):
ee2 = ((self.data[((i - d):((i + d) + 1), (j - d):((j + d) + 1))] - cont).sum() / etot)
if (ee2 > frac):
break
d -= 1
ee1 = ((self.data[((i - d):((i + d) + 1), (i - d):((i + d) + 1))] - cont).sum() / etot)
d += ((frac - ee1) / (ee2 - ee1))
d *= 2
if (unit_size is None):
return np.array([d, d])
else:
step = self.get_step(unit_size)
return np.array([(d * step[0]), (d * step[1])]) | def ee_size(self, center=None, unit_center=u.deg, etot=None, frac=0.9, cont=0, unit_size=u.arcsec):
'Compute the size of the square centered on (y,x) containing the\n fraction of the energy.\n\n Parameters\n ----------\n center : (float,float)\n Center (y,x) of the explored region.\n If center is None, center of the image is used.\n unit : `astropy.units.Unit`\n Type of the center coordinates.\n Degrees by default (use None for coordinates in pixels).\n etot : float\n Total energy used to comute the ratio.\n If etot is not set, it is computed from the full image.\n frac : float in ]0,1]\n Fraction of energy.\n cont : float\n continuum value\n unit_center : `astropy.units.Unit`\n Type of the center coordinates.\n Degrees by default (use None for coordinates in pixels).\n unit_size : `astropy.units.Unit`\n Size unit. Arcseconds by default (use None for sier in pixels).\n\n Returns\n -------\n out : float array\n '
if (center is None):
i = (self.shape[0] // 2)
j = (self.shape[1] // 2)
elif (unit_center is None):
i = center[0]
j = center[1]
else:
pixcrd = self.wcs.sky2pix([[center[0], center[1]]], unit=unit_center)
i = int((pixcrd[0][0] + 0.5))
j = int((pixcrd[0][1] + 0.5))
nmax = min((self.shape[0] - i), (self.shape[1] - j), i, j)
if (etot is None):
etot = (self.data - cont).sum()
if (nmax <= 1):
if (unit_size is None):
return np.array([1, 1])
else:
return self.get_step(unit_size)
for d in range(1, nmax):
ee2 = ((self.data[((i - d):((i + d) + 1), (j - d):((j + d) + 1))] - cont).sum() / etot)
if (ee2 > frac):
break
d -= 1
ee1 = ((self.data[((i - d):((i + d) + 1), (i - d):((i + d) + 1))] - cont).sum() / etot)
d += ((frac - ee1) / (ee2 - ee1))
d *= 2
if (unit_size is None):
return np.array([d, d])
else:
step = self.get_step(unit_size)
return np.array([(d * step[0]), (d * step[1])])<|docstring|>Compute the size of the square centered on (y,x) containing the
fraction of the energy.
Parameters
----------
center : (float,float)
Center (y,x) of the explored region.
If center is None, center of the image is used.
unit : `astropy.units.Unit`
Type of the center coordinates.
Degrees by default (use None for coordinates in pixels).
etot : float
Total energy used to comute the ratio.
If etot is not set, it is computed from the full image.
frac : float in ]0,1]
Fraction of energy.
cont : float
continuum value
unit_center : `astropy.units.Unit`
Type of the center coordinates.
Degrees by default (use None for coordinates in pixels).
unit_size : `astropy.units.Unit`
Size unit. Arcseconds by default (use None for sier in pixels).
Returns
-------
out : float array<|endoftext|> |
f847119ab6ae3f4f625f4d127abcceac344f8177de4d0be11bbf361a3613cce4 | def _interp(self, grid, spline=False):
'Return the interpolated values corresponding to the grid points.\n\n Parameters\n ----------\n grid :\n pixel values\n spline : bool\n If False, linear interpolation (uses\n `scipy.interpolate.griddata`), or if True: spline\n interpolation (uses `scipy.interpolate.bisplrep` and\n `scipy.interpolate.bisplev`).\n\n '
if (self.mask is np.ma.nomask):
(x, y) = np.mgrid[(:self.shape[0], :self.shape[1])].reshape(2, (- 1))
data = self._data
else:
(x, y) = np.where((~ self._mask))
data = self._data[(x, y)]
grid = np.array(grid)
if spline:
if (self.var is not None):
var = self.var.filled(np.inf)
weight = (1 / np.sqrt(np.abs(var[(x, y)])))
else:
weight = None
tck = interpolate.bisplrep(x, y, data, w=weight)
res = interpolate.bisplev(grid[0], grid[1], tck)
return res
else:
res = interpolate.griddata((x, y), data, grid.T, method='linear')
return res | Return the interpolated values corresponding to the grid points.
Parameters
----------
grid :
pixel values
spline : bool
If False, linear interpolation (uses
`scipy.interpolate.griddata`), or if True: spline
interpolation (uses `scipy.interpolate.bisplrep` and
`scipy.interpolate.bisplev`). | lib/mpdaf/obj/image.py | _interp | musevlt/mpdaf | 4 | python | def _interp(self, grid, spline=False):
'Return the interpolated values corresponding to the grid points.\n\n Parameters\n ----------\n grid :\n pixel values\n spline : bool\n If False, linear interpolation (uses\n `scipy.interpolate.griddata`), or if True: spline\n interpolation (uses `scipy.interpolate.bisplrep` and\n `scipy.interpolate.bisplev`).\n\n '
if (self.mask is np.ma.nomask):
(x, y) = np.mgrid[(:self.shape[0], :self.shape[1])].reshape(2, (- 1))
data = self._data
else:
(x, y) = np.where((~ self._mask))
data = self._data[(x, y)]
grid = np.array(grid)
if spline:
if (self.var is not None):
var = self.var.filled(np.inf)
weight = (1 / np.sqrt(np.abs(var[(x, y)])))
else:
weight = None
tck = interpolate.bisplrep(x, y, data, w=weight)
res = interpolate.bisplev(grid[0], grid[1], tck)
return res
else:
res = interpolate.griddata((x, y), data, grid.T, method='linear')
return res | def _interp(self, grid, spline=False):
'Return the interpolated values corresponding to the grid points.\n\n Parameters\n ----------\n grid :\n pixel values\n spline : bool\n If False, linear interpolation (uses\n `scipy.interpolate.griddata`), or if True: spline\n interpolation (uses `scipy.interpolate.bisplrep` and\n `scipy.interpolate.bisplev`).\n\n '
if (self.mask is np.ma.nomask):
(x, y) = np.mgrid[(:self.shape[0], :self.shape[1])].reshape(2, (- 1))
data = self._data
else:
(x, y) = np.where((~ self._mask))
data = self._data[(x, y)]
grid = np.array(grid)
if spline:
if (self.var is not None):
var = self.var.filled(np.inf)
weight = (1 / np.sqrt(np.abs(var[(x, y)])))
else:
weight = None
tck = interpolate.bisplrep(x, y, data, w=weight)
res = interpolate.bisplev(grid[0], grid[1], tck)
return res
else:
res = interpolate.griddata((x, y), data, grid.T, method='linear')
return res<|docstring|>Return the interpolated values corresponding to the grid points.
Parameters
----------
grid :
pixel values
spline : bool
If False, linear interpolation (uses
`scipy.interpolate.griddata`), or if True: spline
interpolation (uses `scipy.interpolate.bisplrep` and
`scipy.interpolate.bisplev`).<|endoftext|> |
0b7d72056c1e5b8cb407b8bcf186e7ac7b21cb82daf8f11968dc6cb8a0c0fe40 | def _interp_data(self, spline=False):
'Return data array with interpolated values for masked pixels.\n\n Parameters\n ----------\n spline : bool\n False: bilinear interpolation (it uses\n `scipy.interpolate.griddata`), True: spline interpolation (it\n uses `scipy.interpolate.bisplrep` and\n `scipy.interpolate.bisplev`).\n\n '
if (not self._mask.any()):
return self._data
else:
ksel = np.where(self._mask)
data = self._data.__copy__()
data[ksel] = self._interp(ksel, spline)
return data | Return data array with interpolated values for masked pixels.
Parameters
----------
spline : bool
False: bilinear interpolation (it uses
`scipy.interpolate.griddata`), True: spline interpolation (it
uses `scipy.interpolate.bisplrep` and
`scipy.interpolate.bisplev`). | lib/mpdaf/obj/image.py | _interp_data | musevlt/mpdaf | 4 | python | def _interp_data(self, spline=False):
'Return data array with interpolated values for masked pixels.\n\n Parameters\n ----------\n spline : bool\n False: bilinear interpolation (it uses\n `scipy.interpolate.griddata`), True: spline interpolation (it\n uses `scipy.interpolate.bisplrep` and\n `scipy.interpolate.bisplev`).\n\n '
if (not self._mask.any()):
return self._data
else:
ksel = np.where(self._mask)
data = self._data.__copy__()
data[ksel] = self._interp(ksel, spline)
return data | def _interp_data(self, spline=False):
'Return data array with interpolated values for masked pixels.\n\n Parameters\n ----------\n spline : bool\n False: bilinear interpolation (it uses\n `scipy.interpolate.griddata`), True: spline interpolation (it\n uses `scipy.interpolate.bisplrep` and\n `scipy.interpolate.bisplev`).\n\n '
if (not self._mask.any()):
return self._data
else:
ksel = np.where(self._mask)
data = self._data.__copy__()
data[ksel] = self._interp(ksel, spline)
return data<|docstring|>Return data array with interpolated values for masked pixels.
Parameters
----------
spline : bool
False: bilinear interpolation (it uses
`scipy.interpolate.griddata`), True: spline interpolation (it
uses `scipy.interpolate.bisplrep` and
`scipy.interpolate.bisplev`).<|endoftext|> |
e0e940d6856df625cacda3cd7c246cf67def0f43d076ceed7b73d8f1c1378ecc | def _prepare_data(self, interp='no'):
"Return a copy of the data array in which masked values\n have been filled, either with the median value of the image,\n or by interpolating neighboring pixels.\n\n Parameters\n ----------\n interp : 'no' | 'linear' | 'spline'\n If 'no', replace masked data with the median image value.\n If 'linear', replace masked values using a linear\n interpolation between neighboring values.\n if 'spline', replace masked values using a spline\n interpolation between neighboring values.\n\n Returns\n -------\n out : numpy.ndarray\n A patched copy of the data array.\n\n "
if (interp == 'linear'):
data = self._interp_data(spline=False)
elif (interp == 'spline'):
data = self._interp_data(spline=True)
else:
data = np.ma.filled(self.data, np.ma.median(self.data))
return data | Return a copy of the data array in which masked values
have been filled, either with the median value of the image,
or by interpolating neighboring pixels.
Parameters
----------
interp : 'no' | 'linear' | 'spline'
If 'no', replace masked data with the median image value.
If 'linear', replace masked values using a linear
interpolation between neighboring values.
if 'spline', replace masked values using a spline
interpolation between neighboring values.
Returns
-------
out : numpy.ndarray
A patched copy of the data array. | lib/mpdaf/obj/image.py | _prepare_data | musevlt/mpdaf | 4 | python | def _prepare_data(self, interp='no'):
"Return a copy of the data array in which masked values\n have been filled, either with the median value of the image,\n or by interpolating neighboring pixels.\n\n Parameters\n ----------\n interp : 'no' | 'linear' | 'spline'\n If 'no', replace masked data with the median image value.\n If 'linear', replace masked values using a linear\n interpolation between neighboring values.\n if 'spline', replace masked values using a spline\n interpolation between neighboring values.\n\n Returns\n -------\n out : numpy.ndarray\n A patched copy of the data array.\n\n "
if (interp == 'linear'):
data = self._interp_data(spline=False)
elif (interp == 'spline'):
data = self._interp_data(spline=True)
else:
data = np.ma.filled(self.data, np.ma.median(self.data))
return data | def _prepare_data(self, interp='no'):
"Return a copy of the data array in which masked values\n have been filled, either with the median value of the image,\n or by interpolating neighboring pixels.\n\n Parameters\n ----------\n interp : 'no' | 'linear' | 'spline'\n If 'no', replace masked data with the median image value.\n If 'linear', replace masked values using a linear\n interpolation between neighboring values.\n if 'spline', replace masked values using a spline\n interpolation between neighboring values.\n\n Returns\n -------\n out : numpy.ndarray\n A patched copy of the data array.\n\n "
if (interp == 'linear'):
data = self._interp_data(spline=False)
elif (interp == 'spline'):
data = self._interp_data(spline=True)
else:
data = np.ma.filled(self.data, np.ma.median(self.data))
return data<|docstring|>Return a copy of the data array in which masked values
have been filled, either with the median value of the image,
or by interpolating neighboring pixels.
Parameters
----------
interp : 'no' | 'linear' | 'spline'
If 'no', replace masked data with the median image value.
If 'linear', replace masked values using a linear
interpolation between neighboring values.
if 'spline', replace masked values using a spline
interpolation between neighboring values.
Returns
-------
out : numpy.ndarray
A patched copy of the data array.<|endoftext|> |
35c224b3105a075a687d515327b88f466bdf7b326d4d259cfe11cfc187dfa916 | def moments(self, unit=u.arcsec):
'Return [width_y, width_x] first moments of the 2D gaussian.\n\n Parameters\n ----------\n unit : `astropy.units.Unit`\n Unit of the returned moments (arcseconds by default).\n If None, moments will be in pixels.\n\n Returns\n -------\n out : float array\n\n '
total = np.abs(self.data).sum()
(P, Q) = np.indices(self.data.shape)
p = np.argmax(((Q * np.abs(self.data)).sum(axis=1) / total))
q = np.argmax(((P * np.abs(self.data)).sum(axis=0) / total))
col = self.data[(int(p), :)]
width_q = np.sqrt((np.abs(((np.arange(col.size) - p) * col)).sum() / np.abs(col).sum()))
row = self.data[(:, int(q))]
width_p = np.sqrt((np.abs(((np.arange(row.size) - q) * row)).sum() / np.abs(row).sum()))
mom = np.array([width_p, width_q])
if (unit is not None):
mom *= self.wcs.get_step(unit=unit)
return mom | Return [width_y, width_x] first moments of the 2D gaussian.
Parameters
----------
unit : `astropy.units.Unit`
Unit of the returned moments (arcseconds by default).
If None, moments will be in pixels.
Returns
-------
out : float array | lib/mpdaf/obj/image.py | moments | musevlt/mpdaf | 4 | python | def moments(self, unit=u.arcsec):
'Return [width_y, width_x] first moments of the 2D gaussian.\n\n Parameters\n ----------\n unit : `astropy.units.Unit`\n Unit of the returned moments (arcseconds by default).\n If None, moments will be in pixels.\n\n Returns\n -------\n out : float array\n\n '
total = np.abs(self.data).sum()
(P, Q) = np.indices(self.data.shape)
p = np.argmax(((Q * np.abs(self.data)).sum(axis=1) / total))
q = np.argmax(((P * np.abs(self.data)).sum(axis=0) / total))
col = self.data[(int(p), :)]
width_q = np.sqrt((np.abs(((np.arange(col.size) - p) * col)).sum() / np.abs(col).sum()))
row = self.data[(:, int(q))]
width_p = np.sqrt((np.abs(((np.arange(row.size) - q) * row)).sum() / np.abs(row).sum()))
mom = np.array([width_p, width_q])
if (unit is not None):
mom *= self.wcs.get_step(unit=unit)
return mom | def moments(self, unit=u.arcsec):
'Return [width_y, width_x] first moments of the 2D gaussian.\n\n Parameters\n ----------\n unit : `astropy.units.Unit`\n Unit of the returned moments (arcseconds by default).\n If None, moments will be in pixels.\n\n Returns\n -------\n out : float array\n\n '
total = np.abs(self.data).sum()
(P, Q) = np.indices(self.data.shape)
p = np.argmax(((Q * np.abs(self.data)).sum(axis=1) / total))
q = np.argmax(((P * np.abs(self.data)).sum(axis=0) / total))
col = self.data[(int(p), :)]
width_q = np.sqrt((np.abs(((np.arange(col.size) - p) * col)).sum() / np.abs(col).sum()))
row = self.data[(:, int(q))]
width_p = np.sqrt((np.abs(((np.arange(row.size) - q) * row)).sum() / np.abs(row).sum()))
mom = np.array([width_p, width_q])
if (unit is not None):
mom *= self.wcs.get_step(unit=unit)
return mom<|docstring|>Return [width_y, width_x] first moments of the 2D gaussian.
Parameters
----------
unit : `astropy.units.Unit`
Unit of the returned moments (arcseconds by default).
If None, moments will be in pixels.
Returns
-------
out : float array<|endoftext|> |
ffeec4a997d9a57ffafa78163f1ee149a72e2885d272234490e2d0da45510a82 | def gauss_fit(self, pos_min=None, pos_max=None, center=None, flux=None, fwhm=None, circular=False, cont=0, fit_back=True, rot=0, peak=False, factor=1, weight=True, plot=False, unit_center=u.deg, unit_fwhm=u.arcsec, maxiter=0, verbose=True, full_output=0):
'Perform Gaussian fit on image.\n\n Parameters\n ----------\n pos_min : (float,float)\n Minimum y and x values. Their unit is given by the unit_center\n parameter (degrees by default).\n pos_max : (float,float)\n Maximum y and x values. Their unit is given by the unit_center\n parameter (degrees by default).\n center : (float,float)\n Initial gaussian center (y_peak,x_peak) If None it is estimated.\n The unit is given by the unit_center parameter (degrees by\n default).\n flux : float\n Initial integrated gaussian flux or gaussian peak value if peak is\n True. If None, peak value is estimated.\n fwhm : (float,float)\n Initial gaussian fwhm (fwhm_y,fwhm_x). If None, they are estimated.\n The unit is given by ``unit_fwhm`` (arcseconds by default).\n circular : bool\n True: circular gaussian, False: elliptical gaussian\n cont : float\n continuum value, 0 by default.\n fit_back : bool\n False: continuum value is fixed,\n True: continuum value is a fit parameter.\n rot : float\n Initial rotation in degree.\n If None, rotation is fixed to 0.\n peak : bool\n If true, flux contains a gaussian peak value.\n factor : int\n If factor<=1, gaussian value is computed in the center of each\n pixel. If factor>1, for each pixel, gaussian value is the sum of\n the gaussian values on the factor*factor pixels divided by the\n pixel area.\n weight : bool\n If weight is True, the weight is computed as the inverse of\n variance.\n unit_center : `astropy.units.Unit`\n type of the center and position coordinates.\n Degrees by default (use None for coordinates in pixels).\n unit_fwhm : `astropy.units.Unit`\n FWHM unit. Arcseconds by default (use None for radius in pixels)\n maxiter : int\n The maximum number of iterations during the sum of square\n minimization.\n plot : bool\n If True, the gaussian is plotted.\n verbose : bool\n If True, the Gaussian parameters are printed at the end of the\n method.\n full_output : bool\n True-zero to return a `mpdaf.obj.Gauss2D` object containing\n the gauss image.\n\n Returns\n -------\n out : `mpdaf.obj.Gauss2D`\n\n '
(ima, pmin, pmax, qmin, qmax, data, wght, p, q, center, fwhm) = self._prepare_fit_parameters(pos_min, pos_max, weight=weight, center=center, unit_center=unit_center, fwhm=fwhm, unit_fwhm=unit_fwhm)
if (flux is None):
peak = (ima._data[(int(center[0]), int(center[1]))] - cont)
elif (peak is True):
peak = (flux - cont)
N = len(p)
width = (fwhm * gaussian_fwhm_to_sigma)
flux = ((peak * np.sqrt(((2 * np.pi) * (width[0] ** 2)))) * np.sqrt(((2 * np.pi) * (width[1] ** 2))))
if circular:
rot = None
if (not fit_back):
gaussfit = (lambda v, p, q: (cont + ((((v[0] * (1 / np.sqrt(((2 * np.pi) * (v[2] ** 2))))) * np.exp(((- ((p - v[1]) ** 2)) / (2 * (v[2] ** 2))))) * (1 / np.sqrt(((2 * np.pi) * (v[2] ** 2))))) * np.exp(((- ((q - v[3]) ** 2)) / (2 * (v[2] ** 2)))))))
v0 = [flux, center[0], width[0], center[1]]
else:
gaussfit = (lambda v, p, q: (v[4] + ((((v[0] * (1 / np.sqrt(((2 * np.pi) * (v[2] ** 2))))) * np.exp(((- ((p - v[1]) ** 2)) / (2 * (v[2] ** 2))))) * (1 / np.sqrt(((2 * np.pi) * (v[2] ** 2))))) * np.exp(((- ((q - v[3]) ** 2)) / (2 * (v[2] ** 2)))))))
v0 = [flux, center[0], width[0], center[1], cont]
elif (not fit_back):
if (rot is None):
gaussfit = (lambda v, p, q: (cont + ((((v[0] * (1 / np.sqrt(((2 * np.pi) * (v[2] ** 2))))) * np.exp(((- ((p - v[1]) ** 2)) / (2 * (v[2] ** 2))))) * (1 / np.sqrt(((2 * np.pi) * (v[4] ** 2))))) * np.exp(((- ((q - v[3]) ** 2)) / (2 * (v[4] ** 2)))))))
v0 = [flux, center[0], width[0], center[1], width[1]]
else:
rot = ((np.pi * rot) / 180.0)
gaussfit = (lambda v, p, q: (cont + ((((v[0] * (1 / np.sqrt(((2 * np.pi) * (v[2] ** 2))))) * np.exp(((- ((((p - v[1]) * np.cos(v[5])) - ((q - v[3]) * np.sin(v[5]))) ** 2)) / (2 * (v[2] ** 2))))) * (1 / np.sqrt(((2 * np.pi) * (v[4] ** 2))))) * np.exp(((- ((((p - v[1]) * np.sin(v[5])) + ((q - v[3]) * np.cos(v[5]))) ** 2)) / (2 * (v[4] ** 2)))))))
v0 = [flux, center[0], width[0], center[1], width[1], rot]
elif (rot is None):
gaussfit = (lambda v, p, q: (v[5] + ((((v[0] * (1 / np.sqrt(((2 * np.pi) * (v[2] ** 2))))) * np.exp(((- ((p - v[1]) ** 2)) / (2 * (v[2] ** 2))))) * (1 / np.sqrt(((2 * np.pi) * (v[4] ** 2))))) * np.exp(((- ((q - v[3]) ** 2)) / (2 * (v[4] ** 2)))))))
v0 = [flux, center[0], width[0], center[1], width[1], cont]
else:
rot = ((np.pi * rot) / 180.0)
gaussfit = (lambda v, p, q: (v[6] + ((((v[0] * (1 / np.sqrt(((2 * np.pi) * (v[2] ** 2))))) * np.exp(((- ((((p - v[1]) * np.cos(v[5])) - ((q - v[3]) * np.sin(v[5]))) ** 2)) / (2 * (v[2] ** 2))))) * (1 / np.sqrt(((2 * np.pi) * (v[4] ** 2))))) * np.exp(((- ((((p - v[1]) * np.sin(v[5])) + ((q - v[3]) * np.cos(v[5]))) ** 2)) / (2 * (v[4] ** 2)))))))
v0 = [flux, center[0], width[0], center[1], width[1], rot, cont]
if (factor > 1):
factor = int(factor)
deci = ((((np.ones((factor, factor)) * np.arange(factor)[(:, np.newaxis)]) / float(factor)) + (1.0 / float((factor * 2)))) - 0.5)
fp = (p[(:, np.newaxis)] + deci.ravel()[(np.newaxis, :)]).ravel()
fq = (q[(:, np.newaxis)] + deci.T.ravel()[(np.newaxis, :)]).ravel()
pixcrd = np.array(list(zip(fp, fq)))
e_gauss_fit = (lambda v, p, q, data, w: (w * (((gaussfit(v, p, q).reshape(N, (factor * factor)).sum(1) / factor) / factor).T.ravel() - data)))
(v, covar, info, mesg, success) = leastsq(e_gauss_fit, v0[:], args=(pixcrd[(:, 0)], pixcrd[(:, 1)], data, wght), maxfev=maxiter, full_output=1)
else:
e_gauss_fit = (lambda v, p, q, data, w: (w * (gaussfit(v, p, q) - data)))
(v, covar, info, mesg, success) = leastsq(e_gauss_fit, v0[:], args=(p, q, data, wght), maxfev=maxiter, full_output=1)
if (success not in [1, 2, 3, 4]):
self._logger.info(mesg)
chisq = sum((info['fvec'] * info['fvec']))
dof = (len(info['fvec']) - len(v))
if (covar is not None):
err = np.array([(np.sqrt(np.abs(covar[(i, i)])) * np.sqrt(np.abs((chisq / dof)))) for i in range(len(v))])
else:
err = None
v[1] += int(pmin)
v[3] += int(qmin)
if plot:
pp = np.arange(pmin, pmax, (float((pmax - pmin)) / 100))
qq = np.arange(qmin, qmax, (float((qmax - qmin)) / 100))
ff = np.empty((np.shape(pp)[0], np.shape(qq)[0]))
for i in range(np.shape(pp)[0]):
ff[(i, :)] = gaussfit(v, pp[i], qq[:])
self._ax.contour(qq, pp, ff, 5)
flux = v[0]
p_peak = v[1]
q_peak = v[3]
if circular:
if fit_back:
cont = v[4]
p_width = np.abs(v[2])
q_width = p_width
rot = 0
else:
if fit_back:
if (rot is None):
cont = v[5]
else:
cont = v[6]
if (rot is None):
p_width = np.abs(v[2])
q_width = np.abs(v[4])
rot = 0
elif (np.abs(v[2]) > np.abs(v[4])):
p_width = np.abs(v[2])
q_width = np.abs(v[4])
rot = (((v[5] * 180.0) / np.pi) % 180)
else:
p_width = np.abs(v[4])
q_width = np.abs(v[2])
rot = ((((v[5] * 180.0) / np.pi) + 90) % 180)
p_fwhm = (p_width * gaussian_sigma_to_fwhm)
q_fwhm = (q_width * gaussian_sigma_to_fwhm)
peak = ((flux / np.sqrt(((2 * np.pi) * (p_width ** 2)))) / np.sqrt(((2 * np.pi) * (q_width ** 2))))
if (err is not None):
err_flux = err[0]
err_p_peak = err[1]
err_q_peak = err[3]
if circular:
if fit_back:
err_cont = err[4]
else:
err_cont = 0
err_p_width = np.abs(err[2])
err_q_width = err_p_width
err_rot = 0
else:
if fit_back:
try:
err_cont = err[6]
except Exception:
err_cont = err[5]
else:
err_cont = 0
if ((np.abs(v[2]) > np.abs(v[4])) or (rot == 0)):
err_p_width = np.abs(err[2])
err_q_width = np.abs(err[4])
else:
err_p_width = np.abs(err[4])
err_q_width = np.abs(err[2])
try:
err_rot = ((err[4] * 180.0) / np.pi)
except Exception:
err_rot = 0
err_p_fwhm = (err_p_width * gaussian_sigma_to_fwhm)
err_q_fwhm = (err_q_width * gaussian_sigma_to_fwhm)
err_peak = ((((err_flux * p_width) * q_width) - (flux * ((err_p_width * q_width) + (err_q_width * p_width)))) / (((((2 * np.pi) * p_width) * p_width) * q_width) * q_width))
else:
err_flux = np.NAN
err_p_peak = np.NAN
err_p_width = np.NAN
err_p_fwhm = np.NAN
err_q_peak = np.NAN
err_q_width = np.NAN
err_q_fwhm = np.NAN
err_rot = np.NAN
err_peak = np.NAN
err_cont = np.NAN
if (unit_center is not None):
center = self.wcs.pix2sky([p_peak, q_peak], unit=unit_center)[0]
err_center = (np.array([err_p_peak, err_q_peak]) * self.wcs.get_step(unit=unit_center))
else:
center = (p_peak, q_peak)
err_center = (err_p_peak, err_q_peak)
step = self.wcs.get_step(unit=unit_fwhm)
fwhm = (np.array([p_fwhm, q_fwhm]) * step)
err_fwhm = (np.array([err_p_fwhm, err_q_fwhm]) * step)
gauss = Gauss2D(center, flux, fwhm, cont, rot, peak, err_center, err_flux, err_fwhm, err_cont, err_rot, err_peak)
if verbose:
gauss.print_param()
if full_output:
ima = gauss_image(shape=self.shape, wcs=self.wcs, gauss=gauss, unit_center=unit_center, unit_fwhm=unit_fwhm)
gauss.ima = ima
return gauss | Perform Gaussian fit on image.
Parameters
----------
pos_min : (float,float)
Minimum y and x values. Their unit is given by the unit_center
parameter (degrees by default).
pos_max : (float,float)
Maximum y and x values. Their unit is given by the unit_center
parameter (degrees by default).
center : (float,float)
Initial gaussian center (y_peak,x_peak) If None it is estimated.
The unit is given by the unit_center parameter (degrees by
default).
flux : float
Initial integrated gaussian flux or gaussian peak value if peak is
True. If None, peak value is estimated.
fwhm : (float,float)
Initial gaussian fwhm (fwhm_y,fwhm_x). If None, they are estimated.
The unit is given by ``unit_fwhm`` (arcseconds by default).
circular : bool
True: circular gaussian, False: elliptical gaussian
cont : float
continuum value, 0 by default.
fit_back : bool
False: continuum value is fixed,
True: continuum value is a fit parameter.
rot : float
Initial rotation in degree.
If None, rotation is fixed to 0.
peak : bool
If true, flux contains a gaussian peak value.
factor : int
If factor<=1, gaussian value is computed in the center of each
pixel. If factor>1, for each pixel, gaussian value is the sum of
the gaussian values on the factor*factor pixels divided by the
pixel area.
weight : bool
If weight is True, the weight is computed as the inverse of
variance.
unit_center : `astropy.units.Unit`
type of the center and position coordinates.
Degrees by default (use None for coordinates in pixels).
unit_fwhm : `astropy.units.Unit`
FWHM unit. Arcseconds by default (use None for radius in pixels)
maxiter : int
The maximum number of iterations during the sum of square
minimization.
plot : bool
If True, the gaussian is plotted.
verbose : bool
If True, the Gaussian parameters are printed at the end of the
method.
full_output : bool
True-zero to return a `mpdaf.obj.Gauss2D` object containing
the gauss image.
Returns
-------
out : `mpdaf.obj.Gauss2D` | lib/mpdaf/obj/image.py | gauss_fit | musevlt/mpdaf | 4 | python | def gauss_fit(self, pos_min=None, pos_max=None, center=None, flux=None, fwhm=None, circular=False, cont=0, fit_back=True, rot=0, peak=False, factor=1, weight=True, plot=False, unit_center=u.deg, unit_fwhm=u.arcsec, maxiter=0, verbose=True, full_output=0):
'Perform Gaussian fit on image.\n\n Parameters\n ----------\n pos_min : (float,float)\n Minimum y and x values. Their unit is given by the unit_center\n parameter (degrees by default).\n pos_max : (float,float)\n Maximum y and x values. Their unit is given by the unit_center\n parameter (degrees by default).\n center : (float,float)\n Initial gaussian center (y_peak,x_peak) If None it is estimated.\n The unit is given by the unit_center parameter (degrees by\n default).\n flux : float\n Initial integrated gaussian flux or gaussian peak value if peak is\n True. If None, peak value is estimated.\n fwhm : (float,float)\n Initial gaussian fwhm (fwhm_y,fwhm_x). If None, they are estimated.\n The unit is given by ``unit_fwhm`` (arcseconds by default).\n circular : bool\n True: circular gaussian, False: elliptical gaussian\n cont : float\n continuum value, 0 by default.\n fit_back : bool\n False: continuum value is fixed,\n True: continuum value is a fit parameter.\n rot : float\n Initial rotation in degree.\n If None, rotation is fixed to 0.\n peak : bool\n If true, flux contains a gaussian peak value.\n factor : int\n If factor<=1, gaussian value is computed in the center of each\n pixel. If factor>1, for each pixel, gaussian value is the sum of\n the gaussian values on the factor*factor pixels divided by the\n pixel area.\n weight : bool\n If weight is True, the weight is computed as the inverse of\n variance.\n unit_center : `astropy.units.Unit`\n type of the center and position coordinates.\n Degrees by default (use None for coordinates in pixels).\n unit_fwhm : `astropy.units.Unit`\n FWHM unit. Arcseconds by default (use None for radius in pixels)\n maxiter : int\n The maximum number of iterations during the sum of square\n minimization.\n plot : bool\n If True, the gaussian is plotted.\n verbose : bool\n If True, the Gaussian parameters are printed at the end of the\n method.\n full_output : bool\n True-zero to return a `mpdaf.obj.Gauss2D` object containing\n the gauss image.\n\n Returns\n -------\n out : `mpdaf.obj.Gauss2D`\n\n '
(ima, pmin, pmax, qmin, qmax, data, wght, p, q, center, fwhm) = self._prepare_fit_parameters(pos_min, pos_max, weight=weight, center=center, unit_center=unit_center, fwhm=fwhm, unit_fwhm=unit_fwhm)
if (flux is None):
peak = (ima._data[(int(center[0]), int(center[1]))] - cont)
elif (peak is True):
peak = (flux - cont)
N = len(p)
width = (fwhm * gaussian_fwhm_to_sigma)
flux = ((peak * np.sqrt(((2 * np.pi) * (width[0] ** 2)))) * np.sqrt(((2 * np.pi) * (width[1] ** 2))))
if circular:
rot = None
if (not fit_back):
gaussfit = (lambda v, p, q: (cont + ((((v[0] * (1 / np.sqrt(((2 * np.pi) * (v[2] ** 2))))) * np.exp(((- ((p - v[1]) ** 2)) / (2 * (v[2] ** 2))))) * (1 / np.sqrt(((2 * np.pi) * (v[2] ** 2))))) * np.exp(((- ((q - v[3]) ** 2)) / (2 * (v[2] ** 2)))))))
v0 = [flux, center[0], width[0], center[1]]
else:
gaussfit = (lambda v, p, q: (v[4] + ((((v[0] * (1 / np.sqrt(((2 * np.pi) * (v[2] ** 2))))) * np.exp(((- ((p - v[1]) ** 2)) / (2 * (v[2] ** 2))))) * (1 / np.sqrt(((2 * np.pi) * (v[2] ** 2))))) * np.exp(((- ((q - v[3]) ** 2)) / (2 * (v[2] ** 2)))))))
v0 = [flux, center[0], width[0], center[1], cont]
elif (not fit_back):
if (rot is None):
gaussfit = (lambda v, p, q: (cont + ((((v[0] * (1 / np.sqrt(((2 * np.pi) * (v[2] ** 2))))) * np.exp(((- ((p - v[1]) ** 2)) / (2 * (v[2] ** 2))))) * (1 / np.sqrt(((2 * np.pi) * (v[4] ** 2))))) * np.exp(((- ((q - v[3]) ** 2)) / (2 * (v[4] ** 2)))))))
v0 = [flux, center[0], width[0], center[1], width[1]]
else:
rot = ((np.pi * rot) / 180.0)
gaussfit = (lambda v, p, q: (cont + ((((v[0] * (1 / np.sqrt(((2 * np.pi) * (v[2] ** 2))))) * np.exp(((- ((((p - v[1]) * np.cos(v[5])) - ((q - v[3]) * np.sin(v[5]))) ** 2)) / (2 * (v[2] ** 2))))) * (1 / np.sqrt(((2 * np.pi) * (v[4] ** 2))))) * np.exp(((- ((((p - v[1]) * np.sin(v[5])) + ((q - v[3]) * np.cos(v[5]))) ** 2)) / (2 * (v[4] ** 2)))))))
v0 = [flux, center[0], width[0], center[1], width[1], rot]
elif (rot is None):
gaussfit = (lambda v, p, q: (v[5] + ((((v[0] * (1 / np.sqrt(((2 * np.pi) * (v[2] ** 2))))) * np.exp(((- ((p - v[1]) ** 2)) / (2 * (v[2] ** 2))))) * (1 / np.sqrt(((2 * np.pi) * (v[4] ** 2))))) * np.exp(((- ((q - v[3]) ** 2)) / (2 * (v[4] ** 2)))))))
v0 = [flux, center[0], width[0], center[1], width[1], cont]
else:
rot = ((np.pi * rot) / 180.0)
gaussfit = (lambda v, p, q: (v[6] + ((((v[0] * (1 / np.sqrt(((2 * np.pi) * (v[2] ** 2))))) * np.exp(((- ((((p - v[1]) * np.cos(v[5])) - ((q - v[3]) * np.sin(v[5]))) ** 2)) / (2 * (v[2] ** 2))))) * (1 / np.sqrt(((2 * np.pi) * (v[4] ** 2))))) * np.exp(((- ((((p - v[1]) * np.sin(v[5])) + ((q - v[3]) * np.cos(v[5]))) ** 2)) / (2 * (v[4] ** 2)))))))
v0 = [flux, center[0], width[0], center[1], width[1], rot, cont]
if (factor > 1):
factor = int(factor)
deci = ((((np.ones((factor, factor)) * np.arange(factor)[(:, np.newaxis)]) / float(factor)) + (1.0 / float((factor * 2)))) - 0.5)
fp = (p[(:, np.newaxis)] + deci.ravel()[(np.newaxis, :)]).ravel()
fq = (q[(:, np.newaxis)] + deci.T.ravel()[(np.newaxis, :)]).ravel()
pixcrd = np.array(list(zip(fp, fq)))
e_gauss_fit = (lambda v, p, q, data, w: (w * (((gaussfit(v, p, q).reshape(N, (factor * factor)).sum(1) / factor) / factor).T.ravel() - data)))
(v, covar, info, mesg, success) = leastsq(e_gauss_fit, v0[:], args=(pixcrd[(:, 0)], pixcrd[(:, 1)], data, wght), maxfev=maxiter, full_output=1)
else:
e_gauss_fit = (lambda v, p, q, data, w: (w * (gaussfit(v, p, q) - data)))
(v, covar, info, mesg, success) = leastsq(e_gauss_fit, v0[:], args=(p, q, data, wght), maxfev=maxiter, full_output=1)
if (success not in [1, 2, 3, 4]):
self._logger.info(mesg)
chisq = sum((info['fvec'] * info['fvec']))
dof = (len(info['fvec']) - len(v))
if (covar is not None):
err = np.array([(np.sqrt(np.abs(covar[(i, i)])) * np.sqrt(np.abs((chisq / dof)))) for i in range(len(v))])
else:
err = None
v[1] += int(pmin)
v[3] += int(qmin)
if plot:
pp = np.arange(pmin, pmax, (float((pmax - pmin)) / 100))
qq = np.arange(qmin, qmax, (float((qmax - qmin)) / 100))
ff = np.empty((np.shape(pp)[0], np.shape(qq)[0]))
for i in range(np.shape(pp)[0]):
ff[(i, :)] = gaussfit(v, pp[i], qq[:])
self._ax.contour(qq, pp, ff, 5)
flux = v[0]
p_peak = v[1]
q_peak = v[3]
if circular:
if fit_back:
cont = v[4]
p_width = np.abs(v[2])
q_width = p_width
rot = 0
else:
if fit_back:
if (rot is None):
cont = v[5]
else:
cont = v[6]
if (rot is None):
p_width = np.abs(v[2])
q_width = np.abs(v[4])
rot = 0
elif (np.abs(v[2]) > np.abs(v[4])):
p_width = np.abs(v[2])
q_width = np.abs(v[4])
rot = (((v[5] * 180.0) / np.pi) % 180)
else:
p_width = np.abs(v[4])
q_width = np.abs(v[2])
rot = ((((v[5] * 180.0) / np.pi) + 90) % 180)
p_fwhm = (p_width * gaussian_sigma_to_fwhm)
q_fwhm = (q_width * gaussian_sigma_to_fwhm)
peak = ((flux / np.sqrt(((2 * np.pi) * (p_width ** 2)))) / np.sqrt(((2 * np.pi) * (q_width ** 2))))
if (err is not None):
err_flux = err[0]
err_p_peak = err[1]
err_q_peak = err[3]
if circular:
if fit_back:
err_cont = err[4]
else:
err_cont = 0
err_p_width = np.abs(err[2])
err_q_width = err_p_width
err_rot = 0
else:
if fit_back:
try:
err_cont = err[6]
except Exception:
err_cont = err[5]
else:
err_cont = 0
if ((np.abs(v[2]) > np.abs(v[4])) or (rot == 0)):
err_p_width = np.abs(err[2])
err_q_width = np.abs(err[4])
else:
err_p_width = np.abs(err[4])
err_q_width = np.abs(err[2])
try:
err_rot = ((err[4] * 180.0) / np.pi)
except Exception:
err_rot = 0
err_p_fwhm = (err_p_width * gaussian_sigma_to_fwhm)
err_q_fwhm = (err_q_width * gaussian_sigma_to_fwhm)
err_peak = ((((err_flux * p_width) * q_width) - (flux * ((err_p_width * q_width) + (err_q_width * p_width)))) / (((((2 * np.pi) * p_width) * p_width) * q_width) * q_width))
else:
err_flux = np.NAN
err_p_peak = np.NAN
err_p_width = np.NAN
err_p_fwhm = np.NAN
err_q_peak = np.NAN
err_q_width = np.NAN
err_q_fwhm = np.NAN
err_rot = np.NAN
err_peak = np.NAN
err_cont = np.NAN
if (unit_center is not None):
center = self.wcs.pix2sky([p_peak, q_peak], unit=unit_center)[0]
err_center = (np.array([err_p_peak, err_q_peak]) * self.wcs.get_step(unit=unit_center))
else:
center = (p_peak, q_peak)
err_center = (err_p_peak, err_q_peak)
step = self.wcs.get_step(unit=unit_fwhm)
fwhm = (np.array([p_fwhm, q_fwhm]) * step)
err_fwhm = (np.array([err_p_fwhm, err_q_fwhm]) * step)
gauss = Gauss2D(center, flux, fwhm, cont, rot, peak, err_center, err_flux, err_fwhm, err_cont, err_rot, err_peak)
if verbose:
gauss.print_param()
if full_output:
ima = gauss_image(shape=self.shape, wcs=self.wcs, gauss=gauss, unit_center=unit_center, unit_fwhm=unit_fwhm)
gauss.ima = ima
return gauss | def gauss_fit(self, pos_min=None, pos_max=None, center=None, flux=None, fwhm=None, circular=False, cont=0, fit_back=True, rot=0, peak=False, factor=1, weight=True, plot=False, unit_center=u.deg, unit_fwhm=u.arcsec, maxiter=0, verbose=True, full_output=0):
'Perform Gaussian fit on image.\n\n Parameters\n ----------\n pos_min : (float,float)\n Minimum y and x values. Their unit is given by the unit_center\n parameter (degrees by default).\n pos_max : (float,float)\n Maximum y and x values. Their unit is given by the unit_center\n parameter (degrees by default).\n center : (float,float)\n Initial gaussian center (y_peak,x_peak) If None it is estimated.\n The unit is given by the unit_center parameter (degrees by\n default).\n flux : float\n Initial integrated gaussian flux or gaussian peak value if peak is\n True. If None, peak value is estimated.\n fwhm : (float,float)\n Initial gaussian fwhm (fwhm_y,fwhm_x). If None, they are estimated.\n The unit is given by ``unit_fwhm`` (arcseconds by default).\n circular : bool\n True: circular gaussian, False: elliptical gaussian\n cont : float\n continuum value, 0 by default.\n fit_back : bool\n False: continuum value is fixed,\n True: continuum value is a fit parameter.\n rot : float\n Initial rotation in degree.\n If None, rotation is fixed to 0.\n peak : bool\n If true, flux contains a gaussian peak value.\n factor : int\n If factor<=1, gaussian value is computed in the center of each\n pixel. If factor>1, for each pixel, gaussian value is the sum of\n the gaussian values on the factor*factor pixels divided by the\n pixel area.\n weight : bool\n If weight is True, the weight is computed as the inverse of\n variance.\n unit_center : `astropy.units.Unit`\n type of the center and position coordinates.\n Degrees by default (use None for coordinates in pixels).\n unit_fwhm : `astropy.units.Unit`\n FWHM unit. Arcseconds by default (use None for radius in pixels)\n maxiter : int\n The maximum number of iterations during the sum of square\n minimization.\n plot : bool\n If True, the gaussian is plotted.\n verbose : bool\n If True, the Gaussian parameters are printed at the end of the\n method.\n full_output : bool\n True-zero to return a `mpdaf.obj.Gauss2D` object containing\n the gauss image.\n\n Returns\n -------\n out : `mpdaf.obj.Gauss2D`\n\n '
(ima, pmin, pmax, qmin, qmax, data, wght, p, q, center, fwhm) = self._prepare_fit_parameters(pos_min, pos_max, weight=weight, center=center, unit_center=unit_center, fwhm=fwhm, unit_fwhm=unit_fwhm)
if (flux is None):
peak = (ima._data[(int(center[0]), int(center[1]))] - cont)
elif (peak is True):
peak = (flux - cont)
N = len(p)
width = (fwhm * gaussian_fwhm_to_sigma)
flux = ((peak * np.sqrt(((2 * np.pi) * (width[0] ** 2)))) * np.sqrt(((2 * np.pi) * (width[1] ** 2))))
if circular:
rot = None
if (not fit_back):
gaussfit = (lambda v, p, q: (cont + ((((v[0] * (1 / np.sqrt(((2 * np.pi) * (v[2] ** 2))))) * np.exp(((- ((p - v[1]) ** 2)) / (2 * (v[2] ** 2))))) * (1 / np.sqrt(((2 * np.pi) * (v[2] ** 2))))) * np.exp(((- ((q - v[3]) ** 2)) / (2 * (v[2] ** 2)))))))
v0 = [flux, center[0], width[0], center[1]]
else:
gaussfit = (lambda v, p, q: (v[4] + ((((v[0] * (1 / np.sqrt(((2 * np.pi) * (v[2] ** 2))))) * np.exp(((- ((p - v[1]) ** 2)) / (2 * (v[2] ** 2))))) * (1 / np.sqrt(((2 * np.pi) * (v[2] ** 2))))) * np.exp(((- ((q - v[3]) ** 2)) / (2 * (v[2] ** 2)))))))
v0 = [flux, center[0], width[0], center[1], cont]
elif (not fit_back):
if (rot is None):
gaussfit = (lambda v, p, q: (cont + ((((v[0] * (1 / np.sqrt(((2 * np.pi) * (v[2] ** 2))))) * np.exp(((- ((p - v[1]) ** 2)) / (2 * (v[2] ** 2))))) * (1 / np.sqrt(((2 * np.pi) * (v[4] ** 2))))) * np.exp(((- ((q - v[3]) ** 2)) / (2 * (v[4] ** 2)))))))
v0 = [flux, center[0], width[0], center[1], width[1]]
else:
rot = ((np.pi * rot) / 180.0)
gaussfit = (lambda v, p, q: (cont + ((((v[0] * (1 / np.sqrt(((2 * np.pi) * (v[2] ** 2))))) * np.exp(((- ((((p - v[1]) * np.cos(v[5])) - ((q - v[3]) * np.sin(v[5]))) ** 2)) / (2 * (v[2] ** 2))))) * (1 / np.sqrt(((2 * np.pi) * (v[4] ** 2))))) * np.exp(((- ((((p - v[1]) * np.sin(v[5])) + ((q - v[3]) * np.cos(v[5]))) ** 2)) / (2 * (v[4] ** 2)))))))
v0 = [flux, center[0], width[0], center[1], width[1], rot]
elif (rot is None):
gaussfit = (lambda v, p, q: (v[5] + ((((v[0] * (1 / np.sqrt(((2 * np.pi) * (v[2] ** 2))))) * np.exp(((- ((p - v[1]) ** 2)) / (2 * (v[2] ** 2))))) * (1 / np.sqrt(((2 * np.pi) * (v[4] ** 2))))) * np.exp(((- ((q - v[3]) ** 2)) / (2 * (v[4] ** 2)))))))
v0 = [flux, center[0], width[0], center[1], width[1], cont]
else:
rot = ((np.pi * rot) / 180.0)
gaussfit = (lambda v, p, q: (v[6] + ((((v[0] * (1 / np.sqrt(((2 * np.pi) * (v[2] ** 2))))) * np.exp(((- ((((p - v[1]) * np.cos(v[5])) - ((q - v[3]) * np.sin(v[5]))) ** 2)) / (2 * (v[2] ** 2))))) * (1 / np.sqrt(((2 * np.pi) * (v[4] ** 2))))) * np.exp(((- ((((p - v[1]) * np.sin(v[5])) + ((q - v[3]) * np.cos(v[5]))) ** 2)) / (2 * (v[4] ** 2)))))))
v0 = [flux, center[0], width[0], center[1], width[1], rot, cont]
if (factor > 1):
factor = int(factor)
deci = ((((np.ones((factor, factor)) * np.arange(factor)[(:, np.newaxis)]) / float(factor)) + (1.0 / float((factor * 2)))) - 0.5)
fp = (p[(:, np.newaxis)] + deci.ravel()[(np.newaxis, :)]).ravel()
fq = (q[(:, np.newaxis)] + deci.T.ravel()[(np.newaxis, :)]).ravel()
pixcrd = np.array(list(zip(fp, fq)))
e_gauss_fit = (lambda v, p, q, data, w: (w * (((gaussfit(v, p, q).reshape(N, (factor * factor)).sum(1) / factor) / factor).T.ravel() - data)))
(v, covar, info, mesg, success) = leastsq(e_gauss_fit, v0[:], args=(pixcrd[(:, 0)], pixcrd[(:, 1)], data, wght), maxfev=maxiter, full_output=1)
else:
e_gauss_fit = (lambda v, p, q, data, w: (w * (gaussfit(v, p, q) - data)))
(v, covar, info, mesg, success) = leastsq(e_gauss_fit, v0[:], args=(p, q, data, wght), maxfev=maxiter, full_output=1)
if (success not in [1, 2, 3, 4]):
self._logger.info(mesg)
chisq = sum((info['fvec'] * info['fvec']))
dof = (len(info['fvec']) - len(v))
if (covar is not None):
err = np.array([(np.sqrt(np.abs(covar[(i, i)])) * np.sqrt(np.abs((chisq / dof)))) for i in range(len(v))])
else:
err = None
v[1] += int(pmin)
v[3] += int(qmin)
if plot:
pp = np.arange(pmin, pmax, (float((pmax - pmin)) / 100))
qq = np.arange(qmin, qmax, (float((qmax - qmin)) / 100))
ff = np.empty((np.shape(pp)[0], np.shape(qq)[0]))
for i in range(np.shape(pp)[0]):
ff[(i, :)] = gaussfit(v, pp[i], qq[:])
self._ax.contour(qq, pp, ff, 5)
flux = v[0]
p_peak = v[1]
q_peak = v[3]
if circular:
if fit_back:
cont = v[4]
p_width = np.abs(v[2])
q_width = p_width
rot = 0
else:
if fit_back:
if (rot is None):
cont = v[5]
else:
cont = v[6]
if (rot is None):
p_width = np.abs(v[2])
q_width = np.abs(v[4])
rot = 0
elif (np.abs(v[2]) > np.abs(v[4])):
p_width = np.abs(v[2])
q_width = np.abs(v[4])
rot = (((v[5] * 180.0) / np.pi) % 180)
else:
p_width = np.abs(v[4])
q_width = np.abs(v[2])
rot = ((((v[5] * 180.0) / np.pi) + 90) % 180)
p_fwhm = (p_width * gaussian_sigma_to_fwhm)
q_fwhm = (q_width * gaussian_sigma_to_fwhm)
peak = ((flux / np.sqrt(((2 * np.pi) * (p_width ** 2)))) / np.sqrt(((2 * np.pi) * (q_width ** 2))))
if (err is not None):
err_flux = err[0]
err_p_peak = err[1]
err_q_peak = err[3]
if circular:
if fit_back:
err_cont = err[4]
else:
err_cont = 0
err_p_width = np.abs(err[2])
err_q_width = err_p_width
err_rot = 0
else:
if fit_back:
try:
err_cont = err[6]
except Exception:
err_cont = err[5]
else:
err_cont = 0
if ((np.abs(v[2]) > np.abs(v[4])) or (rot == 0)):
err_p_width = np.abs(err[2])
err_q_width = np.abs(err[4])
else:
err_p_width = np.abs(err[4])
err_q_width = np.abs(err[2])
try:
err_rot = ((err[4] * 180.0) / np.pi)
except Exception:
err_rot = 0
err_p_fwhm = (err_p_width * gaussian_sigma_to_fwhm)
err_q_fwhm = (err_q_width * gaussian_sigma_to_fwhm)
err_peak = ((((err_flux * p_width) * q_width) - (flux * ((err_p_width * q_width) + (err_q_width * p_width)))) / (((((2 * np.pi) * p_width) * p_width) * q_width) * q_width))
else:
err_flux = np.NAN
err_p_peak = np.NAN
err_p_width = np.NAN
err_p_fwhm = np.NAN
err_q_peak = np.NAN
err_q_width = np.NAN
err_q_fwhm = np.NAN
err_rot = np.NAN
err_peak = np.NAN
err_cont = np.NAN
if (unit_center is not None):
center = self.wcs.pix2sky([p_peak, q_peak], unit=unit_center)[0]
err_center = (np.array([err_p_peak, err_q_peak]) * self.wcs.get_step(unit=unit_center))
else:
center = (p_peak, q_peak)
err_center = (err_p_peak, err_q_peak)
step = self.wcs.get_step(unit=unit_fwhm)
fwhm = (np.array([p_fwhm, q_fwhm]) * step)
err_fwhm = (np.array([err_p_fwhm, err_q_fwhm]) * step)
gauss = Gauss2D(center, flux, fwhm, cont, rot, peak, err_center, err_flux, err_fwhm, err_cont, err_rot, err_peak)
if verbose:
gauss.print_param()
if full_output:
ima = gauss_image(shape=self.shape, wcs=self.wcs, gauss=gauss, unit_center=unit_center, unit_fwhm=unit_fwhm)
gauss.ima = ima
return gauss<|docstring|>Perform Gaussian fit on image.
Parameters
----------
pos_min : (float,float)
Minimum y and x values. Their unit is given by the unit_center
parameter (degrees by default).
pos_max : (float,float)
Maximum y and x values. Their unit is given by the unit_center
parameter (degrees by default).
center : (float,float)
Initial gaussian center (y_peak,x_peak) If None it is estimated.
The unit is given by the unit_center parameter (degrees by
default).
flux : float
Initial integrated gaussian flux or gaussian peak value if peak is
True. If None, peak value is estimated.
fwhm : (float,float)
Initial gaussian fwhm (fwhm_y,fwhm_x). If None, they are estimated.
The unit is given by ``unit_fwhm`` (arcseconds by default).
circular : bool
True: circular gaussian, False: elliptical gaussian
cont : float
continuum value, 0 by default.
fit_back : bool
False: continuum value is fixed,
True: continuum value is a fit parameter.
rot : float
Initial rotation in degree.
If None, rotation is fixed to 0.
peak : bool
If true, flux contains a gaussian peak value.
factor : int
If factor<=1, gaussian value is computed in the center of each
pixel. If factor>1, for each pixel, gaussian value is the sum of
the gaussian values on the factor*factor pixels divided by the
pixel area.
weight : bool
If weight is True, the weight is computed as the inverse of
variance.
unit_center : `astropy.units.Unit`
type of the center and position coordinates.
Degrees by default (use None for coordinates in pixels).
unit_fwhm : `astropy.units.Unit`
FWHM unit. Arcseconds by default (use None for radius in pixels)
maxiter : int
The maximum number of iterations during the sum of square
minimization.
plot : bool
If True, the gaussian is plotted.
verbose : bool
If True, the Gaussian parameters are printed at the end of the
method.
full_output : bool
True-zero to return a `mpdaf.obj.Gauss2D` object containing
the gauss image.
Returns
-------
out : `mpdaf.obj.Gauss2D`<|endoftext|> |
43409319e973e56b775632bb6be1b3a5d64787d645a0ec4e36d2cf640cc030b3 | def moffat_fit(self, pos_min=None, pos_max=None, center=None, fwhm=None, flux=None, n=2.0, circular=False, cont=0, fit_back=True, rot=0, peak=False, factor=1, weight=True, plot=False, unit_center=u.deg, unit_fwhm=u.arcsec, verbose=True, full_output=0, fit_n=True, maxiter=0):
'Perform moffat fit on image.\n\n Parameters\n ----------\n\n pos_min : (float,float)\n Minimum y and x values. Their unit is given by the unit_center\n parameter (degrees by default).\n pos_max : (float,float)\n Maximum y and x values. Their unit is given by the unit_center\n parameter (degrees by default).\n center : (float,float)\n Initial moffat center (y_peak,x_peak). If None it is estimated.\n The unit is given by the unit_center parameter (degrees by\n default).\n flux : float\n Initial integrated gaussian flux or gaussian peak value if peak is\n True. If None, peak value is estimated.\n fwhm : (float,float)\n Initial gaussian fwhm (fwhm_y,fwhm_x). If None, they are estimated.\n Their unit is given by the unit_fwhm parameter (arcseconds by\n default).\n n : int\n Initial atmospheric scattering coefficient.\n circular : bool\n True: circular moffat, False: elliptical moffat\n cont : float\n continuum value, 0 by default.\n fit_back : bool\n False: continuum value is fixed,\n True: continuum value is a fit parameter.\n rot : float\n Initial angle position in degree.\n peak : bool\n If true, flux contains a gaussian peak value.\n factor : int\n If factor<=1, gaussian is computed in the center of each pixel.\n If factor>1, for each pixel, gaussian value is the sum of the\n gaussian values on the factor*factor pixels divided by the pixel\n area.\n weight : bool\n If weight is True, the weight is computed as the inverse of\n variance.\n plot : bool\n If True, the gaussian is plotted.\n unit_center : `astropy.units.Unit`\n type of the center and position coordinates.\n Degrees by default (use None for coordinates in pixels).\n unit_fwhm : `astropy.units.Unit`\n FWHM unit. Arcseconds by default (use None for radius in pixels)\n full_output : bool\n True to return a `mpdaf.obj.Moffat2D` object containing the\n moffat image.\n fit_n : bool\n False: n value is fixed,\n True: n value is a fit parameter.\n maxiter : int\n The maximum number of iterations during the sum of square\n minimization.\n\n Returns\n -------\n out : `mpdaf.obj.Moffat2D`\n\n '
(ima, pmin, pmax, qmin, qmax, data, wght, p, q, center, fwhm) = self._prepare_fit_parameters(pos_min, pos_max, weight=weight, center=center, unit_center=unit_center, fwhm=fwhm, unit_fwhm=unit_fwhm)
N = len(p)
a = (fwhm[0] / (2 * np.sqrt(((2 ** (1.0 / n)) - 1.0))))
e = (fwhm[0] / fwhm[1])
if (flux is None):
I = (ima.data.data[(int(center[0]), int(center[1]))] - cont)
elif (peak is True):
I = (flux - cont)
else:
I = ((flux * (n - 1)) / (((np.pi * a) * a) * e))
def moffat(c, x, y, amplitude, x_0, y_0, alpha, beta, e):
'Two dimensional Moffat model function'
rr_gg = ((((x - x_0) / alpha) ** 2) + ((((y - y_0) / alpha) / e) ** 2))
return (c + (amplitude * ((1 + rr_gg) ** (- beta))))
if circular:
rot = None
if (not fit_back):
if fit_n:
moffatfit = (lambda v, p, q: moffat(cont, p, q, v[0], v[1], v[2], v[3], v[4], 1))
v0 = [I, center[0], center[1], a, n]
else:
moffatfit = (lambda v, p, q: moffat(cont, p, q, v[0], v[1], v[2], v[3], n, 1))
v0 = [I, center[0], center[1], a]
elif fit_n:
moffatfit = (lambda v, p, q: moffat(v[5], p, q, v[0], v[1], v[2], v[3], v[4], 1))
v0 = [I, center[0], center[1], a, n, cont]
else:
moffatfit = (lambda v, p, q: moffat(v[4], p, q, v[0], v[1], v[2], v[3], n, 1))
v0 = [I, center[0], center[1], a, cont]
elif (not fit_back):
if (rot is None):
if fit_n:
moffatfit = (lambda v, p, q: moffat(cont, p, q, v[0], v[1], v[2], v[3], v[4], v[5]))
v0 = [I, center[0], center[1], a, n, e]
else:
moffatfit = (lambda v, p, q: moffat(cont, p, q, v[0], v[1], v[2], v[3], n, v[5]))
v0 = [I, center[0], center[1], a, e]
else:
rot = ((np.pi * rot) / 180.0)
if fit_n:
moffatfit = (lambda v, p, q: (cont + (v[0] * (((1 + (((((p - v[1]) * np.cos(v[6])) - ((q - v[2]) * np.sin(v[6]))) / v[3]) ** 2)) + ((((((p - v[1]) * np.sin(v[6])) + ((q - v[2]) * np.cos(v[6]))) / v[3]) / v[5]) ** 2)) ** (- v[4])))))
v0 = [I, center[0], center[1], a, n, e, rot]
else:
moffatfit = (lambda v, p, q: (cont + (v[0] * (((1 + (((((p - v[1]) * np.cos(v[5])) - ((q - v[2]) * np.sin(v[5]))) / v[3]) ** 2)) + ((((((p - v[1]) * np.sin(v[5])) + ((q - v[2]) * np.cos(v[5]))) / v[3]) / v[4]) ** 2)) ** (- n)))))
v0 = [I, center[0], center[1], a, e, rot]
elif (rot is None):
if fit_n:
moffatfit = (lambda v, p, q: moffat(v[6], p, q, v[0], v[1], v[2], v[3], v[4], v[5]))
v0 = [I, center[0], center[1], a, n, e, cont]
else:
moffatfit = (lambda v, p, q: moffat(v[5], p, q, v[0], v[1], v[2], v[3], n, v[4]))
v0 = [I, center[0], center[1], a, e, cont]
else:
rot = ((np.pi * rot) / 180.0)
if fit_n:
moffatfit = (lambda v, p, q: (v[7] + (v[0] * (((1 + (((((p - v[1]) * np.cos(v[6])) - ((q - v[2]) * np.sin(v[6]))) / v[3]) ** 2)) + ((((((p - v[1]) * np.sin(v[6])) + ((q - v[2]) * np.cos(v[6]))) / v[3]) / v[5]) ** 2)) ** (- v[4])))))
v0 = [I, center[0], center[1], a, n, e, rot, cont]
else:
moffatfit = (lambda v, p, q: (v[6] + (v[0] * (((1 + (((((p - v[1]) * np.cos(v[5])) - ((q - v[2]) * np.sin(v[5]))) / v[3]) ** 2)) + ((((((p - v[1]) * np.sin(v[5])) + ((q - v[2]) * np.cos(v[5]))) / v[3]) / v[4]) ** 2)) ** (- n)))))
v0 = [I, center[0], center[1], a, e, rot, cont]
if (factor > 1):
factor = int(factor)
deci = (((np.ones((factor, factor)) * np.arange(factor)[(:, np.newaxis)]) / float(factor)) + (1 / float((factor * 2))))
fp = (p[(:, np.newaxis)] + deci.ravel()[(np.newaxis, :)]).ravel()
fq = (q[(:, np.newaxis)] + deci.T.ravel()[(np.newaxis, :)]).ravel()
pixcrd = np.array(list(zip(fp, fq)))
e_moffat_fit = (lambda v, p, q, data, w: (w * (((moffatfit(v, p, q).reshape(N, (factor * factor)).sum(1) / factor) / factor).T.ravel() - data)))
(v, covar, info, mesg, success) = leastsq(e_moffat_fit, v0[:], args=(pixcrd[(:, 0)], pixcrd[(:, 1)], data, wght), maxfev=maxiter, full_output=1)
else:
e_moffat_fit = (lambda v, p, q, data, w: (w * (moffatfit(v, p, q) - data)))
(v, covar, info, mesg, success) = leastsq(e_moffat_fit, v0[:], args=(p, q, data, wght), maxfev=maxiter, full_output=1)
if (success not in [1, 2, 3, 4]):
self._logger.warning(mesg)
chisq = sum((info['fvec'] * info['fvec']))
dof = (len(info['fvec']) - len(v))
if (covar is not None):
err = np.array([(np.sqrt(np.abs(covar[(i, i)])) * np.sqrt(np.abs((chisq / dof)))) for i in range(len(v))])
else:
err = np.zeros_like(v)
err[:] = np.abs((v[:] - v0[:]))
v[1] += int(pmin)
v[2] += int(qmin)
if plot:
pp = np.arange(pmin, pmax, (float((pmax - pmin)) / 100))
qq = np.arange(qmin, qmax, (float((qmax - qmin)) / 100))
ff = np.empty((np.shape(pp)[0], np.shape(qq)[0]))
for i in range(np.shape(pp)[0]):
ff[(i, :)] = moffatfit(v, pp[i], qq[:])
self._ax.contour(qq, pp, ff, 5)
(I, p_peak, q_peak) = v[:3]
a = np.abs(v[3])
v = list(v[4:])
if fit_back:
cont = v.pop()
if fit_n:
n = v.pop(0)
_fwhm = (a * (2 * np.sqrt(((2 ** (1.0 / n)) - 1.0))))
if circular:
rot = 0
fwhm = (_fwhm, _fwhm)
else:
e = v.pop(0)
if (e < 1):
fwhm = (_fwhm, (_fwhm * e))
else:
fwhm = ((_fwhm * e), _fwhm)
if (rot is None):
rot = 0
elif (e < 1):
rot = (((v[0] * 180.0) / np.pi) % 180)
else:
rot = ((((v[0] * 180.0) / np.pi) + 90) % 180)
flux = ((I / (n - 1)) * (((np.pi * a) * a) * e))
if (err is not None):
(err_I, err_p_peak, err_q_peak) = err[:3]
err_a = err[3]
if fit_n:
err_n = err[4]
err_fwhm = (err_a * n)
if circular:
err_e = 0
err_rot = 0
err_fwhm = np.array([err_fwhm, err_fwhm])
if fit_back:
err_cont = err[5]
else:
err_cont = 0
err_flux = (((err_I * err_n) * err_a) * err_a)
else:
err_e = err[5]
if (err_e != 0):
err_fwhm = np.array([err_fwhm, (err_fwhm / err_e)])
else:
err_fwhm = np.array([err_fwhm, err_fwhm])
if (rot is None):
err_rot = 0
if fit_back:
err_cont = err[6]
else:
err_cont = 0
else:
err_rot = ((err[6] * 180.0) / np.pi)
if fit_back:
err_cont = err[7]
else:
err_cont = 0
err_flux = ((((err_I * err_n) * err_a) * err_a) * err_e)
else:
err_n = 0
err_fwhm = (err_a * n)
if circular:
err_e = 0
err_rot = 0
err_fwhm = np.array([err_fwhm, err_fwhm])
if fit_back:
err_cont = err[4]
else:
err_cont = 0
err_flux = (((err_I * err_n) * err_a) * err_a)
else:
err_e = err[4]
if (err_e != 0):
err_fwhm = np.array([err_fwhm, (err_fwhm / err_e)])
else:
err_fwhm = np.array([err_fwhm, err_fwhm])
if (rot is None):
err_rot = 0
if fit_back:
err_cont = err[5]
else:
err_cont = 0
else:
err_rot = ((err[5] * 180.0) / np.pi)
if fit_back:
err_cont = err[6]
else:
err_cont = 0
err_flux = ((((err_I * err_n) * err_a) * err_a) * err_e)
else:
err_I = np.NAN
err_p_peak = np.NAN
err_q_peak = np.NAN
err_a = np.NAN
err_n = np.NAN
err_e = np.NAN
err_rot = np.NAN
err_cont = np.NAN
err_fwhm = (np.NAN, np.NAN)
err_flux = np.NAN
if (unit_center is None):
center = (p_peak, q_peak)
err_center = (err_p_peak, err_q_peak)
else:
center = self.wcs.pix2sky([p_peak, q_peak], unit=unit_center)[0]
err_center = (np.array([err_p_peak, err_q_peak]) * self.wcs.get_step(unit=unit_center))
fwhm = np.array(fwhm)
if (unit_fwhm is not None):
step0 = self.wcs.get_step(unit=unit_fwhm)[0]
a = (a * step0)
err_a = (err_a * step0)
fwhm = (fwhm * step0)
err_fwhm = (err_fwhm * step0)
result = Moffat2D(center, flux, fwhm, cont, n, rot, I, err_center, err_flux, err_fwhm, err_cont, err_n, err_rot, err_I)
if verbose:
result.print_param()
if full_output:
ima = moffat_image(shape=self.shape, wcs=self.wcs, moffat=result, unit_center=unit_center, unit_fwhm=unit_fwhm)
result.ima = ima
return result | Perform moffat fit on image.
Parameters
----------
pos_min : (float,float)
Minimum y and x values. Their unit is given by the unit_center
parameter (degrees by default).
pos_max : (float,float)
Maximum y and x values. Their unit is given by the unit_center
parameter (degrees by default).
center : (float,float)
Initial moffat center (y_peak,x_peak). If None it is estimated.
The unit is given by the unit_center parameter (degrees by
default).
flux : float
Initial integrated gaussian flux or gaussian peak value if peak is
True. If None, peak value is estimated.
fwhm : (float,float)
Initial gaussian fwhm (fwhm_y,fwhm_x). If None, they are estimated.
Their unit is given by the unit_fwhm parameter (arcseconds by
default).
n : int
Initial atmospheric scattering coefficient.
circular : bool
True: circular moffat, False: elliptical moffat
cont : float
continuum value, 0 by default.
fit_back : bool
False: continuum value is fixed,
True: continuum value is a fit parameter.
rot : float
Initial angle position in degree.
peak : bool
If true, flux contains a gaussian peak value.
factor : int
If factor<=1, gaussian is computed in the center of each pixel.
If factor>1, for each pixel, gaussian value is the sum of the
gaussian values on the factor*factor pixels divided by the pixel
area.
weight : bool
If weight is True, the weight is computed as the inverse of
variance.
plot : bool
If True, the gaussian is plotted.
unit_center : `astropy.units.Unit`
type of the center and position coordinates.
Degrees by default (use None for coordinates in pixels).
unit_fwhm : `astropy.units.Unit`
FWHM unit. Arcseconds by default (use None for radius in pixels)
full_output : bool
True to return a `mpdaf.obj.Moffat2D` object containing the
moffat image.
fit_n : bool
False: n value is fixed,
True: n value is a fit parameter.
maxiter : int
The maximum number of iterations during the sum of square
minimization.
Returns
-------
out : `mpdaf.obj.Moffat2D` | lib/mpdaf/obj/image.py | moffat_fit | musevlt/mpdaf | 4 | python | def moffat_fit(self, pos_min=None, pos_max=None, center=None, fwhm=None, flux=None, n=2.0, circular=False, cont=0, fit_back=True, rot=0, peak=False, factor=1, weight=True, plot=False, unit_center=u.deg, unit_fwhm=u.arcsec, verbose=True, full_output=0, fit_n=True, maxiter=0):
'Perform moffat fit on image.\n\n Parameters\n ----------\n\n pos_min : (float,float)\n Minimum y and x values. Their unit is given by the unit_center\n parameter (degrees by default).\n pos_max : (float,float)\n Maximum y and x values. Their unit is given by the unit_center\n parameter (degrees by default).\n center : (float,float)\n Initial moffat center (y_peak,x_peak). If None it is estimated.\n The unit is given by the unit_center parameter (degrees by\n default).\n flux : float\n Initial integrated gaussian flux or gaussian peak value if peak is\n True. If None, peak value is estimated.\n fwhm : (float,float)\n Initial gaussian fwhm (fwhm_y,fwhm_x). If None, they are estimated.\n Their unit is given by the unit_fwhm parameter (arcseconds by\n default).\n n : int\n Initial atmospheric scattering coefficient.\n circular : bool\n True: circular moffat, False: elliptical moffat\n cont : float\n continuum value, 0 by default.\n fit_back : bool\n False: continuum value is fixed,\n True: continuum value is a fit parameter.\n rot : float\n Initial angle position in degree.\n peak : bool\n If true, flux contains a gaussian peak value.\n factor : int\n If factor<=1, gaussian is computed in the center of each pixel.\n If factor>1, for each pixel, gaussian value is the sum of the\n gaussian values on the factor*factor pixels divided by the pixel\n area.\n weight : bool\n If weight is True, the weight is computed as the inverse of\n variance.\n plot : bool\n If True, the gaussian is plotted.\n unit_center : `astropy.units.Unit`\n type of the center and position coordinates.\n Degrees by default (use None for coordinates in pixels).\n unit_fwhm : `astropy.units.Unit`\n FWHM unit. Arcseconds by default (use None for radius in pixels)\n full_output : bool\n True to return a `mpdaf.obj.Moffat2D` object containing the\n moffat image.\n fit_n : bool\n False: n value is fixed,\n True: n value is a fit parameter.\n maxiter : int\n The maximum number of iterations during the sum of square\n minimization.\n\n Returns\n -------\n out : `mpdaf.obj.Moffat2D`\n\n '
(ima, pmin, pmax, qmin, qmax, data, wght, p, q, center, fwhm) = self._prepare_fit_parameters(pos_min, pos_max, weight=weight, center=center, unit_center=unit_center, fwhm=fwhm, unit_fwhm=unit_fwhm)
N = len(p)
a = (fwhm[0] / (2 * np.sqrt(((2 ** (1.0 / n)) - 1.0))))
e = (fwhm[0] / fwhm[1])
if (flux is None):
I = (ima.data.data[(int(center[0]), int(center[1]))] - cont)
elif (peak is True):
I = (flux - cont)
else:
I = ((flux * (n - 1)) / (((np.pi * a) * a) * e))
def moffat(c, x, y, amplitude, x_0, y_0, alpha, beta, e):
'Two dimensional Moffat model function'
rr_gg = ((((x - x_0) / alpha) ** 2) + ((((y - y_0) / alpha) / e) ** 2))
return (c + (amplitude * ((1 + rr_gg) ** (- beta))))
if circular:
rot = None
if (not fit_back):
if fit_n:
moffatfit = (lambda v, p, q: moffat(cont, p, q, v[0], v[1], v[2], v[3], v[4], 1))
v0 = [I, center[0], center[1], a, n]
else:
moffatfit = (lambda v, p, q: moffat(cont, p, q, v[0], v[1], v[2], v[3], n, 1))
v0 = [I, center[0], center[1], a]
elif fit_n:
moffatfit = (lambda v, p, q: moffat(v[5], p, q, v[0], v[1], v[2], v[3], v[4], 1))
v0 = [I, center[0], center[1], a, n, cont]
else:
moffatfit = (lambda v, p, q: moffat(v[4], p, q, v[0], v[1], v[2], v[3], n, 1))
v0 = [I, center[0], center[1], a, cont]
elif (not fit_back):
if (rot is None):
if fit_n:
moffatfit = (lambda v, p, q: moffat(cont, p, q, v[0], v[1], v[2], v[3], v[4], v[5]))
v0 = [I, center[0], center[1], a, n, e]
else:
moffatfit = (lambda v, p, q: moffat(cont, p, q, v[0], v[1], v[2], v[3], n, v[5]))
v0 = [I, center[0], center[1], a, e]
else:
rot = ((np.pi * rot) / 180.0)
if fit_n:
moffatfit = (lambda v, p, q: (cont + (v[0] * (((1 + (((((p - v[1]) * np.cos(v[6])) - ((q - v[2]) * np.sin(v[6]))) / v[3]) ** 2)) + ((((((p - v[1]) * np.sin(v[6])) + ((q - v[2]) * np.cos(v[6]))) / v[3]) / v[5]) ** 2)) ** (- v[4])))))
v0 = [I, center[0], center[1], a, n, e, rot]
else:
moffatfit = (lambda v, p, q: (cont + (v[0] * (((1 + (((((p - v[1]) * np.cos(v[5])) - ((q - v[2]) * np.sin(v[5]))) / v[3]) ** 2)) + ((((((p - v[1]) * np.sin(v[5])) + ((q - v[2]) * np.cos(v[5]))) / v[3]) / v[4]) ** 2)) ** (- n)))))
v0 = [I, center[0], center[1], a, e, rot]
elif (rot is None):
if fit_n:
moffatfit = (lambda v, p, q: moffat(v[6], p, q, v[0], v[1], v[2], v[3], v[4], v[5]))
v0 = [I, center[0], center[1], a, n, e, cont]
else:
moffatfit = (lambda v, p, q: moffat(v[5], p, q, v[0], v[1], v[2], v[3], n, v[4]))
v0 = [I, center[0], center[1], a, e, cont]
else:
rot = ((np.pi * rot) / 180.0)
if fit_n:
moffatfit = (lambda v, p, q: (v[7] + (v[0] * (((1 + (((((p - v[1]) * np.cos(v[6])) - ((q - v[2]) * np.sin(v[6]))) / v[3]) ** 2)) + ((((((p - v[1]) * np.sin(v[6])) + ((q - v[2]) * np.cos(v[6]))) / v[3]) / v[5]) ** 2)) ** (- v[4])))))
v0 = [I, center[0], center[1], a, n, e, rot, cont]
else:
moffatfit = (lambda v, p, q: (v[6] + (v[0] * (((1 + (((((p - v[1]) * np.cos(v[5])) - ((q - v[2]) * np.sin(v[5]))) / v[3]) ** 2)) + ((((((p - v[1]) * np.sin(v[5])) + ((q - v[2]) * np.cos(v[5]))) / v[3]) / v[4]) ** 2)) ** (- n)))))
v0 = [I, center[0], center[1], a, e, rot, cont]
if (factor > 1):
factor = int(factor)
deci = (((np.ones((factor, factor)) * np.arange(factor)[(:, np.newaxis)]) / float(factor)) + (1 / float((factor * 2))))
fp = (p[(:, np.newaxis)] + deci.ravel()[(np.newaxis, :)]).ravel()
fq = (q[(:, np.newaxis)] + deci.T.ravel()[(np.newaxis, :)]).ravel()
pixcrd = np.array(list(zip(fp, fq)))
e_moffat_fit = (lambda v, p, q, data, w: (w * (((moffatfit(v, p, q).reshape(N, (factor * factor)).sum(1) / factor) / factor).T.ravel() - data)))
(v, covar, info, mesg, success) = leastsq(e_moffat_fit, v0[:], args=(pixcrd[(:, 0)], pixcrd[(:, 1)], data, wght), maxfev=maxiter, full_output=1)
else:
e_moffat_fit = (lambda v, p, q, data, w: (w * (moffatfit(v, p, q) - data)))
(v, covar, info, mesg, success) = leastsq(e_moffat_fit, v0[:], args=(p, q, data, wght), maxfev=maxiter, full_output=1)
if (success not in [1, 2, 3, 4]):
self._logger.warning(mesg)
chisq = sum((info['fvec'] * info['fvec']))
dof = (len(info['fvec']) - len(v))
if (covar is not None):
err = np.array([(np.sqrt(np.abs(covar[(i, i)])) * np.sqrt(np.abs((chisq / dof)))) for i in range(len(v))])
else:
err = np.zeros_like(v)
err[:] = np.abs((v[:] - v0[:]))
v[1] += int(pmin)
v[2] += int(qmin)
if plot:
pp = np.arange(pmin, pmax, (float((pmax - pmin)) / 100))
qq = np.arange(qmin, qmax, (float((qmax - qmin)) / 100))
ff = np.empty((np.shape(pp)[0], np.shape(qq)[0]))
for i in range(np.shape(pp)[0]):
ff[(i, :)] = moffatfit(v, pp[i], qq[:])
self._ax.contour(qq, pp, ff, 5)
(I, p_peak, q_peak) = v[:3]
a = np.abs(v[3])
v = list(v[4:])
if fit_back:
cont = v.pop()
if fit_n:
n = v.pop(0)
_fwhm = (a * (2 * np.sqrt(((2 ** (1.0 / n)) - 1.0))))
if circular:
rot = 0
fwhm = (_fwhm, _fwhm)
else:
e = v.pop(0)
if (e < 1):
fwhm = (_fwhm, (_fwhm * e))
else:
fwhm = ((_fwhm * e), _fwhm)
if (rot is None):
rot = 0
elif (e < 1):
rot = (((v[0] * 180.0) / np.pi) % 180)
else:
rot = ((((v[0] * 180.0) / np.pi) + 90) % 180)
flux = ((I / (n - 1)) * (((np.pi * a) * a) * e))
if (err is not None):
(err_I, err_p_peak, err_q_peak) = err[:3]
err_a = err[3]
if fit_n:
err_n = err[4]
err_fwhm = (err_a * n)
if circular:
err_e = 0
err_rot = 0
err_fwhm = np.array([err_fwhm, err_fwhm])
if fit_back:
err_cont = err[5]
else:
err_cont = 0
err_flux = (((err_I * err_n) * err_a) * err_a)
else:
err_e = err[5]
if (err_e != 0):
err_fwhm = np.array([err_fwhm, (err_fwhm / err_e)])
else:
err_fwhm = np.array([err_fwhm, err_fwhm])
if (rot is None):
err_rot = 0
if fit_back:
err_cont = err[6]
else:
err_cont = 0
else:
err_rot = ((err[6] * 180.0) / np.pi)
if fit_back:
err_cont = err[7]
else:
err_cont = 0
err_flux = ((((err_I * err_n) * err_a) * err_a) * err_e)
else:
err_n = 0
err_fwhm = (err_a * n)
if circular:
err_e = 0
err_rot = 0
err_fwhm = np.array([err_fwhm, err_fwhm])
if fit_back:
err_cont = err[4]
else:
err_cont = 0
err_flux = (((err_I * err_n) * err_a) * err_a)
else:
err_e = err[4]
if (err_e != 0):
err_fwhm = np.array([err_fwhm, (err_fwhm / err_e)])
else:
err_fwhm = np.array([err_fwhm, err_fwhm])
if (rot is None):
err_rot = 0
if fit_back:
err_cont = err[5]
else:
err_cont = 0
else:
err_rot = ((err[5] * 180.0) / np.pi)
if fit_back:
err_cont = err[6]
else:
err_cont = 0
err_flux = ((((err_I * err_n) * err_a) * err_a) * err_e)
else:
err_I = np.NAN
err_p_peak = np.NAN
err_q_peak = np.NAN
err_a = np.NAN
err_n = np.NAN
err_e = np.NAN
err_rot = np.NAN
err_cont = np.NAN
err_fwhm = (np.NAN, np.NAN)
err_flux = np.NAN
if (unit_center is None):
center = (p_peak, q_peak)
err_center = (err_p_peak, err_q_peak)
else:
center = self.wcs.pix2sky([p_peak, q_peak], unit=unit_center)[0]
err_center = (np.array([err_p_peak, err_q_peak]) * self.wcs.get_step(unit=unit_center))
fwhm = np.array(fwhm)
if (unit_fwhm is not None):
step0 = self.wcs.get_step(unit=unit_fwhm)[0]
a = (a * step0)
err_a = (err_a * step0)
fwhm = (fwhm * step0)
err_fwhm = (err_fwhm * step0)
result = Moffat2D(center, flux, fwhm, cont, n, rot, I, err_center, err_flux, err_fwhm, err_cont, err_n, err_rot, err_I)
if verbose:
result.print_param()
if full_output:
ima = moffat_image(shape=self.shape, wcs=self.wcs, moffat=result, unit_center=unit_center, unit_fwhm=unit_fwhm)
result.ima = ima
return result | def moffat_fit(self, pos_min=None, pos_max=None, center=None, fwhm=None, flux=None, n=2.0, circular=False, cont=0, fit_back=True, rot=0, peak=False, factor=1, weight=True, plot=False, unit_center=u.deg, unit_fwhm=u.arcsec, verbose=True, full_output=0, fit_n=True, maxiter=0):
'Perform moffat fit on image.\n\n Parameters\n ----------\n\n pos_min : (float,float)\n Minimum y and x values. Their unit is given by the unit_center\n parameter (degrees by default).\n pos_max : (float,float)\n Maximum y and x values. Their unit is given by the unit_center\n parameter (degrees by default).\n center : (float,float)\n Initial moffat center (y_peak,x_peak). If None it is estimated.\n The unit is given by the unit_center parameter (degrees by\n default).\n flux : float\n Initial integrated gaussian flux or gaussian peak value if peak is\n True. If None, peak value is estimated.\n fwhm : (float,float)\n Initial gaussian fwhm (fwhm_y,fwhm_x). If None, they are estimated.\n Their unit is given by the unit_fwhm parameter (arcseconds by\n default).\n n : int\n Initial atmospheric scattering coefficient.\n circular : bool\n True: circular moffat, False: elliptical moffat\n cont : float\n continuum value, 0 by default.\n fit_back : bool\n False: continuum value is fixed,\n True: continuum value is a fit parameter.\n rot : float\n Initial angle position in degree.\n peak : bool\n If true, flux contains a gaussian peak value.\n factor : int\n If factor<=1, gaussian is computed in the center of each pixel.\n If factor>1, for each pixel, gaussian value is the sum of the\n gaussian values on the factor*factor pixels divided by the pixel\n area.\n weight : bool\n If weight is True, the weight is computed as the inverse of\n variance.\n plot : bool\n If True, the gaussian is plotted.\n unit_center : `astropy.units.Unit`\n type of the center and position coordinates.\n Degrees by default (use None for coordinates in pixels).\n unit_fwhm : `astropy.units.Unit`\n FWHM unit. Arcseconds by default (use None for radius in pixels)\n full_output : bool\n True to return a `mpdaf.obj.Moffat2D` object containing the\n moffat image.\n fit_n : bool\n False: n value is fixed,\n True: n value is a fit parameter.\n maxiter : int\n The maximum number of iterations during the sum of square\n minimization.\n\n Returns\n -------\n out : `mpdaf.obj.Moffat2D`\n\n '
(ima, pmin, pmax, qmin, qmax, data, wght, p, q, center, fwhm) = self._prepare_fit_parameters(pos_min, pos_max, weight=weight, center=center, unit_center=unit_center, fwhm=fwhm, unit_fwhm=unit_fwhm)
N = len(p)
a = (fwhm[0] / (2 * np.sqrt(((2 ** (1.0 / n)) - 1.0))))
e = (fwhm[0] / fwhm[1])
if (flux is None):
I = (ima.data.data[(int(center[0]), int(center[1]))] - cont)
elif (peak is True):
I = (flux - cont)
else:
I = ((flux * (n - 1)) / (((np.pi * a) * a) * e))
def moffat(c, x, y, amplitude, x_0, y_0, alpha, beta, e):
'Two dimensional Moffat model function'
rr_gg = ((((x - x_0) / alpha) ** 2) + ((((y - y_0) / alpha) / e) ** 2))
return (c + (amplitude * ((1 + rr_gg) ** (- beta))))
if circular:
rot = None
if (not fit_back):
if fit_n:
moffatfit = (lambda v, p, q: moffat(cont, p, q, v[0], v[1], v[2], v[3], v[4], 1))
v0 = [I, center[0], center[1], a, n]
else:
moffatfit = (lambda v, p, q: moffat(cont, p, q, v[0], v[1], v[2], v[3], n, 1))
v0 = [I, center[0], center[1], a]
elif fit_n:
moffatfit = (lambda v, p, q: moffat(v[5], p, q, v[0], v[1], v[2], v[3], v[4], 1))
v0 = [I, center[0], center[1], a, n, cont]
else:
moffatfit = (lambda v, p, q: moffat(v[4], p, q, v[0], v[1], v[2], v[3], n, 1))
v0 = [I, center[0], center[1], a, cont]
elif (not fit_back):
if (rot is None):
if fit_n:
moffatfit = (lambda v, p, q: moffat(cont, p, q, v[0], v[1], v[2], v[3], v[4], v[5]))
v0 = [I, center[0], center[1], a, n, e]
else:
moffatfit = (lambda v, p, q: moffat(cont, p, q, v[0], v[1], v[2], v[3], n, v[5]))
v0 = [I, center[0], center[1], a, e]
else:
rot = ((np.pi * rot) / 180.0)
if fit_n:
moffatfit = (lambda v, p, q: (cont + (v[0] * (((1 + (((((p - v[1]) * np.cos(v[6])) - ((q - v[2]) * np.sin(v[6]))) / v[3]) ** 2)) + ((((((p - v[1]) * np.sin(v[6])) + ((q - v[2]) * np.cos(v[6]))) / v[3]) / v[5]) ** 2)) ** (- v[4])))))
v0 = [I, center[0], center[1], a, n, e, rot]
else:
moffatfit = (lambda v, p, q: (cont + (v[0] * (((1 + (((((p - v[1]) * np.cos(v[5])) - ((q - v[2]) * np.sin(v[5]))) / v[3]) ** 2)) + ((((((p - v[1]) * np.sin(v[5])) + ((q - v[2]) * np.cos(v[5]))) / v[3]) / v[4]) ** 2)) ** (- n)))))
v0 = [I, center[0], center[1], a, e, rot]
elif (rot is None):
if fit_n:
moffatfit = (lambda v, p, q: moffat(v[6], p, q, v[0], v[1], v[2], v[3], v[4], v[5]))
v0 = [I, center[0], center[1], a, n, e, cont]
else:
moffatfit = (lambda v, p, q: moffat(v[5], p, q, v[0], v[1], v[2], v[3], n, v[4]))
v0 = [I, center[0], center[1], a, e, cont]
else:
rot = ((np.pi * rot) / 180.0)
if fit_n:
moffatfit = (lambda v, p, q: (v[7] + (v[0] * (((1 + (((((p - v[1]) * np.cos(v[6])) - ((q - v[2]) * np.sin(v[6]))) / v[3]) ** 2)) + ((((((p - v[1]) * np.sin(v[6])) + ((q - v[2]) * np.cos(v[6]))) / v[3]) / v[5]) ** 2)) ** (- v[4])))))
v0 = [I, center[0], center[1], a, n, e, rot, cont]
else:
moffatfit = (lambda v, p, q: (v[6] + (v[0] * (((1 + (((((p - v[1]) * np.cos(v[5])) - ((q - v[2]) * np.sin(v[5]))) / v[3]) ** 2)) + ((((((p - v[1]) * np.sin(v[5])) + ((q - v[2]) * np.cos(v[5]))) / v[3]) / v[4]) ** 2)) ** (- n)))))
v0 = [I, center[0], center[1], a, e, rot, cont]
if (factor > 1):
factor = int(factor)
deci = (((np.ones((factor, factor)) * np.arange(factor)[(:, np.newaxis)]) / float(factor)) + (1 / float((factor * 2))))
fp = (p[(:, np.newaxis)] + deci.ravel()[(np.newaxis, :)]).ravel()
fq = (q[(:, np.newaxis)] + deci.T.ravel()[(np.newaxis, :)]).ravel()
pixcrd = np.array(list(zip(fp, fq)))
e_moffat_fit = (lambda v, p, q, data, w: (w * (((moffatfit(v, p, q).reshape(N, (factor * factor)).sum(1) / factor) / factor).T.ravel() - data)))
(v, covar, info, mesg, success) = leastsq(e_moffat_fit, v0[:], args=(pixcrd[(:, 0)], pixcrd[(:, 1)], data, wght), maxfev=maxiter, full_output=1)
else:
e_moffat_fit = (lambda v, p, q, data, w: (w * (moffatfit(v, p, q) - data)))
(v, covar, info, mesg, success) = leastsq(e_moffat_fit, v0[:], args=(p, q, data, wght), maxfev=maxiter, full_output=1)
if (success not in [1, 2, 3, 4]):
self._logger.warning(mesg)
chisq = sum((info['fvec'] * info['fvec']))
dof = (len(info['fvec']) - len(v))
if (covar is not None):
err = np.array([(np.sqrt(np.abs(covar[(i, i)])) * np.sqrt(np.abs((chisq / dof)))) for i in range(len(v))])
else:
err = np.zeros_like(v)
err[:] = np.abs((v[:] - v0[:]))
v[1] += int(pmin)
v[2] += int(qmin)
if plot:
pp = np.arange(pmin, pmax, (float((pmax - pmin)) / 100))
qq = np.arange(qmin, qmax, (float((qmax - qmin)) / 100))
ff = np.empty((np.shape(pp)[0], np.shape(qq)[0]))
for i in range(np.shape(pp)[0]):
ff[(i, :)] = moffatfit(v, pp[i], qq[:])
self._ax.contour(qq, pp, ff, 5)
(I, p_peak, q_peak) = v[:3]
a = np.abs(v[3])
v = list(v[4:])
if fit_back:
cont = v.pop()
if fit_n:
n = v.pop(0)
_fwhm = (a * (2 * np.sqrt(((2 ** (1.0 / n)) - 1.0))))
if circular:
rot = 0
fwhm = (_fwhm, _fwhm)
else:
e = v.pop(0)
if (e < 1):
fwhm = (_fwhm, (_fwhm * e))
else:
fwhm = ((_fwhm * e), _fwhm)
if (rot is None):
rot = 0
elif (e < 1):
rot = (((v[0] * 180.0) / np.pi) % 180)
else:
rot = ((((v[0] * 180.0) / np.pi) + 90) % 180)
flux = ((I / (n - 1)) * (((np.pi * a) * a) * e))
if (err is not None):
(err_I, err_p_peak, err_q_peak) = err[:3]
err_a = err[3]
if fit_n:
err_n = err[4]
err_fwhm = (err_a * n)
if circular:
err_e = 0
err_rot = 0
err_fwhm = np.array([err_fwhm, err_fwhm])
if fit_back:
err_cont = err[5]
else:
err_cont = 0
err_flux = (((err_I * err_n) * err_a) * err_a)
else:
err_e = err[5]
if (err_e != 0):
err_fwhm = np.array([err_fwhm, (err_fwhm / err_e)])
else:
err_fwhm = np.array([err_fwhm, err_fwhm])
if (rot is None):
err_rot = 0
if fit_back:
err_cont = err[6]
else:
err_cont = 0
else:
err_rot = ((err[6] * 180.0) / np.pi)
if fit_back:
err_cont = err[7]
else:
err_cont = 0
err_flux = ((((err_I * err_n) * err_a) * err_a) * err_e)
else:
err_n = 0
err_fwhm = (err_a * n)
if circular:
err_e = 0
err_rot = 0
err_fwhm = np.array([err_fwhm, err_fwhm])
if fit_back:
err_cont = err[4]
else:
err_cont = 0
err_flux = (((err_I * err_n) * err_a) * err_a)
else:
err_e = err[4]
if (err_e != 0):
err_fwhm = np.array([err_fwhm, (err_fwhm / err_e)])
else:
err_fwhm = np.array([err_fwhm, err_fwhm])
if (rot is None):
err_rot = 0
if fit_back:
err_cont = err[5]
else:
err_cont = 0
else:
err_rot = ((err[5] * 180.0) / np.pi)
if fit_back:
err_cont = err[6]
else:
err_cont = 0
err_flux = ((((err_I * err_n) * err_a) * err_a) * err_e)
else:
err_I = np.NAN
err_p_peak = np.NAN
err_q_peak = np.NAN
err_a = np.NAN
err_n = np.NAN
err_e = np.NAN
err_rot = np.NAN
err_cont = np.NAN
err_fwhm = (np.NAN, np.NAN)
err_flux = np.NAN
if (unit_center is None):
center = (p_peak, q_peak)
err_center = (err_p_peak, err_q_peak)
else:
center = self.wcs.pix2sky([p_peak, q_peak], unit=unit_center)[0]
err_center = (np.array([err_p_peak, err_q_peak]) * self.wcs.get_step(unit=unit_center))
fwhm = np.array(fwhm)
if (unit_fwhm is not None):
step0 = self.wcs.get_step(unit=unit_fwhm)[0]
a = (a * step0)
err_a = (err_a * step0)
fwhm = (fwhm * step0)
err_fwhm = (err_fwhm * step0)
result = Moffat2D(center, flux, fwhm, cont, n, rot, I, err_center, err_flux, err_fwhm, err_cont, err_n, err_rot, err_I)
if verbose:
result.print_param()
if full_output:
ima = moffat_image(shape=self.shape, wcs=self.wcs, moffat=result, unit_center=unit_center, unit_fwhm=unit_fwhm)
result.ima = ima
return result<|docstring|>Perform moffat fit on image.
Parameters
----------
pos_min : (float,float)
Minimum y and x values. Their unit is given by the unit_center
parameter (degrees by default).
pos_max : (float,float)
Maximum y and x values. Their unit is given by the unit_center
parameter (degrees by default).
center : (float,float)
Initial moffat center (y_peak,x_peak). If None it is estimated.
The unit is given by the unit_center parameter (degrees by
default).
flux : float
Initial integrated gaussian flux or gaussian peak value if peak is
True. If None, peak value is estimated.
fwhm : (float,float)
Initial gaussian fwhm (fwhm_y,fwhm_x). If None, they are estimated.
Their unit is given by the unit_fwhm parameter (arcseconds by
default).
n : int
Initial atmospheric scattering coefficient.
circular : bool
True: circular moffat, False: elliptical moffat
cont : float
continuum value, 0 by default.
fit_back : bool
False: continuum value is fixed,
True: continuum value is a fit parameter.
rot : float
Initial angle position in degree.
peak : bool
If true, flux contains a gaussian peak value.
factor : int
If factor<=1, gaussian is computed in the center of each pixel.
If factor>1, for each pixel, gaussian value is the sum of the
gaussian values on the factor*factor pixels divided by the pixel
area.
weight : bool
If weight is True, the weight is computed as the inverse of
variance.
plot : bool
If True, the gaussian is plotted.
unit_center : `astropy.units.Unit`
type of the center and position coordinates.
Degrees by default (use None for coordinates in pixels).
unit_fwhm : `astropy.units.Unit`
FWHM unit. Arcseconds by default (use None for radius in pixels)
full_output : bool
True to return a `mpdaf.obj.Moffat2D` object containing the
moffat image.
fit_n : bool
False: n value is fixed,
True: n value is a fit parameter.
maxiter : int
The maximum number of iterations during the sum of square
minimization.
Returns
-------
out : `mpdaf.obj.Moffat2D`<|endoftext|> |
447bd5a70c29c637f07181566f4696e69a64fbe20a7cb73b1cac620c9e9577e8 | def rebin(self, factor, margin='center', inplace=False):
"Combine neighboring pixels to reduce the size of an image by\n integer factors along each axis.\n\n Each output pixel is the mean of n pixels, where n is the\n product of the reduction factors in the factor argument.\n\n Parameters\n ----------\n factor : int or (int,int)\n The integer reduction factor along the y and x array axes.\n Note the conventional python ordering of the axes.\n margin : 'center'|'right'|'left'|'origin'\n When the dimensions of the input image are not integer\n multiples of the reduction factor, the image is truncated\n to remove just enough pixels that its dimensions are\n multiples of the reduction factor. This subimage is then\n rebinned in place of the original image. The margin\n parameter determines which pixels of the input image are\n truncated, and which remain.\n\n The options are:\n 'origin' or 'center':\n The starts of the axes of the output image are\n coincident with the starts of the axes of the input\n image.\n 'center':\n The center of the output image is aligned with the\n center of the input image, within one pixel along\n each axis.\n 'right':\n The ends of the axes of the output image are\n coincident with the ends of the axes of the input\n image.\n inplace : bool\n If False, return a rebinned copy of the image (the default).\n If True, rebin the original image in-place, and return that.\n\n Returns\n -------\n out : `~mpdaf.obj.Image`\n\n "
res = self._rebin(factor, margin, inplace)
res.update_spatial_fmax((0.5 / res.wcs.get_step()))
return res | Combine neighboring pixels to reduce the size of an image by
integer factors along each axis.
Each output pixel is the mean of n pixels, where n is the
product of the reduction factors in the factor argument.
Parameters
----------
factor : int or (int,int)
The integer reduction factor along the y and x array axes.
Note the conventional python ordering of the axes.
margin : 'center'|'right'|'left'|'origin'
When the dimensions of the input image are not integer
multiples of the reduction factor, the image is truncated
to remove just enough pixels that its dimensions are
multiples of the reduction factor. This subimage is then
rebinned in place of the original image. The margin
parameter determines which pixels of the input image are
truncated, and which remain.
The options are:
'origin' or 'center':
The starts of the axes of the output image are
coincident with the starts of the axes of the input
image.
'center':
The center of the output image is aligned with the
center of the input image, within one pixel along
each axis.
'right':
The ends of the axes of the output image are
coincident with the ends of the axes of the input
image.
inplace : bool
If False, return a rebinned copy of the image (the default).
If True, rebin the original image in-place, and return that.
Returns
-------
out : `~mpdaf.obj.Image` | lib/mpdaf/obj/image.py | rebin | musevlt/mpdaf | 4 | python | def rebin(self, factor, margin='center', inplace=False):
"Combine neighboring pixels to reduce the size of an image by\n integer factors along each axis.\n\n Each output pixel is the mean of n pixels, where n is the\n product of the reduction factors in the factor argument.\n\n Parameters\n ----------\n factor : int or (int,int)\n The integer reduction factor along the y and x array axes.\n Note the conventional python ordering of the axes.\n margin : 'center'|'right'|'left'|'origin'\n When the dimensions of the input image are not integer\n multiples of the reduction factor, the image is truncated\n to remove just enough pixels that its dimensions are\n multiples of the reduction factor. This subimage is then\n rebinned in place of the original image. The margin\n parameter determines which pixels of the input image are\n truncated, and which remain.\n\n The options are:\n 'origin' or 'center':\n The starts of the axes of the output image are\n coincident with the starts of the axes of the input\n image.\n 'center':\n The center of the output image is aligned with the\n center of the input image, within one pixel along\n each axis.\n 'right':\n The ends of the axes of the output image are\n coincident with the ends of the axes of the input\n image.\n inplace : bool\n If False, return a rebinned copy of the image (the default).\n If True, rebin the original image in-place, and return that.\n\n Returns\n -------\n out : `~mpdaf.obj.Image`\n\n "
res = self._rebin(factor, margin, inplace)
res.update_spatial_fmax((0.5 / res.wcs.get_step()))
return res | def rebin(self, factor, margin='center', inplace=False):
"Combine neighboring pixels to reduce the size of an image by\n integer factors along each axis.\n\n Each output pixel is the mean of n pixels, where n is the\n product of the reduction factors in the factor argument.\n\n Parameters\n ----------\n factor : int or (int,int)\n The integer reduction factor along the y and x array axes.\n Note the conventional python ordering of the axes.\n margin : 'center'|'right'|'left'|'origin'\n When the dimensions of the input image are not integer\n multiples of the reduction factor, the image is truncated\n to remove just enough pixels that its dimensions are\n multiples of the reduction factor. This subimage is then\n rebinned in place of the original image. The margin\n parameter determines which pixels of the input image are\n truncated, and which remain.\n\n The options are:\n 'origin' or 'center':\n The starts of the axes of the output image are\n coincident with the starts of the axes of the input\n image.\n 'center':\n The center of the output image is aligned with the\n center of the input image, within one pixel along\n each axis.\n 'right':\n The ends of the axes of the output image are\n coincident with the ends of the axes of the input\n image.\n inplace : bool\n If False, return a rebinned copy of the image (the default).\n If True, rebin the original image in-place, and return that.\n\n Returns\n -------\n out : `~mpdaf.obj.Image`\n\n "
res = self._rebin(factor, margin, inplace)
res.update_spatial_fmax((0.5 / res.wcs.get_step()))
return res<|docstring|>Combine neighboring pixels to reduce the size of an image by
integer factors along each axis.
Each output pixel is the mean of n pixels, where n is the
product of the reduction factors in the factor argument.
Parameters
----------
factor : int or (int,int)
The integer reduction factor along the y and x array axes.
Note the conventional python ordering of the axes.
margin : 'center'|'right'|'left'|'origin'
When the dimensions of the input image are not integer
multiples of the reduction factor, the image is truncated
to remove just enough pixels that its dimensions are
multiples of the reduction factor. This subimage is then
rebinned in place of the original image. The margin
parameter determines which pixels of the input image are
truncated, and which remain.
The options are:
'origin' or 'center':
The starts of the axes of the output image are
coincident with the starts of the axes of the input
image.
'center':
The center of the output image is aligned with the
center of the input image, within one pixel along
each axis.
'right':
The ends of the axes of the output image are
coincident with the ends of the axes of the input
image.
inplace : bool
If False, return a rebinned copy of the image (the default).
If True, rebin the original image in-place, and return that.
Returns
-------
out : `~mpdaf.obj.Image`<|endoftext|> |
26be9bb57e144d7412cf2a5e37fe3d40bc85dbf46a132b47cef02278c7f1b896 | def resample(self, newdim, newstart, newstep, flux=False, order=1, interp='no', unit_start=u.deg, unit_step=u.arcsec, antialias=True, inplace=False, window='blackman'):
"Resample an image of the sky to select its angular resolution and\n to specify which sky position appears at the center of pixel [0,0].\n\n This function is a simplified interface to the `mpdaf.obj.Image.regrid`\n function, which it calls with the following arguments::\n\n regrid(newdim, newstart, [0.0, 0.0],\n [abs(newstep[0]),-abs(newstep[1])]\n flux=flux, order=order, interp=interp, unit_pos=unit_start,\n unit_inc=unit_step, inplace=inplace)\n\n When this function is used to resample an image to a lower\n resolution, a low-pass anti-aliasing filter is applied to the\n image before it is resampled, to remove all spatial frequencies\n below half the new sampling rate. This is required to satisfy\n the Nyquist sampling constraint. It prevents high\n spatial-frequency noise and edges from being folded into lower\n frequency artefacts in the resampled image. The removal of\n this noise improves the signal to noise ratio of the resampled\n image.\n\n Parameters\n ----------\n newdim : int or (int,int)\n The desired new dimensions. Python notation: (ny,nx)\n newstart : float or (float, float)\n The sky position (dec,ra) that should appear at the center\n of pixel [0,0].\n\n If None, the value of self.get_start() is substituted,\n so that the sky position that appears at the center of pixel\n [0,0] is unchanged by the resampling operation.\n newstep : float or (float, float)\n The desired angular size of the image pixels on the sky.\n The size is expressed as either one number to request\n square pixels on the sky with that width and height, or\n two numbers that specify the height and width of\n rectangular pixels on the sky. In the latter case, the two\n numbers are the size along the Y axis of the image array\n followed by the size along the X axis.\n flux : bool\n This tells the function whether the pixel units of the\n image are flux densities (flux=True), such as\n erg/s/cm2/Hz, or whether they are per-steradian brightness\n units (flux=False), such as erg/s/cm2/Hz/steradian. It\n needs to know this when it changes the pixel size, because\n when pixel sizes change, resampled flux densities need to\n be corrected for the change in the area per pixel, where\n resampled brightnesses don't.\n order : int\n The order of the spline interpolation. This can take any\n value from 0-5. The default is 1 (linear interpolation).\n When this function is used to lower the resolution of\n an image, the low-pass anti-aliasing filter that is applied,\n makes linear interpolation sufficient.\n Conversely, when this function is used to increase the\n image resolution, order=3 might be useful. Higher\n orders than this will tend to introduce ringing artefacts.\n interp : 'no' | 'linear' | 'spline'\n If 'no', replace masked data with the median image value.\n If 'linear', replace masked values using a linear\n interpolation between neighboring values.\n if 'spline', replace masked values using a spline\n interpolation between neighboring values.\n unit_start : `astropy.units.Unit`\n The angular units of the newstart coordinates. Degrees by default.\n unit_step : `astropy.units.Unit`\n The angular units of the step argument. Arcseconds by default.\n antialias : bool\n By default, when the resolution of an image axis is about\n to be reduced, a low pass filter is first applied to suppress\n high spatial frequencies that can not be represented by the\n reduced sampling interval. If this is not done, high-frequency\n noise and sharp edges get folded back to lower frequencies,\n where they increase the noise level of the image and introduce\n ringing artefacts next to sharp edges, such as CCD saturation\n spikes. This filtering can be disabled by passing False to\n the antialias argument.\n inplace : bool\n If False, return a rotated copy of the image (the default).\n If True, rotate the original image in-place, and return that.\n window : str\n The type of window function to use for antialiasing\n in the Fourier plane. The following windows are supported:\n\n blackman\n This window suppresses ringing better than any other\n window, at the expense of lowered image resolution. In\n the image plane, the PSF of this window is\n approximately gaussian, with a standard deviation of\n around 0.96*newstep, and a FWHM of about 2.3*newstep.\n\n gaussian\n A truncated gaussian window. This has a smaller PSF\n than the blackman window, however gaussians never fall\n to zero, so either significant ringing will be seen due\n to truncation of the gaussian, or low-level aliasing\n will occur, depending on the spatial frequency coverage\n of the image beyond the folding frequency. It can be a\n good choice for images that only contain smoothly\n varying features. It is equivalent to a convolution of\n the image with both an airy profile and a gaussian of\n standard deviation 0.724*newstep (FWHM 1.704*newstep).\n\n rectangle\n This window simply zeros all spatial frequencies above\n the highest that can be correctly sampled by the new\n pixel size. This gives the best resolution of any of\n the windows, but this is marred by the strong sidelobes\n of the resulting airy-profile, especially near bright\n point sources and CCD saturation lines.\n\n Returns\n -------\n out : `~mpdaf.obj.Image`\n The resampled image.\n\n "
step_signs = np.sign(self.get_axis_increments())
if is_number(newstep):
newinc = (step_signs * abs(newstep))
else:
newinc = (step_signs * abs(np.asarray(newstep)))
refpix = (None if (newstart is None) else [0.0, 0.0])
return self.regrid(newdim, newstart, refpix, newinc, flux=flux, order=order, interp=interp, unit_pos=unit_start, unit_inc=unit_step, antialias=antialias, inplace=inplace, window=window) | Resample an image of the sky to select its angular resolution and
to specify which sky position appears at the center of pixel [0,0].
This function is a simplified interface to the `mpdaf.obj.Image.regrid`
function, which it calls with the following arguments::
regrid(newdim, newstart, [0.0, 0.0],
[abs(newstep[0]),-abs(newstep[1])]
flux=flux, order=order, interp=interp, unit_pos=unit_start,
unit_inc=unit_step, inplace=inplace)
When this function is used to resample an image to a lower
resolution, a low-pass anti-aliasing filter is applied to the
image before it is resampled, to remove all spatial frequencies
below half the new sampling rate. This is required to satisfy
the Nyquist sampling constraint. It prevents high
spatial-frequency noise and edges from being folded into lower
frequency artefacts in the resampled image. The removal of
this noise improves the signal to noise ratio of the resampled
image.
Parameters
----------
newdim : int or (int,int)
The desired new dimensions. Python notation: (ny,nx)
newstart : float or (float, float)
The sky position (dec,ra) that should appear at the center
of pixel [0,0].
If None, the value of self.get_start() is substituted,
so that the sky position that appears at the center of pixel
[0,0] is unchanged by the resampling operation.
newstep : float or (float, float)
The desired angular size of the image pixels on the sky.
The size is expressed as either one number to request
square pixels on the sky with that width and height, or
two numbers that specify the height and width of
rectangular pixels on the sky. In the latter case, the two
numbers are the size along the Y axis of the image array
followed by the size along the X axis.
flux : bool
This tells the function whether the pixel units of the
image are flux densities (flux=True), such as
erg/s/cm2/Hz, or whether they are per-steradian brightness
units (flux=False), such as erg/s/cm2/Hz/steradian. It
needs to know this when it changes the pixel size, because
when pixel sizes change, resampled flux densities need to
be corrected for the change in the area per pixel, where
resampled brightnesses don't.
order : int
The order of the spline interpolation. This can take any
value from 0-5. The default is 1 (linear interpolation).
When this function is used to lower the resolution of
an image, the low-pass anti-aliasing filter that is applied,
makes linear interpolation sufficient.
Conversely, when this function is used to increase the
image resolution, order=3 might be useful. Higher
orders than this will tend to introduce ringing artefacts.
interp : 'no' | 'linear' | 'spline'
If 'no', replace masked data with the median image value.
If 'linear', replace masked values using a linear
interpolation between neighboring values.
if 'spline', replace masked values using a spline
interpolation between neighboring values.
unit_start : `astropy.units.Unit`
The angular units of the newstart coordinates. Degrees by default.
unit_step : `astropy.units.Unit`
The angular units of the step argument. Arcseconds by default.
antialias : bool
By default, when the resolution of an image axis is about
to be reduced, a low pass filter is first applied to suppress
high spatial frequencies that can not be represented by the
reduced sampling interval. If this is not done, high-frequency
noise and sharp edges get folded back to lower frequencies,
where they increase the noise level of the image and introduce
ringing artefacts next to sharp edges, such as CCD saturation
spikes. This filtering can be disabled by passing False to
the antialias argument.
inplace : bool
If False, return a rotated copy of the image (the default).
If True, rotate the original image in-place, and return that.
window : str
The type of window function to use for antialiasing
in the Fourier plane. The following windows are supported:
blackman
This window suppresses ringing better than any other
window, at the expense of lowered image resolution. In
the image plane, the PSF of this window is
approximately gaussian, with a standard deviation of
around 0.96*newstep, and a FWHM of about 2.3*newstep.
gaussian
A truncated gaussian window. This has a smaller PSF
than the blackman window, however gaussians never fall
to zero, so either significant ringing will be seen due
to truncation of the gaussian, or low-level aliasing
will occur, depending on the spatial frequency coverage
of the image beyond the folding frequency. It can be a
good choice for images that only contain smoothly
varying features. It is equivalent to a convolution of
the image with both an airy profile and a gaussian of
standard deviation 0.724*newstep (FWHM 1.704*newstep).
rectangle
This window simply zeros all spatial frequencies above
the highest that can be correctly sampled by the new
pixel size. This gives the best resolution of any of
the windows, but this is marred by the strong sidelobes
of the resulting airy-profile, especially near bright
point sources and CCD saturation lines.
Returns
-------
out : `~mpdaf.obj.Image`
The resampled image. | lib/mpdaf/obj/image.py | resample | musevlt/mpdaf | 4 | python | def resample(self, newdim, newstart, newstep, flux=False, order=1, interp='no', unit_start=u.deg, unit_step=u.arcsec, antialias=True, inplace=False, window='blackman'):
"Resample an image of the sky to select its angular resolution and\n to specify which sky position appears at the center of pixel [0,0].\n\n This function is a simplified interface to the `mpdaf.obj.Image.regrid`\n function, which it calls with the following arguments::\n\n regrid(newdim, newstart, [0.0, 0.0],\n [abs(newstep[0]),-abs(newstep[1])]\n flux=flux, order=order, interp=interp, unit_pos=unit_start,\n unit_inc=unit_step, inplace=inplace)\n\n When this function is used to resample an image to a lower\n resolution, a low-pass anti-aliasing filter is applied to the\n image before it is resampled, to remove all spatial frequencies\n below half the new sampling rate. This is required to satisfy\n the Nyquist sampling constraint. It prevents high\n spatial-frequency noise and edges from being folded into lower\n frequency artefacts in the resampled image. The removal of\n this noise improves the signal to noise ratio of the resampled\n image.\n\n Parameters\n ----------\n newdim : int or (int,int)\n The desired new dimensions. Python notation: (ny,nx)\n newstart : float or (float, float)\n The sky position (dec,ra) that should appear at the center\n of pixel [0,0].\n\n If None, the value of self.get_start() is substituted,\n so that the sky position that appears at the center of pixel\n [0,0] is unchanged by the resampling operation.\n newstep : float or (float, float)\n The desired angular size of the image pixels on the sky.\n The size is expressed as either one number to request\n square pixels on the sky with that width and height, or\n two numbers that specify the height and width of\n rectangular pixels on the sky. In the latter case, the two\n numbers are the size along the Y axis of the image array\n followed by the size along the X axis.\n flux : bool\n This tells the function whether the pixel units of the\n image are flux densities (flux=True), such as\n erg/s/cm2/Hz, or whether they are per-steradian brightness\n units (flux=False), such as erg/s/cm2/Hz/steradian. It\n needs to know this when it changes the pixel size, because\n when pixel sizes change, resampled flux densities need to\n be corrected for the change in the area per pixel, where\n resampled brightnesses don't.\n order : int\n The order of the spline interpolation. This can take any\n value from 0-5. The default is 1 (linear interpolation).\n When this function is used to lower the resolution of\n an image, the low-pass anti-aliasing filter that is applied,\n makes linear interpolation sufficient.\n Conversely, when this function is used to increase the\n image resolution, order=3 might be useful. Higher\n orders than this will tend to introduce ringing artefacts.\n interp : 'no' | 'linear' | 'spline'\n If 'no', replace masked data with the median image value.\n If 'linear', replace masked values using a linear\n interpolation between neighboring values.\n if 'spline', replace masked values using a spline\n interpolation between neighboring values.\n unit_start : `astropy.units.Unit`\n The angular units of the newstart coordinates. Degrees by default.\n unit_step : `astropy.units.Unit`\n The angular units of the step argument. Arcseconds by default.\n antialias : bool\n By default, when the resolution of an image axis is about\n to be reduced, a low pass filter is first applied to suppress\n high spatial frequencies that can not be represented by the\n reduced sampling interval. If this is not done, high-frequency\n noise and sharp edges get folded back to lower frequencies,\n where they increase the noise level of the image and introduce\n ringing artefacts next to sharp edges, such as CCD saturation\n spikes. This filtering can be disabled by passing False to\n the antialias argument.\n inplace : bool\n If False, return a rotated copy of the image (the default).\n If True, rotate the original image in-place, and return that.\n window : str\n The type of window function to use for antialiasing\n in the Fourier plane. The following windows are supported:\n\n blackman\n This window suppresses ringing better than any other\n window, at the expense of lowered image resolution. In\n the image plane, the PSF of this window is\n approximately gaussian, with a standard deviation of\n around 0.96*newstep, and a FWHM of about 2.3*newstep.\n\n gaussian\n A truncated gaussian window. This has a smaller PSF\n than the blackman window, however gaussians never fall\n to zero, so either significant ringing will be seen due\n to truncation of the gaussian, or low-level aliasing\n will occur, depending on the spatial frequency coverage\n of the image beyond the folding frequency. It can be a\n good choice for images that only contain smoothly\n varying features. It is equivalent to a convolution of\n the image with both an airy profile and a gaussian of\n standard deviation 0.724*newstep (FWHM 1.704*newstep).\n\n rectangle\n This window simply zeros all spatial frequencies above\n the highest that can be correctly sampled by the new\n pixel size. This gives the best resolution of any of\n the windows, but this is marred by the strong sidelobes\n of the resulting airy-profile, especially near bright\n point sources and CCD saturation lines.\n\n Returns\n -------\n out : `~mpdaf.obj.Image`\n The resampled image.\n\n "
step_signs = np.sign(self.get_axis_increments())
if is_number(newstep):
newinc = (step_signs * abs(newstep))
else:
newinc = (step_signs * abs(np.asarray(newstep)))
refpix = (None if (newstart is None) else [0.0, 0.0])
return self.regrid(newdim, newstart, refpix, newinc, flux=flux, order=order, interp=interp, unit_pos=unit_start, unit_inc=unit_step, antialias=antialias, inplace=inplace, window=window) | def resample(self, newdim, newstart, newstep, flux=False, order=1, interp='no', unit_start=u.deg, unit_step=u.arcsec, antialias=True, inplace=False, window='blackman'):
"Resample an image of the sky to select its angular resolution and\n to specify which sky position appears at the center of pixel [0,0].\n\n This function is a simplified interface to the `mpdaf.obj.Image.regrid`\n function, which it calls with the following arguments::\n\n regrid(newdim, newstart, [0.0, 0.0],\n [abs(newstep[0]),-abs(newstep[1])]\n flux=flux, order=order, interp=interp, unit_pos=unit_start,\n unit_inc=unit_step, inplace=inplace)\n\n When this function is used to resample an image to a lower\n resolution, a low-pass anti-aliasing filter is applied to the\n image before it is resampled, to remove all spatial frequencies\n below half the new sampling rate. This is required to satisfy\n the Nyquist sampling constraint. It prevents high\n spatial-frequency noise and edges from being folded into lower\n frequency artefacts in the resampled image. The removal of\n this noise improves the signal to noise ratio of the resampled\n image.\n\n Parameters\n ----------\n newdim : int or (int,int)\n The desired new dimensions. Python notation: (ny,nx)\n newstart : float or (float, float)\n The sky position (dec,ra) that should appear at the center\n of pixel [0,0].\n\n If None, the value of self.get_start() is substituted,\n so that the sky position that appears at the center of pixel\n [0,0] is unchanged by the resampling operation.\n newstep : float or (float, float)\n The desired angular size of the image pixels on the sky.\n The size is expressed as either one number to request\n square pixels on the sky with that width and height, or\n two numbers that specify the height and width of\n rectangular pixels on the sky. In the latter case, the two\n numbers are the size along the Y axis of the image array\n followed by the size along the X axis.\n flux : bool\n This tells the function whether the pixel units of the\n image are flux densities (flux=True), such as\n erg/s/cm2/Hz, or whether they are per-steradian brightness\n units (flux=False), such as erg/s/cm2/Hz/steradian. It\n needs to know this when it changes the pixel size, because\n when pixel sizes change, resampled flux densities need to\n be corrected for the change in the area per pixel, where\n resampled brightnesses don't.\n order : int\n The order of the spline interpolation. This can take any\n value from 0-5. The default is 1 (linear interpolation).\n When this function is used to lower the resolution of\n an image, the low-pass anti-aliasing filter that is applied,\n makes linear interpolation sufficient.\n Conversely, when this function is used to increase the\n image resolution, order=3 might be useful. Higher\n orders than this will tend to introduce ringing artefacts.\n interp : 'no' | 'linear' | 'spline'\n If 'no', replace masked data with the median image value.\n If 'linear', replace masked values using a linear\n interpolation between neighboring values.\n if 'spline', replace masked values using a spline\n interpolation between neighboring values.\n unit_start : `astropy.units.Unit`\n The angular units of the newstart coordinates. Degrees by default.\n unit_step : `astropy.units.Unit`\n The angular units of the step argument. Arcseconds by default.\n antialias : bool\n By default, when the resolution of an image axis is about\n to be reduced, a low pass filter is first applied to suppress\n high spatial frequencies that can not be represented by the\n reduced sampling interval. If this is not done, high-frequency\n noise and sharp edges get folded back to lower frequencies,\n where they increase the noise level of the image and introduce\n ringing artefacts next to sharp edges, such as CCD saturation\n spikes. This filtering can be disabled by passing False to\n the antialias argument.\n inplace : bool\n If False, return a rotated copy of the image (the default).\n If True, rotate the original image in-place, and return that.\n window : str\n The type of window function to use for antialiasing\n in the Fourier plane. The following windows are supported:\n\n blackman\n This window suppresses ringing better than any other\n window, at the expense of lowered image resolution. In\n the image plane, the PSF of this window is\n approximately gaussian, with a standard deviation of\n around 0.96*newstep, and a FWHM of about 2.3*newstep.\n\n gaussian\n A truncated gaussian window. This has a smaller PSF\n than the blackman window, however gaussians never fall\n to zero, so either significant ringing will be seen due\n to truncation of the gaussian, or low-level aliasing\n will occur, depending on the spatial frequency coverage\n of the image beyond the folding frequency. It can be a\n good choice for images that only contain smoothly\n varying features. It is equivalent to a convolution of\n the image with both an airy profile and a gaussian of\n standard deviation 0.724*newstep (FWHM 1.704*newstep).\n\n rectangle\n This window simply zeros all spatial frequencies above\n the highest that can be correctly sampled by the new\n pixel size. This gives the best resolution of any of\n the windows, but this is marred by the strong sidelobes\n of the resulting airy-profile, especially near bright\n point sources and CCD saturation lines.\n\n Returns\n -------\n out : `~mpdaf.obj.Image`\n The resampled image.\n\n "
step_signs = np.sign(self.get_axis_increments())
if is_number(newstep):
newinc = (step_signs * abs(newstep))
else:
newinc = (step_signs * abs(np.asarray(newstep)))
refpix = (None if (newstart is None) else [0.0, 0.0])
return self.regrid(newdim, newstart, refpix, newinc, flux=flux, order=order, interp=interp, unit_pos=unit_start, unit_inc=unit_step, antialias=antialias, inplace=inplace, window=window)<|docstring|>Resample an image of the sky to select its angular resolution and
to specify which sky position appears at the center of pixel [0,0].
This function is a simplified interface to the `mpdaf.obj.Image.regrid`
function, which it calls with the following arguments::
regrid(newdim, newstart, [0.0, 0.0],
[abs(newstep[0]),-abs(newstep[1])]
flux=flux, order=order, interp=interp, unit_pos=unit_start,
unit_inc=unit_step, inplace=inplace)
When this function is used to resample an image to a lower
resolution, a low-pass anti-aliasing filter is applied to the
image before it is resampled, to remove all spatial frequencies
below half the new sampling rate. This is required to satisfy
the Nyquist sampling constraint. It prevents high
spatial-frequency noise and edges from being folded into lower
frequency artefacts in the resampled image. The removal of
this noise improves the signal to noise ratio of the resampled
image.
Parameters
----------
newdim : int or (int,int)
The desired new dimensions. Python notation: (ny,nx)
newstart : float or (float, float)
The sky position (dec,ra) that should appear at the center
of pixel [0,0].
If None, the value of self.get_start() is substituted,
so that the sky position that appears at the center of pixel
[0,0] is unchanged by the resampling operation.
newstep : float or (float, float)
The desired angular size of the image pixels on the sky.
The size is expressed as either one number to request
square pixels on the sky with that width and height, or
two numbers that specify the height and width of
rectangular pixels on the sky. In the latter case, the two
numbers are the size along the Y axis of the image array
followed by the size along the X axis.
flux : bool
This tells the function whether the pixel units of the
image are flux densities (flux=True), such as
erg/s/cm2/Hz, or whether they are per-steradian brightness
units (flux=False), such as erg/s/cm2/Hz/steradian. It
needs to know this when it changes the pixel size, because
when pixel sizes change, resampled flux densities need to
be corrected for the change in the area per pixel, where
resampled brightnesses don't.
order : int
The order of the spline interpolation. This can take any
value from 0-5. The default is 1 (linear interpolation).
When this function is used to lower the resolution of
an image, the low-pass anti-aliasing filter that is applied,
makes linear interpolation sufficient.
Conversely, when this function is used to increase the
image resolution, order=3 might be useful. Higher
orders than this will tend to introduce ringing artefacts.
interp : 'no' | 'linear' | 'spline'
If 'no', replace masked data with the median image value.
If 'linear', replace masked values using a linear
interpolation between neighboring values.
if 'spline', replace masked values using a spline
interpolation between neighboring values.
unit_start : `astropy.units.Unit`
The angular units of the newstart coordinates. Degrees by default.
unit_step : `astropy.units.Unit`
The angular units of the step argument. Arcseconds by default.
antialias : bool
By default, when the resolution of an image axis is about
to be reduced, a low pass filter is first applied to suppress
high spatial frequencies that can not be represented by the
reduced sampling interval. If this is not done, high-frequency
noise and sharp edges get folded back to lower frequencies,
where they increase the noise level of the image and introduce
ringing artefacts next to sharp edges, such as CCD saturation
spikes. This filtering can be disabled by passing False to
the antialias argument.
inplace : bool
If False, return a rotated copy of the image (the default).
If True, rotate the original image in-place, and return that.
window : str
The type of window function to use for antialiasing
in the Fourier plane. The following windows are supported:
blackman
This window suppresses ringing better than any other
window, at the expense of lowered image resolution. In
the image plane, the PSF of this window is
approximately gaussian, with a standard deviation of
around 0.96*newstep, and a FWHM of about 2.3*newstep.
gaussian
A truncated gaussian window. This has a smaller PSF
than the blackman window, however gaussians never fall
to zero, so either significant ringing will be seen due
to truncation of the gaussian, or low-level aliasing
will occur, depending on the spatial frequency coverage
of the image beyond the folding frequency. It can be a
good choice for images that only contain smoothly
varying features. It is equivalent to a convolution of
the image with both an airy profile and a gaussian of
standard deviation 0.724*newstep (FWHM 1.704*newstep).
rectangle
This window simply zeros all spatial frequencies above
the highest that can be correctly sampled by the new
pixel size. This gives the best resolution of any of
the windows, but this is marred by the strong sidelobes
of the resulting airy-profile, especially near bright
point sources and CCD saturation lines.
Returns
-------
out : `~mpdaf.obj.Image`
The resampled image.<|endoftext|> |
ce1904c92da3f1302d328cf75e8563098e9861c6c23f1d8992876e6fdce7077e | def regrid(self, newdim, refpos, refpix, newinc, flux=False, order=1, interp='no', unit_pos=u.deg, unit_inc=u.arcsec, antialias=True, inplace=False, cutoff=0.25, window='blackman'):
"Resample an image of the sky to select its angular resolution,\n to specify the position of the sky in the image array, and\n optionally to reflect one or more of its axes.\n\n This function can be used to decrease or increase the\n resolution of an image. It can also shift the contents of an\n image to place a specific (dec,ra) position at a specific\n fractional pixel position. Finally, it can be used to invert\n the direction of one or both of the array axes on the sky.\n\n When this function is used to resample an image to a lower\n resolution, a low-pass anti-aliasing filter is applied to the\n image before it is resampled, to remove all spatial\n frequencies below half the new sampling rate. This is required\n to satisfy the Nyquist sampling constraint. It prevents high\n spatial-frequency noise and edges from being aliased to lower\n frequency artefacts in the resampled image. The removal of\n this noise improves the signal to noise ratio of the resampled\n image.\n\n Parameters\n ----------\n newdim : int or (int,int)\n The desired new dimensions. Python notation: (ny,nx)\n refpos : (float, float)\n The sky position (dec,ra) to place at the pixel specified\n by the refpix argument.\n\n If refpix and refpos are both None, the sky position at\n the bottom corner of the input image is placed at the\n bottom left corner of the output image. Note that refpix\n and refpos must either both be given values, or both\n be None.\n refpix : (float, float)\n The [Y, X] indexes of the output pixel where the sky\n position, refpos, should be placed. Y and X are\n interpreted as floating point indexes, where integer\n values indicate pixel centers and integer values +/- 0.5\n indicate the edges of pixels.\n\n If refpix and refpos are both None, the sky position at\n the bottom corner of the input image is placed at the\n bottom left corner of the output image. Note that refpix\n and refpos must either both be given values, or both\n be None.\n newinc : float or (float, float)\n The signed increments of the angle on the sky from one\n pixel to the next, given as either a single increment for\n both image axes, or two numbers (dy,dx) for the Y and X\n axes respectively.\n\n The signs of these increments are interpreted as described\n in the documentation of the Image.get_axis_increments()\n function. In particular, note that dy is typically\n positive and dx is usually negative, such that when the\n image is plotted, east appears anticlockwise of north, and\n east is towards the left of the plot when the image\n rotation angle is zero.\n\n If either of the signs of the two newinc numbers is\n different from the sign of the increments of the original\n image (queryable with image.get_axis_increments()), then\n the image will be reflected about that axis. In this case\n the value of the refpix argument should be chosen with\n care, because otherwise the sampled part of the image may\n end up being reflected outside the limits of the image\n array, and the result will be a blank image.\n\n If only one number is given for newinc then both axes\n are given the same resolution, but the signs of the\n increments are kept the same as the pixel increments\n of the original image.\n flux : bool\n This tells the function whether the pixel units of the\n image are flux densities (flux=True), such as\n erg/s/cm2/Hz, or whether they are per-steradian brightness\n units (flux=False), such as erg/s/cm2/Hz/steradian. It\n needs to know this when it changes the pixel size, because\n when pixel sizes change, resampled flux densities need to\n be corrected for the change in the area per pixel, where\n resampled brightnesses don't.\n order : int\n The order of the spline interpolation. This can take any\n value from 0-5. The default is 1 (linear interpolation).\n When this function is used to lower the resolution of\n an image, the low-pass anti-aliasing filter that is applied,\n makes linear interpolation sufficient.\n Conversely, when this function is used to increase the\n image resolution, order=3 might be useful. Higher\n orders than this will tend to introduce ringing artefacts.\n interp : 'no' | 'linear' | 'spline'\n If 'no', replace masked data with the median image value.\n If 'linear', replace masked values using a linear\n interpolation between neighboring values.\n if 'spline', replace masked values using a spline\n interpolation between neighboring values.\n unit_pos : `astropy.units.Unit`\n The units of the refpos coordinates. Degrees by default.\n unit_inc : `astropy.units.Unit`\n The units of newinc. Arcseconds by default.\n antialias : bool\n By default, when the resolution of an image axis is about\n to be reduced, a low pass filter is first applied to suppress\n high spatial frequencies that can not be represented by the\n reduced sampling interval. If this is not done, high-frequency\n noise and sharp edges get folded back to lower frequencies,\n where they increase the noise level of the image and introduce\n ringing artefacts next to sharp edges, such as CCD saturation\n spikes. This filtering can be disabled by passing False to\n the antialias argument.\n inplace : bool\n If False, return a resampled copy of the image (the default).\n If True, resample the original image in-place, and return that.\n cutoff : float\n Mask each output pixel where at least this fraction of the\n pixel was interpolated from dummy values given to masked\n input pixels.\n window : str\n The type of window function to use for antialiasing\n in the Fourier plane. The following windows are supported:\n\n blackman\n This window suppresses ringing better than any other\n window, at the expense of lowered image resolution. In\n the image plane, the PSF of this window is\n approximately gaussian, with a standard deviation of\n around 0.96*newstep, and a FWHM of about 2.3*newstep.\n\n gaussian\n A truncated gaussian window. This has a smaller PSF\n than the blackman window, however gaussians never fall\n to zero, so either significant ringing will be seen due\n to truncation of the gaussian, or low-level aliasing\n will occur, depending on the spatial frequency coverage\n of the image beyond the folding frequency. It can be a\n good choice for images that only contain smoothly\n varying features. It is equivalent to a convolution of\n the image with both an airy profile and a gaussian of\n standard deviation 0.724*newstep (FWHM 1.704*newstep).\n\n rectangle\n This window simply zeros all spatial frequencies above\n the highest that can be correctly sampled by the new\n pixel size. This gives the best resolution of any of\n the windows, but this is marred by the strong sidelobes\n of the resulting airy-profile, especially near bright\n point sources and CCD saturation lines.\n\n Returns\n -------\n out : `~mpdaf.obj.Image`\n The resampled image is returned.\n\n "
if is_int(newdim):
newdim = (newdim, newdim)
newdim = np.asarray(newdim, dtype=int)
if ((refpos is None) and (refpix is None)):
refpix = np.array([(- 0.5), (- 0.5)])
refpos = self.wcs.pix2sky(refpix)
elif ((refpos is not None) and (refpix is not None)):
refpos = np.asarray(refpos, dtype=float)
if (unit_pos is not None):
refpos = UnitArray(refpos, unit_pos, self.wcs.unit)
refpix = np.asarray(refpix, dtype=float)
else:
raise ValueError('The refpos and refpix arguments should both be None or both have values.')
oldinc = self.wcs.get_axis_increments()
if is_number(newinc):
size = abs(newinc)
newinc = ((size * np.sign(oldinc[0])), (size * np.sign(oldinc[1])))
newinc = np.asarray(newinc, dtype=float)
if (unit_inc is not None):
newinc = UnitArray(newinc, unit_inc, self.wcs.unit)
data = self._prepare_data(interp)
if antialias:
(data, newfmax) = _antialias_filter_image(data, abs(oldinc), abs(newinc), self.get_spatial_fmax(), window)
else:
newfmax = (0.5 / abs(newinc))
new2old = np.array([[(newinc[0] / oldinc[0]), 0], [0, (newinc[1] / oldinc[1])]])
old2new = np.linalg.inv(new2old)
offset = (self.wcs.sky2pix(refpos).T[(:, :1)] - np.dot(new2old, refpix[(np.newaxis, :)].T))
data = affine_transform(data, new2old, offset.flatten(), output_shape=newdim, order=order, prefilter=(order >= 3))
mask = self._mask.astype(float)
mask = affine_transform(mask, new2old, offset.flatten(), cval=1.0, output_shape=newdim, output=float)
mask = np.greater(mask, max(cutoff, 1e-06))
if (self._var is not None):
var = affine_transform(self._var, new2old, offset.flatten(), output_shape=newdim, order=order, prefilter=(order >= 3))
else:
var = None
xs = abs((newinc[1] / oldinc[1]))
ys = abs((newinc[0] / oldinc[0]))
n = (xs * ys)
if flux:
data *= n
if (var is not None):
var *= ((xs if ((xs > 1.0) and antialias) else (xs ** 2)) * (ys if ((ys > 1.0) and antialias) else (ys ** 2)))
elif ((var is not None) and ((xs > 1.0) or (ys > 1.0))):
var *= (((1 / xs) if ((xs > 1.0) and antialias) else 1.0) * ((1 / ys) if ((ys > 1.0) and antialias) else 1.0))
oldcrpix = np.array([[(self.wcs.get_crpix2() - 1)], [(self.wcs.get_crpix1() - 1)]])
newcrpix = np.dot(old2new, (oldcrpix - offset))
wcs = self.wcs.copy()
wcs.set_axis_increments(newinc)
wcs.naxis1 = newdim[1]
wcs.naxis2 = newdim[0]
wcs.set_crpix1((newcrpix[1] + 1))
wcs.set_crpix2((newcrpix[0] + 1))
out = (self if inplace else self.clone())
out._data = data
out._mask = mask
out._var = var
out.wcs = wcs
out.update_spatial_fmax(newfmax)
return out | Resample an image of the sky to select its angular resolution,
to specify the position of the sky in the image array, and
optionally to reflect one or more of its axes.
This function can be used to decrease or increase the
resolution of an image. It can also shift the contents of an
image to place a specific (dec,ra) position at a specific
fractional pixel position. Finally, it can be used to invert
the direction of one or both of the array axes on the sky.
When this function is used to resample an image to a lower
resolution, a low-pass anti-aliasing filter is applied to the
image before it is resampled, to remove all spatial
frequencies below half the new sampling rate. This is required
to satisfy the Nyquist sampling constraint. It prevents high
spatial-frequency noise and edges from being aliased to lower
frequency artefacts in the resampled image. The removal of
this noise improves the signal to noise ratio of the resampled
image.
Parameters
----------
newdim : int or (int,int)
The desired new dimensions. Python notation: (ny,nx)
refpos : (float, float)
The sky position (dec,ra) to place at the pixel specified
by the refpix argument.
If refpix and refpos are both None, the sky position at
the bottom corner of the input image is placed at the
bottom left corner of the output image. Note that refpix
and refpos must either both be given values, or both
be None.
refpix : (float, float)
The [Y, X] indexes of the output pixel where the sky
position, refpos, should be placed. Y and X are
interpreted as floating point indexes, where integer
values indicate pixel centers and integer values +/- 0.5
indicate the edges of pixels.
If refpix and refpos are both None, the sky position at
the bottom corner of the input image is placed at the
bottom left corner of the output image. Note that refpix
and refpos must either both be given values, or both
be None.
newinc : float or (float, float)
The signed increments of the angle on the sky from one
pixel to the next, given as either a single increment for
both image axes, or two numbers (dy,dx) for the Y and X
axes respectively.
The signs of these increments are interpreted as described
in the documentation of the Image.get_axis_increments()
function. In particular, note that dy is typically
positive and dx is usually negative, such that when the
image is plotted, east appears anticlockwise of north, and
east is towards the left of the plot when the image
rotation angle is zero.
If either of the signs of the two newinc numbers is
different from the sign of the increments of the original
image (queryable with image.get_axis_increments()), then
the image will be reflected about that axis. In this case
the value of the refpix argument should be chosen with
care, because otherwise the sampled part of the image may
end up being reflected outside the limits of the image
array, and the result will be a blank image.
If only one number is given for newinc then both axes
are given the same resolution, but the signs of the
increments are kept the same as the pixel increments
of the original image.
flux : bool
This tells the function whether the pixel units of the
image are flux densities (flux=True), such as
erg/s/cm2/Hz, or whether they are per-steradian brightness
units (flux=False), such as erg/s/cm2/Hz/steradian. It
needs to know this when it changes the pixel size, because
when pixel sizes change, resampled flux densities need to
be corrected for the change in the area per pixel, where
resampled brightnesses don't.
order : int
The order of the spline interpolation. This can take any
value from 0-5. The default is 1 (linear interpolation).
When this function is used to lower the resolution of
an image, the low-pass anti-aliasing filter that is applied,
makes linear interpolation sufficient.
Conversely, when this function is used to increase the
image resolution, order=3 might be useful. Higher
orders than this will tend to introduce ringing artefacts.
interp : 'no' | 'linear' | 'spline'
If 'no', replace masked data with the median image value.
If 'linear', replace masked values using a linear
interpolation between neighboring values.
if 'spline', replace masked values using a spline
interpolation between neighboring values.
unit_pos : `astropy.units.Unit`
The units of the refpos coordinates. Degrees by default.
unit_inc : `astropy.units.Unit`
The units of newinc. Arcseconds by default.
antialias : bool
By default, when the resolution of an image axis is about
to be reduced, a low pass filter is first applied to suppress
high spatial frequencies that can not be represented by the
reduced sampling interval. If this is not done, high-frequency
noise and sharp edges get folded back to lower frequencies,
where they increase the noise level of the image and introduce
ringing artefacts next to sharp edges, such as CCD saturation
spikes. This filtering can be disabled by passing False to
the antialias argument.
inplace : bool
If False, return a resampled copy of the image (the default).
If True, resample the original image in-place, and return that.
cutoff : float
Mask each output pixel where at least this fraction of the
pixel was interpolated from dummy values given to masked
input pixels.
window : str
The type of window function to use for antialiasing
in the Fourier plane. The following windows are supported:
blackman
This window suppresses ringing better than any other
window, at the expense of lowered image resolution. In
the image plane, the PSF of this window is
approximately gaussian, with a standard deviation of
around 0.96*newstep, and a FWHM of about 2.3*newstep.
gaussian
A truncated gaussian window. This has a smaller PSF
than the blackman window, however gaussians never fall
to zero, so either significant ringing will be seen due
to truncation of the gaussian, or low-level aliasing
will occur, depending on the spatial frequency coverage
of the image beyond the folding frequency. It can be a
good choice for images that only contain smoothly
varying features. It is equivalent to a convolution of
the image with both an airy profile and a gaussian of
standard deviation 0.724*newstep (FWHM 1.704*newstep).
rectangle
This window simply zeros all spatial frequencies above
the highest that can be correctly sampled by the new
pixel size. This gives the best resolution of any of
the windows, but this is marred by the strong sidelobes
of the resulting airy-profile, especially near bright
point sources and CCD saturation lines.
Returns
-------
out : `~mpdaf.obj.Image`
The resampled image is returned. | lib/mpdaf/obj/image.py | regrid | musevlt/mpdaf | 4 | python | def regrid(self, newdim, refpos, refpix, newinc, flux=False, order=1, interp='no', unit_pos=u.deg, unit_inc=u.arcsec, antialias=True, inplace=False, cutoff=0.25, window='blackman'):
"Resample an image of the sky to select its angular resolution,\n to specify the position of the sky in the image array, and\n optionally to reflect one or more of its axes.\n\n This function can be used to decrease or increase the\n resolution of an image. It can also shift the contents of an\n image to place a specific (dec,ra) position at a specific\n fractional pixel position. Finally, it can be used to invert\n the direction of one or both of the array axes on the sky.\n\n When this function is used to resample an image to a lower\n resolution, a low-pass anti-aliasing filter is applied to the\n image before it is resampled, to remove all spatial\n frequencies below half the new sampling rate. This is required\n to satisfy the Nyquist sampling constraint. It prevents high\n spatial-frequency noise and edges from being aliased to lower\n frequency artefacts in the resampled image. The removal of\n this noise improves the signal to noise ratio of the resampled\n image.\n\n Parameters\n ----------\n newdim : int or (int,int)\n The desired new dimensions. Python notation: (ny,nx)\n refpos : (float, float)\n The sky position (dec,ra) to place at the pixel specified\n by the refpix argument.\n\n If refpix and refpos are both None, the sky position at\n the bottom corner of the input image is placed at the\n bottom left corner of the output image. Note that refpix\n and refpos must either both be given values, or both\n be None.\n refpix : (float, float)\n The [Y, X] indexes of the output pixel where the sky\n position, refpos, should be placed. Y and X are\n interpreted as floating point indexes, where integer\n values indicate pixel centers and integer values +/- 0.5\n indicate the edges of pixels.\n\n If refpix and refpos are both None, the sky position at\n the bottom corner of the input image is placed at the\n bottom left corner of the output image. Note that refpix\n and refpos must either both be given values, or both\n be None.\n newinc : float or (float, float)\n The signed increments of the angle on the sky from one\n pixel to the next, given as either a single increment for\n both image axes, or two numbers (dy,dx) for the Y and X\n axes respectively.\n\n The signs of these increments are interpreted as described\n in the documentation of the Image.get_axis_increments()\n function. In particular, note that dy is typically\n positive and dx is usually negative, such that when the\n image is plotted, east appears anticlockwise of north, and\n east is towards the left of the plot when the image\n rotation angle is zero.\n\n If either of the signs of the two newinc numbers is\n different from the sign of the increments of the original\n image (queryable with image.get_axis_increments()), then\n the image will be reflected about that axis. In this case\n the value of the refpix argument should be chosen with\n care, because otherwise the sampled part of the image may\n end up being reflected outside the limits of the image\n array, and the result will be a blank image.\n\n If only one number is given for newinc then both axes\n are given the same resolution, but the signs of the\n increments are kept the same as the pixel increments\n of the original image.\n flux : bool\n This tells the function whether the pixel units of the\n image are flux densities (flux=True), such as\n erg/s/cm2/Hz, or whether they are per-steradian brightness\n units (flux=False), such as erg/s/cm2/Hz/steradian. It\n needs to know this when it changes the pixel size, because\n when pixel sizes change, resampled flux densities need to\n be corrected for the change in the area per pixel, where\n resampled brightnesses don't.\n order : int\n The order of the spline interpolation. This can take any\n value from 0-5. The default is 1 (linear interpolation).\n When this function is used to lower the resolution of\n an image, the low-pass anti-aliasing filter that is applied,\n makes linear interpolation sufficient.\n Conversely, when this function is used to increase the\n image resolution, order=3 might be useful. Higher\n orders than this will tend to introduce ringing artefacts.\n interp : 'no' | 'linear' | 'spline'\n If 'no', replace masked data with the median image value.\n If 'linear', replace masked values using a linear\n interpolation between neighboring values.\n if 'spline', replace masked values using a spline\n interpolation between neighboring values.\n unit_pos : `astropy.units.Unit`\n The units of the refpos coordinates. Degrees by default.\n unit_inc : `astropy.units.Unit`\n The units of newinc. Arcseconds by default.\n antialias : bool\n By default, when the resolution of an image axis is about\n to be reduced, a low pass filter is first applied to suppress\n high spatial frequencies that can not be represented by the\n reduced sampling interval. If this is not done, high-frequency\n noise and sharp edges get folded back to lower frequencies,\n where they increase the noise level of the image and introduce\n ringing artefacts next to sharp edges, such as CCD saturation\n spikes. This filtering can be disabled by passing False to\n the antialias argument.\n inplace : bool\n If False, return a resampled copy of the image (the default).\n If True, resample the original image in-place, and return that.\n cutoff : float\n Mask each output pixel where at least this fraction of the\n pixel was interpolated from dummy values given to masked\n input pixels.\n window : str\n The type of window function to use for antialiasing\n in the Fourier plane. The following windows are supported:\n\n blackman\n This window suppresses ringing better than any other\n window, at the expense of lowered image resolution. In\n the image plane, the PSF of this window is\n approximately gaussian, with a standard deviation of\n around 0.96*newstep, and a FWHM of about 2.3*newstep.\n\n gaussian\n A truncated gaussian window. This has a smaller PSF\n than the blackman window, however gaussians never fall\n to zero, so either significant ringing will be seen due\n to truncation of the gaussian, or low-level aliasing\n will occur, depending on the spatial frequency coverage\n of the image beyond the folding frequency. It can be a\n good choice for images that only contain smoothly\n varying features. It is equivalent to a convolution of\n the image with both an airy profile and a gaussian of\n standard deviation 0.724*newstep (FWHM 1.704*newstep).\n\n rectangle\n This window simply zeros all spatial frequencies above\n the highest that can be correctly sampled by the new\n pixel size. This gives the best resolution of any of\n the windows, but this is marred by the strong sidelobes\n of the resulting airy-profile, especially near bright\n point sources and CCD saturation lines.\n\n Returns\n -------\n out : `~mpdaf.obj.Image`\n The resampled image is returned.\n\n "
if is_int(newdim):
newdim = (newdim, newdim)
newdim = np.asarray(newdim, dtype=int)
if ((refpos is None) and (refpix is None)):
refpix = np.array([(- 0.5), (- 0.5)])
refpos = self.wcs.pix2sky(refpix)
elif ((refpos is not None) and (refpix is not None)):
refpos = np.asarray(refpos, dtype=float)
if (unit_pos is not None):
refpos = UnitArray(refpos, unit_pos, self.wcs.unit)
refpix = np.asarray(refpix, dtype=float)
else:
raise ValueError('The refpos and refpix arguments should both be None or both have values.')
oldinc = self.wcs.get_axis_increments()
if is_number(newinc):
size = abs(newinc)
newinc = ((size * np.sign(oldinc[0])), (size * np.sign(oldinc[1])))
newinc = np.asarray(newinc, dtype=float)
if (unit_inc is not None):
newinc = UnitArray(newinc, unit_inc, self.wcs.unit)
data = self._prepare_data(interp)
if antialias:
(data, newfmax) = _antialias_filter_image(data, abs(oldinc), abs(newinc), self.get_spatial_fmax(), window)
else:
newfmax = (0.5 / abs(newinc))
new2old = np.array([[(newinc[0] / oldinc[0]), 0], [0, (newinc[1] / oldinc[1])]])
old2new = np.linalg.inv(new2old)
offset = (self.wcs.sky2pix(refpos).T[(:, :1)] - np.dot(new2old, refpix[(np.newaxis, :)].T))
data = affine_transform(data, new2old, offset.flatten(), output_shape=newdim, order=order, prefilter=(order >= 3))
mask = self._mask.astype(float)
mask = affine_transform(mask, new2old, offset.flatten(), cval=1.0, output_shape=newdim, output=float)
mask = np.greater(mask, max(cutoff, 1e-06))
if (self._var is not None):
var = affine_transform(self._var, new2old, offset.flatten(), output_shape=newdim, order=order, prefilter=(order >= 3))
else:
var = None
xs = abs((newinc[1] / oldinc[1]))
ys = abs((newinc[0] / oldinc[0]))
n = (xs * ys)
if flux:
data *= n
if (var is not None):
var *= ((xs if ((xs > 1.0) and antialias) else (xs ** 2)) * (ys if ((ys > 1.0) and antialias) else (ys ** 2)))
elif ((var is not None) and ((xs > 1.0) or (ys > 1.0))):
var *= (((1 / xs) if ((xs > 1.0) and antialias) else 1.0) * ((1 / ys) if ((ys > 1.0) and antialias) else 1.0))
oldcrpix = np.array([[(self.wcs.get_crpix2() - 1)], [(self.wcs.get_crpix1() - 1)]])
newcrpix = np.dot(old2new, (oldcrpix - offset))
wcs = self.wcs.copy()
wcs.set_axis_increments(newinc)
wcs.naxis1 = newdim[1]
wcs.naxis2 = newdim[0]
wcs.set_crpix1((newcrpix[1] + 1))
wcs.set_crpix2((newcrpix[0] + 1))
out = (self if inplace else self.clone())
out._data = data
out._mask = mask
out._var = var
out.wcs = wcs
out.update_spatial_fmax(newfmax)
return out | def regrid(self, newdim, refpos, refpix, newinc, flux=False, order=1, interp='no', unit_pos=u.deg, unit_inc=u.arcsec, antialias=True, inplace=False, cutoff=0.25, window='blackman'):
"Resample an image of the sky to select its angular resolution,\n to specify the position of the sky in the image array, and\n optionally to reflect one or more of its axes.\n\n This function can be used to decrease or increase the\n resolution of an image. It can also shift the contents of an\n image to place a specific (dec,ra) position at a specific\n fractional pixel position. Finally, it can be used to invert\n the direction of one or both of the array axes on the sky.\n\n When this function is used to resample an image to a lower\n resolution, a low-pass anti-aliasing filter is applied to the\n image before it is resampled, to remove all spatial\n frequencies below half the new sampling rate. This is required\n to satisfy the Nyquist sampling constraint. It prevents high\n spatial-frequency noise and edges from being aliased to lower\n frequency artefacts in the resampled image. The removal of\n this noise improves the signal to noise ratio of the resampled\n image.\n\n Parameters\n ----------\n newdim : int or (int,int)\n The desired new dimensions. Python notation: (ny,nx)\n refpos : (float, float)\n The sky position (dec,ra) to place at the pixel specified\n by the refpix argument.\n\n If refpix and refpos are both None, the sky position at\n the bottom corner of the input image is placed at the\n bottom left corner of the output image. Note that refpix\n and refpos must either both be given values, or both\n be None.\n refpix : (float, float)\n The [Y, X] indexes of the output pixel where the sky\n position, refpos, should be placed. Y and X are\n interpreted as floating point indexes, where integer\n values indicate pixel centers and integer values +/- 0.5\n indicate the edges of pixels.\n\n If refpix and refpos are both None, the sky position at\n the bottom corner of the input image is placed at the\n bottom left corner of the output image. Note that refpix\n and refpos must either both be given values, or both\n be None.\n newinc : float or (float, float)\n The signed increments of the angle on the sky from one\n pixel to the next, given as either a single increment for\n both image axes, or two numbers (dy,dx) for the Y and X\n axes respectively.\n\n The signs of these increments are interpreted as described\n in the documentation of the Image.get_axis_increments()\n function. In particular, note that dy is typically\n positive and dx is usually negative, such that when the\n image is plotted, east appears anticlockwise of north, and\n east is towards the left of the plot when the image\n rotation angle is zero.\n\n If either of the signs of the two newinc numbers is\n different from the sign of the increments of the original\n image (queryable with image.get_axis_increments()), then\n the image will be reflected about that axis. In this case\n the value of the refpix argument should be chosen with\n care, because otherwise the sampled part of the image may\n end up being reflected outside the limits of the image\n array, and the result will be a blank image.\n\n If only one number is given for newinc then both axes\n are given the same resolution, but the signs of the\n increments are kept the same as the pixel increments\n of the original image.\n flux : bool\n This tells the function whether the pixel units of the\n image are flux densities (flux=True), such as\n erg/s/cm2/Hz, or whether they are per-steradian brightness\n units (flux=False), such as erg/s/cm2/Hz/steradian. It\n needs to know this when it changes the pixel size, because\n when pixel sizes change, resampled flux densities need to\n be corrected for the change in the area per pixel, where\n resampled brightnesses don't.\n order : int\n The order of the spline interpolation. This can take any\n value from 0-5. The default is 1 (linear interpolation).\n When this function is used to lower the resolution of\n an image, the low-pass anti-aliasing filter that is applied,\n makes linear interpolation sufficient.\n Conversely, when this function is used to increase the\n image resolution, order=3 might be useful. Higher\n orders than this will tend to introduce ringing artefacts.\n interp : 'no' | 'linear' | 'spline'\n If 'no', replace masked data with the median image value.\n If 'linear', replace masked values using a linear\n interpolation between neighboring values.\n if 'spline', replace masked values using a spline\n interpolation between neighboring values.\n unit_pos : `astropy.units.Unit`\n The units of the refpos coordinates. Degrees by default.\n unit_inc : `astropy.units.Unit`\n The units of newinc. Arcseconds by default.\n antialias : bool\n By default, when the resolution of an image axis is about\n to be reduced, a low pass filter is first applied to suppress\n high spatial frequencies that can not be represented by the\n reduced sampling interval. If this is not done, high-frequency\n noise and sharp edges get folded back to lower frequencies,\n where they increase the noise level of the image and introduce\n ringing artefacts next to sharp edges, such as CCD saturation\n spikes. This filtering can be disabled by passing False to\n the antialias argument.\n inplace : bool\n If False, return a resampled copy of the image (the default).\n If True, resample the original image in-place, and return that.\n cutoff : float\n Mask each output pixel where at least this fraction of the\n pixel was interpolated from dummy values given to masked\n input pixels.\n window : str\n The type of window function to use for antialiasing\n in the Fourier plane. The following windows are supported:\n\n blackman\n This window suppresses ringing better than any other\n window, at the expense of lowered image resolution. In\n the image plane, the PSF of this window is\n approximately gaussian, with a standard deviation of\n around 0.96*newstep, and a FWHM of about 2.3*newstep.\n\n gaussian\n A truncated gaussian window. This has a smaller PSF\n than the blackman window, however gaussians never fall\n to zero, so either significant ringing will be seen due\n to truncation of the gaussian, or low-level aliasing\n will occur, depending on the spatial frequency coverage\n of the image beyond the folding frequency. It can be a\n good choice for images that only contain smoothly\n varying features. It is equivalent to a convolution of\n the image with both an airy profile and a gaussian of\n standard deviation 0.724*newstep (FWHM 1.704*newstep).\n\n rectangle\n This window simply zeros all spatial frequencies above\n the highest that can be correctly sampled by the new\n pixel size. This gives the best resolution of any of\n the windows, but this is marred by the strong sidelobes\n of the resulting airy-profile, especially near bright\n point sources and CCD saturation lines.\n\n Returns\n -------\n out : `~mpdaf.obj.Image`\n The resampled image is returned.\n\n "
if is_int(newdim):
newdim = (newdim, newdim)
newdim = np.asarray(newdim, dtype=int)
if ((refpos is None) and (refpix is None)):
refpix = np.array([(- 0.5), (- 0.5)])
refpos = self.wcs.pix2sky(refpix)
elif ((refpos is not None) and (refpix is not None)):
refpos = np.asarray(refpos, dtype=float)
if (unit_pos is not None):
refpos = UnitArray(refpos, unit_pos, self.wcs.unit)
refpix = np.asarray(refpix, dtype=float)
else:
raise ValueError('The refpos and refpix arguments should both be None or both have values.')
oldinc = self.wcs.get_axis_increments()
if is_number(newinc):
size = abs(newinc)
newinc = ((size * np.sign(oldinc[0])), (size * np.sign(oldinc[1])))
newinc = np.asarray(newinc, dtype=float)
if (unit_inc is not None):
newinc = UnitArray(newinc, unit_inc, self.wcs.unit)
data = self._prepare_data(interp)
if antialias:
(data, newfmax) = _antialias_filter_image(data, abs(oldinc), abs(newinc), self.get_spatial_fmax(), window)
else:
newfmax = (0.5 / abs(newinc))
new2old = np.array([[(newinc[0] / oldinc[0]), 0], [0, (newinc[1] / oldinc[1])]])
old2new = np.linalg.inv(new2old)
offset = (self.wcs.sky2pix(refpos).T[(:, :1)] - np.dot(new2old, refpix[(np.newaxis, :)].T))
data = affine_transform(data, new2old, offset.flatten(), output_shape=newdim, order=order, prefilter=(order >= 3))
mask = self._mask.astype(float)
mask = affine_transform(mask, new2old, offset.flatten(), cval=1.0, output_shape=newdim, output=float)
mask = np.greater(mask, max(cutoff, 1e-06))
if (self._var is not None):
var = affine_transform(self._var, new2old, offset.flatten(), output_shape=newdim, order=order, prefilter=(order >= 3))
else:
var = None
xs = abs((newinc[1] / oldinc[1]))
ys = abs((newinc[0] / oldinc[0]))
n = (xs * ys)
if flux:
data *= n
if (var is not None):
var *= ((xs if ((xs > 1.0) and antialias) else (xs ** 2)) * (ys if ((ys > 1.0) and antialias) else (ys ** 2)))
elif ((var is not None) and ((xs > 1.0) or (ys > 1.0))):
var *= (((1 / xs) if ((xs > 1.0) and antialias) else 1.0) * ((1 / ys) if ((ys > 1.0) and antialias) else 1.0))
oldcrpix = np.array([[(self.wcs.get_crpix2() - 1)], [(self.wcs.get_crpix1() - 1)]])
newcrpix = np.dot(old2new, (oldcrpix - offset))
wcs = self.wcs.copy()
wcs.set_axis_increments(newinc)
wcs.naxis1 = newdim[1]
wcs.naxis2 = newdim[0]
wcs.set_crpix1((newcrpix[1] + 1))
wcs.set_crpix2((newcrpix[0] + 1))
out = (self if inplace else self.clone())
out._data = data
out._mask = mask
out._var = var
out.wcs = wcs
out.update_spatial_fmax(newfmax)
return out<|docstring|>Resample an image of the sky to select its angular resolution,
to specify the position of the sky in the image array, and
optionally to reflect one or more of its axes.
This function can be used to decrease or increase the
resolution of an image. It can also shift the contents of an
image to place a specific (dec,ra) position at a specific
fractional pixel position. Finally, it can be used to invert
the direction of one or both of the array axes on the sky.
When this function is used to resample an image to a lower
resolution, a low-pass anti-aliasing filter is applied to the
image before it is resampled, to remove all spatial
frequencies below half the new sampling rate. This is required
to satisfy the Nyquist sampling constraint. It prevents high
spatial-frequency noise and edges from being aliased to lower
frequency artefacts in the resampled image. The removal of
this noise improves the signal to noise ratio of the resampled
image.
Parameters
----------
newdim : int or (int,int)
The desired new dimensions. Python notation: (ny,nx)
refpos : (float, float)
The sky position (dec,ra) to place at the pixel specified
by the refpix argument.
If refpix and refpos are both None, the sky position at
the bottom corner of the input image is placed at the
bottom left corner of the output image. Note that refpix
and refpos must either both be given values, or both
be None.
refpix : (float, float)
The [Y, X] indexes of the output pixel where the sky
position, refpos, should be placed. Y and X are
interpreted as floating point indexes, where integer
values indicate pixel centers and integer values +/- 0.5
indicate the edges of pixels.
If refpix and refpos are both None, the sky position at
the bottom corner of the input image is placed at the
bottom left corner of the output image. Note that refpix
and refpos must either both be given values, or both
be None.
newinc : float or (float, float)
The signed increments of the angle on the sky from one
pixel to the next, given as either a single increment for
both image axes, or two numbers (dy,dx) for the Y and X
axes respectively.
The signs of these increments are interpreted as described
in the documentation of the Image.get_axis_increments()
function. In particular, note that dy is typically
positive and dx is usually negative, such that when the
image is plotted, east appears anticlockwise of north, and
east is towards the left of the plot when the image
rotation angle is zero.
If either of the signs of the two newinc numbers is
different from the sign of the increments of the original
image (queryable with image.get_axis_increments()), then
the image will be reflected about that axis. In this case
the value of the refpix argument should be chosen with
care, because otherwise the sampled part of the image may
end up being reflected outside the limits of the image
array, and the result will be a blank image.
If only one number is given for newinc then both axes
are given the same resolution, but the signs of the
increments are kept the same as the pixel increments
of the original image.
flux : bool
This tells the function whether the pixel units of the
image are flux densities (flux=True), such as
erg/s/cm2/Hz, or whether they are per-steradian brightness
units (flux=False), such as erg/s/cm2/Hz/steradian. It
needs to know this when it changes the pixel size, because
when pixel sizes change, resampled flux densities need to
be corrected for the change in the area per pixel, where
resampled brightnesses don't.
order : int
The order of the spline interpolation. This can take any
value from 0-5. The default is 1 (linear interpolation).
When this function is used to lower the resolution of
an image, the low-pass anti-aliasing filter that is applied,
makes linear interpolation sufficient.
Conversely, when this function is used to increase the
image resolution, order=3 might be useful. Higher
orders than this will tend to introduce ringing artefacts.
interp : 'no' | 'linear' | 'spline'
If 'no', replace masked data with the median image value.
If 'linear', replace masked values using a linear
interpolation between neighboring values.
if 'spline', replace masked values using a spline
interpolation between neighboring values.
unit_pos : `astropy.units.Unit`
The units of the refpos coordinates. Degrees by default.
unit_inc : `astropy.units.Unit`
The units of newinc. Arcseconds by default.
antialias : bool
By default, when the resolution of an image axis is about
to be reduced, a low pass filter is first applied to suppress
high spatial frequencies that can not be represented by the
reduced sampling interval. If this is not done, high-frequency
noise and sharp edges get folded back to lower frequencies,
where they increase the noise level of the image and introduce
ringing artefacts next to sharp edges, such as CCD saturation
spikes. This filtering can be disabled by passing False to
the antialias argument.
inplace : bool
If False, return a resampled copy of the image (the default).
If True, resample the original image in-place, and return that.
cutoff : float
Mask each output pixel where at least this fraction of the
pixel was interpolated from dummy values given to masked
input pixels.
window : str
The type of window function to use for antialiasing
in the Fourier plane. The following windows are supported:
blackman
This window suppresses ringing better than any other
window, at the expense of lowered image resolution. In
the image plane, the PSF of this window is
approximately gaussian, with a standard deviation of
around 0.96*newstep, and a FWHM of about 2.3*newstep.
gaussian
A truncated gaussian window. This has a smaller PSF
than the blackman window, however gaussians never fall
to zero, so either significant ringing will be seen due
to truncation of the gaussian, or low-level aliasing
will occur, depending on the spatial frequency coverage
of the image beyond the folding frequency. It can be a
good choice for images that only contain smoothly
varying features. It is equivalent to a convolution of
the image with both an airy profile and a gaussian of
standard deviation 0.724*newstep (FWHM 1.704*newstep).
rectangle
This window simply zeros all spatial frequencies above
the highest that can be correctly sampled by the new
pixel size. This gives the best resolution of any of
the windows, but this is marred by the strong sidelobes
of the resulting airy-profile, especially near bright
point sources and CCD saturation lines.
Returns
-------
out : `~mpdaf.obj.Image`
The resampled image is returned.<|endoftext|> |
0e104b35daab298637558af0caf68b266138d36c9a66a84523943405a8f7357c | def align_with_image(self, other, flux=False, inplace=False, cutoff=0.25, antialias=True, window='blackman'):
"Resample the image to give it the same orientation, position,\n resolution and size as a given image.\n\n The image is first rotated to give it the same orientation on\n the sky as the other image. The resampling process also\n eliminates any shear terms from the original image, so that\n its pixels can be correctly drawn on a rectangular grid.\n\n Secondly the image is resampled. This changes its resolution,\n shifts the image such that the same points on the sky appear\n in the same pixels as in the other image, and changes the\n dimensions of the image array to match that of the other\n image.\n\n The rotation and resampling processes are performed as\n separate steps because the anti-aliasing filter that needs to\n be applied in the resampling step reduces the resolution, is\n difficult to implement before the axes have been rotated to\n the final orientation.\n\n Parameters\n ----------\n other : `~mpdaf.obj.Image`\n The image to be aligned with.\n flux : bool\n This tells the function whether the pixel units of the\n image are flux densities (flux=True), such as\n erg/s/cm2/Hz, or whether they are per-steradian brightness\n units (flux=False), such as erg/s/cm2/Hz/steradian. It\n needs to know this when it changes the pixel size, because\n when pixel sizes change, resampled flux densities need to\n be corrected for the change in the area per pixel, where\n resampled brightnesses don't.\n inplace : bool\n If False, return an aligned copy of the image (the default).\n If True, align the original image in-place, and return that.\n cutoff : float\n Mask each output pixel where at least this fraction of the\n pixel was interpolated from dummy values given to masked\n input pixels.\n antialias : bool\n By default, when the resolution of an image axis is about\n to be reduced, a low pass filter is first applied to suppress\n high spatial frequencies that can not be represented by the\n reduced sampling interval. If this is not done, high-frequency\n noise and sharp edges get folded back to lower frequencies,\n where they increase the noise level of the image and introduce\n ringing artefacts next to sharp edges, such as CCD saturation\n spikes and bright unresolved stars. This filtering can be\n disabled by passing False to the antialias argument.\n window : str\n The type of window function to use for antialiasing\n in the Fourier plane. The following windows are supported:\n\n blackman\n This window suppresses ringing better than any other\n window, at the expense of lowered image resolution. In\n the image plane, the PSF of this window is\n approximately gaussian, with a standard deviation of\n around 0.96*newstep, and a FWHM of about 2.3*newstep.\n\n gaussian\n A truncated gaussian window. This has a smaller PSF\n than the blackman window, however gaussians never fall\n to zero, so either significant ringing will be seen due\n to truncation of the gaussian, or low-level aliasing\n will occur, depending on the spatial frequency coverage\n of the image beyond the folding frequency. It can be a\n good choice for images that only contain smoothly\n varying features. It is equivalent to a convolution of\n the image with both an airy profile and a gaussian of\n standard deviation 0.724*newstep (FWHM 1.704*newstep).\n\n rectangle\n This window simply zeros all spatial frequencies above\n the highest that can be correctly sampled by the new\n pixel size. This gives the best resolution of any of\n the windows, but this is marred by the strong sidelobes\n of the resulting airy-profile, especially near bright\n point sources and CCD saturation lines.\n\n "
if self.wcs.isEqual(other.wcs):
return (self if inplace else self.copy())
pixsky = other.wcs.pix2sky([[(- 1), (- 1)], [other.shape[0], (- 1)], [(- 1), other.shape[1]], [other.shape[0], other.shape[1]]], unit=u.deg)
(dec_min, ra_min) = pixsky.min(axis=0)
(dec_max, ra_max) = pixsky.max(axis=0)
out = self.truncate(dec_min, dec_max, ra_min, ra_max, mask=False, unit=u.deg, inplace=inplace)
out._rotate((other.wcs.get_rot() - out.wcs.get_rot()), reshape=True, regrid=True, flux=flux, cutoff=cutoff)
centerpix = (np.asarray(other.shape) / 2.0)
centersky = other.wcs.pix2sky(centerpix)[0]
out.regrid(other.shape, centersky, centerpix, other.wcs.get_axis_increments(unit=u.deg), flux, unit_inc=u.deg, inplace=True, cutoff=cutoff, antialias=antialias, window=window)
return out | Resample the image to give it the same orientation, position,
resolution and size as a given image.
The image is first rotated to give it the same orientation on
the sky as the other image. The resampling process also
eliminates any shear terms from the original image, so that
its pixels can be correctly drawn on a rectangular grid.
Secondly the image is resampled. This changes its resolution,
shifts the image such that the same points on the sky appear
in the same pixels as in the other image, and changes the
dimensions of the image array to match that of the other
image.
The rotation and resampling processes are performed as
separate steps because the anti-aliasing filter that needs to
be applied in the resampling step reduces the resolution, is
difficult to implement before the axes have been rotated to
the final orientation.
Parameters
----------
other : `~mpdaf.obj.Image`
The image to be aligned with.
flux : bool
This tells the function whether the pixel units of the
image are flux densities (flux=True), such as
erg/s/cm2/Hz, or whether they are per-steradian brightness
units (flux=False), such as erg/s/cm2/Hz/steradian. It
needs to know this when it changes the pixel size, because
when pixel sizes change, resampled flux densities need to
be corrected for the change in the area per pixel, where
resampled brightnesses don't.
inplace : bool
If False, return an aligned copy of the image (the default).
If True, align the original image in-place, and return that.
cutoff : float
Mask each output pixel where at least this fraction of the
pixel was interpolated from dummy values given to masked
input pixels.
antialias : bool
By default, when the resolution of an image axis is about
to be reduced, a low pass filter is first applied to suppress
high spatial frequencies that can not be represented by the
reduced sampling interval. If this is not done, high-frequency
noise and sharp edges get folded back to lower frequencies,
where they increase the noise level of the image and introduce
ringing artefacts next to sharp edges, such as CCD saturation
spikes and bright unresolved stars. This filtering can be
disabled by passing False to the antialias argument.
window : str
The type of window function to use for antialiasing
in the Fourier plane. The following windows are supported:
blackman
This window suppresses ringing better than any other
window, at the expense of lowered image resolution. In
the image plane, the PSF of this window is
approximately gaussian, with a standard deviation of
around 0.96*newstep, and a FWHM of about 2.3*newstep.
gaussian
A truncated gaussian window. This has a smaller PSF
than the blackman window, however gaussians never fall
to zero, so either significant ringing will be seen due
to truncation of the gaussian, or low-level aliasing
will occur, depending on the spatial frequency coverage
of the image beyond the folding frequency. It can be a
good choice for images that only contain smoothly
varying features. It is equivalent to a convolution of
the image with both an airy profile and a gaussian of
standard deviation 0.724*newstep (FWHM 1.704*newstep).
rectangle
This window simply zeros all spatial frequencies above
the highest that can be correctly sampled by the new
pixel size. This gives the best resolution of any of
the windows, but this is marred by the strong sidelobes
of the resulting airy-profile, especially near bright
point sources and CCD saturation lines. | lib/mpdaf/obj/image.py | align_with_image | musevlt/mpdaf | 4 | python | def align_with_image(self, other, flux=False, inplace=False, cutoff=0.25, antialias=True, window='blackman'):
"Resample the image to give it the same orientation, position,\n resolution and size as a given image.\n\n The image is first rotated to give it the same orientation on\n the sky as the other image. The resampling process also\n eliminates any shear terms from the original image, so that\n its pixels can be correctly drawn on a rectangular grid.\n\n Secondly the image is resampled. This changes its resolution,\n shifts the image such that the same points on the sky appear\n in the same pixels as in the other image, and changes the\n dimensions of the image array to match that of the other\n image.\n\n The rotation and resampling processes are performed as\n separate steps because the anti-aliasing filter that needs to\n be applied in the resampling step reduces the resolution, is\n difficult to implement before the axes have been rotated to\n the final orientation.\n\n Parameters\n ----------\n other : `~mpdaf.obj.Image`\n The image to be aligned with.\n flux : bool\n This tells the function whether the pixel units of the\n image are flux densities (flux=True), such as\n erg/s/cm2/Hz, or whether they are per-steradian brightness\n units (flux=False), such as erg/s/cm2/Hz/steradian. It\n needs to know this when it changes the pixel size, because\n when pixel sizes change, resampled flux densities need to\n be corrected for the change in the area per pixel, where\n resampled brightnesses don't.\n inplace : bool\n If False, return an aligned copy of the image (the default).\n If True, align the original image in-place, and return that.\n cutoff : float\n Mask each output pixel where at least this fraction of the\n pixel was interpolated from dummy values given to masked\n input pixels.\n antialias : bool\n By default, when the resolution of an image axis is about\n to be reduced, a low pass filter is first applied to suppress\n high spatial frequencies that can not be represented by the\n reduced sampling interval. If this is not done, high-frequency\n noise and sharp edges get folded back to lower frequencies,\n where they increase the noise level of the image and introduce\n ringing artefacts next to sharp edges, such as CCD saturation\n spikes and bright unresolved stars. This filtering can be\n disabled by passing False to the antialias argument.\n window : str\n The type of window function to use for antialiasing\n in the Fourier plane. The following windows are supported:\n\n blackman\n This window suppresses ringing better than any other\n window, at the expense of lowered image resolution. In\n the image plane, the PSF of this window is\n approximately gaussian, with a standard deviation of\n around 0.96*newstep, and a FWHM of about 2.3*newstep.\n\n gaussian\n A truncated gaussian window. This has a smaller PSF\n than the blackman window, however gaussians never fall\n to zero, so either significant ringing will be seen due\n to truncation of the gaussian, or low-level aliasing\n will occur, depending on the spatial frequency coverage\n of the image beyond the folding frequency. It can be a\n good choice for images that only contain smoothly\n varying features. It is equivalent to a convolution of\n the image with both an airy profile and a gaussian of\n standard deviation 0.724*newstep (FWHM 1.704*newstep).\n\n rectangle\n This window simply zeros all spatial frequencies above\n the highest that can be correctly sampled by the new\n pixel size. This gives the best resolution of any of\n the windows, but this is marred by the strong sidelobes\n of the resulting airy-profile, especially near bright\n point sources and CCD saturation lines.\n\n "
if self.wcs.isEqual(other.wcs):
return (self if inplace else self.copy())
pixsky = other.wcs.pix2sky([[(- 1), (- 1)], [other.shape[0], (- 1)], [(- 1), other.shape[1]], [other.shape[0], other.shape[1]]], unit=u.deg)
(dec_min, ra_min) = pixsky.min(axis=0)
(dec_max, ra_max) = pixsky.max(axis=0)
out = self.truncate(dec_min, dec_max, ra_min, ra_max, mask=False, unit=u.deg, inplace=inplace)
out._rotate((other.wcs.get_rot() - out.wcs.get_rot()), reshape=True, regrid=True, flux=flux, cutoff=cutoff)
centerpix = (np.asarray(other.shape) / 2.0)
centersky = other.wcs.pix2sky(centerpix)[0]
out.regrid(other.shape, centersky, centerpix, other.wcs.get_axis_increments(unit=u.deg), flux, unit_inc=u.deg, inplace=True, cutoff=cutoff, antialias=antialias, window=window)
return out | def align_with_image(self, other, flux=False, inplace=False, cutoff=0.25, antialias=True, window='blackman'):
"Resample the image to give it the same orientation, position,\n resolution and size as a given image.\n\n The image is first rotated to give it the same orientation on\n the sky as the other image. The resampling process also\n eliminates any shear terms from the original image, so that\n its pixels can be correctly drawn on a rectangular grid.\n\n Secondly the image is resampled. This changes its resolution,\n shifts the image such that the same points on the sky appear\n in the same pixels as in the other image, and changes the\n dimensions of the image array to match that of the other\n image.\n\n The rotation and resampling processes are performed as\n separate steps because the anti-aliasing filter that needs to\n be applied in the resampling step reduces the resolution, is\n difficult to implement before the axes have been rotated to\n the final orientation.\n\n Parameters\n ----------\n other : `~mpdaf.obj.Image`\n The image to be aligned with.\n flux : bool\n This tells the function whether the pixel units of the\n image are flux densities (flux=True), such as\n erg/s/cm2/Hz, or whether they are per-steradian brightness\n units (flux=False), such as erg/s/cm2/Hz/steradian. It\n needs to know this when it changes the pixel size, because\n when pixel sizes change, resampled flux densities need to\n be corrected for the change in the area per pixel, where\n resampled brightnesses don't.\n inplace : bool\n If False, return an aligned copy of the image (the default).\n If True, align the original image in-place, and return that.\n cutoff : float\n Mask each output pixel where at least this fraction of the\n pixel was interpolated from dummy values given to masked\n input pixels.\n antialias : bool\n By default, when the resolution of an image axis is about\n to be reduced, a low pass filter is first applied to suppress\n high spatial frequencies that can not be represented by the\n reduced sampling interval. If this is not done, high-frequency\n noise and sharp edges get folded back to lower frequencies,\n where they increase the noise level of the image and introduce\n ringing artefacts next to sharp edges, such as CCD saturation\n spikes and bright unresolved stars. This filtering can be\n disabled by passing False to the antialias argument.\n window : str\n The type of window function to use for antialiasing\n in the Fourier plane. The following windows are supported:\n\n blackman\n This window suppresses ringing better than any other\n window, at the expense of lowered image resolution. In\n the image plane, the PSF of this window is\n approximately gaussian, with a standard deviation of\n around 0.96*newstep, and a FWHM of about 2.3*newstep.\n\n gaussian\n A truncated gaussian window. This has a smaller PSF\n than the blackman window, however gaussians never fall\n to zero, so either significant ringing will be seen due\n to truncation of the gaussian, or low-level aliasing\n will occur, depending on the spatial frequency coverage\n of the image beyond the folding frequency. It can be a\n good choice for images that only contain smoothly\n varying features. It is equivalent to a convolution of\n the image with both an airy profile and a gaussian of\n standard deviation 0.724*newstep (FWHM 1.704*newstep).\n\n rectangle\n This window simply zeros all spatial frequencies above\n the highest that can be correctly sampled by the new\n pixel size. This gives the best resolution of any of\n the windows, but this is marred by the strong sidelobes\n of the resulting airy-profile, especially near bright\n point sources and CCD saturation lines.\n\n "
if self.wcs.isEqual(other.wcs):
return (self if inplace else self.copy())
pixsky = other.wcs.pix2sky([[(- 1), (- 1)], [other.shape[0], (- 1)], [(- 1), other.shape[1]], [other.shape[0], other.shape[1]]], unit=u.deg)
(dec_min, ra_min) = pixsky.min(axis=0)
(dec_max, ra_max) = pixsky.max(axis=0)
out = self.truncate(dec_min, dec_max, ra_min, ra_max, mask=False, unit=u.deg, inplace=inplace)
out._rotate((other.wcs.get_rot() - out.wcs.get_rot()), reshape=True, regrid=True, flux=flux, cutoff=cutoff)
centerpix = (np.asarray(other.shape) / 2.0)
centersky = other.wcs.pix2sky(centerpix)[0]
out.regrid(other.shape, centersky, centerpix, other.wcs.get_axis_increments(unit=u.deg), flux, unit_inc=u.deg, inplace=True, cutoff=cutoff, antialias=antialias, window=window)
return out<|docstring|>Resample the image to give it the same orientation, position,
resolution and size as a given image.
The image is first rotated to give it the same orientation on
the sky as the other image. The resampling process also
eliminates any shear terms from the original image, so that
its pixels can be correctly drawn on a rectangular grid.
Secondly the image is resampled. This changes its resolution,
shifts the image such that the same points on the sky appear
in the same pixels as in the other image, and changes the
dimensions of the image array to match that of the other
image.
The rotation and resampling processes are performed as
separate steps because the anti-aliasing filter that needs to
be applied in the resampling step reduces the resolution, is
difficult to implement before the axes have been rotated to
the final orientation.
Parameters
----------
other : `~mpdaf.obj.Image`
The image to be aligned with.
flux : bool
This tells the function whether the pixel units of the
image are flux densities (flux=True), such as
erg/s/cm2/Hz, or whether they are per-steradian brightness
units (flux=False), such as erg/s/cm2/Hz/steradian. It
needs to know this when it changes the pixel size, because
when pixel sizes change, resampled flux densities need to
be corrected for the change in the area per pixel, where
resampled brightnesses don't.
inplace : bool
If False, return an aligned copy of the image (the default).
If True, align the original image in-place, and return that.
cutoff : float
Mask each output pixel where at least this fraction of the
pixel was interpolated from dummy values given to masked
input pixels.
antialias : bool
By default, when the resolution of an image axis is about
to be reduced, a low pass filter is first applied to suppress
high spatial frequencies that can not be represented by the
reduced sampling interval. If this is not done, high-frequency
noise and sharp edges get folded back to lower frequencies,
where they increase the noise level of the image and introduce
ringing artefacts next to sharp edges, such as CCD saturation
spikes and bright unresolved stars. This filtering can be
disabled by passing False to the antialias argument.
window : str
The type of window function to use for antialiasing
in the Fourier plane. The following windows are supported:
blackman
This window suppresses ringing better than any other
window, at the expense of lowered image resolution. In
the image plane, the PSF of this window is
approximately gaussian, with a standard deviation of
around 0.96*newstep, and a FWHM of about 2.3*newstep.
gaussian
A truncated gaussian window. This has a smaller PSF
than the blackman window, however gaussians never fall
to zero, so either significant ringing will be seen due
to truncation of the gaussian, or low-level aliasing
will occur, depending on the spatial frequency coverage
of the image beyond the folding frequency. It can be a
good choice for images that only contain smoothly
varying features. It is equivalent to a convolution of
the image with both an airy profile and a gaussian of
standard deviation 0.724*newstep (FWHM 1.704*newstep).
rectangle
This window simply zeros all spatial frequencies above
the highest that can be correctly sampled by the new
pixel size. This gives the best resolution of any of
the windows, but this is marred by the strong sidelobes
of the resulting airy-profile, especially near bright
point sources and CCD saturation lines.<|endoftext|> |
575f30a67aa9881120c8d95036e6536deb747a9d2f00addc3d83b2cdf0498aa1 | def estimate_coordinate_offset(self, ref, nsigma=1.0):
'Given a reference image of the sky that is expected to\n overlap with the current image, attempt to fit for any offset\n between the sky coordinate system of the current image and\n that of the reference image. The returned value is designed to\n be added to the coordinate reference pixel values of self.wcs.\n\n This function performs the following steps:\n\n 1. The align_with_image() method is called to resample the\n reference image onto the same coordinate grid as the\n current image.\n\n 2. The two images are then cross-correlated, after zeroing all\n background values in the images below nsigma standard\n deviations above the mean.\n\n 3. The peak in the auto-correlation image is found and its\n sub-pixel position is estimated by a simple quadratic\n interpolation. This position, relative to the center of the\n auto-correlation image, gives the average position offset\n between similar features in the two images.\n\n Parameters\n ----------\n ref : `~mpdaf.obj.Image`\n The image of the sky that is to be used as the coordinate\n reference. The sky coverage of this image should overlap\n with that of self. Ideally the resolution of this image\n should be at least as good as the resolution of self.\n nsigma : float\n Only values that exceed this many standard deviations\n above the mean of each image will be used.\n\n Returns\n -------\n out : float,float\n The pixel offsets that would need to be added to the\n coordinate reference pixel values, crpix2 and crpix1, of\n self.wcs to make the features in self line up with those\n in the reference image.\n\n '
ref = ref.align_with_image(self)
mask = np.ma.mask_or(self._mask, ref._mask)
sdata = np.ma.array(data=self._data, mask=mask)
rdata = np.ma.array(data=ref._data, mask=mask)
sdata = np.ma.filled(sdata, np.ma.median(sdata))
rdata = np.ma.filled(rdata, np.ma.median(rdata))
mask = (sdata < (sdata.mean() + (nsigma * sdata.std())))
sdata[mask] = 0
mask = (rdata < (rdata.mean() + (nsigma * rdata.std())))
rdata[mask] = 0
sdata = np.log((1.0 + sdata))
rdata = np.log((1.0 + rdata))
cc = signal.fftconvolve(sdata, rdata[(::(- 1), ::(- 1))], mode='same')
(py, px) = np.unravel_index(np.argmax(cc), cc.shape)
py2 = ((py - 1) + _find_quadratic_peak(cc[((py - 1):(py + 2), px)]))
px2 = ((px - 1) + _find_quadratic_peak(cc[(py, (px - 1):(px + 2))]))
dy = (py2 - float((cc.shape[0] // 2)))
dx = (px2 - float((cc.shape[1] // 2)))
return (dy, dx) | Given a reference image of the sky that is expected to
overlap with the current image, attempt to fit for any offset
between the sky coordinate system of the current image and
that of the reference image. The returned value is designed to
be added to the coordinate reference pixel values of self.wcs.
This function performs the following steps:
1. The align_with_image() method is called to resample the
reference image onto the same coordinate grid as the
current image.
2. The two images are then cross-correlated, after zeroing all
background values in the images below nsigma standard
deviations above the mean.
3. The peak in the auto-correlation image is found and its
sub-pixel position is estimated by a simple quadratic
interpolation. This position, relative to the center of the
auto-correlation image, gives the average position offset
between similar features in the two images.
Parameters
----------
ref : `~mpdaf.obj.Image`
The image of the sky that is to be used as the coordinate
reference. The sky coverage of this image should overlap
with that of self. Ideally the resolution of this image
should be at least as good as the resolution of self.
nsigma : float
Only values that exceed this many standard deviations
above the mean of each image will be used.
Returns
-------
out : float,float
The pixel offsets that would need to be added to the
coordinate reference pixel values, crpix2 and crpix1, of
self.wcs to make the features in self line up with those
in the reference image. | lib/mpdaf/obj/image.py | estimate_coordinate_offset | musevlt/mpdaf | 4 | python | def estimate_coordinate_offset(self, ref, nsigma=1.0):
'Given a reference image of the sky that is expected to\n overlap with the current image, attempt to fit for any offset\n between the sky coordinate system of the current image and\n that of the reference image. The returned value is designed to\n be added to the coordinate reference pixel values of self.wcs.\n\n This function performs the following steps:\n\n 1. The align_with_image() method is called to resample the\n reference image onto the same coordinate grid as the\n current image.\n\n 2. The two images are then cross-correlated, after zeroing all\n background values in the images below nsigma standard\n deviations above the mean.\n\n 3. The peak in the auto-correlation image is found and its\n sub-pixel position is estimated by a simple quadratic\n interpolation. This position, relative to the center of the\n auto-correlation image, gives the average position offset\n between similar features in the two images.\n\n Parameters\n ----------\n ref : `~mpdaf.obj.Image`\n The image of the sky that is to be used as the coordinate\n reference. The sky coverage of this image should overlap\n with that of self. Ideally the resolution of this image\n should be at least as good as the resolution of self.\n nsigma : float\n Only values that exceed this many standard deviations\n above the mean of each image will be used.\n\n Returns\n -------\n out : float,float\n The pixel offsets that would need to be added to the\n coordinate reference pixel values, crpix2 and crpix1, of\n self.wcs to make the features in self line up with those\n in the reference image.\n\n '
ref = ref.align_with_image(self)
mask = np.ma.mask_or(self._mask, ref._mask)
sdata = np.ma.array(data=self._data, mask=mask)
rdata = np.ma.array(data=ref._data, mask=mask)
sdata = np.ma.filled(sdata, np.ma.median(sdata))
rdata = np.ma.filled(rdata, np.ma.median(rdata))
mask = (sdata < (sdata.mean() + (nsigma * sdata.std())))
sdata[mask] = 0
mask = (rdata < (rdata.mean() + (nsigma * rdata.std())))
rdata[mask] = 0
sdata = np.log((1.0 + sdata))
rdata = np.log((1.0 + rdata))
cc = signal.fftconvolve(sdata, rdata[(::(- 1), ::(- 1))], mode='same')
(py, px) = np.unravel_index(np.argmax(cc), cc.shape)
py2 = ((py - 1) + _find_quadratic_peak(cc[((py - 1):(py + 2), px)]))
px2 = ((px - 1) + _find_quadratic_peak(cc[(py, (px - 1):(px + 2))]))
dy = (py2 - float((cc.shape[0] // 2)))
dx = (px2 - float((cc.shape[1] // 2)))
return (dy, dx) | def estimate_coordinate_offset(self, ref, nsigma=1.0):
'Given a reference image of the sky that is expected to\n overlap with the current image, attempt to fit for any offset\n between the sky coordinate system of the current image and\n that of the reference image. The returned value is designed to\n be added to the coordinate reference pixel values of self.wcs.\n\n This function performs the following steps:\n\n 1. The align_with_image() method is called to resample the\n reference image onto the same coordinate grid as the\n current image.\n\n 2. The two images are then cross-correlated, after zeroing all\n background values in the images below nsigma standard\n deviations above the mean.\n\n 3. The peak in the auto-correlation image is found and its\n sub-pixel position is estimated by a simple quadratic\n interpolation. This position, relative to the center of the\n auto-correlation image, gives the average position offset\n between similar features in the two images.\n\n Parameters\n ----------\n ref : `~mpdaf.obj.Image`\n The image of the sky that is to be used as the coordinate\n reference. The sky coverage of this image should overlap\n with that of self. Ideally the resolution of this image\n should be at least as good as the resolution of self.\n nsigma : float\n Only values that exceed this many standard deviations\n above the mean of each image will be used.\n\n Returns\n -------\n out : float,float\n The pixel offsets that would need to be added to the\n coordinate reference pixel values, crpix2 and crpix1, of\n self.wcs to make the features in self line up with those\n in the reference image.\n\n '
ref = ref.align_with_image(self)
mask = np.ma.mask_or(self._mask, ref._mask)
sdata = np.ma.array(data=self._data, mask=mask)
rdata = np.ma.array(data=ref._data, mask=mask)
sdata = np.ma.filled(sdata, np.ma.median(sdata))
rdata = np.ma.filled(rdata, np.ma.median(rdata))
mask = (sdata < (sdata.mean() + (nsigma * sdata.std())))
sdata[mask] = 0
mask = (rdata < (rdata.mean() + (nsigma * rdata.std())))
rdata[mask] = 0
sdata = np.log((1.0 + sdata))
rdata = np.log((1.0 + rdata))
cc = signal.fftconvolve(sdata, rdata[(::(- 1), ::(- 1))], mode='same')
(py, px) = np.unravel_index(np.argmax(cc), cc.shape)
py2 = ((py - 1) + _find_quadratic_peak(cc[((py - 1):(py + 2), px)]))
px2 = ((px - 1) + _find_quadratic_peak(cc[(py, (px - 1):(px + 2))]))
dy = (py2 - float((cc.shape[0] // 2)))
dx = (px2 - float((cc.shape[1] // 2)))
return (dy, dx)<|docstring|>Given a reference image of the sky that is expected to
overlap with the current image, attempt to fit for any offset
between the sky coordinate system of the current image and
that of the reference image. The returned value is designed to
be added to the coordinate reference pixel values of self.wcs.
This function performs the following steps:
1. The align_with_image() method is called to resample the
reference image onto the same coordinate grid as the
current image.
2. The two images are then cross-correlated, after zeroing all
background values in the images below nsigma standard
deviations above the mean.
3. The peak in the auto-correlation image is found and its
sub-pixel position is estimated by a simple quadratic
interpolation. This position, relative to the center of the
auto-correlation image, gives the average position offset
between similar features in the two images.
Parameters
----------
ref : `~mpdaf.obj.Image`
The image of the sky that is to be used as the coordinate
reference. The sky coverage of this image should overlap
with that of self. Ideally the resolution of this image
should be at least as good as the resolution of self.
nsigma : float
Only values that exceed this many standard deviations
above the mean of each image will be used.
Returns
-------
out : float,float
The pixel offsets that would need to be added to the
coordinate reference pixel values, crpix2 and crpix1, of
self.wcs to make the features in self line up with those
in the reference image.<|endoftext|> |
20c84b5f48fa5948a045d492c1cffdaae48ed6aa47a30ae2ddf2df8d47bb07ad | def adjust_coordinates(self, ref, nsigma=1.0, inplace=False):
'Given a reference image of the sky that is expected to\n overlap with the current image, attempt to fit for any offset\n between the sky coordinate system of the current image and\n that of the reference image. Apply this offset to the\n coordinates of the current image, to bring it into line with\n the reference image.\n\n This function calls self.estimate_coordinate_offset() to\n fit for the offset between the coordinate systems of the\n two images, then adjusts the coordinate reference pixel of\n the current image to bring its coordinates into line with\n those of the reference image.\n\n Parameters\n ----------\n ref : `~mpdaf.obj.Image`\n The image of the sky that is to be used as the coordinate\n reference. The sky coverage of this image should overlap\n with that of self. Ideally the resolution of this image\n should be at least as good as the resolution of self.\n nsigma : float\n Only values that exceed this many standard deviations\n above the mean of each image will be used.\n inplace : bool\n If False, return a shifted copy of the image (the default).\n If True, shift the original image in-place, and return that.\n\n Returns\n -------\n out : `~mpdaf.obj.Image`\n A version of self in which the sky coordinates have been\n shifted to match those of the reference image.\n\n '
out = (self if inplace else self.copy())
(dy, dx) = out.estimate_coordinate_offset(ref, nsigma)
out.wcs.set_crpix1((out.wcs.get_crpix1() + dx))
out.wcs.set_crpix2((out.wcs.get_crpix2() + dy))
units = (u.arcsec if (self.wcs.unit is u.deg) else self.wcs.unit)
offset = (np.array([(- dy), (- dx)]) * self.wcs.get_axis_increments(units))
self._logger.info(('Shifted the coordinates by dy=%.3g dx=%.3g %s' % (offset[0], offset[1], units)))
return out | Given a reference image of the sky that is expected to
overlap with the current image, attempt to fit for any offset
between the sky coordinate system of the current image and
that of the reference image. Apply this offset to the
coordinates of the current image, to bring it into line with
the reference image.
This function calls self.estimate_coordinate_offset() to
fit for the offset between the coordinate systems of the
two images, then adjusts the coordinate reference pixel of
the current image to bring its coordinates into line with
those of the reference image.
Parameters
----------
ref : `~mpdaf.obj.Image`
The image of the sky that is to be used as the coordinate
reference. The sky coverage of this image should overlap
with that of self. Ideally the resolution of this image
should be at least as good as the resolution of self.
nsigma : float
Only values that exceed this many standard deviations
above the mean of each image will be used.
inplace : bool
If False, return a shifted copy of the image (the default).
If True, shift the original image in-place, and return that.
Returns
-------
out : `~mpdaf.obj.Image`
A version of self in which the sky coordinates have been
shifted to match those of the reference image. | lib/mpdaf/obj/image.py | adjust_coordinates | musevlt/mpdaf | 4 | python | def adjust_coordinates(self, ref, nsigma=1.0, inplace=False):
'Given a reference image of the sky that is expected to\n overlap with the current image, attempt to fit for any offset\n between the sky coordinate system of the current image and\n that of the reference image. Apply this offset to the\n coordinates of the current image, to bring it into line with\n the reference image.\n\n This function calls self.estimate_coordinate_offset() to\n fit for the offset between the coordinate systems of the\n two images, then adjusts the coordinate reference pixel of\n the current image to bring its coordinates into line with\n those of the reference image.\n\n Parameters\n ----------\n ref : `~mpdaf.obj.Image`\n The image of the sky that is to be used as the coordinate\n reference. The sky coverage of this image should overlap\n with that of self. Ideally the resolution of this image\n should be at least as good as the resolution of self.\n nsigma : float\n Only values that exceed this many standard deviations\n above the mean of each image will be used.\n inplace : bool\n If False, return a shifted copy of the image (the default).\n If True, shift the original image in-place, and return that.\n\n Returns\n -------\n out : `~mpdaf.obj.Image`\n A version of self in which the sky coordinates have been\n shifted to match those of the reference image.\n\n '
out = (self if inplace else self.copy())
(dy, dx) = out.estimate_coordinate_offset(ref, nsigma)
out.wcs.set_crpix1((out.wcs.get_crpix1() + dx))
out.wcs.set_crpix2((out.wcs.get_crpix2() + dy))
units = (u.arcsec if (self.wcs.unit is u.deg) else self.wcs.unit)
offset = (np.array([(- dy), (- dx)]) * self.wcs.get_axis_increments(units))
self._logger.info(('Shifted the coordinates by dy=%.3g dx=%.3g %s' % (offset[0], offset[1], units)))
return out | def adjust_coordinates(self, ref, nsigma=1.0, inplace=False):
'Given a reference image of the sky that is expected to\n overlap with the current image, attempt to fit for any offset\n between the sky coordinate system of the current image and\n that of the reference image. Apply this offset to the\n coordinates of the current image, to bring it into line with\n the reference image.\n\n This function calls self.estimate_coordinate_offset() to\n fit for the offset between the coordinate systems of the\n two images, then adjusts the coordinate reference pixel of\n the current image to bring its coordinates into line with\n those of the reference image.\n\n Parameters\n ----------\n ref : `~mpdaf.obj.Image`\n The image of the sky that is to be used as the coordinate\n reference. The sky coverage of this image should overlap\n with that of self. Ideally the resolution of this image\n should be at least as good as the resolution of self.\n nsigma : float\n Only values that exceed this many standard deviations\n above the mean of each image will be used.\n inplace : bool\n If False, return a shifted copy of the image (the default).\n If True, shift the original image in-place, and return that.\n\n Returns\n -------\n out : `~mpdaf.obj.Image`\n A version of self in which the sky coordinates have been\n shifted to match those of the reference image.\n\n '
out = (self if inplace else self.copy())
(dy, dx) = out.estimate_coordinate_offset(ref, nsigma)
out.wcs.set_crpix1((out.wcs.get_crpix1() + dx))
out.wcs.set_crpix2((out.wcs.get_crpix2() + dy))
units = (u.arcsec if (self.wcs.unit is u.deg) else self.wcs.unit)
offset = (np.array([(- dy), (- dx)]) * self.wcs.get_axis_increments(units))
self._logger.info(('Shifted the coordinates by dy=%.3g dx=%.3g %s' % (offset[0], offset[1], units)))
return out<|docstring|>Given a reference image of the sky that is expected to
overlap with the current image, attempt to fit for any offset
between the sky coordinate system of the current image and
that of the reference image. Apply this offset to the
coordinates of the current image, to bring it into line with
the reference image.
This function calls self.estimate_coordinate_offset() to
fit for the offset between the coordinate systems of the
two images, then adjusts the coordinate reference pixel of
the current image to bring its coordinates into line with
those of the reference image.
Parameters
----------
ref : `~mpdaf.obj.Image`
The image of the sky that is to be used as the coordinate
reference. The sky coverage of this image should overlap
with that of self. Ideally the resolution of this image
should be at least as good as the resolution of self.
nsigma : float
Only values that exceed this many standard deviations
above the mean of each image will be used.
inplace : bool
If False, return a shifted copy of the image (the default).
If True, shift the original image in-place, and return that.
Returns
-------
out : `~mpdaf.obj.Image`
A version of self in which the sky coordinates have been
shifted to match those of the reference image.<|endoftext|> |
dff07a790efe5376d65a45a28195b7535ebcb14de866365f81957090f3565d12 | def gaussian_filter(self, sigma=3, interp='no', inplace=False):
"Return an image containing Gaussian filter applied to the current\n image.\n\n Uses `scipy.ndimage.gaussian_filter`.\n\n Parameters\n ----------\n sigma : float\n Standard deviation for Gaussian kernel\n interp : 'no' | 'linear' | 'spline'\n if 'no', data median value replaced masked values.\n if 'linear', linear interpolation of the masked values.\n if 'spline', spline interpolation of the masked values.\n inplace : bool\n If False, return a filtered copy of the image (the default).\n If True, filter the original image in-place, and return that.\n\n Returns\n -------\n out : `~mpdaf.obj.Image`\n\n "
out = (self if inplace else self.copy())
data = out._prepare_data(interp)
out._data = ndi.gaussian_filter(data, sigma)
if (out._var is not None):
out._var = ndi.gaussian_filter(out._var, sigma)
return out | Return an image containing Gaussian filter applied to the current
image.
Uses `scipy.ndimage.gaussian_filter`.
Parameters
----------
sigma : float
Standard deviation for Gaussian kernel
interp : 'no' | 'linear' | 'spline'
if 'no', data median value replaced masked values.
if 'linear', linear interpolation of the masked values.
if 'spline', spline interpolation of the masked values.
inplace : bool
If False, return a filtered copy of the image (the default).
If True, filter the original image in-place, and return that.
Returns
-------
out : `~mpdaf.obj.Image` | lib/mpdaf/obj/image.py | gaussian_filter | musevlt/mpdaf | 4 | python | def gaussian_filter(self, sigma=3, interp='no', inplace=False):
"Return an image containing Gaussian filter applied to the current\n image.\n\n Uses `scipy.ndimage.gaussian_filter`.\n\n Parameters\n ----------\n sigma : float\n Standard deviation for Gaussian kernel\n interp : 'no' | 'linear' | 'spline'\n if 'no', data median value replaced masked values.\n if 'linear', linear interpolation of the masked values.\n if 'spline', spline interpolation of the masked values.\n inplace : bool\n If False, return a filtered copy of the image (the default).\n If True, filter the original image in-place, and return that.\n\n Returns\n -------\n out : `~mpdaf.obj.Image`\n\n "
out = (self if inplace else self.copy())
data = out._prepare_data(interp)
out._data = ndi.gaussian_filter(data, sigma)
if (out._var is not None):
out._var = ndi.gaussian_filter(out._var, sigma)
return out | def gaussian_filter(self, sigma=3, interp='no', inplace=False):
"Return an image containing Gaussian filter applied to the current\n image.\n\n Uses `scipy.ndimage.gaussian_filter`.\n\n Parameters\n ----------\n sigma : float\n Standard deviation for Gaussian kernel\n interp : 'no' | 'linear' | 'spline'\n if 'no', data median value replaced masked values.\n if 'linear', linear interpolation of the masked values.\n if 'spline', spline interpolation of the masked values.\n inplace : bool\n If False, return a filtered copy of the image (the default).\n If True, filter the original image in-place, and return that.\n\n Returns\n -------\n out : `~mpdaf.obj.Image`\n\n "
out = (self if inplace else self.copy())
data = out._prepare_data(interp)
out._data = ndi.gaussian_filter(data, sigma)
if (out._var is not None):
out._var = ndi.gaussian_filter(out._var, sigma)
return out<|docstring|>Return an image containing Gaussian filter applied to the current
image.
Uses `scipy.ndimage.gaussian_filter`.
Parameters
----------
sigma : float
Standard deviation for Gaussian kernel
interp : 'no' | 'linear' | 'spline'
if 'no', data median value replaced masked values.
if 'linear', linear interpolation of the masked values.
if 'spline', spline interpolation of the masked values.
inplace : bool
If False, return a filtered copy of the image (the default).
If True, filter the original image in-place, and return that.
Returns
-------
out : `~mpdaf.obj.Image`<|endoftext|> |
f6f39f01f026190207034053ab627db358ceffadd7a0c04a454d62e53939221f | def segment(self, shape=(2, 2), minsize=20, minpts=None, background=20, interp='no', median=None):
"Segment the image in a number of smaller images.\n\n Returns a list of images. Uses\n `scipy.ndimage.generate_binary_structure`,\n `scipy.ndimage.grey_dilation`, `scipy.ndimage.measurements.label`, and\n `scipy.ndimage.measurements.find_objects`.\n\n Parameters\n ----------\n shape : (int,int)\n Shape used for connectivity.\n minsize : int\n Minimmum size of the images.\n minpts : int\n Minimmum number of points in the object.\n background : float\n Under this value, flux is considered as background.\n interp : 'no' | 'linear' | 'spline'\n if 'no', data median value replaced masked values.\n if 'linear', linear interpolation of the masked values.\n if 'spline', spline interpolation of the masked values.\n median : (int,int) or None\n If not None (default), size of the window to apply a median filter\n on the image.\n\n Returns\n -------\n out : list of `Image`\n\n "
data = self._prepare_data(interp)
if (median is not None):
data = np.ma.array(ndi.median_filter(data, median), mask=self._mask)
expanded = ndi.grey_dilation(data, (minsize, minsize))
expanded[(expanded < background)] = 0
structure = ndi.generate_binary_structure(shape[0], shape[1])
(labels, nlabels) = ndi.measurements.label(expanded, structure)
slices = ndi.measurements.find_objects(labels)
return [self[slices[i]] for i in range(nlabels) if ((minpts is None) or (len(data[(labels == (i + 1))]) >= minpts))] | Segment the image in a number of smaller images.
Returns a list of images. Uses
`scipy.ndimage.generate_binary_structure`,
`scipy.ndimage.grey_dilation`, `scipy.ndimage.measurements.label`, and
`scipy.ndimage.measurements.find_objects`.
Parameters
----------
shape : (int,int)
Shape used for connectivity.
minsize : int
Minimmum size of the images.
minpts : int
Minimmum number of points in the object.
background : float
Under this value, flux is considered as background.
interp : 'no' | 'linear' | 'spline'
if 'no', data median value replaced masked values.
if 'linear', linear interpolation of the masked values.
if 'spline', spline interpolation of the masked values.
median : (int,int) or None
If not None (default), size of the window to apply a median filter
on the image.
Returns
-------
out : list of `Image` | lib/mpdaf/obj/image.py | segment | musevlt/mpdaf | 4 | python | def segment(self, shape=(2, 2), minsize=20, minpts=None, background=20, interp='no', median=None):
"Segment the image in a number of smaller images.\n\n Returns a list of images. Uses\n `scipy.ndimage.generate_binary_structure`,\n `scipy.ndimage.grey_dilation`, `scipy.ndimage.measurements.label`, and\n `scipy.ndimage.measurements.find_objects`.\n\n Parameters\n ----------\n shape : (int,int)\n Shape used for connectivity.\n minsize : int\n Minimmum size of the images.\n minpts : int\n Minimmum number of points in the object.\n background : float\n Under this value, flux is considered as background.\n interp : 'no' | 'linear' | 'spline'\n if 'no', data median value replaced masked values.\n if 'linear', linear interpolation of the masked values.\n if 'spline', spline interpolation of the masked values.\n median : (int,int) or None\n If not None (default), size of the window to apply a median filter\n on the image.\n\n Returns\n -------\n out : list of `Image`\n\n "
data = self._prepare_data(interp)
if (median is not None):
data = np.ma.array(ndi.median_filter(data, median), mask=self._mask)
expanded = ndi.grey_dilation(data, (minsize, minsize))
expanded[(expanded < background)] = 0
structure = ndi.generate_binary_structure(shape[0], shape[1])
(labels, nlabels) = ndi.measurements.label(expanded, structure)
slices = ndi.measurements.find_objects(labels)
return [self[slices[i]] for i in range(nlabels) if ((minpts is None) or (len(data[(labels == (i + 1))]) >= minpts))] | def segment(self, shape=(2, 2), minsize=20, minpts=None, background=20, interp='no', median=None):
"Segment the image in a number of smaller images.\n\n Returns a list of images. Uses\n `scipy.ndimage.generate_binary_structure`,\n `scipy.ndimage.grey_dilation`, `scipy.ndimage.measurements.label`, and\n `scipy.ndimage.measurements.find_objects`.\n\n Parameters\n ----------\n shape : (int,int)\n Shape used for connectivity.\n minsize : int\n Minimmum size of the images.\n minpts : int\n Minimmum number of points in the object.\n background : float\n Under this value, flux is considered as background.\n interp : 'no' | 'linear' | 'spline'\n if 'no', data median value replaced masked values.\n if 'linear', linear interpolation of the masked values.\n if 'spline', spline interpolation of the masked values.\n median : (int,int) or None\n If not None (default), size of the window to apply a median filter\n on the image.\n\n Returns\n -------\n out : list of `Image`\n\n "
data = self._prepare_data(interp)
if (median is not None):
data = np.ma.array(ndi.median_filter(data, median), mask=self._mask)
expanded = ndi.grey_dilation(data, (minsize, minsize))
expanded[(expanded < background)] = 0
structure = ndi.generate_binary_structure(shape[0], shape[1])
(labels, nlabels) = ndi.measurements.label(expanded, structure)
slices = ndi.measurements.find_objects(labels)
return [self[slices[i]] for i in range(nlabels) if ((minpts is None) or (len(data[(labels == (i + 1))]) >= minpts))]<|docstring|>Segment the image in a number of smaller images.
Returns a list of images. Uses
`scipy.ndimage.generate_binary_structure`,
`scipy.ndimage.grey_dilation`, `scipy.ndimage.measurements.label`, and
`scipy.ndimage.measurements.find_objects`.
Parameters
----------
shape : (int,int)
Shape used for connectivity.
minsize : int
Minimmum size of the images.
minpts : int
Minimmum number of points in the object.
background : float
Under this value, flux is considered as background.
interp : 'no' | 'linear' | 'spline'
if 'no', data median value replaced masked values.
if 'linear', linear interpolation of the masked values.
if 'spline', spline interpolation of the masked values.
median : (int,int) or None
If not None (default), size of the window to apply a median filter
on the image.
Returns
-------
out : list of `Image`<|endoftext|> |
2a1fd1062280f5f3e95e60be8547cd66bafdac2c11bed39d604ed177341ab53b | def add_gaussian_noise(self, sigma, interp='no'):
"Add Gaussian noise to image in place.\n\n Parameters\n ----------\n sigma : float\n Standard deviation.\n interp : 'no' | 'linear' | 'spline'\n if 'no', data median value replaced masked values.\n if 'linear', linear interpolation of the masked values.\n if 'spline', spline interpolation of the masked values.\n "
data = self._prepare_data(interp)
self._data = np.random.normal(data, sigma)
if (self._var is None):
self._var = ((np.ones(self.shape) * sigma) * sigma)
else:
self._var *= (sigma * sigma) | Add Gaussian noise to image in place.
Parameters
----------
sigma : float
Standard deviation.
interp : 'no' | 'linear' | 'spline'
if 'no', data median value replaced masked values.
if 'linear', linear interpolation of the masked values.
if 'spline', spline interpolation of the masked values. | lib/mpdaf/obj/image.py | add_gaussian_noise | musevlt/mpdaf | 4 | python | def add_gaussian_noise(self, sigma, interp='no'):
"Add Gaussian noise to image in place.\n\n Parameters\n ----------\n sigma : float\n Standard deviation.\n interp : 'no' | 'linear' | 'spline'\n if 'no', data median value replaced masked values.\n if 'linear', linear interpolation of the masked values.\n if 'spline', spline interpolation of the masked values.\n "
data = self._prepare_data(interp)
self._data = np.random.normal(data, sigma)
if (self._var is None):
self._var = ((np.ones(self.shape) * sigma) * sigma)
else:
self._var *= (sigma * sigma) | def add_gaussian_noise(self, sigma, interp='no'):
"Add Gaussian noise to image in place.\n\n Parameters\n ----------\n sigma : float\n Standard deviation.\n interp : 'no' | 'linear' | 'spline'\n if 'no', data median value replaced masked values.\n if 'linear', linear interpolation of the masked values.\n if 'spline', spline interpolation of the masked values.\n "
data = self._prepare_data(interp)
self._data = np.random.normal(data, sigma)
if (self._var is None):
self._var = ((np.ones(self.shape) * sigma) * sigma)
else:
self._var *= (sigma * sigma)<|docstring|>Add Gaussian noise to image in place.
Parameters
----------
sigma : float
Standard deviation.
interp : 'no' | 'linear' | 'spline'
if 'no', data median value replaced masked values.
if 'linear', linear interpolation of the masked values.
if 'spline', spline interpolation of the masked values.<|endoftext|> |
a0d6b11c1b527ff1f524dafd545bd27b00a30604fd2d6575934adba4c72a44bd | def inside(self, coord, unit=u.deg):
'Return True if coord is inside image.\n\n Parameters\n ----------\n coord : (float,float)\n coordinates (y,x).\n unit : `astropy.units.Unit`\n Type of the coordinates (degrees by default)\n\n Returns\n -------\n out : bool\n '
if (unit is not None):
pixcrd = self.wcs.sky2pix([coord[0], coord[1]], unit=unit)[0]
else:
pixcrd = coord
if ((pixcrd >= ((- self.wcs.get_step(unit=unit)) / 100)).all() and (pixcrd < (self.shape + (self.wcs.get_step(unit=unit) / 100))).all()):
return True
else:
return False | Return True if coord is inside image.
Parameters
----------
coord : (float,float)
coordinates (y,x).
unit : `astropy.units.Unit`
Type of the coordinates (degrees by default)
Returns
-------
out : bool | lib/mpdaf/obj/image.py | inside | musevlt/mpdaf | 4 | python | def inside(self, coord, unit=u.deg):
'Return True if coord is inside image.\n\n Parameters\n ----------\n coord : (float,float)\n coordinates (y,x).\n unit : `astropy.units.Unit`\n Type of the coordinates (degrees by default)\n\n Returns\n -------\n out : bool\n '
if (unit is not None):
pixcrd = self.wcs.sky2pix([coord[0], coord[1]], unit=unit)[0]
else:
pixcrd = coord
if ((pixcrd >= ((- self.wcs.get_step(unit=unit)) / 100)).all() and (pixcrd < (self.shape + (self.wcs.get_step(unit=unit) / 100))).all()):
return True
else:
return False | def inside(self, coord, unit=u.deg):
'Return True if coord is inside image.\n\n Parameters\n ----------\n coord : (float,float)\n coordinates (y,x).\n unit : `astropy.units.Unit`\n Type of the coordinates (degrees by default)\n\n Returns\n -------\n out : bool\n '
if (unit is not None):
pixcrd = self.wcs.sky2pix([coord[0], coord[1]], unit=unit)[0]
else:
pixcrd = coord
if ((pixcrd >= ((- self.wcs.get_step(unit=unit)) / 100)).all() and (pixcrd < (self.shape + (self.wcs.get_step(unit=unit) / 100))).all()):
return True
else:
return False<|docstring|>Return True if coord is inside image.
Parameters
----------
coord : (float,float)
coordinates (y,x).
unit : `astropy.units.Unit`
Type of the coordinates (degrees by default)
Returns
-------
out : bool<|endoftext|> |
ee8babfb87dd68c7802ff2c8ff25618aa08c87936258c574d795428e1ada46b1 | def convolve(self, other, inplace=False):
'Convolve an Image with a 2D array or another Image, using the\n discrete convolution equation.\n\n This function, which uses the discrete convolution equation, is\n usually slower than Image.fftconvolve(). However it can be faster when\n other.data.size is small, and it always uses much less memory, so it\n is sometimes the only practical choice.\n\n Masked values in self.data and self.var are replaced with zeros before\n the convolution is performed, but they are masked again after the\n convolution.\n\n If self.var exists, the variances are propagated using the equation:\n\n result.var = self.var (*) other**2\n\n where (*) indicates convolution. This equation can be derived by\n applying the usual rules of error-propagation to the discrete\n convolution equation.\n\n The speed of this function scales as O(Nd x No) where\n Nd=self.data.size and No=other.data.size.\n\n Uses `scipy.signal.convolve`.\n\n Parameters\n ----------\n other : Image or numpy.ndarray\n The 2D array with which to convolve the image in self.data.\n This array can be an image of the same size as self, or it\n can be a smaller image, such as a small gaussian to use to\n smooth the larger image.\n\n When ``other`` contains a symmetric filtering function, such\n as a two-dimensional gaussian, the center of the function\n should be placed at the center of pixel:\n\n ``(other.shape - 1) // 2``\n\n If other is an MPDAF Image object, note that only its data\n array is used. Masked values in this array are treated\n as zero. Any variances found in other.var are ignored.\n inplace : bool\n If False (the default), return the results in a new Image.\n If True, record the result in self and return that.\n\n Returns\n -------\n out : `~mpdaf.obj.Image`\n\n '
return self._convolve(signal.convolve, other=other, inplace=inplace) | Convolve an Image with a 2D array or another Image, using the
discrete convolution equation.
This function, which uses the discrete convolution equation, is
usually slower than Image.fftconvolve(). However it can be faster when
other.data.size is small, and it always uses much less memory, so it
is sometimes the only practical choice.
Masked values in self.data and self.var are replaced with zeros before
the convolution is performed, but they are masked again after the
convolution.
If self.var exists, the variances are propagated using the equation:
result.var = self.var (*) other**2
where (*) indicates convolution. This equation can be derived by
applying the usual rules of error-propagation to the discrete
convolution equation.
The speed of this function scales as O(Nd x No) where
Nd=self.data.size and No=other.data.size.
Uses `scipy.signal.convolve`.
Parameters
----------
other : Image or numpy.ndarray
The 2D array with which to convolve the image in self.data.
This array can be an image of the same size as self, or it
can be a smaller image, such as a small gaussian to use to
smooth the larger image.
When ``other`` contains a symmetric filtering function, such
as a two-dimensional gaussian, the center of the function
should be placed at the center of pixel:
``(other.shape - 1) // 2``
If other is an MPDAF Image object, note that only its data
array is used. Masked values in this array are treated
as zero. Any variances found in other.var are ignored.
inplace : bool
If False (the default), return the results in a new Image.
If True, record the result in self and return that.
Returns
-------
out : `~mpdaf.obj.Image` | lib/mpdaf/obj/image.py | convolve | musevlt/mpdaf | 4 | python | def convolve(self, other, inplace=False):
'Convolve an Image with a 2D array or another Image, using the\n discrete convolution equation.\n\n This function, which uses the discrete convolution equation, is\n usually slower than Image.fftconvolve(). However it can be faster when\n other.data.size is small, and it always uses much less memory, so it\n is sometimes the only practical choice.\n\n Masked values in self.data and self.var are replaced with zeros before\n the convolution is performed, but they are masked again after the\n convolution.\n\n If self.var exists, the variances are propagated using the equation:\n\n result.var = self.var (*) other**2\n\n where (*) indicates convolution. This equation can be derived by\n applying the usual rules of error-propagation to the discrete\n convolution equation.\n\n The speed of this function scales as O(Nd x No) where\n Nd=self.data.size and No=other.data.size.\n\n Uses `scipy.signal.convolve`.\n\n Parameters\n ----------\n other : Image or numpy.ndarray\n The 2D array with which to convolve the image in self.data.\n This array can be an image of the same size as self, or it\n can be a smaller image, such as a small gaussian to use to\n smooth the larger image.\n\n When ``other`` contains a symmetric filtering function, such\n as a two-dimensional gaussian, the center of the function\n should be placed at the center of pixel:\n\n ``(other.shape - 1) // 2``\n\n If other is an MPDAF Image object, note that only its data\n array is used. Masked values in this array are treated\n as zero. Any variances found in other.var are ignored.\n inplace : bool\n If False (the default), return the results in a new Image.\n If True, record the result in self and return that.\n\n Returns\n -------\n out : `~mpdaf.obj.Image`\n\n '
return self._convolve(signal.convolve, other=other, inplace=inplace) | def convolve(self, other, inplace=False):
'Convolve an Image with a 2D array or another Image, using the\n discrete convolution equation.\n\n This function, which uses the discrete convolution equation, is\n usually slower than Image.fftconvolve(). However it can be faster when\n other.data.size is small, and it always uses much less memory, so it\n is sometimes the only practical choice.\n\n Masked values in self.data and self.var are replaced with zeros before\n the convolution is performed, but they are masked again after the\n convolution.\n\n If self.var exists, the variances are propagated using the equation:\n\n result.var = self.var (*) other**2\n\n where (*) indicates convolution. This equation can be derived by\n applying the usual rules of error-propagation to the discrete\n convolution equation.\n\n The speed of this function scales as O(Nd x No) where\n Nd=self.data.size and No=other.data.size.\n\n Uses `scipy.signal.convolve`.\n\n Parameters\n ----------\n other : Image or numpy.ndarray\n The 2D array with which to convolve the image in self.data.\n This array can be an image of the same size as self, or it\n can be a smaller image, such as a small gaussian to use to\n smooth the larger image.\n\n When ``other`` contains a symmetric filtering function, such\n as a two-dimensional gaussian, the center of the function\n should be placed at the center of pixel:\n\n ``(other.shape - 1) // 2``\n\n If other is an MPDAF Image object, note that only its data\n array is used. Masked values in this array are treated\n as zero. Any variances found in other.var are ignored.\n inplace : bool\n If False (the default), return the results in a new Image.\n If True, record the result in self and return that.\n\n Returns\n -------\n out : `~mpdaf.obj.Image`\n\n '
return self._convolve(signal.convolve, other=other, inplace=inplace)<|docstring|>Convolve an Image with a 2D array or another Image, using the
discrete convolution equation.
This function, which uses the discrete convolution equation, is
usually slower than Image.fftconvolve(). However it can be faster when
other.data.size is small, and it always uses much less memory, so it
is sometimes the only practical choice.
Masked values in self.data and self.var are replaced with zeros before
the convolution is performed, but they are masked again after the
convolution.
If self.var exists, the variances are propagated using the equation:
result.var = self.var (*) other**2
where (*) indicates convolution. This equation can be derived by
applying the usual rules of error-propagation to the discrete
convolution equation.
The speed of this function scales as O(Nd x No) where
Nd=self.data.size and No=other.data.size.
Uses `scipy.signal.convolve`.
Parameters
----------
other : Image or numpy.ndarray
The 2D array with which to convolve the image in self.data.
This array can be an image of the same size as self, or it
can be a smaller image, such as a small gaussian to use to
smooth the larger image.
When ``other`` contains a symmetric filtering function, such
as a two-dimensional gaussian, the center of the function
should be placed at the center of pixel:
``(other.shape - 1) // 2``
If other is an MPDAF Image object, note that only its data
array is used. Masked values in this array are treated
as zero. Any variances found in other.var are ignored.
inplace : bool
If False (the default), return the results in a new Image.
If True, record the result in self and return that.
Returns
-------
out : `~mpdaf.obj.Image`<|endoftext|> |
17ae3c73165da0fa9d2e19e6661291785d21f4b7beeed874ea38af2a8f385436 | def fftconvolve(self, other, inplace=False):
'Convolve an Image with a 2D array or another Image, using the\n Fourier convolution theorem.\n\n This function, which performs the convolution by multiplying the\n Fourier transforms of the two images, is usually much faster than\n Image.convolve(), except when other.data.size is small. However it\n uses much more memory, so Image.convolve() is sometimes a better\n choice.\n\n Masked values in self.data and self.var are replaced with zeros before\n the convolution is performed, but they are masked again after the\n convolution.\n\n If self.var exists, the variances are propagated using the equation:\n\n result.var = self.var (*) other**2\n\n where (*) indicates convolution. This equation can be derived by\n applying the usual rules of error-propagation to the discrete\n convolution equation.\n\n The speed of this function scales as O(Nd x log(Nd)) where\n Nd=self.data.size. It temporarily allocates a pair of arrays that\n have the sum of the shapes of self.shape and other.shape, rounded up\n to a power of two along each axis. This can involve a lot of memory\n being allocated. For this reason, when other.shape is small,\n Image.convolve() may be more efficient than Image.fftconvolve().\n\n Uses `scipy.signal.fftconvolve`.\n\n Parameters\n ----------\n other : Image or numpy.ndarray\n The 2D array with which to convolve the image in self.data. This\n array can be an image of the same size as self, or it can be a\n smaller image, such as a small 2D gaussian to use to smooth the\n larger image.\n\n When ``other`` contains a symmetric filtering function, such as a\n two-dimensional gaussian, the center of the function should be\n placed at the center of pixel:\n\n ``(other.shape - 1) // 2``\n\n If other is an MPDAF Image object, note that only its data array\n is used. Masked values in this array are treated as zero. Any\n variances found in other.var are ignored.\n inplace : bool\n If False (the default), return the results in a new Image.\n If True, record the result in self and return that.\n\n Returns\n -------\n out : `~mpdaf.obj.Image`\n\n '
return self._convolve(signal.fftconvolve, other=other, inplace=inplace) | Convolve an Image with a 2D array or another Image, using the
Fourier convolution theorem.
This function, which performs the convolution by multiplying the
Fourier transforms of the two images, is usually much faster than
Image.convolve(), except when other.data.size is small. However it
uses much more memory, so Image.convolve() is sometimes a better
choice.
Masked values in self.data and self.var are replaced with zeros before
the convolution is performed, but they are masked again after the
convolution.
If self.var exists, the variances are propagated using the equation:
result.var = self.var (*) other**2
where (*) indicates convolution. This equation can be derived by
applying the usual rules of error-propagation to the discrete
convolution equation.
The speed of this function scales as O(Nd x log(Nd)) where
Nd=self.data.size. It temporarily allocates a pair of arrays that
have the sum of the shapes of self.shape and other.shape, rounded up
to a power of two along each axis. This can involve a lot of memory
being allocated. For this reason, when other.shape is small,
Image.convolve() may be more efficient than Image.fftconvolve().
Uses `scipy.signal.fftconvolve`.
Parameters
----------
other : Image or numpy.ndarray
The 2D array with which to convolve the image in self.data. This
array can be an image of the same size as self, or it can be a
smaller image, such as a small 2D gaussian to use to smooth the
larger image.
When ``other`` contains a symmetric filtering function, such as a
two-dimensional gaussian, the center of the function should be
placed at the center of pixel:
``(other.shape - 1) // 2``
If other is an MPDAF Image object, note that only its data array
is used. Masked values in this array are treated as zero. Any
variances found in other.var are ignored.
inplace : bool
If False (the default), return the results in a new Image.
If True, record the result in self and return that.
Returns
-------
out : `~mpdaf.obj.Image` | lib/mpdaf/obj/image.py | fftconvolve | musevlt/mpdaf | 4 | python | def fftconvolve(self, other, inplace=False):
'Convolve an Image with a 2D array or another Image, using the\n Fourier convolution theorem.\n\n This function, which performs the convolution by multiplying the\n Fourier transforms of the two images, is usually much faster than\n Image.convolve(), except when other.data.size is small. However it\n uses much more memory, so Image.convolve() is sometimes a better\n choice.\n\n Masked values in self.data and self.var are replaced with zeros before\n the convolution is performed, but they are masked again after the\n convolution.\n\n If self.var exists, the variances are propagated using the equation:\n\n result.var = self.var (*) other**2\n\n where (*) indicates convolution. This equation can be derived by\n applying the usual rules of error-propagation to the discrete\n convolution equation.\n\n The speed of this function scales as O(Nd x log(Nd)) where\n Nd=self.data.size. It temporarily allocates a pair of arrays that\n have the sum of the shapes of self.shape and other.shape, rounded up\n to a power of two along each axis. This can involve a lot of memory\n being allocated. For this reason, when other.shape is small,\n Image.convolve() may be more efficient than Image.fftconvolve().\n\n Uses `scipy.signal.fftconvolve`.\n\n Parameters\n ----------\n other : Image or numpy.ndarray\n The 2D array with which to convolve the image in self.data. This\n array can be an image of the same size as self, or it can be a\n smaller image, such as a small 2D gaussian to use to smooth the\n larger image.\n\n When ``other`` contains a symmetric filtering function, such as a\n two-dimensional gaussian, the center of the function should be\n placed at the center of pixel:\n\n ``(other.shape - 1) // 2``\n\n If other is an MPDAF Image object, note that only its data array\n is used. Masked values in this array are treated as zero. Any\n variances found in other.var are ignored.\n inplace : bool\n If False (the default), return the results in a new Image.\n If True, record the result in self and return that.\n\n Returns\n -------\n out : `~mpdaf.obj.Image`\n\n '
return self._convolve(signal.fftconvolve, other=other, inplace=inplace) | def fftconvolve(self, other, inplace=False):
'Convolve an Image with a 2D array or another Image, using the\n Fourier convolution theorem.\n\n This function, which performs the convolution by multiplying the\n Fourier transforms of the two images, is usually much faster than\n Image.convolve(), except when other.data.size is small. However it\n uses much more memory, so Image.convolve() is sometimes a better\n choice.\n\n Masked values in self.data and self.var are replaced with zeros before\n the convolution is performed, but they are masked again after the\n convolution.\n\n If self.var exists, the variances are propagated using the equation:\n\n result.var = self.var (*) other**2\n\n where (*) indicates convolution. This equation can be derived by\n applying the usual rules of error-propagation to the discrete\n convolution equation.\n\n The speed of this function scales as O(Nd x log(Nd)) where\n Nd=self.data.size. It temporarily allocates a pair of arrays that\n have the sum of the shapes of self.shape and other.shape, rounded up\n to a power of two along each axis. This can involve a lot of memory\n being allocated. For this reason, when other.shape is small,\n Image.convolve() may be more efficient than Image.fftconvolve().\n\n Uses `scipy.signal.fftconvolve`.\n\n Parameters\n ----------\n other : Image or numpy.ndarray\n The 2D array with which to convolve the image in self.data. This\n array can be an image of the same size as self, or it can be a\n smaller image, such as a small 2D gaussian to use to smooth the\n larger image.\n\n When ``other`` contains a symmetric filtering function, such as a\n two-dimensional gaussian, the center of the function should be\n placed at the center of pixel:\n\n ``(other.shape - 1) // 2``\n\n If other is an MPDAF Image object, note that only its data array\n is used. Masked values in this array are treated as zero. Any\n variances found in other.var are ignored.\n inplace : bool\n If False (the default), return the results in a new Image.\n If True, record the result in self and return that.\n\n Returns\n -------\n out : `~mpdaf.obj.Image`\n\n '
return self._convolve(signal.fftconvolve, other=other, inplace=inplace)<|docstring|>Convolve an Image with a 2D array or another Image, using the
Fourier convolution theorem.
This function, which performs the convolution by multiplying the
Fourier transforms of the two images, is usually much faster than
Image.convolve(), except when other.data.size is small. However it
uses much more memory, so Image.convolve() is sometimes a better
choice.
Masked values in self.data and self.var are replaced with zeros before
the convolution is performed, but they are masked again after the
convolution.
If self.var exists, the variances are propagated using the equation:
result.var = self.var (*) other**2
where (*) indicates convolution. This equation can be derived by
applying the usual rules of error-propagation to the discrete
convolution equation.
The speed of this function scales as O(Nd x log(Nd)) where
Nd=self.data.size. It temporarily allocates a pair of arrays that
have the sum of the shapes of self.shape and other.shape, rounded up
to a power of two along each axis. This can involve a lot of memory
being allocated. For this reason, when other.shape is small,
Image.convolve() may be more efficient than Image.fftconvolve().
Uses `scipy.signal.fftconvolve`.
Parameters
----------
other : Image or numpy.ndarray
The 2D array with which to convolve the image in self.data. This
array can be an image of the same size as self, or it can be a
smaller image, such as a small 2D gaussian to use to smooth the
larger image.
When ``other`` contains a symmetric filtering function, such as a
two-dimensional gaussian, the center of the function should be
placed at the center of pixel:
``(other.shape - 1) // 2``
If other is an MPDAF Image object, note that only its data array
is used. Masked values in this array are treated as zero. Any
variances found in other.var are ignored.
inplace : bool
If False (the default), return the results in a new Image.
If True, record the result in self and return that.
Returns
-------
out : `~mpdaf.obj.Image`<|endoftext|> |
944028d1c24fc555c4876cea54f910ca39b041ac09047b5da4893989122608c9 | def fftconvolve_gauss(self, center=None, flux=1.0, fwhm=(1.0, 1.0), peak=False, rot=0.0, factor=1, unit_center=u.deg, unit_fwhm=u.arcsec, inplace=False):
'Return the convolution of the image with a 2D gaussian.\n\n Parameters\n ----------\n center : (float,float)\n Gaussian center (y_peak, x_peak). If None the center of the image\n is used. The unit is given by the unit_center parameter (degrees\n by default).\n flux : float\n Integrated gaussian flux or gaussian peak value if peak is True.\n fwhm : (float,float)\n Gaussian fwhm (fwhm_y,fwhm_x). The unit is given by the unit_fwhm\n parameter (arcseconds by default).\n peak : bool\n If true, flux contains a gaussian peak value.\n rot : float\n Angle position in degree.\n factor : int\n If factor<=1, gaussian value is computed in the center of each\n pixel. If factor>1, for each pixel, gaussian value is the sum of\n the gaussian values on the factor*factor pixels divided by the\n pixel area.\n unit_center : `astropy.units.Unit`\n type of the center and position coordinates.\n Degrees by default (use None for coordinates in pixels).\n unit_fwhm : `astropy.units.Unit`\n FWHM unit. Arcseconds by default (use None for radius in pixels)\n inplace : bool\n If False, return a convolved copy of the image (default value).\n If True, convolve the original image in-place, and return that.\n\n Returns\n -------\n out : `~mpdaf.obj.Image`\n\n '
ima = gauss_image(self.shape, wcs=self.wcs, center=center, flux=flux, fwhm=fwhm, peak=peak, rot=rot, factor=factor, gauss=None, unit_center=unit_center, unit_fwhm=unit_fwhm, cont=0, unit=self.unit)
ima.norm(typ='sum')
return self.fftconvolve(ima, inplace=inplace) | Return the convolution of the image with a 2D gaussian.
Parameters
----------
center : (float,float)
Gaussian center (y_peak, x_peak). If None the center of the image
is used. The unit is given by the unit_center parameter (degrees
by default).
flux : float
Integrated gaussian flux or gaussian peak value if peak is True.
fwhm : (float,float)
Gaussian fwhm (fwhm_y,fwhm_x). The unit is given by the unit_fwhm
parameter (arcseconds by default).
peak : bool
If true, flux contains a gaussian peak value.
rot : float
Angle position in degree.
factor : int
If factor<=1, gaussian value is computed in the center of each
pixel. If factor>1, for each pixel, gaussian value is the sum of
the gaussian values on the factor*factor pixels divided by the
pixel area.
unit_center : `astropy.units.Unit`
type of the center and position coordinates.
Degrees by default (use None for coordinates in pixels).
unit_fwhm : `astropy.units.Unit`
FWHM unit. Arcseconds by default (use None for radius in pixels)
inplace : bool
If False, return a convolved copy of the image (default value).
If True, convolve the original image in-place, and return that.
Returns
-------
out : `~mpdaf.obj.Image` | lib/mpdaf/obj/image.py | fftconvolve_gauss | musevlt/mpdaf | 4 | python | def fftconvolve_gauss(self, center=None, flux=1.0, fwhm=(1.0, 1.0), peak=False, rot=0.0, factor=1, unit_center=u.deg, unit_fwhm=u.arcsec, inplace=False):
'Return the convolution of the image with a 2D gaussian.\n\n Parameters\n ----------\n center : (float,float)\n Gaussian center (y_peak, x_peak). If None the center of the image\n is used. The unit is given by the unit_center parameter (degrees\n by default).\n flux : float\n Integrated gaussian flux or gaussian peak value if peak is True.\n fwhm : (float,float)\n Gaussian fwhm (fwhm_y,fwhm_x). The unit is given by the unit_fwhm\n parameter (arcseconds by default).\n peak : bool\n If true, flux contains a gaussian peak value.\n rot : float\n Angle position in degree.\n factor : int\n If factor<=1, gaussian value is computed in the center of each\n pixel. If factor>1, for each pixel, gaussian value is the sum of\n the gaussian values on the factor*factor pixels divided by the\n pixel area.\n unit_center : `astropy.units.Unit`\n type of the center and position coordinates.\n Degrees by default (use None for coordinates in pixels).\n unit_fwhm : `astropy.units.Unit`\n FWHM unit. Arcseconds by default (use None for radius in pixels)\n inplace : bool\n If False, return a convolved copy of the image (default value).\n If True, convolve the original image in-place, and return that.\n\n Returns\n -------\n out : `~mpdaf.obj.Image`\n\n '
ima = gauss_image(self.shape, wcs=self.wcs, center=center, flux=flux, fwhm=fwhm, peak=peak, rot=rot, factor=factor, gauss=None, unit_center=unit_center, unit_fwhm=unit_fwhm, cont=0, unit=self.unit)
ima.norm(typ='sum')
return self.fftconvolve(ima, inplace=inplace) | def fftconvolve_gauss(self, center=None, flux=1.0, fwhm=(1.0, 1.0), peak=False, rot=0.0, factor=1, unit_center=u.deg, unit_fwhm=u.arcsec, inplace=False):
'Return the convolution of the image with a 2D gaussian.\n\n Parameters\n ----------\n center : (float,float)\n Gaussian center (y_peak, x_peak). If None the center of the image\n is used. The unit is given by the unit_center parameter (degrees\n by default).\n flux : float\n Integrated gaussian flux or gaussian peak value if peak is True.\n fwhm : (float,float)\n Gaussian fwhm (fwhm_y,fwhm_x). The unit is given by the unit_fwhm\n parameter (arcseconds by default).\n peak : bool\n If true, flux contains a gaussian peak value.\n rot : float\n Angle position in degree.\n factor : int\n If factor<=1, gaussian value is computed in the center of each\n pixel. If factor>1, for each pixel, gaussian value is the sum of\n the gaussian values on the factor*factor pixels divided by the\n pixel area.\n unit_center : `astropy.units.Unit`\n type of the center and position coordinates.\n Degrees by default (use None for coordinates in pixels).\n unit_fwhm : `astropy.units.Unit`\n FWHM unit. Arcseconds by default (use None for radius in pixels)\n inplace : bool\n If False, return a convolved copy of the image (default value).\n If True, convolve the original image in-place, and return that.\n\n Returns\n -------\n out : `~mpdaf.obj.Image`\n\n '
ima = gauss_image(self.shape, wcs=self.wcs, center=center, flux=flux, fwhm=fwhm, peak=peak, rot=rot, factor=factor, gauss=None, unit_center=unit_center, unit_fwhm=unit_fwhm, cont=0, unit=self.unit)
ima.norm(typ='sum')
return self.fftconvolve(ima, inplace=inplace)<|docstring|>Return the convolution of the image with a 2D gaussian.
Parameters
----------
center : (float,float)
Gaussian center (y_peak, x_peak). If None the center of the image
is used. The unit is given by the unit_center parameter (degrees
by default).
flux : float
Integrated gaussian flux or gaussian peak value if peak is True.
fwhm : (float,float)
Gaussian fwhm (fwhm_y,fwhm_x). The unit is given by the unit_fwhm
parameter (arcseconds by default).
peak : bool
If true, flux contains a gaussian peak value.
rot : float
Angle position in degree.
factor : int
If factor<=1, gaussian value is computed in the center of each
pixel. If factor>1, for each pixel, gaussian value is the sum of
the gaussian values on the factor*factor pixels divided by the
pixel area.
unit_center : `astropy.units.Unit`
type of the center and position coordinates.
Degrees by default (use None for coordinates in pixels).
unit_fwhm : `astropy.units.Unit`
FWHM unit. Arcseconds by default (use None for radius in pixels)
inplace : bool
If False, return a convolved copy of the image (default value).
If True, convolve the original image in-place, and return that.
Returns
-------
out : `~mpdaf.obj.Image`<|endoftext|> |
f415674fda1b94025de92bc7ff58be311d836fe031c990dc7bc891b56c358a24 | def fftconvolve_moffat(self, center=None, flux=1.0, a=1.0, q=1.0, n=2, peak=False, rot=0.0, factor=1, unit_center=u.deg, unit_a=u.arcsec, inplace=False):
'Return the convolution of the image with a 2D moffat.\n\n Parameters\n ----------\n center : (float,float)\n Gaussian center (y_peak, x_peak). If None the center of the image\n is used. The unit is given by the unit_center parameter (degrees\n by default).\n flux : float\n Integrated gaussian flux or gaussian peak value if peak is True.\n a : float\n Half width at half maximum of the image in the absence of\n atmospheric scattering. 1 by default. The unit is given by the\n unit_a parameter (arcseconds by default).\n q : float\n Axis ratio, 1 by default.\n n : int\n Atmospheric scattering coefficient. 2 by default.\n rot : float\n Angle position in degree.\n factor : int\n If factor<=1, moffat value is computed in the center of each pixel.\n If factor>1, for each pixel, moffat value is the sum\n of the moffat values on the factor*factor pixels\n divided by the pixel area.\n peak : bool\n If true, flux contains a gaussian peak value.\n unit_center : `astropy.units.Unit`\n type of the center and position coordinates.\n Degrees by default (use None for coordinates in pixels).\n unit_a : `astropy.units.Unit`\n a unit. Arcseconds by default (use None for radius in pixels)\n inplace : bool\n If False, return a convolved copy of the image (default value).\n If True, convolve the original image in-place, and return that.\n\n Returns\n -------\n out : `~mpdaf.obj.Image`\n\n '
fwhmy = (a * (2 * np.sqrt(((2 ** (1.0 / n)) - 1.0))))
fwhmx = (fwhmy / q)
ima = moffat_image(self.shape, wcs=self.wcs, factor=factor, center=center, flux=flux, fwhm=(fwhmy, fwhmx), n=n, rot=rot, peak=peak, unit_center=unit_center, unit_fwhm=unit_a, unit=self.unit)
ima.norm(typ='sum')
return self.fftconvolve(ima, inplace=inplace) | Return the convolution of the image with a 2D moffat.
Parameters
----------
center : (float,float)
Gaussian center (y_peak, x_peak). If None the center of the image
is used. The unit is given by the unit_center parameter (degrees
by default).
flux : float
Integrated gaussian flux or gaussian peak value if peak is True.
a : float
Half width at half maximum of the image in the absence of
atmospheric scattering. 1 by default. The unit is given by the
unit_a parameter (arcseconds by default).
q : float
Axis ratio, 1 by default.
n : int
Atmospheric scattering coefficient. 2 by default.
rot : float
Angle position in degree.
factor : int
If factor<=1, moffat value is computed in the center of each pixel.
If factor>1, for each pixel, moffat value is the sum
of the moffat values on the factor*factor pixels
divided by the pixel area.
peak : bool
If true, flux contains a gaussian peak value.
unit_center : `astropy.units.Unit`
type of the center and position coordinates.
Degrees by default (use None for coordinates in pixels).
unit_a : `astropy.units.Unit`
a unit. Arcseconds by default (use None for radius in pixels)
inplace : bool
If False, return a convolved copy of the image (default value).
If True, convolve the original image in-place, and return that.
Returns
-------
out : `~mpdaf.obj.Image` | lib/mpdaf/obj/image.py | fftconvolve_moffat | musevlt/mpdaf | 4 | python | def fftconvolve_moffat(self, center=None, flux=1.0, a=1.0, q=1.0, n=2, peak=False, rot=0.0, factor=1, unit_center=u.deg, unit_a=u.arcsec, inplace=False):
'Return the convolution of the image with a 2D moffat.\n\n Parameters\n ----------\n center : (float,float)\n Gaussian center (y_peak, x_peak). If None the center of the image\n is used. The unit is given by the unit_center parameter (degrees\n by default).\n flux : float\n Integrated gaussian flux or gaussian peak value if peak is True.\n a : float\n Half width at half maximum of the image in the absence of\n atmospheric scattering. 1 by default. The unit is given by the\n unit_a parameter (arcseconds by default).\n q : float\n Axis ratio, 1 by default.\n n : int\n Atmospheric scattering coefficient. 2 by default.\n rot : float\n Angle position in degree.\n factor : int\n If factor<=1, moffat value is computed in the center of each pixel.\n If factor>1, for each pixel, moffat value is the sum\n of the moffat values on the factor*factor pixels\n divided by the pixel area.\n peak : bool\n If true, flux contains a gaussian peak value.\n unit_center : `astropy.units.Unit`\n type of the center and position coordinates.\n Degrees by default (use None for coordinates in pixels).\n unit_a : `astropy.units.Unit`\n a unit. Arcseconds by default (use None for radius in pixels)\n inplace : bool\n If False, return a convolved copy of the image (default value).\n If True, convolve the original image in-place, and return that.\n\n Returns\n -------\n out : `~mpdaf.obj.Image`\n\n '
fwhmy = (a * (2 * np.sqrt(((2 ** (1.0 / n)) - 1.0))))
fwhmx = (fwhmy / q)
ima = moffat_image(self.shape, wcs=self.wcs, factor=factor, center=center, flux=flux, fwhm=(fwhmy, fwhmx), n=n, rot=rot, peak=peak, unit_center=unit_center, unit_fwhm=unit_a, unit=self.unit)
ima.norm(typ='sum')
return self.fftconvolve(ima, inplace=inplace) | def fftconvolve_moffat(self, center=None, flux=1.0, a=1.0, q=1.0, n=2, peak=False, rot=0.0, factor=1, unit_center=u.deg, unit_a=u.arcsec, inplace=False):
'Return the convolution of the image with a 2D moffat.\n\n Parameters\n ----------\n center : (float,float)\n Gaussian center (y_peak, x_peak). If None the center of the image\n is used. The unit is given by the unit_center parameter (degrees\n by default).\n flux : float\n Integrated gaussian flux or gaussian peak value if peak is True.\n a : float\n Half width at half maximum of the image in the absence of\n atmospheric scattering. 1 by default. The unit is given by the\n unit_a parameter (arcseconds by default).\n q : float\n Axis ratio, 1 by default.\n n : int\n Atmospheric scattering coefficient. 2 by default.\n rot : float\n Angle position in degree.\n factor : int\n If factor<=1, moffat value is computed in the center of each pixel.\n If factor>1, for each pixel, moffat value is the sum\n of the moffat values on the factor*factor pixels\n divided by the pixel area.\n peak : bool\n If true, flux contains a gaussian peak value.\n unit_center : `astropy.units.Unit`\n type of the center and position coordinates.\n Degrees by default (use None for coordinates in pixels).\n unit_a : `astropy.units.Unit`\n a unit. Arcseconds by default (use None for radius in pixels)\n inplace : bool\n If False, return a convolved copy of the image (default value).\n If True, convolve the original image in-place, and return that.\n\n Returns\n -------\n out : `~mpdaf.obj.Image`\n\n '
fwhmy = (a * (2 * np.sqrt(((2 ** (1.0 / n)) - 1.0))))
fwhmx = (fwhmy / q)
ima = moffat_image(self.shape, wcs=self.wcs, factor=factor, center=center, flux=flux, fwhm=(fwhmy, fwhmx), n=n, rot=rot, peak=peak, unit_center=unit_center, unit_fwhm=unit_a, unit=self.unit)
ima.norm(typ='sum')
return self.fftconvolve(ima, inplace=inplace)<|docstring|>Return the convolution of the image with a 2D moffat.
Parameters
----------
center : (float,float)
Gaussian center (y_peak, x_peak). If None the center of the image
is used. The unit is given by the unit_center parameter (degrees
by default).
flux : float
Integrated gaussian flux or gaussian peak value if peak is True.
a : float
Half width at half maximum of the image in the absence of
atmospheric scattering. 1 by default. The unit is given by the
unit_a parameter (arcseconds by default).
q : float
Axis ratio, 1 by default.
n : int
Atmospheric scattering coefficient. 2 by default.
rot : float
Angle position in degree.
factor : int
If factor<=1, moffat value is computed in the center of each pixel.
If factor>1, for each pixel, moffat value is the sum
of the moffat values on the factor*factor pixels
divided by the pixel area.
peak : bool
If true, flux contains a gaussian peak value.
unit_center : `astropy.units.Unit`
type of the center and position coordinates.
Degrees by default (use None for coordinates in pixels).
unit_a : `astropy.units.Unit`
a unit. Arcseconds by default (use None for radius in pixels)
inplace : bool
If False, return a convolved copy of the image (default value).
If True, convolve the original image in-place, and return that.
Returns
-------
out : `~mpdaf.obj.Image`<|endoftext|> |
7f4ed1832529a4abb99151f1c15661a3e094fc18b70ad89c73aac97ef763d4a0 | def correlate2d(self, other, interp='no'):
"Return the cross-correlation of the image with an array/image\n\n Uses `scipy.signal.correlate2d`.\n\n Parameters\n ----------\n other : 2d-array or Image\n Second Image or 2d-array.\n interp : 'no' | 'linear' | 'spline'\n if 'no', data median value replaced masked values.\n if 'linear', linear interpolation of the masked values.\n if 'spline', spline interpolation of the masked values.\n\n "
if (not isinstance(other, DataArray)):
data = self._prepare_data(interp)
res = self.copy()
res._data = signal.correlate2d(data, other, mode='same', boundary='symm')
if (res._var is not None):
res._var = signal.correlate2d(res._var, other, mode='same', boundary='symm')
return res
elif (other.ndim == 2):
data = self._prepare_data(interp)
other_data = other._prepare_data(interp)
other_data = UnitMaskedArray(other_data, other.unit, self.unit)
res = self.copy()
res._data = signal.correlate2d(data, other_data, mode='same')
if (res._var is not None):
res._var = signal.correlate2d(res._var, other_data, mode='same')
return res
else:
raise IOError('Operation forbidden') | Return the cross-correlation of the image with an array/image
Uses `scipy.signal.correlate2d`.
Parameters
----------
other : 2d-array or Image
Second Image or 2d-array.
interp : 'no' | 'linear' | 'spline'
if 'no', data median value replaced masked values.
if 'linear', linear interpolation of the masked values.
if 'spline', spline interpolation of the masked values. | lib/mpdaf/obj/image.py | correlate2d | musevlt/mpdaf | 4 | python | def correlate2d(self, other, interp='no'):
"Return the cross-correlation of the image with an array/image\n\n Uses `scipy.signal.correlate2d`.\n\n Parameters\n ----------\n other : 2d-array or Image\n Second Image or 2d-array.\n interp : 'no' | 'linear' | 'spline'\n if 'no', data median value replaced masked values.\n if 'linear', linear interpolation of the masked values.\n if 'spline', spline interpolation of the masked values.\n\n "
if (not isinstance(other, DataArray)):
data = self._prepare_data(interp)
res = self.copy()
res._data = signal.correlate2d(data, other, mode='same', boundary='symm')
if (res._var is not None):
res._var = signal.correlate2d(res._var, other, mode='same', boundary='symm')
return res
elif (other.ndim == 2):
data = self._prepare_data(interp)
other_data = other._prepare_data(interp)
other_data = UnitMaskedArray(other_data, other.unit, self.unit)
res = self.copy()
res._data = signal.correlate2d(data, other_data, mode='same')
if (res._var is not None):
res._var = signal.correlate2d(res._var, other_data, mode='same')
return res
else:
raise IOError('Operation forbidden') | def correlate2d(self, other, interp='no'):
"Return the cross-correlation of the image with an array/image\n\n Uses `scipy.signal.correlate2d`.\n\n Parameters\n ----------\n other : 2d-array or Image\n Second Image or 2d-array.\n interp : 'no' | 'linear' | 'spline'\n if 'no', data median value replaced masked values.\n if 'linear', linear interpolation of the masked values.\n if 'spline', spline interpolation of the masked values.\n\n "
if (not isinstance(other, DataArray)):
data = self._prepare_data(interp)
res = self.copy()
res._data = signal.correlate2d(data, other, mode='same', boundary='symm')
if (res._var is not None):
res._var = signal.correlate2d(res._var, other, mode='same', boundary='symm')
return res
elif (other.ndim == 2):
data = self._prepare_data(interp)
other_data = other._prepare_data(interp)
other_data = UnitMaskedArray(other_data, other.unit, self.unit)
res = self.copy()
res._data = signal.correlate2d(data, other_data, mode='same')
if (res._var is not None):
res._var = signal.correlate2d(res._var, other_data, mode='same')
return res
else:
raise IOError('Operation forbidden')<|docstring|>Return the cross-correlation of the image with an array/image
Uses `scipy.signal.correlate2d`.
Parameters
----------
other : 2d-array or Image
Second Image or 2d-array.
interp : 'no' | 'linear' | 'spline'
if 'no', data median value replaced masked values.
if 'linear', linear interpolation of the masked values.
if 'spline', spline interpolation of the masked values.<|endoftext|> |
dd54454368849795308652461fd2046296af316f45af2756af45a569ef02aeed | def plot(self, title=None, scale='linear', vmin=None, vmax=None, zscale=False, colorbar=None, var=False, show_xlabel=False, show_ylabel=False, ax=None, unit=u.deg, use_wcs=False, **kwargs):
"Plot the image with axes labeled in pixels.\n\n If either axis has just one pixel, plot a line instead of an image.\n\n Colors are assigned to each pixel value as follows. First each\n pixel value, ``pv``, is normalized over the range ``vmin`` to ``vmax``,\n to have a value ``nv``, that goes from 0 to 1, as follows::\n\n nv = (pv - vmin) / (vmax - vmin)\n\n This value is then mapped to another number between 0 and 1 which\n determines a position along the colorbar, and thus the color to give\n the displayed pixel. The mapping from normalized values to colorbar\n position, color, can be chosen using the scale argument, from the\n following options:\n\n - 'linear': ``color = nv``\n - 'log': ``color = log(1000 * nv + 1) / log(1000 + 1)``\n - 'sqrt': ``color = sqrt(nv)``\n - 'arcsinh': ``color = arcsinh(10*nv) / arcsinh(10.0)``\n\n A colorbar can optionally be drawn. If the colorbar argument is given\n the value 'h', then a colorbar is drawn horizontally, above the plot.\n If it is 'v', the colorbar is drawn vertically, to the right of the\n plot.\n\n By default the image is displayed in its own plot. Alternatively\n to make it a subplot of a larger figure, a suitable\n ``matplotlib.axes.Axes`` object can be passed via the ``ax`` argument.\n Note that unless matplotlib interative mode has previously been enabled\n by calling ``matplotlib.pyplot.ion()``, the plot window will not appear\n until the next time that ``matplotlib.pyplot.show()`` is called. So to\n arrange that a new window appears as soon as ``Image.plot()`` is\n called, do the following before the first call to ``Image.plot()``::\n\n import matplotlib.pyplot as plt\n plt.ion()\n\n Parameters\n ----------\n title : str\n An optional title for the figure (None by default).\n scale : 'linear' | 'log' | 'sqrt' | 'arcsinh'\n The stretch function to use mapping pixel values to\n colors (The default is 'linear'). The pixel values are\n first normalized to range from 0 for values <= vmin,\n to 1 for values >= vmax, then the stretch algorithm maps\n these normalized values, nv, to a position p from 0 to 1\n along the colorbar, as follows:\n linear: p = nv\n log: p = log(1000 * nv + 1) / log(1000 + 1)\n sqrt: p = sqrt(nv)\n arcsinh: p = arcsinh(10*nv) / arcsinh(10.0)\n vmin : float\n Pixels that have values <= vmin are given the color\n at the dark end of the color bar. Pixel values between\n vmin and vmax are given colors along the colorbar according\n to the mapping algorithm specified by the scale argument.\n vmax : float\n Pixels that have values >= vmax are given the color\n at the bright end of the color bar. If None, vmax is\n set to the maximum pixel value in the image.\n zscale : bool\n If True, vmin and vmax are automatically computed\n using the IRAF zscale algorithm.\n colorbar : str\n If 'h', a horizontal colorbar is drawn above the image.\n If 'v', a vertical colorbar is drawn to the right of the image.\n If None (the default), no colorbar is drawn.\n var : bool\n If true variance array is shown in place of data array\n ax : matplotlib.axes.Axes\n An optional Axes instance in which to draw the image,\n or None to have one created using ``matplotlib.pyplot.gca()``.\n unit : `astropy.units.Unit`\n The units to use for displaying world coordinates\n (degrees by default). In the interactive plot, when\n the mouse pointer is over a pixel in the image the\n coordinates of the pixel are shown using these units,\n along with the pixel value.\n use_wcs : bool\n If True, use `astropy.visualization.wcsaxes` to get axes\n with world coordinates.\n kwargs : matplotlib.artist.Artist\n Optional extra keyword/value arguments to be passed to\n the ``ax.imshow()`` function.\n\n Returns\n -------\n out : matplotlib AxesImage\n\n "
import matplotlib.pyplot as plt
cax = None
xlabel = 'q (pixel)'
ylabel = 'p (pixel)'
if (ax is None):
if use_wcs:
ax = plt.subplot(projection=self.wcs.wcs)
xlabel = 'ra'
ylabel = 'dec'
else:
ax = plt.gca()
elif use_wcs:
self._logger.warning('use_wcs does not work when giving also an axis (ax)')
if var:
data_plot = self.var
else:
data_plot = self.data
if (self.shape[1] == 1):
yaxis = np.arange(self.shape[0], dtype=float)
ax.plot(yaxis, data_plot)
xlabel = 'p (pixel)'
ylabel = self.unit
elif (self.shape[0] == 1):
xaxis = np.arange(self.shape[1], dtype=float)
ax.plot(xaxis, data_plot.T)
xlabel = 'q (pixel)'
ylabel = self.unit
else:
norm = get_plot_norm(data_plot, vmin=vmin, vmax=vmax, zscale=zscale, scale=scale)
cax = ax.imshow(data_plot, interpolation='nearest', origin='lower', norm=norm, **kwargs)
import matplotlib.axes as maxes
from mpl_toolkits.axes_grid1 import make_axes_locatable
divider = make_axes_locatable(ax)
if (colorbar == 'h'):
cax2 = divider.append_axes('top', size='5%', pad=0.2, axes_class=maxes.Axes)
cbar = plt.colorbar(cax, cax=cax2, orientation='horizontal')
for t in cbar.ax.xaxis.get_major_ticks():
t.tick1On = True
t.tick2On = True
t.label1On = False
t.label2On = True
elif (colorbar == 'v'):
cax2 = divider.append_axes('right', size='5%', pad=0.05, axes_class=maxes.Axes)
plt.colorbar(cax, cax=cax2)
self._ax = ax
if show_xlabel:
ax.set_xlabel(xlabel)
if show_ylabel:
ax.set_ylabel(ylabel)
if (title is not None):
ax.set_title(title)
ax.format_coord = FormatCoord(self, data_plot)
self._unit = unit
return cax | Plot the image with axes labeled in pixels.
If either axis has just one pixel, plot a line instead of an image.
Colors are assigned to each pixel value as follows. First each
pixel value, ``pv``, is normalized over the range ``vmin`` to ``vmax``,
to have a value ``nv``, that goes from 0 to 1, as follows::
nv = (pv - vmin) / (vmax - vmin)
This value is then mapped to another number between 0 and 1 which
determines a position along the colorbar, and thus the color to give
the displayed pixel. The mapping from normalized values to colorbar
position, color, can be chosen using the scale argument, from the
following options:
- 'linear': ``color = nv``
- 'log': ``color = log(1000 * nv + 1) / log(1000 + 1)``
- 'sqrt': ``color = sqrt(nv)``
- 'arcsinh': ``color = arcsinh(10*nv) / arcsinh(10.0)``
A colorbar can optionally be drawn. If the colorbar argument is given
the value 'h', then a colorbar is drawn horizontally, above the plot.
If it is 'v', the colorbar is drawn vertically, to the right of the
plot.
By default the image is displayed in its own plot. Alternatively
to make it a subplot of a larger figure, a suitable
``matplotlib.axes.Axes`` object can be passed via the ``ax`` argument.
Note that unless matplotlib interative mode has previously been enabled
by calling ``matplotlib.pyplot.ion()``, the plot window will not appear
until the next time that ``matplotlib.pyplot.show()`` is called. So to
arrange that a new window appears as soon as ``Image.plot()`` is
called, do the following before the first call to ``Image.plot()``::
import matplotlib.pyplot as plt
plt.ion()
Parameters
----------
title : str
An optional title for the figure (None by default).
scale : 'linear' | 'log' | 'sqrt' | 'arcsinh'
The stretch function to use mapping pixel values to
colors (The default is 'linear'). The pixel values are
first normalized to range from 0 for values <= vmin,
to 1 for values >= vmax, then the stretch algorithm maps
these normalized values, nv, to a position p from 0 to 1
along the colorbar, as follows:
linear: p = nv
log: p = log(1000 * nv + 1) / log(1000 + 1)
sqrt: p = sqrt(nv)
arcsinh: p = arcsinh(10*nv) / arcsinh(10.0)
vmin : float
Pixels that have values <= vmin are given the color
at the dark end of the color bar. Pixel values between
vmin and vmax are given colors along the colorbar according
to the mapping algorithm specified by the scale argument.
vmax : float
Pixels that have values >= vmax are given the color
at the bright end of the color bar. If None, vmax is
set to the maximum pixel value in the image.
zscale : bool
If True, vmin and vmax are automatically computed
using the IRAF zscale algorithm.
colorbar : str
If 'h', a horizontal colorbar is drawn above the image.
If 'v', a vertical colorbar is drawn to the right of the image.
If None (the default), no colorbar is drawn.
var : bool
If true variance array is shown in place of data array
ax : matplotlib.axes.Axes
An optional Axes instance in which to draw the image,
or None to have one created using ``matplotlib.pyplot.gca()``.
unit : `astropy.units.Unit`
The units to use for displaying world coordinates
(degrees by default). In the interactive plot, when
the mouse pointer is over a pixel in the image the
coordinates of the pixel are shown using these units,
along with the pixel value.
use_wcs : bool
If True, use `astropy.visualization.wcsaxes` to get axes
with world coordinates.
kwargs : matplotlib.artist.Artist
Optional extra keyword/value arguments to be passed to
the ``ax.imshow()`` function.
Returns
-------
out : matplotlib AxesImage | lib/mpdaf/obj/image.py | plot | musevlt/mpdaf | 4 | python | def plot(self, title=None, scale='linear', vmin=None, vmax=None, zscale=False, colorbar=None, var=False, show_xlabel=False, show_ylabel=False, ax=None, unit=u.deg, use_wcs=False, **kwargs):
"Plot the image with axes labeled in pixels.\n\n If either axis has just one pixel, plot a line instead of an image.\n\n Colors are assigned to each pixel value as follows. First each\n pixel value, ``pv``, is normalized over the range ``vmin`` to ``vmax``,\n to have a value ``nv``, that goes from 0 to 1, as follows::\n\n nv = (pv - vmin) / (vmax - vmin)\n\n This value is then mapped to another number between 0 and 1 which\n determines a position along the colorbar, and thus the color to give\n the displayed pixel. The mapping from normalized values to colorbar\n position, color, can be chosen using the scale argument, from the\n following options:\n\n - 'linear': ``color = nv``\n - 'log': ``color = log(1000 * nv + 1) / log(1000 + 1)``\n - 'sqrt': ``color = sqrt(nv)``\n - 'arcsinh': ``color = arcsinh(10*nv) / arcsinh(10.0)``\n\n A colorbar can optionally be drawn. If the colorbar argument is given\n the value 'h', then a colorbar is drawn horizontally, above the plot.\n If it is 'v', the colorbar is drawn vertically, to the right of the\n plot.\n\n By default the image is displayed in its own plot. Alternatively\n to make it a subplot of a larger figure, a suitable\n ``matplotlib.axes.Axes`` object can be passed via the ``ax`` argument.\n Note that unless matplotlib interative mode has previously been enabled\n by calling ``matplotlib.pyplot.ion()``, the plot window will not appear\n until the next time that ``matplotlib.pyplot.show()`` is called. So to\n arrange that a new window appears as soon as ``Image.plot()`` is\n called, do the following before the first call to ``Image.plot()``::\n\n import matplotlib.pyplot as plt\n plt.ion()\n\n Parameters\n ----------\n title : str\n An optional title for the figure (None by default).\n scale : 'linear' | 'log' | 'sqrt' | 'arcsinh'\n The stretch function to use mapping pixel values to\n colors (The default is 'linear'). The pixel values are\n first normalized to range from 0 for values <= vmin,\n to 1 for values >= vmax, then the stretch algorithm maps\n these normalized values, nv, to a position p from 0 to 1\n along the colorbar, as follows:\n linear: p = nv\n log: p = log(1000 * nv + 1) / log(1000 + 1)\n sqrt: p = sqrt(nv)\n arcsinh: p = arcsinh(10*nv) / arcsinh(10.0)\n vmin : float\n Pixels that have values <= vmin are given the color\n at the dark end of the color bar. Pixel values between\n vmin and vmax are given colors along the colorbar according\n to the mapping algorithm specified by the scale argument.\n vmax : float\n Pixels that have values >= vmax are given the color\n at the bright end of the color bar. If None, vmax is\n set to the maximum pixel value in the image.\n zscale : bool\n If True, vmin and vmax are automatically computed\n using the IRAF zscale algorithm.\n colorbar : str\n If 'h', a horizontal colorbar is drawn above the image.\n If 'v', a vertical colorbar is drawn to the right of the image.\n If None (the default), no colorbar is drawn.\n var : bool\n If true variance array is shown in place of data array\n ax : matplotlib.axes.Axes\n An optional Axes instance in which to draw the image,\n or None to have one created using ``matplotlib.pyplot.gca()``.\n unit : `astropy.units.Unit`\n The units to use for displaying world coordinates\n (degrees by default). In the interactive plot, when\n the mouse pointer is over a pixel in the image the\n coordinates of the pixel are shown using these units,\n along with the pixel value.\n use_wcs : bool\n If True, use `astropy.visualization.wcsaxes` to get axes\n with world coordinates.\n kwargs : matplotlib.artist.Artist\n Optional extra keyword/value arguments to be passed to\n the ``ax.imshow()`` function.\n\n Returns\n -------\n out : matplotlib AxesImage\n\n "
import matplotlib.pyplot as plt
cax = None
xlabel = 'q (pixel)'
ylabel = 'p (pixel)'
if (ax is None):
if use_wcs:
ax = plt.subplot(projection=self.wcs.wcs)
xlabel = 'ra'
ylabel = 'dec'
else:
ax = plt.gca()
elif use_wcs:
self._logger.warning('use_wcs does not work when giving also an axis (ax)')
if var:
data_plot = self.var
else:
data_plot = self.data
if (self.shape[1] == 1):
yaxis = np.arange(self.shape[0], dtype=float)
ax.plot(yaxis, data_plot)
xlabel = 'p (pixel)'
ylabel = self.unit
elif (self.shape[0] == 1):
xaxis = np.arange(self.shape[1], dtype=float)
ax.plot(xaxis, data_plot.T)
xlabel = 'q (pixel)'
ylabel = self.unit
else:
norm = get_plot_norm(data_plot, vmin=vmin, vmax=vmax, zscale=zscale, scale=scale)
cax = ax.imshow(data_plot, interpolation='nearest', origin='lower', norm=norm, **kwargs)
import matplotlib.axes as maxes
from mpl_toolkits.axes_grid1 import make_axes_locatable
divider = make_axes_locatable(ax)
if (colorbar == 'h'):
cax2 = divider.append_axes('top', size='5%', pad=0.2, axes_class=maxes.Axes)
cbar = plt.colorbar(cax, cax=cax2, orientation='horizontal')
for t in cbar.ax.xaxis.get_major_ticks():
t.tick1On = True
t.tick2On = True
t.label1On = False
t.label2On = True
elif (colorbar == 'v'):
cax2 = divider.append_axes('right', size='5%', pad=0.05, axes_class=maxes.Axes)
plt.colorbar(cax, cax=cax2)
self._ax = ax
if show_xlabel:
ax.set_xlabel(xlabel)
if show_ylabel:
ax.set_ylabel(ylabel)
if (title is not None):
ax.set_title(title)
ax.format_coord = FormatCoord(self, data_plot)
self._unit = unit
return cax | def plot(self, title=None, scale='linear', vmin=None, vmax=None, zscale=False, colorbar=None, var=False, show_xlabel=False, show_ylabel=False, ax=None, unit=u.deg, use_wcs=False, **kwargs):
"Plot the image with axes labeled in pixels.\n\n If either axis has just one pixel, plot a line instead of an image.\n\n Colors are assigned to each pixel value as follows. First each\n pixel value, ``pv``, is normalized over the range ``vmin`` to ``vmax``,\n to have a value ``nv``, that goes from 0 to 1, as follows::\n\n nv = (pv - vmin) / (vmax - vmin)\n\n This value is then mapped to another number between 0 and 1 which\n determines a position along the colorbar, and thus the color to give\n the displayed pixel. The mapping from normalized values to colorbar\n position, color, can be chosen using the scale argument, from the\n following options:\n\n - 'linear': ``color = nv``\n - 'log': ``color = log(1000 * nv + 1) / log(1000 + 1)``\n - 'sqrt': ``color = sqrt(nv)``\n - 'arcsinh': ``color = arcsinh(10*nv) / arcsinh(10.0)``\n\n A colorbar can optionally be drawn. If the colorbar argument is given\n the value 'h', then a colorbar is drawn horizontally, above the plot.\n If it is 'v', the colorbar is drawn vertically, to the right of the\n plot.\n\n By default the image is displayed in its own plot. Alternatively\n to make it a subplot of a larger figure, a suitable\n ``matplotlib.axes.Axes`` object can be passed via the ``ax`` argument.\n Note that unless matplotlib interative mode has previously been enabled\n by calling ``matplotlib.pyplot.ion()``, the plot window will not appear\n until the next time that ``matplotlib.pyplot.show()`` is called. So to\n arrange that a new window appears as soon as ``Image.plot()`` is\n called, do the following before the first call to ``Image.plot()``::\n\n import matplotlib.pyplot as plt\n plt.ion()\n\n Parameters\n ----------\n title : str\n An optional title for the figure (None by default).\n scale : 'linear' | 'log' | 'sqrt' | 'arcsinh'\n The stretch function to use mapping pixel values to\n colors (The default is 'linear'). The pixel values are\n first normalized to range from 0 for values <= vmin,\n to 1 for values >= vmax, then the stretch algorithm maps\n these normalized values, nv, to a position p from 0 to 1\n along the colorbar, as follows:\n linear: p = nv\n log: p = log(1000 * nv + 1) / log(1000 + 1)\n sqrt: p = sqrt(nv)\n arcsinh: p = arcsinh(10*nv) / arcsinh(10.0)\n vmin : float\n Pixels that have values <= vmin are given the color\n at the dark end of the color bar. Pixel values between\n vmin and vmax are given colors along the colorbar according\n to the mapping algorithm specified by the scale argument.\n vmax : float\n Pixels that have values >= vmax are given the color\n at the bright end of the color bar. If None, vmax is\n set to the maximum pixel value in the image.\n zscale : bool\n If True, vmin and vmax are automatically computed\n using the IRAF zscale algorithm.\n colorbar : str\n If 'h', a horizontal colorbar is drawn above the image.\n If 'v', a vertical colorbar is drawn to the right of the image.\n If None (the default), no colorbar is drawn.\n var : bool\n If true variance array is shown in place of data array\n ax : matplotlib.axes.Axes\n An optional Axes instance in which to draw the image,\n or None to have one created using ``matplotlib.pyplot.gca()``.\n unit : `astropy.units.Unit`\n The units to use for displaying world coordinates\n (degrees by default). In the interactive plot, when\n the mouse pointer is over a pixel in the image the\n coordinates of the pixel are shown using these units,\n along with the pixel value.\n use_wcs : bool\n If True, use `astropy.visualization.wcsaxes` to get axes\n with world coordinates.\n kwargs : matplotlib.artist.Artist\n Optional extra keyword/value arguments to be passed to\n the ``ax.imshow()`` function.\n\n Returns\n -------\n out : matplotlib AxesImage\n\n "
import matplotlib.pyplot as plt
cax = None
xlabel = 'q (pixel)'
ylabel = 'p (pixel)'
if (ax is None):
if use_wcs:
ax = plt.subplot(projection=self.wcs.wcs)
xlabel = 'ra'
ylabel = 'dec'
else:
ax = plt.gca()
elif use_wcs:
self._logger.warning('use_wcs does not work when giving also an axis (ax)')
if var:
data_plot = self.var
else:
data_plot = self.data
if (self.shape[1] == 1):
yaxis = np.arange(self.shape[0], dtype=float)
ax.plot(yaxis, data_plot)
xlabel = 'p (pixel)'
ylabel = self.unit
elif (self.shape[0] == 1):
xaxis = np.arange(self.shape[1], dtype=float)
ax.plot(xaxis, data_plot.T)
xlabel = 'q (pixel)'
ylabel = self.unit
else:
norm = get_plot_norm(data_plot, vmin=vmin, vmax=vmax, zscale=zscale, scale=scale)
cax = ax.imshow(data_plot, interpolation='nearest', origin='lower', norm=norm, **kwargs)
import matplotlib.axes as maxes
from mpl_toolkits.axes_grid1 import make_axes_locatable
divider = make_axes_locatable(ax)
if (colorbar == 'h'):
cax2 = divider.append_axes('top', size='5%', pad=0.2, axes_class=maxes.Axes)
cbar = plt.colorbar(cax, cax=cax2, orientation='horizontal')
for t in cbar.ax.xaxis.get_major_ticks():
t.tick1On = True
t.tick2On = True
t.label1On = False
t.label2On = True
elif (colorbar == 'v'):
cax2 = divider.append_axes('right', size='5%', pad=0.05, axes_class=maxes.Axes)
plt.colorbar(cax, cax=cax2)
self._ax = ax
if show_xlabel:
ax.set_xlabel(xlabel)
if show_ylabel:
ax.set_ylabel(ylabel)
if (title is not None):
ax.set_title(title)
ax.format_coord = FormatCoord(self, data_plot)
self._unit = unit
return cax<|docstring|>Plot the image with axes labeled in pixels.
If either axis has just one pixel, plot a line instead of an image.
Colors are assigned to each pixel value as follows. First each
pixel value, ``pv``, is normalized over the range ``vmin`` to ``vmax``,
to have a value ``nv``, that goes from 0 to 1, as follows::
nv = (pv - vmin) / (vmax - vmin)
This value is then mapped to another number between 0 and 1 which
determines a position along the colorbar, and thus the color to give
the displayed pixel. The mapping from normalized values to colorbar
position, color, can be chosen using the scale argument, from the
following options:
- 'linear': ``color = nv``
- 'log': ``color = log(1000 * nv + 1) / log(1000 + 1)``
- 'sqrt': ``color = sqrt(nv)``
- 'arcsinh': ``color = arcsinh(10*nv) / arcsinh(10.0)``
A colorbar can optionally be drawn. If the colorbar argument is given
the value 'h', then a colorbar is drawn horizontally, above the plot.
If it is 'v', the colorbar is drawn vertically, to the right of the
plot.
By default the image is displayed in its own plot. Alternatively
to make it a subplot of a larger figure, a suitable
``matplotlib.axes.Axes`` object can be passed via the ``ax`` argument.
Note that unless matplotlib interative mode has previously been enabled
by calling ``matplotlib.pyplot.ion()``, the plot window will not appear
until the next time that ``matplotlib.pyplot.show()`` is called. So to
arrange that a new window appears as soon as ``Image.plot()`` is
called, do the following before the first call to ``Image.plot()``::
import matplotlib.pyplot as plt
plt.ion()
Parameters
----------
title : str
An optional title for the figure (None by default).
scale : 'linear' | 'log' | 'sqrt' | 'arcsinh'
The stretch function to use mapping pixel values to
colors (The default is 'linear'). The pixel values are
first normalized to range from 0 for values <= vmin,
to 1 for values >= vmax, then the stretch algorithm maps
these normalized values, nv, to a position p from 0 to 1
along the colorbar, as follows:
linear: p = nv
log: p = log(1000 * nv + 1) / log(1000 + 1)
sqrt: p = sqrt(nv)
arcsinh: p = arcsinh(10*nv) / arcsinh(10.0)
vmin : float
Pixels that have values <= vmin are given the color
at the dark end of the color bar. Pixel values between
vmin and vmax are given colors along the colorbar according
to the mapping algorithm specified by the scale argument.
vmax : float
Pixels that have values >= vmax are given the color
at the bright end of the color bar. If None, vmax is
set to the maximum pixel value in the image.
zscale : bool
If True, vmin and vmax are automatically computed
using the IRAF zscale algorithm.
colorbar : str
If 'h', a horizontal colorbar is drawn above the image.
If 'v', a vertical colorbar is drawn to the right of the image.
If None (the default), no colorbar is drawn.
var : bool
If true variance array is shown in place of data array
ax : matplotlib.axes.Axes
An optional Axes instance in which to draw the image,
or None to have one created using ``matplotlib.pyplot.gca()``.
unit : `astropy.units.Unit`
The units to use for displaying world coordinates
(degrees by default). In the interactive plot, when
the mouse pointer is over a pixel in the image the
coordinates of the pixel are shown using these units,
along with the pixel value.
use_wcs : bool
If True, use `astropy.visualization.wcsaxes` to get axes
with world coordinates.
kwargs : matplotlib.artist.Artist
Optional extra keyword/value arguments to be passed to
the ``ax.imshow()`` function.
Returns
-------
out : matplotlib AxesImage<|endoftext|> |
e97dd6f4f6974782d63e2b27fa2bb01706d30966ba59330e1f9be533cf5ae501 | def get_spatial_fmax(self, rot=None):
'Return the spatial-frequency band-limits of the image along\n the Y and X axes.\n\n See the documentation of set_spatial_fmax() for an explanation\n of what the band-limits are used for.\n\n If no band limits have been specified yet, this function has the\n side-effect of setting them to the band-limits dictated by the\n sampling interval of the image array. Specifically, an X axis\n with a sampling interval of dx can sample spatial frequencies of\n up to 0.5/dx cycles per unit of dx without aliasing.\n\n Parameters\n ----------\n rot : float or None\n Either None, to request band-limits that pertain to the\n Y and X axes of the current image without any rotation,\n or, if the band-limits pertain to a rotated version of\n the image, the rotation angle of its Y axis westward of north\n (degrees). This is defined such that if image.wcs.get_rot()\n is passed to this function, the band limits for the Y and\n X axes of the current image axes will be returned.\n\n Returns\n -------\n out : numpy.ndarray\n The spatial-frequency band-limits of the image along\n the Y and X axes of the image in cycles per self.wcs.unit.\n\n '
if (rot is None):
rot = self.wcs.get_rot()
if (self._spflims is None):
self.set_spatial_fmax((0.5 / self.get_step()), self.wcs.get_rot())
return self._spflims.get_fmax(rot) | Return the spatial-frequency band-limits of the image along
the Y and X axes.
See the documentation of set_spatial_fmax() for an explanation
of what the band-limits are used for.
If no band limits have been specified yet, this function has the
side-effect of setting them to the band-limits dictated by the
sampling interval of the image array. Specifically, an X axis
with a sampling interval of dx can sample spatial frequencies of
up to 0.5/dx cycles per unit of dx without aliasing.
Parameters
----------
rot : float or None
Either None, to request band-limits that pertain to the
Y and X axes of the current image without any rotation,
or, if the band-limits pertain to a rotated version of
the image, the rotation angle of its Y axis westward of north
(degrees). This is defined such that if image.wcs.get_rot()
is passed to this function, the band limits for the Y and
X axes of the current image axes will be returned.
Returns
-------
out : numpy.ndarray
The spatial-frequency band-limits of the image along
the Y and X axes of the image in cycles per self.wcs.unit. | lib/mpdaf/obj/image.py | get_spatial_fmax | musevlt/mpdaf | 4 | python | def get_spatial_fmax(self, rot=None):
'Return the spatial-frequency band-limits of the image along\n the Y and X axes.\n\n See the documentation of set_spatial_fmax() for an explanation\n of what the band-limits are used for.\n\n If no band limits have been specified yet, this function has the\n side-effect of setting them to the band-limits dictated by the\n sampling interval of the image array. Specifically, an X axis\n with a sampling interval of dx can sample spatial frequencies of\n up to 0.5/dx cycles per unit of dx without aliasing.\n\n Parameters\n ----------\n rot : float or None\n Either None, to request band-limits that pertain to the\n Y and X axes of the current image without any rotation,\n or, if the band-limits pertain to a rotated version of\n the image, the rotation angle of its Y axis westward of north\n (degrees). This is defined such that if image.wcs.get_rot()\n is passed to this function, the band limits for the Y and\n X axes of the current image axes will be returned.\n\n Returns\n -------\n out : numpy.ndarray\n The spatial-frequency band-limits of the image along\n the Y and X axes of the image in cycles per self.wcs.unit.\n\n '
if (rot is None):
rot = self.wcs.get_rot()
if (self._spflims is None):
self.set_spatial_fmax((0.5 / self.get_step()), self.wcs.get_rot())
return self._spflims.get_fmax(rot) | def get_spatial_fmax(self, rot=None):
'Return the spatial-frequency band-limits of the image along\n the Y and X axes.\n\n See the documentation of set_spatial_fmax() for an explanation\n of what the band-limits are used for.\n\n If no band limits have been specified yet, this function has the\n side-effect of setting them to the band-limits dictated by the\n sampling interval of the image array. Specifically, an X axis\n with a sampling interval of dx can sample spatial frequencies of\n up to 0.5/dx cycles per unit of dx without aliasing.\n\n Parameters\n ----------\n rot : float or None\n Either None, to request band-limits that pertain to the\n Y and X axes of the current image without any rotation,\n or, if the band-limits pertain to a rotated version of\n the image, the rotation angle of its Y axis westward of north\n (degrees). This is defined such that if image.wcs.get_rot()\n is passed to this function, the band limits for the Y and\n X axes of the current image axes will be returned.\n\n Returns\n -------\n out : numpy.ndarray\n The spatial-frequency band-limits of the image along\n the Y and X axes of the image in cycles per self.wcs.unit.\n\n '
if (rot is None):
rot = self.wcs.get_rot()
if (self._spflims is None):
self.set_spatial_fmax((0.5 / self.get_step()), self.wcs.get_rot())
return self._spflims.get_fmax(rot)<|docstring|>Return the spatial-frequency band-limits of the image along
the Y and X axes.
See the documentation of set_spatial_fmax() for an explanation
of what the band-limits are used for.
If no band limits have been specified yet, this function has the
side-effect of setting them to the band-limits dictated by the
sampling interval of the image array. Specifically, an X axis
with a sampling interval of dx can sample spatial frequencies of
up to 0.5/dx cycles per unit of dx without aliasing.
Parameters
----------
rot : float or None
Either None, to request band-limits that pertain to the
Y and X axes of the current image without any rotation,
or, if the band-limits pertain to a rotated version of
the image, the rotation angle of its Y axis westward of north
(degrees). This is defined such that if image.wcs.get_rot()
is passed to this function, the band limits for the Y and
X axes of the current image axes will be returned.
Returns
-------
out : numpy.ndarray
The spatial-frequency band-limits of the image along
the Y and X axes of the image in cycles per self.wcs.unit.<|endoftext|> |
41ffd62089ee12f572c6522b5f18d7b0c7ad5531a9f79294b35bfbea020f174e | def update_spatial_fmax(self, newfmax, rot=None):
'Update the spatial-frequency band-limits recorded for the\n current image.\n\n See the documentation of set_spatial_fmax() for an explanation\n of what the band-limits are used for.\n\n If either of the new limits is less than an existing\n band-limit, and the rotation angle of the new limits is\n the same as the angle of the recorded limits, then the smaller\n limits replace the originals.\n\n If either of the new limits is smaller than the existing\n limits, but the rotation angle for the new limits differs from\n the recorded limits, then both of the original limits are\n discarded and replaced by the new ones at the specified angle.\n\n Parameters\n ----------\n newfmax : numpy.ndarray\n The frequency limits along the Y and X axes, respectively,\n specified in cycles per the angular unit in self.wcs.unit.\n rot : float or None\n Either None, to specify band-limits that pertain to the Y\n and X axes of the current image without any rotation, or,\n if the band-limits pertain to a rotated version of the\n image, the rotation angle of its Y axis westward of north\n (degrees). This is defined such that if\n image.wcs.get_rot() is passed to this function, the\n band-limit newfmax[0] will be along the Y axis of the\n image and newfmax[1] will be along its X axis.\n\n '
if (rot is None):
rot = self.wcs.get_rot()
if (self._spflims is None):
self.set_spatial_fmax(newfmax, rot)
else:
oldfmax = self._spflims.get_fmax(rot)
if np.any((newfmax < oldfmax)):
if np.isclose(rot, self._spflims.rot):
newfmax = np.minimum(newfmax, oldfmax)
self.set_spatial_fmax(newfmax, rot) | Update the spatial-frequency band-limits recorded for the
current image.
See the documentation of set_spatial_fmax() for an explanation
of what the band-limits are used for.
If either of the new limits is less than an existing
band-limit, and the rotation angle of the new limits is
the same as the angle of the recorded limits, then the smaller
limits replace the originals.
If either of the new limits is smaller than the existing
limits, but the rotation angle for the new limits differs from
the recorded limits, then both of the original limits are
discarded and replaced by the new ones at the specified angle.
Parameters
----------
newfmax : numpy.ndarray
The frequency limits along the Y and X axes, respectively,
specified in cycles per the angular unit in self.wcs.unit.
rot : float or None
Either None, to specify band-limits that pertain to the Y
and X axes of the current image without any rotation, or,
if the band-limits pertain to a rotated version of the
image, the rotation angle of its Y axis westward of north
(degrees). This is defined such that if
image.wcs.get_rot() is passed to this function, the
band-limit newfmax[0] will be along the Y axis of the
image and newfmax[1] will be along its X axis. | lib/mpdaf/obj/image.py | update_spatial_fmax | musevlt/mpdaf | 4 | python | def update_spatial_fmax(self, newfmax, rot=None):
'Update the spatial-frequency band-limits recorded for the\n current image.\n\n See the documentation of set_spatial_fmax() for an explanation\n of what the band-limits are used for.\n\n If either of the new limits is less than an existing\n band-limit, and the rotation angle of the new limits is\n the same as the angle of the recorded limits, then the smaller\n limits replace the originals.\n\n If either of the new limits is smaller than the existing\n limits, but the rotation angle for the new limits differs from\n the recorded limits, then both of the original limits are\n discarded and replaced by the new ones at the specified angle.\n\n Parameters\n ----------\n newfmax : numpy.ndarray\n The frequency limits along the Y and X axes, respectively,\n specified in cycles per the angular unit in self.wcs.unit.\n rot : float or None\n Either None, to specify band-limits that pertain to the Y\n and X axes of the current image without any rotation, or,\n if the band-limits pertain to a rotated version of the\n image, the rotation angle of its Y axis westward of north\n (degrees). This is defined such that if\n image.wcs.get_rot() is passed to this function, the\n band-limit newfmax[0] will be along the Y axis of the\n image and newfmax[1] will be along its X axis.\n\n '
if (rot is None):
rot = self.wcs.get_rot()
if (self._spflims is None):
self.set_spatial_fmax(newfmax, rot)
else:
oldfmax = self._spflims.get_fmax(rot)
if np.any((newfmax < oldfmax)):
if np.isclose(rot, self._spflims.rot):
newfmax = np.minimum(newfmax, oldfmax)
self.set_spatial_fmax(newfmax, rot) | def update_spatial_fmax(self, newfmax, rot=None):
'Update the spatial-frequency band-limits recorded for the\n current image.\n\n See the documentation of set_spatial_fmax() for an explanation\n of what the band-limits are used for.\n\n If either of the new limits is less than an existing\n band-limit, and the rotation angle of the new limits is\n the same as the angle of the recorded limits, then the smaller\n limits replace the originals.\n\n If either of the new limits is smaller than the existing\n limits, but the rotation angle for the new limits differs from\n the recorded limits, then both of the original limits are\n discarded and replaced by the new ones at the specified angle.\n\n Parameters\n ----------\n newfmax : numpy.ndarray\n The frequency limits along the Y and X axes, respectively,\n specified in cycles per the angular unit in self.wcs.unit.\n rot : float or None\n Either None, to specify band-limits that pertain to the Y\n and X axes of the current image without any rotation, or,\n if the band-limits pertain to a rotated version of the\n image, the rotation angle of its Y axis westward of north\n (degrees). This is defined such that if\n image.wcs.get_rot() is passed to this function, the\n band-limit newfmax[0] will be along the Y axis of the\n image and newfmax[1] will be along its X axis.\n\n '
if (rot is None):
rot = self.wcs.get_rot()
if (self._spflims is None):
self.set_spatial_fmax(newfmax, rot)
else:
oldfmax = self._spflims.get_fmax(rot)
if np.any((newfmax < oldfmax)):
if np.isclose(rot, self._spflims.rot):
newfmax = np.minimum(newfmax, oldfmax)
self.set_spatial_fmax(newfmax, rot)<|docstring|>Update the spatial-frequency band-limits recorded for the
current image.
See the documentation of set_spatial_fmax() for an explanation
of what the band-limits are used for.
If either of the new limits is less than an existing
band-limit, and the rotation angle of the new limits is
the same as the angle of the recorded limits, then the smaller
limits replace the originals.
If either of the new limits is smaller than the existing
limits, but the rotation angle for the new limits differs from
the recorded limits, then both of the original limits are
discarded and replaced by the new ones at the specified angle.
Parameters
----------
newfmax : numpy.ndarray
The frequency limits along the Y and X axes, respectively,
specified in cycles per the angular unit in self.wcs.unit.
rot : float or None
Either None, to specify band-limits that pertain to the Y
and X axes of the current image without any rotation, or,
if the band-limits pertain to a rotated version of the
image, the rotation angle of its Y axis westward of north
(degrees). This is defined such that if
image.wcs.get_rot() is passed to this function, the
band-limit newfmax[0] will be along the Y axis of the
image and newfmax[1] will be along its X axis.<|endoftext|> |
dcc5d5e331de47d393b6c3d5178f6ce3c370a319b326ed8f5975d3a9ddb34d57 | def set_spatial_fmax(self, newfmax=None, rot=None):
'Specify the spatial-frequency band-limits of the image along\n the Y and X axis. This function completely replaces any existing\n band-limits. See also update_spatial_fmax().\n\n The recorded limits are used to avoid redundantly performing\n anti-aliasing measures such as low-pass filtering an image\n before resampling to a lower resolution, or decreasing pixel\n sizes before rotating high resolution axes onto low resolution\n axes.\n\n Parameters\n ----------\n newfmax : numpy.ndarray\n The new frequency limits along the Y and X axes or a\n band-limiting ellipse, specified in cycles per the angular\n unit in self.wcs.unit.\n rot : float or None\n Either None, to specify band-limits that pertain to the Y\n and X axes of the current image without any rotation, or,\n if the band-limits pertain to a rotated version of the\n image, the rotation angle of its Y axis westward of north\n (degrees). This is defined such that if\n image.wcs.get_rot() is passed to this function, the\n band-limit newfmax[0] will be along the Y axis of the\n image and newfmax[1] will be along its X axis.\n\n '
if (rot is None):
rot = self.wcs.get_rot()
self._spflims = SpatialFrequencyLimits(newfmax, rot) | Specify the spatial-frequency band-limits of the image along
the Y and X axis. This function completely replaces any existing
band-limits. See also update_spatial_fmax().
The recorded limits are used to avoid redundantly performing
anti-aliasing measures such as low-pass filtering an image
before resampling to a lower resolution, or decreasing pixel
sizes before rotating high resolution axes onto low resolution
axes.
Parameters
----------
newfmax : numpy.ndarray
The new frequency limits along the Y and X axes or a
band-limiting ellipse, specified in cycles per the angular
unit in self.wcs.unit.
rot : float or None
Either None, to specify band-limits that pertain to the Y
and X axes of the current image without any rotation, or,
if the band-limits pertain to a rotated version of the
image, the rotation angle of its Y axis westward of north
(degrees). This is defined such that if
image.wcs.get_rot() is passed to this function, the
band-limit newfmax[0] will be along the Y axis of the
image and newfmax[1] will be along its X axis. | lib/mpdaf/obj/image.py | set_spatial_fmax | musevlt/mpdaf | 4 | python | def set_spatial_fmax(self, newfmax=None, rot=None):
'Specify the spatial-frequency band-limits of the image along\n the Y and X axis. This function completely replaces any existing\n band-limits. See also update_spatial_fmax().\n\n The recorded limits are used to avoid redundantly performing\n anti-aliasing measures such as low-pass filtering an image\n before resampling to a lower resolution, or decreasing pixel\n sizes before rotating high resolution axes onto low resolution\n axes.\n\n Parameters\n ----------\n newfmax : numpy.ndarray\n The new frequency limits along the Y and X axes or a\n band-limiting ellipse, specified in cycles per the angular\n unit in self.wcs.unit.\n rot : float or None\n Either None, to specify band-limits that pertain to the Y\n and X axes of the current image without any rotation, or,\n if the band-limits pertain to a rotated version of the\n image, the rotation angle of its Y axis westward of north\n (degrees). This is defined such that if\n image.wcs.get_rot() is passed to this function, the\n band-limit newfmax[0] will be along the Y axis of the\n image and newfmax[1] will be along its X axis.\n\n '
if (rot is None):
rot = self.wcs.get_rot()
self._spflims = SpatialFrequencyLimits(newfmax, rot) | def set_spatial_fmax(self, newfmax=None, rot=None):
'Specify the spatial-frequency band-limits of the image along\n the Y and X axis. This function completely replaces any existing\n band-limits. See also update_spatial_fmax().\n\n The recorded limits are used to avoid redundantly performing\n anti-aliasing measures such as low-pass filtering an image\n before resampling to a lower resolution, or decreasing pixel\n sizes before rotating high resolution axes onto low resolution\n axes.\n\n Parameters\n ----------\n newfmax : numpy.ndarray\n The new frequency limits along the Y and X axes or a\n band-limiting ellipse, specified in cycles per the angular\n unit in self.wcs.unit.\n rot : float or None\n Either None, to specify band-limits that pertain to the Y\n and X axes of the current image without any rotation, or,\n if the band-limits pertain to a rotated version of the\n image, the rotation angle of its Y axis westward of north\n (degrees). This is defined such that if\n image.wcs.get_rot() is passed to this function, the\n band-limit newfmax[0] will be along the Y axis of the\n image and newfmax[1] will be along its X axis.\n\n '
if (rot is None):
rot = self.wcs.get_rot()
self._spflims = SpatialFrequencyLimits(newfmax, rot)<|docstring|>Specify the spatial-frequency band-limits of the image along
the Y and X axis. This function completely replaces any existing
band-limits. See also update_spatial_fmax().
The recorded limits are used to avoid redundantly performing
anti-aliasing measures such as low-pass filtering an image
before resampling to a lower resolution, or decreasing pixel
sizes before rotating high resolution axes onto low resolution
axes.
Parameters
----------
newfmax : numpy.ndarray
The new frequency limits along the Y and X axes or a
band-limiting ellipse, specified in cycles per the angular
unit in self.wcs.unit.
rot : float or None
Either None, to specify band-limits that pertain to the Y
and X axes of the current image without any rotation, or,
if the band-limits pertain to a rotated version of the
image, the rotation angle of its Y axis westward of north
(degrees). This is defined such that if
image.wcs.get_rot() is passed to this function, the
band-limit newfmax[0] will be along the Y axis of the
image and newfmax[1] will be along its X axis.<|endoftext|> |
162c5b36b4a67e59fb48ab24c461a127f9e047346e4eeeaa841519ddcd8d579d | def get_fmax(self, rot):
"Return the spatial-frequency band-limits along a Y axis that is\n 'rot' degrees west of north, and an X axis that is 90 degrees\n away from this Y axis in the sense of a rotation from north to east.\n\n Parameters\n ----------\n rot : float\n The angle of the target Y axis west of north (degrees).\n\n Returns\n -------\n out : numpy.ndarray\n The maximum spatial frequencies along the Y and X axes at\n rotation angle rot, in the same units as were used to\n initialize the object.\n\n "
(ys, xs) = self.fmax
psi = np.deg2rad((rot - self.rot))
cos_psi = np.cos(psi)
sin_psi = np.sin(psi)
t_xmax = np.arctan2(((- ys) * sin_psi), (xs * cos_psi))
t_ymax = np.arctan2((ys * cos_psi), (xs * sin_psi))
xmax = (((xs * np.cos(t_xmax)) * cos_psi) - ((ys * np.sin(t_xmax)) * sin_psi))
ymax = (((xs * np.cos(t_ymax)) * sin_psi) + ((ys * np.sin(t_ymax)) * cos_psi))
return np.array([ymax, xmax], dtype=float) | Return the spatial-frequency band-limits along a Y axis that is
'rot' degrees west of north, and an X axis that is 90 degrees
away from this Y axis in the sense of a rotation from north to east.
Parameters
----------
rot : float
The angle of the target Y axis west of north (degrees).
Returns
-------
out : numpy.ndarray
The maximum spatial frequencies along the Y and X axes at
rotation angle rot, in the same units as were used to
initialize the object. | lib/mpdaf/obj/image.py | get_fmax | musevlt/mpdaf | 4 | python | def get_fmax(self, rot):
"Return the spatial-frequency band-limits along a Y axis that is\n 'rot' degrees west of north, and an X axis that is 90 degrees\n away from this Y axis in the sense of a rotation from north to east.\n\n Parameters\n ----------\n rot : float\n The angle of the target Y axis west of north (degrees).\n\n Returns\n -------\n out : numpy.ndarray\n The maximum spatial frequencies along the Y and X axes at\n rotation angle rot, in the same units as were used to\n initialize the object.\n\n "
(ys, xs) = self.fmax
psi = np.deg2rad((rot - self.rot))
cos_psi = np.cos(psi)
sin_psi = np.sin(psi)
t_xmax = np.arctan2(((- ys) * sin_psi), (xs * cos_psi))
t_ymax = np.arctan2((ys * cos_psi), (xs * sin_psi))
xmax = (((xs * np.cos(t_xmax)) * cos_psi) - ((ys * np.sin(t_xmax)) * sin_psi))
ymax = (((xs * np.cos(t_ymax)) * sin_psi) + ((ys * np.sin(t_ymax)) * cos_psi))
return np.array([ymax, xmax], dtype=float) | def get_fmax(self, rot):
"Return the spatial-frequency band-limits along a Y axis that is\n 'rot' degrees west of north, and an X axis that is 90 degrees\n away from this Y axis in the sense of a rotation from north to east.\n\n Parameters\n ----------\n rot : float\n The angle of the target Y axis west of north (degrees).\n\n Returns\n -------\n out : numpy.ndarray\n The maximum spatial frequencies along the Y and X axes at\n rotation angle rot, in the same units as were used to\n initialize the object.\n\n "
(ys, xs) = self.fmax
psi = np.deg2rad((rot - self.rot))
cos_psi = np.cos(psi)
sin_psi = np.sin(psi)
t_xmax = np.arctan2(((- ys) * sin_psi), (xs * cos_psi))
t_ymax = np.arctan2((ys * cos_psi), (xs * sin_psi))
xmax = (((xs * np.cos(t_xmax)) * cos_psi) - ((ys * np.sin(t_xmax)) * sin_psi))
ymax = (((xs * np.cos(t_ymax)) * sin_psi) + ((ys * np.sin(t_ymax)) * cos_psi))
return np.array([ymax, xmax], dtype=float)<|docstring|>Return the spatial-frequency band-limits along a Y axis that is
'rot' degrees west of north, and an X axis that is 90 degrees
away from this Y axis in the sense of a rotation from north to east.
Parameters
----------
rot : float
The angle of the target Y axis west of north (degrees).
Returns
-------
out : numpy.ndarray
The maximum spatial frequencies along the Y and X axes at
rotation angle rot, in the same units as were used to
initialize the object.<|endoftext|> |
7a01d1f5253093f7505117276bbb3403fc41f1cb91eb603a575fdba3c6017a62 | def ellipse_locus(self, t, rot):
'Return the Y,X coordinates of the band-limiting ellipse\n at ellipse phase t.\n\n Parameters\n ----------\n t : float\n The elliptical phase at which the calculate the\n coordinates (radians).\n rot : float\n The rotation angle of the Y axis of the ellipse west\n of north (degrees).\n\n Returns\n -------\n out : numpy.ndarray\n The Y and X coordinates of the band-limiting ellipse.\n '
(ys, xs) = self.fmax
psi = np.deg2rad((rot - self.rot))
cos_psi = np.cos(psi)
sin_psi = np.sin(psi)
cos_t = np.cos(t)
sin_t = np.sin(t)
x = (((xs * cos_t) * cos_psi) - ((ys * sin_t) * sin_psi))
y = (((xs * cos_t) * sin_psi) + ((ys * sin_t) * cos_psi))
return np.array([y, x], dtype=float) | Return the Y,X coordinates of the band-limiting ellipse
at ellipse phase t.
Parameters
----------
t : float
The elliptical phase at which the calculate the
coordinates (radians).
rot : float
The rotation angle of the Y axis of the ellipse west
of north (degrees).
Returns
-------
out : numpy.ndarray
The Y and X coordinates of the band-limiting ellipse. | lib/mpdaf/obj/image.py | ellipse_locus | musevlt/mpdaf | 4 | python | def ellipse_locus(self, t, rot):
'Return the Y,X coordinates of the band-limiting ellipse\n at ellipse phase t.\n\n Parameters\n ----------\n t : float\n The elliptical phase at which the calculate the\n coordinates (radians).\n rot : float\n The rotation angle of the Y axis of the ellipse west\n of north (degrees).\n\n Returns\n -------\n out : numpy.ndarray\n The Y and X coordinates of the band-limiting ellipse.\n '
(ys, xs) = self.fmax
psi = np.deg2rad((rot - self.rot))
cos_psi = np.cos(psi)
sin_psi = np.sin(psi)
cos_t = np.cos(t)
sin_t = np.sin(t)
x = (((xs * cos_t) * cos_psi) - ((ys * sin_t) * sin_psi))
y = (((xs * cos_t) * sin_psi) + ((ys * sin_t) * cos_psi))
return np.array([y, x], dtype=float) | def ellipse_locus(self, t, rot):
'Return the Y,X coordinates of the band-limiting ellipse\n at ellipse phase t.\n\n Parameters\n ----------\n t : float\n The elliptical phase at which the calculate the\n coordinates (radians).\n rot : float\n The rotation angle of the Y axis of the ellipse west\n of north (degrees).\n\n Returns\n -------\n out : numpy.ndarray\n The Y and X coordinates of the band-limiting ellipse.\n '
(ys, xs) = self.fmax
psi = np.deg2rad((rot - self.rot))
cos_psi = np.cos(psi)
sin_psi = np.sin(psi)
cos_t = np.cos(t)
sin_t = np.sin(t)
x = (((xs * cos_t) * cos_psi) - ((ys * sin_t) * sin_psi))
y = (((xs * cos_t) * sin_psi) + ((ys * sin_t) * cos_psi))
return np.array([y, x], dtype=float)<|docstring|>Return the Y,X coordinates of the band-limiting ellipse
at ellipse phase t.
Parameters
----------
t : float
The elliptical phase at which the calculate the
coordinates (radians).
rot : float
The rotation angle of the Y axis of the ellipse west
of north (degrees).
Returns
-------
out : numpy.ndarray
The Y and X coordinates of the band-limiting ellipse.<|endoftext|> |
685ae25b1b5d6778c33d14a35b75480553b7e418bf2521b4ce9be209394039da | def moffat(c, x, y, amplitude, x_0, y_0, alpha, beta, e):
'Two dimensional Moffat model function'
rr_gg = ((((x - x_0) / alpha) ** 2) + ((((y - y_0) / alpha) / e) ** 2))
return (c + (amplitude * ((1 + rr_gg) ** (- beta)))) | Two dimensional Moffat model function | lib/mpdaf/obj/image.py | moffat | musevlt/mpdaf | 4 | python | def moffat(c, x, y, amplitude, x_0, y_0, alpha, beta, e):
rr_gg = ((((x - x_0) / alpha) ** 2) + ((((y - y_0) / alpha) / e) ** 2))
return (c + (amplitude * ((1 + rr_gg) ** (- beta)))) | def moffat(c, x, y, amplitude, x_0, y_0, alpha, beta, e):
rr_gg = ((((x - x_0) / alpha) ** 2) + ((((y - y_0) / alpha) / e) ** 2))
return (c + (amplitude * ((1 + rr_gg) ** (- beta))))<|docstring|>Two dimensional Moffat model function<|endoftext|> |
90e14161f806edd2a544f57f87a9c2255051c09b16e529149d9bb7aaa00867f5 | def _dict_repr(self) -> Any:
'\n Returns the dict representation of your object.\n\n It is the only method that you would want to redefine in most cases to represent data.\n '
return vars(self).copy() | Returns the dict representation of your object.
It is the only method that you would want to redefine in most cases to represent data. | flanautils/models/bases.py | _dict_repr | AlberLC/flanautils | 0 | python | def _dict_repr(self) -> Any:
'\n Returns the dict representation of your object.\n\n It is the only method that you would want to redefine in most cases to represent data.\n '
return vars(self).copy() | def _dict_repr(self) -> Any:
'\n Returns the dict representation of your object.\n\n It is the only method that you would want to redefine in most cases to represent data.\n '
return vars(self).copy()<|docstring|>Returns the dict representation of your object.
It is the only method that you would want to redefine in most cases to represent data.<|endoftext|> |
12f4df84341e8debf8c63ac6b7bffc4538dc6caecd7dac275cb8e6550bbf898c | def _json_repr(self) -> Any:
'\n Returns the JSON representation of your object.\n\n It is the only method that you would want to redefine in most cases to represent data.\n '
return vars(self) | Returns the JSON representation of your object.
It is the only method that you would want to redefine in most cases to represent data. | flanautils/models/bases.py | _json_repr | AlberLC/flanautils | 0 | python | def _json_repr(self) -> Any:
'\n Returns the JSON representation of your object.\n\n It is the only method that you would want to redefine in most cases to represent data.\n '
return vars(self) | def _json_repr(self) -> Any:
'\n Returns the JSON representation of your object.\n\n It is the only method that you would want to redefine in most cases to represent data.\n '
return vars(self)<|docstring|>Returns the JSON representation of your object.
It is the only method that you would want to redefine in most cases to represent data.<|endoftext|> |
9c98464d3cb3699a63b3cf8a977e0072bdec061505eadfff9a32f31826846eb7 | @classmethod
def from_json(cls, text: str) -> Any:
'Classmethod that constructs an object given a JSON string.'
def decode_str(obj_: Any) -> Any:
'Inner function to decode JSON strings to anything.'
if (not isinstance(obj_, str)):
return obj_
try:
bytes_ = base64.b64decode(obj_.encode(), validate=True)
decoded_obj = pickle.loads(bytes_)
except (binascii.Error, pickle.UnpicklingError, EOFError):
return obj_
return decoded_obj
def decode_list(obj_: Any) -> Any:
'Inner function to decode JSON lists to anything.'
return [decode_str(e) for e in obj_]
def decode_dict(cls_: Any, dict_: dict) -> Any:
'Inner function to decode JSON dictionaries to anything.'
kwargs = {}
for (k, v) in dict_.items():
k = decode_str(k)
v = decode_str(v)
if isinstance(v, dict):
try:
v = decode_dict(typing.get_type_hints(cls_)[k], v)
except KeyError:
pass
kwargs[k] = v
return cls_(**kwargs)
if (not isinstance(text, str)):
raise TypeError(f'must be str, not {type(text).__name__}')
obj = json.loads(text)
if isinstance(obj, str):
return decode_str(obj)
elif isinstance(obj, list):
return decode_list(obj)
elif isinstance(obj, dict):
return decode_dict(cls, obj)
else:
return obj | Classmethod that constructs an object given a JSON string. | flanautils/models/bases.py | from_json | AlberLC/flanautils | 0 | python | @classmethod
def from_json(cls, text: str) -> Any:
def decode_str(obj_: Any) -> Any:
'Inner function to decode JSON strings to anything.'
if (not isinstance(obj_, str)):
return obj_
try:
bytes_ = base64.b64decode(obj_.encode(), validate=True)
decoded_obj = pickle.loads(bytes_)
except (binascii.Error, pickle.UnpicklingError, EOFError):
return obj_
return decoded_obj
def decode_list(obj_: Any) -> Any:
'Inner function to decode JSON lists to anything.'
return [decode_str(e) for e in obj_]
def decode_dict(cls_: Any, dict_: dict) -> Any:
'Inner function to decode JSON dictionaries to anything.'
kwargs = {}
for (k, v) in dict_.items():
k = decode_str(k)
v = decode_str(v)
if isinstance(v, dict):
try:
v = decode_dict(typing.get_type_hints(cls_)[k], v)
except KeyError:
pass
kwargs[k] = v
return cls_(**kwargs)
if (not isinstance(text, str)):
raise TypeError(f'must be str, not {type(text).__name__}')
obj = json.loads(text)
if isinstance(obj, str):
return decode_str(obj)
elif isinstance(obj, list):
return decode_list(obj)
elif isinstance(obj, dict):
return decode_dict(cls, obj)
else:
return obj | @classmethod
def from_json(cls, text: str) -> Any:
def decode_str(obj_: Any) -> Any:
'Inner function to decode JSON strings to anything.'
if (not isinstance(obj_, str)):
return obj_
try:
bytes_ = base64.b64decode(obj_.encode(), validate=True)
decoded_obj = pickle.loads(bytes_)
except (binascii.Error, pickle.UnpicklingError, EOFError):
return obj_
return decoded_obj
def decode_list(obj_: Any) -> Any:
'Inner function to decode JSON lists to anything.'
return [decode_str(e) for e in obj_]
def decode_dict(cls_: Any, dict_: dict) -> Any:
'Inner function to decode JSON dictionaries to anything.'
kwargs = {}
for (k, v) in dict_.items():
k = decode_str(k)
v = decode_str(v)
if isinstance(v, dict):
try:
v = decode_dict(typing.get_type_hints(cls_)[k], v)
except KeyError:
pass
kwargs[k] = v
return cls_(**kwargs)
if (not isinstance(text, str)):
raise TypeError(f'must be str, not {type(text).__name__}')
obj = json.loads(text)
if isinstance(obj, str):
return decode_str(obj)
elif isinstance(obj, list):
return decode_list(obj)
elif isinstance(obj, dict):
return decode_dict(cls, obj)
else:
return obj<|docstring|>Classmethod that constructs an object given a JSON string.<|endoftext|> |
5be833807f0878afbc9772952ef6a9e2a9d79c6b29a4c2b54af81ce8bdb1f1d7 | @classmethod
def mean(cls, objects: Sequence, ratios: list[float]=None, attribute_names: Iterable[str]=()) -> MeanBase:
'\n Classmethod that builds a new object calculating the mean of the objects in the iterable for the attributes\n specified in attribute_names with the provided ratios.\n\n When calculating the mean, if an attribute is None, the ratio given for that object is distributed among the\n rest whose attributes with that name contain some value other than None.\n\n By default, ratios is 1 / n_objects for every object in objects.\n '
if (not objects):
return cls()
n_objects = len(objects)
if (not ratios):
ratios = [(1 / n_objects) for _ in objects]
elif (len(ratios) != len(objects)):
raise ValueError('Wrong ratios length')
attributes_ratios = {}
attributes_ratios_length = {}
for attribute_name in attribute_names:
attributes_ratios[attribute_name] = ratios.copy()
attributes_ratios_length[attribute_name] = len(attributes_ratios[attribute_name])
for (object_index, object_) in enumerate(objects):
if ((not object_) or (getattr(object_, attribute_name, None) is None)):
attributes_ratios_length[attribute_name] -= 1
try:
ratio_part_to_add = (attributes_ratios[attribute_name][object_index] / attributes_ratios_length[attribute_name])
except ZeroDivisionError:
ratio_part_to_add = 0
attributes_ratios[attribute_name][object_index] = 0
for (ratio_index, _) in enumerate(attributes_ratios[attribute_name]):
if attributes_ratios[attribute_name][ratio_index]:
attributes_ratios[attribute_name][ratio_index] += ratio_part_to_add
attribute_values = {}
timezone: (datetime.timezone | None) = None
for (attribute_name, attribute_ratios) in attributes_ratios.items():
values = []
for (object_, ratio) in zip(objects, attribute_ratios):
if ratio:
attribute = getattr(object_, attribute_name)
if (attribute_name in ('sunrise', 'sunset')):
timezone = attribute.tzinfo
attribute = attribute.timestamp()
values.append((attribute * ratio))
if values:
final_value = sum(values)
if (attribute_name in ('sunrise', 'sunset')):
final_value = datetime.datetime.fromtimestamp(final_value, timezone)
attribute_values[attribute_name] = final_value
return cls(**attribute_values) | Classmethod that builds a new object calculating the mean of the objects in the iterable for the attributes
specified in attribute_names with the provided ratios.
When calculating the mean, if an attribute is None, the ratio given for that object is distributed among the
rest whose attributes with that name contain some value other than None.
By default, ratios is 1 / n_objects for every object in objects. | flanautils/models/bases.py | mean | AlberLC/flanautils | 0 | python | @classmethod
def mean(cls, objects: Sequence, ratios: list[float]=None, attribute_names: Iterable[str]=()) -> MeanBase:
'\n Classmethod that builds a new object calculating the mean of the objects in the iterable for the attributes\n specified in attribute_names with the provided ratios.\n\n When calculating the mean, if an attribute is None, the ratio given for that object is distributed among the\n rest whose attributes with that name contain some value other than None.\n\n By default, ratios is 1 / n_objects for every object in objects.\n '
if (not objects):
return cls()
n_objects = len(objects)
if (not ratios):
ratios = [(1 / n_objects) for _ in objects]
elif (len(ratios) != len(objects)):
raise ValueError('Wrong ratios length')
attributes_ratios = {}
attributes_ratios_length = {}
for attribute_name in attribute_names:
attributes_ratios[attribute_name] = ratios.copy()
attributes_ratios_length[attribute_name] = len(attributes_ratios[attribute_name])
for (object_index, object_) in enumerate(objects):
if ((not object_) or (getattr(object_, attribute_name, None) is None)):
attributes_ratios_length[attribute_name] -= 1
try:
ratio_part_to_add = (attributes_ratios[attribute_name][object_index] / attributes_ratios_length[attribute_name])
except ZeroDivisionError:
ratio_part_to_add = 0
attributes_ratios[attribute_name][object_index] = 0
for (ratio_index, _) in enumerate(attributes_ratios[attribute_name]):
if attributes_ratios[attribute_name][ratio_index]:
attributes_ratios[attribute_name][ratio_index] += ratio_part_to_add
attribute_values = {}
timezone: (datetime.timezone | None) = None
for (attribute_name, attribute_ratios) in attributes_ratios.items():
values = []
for (object_, ratio) in zip(objects, attribute_ratios):
if ratio:
attribute = getattr(object_, attribute_name)
if (attribute_name in ('sunrise', 'sunset')):
timezone = attribute.tzinfo
attribute = attribute.timestamp()
values.append((attribute * ratio))
if values:
final_value = sum(values)
if (attribute_name in ('sunrise', 'sunset')):
final_value = datetime.datetime.fromtimestamp(final_value, timezone)
attribute_values[attribute_name] = final_value
return cls(**attribute_values) | @classmethod
def mean(cls, objects: Sequence, ratios: list[float]=None, attribute_names: Iterable[str]=()) -> MeanBase:
'\n Classmethod that builds a new object calculating the mean of the objects in the iterable for the attributes\n specified in attribute_names with the provided ratios.\n\n When calculating the mean, if an attribute is None, the ratio given for that object is distributed among the\n rest whose attributes with that name contain some value other than None.\n\n By default, ratios is 1 / n_objects for every object in objects.\n '
if (not objects):
return cls()
n_objects = len(objects)
if (not ratios):
ratios = [(1 / n_objects) for _ in objects]
elif (len(ratios) != len(objects)):
raise ValueError('Wrong ratios length')
attributes_ratios = {}
attributes_ratios_length = {}
for attribute_name in attribute_names:
attributes_ratios[attribute_name] = ratios.copy()
attributes_ratios_length[attribute_name] = len(attributes_ratios[attribute_name])
for (object_index, object_) in enumerate(objects):
if ((not object_) or (getattr(object_, attribute_name, None) is None)):
attributes_ratios_length[attribute_name] -= 1
try:
ratio_part_to_add = (attributes_ratios[attribute_name][object_index] / attributes_ratios_length[attribute_name])
except ZeroDivisionError:
ratio_part_to_add = 0
attributes_ratios[attribute_name][object_index] = 0
for (ratio_index, _) in enumerate(attributes_ratios[attribute_name]):
if attributes_ratios[attribute_name][ratio_index]:
attributes_ratios[attribute_name][ratio_index] += ratio_part_to_add
attribute_values = {}
timezone: (datetime.timezone | None) = None
for (attribute_name, attribute_ratios) in attributes_ratios.items():
values = []
for (object_, ratio) in zip(objects, attribute_ratios):
if ratio:
attribute = getattr(object_, attribute_name)
if (attribute_name in ('sunrise', 'sunset')):
timezone = attribute.tzinfo
attribute = attribute.timestamp()
values.append((attribute * ratio))
if values:
final_value = sum(values)
if (attribute_name in ('sunrise', 'sunset')):
final_value = datetime.datetime.fromtimestamp(final_value, timezone)
attribute_values[attribute_name] = final_value
return cls(**attribute_values)<|docstring|>Classmethod that builds a new object calculating the mean of the objects in the iterable for the attributes
specified in attribute_names with the provided ratios.
When calculating the mean, if an attribute is None, the ratio given for that object is distributed among the
rest whose attributes with that name contain some value other than None.
By default, ratios is 1 / n_objects for every object in objects.<|endoftext|> |
53b2ec0e5a462a8b9a56c1e317ba2a94ee964404dc20a97f4beb5ee9788b9177 | def _create_unique_indices(self):
'Create the unique indices in the database based on _unique_keys and _nullable_unique_keys attributes.'
if (not self._unique_keys):
return
unique_keys = [(unique_key, pymongo.ASCENDING) for unique_key in self._unique_keys]
type_filter = {'$type': ['number', 'string', 'object', 'array', 'binData', 'objectId', 'bool', 'date', 'regex', 'javascript', 'regex', 'timestamp', 'minKey', 'maxKey']}
partial_unique_filter = {nullable_unique_key: type_filter for nullable_unique_key in self._nullable_unique_keys}
self.collection.create_index(unique_keys, partialFilterExpression=partial_unique_filter, unique=True) | Create the unique indices in the database based on _unique_keys and _nullable_unique_keys attributes. | flanautils/models/bases.py | _create_unique_indices | AlberLC/flanautils | 0 | python | def _create_unique_indices(self):
if (not self._unique_keys):
return
unique_keys = [(unique_key, pymongo.ASCENDING) for unique_key in self._unique_keys]
type_filter = {'$type': ['number', 'string', 'object', 'array', 'binData', 'objectId', 'bool', 'date', 'regex', 'javascript', 'regex', 'timestamp', 'minKey', 'maxKey']}
partial_unique_filter = {nullable_unique_key: type_filter for nullable_unique_key in self._nullable_unique_keys}
self.collection.create_index(unique_keys, partialFilterExpression=partial_unique_filter, unique=True) | def _create_unique_indices(self):
if (not self._unique_keys):
return
unique_keys = [(unique_key, pymongo.ASCENDING) for unique_key in self._unique_keys]
type_filter = {'$type': ['number', 'string', 'object', 'array', 'binData', 'objectId', 'bool', 'date', 'regex', 'javascript', 'regex', 'timestamp', 'minKey', 'maxKey']}
partial_unique_filter = {nullable_unique_key: type_filter for nullable_unique_key in self._nullable_unique_keys}
self.collection.create_index(unique_keys, partialFilterExpression=partial_unique_filter, unique=True)<|docstring|>Create the unique indices in the database based on _unique_keys and _nullable_unique_keys attributes.<|endoftext|> |
598bbab90dce5e515f3985e6509e89ba434c8e18dd4d9745a49ac7ed4157a7c0 | def _mongo_repr(self) -> Any:
'Returns the object representation to save in mongo database.'
return {k: (v.value if isinstance(v, Enum) else v) for (k, v) in self._dict_repr().items()} | Returns the object representation to save in mongo database. | flanautils/models/bases.py | _mongo_repr | AlberLC/flanautils | 0 | python | def _mongo_repr(self) -> Any:
return {k: (v.value if isinstance(v, Enum) else v) for (k, v) in self._dict_repr().items()} | def _mongo_repr(self) -> Any:
return {k: (v.value if isinstance(v, Enum) else v) for (k, v) in self._dict_repr().items()}<|docstring|>Returns the object representation to save in mongo database.<|endoftext|> |
afc24950ba3b94507e45ee894b25b8bfb5b2ac701de9ea7da6ff664c1e6ce7c3 | def delete(self, cascade=False):
'\n Delete the object from the database.\n\n If cascade=True all objects whose classes inherit from MongoBase are also deleted.\n '
if cascade:
for referenced_object in self.get_referenced_objects():
referenced_object.delete(cascade)
self.collection.delete_one({'_id': self._id}) | Delete the object from the database.
If cascade=True all objects whose classes inherit from MongoBase are also deleted. | flanautils/models/bases.py | delete | AlberLC/flanautils | 0 | python | def delete(self, cascade=False):
'\n Delete the object from the database.\n\n If cascade=True all objects whose classes inherit from MongoBase are also deleted.\n '
if cascade:
for referenced_object in self.get_referenced_objects():
referenced_object.delete(cascade)
self.collection.delete_one({'_id': self._id}) | def delete(self, cascade=False):
'\n Delete the object from the database.\n\n If cascade=True all objects whose classes inherit from MongoBase are also deleted.\n '
if cascade:
for referenced_object in self.get_referenced_objects():
referenced_object.delete(cascade)
self.collection.delete_one({'_id': self._id})<|docstring|>Delete the object from the database.
If cascade=True all objects whose classes inherit from MongoBase are also deleted.<|endoftext|> |
05fb812aa2c4bb78571e5431b4101ed8b10765d07848a6424fd2a3e59cc30870 | @classmethod
def find_one(cls, query: dict=None, sort_keys: (str | Iterable[(str | tuple[(str, int)])])=()) -> (MongoBase | None):
'Query the collection and return the first match.'
return next(cls.find(query, sort_keys, lazy=True), None) | Query the collection and return the first match. | flanautils/models/bases.py | find_one | AlberLC/flanautils | 0 | python | @classmethod
def find_one(cls, query: dict=None, sort_keys: (str | Iterable[(str | tuple[(str, int)])])=()) -> (MongoBase | None):
return next(cls.find(query, sort_keys, lazy=True), None) | @classmethod
def find_one(cls, query: dict=None, sort_keys: (str | Iterable[(str | tuple[(str, int)])])=()) -> (MongoBase | None):
return next(cls.find(query, sort_keys, lazy=True), None)<|docstring|>Query the collection and return the first match.<|endoftext|> |
0be46f89a912f20060f47fd047d163843ae3fad813a4b4f360b5fdb5ff463aef | def find_in_database_by_id(self, object_id: ObjectId) -> (dict | None):
'Find an object in all database collections by its ObjectId.'
collections = (self._database[name] for name in self._database.list_collection_names())
return next((document for collection in collections if (document := collection.find_one({'_id': object_id}))), None) | Find an object in all database collections by its ObjectId. | flanautils/models/bases.py | find_in_database_by_id | AlberLC/flanautils | 0 | python | def find_in_database_by_id(self, object_id: ObjectId) -> (dict | None):
collections = (self._database[name] for name in self._database.list_collection_names())
return next((document for collection in collections if (document := collection.find_one({'_id': object_id}))), None) | def find_in_database_by_id(self, object_id: ObjectId) -> (dict | None):
collections = (self._database[name] for name in self._database.list_collection_names())
return next((document for collection in collections if (document := collection.find_one({'_id': object_id}))), None)<|docstring|>Find an object in all database collections by its ObjectId.<|endoftext|> |
b6683193fa67185af8726f8620e66230b8688b239987da920cecf0d6f5c1238a | def pull_from_database(self, overwrite_fields: Iterable[str]=('_id',), exclude: Iterable[str]=()):
'\n Updates the values of the current object with the values of the same object located in the database.\n\n By default, it updates the ObjectId and the attributes of the current object that contain None. You can force\n write from database with database_priority=True (by default database_priority=False).\n\n Ignore the attributes specified in exclude.\n '
unique_attributes = self.unique_attributes
if any(((value is None) for value in unique_attributes.values())):
query = {'_id': self._id}
else:
query = {}
for (k, v) in unique_attributes.items():
if isinstance(v, MongoBase):
v.pull_from_database(overwrite_fields, exclude)
v = v._id
query[k] = v
if (document := self.collection.find_one(query)):
for (database_key, database_value) in vars(self.from_dict(document)).items():
self_value = getattr(self, database_key)
if ((database_key not in exclude) and (((database_key in overwrite_fields) and (database_value is not None)) or (self_value is None) or (isinstance(self_value, Iterable) and (not self_value)))):
super().__setattr__(database_key, database_value) | Updates the values of the current object with the values of the same object located in the database.
By default, it updates the ObjectId and the attributes of the current object that contain None. You can force
write from database with database_priority=True (by default database_priority=False).
Ignore the attributes specified in exclude. | flanautils/models/bases.py | pull_from_database | AlberLC/flanautils | 0 | python | def pull_from_database(self, overwrite_fields: Iterable[str]=('_id',), exclude: Iterable[str]=()):
'\n Updates the values of the current object with the values of the same object located in the database.\n\n By default, it updates the ObjectId and the attributes of the current object that contain None. You can force\n write from database with database_priority=True (by default database_priority=False).\n\n Ignore the attributes specified in exclude.\n '
unique_attributes = self.unique_attributes
if any(((value is None) for value in unique_attributes.values())):
query = {'_id': self._id}
else:
query = {}
for (k, v) in unique_attributes.items():
if isinstance(v, MongoBase):
v.pull_from_database(overwrite_fields, exclude)
v = v._id
query[k] = v
if (document := self.collection.find_one(query)):
for (database_key, database_value) in vars(self.from_dict(document)).items():
self_value = getattr(self, database_key)
if ((database_key not in exclude) and (((database_key in overwrite_fields) and (database_value is not None)) or (self_value is None) or (isinstance(self_value, Iterable) and (not self_value)))):
super().__setattr__(database_key, database_value) | def pull_from_database(self, overwrite_fields: Iterable[str]=('_id',), exclude: Iterable[str]=()):
'\n Updates the values of the current object with the values of the same object located in the database.\n\n By default, it updates the ObjectId and the attributes of the current object that contain None. You can force\n write from database with database_priority=True (by default database_priority=False).\n\n Ignore the attributes specified in exclude.\n '
unique_attributes = self.unique_attributes
if any(((value is None) for value in unique_attributes.values())):
query = {'_id': self._id}
else:
query = {}
for (k, v) in unique_attributes.items():
if isinstance(v, MongoBase):
v.pull_from_database(overwrite_fields, exclude)
v = v._id
query[k] = v
if (document := self.collection.find_one(query)):
for (database_key, database_value) in vars(self.from_dict(document)).items():
self_value = getattr(self, database_key)
if ((database_key not in exclude) and (((database_key in overwrite_fields) and (database_value is not None)) or (self_value is None) or (isinstance(self_value, Iterable) and (not self_value)))):
super().__setattr__(database_key, database_value)<|docstring|>Updates the values of the current object with the values of the same object located in the database.
By default, it updates the ObjectId and the attributes of the current object that contain None. You can force
write from database with database_priority=True (by default database_priority=False).
Ignore the attributes specified in exclude.<|endoftext|> |
76257ed2efa89e695a3ab77630f84fbd7e35391e6d198e42a18e973212e345f6 | def resolve(self):
'Resolve all the ObjectId references (ObjectId -> MongoBase).'
for k in vars(self):
getattr(self, k) | Resolve all the ObjectId references (ObjectId -> MongoBase). | flanautils/models/bases.py | resolve | AlberLC/flanautils | 0 | python | def resolve(self):
for k in vars(self):
getattr(self, k) | def resolve(self):
for k in vars(self):
getattr(self, k)<|docstring|>Resolve all the ObjectId references (ObjectId -> MongoBase).<|endoftext|> |
53c39b0c6ff257c0a841e0c3440b7e4fe8355396945a409d2823fc503b792bed | @property
def unique_attributes(self):
'\n Property that returns a dictionary with the name of the attributes that must be unique in the database and their\n values.\n '
unique_attributes = {}
for unique_key in self._unique_keys:
attribute_value = getattr(self, unique_key, None)
unique_attributes[unique_key] = (attribute_value.value if isinstance(attribute_value, Enum) else attribute_value)
return unique_attributes | Property that returns a dictionary with the name of the attributes that must be unique in the database and their
values. | flanautils/models/bases.py | unique_attributes | AlberLC/flanautils | 0 | python | @property
def unique_attributes(self):
'\n Property that returns a dictionary with the name of the attributes that must be unique in the database and their\n values.\n '
unique_attributes = {}
for unique_key in self._unique_keys:
attribute_value = getattr(self, unique_key, None)
unique_attributes[unique_key] = (attribute_value.value if isinstance(attribute_value, Enum) else attribute_value)
return unique_attributes | @property
def unique_attributes(self):
'\n Property that returns a dictionary with the name of the attributes that must be unique in the database and their\n values.\n '
unique_attributes = {}
for unique_key in self._unique_keys:
attribute_value = getattr(self, unique_key, None)
unique_attributes[unique_key] = (attribute_value.value if isinstance(attribute_value, Enum) else attribute_value)
return unique_attributes<|docstring|>Property that returns a dictionary with the name of the attributes that must be unique in the database and their
values.<|endoftext|> |
aba467cd151537856c76861f5f0278bfa1247001459e9bd237401073335d3f3c | def decode_str(obj_: Any) -> Any:
'Inner function to decode JSON strings to anything.'
if (not isinstance(obj_, str)):
return obj_
try:
bytes_ = base64.b64decode(obj_.encode(), validate=True)
decoded_obj = pickle.loads(bytes_)
except (binascii.Error, pickle.UnpicklingError, EOFError):
return obj_
return decoded_obj | Inner function to decode JSON strings to anything. | flanautils/models/bases.py | decode_str | AlberLC/flanautils | 0 | python | def decode_str(obj_: Any) -> Any:
if (not isinstance(obj_, str)):
return obj_
try:
bytes_ = base64.b64decode(obj_.encode(), validate=True)
decoded_obj = pickle.loads(bytes_)
except (binascii.Error, pickle.UnpicklingError, EOFError):
return obj_
return decoded_obj | def decode_str(obj_: Any) -> Any:
if (not isinstance(obj_, str)):
return obj_
try:
bytes_ = base64.b64decode(obj_.encode(), validate=True)
decoded_obj = pickle.loads(bytes_)
except (binascii.Error, pickle.UnpicklingError, EOFError):
return obj_
return decoded_obj<|docstring|>Inner function to decode JSON strings to anything.<|endoftext|> |
819380ca14724af62f4ef4bf7be1dd3e9d32206351716ddf08df46b7b66be162 | def decode_list(obj_: Any) -> Any:
'Inner function to decode JSON lists to anything.'
return [decode_str(e) for e in obj_] | Inner function to decode JSON lists to anything. | flanautils/models/bases.py | decode_list | AlberLC/flanautils | 0 | python | def decode_list(obj_: Any) -> Any:
return [decode_str(e) for e in obj_] | def decode_list(obj_: Any) -> Any:
return [decode_str(e) for e in obj_]<|docstring|>Inner function to decode JSON lists to anything.<|endoftext|> |
9e59bcff3d15e2b1d9eea655a85d8efb80c3bba67c09ad4aef41e0221df77faf | def decode_dict(cls_: Any, dict_: dict) -> Any:
'Inner function to decode JSON dictionaries to anything.'
kwargs = {}
for (k, v) in dict_.items():
k = decode_str(k)
v = decode_str(v)
if isinstance(v, dict):
try:
v = decode_dict(typing.get_type_hints(cls_)[k], v)
except KeyError:
pass
kwargs[k] = v
return cls_(**kwargs) | Inner function to decode JSON dictionaries to anything. | flanautils/models/bases.py | decode_dict | AlberLC/flanautils | 0 | python | def decode_dict(cls_: Any, dict_: dict) -> Any:
kwargs = {}
for (k, v) in dict_.items():
k = decode_str(k)
v = decode_str(v)
if isinstance(v, dict):
try:
v = decode_dict(typing.get_type_hints(cls_)[k], v)
except KeyError:
pass
kwargs[k] = v
return cls_(**kwargs) | def decode_dict(cls_: Any, dict_: dict) -> Any:
kwargs = {}
for (k, v) in dict_.items():
k = decode_str(k)
v = decode_str(v)
if isinstance(v, dict):
try:
v = decode_dict(typing.get_type_hints(cls_)[k], v)
except KeyError:
pass
kwargs[k] = v
return cls_(**kwargs)<|docstring|>Inner function to decode JSON dictionaries to anything.<|endoftext|> |
8de36190932efa4cd286b4a94028a78b18fe49369a19a3dd7d62bb3924836488 | @scope.define
def hyperopt_param(label, obj):
'A graph node primarily for annotating - VectorizeHelper looks out\n for these guys, and optimizes subgraphs of the form:\n\n hyperopt_param(<stochastic_expression>(...))\n\n '
return obj | A graph node primarily for annotating - VectorizeHelper looks out
for these guys, and optimizes subgraphs of the form:
hyperopt_param(<stochastic_expression>(...)) | hyperopt/pyll_utils.py | hyperopt_param | hamidelmaazouz/hyperopt | 6,071 | python | @scope.define
def hyperopt_param(label, obj):
'A graph node primarily for annotating - VectorizeHelper looks out\n for these guys, and optimizes subgraphs of the form:\n\n hyperopt_param(<stochastic_expression>(...))\n\n '
return obj | @scope.define
def hyperopt_param(label, obj):
'A graph node primarily for annotating - VectorizeHelper looks out\n for these guys, and optimizes subgraphs of the form:\n\n hyperopt_param(<stochastic_expression>(...))\n\n '
return obj<|docstring|>A graph node primarily for annotating - VectorizeHelper looks out
for these guys, and optimizes subgraphs of the form:
hyperopt_param(<stochastic_expression>(...))<|endoftext|> |
4c7952e6687f1cb8f3928ba6e3540ffe451bfd6b64ec5eceaa26563b4a2ad339 | @validate_label
def hp_pchoice(label, p_options):
'\n label: string\n p_options: list of (probability, option) pairs\n '
(p, options) = list(zip(*p_options))
ch = scope.hyperopt_param(label, scope.categorical(p))
return scope.switch(ch, *options) | label: string
p_options: list of (probability, option) pairs | hyperopt/pyll_utils.py | hp_pchoice | hamidelmaazouz/hyperopt | 6,071 | python | @validate_label
def hp_pchoice(label, p_options):
'\n label: string\n p_options: list of (probability, option) pairs\n '
(p, options) = list(zip(*p_options))
ch = scope.hyperopt_param(label, scope.categorical(p))
return scope.switch(ch, *options) | @validate_label
def hp_pchoice(label, p_options):
'\n label: string\n p_options: list of (probability, option) pairs\n '
(p, options) = list(zip(*p_options))
ch = scope.hyperopt_param(label, scope.categorical(p))
return scope.switch(ch, *options)<|docstring|>label: string
p_options: list of (probability, option) pairs<|endoftext|> |
f6b2d47e4fb8f190fbdc371afb2a3cc3762af7e7c018d89c33d2bd7c6ebd2aca | def expr_to_config(expr, conditions, hps):
"\n Populate dictionary `hps` with the hyperparameters in pyll graph `expr`\n and conditions for participation in the evaluation of `expr`.\n\n Arguments:\n expr - a pyll expression root.\n conditions - a tuple of conditions (`Cond`) that must be True for\n `expr` to be evaluated.\n hps - dictionary to populate\n\n Creates `hps` dictionary:\n label -> { 'node': apply node of hyperparameter distribution,\n 'conditions': `conditions` + tuple,\n 'label': label\n }\n "
expr = as_apply(expr)
if (conditions is None):
conditions = ()
assert isinstance(expr, Apply)
_expr_to_config(expr, conditions, hps)
_remove_allpaths(hps, conditions) | Populate dictionary `hps` with the hyperparameters in pyll graph `expr`
and conditions for participation in the evaluation of `expr`.
Arguments:
expr - a pyll expression root.
conditions - a tuple of conditions (`Cond`) that must be True for
`expr` to be evaluated.
hps - dictionary to populate
Creates `hps` dictionary:
label -> { 'node': apply node of hyperparameter distribution,
'conditions': `conditions` + tuple,
'label': label
} | hyperopt/pyll_utils.py | expr_to_config | hamidelmaazouz/hyperopt | 6,071 | python | def expr_to_config(expr, conditions, hps):
"\n Populate dictionary `hps` with the hyperparameters in pyll graph `expr`\n and conditions for participation in the evaluation of `expr`.\n\n Arguments:\n expr - a pyll expression root.\n conditions - a tuple of conditions (`Cond`) that must be True for\n `expr` to be evaluated.\n hps - dictionary to populate\n\n Creates `hps` dictionary:\n label -> { 'node': apply node of hyperparameter distribution,\n 'conditions': `conditions` + tuple,\n 'label': label\n }\n "
expr = as_apply(expr)
if (conditions is None):
conditions = ()
assert isinstance(expr, Apply)
_expr_to_config(expr, conditions, hps)
_remove_allpaths(hps, conditions) | def expr_to_config(expr, conditions, hps):
"\n Populate dictionary `hps` with the hyperparameters in pyll graph `expr`\n and conditions for participation in the evaluation of `expr`.\n\n Arguments:\n expr - a pyll expression root.\n conditions - a tuple of conditions (`Cond`) that must be True for\n `expr` to be evaluated.\n hps - dictionary to populate\n\n Creates `hps` dictionary:\n label -> { 'node': apply node of hyperparameter distribution,\n 'conditions': `conditions` + tuple,\n 'label': label\n }\n "
expr = as_apply(expr)
if (conditions is None):
conditions = ()
assert isinstance(expr, Apply)
_expr_to_config(expr, conditions, hps)
_remove_allpaths(hps, conditions)<|docstring|>Populate dictionary `hps` with the hyperparameters in pyll graph `expr`
and conditions for participation in the evaluation of `expr`.
Arguments:
expr - a pyll expression root.
conditions - a tuple of conditions (`Cond`) that must be True for
`expr` to be evaluated.
hps - dictionary to populate
Creates `hps` dictionary:
label -> { 'node': apply node of hyperparameter distribution,
'conditions': `conditions` + tuple,
'label': label
}<|endoftext|> |
57ab7b6af9f73f7451a224825c1828693b2df11f800cbfe13a85fe79578975a4 | def _remove_allpaths(hps, conditions):
'Hacky way to recognize some kinds of false dependencies\n Better would be logic programming.\n '
potential_conds = {}
for (k, v) in list(hps.items()):
if (v['node'].name == 'randint'):
low = v['node'].arg['low'].obj
domain_size = ((v['node'].arg['high'].obj - low) if (v['node'].arg['high'] != MissingArgument) else low)
potential_conds[k] = frozenset([EQ(k, ii) for ii in range(domain_size)])
elif (v['node'].name == 'categorical'):
p = v['node'].arg['p'].obj
potential_conds[k] = frozenset([EQ(k, ii) for ii in range(p.size)])
for (k, v) in list(hps.items()):
if (len(v['conditions']) > 1):
all_conds = [[c for c in cond if (c is not True)] for cond in v['conditions']]
all_conds = [cond for cond in all_conds if (len(cond) >= 1)]
if (len(all_conds) == 0):
v['conditions'] = {conditions}
continue
depvar = all_conds[0][0].name
all_one_var = all((((len(cond) == 1) and (cond[0].name == depvar)) for cond in all_conds))
if all_one_var:
conds = [cond[0] for cond in all_conds]
if (frozenset(conds) == potential_conds[depvar]):
v['conditions'] = {conditions}
continue | Hacky way to recognize some kinds of false dependencies
Better would be logic programming. | hyperopt/pyll_utils.py | _remove_allpaths | hamidelmaazouz/hyperopt | 6,071 | python | def _remove_allpaths(hps, conditions):
'Hacky way to recognize some kinds of false dependencies\n Better would be logic programming.\n '
potential_conds = {}
for (k, v) in list(hps.items()):
if (v['node'].name == 'randint'):
low = v['node'].arg['low'].obj
domain_size = ((v['node'].arg['high'].obj - low) if (v['node'].arg['high'] != MissingArgument) else low)
potential_conds[k] = frozenset([EQ(k, ii) for ii in range(domain_size)])
elif (v['node'].name == 'categorical'):
p = v['node'].arg['p'].obj
potential_conds[k] = frozenset([EQ(k, ii) for ii in range(p.size)])
for (k, v) in list(hps.items()):
if (len(v['conditions']) > 1):
all_conds = [[c for c in cond if (c is not True)] for cond in v['conditions']]
all_conds = [cond for cond in all_conds if (len(cond) >= 1)]
if (len(all_conds) == 0):
v['conditions'] = {conditions}
continue
depvar = all_conds[0][0].name
all_one_var = all((((len(cond) == 1) and (cond[0].name == depvar)) for cond in all_conds))
if all_one_var:
conds = [cond[0] for cond in all_conds]
if (frozenset(conds) == potential_conds[depvar]):
v['conditions'] = {conditions}
continue | def _remove_allpaths(hps, conditions):
'Hacky way to recognize some kinds of false dependencies\n Better would be logic programming.\n '
potential_conds = {}
for (k, v) in list(hps.items()):
if (v['node'].name == 'randint'):
low = v['node'].arg['low'].obj
domain_size = ((v['node'].arg['high'].obj - low) if (v['node'].arg['high'] != MissingArgument) else low)
potential_conds[k] = frozenset([EQ(k, ii) for ii in range(domain_size)])
elif (v['node'].name == 'categorical'):
p = v['node'].arg['p'].obj
potential_conds[k] = frozenset([EQ(k, ii) for ii in range(p.size)])
for (k, v) in list(hps.items()):
if (len(v['conditions']) > 1):
all_conds = [[c for c in cond if (c is not True)] for cond in v['conditions']]
all_conds = [cond for cond in all_conds if (len(cond) >= 1)]
if (len(all_conds) == 0):
v['conditions'] = {conditions}
continue
depvar = all_conds[0][0].name
all_one_var = all((((len(cond) == 1) and (cond[0].name == depvar)) for cond in all_conds))
if all_one_var:
conds = [cond[0] for cond in all_conds]
if (frozenset(conds) == potential_conds[depvar]):
v['conditions'] = {conditions}
continue<|docstring|>Hacky way to recognize some kinds of false dependencies
Better would be logic programming.<|endoftext|> |
0acc8293ae430d45b58e029fc06ef7fe51785b9ef6823b66cf74f680cbf0c8c5 | @pytest.fixture
def repository_under_test():
'\n Create database resource and mock table\n '
with moto.mock_dynamodb2():
job_repository_under_test = JobRepository()
JobRepository().create_table_if_not_exists()
(yield job_repository_under_test)
JobRepository().delete_table() | Create database resource and mock table | pipeline_control/tests/offline/adapters/job_repository/job_repository_fixtures.py | repository_under_test | aws-samples/financial-crimes-discovery-using-graph-database | 0 | python | @pytest.fixture
def repository_under_test():
'\n \n '
with moto.mock_dynamodb2():
job_repository_under_test = JobRepository()
JobRepository().create_table_if_not_exists()
(yield job_repository_under_test)
JobRepository().delete_table() | @pytest.fixture
def repository_under_test():
'\n \n '
with moto.mock_dynamodb2():
job_repository_under_test = JobRepository()
JobRepository().create_table_if_not_exists()
(yield job_repository_under_test)
JobRepository().delete_table()<|docstring|>Create database resource and mock table<|endoftext|> |
5607a2b1122691e441177424da9b73aaeec78b8eed18b1aa1ddf42ec9ec320f9 | @moto.mock_dynamodb2
@pytest.fixture
def small_test_job(repository_under_test, create_test_job):
'\n Create database resource and mock table\n '
job_repository_under_test = repository_under_test
job_id = create_test_job
yield_val = job_id
(yield yield_val)
job_repository_under_test.delete_job_by_id(job_id) | Create database resource and mock table | pipeline_control/tests/offline/adapters/job_repository/job_repository_fixtures.py | small_test_job | aws-samples/financial-crimes-discovery-using-graph-database | 0 | python | @moto.mock_dynamodb2
@pytest.fixture
def small_test_job(repository_under_test, create_test_job):
'\n \n '
job_repository_under_test = repository_under_test
job_id = create_test_job
yield_val = job_id
(yield yield_val)
job_repository_under_test.delete_job_by_id(job_id) | @moto.mock_dynamodb2
@pytest.fixture
def small_test_job(repository_under_test, create_test_job):
'\n \n '
job_repository_under_test = repository_under_test
job_id = create_test_job
yield_val = job_id
(yield yield_val)
job_repository_under_test.delete_job_by_id(job_id)<|docstring|>Create database resource and mock table<|endoftext|> |
789eb1214bbba9928724adff3fe55f4084521d1a1788c21690a3e537f4c98061 | def work(self, Task, input_q, output_q, meta_q):
'\n The main processing loop for `task`.\n '
task = Task(num_workers=self.num_workers, task_id=self.task_id)
input_job = input_q._link_mem()
output_job = output_q._link_mem()
meta_buffer = meta_q._link_mem()
id_buffer = meta_buffer['id']
data_buffer = meta_buffer['data']
id_buffer[:] = [task.id, self.id, 1][:]
start_time = time_ns()
data_buffer[:] = [start_time, start_time][:]
assert (meta_q.put() is not BaseQueue.Full), 'meta q should always put (prejob)'
id_buffer[(- 1)] = 0
job_map = task.create_map(self, input_job, output_job)
input_status = BaseQueue.Empty
while (not self.EXIT_FLAG):
if ((input_status := input_q.get()) is BaseQueue.Empty):
continue
elif (input_status is BaseQueue.Closed):
break
data_buffer[0] = time_ns()
job_map()
data_buffer[1] = time_ns()
assert (meta_q.put() is not BaseQueue.Full), 'meta q should always put'
t = time_ns()
while (output_q.put() is BaseQueue.Full):
pass
task.cleanup()
finish_time = time_ns()
id_buffer[(- 1)] = 1
data_buffer[:] = [start_time, finish_time][:]
meta_q.put()
print(f'Worker Done -- Task: {task.name} | ID: {self.id}') | The main processing loop for `task`. | src/ptlib/core/worker.py | work | jfw225/ptlib | 1 | python | def work(self, Task, input_q, output_q, meta_q):
'\n \n '
task = Task(num_workers=self.num_workers, task_id=self.task_id)
input_job = input_q._link_mem()
output_job = output_q._link_mem()
meta_buffer = meta_q._link_mem()
id_buffer = meta_buffer['id']
data_buffer = meta_buffer['data']
id_buffer[:] = [task.id, self.id, 1][:]
start_time = time_ns()
data_buffer[:] = [start_time, start_time][:]
assert (meta_q.put() is not BaseQueue.Full), 'meta q should always put (prejob)'
id_buffer[(- 1)] = 0
job_map = task.create_map(self, input_job, output_job)
input_status = BaseQueue.Empty
while (not self.EXIT_FLAG):
if ((input_status := input_q.get()) is BaseQueue.Empty):
continue
elif (input_status is BaseQueue.Closed):
break
data_buffer[0] = time_ns()
job_map()
data_buffer[1] = time_ns()
assert (meta_q.put() is not BaseQueue.Full), 'meta q should always put'
t = time_ns()
while (output_q.put() is BaseQueue.Full):
pass
task.cleanup()
finish_time = time_ns()
id_buffer[(- 1)] = 1
data_buffer[:] = [start_time, finish_time][:]
meta_q.put()
print(f'Worker Done -- Task: {task.name} | ID: {self.id}') | def work(self, Task, input_q, output_q, meta_q):
'\n \n '
task = Task(num_workers=self.num_workers, task_id=self.task_id)
input_job = input_q._link_mem()
output_job = output_q._link_mem()
meta_buffer = meta_q._link_mem()
id_buffer = meta_buffer['id']
data_buffer = meta_buffer['data']
id_buffer[:] = [task.id, self.id, 1][:]
start_time = time_ns()
data_buffer[:] = [start_time, start_time][:]
assert (meta_q.put() is not BaseQueue.Full), 'meta q should always put (prejob)'
id_buffer[(- 1)] = 0
job_map = task.create_map(self, input_job, output_job)
input_status = BaseQueue.Empty
while (not self.EXIT_FLAG):
if ((input_status := input_q.get()) is BaseQueue.Empty):
continue
elif (input_status is BaseQueue.Closed):
break
data_buffer[0] = time_ns()
job_map()
data_buffer[1] = time_ns()
assert (meta_q.put() is not BaseQueue.Full), 'meta q should always put'
t = time_ns()
while (output_q.put() is BaseQueue.Full):
pass
task.cleanup()
finish_time = time_ns()
id_buffer[(- 1)] = 1
data_buffer[:] = [start_time, finish_time][:]
meta_q.put()
print(f'Worker Done -- Task: {task.name} | ID: {self.id}')<|docstring|>The main processing loop for `task`.<|endoftext|> |
bc753c7bfe8333095fe494857991e7269f4135687ebd8b6c0f9535f24ad6c34d | def _get_arc_wcs_center(arc: DXFGraphic) -> Vector:
' Returns the center of an ARC or CIRCLE as WCS coordinates. '
center = arc.dxf.center
if arc.dxf.hasattr('extrusion'):
ocs = arc.ocs()
return ocs.to_wcs(center)
else:
return center | Returns the center of an ARC or CIRCLE as WCS coordinates. | src/ezdxf/addons/drawing/frontend.py | _get_arc_wcs_center | George-Jiang/ezdxf | 0 | python | def _get_arc_wcs_center(arc: DXFGraphic) -> Vector:
' '
center = arc.dxf.center
if arc.dxf.hasattr('extrusion'):
ocs = arc.ocs()
return ocs.to_wcs(center)
else:
return center | def _get_arc_wcs_center(arc: DXFGraphic) -> Vector:
' '
center = arc.dxf.center
if arc.dxf.hasattr('extrusion'):
ocs = arc.ocs()
return ocs.to_wcs(center)
else:
return center<|docstring|>Returns the center of an ARC or CIRCLE as WCS coordinates.<|endoftext|> |
fd0c1ac69c36dca37d7f5daf22a3b1e18963bcbb463489803785e88a83427f6b | def decode_batch(self, window, location):
"\n Resizing each output image window in the batch as an image volume\n location specifies the original input image (so that the\n interpolation order, original shape information retained in the\n\n generated outputs).For the fields that have the keyword 'window' in the\n dictionary key, it will be saved as image. The rest will be saved as\n csv. CSV files will contain at saving a first line of 0 (to be\n changed into the header by the user), the first column being the\n index of the window, followed by the list of output.\n\n "
n_samples = location.shape[0]
for batch_id in range(n_samples):
if self._is_stopping_signal(location[batch_id]):
return False
self.image_id = location[(batch_id, 0)]
(self.image_out, self.csv_out) = ({}, {})
for key in window:
if ('window' in key):
while (window[key].ndim < 5):
window[key] = window[key][(..., np.newaxis, :)]
self.image_out[key] = window[key][(batch_id, ...)]
else:
window[key] = np.asarray(window[key]).reshape([n_samples, (- 1)])
n_elements = window[key].shape[(- 1)]
table_header = (['{}_{}'.format(key, idx) for idx in range(n_elements)] if (n_elements > 1) else ['{}'.format(key)])
self.csv_out[key] = self._initialise_empty_csv(key_names=table_header)
csv_row = window[key][(batch_id:(batch_id + 1), :)].ravel()
self.csv_out[key] = self.csv_out[key].append(OrderedDict(zip(table_header, csv_row)), ignore_index=True)
self._save_current_image()
self._save_current_csv()
return True | Resizing each output image window in the batch as an image volume
location specifies the original input image (so that the
interpolation order, original shape information retained in the
generated outputs).For the fields that have the keyword 'window' in the
dictionary key, it will be saved as image. The rest will be saved as
csv. CSV files will contain at saving a first line of 0 (to be
changed into the header by the user), the first column being the
index of the window, followed by the list of output. | niftynet/engine/windows_aggregator_resize.py | decode_batch | tdml13/NiftyNet | 1,403 | python | def decode_batch(self, window, location):
"\n Resizing each output image window in the batch as an image volume\n location specifies the original input image (so that the\n interpolation order, original shape information retained in the\n\n generated outputs).For the fields that have the keyword 'window' in the\n dictionary key, it will be saved as image. The rest will be saved as\n csv. CSV files will contain at saving a first line of 0 (to be\n changed into the header by the user), the first column being the\n index of the window, followed by the list of output.\n\n "
n_samples = location.shape[0]
for batch_id in range(n_samples):
if self._is_stopping_signal(location[batch_id]):
return False
self.image_id = location[(batch_id, 0)]
(self.image_out, self.csv_out) = ({}, {})
for key in window:
if ('window' in key):
while (window[key].ndim < 5):
window[key] = window[key][(..., np.newaxis, :)]
self.image_out[key] = window[key][(batch_id, ...)]
else:
window[key] = np.asarray(window[key]).reshape([n_samples, (- 1)])
n_elements = window[key].shape[(- 1)]
table_header = (['{}_{}'.format(key, idx) for idx in range(n_elements)] if (n_elements > 1) else ['{}'.format(key)])
self.csv_out[key] = self._initialise_empty_csv(key_names=table_header)
csv_row = window[key][(batch_id:(batch_id + 1), :)].ravel()
self.csv_out[key] = self.csv_out[key].append(OrderedDict(zip(table_header, csv_row)), ignore_index=True)
self._save_current_image()
self._save_current_csv()
return True | def decode_batch(self, window, location):
"\n Resizing each output image window in the batch as an image volume\n location specifies the original input image (so that the\n interpolation order, original shape information retained in the\n\n generated outputs).For the fields that have the keyword 'window' in the\n dictionary key, it will be saved as image. The rest will be saved as\n csv. CSV files will contain at saving a first line of 0 (to be\n changed into the header by the user), the first column being the\n index of the window, followed by the list of output.\n\n "
n_samples = location.shape[0]
for batch_id in range(n_samples):
if self._is_stopping_signal(location[batch_id]):
return False
self.image_id = location[(batch_id, 0)]
(self.image_out, self.csv_out) = ({}, {})
for key in window:
if ('window' in key):
while (window[key].ndim < 5):
window[key] = window[key][(..., np.newaxis, :)]
self.image_out[key] = window[key][(batch_id, ...)]
else:
window[key] = np.asarray(window[key]).reshape([n_samples, (- 1)])
n_elements = window[key].shape[(- 1)]
table_header = (['{}_{}'.format(key, idx) for idx in range(n_elements)] if (n_elements > 1) else ['{}'.format(key)])
self.csv_out[key] = self._initialise_empty_csv(key_names=table_header)
csv_row = window[key][(batch_id:(batch_id + 1), :)].ravel()
self.csv_out[key] = self.csv_out[key].append(OrderedDict(zip(table_header, csv_row)), ignore_index=True)
self._save_current_image()
self._save_current_csv()
return True<|docstring|>Resizing each output image window in the batch as an image volume
location specifies the original input image (so that the
interpolation order, original shape information retained in the
generated outputs).For the fields that have the keyword 'window' in the
dictionary key, it will be saved as image. The rest will be saved as
csv. CSV files will contain at saving a first line of 0 (to be
changed into the header by the user), the first column being the
index of the window, followed by the list of output.<|endoftext|> |
4d8de853c0bf1ce722b6845edca4930eae5edf655dfb504b396e081776c33522 | def _initialise_image_shape(self, image_id, n_channels):
'\n Return the shape of the empty image to be saved\n :param image_id: index to find the appropriate input image from the\n reader\n :param n_channels: number of channels of the image\n :return: shape of the empty image\n '
self.image_id = image_id
spatial_shape = self.input_image[self.name].shape[:3]
output_image_shape = (spatial_shape + (1, n_channels))
empty_image = np.zeros(output_image_shape, dtype=np.bool)
for layer in self.reader.preprocessors:
if isinstance(layer, PadLayer):
(empty_image, _) = layer(empty_image)
return empty_image.shape | Return the shape of the empty image to be saved
:param image_id: index to find the appropriate input image from the
reader
:param n_channels: number of channels of the image
:return: shape of the empty image | niftynet/engine/windows_aggregator_resize.py | _initialise_image_shape | tdml13/NiftyNet | 1,403 | python | def _initialise_image_shape(self, image_id, n_channels):
'\n Return the shape of the empty image to be saved\n :param image_id: index to find the appropriate input image from the\n reader\n :param n_channels: number of channels of the image\n :return: shape of the empty image\n '
self.image_id = image_id
spatial_shape = self.input_image[self.name].shape[:3]
output_image_shape = (spatial_shape + (1, n_channels))
empty_image = np.zeros(output_image_shape, dtype=np.bool)
for layer in self.reader.preprocessors:
if isinstance(layer, PadLayer):
(empty_image, _) = layer(empty_image)
return empty_image.shape | def _initialise_image_shape(self, image_id, n_channels):
'\n Return the shape of the empty image to be saved\n :param image_id: index to find the appropriate input image from the\n reader\n :param n_channels: number of channels of the image\n :return: shape of the empty image\n '
self.image_id = image_id
spatial_shape = self.input_image[self.name].shape[:3]
output_image_shape = (spatial_shape + (1, n_channels))
empty_image = np.zeros(output_image_shape, dtype=np.bool)
for layer in self.reader.preprocessors:
if isinstance(layer, PadLayer):
(empty_image, _) = layer(empty_image)
return empty_image.shape<|docstring|>Return the shape of the empty image to be saved
:param image_id: index to find the appropriate input image from the
reader
:param n_channels: number of channels of the image
:return: shape of the empty image<|endoftext|> |
eaae58ae11d8b10d11537dedf5ebc481ba151a07bb0e91dba20dee545348852f | def _save_current_image(self):
'\n Loop through the dictionary of images output and resize and reverse\n the preprocessing prior to saving\n :return:\n '
if (self.input_image is None):
return
self.current_out = {}
for i in self.image_out:
resize_to_shape = self._initialise_image_shape(image_id=self.image_id, n_channels=self.image_out[i].shape[(- 1)])
window_shape = resize_to_shape
current_out = self.image_out[i]
while (current_out.ndim < 5):
current_out = current_out[(..., np.newaxis, :)]
if (self.window_border and any([(b > 0) for b in self.window_border])):
np_border = self.window_border
while (len(np_border) < 5):
np_border = (np_border + (0,))
np_border = [(b,) for b in np_border]
current_out = np.pad(current_out, np_border, mode='edge')
image_shape = current_out.shape
zoom_ratio = [(float(p) / float(d)) for (p, d) in zip(window_shape, image_shape)]
image_shape = (list(image_shape[:3]) + [1, image_shape[(- 1)]])
current_out = np.reshape(current_out, image_shape)
current_out = zoom_3d(image=current_out, ratio=zoom_ratio, interp_order=self.output_interp_order)
self.current_out[i] = current_out
for layer in reversed(self.reader.preprocessors):
if isinstance(layer, PadLayer):
for i in self.image_out:
(self.current_out[i], _) = layer.inverse_op(self.current_out[i])
if isinstance(layer, DiscreteLabelNormalisationLayer):
for i in self.image_out:
(self.image_out[i], _) = layer.inverse_op(self.image_out[i])
subject_name = self.reader.get_subject_id(self.image_id)
for i in self.image_out:
filename = '{}_{}_{}.nii.gz'.format(i, subject_name, self.postfix)
source_image_obj = self.input_image[self.name]
misc_io.save_data_array(self.output_path, filename, self.current_out[i], source_image_obj, self.output_interp_order)
self.log_inferred(subject_name, filename)
return | Loop through the dictionary of images output and resize and reverse
the preprocessing prior to saving
:return: | niftynet/engine/windows_aggregator_resize.py | _save_current_image | tdml13/NiftyNet | 1,403 | python | def _save_current_image(self):
'\n Loop through the dictionary of images output and resize and reverse\n the preprocessing prior to saving\n :return:\n '
if (self.input_image is None):
return
self.current_out = {}
for i in self.image_out:
resize_to_shape = self._initialise_image_shape(image_id=self.image_id, n_channels=self.image_out[i].shape[(- 1)])
window_shape = resize_to_shape
current_out = self.image_out[i]
while (current_out.ndim < 5):
current_out = current_out[(..., np.newaxis, :)]
if (self.window_border and any([(b > 0) for b in self.window_border])):
np_border = self.window_border
while (len(np_border) < 5):
np_border = (np_border + (0,))
np_border = [(b,) for b in np_border]
current_out = np.pad(current_out, np_border, mode='edge')
image_shape = current_out.shape
zoom_ratio = [(float(p) / float(d)) for (p, d) in zip(window_shape, image_shape)]
image_shape = (list(image_shape[:3]) + [1, image_shape[(- 1)]])
current_out = np.reshape(current_out, image_shape)
current_out = zoom_3d(image=current_out, ratio=zoom_ratio, interp_order=self.output_interp_order)
self.current_out[i] = current_out
for layer in reversed(self.reader.preprocessors):
if isinstance(layer, PadLayer):
for i in self.image_out:
(self.current_out[i], _) = layer.inverse_op(self.current_out[i])
if isinstance(layer, DiscreteLabelNormalisationLayer):
for i in self.image_out:
(self.image_out[i], _) = layer.inverse_op(self.image_out[i])
subject_name = self.reader.get_subject_id(self.image_id)
for i in self.image_out:
filename = '{}_{}_{}.nii.gz'.format(i, subject_name, self.postfix)
source_image_obj = self.input_image[self.name]
misc_io.save_data_array(self.output_path, filename, self.current_out[i], source_image_obj, self.output_interp_order)
self.log_inferred(subject_name, filename)
return | def _save_current_image(self):
'\n Loop through the dictionary of images output and resize and reverse\n the preprocessing prior to saving\n :return:\n '
if (self.input_image is None):
return
self.current_out = {}
for i in self.image_out:
resize_to_shape = self._initialise_image_shape(image_id=self.image_id, n_channels=self.image_out[i].shape[(- 1)])
window_shape = resize_to_shape
current_out = self.image_out[i]
while (current_out.ndim < 5):
current_out = current_out[(..., np.newaxis, :)]
if (self.window_border and any([(b > 0) for b in self.window_border])):
np_border = self.window_border
while (len(np_border) < 5):
np_border = (np_border + (0,))
np_border = [(b,) for b in np_border]
current_out = np.pad(current_out, np_border, mode='edge')
image_shape = current_out.shape
zoom_ratio = [(float(p) / float(d)) for (p, d) in zip(window_shape, image_shape)]
image_shape = (list(image_shape[:3]) + [1, image_shape[(- 1)]])
current_out = np.reshape(current_out, image_shape)
current_out = zoom_3d(image=current_out, ratio=zoom_ratio, interp_order=self.output_interp_order)
self.current_out[i] = current_out
for layer in reversed(self.reader.preprocessors):
if isinstance(layer, PadLayer):
for i in self.image_out:
(self.current_out[i], _) = layer.inverse_op(self.current_out[i])
if isinstance(layer, DiscreteLabelNormalisationLayer):
for i in self.image_out:
(self.image_out[i], _) = layer.inverse_op(self.image_out[i])
subject_name = self.reader.get_subject_id(self.image_id)
for i in self.image_out:
filename = '{}_{}_{}.nii.gz'.format(i, subject_name, self.postfix)
source_image_obj = self.input_image[self.name]
misc_io.save_data_array(self.output_path, filename, self.current_out[i], source_image_obj, self.output_interp_order)
self.log_inferred(subject_name, filename)
return<|docstring|>Loop through the dictionary of images output and resize and reverse
the preprocessing prior to saving
:return:<|endoftext|> |
76b107f9ad040fe71d0db30d9d156df138ef48eff9de6ade5002043f2b1201b4 | def _save_current_csv(self):
'\n Save all csv output present in the dictionary of csv_output.\n :return:\n '
if (self.input_image is None):
return
subject_name = self.reader.get_subject_id(self.image_id)
for i in self.csv_out:
filename = '{}_{}_{}.csv'.format(i, subject_name, self.postfix)
misc_io.save_csv_array(self.output_path, filename, self.csv_out[i])
self.log_inferred(subject_name, filename)
return | Save all csv output present in the dictionary of csv_output.
:return: | niftynet/engine/windows_aggregator_resize.py | _save_current_csv | tdml13/NiftyNet | 1,403 | python | def _save_current_csv(self):
'\n Save all csv output present in the dictionary of csv_output.\n :return:\n '
if (self.input_image is None):
return
subject_name = self.reader.get_subject_id(self.image_id)
for i in self.csv_out:
filename = '{}_{}_{}.csv'.format(i, subject_name, self.postfix)
misc_io.save_csv_array(self.output_path, filename, self.csv_out[i])
self.log_inferred(subject_name, filename)
return | def _save_current_csv(self):
'\n Save all csv output present in the dictionary of csv_output.\n :return:\n '
if (self.input_image is None):
return
subject_name = self.reader.get_subject_id(self.image_id)
for i in self.csv_out:
filename = '{}_{}_{}.csv'.format(i, subject_name, self.postfix)
misc_io.save_csv_array(self.output_path, filename, self.csv_out[i])
self.log_inferred(subject_name, filename)
return<|docstring|>Save all csv output present in the dictionary of csv_output.
:return:<|endoftext|> |
2040bd978444c28e290456023f799fe4636e2eff378b5934a972e537df5b2226 | def _initialise_empty_csv(self, key_names):
'\n Initialise the array to be saved as csv as a line of zeros according\n to the number of elements to be saved\n :param n_channel:\n :return:\n '
return pd.DataFrame(columns=key_names) | Initialise the array to be saved as csv as a line of zeros according
to the number of elements to be saved
:param n_channel:
:return: | niftynet/engine/windows_aggregator_resize.py | _initialise_empty_csv | tdml13/NiftyNet | 1,403 | python | def _initialise_empty_csv(self, key_names):
'\n Initialise the array to be saved as csv as a line of zeros according\n to the number of elements to be saved\n :param n_channel:\n :return:\n '
return pd.DataFrame(columns=key_names) | def _initialise_empty_csv(self, key_names):
'\n Initialise the array to be saved as csv as a line of zeros according\n to the number of elements to be saved\n :param n_channel:\n :return:\n '
return pd.DataFrame(columns=key_names)<|docstring|>Initialise the array to be saved as csv as a line of zeros according
to the number of elements to be saved
:param n_channel:
:return:<|endoftext|> |
4d975713eab09dc6fc4ffe1f1d05b403d18576cadc8e03fb35650cbd2748d54e | def get_language_for_file(filename: str) -> str:
'\n Get the language for a file based on its extension or suffix.\n :param filename: the filename of the file\n :return: the language of the file\n '
for (suffix, language) in SUFFIX_TO_LANGUAGE.items():
if filename.endswith(suffix):
return language
for (prefix, language) in PREFIX_TO_LANGUAGE.items():
if filename.startswith(prefix):
return language
return None | Get the language for a file based on its extension or suffix.
:param filename: the filename of the file
:return: the language of the file | codiga/utils/file_utils.py | get_language_for_file | codiga/clitool | 2 | python | def get_language_for_file(filename: str) -> str:
'\n Get the language for a file based on its extension or suffix.\n :param filename: the filename of the file\n :return: the language of the file\n '
for (suffix, language) in SUFFIX_TO_LANGUAGE.items():
if filename.endswith(suffix):
return language
for (prefix, language) in PREFIX_TO_LANGUAGE.items():
if filename.startswith(prefix):
return language
return None | def get_language_for_file(filename: str) -> str:
'\n Get the language for a file based on its extension or suffix.\n :param filename: the filename of the file\n :return: the language of the file\n '
for (suffix, language) in SUFFIX_TO_LANGUAGE.items():
if filename.endswith(suffix):
return language
for (prefix, language) in PREFIX_TO_LANGUAGE.items():
if filename.startswith(prefix):
return language
return None<|docstring|>Get the language for a file based on its extension or suffix.
:param filename: the filename of the file
:return: the language of the file<|endoftext|> |
de4591ed62b4c365bb84e7451a79902eb604fa49a6620d5aaf696803e1d9f300 | def associate_files_with_language(filenames: Set[str]) -> Dict[(str, str)]:
'\n For a list of filenames, check the language associated with them and returns a dictionary that associate\n the filename and the language. If the filename does not have a matching language, just return.\n :param filenames: the list of filenames\n :return: a dictionary that associates the filenames with their languages.\n '
filenames_to_languages: Dict[(str, str)] = dict()
for filename in filenames:
language = get_language_for_file(filename)
if language:
filenames_to_languages[filename] = language
return filenames_to_languages | For a list of filenames, check the language associated with them and returns a dictionary that associate
the filename and the language. If the filename does not have a matching language, just return.
:param filenames: the list of filenames
:return: a dictionary that associates the filenames with their languages. | codiga/utils/file_utils.py | associate_files_with_language | codiga/clitool | 2 | python | def associate_files_with_language(filenames: Set[str]) -> Dict[(str, str)]:
'\n For a list of filenames, check the language associated with them and returns a dictionary that associate\n the filename and the language. If the filename does not have a matching language, just return.\n :param filenames: the list of filenames\n :return: a dictionary that associates the filenames with their languages.\n '
filenames_to_languages: Dict[(str, str)] = dict()
for filename in filenames:
language = get_language_for_file(filename)
if language:
filenames_to_languages[filename] = language
return filenames_to_languages | def associate_files_with_language(filenames: Set[str]) -> Dict[(str, str)]:
'\n For a list of filenames, check the language associated with them and returns a dictionary that associate\n the filename and the language. If the filename does not have a matching language, just return.\n :param filenames: the list of filenames\n :return: a dictionary that associates the filenames with their languages.\n '
filenames_to_languages: Dict[(str, str)] = dict()
for filename in filenames:
language = get_language_for_file(filename)
if language:
filenames_to_languages[filename] = language
return filenames_to_languages<|docstring|>For a list of filenames, check the language associated with them and returns a dictionary that associate
the filename and the language. If the filename does not have a matching language, just return.
:param filenames: the list of filenames
:return: a dictionary that associates the filenames with their languages.<|endoftext|> |
14bc4a65c3ed73cbee9eec67ebcb12afc394412879e2d634110b61d7b55acb66 | def assertShapeCorrect(self, batcher, name):
'\n interval should be 2D, with shape [batch_size, input_length]\n signal should be 3d, with shape [batch_size, input_length, input_channel]\n label should be 3d, wish shape [batch_size, output_length, out_channel]\n '
batch_size = (int((np.random.rand() * 100)) + 1)
for method in [batcher.next_train, batcher.next_test]:
(interval, signal, label) = method(batch_size)
interval = np.array(interval)
shape = (batch_size, batcher.input_length)
self.assertTupleEqual(interval.shape, shape, ((((name + ' Interval Dimension Error: ') + str(interval.shape)) + ' vs. ') + str(shape)))
signal = np.array(signal)
shape = (batch_size, batcher.input_length, batcher.input_channel)
self.assertTupleEqual(signal.shape, shape, ((((name + ' Signal Dimension Error: ') + str(signal.shape)) + ' vs. ') + str(shape)))
label = np.array(label)
shape = (batch_size, batcher.output_length, batcher.output_channel)
self.assertTupleEqual(label.shape, shape, ((((name + ' Label Dimension Error: ') + str(label.shape)) + ' vs. ') + str(shape))) | interval should be 2D, with shape [batch_size, input_length]
signal should be 3d, with shape [batch_size, input_length, input_channel]
label should be 3d, wish shape [batch_size, output_length, out_channel] | Data/batcher_unittest.py | assertShapeCorrect | shihui2010/continuous_cnn | 0 | python | def assertShapeCorrect(self, batcher, name):
'\n interval should be 2D, with shape [batch_size, input_length]\n signal should be 3d, with shape [batch_size, input_length, input_channel]\n label should be 3d, wish shape [batch_size, output_length, out_channel]\n '
batch_size = (int((np.random.rand() * 100)) + 1)
for method in [batcher.next_train, batcher.next_test]:
(interval, signal, label) = method(batch_size)
interval = np.array(interval)
shape = (batch_size, batcher.input_length)
self.assertTupleEqual(interval.shape, shape, ((((name + ' Interval Dimension Error: ') + str(interval.shape)) + ' vs. ') + str(shape)))
signal = np.array(signal)
shape = (batch_size, batcher.input_length, batcher.input_channel)
self.assertTupleEqual(signal.shape, shape, ((((name + ' Signal Dimension Error: ') + str(signal.shape)) + ' vs. ') + str(shape)))
label = np.array(label)
shape = (batch_size, batcher.output_length, batcher.output_channel)
self.assertTupleEqual(label.shape, shape, ((((name + ' Label Dimension Error: ') + str(label.shape)) + ' vs. ') + str(shape))) | def assertShapeCorrect(self, batcher, name):
'\n interval should be 2D, with shape [batch_size, input_length]\n signal should be 3d, with shape [batch_size, input_length, input_channel]\n label should be 3d, wish shape [batch_size, output_length, out_channel]\n '
batch_size = (int((np.random.rand() * 100)) + 1)
for method in [batcher.next_train, batcher.next_test]:
(interval, signal, label) = method(batch_size)
interval = np.array(interval)
shape = (batch_size, batcher.input_length)
self.assertTupleEqual(interval.shape, shape, ((((name + ' Interval Dimension Error: ') + str(interval.shape)) + ' vs. ') + str(shape)))
signal = np.array(signal)
shape = (batch_size, batcher.input_length, batcher.input_channel)
self.assertTupleEqual(signal.shape, shape, ((((name + ' Signal Dimension Error: ') + str(signal.shape)) + ' vs. ') + str(shape)))
label = np.array(label)
shape = (batch_size, batcher.output_length, batcher.output_channel)
self.assertTupleEqual(label.shape, shape, ((((name + ' Label Dimension Error: ') + str(label.shape)) + ' vs. ') + str(shape)))<|docstring|>interval should be 2D, with shape [batch_size, input_length]
signal should be 3d, with shape [batch_size, input_length, input_channel]
label should be 3d, wish shape [batch_size, output_length, out_channel]<|endoftext|> |
5576c16958e02a44f4d9a24e8aa2bc6b8f62dd52686a83adfec6681b505f2e57 | def DoTasksForSimulation(snaps=[], tasks=[], task_params=[], interp_fac=1, nproc=1, nthreads=1):
'\n Main CrunchSnaps routine, performs a list of tasks using (possibly interpolated) time series simulation data\n snaps - list of paths of simulation snapshots\n tasks - list of tasks to perform at each simulation time\n task_params - shape [N_tasks,N_params] list of dictionaries containing the parameters for each task - if only (N_tasks,) list is provided this will be broadcast\n '
if ((len(snaps) == 0) or (len(tasks) == 0)):
return
snaps = natsorted(snaps)
N_tasks = len(tasks)
if ((len(tasks) > 1) and task_params):
for i in range(len(task_params)):
if (type(tasks[i]) == dict):
tasks[i] = [tasks[i], tasks[i]]
elif (type(tasks[i]) == list):
if (len(tasks[i]) < N_tasks):
tasks[i] = [tasks[0], tasks[0]]
(snaptimes, snapnums) = ([], [])
print('getting snapshot timeline...')
for s in snaps:
with h5py.File(s, 'r') as F:
snaptimes.append(F['Header'].attrs['Time'])
snapnums.append(int(s.split('snapshot_')[1].split('.hdf5')[0]))
print('done!')
snaptimes = np.array(snaptimes)
snapdict = dict(zip(snaptimes, snaps))
if ((not task_params) or (type(task_params) == dict)):
N_params = (len(snaps) * interp_fac)
if (interp_fac > 1):
params_times = np.interp((np.arange(N_params) / interp_fac), np.arange((N_params // interp_fac)), snaptimes)
else:
params_times = snaptimes
if (not task_params):
task_params = [[{'Time': params_times[i], 'index': i, 'threads': nthreads} for i in range(N_params)] for t in tasks]
else:
task_params_orig = task_params.copy()
task_params = [[task_params_orig.copy() for i in range(N_params)] for t in tasks]
[[task_params[j][i].update({'Time': params_times[i], 'index': i, 'threads': nthreads}) for i in range(N_params)] for j in range(N_tasks)]
else:
N_params = len(task_params[0])
index_chunks = np.array_split(np.arange(N_params), nproc)
chunks = [(index_chunks[i], tasks, snaps, task_params, snapdict, snaptimes, snapnums) for i in range(nproc)]
if (nproc > 1):
Pool(nproc).map(DoParamsPass, chunks, chunksize=1)
else:
[DoParamsPass(c) for c in chunks] | Main CrunchSnaps routine, performs a list of tasks using (possibly interpolated) time series simulation data
snaps - list of paths of simulation snapshots
tasks - list of tasks to perform at each simulation time
task_params - shape [N_tasks,N_params] list of dictionaries containing the parameters for each task - if only (N_tasks,) list is provided this will be broadcast | src/CrunchSnaps/CrunchSnaps.py | DoTasksForSimulation | mikegrudic/CrunchSnaps | 2 | python | def DoTasksForSimulation(snaps=[], tasks=[], task_params=[], interp_fac=1, nproc=1, nthreads=1):
'\n Main CrunchSnaps routine, performs a list of tasks using (possibly interpolated) time series simulation data\n snaps - list of paths of simulation snapshots\n tasks - list of tasks to perform at each simulation time\n task_params - shape [N_tasks,N_params] list of dictionaries containing the parameters for each task - if only (N_tasks,) list is provided this will be broadcast\n '
if ((len(snaps) == 0) or (len(tasks) == 0)):
return
snaps = natsorted(snaps)
N_tasks = len(tasks)
if ((len(tasks) > 1) and task_params):
for i in range(len(task_params)):
if (type(tasks[i]) == dict):
tasks[i] = [tasks[i], tasks[i]]
elif (type(tasks[i]) == list):
if (len(tasks[i]) < N_tasks):
tasks[i] = [tasks[0], tasks[0]]
(snaptimes, snapnums) = ([], [])
print('getting snapshot timeline...')
for s in snaps:
with h5py.File(s, 'r') as F:
snaptimes.append(F['Header'].attrs['Time'])
snapnums.append(int(s.split('snapshot_')[1].split('.hdf5')[0]))
print('done!')
snaptimes = np.array(snaptimes)
snapdict = dict(zip(snaptimes, snaps))
if ((not task_params) or (type(task_params) == dict)):
N_params = (len(snaps) * interp_fac)
if (interp_fac > 1):
params_times = np.interp((np.arange(N_params) / interp_fac), np.arange((N_params // interp_fac)), snaptimes)
else:
params_times = snaptimes
if (not task_params):
task_params = [[{'Time': params_times[i], 'index': i, 'threads': nthreads} for i in range(N_params)] for t in tasks]
else:
task_params_orig = task_params.copy()
task_params = [[task_params_orig.copy() for i in range(N_params)] for t in tasks]
[[task_params[j][i].update({'Time': params_times[i], 'index': i, 'threads': nthreads}) for i in range(N_params)] for j in range(N_tasks)]
else:
N_params = len(task_params[0])
index_chunks = np.array_split(np.arange(N_params), nproc)
chunks = [(index_chunks[i], tasks, snaps, task_params, snapdict, snaptimes, snapnums) for i in range(nproc)]
if (nproc > 1):
Pool(nproc).map(DoParamsPass, chunks, chunksize=1)
else:
[DoParamsPass(c) for c in chunks] | def DoTasksForSimulation(snaps=[], tasks=[], task_params=[], interp_fac=1, nproc=1, nthreads=1):
'\n Main CrunchSnaps routine, performs a list of tasks using (possibly interpolated) time series simulation data\n snaps - list of paths of simulation snapshots\n tasks - list of tasks to perform at each simulation time\n task_params - shape [N_tasks,N_params] list of dictionaries containing the parameters for each task - if only (N_tasks,) list is provided this will be broadcast\n '
if ((len(snaps) == 0) or (len(tasks) == 0)):
return
snaps = natsorted(snaps)
N_tasks = len(tasks)
if ((len(tasks) > 1) and task_params):
for i in range(len(task_params)):
if (type(tasks[i]) == dict):
tasks[i] = [tasks[i], tasks[i]]
elif (type(tasks[i]) == list):
if (len(tasks[i]) < N_tasks):
tasks[i] = [tasks[0], tasks[0]]
(snaptimes, snapnums) = ([], [])
print('getting snapshot timeline...')
for s in snaps:
with h5py.File(s, 'r') as F:
snaptimes.append(F['Header'].attrs['Time'])
snapnums.append(int(s.split('snapshot_')[1].split('.hdf5')[0]))
print('done!')
snaptimes = np.array(snaptimes)
snapdict = dict(zip(snaptimes, snaps))
if ((not task_params) or (type(task_params) == dict)):
N_params = (len(snaps) * interp_fac)
if (interp_fac > 1):
params_times = np.interp((np.arange(N_params) / interp_fac), np.arange((N_params // interp_fac)), snaptimes)
else:
params_times = snaptimes
if (not task_params):
task_params = [[{'Time': params_times[i], 'index': i, 'threads': nthreads} for i in range(N_params)] for t in tasks]
else:
task_params_orig = task_params.copy()
task_params = [[task_params_orig.copy() for i in range(N_params)] for t in tasks]
[[task_params[j][i].update({'Time': params_times[i], 'index': i, 'threads': nthreads}) for i in range(N_params)] for j in range(N_tasks)]
else:
N_params = len(task_params[0])
index_chunks = np.array_split(np.arange(N_params), nproc)
chunks = [(index_chunks[i], tasks, snaps, task_params, snapdict, snaptimes, snapnums) for i in range(nproc)]
if (nproc > 1):
Pool(nproc).map(DoParamsPass, chunks, chunksize=1)
else:
[DoParamsPass(c) for c in chunks]<|docstring|>Main CrunchSnaps routine, performs a list of tasks using (possibly interpolated) time series simulation data
snaps - list of paths of simulation snapshots
tasks - list of tasks to perform at each simulation time
task_params - shape [N_tasks,N_params] list of dictionaries containing the parameters for each task - if only (N_tasks,) list is provided this will be broadcast<|endoftext|> |
44273c0844eeace9cbbe7d904e69d28744e7bb6ceed6dfdd3ab44c3a5400d22c | def hermitian(A):
'Returns the Hermitian transpose of an array\n\n Args:\n A (jax.numpy.ndarray): An array\n\n Returns:\n (jax.numpy.ndarray): An array: :math:`A^H`\n '
return jnp.conjugate(A.T) | Returns the Hermitian transpose of an array
Args:
A (jax.numpy.ndarray): An array
Returns:
(jax.numpy.ndarray): An array: :math:`A^H` | src/cr/nimble/_src/array.py | hermitian | carnotresearch/cr-nimble | 2 | python | def hermitian(A):
'Returns the Hermitian transpose of an array\n\n Args:\n A (jax.numpy.ndarray): An array\n\n Returns:\n (jax.numpy.ndarray): An array: :math:`A^H`\n '
return jnp.conjugate(A.T) | def hermitian(A):
'Returns the Hermitian transpose of an array\n\n Args:\n A (jax.numpy.ndarray): An array\n\n Returns:\n (jax.numpy.ndarray): An array: :math:`A^H`\n '
return jnp.conjugate(A.T)<|docstring|>Returns the Hermitian transpose of an array
Args:
A (jax.numpy.ndarray): An array
Returns:
(jax.numpy.ndarray): An array: :math:`A^H`<|endoftext|> |
24870817433e03a8a75e31e4c993976fbb1fe92950e71e639e894e347004073c | def check_shapes_are_equal(array1, array2):
'Raise an error if the shapes of the two arrays do not match.\n \n Raises:\n ValueError: if the shape of two arrays is not same\n '
if (not (array1.shape == array2.shape)):
raise ValueError('Input arrays must have the same shape.')
return | Raise an error if the shapes of the two arrays do not match.
Raises:
ValueError: if the shape of two arrays is not same | src/cr/nimble/_src/array.py | check_shapes_are_equal | carnotresearch/cr-nimble | 2 | python | def check_shapes_are_equal(array1, array2):
'Raise an error if the shapes of the two arrays do not match.\n \n Raises:\n ValueError: if the shape of two arrays is not same\n '
if (not (array1.shape == array2.shape)):
raise ValueError('Input arrays must have the same shape.')
return | def check_shapes_are_equal(array1, array2):
'Raise an error if the shapes of the two arrays do not match.\n \n Raises:\n ValueError: if the shape of two arrays is not same\n '
if (not (array1.shape == array2.shape)):
raise ValueError('Input arrays must have the same shape.')
return<|docstring|>Raise an error if the shapes of the two arrays do not match.
Raises:
ValueError: if the shape of two arrays is not same<|endoftext|> |
7b43ee2553a1e2ac63a4be9ccb1bd166efe4a18d4b8d2ee67faf9ebe0f284487 | def destroy_database(pathname: str) -> None:
'if you can, delete the whole database file. If not, show an error message.'
try:
if (not os.path.exists(pathname)):
messagebox.showerror('Error al eliminar', f'''Parece que no se puede eliminar '{pathname}' porque este archivo no existe.
¿No ha eliminado previamente esta base de datos? Verifique o intente de nuevo.''')
return None
os.remove(pathname)
ensureDatabase(pathname)
messagebox.showinfo('Proceso terminado', 'El proceso ha terminado exitosamente. La base de datos fue eliminada.')
except Exception as e:
messagebox.showerror('Error al eliminar', f'''Parece que no se puede eliminar el archivo '{pathname}'.
Verifique que no haya otros programas abriendo este archivo o no se encuentre bajo otros procesos.
(Error reportado '{str(e)}')''') | if you can, delete the whole database file. If not, show an error message. | delete-db.py | destroy_database | ControlDeAgua/ControlDeAgua | 2 | python | def destroy_database(pathname: str) -> None:
try:
if (not os.path.exists(pathname)):
messagebox.showerror('Error al eliminar', f'Parece que no se puede eliminar '{pathname}' porque este archivo no existe.
¿No ha eliminado previamente esta base de datos? Verifique o intente de nuevo.')
return None
os.remove(pathname)
ensureDatabase(pathname)
messagebox.showinfo('Proceso terminado', 'El proceso ha terminado exitosamente. La base de datos fue eliminada.')
except Exception as e:
messagebox.showerror('Error al eliminar', f'Parece que no se puede eliminar el archivo '{pathname}'.
Verifique que no haya otros programas abriendo este archivo o no se encuentre bajo otros procesos.
(Error reportado '{str(e)}')') | def destroy_database(pathname: str) -> None:
try:
if (not os.path.exists(pathname)):
messagebox.showerror('Error al eliminar', f'Parece que no se puede eliminar '{pathname}' porque este archivo no existe.
¿No ha eliminado previamente esta base de datos? Verifique o intente de nuevo.')
return None
os.remove(pathname)
ensureDatabase(pathname)
messagebox.showinfo('Proceso terminado', 'El proceso ha terminado exitosamente. La base de datos fue eliminada.')
except Exception as e:
messagebox.showerror('Error al eliminar', f'Parece que no se puede eliminar el archivo '{pathname}'.
Verifique que no haya otros programas abriendo este archivo o no se encuentre bajo otros procesos.
(Error reportado '{str(e)}')')<|docstring|>if you can, delete the whole database file. If not, show an error message.<|endoftext|> |
5e3750ff157db40d3c949958d73c6cd40fab92ddeea78e1ad44283fdbb31b81a | def __init__(self, root: Optional[Tk]=None) -> None:
'generate the interface.'
if (not isinstance(root, Tk)):
self.root = Tk()
else:
self.root = root
windowmanager.windowTitle(self.root, 'Opciones para Eliminar la base de datos')
self.build() | generate the interface. | delete-db.py | __init__ | ControlDeAgua/ControlDeAgua | 2 | python | def __init__(self, root: Optional[Tk]=None) -> None:
if (not isinstance(root, Tk)):
self.root = Tk()
else:
self.root = root
windowmanager.windowTitle(self.root, 'Opciones para Eliminar la base de datos')
self.build() | def __init__(self, root: Optional[Tk]=None) -> None:
if (not isinstance(root, Tk)):
self.root = Tk()
else:
self.root = root
windowmanager.windowTitle(self.root, 'Opciones para Eliminar la base de datos')
self.build()<|docstring|>generate the interface.<|endoftext|> |
9081c856b12e6e4b8349447a2778796119414bc31fbaa52d8d1430d3ce48bec0 | def loop(self) -> None:
'use this if the Tk root was generated inside.'
self.root.mainloop() | use this if the Tk root was generated inside. | delete-db.py | loop | ControlDeAgua/ControlDeAgua | 2 | python | def loop(self) -> None:
self.root.mainloop() | def loop(self) -> None:
self.root.mainloop()<|docstring|>use this if the Tk root was generated inside.<|endoftext|> |
94fab186424c2fbbbce674287ffb91a780b0a8b34012978b5692ba7616ddabb6 | def build(self) -> None:
'create the GUI'
self.frame = Frame(self.root)
self.frame.grid()
destroy_label = Label(self.frame, text=self.__doc__, bg='whitesmoke', fg='black', font=('Calibri', '15', 'bold')).grid(row=0, column=0, sticky='ew')
destroy_b = Button(self.frame, text='Eliminar base de datos', bg='red', fg='white', font=('Calibri', '12', 'bold'), command=self.destroy).grid(row=1, column=0, sticky='ew')
view_b = Button(self.frame, text='Abrir base de datos', bg='gray', fg='white', font=('Calibri', '12', 'bold'), command=self.gotoDB).grid(row=2, column=0, sticky='ew')
safe_b = Button(self.frame, text='Salir', bg='gray', fg='white', font=('Calibri', '12', 'bold'), command=self.root.quit).grid(row=3, column=0, sticky='ew') | create the GUI | delete-db.py | build | ControlDeAgua/ControlDeAgua | 2 | python | def build(self) -> None:
self.frame = Frame(self.root)
self.frame.grid()
destroy_label = Label(self.frame, text=self.__doc__, bg='whitesmoke', fg='black', font=('Calibri', '15', 'bold')).grid(row=0, column=0, sticky='ew')
destroy_b = Button(self.frame, text='Eliminar base de datos', bg='red', fg='white', font=('Calibri', '12', 'bold'), command=self.destroy).grid(row=1, column=0, sticky='ew')
view_b = Button(self.frame, text='Abrir base de datos', bg='gray', fg='white', font=('Calibri', '12', 'bold'), command=self.gotoDB).grid(row=2, column=0, sticky='ew')
safe_b = Button(self.frame, text='Salir', bg='gray', fg='white', font=('Calibri', '12', 'bold'), command=self.root.quit).grid(row=3, column=0, sticky='ew') | def build(self) -> None:
self.frame = Frame(self.root)
self.frame.grid()
destroy_label = Label(self.frame, text=self.__doc__, bg='whitesmoke', fg='black', font=('Calibri', '15', 'bold')).grid(row=0, column=0, sticky='ew')
destroy_b = Button(self.frame, text='Eliminar base de datos', bg='red', fg='white', font=('Calibri', '12', 'bold'), command=self.destroy).grid(row=1, column=0, sticky='ew')
view_b = Button(self.frame, text='Abrir base de datos', bg='gray', fg='white', font=('Calibri', '12', 'bold'), command=self.gotoDB).grid(row=2, column=0, sticky='ew')
safe_b = Button(self.frame, text='Salir', bg='gray', fg='white', font=('Calibri', '12', 'bold'), command=self.root.quit).grid(row=3, column=0, sticky='ew')<|docstring|>create the GUI<|endoftext|> |
de8c6b0e8e7101e165eb31f4dad28a8400186fc346427562aed94db6c48a1b57 | def destroy(self) -> None:
'just... destroy the whole database! This is a danger zone, ok? be careful'
if messagebox.askyesno('¿Proceder?', f'''¿Eliminar la base de datos?
(Este proceso no se puede deshacer)'''):
destroy_database(PathName)
else:
messagebox.showinfo('Proceso cancelado', 'No se ha eliminado el archivo.') | just... destroy the whole database! This is a danger zone, ok? be careful | delete-db.py | destroy | ControlDeAgua/ControlDeAgua | 2 | python | def destroy(self) -> None:
if messagebox.askyesno('¿Proceder?', f'¿Eliminar la base de datos?
(Este proceso no se puede deshacer)'):
destroy_database(PathName)
else:
messagebox.showinfo('Proceso cancelado', 'No se ha eliminado el archivo.') | def destroy(self) -> None:
if messagebox.askyesno('¿Proceder?', f'¿Eliminar la base de datos?
(Este proceso no se puede deshacer)'):
destroy_database(PathName)
else:
messagebox.showinfo('Proceso cancelado', 'No se ha eliminado el archivo.')<|docstring|>just... destroy the whole database! This is a danger zone, ok? be careful<|endoftext|> |
da1e2d1b3b2b81d4b2a07e22d32b01bae39b0551c6f20d59f44d65b6dd983fff | def gotoDB(self) -> None:
'go to the database'
try:
os.startfile(PathName)
except:
messagebox.showerror('No se pudo abrir', 'Verifique e intente de nuevo') | go to the database | delete-db.py | gotoDB | ControlDeAgua/ControlDeAgua | 2 | python | def gotoDB(self) -> None:
try:
os.startfile(PathName)
except:
messagebox.showerror('No se pudo abrir', 'Verifique e intente de nuevo') | def gotoDB(self) -> None:
try:
os.startfile(PathName)
except:
messagebox.showerror('No se pudo abrir', 'Verifique e intente de nuevo')<|docstring|>go to the database<|endoftext|> |
f1540e4ccf0b132e8a2177a45d1c7d88b8c1035c4bbb6118135e446d38d3d4af | def __init__(self, root=None):
'\n Construct a BinaryTree, possibly with a single element in it.\n but for the BST (and other tree types) we can.\n '
if root:
self.root = Node(root)
else:
self.root = None | Construct a BinaryTree, possibly with a single element in it.
but for the BST (and other tree types) we can. | containers/BinaryTree.py | __init__ | vbopardi/Week8Containers | 0 | python | def __init__(self, root=None):
'\n Construct a BinaryTree, possibly with a single element in it.\n but for the BST (and other tree types) we can.\n '
if root:
self.root = Node(root)
else:
self.root = None | def __init__(self, root=None):
'\n Construct a BinaryTree, possibly with a single element in it.\n but for the BST (and other tree types) we can.\n '
if root:
self.root = Node(root)
else:
self.root = None<|docstring|>Construct a BinaryTree, possibly with a single element in it.
but for the BST (and other tree types) we can.<|endoftext|> |
91cfae51df82eec03440e9d88048ad24de16e0694580f1b08b9f5575ee3bb9c5 | def __str__(self):
'\n We can visualize a tree by visualizing its root node.\n '
return str(self.root) | We can visualize a tree by visualizing its root node. | containers/BinaryTree.py | __str__ | vbopardi/Week8Containers | 0 | python | def __str__(self):
'\n \n '
return str(self.root) | def __str__(self):
'\n \n '
return str(self.root)<|docstring|>We can visualize a tree by visualizing its root node.<|endoftext|> |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.