body_hash
stringlengths 64
64
| body
stringlengths 23
109k
| docstring
stringlengths 1
57k
| path
stringlengths 4
198
| name
stringlengths 1
115
| repository_name
stringlengths 7
111
| repository_stars
float64 0
191k
| lang
stringclasses 1
value | body_without_docstring
stringlengths 14
108k
| unified
stringlengths 45
133k
|
---|---|---|---|---|---|---|---|---|---|
dd19af383bc878257dfd229b01492ba7bc18ffd776a0429adf74d3a43f95a44f | def get_geo_data(self, geo_dset=None, band=None):
"\n Returns data of selected datasets from the GEODATA group\n\n Parameters\n ----------\n geo_dset : string\n Name(s) of datasets in the GEODATA group, comma separated\n Default is 'satellite_latitude,satellite_longitude'\n band : None or {'1', '2', '3', ..., '8'}\n Select one of the band present in the product\n Default is 'None' which returns the first available band\n\n Returns\n -------\n out : dict of numpy\n Compound array with data of selected datasets from the GEODATA group\n "
if (self.__msm_path is None):
return None
if (geo_dset is None):
geo_dset = self.geo_dset
if (band is None):
band = self.bands[0]
msm_path = self.__msm_path.replace('%', band)
grp = self.fid[str(PurePosixPath(msm_path, 'GEODATA'))]
res = {}
for name in geo_dset.split(','):
res[name] = grp[name][(0, ...)]
return res | Returns data of selected datasets from the GEODATA group
Parameters
----------
geo_dset : string
Name(s) of datasets in the GEODATA group, comma separated
Default is 'satellite_latitude,satellite_longitude'
band : None or {'1', '2', '3', ..., '8'}
Select one of the band present in the product
Default is 'None' which returns the first available band
Returns
-------
out : dict of numpy
Compound array with data of selected datasets from the GEODATA group | src/pys5p/l1b_io.py | get_geo_data | rmvanhees/pys5p | 10 | python | def get_geo_data(self, geo_dset=None, band=None):
"\n Returns data of selected datasets from the GEODATA group\n\n Parameters\n ----------\n geo_dset : string\n Name(s) of datasets in the GEODATA group, comma separated\n Default is 'satellite_latitude,satellite_longitude'\n band : None or {'1', '2', '3', ..., '8'}\n Select one of the band present in the product\n Default is 'None' which returns the first available band\n\n Returns\n -------\n out : dict of numpy\n Compound array with data of selected datasets from the GEODATA group\n "
if (self.__msm_path is None):
return None
if (geo_dset is None):
geo_dset = self.geo_dset
if (band is None):
band = self.bands[0]
msm_path = self.__msm_path.replace('%', band)
grp = self.fid[str(PurePosixPath(msm_path, 'GEODATA'))]
res = {}
for name in geo_dset.split(','):
res[name] = grp[name][(0, ...)]
return res | def get_geo_data(self, geo_dset=None, band=None):
"\n Returns data of selected datasets from the GEODATA group\n\n Parameters\n ----------\n geo_dset : string\n Name(s) of datasets in the GEODATA group, comma separated\n Default is 'satellite_latitude,satellite_longitude'\n band : None or {'1', '2', '3', ..., '8'}\n Select one of the band present in the product\n Default is 'None' which returns the first available band\n\n Returns\n -------\n out : dict of numpy\n Compound array with data of selected datasets from the GEODATA group\n "
if (self.__msm_path is None):
return None
if (geo_dset is None):
geo_dset = self.geo_dset
if (band is None):
band = self.bands[0]
msm_path = self.__msm_path.replace('%', band)
grp = self.fid[str(PurePosixPath(msm_path, 'GEODATA'))]
res = {}
for name in geo_dset.split(','):
res[name] = grp[name][(0, ...)]
return res<|docstring|>Returns data of selected datasets from the GEODATA group
Parameters
----------
geo_dset : string
Name(s) of datasets in the GEODATA group, comma separated
Default is 'satellite_latitude,satellite_longitude'
band : None or {'1', '2', '3', ..., '8'}
Select one of the band present in the product
Default is 'None' which returns the first available band
Returns
-------
out : dict of numpy
Compound array with data of selected datasets from the GEODATA group<|endoftext|> |
a16ead5006f90fa6b8f4d80a9dc4145a2c24aeb846990652cdc64fc4706c7c9a | def get_msm_attr(self, msm_dset, attr_name, band=None):
'\n Returns value attribute of measurement dataset "msm_dset"\n\n Parameters\n ----------\n attr_name : string\n Name of the attribute\n msm_dset : string\n Name of measurement dataset\n band : None or {\'1\', \'2\', \'3\', ..., \'8\'}\n Select one of the band present in the product\n Default is \'None\' which returns the first available band\n\n Returns\n -------\n out : scalar or numpy array\n Value of attribute "attr_name"\n '
if (self.__msm_path is None):
return None
if (band is None):
band = self.bands[0]
msm_path = self.__msm_path.replace('%', band)
ds_path = str(PurePosixPath(msm_path, 'OBSERVATIONS', msm_dset))
if (attr_name in self.fid[ds_path].attrs.keys()):
attr = self.fid[ds_path].attrs[attr_name]
if isinstance(attr, bytes):
return attr.decode('ascii')
return attr
return None | Returns value attribute of measurement dataset "msm_dset"
Parameters
----------
attr_name : string
Name of the attribute
msm_dset : string
Name of measurement dataset
band : None or {'1', '2', '3', ..., '8'}
Select one of the band present in the product
Default is 'None' which returns the first available band
Returns
-------
out : scalar or numpy array
Value of attribute "attr_name" | src/pys5p/l1b_io.py | get_msm_attr | rmvanhees/pys5p | 10 | python | def get_msm_attr(self, msm_dset, attr_name, band=None):
'\n Returns value attribute of measurement dataset "msm_dset"\n\n Parameters\n ----------\n attr_name : string\n Name of the attribute\n msm_dset : string\n Name of measurement dataset\n band : None or {\'1\', \'2\', \'3\', ..., \'8\'}\n Select one of the band present in the product\n Default is \'None\' which returns the first available band\n\n Returns\n -------\n out : scalar or numpy array\n Value of attribute "attr_name"\n '
if (self.__msm_path is None):
return None
if (band is None):
band = self.bands[0]
msm_path = self.__msm_path.replace('%', band)
ds_path = str(PurePosixPath(msm_path, 'OBSERVATIONS', msm_dset))
if (attr_name in self.fid[ds_path].attrs.keys()):
attr = self.fid[ds_path].attrs[attr_name]
if isinstance(attr, bytes):
return attr.decode('ascii')
return attr
return None | def get_msm_attr(self, msm_dset, attr_name, band=None):
'\n Returns value attribute of measurement dataset "msm_dset"\n\n Parameters\n ----------\n attr_name : string\n Name of the attribute\n msm_dset : string\n Name of measurement dataset\n band : None or {\'1\', \'2\', \'3\', ..., \'8\'}\n Select one of the band present in the product\n Default is \'None\' which returns the first available band\n\n Returns\n -------\n out : scalar or numpy array\n Value of attribute "attr_name"\n '
if (self.__msm_path is None):
return None
if (band is None):
band = self.bands[0]
msm_path = self.__msm_path.replace('%', band)
ds_path = str(PurePosixPath(msm_path, 'OBSERVATIONS', msm_dset))
if (attr_name in self.fid[ds_path].attrs.keys()):
attr = self.fid[ds_path].attrs[attr_name]
if isinstance(attr, bytes):
return attr.decode('ascii')
return attr
return None<|docstring|>Returns value attribute of measurement dataset "msm_dset"
Parameters
----------
attr_name : string
Name of the attribute
msm_dset : string
Name of measurement dataset
band : None or {'1', '2', '3', ..., '8'}
Select one of the band present in the product
Default is 'None' which returns the first available band
Returns
-------
out : scalar or numpy array
Value of attribute "attr_name"<|endoftext|> |
9fcb1e9e3ba452f2a532bc53cd87e6518ce826367bc1a97f7aecb9a52797adb2 | def get_msm_data(self, msm_dset, band=None, fill_as_nan=False, msm_to_row=None):
'\n Reads data from dataset "msm_dset"\n\n Parameters\n ----------\n msm_dset : string\n Name of measurement dataset.\n band : None or {\'1\', \'2\', \'3\', ..., \'8\'}\n Select one of the band present in the product\n Default is \'None\' which returns\n both bands (Calibration, Irradiance)\n or one band (Radiance)\n fill_as_nan : boolean\n Set data values equal (KNMI) FillValue to NaN\n msm_to_row : boolean\n Combine two bands using padding if necessary\n\n Returns\n -------\n out : values read from or written to dataset "msm_dset"\n '
fillvalue = float.fromhex('0x1.ep+122')
if (self.__msm_path is None):
return None
if (band is None):
band = self.bands
elif (not isinstance(band, str)):
raise TypeError('band must be a string')
elif (band not in self.bands):
raise ValueError('band not found in product')
if ((len(band) == 2) and (msm_to_row is None)):
msm_to_row = 'padding'
data = ()
for ii in band:
msm_path = self.__msm_path.replace('%', ii)
ds_path = str(PurePosixPath(msm_path, 'OBSERVATIONS', msm_dset))
dset = self.fid[ds_path]
if (fill_as_nan and (dset.attrs['_FillValue'] == fillvalue)):
buff = np.squeeze(dset)
buff[(buff == fillvalue)] = np.nan
data += (buff,)
else:
data += (np.squeeze(dset),)
if (len(band) == 1):
return data[0]
if (msm_to_row == 'padding'):
data = pad_rows(data[0], data[1])
return np.concatenate(data, axis=(data[0].ndim - 1)) | Reads data from dataset "msm_dset"
Parameters
----------
msm_dset : string
Name of measurement dataset.
band : None or {'1', '2', '3', ..., '8'}
Select one of the band present in the product
Default is 'None' which returns
both bands (Calibration, Irradiance)
or one band (Radiance)
fill_as_nan : boolean
Set data values equal (KNMI) FillValue to NaN
msm_to_row : boolean
Combine two bands using padding if necessary
Returns
-------
out : values read from or written to dataset "msm_dset" | src/pys5p/l1b_io.py | get_msm_data | rmvanhees/pys5p | 10 | python | def get_msm_data(self, msm_dset, band=None, fill_as_nan=False, msm_to_row=None):
'\n Reads data from dataset "msm_dset"\n\n Parameters\n ----------\n msm_dset : string\n Name of measurement dataset.\n band : None or {\'1\', \'2\', \'3\', ..., \'8\'}\n Select one of the band present in the product\n Default is \'None\' which returns\n both bands (Calibration, Irradiance)\n or one band (Radiance)\n fill_as_nan : boolean\n Set data values equal (KNMI) FillValue to NaN\n msm_to_row : boolean\n Combine two bands using padding if necessary\n\n Returns\n -------\n out : values read from or written to dataset "msm_dset"\n '
fillvalue = float.fromhex('0x1.ep+122')
if (self.__msm_path is None):
return None
if (band is None):
band = self.bands
elif (not isinstance(band, str)):
raise TypeError('band must be a string')
elif (band not in self.bands):
raise ValueError('band not found in product')
if ((len(band) == 2) and (msm_to_row is None)):
msm_to_row = 'padding'
data = ()
for ii in band:
msm_path = self.__msm_path.replace('%', ii)
ds_path = str(PurePosixPath(msm_path, 'OBSERVATIONS', msm_dset))
dset = self.fid[ds_path]
if (fill_as_nan and (dset.attrs['_FillValue'] == fillvalue)):
buff = np.squeeze(dset)
buff[(buff == fillvalue)] = np.nan
data += (buff,)
else:
data += (np.squeeze(dset),)
if (len(band) == 1):
return data[0]
if (msm_to_row == 'padding'):
data = pad_rows(data[0], data[1])
return np.concatenate(data, axis=(data[0].ndim - 1)) | def get_msm_data(self, msm_dset, band=None, fill_as_nan=False, msm_to_row=None):
'\n Reads data from dataset "msm_dset"\n\n Parameters\n ----------\n msm_dset : string\n Name of measurement dataset.\n band : None or {\'1\', \'2\', \'3\', ..., \'8\'}\n Select one of the band present in the product\n Default is \'None\' which returns\n both bands (Calibration, Irradiance)\n or one band (Radiance)\n fill_as_nan : boolean\n Set data values equal (KNMI) FillValue to NaN\n msm_to_row : boolean\n Combine two bands using padding if necessary\n\n Returns\n -------\n out : values read from or written to dataset "msm_dset"\n '
fillvalue = float.fromhex('0x1.ep+122')
if (self.__msm_path is None):
return None
if (band is None):
band = self.bands
elif (not isinstance(band, str)):
raise TypeError('band must be a string')
elif (band not in self.bands):
raise ValueError('band not found in product')
if ((len(band) == 2) and (msm_to_row is None)):
msm_to_row = 'padding'
data = ()
for ii in band:
msm_path = self.__msm_path.replace('%', ii)
ds_path = str(PurePosixPath(msm_path, 'OBSERVATIONS', msm_dset))
dset = self.fid[ds_path]
if (fill_as_nan and (dset.attrs['_FillValue'] == fillvalue)):
buff = np.squeeze(dset)
buff[(buff == fillvalue)] = np.nan
data += (buff,)
else:
data += (np.squeeze(dset),)
if (len(band) == 1):
return data[0]
if (msm_to_row == 'padding'):
data = pad_rows(data[0], data[1])
return np.concatenate(data, axis=(data[0].ndim - 1))<|docstring|>Reads data from dataset "msm_dset"
Parameters
----------
msm_dset : string
Name of measurement dataset.
band : None or {'1', '2', '3', ..., '8'}
Select one of the band present in the product
Default is 'None' which returns
both bands (Calibration, Irradiance)
or one band (Radiance)
fill_as_nan : boolean
Set data values equal (KNMI) FillValue to NaN
msm_to_row : boolean
Combine two bands using padding if necessary
Returns
-------
out : values read from or written to dataset "msm_dset"<|endoftext|> |
b6cf5e5f201ec6cae552e060dfd262d3119f99c84312334edae861c78d461ae8 | def set_msm_data(self, msm_dset, new_data):
'\n Replace data of dataset "msm_dset" with new_data\n\n Parameters\n ----------\n msm_dset : string\n Name of measurement dataset.\n new_data : array-like\n Data to be written with same dimensions as dataset "msm_dset"\n '
if (self.__msm_path is None):
return
if (not self.__rw):
raise PermissionError('read/write access required')
col = 0
for ii in self.bands:
msm_path = self.__msm_path.replace('%', ii)
ds_path = str(PurePosixPath(msm_path, 'OBSERVATIONS', msm_dset))
dset = self.fid[ds_path]
dims = dset.shape
dset[(0, ...)] = new_data[(..., col:(col + dims[(- 1)]))]
col += dims[(- 1)]
self.__patched_msm.append(ds_path) | Replace data of dataset "msm_dset" with new_data
Parameters
----------
msm_dset : string
Name of measurement dataset.
new_data : array-like
Data to be written with same dimensions as dataset "msm_dset" | src/pys5p/l1b_io.py | set_msm_data | rmvanhees/pys5p | 10 | python | def set_msm_data(self, msm_dset, new_data):
'\n Replace data of dataset "msm_dset" with new_data\n\n Parameters\n ----------\n msm_dset : string\n Name of measurement dataset.\n new_data : array-like\n Data to be written with same dimensions as dataset "msm_dset"\n '
if (self.__msm_path is None):
return
if (not self.__rw):
raise PermissionError('read/write access required')
col = 0
for ii in self.bands:
msm_path = self.__msm_path.replace('%', ii)
ds_path = str(PurePosixPath(msm_path, 'OBSERVATIONS', msm_dset))
dset = self.fid[ds_path]
dims = dset.shape
dset[(0, ...)] = new_data[(..., col:(col + dims[(- 1)]))]
col += dims[(- 1)]
self.__patched_msm.append(ds_path) | def set_msm_data(self, msm_dset, new_data):
'\n Replace data of dataset "msm_dset" with new_data\n\n Parameters\n ----------\n msm_dset : string\n Name of measurement dataset.\n new_data : array-like\n Data to be written with same dimensions as dataset "msm_dset"\n '
if (self.__msm_path is None):
return
if (not self.__rw):
raise PermissionError('read/write access required')
col = 0
for ii in self.bands:
msm_path = self.__msm_path.replace('%', ii)
ds_path = str(PurePosixPath(msm_path, 'OBSERVATIONS', msm_dset))
dset = self.fid[ds_path]
dims = dset.shape
dset[(0, ...)] = new_data[(..., col:(col + dims[(- 1)]))]
col += dims[(- 1)]
self.__patched_msm.append(ds_path)<|docstring|>Replace data of dataset "msm_dset" with new_data
Parameters
----------
msm_dset : string
Name of measurement dataset.
new_data : array-like
Data to be written with same dimensions as dataset "msm_dset"<|endoftext|> |
aec7354a16891bf263f0cb4515235eb7ff6bd10114fad2bc9fb21cd3ee3d8af9 | def __init__(self, l1b_product):
'\n Initialize access to a Tropomi offline L1b product\n '
if (not Path(l1b_product).is_file()):
raise FileNotFoundError(f'{l1b_product} does not exist')
self.filename = l1b_product
self.fid = h5py.File(l1b_product, 'r') | Initialize access to a Tropomi offline L1b product | src/pys5p/l1b_io.py | __init__ | rmvanhees/pys5p | 10 | python | def __init__(self, l1b_product):
'\n \n '
if (not Path(l1b_product).is_file()):
raise FileNotFoundError(f'{l1b_product} does not exist')
self.filename = l1b_product
self.fid = h5py.File(l1b_product, 'r') | def __init__(self, l1b_product):
'\n \n '
if (not Path(l1b_product).is_file()):
raise FileNotFoundError(f'{l1b_product} does not exist')
self.filename = l1b_product
self.fid = h5py.File(l1b_product, 'r')<|docstring|>Initialize access to a Tropomi offline L1b product<|endoftext|> |
3fe98a939b862bbfeda66c816f8a32ab391f5a19a2a86e4b74d710e34c75127e | def __enter__(self):
'\n method called to initiate the context manager\n '
return self | method called to initiate the context manager | src/pys5p/l1b_io.py | __enter__ | rmvanhees/pys5p | 10 | python | def __enter__(self):
'\n \n '
return self | def __enter__(self):
'\n \n '
return self<|docstring|>method called to initiate the context manager<|endoftext|> |
a845abdbeae5f39d06b5d1da3e7bb86971111311cbc47b27bbe00cbf9d7b283f | def __exit__(self, exc_type, exc_value, traceback):
'\n method called when exiting the context manager\n '
self.close()
return False | method called when exiting the context manager | src/pys5p/l1b_io.py | __exit__ | rmvanhees/pys5p | 10 | python | def __exit__(self, exc_type, exc_value, traceback):
'\n \n '
self.close()
return False | def __exit__(self, exc_type, exc_value, traceback):
'\n \n '
self.close()
return False<|docstring|>method called when exiting the context manager<|endoftext|> |
8642c4962ef77e7d7f9b956ecc65fbe0f6d62ec92cad1b21fbd46ed822e87335 | def close(self):
'\n close access to product\n '
if (self.fid is None):
return
self.fid.close()
self.fid = None | close access to product | src/pys5p/l1b_io.py | close | rmvanhees/pys5p | 10 | python | def close(self):
'\n \n '
if (self.fid is None):
return
self.fid.close()
self.fid = None | def close(self):
'\n \n '
if (self.fid is None):
return
self.fid.close()
self.fid = None<|docstring|>close access to product<|endoftext|> |
c47a75ae91a189db08c3e4526b673ae8b09f5412a39402abc4fa6921d82ed12f | def get_attr(self, attr_name):
'\n Obtain value of an HDF5 file attribute\n\n Parameters\n ----------\n attr_name : string\n Name of the attribute\n '
if (attr_name not in self.fid.attrs.keys()):
return None
attr = self.fid.attrs[attr_name]
if (attr.shape is None):
return None
return attr | Obtain value of an HDF5 file attribute
Parameters
----------
attr_name : string
Name of the attribute | src/pys5p/l1b_io.py | get_attr | rmvanhees/pys5p | 10 | python | def get_attr(self, attr_name):
'\n Obtain value of an HDF5 file attribute\n\n Parameters\n ----------\n attr_name : string\n Name of the attribute\n '
if (attr_name not in self.fid.attrs.keys()):
return None
attr = self.fid.attrs[attr_name]
if (attr.shape is None):
return None
return attr | def get_attr(self, attr_name):
'\n Obtain value of an HDF5 file attribute\n\n Parameters\n ----------\n attr_name : string\n Name of the attribute\n '
if (attr_name not in self.fid.attrs.keys()):
return None
attr = self.fid.attrs[attr_name]
if (attr.shape is None):
return None
return attr<|docstring|>Obtain value of an HDF5 file attribute
Parameters
----------
attr_name : string
Name of the attribute<|endoftext|> |
8cebf5becd45e824ffdfbb60aa554c79403787cd0d77670998873d0678ae7c03 | def get_orbit(self):
'\n Returns absolute orbit number\n '
res = self.get_attr('orbit')
if (res is None):
return None
return int(res) | Returns absolute orbit number | src/pys5p/l1b_io.py | get_orbit | rmvanhees/pys5p | 10 | python | def get_orbit(self):
'\n \n '
res = self.get_attr('orbit')
if (res is None):
return None
return int(res) | def get_orbit(self):
'\n \n '
res = self.get_attr('orbit')
if (res is None):
return None
return int(res)<|docstring|>Returns absolute orbit number<|endoftext|> |
84fe905dc79d32d37a43761f4e804059ae9d5d3a8732c42f5cc0743099b0eff5 | def get_processor_version(self):
'\n Returns version of the L01b processor\n '
attr = self.get_attr('processor_version')
if (attr is None):
return None
return attr.decode('ascii') | Returns version of the L01b processor | src/pys5p/l1b_io.py | get_processor_version | rmvanhees/pys5p | 10 | python | def get_processor_version(self):
'\n \n '
attr = self.get_attr('processor_version')
if (attr is None):
return None
return attr.decode('ascii') | def get_processor_version(self):
'\n \n '
attr = self.get_attr('processor_version')
if (attr is None):
return None
return attr.decode('ascii')<|docstring|>Returns version of the L01b processor<|endoftext|> |
b75a6e4230de265a80abf91e3ce7292b442b33ffe29bb6d35ec0bcc384888548 | def get_coverage_time(self):
'\n Returns start and end of the measurement coverage time\n '
attr_start = self.get_attr('time_coverage_start')
if (attr_start is None):
return None
attr_end = self.get_attr('time_coverage_end')
if (attr_end is None):
return None
return (attr_start.decode('ascii'), attr_end.decode('ascii')) | Returns start and end of the measurement coverage time | src/pys5p/l1b_io.py | get_coverage_time | rmvanhees/pys5p | 10 | python | def get_coverage_time(self):
'\n \n '
attr_start = self.get_attr('time_coverage_start')
if (attr_start is None):
return None
attr_end = self.get_attr('time_coverage_end')
if (attr_end is None):
return None
return (attr_start.decode('ascii'), attr_end.decode('ascii')) | def get_coverage_time(self):
'\n \n '
attr_start = self.get_attr('time_coverage_start')
if (attr_start is None):
return None
attr_end = self.get_attr('time_coverage_end')
if (attr_end is None):
return None
return (attr_start.decode('ascii'), attr_end.decode('ascii'))<|docstring|>Returns start and end of the measurement coverage time<|endoftext|> |
052e7187d24235786bf1e3729f0f53bbca9d2be91bdc86a936950954a87b7d46 | def get_creation_time(self):
'\n Returns datetime when the L1b product was created\n '
grp = self.fid['/METADATA/ESA_METADATA/earth_explorer_header']
dset = grp['fixed_header/source']
if ('Creation_Date' in self.fid.attrs.keys()):
attr = dset.attrs['Creation_Date']
if isinstance(attr, bytes):
return attr.decode('ascii')
return attr
return None | Returns datetime when the L1b product was created | src/pys5p/l1b_io.py | get_creation_time | rmvanhees/pys5p | 10 | python | def get_creation_time(self):
'\n \n '
grp = self.fid['/METADATA/ESA_METADATA/earth_explorer_header']
dset = grp['fixed_header/source']
if ('Creation_Date' in self.fid.attrs.keys()):
attr = dset.attrs['Creation_Date']
if isinstance(attr, bytes):
return attr.decode('ascii')
return attr
return None | def get_creation_time(self):
'\n \n '
grp = self.fid['/METADATA/ESA_METADATA/earth_explorer_header']
dset = grp['fixed_header/source']
if ('Creation_Date' in self.fid.attrs.keys()):
attr = dset.attrs['Creation_Date']
if isinstance(attr, bytes):
return attr.decode('ascii')
return attr
return None<|docstring|>Returns datetime when the L1b product was created<|endoftext|> |
936dbca41789c9158520ee769e3a6574a6a210c3caff4651d787c2667851b90d | def get_ref_time(self):
'\n Returns reference start time of measurements\n '
return self.fid['reference_time'][0].astype(int) | Returns reference start time of measurements | src/pys5p/l1b_io.py | get_ref_time | rmvanhees/pys5p | 10 | python | def get_ref_time(self):
'\n \n '
return self.fid['reference_time'][0].astype(int) | def get_ref_time(self):
'\n \n '
return self.fid['reference_time'][0].astype(int)<|docstring|>Returns reference start time of measurements<|endoftext|> |
e00c0d888fadfa63fcbb15bf3759a9d10eef8a1c2032657c0891dea16de5d056 | def get_delta_time(self):
'\n Returns offset from the reference start time of measurement\n '
return self.fid['/MSMTSET/msmtset']['delta_time'][:].astype(int) | Returns offset from the reference start time of measurement | src/pys5p/l1b_io.py | get_delta_time | rmvanhees/pys5p | 10 | python | def get_delta_time(self):
'\n \n '
return self.fid['/MSMTSET/msmtset']['delta_time'][:].astype(int) | def get_delta_time(self):
'\n \n '
return self.fid['/MSMTSET/msmtset']['delta_time'][:].astype(int)<|docstring|>Returns offset from the reference start time of measurement<|endoftext|> |
1e3976f9e63dea9b291c8e06d2e19a2f5c13629ade4a06d940a1c9108a40f742 | def get_msmtset(self):
'\n Returns L1B_ENG_DB/SATELLITE_INFO/satellite_pos\n '
return self.fid['/SATELLITE_INFO/satellite_pos'][:] | Returns L1B_ENG_DB/SATELLITE_INFO/satellite_pos | src/pys5p/l1b_io.py | get_msmtset | rmvanhees/pys5p | 10 | python | def get_msmtset(self):
'\n \n '
return self.fid['/SATELLITE_INFO/satellite_pos'][:] | def get_msmtset(self):
'\n \n '
return self.fid['/SATELLITE_INFO/satellite_pos'][:]<|docstring|>Returns L1B_ENG_DB/SATELLITE_INFO/satellite_pos<|endoftext|> |
88966e903d64a58757477c96373f7d9f7ff17da476e942ef9c2c3f6dbeaa49d5 | def get_msmtset_db(self):
'\n Returns compressed msmtset from L1B_ENG_DB/MSMTSET/msmtset\n\n Notes\n -----\n This function is used to fill the SQLite product databases\n '
dtype_msmt_db = np.dtype([('meta_id', np.int32), ('ic_id', np.uint16), ('ic_version', np.uint8), ('class', np.uint8), ('repeats', np.uint16), ('exp_per_mcp', np.uint16), ('exp_time_us', np.uint32), ('mcp_us', np.uint32), ('delta_time_start', np.int32), ('delta_time_end', np.int32)])
msmtset = self.fid['/MSMTSET/msmtset'][:]
icid = msmtset['icid']
indx = ((np.diff(icid) != 0).nonzero()[0] + 1)
indx = np.insert(indx, 0, 0)
indx = np.append(indx, (- 1))
msmt = np.zeros((indx.size - 1), dtype=dtype_msmt_db)
msmt['ic_id'][:] = msmtset['icid'][indx[0:(- 1)]]
msmt['ic_version'][:] = msmtset['icv'][indx[0:(- 1)]]
msmt['class'][:] = msmtset['class'][indx[0:(- 1)]]
msmt['delta_time_start'][:] = msmtset['delta_time'][indx[0:(- 1)]]
msmt['delta_time_end'][:] = msmtset['delta_time'][indx[1:]]
timing = self.fid['/DETECTOR4/timing'][:]
msmt['mcp_us'][:] = timing['mcp_us'][(indx[1:] - 1)]
msmt['exp_time_us'][:] = timing['exp_time_us'][(indx[1:] - 1)]
msmt['exp_per_mcp'][:] = timing['exp_per_mcp'][(indx[1:] - 1)]
duration = (1000 * (msmt['delta_time_end'] - msmt['delta_time_start']))
mask = (msmt['mcp_us'] > 0)
msmt['repeats'][mask] = (duration[mask] / msmt['mcp_us'][mask]).astype(np.uint16)
return msmt | Returns compressed msmtset from L1B_ENG_DB/MSMTSET/msmtset
Notes
-----
This function is used to fill the SQLite product databases | src/pys5p/l1b_io.py | get_msmtset_db | rmvanhees/pys5p | 10 | python | def get_msmtset_db(self):
'\n Returns compressed msmtset from L1B_ENG_DB/MSMTSET/msmtset\n\n Notes\n -----\n This function is used to fill the SQLite product databases\n '
dtype_msmt_db = np.dtype([('meta_id', np.int32), ('ic_id', np.uint16), ('ic_version', np.uint8), ('class', np.uint8), ('repeats', np.uint16), ('exp_per_mcp', np.uint16), ('exp_time_us', np.uint32), ('mcp_us', np.uint32), ('delta_time_start', np.int32), ('delta_time_end', np.int32)])
msmtset = self.fid['/MSMTSET/msmtset'][:]
icid = msmtset['icid']
indx = ((np.diff(icid) != 0).nonzero()[0] + 1)
indx = np.insert(indx, 0, 0)
indx = np.append(indx, (- 1))
msmt = np.zeros((indx.size - 1), dtype=dtype_msmt_db)
msmt['ic_id'][:] = msmtset['icid'][indx[0:(- 1)]]
msmt['ic_version'][:] = msmtset['icv'][indx[0:(- 1)]]
msmt['class'][:] = msmtset['class'][indx[0:(- 1)]]
msmt['delta_time_start'][:] = msmtset['delta_time'][indx[0:(- 1)]]
msmt['delta_time_end'][:] = msmtset['delta_time'][indx[1:]]
timing = self.fid['/DETECTOR4/timing'][:]
msmt['mcp_us'][:] = timing['mcp_us'][(indx[1:] - 1)]
msmt['exp_time_us'][:] = timing['exp_time_us'][(indx[1:] - 1)]
msmt['exp_per_mcp'][:] = timing['exp_per_mcp'][(indx[1:] - 1)]
duration = (1000 * (msmt['delta_time_end'] - msmt['delta_time_start']))
mask = (msmt['mcp_us'] > 0)
msmt['repeats'][mask] = (duration[mask] / msmt['mcp_us'][mask]).astype(np.uint16)
return msmt | def get_msmtset_db(self):
'\n Returns compressed msmtset from L1B_ENG_DB/MSMTSET/msmtset\n\n Notes\n -----\n This function is used to fill the SQLite product databases\n '
dtype_msmt_db = np.dtype([('meta_id', np.int32), ('ic_id', np.uint16), ('ic_version', np.uint8), ('class', np.uint8), ('repeats', np.uint16), ('exp_per_mcp', np.uint16), ('exp_time_us', np.uint32), ('mcp_us', np.uint32), ('delta_time_start', np.int32), ('delta_time_end', np.int32)])
msmtset = self.fid['/MSMTSET/msmtset'][:]
icid = msmtset['icid']
indx = ((np.diff(icid) != 0).nonzero()[0] + 1)
indx = np.insert(indx, 0, 0)
indx = np.append(indx, (- 1))
msmt = np.zeros((indx.size - 1), dtype=dtype_msmt_db)
msmt['ic_id'][:] = msmtset['icid'][indx[0:(- 1)]]
msmt['ic_version'][:] = msmtset['icv'][indx[0:(- 1)]]
msmt['class'][:] = msmtset['class'][indx[0:(- 1)]]
msmt['delta_time_start'][:] = msmtset['delta_time'][indx[0:(- 1)]]
msmt['delta_time_end'][:] = msmtset['delta_time'][indx[1:]]
timing = self.fid['/DETECTOR4/timing'][:]
msmt['mcp_us'][:] = timing['mcp_us'][(indx[1:] - 1)]
msmt['exp_time_us'][:] = timing['exp_time_us'][(indx[1:] - 1)]
msmt['exp_per_mcp'][:] = timing['exp_per_mcp'][(indx[1:] - 1)]
duration = (1000 * (msmt['delta_time_end'] - msmt['delta_time_start']))
mask = (msmt['mcp_us'] > 0)
msmt['repeats'][mask] = (duration[mask] / msmt['mcp_us'][mask]).astype(np.uint16)
return msmt<|docstring|>Returns compressed msmtset from L1B_ENG_DB/MSMTSET/msmtset
Notes
-----
This function is used to fill the SQLite product databases<|endoftext|> |
370b6ca40997292535016fcd4a2d687d8151bd3160535b1bb6a73aeb28f1dd16 | def get_swir_hk_db(self, stats=None, fill_as_nan=False):
"\n Returns the most important SWIR house keeping parameters\n\n Parameters\n ----------\n fill_as_nan : boolean\n Replace (float) FillValues with Nan's, when True\n\n Notes\n -----\n This function is used to fill the SQLite product datbase and\n HDF5 monitoring database\n "
dtype_hk_db = np.dtype([('detector_temp', np.float32), ('grating_temp', np.float32), ('imager_temp', np.float32), ('obm_temp', np.float32), ('calib_unit_temp', np.float32), ('fee_inner_temp', np.float32), ('fee_board_temp', np.float32), ('fee_ref_volt_temp', np.float32), ('fee_video_amp_temp', np.float32), ('fee_video_adc_temp', np.float32), ('detector_heater', np.float32), ('obm_heater_cycle', np.float32), ('fee_box_heater_cycle', np.float32), ('obm_heater', np.float32), ('fee_box_heater', np.float32)])
num_eng_pkts = self.fid['nr_of_engdat_pkts'].size
swir_hk = np.empty(num_eng_pkts, dtype=dtype_hk_db)
hk_tbl = self.fid['/DETECTOR4/DETECTOR_HK/temperature_info'][:]
swir_hk['detector_temp'] = hk_tbl['temp_det_ts2']
swir_hk['fee_inner_temp'] = hk_tbl['temp_d1_box']
swir_hk['fee_board_temp'] = hk_tbl['temp_d5_cold']
swir_hk['fee_ref_volt_temp'] = hk_tbl['temp_a3_vref']
swir_hk['fee_video_amp_temp'] = hk_tbl['temp_d6_vamp']
swir_hk['fee_video_adc_temp'] = hk_tbl['temp_d4_vadc']
hk_tbl = self.fid['/NOMINAL_HK/TEMPERATURES/hires_temperatures'][:]
swir_hk['grating_temp'] = hk_tbl['hires_temp_1']
hk_tbl = self.fid['/NOMINAL_HK/TEMPERATURES/instr_temperatures'][:]
swir_hk['imager_temp'] = hk_tbl['instr_temp_29']
swir_hk['obm_temp'] = hk_tbl['instr_temp_28']
swir_hk['calib_unit_temp'] = hk_tbl['instr_temp_25']
hk_tbl = self.fid['/DETECTOR4/DETECTOR_HK/heater_data'][:]
swir_hk['detector_heater'] = hk_tbl['det_htr_curr']
hk_tbl = self.fid['/NOMINAL_HK/HEATERS/heater_data'][:]
swir_hk['obm_heater'] = hk_tbl['meas_cur_val_htr12']
swir_hk['obm_heater_cycle'] = hk_tbl['last_pwm_val_htr12']
swir_hk['fee_box_heater'] = hk_tbl['meas_cur_val_htr13']
swir_hk['fee_box_heater_cycle'] = hk_tbl['last_pwm_val_htr13']
if fill_as_nan:
for key in dtype_hk_db.names:
swir_hk[key][(swir_hk[key] == 999.0)] = np.nan
if (stats is None):
return swir_hk
if (stats == 'median'):
hk_median = np.empty(1, dtype=dtype_hk_db)
for key in dtype_hk_db.names:
if np.all(np.isnan(swir_hk[key])):
hk_median[key][0] = np.nan
elif (np.nanmin(swir_hk[key]) == np.nanmax(swir_hk[key])):
hk_median[key][0] = swir_hk[key][0]
else:
hk_median[key][0] = biweight(swir_hk[key])
return hk_median
if (stats == 'range'):
hk_min = np.empty(1, dtype=dtype_hk_db)
hk_max = np.empty(1, dtype=dtype_hk_db)
for key in dtype_hk_db.names:
if np.all(np.isnan(swir_hk[key])):
hk_min[key][0] = np.nan
hk_max[key][0] = np.nan
elif (np.nanmin(swir_hk[key]) == np.nanmax(swir_hk[key])):
hk_min[key][0] = swir_hk[key][0]
hk_max[key][0] = swir_hk[key][0]
else:
hk_min[key][0] = np.nanmin(swir_hk[key])
hk_max[key][0] = np.nanmax(swir_hk[key])
return (hk_min, hk_max)
return None | Returns the most important SWIR house keeping parameters
Parameters
----------
fill_as_nan : boolean
Replace (float) FillValues with Nan's, when True
Notes
-----
This function is used to fill the SQLite product datbase and
HDF5 monitoring database | src/pys5p/l1b_io.py | get_swir_hk_db | rmvanhees/pys5p | 10 | python | def get_swir_hk_db(self, stats=None, fill_as_nan=False):
"\n Returns the most important SWIR house keeping parameters\n\n Parameters\n ----------\n fill_as_nan : boolean\n Replace (float) FillValues with Nan's, when True\n\n Notes\n -----\n This function is used to fill the SQLite product datbase and\n HDF5 monitoring database\n "
dtype_hk_db = np.dtype([('detector_temp', np.float32), ('grating_temp', np.float32), ('imager_temp', np.float32), ('obm_temp', np.float32), ('calib_unit_temp', np.float32), ('fee_inner_temp', np.float32), ('fee_board_temp', np.float32), ('fee_ref_volt_temp', np.float32), ('fee_video_amp_temp', np.float32), ('fee_video_adc_temp', np.float32), ('detector_heater', np.float32), ('obm_heater_cycle', np.float32), ('fee_box_heater_cycle', np.float32), ('obm_heater', np.float32), ('fee_box_heater', np.float32)])
num_eng_pkts = self.fid['nr_of_engdat_pkts'].size
swir_hk = np.empty(num_eng_pkts, dtype=dtype_hk_db)
hk_tbl = self.fid['/DETECTOR4/DETECTOR_HK/temperature_info'][:]
swir_hk['detector_temp'] = hk_tbl['temp_det_ts2']
swir_hk['fee_inner_temp'] = hk_tbl['temp_d1_box']
swir_hk['fee_board_temp'] = hk_tbl['temp_d5_cold']
swir_hk['fee_ref_volt_temp'] = hk_tbl['temp_a3_vref']
swir_hk['fee_video_amp_temp'] = hk_tbl['temp_d6_vamp']
swir_hk['fee_video_adc_temp'] = hk_tbl['temp_d4_vadc']
hk_tbl = self.fid['/NOMINAL_HK/TEMPERATURES/hires_temperatures'][:]
swir_hk['grating_temp'] = hk_tbl['hires_temp_1']
hk_tbl = self.fid['/NOMINAL_HK/TEMPERATURES/instr_temperatures'][:]
swir_hk['imager_temp'] = hk_tbl['instr_temp_29']
swir_hk['obm_temp'] = hk_tbl['instr_temp_28']
swir_hk['calib_unit_temp'] = hk_tbl['instr_temp_25']
hk_tbl = self.fid['/DETECTOR4/DETECTOR_HK/heater_data'][:]
swir_hk['detector_heater'] = hk_tbl['det_htr_curr']
hk_tbl = self.fid['/NOMINAL_HK/HEATERS/heater_data'][:]
swir_hk['obm_heater'] = hk_tbl['meas_cur_val_htr12']
swir_hk['obm_heater_cycle'] = hk_tbl['last_pwm_val_htr12']
swir_hk['fee_box_heater'] = hk_tbl['meas_cur_val_htr13']
swir_hk['fee_box_heater_cycle'] = hk_tbl['last_pwm_val_htr13']
if fill_as_nan:
for key in dtype_hk_db.names:
swir_hk[key][(swir_hk[key] == 999.0)] = np.nan
if (stats is None):
return swir_hk
if (stats == 'median'):
hk_median = np.empty(1, dtype=dtype_hk_db)
for key in dtype_hk_db.names:
if np.all(np.isnan(swir_hk[key])):
hk_median[key][0] = np.nan
elif (np.nanmin(swir_hk[key]) == np.nanmax(swir_hk[key])):
hk_median[key][0] = swir_hk[key][0]
else:
hk_median[key][0] = biweight(swir_hk[key])
return hk_median
if (stats == 'range'):
hk_min = np.empty(1, dtype=dtype_hk_db)
hk_max = np.empty(1, dtype=dtype_hk_db)
for key in dtype_hk_db.names:
if np.all(np.isnan(swir_hk[key])):
hk_min[key][0] = np.nan
hk_max[key][0] = np.nan
elif (np.nanmin(swir_hk[key]) == np.nanmax(swir_hk[key])):
hk_min[key][0] = swir_hk[key][0]
hk_max[key][0] = swir_hk[key][0]
else:
hk_min[key][0] = np.nanmin(swir_hk[key])
hk_max[key][0] = np.nanmax(swir_hk[key])
return (hk_min, hk_max)
return None | def get_swir_hk_db(self, stats=None, fill_as_nan=False):
"\n Returns the most important SWIR house keeping parameters\n\n Parameters\n ----------\n fill_as_nan : boolean\n Replace (float) FillValues with Nan's, when True\n\n Notes\n -----\n This function is used to fill the SQLite product datbase and\n HDF5 monitoring database\n "
dtype_hk_db = np.dtype([('detector_temp', np.float32), ('grating_temp', np.float32), ('imager_temp', np.float32), ('obm_temp', np.float32), ('calib_unit_temp', np.float32), ('fee_inner_temp', np.float32), ('fee_board_temp', np.float32), ('fee_ref_volt_temp', np.float32), ('fee_video_amp_temp', np.float32), ('fee_video_adc_temp', np.float32), ('detector_heater', np.float32), ('obm_heater_cycle', np.float32), ('fee_box_heater_cycle', np.float32), ('obm_heater', np.float32), ('fee_box_heater', np.float32)])
num_eng_pkts = self.fid['nr_of_engdat_pkts'].size
swir_hk = np.empty(num_eng_pkts, dtype=dtype_hk_db)
hk_tbl = self.fid['/DETECTOR4/DETECTOR_HK/temperature_info'][:]
swir_hk['detector_temp'] = hk_tbl['temp_det_ts2']
swir_hk['fee_inner_temp'] = hk_tbl['temp_d1_box']
swir_hk['fee_board_temp'] = hk_tbl['temp_d5_cold']
swir_hk['fee_ref_volt_temp'] = hk_tbl['temp_a3_vref']
swir_hk['fee_video_amp_temp'] = hk_tbl['temp_d6_vamp']
swir_hk['fee_video_adc_temp'] = hk_tbl['temp_d4_vadc']
hk_tbl = self.fid['/NOMINAL_HK/TEMPERATURES/hires_temperatures'][:]
swir_hk['grating_temp'] = hk_tbl['hires_temp_1']
hk_tbl = self.fid['/NOMINAL_HK/TEMPERATURES/instr_temperatures'][:]
swir_hk['imager_temp'] = hk_tbl['instr_temp_29']
swir_hk['obm_temp'] = hk_tbl['instr_temp_28']
swir_hk['calib_unit_temp'] = hk_tbl['instr_temp_25']
hk_tbl = self.fid['/DETECTOR4/DETECTOR_HK/heater_data'][:]
swir_hk['detector_heater'] = hk_tbl['det_htr_curr']
hk_tbl = self.fid['/NOMINAL_HK/HEATERS/heater_data'][:]
swir_hk['obm_heater'] = hk_tbl['meas_cur_val_htr12']
swir_hk['obm_heater_cycle'] = hk_tbl['last_pwm_val_htr12']
swir_hk['fee_box_heater'] = hk_tbl['meas_cur_val_htr13']
swir_hk['fee_box_heater_cycle'] = hk_tbl['last_pwm_val_htr13']
if fill_as_nan:
for key in dtype_hk_db.names:
swir_hk[key][(swir_hk[key] == 999.0)] = np.nan
if (stats is None):
return swir_hk
if (stats == 'median'):
hk_median = np.empty(1, dtype=dtype_hk_db)
for key in dtype_hk_db.names:
if np.all(np.isnan(swir_hk[key])):
hk_median[key][0] = np.nan
elif (np.nanmin(swir_hk[key]) == np.nanmax(swir_hk[key])):
hk_median[key][0] = swir_hk[key][0]
else:
hk_median[key][0] = biweight(swir_hk[key])
return hk_median
if (stats == 'range'):
hk_min = np.empty(1, dtype=dtype_hk_db)
hk_max = np.empty(1, dtype=dtype_hk_db)
for key in dtype_hk_db.names:
if np.all(np.isnan(swir_hk[key])):
hk_min[key][0] = np.nan
hk_max[key][0] = np.nan
elif (np.nanmin(swir_hk[key]) == np.nanmax(swir_hk[key])):
hk_min[key][0] = swir_hk[key][0]
hk_max[key][0] = swir_hk[key][0]
else:
hk_min[key][0] = np.nanmin(swir_hk[key])
hk_max[key][0] = np.nanmax(swir_hk[key])
return (hk_min, hk_max)
return None<|docstring|>Returns the most important SWIR house keeping parameters
Parameters
----------
fill_as_nan : boolean
Replace (float) FillValues with Nan's, when True
Notes
-----
This function is used to fill the SQLite product datbase and
HDF5 monitoring database<|endoftext|> |
a8b1c1700715be0c0808e339578ed936e80dbe319b4a5e111421b34ba29440e4 | def reset(self):
'reset game to default'
self.actions = []
self.tie = False
self.board = [0 for i in range(42)]
self.player = 1
self.isDone = self.getIsDone()
self.ends = []
self.getAllowedActions() | reset game to default | Clients/pyClient/game.py | reset | JulianWww/AlphaZero | 1 | python | def reset(self):
self.actions = []
self.tie = False
self.board = [0 for i in range(42)]
self.player = 1
self.isDone = self.getIsDone()
self.ends = []
self.getAllowedActions() | def reset(self):
self.actions = []
self.tie = False
self.board = [0 for i in range(42)]
self.player = 1
self.isDone = self.getIsDone()
self.ends = []
self.getAllowedActions()<|docstring|>reset game to default<|endoftext|> |
05af15e7548fe42b2c00452357fc273e233e7eaa8ca4658f6e0e0528e033cc9a | def actionModifier(self, action):
'for console client convert the inputed action to the internal game action'
for potAction in self.allowedActions:
if ((potAction % 7) == action):
return potAction
return (- 1) | for console client convert the inputed action to the internal game action | Clients/pyClient/game.py | actionModifier | JulianWww/AlphaZero | 1 | python | def actionModifier(self, action):
for potAction in self.allowedActions:
if ((potAction % 7) == action):
return potAction
return (- 1) | def actionModifier(self, action):
for potAction in self.allowedActions:
if ((potAction % 7) == action):
return potAction
return (- 1)<|docstring|>for console client convert the inputed action to the internal game action<|endoftext|> |
26e3b18fa87ccbfcb938b89b248ebf44db3cfa9612cf410ac5b23315cfd90e70 | @staticmethod
def encodeAction(x, y):
'convert position to action'
return (x + (7 * y)) | convert position to action | Clients/pyClient/game.py | encodeAction | JulianWww/AlphaZero | 1 | python | @staticmethod
def encodeAction(x, y):
return (x + (7 * y)) | @staticmethod
def encodeAction(x, y):
return (x + (7 * y))<|docstring|>convert position to action<|endoftext|> |
9c7a7a4089b30e64be1e79837b7cd46b6398ab00501ca3c00ca10f0d5c4fcc3b | def getAllowedActions(self):
'get the allowd actions and write to allowedActions list'
self.allowedActions = []
for x in range(7):
if (self.board[self.encodeAction(x, 0)] == 0):
hasPassed = False
for y in range(5):
if ((self.board[self.encodeAction(x, y)] == 0) and (self.board[self.encodeAction(x, (y + 1))] != 0)):
self.allowedActions.append(self.encodeAction(x, y))
hasPassed = True
break
if (not hasPassed):
self.allowedActions.append(self.encodeAction(x, 5)) | get the allowd actions and write to allowedActions list | Clients/pyClient/game.py | getAllowedActions | JulianWww/AlphaZero | 1 | python | def getAllowedActions(self):
self.allowedActions = []
for x in range(7):
if (self.board[self.encodeAction(x, 0)] == 0):
hasPassed = False
for y in range(5):
if ((self.board[self.encodeAction(x, y)] == 0) and (self.board[self.encodeAction(x, (y + 1))] != 0)):
self.allowedActions.append(self.encodeAction(x, y))
hasPassed = True
break
if (not hasPassed):
self.allowedActions.append(self.encodeAction(x, 5)) | def getAllowedActions(self):
self.allowedActions = []
for x in range(7):
if (self.board[self.encodeAction(x, 0)] == 0):
hasPassed = False
for y in range(5):
if ((self.board[self.encodeAction(x, y)] == 0) and (self.board[self.encodeAction(x, (y + 1))] != 0)):
self.allowedActions.append(self.encodeAction(x, y))
hasPassed = True
break
if (not hasPassed):
self.allowedActions.append(self.encodeAction(x, 5))<|docstring|>get the allowd actions and write to allowedActions list<|endoftext|> |
994343f76c22823e99695c2011ee13a7fde2a899462aa4cbd064e1479ec4ebcc | def takeAction(self, action):
'if action is valid (in allowedActions) modify game to perform move'
if (action in self.allowedActions):
self.actions.append(action)
self.board[action] = self.player
self.isDone = self.getIsDone()
self.player = (- self.player)
self.getAllowedActions() | if action is valid (in allowedActions) modify game to perform move | Clients/pyClient/game.py | takeAction | JulianWww/AlphaZero | 1 | python | def takeAction(self, action):
if (action in self.allowedActions):
self.actions.append(action)
self.board[action] = self.player
self.isDone = self.getIsDone()
self.player = (- self.player)
self.getAllowedActions() | def takeAction(self, action):
if (action in self.allowedActions):
self.actions.append(action)
self.board[action] = self.player
self.isDone = self.getIsDone()
self.player = (- self.player)
self.getAllowedActions()<|docstring|>if action is valid (in allowedActions) modify game to perform move<|endoftext|> |
f5cba0753bc753831a2211be7a99115d12285d2c709d2c715bce4fe16566d8a7 | def consoleRender(self):
'render state to Console'
for y in range(6):
for x in range(7):
if (self.encodeAction(x, y) in self.allowedActions):
print('+ ', end='')
else:
print(self.pieces[self.board[(x + (y * 7))]], end=' ')
print('')
print('')
print(0, 1, 2, 3, 4, 5, 6)
print(f'player {self.pieces[self.player]} is up') | render state to Console | Clients/pyClient/game.py | consoleRender | JulianWww/AlphaZero | 1 | python | def consoleRender(self):
for y in range(6):
for x in range(7):
if (self.encodeAction(x, y) in self.allowedActions):
print('+ ', end=)
else:
print(self.pieces[self.board[(x + (y * 7))]], end=' ')
print()
print()
print(0, 1, 2, 3, 4, 5, 6)
print(f'player {self.pieces[self.player]} is up') | def consoleRender(self):
for y in range(6):
for x in range(7):
if (self.encodeAction(x, y) in self.allowedActions):
print('+ ', end=)
else:
print(self.pieces[self.board[(x + (y * 7))]], end=' ')
print()
print()
print(0, 1, 2, 3, 4, 5, 6)
print(f'player {self.pieces[self.player]} is up')<|docstring|>render state to Console<|endoftext|> |
2b1f2bb14fba3998502ba38d8afbb8631d6cb4db851f5b550798c3e4fbcf7e13 | def toServerProtocol(self):
'convert to binary int array to send to server'
out = ([0] * 85)
out[(- 1)] = self.player
for (idx, val) in enumerate(self.board):
if (val == 1):
out[idx] = 1
elif (val == (- 1)):
out[(idx + len(self.board))] = 1
return out | convert to binary int array to send to server | Clients/pyClient/game.py | toServerProtocol | JulianWww/AlphaZero | 1 | python | def toServerProtocol(self):
out = ([0] * 85)
out[(- 1)] = self.player
for (idx, val) in enumerate(self.board):
if (val == 1):
out[idx] = 1
elif (val == (- 1)):
out[(idx + len(self.board))] = 1
return out | def toServerProtocol(self):
out = ([0] * 85)
out[(- 1)] = self.player
for (idx, val) in enumerate(self.board):
if (val == 1):
out[idx] = 1
elif (val == (- 1)):
out[(idx + len(self.board))] = 1
return out<|docstring|>convert to binary int array to send to server<|endoftext|> |
71a9bbd0082b604b0df7dda3c75a5eb43a6a2d0f1922492d100c2009bcc12476 | def getIsDone(self):
'check if game is done'
if (self.board.count(0) == 0):
self.tie = True
return True
done = False
for option in winStates:
val = 0
for pos in option:
val += self.board[pos]
if (val == (4 * self.player)):
done = True
self.ends.append((option[0], option[(- 1)]))
return done | check if game is done | Clients/pyClient/game.py | getIsDone | JulianWww/AlphaZero | 1 | python | def getIsDone(self):
if (self.board.count(0) == 0):
self.tie = True
return True
done = False
for option in winStates:
val = 0
for pos in option:
val += self.board[pos]
if (val == (4 * self.player)):
done = True
self.ends.append((option[0], option[(- 1)]))
return done | def getIsDone(self):
if (self.board.count(0) == 0):
self.tie = True
return True
done = False
for option in winStates:
val = 0
for pos in option:
val += self.board[pos]
if (val == (4 * self.player)):
done = True
self.ends.append((option[0], option[(- 1)]))
return done<|docstring|>check if game is done<|endoftext|> |
bf2626ddb4c44936175d5050d1b53bc4bc1464b5ad83f58037a3caab8a1c09d7 | def _initialize_actors(self, config):
'\n Custom initialization\n '
self._distance = random.sample(range(10, 80), 3)
self._distance = sorted(self._distance)
self._dist_prop = [(x - 2) for x in self._distance]
(self.first_location, _) = get_location_in_distance_from_wp(self._reference_waypoint, self._dist_prop[0])
(self.second_location, _) = get_location_in_distance_from_wp(self._reference_waypoint, self._dist_prop[1])
(self.third_location, _) = get_location_in_distance_from_wp(self._reference_waypoint, self._dist_prop[2])
self.first_transform = carla.Transform(self.first_location)
self.second_transform = carla.Transform(self.second_location)
self.third_transform = carla.Transform(self.third_location)
self.first_transform = carla.Transform(carla.Location(self.first_location.x, self.first_location.y, self.first_location.z))
self.second_transform = carla.Transform(carla.Location(self.second_location.x, self.second_location.y, self.second_location.z))
self.third_transform = carla.Transform(carla.Location(self.third_location.x, self.third_location.y, self.third_location.z))
first_debris = CarlaDataProvider.request_new_actor('static.prop.dirtdebris01', self.first_transform)
second_debris = CarlaDataProvider.request_new_actor('static.prop.dirtdebris01', self.second_transform)
third_debris = CarlaDataProvider.request_new_actor('static.prop.dirtdebris01', self.third_transform)
first_debris.set_transform(self.first_transform)
second_debris.set_transform(self.second_transform)
third_debris.set_transform(self.third_transform)
self.object.extend([first_debris, second_debris, third_debris])
for debris in self.object:
debris.set_simulate_physics(False)
self.other_actors.append(first_debris)
self.other_actors.append(second_debris)
self.other_actors.append(third_debris) | Custom initialization | core/simulators/srunner/scenarios/control_loss_new.py | _initialize_actors | AkiraHero/DI-drive | 219 | python | def _initialize_actors(self, config):
'\n \n '
self._distance = random.sample(range(10, 80), 3)
self._distance = sorted(self._distance)
self._dist_prop = [(x - 2) for x in self._distance]
(self.first_location, _) = get_location_in_distance_from_wp(self._reference_waypoint, self._dist_prop[0])
(self.second_location, _) = get_location_in_distance_from_wp(self._reference_waypoint, self._dist_prop[1])
(self.third_location, _) = get_location_in_distance_from_wp(self._reference_waypoint, self._dist_prop[2])
self.first_transform = carla.Transform(self.first_location)
self.second_transform = carla.Transform(self.second_location)
self.third_transform = carla.Transform(self.third_location)
self.first_transform = carla.Transform(carla.Location(self.first_location.x, self.first_location.y, self.first_location.z))
self.second_transform = carla.Transform(carla.Location(self.second_location.x, self.second_location.y, self.second_location.z))
self.third_transform = carla.Transform(carla.Location(self.third_location.x, self.third_location.y, self.third_location.z))
first_debris = CarlaDataProvider.request_new_actor('static.prop.dirtdebris01', self.first_transform)
second_debris = CarlaDataProvider.request_new_actor('static.prop.dirtdebris01', self.second_transform)
third_debris = CarlaDataProvider.request_new_actor('static.prop.dirtdebris01', self.third_transform)
first_debris.set_transform(self.first_transform)
second_debris.set_transform(self.second_transform)
third_debris.set_transform(self.third_transform)
self.object.extend([first_debris, second_debris, third_debris])
for debris in self.object:
debris.set_simulate_physics(False)
self.other_actors.append(first_debris)
self.other_actors.append(second_debris)
self.other_actors.append(third_debris) | def _initialize_actors(self, config):
'\n \n '
self._distance = random.sample(range(10, 80), 3)
self._distance = sorted(self._distance)
self._dist_prop = [(x - 2) for x in self._distance]
(self.first_location, _) = get_location_in_distance_from_wp(self._reference_waypoint, self._dist_prop[0])
(self.second_location, _) = get_location_in_distance_from_wp(self._reference_waypoint, self._dist_prop[1])
(self.third_location, _) = get_location_in_distance_from_wp(self._reference_waypoint, self._dist_prop[2])
self.first_transform = carla.Transform(self.first_location)
self.second_transform = carla.Transform(self.second_location)
self.third_transform = carla.Transform(self.third_location)
self.first_transform = carla.Transform(carla.Location(self.first_location.x, self.first_location.y, self.first_location.z))
self.second_transform = carla.Transform(carla.Location(self.second_location.x, self.second_location.y, self.second_location.z))
self.third_transform = carla.Transform(carla.Location(self.third_location.x, self.third_location.y, self.third_location.z))
first_debris = CarlaDataProvider.request_new_actor('static.prop.dirtdebris01', self.first_transform)
second_debris = CarlaDataProvider.request_new_actor('static.prop.dirtdebris01', self.second_transform)
third_debris = CarlaDataProvider.request_new_actor('static.prop.dirtdebris01', self.third_transform)
first_debris.set_transform(self.first_transform)
second_debris.set_transform(self.second_transform)
third_debris.set_transform(self.third_transform)
self.object.extend([first_debris, second_debris, third_debris])
for debris in self.object:
debris.set_simulate_physics(False)
self.other_actors.append(first_debris)
self.other_actors.append(second_debris)
self.other_actors.append(third_debris)<|docstring|>Custom initialization<|endoftext|> |
d82deee9067da8db0988ec68c114a06335e1732c916bfe603c980528fb08b2bc | def _create_test_criteria(self):
'\n A list of all test criteria will be created that is later used\n in parallel behavior tree.\n '
criteria = []
collision_criterion = CollisionTest(self.ego_vehicles[0])
criteria.append(collision_criterion)
return criteria | A list of all test criteria will be created that is later used
in parallel behavior tree. | core/simulators/srunner/scenarios/control_loss_new.py | _create_test_criteria | AkiraHero/DI-drive | 219 | python | def _create_test_criteria(self):
'\n A list of all test criteria will be created that is later used\n in parallel behavior tree.\n '
criteria = []
collision_criterion = CollisionTest(self.ego_vehicles[0])
criteria.append(collision_criterion)
return criteria | def _create_test_criteria(self):
'\n A list of all test criteria will be created that is later used\n in parallel behavior tree.\n '
criteria = []
collision_criterion = CollisionTest(self.ego_vehicles[0])
criteria.append(collision_criterion)
return criteria<|docstring|>A list of all test criteria will be created that is later used
in parallel behavior tree.<|endoftext|> |
a11bb4b6ff1db3aa3d0113a457c28c65029003f0bef2e3186d0540ece6737aeb | def change_control(self, control):
'\n This is a function that changes the control based on the scenario determination\n :param control: a carla vehicle control\n :return: a control to be changed by the scenario.\n '
control.steer += self._current_steer_noise[0]
control.throttle += self._current_throttle_noise[0]
return control | This is a function that changes the control based on the scenario determination
:param control: a carla vehicle control
:return: a control to be changed by the scenario. | core/simulators/srunner/scenarios/control_loss_new.py | change_control | AkiraHero/DI-drive | 219 | python | def change_control(self, control):
'\n This is a function that changes the control based on the scenario determination\n :param control: a carla vehicle control\n :return: a control to be changed by the scenario.\n '
control.steer += self._current_steer_noise[0]
control.throttle += self._current_throttle_noise[0]
return control | def change_control(self, control):
'\n This is a function that changes the control based on the scenario determination\n :param control: a carla vehicle control\n :return: a control to be changed by the scenario.\n '
control.steer += self._current_steer_noise[0]
control.throttle += self._current_throttle_noise[0]
return control<|docstring|>This is a function that changes the control based on the scenario determination
:param control: a carla vehicle control
:return: a control to be changed by the scenario.<|endoftext|> |
cf15b0f862b93c0d598fc2054b8f613860b921f335a9d5a01a9c514ee92f6d77 | def __del__(self):
'\n Remove all actors upon deletion\n '
self.remove_all_actors() | Remove all actors upon deletion | core/simulators/srunner/scenarios/control_loss_new.py | __del__ | AkiraHero/DI-drive | 219 | python | def __del__(self):
'\n \n '
self.remove_all_actors() | def __del__(self):
'\n \n '
self.remove_all_actors()<|docstring|>Remove all actors upon deletion<|endoftext|> |
8fa4ddef3f0c7ba97fa2f631f323c45d5691d312491a01d030e8f30ffd14c612 | def generate_markdown(source_file, dest_dir):
'generates a new html file in the dest directory, returns the name of the \n newly-created file'
md = ''
with open(source_file, 'r') as opened_file:
md = opened_file.read()
html = content_to_html(md)
new_name = os.path.split(source_file)[1].replace('md', 'html')
new_path = os.path.join(dest_dir, new_name)
with open(new_path, 'w+') as opened_file:
opened_file.write(html)
return new_name | generates a new html file in the dest directory, returns the name of the
newly-created file | markdown-journal.py | generate_markdown | fire-wally/markdown-notebook | 0 | python | def generate_markdown(source_file, dest_dir):
'generates a new html file in the dest directory, returns the name of the \n newly-created file'
md =
with open(source_file, 'r') as opened_file:
md = opened_file.read()
html = content_to_html(md)
new_name = os.path.split(source_file)[1].replace('md', 'html')
new_path = os.path.join(dest_dir, new_name)
with open(new_path, 'w+') as opened_file:
opened_file.write(html)
return new_name | def generate_markdown(source_file, dest_dir):
'generates a new html file in the dest directory, returns the name of the \n newly-created file'
md =
with open(source_file, 'r') as opened_file:
md = opened_file.read()
html = content_to_html(md)
new_name = os.path.split(source_file)[1].replace('md', 'html')
new_path = os.path.join(dest_dir, new_name)
with open(new_path, 'w+') as opened_file:
opened_file.write(html)
return new_name<|docstring|>generates a new html file in the dest directory, returns the name of the
newly-created file<|endoftext|> |
a4e6b98532dcc61ab440814c25e40fa9bee84282f1b722ba0372b9c0562fd7f2 | def makeMeasures(self, network, exclude):
'Make the network measures'
g = network.g
gu = network.gu
timings = []
T = t.time()
self.N = network.g.number_of_nodes()
self.E = network.g.number_of_edges()
self.E_ = network.gu.number_of_edges()
self.edges = g.edges(data=True)
self.nodes = g.nodes(data=True)
timings.append(((t.time() - T), 'edges and nodes'))
T = t.time()
self.degrees = dict(g.degree())
self.nodes_ = sorted(g.nodes(), key=(lambda x: self.degrees[x]))
self.degrees_ = [self.degrees[i] for i in self.nodes_]
self.in_degrees = dict(g.in_degree())
self.in_degrees_ = [self.in_degrees[i] for i in self.nodes_]
self.out_degrees = dict(g.out_degree())
self.out_degrees_ = [self.out_degrees[i] for i in self.nodes_]
timings.append(((t.time() - T), 'in_out_total_degrees'))
T = t.time()
self.strengths = dict(g.degree(weight='weight'))
self.nodes__ = sorted(g.nodes(), key=(lambda x: self.strengths[x]))
self.strengths_ = [self.strengths[i] for i in self.nodes_]
self.in_strengths = dict(g.in_degree(weight='weight'))
self.in_strengths_ = [self.in_strengths[i] for i in self.nodes_]
self.out_strengths = dict(g.out_degree(weight='weight'))
self.out_strengths_ = [self.out_strengths[i] for i in self.nodes_]
timings.append(((t.time() - T), 'in_out_total_strengths'))
self.asymmetries = asymmetries = []
self.disequilibrium = disequilibriums = []
self.asymmetries_edge_mean = asymmetries_edge_mean = []
self.asymmetries_edge_std = asymmetries_edge_std = []
self.disequilibrium_edge_mean = disequilibrium_edge_mean = []
self.disequilibrium_edge_std = disequilibrium_edge_std = []
for node in self.nodes_:
if (not self.degrees[node]):
asymmetries.append(0.0)
disequilibriums.append(0.0)
asymmetries_edge_mean.append(0.0)
asymmetries_edge_std.append(0.0)
disequilibrium_edge_mean.append(0.0)
disequilibrium_edge_std.append(0.0)
else:
asymmetries.append(((self.in_degrees[node] - self.out_degrees[node]) / self.degrees[node]))
disequilibriums.append(((self.in_strengths[node] - self.out_strengths[node]) / self.strengths[node]))
edge_asymmetries = ea = []
edge_disequilibriums = ed = []
predecessors = g.predecessors(node)
successors = g.successors(node)
for pred in predecessors:
if (pred in successors):
ea.append(0.0)
ed.append(((g[pred][node]['weight'] - g[node][pred]['weight']) / self.strengths[node]))
else:
ea.append(1.0)
ed.append((g[pred][node]['weight'] / self.strengths[node]))
for suc in successors:
if (suc in predecessors):
pass
else:
ea.append((- 1.0))
ed.append(((- g[node][suc]['weight']) / self.strengths[node]))
asymmetries_edge_mean.append(n.mean(ea))
asymmetries_edge_std.append(n.std(ea))
disequilibrium_edge_mean.append(n.mean(ed))
disequilibrium_edge_std.append(n.std(ed))
if ('weighted_directed_betweenness' not in exclude):
T = t.time()
self.weighted_directed_betweenness = x.betweenness_centrality(g, weight='weight')
self.weighted_directed_betweenness_ = [self.weighted_directed_betweenness[i] for i in self.nodes_]
timings.append(((t.time() - T), 'weighted_directed_betweenness'))
if ('unweighted_directed_betweenness' not in exclude):
T = t.time()
self.unweighted_directed_betweenness = x.betweenness_centrality(g)
timings.append(((t.time() - T), 'unweighted_directed_betweenness'))
if ('weighted_undirected_betweenness' not in exclude):
T = t.time()
self.weighted_undirected_betweenness = x.betweenness_centrality(gu, weight='weight')
timings.append(((t.time() - T), 'weighted_undirected_betweenness'))
if ('unweighted_undirected_betweenness' not in exclude):
T = t.time()
self.weighted_undirected_betweenness = x.betweenness_centrality(gu)
timings.append(((t.time() - T), 'unweighted_undirected_betweenness'))
if ('wiener' not in exclude):
T = t.time()
self.wiener = x.wiener_index(g, weight='weight')
timings.append(((t.time() - T), 'weiner'))
if ('closeness' not in exclude):
T = t.time()
self.closeness = x.vitality.closeness_vitality(g, weight='weight')
timings.append(((t.time() - T), 'closeness'))
if ('transitivity' not in exclude):
T = t.time()
self.transitivity = x.transitivity(g)
timings.append(((t.time() - T), 'transitivity'))
if ('rich_club' not in exclude):
T = t.time()
self.rich_club = x.rich_club_coefficient(gu)
timings.append(((t.time() - T), 'rich_club'))
if ('weighted_clustering' not in exclude):
T = t.time()
self.weighted_clusterings = x.clustering(network.gu, weight='weight')
self.weighted_clusterings_ = [self.weighted_clusterings[i] for i in self.nodes_]
timings.append(((t.time() - T), 'weighted_clustering'))
if ('clustering' not in exclude):
T = t.time()
self.clusterings = x.clustering(network.gu)
self.clusterings_ = [self.clusterings[i] for i in self.clusterings]
timings.append(((t.time() - T), 'clustering'))
if ('triangles' not in exclude):
T = t.time()
self.triangles = x.triangles(gu)
timings.append(((t.time() - T), 'clustering'))
if ('n_weakly_connected_components' not in exclude):
T = t.time()
self.n_weakly_connected_components = x.number_weakly_connected_components(g)
timings.append(((t.time() - T), 'n_weakly_connected_components'))
if ('n_strongly_connected_components' not in exclude):
T = t.time()
self.n_strongly_connected_components = x.number_strongly_connected_components(g)
timings.append(((t.time() - T), 'n_strongly_connected_components'))
T = t.time()
foo = [i for i in x.connected_component_subgraphs(gu)]
bar = sorted(foo, key=(lambda x: x.number_of_nodes()), reverse=True)
self.component = c = bar[0]
timings.append(((t.time() - T), 'component'))
T = t.time()
self.diameter = x.diameter(c)
self.radius = x.radius(c)
self.center = x.center(c)
self.periphery = x.periphery(c)
timings.append(((t.time() - T), 'radius_diameter_center_periphery'))
self.timings = timings
T = t.time()
self.n_connected_components = x.number_connected_components(gu)
nodes = []
nodes_components = [foo.nodes() for foo in x.connected_component_subgraphs(gu)][:1]
for nodes_ in nodes_components:
nodes += nodes_
self.periphery_ = nodes
self.timings = timings | Make the network measures | gmaneLegacy/networkMeasures.py | makeMeasures | ttm/gmaneLegacy | 1 | python | def makeMeasures(self, network, exclude):
g = network.g
gu = network.gu
timings = []
T = t.time()
self.N = network.g.number_of_nodes()
self.E = network.g.number_of_edges()
self.E_ = network.gu.number_of_edges()
self.edges = g.edges(data=True)
self.nodes = g.nodes(data=True)
timings.append(((t.time() - T), 'edges and nodes'))
T = t.time()
self.degrees = dict(g.degree())
self.nodes_ = sorted(g.nodes(), key=(lambda x: self.degrees[x]))
self.degrees_ = [self.degrees[i] for i in self.nodes_]
self.in_degrees = dict(g.in_degree())
self.in_degrees_ = [self.in_degrees[i] for i in self.nodes_]
self.out_degrees = dict(g.out_degree())
self.out_degrees_ = [self.out_degrees[i] for i in self.nodes_]
timings.append(((t.time() - T), 'in_out_total_degrees'))
T = t.time()
self.strengths = dict(g.degree(weight='weight'))
self.nodes__ = sorted(g.nodes(), key=(lambda x: self.strengths[x]))
self.strengths_ = [self.strengths[i] for i in self.nodes_]
self.in_strengths = dict(g.in_degree(weight='weight'))
self.in_strengths_ = [self.in_strengths[i] for i in self.nodes_]
self.out_strengths = dict(g.out_degree(weight='weight'))
self.out_strengths_ = [self.out_strengths[i] for i in self.nodes_]
timings.append(((t.time() - T), 'in_out_total_strengths'))
self.asymmetries = asymmetries = []
self.disequilibrium = disequilibriums = []
self.asymmetries_edge_mean = asymmetries_edge_mean = []
self.asymmetries_edge_std = asymmetries_edge_std = []
self.disequilibrium_edge_mean = disequilibrium_edge_mean = []
self.disequilibrium_edge_std = disequilibrium_edge_std = []
for node in self.nodes_:
if (not self.degrees[node]):
asymmetries.append(0.0)
disequilibriums.append(0.0)
asymmetries_edge_mean.append(0.0)
asymmetries_edge_std.append(0.0)
disequilibrium_edge_mean.append(0.0)
disequilibrium_edge_std.append(0.0)
else:
asymmetries.append(((self.in_degrees[node] - self.out_degrees[node]) / self.degrees[node]))
disequilibriums.append(((self.in_strengths[node] - self.out_strengths[node]) / self.strengths[node]))
edge_asymmetries = ea = []
edge_disequilibriums = ed = []
predecessors = g.predecessors(node)
successors = g.successors(node)
for pred in predecessors:
if (pred in successors):
ea.append(0.0)
ed.append(((g[pred][node]['weight'] - g[node][pred]['weight']) / self.strengths[node]))
else:
ea.append(1.0)
ed.append((g[pred][node]['weight'] / self.strengths[node]))
for suc in successors:
if (suc in predecessors):
pass
else:
ea.append((- 1.0))
ed.append(((- g[node][suc]['weight']) / self.strengths[node]))
asymmetries_edge_mean.append(n.mean(ea))
asymmetries_edge_std.append(n.std(ea))
disequilibrium_edge_mean.append(n.mean(ed))
disequilibrium_edge_std.append(n.std(ed))
if ('weighted_directed_betweenness' not in exclude):
T = t.time()
self.weighted_directed_betweenness = x.betweenness_centrality(g, weight='weight')
self.weighted_directed_betweenness_ = [self.weighted_directed_betweenness[i] for i in self.nodes_]
timings.append(((t.time() - T), 'weighted_directed_betweenness'))
if ('unweighted_directed_betweenness' not in exclude):
T = t.time()
self.unweighted_directed_betweenness = x.betweenness_centrality(g)
timings.append(((t.time() - T), 'unweighted_directed_betweenness'))
if ('weighted_undirected_betweenness' not in exclude):
T = t.time()
self.weighted_undirected_betweenness = x.betweenness_centrality(gu, weight='weight')
timings.append(((t.time() - T), 'weighted_undirected_betweenness'))
if ('unweighted_undirected_betweenness' not in exclude):
T = t.time()
self.weighted_undirected_betweenness = x.betweenness_centrality(gu)
timings.append(((t.time() - T), 'unweighted_undirected_betweenness'))
if ('wiener' not in exclude):
T = t.time()
self.wiener = x.wiener_index(g, weight='weight')
timings.append(((t.time() - T), 'weiner'))
if ('closeness' not in exclude):
T = t.time()
self.closeness = x.vitality.closeness_vitality(g, weight='weight')
timings.append(((t.time() - T), 'closeness'))
if ('transitivity' not in exclude):
T = t.time()
self.transitivity = x.transitivity(g)
timings.append(((t.time() - T), 'transitivity'))
if ('rich_club' not in exclude):
T = t.time()
self.rich_club = x.rich_club_coefficient(gu)
timings.append(((t.time() - T), 'rich_club'))
if ('weighted_clustering' not in exclude):
T = t.time()
self.weighted_clusterings = x.clustering(network.gu, weight='weight')
self.weighted_clusterings_ = [self.weighted_clusterings[i] for i in self.nodes_]
timings.append(((t.time() - T), 'weighted_clustering'))
if ('clustering' not in exclude):
T = t.time()
self.clusterings = x.clustering(network.gu)
self.clusterings_ = [self.clusterings[i] for i in self.clusterings]
timings.append(((t.time() - T), 'clustering'))
if ('triangles' not in exclude):
T = t.time()
self.triangles = x.triangles(gu)
timings.append(((t.time() - T), 'clustering'))
if ('n_weakly_connected_components' not in exclude):
T = t.time()
self.n_weakly_connected_components = x.number_weakly_connected_components(g)
timings.append(((t.time() - T), 'n_weakly_connected_components'))
if ('n_strongly_connected_components' not in exclude):
T = t.time()
self.n_strongly_connected_components = x.number_strongly_connected_components(g)
timings.append(((t.time() - T), 'n_strongly_connected_components'))
T = t.time()
foo = [i for i in x.connected_component_subgraphs(gu)]
bar = sorted(foo, key=(lambda x: x.number_of_nodes()), reverse=True)
self.component = c = bar[0]
timings.append(((t.time() - T), 'component'))
T = t.time()
self.diameter = x.diameter(c)
self.radius = x.radius(c)
self.center = x.center(c)
self.periphery = x.periphery(c)
timings.append(((t.time() - T), 'radius_diameter_center_periphery'))
self.timings = timings
T = t.time()
self.n_connected_components = x.number_connected_components(gu)
nodes = []
nodes_components = [foo.nodes() for foo in x.connected_component_subgraphs(gu)][:1]
for nodes_ in nodes_components:
nodes += nodes_
self.periphery_ = nodes
self.timings = timings | def makeMeasures(self, network, exclude):
g = network.g
gu = network.gu
timings = []
T = t.time()
self.N = network.g.number_of_nodes()
self.E = network.g.number_of_edges()
self.E_ = network.gu.number_of_edges()
self.edges = g.edges(data=True)
self.nodes = g.nodes(data=True)
timings.append(((t.time() - T), 'edges and nodes'))
T = t.time()
self.degrees = dict(g.degree())
self.nodes_ = sorted(g.nodes(), key=(lambda x: self.degrees[x]))
self.degrees_ = [self.degrees[i] for i in self.nodes_]
self.in_degrees = dict(g.in_degree())
self.in_degrees_ = [self.in_degrees[i] for i in self.nodes_]
self.out_degrees = dict(g.out_degree())
self.out_degrees_ = [self.out_degrees[i] for i in self.nodes_]
timings.append(((t.time() - T), 'in_out_total_degrees'))
T = t.time()
self.strengths = dict(g.degree(weight='weight'))
self.nodes__ = sorted(g.nodes(), key=(lambda x: self.strengths[x]))
self.strengths_ = [self.strengths[i] for i in self.nodes_]
self.in_strengths = dict(g.in_degree(weight='weight'))
self.in_strengths_ = [self.in_strengths[i] for i in self.nodes_]
self.out_strengths = dict(g.out_degree(weight='weight'))
self.out_strengths_ = [self.out_strengths[i] for i in self.nodes_]
timings.append(((t.time() - T), 'in_out_total_strengths'))
self.asymmetries = asymmetries = []
self.disequilibrium = disequilibriums = []
self.asymmetries_edge_mean = asymmetries_edge_mean = []
self.asymmetries_edge_std = asymmetries_edge_std = []
self.disequilibrium_edge_mean = disequilibrium_edge_mean = []
self.disequilibrium_edge_std = disequilibrium_edge_std = []
for node in self.nodes_:
if (not self.degrees[node]):
asymmetries.append(0.0)
disequilibriums.append(0.0)
asymmetries_edge_mean.append(0.0)
asymmetries_edge_std.append(0.0)
disequilibrium_edge_mean.append(0.0)
disequilibrium_edge_std.append(0.0)
else:
asymmetries.append(((self.in_degrees[node] - self.out_degrees[node]) / self.degrees[node]))
disequilibriums.append(((self.in_strengths[node] - self.out_strengths[node]) / self.strengths[node]))
edge_asymmetries = ea = []
edge_disequilibriums = ed = []
predecessors = g.predecessors(node)
successors = g.successors(node)
for pred in predecessors:
if (pred in successors):
ea.append(0.0)
ed.append(((g[pred][node]['weight'] - g[node][pred]['weight']) / self.strengths[node]))
else:
ea.append(1.0)
ed.append((g[pred][node]['weight'] / self.strengths[node]))
for suc in successors:
if (suc in predecessors):
pass
else:
ea.append((- 1.0))
ed.append(((- g[node][suc]['weight']) / self.strengths[node]))
asymmetries_edge_mean.append(n.mean(ea))
asymmetries_edge_std.append(n.std(ea))
disequilibrium_edge_mean.append(n.mean(ed))
disequilibrium_edge_std.append(n.std(ed))
if ('weighted_directed_betweenness' not in exclude):
T = t.time()
self.weighted_directed_betweenness = x.betweenness_centrality(g, weight='weight')
self.weighted_directed_betweenness_ = [self.weighted_directed_betweenness[i] for i in self.nodes_]
timings.append(((t.time() - T), 'weighted_directed_betweenness'))
if ('unweighted_directed_betweenness' not in exclude):
T = t.time()
self.unweighted_directed_betweenness = x.betweenness_centrality(g)
timings.append(((t.time() - T), 'unweighted_directed_betweenness'))
if ('weighted_undirected_betweenness' not in exclude):
T = t.time()
self.weighted_undirected_betweenness = x.betweenness_centrality(gu, weight='weight')
timings.append(((t.time() - T), 'weighted_undirected_betweenness'))
if ('unweighted_undirected_betweenness' not in exclude):
T = t.time()
self.weighted_undirected_betweenness = x.betweenness_centrality(gu)
timings.append(((t.time() - T), 'unweighted_undirected_betweenness'))
if ('wiener' not in exclude):
T = t.time()
self.wiener = x.wiener_index(g, weight='weight')
timings.append(((t.time() - T), 'weiner'))
if ('closeness' not in exclude):
T = t.time()
self.closeness = x.vitality.closeness_vitality(g, weight='weight')
timings.append(((t.time() - T), 'closeness'))
if ('transitivity' not in exclude):
T = t.time()
self.transitivity = x.transitivity(g)
timings.append(((t.time() - T), 'transitivity'))
if ('rich_club' not in exclude):
T = t.time()
self.rich_club = x.rich_club_coefficient(gu)
timings.append(((t.time() - T), 'rich_club'))
if ('weighted_clustering' not in exclude):
T = t.time()
self.weighted_clusterings = x.clustering(network.gu, weight='weight')
self.weighted_clusterings_ = [self.weighted_clusterings[i] for i in self.nodes_]
timings.append(((t.time() - T), 'weighted_clustering'))
if ('clustering' not in exclude):
T = t.time()
self.clusterings = x.clustering(network.gu)
self.clusterings_ = [self.clusterings[i] for i in self.clusterings]
timings.append(((t.time() - T), 'clustering'))
if ('triangles' not in exclude):
T = t.time()
self.triangles = x.triangles(gu)
timings.append(((t.time() - T), 'clustering'))
if ('n_weakly_connected_components' not in exclude):
T = t.time()
self.n_weakly_connected_components = x.number_weakly_connected_components(g)
timings.append(((t.time() - T), 'n_weakly_connected_components'))
if ('n_strongly_connected_components' not in exclude):
T = t.time()
self.n_strongly_connected_components = x.number_strongly_connected_components(g)
timings.append(((t.time() - T), 'n_strongly_connected_components'))
T = t.time()
foo = [i for i in x.connected_component_subgraphs(gu)]
bar = sorted(foo, key=(lambda x: x.number_of_nodes()), reverse=True)
self.component = c = bar[0]
timings.append(((t.time() - T), 'component'))
T = t.time()
self.diameter = x.diameter(c)
self.radius = x.radius(c)
self.center = x.center(c)
self.periphery = x.periphery(c)
timings.append(((t.time() - T), 'radius_diameter_center_periphery'))
self.timings = timings
T = t.time()
self.n_connected_components = x.number_connected_components(gu)
nodes = []
nodes_components = [foo.nodes() for foo in x.connected_component_subgraphs(gu)][:1]
for nodes_ in nodes_components:
nodes += nodes_
self.periphery_ = nodes
self.timings = timings<|docstring|>Make the network measures<|endoftext|> |
d7ce5866cc8172df9e6a3fafada155aa2e1d22c5dcf20f776b2ac78516f5f25e | @contextmanager
def session_context(self):
'Provide a transactional scope around a series of operations.'
session = self.Session()
try:
(yield session)
session.commit()
except:
session.rollback()
raise
finally:
session.close() | Provide a transactional scope around a series of operations. | models/base.py | session_context | etoews/google-photos-sync-check | 4 | python | @contextmanager
def session_context(self):
session = self.Session()
try:
(yield session)
session.commit()
except:
session.rollback()
raise
finally:
session.close() | @contextmanager
def session_context(self):
session = self.Session()
try:
(yield session)
session.commit()
except:
session.rollback()
raise
finally:
session.close()<|docstring|>Provide a transactional scope around a series of operations.<|endoftext|> |
4898f1976ab49a67c209851f4b3ca0a8d50b49411ebf61763ca0d694a6a2c882 | def missingNumber(self, nums):
'\n :type nums: List[int]\n :rtype: int\n '
sum = reduce((lambda x, y: (x + y)), nums)
multiply = ((len(nums) * (len(nums) + 1)) / 2)
return (multiply - sum) | :type nums: List[int]
:rtype: int | hudeven/P268.py | missingNumber | hudeven/Algorithms | 0 | python | def missingNumber(self, nums):
'\n :type nums: List[int]\n :rtype: int\n '
sum = reduce((lambda x, y: (x + y)), nums)
multiply = ((len(nums) * (len(nums) + 1)) / 2)
return (multiply - sum) | def missingNumber(self, nums):
'\n :type nums: List[int]\n :rtype: int\n '
sum = reduce((lambda x, y: (x + y)), nums)
multiply = ((len(nums) * (len(nums) + 1)) / 2)
return (multiply - sum)<|docstring|>:type nums: List[int]
:rtype: int<|endoftext|> |
395792d7c68cb5c7d1fc43a34851fd50fa7ea9fc9b132bc08dd07f2eedace47e | def __init__(self, rag, feature_names):
'\n Parameters\n ----------\n rag:\n The rag.\n \n feature_names\n A list of feature names to compute with this accumulator.\n '
pass | Parameters
----------
rag:
The rag.
feature_names
A list of feature names to compute with this accumulator. | ilastikrag/accumulators/base/base_sp_accumulator.py | __init__ | ilastik/ilastikrag | 0 | python | def __init__(self, rag, feature_names):
'\n Parameters\n ----------\n rag:\n The rag.\n \n feature_names\n A list of feature names to compute with this accumulator.\n '
pass | def __init__(self, rag, feature_names):
'\n Parameters\n ----------\n rag:\n The rag.\n \n feature_names\n A list of feature names to compute with this accumulator.\n '
pass<|docstring|>Parameters
----------
rag:
The rag.
feature_names
A list of feature names to compute with this accumulator.<|endoftext|> |
efb34bee3fa5cdc7fe33daf82fb0f8d41617bd09df8cca9b14cc8684bb1847b0 | def cleanup(self):
'\n Called by the Rag to indicate that processing has completed, and\n the accumulator should discard all cached data and intermediate results.\n Subclasses must reimplement this function.\n '
raise NotImplementedError | Called by the Rag to indicate that processing has completed, and
the accumulator should discard all cached data and intermediate results.
Subclasses must reimplement this function. | ilastikrag/accumulators/base/base_sp_accumulator.py | cleanup | ilastik/ilastikrag | 0 | python | def cleanup(self):
'\n Called by the Rag to indicate that processing has completed, and\n the accumulator should discard all cached data and intermediate results.\n Subclasses must reimplement this function.\n '
raise NotImplementedError | def cleanup(self):
'\n Called by the Rag to indicate that processing has completed, and\n the accumulator should discard all cached data and intermediate results.\n Subclasses must reimplement this function.\n '
raise NotImplementedError<|docstring|>Called by the Rag to indicate that processing has completed, and
the accumulator should discard all cached data and intermediate results.
Subclasses must reimplement this function.<|endoftext|> |
c48d904eaebbbc29010d6204f2a63e8352fd53a0e8ce1b7beddfa247d25d9f16 | @classmethod
def supported_features(cls, rag):
'\n Returns the list of feature names that can be computed for the given Rag.\n '
raise NotImplementedError | Returns the list of feature names that can be computed for the given Rag. | ilastikrag/accumulators/base/base_sp_accumulator.py | supported_features | ilastik/ilastikrag | 0 | python | @classmethod
def supported_features(cls, rag):
'\n \n '
raise NotImplementedError | @classmethod
def supported_features(cls, rag):
'\n \n '
raise NotImplementedError<|docstring|>Returns the list of feature names that can be computed for the given Rag.<|endoftext|> |
55a29d9ade8897d3e27130b76226b11973e5748a3cb8690b5ee9a9895a961746 | def ingest_values(self, rag, value_img):
'\n Ingest the given (single-channel) pixel values, using the superpixels stored in ``rag.label_img``.\n \n Parameters\n ----------\n rag\n *Rag*\n \n value_img\n *VigraArray*, same shape as ``rag.label_img``\n '
raise NotImplementedError | Ingest the given (single-channel) pixel values, using the superpixels stored in ``rag.label_img``.
Parameters
----------
rag
*Rag*
value_img
*VigraArray*, same shape as ``rag.label_img`` | ilastikrag/accumulators/base/base_sp_accumulator.py | ingest_values | ilastik/ilastikrag | 0 | python | def ingest_values(self, rag, value_img):
'\n Ingest the given (single-channel) pixel values, using the superpixels stored in ``rag.label_img``.\n \n Parameters\n ----------\n rag\n *Rag*\n \n value_img\n *VigraArray*, same shape as ``rag.label_img``\n '
raise NotImplementedError | def ingest_values(self, rag, value_img):
'\n Ingest the given (single-channel) pixel values, using the superpixels stored in ``rag.label_img``.\n \n Parameters\n ----------\n rag\n *Rag*\n \n value_img\n *VigraArray*, same shape as ``rag.label_img``\n '
raise NotImplementedError<|docstring|>Ingest the given (single-channel) pixel values, using the superpixels stored in ``rag.label_img``.
Parameters
----------
rag
*Rag*
value_img
*VigraArray*, same shape as ``rag.label_img``<|endoftext|> |
8796f9fcf7e362a0b6e109ac1e50ee991d642c8f0e90fb93dcda4fe8335a138c | def append_edge_features_to_df(self, edge_df):
'\n Called by the Rag after ``ingest_values()``.\n\n Merges the features of ingested data into a final set of edge\n feature columns, and appends those columns to the given\n ``pandas.DataFrame`` object.\n \n This involves converting pairs superpixel features into edge features,\n typically by taking the sum and/or difference between the features of\n each superpixel in an adjacent pair.\n '
raise NotImplementedError | Called by the Rag after ``ingest_values()``.
Merges the features of ingested data into a final set of edge
feature columns, and appends those columns to the given
``pandas.DataFrame`` object.
This involves converting pairs superpixel features into edge features,
typically by taking the sum and/or difference between the features of
each superpixel in an adjacent pair. | ilastikrag/accumulators/base/base_sp_accumulator.py | append_edge_features_to_df | ilastik/ilastikrag | 0 | python | def append_edge_features_to_df(self, edge_df):
'\n Called by the Rag after ``ingest_values()``.\n\n Merges the features of ingested data into a final set of edge\n feature columns, and appends those columns to the given\n ``pandas.DataFrame`` object.\n \n This involves converting pairs superpixel features into edge features,\n typically by taking the sum and/or difference between the features of\n each superpixel in an adjacent pair.\n '
raise NotImplementedError | def append_edge_features_to_df(self, edge_df):
'\n Called by the Rag after ``ingest_values()``.\n\n Merges the features of ingested data into a final set of edge\n feature columns, and appends those columns to the given\n ``pandas.DataFrame`` object.\n \n This involves converting pairs superpixel features into edge features,\n typically by taking the sum and/or difference between the features of\n each superpixel in an adjacent pair.\n '
raise NotImplementedError<|docstring|>Called by the Rag after ``ingest_values()``.
Merges the features of ingested data into a final set of edge
feature columns, and appends those columns to the given
``pandas.DataFrame`` object.
This involves converting pairs superpixel features into edge features,
typically by taking the sum and/or difference between the features of
each superpixel in an adjacent pair.<|endoftext|> |
e5f3d3638cb8576e402a26760c9f80ba80a1356a4e45e5f164b76794c1df3da2 | def add(self, predictions: List[float], targets: List[float]):
'\n Function adds predictions and targets computation of regression metrics.\n\n Args:\n predictions (List[float]):\n targets (List[float]):\n\n Raises:\n NotImplementedError: in case targets do not fall into continuous support\n ValueError: incase missing validation or predictions\n '
tgt_type = type_of_target(targets)
if (tgt_type not in 'continuous'):
raise NotImplementedError(f'target type: {tgt_type} not supported for these metrics')
for (idx, target) in enumerate(targets):
self.sum_abs_diff += abs((predictions[idx] - target))
self.sum_diff += (predictions[idx] - target)
self.sum2_diff += ((predictions[idx] - target) ** 2)
self.count += 1 | Function adds predictions and targets computation of regression metrics.
Args:
predictions (List[float]):
targets (List[float]):
Raises:
NotImplementedError: in case targets do not fall into continuous support
ValueError: incase missing validation or predictions | src/whylogs/core/metrics/regression_metrics.py | add | valer-whylabs/whylogs | 0 | python | def add(self, predictions: List[float], targets: List[float]):
'\n Function adds predictions and targets computation of regression metrics.\n\n Args:\n predictions (List[float]):\n targets (List[float]):\n\n Raises:\n NotImplementedError: in case targets do not fall into continuous support\n ValueError: incase missing validation or predictions\n '
tgt_type = type_of_target(targets)
if (tgt_type not in 'continuous'):
raise NotImplementedError(f'target type: {tgt_type} not supported for these metrics')
for (idx, target) in enumerate(targets):
self.sum_abs_diff += abs((predictions[idx] - target))
self.sum_diff += (predictions[idx] - target)
self.sum2_diff += ((predictions[idx] - target) ** 2)
self.count += 1 | def add(self, predictions: List[float], targets: List[float]):
'\n Function adds predictions and targets computation of regression metrics.\n\n Args:\n predictions (List[float]):\n targets (List[float]):\n\n Raises:\n NotImplementedError: in case targets do not fall into continuous support\n ValueError: incase missing validation or predictions\n '
tgt_type = type_of_target(targets)
if (tgt_type not in 'continuous'):
raise NotImplementedError(f'target type: {tgt_type} not supported for these metrics')
for (idx, target) in enumerate(targets):
self.sum_abs_diff += abs((predictions[idx] - target))
self.sum_diff += (predictions[idx] - target)
self.sum2_diff += ((predictions[idx] - target) ** 2)
self.count += 1<|docstring|>Function adds predictions and targets computation of regression metrics.
Args:
predictions (List[float]):
targets (List[float]):
Raises:
NotImplementedError: in case targets do not fall into continuous support
ValueError: incase missing validation or predictions<|endoftext|> |
68062f36a1d11a2aa562c006875de139cb9065c0f7b7ea744974cce09c0569c4 | def merge(self, other):
'\n Merge two seperate confusion matrix which may or may not overlap in labels.\n\n Args:\n other : regression metrics to merge with self\n Returns:\n RegressionMetrics: merged regression metrics\n '
if (other is None):
return self
if (self.count == 0):
return other
if (other.count == 0):
return self
if (self.prediction_field != other.prediction_field):
raise ValueError('prediction fields differ')
if (self.target_field != other.target_field):
raise ValueError('target fields differ')
new_reg = RegressionMetrics(prediction_field=self.prediction_field, target_field=self.target_field)
new_reg.count = (self.count + other.count)
new_reg.sum_abs_diff = (self.sum_abs_diff + other.sum_abs_diff)
new_reg.sum_diff = (self.sum_diff + other.sum_diff)
new_reg.sum2_diff = (self.sum2_diff + other.sum2_diff)
return new_reg | Merge two seperate confusion matrix which may or may not overlap in labels.
Args:
other : regression metrics to merge with self
Returns:
RegressionMetrics: merged regression metrics | src/whylogs/core/metrics/regression_metrics.py | merge | valer-whylabs/whylogs | 0 | python | def merge(self, other):
'\n Merge two seperate confusion matrix which may or may not overlap in labels.\n\n Args:\n other : regression metrics to merge with self\n Returns:\n RegressionMetrics: merged regression metrics\n '
if (other is None):
return self
if (self.count == 0):
return other
if (other.count == 0):
return self
if (self.prediction_field != other.prediction_field):
raise ValueError('prediction fields differ')
if (self.target_field != other.target_field):
raise ValueError('target fields differ')
new_reg = RegressionMetrics(prediction_field=self.prediction_field, target_field=self.target_field)
new_reg.count = (self.count + other.count)
new_reg.sum_abs_diff = (self.sum_abs_diff + other.sum_abs_diff)
new_reg.sum_diff = (self.sum_diff + other.sum_diff)
new_reg.sum2_diff = (self.sum2_diff + other.sum2_diff)
return new_reg | def merge(self, other):
'\n Merge two seperate confusion matrix which may or may not overlap in labels.\n\n Args:\n other : regression metrics to merge with self\n Returns:\n RegressionMetrics: merged regression metrics\n '
if (other is None):
return self
if (self.count == 0):
return other
if (other.count == 0):
return self
if (self.prediction_field != other.prediction_field):
raise ValueError('prediction fields differ')
if (self.target_field != other.target_field):
raise ValueError('target fields differ')
new_reg = RegressionMetrics(prediction_field=self.prediction_field, target_field=self.target_field)
new_reg.count = (self.count + other.count)
new_reg.sum_abs_diff = (self.sum_abs_diff + other.sum_abs_diff)
new_reg.sum_diff = (self.sum_diff + other.sum_diff)
new_reg.sum2_diff = (self.sum2_diff + other.sum2_diff)
return new_reg<|docstring|>Merge two seperate confusion matrix which may or may not overlap in labels.
Args:
other : regression metrics to merge with self
Returns:
RegressionMetrics: merged regression metrics<|endoftext|> |
8373133f03ecaa0e7f4ebaf61a2db0d675611c5d974e57b7012354e0c18a6ec0 | def to_protobuf(self):
'\n Convert to protobuf\n\n Returns:\n TYPE: Protobuf Message\n '
return RegressionMetricsMessage(prediction_field=self.prediction_field, target_field=self.target_field, count=self.count, sum_abs_diff=self.sum_abs_diff, sum_diff=self.sum_diff, sum2_diff=self.sum2_diff) | Convert to protobuf
Returns:
TYPE: Protobuf Message | src/whylogs/core/metrics/regression_metrics.py | to_protobuf | valer-whylabs/whylogs | 0 | python | def to_protobuf(self):
'\n Convert to protobuf\n\n Returns:\n TYPE: Protobuf Message\n '
return RegressionMetricsMessage(prediction_field=self.prediction_field, target_field=self.target_field, count=self.count, sum_abs_diff=self.sum_abs_diff, sum_diff=self.sum_diff, sum2_diff=self.sum2_diff) | def to_protobuf(self):
'\n Convert to protobuf\n\n Returns:\n TYPE: Protobuf Message\n '
return RegressionMetricsMessage(prediction_field=self.prediction_field, target_field=self.target_field, count=self.count, sum_abs_diff=self.sum_abs_diff, sum_diff=self.sum_diff, sum2_diff=self.sum2_diff)<|docstring|>Convert to protobuf
Returns:
TYPE: Protobuf Message<|endoftext|> |
08a6565d4b6bd3e83fe192e71f5e3fbd7e1028fada16aae66ca6d579027fc8ee | def load(self):
'load config with default mutable setting loaded from self._override.\n\n Default is not overloading env var\n '
self.silo = self.loader.load(override=self._overload)
return self.silo | load config with default mutable setting loaded from self._override.
Default is not overloading env var | dotenv/env.py | load | widnyana/py-dotenv | 1 | python | def load(self):
'load config with default mutable setting loaded from self._override.\n\n Default is not overloading env var\n '
self.silo = self.loader.load(override=self._overload)
return self.silo | def load(self):
'load config with default mutable setting loaded from self._override.\n\n Default is not overloading env var\n '
self.silo = self.loader.load(override=self._overload)
return self.silo<|docstring|>load config with default mutable setting loaded from self._override.
Default is not overloading env var<|endoftext|> |
d04bfec066589578cff5da895b558849575c75410f00a59bda8edf12718b7963 | def override(self):
'load config and override os environment variable'
self.silo = self.loader.load(override=False)
return self.silo | load config and override os environment variable | dotenv/env.py | override | widnyana/py-dotenv | 1 | python | def override(self):
self.silo = self.loader.load(override=False)
return self.silo | def override(self):
self.silo = self.loader.load(override=False)
return self.silo<|docstring|>load config and override os environment variable<|endoftext|> |
50afcdcf52a020236e3690e98cf593194ba92ad6fa0668f3dfc440dbea428ca1 | async def send(self, message):
"\n Simulates sending a message, by appending a message objects to the\n channel's log list.\n "
msg_obj = MockMessage(random.randint(1, 1000), message)
self._log.append(msg_obj)
return msg_obj | Simulates sending a message, by appending a message objects to the
channel's log list. | tests/mocks.py | send | enkwolf/ITEE-discord-bot | 0 | python | async def send(self, message):
"\n Simulates sending a message, by appending a message objects to the\n channel's log list.\n "
msg_obj = MockMessage(random.randint(1, 1000), message)
self._log.append(msg_obj)
return msg_obj | async def send(self, message):
"\n Simulates sending a message, by appending a message objects to the\n channel's log list.\n "
msg_obj = MockMessage(random.randint(1, 1000), message)
self._log.append(msg_obj)
return msg_obj<|docstring|>Simulates sending a message, by appending a message objects to the
channel's log list.<|endoftext|> |
8423c3ece564ff5c371e08d33f72675462d254cd1f44bfaa09518aee60635b41 | def create_role(self, role_id):
'\n Creates and returns a new mock role object with the given ID. The role\n is stored internally with its ID in the roles dictionary.\n \n * role_id (int) - ID number for the new role\n '
role = MockRole(role_id)
self._roles[role_id] = role
return role | Creates and returns a new mock role object with the given ID. The role
is stored internally with its ID in the roles dictionary.
* role_id (int) - ID number for the new role | tests/mocks.py | create_role | enkwolf/ITEE-discord-bot | 0 | python | def create_role(self, role_id):
'\n Creates and returns a new mock role object with the given ID. The role\n is stored internally with its ID in the roles dictionary.\n \n * role_id (int) - ID number for the new role\n '
role = MockRole(role_id)
self._roles[role_id] = role
return role | def create_role(self, role_id):
'\n Creates and returns a new mock role object with the given ID. The role\n is stored internally with its ID in the roles dictionary.\n \n * role_id (int) - ID number for the new role\n '
role = MockRole(role_id)
self._roles[role_id] = role
return role<|docstring|>Creates and returns a new mock role object with the given ID. The role
is stored internally with its ID in the roles dictionary.
* role_id (int) - ID number for the new role<|endoftext|> |
b9acd1bba66614ce2ed9f03e51b627fef59a51c4a19587b85e82629d585455c5 | def create_member(self, user_id):
'\n Creates and returns a mock member object with the given ID. The member is\n is stored internally with its ID in the members dictionary.\n \n * user_id (intt) - ID number for the new member\n '
member = MockMember(user_id)
self._members[user_id] = member
return member | Creates and returns a mock member object with the given ID. The member is
is stored internally with its ID in the members dictionary.
* user_id (intt) - ID number for the new member | tests/mocks.py | create_member | enkwolf/ITEE-discord-bot | 0 | python | def create_member(self, user_id):
'\n Creates and returns a mock member object with the given ID. The member is\n is stored internally with its ID in the members dictionary.\n \n * user_id (intt) - ID number for the new member\n '
member = MockMember(user_id)
self._members[user_id] = member
return member | def create_member(self, user_id):
'\n Creates and returns a mock member object with the given ID. The member is\n is stored internally with its ID in the members dictionary.\n \n * user_id (intt) - ID number for the new member\n '
member = MockMember(user_id)
self._members[user_id] = member
return member<|docstring|>Creates and returns a mock member object with the given ID. The member is
is stored internally with its ID in the members dictionary.
* user_id (intt) - ID number for the new member<|endoftext|> |
91cfd3912536595f6b1ec9f8fb55a915fd89866ce5a389c76c59439e48060db7 | def get_role(self, role_id):
'\n Returns a role object that corresponds to role_id\n \n * role_id (int) - ID number for role lookup\n '
return self._roles[role_id] | Returns a role object that corresponds to role_id
* role_id (int) - ID number for role lookup | tests/mocks.py | get_role | enkwolf/ITEE-discord-bot | 0 | python | def get_role(self, role_id):
'\n Returns a role object that corresponds to role_id\n \n * role_id (int) - ID number for role lookup\n '
return self._roles[role_id] | def get_role(self, role_id):
'\n Returns a role object that corresponds to role_id\n \n * role_id (int) - ID number for role lookup\n '
return self._roles[role_id]<|docstring|>Returns a role object that corresponds to role_id
* role_id (int) - ID number for role lookup<|endoftext|> |
0c9ebd8a034ffe974f34aff7d6ef45a437c6064894a5066e80760c2a472179d8 | def get_member(self, user_id):
'\n Returns a member object that corresponds to user_id\n \n * user_id (int) - ID number for member lookup\n '
return self._members[user_id] | Returns a member object that corresponds to user_id
* user_id (int) - ID number for member lookup | tests/mocks.py | get_member | enkwolf/ITEE-discord-bot | 0 | python | def get_member(self, user_id):
'\n Returns a member object that corresponds to user_id\n \n * user_id (int) - ID number for member lookup\n '
return self._members[user_id] | def get_member(self, user_id):
'\n Returns a member object that corresponds to user_id\n \n * user_id (int) - ID number for member lookup\n '
return self._members[user_id]<|docstring|>Returns a member object that corresponds to user_id
* user_id (int) - ID number for member lookup<|endoftext|> |
4a5384358023d0b41f577984e106bf5f65689db2c7d9392195f7866ce5518011 | async def ci_user(token: str=Depends(oauth2_scheme)) -> ci.CompassInterface:
'Returns an initialised ci.CompassInterface object.\n\n Note `Depends` adds the oAuth2 integration with OpenAPI.\n TODO: manual integration without depends?\n '
return (await get_current_user(token)) | Returns an initialised ci.CompassInterface object.
Note `Depends` adds the oAuth2 integration with OpenAPI.
TODO: manual integration without depends? | compass/api/util/oauth2.py | ci_user | the-scouts/compass-interface | 8 | python | async def ci_user(token: str=Depends(oauth2_scheme)) -> ci.CompassInterface:
'Returns an initialised ci.CompassInterface object.\n\n Note `Depends` adds the oAuth2 integration with OpenAPI.\n TODO: manual integration without depends?\n '
return (await get_current_user(token)) | async def ci_user(token: str=Depends(oauth2_scheme)) -> ci.CompassInterface:
'Returns an initialised ci.CompassInterface object.\n\n Note `Depends` adds the oAuth2 integration with OpenAPI.\n TODO: manual integration without depends?\n '
return (await get_current_user(token))<|docstring|>Returns an initialised ci.CompassInterface object.
Note `Depends` adds the oAuth2 integration with OpenAPI.
TODO: manual integration without depends?<|endoftext|> |
bd79b4788f0faa3ccfc4857807acc9867f07f0d667ca04b939a8a7342e1db9cf | def has_fun(e):
'Return true if e has function.'
if (e.ty in (CONST, VAR)):
return False
elif (e.ty == OP):
return any((has_fun(arg) for arg in e.args))
elif ((e.ty == FUN) and (e.func_name != 'sqrt')):
return True
else:
return False | Return true if e has function. | integral/slagle.py | has_fun | crisperdue/holpy | 22 | python | def has_fun(e):
if (e.ty in (CONST, VAR)):
return False
elif (e.ty == OP):
return any((has_fun(arg) for arg in e.args))
elif ((e.ty == FUN) and (e.func_name != 'sqrt')):
return True
else:
return False | def has_fun(e):
if (e.ty in (CONST, VAR)):
return False
elif (e.ty == OP):
return any((has_fun(arg) for arg in e.args))
elif ((e.ty == FUN) and (e.func_name != 'sqrt')):
return True
else:
return False<|docstring|>Return true if e has function.<|endoftext|> |
17efb325adddd7a0986f9ba1a8ad437b7f01e09944db91da3c9969dfdd8d4d53 | def is_mono(var, e, lower, upper):
'Determine whether an expression is monotonic in the given interval.'
e_deriv = deriv(var, e)
zeros = solveset(sympy_style(e_deriv), sympy_style(var), Interval(sympy_style(lower), sympy_style(upper), left_open=True, right_open=True))
return list([holpy_style(z) for z in zeros]) | Determine whether an expression is monotonic in the given interval. | integral/slagle.py | is_mono | crisperdue/holpy | 22 | python | def is_mono(var, e, lower, upper):
e_deriv = deriv(var, e)
zeros = solveset(sympy_style(e_deriv), sympy_style(var), Interval(sympy_style(lower), sympy_style(upper), left_open=True, right_open=True))
return list([holpy_style(z) for z in zeros]) | def is_mono(var, e, lower, upper):
e_deriv = deriv(var, e)
zeros = solveset(sympy_style(e_deriv), sympy_style(var), Interval(sympy_style(lower), sympy_style(upper), left_open=True, right_open=True))
return list([holpy_style(z) for z in zeros])<|docstring|>Determine whether an expression is monotonic in the given interval.<|endoftext|> |
37f3d101e1d34bc9f6b3bd208e9ce9b9c5969c1c6722b471d7fc5be7f51e529d | def timeout(max_timeout):
'Timeout decorator, parameter in seconds.'
def timeout_decorator(item):
'Wrap the original function.'
@functools.wraps(item)
def func_wrapper(*args, **kwargs):
'Closure for function.'
pool = multiprocessing.pool.ThreadPool(processes=1)
async_result = pool.apply_async(item, args, kwargs)
res = async_result.get(max_timeout)
pool.close()
return res
return func_wrapper
return timeout_decorator | Timeout decorator, parameter in seconds. | integral/slagle.py | timeout | crisperdue/holpy | 22 | python | def timeout(max_timeout):
def timeout_decorator(item):
'Wrap the original function.'
@functools.wraps(item)
def func_wrapper(*args, **kwargs):
'Closure for function.'
pool = multiprocessing.pool.ThreadPool(processes=1)
async_result = pool.apply_async(item, args, kwargs)
res = async_result.get(max_timeout)
pool.close()
return res
return func_wrapper
return timeout_decorator | def timeout(max_timeout):
def timeout_decorator(item):
'Wrap the original function.'
@functools.wraps(item)
def func_wrapper(*args, **kwargs):
'Closure for function.'
pool = multiprocessing.pool.ThreadPool(processes=1)
async_result = pool.apply_async(item, args, kwargs)
res = async_result.get(max_timeout)
pool.close()
return res
return func_wrapper
return timeout_decorator<|docstring|>Timeout decorator, parameter in seconds.<|endoftext|> |
d97fc477633550351c30acf3418cc8e628ec19b4b0d52adf357fc93368b2eec1 | def perform_steps(node):
'\n Perform the real solving steps. \n '
real_steps = []
current = node.root
for step in node.trace():
loc = step.loc
if (step.reason == 'Simplification'):
rule = rules.FullSimplify()
current = rules.OnLocation(rule, loc).eval(current)
real_steps.append({'text': str(current), 'latex': latex.convert_expr(current), 'reason': step.reason, 'location': str(loc)})
elif (step.reason == 'Substitution'):
rule = rules.Substitution1(step.var_name, step.var_subst)
current = rules.OnLocation(rule, loc).eval(current)
real_steps.append({'text': str(current), 'latex': latex.convert_expr(current), 'location': str(loc), 'params': {'f': str(step.f), 'g': str(step.var_subst), 'var_name': step.var_name}, '_latex_reason': ('Substitute \\(%s\\) for \\(%s\\)' % (latex.convert_expr(Var(step.var_name)), latex.convert_expr(step.var_subst))), 'reason': step.reason})
elif (step.reason == 'Integrate by parts'):
rule = rules.IntegrationByParts(step.u, step.v)
current = rules.OnLocation(rule, loc).eval(current)
real_steps.append({'text': str(current), 'latex': latex.convert_expr(current), 'location': str(loc), 'reason': step.reason, '_latex_reason': ('Integrate by parts, \\(u = %s, v = %s\\)' % (latex.convert_expr(step.u), latex.convert_expr(step.v))), 'params': {'parts_u': str(step.u), 'parts_v': str(step.v)}})
elif (step.reason == 'Rewrite trigonometric'):
rule = rules.RewriteTrigonometric(step.rule_name)
current = rules.OnLocation(rule, loc).eval(current)
real_steps.append({'reason': step.reason, 'text': str(current), 'latex': latex.convert_expr(current), 'params': {'rule': step.rule_name}, '_latex_reason': ('Rewrite trigonometric \\(%s\\) to \\(%s\\)' % (latex.convert_expr(step.before_trig), latex.convert_expr(step.after_trig))), 'location': str(step.loc)})
elif (step.reason == 'Elim abs'):
rule = rules.ElimAbs()
current = rules.OnLocation(rule, loc).eval(current)
info = {'reason': step.reason, 'text': str(current), 'latex': latex.convert_expr(current), 'location': str(loc)}
if (step.zero_point is not None):
info['params'] = {'c': str(step.zero_point)}
real_steps.append(info)
elif (step.reason == 'Substitution inverse'):
rule = rules.Substitution2(step.var_name, step.var_subst)
current = rules.OnLocation(rule, loc).eval(current)
real_steps.append({'text': str(current), 'latex': latex.convert_expr(current), '_latex_reason': ('Substitute \\(%s\\) for \\(%s\\)' % (latex.convert_expr(Var(step.var_name)), latex.convert_expr(step.var_subst))), 'reason': step.reason, 'location': str(loc), 'params': {'a': str(step.e.lower), 'b': str(step.e.upper), 'g': str(step.var_subst), 'var_name': str(step.var_name)}})
elif (step.reason == 'Unfold power'):
rule = rules.UnfoldPower()
current = rules.OnLocation(rule, loc).eval(current)
real_steps.append({'text': str(current), 'latex': latex.convert_expr(current), 'reason': 'Unfold power', 'location': str(loc)})
elif (step.reason == 'Rewrite fraction'):
rule = rules.PolynomialDivision()
current = rules.OnLocation(rule, loc).eval(current)
real_steps.append({'text': str(current), 'latex': latex.convert_expr(current), 'reason': step.reason, 'params': {'rhs': str(step.rhs), 'denom': str(step.denom)}, 'location': str(step.loc)})
elif (step.reason == 'Split region'):
rule = rules.SplitRegion(step.zero_point)
current = rules.OnLocation(rule, loc).eval(current)
real_steps.append({'text': str(current), 'latex': latex.convert_expr(current), 'reason': step.reason, 'location': str(step.loc), 'params': {'c': str(step.zero_point)}})
else:
raise NotImplementedError(step.reason)
last_expr = parse_expr(real_steps[(- 1)]['text'])
if (last_expr.is_constant() and (last_expr.normalize() == last_expr)):
return real_steps
final_expr = rules.FullSimplify().eval(last_expr)
real_steps.append({'text': str(final_expr), 'latex': latex.convert_expr(final_expr), 'reason': 'Simplification', 'location': '.'})
return real_steps | Perform the real solving steps. | integral/slagle.py | perform_steps | crisperdue/holpy | 22 | python | def perform_steps(node):
'\n \n '
real_steps = []
current = node.root
for step in node.trace():
loc = step.loc
if (step.reason == 'Simplification'):
rule = rules.FullSimplify()
current = rules.OnLocation(rule, loc).eval(current)
real_steps.append({'text': str(current), 'latex': latex.convert_expr(current), 'reason': step.reason, 'location': str(loc)})
elif (step.reason == 'Substitution'):
rule = rules.Substitution1(step.var_name, step.var_subst)
current = rules.OnLocation(rule, loc).eval(current)
real_steps.append({'text': str(current), 'latex': latex.convert_expr(current), 'location': str(loc), 'params': {'f': str(step.f), 'g': str(step.var_subst), 'var_name': step.var_name}, '_latex_reason': ('Substitute \\(%s\\) for \\(%s\\)' % (latex.convert_expr(Var(step.var_name)), latex.convert_expr(step.var_subst))), 'reason': step.reason})
elif (step.reason == 'Integrate by parts'):
rule = rules.IntegrationByParts(step.u, step.v)
current = rules.OnLocation(rule, loc).eval(current)
real_steps.append({'text': str(current), 'latex': latex.convert_expr(current), 'location': str(loc), 'reason': step.reason, '_latex_reason': ('Integrate by parts, \\(u = %s, v = %s\\)' % (latex.convert_expr(step.u), latex.convert_expr(step.v))), 'params': {'parts_u': str(step.u), 'parts_v': str(step.v)}})
elif (step.reason == 'Rewrite trigonometric'):
rule = rules.RewriteTrigonometric(step.rule_name)
current = rules.OnLocation(rule, loc).eval(current)
real_steps.append({'reason': step.reason, 'text': str(current), 'latex': latex.convert_expr(current), 'params': {'rule': step.rule_name}, '_latex_reason': ('Rewrite trigonometric \\(%s\\) to \\(%s\\)' % (latex.convert_expr(step.before_trig), latex.convert_expr(step.after_trig))), 'location': str(step.loc)})
elif (step.reason == 'Elim abs'):
rule = rules.ElimAbs()
current = rules.OnLocation(rule, loc).eval(current)
info = {'reason': step.reason, 'text': str(current), 'latex': latex.convert_expr(current), 'location': str(loc)}
if (step.zero_point is not None):
info['params'] = {'c': str(step.zero_point)}
real_steps.append(info)
elif (step.reason == 'Substitution inverse'):
rule = rules.Substitution2(step.var_name, step.var_subst)
current = rules.OnLocation(rule, loc).eval(current)
real_steps.append({'text': str(current), 'latex': latex.convert_expr(current), '_latex_reason': ('Substitute \\(%s\\) for \\(%s\\)' % (latex.convert_expr(Var(step.var_name)), latex.convert_expr(step.var_subst))), 'reason': step.reason, 'location': str(loc), 'params': {'a': str(step.e.lower), 'b': str(step.e.upper), 'g': str(step.var_subst), 'var_name': str(step.var_name)}})
elif (step.reason == 'Unfold power'):
rule = rules.UnfoldPower()
current = rules.OnLocation(rule, loc).eval(current)
real_steps.append({'text': str(current), 'latex': latex.convert_expr(current), 'reason': 'Unfold power', 'location': str(loc)})
elif (step.reason == 'Rewrite fraction'):
rule = rules.PolynomialDivision()
current = rules.OnLocation(rule, loc).eval(current)
real_steps.append({'text': str(current), 'latex': latex.convert_expr(current), 'reason': step.reason, 'params': {'rhs': str(step.rhs), 'denom': str(step.denom)}, 'location': str(step.loc)})
elif (step.reason == 'Split region'):
rule = rules.SplitRegion(step.zero_point)
current = rules.OnLocation(rule, loc).eval(current)
real_steps.append({'text': str(current), 'latex': latex.convert_expr(current), 'reason': step.reason, 'location': str(step.loc), 'params': {'c': str(step.zero_point)}})
else:
raise NotImplementedError(step.reason)
last_expr = parse_expr(real_steps[(- 1)]['text'])
if (last_expr.is_constant() and (last_expr.normalize() == last_expr)):
return real_steps
final_expr = rules.FullSimplify().eval(last_expr)
real_steps.append({'text': str(final_expr), 'latex': latex.convert_expr(final_expr), 'reason': 'Simplification', 'location': '.'})
return real_steps | def perform_steps(node):
'\n \n '
real_steps = []
current = node.root
for step in node.trace():
loc = step.loc
if (step.reason == 'Simplification'):
rule = rules.FullSimplify()
current = rules.OnLocation(rule, loc).eval(current)
real_steps.append({'text': str(current), 'latex': latex.convert_expr(current), 'reason': step.reason, 'location': str(loc)})
elif (step.reason == 'Substitution'):
rule = rules.Substitution1(step.var_name, step.var_subst)
current = rules.OnLocation(rule, loc).eval(current)
real_steps.append({'text': str(current), 'latex': latex.convert_expr(current), 'location': str(loc), 'params': {'f': str(step.f), 'g': str(step.var_subst), 'var_name': step.var_name}, '_latex_reason': ('Substitute \\(%s\\) for \\(%s\\)' % (latex.convert_expr(Var(step.var_name)), latex.convert_expr(step.var_subst))), 'reason': step.reason})
elif (step.reason == 'Integrate by parts'):
rule = rules.IntegrationByParts(step.u, step.v)
current = rules.OnLocation(rule, loc).eval(current)
real_steps.append({'text': str(current), 'latex': latex.convert_expr(current), 'location': str(loc), 'reason': step.reason, '_latex_reason': ('Integrate by parts, \\(u = %s, v = %s\\)' % (latex.convert_expr(step.u), latex.convert_expr(step.v))), 'params': {'parts_u': str(step.u), 'parts_v': str(step.v)}})
elif (step.reason == 'Rewrite trigonometric'):
rule = rules.RewriteTrigonometric(step.rule_name)
current = rules.OnLocation(rule, loc).eval(current)
real_steps.append({'reason': step.reason, 'text': str(current), 'latex': latex.convert_expr(current), 'params': {'rule': step.rule_name}, '_latex_reason': ('Rewrite trigonometric \\(%s\\) to \\(%s\\)' % (latex.convert_expr(step.before_trig), latex.convert_expr(step.after_trig))), 'location': str(step.loc)})
elif (step.reason == 'Elim abs'):
rule = rules.ElimAbs()
current = rules.OnLocation(rule, loc).eval(current)
info = {'reason': step.reason, 'text': str(current), 'latex': latex.convert_expr(current), 'location': str(loc)}
if (step.zero_point is not None):
info['params'] = {'c': str(step.zero_point)}
real_steps.append(info)
elif (step.reason == 'Substitution inverse'):
rule = rules.Substitution2(step.var_name, step.var_subst)
current = rules.OnLocation(rule, loc).eval(current)
real_steps.append({'text': str(current), 'latex': latex.convert_expr(current), '_latex_reason': ('Substitute \\(%s\\) for \\(%s\\)' % (latex.convert_expr(Var(step.var_name)), latex.convert_expr(step.var_subst))), 'reason': step.reason, 'location': str(loc), 'params': {'a': str(step.e.lower), 'b': str(step.e.upper), 'g': str(step.var_subst), 'var_name': str(step.var_name)}})
elif (step.reason == 'Unfold power'):
rule = rules.UnfoldPower()
current = rules.OnLocation(rule, loc).eval(current)
real_steps.append({'text': str(current), 'latex': latex.convert_expr(current), 'reason': 'Unfold power', 'location': str(loc)})
elif (step.reason == 'Rewrite fraction'):
rule = rules.PolynomialDivision()
current = rules.OnLocation(rule, loc).eval(current)
real_steps.append({'text': str(current), 'latex': latex.convert_expr(current), 'reason': step.reason, 'params': {'rhs': str(step.rhs), 'denom': str(step.denom)}, 'location': str(step.loc)})
elif (step.reason == 'Split region'):
rule = rules.SplitRegion(step.zero_point)
current = rules.OnLocation(rule, loc).eval(current)
real_steps.append({'text': str(current), 'latex': latex.convert_expr(current), 'reason': step.reason, 'location': str(step.loc), 'params': {'c': str(step.zero_point)}})
else:
raise NotImplementedError(step.reason)
last_expr = parse_expr(real_steps[(- 1)]['text'])
if (last_expr.is_constant() and (last_expr.normalize() == last_expr)):
return real_steps
final_expr = rules.FullSimplify().eval(last_expr)
real_steps.append({'text': str(final_expr), 'latex': latex.convert_expr(final_expr), 'reason': 'Simplification', 'location': '.'})
return real_steps<|docstring|>Perform the real solving steps.<|endoftext|> |
e869dfcd66aa5c2502235b4bf4a722729063f9b86076d0d3812db15454be2cfc | def eval(self, e):
'Algorithmic transformation of e.\n\n Parameters:\n e: original integral.\n\n Returns:\n If succeed, returns the new integral. Otherwise return e.\n\n '
pass | Algorithmic transformation of e.
Parameters:
e: original integral.
Returns:
If succeed, returns the new integral. Otherwise return e. | integral/slagle.py | eval | crisperdue/holpy | 22 | python | def eval(self, e):
'Algorithmic transformation of e.\n\n Parameters:\n e: original integral.\n\n Returns:\n If succeed, returns the new integral. Otherwise return e.\n\n '
pass | def eval(self, e):
'Algorithmic transformation of e.\n\n Parameters:\n e: original integral.\n\n Returns:\n If succeed, returns the new integral. Otherwise return e.\n\n '
pass<|docstring|>Algorithmic transformation of e.
Parameters:
e: original integral.
Returns:
If succeed, returns the new integral. Otherwise return e.<|endoftext|> |
8657ce5657e35819a50a0ab0f5e0e1956f00875a24603656bf0ddb2acf127bde | def eval(self, e):
'Heuristic transformation of e.\n\n Parameters:\n e: original integral.\n\n Returns:\n A list of possible new integrals. Each of which should equal e.\n\n '
pass | Heuristic transformation of e.
Parameters:
e: original integral.
Returns:
A list of possible new integrals. Each of which should equal e. | integral/slagle.py | eval | crisperdue/holpy | 22 | python | def eval(self, e):
'Heuristic transformation of e.\n\n Parameters:\n e: original integral.\n\n Returns:\n A list of possible new integrals. Each of which should equal e.\n\n '
pass | def eval(self, e):
'Heuristic transformation of e.\n\n Parameters:\n e: original integral.\n\n Returns:\n A list of possible new integrals. Each of which should equal e.\n\n '
pass<|docstring|>Heuristic transformation of e.
Parameters:
e: original integral.
Returns:
A list of possible new integrals. Each of which should equal e.<|endoftext|> |
75b8bd43c24b1b97a121c5277d7c2d9fb434a1dbdac416122f86e3319620c166 | def sin_cos(self, e):
'1) Transform to sine and cosine.\n\n a) tan(x) => sin(x)/cos(x)\n b) cot(x) => cos(x)/sin(x)\n c) sec(x) => 1/cos(x)\n d) csc(x) => 1/sin(x)\n\n TR1, TR2\n \n '
x = Symbol('x', [OP, CONST, VAR, FUN])
tan_pat = tan(x)
cot_pat = cot(x)
sec_pat = sec(x)
csc_pat = csc(x)
tan_expr = find_pattern(e, tan_pat)
cot_expr = find_pattern(e, cot_pat)
sec_expr = find_pattern(e, sec_pat)
csc_expr = find_pattern(e, csc_pat)
steps = []
reason = 'sine cosine'
for (t, loc, _) in tan_expr:
e = e.replace_trig(t, (sin(t.args[0]) / cos(t.args[0])))
steps.append(calc.TrigIdentityStep(e, 'TR2', t, (sin(t.args[0]) / cos(t.args[0])), loc))
for (t, loc, _) in cot_expr:
e = e.replace_trig(t, (cos(t.args[0]) / sin(t.args[0])))
steps.append(calc.TrigIdentityStep(e, 'TR2', t, (cos(t.args[0]) / sin(t.args[0])), loc))
for (t, loc, _) in sec_expr:
e = e.replace_trig(t, (Const(1) / cos(t.args[0])))
steps.append(calc.TrigIdentityStep(e, 'TR1', t, (Const(1) / cos(t.args[0])), loc))
for (t, loc, _) in csc_expr:
e = e.replace_trig(t, (Const(1) / sin(t.args[0])))
steps.append(calc.TrigIdentityStep(e, 'TR1', t, (Const(1) / sin(t.args[0])), loc))
return (e, steps) | 1) Transform to sine and cosine.
a) tan(x) => sin(x)/cos(x)
b) cot(x) => cos(x)/sin(x)
c) sec(x) => 1/cos(x)
d) csc(x) => 1/sin(x)
TR1, TR2 | integral/slagle.py | sin_cos | crisperdue/holpy | 22 | python | def sin_cos(self, e):
'1) Transform to sine and cosine.\n\n a) tan(x) => sin(x)/cos(x)\n b) cot(x) => cos(x)/sin(x)\n c) sec(x) => 1/cos(x)\n d) csc(x) => 1/sin(x)\n\n TR1, TR2\n \n '
x = Symbol('x', [OP, CONST, VAR, FUN])
tan_pat = tan(x)
cot_pat = cot(x)
sec_pat = sec(x)
csc_pat = csc(x)
tan_expr = find_pattern(e, tan_pat)
cot_expr = find_pattern(e, cot_pat)
sec_expr = find_pattern(e, sec_pat)
csc_expr = find_pattern(e, csc_pat)
steps = []
reason = 'sine cosine'
for (t, loc, _) in tan_expr:
e = e.replace_trig(t, (sin(t.args[0]) / cos(t.args[0])))
steps.append(calc.TrigIdentityStep(e, 'TR2', t, (sin(t.args[0]) / cos(t.args[0])), loc))
for (t, loc, _) in cot_expr:
e = e.replace_trig(t, (cos(t.args[0]) / sin(t.args[0])))
steps.append(calc.TrigIdentityStep(e, 'TR2', t, (cos(t.args[0]) / sin(t.args[0])), loc))
for (t, loc, _) in sec_expr:
e = e.replace_trig(t, (Const(1) / cos(t.args[0])))
steps.append(calc.TrigIdentityStep(e, 'TR1', t, (Const(1) / cos(t.args[0])), loc))
for (t, loc, _) in csc_expr:
e = e.replace_trig(t, (Const(1) / sin(t.args[0])))
steps.append(calc.TrigIdentityStep(e, 'TR1', t, (Const(1) / sin(t.args[0])), loc))
return (e, steps) | def sin_cos(self, e):
'1) Transform to sine and cosine.\n\n a) tan(x) => sin(x)/cos(x)\n b) cot(x) => cos(x)/sin(x)\n c) sec(x) => 1/cos(x)\n d) csc(x) => 1/sin(x)\n\n TR1, TR2\n \n '
x = Symbol('x', [OP, CONST, VAR, FUN])
tan_pat = tan(x)
cot_pat = cot(x)
sec_pat = sec(x)
csc_pat = csc(x)
tan_expr = find_pattern(e, tan_pat)
cot_expr = find_pattern(e, cot_pat)
sec_expr = find_pattern(e, sec_pat)
csc_expr = find_pattern(e, csc_pat)
steps = []
reason = 'sine cosine'
for (t, loc, _) in tan_expr:
e = e.replace_trig(t, (sin(t.args[0]) / cos(t.args[0])))
steps.append(calc.TrigIdentityStep(e, 'TR2', t, (sin(t.args[0]) / cos(t.args[0])), loc))
for (t, loc, _) in cot_expr:
e = e.replace_trig(t, (cos(t.args[0]) / sin(t.args[0])))
steps.append(calc.TrigIdentityStep(e, 'TR2', t, (cos(t.args[0]) / sin(t.args[0])), loc))
for (t, loc, _) in sec_expr:
e = e.replace_trig(t, (Const(1) / cos(t.args[0])))
steps.append(calc.TrigIdentityStep(e, 'TR1', t, (Const(1) / cos(t.args[0])), loc))
for (t, loc, _) in csc_expr:
e = e.replace_trig(t, (Const(1) / sin(t.args[0])))
steps.append(calc.TrigIdentityStep(e, 'TR1', t, (Const(1) / sin(t.args[0])), loc))
return (e, steps)<|docstring|>1) Transform to sine and cosine.
a) tan(x) => sin(x)/cos(x)
b) cot(x) => cos(x)/sin(x)
c) sec(x) => 1/cos(x)
d) csc(x) => 1/sin(x)
TR1, TR2<|endoftext|> |
750428d5093ed0ae71ae3d77b179e0f132b0a4e0923bd67e006a604e91a6151e | def tan_sec(self, e):
'1) Transform to tangent and secant.\n\n a) sin(x) => tan(x)/sec(x)\n b) cos(x) => 1/sec(x)\n c) cot(x) => 1/tan(x)\n d) csc(x) => sec(x)/tan(x)\n \n '
x = Symbol('x', [OP, CONST, VAR, FUN])
sin_pat = sin(x)
cos_pat = cos(x)
cot_pat = cot(x)
csc_pat = csc(x)
sin_expr = find_pattern(e, sin_pat)
cos_expr = find_pattern(e, cos_pat)
cot_expr = find_pattern(e, cot_pat)
csc_expr = find_pattern(e, csc_pat)
steps = []
reason = 'tangent secant'
for (t, loc, _) in sin_expr:
e = e.replace_trig(t, (tan(t.args[0]) / sec(t.args[0])))
steps.append(calc.TrigSubstitutionStep(e, loc, t, (tan(t.args[0]) / sec(t.args[0])), reason))
for (t, loc, _) in cos_expr:
e = e.replace_trig(t, (Const(1) / sec(t.args[0])))
steps.append(calc.TrigSubstitutionStep(e, loc, t, (Const(1) / sec(t.args[0])), reason))
for (t, loc, _) in cot_expr:
e = e.replace_trig(t, (Const(1) / tan(t.args[0])))
steps.append(calc.TrigSubstitutionStep(e, loc, t, (Const(1) / tan(t.args[0])), reason))
for (t, loc, _) in csc_expr:
e = e.replace_trig(t, (sec(t.args[0]) / tan(t.args[0])))
steps.append(calc.TrigSubstitutionStep(e, loc, t, (sec(t.args[0]) / tan(t.args[0])), reason))
return (e, steps) | 1) Transform to tangent and secant.
a) sin(x) => tan(x)/sec(x)
b) cos(x) => 1/sec(x)
c) cot(x) => 1/tan(x)
d) csc(x) => sec(x)/tan(x) | integral/slagle.py | tan_sec | crisperdue/holpy | 22 | python | def tan_sec(self, e):
'1) Transform to tangent and secant.\n\n a) sin(x) => tan(x)/sec(x)\n b) cos(x) => 1/sec(x)\n c) cot(x) => 1/tan(x)\n d) csc(x) => sec(x)/tan(x)\n \n '
x = Symbol('x', [OP, CONST, VAR, FUN])
sin_pat = sin(x)
cos_pat = cos(x)
cot_pat = cot(x)
csc_pat = csc(x)
sin_expr = find_pattern(e, sin_pat)
cos_expr = find_pattern(e, cos_pat)
cot_expr = find_pattern(e, cot_pat)
csc_expr = find_pattern(e, csc_pat)
steps = []
reason = 'tangent secant'
for (t, loc, _) in sin_expr:
e = e.replace_trig(t, (tan(t.args[0]) / sec(t.args[0])))
steps.append(calc.TrigSubstitutionStep(e, loc, t, (tan(t.args[0]) / sec(t.args[0])), reason))
for (t, loc, _) in cos_expr:
e = e.replace_trig(t, (Const(1) / sec(t.args[0])))
steps.append(calc.TrigSubstitutionStep(e, loc, t, (Const(1) / sec(t.args[0])), reason))
for (t, loc, _) in cot_expr:
e = e.replace_trig(t, (Const(1) / tan(t.args[0])))
steps.append(calc.TrigSubstitutionStep(e, loc, t, (Const(1) / tan(t.args[0])), reason))
for (t, loc, _) in csc_expr:
e = e.replace_trig(t, (sec(t.args[0]) / tan(t.args[0])))
steps.append(calc.TrigSubstitutionStep(e, loc, t, (sec(t.args[0]) / tan(t.args[0])), reason))
return (e, steps) | def tan_sec(self, e):
'1) Transform to tangent and secant.\n\n a) sin(x) => tan(x)/sec(x)\n b) cos(x) => 1/sec(x)\n c) cot(x) => 1/tan(x)\n d) csc(x) => sec(x)/tan(x)\n \n '
x = Symbol('x', [OP, CONST, VAR, FUN])
sin_pat = sin(x)
cos_pat = cos(x)
cot_pat = cot(x)
csc_pat = csc(x)
sin_expr = find_pattern(e, sin_pat)
cos_expr = find_pattern(e, cos_pat)
cot_expr = find_pattern(e, cot_pat)
csc_expr = find_pattern(e, csc_pat)
steps = []
reason = 'tangent secant'
for (t, loc, _) in sin_expr:
e = e.replace_trig(t, (tan(t.args[0]) / sec(t.args[0])))
steps.append(calc.TrigSubstitutionStep(e, loc, t, (tan(t.args[0]) / sec(t.args[0])), reason))
for (t, loc, _) in cos_expr:
e = e.replace_trig(t, (Const(1) / sec(t.args[0])))
steps.append(calc.TrigSubstitutionStep(e, loc, t, (Const(1) / sec(t.args[0])), reason))
for (t, loc, _) in cot_expr:
e = e.replace_trig(t, (Const(1) / tan(t.args[0])))
steps.append(calc.TrigSubstitutionStep(e, loc, t, (Const(1) / tan(t.args[0])), reason))
for (t, loc, _) in csc_expr:
e = e.replace_trig(t, (sec(t.args[0]) / tan(t.args[0])))
steps.append(calc.TrigSubstitutionStep(e, loc, t, (sec(t.args[0]) / tan(t.args[0])), reason))
return (e, steps)<|docstring|>1) Transform to tangent and secant.
a) sin(x) => tan(x)/sec(x)
b) cos(x) => 1/sec(x)
c) cot(x) => 1/tan(x)
d) csc(x) => sec(x)/tan(x)<|endoftext|> |
259a63c2003c10a211b81145944be0ee301cc3212568bc7b30189bbc9bfe4bd3 | def cot_csc(self, e):
'3) Transform to cotangent and cosecant.\n \n a) sin(x) => 1/csc(x)\n b) cos(x) => cot(x)/csc(x)\n c) tan(x) => 1/cot(x)\n d) sec(x) => csc(x)/cot(x)\n '
x = Symbol('x', [OP, CONST, VAR, FUN])
sin_pat = sin(x)
cos_pat = cos(x)
tan_pat = tan(x)
sec_pat = sec(x)
sin_expr = find_pattern(e, sin_pat)
cos_expr = find_pattern(e, cos_pat)
tan_expr = find_pattern(e, tan_pat)
sec_expr = find_pattern(e, sec_pat)
steps = []
reason = 'cotangent cosecant'
for (t, loc, _) in sin_expr:
e = e.replace_trig(t, (Const(1) / csc(t.args[0])))
steps.append(calc.TrigSubstitutionStep(e, loc, t, (Const(1) / csc(t.args[0])), reason))
for (t, loc, _) in cos_expr:
e = e.replace_trig(t, (cot(t.args[0]) / csc(t.args[0])))
steps.append(calc.TrigSubstitutionStep(e, loc, t, (cot(t.args[0]) / csc(t.args[0])), reason))
for (t, loc, _) in tan_expr:
e = e.replace_trig(t, (Const(1) / cot(t.args[0])))
steps.append(calc.TrigSubstitutionStep(e, loc, t, (Const(1) / cot(t.args[0])), reason))
for (t, loc, _) in sec_expr:
e = e.replace_trig(t, (csc(t.args[0]) / cot(t.args[0])))
steps.append(calc.TrigSubstitutionStep(e, loc, t, (csc(t.args[0]) / cot(t.args[0])), reason))
return (e, steps) | 3) Transform to cotangent and cosecant.
a) sin(x) => 1/csc(x)
b) cos(x) => cot(x)/csc(x)
c) tan(x) => 1/cot(x)
d) sec(x) => csc(x)/cot(x) | integral/slagle.py | cot_csc | crisperdue/holpy | 22 | python | def cot_csc(self, e):
'3) Transform to cotangent and cosecant.\n \n a) sin(x) => 1/csc(x)\n b) cos(x) => cot(x)/csc(x)\n c) tan(x) => 1/cot(x)\n d) sec(x) => csc(x)/cot(x)\n '
x = Symbol('x', [OP, CONST, VAR, FUN])
sin_pat = sin(x)
cos_pat = cos(x)
tan_pat = tan(x)
sec_pat = sec(x)
sin_expr = find_pattern(e, sin_pat)
cos_expr = find_pattern(e, cos_pat)
tan_expr = find_pattern(e, tan_pat)
sec_expr = find_pattern(e, sec_pat)
steps = []
reason = 'cotangent cosecant'
for (t, loc, _) in sin_expr:
e = e.replace_trig(t, (Const(1) / csc(t.args[0])))
steps.append(calc.TrigSubstitutionStep(e, loc, t, (Const(1) / csc(t.args[0])), reason))
for (t, loc, _) in cos_expr:
e = e.replace_trig(t, (cot(t.args[0]) / csc(t.args[0])))
steps.append(calc.TrigSubstitutionStep(e, loc, t, (cot(t.args[0]) / csc(t.args[0])), reason))
for (t, loc, _) in tan_expr:
e = e.replace_trig(t, (Const(1) / cot(t.args[0])))
steps.append(calc.TrigSubstitutionStep(e, loc, t, (Const(1) / cot(t.args[0])), reason))
for (t, loc, _) in sec_expr:
e = e.replace_trig(t, (csc(t.args[0]) / cot(t.args[0])))
steps.append(calc.TrigSubstitutionStep(e, loc, t, (csc(t.args[0]) / cot(t.args[0])), reason))
return (e, steps) | def cot_csc(self, e):
'3) Transform to cotangent and cosecant.\n \n a) sin(x) => 1/csc(x)\n b) cos(x) => cot(x)/csc(x)\n c) tan(x) => 1/cot(x)\n d) sec(x) => csc(x)/cot(x)\n '
x = Symbol('x', [OP, CONST, VAR, FUN])
sin_pat = sin(x)
cos_pat = cos(x)
tan_pat = tan(x)
sec_pat = sec(x)
sin_expr = find_pattern(e, sin_pat)
cos_expr = find_pattern(e, cos_pat)
tan_expr = find_pattern(e, tan_pat)
sec_expr = find_pattern(e, sec_pat)
steps = []
reason = 'cotangent cosecant'
for (t, loc, _) in sin_expr:
e = e.replace_trig(t, (Const(1) / csc(t.args[0])))
steps.append(calc.TrigSubstitutionStep(e, loc, t, (Const(1) / csc(t.args[0])), reason))
for (t, loc, _) in cos_expr:
e = e.replace_trig(t, (cot(t.args[0]) / csc(t.args[0])))
steps.append(calc.TrigSubstitutionStep(e, loc, t, (cot(t.args[0]) / csc(t.args[0])), reason))
for (t, loc, _) in tan_expr:
e = e.replace_trig(t, (Const(1) / cot(t.args[0])))
steps.append(calc.TrigSubstitutionStep(e, loc, t, (Const(1) / cot(t.args[0])), reason))
for (t, loc, _) in sec_expr:
e = e.replace_trig(t, (csc(t.args[0]) / cot(t.args[0])))
steps.append(calc.TrigSubstitutionStep(e, loc, t, (csc(t.args[0]) / cot(t.args[0])), reason))
return (e, steps)<|docstring|>3) Transform to cotangent and cosecant.
a) sin(x) => 1/csc(x)
b) cos(x) => cot(x)/csc(x)
c) tan(x) => 1/cot(x)
d) sec(x) => csc(x)/cot(x)<|endoftext|> |
d7e686be3a5d1b4a8f99f1e8b5053b58afd8d7290f3d24281e052802aab9a824 | def trace(self):
'Give computation trace for resolved integration.'
assert (self.resolved == True), ("%s haven't been solved" % self.root)
return self.resolved_steps | Give computation trace for resolved integration. | integral/slagle.py | trace | crisperdue/holpy | 22 | python | def trace(self):
assert (self.resolved == True), ("%s haven't been solved" % self.root)
return self.resolved_steps | def trace(self):
assert (self.resolved == True), ("%s haven't been solved" % self.root)
return self.resolved_steps<|docstring|>Give computation trace for resolved integration.<|endoftext|> |
fceadbc13b25ff711a0d1537effa720740865d21833700ac3e77523b5619ba73 | def expand(self, not_solved_integral):
'Expand the current node.\n\n This tries all algorithm rules. If the result is itself an integral, then\n apply each of the heuristic rules and collect the results. If the\n result is a linear combination of integrals, then put a single AndNode\n as the child nodes.\n\n If we get a new integral after transformation, we need to store them in a set, \n in case of repeatedly try to solve same integral(Trigonometric functions can \n transform to them self). \n\n '
cur_integral = self.root
algo_steps = []
not_solved_integral.add(cur_integral)
for rule in algorithm_rules:
(cur_integral, cur_steps) = rule().eval(cur_integral)
if cur_steps:
for step in cur_steps:
step.prepend_loc(self.loc)
algo_steps.append(step)
if (rule == AlgoNonLinearSubstitution):
continue
norm_integral = rules.FullSimplify().eval(cur_integral)
if (norm_integral != cur_integral):
algo_steps.append(calc.SimplifyStep(norm_integral, self.loc))
cur_integral = norm_integral
if (cur_integral.ty == INTEGRAL):
for rule in heuristic_rules:
res = rule().eval(cur_integral)
for (r, steps) in res:
if steps:
for step in steps:
step.prepend_loc(self.loc)
norm_r = rules.FullSimplify().eval(r)
if (norm_r != r):
steps.append(calc.SimplifyStep(norm_r, self.loc))
if ((norm_r.ty == INTEGRAL) and (norm_r not in not_solved_integral)):
self.children.append(OrNode(norm_r, loc=self.loc, parent=self, steps=(algo_steps + steps)))
elif (norm_r not in not_solved_integral):
self.children.append(AndNode(norm_r, loc=self.loc, parent=self, steps=(algo_steps + steps)))
else:
not_solved_integral.remove(self.root)
self.children.append(AndNode(cur_integral, loc=self.loc, parent=self, steps=algo_steps))
self.compute_resolved() | Expand the current node.
This tries all algorithm rules. If the result is itself an integral, then
apply each of the heuristic rules and collect the results. If the
result is a linear combination of integrals, then put a single AndNode
as the child nodes.
If we get a new integral after transformation, we need to store them in a set,
in case of repeatedly try to solve same integral(Trigonometric functions can
transform to them self). | integral/slagle.py | expand | crisperdue/holpy | 22 | python | def expand(self, not_solved_integral):
'Expand the current node.\n\n This tries all algorithm rules. If the result is itself an integral, then\n apply each of the heuristic rules and collect the results. If the\n result is a linear combination of integrals, then put a single AndNode\n as the child nodes.\n\n If we get a new integral after transformation, we need to store them in a set, \n in case of repeatedly try to solve same integral(Trigonometric functions can \n transform to them self). \n\n '
cur_integral = self.root
algo_steps = []
not_solved_integral.add(cur_integral)
for rule in algorithm_rules:
(cur_integral, cur_steps) = rule().eval(cur_integral)
if cur_steps:
for step in cur_steps:
step.prepend_loc(self.loc)
algo_steps.append(step)
if (rule == AlgoNonLinearSubstitution):
continue
norm_integral = rules.FullSimplify().eval(cur_integral)
if (norm_integral != cur_integral):
algo_steps.append(calc.SimplifyStep(norm_integral, self.loc))
cur_integral = norm_integral
if (cur_integral.ty == INTEGRAL):
for rule in heuristic_rules:
res = rule().eval(cur_integral)
for (r, steps) in res:
if steps:
for step in steps:
step.prepend_loc(self.loc)
norm_r = rules.FullSimplify().eval(r)
if (norm_r != r):
steps.append(calc.SimplifyStep(norm_r, self.loc))
if ((norm_r.ty == INTEGRAL) and (norm_r not in not_solved_integral)):
self.children.append(OrNode(norm_r, loc=self.loc, parent=self, steps=(algo_steps + steps)))
elif (norm_r not in not_solved_integral):
self.children.append(AndNode(norm_r, loc=self.loc, parent=self, steps=(algo_steps + steps)))
else:
not_solved_integral.remove(self.root)
self.children.append(AndNode(cur_integral, loc=self.loc, parent=self, steps=algo_steps))
self.compute_resolved() | def expand(self, not_solved_integral):
'Expand the current node.\n\n This tries all algorithm rules. If the result is itself an integral, then\n apply each of the heuristic rules and collect the results. If the\n result is a linear combination of integrals, then put a single AndNode\n as the child nodes.\n\n If we get a new integral after transformation, we need to store them in a set, \n in case of repeatedly try to solve same integral(Trigonometric functions can \n transform to them self). \n\n '
cur_integral = self.root
algo_steps = []
not_solved_integral.add(cur_integral)
for rule in algorithm_rules:
(cur_integral, cur_steps) = rule().eval(cur_integral)
if cur_steps:
for step in cur_steps:
step.prepend_loc(self.loc)
algo_steps.append(step)
if (rule == AlgoNonLinearSubstitution):
continue
norm_integral = rules.FullSimplify().eval(cur_integral)
if (norm_integral != cur_integral):
algo_steps.append(calc.SimplifyStep(norm_integral, self.loc))
cur_integral = norm_integral
if (cur_integral.ty == INTEGRAL):
for rule in heuristic_rules:
res = rule().eval(cur_integral)
for (r, steps) in res:
if steps:
for step in steps:
step.prepend_loc(self.loc)
norm_r = rules.FullSimplify().eval(r)
if (norm_r != r):
steps.append(calc.SimplifyStep(norm_r, self.loc))
if ((norm_r.ty == INTEGRAL) and (norm_r not in not_solved_integral)):
self.children.append(OrNode(norm_r, loc=self.loc, parent=self, steps=(algo_steps + steps)))
elif (norm_r not in not_solved_integral):
self.children.append(AndNode(norm_r, loc=self.loc, parent=self, steps=(algo_steps + steps)))
else:
not_solved_integral.remove(self.root)
self.children.append(AndNode(cur_integral, loc=self.loc, parent=self, steps=algo_steps))
self.compute_resolved()<|docstring|>Expand the current node.
This tries all algorithm rules. If the result is itself an integral, then
apply each of the heuristic rules and collect the results. If the
result is a linear combination of integrals, then put a single AndNode
as the child nodes.
If we get a new integral after transformation, we need to store them in a set,
in case of repeatedly try to solve same integral(Trigonometric functions can
transform to them self).<|endoftext|> |
e8be5326c19e004b9b5ba39fba6cb152b3f66a1ab620a37dbbff939c71faec92 | def timeout_decorator(item):
'Wrap the original function.'
@functools.wraps(item)
def func_wrapper(*args, **kwargs):
'Closure for function.'
pool = multiprocessing.pool.ThreadPool(processes=1)
async_result = pool.apply_async(item, args, kwargs)
res = async_result.get(max_timeout)
pool.close()
return res
return func_wrapper | Wrap the original function. | integral/slagle.py | timeout_decorator | crisperdue/holpy | 22 | python | def timeout_decorator(item):
@functools.wraps(item)
def func_wrapper(*args, **kwargs):
'Closure for function.'
pool = multiprocessing.pool.ThreadPool(processes=1)
async_result = pool.apply_async(item, args, kwargs)
res = async_result.get(max_timeout)
pool.close()
return res
return func_wrapper | def timeout_decorator(item):
@functools.wraps(item)
def func_wrapper(*args, **kwargs):
'Closure for function.'
pool = multiprocessing.pool.ThreadPool(processes=1)
async_result = pool.apply_async(item, args, kwargs)
res = async_result.get(max_timeout)
pool.close()
return res
return func_wrapper<|docstring|>Wrap the original function.<|endoftext|> |
79b6fdf662485a65be66e835902447032196e3e7e5df54a2fb24efa58729f763 | def is_pat1(e):
'elf{sin(v),cos^2(v)}cos^{2n+1}(v)'
v = Symbol('v', [VAR, OP, FUN])
n = Symbol('n', [CONST])
pat1 = ((cos(v) ^ n) * sin(v))
pat2 = (cos(v) * sin(v))
pat3 = (cos(v) ^ n)
if match(e, pat1):
n_value = e.args[0].args[1].val
if ((n_value % 2) == 0):
return (False, None)
return ((True, e.args[1].args[0]) if ((n_value % 2) == 1) else (False, None))
elif match(e, pat3):
n_value = e.args[1].val
return ((True, e.args[0].args[0]) if ((n_value % 2) == 1) else (False, None))
elif match(e, pat2):
n = e.args[1].val
if ((n % 2) == 0):
return (False, None)
return (True, e.args[0].args[0])
else:
return (False, None) | elf{sin(v),cos^2(v)}cos^{2n+1}(v) | integral/slagle.py | is_pat1 | crisperdue/holpy | 22 | python | def is_pat1(e):
v = Symbol('v', [VAR, OP, FUN])
n = Symbol('n', [CONST])
pat1 = ((cos(v) ^ n) * sin(v))
pat2 = (cos(v) * sin(v))
pat3 = (cos(v) ^ n)
if match(e, pat1):
n_value = e.args[0].args[1].val
if ((n_value % 2) == 0):
return (False, None)
return ((True, e.args[1].args[0]) if ((n_value % 2) == 1) else (False, None))
elif match(e, pat3):
n_value = e.args[1].val
return ((True, e.args[0].args[0]) if ((n_value % 2) == 1) else (False, None))
elif match(e, pat2):
n = e.args[1].val
if ((n % 2) == 0):
return (False, None)
return (True, e.args[0].args[0])
else:
return (False, None) | def is_pat1(e):
v = Symbol('v', [VAR, OP, FUN])
n = Symbol('n', [CONST])
pat1 = ((cos(v) ^ n) * sin(v))
pat2 = (cos(v) * sin(v))
pat3 = (cos(v) ^ n)
if match(e, pat1):
n_value = e.args[0].args[1].val
if ((n_value % 2) == 0):
return (False, None)
return ((True, e.args[1].args[0]) if ((n_value % 2) == 1) else (False, None))
elif match(e, pat3):
n_value = e.args[1].val
return ((True, e.args[0].args[0]) if ((n_value % 2) == 1) else (False, None))
elif match(e, pat2):
n = e.args[1].val
if ((n % 2) == 0):
return (False, None)
return (True, e.args[0].args[0])
else:
return (False, None)<|docstring|>elf{sin(v),cos^2(v)}cos^{2n+1}(v)<|endoftext|> |
2ac09b68a937c0cbbff36f994bcf480cbbffc3d9af63c11b07b649f79c4f66f8 | def is_pat2(e):
'elf{cos(v),sin^2(v)}sin^{2n+1}(v)'
v = Symbol('v', [VAR, OP, FUN])
n = Symbol('n', [CONST])
pat1 = (cos(v) * (sin(v) ^ n))
pat2 = (cos(v) * sin(v))
pat3 = (sin(v) ^ n)
if match(e, pat1):
n_value = e.args[1].args[1].val
return (True, (e.args[0].args[0] if ((n_value % 2) == 1) else (False, None)))
elif match(e, pat3):
n_value = e.args[1].val
return (True, (e.args[0].args[0] if ((n_value % 2) == 1) else (False, None)))
elif match(e, pat2):
return (True, e.args[0].args[0])
else:
return (False, None) | elf{cos(v),sin^2(v)}sin^{2n+1}(v) | integral/slagle.py | is_pat2 | crisperdue/holpy | 22 | python | def is_pat2(e):
v = Symbol('v', [VAR, OP, FUN])
n = Symbol('n', [CONST])
pat1 = (cos(v) * (sin(v) ^ n))
pat2 = (cos(v) * sin(v))
pat3 = (sin(v) ^ n)
if match(e, pat1):
n_value = e.args[1].args[1].val
return (True, (e.args[0].args[0] if ((n_value % 2) == 1) else (False, None)))
elif match(e, pat3):
n_value = e.args[1].val
return (True, (e.args[0].args[0] if ((n_value % 2) == 1) else (False, None)))
elif match(e, pat2):
return (True, e.args[0].args[0])
else:
return (False, None) | def is_pat2(e):
v = Symbol('v', [VAR, OP, FUN])
n = Symbol('n', [CONST])
pat1 = (cos(v) * (sin(v) ^ n))
pat2 = (cos(v) * sin(v))
pat3 = (sin(v) ^ n)
if match(e, pat1):
n_value = e.args[1].args[1].val
return (True, (e.args[0].args[0] if ((n_value % 2) == 1) else (False, None)))
elif match(e, pat3):
n_value = e.args[1].val
return (True, (e.args[0].args[0] if ((n_value % 2) == 1) else (False, None)))
elif match(e, pat2):
return (True, e.args[0].args[0])
else:
return (False, None)<|docstring|>elf{cos(v),sin^2(v)}sin^{2n+1}(v)<|endoftext|> |
94bec98d4a6f4c681280f7dee49d26bc4f75937aaf0ff7c574f4561831417705 | def is_pat3(e):
'elf{tan(v),sec^2(v)}'
v = Symbol('v', [VAR, OP, FUN])
pat1 = tan(v)
pat2 = (sec(v) ^ Const(2))
if match(e, pat1):
return (True, e.args[0])
elif match(e, pat2):
return (True, e.args[0].args[0])
else:
return (False, None) | elf{tan(v),sec^2(v)} | integral/slagle.py | is_pat3 | crisperdue/holpy | 22 | python | def is_pat3(e):
v = Symbol('v', [VAR, OP, FUN])
pat1 = tan(v)
pat2 = (sec(v) ^ Const(2))
if match(e, pat1):
return (True, e.args[0])
elif match(e, pat2):
return (True, e.args[0].args[0])
else:
return (False, None) | def is_pat3(e):
v = Symbol('v', [VAR, OP, FUN])
pat1 = tan(v)
pat2 = (sec(v) ^ Const(2))
if match(e, pat1):
return (True, e.args[0])
elif match(e, pat2):
return (True, e.args[0].args[0])
else:
return (False, None)<|docstring|>elf{tan(v),sec^2(v)}<|endoftext|> |
7494d223446c280b9555ddaf0c2cf953378f790d58e08afbc43282a57a292c60 | def is_pat4(e):
'elf{cot(v),csc^2(v)}'
v = Symbol('v', [VAR, OP, FUN])
pat1 = cot(v)
pat2 = (csc(v) ^ Const(2))
if match(e, pat1):
return (True, e.args[0])
elif match(e, pat2):
return (True, e.args[0].args[0])
else:
return (False, None) | elf{cot(v),csc^2(v)} | integral/slagle.py | is_pat4 | crisperdue/holpy | 22 | python | def is_pat4(e):
v = Symbol('v', [VAR, OP, FUN])
pat1 = cot(v)
pat2 = (csc(v) ^ Const(2))
if match(e, pat1):
return (True, e.args[0])
elif match(e, pat2):
return (True, e.args[0].args[0])
else:
return (False, None) | def is_pat4(e):
v = Symbol('v', [VAR, OP, FUN])
pat1 = cot(v)
pat2 = (csc(v) ^ Const(2))
if match(e, pat1):
return (True, e.args[0])
elif match(e, pat2):
return (True, e.args[0].args[0])
else:
return (False, None)<|docstring|>elf{cot(v),csc^2(v)}<|endoftext|> |
45700215feb3b9a61263766f9cc0202397fedcf9e1855b5e4af41f19047ef690 | def is_pat5(e):
'elf{sec(v),tan^2(v)}tan^{2n+1}(v)'
v = Symbol('v', [VAR, OP, FUN])
n = Symbol('n', [CONST])
pat1 = (sec(v) * (tan(v) ^ n))
pat2 = (sec(v) * tan(v))
pat3 = (tan(v) ^ n)
if match(e, pat1):
n_value = e.args[1].args[1].val
return ((True, e.args[0].args[0]) if ((n_value % 2) == 1) else (False, None))
elif match(e, pat3):
n_value = e.args[1].val
return ((True, e.args[0].args[0]) if ((n_value % 2) == 1) else (False, None))
elif match(e, pat2):
return (True, e.args[0].args[0])
else:
return (False, None) | elf{sec(v),tan^2(v)}tan^{2n+1}(v) | integral/slagle.py | is_pat5 | crisperdue/holpy | 22 | python | def is_pat5(e):
v = Symbol('v', [VAR, OP, FUN])
n = Symbol('n', [CONST])
pat1 = (sec(v) * (tan(v) ^ n))
pat2 = (sec(v) * tan(v))
pat3 = (tan(v) ^ n)
if match(e, pat1):
n_value = e.args[1].args[1].val
return ((True, e.args[0].args[0]) if ((n_value % 2) == 1) else (False, None))
elif match(e, pat3):
n_value = e.args[1].val
return ((True, e.args[0].args[0]) if ((n_value % 2) == 1) else (False, None))
elif match(e, pat2):
return (True, e.args[0].args[0])
else:
return (False, None) | def is_pat5(e):
v = Symbol('v', [VAR, OP, FUN])
n = Symbol('n', [CONST])
pat1 = (sec(v) * (tan(v) ^ n))
pat2 = (sec(v) * tan(v))
pat3 = (tan(v) ^ n)
if match(e, pat1):
n_value = e.args[1].args[1].val
return ((True, e.args[0].args[0]) if ((n_value % 2) == 1) else (False, None))
elif match(e, pat3):
n_value = e.args[1].val
return ((True, e.args[0].args[0]) if ((n_value % 2) == 1) else (False, None))
elif match(e, pat2):
return (True, e.args[0].args[0])
else:
return (False, None)<|docstring|>elf{sec(v),tan^2(v)}tan^{2n+1}(v)<|endoftext|> |
9ce2c26269f03de50f9f48b7f2c418e2eefc72ad7f2b318d3af4fa9ee1d6b9bd | def is_pat6(e):
'elf{csc(v),cot^2(v)}'
v = Symbol('v', [VAR, OP, FUN])
pat1 = csc(v)
pat2 = (cot(v) ^ Const(2))
if match(e, pat1):
return (True, e.args[0])
elif match(e, pat2):
return (True, e.args[0].args[0])
else:
return (False, None) | elf{csc(v),cot^2(v)} | integral/slagle.py | is_pat6 | crisperdue/holpy | 22 | python | def is_pat6(e):
v = Symbol('v', [VAR, OP, FUN])
pat1 = csc(v)
pat2 = (cot(v) ^ Const(2))
if match(e, pat1):
return (True, e.args[0])
elif match(e, pat2):
return (True, e.args[0].args[0])
else:
return (False, None) | def is_pat6(e):
v = Symbol('v', [VAR, OP, FUN])
pat1 = csc(v)
pat2 = (cot(v) ^ Const(2))
if match(e, pat1):
return (True, e.args[0])
elif match(e, pat2):
return (True, e.args[0].args[0])
else:
return (False, None)<|docstring|>elf{csc(v),cot^2(v)}<|endoftext|> |
339b1b2fa332e672e7551a761c5084ef10178d4ad3dddee73eb4858387659bb1 | @functools.wraps(item)
def func_wrapper(*args, **kwargs):
'Closure for function.'
pool = multiprocessing.pool.ThreadPool(processes=1)
async_result = pool.apply_async(item, args, kwargs)
res = async_result.get(max_timeout)
pool.close()
return res | Closure for function. | integral/slagle.py | func_wrapper | crisperdue/holpy | 22 | python | @functools.wraps(item)
def func_wrapper(*args, **kwargs):
pool = multiprocessing.pool.ThreadPool(processes=1)
async_result = pool.apply_async(item, args, kwargs)
res = async_result.get(max_timeout)
pool.close()
return res | @functools.wraps(item)
def func_wrapper(*args, **kwargs):
pool = multiprocessing.pool.ThreadPool(processes=1)
async_result = pool.apply_async(item, args, kwargs)
res = async_result.get(max_timeout)
pool.close()
return res<|docstring|>Closure for function.<|endoftext|> |
9446db6e7889f7ab5dd70224db40b558c93bc5b9d63a7ad134f9826edb466e85 | def __init__(self, *args, **kwargs):
'\n Add placeholders and classes, remove auto-generated\n labels and set autofocus on first field\n '
super().__init__(*args, **kwargs)
placeholders = {'full_name': 'Full Name', 'email': 'Email Address', 'phone_number': 'Phone Number', 'street_address1': 'Street Address 1', 'street_address2': 'Street Address 2', 'town_or_city': 'Town or City', 'county': 'County, State or Locality', 'postcode': 'Postal Code'}
self.fields['full_name'].widget.attrs['autofocus'] = True
for field in self.fields:
if (field != 'country'):
if self.fields[field].required:
placeholder = f'{placeholders[field]} *'
else:
placeholder = placeholders[field]
self.fields[field].widget.attrs['placeholder'] = placeholder
self.fields[field].widget.attrs['class'] = 'border-green text-green'
self.fields[field].label = False
self.fields['phone_number'].widget.attrs['class'] = 'number'
self.fields['full_name'].widget.attrs['class'] = 'letters' | Add placeholders and classes, remove auto-generated
labels and set autofocus on first field | checkout/forms.py | __init__ | FraL96/Monstera-MS4 | 0 | python | def __init__(self, *args, **kwargs):
'\n Add placeholders and classes, remove auto-generated\n labels and set autofocus on first field\n '
super().__init__(*args, **kwargs)
placeholders = {'full_name': 'Full Name', 'email': 'Email Address', 'phone_number': 'Phone Number', 'street_address1': 'Street Address 1', 'street_address2': 'Street Address 2', 'town_or_city': 'Town or City', 'county': 'County, State or Locality', 'postcode': 'Postal Code'}
self.fields['full_name'].widget.attrs['autofocus'] = True
for field in self.fields:
if (field != 'country'):
if self.fields[field].required:
placeholder = f'{placeholders[field]} *'
else:
placeholder = placeholders[field]
self.fields[field].widget.attrs['placeholder'] = placeholder
self.fields[field].widget.attrs['class'] = 'border-green text-green'
self.fields[field].label = False
self.fields['phone_number'].widget.attrs['class'] = 'number'
self.fields['full_name'].widget.attrs['class'] = 'letters' | def __init__(self, *args, **kwargs):
'\n Add placeholders and classes, remove auto-generated\n labels and set autofocus on first field\n '
super().__init__(*args, **kwargs)
placeholders = {'full_name': 'Full Name', 'email': 'Email Address', 'phone_number': 'Phone Number', 'street_address1': 'Street Address 1', 'street_address2': 'Street Address 2', 'town_or_city': 'Town or City', 'county': 'County, State or Locality', 'postcode': 'Postal Code'}
self.fields['full_name'].widget.attrs['autofocus'] = True
for field in self.fields:
if (field != 'country'):
if self.fields[field].required:
placeholder = f'{placeholders[field]} *'
else:
placeholder = placeholders[field]
self.fields[field].widget.attrs['placeholder'] = placeholder
self.fields[field].widget.attrs['class'] = 'border-green text-green'
self.fields[field].label = False
self.fields['phone_number'].widget.attrs['class'] = 'number'
self.fields['full_name'].widget.attrs['class'] = 'letters'<|docstring|>Add placeholders and classes, remove auto-generated
labels and set autofocus on first field<|endoftext|> |
a29f808550d44b6a940ce2eb55299a4564e6d5d518933e0f7fab002cbb399795 | def editor(arg):
'Do the editing.'
(fn, scenario, multiplier) = arg
newfn = fn.replace('/i/0/', ('/i/%s/' % (scenario,)))
newdir = os.path.dirname(newfn)
if (not os.path.isdir(newdir)):
try:
os.makedirs(newdir)
except FileExistsError:
pass
fp = open(newfn, 'w')
for line in open(fn):
tokens = line.split()
if (len(tokens) != 2):
fp.write(line)
continue
try:
fp.write(('%s %.2f\n' % (tokens[0], (float(tokens[1]) * multiplier))))
except Exception as exp:
print(('Editing %s hit exp: %s' % (fn, exp)))
sys.exit()
fp.close() | Do the editing. | scripts/cligen/arb_precip_delta.py | editor | jarad/dep | 0 | python | def editor(arg):
(fn, scenario, multiplier) = arg
newfn = fn.replace('/i/0/', ('/i/%s/' % (scenario,)))
newdir = os.path.dirname(newfn)
if (not os.path.isdir(newdir)):
try:
os.makedirs(newdir)
except FileExistsError:
pass
fp = open(newfn, 'w')
for line in open(fn):
tokens = line.split()
if (len(tokens) != 2):
fp.write(line)
continue
try:
fp.write(('%s %.2f\n' % (tokens[0], (float(tokens[1]) * multiplier))))
except Exception as exp:
print(('Editing %s hit exp: %s' % (fn, exp)))
sys.exit()
fp.close() | def editor(arg):
(fn, scenario, multiplier) = arg
newfn = fn.replace('/i/0/', ('/i/%s/' % (scenario,)))
newdir = os.path.dirname(newfn)
if (not os.path.isdir(newdir)):
try:
os.makedirs(newdir)
except FileExistsError:
pass
fp = open(newfn, 'w')
for line in open(fn):
tokens = line.split()
if (len(tokens) != 2):
fp.write(line)
continue
try:
fp.write(('%s %.2f\n' % (tokens[0], (float(tokens[1]) * multiplier))))
except Exception as exp:
print(('Editing %s hit exp: %s' % (fn, exp)))
sys.exit()
fp.close()<|docstring|>Do the editing.<|endoftext|> |
da823a346ba7f56ce7e939e6c7bcf0ccaac582ce85e2d3770a7bbcb5c50a7664 | def finder(scenario, multiplier):
'yield what we can find.'
res = []
for (dirname, _dirpath, filenames) in os.walk('/i/0/cli'):
for fn in filenames:
res.append([('%s/%s' % (dirname, fn)), scenario, multiplier])
return res | yield what we can find. | scripts/cligen/arb_precip_delta.py | finder | jarad/dep | 0 | python | def finder(scenario, multiplier):
res = []
for (dirname, _dirpath, filenames) in os.walk('/i/0/cli'):
for fn in filenames:
res.append([('%s/%s' % (dirname, fn)), scenario, multiplier])
return res | def finder(scenario, multiplier):
res = []
for (dirname, _dirpath, filenames) in os.walk('/i/0/cli'):
for fn in filenames:
res.append([('%s/%s' % (dirname, fn)), scenario, multiplier])
return res<|docstring|>yield what we can find.<|endoftext|> |
b36db0ad9c2b0330919172809f97829197c3ed8c554038924483774d92922483 | def main(argv):
'Go Main Go.'
scenario = int(argv[1])
if (scenario == 0):
print('NO!')
return
multiplier = float(argv[2])
queue = finder(scenario, multiplier)
print(('Applying %.2f multiplier for scenario %s' % (multiplier, scenario)))
pool = Pool()
for _ in tqdm(pool.imap_unordered(editor, queue), total=len(queue)):
pass | Go Main Go. | scripts/cligen/arb_precip_delta.py | main | jarad/dep | 0 | python | def main(argv):
scenario = int(argv[1])
if (scenario == 0):
print('NO!')
return
multiplier = float(argv[2])
queue = finder(scenario, multiplier)
print(('Applying %.2f multiplier for scenario %s' % (multiplier, scenario)))
pool = Pool()
for _ in tqdm(pool.imap_unordered(editor, queue), total=len(queue)):
pass | def main(argv):
scenario = int(argv[1])
if (scenario == 0):
print('NO!')
return
multiplier = float(argv[2])
queue = finder(scenario, multiplier)
print(('Applying %.2f multiplier for scenario %s' % (multiplier, scenario)))
pool = Pool()
for _ in tqdm(pool.imap_unordered(editor, queue), total=len(queue)):
pass<|docstring|>Go Main Go.<|endoftext|> |
fd230741e582f4d580d3a3932965c16bdc7d005412fa13bb06cab83dd64b4535 | def _assert_task_ids_match_states(self, dr, task_ids_to_states):
'Helper that asserts task instances with a given id are in a given state'
tis = dr.get_task_instances()
for ti in tis:
try:
expected_state = task_ids_to_states[ti.task_id]
except KeyError:
raise ValueError(f'Invalid task id {ti.task_id} found!')
else:
self.assertEqual(ti.state, expected_state, f'Task {ti.task_id} has state {ti.state} instead of expected {expected_state}') | Helper that asserts task instances with a given id are in a given state | tests/operators/test_weekday.py | _assert_task_ids_match_states | jiantao01/airflow | 15,947 | python | def _assert_task_ids_match_states(self, dr, task_ids_to_states):
tis = dr.get_task_instances()
for ti in tis:
try:
expected_state = task_ids_to_states[ti.task_id]
except KeyError:
raise ValueError(f'Invalid task id {ti.task_id} found!')
else:
self.assertEqual(ti.state, expected_state, f'Task {ti.task_id} has state {ti.state} instead of expected {expected_state}') | def _assert_task_ids_match_states(self, dr, task_ids_to_states):
tis = dr.get_task_instances()
for ti in tis:
try:
expected_state = task_ids_to_states[ti.task_id]
except KeyError:
raise ValueError(f'Invalid task id {ti.task_id} found!')
else:
self.assertEqual(ti.state, expected_state, f'Task {ti.task_id} has state {ti.state} instead of expected {expected_state}')<|docstring|>Helper that asserts task instances with a given id are in a given state<|endoftext|> |
1f49a9084b1eb43d462ea71721187f477c3775589ff3cf92b37196000b32f41f | @parameterized.expand([('with-string', 'Monday'), ('with-enum', WeekDay.MONDAY), ('with-enum-set', {WeekDay.MONDAY}), ('with-enum-list', [WeekDay.MONDAY]), ('with-enum-dict', {WeekDay.MONDAY: 'some_value'}), ('with-enum-set-2-items', {WeekDay.MONDAY, WeekDay.FRIDAY}), ('with-enum-list-2-items', [WeekDay.MONDAY, WeekDay.FRIDAY]), ('with-enum-dict-2-items', {WeekDay.MONDAY: 'some_value', WeekDay.FRIDAY: 'some_value_2'}), ('with-string-set', {'Monday'}), ('with-string-set-2-items', {'Monday', 'Friday'}), ('with-set-mix-types', {'Monday', WeekDay.FRIDAY}), ('with-list-mix-types', ['Monday', WeekDay.FRIDAY]), ('with-dict-mix-types', {'Monday': 'some_value', WeekDay.FRIDAY: 'some_value_2'})])
@freeze_time('2021-01-25')
def test_branch_follow_true(self, _, weekday):
'Checks if BranchDayOfWeekOperator follows true branch'
print(datetime.datetime.now())
branch_op = BranchDayOfWeekOperator(task_id='make_choice', follow_task_ids_if_true=['branch_1', 'branch_2'], follow_task_ids_if_false='branch_3', week_day=weekday, dag=self.dag)
self.branch_1.set_upstream(branch_op)
self.branch_2.set_upstream(branch_op)
self.branch_3 = DummyOperator(task_id='branch_3', dag=self.dag)
self.branch_3.set_upstream(branch_op)
self.dag.clear()
dr = self.dag.create_dagrun(run_id='manual__', start_date=timezone.utcnow(), execution_date=DEFAULT_DATE, state=State.RUNNING)
branch_op.run(start_date=DEFAULT_DATE, end_date=DEFAULT_DATE)
self._assert_task_ids_match_states(dr, {'make_choice': State.SUCCESS, 'branch_1': State.NONE, 'branch_2': State.NONE, 'branch_3': State.SKIPPED}) | Checks if BranchDayOfWeekOperator follows true branch | tests/operators/test_weekday.py | test_branch_follow_true | jiantao01/airflow | 15,947 | python | @parameterized.expand([('with-string', 'Monday'), ('with-enum', WeekDay.MONDAY), ('with-enum-set', {WeekDay.MONDAY}), ('with-enum-list', [WeekDay.MONDAY]), ('with-enum-dict', {WeekDay.MONDAY: 'some_value'}), ('with-enum-set-2-items', {WeekDay.MONDAY, WeekDay.FRIDAY}), ('with-enum-list-2-items', [WeekDay.MONDAY, WeekDay.FRIDAY]), ('with-enum-dict-2-items', {WeekDay.MONDAY: 'some_value', WeekDay.FRIDAY: 'some_value_2'}), ('with-string-set', {'Monday'}), ('with-string-set-2-items', {'Monday', 'Friday'}), ('with-set-mix-types', {'Monday', WeekDay.FRIDAY}), ('with-list-mix-types', ['Monday', WeekDay.FRIDAY]), ('with-dict-mix-types', {'Monday': 'some_value', WeekDay.FRIDAY: 'some_value_2'})])
@freeze_time('2021-01-25')
def test_branch_follow_true(self, _, weekday):
print(datetime.datetime.now())
branch_op = BranchDayOfWeekOperator(task_id='make_choice', follow_task_ids_if_true=['branch_1', 'branch_2'], follow_task_ids_if_false='branch_3', week_day=weekday, dag=self.dag)
self.branch_1.set_upstream(branch_op)
self.branch_2.set_upstream(branch_op)
self.branch_3 = DummyOperator(task_id='branch_3', dag=self.dag)
self.branch_3.set_upstream(branch_op)
self.dag.clear()
dr = self.dag.create_dagrun(run_id='manual__', start_date=timezone.utcnow(), execution_date=DEFAULT_DATE, state=State.RUNNING)
branch_op.run(start_date=DEFAULT_DATE, end_date=DEFAULT_DATE)
self._assert_task_ids_match_states(dr, {'make_choice': State.SUCCESS, 'branch_1': State.NONE, 'branch_2': State.NONE, 'branch_3': State.SKIPPED}) | @parameterized.expand([('with-string', 'Monday'), ('with-enum', WeekDay.MONDAY), ('with-enum-set', {WeekDay.MONDAY}), ('with-enum-list', [WeekDay.MONDAY]), ('with-enum-dict', {WeekDay.MONDAY: 'some_value'}), ('with-enum-set-2-items', {WeekDay.MONDAY, WeekDay.FRIDAY}), ('with-enum-list-2-items', [WeekDay.MONDAY, WeekDay.FRIDAY]), ('with-enum-dict-2-items', {WeekDay.MONDAY: 'some_value', WeekDay.FRIDAY: 'some_value_2'}), ('with-string-set', {'Monday'}), ('with-string-set-2-items', {'Monday', 'Friday'}), ('with-set-mix-types', {'Monday', WeekDay.FRIDAY}), ('with-list-mix-types', ['Monday', WeekDay.FRIDAY]), ('with-dict-mix-types', {'Monday': 'some_value', WeekDay.FRIDAY: 'some_value_2'})])
@freeze_time('2021-01-25')
def test_branch_follow_true(self, _, weekday):
print(datetime.datetime.now())
branch_op = BranchDayOfWeekOperator(task_id='make_choice', follow_task_ids_if_true=['branch_1', 'branch_2'], follow_task_ids_if_false='branch_3', week_day=weekday, dag=self.dag)
self.branch_1.set_upstream(branch_op)
self.branch_2.set_upstream(branch_op)
self.branch_3 = DummyOperator(task_id='branch_3', dag=self.dag)
self.branch_3.set_upstream(branch_op)
self.dag.clear()
dr = self.dag.create_dagrun(run_id='manual__', start_date=timezone.utcnow(), execution_date=DEFAULT_DATE, state=State.RUNNING)
branch_op.run(start_date=DEFAULT_DATE, end_date=DEFAULT_DATE)
self._assert_task_ids_match_states(dr, {'make_choice': State.SUCCESS, 'branch_1': State.NONE, 'branch_2': State.NONE, 'branch_3': State.SKIPPED})<|docstring|>Checks if BranchDayOfWeekOperator follows true branch<|endoftext|> |
bb96d076cc2b8f1690b4d2dc8a450915df58b0ea8817244e686237c381aac877 | @freeze_time('2021-01-25')
def test_branch_follow_true_with_execution_date(self):
'Checks if BranchDayOfWeekOperator follows true branch when set use_task_execution_day'
branch_op = BranchDayOfWeekOperator(task_id='make_choice', follow_task_ids_if_true='branch_1', follow_task_ids_if_false='branch_2', week_day='Wednesday', use_task_execution_day=True, dag=self.dag)
self.branch_1.set_upstream(branch_op)
self.branch_2.set_upstream(branch_op)
self.dag.clear()
dr = self.dag.create_dagrun(run_id='manual__', start_date=timezone.utcnow(), execution_date=DEFAULT_DATE, state=State.RUNNING)
branch_op.run(start_date=DEFAULT_DATE, end_date=DEFAULT_DATE)
self._assert_task_ids_match_states(dr, {'make_choice': State.SUCCESS, 'branch_1': State.NONE, 'branch_2': State.SKIPPED}) | Checks if BranchDayOfWeekOperator follows true branch when set use_task_execution_day | tests/operators/test_weekday.py | test_branch_follow_true_with_execution_date | jiantao01/airflow | 15,947 | python | @freeze_time('2021-01-25')
def test_branch_follow_true_with_execution_date(self):
branch_op = BranchDayOfWeekOperator(task_id='make_choice', follow_task_ids_if_true='branch_1', follow_task_ids_if_false='branch_2', week_day='Wednesday', use_task_execution_day=True, dag=self.dag)
self.branch_1.set_upstream(branch_op)
self.branch_2.set_upstream(branch_op)
self.dag.clear()
dr = self.dag.create_dagrun(run_id='manual__', start_date=timezone.utcnow(), execution_date=DEFAULT_DATE, state=State.RUNNING)
branch_op.run(start_date=DEFAULT_DATE, end_date=DEFAULT_DATE)
self._assert_task_ids_match_states(dr, {'make_choice': State.SUCCESS, 'branch_1': State.NONE, 'branch_2': State.SKIPPED}) | @freeze_time('2021-01-25')
def test_branch_follow_true_with_execution_date(self):
branch_op = BranchDayOfWeekOperator(task_id='make_choice', follow_task_ids_if_true='branch_1', follow_task_ids_if_false='branch_2', week_day='Wednesday', use_task_execution_day=True, dag=self.dag)
self.branch_1.set_upstream(branch_op)
self.branch_2.set_upstream(branch_op)
self.dag.clear()
dr = self.dag.create_dagrun(run_id='manual__', start_date=timezone.utcnow(), execution_date=DEFAULT_DATE, state=State.RUNNING)
branch_op.run(start_date=DEFAULT_DATE, end_date=DEFAULT_DATE)
self._assert_task_ids_match_states(dr, {'make_choice': State.SUCCESS, 'branch_1': State.NONE, 'branch_2': State.SKIPPED})<|docstring|>Checks if BranchDayOfWeekOperator follows true branch when set use_task_execution_day<|endoftext|> |
1723e77675e2fe85b00039e905df98d38d536e438dc62263a28d9d50bf2dafbc | @freeze_time('2021-01-25')
def test_branch_follow_false(self):
'Checks if BranchDayOfWeekOperator follow false branch'
branch_op = BranchDayOfWeekOperator(task_id='make_choice', follow_task_ids_if_true='branch_1', follow_task_ids_if_false='branch_2', week_day='Sunday', dag=self.dag)
self.branch_1.set_upstream(branch_op)
self.branch_2.set_upstream(branch_op)
self.dag.clear()
dr = self.dag.create_dagrun(run_id='manual__', start_date=timezone.utcnow(), execution_date=DEFAULT_DATE, state=State.RUNNING)
branch_op.run(start_date=DEFAULT_DATE, end_date=DEFAULT_DATE)
self._assert_task_ids_match_states(dr, {'make_choice': State.SUCCESS, 'branch_1': State.SKIPPED, 'branch_2': State.NONE}) | Checks if BranchDayOfWeekOperator follow false branch | tests/operators/test_weekday.py | test_branch_follow_false | jiantao01/airflow | 15,947 | python | @freeze_time('2021-01-25')
def test_branch_follow_false(self):
branch_op = BranchDayOfWeekOperator(task_id='make_choice', follow_task_ids_if_true='branch_1', follow_task_ids_if_false='branch_2', week_day='Sunday', dag=self.dag)
self.branch_1.set_upstream(branch_op)
self.branch_2.set_upstream(branch_op)
self.dag.clear()
dr = self.dag.create_dagrun(run_id='manual__', start_date=timezone.utcnow(), execution_date=DEFAULT_DATE, state=State.RUNNING)
branch_op.run(start_date=DEFAULT_DATE, end_date=DEFAULT_DATE)
self._assert_task_ids_match_states(dr, {'make_choice': State.SUCCESS, 'branch_1': State.SKIPPED, 'branch_2': State.NONE}) | @freeze_time('2021-01-25')
def test_branch_follow_false(self):
branch_op = BranchDayOfWeekOperator(task_id='make_choice', follow_task_ids_if_true='branch_1', follow_task_ids_if_false='branch_2', week_day='Sunday', dag=self.dag)
self.branch_1.set_upstream(branch_op)
self.branch_2.set_upstream(branch_op)
self.dag.clear()
dr = self.dag.create_dagrun(run_id='manual__', start_date=timezone.utcnow(), execution_date=DEFAULT_DATE, state=State.RUNNING)
branch_op.run(start_date=DEFAULT_DATE, end_date=DEFAULT_DATE)
self._assert_task_ids_match_states(dr, {'make_choice': State.SUCCESS, 'branch_1': State.SKIPPED, 'branch_2': State.NONE})<|docstring|>Checks if BranchDayOfWeekOperator follow false branch<|endoftext|> |
fbc7781aefadc307ae24322895a2222f9ffefcc022049bf018f0081aaa511d27 | def test_branch_with_no_weekday(self):
'Check if BranchDayOfWeekOperator raises exception on missing weekday'
with self.assertRaises(AirflowException):
BranchDayOfWeekOperator(task_id='make_choice', follow_task_ids_if_true='branch_1', follow_task_ids_if_false='branch_2', dag=self.dag) | Check if BranchDayOfWeekOperator raises exception on missing weekday | tests/operators/test_weekday.py | test_branch_with_no_weekday | jiantao01/airflow | 15,947 | python | def test_branch_with_no_weekday(self):
with self.assertRaises(AirflowException):
BranchDayOfWeekOperator(task_id='make_choice', follow_task_ids_if_true='branch_1', follow_task_ids_if_false='branch_2', dag=self.dag) | def test_branch_with_no_weekday(self):
with self.assertRaises(AirflowException):
BranchDayOfWeekOperator(task_id='make_choice', follow_task_ids_if_true='branch_1', follow_task_ids_if_false='branch_2', dag=self.dag)<|docstring|>Check if BranchDayOfWeekOperator raises exception on missing weekday<|endoftext|> |
b46d9c67a0a149e5a0f4157e6268a61def57321d8cf02dbf8e680f42b9545b0c | def test_branch_with_invalid_type(self):
'Check if BranchDayOfWeekOperator raises exception on unsupported weekday type'
invalid_week_day = 5
with pytest.raises(TypeError, match=f'Unsupported Type for week_day parameter: {type(invalid_week_day)}.Input should be iterable type:str, set, list, dict or Weekday enum type'):
BranchDayOfWeekOperator(task_id='make_choice', follow_task_ids_if_true='branch_1', follow_task_ids_if_false='branch_2', week_day=invalid_week_day, dag=self.dag) | Check if BranchDayOfWeekOperator raises exception on unsupported weekday type | tests/operators/test_weekday.py | test_branch_with_invalid_type | jiantao01/airflow | 15,947 | python | def test_branch_with_invalid_type(self):
invalid_week_day = 5
with pytest.raises(TypeError, match=f'Unsupported Type for week_day parameter: {type(invalid_week_day)}.Input should be iterable type:str, set, list, dict or Weekday enum type'):
BranchDayOfWeekOperator(task_id='make_choice', follow_task_ids_if_true='branch_1', follow_task_ids_if_false='branch_2', week_day=invalid_week_day, dag=self.dag) | def test_branch_with_invalid_type(self):
invalid_week_day = 5
with pytest.raises(TypeError, match=f'Unsupported Type for week_day parameter: {type(invalid_week_day)}.Input should be iterable type:str, set, list, dict or Weekday enum type'):
BranchDayOfWeekOperator(task_id='make_choice', follow_task_ids_if_true='branch_1', follow_task_ids_if_false='branch_2', week_day=invalid_week_day, dag=self.dag)<|docstring|>Check if BranchDayOfWeekOperator raises exception on unsupported weekday type<|endoftext|> |
9f0afe0c5bb1f8d5382ce38a4faa26870a05e48fc41f580dfa047918fa8ade93 | @parameterized.expand([('string', 'Thsday', 'Thsday'), ('list', ['Monday', 'Thsday'], 'Thsday'), ('set', {WeekDay.MONDAY, 'Thsday'}, 'Thsday')])
def test_weekday_branch_invalid_weekday_value(self, _, week_day, fail_msg):
'Check if BranchDayOfWeekOperator raises exception on wrong value of weekday'
with pytest.raises(AttributeError, match=f'Invalid Week Day passed: "{fail_msg}"'):
BranchDayOfWeekOperator(task_id='make_choice', follow_task_ids_if_true='branch_1', follow_task_ids_if_false='branch_2', week_day=week_day, dag=self.dag) | Check if BranchDayOfWeekOperator raises exception on wrong value of weekday | tests/operators/test_weekday.py | test_weekday_branch_invalid_weekday_value | jiantao01/airflow | 15,947 | python | @parameterized.expand([('string', 'Thsday', 'Thsday'), ('list', ['Monday', 'Thsday'], 'Thsday'), ('set', {WeekDay.MONDAY, 'Thsday'}, 'Thsday')])
def test_weekday_branch_invalid_weekday_value(self, _, week_day, fail_msg):
with pytest.raises(AttributeError, match=f'Invalid Week Day passed: "{fail_msg}"'):
BranchDayOfWeekOperator(task_id='make_choice', follow_task_ids_if_true='branch_1', follow_task_ids_if_false='branch_2', week_day=week_day, dag=self.dag) | @parameterized.expand([('string', 'Thsday', 'Thsday'), ('list', ['Monday', 'Thsday'], 'Thsday'), ('set', {WeekDay.MONDAY, 'Thsday'}, 'Thsday')])
def test_weekday_branch_invalid_weekday_value(self, _, week_day, fail_msg):
with pytest.raises(AttributeError, match=f'Invalid Week Day passed: "{fail_msg}"'):
BranchDayOfWeekOperator(task_id='make_choice', follow_task_ids_if_true='branch_1', follow_task_ids_if_false='branch_2', week_day=week_day, dag=self.dag)<|docstring|>Check if BranchDayOfWeekOperator raises exception on wrong value of weekday<|endoftext|> |
bea75568018ddfb7d5a2f45bffe0e0ae460897362b1cdd987c7ea23961bea810 | @freeze_time('2021-01-25')
def test_branch_xcom_push_true_branch(self):
'Check if BranchDayOfWeekOperator push to xcom value of follow_task_ids_if_true'
branch_op = BranchDayOfWeekOperator(task_id='make_choice', follow_task_ids_if_true='branch_1', follow_task_ids_if_false='branch_2', week_day='Monday', dag=self.dag)
self.branch_1.set_upstream(branch_op)
self.branch_2.set_upstream(branch_op)
self.dag.clear()
dr = self.dag.create_dagrun(run_id='manual__', start_date=timezone.utcnow(), execution_date=DEFAULT_DATE, state=State.RUNNING)
branch_op.run(start_date=DEFAULT_DATE, end_date=DEFAULT_DATE)
tis = dr.get_task_instances()
for ti in tis:
if (ti.task_id == 'make_choice'):
assert (ti.xcom_pull(task_ids='make_choice') == 'branch_1') | Check if BranchDayOfWeekOperator push to xcom value of follow_task_ids_if_true | tests/operators/test_weekday.py | test_branch_xcom_push_true_branch | jiantao01/airflow | 15,947 | python | @freeze_time('2021-01-25')
def test_branch_xcom_push_true_branch(self):
branch_op = BranchDayOfWeekOperator(task_id='make_choice', follow_task_ids_if_true='branch_1', follow_task_ids_if_false='branch_2', week_day='Monday', dag=self.dag)
self.branch_1.set_upstream(branch_op)
self.branch_2.set_upstream(branch_op)
self.dag.clear()
dr = self.dag.create_dagrun(run_id='manual__', start_date=timezone.utcnow(), execution_date=DEFAULT_DATE, state=State.RUNNING)
branch_op.run(start_date=DEFAULT_DATE, end_date=DEFAULT_DATE)
tis = dr.get_task_instances()
for ti in tis:
if (ti.task_id == 'make_choice'):
assert (ti.xcom_pull(task_ids='make_choice') == 'branch_1') | @freeze_time('2021-01-25')
def test_branch_xcom_push_true_branch(self):
branch_op = BranchDayOfWeekOperator(task_id='make_choice', follow_task_ids_if_true='branch_1', follow_task_ids_if_false='branch_2', week_day='Monday', dag=self.dag)
self.branch_1.set_upstream(branch_op)
self.branch_2.set_upstream(branch_op)
self.dag.clear()
dr = self.dag.create_dagrun(run_id='manual__', start_date=timezone.utcnow(), execution_date=DEFAULT_DATE, state=State.RUNNING)
branch_op.run(start_date=DEFAULT_DATE, end_date=DEFAULT_DATE)
tis = dr.get_task_instances()
for ti in tis:
if (ti.task_id == 'make_choice'):
assert (ti.xcom_pull(task_ids='make_choice') == 'branch_1')<|docstring|>Check if BranchDayOfWeekOperator push to xcom value of follow_task_ids_if_true<|endoftext|> |
8db3b0858974b2ff54be0ee7401712c72f08a22460c444b85a9105ecb0e88c80 | def get_player(nickname):
'Retrieve single player instance from database.'
player = Player.get_player_stats(nickname)
if (player is None):
return (jsonify({'message': 'Player instance could not be found.'}), 404)
response = player.to_dict()
return (jsonify(response), 200) | Retrieve single player instance from database. | src/app/views/players.py | get_player | PetrushynskyiOleksii/shooter-stats | 0 | python | def get_player(nickname):
player = Player.get_player_stats(nickname)
if (player is None):
return (jsonify({'message': 'Player instance could not be found.'}), 404)
response = player.to_dict()
return (jsonify(response), 200) | def get_player(nickname):
player = Player.get_player_stats(nickname)
if (player is None):
return (jsonify({'message': 'Player instance could not be found.'}), 404)
response = player.to_dict()
return (jsonify(response), 200)<|docstring|>Retrieve single player instance from database.<|endoftext|> |
d6a5c167cd7e830eb79777909eae88d483ca549c62e517cab94c33fdc7d02709 | def create_player():
'Create new player instance.'
json_data = request.get_json()
if (not json_data):
return (jsonify({'error': 'No required input data provided.'}), 400)
(data, errors) = Player.from_dict(json_data)
if errors:
return (jsonify(errors), 400)
player = Player.get(data.get('nickname'))
if player:
return (jsonify({'error': 'Player with this nickname already exists.'}), 409)
player = Player(data)
response = player.to_dict()
return (jsonify(response), 201) | Create new player instance. | src/app/views/players.py | create_player | PetrushynskyiOleksii/shooter-stats | 0 | python | def create_player():
json_data = request.get_json()
if (not json_data):
return (jsonify({'error': 'No required input data provided.'}), 400)
(data, errors) = Player.from_dict(json_data)
if errors:
return (jsonify(errors), 400)
player = Player.get(data.get('nickname'))
if player:
return (jsonify({'error': 'Player with this nickname already exists.'}), 409)
player = Player(data)
response = player.to_dict()
return (jsonify(response), 201) | def create_player():
json_data = request.get_json()
if (not json_data):
return (jsonify({'error': 'No required input data provided.'}), 400)
(data, errors) = Player.from_dict(json_data)
if errors:
return (jsonify(errors), 400)
player = Player.get(data.get('nickname'))
if player:
return (jsonify({'error': 'Player with this nickname already exists.'}), 409)
player = Player(data)
response = player.to_dict()
return (jsonify(response), 201)<|docstring|>Create new player instance.<|endoftext|> |
cde363f26f8e02533a26ab47eb8506e72680907e79900047cc993386e85fd2b7 | def get_server_players(endpoint):
'Return list of players on server.'
page = request.args.get('page', 1, type=int)
order_by = request.args.get('order_by')
players = Player.get_all(order_by=order_by, endpoint=endpoint)
response = paginate_response(players, page=page)
return (jsonify(response), 200) | Return list of players on server. | src/app/views/players.py | get_server_players | PetrushynskyiOleksii/shooter-stats | 0 | python | def get_server_players(endpoint):
page = request.args.get('page', 1, type=int)
order_by = request.args.get('order_by')
players = Player.get_all(order_by=order_by, endpoint=endpoint)
response = paginate_response(players, page=page)
return (jsonify(response), 200) | def get_server_players(endpoint):
page = request.args.get('page', 1, type=int)
order_by = request.args.get('order_by')
players = Player.get_all(order_by=order_by, endpoint=endpoint)
response = paginate_response(players, page=page)
return (jsonify(response), 200)<|docstring|>Return list of players on server.<|endoftext|> |
7ad23f72634cc0960b05a92ba64404862859eb152817231a93df88f4cce0af62 | def get_players():
'Return all existing players in database.'
page = request.args.get('page', 1, type=int)
order_by = request.args.get('order_by')
players = Player.get_all(order_by=order_by)
response = paginate_response(players, page=page)
return (jsonify(response), 200) | Return all existing players in database. | src/app/views/players.py | get_players | PetrushynskyiOleksii/shooter-stats | 0 | python | def get_players():
page = request.args.get('page', 1, type=int)
order_by = request.args.get('order_by')
players = Player.get_all(order_by=order_by)
response = paginate_response(players, page=page)
return (jsonify(response), 200) | def get_players():
page = request.args.get('page', 1, type=int)
order_by = request.args.get('order_by')
players = Player.get_all(order_by=order_by)
response = paginate_response(players, page=page)
return (jsonify(response), 200)<|docstring|>Return all existing players in database.<|endoftext|> |
52bfe408f1490cfdbad4316635b8b44f625e154bd81c4cf4e3b95c62fade77a1 | def __init__(self, lam, validate_args=False, allow_nan_stats=True, name='Poisson'):
'Construct Poisson distributions.\n\n Args:\n lam: Floating point tensor, the rate parameter of the\n distribution(s). `lam` must be positive.\n validate_args: `Boolean`, default `False`. Whether to assert that\n `lam > 0` as well as inputs to pmf computations are non-negative\n integers. If validate_args is `False`, then `pmf` computations might\n return `NaN`, but can be evaluated at any real value.\n allow_nan_stats: `Boolean`, default `True`. If `False`, raise an\n exception if a statistic (e.g. mean/mode/etc...) is undefined for any\n batch member. If `True`, batch members with valid parameters leading to\n undefined statistics will return NaN for this statistic.\n name: A name for this distribution.\n '
parameters = locals()
parameters.pop('self')
with ops.name_scope(name, values=[lam]) as ns:
with ops.control_dependencies(([check_ops.assert_positive(lam)] if validate_args else [])):
self._lam = array_ops.identity(lam, name='lam')
super(Poisson, self).__init__(dtype=self._lam.dtype, is_continuous=False, is_reparameterized=False, validate_args=validate_args, allow_nan_stats=allow_nan_stats, parameters=parameters, graph_parents=[self._lam], name=ns) | Construct Poisson distributions.
Args:
lam: Floating point tensor, the rate parameter of the
distribution(s). `lam` must be positive.
validate_args: `Boolean`, default `False`. Whether to assert that
`lam > 0` as well as inputs to pmf computations are non-negative
integers. If validate_args is `False`, then `pmf` computations might
return `NaN`, but can be evaluated at any real value.
allow_nan_stats: `Boolean`, default `True`. If `False`, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member. If `True`, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.
name: A name for this distribution. | tensorflow/contrib/distributions/python/ops/poisson.py | __init__ | HowieYang0/notmnist-ex | 101 | python | def __init__(self, lam, validate_args=False, allow_nan_stats=True, name='Poisson'):
'Construct Poisson distributions.\n\n Args:\n lam: Floating point tensor, the rate parameter of the\n distribution(s). `lam` must be positive.\n validate_args: `Boolean`, default `False`. Whether to assert that\n `lam > 0` as well as inputs to pmf computations are non-negative\n integers. If validate_args is `False`, then `pmf` computations might\n return `NaN`, but can be evaluated at any real value.\n allow_nan_stats: `Boolean`, default `True`. If `False`, raise an\n exception if a statistic (e.g. mean/mode/etc...) is undefined for any\n batch member. If `True`, batch members with valid parameters leading to\n undefined statistics will return NaN for this statistic.\n name: A name for this distribution.\n '
parameters = locals()
parameters.pop('self')
with ops.name_scope(name, values=[lam]) as ns:
with ops.control_dependencies(([check_ops.assert_positive(lam)] if validate_args else [])):
self._lam = array_ops.identity(lam, name='lam')
super(Poisson, self).__init__(dtype=self._lam.dtype, is_continuous=False, is_reparameterized=False, validate_args=validate_args, allow_nan_stats=allow_nan_stats, parameters=parameters, graph_parents=[self._lam], name=ns) | def __init__(self, lam, validate_args=False, allow_nan_stats=True, name='Poisson'):
'Construct Poisson distributions.\n\n Args:\n lam: Floating point tensor, the rate parameter of the\n distribution(s). `lam` must be positive.\n validate_args: `Boolean`, default `False`. Whether to assert that\n `lam > 0` as well as inputs to pmf computations are non-negative\n integers. If validate_args is `False`, then `pmf` computations might\n return `NaN`, but can be evaluated at any real value.\n allow_nan_stats: `Boolean`, default `True`. If `False`, raise an\n exception if a statistic (e.g. mean/mode/etc...) is undefined for any\n batch member. If `True`, batch members with valid parameters leading to\n undefined statistics will return NaN for this statistic.\n name: A name for this distribution.\n '
parameters = locals()
parameters.pop('self')
with ops.name_scope(name, values=[lam]) as ns:
with ops.control_dependencies(([check_ops.assert_positive(lam)] if validate_args else [])):
self._lam = array_ops.identity(lam, name='lam')
super(Poisson, self).__init__(dtype=self._lam.dtype, is_continuous=False, is_reparameterized=False, validate_args=validate_args, allow_nan_stats=allow_nan_stats, parameters=parameters, graph_parents=[self._lam], name=ns)<|docstring|>Construct Poisson distributions.
Args:
lam: Floating point tensor, the rate parameter of the
distribution(s). `lam` must be positive.
validate_args: `Boolean`, default `False`. Whether to assert that
`lam > 0` as well as inputs to pmf computations are non-negative
integers. If validate_args is `False`, then `pmf` computations might
return `NaN`, but can be evaluated at any real value.
allow_nan_stats: `Boolean`, default `True`. If `False`, raise an
exception if a statistic (e.g. mean/mode/etc...) is undefined for any
batch member. If `True`, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.
name: A name for this distribution.<|endoftext|> |
d173330f2f8a510b3f59f9a82e65c77c7f98f91cb1ba8fc943f5b9165a66a080 | @property
def lam(self):
'Rate parameter.'
return self._lam | Rate parameter. | tensorflow/contrib/distributions/python/ops/poisson.py | lam | HowieYang0/notmnist-ex | 101 | python | @property
def lam(self):
return self._lam | @property
def lam(self):
return self._lam<|docstring|>Rate parameter.<|endoftext|> |
d781ce9148ed7189c38a90a1950c52b708afb351628bb90789216bf7be400c71 | def __init__(self, ec_address=None, fct_address=None, host=None, username=None, password=None, certfile=None):
'\n Instantiate a new API client.\n\n Args:\n ec_address (str): A default entry credit address to use for\n transactions. Credits will be spent from this address.\n fct_address (str): A default factoid address to use for\n transactions.\n host (str): Hostname, including http(s)://, of the node\n username (str): RPC username for protected APIs.\n password (str): RPC password for protected APIs.\n certfile (str): Path to certificate file to verify for TLS\n connections (mostly untested).\n '
self.ec_address = ec_address
self.fct_address = fct_address
self.version = 'v1'
if host:
self.host = host
self.session = APISession()
if (username and password):
self.session.init_basic_auth(username, password)
if certfile:
self.session.init_tls(certfile) | Instantiate a new API client.
Args:
ec_address (str): A default entry credit address to use for
transactions. Credits will be spent from this address.
fct_address (str): A default factoid address to use for
transactions.
host (str): Hostname, including http(s)://, of the node
username (str): RPC username for protected APIs.
password (str): RPC password for protected APIs.
certfile (str): Path to certificate file to verify for TLS
connections (mostly untested). | pegnet_py/client.py | __init__ | pegnet/pegnet-py | 2 | python | def __init__(self, ec_address=None, fct_address=None, host=None, username=None, password=None, certfile=None):
'\n Instantiate a new API client.\n\n Args:\n ec_address (str): A default entry credit address to use for\n transactions. Credits will be spent from this address.\n fct_address (str): A default factoid address to use for\n transactions.\n host (str): Hostname, including http(s)://, of the node\n username (str): RPC username for protected APIs.\n password (str): RPC password for protected APIs.\n certfile (str): Path to certificate file to verify for TLS\n connections (mostly untested).\n '
self.ec_address = ec_address
self.fct_address = fct_address
self.version = 'v1'
if host:
self.host = host
self.session = APISession()
if (username and password):
self.session.init_basic_auth(username, password)
if certfile:
self.session.init_tls(certfile) | def __init__(self, ec_address=None, fct_address=None, host=None, username=None, password=None, certfile=None):
'\n Instantiate a new API client.\n\n Args:\n ec_address (str): A default entry credit address to use for\n transactions. Credits will be spent from this address.\n fct_address (str): A default factoid address to use for\n transactions.\n host (str): Hostname, including http(s)://, of the node\n username (str): RPC username for protected APIs.\n password (str): RPC password for protected APIs.\n certfile (str): Path to certificate file to verify for TLS\n connections (mostly untested).\n '
self.ec_address = ec_address
self.fct_address = fct_address
self.version = 'v1'
if host:
self.host = host
self.session = APISession()
if (username and password):
self.session.init_basic_auth(username, password)
if certfile:
self.session.init_tls(certfile)<|docstring|>Instantiate a new API client.
Args:
ec_address (str): A default entry credit address to use for
transactions. Credits will be spent from this address.
fct_address (str): A default factoid address to use for
transactions.
host (str): Hostname, including http(s)://, of the node
username (str): RPC username for protected APIs.
password (str): RPC password for protected APIs.
certfile (str): Path to certificate file to verify for TLS
connections (mostly untested).<|endoftext|> |
c9fcf5340b542d4b4a5e26baee3188ebd302bce5ba5f1479f70a213f02c69679 | def get_sync_status(self):
'Retrieve the current sync status of the node.'
return self._request('get-sync-status') | Retrieve the current sync status of the node. | pegnet_py/client.py | get_sync_status | pegnet/pegnet-py | 2 | python | def get_sync_status(self):
return self._request('get-sync-status') | def get_sync_status(self):
return self._request('get-sync-status')<|docstring|>Retrieve the current sync status of the node.<|endoftext|> |
8050811788d319d002495b97bee3a6504e450be617e214c1305fa79a2e33a7bc | def get_balances(self, address: FactoidAddress):
'Retrieve all current pegnet balances for the given address'
return self._request('get-pegnet-balances', {'address': address.to_string()}) | Retrieve all current pegnet balances for the given address | pegnet_py/client.py | get_balances | pegnet/pegnet-py | 2 | python | def get_balances(self, address: FactoidAddress):
return self._request('get-pegnet-balances', {'address': address.to_string()}) | def get_balances(self, address: FactoidAddress):
return self._request('get-pegnet-balances', {'address': address.to_string()})<|docstring|>Retrieve all current pegnet balances for the given address<|endoftext|> |
eb6bcf9cf23964e195bb0e3640d967df65ec9d1c54a19973cf2dc0f643a70f9e | def get_issuance(self):
'Retrieve the token issuance for all pegnet assets'
return self._request('get-pegnet-issuance') | Retrieve the token issuance for all pegnet assets | pegnet_py/client.py | get_issuance | pegnet/pegnet-py | 2 | python | def get_issuance(self):
return self._request('get-pegnet-issuance') | def get_issuance(self):
return self._request('get-pegnet-issuance')<|docstring|>Retrieve the token issuance for all pegnet assets<|endoftext|> |
da6bb3734ffa12f3f409b5e93d6567be1f3eb4fd98be7ac84317fd4299b7513c | def get_rates(self, height: int):
'Retrieve the PegNet conversion rates for a given height'
return self._request('get-pegnet-rates', {'height': height}) | Retrieve the PegNet conversion rates for a given height | pegnet_py/client.py | get_rates | pegnet/pegnet-py | 2 | python | def get_rates(self, height: int):
return self._request('get-pegnet-rates', {'height': height}) | def get_rates(self, height: int):
return self._request('get-pegnet-rates', {'height': height})<|docstring|>Retrieve the PegNet conversion rates for a given height<|endoftext|> |
b4e15de6e9939306b2ad2705142d4677ecd803a22963f90e4acecc8e9ed8146f | def get_tx_status(self, entry_hash: Union[(bytes, str)]):
'Retrieve the status for a PegNet transaction'
return self._request('get-transaction-status', {'entryhash': (entry_hash.hex() if (type(entry_hash) is bytes) else entry_hash)}) | Retrieve the status for a PegNet transaction | pegnet_py/client.py | get_tx_status | pegnet/pegnet-py | 2 | python | def get_tx_status(self, entry_hash: Union[(bytes, str)]):
return self._request('get-transaction-status', {'entryhash': (entry_hash.hex() if (type(entry_hash) is bytes) else entry_hash)}) | def get_tx_status(self, entry_hash: Union[(bytes, str)]):
return self._request('get-transaction-status', {'entryhash': (entry_hash.hex() if (type(entry_hash) is bytes) else entry_hash)})<|docstring|>Retrieve the status for a PegNet transaction<|endoftext|> |
10f2089f4a5ef1f39a0741d4a3ddaeea98e419137bba7e3e93b1e81d2e590661 | def get_txs(self, entry_hash: Union[(bytes, str)]=None, address: str=None, height: int=None, offset: int=0, desc: bool=False, transfer: bool=True, conversion: bool=True, coinbase: bool=True, burn: bool=True):
'Retrieve the transactions associated with the provided entry_hash or address or height'
request_params = {}
if entry_hash:
request_params['entryhash'] = (entry_hash.hex() if (type(entry_hash) is bytes) else entry_hash)
elif address:
request_params['address'] = address
elif height:
request_params['height'] = height
else:
raise ValueError('One of entry_hash, address or height must be specified')
request_params.update({'offset': offset, 'desc': desc, 'transfer': transfer, 'conversion': conversion, 'coinbase': coinbase, 'burn': burn})
return self._request('get-transactions', request_params) | Retrieve the transactions associated with the provided entry_hash or address or height | pegnet_py/client.py | get_txs | pegnet/pegnet-py | 2 | python | def get_txs(self, entry_hash: Union[(bytes, str)]=None, address: str=None, height: int=None, offset: int=0, desc: bool=False, transfer: bool=True, conversion: bool=True, coinbase: bool=True, burn: bool=True):
request_params = {}
if entry_hash:
request_params['entryhash'] = (entry_hash.hex() if (type(entry_hash) is bytes) else entry_hash)
elif address:
request_params['address'] = address
elif height:
request_params['height'] = height
else:
raise ValueError('One of entry_hash, address or height must be specified')
request_params.update({'offset': offset, 'desc': desc, 'transfer': transfer, 'conversion': conversion, 'coinbase': coinbase, 'burn': burn})
return self._request('get-transactions', request_params) | def get_txs(self, entry_hash: Union[(bytes, str)]=None, address: str=None, height: int=None, offset: int=0, desc: bool=False, transfer: bool=True, conversion: bool=True, coinbase: bool=True, burn: bool=True):
request_params = {}
if entry_hash:
request_params['entryhash'] = (entry_hash.hex() if (type(entry_hash) is bytes) else entry_hash)
elif address:
request_params['address'] = address
elif height:
request_params['height'] = height
else:
raise ValueError('One of entry_hash, address or height must be specified')
request_params.update({'offset': offset, 'desc': desc, 'transfer': transfer, 'conversion': conversion, 'coinbase': coinbase, 'burn': burn})
return self._request('get-transactions', request_params)<|docstring|>Retrieve the transactions associated with the provided entry_hash or address or height<|endoftext|> |
e337f5d7a29b64c14cf334fba16ab2838e8f7a38ef5a8bfb9d4f39cbc6dbcbac | def send_transaction(self, chain_id: bytes, ext_ids: List[bytes], content: bytes):
'Send a transaction with the specified external ids and content'
return self._request('send-transaction', {'chainid': chain_id.hex(), 'extids': [x.hex() for x in ext_ids], 'content': content.hex()}) | Send a transaction with the specified external ids and content | pegnet_py/client.py | send_transaction | pegnet/pegnet-py | 2 | python | def send_transaction(self, chain_id: bytes, ext_ids: List[bytes], content: bytes):
return self._request('send-transaction', {'chainid': chain_id.hex(), 'extids': [x.hex() for x in ext_ids], 'content': content.hex()}) | def send_transaction(self, chain_id: bytes, ext_ids: List[bytes], content: bytes):
return self._request('send-transaction', {'chainid': chain_id.hex(), 'extids': [x.hex() for x in ext_ids], 'content': content.hex()})<|docstring|>Send a transaction with the specified external ids and content<|endoftext|> |
f22540f7b0f38716049dc92735a68c09c5c3ffa1d99770e44bbab922d698d61b | def dot(colour, interval):
'Continually light a randomly-chosen pixel with a weighted interval.'
while True:
index = random.randint(0, (COUNT - 1))
payload = json.dumps({'colour': colour})
requests.post(f'http://{LIGHTSHOST}:5000/lights/single/{index}', data=payload)
time.sleep((random.random() * interval)) | Continually light a randomly-chosen pixel with a weighted interval. | xmas/scripts/lamplighter.py | dot | pikesley/christmas-pixels | 0 | python | def dot(colour, interval):
while True:
index = random.randint(0, (COUNT - 1))
payload = json.dumps({'colour': colour})
requests.post(f'http://{LIGHTSHOST}:5000/lights/single/{index}', data=payload)
time.sleep((random.random() * interval)) | def dot(colour, interval):
while True:
index = random.randint(0, (COUNT - 1))
payload = json.dumps({'colour': colour})
requests.post(f'http://{LIGHTSHOST}:5000/lights/single/{index}', data=payload)
time.sleep((random.random() * interval))<|docstring|>Continually light a randomly-chosen pixel with a weighted interval.<|endoftext|> |
325218d8e65ab592ae9ce87b345c9ae0ff8a3db26951b071569aa7f400543374 | @rutils.log_task_wrapper(LOG.info, _('Enter context: `EC2 creds`'))
def setup(self):
'This method is called before the task start.'
try:
for user in self.context['users']:
osclient = osclients.Clients(user['endpoint'])
keystone = osclient.keystone()
creds = keystone.ec2.list(user['id'])
if (not creds):
creds = keystone.ec2.create(user['id'], user['tenant_id'])
else:
creds = creds[0]
url = keystone.service_catalog.url_for(service_type='ec2')
url_parts = url.rpartition(':')
nova_url = ((url_parts[0] + ':8773/') + url_parts[2].partition('/')[2])
self.context['users'][0]['ec2args'] = {'region': 'RegionOne', 'url': url, 'nova_url': nova_url, 'access': creds.access, 'secret': creds.secret}
if (self.net_wrapper.SERVICE_IMPL == consts.Service.NEUTRON):
for (user, tenant_id) in rutils.iterate_per_tenants(self.context['users']):
body = {'quota': {'router': (- 1), 'floatingip': (- 1)}}
self.net_wrapper.client.update_quota(tenant_id, body)
network = self.net_wrapper.create_network(tenant_id, add_router=True, subnets_num=1)
self.context['tenants'][tenant_id]['network'] = network
except Exception as e:
msg = ("Can't prepare ec2 client: %s" % e.message)
if logging.is_debug():
LOG.exception(msg)
else:
LOG.warning(msg) | This method is called before the task start. | rally-scenarios/plugins/context_plugin_ec2_creds.py | setup | JioCloudVPC/compute-ec2-api-vagrant | 0 | python | @rutils.log_task_wrapper(LOG.info, _('Enter context: `EC2 creds`'))
def setup(self):
try:
for user in self.context['users']:
osclient = osclients.Clients(user['endpoint'])
keystone = osclient.keystone()
creds = keystone.ec2.list(user['id'])
if (not creds):
creds = keystone.ec2.create(user['id'], user['tenant_id'])
else:
creds = creds[0]
url = keystone.service_catalog.url_for(service_type='ec2')
url_parts = url.rpartition(':')
nova_url = ((url_parts[0] + ':8773/') + url_parts[2].partition('/')[2])
self.context['users'][0]['ec2args'] = {'region': 'RegionOne', 'url': url, 'nova_url': nova_url, 'access': creds.access, 'secret': creds.secret}
if (self.net_wrapper.SERVICE_IMPL == consts.Service.NEUTRON):
for (user, tenant_id) in rutils.iterate_per_tenants(self.context['users']):
body = {'quota': {'router': (- 1), 'floatingip': (- 1)}}
self.net_wrapper.client.update_quota(tenant_id, body)
network = self.net_wrapper.create_network(tenant_id, add_router=True, subnets_num=1)
self.context['tenants'][tenant_id]['network'] = network
except Exception as e:
msg = ("Can't prepare ec2 client: %s" % e.message)
if logging.is_debug():
LOG.exception(msg)
else:
LOG.warning(msg) | @rutils.log_task_wrapper(LOG.info, _('Enter context: `EC2 creds`'))
def setup(self):
try:
for user in self.context['users']:
osclient = osclients.Clients(user['endpoint'])
keystone = osclient.keystone()
creds = keystone.ec2.list(user['id'])
if (not creds):
creds = keystone.ec2.create(user['id'], user['tenant_id'])
else:
creds = creds[0]
url = keystone.service_catalog.url_for(service_type='ec2')
url_parts = url.rpartition(':')
nova_url = ((url_parts[0] + ':8773/') + url_parts[2].partition('/')[2])
self.context['users'][0]['ec2args'] = {'region': 'RegionOne', 'url': url, 'nova_url': nova_url, 'access': creds.access, 'secret': creds.secret}
if (self.net_wrapper.SERVICE_IMPL == consts.Service.NEUTRON):
for (user, tenant_id) in rutils.iterate_per_tenants(self.context['users']):
body = {'quota': {'router': (- 1), 'floatingip': (- 1)}}
self.net_wrapper.client.update_quota(tenant_id, body)
network = self.net_wrapper.create_network(tenant_id, add_router=True, subnets_num=1)
self.context['tenants'][tenant_id]['network'] = network
except Exception as e:
msg = ("Can't prepare ec2 client: %s" % e.message)
if logging.is_debug():
LOG.exception(msg)
else:
LOG.warning(msg)<|docstring|>This method is called before the task start.<|endoftext|> |
20ca38b19b648ae6df3481e1701164b7f89e88de05eea9d95bbc42bb3f99f918 | def _get_meta(exception):
'Convert an unhandled error into an managed error.'
meta = EXCEPTION_MAP.get(type(exception))
if meta:
return meta
for (exception_type, meta) in EXCEPTION_MAP.items():
if isinstance(exception, exception_type):
return meta
return EXCEPTION_MAP.get(UnhandledException) | Convert an unhandled error into an managed error. | via/views/exceptions.py | _get_meta | mattdricker/via-1 | 0 | python | def _get_meta(exception):
meta = EXCEPTION_MAP.get(type(exception))
if meta:
return meta
for (exception_type, meta) in EXCEPTION_MAP.items():
if isinstance(exception, exception_type):
return meta
return EXCEPTION_MAP.get(UnhandledException) | def _get_meta(exception):
meta = EXCEPTION_MAP.get(type(exception))
if meta:
return meta
for (exception_type, meta) in EXCEPTION_MAP.items():
if isinstance(exception, exception_type):
return meta
return EXCEPTION_MAP.get(UnhandledException)<|docstring|>Convert an unhandled error into an managed error.<|endoftext|> |
0aa7d74512e53f4cb5cfc0a4a00711f38d5c7483f0d32ff90f20805e69793bb3 | @exception_view_config(Exception, renderer='via:templates/exception.html.jinja2')
@exception_view_config(HTTPError, renderer='via:templates/exception.html.jinja2')
def all_exceptions(exc, request):
'Catch all errors (Pyramid or Python) and display an HTML page.'
try:
status_code = exc.status_int
except AttributeError:
status_code = HTTPExpectationFailed.code
request.response.status_int = status_code
exception_meta = _get_meta(exc)
exception_meta.update({'class': exc.__class__.__name__, 'details': str(exc)})
return {'status_code': status_code, 'exception': exception_meta, 'url': {'original': request.GET.get('url', None), 'retry': request.url}, 'static_url': request.static_url} | Catch all errors (Pyramid or Python) and display an HTML page. | via/views/exceptions.py | all_exceptions | mattdricker/via-1 | 0 | python | @exception_view_config(Exception, renderer='via:templates/exception.html.jinja2')
@exception_view_config(HTTPError, renderer='via:templates/exception.html.jinja2')
def all_exceptions(exc, request):
try:
status_code = exc.status_int
except AttributeError:
status_code = HTTPExpectationFailed.code
request.response.status_int = status_code
exception_meta = _get_meta(exc)
exception_meta.update({'class': exc.__class__.__name__, 'details': str(exc)})
return {'status_code': status_code, 'exception': exception_meta, 'url': {'original': request.GET.get('url', None), 'retry': request.url}, 'static_url': request.static_url} | @exception_view_config(Exception, renderer='via:templates/exception.html.jinja2')
@exception_view_config(HTTPError, renderer='via:templates/exception.html.jinja2')
def all_exceptions(exc, request):
try:
status_code = exc.status_int
except AttributeError:
status_code = HTTPExpectationFailed.code
request.response.status_int = status_code
exception_meta = _get_meta(exc)
exception_meta.update({'class': exc.__class__.__name__, 'details': str(exc)})
return {'status_code': status_code, 'exception': exception_meta, 'url': {'original': request.GET.get('url', None), 'retry': request.url}, 'static_url': request.static_url}<|docstring|>Catch all errors (Pyramid or Python) and display an HTML page.<|endoftext|> |
a036caed3e047b63ef5dc48cddc80722225fe993b6ddf313044f66bcfed35c3c | def data_cleaning(fname, platforms=[], merge_keywords=[], keywords=[], del_keywords=[], start_year=2004):
'\n Filtering out unwanted game data.\n \n Args:\n :param fname: string. Name of data file.\n :param platforms: list of strings. Filtering out games other than these platforms.\n :param merge_keywords: list constains list with two elements. Fill the first element with the value of secon element.\n :param keywords: list of strings. Filtering out games lacking these values.\n :param del_keywords: list of strings. Deleting columns.\n :param start_year: integer. Filtering out games released before this year.\n Return:\n A cleaned dataframe\n '
assert isinstance(fname, str), 'fname is not a string'
assert isinstance(platforms, list), 'platforms is not a list'
assert isinstance(merge_keywords, list), 'merge_keywords is not a list'
assert isinstance(keywords, list), 'keywords is not a list'
assert isinstance(del_keywords, list), 'del_keywords is not a list'
df = pd.read_csv(fname, delimiter=',')
(nrow, ncol) = df.shape
print(f'There are {nrow} rows and {ncol} columns in raw data')
df.drop(del_keywords, axis=1, inplace=True)
for i_merge_keywords in merge_keywords:
for i in range(nrow):
if pd.isna(df[i_merge_keywords[0]][i]):
df.loc[(i, i_merge_keywords[0])] = df.loc[(i, i_merge_keywords[1])]
del_line = []
for i in range(nrow):
if (df.Year[i] < start_year):
del_line.append(i)
elif (df.Platform[i] not in platforms):
del_line.append(i)
else:
for i_keywords in keywords:
if (pd.isna(df[i_keywords][i]) or (df[i_keywords][i] == 'Unknown') or (df[i_keywords][i] == 'NaN') or (df[i_keywords][i] is None) or (df[i_keywords][i] == '') or (df[i_keywords][i] == 'nan')):
del_line.append(i)
break
df.drop(list(set(del_line)), inplace=True)
(nrow, ncol) = df.shape
print(f'There are {nrow} rows and {ncol} columns in refined data')
df.to_csv('../../../conf/video_games/output/vgsales-refined-data.csv', index=False)
print('Genre includes', df['Genre'].value_counts().to_dict())
print('ESRB_rating includes', df['ESRB_Rating'].value_counts().to_dict())
print('Platform includes', df['Platform'].value_counts().to_dict())
print('Publisher includes', df['Publisher'].value_counts().to_dict())
print('Year includes', df['Year'].value_counts().to_dict())
return df | Filtering out unwanted game data.
Args:
:param fname: string. Name of data file.
:param platforms: list of strings. Filtering out games other than these platforms.
:param merge_keywords: list constains list with two elements. Fill the first element with the value of secon element.
:param keywords: list of strings. Filtering out games lacking these values.
:param del_keywords: list of strings. Deleting columns.
:param start_year: integer. Filtering out games released before this year.
Return:
A cleaned dataframe | src/analytics/video_games/data_preprocessing.py | data_cleaning | manjotms10/google-trends-analytics | 6 | python | def data_cleaning(fname, platforms=[], merge_keywords=[], keywords=[], del_keywords=[], start_year=2004):
'\n Filtering out unwanted game data.\n \n Args:\n :param fname: string. Name of data file.\n :param platforms: list of strings. Filtering out games other than these platforms.\n :param merge_keywords: list constains list with two elements. Fill the first element with the value of secon element.\n :param keywords: list of strings. Filtering out games lacking these values.\n :param del_keywords: list of strings. Deleting columns.\n :param start_year: integer. Filtering out games released before this year.\n Return:\n A cleaned dataframe\n '
assert isinstance(fname, str), 'fname is not a string'
assert isinstance(platforms, list), 'platforms is not a list'
assert isinstance(merge_keywords, list), 'merge_keywords is not a list'
assert isinstance(keywords, list), 'keywords is not a list'
assert isinstance(del_keywords, list), 'del_keywords is not a list'
df = pd.read_csv(fname, delimiter=',')
(nrow, ncol) = df.shape
print(f'There are {nrow} rows and {ncol} columns in raw data')
df.drop(del_keywords, axis=1, inplace=True)
for i_merge_keywords in merge_keywords:
for i in range(nrow):
if pd.isna(df[i_merge_keywords[0]][i]):
df.loc[(i, i_merge_keywords[0])] = df.loc[(i, i_merge_keywords[1])]
del_line = []
for i in range(nrow):
if (df.Year[i] < start_year):
del_line.append(i)
elif (df.Platform[i] not in platforms):
del_line.append(i)
else:
for i_keywords in keywords:
if (pd.isna(df[i_keywords][i]) or (df[i_keywords][i] == 'Unknown') or (df[i_keywords][i] == 'NaN') or (df[i_keywords][i] is None) or (df[i_keywords][i] == ) or (df[i_keywords][i] == 'nan')):
del_line.append(i)
break
df.drop(list(set(del_line)), inplace=True)
(nrow, ncol) = df.shape
print(f'There are {nrow} rows and {ncol} columns in refined data')
df.to_csv('../../../conf/video_games/output/vgsales-refined-data.csv', index=False)
print('Genre includes', df['Genre'].value_counts().to_dict())
print('ESRB_rating includes', df['ESRB_Rating'].value_counts().to_dict())
print('Platform includes', df['Platform'].value_counts().to_dict())
print('Publisher includes', df['Publisher'].value_counts().to_dict())
print('Year includes', df['Year'].value_counts().to_dict())
return df | def data_cleaning(fname, platforms=[], merge_keywords=[], keywords=[], del_keywords=[], start_year=2004):
'\n Filtering out unwanted game data.\n \n Args:\n :param fname: string. Name of data file.\n :param platforms: list of strings. Filtering out games other than these platforms.\n :param merge_keywords: list constains list with two elements. Fill the first element with the value of secon element.\n :param keywords: list of strings. Filtering out games lacking these values.\n :param del_keywords: list of strings. Deleting columns.\n :param start_year: integer. Filtering out games released before this year.\n Return:\n A cleaned dataframe\n '
assert isinstance(fname, str), 'fname is not a string'
assert isinstance(platforms, list), 'platforms is not a list'
assert isinstance(merge_keywords, list), 'merge_keywords is not a list'
assert isinstance(keywords, list), 'keywords is not a list'
assert isinstance(del_keywords, list), 'del_keywords is not a list'
df = pd.read_csv(fname, delimiter=',')
(nrow, ncol) = df.shape
print(f'There are {nrow} rows and {ncol} columns in raw data')
df.drop(del_keywords, axis=1, inplace=True)
for i_merge_keywords in merge_keywords:
for i in range(nrow):
if pd.isna(df[i_merge_keywords[0]][i]):
df.loc[(i, i_merge_keywords[0])] = df.loc[(i, i_merge_keywords[1])]
del_line = []
for i in range(nrow):
if (df.Year[i] < start_year):
del_line.append(i)
elif (df.Platform[i] not in platforms):
del_line.append(i)
else:
for i_keywords in keywords:
if (pd.isna(df[i_keywords][i]) or (df[i_keywords][i] == 'Unknown') or (df[i_keywords][i] == 'NaN') or (df[i_keywords][i] is None) or (df[i_keywords][i] == ) or (df[i_keywords][i] == 'nan')):
del_line.append(i)
break
df.drop(list(set(del_line)), inplace=True)
(nrow, ncol) = df.shape
print(f'There are {nrow} rows and {ncol} columns in refined data')
df.to_csv('../../../conf/video_games/output/vgsales-refined-data.csv', index=False)
print('Genre includes', df['Genre'].value_counts().to_dict())
print('ESRB_rating includes', df['ESRB_Rating'].value_counts().to_dict())
print('Platform includes', df['Platform'].value_counts().to_dict())
print('Publisher includes', df['Publisher'].value_counts().to_dict())
print('Year includes', df['Year'].value_counts().to_dict())
return df<|docstring|>Filtering out unwanted game data.
Args:
:param fname: string. Name of data file.
:param platforms: list of strings. Filtering out games other than these platforms.
:param merge_keywords: list constains list with two elements. Fill the first element with the value of secon element.
:param keywords: list of strings. Filtering out games lacking these values.
:param del_keywords: list of strings. Deleting columns.
:param start_year: integer. Filtering out games released before this year.
Return:
A cleaned dataframe<|endoftext|> |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.